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COVID-19 has depleted healthcare systems around the world. Extreme conditions must be de�ned as soon as possible so that
services and treatment can be deployed and intensi�ed. Many biomarkers are being investigated in order to track the patient’s
condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more di�cult for a specialist to
diagnose or predict the severity level of the case.  is research develops a Smart Healthcare System for Severity Prediction and
Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected
to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according
to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud.
Clinical data, including Internet of Medical  ings (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from
one hospital in the Wasit Governorate, Iraq, were used in this study. Di�erent data sources are fused to generate new feature
pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, speci�cally logistic
regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA),
consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients.
 e highest prediction result is achieved based on data fusion and selected features, where all examined classi�ers observe a
signi�cant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced
prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud,
the MAA showed very signi�cant performance where the resource usage was 66% in the proposed model and 34% in the
traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed
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model and 69% in the cloud. *e findings of this study will allow for the early detection of three severity cases, lowering
mortality rates.

1. Introduction

COVID-19 has a destructive impact on people’s lives and
healthcare services all around the globe [1]. *erefore, it is
essential to diagnose affected patients as soon as possible to
prevent the spread of the COVID-19 [2]. As a result, the
rising incidence of COVID-19 presents another threat to the
health field, in addition to the projected daily service ren-
dered, in which mortality is assumed to be high, and di-
agnosis takes a long time [3]. Countries’ experiences during
the initial wave of the pandemic revealed the disease’s
vulnerability to healthcare systems [4]. Additionally, the
rapid global spread of the COVID-19 pandemic is imposing
high pressure on the entire human society. Furthermore,
COVID-19 impacts work-related processes, placing strain
upon many employees in project teams. Identifying process
variables and potential organizational resources can play an
essential role in addressing employee mental health, both for
the current pandemic and future crises [5]. *us, the pre-
vention and control of future global health emergencies
must be a priority [6]. Since the COVID-19 epidemic has
become a pandemic, it would be critical to have resources to
quickly classify people at the most significant risk of mor-
tality and morbidity. In addition, infections also lead to
nosocomial spread, which has an effect on healthcare staff
and the overall delivery of treatment [7].

Due to the popularity of machine learning (ML) models in
the diagnosis of different diseases [8], these models could be
able to provide an accurate and efficient COVID-19 solution
that aids in the early detection of disease [9, 10]. Machine
learning has been widely used to reduce the healthcare systems
burden [11]. Furthermore, it has the potential to reduce the
decision time linked with conventional methods of detection
[12]. *e advancement of the estimation, reduction, and
monitoring of potential global health threats is considered a
crucial factor in the growth of AI strategies to identify the risks
of infectious diseases [13]. Several researchers have published
on various forms of AI classifiers using actual COVID-19
datasets with various case studies and goals [14]. Earlier re-
searches have concentrated on mortality predictions [15],
diagnosis [2], severity valuation, and illness progression [16].
Most present methods have utilized ML methods for pre-
diction based on medical images [17] and other clinical
markers [3]. Most machine learning approaches have been
utilized to predict and diagnose COVID-19, while fewer
studies have focused on severity prediction.

Taking into consideration the multiple complications
involved with COVID-19 [18], approaches that can triage
COVID-19 patients may assist in prioritizing treatment for
those at a high risk of serious illness. COVID-19 severity
may be classified as the following: ordinary, mild, critical,
and severe [19]. Severe cases necessitate more medical at-
tention and energy thanminor and routine cases. A high rate

of false-positive severe or vital cases might cause healthcare
services to become overburdened (i.e., beds in the intensive
care unit). Furthermore, delays in reporting severe or urgent
cases would result in patients with a greater risk of death
receiving delayed care. As a result, identifying acute con-
ditions as soon as possible is critical so that services may be
deployed and care may be intensified [20].

According to Reference [21], a method is needed for real-
time processing of COVID-19 patient data with ultra-low
latency, prediction of COVID-19 infection at an early stage,
and generation of an emergency warning and medical
records for the person, their guardian, and doctors/experts.
In this case, IoT cloud/fog computing combined with ma-
chine learning could be the most effective solution [22].
Numerous healthcare institutions are implementing cloud/
fog computing in healthcare to achieve optimum effec-
tiveness in the fight against different diseases. At the same
time, machine learning can help classify a user’s health status
at an early stage [23]. Because of the adequate storage and
simplicity of processing large volumes of medical data at a
low cost, cloud computing is the most efficient and ap-
propriate tool for improving the efficiency of healthcare
services [24].

Fog computing offers a real-time approach with minimal
latency [25]. As a result, fog computing may improve ap-
plication service delivery time while reducing network
congestion. On the one hand, the existing fog computing
architecture does not support dispersed network architec-
ture. *e fault and load results of the fog node are therefore
displayed [26]. On the other hand, existing fog computing
architecture does not support dispersed network architec-
ture. So, effective management of applications is crucial to
use the capabilities of fog nodes [25]. As a result, combining
cloud-fog innovations could result in a world-record-
breaking approach for the healthcare industry [27]. A
gateway node acts as a point of access to the remaining
system. *e gateway collects the sensed data from the
connected sensors. *e standard computing system oper-
ating many applications may be efficiently used with the
agents distributed through the system that separately
function for the users. *e agents coordinate the commu-
nities and cooperate in providing intelligent and customized
services depending on different users’ contexts [28]. Multi-
agent systems (MASs) have been widely used to solve real-
world problems because they are proactive and flexible to
environmental changes. *e authors of [29] suggest a home
hospitalization system for COVID-19 based on cloud
computing, fog computing, and the Internet of*ings (IoT),
which are three of the essential technologies that have
significantly aided the growth of the healthcare sector. *e
suggested environmental sensing unit consists of three
modules (smoke, gas, humidity, and temperature) for en-
vironmental component detection.
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However, detecting the signs mentioned above will
exhaust the network because the detected signs have no
impact on the detection of COVID-19 infection. To prevent
COVID-19 and future pandemics, the authors of [30] de-
scribe a cooperative multi-agent robot system (MARS) for
strictly enforcing physical distancing restrictions in broad
areas using human-robot interaction (HRI). *e authors
employed multiple self-docking autonomous robots with
collision-free navigation to enforce physical distancing
limitations by delivering alert signals to those who did not
comply. However, this paper employs a multi-agent system
for monitoring the distance without any effort to predict
COVID-19 infection.

*e main contributions of our study can summarize into
following list:

(i) Propose a Smart Healthcare System for Severity
Prediction and Critical Tasks Management (SHSSP-
CTM) of COVID-19 patients in IoT-Fog
computing.

(ii) Propose a fusion process in order to find the best
combination of COVID-19 patient characteristics
such as demographic, chronic conditions, symp-
toms, and laboratory findings that interpreted the
importance of distinct feature set with the highest
predictive power.

(iii) Present COVID-19 severity prediction model with
sufficient predictive power based on the balanced
dataset, fusion process, and feature selection
method.

*e rest of this study is as follows: related work on Smart
Healthcare System for Severity Prediction and Critical Tasks
Management of COVID-19 patients is given in Section 2.
Clinical, laboratory, vital functions, and medical history
information are collected from hospital records in Section 3.
In Section 4, the description of the methods of the Smart
Healthcare System for Severity Prediction and Critical Tasks
Management of COVID-19 patients is provided. *e ana-
lysed results of the proposed system via different techniques
with different methods are presented in Sections 5 and 6.
Section 7 introduced a comparison based on different state-
of-the-art studies. Section 8 highlighted the constraints in
the proposed study. Finally, Section 9 concludes the research
conclusion and future work.

2. Related Works

Meanwhile, several organizations looked at ways to cate-
gorize cases based on severity using ratings and rating
schemes to aid clinicians in the diagnosis and triage [31].*e
COVID-GRAM score was developed by Lian et al. to predict
acute disease in deceased patients admitted to an intensive
care unit (ICU) or mechanically ventilated [32]. *is score
utilized ten variables, yielding an area under the curve
(AUC) of 0.88 in their receiver operating characteristics
(ROC) analysis. Based on data from 208 Chinese patients, Ji
et al. created the CALL score (C� comorbidity, A� age,
L� lymphocyte count, and L� lactate dehydrogenase) to

assess disease progression. In their growth cohort, their
model utilized four variables and returned an AUC of 0.91
[33]. Another score was suggested by an American group
that used 641 patients to estimate intensive care entry or
mortality. *eir score predicted ICU entry with an AUC of
0.74 and death of 0.82 [34]. *e CURB-65 (C� confusion,
U� blood urea nitrogen, R� respiratory rate, and 65� age 65
or older) score and the Pneumonia Severity Index (PSI) were
both utilized on 681 laboratory-confirmed Turkish patients
to estimate mortality of COVID-19-related pneumonia, with
AUCs of 0.88 and 0.91, respectively [35]. *e low AUC
output has been shown for the whole of these scores, which
were generated utilizing multivariate regression models.

In Reference [31], authors have made efforts to measure
the predictive accuracy of the WHO COVID-19 severity
classification on 295 COVID-19 admitted patients. *e
whole patients were categorized depending on WHO se-
verity categorization at admission: moderate, severe, and
critical. *e good outcome of this study is that a Bayesian
network analysis was utilized to generate a model for
analysing the predictive accuracy of the WHO severity
classification and generate the EPI SCORE. However, there
is still room to improve classification performance with
more variables and feature combinations. *is study has
scored only 83.8% and 91% as AUC scores for the models
depending on WHO category only and our EPI SCORE,
respectively. According to [7], other well-validated assess-
ment tools for pneumonia seriousness did not work well.
None of the patients who experienced acute respiratory
distress syndrome (ARDS)may have fulfilled the pneumonia
medical outcomes testing team (PORT) score’s require-
ments for requiring hospitalization. Instead, it was discov-
ered that a mixture of factors widely obtained at the time of
initial presentation could forecast illness progression to
ARDS. Combiningmore COVID-19 characteristics provides
a more complete and more accurate prediction performance
[20].

*e authors in Reference [7] display a first step toward
creating an artificial intelligence (AI) system through al-
gorithmically identifying the COVID-19 clinical features,
which forecast outcomes, then improving a method for
predicting patients at risk for the more serious disease at the
time of initial presentation. However, this study has scored
low prediction performance where the predictive models
learned from patients’ empirical data from two hospitals
forecasting extreme cases with an accuracy of 70% to 80%.
Based on a combination of clinical and imaging results, the
authors in [20] established a machine learning method for
automatic COVID-19 severity assessment. Imaging features
had the most significant influence on model production, and
a mix of imaging and clinical features produced the opti-
mum overall results. *e main classification task was based
on recognizing the difference between severe and mild cases.
*is research demonstrated that imaging and clinical tools
might be utilized to simplify COVID-19 severity assessment,
better triage COVID-19 patients, and optimize treatment for
those at a greater risk of severe disease. However, since the
data collection was heavily skewed, models may have been
overfit to the majority class. Furthermore, since this analysis
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only used patient baseline results, it could not determine
how early COVID-19 development can be identified. An-
other issue that could be presented, especially when with
imaging features, is that considering their benefits, medical
images of COVID-19, and other forms of pneumonia may
share specific similar imagery characteristics, making au-
tomatic differentiation challenging [36, 37]. *is study has
scored high prediction results with 95% as the AUC value.
However, low prediction can be seen where only 60% scored
as F-measure and 76% as precision value, respectively.
However, all previous works have considered the severity
prediction for COVID-19 and ignored the importance of
task scheduling for the critical case that may result in death if
no mechanism is adopted.

3. Dataset

Samples were collected between 4/8/2020 and 3/12/2020 and
were used for model development. *e total number was 78
people infected with the COVID-19 virus, diagnosed under
the supervision of specialized doctors at Al Aziziya Primary
Healthcare Sector, Wasit Governorate, Iraq. For 78 patients,
they lost sense of taste and smell, which was the most
common symptoms (92.3% and 91.02, respectively) and
followed by fever (67.95%), generalized weaknesses
(66.67%), cough (58.97%), sore throat (57.69%), sneezing
(56.41%), pleuritic chest pain (53.84%), diarrhoea (52.56%),
and nasal congestion and rhinorrhoea (42.30%) as shown in
Table 1.

4. Smart Healthcare System for Severity
Prediction and Critical TasksManagement of
COVID-19 Patients

Recently, smart healthcare systems considered to be a de-
veloping application of the Internet of Medical things
(IoMT). *e smart healthcare framework comprises of
wearable sensors utilized to monitoring the particular health
status of the patients or users. Most critically, wearable
innovation has become a crucial role of not just remote
patients monitoring but moreover for users health moni-
toring frequently. *e wearable devices can help in mini-
mizing the visit of specialists or doctors in health
monitoring.

It moreover helps within the early identification of smart
hospital development, diseases, safety provisioning, and
drug research. *e two main innovations need to be ex-
plored to enhance a smart healthcare framework. Firstly,
through biomedical sensors like blood pressure, patient
priority, temperature, motion, and how the wearable devices
are appended on the users body to acquire, their health
status is studied. As shown in Figure 1, the framework of the
suggested smart healthcare system is discussed in this sec-
tion. *e SHSSP-CTM has two chief data sources. *e first
one appeared on the left and is the Internet of Medical
*ings (IoMT) sensor data. *e second data source is
Electronic Health Records (EHRs).

An agent will run in each gateway, and it is role for-
warding stream sensed data of each patient through Wi-Fi

and Bluetooth to fog layer. *e purpose of the COVID-19
severity prediction model is predicting the risk disease for
patients depending on the gathered information.*is engine
contains of four major steps: (1) information fusion; (2)
preprocessing; (3) ML model depending on COVID-19
severity forecast. *e extracted features from unstructured
and structured information are fused in the first stage,
utilizing the suggested fusion scheme. *e information is
then preprocessed utilizing information mining approaches
in the next step. Data normalization and useful feature
selection approaches are included in this step. For the final
prediction of patient severity, the preprocessed information
is transferred to an ML classifier trained on a COVID-19
dataset in the third stage. After data preprocessing and
prediction with diagnosis steps, (4) multi-agent system will
assign (prioritize) the tasks according to criticality. Patient
with sever criticality will be assigned to ICU. Patient with
moderate criticality will be advised to be in continuous
monitoring. In last case, when the patient is in mild criti-
cality, this will be advised for further checking. Two main
tasks are handled by cloud datacentres: first task is pro-
cessing the stream sensed tasks when all fog nodes are busy
and no available resources, and second task is upgrading
patients’ history records.

4.1. Multisource COVID-19 Data Collection. *e proposed
SHSSP-CTM for COVID-19 patients considers several sorts
of information for severity prediction of COVID-19 such as
Internet of Medical *ings (IoMT) sensors, and Electronic
Health Record (EHR) data as displayed in Figure 1. *e first
type of information is gathered with wearable sensors help.
*e IoMT sensors data include body temperature and sat-
uration of oxygen in the blood (SPO2). *ese IoMT sensors’
data offer valued data for the severity prediction and
management of critical COVID-19 patient. All IoMT sensor
information is allocated in the information collection layer
(e.g., S1 is SPO2 sensor data). During processing, the system
finds those identities to be features. Additionally, for further
processing, the IoMT sensor information is displayed in
columns, along with identities and numerical values. Fur-
thermore, shapeless EHRs of the patient are gathered to
more sever issues for COVID-19 patient.

EHRs include demographic, chronic conditions,
symptoms, and laboratory findings data. *e EHRs may be
examined for extracting valued data, which may assist in
severity management and prediction of critical COVID-19
patient. Each of demographic, chronic conditions, symp-
toms, laboratory findings, and vital sign feature set will be
used as first input in the COVID-19 severity prediction
phase.

4.2. COVID-19 Severity Prediction. *is layer will be as
cornerstone for indicating severity prediction. Also, this
layer clarifies the suggested ML severity prediction model
that is composed of two major processes, feature extraction
and severity prediction process, as displayed in Figure 2.
However, all processes in this layer and next layers will be
executed based on the proposed dataset.
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4.2.1. Feature Extraction. *e related data obtained from
raw information are significant in COVID-19 severity
prediction because of its direct effect on prediction per-
formance. *e major source for feature extraction process is
mainly EHR and IoMTsensors’ data that are main indicators
for severity of COVID-19 patient. Also, the extracted fea-
tures are in different data forms such as numerical and
categorical. In numerical features, the system obtains factors

in which values are already obtainable in an organized form.
As such, the system obtains feature with a different range of
numbers, for example, age, body temperature, SPO2, cre-
atinine, and other values from structured areas. In cate-
gorical feature extraction, the system derives risk factors
with values that fall into various groups mainly between two
values (zero or one) such as diabetes history, heart disease,
male, female, and nasal congestion. To mention, this process

Table 1: Clinical, laboratory, vital functions, and medical history information collected from hospitals records.

Characteristics Overall appearance
Age, mean (years) 52.83
Gender, n (%)
Male 46 (58.97%)
Female 32 (41.03%)
Chronic diseases, n (%)
Chronic medical illness (hypertension; diabetes; tumour or any type of cancer) 41 (52.56%)
Outcomes, n (%)
Mortality rate 11 (14.1%)
Survival rate 67 (85.9%)
Symptoms on onset, n (%)
Fever 53 (67.95%)
Cough 46 (58.97%)
Generalized weakness 52 (66.67%)
Nasal congestion 33 (42.30%)
Rhinorrhoea 33 (42.30%)
Sneezing 44 (56.41%)
Sore throat 45 (57.69%)
Pleuritic chest pain 42 (53.84%)
Diarrhoea 41 (52.56%)
Lost sense of smell 71 (91.02%)
Lost sense of taste 72 (92.30%)
Laboratory test, n: abnormal cases based on WHO test range (%)
Haemoglobin (g/dL) M: 11 (23.91%), F: 15 (46.87%)
White blood cell count 31 (39.74%)
Lymphocyte count 13 (16.66%)
Platelet count 13 (16.66%)
C-reactive protein (mg/L) 48 (61.53%)
Urea (mmol/L) 22 (28.20%)
Creatinine (µmol/L) 56 (71.79%)
Vital signs, n: abnormal cases based on WHO test range (%)
Saturation of oxygen in the blood (SPO2), (>90, 90–94, 95–100) 46 (58.97%), 21 (26.93%), 11 (14.10%)

EHRs

IoMT
Sensors

Gateway

Pre-Processed
Data

Prediction
and

Diagnosis

Fog Tier

Mild

Moderate

Sever

Cloud
Datacenters

ICU

Monitoring

Further
Checking

MAS

Figure 1: Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) of COVID-19 patients.
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will applied into three main scenarios based on number of
features such as single feature set, feature fusion set, and
feature selection with fusion set.

4.2.2. ML Severity Prediction Model. *e severity prediction
process was performed on the base of the identified dataset,
the employment of several ML models, and extracted fea-
tures. Python was utilized for the whole forecast tasks
through the study time. *e last severity prediction model
output for COVID-19 was produced in this subphase in
which multiclass classification was performed. In other
words, three cases that the ML models have to predicate
specifically: mild, moderate, and sever cases. According to
Reference [20], logistic regression (LR) can provide good
prediction power for COVID-19 severity cases that is why
used this technique as first baseline prediction model in this
study. Furthermore, for more generalization process, we
used also random forest (RF) as second baseline prediction
model. In latest research, random forest was found to be
more stable and resilient than extreme learning machines,
neural networks, and SVMs, particularly with limited
training sets [38]. However, in order to show prediction
power of mentioned models three main scenarios are in-
cluded in the prediction process such as prediction based on
single feature set, prediction based on feature fusion set, and

prediction based on feature selection with fusion set.
However, the first input for this phase is five feature sets that
predicted and extracted individually, which is explained as
follows:

Set 1: demographic features such as age and gender.
Set 2: chronic condition features such as heart disease,
diabetes, and cancer.
Set 3: symptoms features such as cough, fever, nasal
congestion, generalized weakness, sneezing, rhinor-
rhoea, diarrhoea, pleuritic chest pain, sore throat, lost
sense of smell, and lost sense of taste.
Set 4: laboratory finding features such as haemoglobin,
platelet count, lymphocyte count, white blood cell
count, C-reactive protein, urea, and creatinine.
Set 5: vital signs features such as SPO2 and body
temperature.

4.3. Multisource Feature Fusion. *e fusion of EHR and
IoMTsensor information is discussed in this section, as seen
in Figure 2. Fusion is the process of combining data from
various databases to provide more valuable and valid in-
formation for classification [39, 40]. Data function and
decision levels are the three fusion levels [41–43]. Data-level

Multi-Source Covid-19 Data Collection

Covid-19 Severity Prediction

Multi-Source Covid-19 Feature Fusion
Final Covid-19 Severity Model

Prediction Assessment
• Accuracy
• Recall
• Precision
• F-Measure

Pre-Processing

Demographic
Data

Chronic
Conditions Data

Laboratory
Data

Symptoms
Data

Feature Extraction

RF Model

Demographic
D1, D2, ....., Dn

New Vector: D1, D2, ....., Dn, C1,C2, ...., Cn, S1, S2, ..., Sn, L1, L2,
...., Ln, V1, V2, ...., Vn

Chronic Conditions
C1, C2, ...., Cn

Symptoms
S1, S2, ..., Sn

Laboratory
L1, L2, ...., Ln

Vital Signs
V1, V2, ...., Vn

LR Model

Feature Extraction

Vital Signs
Data

Feature Selection Data Normalization

Figure 2: COVID-19 severity prediction.
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integration brings together several datasets from disparate
sources.

*ere are two types of data fusion: feature and decision
levels. At the feature level, features are extracted one by one
from various datasets and then combined to form the op-
timal selection of features for prediction [44]. Even though
many studies proposed feature extraction of COVID-19
patient frommedical images [45] or laboratory findings [46],
the accuracy obtained from classification was not quite
significant. Meanwhile, studies for COVID-19 prediction
believe that the combination of more than one data or
feature type for instance clinical and imaging features is
decent to improve the prediction accuracy [7, 20]. *us,
fusion process is considered in this study in order to improve
the system prediction accuracy.

Data-level fusion normally requires a vast volume of
redundant information, making it undesirable. *e feature
level, on the other hand, provides enough data to determine
the COVID-19 severity. Feature-level fusion is achieved in
the suggested framework. Figure 2 depicts the function
fusion workflow. First, sensors are used to capture the pa-
tient’s physiological information, and EHR is retrieved, as
discussed in the data collection layer, respectively. *e data
from IoMT sensors are then combined with information
derived from EHR data. Lastly, the data from the IoMT
sensor and the derived features are translated to comma
separated value (CSV) files. As a result, the system deter-
mines the optimal mix of features connected to COVID-19
severity prediction. However, in this phase, five main feature
sets that already mentioned in the previous phase are fused
(Set 1, Set 2, Set 3, Set 4, and Set 5). Furthermore, the fusion
process will formed a new feature vector that consist of 25
severity variables for COVID-19 patients form different data
sources. *e main goal of the proposed system is predicting
COVID-19 patients’ severity with relevant and lower-di-
mensional features extracted from multisource data.

However, the derived features from IoMT sensor data
can contain irrelevant data, lowering prediction accuracy,
and increasing feature dimensionality. Furthermore, those
also improve the memory requirements and classification
complexity. As a result, data preprocessing is performed
prior to actual processing, which increases data accuracy
while still saving memory and time.

4.4. Data Preprocessing. Preprocessing information is the
most important phase before using machine learning al-
gorithms. Real-world information cannot be used explicitly
in the prediction task because it is incomplete, noisy, and
contradictory. As a result, a preprocessing stage is used to
efficiently reflect the information for COVID-19 severity
prediction. Normalization and feature selection are ex-
amples of data preprocessing in this study.

4.4.1. Data Normalization. Before execute the feature
selection approach, we have to deal with data from het-
erogeneous resource, so huge differences in the feature scales

can be presented. *e proposed dataset has a lot of features,
and each feature has several numerical values that make the
calculation process more complex. As a result, the dataset is
normalized using a normalization process. Since each
function has equal importance, normalization aims to make
any data point, which has the same size [3]. *e translation
of the minimum value of every feature into 0 is the highest
value into 1, and the other values have to be a decimal
between 0 and 1. *e formula for min-max normalization is
as follows:

v′ �
(v − min)

(max − min)
, (1)

where v′ denotes for normalized data value, V represents
original data value, min represents minimum data value, and
max denotes for maximum data value.

4.4.2. Feature Selection Based on Information Gain Method.
Feature selection is essential step, especially after executed
feature extraction process and tackling the issues of non-
normalized data. In most cases, patient reports have a lot
of useless information in them, which reduces the ac-
curacy of forecast. Consequently, extracting useful data
from medical records, minimizing noise through ex-
cluding irrelevant features, and accurately prediction with
a small number of features are all difficult tasks. It is
critical to eliminate noisy data, pick useful features that
aid in reliable performance, and lessen the dataset’s so-
phistication and dimensionality before implementing any
prediction model. As a result, feature selection is an es-
sential move which increases data clarity and reduces ML
model training time. We employ the data gain approach,
which has an impact on prediction performance by re-
moving noisy functions. *e standardized proposed
dataset for COVID-19 intensity prediction has 25 attri-
butes. Just a few of them are helpful in predicting the
magnitude of a situation into one of the divisions.
Depending on the relevance of features in the dataset, the
system may learn about complex issues. Utilizing infor-
mation gain (IG), the suggested system selects features,
which quantify significance in relation to the classification
task. *e suggested system measures system instability
using entropy. It calculates the difference between before
and after entropy of two distinct variables, A and B, as
seen in the equations below [47]:

IG
A

B
  � H(A) − H

A

B
 . (2)

Equations (2) and (3) can be used to calculate the prior
entropy of feature A, where A and B are discrete random
variables:

H(A) � − 
i

P Ai( log2 P Ai( , (3)

where P (Ai) represents the prior probability. After being
specified postentropy B, the conditional entropy of Amay be
computed using
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A

B
  � − 

i

P Bj H
A

Bj

 

� − 
i

P Bj  
i

P
Ai

Bj

 log 2 P
Ai

Bj

 ,

(4)

IG
A

B
  � − 

i

P Aj log2 P Ai( 

− 
i

P Bj  
i

P Ai, Bj log 2P Aij  ⎛⎝ ⎞⎠.

(5)

Utilizing equation (5), the suggested scheme calculates
the value of every attribute to the role of COVID-19 severity
prediction. After calculating the IG for every feature, this
method deletes the least relevant features. It removes fea-
tures through removing one at a time before the decrease in
performance stops.

4.5. Critical COVID-19 Patient Management

4.5.1. Multi-Agent Algorithm (MAA). *e study devises the
MAA to handle the initial workload assignment in the fog
cloud network. *e workloads created through this appli-
cation are variable length, dynamic, and need priority
implementation at cloud and edge. In healthcare environ-
ment, applications fight for restricted resource devices. At
different nodes of fog, those workloads are executed and
allocated. If basic round-robin (RR) algorithm using the
first-come-first-served (FCFS) method is utilized for job
scheduling in computing fog, it provides equivalent priority

to the whole tasks, resulting to increase time of response for
tasks with limited burst times. However, the goal of com-
puting fog paradigm is minimizing time of waiting, time of
response, and traffic of network [17]. So, a task scheduling
algorithm in fog needs for designing and implementing with
the next goals, reduces the time spent in the loop of ap-
plication (latency); uses the fog gadgets in a professional
manner (RAM, processor, energy, etc.), and lessens the use
of network.

In Step 1, personal agent analysed the all nodes and sort
them according to their characteristics. Priority task
scheduling (PTS) is based on the following charac-
teristics: dynamic task allocation (DTA) and resource
balancing and availability (RBA). PTS will arrange the
critical jobs based on these conditions of two factors.
*e proposed approach’s core idea is that the task is
prioritized based on the criticality of the patient. To
begin, the scheduler handles the highest priority tasks,

which reflect a patient with high critically. Next, normal
tasks are suggested. Each task can have a maximum
quantum assigned to it, allowing it to be treated in-
definitely. When an agent starts a bargaining process
with other agent, the scheduler uses the size indicated
by the reference value and the starting agent to calculate
the priority once an agent begins a process of nego-
tiation with another agent. In the matrix of reference,
task transfers from one agent i to another agent (j) are
designated as Rij.
In Step 2, the agent complete patient task management
will be explained. Multi-agent systems will play the role
of controlling and scheduling the incoming tasks from
PA, and then, FNA will maintain the preprocessing and
prediction steps. A personal agent (PA) will run in each
gateway. *e role of PA is resorting the sensed data
through IMoTand migrated with EHR data to generate
a new list of tasks and forwarded to fog layer through
Wi-Fi and Bluetooth. *e another task of PA is
checking the resource availability of the connected
nodes and then send the stream sensed data to the
nearest available node. In each fog node, we have a fog
node agent (FNA) that collects the task, a list from PA.
After data preprocessing and prediction with diagnosis
steps, multi-agent system will assign the tasks
according to critically. Patient with sever condition will
be assigned to intensive care units (ICU). Patient with
moderate condition will be advised to be in continuous
monitoring. In last case, when the patient is in mild
condition, then they will be advised for further
checking. Following are the mathematical presentation
of MAA role:

where ki, with i� 1, n, are the tasks; ri, with i� 1, n,
priority of the ith task; wi, with i� 1, n, is the workload
for the ith task; Oi with i� 1, n is the PA output size for
the ith task; Ai, with i� 1, n, is the required accuracy for
the ith task;mi, with i� 1, n, is the demanded resources
for the i task; hi, with i� 1, n, hashes of tasks; ci, with
i� 1, n, the acceptable maximum cost for each task
given by the service demander; di, with i� 1, n, delivery
location of ith task; 1/4 means workload of all sched-
uled batches in all nodes and cloud.
For every scheduled batch, the standard deviation of
load is calculated.*e standard deviation and mean 1/4
of the workloads are calculated to consider the current
workload to those of previous tasks. As illustrated in
equation (7), this allows us to see whether a workload of
the tasks is below a specific threshold.

wi


< a∗y, (7)

B � ki, . . . , kn, ri, . . . , rn, wi, . . . , wn, Oi, . . . , On, ai, . . . , an, hi, . . . hn, ci, . . . cn, di, . . . , dn, μ, σ , (6)
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where α is an adjustment parameter to be calculated.
In Step 3, all services request (PA) if the workload is
over the threshold. *is allows for a manner of global
optimization to be carried out in order to maintain a
specific level of balance in the global sensor network,
such as not overloading a node or assigning only minor
tasks to a certain node. FNA also is capable of moni-
toring tasks by checking task attributes like integrity
and size of the task in order to execute a specific type of
local optimization.
In Step 4, PA will perform task scheduling decision for
incoming task processing in current node (in case of the
task size fit the local node resources) shifting to
neighbour fog nodes (when the current node suffer
from lake of resources). Indeed, PA will decide
according to a set of features (load balancing, priority,
and resource availability). In other words, three main
decisions will be produced by PA: execute locally,
execute in neighbour, and execute in the cloud. FNA
will provide the cost and available resources from cost
function, according to the cost and the history of each
patient, through patient health record (PHR) from the
cloud, tasks are scheduled. See MAA steps below.
In brief, MAA has 4 main steps, starting with collecting
the tasks from the connected sensors, sorting the tasks
according to their critical condition, calculating the
threshold of each fog node, and distributing the tasks
among fog nodes depending on the workload.

(1) Cost Function. *is function’s primary job is to compute
the cost of processing a task based on available resources and
the complexity of the task.

Task complexity, local workload (LW), neighbour
workload (NW), and cloud workload (CW) will all be in-
cluded in the cost function.

(2) Task Processing. Every agent in each fog node has its own
processing unit that has its own set of computation re-
sources. *e cost function receives the current workload.
(Algorithm 1)

(3) Collaborative Function. *is function is in charge of the
collaboration and interaction among fog node agents in
order to share current workload of nodes and tasks.

4.5.2. Deadline-Aware Algorithm (DAA). However, the
MAA responsible for the initial task assignment, the study
controls the failure andmigration of nodes and tasks handles
in Algorithm 2 (DAA) and maintains their execution under
deadlines. If the initial schedule tasks missed the deadline or
stop processing due to node failure, then scheduler transfers
the request or migrates the workload of tasks to another fog
node for the further execution. However, if the fog nodes are
busy, the workload will migrate to the cloud computing for
the further processing until and unless tasks meet their
deadlines. To end, scheduler algorithm also has four main
steps, starting with verifying all nodes workload taking into

account the deadline, migrating the tasks that missed the
deadline to another fog node or cloud datacentres to avoid
dropping the task, checking the threshold of fog nodes, and
processing the tasks by comparing the threshold with the
workload to decide either assigning the tasks to local node,
neighbour node, or cloud datacentres.

5. Results and Discussion

*is section analysed the results of the considered SHSSP-
CTM of COVID-19 patients in IoT-Fog computing envi-
ronments via different techniques, whereas widely exploited
methods for predicting the severity of COVID-19 data
primarily depend on shallow severity prediction and sta-
tistical models. *e severity prediction that considers
combination relationships among different features is pro-
posed to improve prediction accuracy. *erefore, based on
different features, the study discusses different result ana-
lyses of different methods.

5.1. Severity Prediction Results Based on Single Feature Set.
*e severity prediction has performedmainly on twomodels
such as RF and RL to predict the features of any data based
on their attributes. Initially, the study predicts the results of
data based on single feature set in order to obtain the
performances of different classes such as mild, moderate,
and sever. *e initial obtained result is shown in Table 2.

Table 2 demonstrates the performance result of different
schemes based on different features in demographic feature
set. However, the results showed that LR model has leading
performance in the all evaluation measurements comparing
with RF. In the most of metrics, both of the models have
shown only small difference in the results, but the big dif-
ference can be seen in precision and recall.

Table 3 demonstrates the prediction results based on
chronic condition feature set. We have found a small dif-
ference in the obtained results in most of classification
measurements except F1 and precision where RF out-
performed LR with high rate.

Table 4 demonstrates the classification results based on
symptom feature set. *e introduced classification results
indicated that RF outperformed the LR in all evaluation
metrics, but the most highest difference results were in
precision followed by F1.

Table 5 presented the prediction results for selected
classifiers based on laboratory finding feature set. *e results
demonstrated that RF has leading performance in all of
prediction indicators.

Table 6 introduced classification results based on vital
sign feature set. According to the achieved results, the most
dominant prediction model is LR.

LR has scored a significant performance in all evaluation
measurements, especially accuracy and F1. Comparing with
RF, LR presented a significant difference in results with value
of 16% in both mentioned metrics. To end, in all previous
five feature sets, each of RF and LR has provided a varied
classification performance. *e obtained results can be
interpreted into two views. On the one hand, the RF is the
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best model for the prediction of COVID-19 severity when
feature vector based on chronic conditions, symptoms, and
laboratory findings. On the other hand, LR is the best
COVID-19 severity prediction model for classification task
based on features extracted from demographic and vital sign
data.

5.2. Severity Prediction Results Based on Feature Fusion.
*e severity prediction model with feature fusion method
widely exploited to get the optimal accurate results on the
data. *e incorporation of several different types of feature
information in order to gain more popular feature infor-
mation is known as feature fusion. Different methods of
feature fusion can yield different results. *e importance of
selecting a suitable fusion method for improving accuracy
cannot be overstated.*emodels such as RF and LR extends
used in the COVID-19 dataset to obtain the exact reason of
disease. *erefore, severity prediction based on feature fu-
sion implemented in the study as the results displayed in
Table 7.

Table 7 compared the performances of different schemes
based on different component metrics; RF outperformed LR
model in all prediction performance measurements except
AUC where LR scored 87% and RF scored 83.3%.

5.3. Severity Prediction Results Based on Feature Fusion and
Selection Method. *e severity prediction-based feature fu-
sion and selection technique jointly can achieve optimal re-
sults. Each of RF and LR classificationwith fused feature vector
has presented significant prediction accuracy for COVID-19
patients. *e importance of selecting a suitable fusion method
for improving accuracy cannot be overstated. *e suggested
methods obtained various results as displayed in Table 8.

Table 8 shows the RF has outperformed LR model with
average score reach to 7% in each of accuracy, F1, recall, and
precision. On the other hand, LR surpassed the RF with 3%
into AUC.

However, the obtained accuracy in each individual set
needs to be compared with grouped sets. *erefore, Table 9
shows the overall improvements that obtained when we used
the fusion set and fusion set combined with feature selection
protocol.

According to Table 9, comparing with average prediction
based on five sets (demographic, chronic, symptoms, lab-
oratory, and vital), the accuracy has improved to 18.74% for
RF model and 14.88% into LR model based on fusion set.
Further improvements have been achieved based on fused
and selected features where 7.8% rate scored for RF model
and 5.1% for LR model.

Step 1: Personal agent manage fog node agents
PA: Action Manage
get all nodes workload µ
check FNs response;
if low processing response occur do transfer the incoming tasks to another FN;
end if
if all FNs are busy do
transfer the tasks to cloud;
end if
Step 2: Personal agent prioritize the incoming tasks.
PA: Action prioritization
for all incoming tasks do;
if task k is highest priority then
add k to the top of list;
else
add k to the last of the list;
end if
end for
send the list with m for each task to FNA;
Step 3 PA: Action checking
for all PAs do;
If PA has tasks k larger that FN threshold then transfer PA tasks to other low workload FN;
end if
end for
Step 4: Fog node agent process the tasks.
FNA: Action Processing
get local node available resources;
get neighbours nodes available resources;
if workload≤ threshold then process tasks locally
else
send the tasks to nearest neighbour available node;
end if

ALGORITHM 1: MAA steps.
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Step 1: Execution consistency
PA: Action Manage Verify
Verify all nodes workload
Execution status is on
if Deadline stable
transfer the incoming tasks to another FN;
end if
if any FN failed
transfer task to another FN
end if
Step 2: Data Migration
PA: Action prioritization
for all processing tasks do;
if task k missed deadline
migrate task k to another FN
else
migrate task k to cloud
end if
end for
Step 3: Send the list with m for each task to cloud
PA: Action checking
for all PAs do;
if PA has tasks k larger that FN threshold then
transfer PA tasks to other low workload FN;
end if
end for
Step 4: Fog node agent process the tasks.
FNA: Action Processing
whenever all FNs busy
calculate resource and time of cloud node
if task k←workload< threshold then
process tasks on cloud
else
wait all tasks till execution
end if

ALGORITHM 2: DAA steps.

Table 2: COVID-19 severity prediction based on demographic
feature set.

Model AUC Accuracy F1 Precision Recall
RF 58 50 49.7 49.6 50
LR 60.9 58.9 52.8 69 58.9

Table 3: COVID-19 severity prediction based on chronic condition
feature set.

Model AUC Accuracy F1 Precision Recall
RF 54.8 47.4 39.1 48.6 47.4
LR 54.2 48.7 35 41.5 48.7

Table 4: COVID-19 severity prediction based on symptom feature
set.

Model AUC Accuracy F1 Precision Recall
RF 67.6 56.4 54.6 55.7 56.4
LR 56.2 44.8 41.4 40.2 44.8

Table 5: COVID-19 severity prediction based on laboratory
finding feature set.

Model AUC Accuracy F1 Precision Recall
RF 88.3 75.6 75.9 76.6 75.6
LR 86.6 73 73 73 73

Table 6: COVID-19 severity prediction based on vital sign feature
set.

Model AUC Accuracy F1 Precision Recall
RF 88.3 75.6 75.9 76.6 75.6
LR 86.6 73 73 73 73

Table 7: COVID-19 severity prediction depending on feature
fusion.

Model AUC Accuracy F1 Precision Recall
RF 83.3 78.2 77.8 78.5 78.2
LR 87.1 74.3 74.2 74.5 74.3
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A confusion matrix is constructed, which indicates how
well a classification model (or “classifier”) implements on a
collection of test information for which the true values are
recognized. *e uncertainty matrix itself is straightforward,
yet the related terms can be explained as shown in Figure 3.

*e highest classification accuracy for RF model was
obtained based on mild and severe data. Where these two
classes have outperformed, the moderate with average clas-
sification ratio reaches to 15%. *is indicates that the per-
formance of RF has less errors based on sever and mild data.

A classification model categorizes data into two or more
classes. Detecting one or another class is often needed and
costs nothing extra. We might, for example, want to dis-
tinguish between white and red wine equally. It may be

difficult to differentiate representatives of one disease from
that of another.

Class distribution is also significant when assessing the
efficiency of classification models. When it comes to disease
identification, the number of disease carriers can be negli-
gible when compared with the healthy population. *e first
step in testing every classification model is to test its con-
fusion matrix. Many model statistics and accuracy metrics
are created on top of this uncertainty matrix.

As shown in Figure 4, the highest classification accuracy
for LR model was obtained based on severe data followed by
moderate and mild class subsequently. Where sever class has
outperformed, other two classes with average classification
ratio reach to 7% compared with moderate and 10%
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Figure 3: RF confusion matrix.
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Figure 4: LR confusion matrix.
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Figure 5: ROC for mild class.
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compared with mild class. To mention, the performance of
LR classifier has less classification errors based on sever
patient data. Also, the RF classifier has low classification
errors compared with LR model.

*e x-axis is FP rate and TP rate as defined afore-
mentioned in table shape. Random forests create compli-
cated determination values by randomly examining FP and
TP values and their results to predict the target variable. As a
result, random forests outperform LR in terms of precision.
Furthermore, when several (types of) explanatory variables
are added to a random forest model, random forests can be
used to investigate the relationship between explanatory
variables and diseases.

In Figure 5, ROC for mild class shows the RF prediction
model outperforms as compared to RL in terms of different
matrixes to predict features of healthcare dataset. *e main
reason is that the prediction power of random forest is N
rounded with lightweight time iteration as compared to RL
during the process of data in the different schemes.

Random forests create complicated determination values
by randomly examining FP and TP values and their results to
predict the target variable. In both moderate and sever
classes, figures as the green lines show the potential strength
as compared to pink in terms of accuracy, precision, and
recall metrics.*erefore, the lightweight iteration of random
forest as compared to RL is optimal for all classes of
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Figure 6: ROC for moderate class.
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Figure 7: ROC for sever class.
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prediction method as shown in Figure 6 (ROC for moderate
class) and Figure 7 (ROC for sever class).

6. Resource Management Experimental Results

We use the Java-created simulator (iFogSim) toolkit for
simulating the embedded architecture and the environment
for illustrating the viability of our suggested cloud-fogmodel
and integration with traditional cloud (T-cloud) solution.
We have run the data 5 rounds; in each round, we change the
specifications of T-cloud and cloud-fog to show the per-
formance of proposed model. *e experimental simulation
was carried out on the computer system having 16GB Ram,
3.2 Processor, Core i5, 6th Gen HP, 500GB HDD Windows
10 genuine 64-bit Operating System.

6.1. Resource Usage. In this section, we will show the re-
source usage management in our proposed model in a
comparison with traditional cloud environment. Figure 8
shows the experimental results.

*e resource usage in proposed system indicates the
complete resource management overall network. For the
first run, we established 2 datacentres in cloud environment;
we got 1719 kbps of used resources in T-cloud. For the same
amount of data, we establish 4 gateways to forward the

sensed data to fog layer, and we got 2546.2 kbps using cloud-
fog model.

In the second run, we increased the number of cloud
datacentres into 3; we got 2590 kbps using T-cloud. For the
same amount of data, we got 8213.6 kbps using cloud-fog
model for the same number of gateways.

In the third run, we fixed the number of cloud data-
centres into 4; we got 3934 kbps using T-cloud. For the same
amount of data, and same number of gateways, we got
10227 kbps using cloud-fog model. For the fourth run, we
got 5908 kbps using T-cloud. Whereas, in cloud-fog model,
we doubled the number of gateways to 8, we got
12306.4 kbps. In last run, we got 9883 kbps in T-cloud.
Whereas, in cloud-fog model, we increased the number of
gateways to 12, we got 13364 kbps.

6.2. Delay. In this section, we will show the delay manage-
ment in our proposed model in comparison with traditional
cloud environment. Figure 9 shows the experimental results.

*e delay in proposed system indicates the complete
resource management overall network. For the first run, we
establish 3 datacentres in cloud environment; we got
150.3ms of delay in T-cloud. For the same amount of data,
we established 5 gateways to forward the sensed data to fog
layer, and we got 19.015ms using cloud-fog model. In the
second round, we increased the number of cloud datacentres
into 5; we got 300.445ms using T-cloud. For the same
amount of data, we increased the number of gateways into 8,
and we got 48.365ms using cloud-fog model. In the third
run, we increased the number of cloud datacentres into 7,
and we got 403.45ms using T-cloud. For the same amount of
data, we increased the number of gateways into 13, and we
got 128.891ms using cloud-fog model.

In the fourth round, we increased the number of cloud
datacentres into 8, and we got 413.9ms using T-cloud. For
the same amount of data, we increased the number of
gateways into 15, and we got 132.82ms using cloud-fog
model. In the last round, with same amount of cloud
datacentres, we got 523ms in T-cloud. For the same amount
of data, we increased the number of gateways into 16, and we
got 139.8ms using cloud-fog model.

7. Comparison with State-of-the-Art Methods

Benchmarking is the most basic step that must be employed
in most of the medical data and image processing study to
decide the reliability and efficiency of the improved ap-
proaches in comparison with the current one. Commonly,
the benchmarking is accomplished either using a standard
dataset or the methods for a similar problem domain.
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Figure 8: Resource usage.
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Table 8: COVID-19 severity prediction depending on feature
fusion and selection protocol.

Model AUC Accuracy F1 Precision Recall
RF 93 86 85.7 87.2 86
LR 90.3 79.4 79.5 79.6 79.4
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*erefore, the benchmarking in this study was com-
pleted by utilizing the best and most up-to-date methods for
COVID-19 classification existing in the literature.*is study
has included fair comparison with the existing state-of-the-
art methods in terms of AUC, accuracy, F1, precision, and
recall parameters for the performance of severity prediction.

*e comparison results are shown in Table 10 with each
class and method. Furthermore, the comparison has pre-
sented based on all prediction classes such as mild, mod-
erate, and severe. All state-of-the-art works have been
trained and tested based on the same dataset. Reference
[7, 20] exploited severity prediction model based on RF,
SVM, and LR and NN as well as other methods to obtain the
degree of different tuples.

As shown in Table 10, study [7] obtained the results of
different dataset benchmarks via different classes of different
methods with different metrics. *e study [7] obtained
accuracy of 70%, 80%, and 50%, and precision of 48.6%
during the experiment, while study [20] obtained optimal
values as compared to study [7] only in terms of AUC 95%.
Comparing with work [20], the proposed work has less AUC
results but still near to efficient performance.

However, the proposed work obtained more optimal re-
sults as compared to Reference [7, 20] in almost all perfor-
mance measurements to run the benchmark workloads in the
system. However, the proposed model not only reduces the
complexity but also improves the accuracy and precision
optimization values during experiment with lightweight iter-
ation compared with all baseline studies. Furthermore, by
analysing the proposed ML outcome distributions, we can see
that it is very close to the actual output distribution of the
dataset. Also, comparing with other works, in the proposed
work, we can see that LRmodel takes a high advantage in terms
of accuracy from the feature vector that obtained from fusion
and feature selection approach. In the same time, RF has great
benefits from the proposed feature vector in most of perfor-
mance metrics. To end, by using the proposed work, clinicians
can improve the therapeutic effects and reduce the mortality
with more accurate and efficient use of medical resources.

8. Study Limitations

Like other scientific studies, this study has some constraints
and limitations. Two drawbacks need to be addressed
shortly, as follows:

(i) *e number of patients’ data is relatively small, and
more data are required in the future. *erefore, the
accuracy of the prediction from a large dataset better
shows the algorithm’s efficiency than the accuracy of
prediction from a midrange or small dataset.

(ii) *e selected prediction features need to be examined
by different methods and highlight the most critical
features from the perspective of different
approaches.

9. Conclusion

With an insanely broad range of clinical scenarios (from
infected individuals to critically ill patients), the excep-
tionally high level of disease transmission requires ex-
traordinary study attempts focused principally on finding
more reliable assessment tools. *is research presents a
Smart Healthcare System for Severity Prediction and Critical
Tasks Management (SHSSP-CTM) for COVID-19 patients.
On the one hand, different methodological steps have been
proposed to achieve high prediction power for the severity of
COVID-19 patients, such as data fusion, data normalization,
and feature selection.

LR and RF models have been used as baseline models to
evaluate the proposed steps, and then, model with high
accuracy was selected as the final COVID-19 severity pre-
diction model. On the other hand, MAA has presented to
prioritize the COVID-19 patient and provide an efficient
management procedure for IoT-Fog network. Our results
indicate that data fusion with feature selection presented a
maximum prediction power, and it may be utilized for
automated severity valuation of COVID-19. *e laboratory
finding feature set had the most substantial effect on the
performance of model. Comparing with every single set of
COVID-19 features, significant improvements in severity
prediction have achieved based on proposed fused and se-
lected COVID-19 features. Furthermore, RF model had the
highest COVID-19 severity prediction performance com-
pared with state-of-the-art methods. MAA algorithm pro-
vided efficient prioritization and scheduling performance.

Efficient resource usage, minor delay, and less energy
consumption have been observed using MAA.*e proposed
system can be used as a decision tool that forecasts the
severity of COVID-19 in admitted patients. Also, it po-
tentially aids in triaging patients with COVID-19 and pri-
oritizing care for patients at a higher risk of severe disease.
*us, a critical response by the medical organization can be

Table 9: Overall accuracy improvements.

Model Demographic Chronic Symptoms Laboratory Vital signs Average of five sets Fusion set Fusion and selection protocol
RF 50 47 56 75 67 59 78 86
LR 58 48 44 73 71 59 74 79

Table 10: Comparison of benchmarked studies.

Study Prediction
model AUC Accuracy F1 Precision Recall

[7]
RF n/a 70 n/a n/a n/a
SVM n/a 80 n/a n/a n/a
LR n/a 50 n/a n/a n/a

[20] NN 78.2 n/a 41.3 48.6 n/a
LR 95 n/a 60.4 76.4 n/a

Our

RF 93 86 85.7 87.2 86
SVM 91 79.4 79.1 81 79.4
NN 86.4 79.4 79.4 79.7 79.4
LR 90.3 79.4 79.5 79.6 79.4
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guaranteed to present. *e future work will consider a
different combination of COVID-19 features and different
machine learning models.
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