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Abstract: This paper proposes a novel Fuzzy-MPDTC control applied to a fuel cell battery electric
vehicle whose traction is ensured using a permanent magnet synchronous motor (PMSM). On the
traction side, model predictive direct torque control (MPDTC) is used to control PMSM torque, and
guarantee minimum torque and current ripples while ensuring satisfactory speed tracking. On the
sources side, an energy management strategy (EMS) based on fuzzy logic is proposed, it aims to
distribute power over energy sources rationally and satisfy the load power demand. To assess these
techniques, a driving cycle under different operating modes, namely cruising, acceleration, idling
and regenerative braking is proposed. Real-time simulation is developed using the RT LAB platform
and the obtained results match those obtained in numerical simulation using MATLAB/Simulink.
The results show a good performance of the whole system, where the proposed MPDTC minimized
the torque and flux ripples with 54.54% and 77%, respectively, compared to the conventional DTC
and reduced the THD of the PMSM current with 53.37%. Furthermore, the proposed EMS based
on fuzzy logic shows good performance and keeps the battery SOC within safe limits under the
proposed speed profile and international NYCC driving cycle. These aforementioned results confirm
the robustness and effectiveness of the proposed control techniques.

Keywords: fuzzy logic; model predictive direct torque control; fuel cell; battery; permanent magnet
synchronous motor; electric vehicle

1. Introduction

The use of electric vehicles (EVs) in the transportation sector has become a necessity
in the last decade to deal with the energy crisis and environmental pollution problems,
as they offer many advantages such as high efficiency, no carbon dioxide emissions, low
maintenance, and no pollution [1]. EVs are mainly composed of fuel cells, supercapacitors,
and batteries for the energy supply and storage part, as well as an electric motor for the
traction part. As it is known, achieving the best performance EVs, requires an adapted EMS,
to effectively regulate the flow of power between the different sources [2]. High-efficiency
electric motors assisted by high-accuracy controllers are also still needed [3].

A proton exchange membrane fuel cell (PEMFC) is a promising source used to power
vehicles due to its small size, low operating temperature, fast start-up, and high effi-
ciency [4]. To overcome the drawback of slow dynamic response and to implement energy
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recovery, it is necessary to integrate energy storage sources, such as a supercapacitor and/or
a Li-ion battery [5,6]. EMS is very important to manage energy allocation effectively, and
its choice should be deeply investigated. In this context, several methods in the recent
literature have been studied and evaluated, such as optimization methods, filter-based
methods, controller methods, and rule-based methods. Optimization-based strategies that
include Model Predictive Control [7], Grey Wolf Optimizer [8], Particle Swarm Optimiza-
tion [9], etc, have been investigated in order to deal with complex management objectives
(efficiency, cost, lifetime, etc). On the other hand, these strategies are complex and impose
an important computation burden. Further filter-based EMSs can be found in the literature,
including Low-Pass filters [10], and Wavelet Transform [11]. The filter-based management
strategy aims to divide the required power into high- and low-frequency power as this
strategy can improve the lifetime of the PEMFC stack. Nevertheless, the performance of
the two EMSs depends strongly on the design of the filter which is a complicated task
to be performed. Controller methods such as Backstepping [12], Passivity Control [13],
Proportional-Integral Control [14], Sliding Control [15], etc, can obtain an exact calculation
of the reference while taking into account the losses of the system. Rule-based strategies
are mainly Fuzzy Logic, Artificial Neural Network [16], and State Machine [17]. Fuzzy
logic-based EMS is widely used in fuel cell hybrid power systems [18–22]. This technique
has the advantage to provide high performance and supporting imprecise system modeling.
For these reasons, this technique is adopted in the current work.

Permanent magnet synchronous motors are widely considered the best type of electric
motors that can be used to drive EVs. This is due primarily to their high efficiency, high
power density, lightweight, and wide speed range [23]. With proper torque control, they
can easily meet all of the vehicle requirements. Many torque control strategies, such as
Field-Oriented Control (FOC) and Direct Torque Control (DTC), have been extensively
researched in the literature [24,25]. DTC has a simple control structure and provides a fast
dynamic torque response [26]. However, because it is based on hysteresis comparators,
this technique has some drawbacks such as important torque, flux ripples, and variable
switching frequency. Many methods have been proposed to mitigate these drawbacks.
In [27], the authors proposed a strategy named Space Vector Modulation DTC (SVM-
DTC) based on a constant switching frequency, and the results showed good performance.
However, this strategy requires a precise design of the PI controller and system parameters.
In [28], a multilevel inverter was used, which increases the number of voltage vectors.
The simulation results indicated good performances by reducing torque and flux ripples.
Nevertheless, issues with complexity and switching losses appeared. Fuzzy logic and
artificial neural networks are also used as artificial intelligence controllers [29,30]. Authors
in [31–34] have proposed a Model Predictive Direct Torque Control strategy that is based
on predicting the control variables such as flux and torque while minimizing the error
of the predicted control variables; this improves control accuracy while maintaining the
control system’s simplicity.

To cope with the aforementioned challenges and improve EV, two control strategies
are proposed in this work. The first one is based on fuzzy logic, applied to the Li-ion
battery-PEMFC hybrid power system. The second one is based on torque predictive control
applied to the PMSM. Results obtained using Matlab/Simulink and those obtained using a
RT LAB simulator have clearly shown the effectiveness of the proposed control techniques
under different driving modes (cruising, acceleration, idling, and regenerative braking). In
order to properly situate this work, the main contributions made through this paper are:

• An adequate EMS strategy based on fuzzy logic control is developed to ensure vehicle
propulsion power and to regulate efficiently the energy flow of the power sources.

• A model predictive direct torque control strategy is proposed to control the vehicle
traction machine with the objective of minimizing torque and flux ripples and ensuring
satisfactory speed tracking.

• A detailed physical model of the EV (the vehicle dynamics system, the electric power
system, and control system) is established under Matlab/Simulink environment.
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• Real-time simulation using the RT LAB platform is performed to confirm the obtained
simulation results.

The results obtained using Matlab/Simulink as well as the experimental ones ob-
tained using the RT LAB simulator are presented, and the main conclusion of this work
summarizes and proves proposed strategies.

2. Electric Vehicle Description and Modeling

The EV general configuration is shown in Figure 1. It consists of a hydrogen tank with
a flow regulator, a PEMFC stack as a primary power source, a Li-ion battery as a secondary
power source, a PMSM, and a control system. The entire VE system’s construction can be
divided into two parts:
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Figure 1. Electric vehicle configuration.

On the sources side, the flow rate regulator adjusts the power of the PEMFC stack
and regulates the pressure of the hydrogen flow. The PEMFC stack is connected to the DC
bus voltage via a unidirectional in-current DC-DC boost converter to DC bus voltage. The
excessive electricity generated by the PEMFC stack is used to charge the battery. The Li-ion
battery is connected to the DC bus voltage via a bidirectional DC-DC buck-boost converter
to recover the braking energy and supply power.

On the traction side, PMSM of 50 kW rated power, fed by a two-level inverter, converts
the electric power coming from the two power sources into mechanical power.

The control system integrates the control of both traction machine and power sources.

2.1. Fuel-Cell Model

The voltage of the PEMFC stack VFC is given by [18,35]:

VFC = E− RIFC (1)

E = EOC − NA ln
(

IFC
i0

)
· 1

sTd
3 + 1

(2)

where VFC and IFC are the voltage and current of the PEMFC stack, respectively, R is the
internal resistance, EOC is the open circuit voltage, i0 is the exchange current, N, A and Td
are the cells number, the tafel slope, and the response time, respectively. EOC, i0 and A are
given by:

EOC = KCEN (3)
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i0 =
zFk
(

PH2 + PO2

)
Rh

e
−∆G

RT (4)

A =
RT
zαF

(5)

where KC and EN are the voltage constant at nominal condition of operation and Nernst
voltage respectively, z is the number of moving electrons (z = 2), F, R, k, h and T are the
Faraday’s constant, the ideal gas constant, the Boltzmann’s constant, the Planck’s constant
and the temperature of operation respectively, ∆G is the activation energy barrier, and α is
the charge transfer coefficient.

The PEMFC stack includes hydrogen controller and oxygen controller, which regulate
the flows rate of H2 and O2, respectively. The utilization rates of H2 and O2 are calculated as:

U fH2 =
60000RTNIFC
zFPf uelVf uel x%

(6)

U fo2 =
60000RTNIFC
2zFPairVairy%

(7)

where Pf uel and Pair are the absolute supply pressure of fuel and absolute air, respectively,
Vf uel and Vair are the fuel flow rate and the air flow rate, respectively, x% and y% are the
percentage of H2 in the fuel and O2 in the oxidant, respectively.

The parameters of the used PEMFC stack are given in Table 1.

Table 1. PEMFC stack parameters.

Parameter Value Unite

Nominal power 50 kW
Peak power 60 kW

Number of cells 358 Cell
Nominal stack efficiency 55 %
Operating temperature 65 ◦C
Nominal Air flow rate 2100 Ipm
Fuel supply pressure 1.5 bar
Air supply pressure 1 bar

2.2. Battery Model

Li-ion batteries are used in this work due to their high energy density, high efficiency,
and long lifetime when compared to other battery types such as (NiCd, lead-acid, or
NiMH) [36].

The Li-ion battery voltage can be calculated using two different equations [36,37].

Vdischarge = E0 − R · i− K
Q

Q− it
· (it + i∗) + A exp(−B · it) (8)

Vcharge = E0 − R · i− K
Q

it− 0.1Q
· i∗ − K

Q
Q− it

· it + A exp(−B · it) (9)

where R, K, Q, E0, it, i∗, A and B are the Li-ion battery internal resistance, the polarization
constant, the Li-ion battery capacity, the Li-ion battery constant voltage, the actual Li-ion
battery charge, the filtered Li-ion battery current, the exponential zone amplitude, and the
exponential zone time constant inverse, respectively.

The Li-ion battery state of charge can be determined using Equation (10).

SOCbat = 100
(

1−
∫ i(t)dt

Q

)
(10)
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2.3. Permanent Magnet Synchronous Motor Model

The mathematical model of PMSM in the d-q rotor reference frame can be expressed as
follows in Equations (11) and (12) [23]:

Vsd = Rs Isd +
dφsd
dt

+ ωφsq (11)

Vsq = Rs Isq +
dφsq

dt
+ ωφsd (12)

where the totalized flux φsd and φsq are given by:

φsd = Lsd Isd + φ f (13)

φsq = Lsq Isq (14)

The electromagnetic torque expression is given by Equation (15):

Te =
3
2

pIsq

(
(Lsd − Lsd)Isd + φ f

)
(15)

The PMSM mechanical equation is given by:

J
dΩ
dt

= Te − Tr − f Ω (16)

The estimations of the torque, flux, and the load angle can be expressed by the
following set of equations:

∧
Te =

3
2

p
(

Isqφsd − Isdφsq
)

(17)

∧
φs =

√
(φsd)

2 +
(
φsq
)2 (18)

∧
θ = tan−1 φsq

φsd
(19)

Motor parameters [38] are summarized in Table 2.

Table 2. PMSM parameters.

Parameter Value Unite

Rated power (Pr ) 50 kW
DC voltage (Vdc ) 500 V

Stator resistance (Rs ) 0.0065 Ω
Stator inductance (Ld , Lq) 8.35 mH

PM magnetic flux (φ f ) 0.17566143 Wb
Number of pole pairs (p) 4 -

Motor inertia (J) 0.089 kg·m2

Viscous damping (f ) 0.005 N·m·s

2.4. Vehicle Dynamics System

The dynamic model of the electrical vehicle is depicted in Figure 2. The entire mechan-
ical part (longitudinal vehicle dynamics, viscous friction, differential, tires, and reduction
gear) of the vehicle dynamic system is modeled by Souleman Njoya Motapon and Louis-A.
Dessaint [35]. The longitudinal vehicle dynamics block takes into account body mass,
aerodynamic drag, and weight distribution between axles. Meanwhile, wind speed and
road inclination are not considered in this model.
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The parameters of the used vehicle [38] are given in Table 3.

Table 3. Electric vehicle parameters.

Parameter Value Unite

Vehicle total mass (M) 1325 kg
Gear ratio of the final drive (G) 5.2 -

Number of wheels per axle 2 -
Frontal area (A f ) 2.57 m2

Tire radius (r) 0.3 m
Drag coefficient (Cd ) 0.3 -

3. System Control
3.1. Energy Management Strategy

To satisfy the load power demand and to ensure an efficient power distribution of
the electric vehicle power system, an appropriate EMS is required [2]. These objectives
can only be met by controlling the power response of each energy source according to the
load demand. We used a fuzzy logic control-based EMS because it is flexible, efficient, and
works well without exact mathematical models.

3.1.1. Input and Output Parameters

The inputs parameters of the fuzzy logic controller are the Li-ion battery state-of-
charge SOC and the load power (Pload) obtained by multiplying the motor speed and the
required motor torque, and the output parameter is the reference power of the fuel cell, as
illustrated in Figure 3.
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The fuzzy set for Li-ion battery SOC is divided into “Low” (L), “Medium” (M), and
“High” (H). The fuzzy set for Pload is also divided into “Negative” (N), “Very Low” (VL),
L, M, H, “Very High” (VH), indicating the power demand from low to high levels. The
fuzzy set for Pfc is classified as “Zero” (ZE), VL, L, M, H, VH. The gap between (ZE) and
(VL) of Pfc in Figure 4c is the fuel cell system’s low-efficiency zone (including the cooling
fan, humidifier, and other accessories), therefore the PEMFC stack should not operate in
this range. The triangular and trapezoidal membership functions (MFs) are used in this
case as shown in Figure 4. The choice of the triangular and trapezoidal shapes is to reduce
the variations in the generated power reference.
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Figure 4. Membership functions: (a) input parameter (SOC); (b) input parameter (Pload); (c) output
parameter (Pfc).

3.1.2. Fuzzy Inference Rules

The fuzzy logic rules corresponding to this energy management are designed and
presented in Table 4. The choice of the rules is according to the desired operation on the
PEMFC stack. For example, when the SOC of the Li-ion battery is low and the power
demanded by the vehicle is very high, then the power that the PEMFC stack must provide
will be very high. In the same way, the PEMFC stack provides a power that is lower than
the power demand when the Li-ion battery is highly charged because in this case, the Li-ion
battery must be solicited to reduce it to a medium charge in order to take advantage of the
energy recovery from braking. Based on this general idea, the choice of these rules remains
arbitrary according to the desired functioning, while respecting the response time of the
two sources. The SOC of the Li-ion battery should be maintained between 30% and 80%.
This procedure prevents deep discharging and overcharging, which can reduce the lifespan
of a Li-ion battery. The fuzzy rules surface is shown in Figure 5.



Sensors 2022, 22, 5669 8 of 22

Table 4. Energy management fuzzy logic rules.

Pfc
Pload

N VL L M H VH

SOC

L ZE L M H VH VH

M ZE ZE VL L M H

H ZE ZE ZE VL VL L
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The proposed fuzzy logic controller uses the Mamdani inference procedure, with the
centroid method for defuzzification [36].

3.2. DC Bus Voltage Regulation and PEMFC Stack Converter Control

The electrical energy sources used to supply the EV must be well controlled via the
converters by regulating their currents and/or output voltages. The converters connected
to the energy sources control the output power and voltage [39]. The regulation of the DC
bus voltage and the control of the PEMFC stack power are presented in Figure 6. PEMFC
stack and Li-ion battery are, respectively, connected to the DC bus via unidirectional and
bidirectional DC-DC converters. The power management block generates the reference
current I∗FC which has to be limited in a slope in order to respect the constraints related to
the PEMFC stack dynamics. A PI controller is used to control the PEMFC stack power by
adjusting the current to its reference value I∗FC. The Li-ion battery regulates the DC bus
voltage by tracking the reference voltage VDC_re f . A double PI regulation loop is used to
maintain the DC bus voltage close to its reference and to control the Li-ion battery power.
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3.3. Model Predictive Direct Torque Control

The model predictive direct torque control strategy basic principle is to predict the sys-
tem future behavior over time using the PMSM model [33]. This strategy is used to control
both the flux and torque of the PMSM in the EV system. The numerical implementation
of the MPDTC algorithm for PMSM in the EV can be divided into two steps. Step 1 is to
predict the controlled variables, and the second step is to select the voltage vector to be
applied in the next sampling time. To determine the best voltage vector to use in the next
sampling time, a cost function is constructed. The optimal voltage vector is chosen based
on the objectives with the minimum error, resulting in reduced ripples. In MPDTC, the
controlled variables are predicted using Forward Euler approximation [40].

The block diagram and the flowchart of MPDTC are illustrated in Figures 7 and 8.
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Optimize cost function (g)

Select optimum voltage vector

Figure 8. Flowchart of the proposed MPDTC.

3.3.1. Current Prediction

Stator current prediction can be expressed in discrete time steps using
Equations (20) and (21) [41]:

Isd(k + 1) =

(
1− RsTs

Lsd

)
Isd(k) +

ω(k)LsqTs

Lsd
Isq(k) +

Ts

Lsd
Vsd(k) (20)

Isq(k + 1) =

(
1− RsTs

Lsq

)
Isq(k)−

ω(k)LsdTs

Lsq
Isd(k)−

ω(k)φ f Ts

Lsq
+

Ts

Lsq
Vsq(k) (21)

where Ts is the sampling time.

3.3.2. Flux and Torque Predictions

Stator flux prediction in d-q frame is expressed using Equations (22)–(24) shown below:

φsd(k + 1) = Lsd Isd(k + 1) + φ f (22)

φsq(k + 1) = Lsq Isq(k + 1) (23)

φs(k + 1) =

√
(φsd(k + 1))2 +

(
φsq(k + 1)

)2 (24)

Based on the predicted current and flux, the electromagnetic torque is calculated using
Equation (25):

Te(k + 1) =
3
2

p
(
φsd(k + 1)Isq(k + 1)− φsq(k + 1)Isd(k + 1)

)
(25)
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3.3.3. Cost Function Minimization

The cost function includes absolute torque and flux error values; this function is
chosen so that the voltage vector chosen produces the best flux and torque control. The
cost function is defined as follows:

g = |T∗e − Te(k + 1)|+ γ|φ∗s − φs(k + 1)| (26)

where T∗e is the reference values of torque, φ∗s is the reference values of stator flux, Te(k + 1)
is the predicted values of torque, φs(k + 1) the predicted values of stator flux, and γ is the
weighting factor.

3.3.4. Time Delay Compensation

The voltage vector selected at time (k) will be applied at time (k + 1) with a delay of one-step.
Because the sampling time is very small, this deteriorates the system performance. Therefore,
a compensation of the delay time must be performed to improve the system performance.
Therefore, the prediction by two steps ahead (k + 2) will be considered. The prediction of the
stator currents at time (k + 2) can be expressed using Equations (27) and (28) [31,42]:

Isd(k + 2) =

(
1− RsTs

Lsd

)
Isd(k + 1) +

ω(k + 1)LsqTs

Lsd
Isq(k + 1) +

Ts

Lsd
Vsd(k + 1) (27)

Isq(k + 2) =

(
1− RsTs

Lsq

)
Isq(k + 1)− ω(k + 1)LsdTs

Lsq
Isd(k + 1)−

ω(k + 1)φ f Ts

Lsq
+

Ts

Lsq
Vsq(k + 1) (28)

The cost function g can be extended by adding the current magnitude limitation to
avoid overcurrent. This term is defined as follows in Equation (29) [32]:

∧
f
(

Isd(k + 2), Isq(k + 2)
)
=


∞

i f |Ids(k + 2)| > Imax
or

∣∣Iqs(k + 2)
∣∣ > Imax

0
i f |Ids(k + 2)| ≤ Imax
or

∣∣Iqs(k + 2)
∣∣ ≤ Imax

(29)

The total cost function g of MPDTC with compensation of the computation time delay
is given as:

g =
∣∣T∗e − 3

2 p
(
φsd(k + 2)Isq(k + 2)− φsq(k + 2)Isd(k + 2)

)∣∣+ γ

∣∣∣∣φ∗s −√(φsd(k + 2))2 +
(
φsq(k + 2)

)2
∣∣∣∣

+
∧
f
(

Isd(k + 2), Isq(k + 2)
) (30)

4. Simulation Results and Discussion

In order to evaluate EV efficacy and to test the dynamic performance of the proposed
strategies, numerical simulations in MATLAB/Simulink environment have been performed.
A driving cycle under different operating modes is proposed as shown in Figure 9.

• During the phase [0 s–4 s], (starting), the pedal position is set to 70% and the EV
increases the speed to 25 km/h.

• During the phase [4 s–8 s], (cruising), the pedal position is released to 10% and the EV
increases its speed to 26 km/h.

• During the phase [8 s–13 s], (accelerating), the pedal position is depressed to 85% and
the EV increases the speed from 26 to 60 km/h.

• During the phase [13 s–14 s], (idling), the pedal position is set to 60% and the EV speed
decreases to 58.5 km/h.

• During the phase [14 s–16 s], (regenerative braking), the pedal position is set to −70%
and the speed of EV drops to 43 km/h.
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Figure 10 shows the simulation results of the traction chain under different driving modes
using the MPDTC strategy where (a) is the stator current of the PMSM, (b) Vehicle speed
response, (c) Electromagnetic torque of the PMSM, and (d) is the stator flux. In Figure 10a, it
is noticed that the variation of the stator current dynamics corresponds to the changes in the
acceleration. The zoom shows that the stator current is perfectly sinusoidal. In Figure 10b,
it is clearly seen that the vehicle speed depends on the variation of the pedal acceleration.
Figure 10c shows the behavior of the electromagnetic torque, where it can be seen that the
measured torque perfectly follows the reference torque even when the trajectories change
abruptly with a good ripple, demonstrating the effectiveness of the MPDTC technique used
on the system. In Figure 10d, it can be seen that the measured stator flux follows its reference
with good precision during all trajectories with a good ripple.
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Figure 9. The acceleration pedal positions.
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Figure 10. Performances of the EV traction chain under different driving modes using the MPDTC
strategy (a) Stator current of the PMSM; (b) Vehicle speed response; (c) Electromagnetic torque of the
PMSM; (d) Stator flux.
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To check the MPDTC performances in a comparative way, and to shed light on the
obtained results, a comparison between the proposed MPDTC and the conventional DTC
was made and is presented in Table 5, Figures 11a,b and 12a,b. The electromagnetic torque
zoom is presented in Figure 11. A reduction of 54.54% in torque ripples was observed
compared to conventional DTC. Figure 12 depicts the stator flux zoom. An improvement
of 77% compared to conventional DTC can be seen.

Table 5. Performances of the proposed MPDTC and conventional DTC in terms of torque ripples,
flux ripples, and THD.

Performances DTC MPDTC Improvement (%)

Torque ripples (N·m) 140 ± 11 140 ± 5 54.54
Flux ripples (Wb) 0.175 ± 0.01 0.175 ± 0.0023 77

THD (%) 3.13 1.45 53.67
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Figure 11. Electromagnetic torque ripples of (a) DTC; (b) MPDTC.
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The fast Fourier transform (FFT) analyses of phase current and THD calculation for
the proposed MPDTC and conventional DTC are presented in Table 5 and Figure 13a,b.
The THD of MPDTC is 1.45%, which is lower than that of conventional DTC which is 3.13%,
which presents an improvement of 53.37%. The simulation results presented in Table 5
confirm the performance of the proposed MPDTC is superior to that of conventional DTC.
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Figure 13. FFT analyses of phase current (a) DTC; (b) MPDTC.

Figure 14a depicts the Li-ion battery SOC. It can be clearly observed that the Li-ion
battery SOC decreases slightly from 60% to 58.7% between [0 s, 13 s], then the Li-ion battery
SOC increases until it reaches 59.4%, after absorbing the braking Energy. The DC bus
voltage of the electric vehicle is depicted in Figure 14b. It can be seen that the measured
voltage is well regulated to its reference (500 V) regardless of load demand. The zoom
shows an overshoot in DC bus voltage of (5 V), this allows us to say that the DC bus voltage
control is satisfactory.
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Figure 14. (a) Li-ion battery state of charge; (b) DC bus voltage.
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Figure 15 shows the power distribution of the electric vehicle under different driving
modes with an initial Li-ion battery SOC of 60% for the EMS based on fuzzy logic. When
the vehicle is accelerating, the Li-ion battery alone powers the vehicle until t = 2 s. From 2 s
to 4 s, the power demand increases slightly, the PEMFC stack begins to operate, providing
a significant portion of the driving power, and the Li-ion acts as a secondary power source.
From 4 s to 8 s the power demand decreases, the PEMFC stack provides no power, and the
Li-ion battery alone powers the vehicle. From 8 s to 13 s the power demand is higher, the
PEMFC stack is the primary power source, and the Li-ion battery becomes a secondary
source, with the Li-ion battery SOC generally declining. From 13 s to 14 s no power is
demanded, and the Li-ion battery and the PEMFC stack provide no power. From t = 14 s
the regenerative braking mode starts, the Li-ion battery absorbs the kinetic braking energy
and the motor acts as a generator.
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Figure 15. The power management of the electric vehicle under different driving modes.

Figure 16 shows the performance of the electric vehicle under different driving modes
and battery states of charge. In Figure 16a, the initial Li-ion battery SOC is high (SOC = 80%);
in this situation, the Li-ion battery provides a significant portion of the driving power, and
the PEMFC stack only operates when the power demand becomes high, to protect the
Li-ion battery from overcharging and keep the SOC in a relatively low level. In Figure 16b,
the initial Li-ion battery SOC is low (30%); in this situation, the PEMFC stack is configured
to generate more power than the engine power. To charge the Li-ion battery to acceptable
levels, and to protect the Li-ion battery from deep discharges, the Li-ion battery only
discharges in high acceleration to supplement the power demand.
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Figure 16. The performance of the electric vehicle under different states of charge: (a) SOC = 80%;
(b) SOC = 30%.
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Figures 15 and 16 clearly show that the EMS based on fuzzy logic ensures a convenient
power flow and gives good performance with the changes in driving conditions, and
battery states of charge.

Driving Cycle Test

The New York City Cycle (NYCC) driving cycle is adopted to analyze the performance
of the proposed EMS based on fuzzy logic. Three different scenarios are defined to test the
performance of EV under different states of charge of the Li-ion battery. The three scenarios
are as follows:

Scenario 1: the initial SOC of the Li-ion battery is 60% when starting.
Scenario 2: the initial SOC of the Li-ion battery at startup is 80%.
Scenario 3: the initial SOC of the Li-ion battery is 30%.
Figure 17 shows the power curves for the PEMFC stack, Li-ion battery, motor, and

Li-ion battery SOC in scenario 1. It can be seen in Figure 17a, that the PEMFC stack does not
operate in the low power range [0–5 kW] and becomes active in the high power demand
where the efficiency of the PEMFC system is relatively high. The Li-ion battery is configured
to provide all the charging power in the low power demand range, assist the fuel cell in the
high power demand range, and absorb the braking energy when the vehicle decelerates.
The final SOC value of the Li-ion battery in this scenario is 59.5%, as seen in Figure 17a.
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Figure 18 shows the power curves and the SOC of the Li-ion battery in the second
scenario. As seen in Figure 18a, the Li-ion battery is regulated to provide a large amount of
power to protect it from overcharging, and the PEMFC stack intervenes in the high power
demand. The Li-ion battery SOC decreases from 80% to 74% as shown in Figure 18b.
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Figure 19a shows the power curves in the third scenario. The fuel cell is operated to
provide power for the load and charge the Li-ion battery to protect it from deep discharges.
The Li-ion battery SOC increases from 30% to 46.5%, as shown in Figure 19b.
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The results show that the proposed energy management strategy based on fuzzy
logic is robust and could improve the efficiency of the PEMFC stack, mainly because this
proposed EMS makes the PEMFC stack operate in the high-efficiency region.

5. Real-Time Platform Using RT-LAB

The real-time simulation of the proposed control is implemented in this section using
the discrete real-time simulator, the RT LAB platform. Figure 20a depicts the real-time
simulation bench set up in the LTII laboratory of Bejaia, which consists of the following
components: (1) a host PC, (2) an OP5700 real-time digital simulator, (3) a HIL controller
and data acquisition interface OP8660, and (4) a digital oscilloscope. As it is shown in
Figure 20b, the first step toward real-time simulation is the model separation. The EV
system is split into computation and console blocks. Blocks that contain computations
such as energy management strategy, MPDTC, vehicle dynamics, motor and power sources
models are placed on the computation subsystem, which is constituted of a master (SM)
bloc highlighted with red dashed lines and a slave (SS) block. Scopes and constants are
placed in the console block. In RT-LAB, each computation subsystem is assigned to a
different core. In other words, each subsystem is coded in C and built for execution among
its processors using Mathworks code generator Real-Time-Workshop (RTW) [43]. After
compilation, the code is loaded into target OP5700 via TCP/IP protocol and executed via
parallel processing. Finally, all observations in display blocks are monitored and displayed
on the digital oscilloscope via I/O channels.

A real-time simulation was performed after the EV simulation system was decomposed
and adapted for use in the RT LAB platform.

In order to evaluate the two techniques proposed in this work, namely the MPDTC on
the motor side, and the EMS based on fuzzy logic on the source side, a driving cycle under
different operating modes has been applied (Figure 9). Figures 21–24 present experimental
results of the two techniques proposed. The results obtained using a discrete real-time
simulator RT LAB are very close to the simulation results with the same remarks previously
mentioned in the simulation results. Experimental results prove the effectiveness of the
proposed control techniques.
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Figure 21. Experimental results of the EV traction chain under different driving modes using the MPDTC
strategy (a) Stator current; (b) Vehicle speed response; (c) Electromagnetic torque; (d) Stator flux.
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6. Conclusions

In this paper, the authors focused on improving the performance of an EV by introduc-
ing a Fuzzy-MPDTC-based control. This control is divided into two parts: The first part is
dedicated to the control of the traction machine by introducing a MPDTC technique for
PMSM control. The second part proposes a fuzzy logic-based EMS for the electric vehicle
power system. To evaluate these techniques, a driving cycle under different operating
modes has been proposed. The main conclusions are listed as follows. On the motor side,
several objectives are achieved by applying a predefined cost function, the electromagnetic
torque response follows its reference with small ripple values, a 54.54% improvement
compared to the classical DTC; the current ripple is reduced and the reference tracking
is ensured. On the sources side, the fuzzy logic-based EMS provides robust performance
under various battery states of charge and rapid variation in power demand. Real-time
simulation results were obtained using a discrete real-time simulator; the RT LAB platform
confirmed the effectiveness and robustness of the proposed control techniques.
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