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A B S T R A C T   

In this article, we examine the use of sensitivity analysis for the optimization of selected physical properties in 
rubber compounds and determine objective criteria which allow for the reduction of environmental load during 
rubber compound production. The sensitivity analysis shows how significantly each input value affects the 
output value, and the response graphs express the effect of the selected parameter on the output value. The 
solutions described in the article are applicable to other production technologies. We present a sensitivity 
analysis based on the prediction of selected mechanical properties of rubber mixtures composed of Standard 
Malaysian Rubber (SMR). Two blends were pre- pared by mixing SMR and oleic acid and different concentrations 
of surfactant (2, 4, 6, 8, 10, 20, 30 wt%). Tensile strength Rm and moduli M100, M200, M300 were measured and 
evaluated. The sensitivity analysis showed the significance of certain ingredients which affect the measured 
mechanical properties.   

1. Introduction 

Technological treatments and the agents or fillers added to rubber 
have a strong effect on several properties of rubber mixtures. Carbon 
black is an active filler which is used to increase electrical and thermal 
properties due to its strong interaction with natural rubber. Plasticizers 
play an important technological role in the rubber industry. Rubber is a 
multicomponent material which is very sensitive to many chemical 
species, and especially to technological treatment. For multicomponent 
system inputs and outputs associated with the optimization of chemistry 
or technological processes, it is convenient to use an artificial neural 
network (ANN). 

ANNs are frequently applied in material analysis, and in some cases 
also have successfully replaced destructive testing in fiber composites 
(Farhana et al., 2016). 

True stress/strain curves were successfully calculated for the auto-
mobile industry (Doh, Lee, & Lee, 2016), where the authors optimized 
interconnection weights obtained with hidden layers and output layers. 
A mathematical model of the material’s behavior was suggested through 
this feed-forward neural network. 

The study Le, Yvonnet, and He (2015) applied a finite element 
method and an ANN to describe surface stress in materials. 

A combination of an ANN and FEM was applied in a study of the 
dynamic properties in glass laminates with different material shaping 

(Seidl et al., 2011). Shape modes were presented for different vibra-
tional excitations. 

ANNs were used with success to optimize the composition of optical 
glasses (Seidl et al., 2011) and obtain required optical properties. 

Feed forward neural networks are used for the classification of layers 
of coal and shale coal according to ash and moisture content (Jančíková, 
Bošák, Zimný, Legouera, Minárik, Koštial, & Poulain, 2014). 

The work Ghosh, Chatterjee, and Shanker (2016) applied an ANN 
and neuro-fuzzy interference system which separated permeate flux and 
salt content. 

A multi resolution analysis of time-dependent data sets obtained 
through Wavelet de- composition and evaluated using an ANN was 
applied to the management of renewable energy sources in the study 
Salehi and Razavi (2016). 

A sound statistical model analysis was developed based on deep 
neural networks. Using a new algorithm on conventional data, the au-
thors attained substantially better results (Doucoure, Agbossou, & Car-
denas, 2016). 

A discoloration process analysis was conducted with the application 
of three intermediate layers, a backpropagation learning algorithm, and 
a sigmoid activation function implemented in Fortran. Three neurons in 
the intermediate layer provided the best results Hwang, Park, and Chang 
(2016). 

Technological treatments and the agents or fillers added to rubber 
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have a strong effect on several properties of rubber mixtures. The main 
additives and their functions were described in Lenzi et al. (2016). 

The paper Jonšta et al. (2011) examines the effect of nano-styrene 
butadiene rubber in phenolic nanocomposites. When applied in the 
amount of only several percent, these nanoparticles substantially in-
crease the notched impact strength without a significant change in 
flexural performance. 

The application of ultrasound during the extrusion process of 
different rubber types showed changes due to die pressure (Liu, Ma, 
Zhan, & Wang, 2015). Increasing the ultrasound amplitude decreased 
the die pressure for both natural rubber and mixtures of natural and 
styrene butadiene rubber. In the case of styrene-butadiene rubber, the 
die pressure increased. 

In (Choi & Isayev, 2015), the authors presented liquid isoprene as a 
replacement for oil plasticizer. In this case, liquid isoprene reduced both 
Mooney and apparent viscosity and suppressed plasticizer migration. 

The work (Ren, Zhao, Li, Zhang, & Zhang, 2015) presented an 
improvement in the mechanical properties of silica-filled rubber caused 
by a ring opening between rubber chains and Si-OH groups. Ring 
opening processes occurred during both the vulcanization and mixing 
processes. 

Polyethylene-co-vinyl acetate, natural rubber and organoclay mix-
tures were studied in (Xu, Jia, Luo, Jia, & Peng, 2015). The addition of 
organoclay suppressed the natural rubber amount and raised Young’s 
modulus and yield stress. Elongation at break and stress at break were 
decreased. 

The paper (Razavi-Nouri & Karami, 2014) studied the percolation 
effect and further electric transport phenomena caused by the presence 
of graphite. 

Mansour, Hussein, and Moharram (2014) described the influence of 
fillers on natural rubber properties. The results for different fillers 
(including carbon nanotubes) showed an increase in viscosity cross-link 
density, modulus and hardness and a decrease in cure time. The plasti-
cizers in a rubber blend increased their processing properties. Never-
theless, they often migrated from the rubber matrix and caused poor 
stability in the rubber blend in the long term. The adverse environ-
mental impact of this process was also substantial. 

Kopal et al. (2022) have predicted curing characteristics which play 
a significant role in the vulcanization process of rubber blends using 
ANN. Although some studies, e.g. (Lubura et al., 2021), (Safar et al., 
2019), (Vodka & Pogrebnyak et al., 2020) and (Lopes, Silva, & Machado, 
2021), have used ANN networks for the prediction of different processes 
in rubber technology, they focused on the prediction of different pa-
rameters but none of them take into account the environmental aspect of 
rubber technology. As the production of rubber compounds also has its 
environmental impact, it is necessary to focus on the optimization of 
chemical compounds. 

The aim of this paper is to evaluate the influence of existing chem-
icals on the mechanical properties of the mixture in order to reduce 
environmental effects in the production process of rubber compounds, 
where the environmental aspect is the main contribution of this 
research. In the research, we deal with the effect of plasticizer and the 
amount of surfactant on certain mechanical properties such as strength 
Rm and moduli M100, M200, M300. The analysis method we applied 
was based on our previous experimental work (Ružiak et al., 2018). 

The article is structured as follows: Section 2 summarizes the theory 
of artificial neural networks. Section 3 describes the experimental con-
ditions. Section 4 gives a detailed overview of results, and Section 5 lists 
the conclusions arising from the research. 

2. Theory 

Artificial neural networks are used to predict material properties 
when an analytical mathematical approximation cannot be found. Using 
this very robust mathematical tool, material properties can be predicted. 

Artificial neural networks use different topologies which, in most 
cases, contain three or four layers. Three types of neurons occur in these 
networks:  

• input neurons  
• hidden neurons  
• output neurons. 

Input neurons contain information about the parameters which 
change in our datasheet, such as material composition, thermal treat-
ment, and others. Output neurons correspond to the material properties 
we want to predict. Some of the input neurons are used for training and 
others are used for generalizing. 

The advantage of a neural network is that it can both learn and 
generalize. The main disadvantage of a neural network is that it needs 
more values for one or more parameters which change in each input 
dataset than required by standard fitting procedures such as the least 
squares and other methods. 

The use of an ANN is tested with the statistical parameters REL_RMSE 
and R2, which are defined by Eqs. (1) and (2). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − oi)
2

n.(n − 1)

√

(1)  

R2 =

(
E(y).E(o)

E(y.o)

)2

(2)  

where: 
yi − measured values oi − predicted values. 
n − number of input values. 
E (y) − statistical mean value of inputs. 
E (o) − statistical mean value of predicted values. 
E (y.o) − mean value of multiplication of predicted and input values. 

3. Experimental conditions 

3.1. Materials 

Plasticizers play an important role in rubber technology and have an 
effect on the blend mixing. We therefore present the effect of the amount 
of plasticizer on selected mechanical properties such as strength Rm, 
modulus M100, M200 and M300. The experimental values were 
measured on the apparatus Z250 AllroundLine (250 kN). The tensile 
strength Rm and moduli M100, M200, M300 measurements were per-
formed on this device by tensile test. 

The chemical composition of standard rubber mixture in PHR (parts 
per hundred of rubber) is shown in Table 1. The rubber was SMR 
(Standard Malaysian Rubber). 

Sulfenax is used in rubber industry in processing of natural and 
synthetic rubber in rubber compounds as a fast accelerator of vulcani-
zation with delayed action. It provides good physical and mechanical 
properties, high crosslinking efficiency and good modulus. N339 CB is a 
type of carbon black (CB) and Gumodex is a plasticizer. 

The general procedure for the rubber vulcanizates preparation is as 
follows and is protected by the manufacturer. In the two-stage mixing, 
which we used in our case, the mixture is prepared in the first phase at a 

Table 1 
Chemical composition of standard rubber mixture.  

Ingredient PHR content 

SMR 100 
Sulphur 2 
ZnO 5 
Stearine 2 
Sulfenax 2 
N339 CB 50 
Gumodex 10  
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temperature of about 150◦ C. The pressure exerted by the kneading 
wedge is about 3 MPa and the mixing time is 4 to 4.5 min. These pa-
rameters depend on the type of mixture. The thickness of the belt is 
determined by the gap between the rollers. To prevent the mixture from 
sticking, it is immersed in a wetting bath containing a separation 

solution. The temperature of the effluent mixture is a maximum of 36◦ C. 
In the second stage of mixing the mixture (final mixture), the mixture 

is weighed again in the form of a chopped honeycomb. It is first pro-
cessed in a mixer, and when the required plasticity is reached, the 
vulcanizing agent and other substances are added. The temperature of 
the mixing chamber is lower than in the previous mixing (about 110◦ C) 
and the mixing takes a very short time. 

The reference samples were mixed with oleic acid plasticizer with a 
content of 1 PHR and 3 PHR, together with weight percentage of sur-
factant (0, 2, 4, 6, 8, 10, 20, 30 wt%). The surfactant was sodium 1- 

Table 2 
Number of hidden units.  

Type of network Minimum hidden inputs Maximum hidden inputs 

Radial basis function RBF 1 8 
Three-layer MLP, layer 2 1 16 
Four-layer MLP, layer 2 1 16 
Four-layer MLP, layer 3 1 16  

Table 3 
Best neural networks.  

Property Details of network 

Rm [MPa] MLP 2:2–16-6:6 
M100 [MPa] MLP 2:2–16-6:6 
M200 [MPa] MLP 2:2–16-16–6:6 
M300 [MPa] MLP 2:2–16-16–6:6  

Fig. 1. MLP2:2-16-6:6 is best network for the prediction of tensile strength Rm 
and modulus M100. 

Fig. 2. MLP2:2-16-16-6:6 id the best network for moduli M200 and M300.  

Table 4 
Slope between the predicted and measured characteristics, percentage deviance, 
correlation coefficient R and mean squared error RMSE.  

Property Slope Percentage difference (%) R RMSE (MPa) 

Rm [MPa] 1,048 +4,8 0,982 0,082 
M100 [MPa] 0,983 − 1,7 0,985 0,028 
M200 [MPa] 0,999 − 0,1 0,978 0,068 
M300 [MPa] 0,938 − 6,2 0,981 0,095  

Table 5 
Sensitivity coefficients of the input parameters for all the studied mechanical 
characteristics.  

Property/Sensitivity coefficient Surfactant wt % Oleic acid amount 

Rm [MPa]  2.491  1.163 
M100 [MPa]  2.632  1.159 
M200 [MPa]  2.931  1.203 
M300 [MPa]  2.514  1.073  

Fig. 3. Estimated Rm values versus the real measured values in the subgroup of 
16 values. 

Fig. 4. Estimated M100 values versus the real measured values in the subgroup 
of 16 values. 
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nonyl-2-(2-nonylphenoxy benzene sulfate). These amphiphilic sub-
stances reduce the surface tension of the fluids and the interfacial ten-
sion between two liquids. The use of oleic acid plasticizer as a substitute 
for gumodex has a lower ecological impact. 

3.2. Sensitivity analysis 

The sensitivity analysis method applied in the study allows for a 
statistical analysis of the effect of technological processes on the me-
chanical properties of the rubber blend (in this case). The response 
graphs, which are additional results from the ANN procedures, indicate 
the values of the studied properties in combinations of input parameters 
which were not measured. 

Neural networks were created in STATISTICA – Neural Networks 
software. Neural network software enables the execution of a sensitivity 
analysis and the creation of response graphs. The sensitivity analysis 
reveals how significantly each input value affects the output value, and 
the response graphs express the effect of the selected parameter on the 
output value. 

A neural network conducts a sensitivity analysis by treating each 
input variable in turn as if it were “unavailable”. Each model defines a 
missing value substitution procedure to allow predictions in the absence 
of values for one or more inputs. To define the sensitivity of a particular 
variable, we first run the network on a set of test cases and accumulate 
the network error. We then run the network again using the same cases, 
but this time replace the observed values with the value estimated by the 
missing value procedure, and again the network error accumulates. 

Given that we effectively remove some information which the 
network presumably uses (i.e., one of its input variables), we would 
reasonably expect some deterioration in error to occur. The basic mea-
sure of sensitivity is the ratio of the error with the missing value sub-
stitution and the original error. The more sensitive the network is to a 
particular input, the greater the deterioration we can expect and 
therefore the greater the ratio. If the ratio is one or less, then making the 
variable “unavailable” either has no effect on the performance of the 
network or enhances its performance. This means that the studied 
property is not a function of the “missing” input parameter. 

Fig. 5. Estimated M200 values versus the real measured values in the subgroup 
of 16 values. 

Fig. 6. Estimated M300 values versus the real measured values in the subgroup 
of 16 values. 

Fig. 7. Prediction of tensile strength Rm versus surfactant amount.  
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For the neural network input parameters, we used the surfactant 
amount as a continuous neuron input and the oleic acid amount as a 
categorical neuron input. We selected oleic acid as a categorical input 
because the studied materials only contain two different values for this 
input parameter, which is a very low level for learning and generaliza-
tion. The measured values of the mechanical properties were used as 
continuous neuron outputs. Since the concentrations of the surfactant 
equaled 0, 2, 4, 6, 8, 10, 20, and 30 wt% and the two concentrations of 

oleic acid were 1 PHR and 3 PHR, the neural networks learned with 16 
input neurons. 

The total analyzed neural networks for each variable and each state 
consisted of ten neural networks, from which we used the best five 
neural networks. The selection criterion to retain a network was the 
lowest error. The types of network which we applied were linear, PNN or 
GRNN, Radial Basis function, three layer and four-layer perceptron. 

The minimum and maximum values for the hidden inputs of each 

Fig. 8. Prediction of modulus M100 versus surfactant amount.  

Fig. 9. Prediction of modulus M200 versus surfactant amount.  
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network are shown in Table 2. 

4. Results 

We present details of the improved real time networks. 
In the final step, we computed the predictions for all five best neural 

networks and com- pared them to the measured values in the teaching 
subset. As the best neural network, we used a neural network in which 
the correlation between the measured and ANN ap- proximated network 
were closest to 1 by sustaining the root mean square error between the 
measured and approximated values closest to zero. The best neural 
networks for each variable are listed in Table 3. 

where MLP refers to the multilayer perceptron network. 
Figs. 1 and 2 present the best network for moduli 100, 200 and 300. 
Table 4 presents the slope values between the predicted values of the 

studied mechanical characteristics and the real measured values. The 
table also presents deviances of this slope from the value of 1 (it char-
acterizes the deviance) and the correlation coefficient, together with the 
mean squared error RMS. 

Based on the results presented in Table 4, we can draw the following 
conclusions: 

The maximal size of the error in determining the mechanical char-
acteristics by neuron networks in a 16-member base is 6.2% (for the 
M300 characteristic), which is below the measuring error limit of the 
stated mechanical characteristics of rubber compounds. 

Since the error in determining mechanical characteristics of neural 
networks is smaller than the measuring error, we can state that ANN are 

able to predict tensile strength and strength of the M100, M200, M300 
samples before ageing. 

The stated conclusion is also supported by high values of the corre-
lation coefficient – at least 0.978. 

The maximal mean squared error between the predicted and 
measured values of the mechanical characteristics is 0.095 MPa, which 
is at the measurability limit of the given characteristics. 

More useful parameter for assessing the differences between the 
predicted and measured values of mechanical characteristics is the 
relative mean squared error, defined as a quotient of the mean squared 
error and the minimal value of the given. 

This parameter amounts to 0.005; 0.008; 0.009 and 0.009 for the 
tensile strength and the M100, M200 and M300 moduli, which corre-
spond to the percentage deviation of 0.5% for the tensile strength, 0.8% 
for the M100 modulus and 0.9% for the M200 and M300 moduli.  

• These values represent the maximal deviance between the predicted 
and measured char-acteristics, with the stipulation that they are at 
least 10 times smaller than the uncertainties in determining the 
studied mechanical characteristics.  

• The theoretical error in determining the mechanical properties of 
rubber compounds based on at least 10 test specimens is approxi-
mately equal to 5%. The experimentally detected errors in the 
determination of Rm, M100, M200 and M300 for all measured 
sample types and all properties do not exceed the error value of 5%. 

Based on diagrams 3 to 6, we can draw the following conclusions: 
All the studied material properties increased along with a rise in the 

amount of oleic acid and surfactant.  

• Tensile strength increased approx. 29% for 1 PHR and 22% for 3 
PHR.  

• Modulus M100 increased approx. 53% for 1 PHR and 46% for 3PHR.  
• Modulus M200 increases approx. 51% for 1 PHR and 44% for 3PHR.  
• Modulus M300 increases approx. 53% for 1 PHR and 45% for 3PHR. 

Fig. 10. Prediction of modulus M300 versus surfactant amount.  

Table 6 
Total share of the share of the surfactant and the volume of oleic acid of the 
studied mechanical characteristics.  

Property/Sensitivity coefficient Surfactant wt % Oleic acid amount 

Rm [MPa] 68.2 % 31.8 % 
M100 [MPa] 69.4 % 30.6 % 
M200 [MPa] 70.9 % 29.1 % 
M300 [MPa] 70.1 % 29.9 %  
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• All these increases are highly above the property measurement un-
certainty; therefore, the surfactant weight percentage has a signifi-
cant role in the tensile strength and moduli.  

• The differences between 1 PHR and 3 PHR in increase were 7%, 7%, 
7%, and 8%, which are all below the measurement errors for these 
types of rubber blends, and we can therefore conclude that the effect 
of surfactant weight percentage is approximately the same for 1 PHR 
and 3 PHR mixtures, which is also supported by a very high corre-
lation coefficient.  

• between the predictions and measurements for both 1 PHR and 3 
PHR mixtures.  

• The increase in Rm was probably caused by a higher degree of 
structure cross- linking Skrobak et al. (2016). 

In the following results, we show predictions of the studied proper-
ties. Because of same increase in the studied mechanical properties for 1 
PHR and 3 PHR oleic acid mixtures, we show the prediction of the 
average values of property versus surfactant amount. 

For each neural model response, graphs were created. The response 
graphs express the influence of the chosen input parameter on the pre-
dicted output parameter – see Figs. 7-10. These graphs express the in-
fluence of the surfactant amount on the predicted mechanical 
properties. Fig. 7 shows the prediction of tensile strength, while Figs. 8- 
10 show the prediction results for modulus M100, M200 and M300 
respectively. 

Based on Figs. 7-10, we can draw the following conclusions:  

• The biggest change in the studied mechanical characteristics with a 
change in the share of the surfactant can be observed within the 
weight percentage range of 0 to 10%; the effect of the surfactant is 
reduced over 10%.  

• An increase in the values of the studied mechanical characteristics of 
up to 10% repre- sents 12%; 27%; 26% and 22%, while the increase 
of up to 30% in the weight percentage of the surfactant only corre-
sponds to increases of 25.5%; 49.5%; 47.5% and 49%. 

• An increase in the share of the surfactant by 1/3 of the overall in-
crease leads to a 48% increase of the total increase of the tensile 
strength Rm. 

• An increase in the share of the surfactant by 1/3 of the overall in-
crease leads to a 55% increase in the total increase of the M100 
modulus. 

• An increase in the share of the surfactant by 1/3 of the overall in-
crease leads to a 55% increase in the total increase of the M200 
modulus. 

• An increase in the share of the surfactant by 1/3 of the overall in-
crease leads to a 45% increase in the total increase of the M300 
modulus.  

• On the other hand, an increase in the surfactant by 2/3 of the overall 
increase leads to an increase in the tensile strength and of the M100, 
M200 and M300 moduli by 82.5%; 85%; 87.5% and 91%.  

• Such an increase of a 20% share of the surfactant is sufficient for 
improving the studied mechanical characteristics and, at the same 
time, reducing the share of the surfactant has a positive impact on the 
environmental burden of the final mixture over time since the final 
mixture as well as surfactant age due to the impact of heat and time. 

Below, we discuss the sensitivity analysis obtained from the predic-
tion using the ANN networks. Table 5 shows the sensitivity coefficients 
of the input parameters for all the studied mechanical characteristics. 

Based on Table 5, we can state that:  

• The increase in the error by omitting the share of the oleic acid (in 
the way the sensitivity coefficients of neural networks are calculated) 
amounts to 16%, 16%, 20% and 7% for Rm, M100, M200 and M300, 
which is close to the measuring error, i.e., the change in the me-
chanical characteristics with a change in the share of the surfactant 

can be described by a single function for both concentrations of the 
oleic acid, which can be also deduced from Figs. 3-6.  

• On the other hand, the same operation for the share of the surfactant 
leads to, at least, a 149% increase in the mechanical characteristics, 
which means that the surfactant has a significantly greater effect on 
the mechanical characteristics. 

In Table 6 we calculated the overall sensitivity coefficients for both 
input parameters and all studied mechanical characteristics. 

It is clear based on Table 6 that the share of the surfactant has 
approximately a 70% effect on the studied mechanical characteristics. 

Oleic acid has a negative environmental impact especially during the 
ageing process. Based on the results presented in the table, we can thus 
recommend a reduction in the share of the softener with a simultaneous 
increase in the share of the surfactant for better environmental mixtures 
with the same mechanical characteristics. 

5. Conclusion 

Based on the results of the prediction of the mechanical character-
istics of rubber com- pounds with various volume shares of oleic acid 
and various weight shares of the surfactant, using a statistical set of 16 
samples, we can draw the following conclusions:  

• ANN networks are suitable tools for the prediction of tensile strength 
and modulus for rubber mixtures containing oleic acid, with a cor-
relation of at least 0.98 and REL_RMSE maximum 0.8 %.  

• The dependence of mechanical properties versus surfactant amount 
can be described by a single function for 1 PHR and 3 PHR mixtures.  

• ANN networks can also predict the mechanical properties of non- 
measured concentra- tions of surfactant.  

• From the prediction of mechanical properties, we can conclude that 
the level of sur- factant amount at 20 wt% increases the mechanical 
properties to at least 80 % of the level of increase to 30 wt% of 
surfactant, and therefore with the aid of ANNs, we can lower the 
environmental impact of the mixtures, especially as the material 
ages.  

• From the sensitivity analysis, we can conclude that truncating the 
changes in the oleic acid amount leads only to a maximum 20 % 
increase in error, therefore we can conclude that the oleic acid 
amount in the region of 1 PHR to 3 PHR does not have a significant 
effect on the studied mechanical properties.  

• Truncating the changes of surfactant amount, however, leads to an 
increase in error of at least 150 %, therefore we can conclude that the 
surfactant amounts between 3 wt% and 30 wt% have a very large 
effect on the mechanical properties.  

• Normalizing the sensitivity coefficients leads to a 70 % effect on 
mechanical properties by the surfactant amount and only a 30 % 
effect by the oleic acid.  

• The lesser effect of oleic acid is because oleic acid is mainly used in 
rubber mixtures to improve the processing of mixtures which are not 
created for any specific mechanical properties.  

• Surfactants, however, bond with fillers, and therefore the amount of 
surfactant has a significant effect on mechanical properties. 

• The submitted study demonstrates the possibilities of how to opti-
mize the material composition of products for material tailoring with 
an accent on the environmental burden. 
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