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Rajakumaran Gayathri 1, Shola Usha Rani 1 , Lenka Čepová 2,* , Murugesan Rajesh 1 and Kanak Kalita 3,*

1 Department of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus,
Chennai 600 127, India; gayathri.r@vit.ac.in (R.G.); sholausha.rani@vit.ac.in (S.U.R.); rajesh.m@vit.ac.in (M.R.)

2 Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering,
VSB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic

3 Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science
and Technology, Avadi 600 062, India

* Correspondence: lenka.cepova@vsb.cz (L.Č.); drkanakkalita@veltech.edu.in (K.K.)

Abstract: Predicting the mechanical properties of cement-based mortars is essential in understanding
the life and functioning of structures. Machine learning (ML) algorithms in this regard can be
especially useful in prediction scenarios. In this paper, a comprehensive comparison of nine ML
algorithms, i.e., linear regression (LR), random forest regression (RFR), support vector regression
(SVR), AdaBoost regression (ABR), multi-layer perceptron (MLP), gradient boosting regression (GBR),
decision tree regression (DT), hist gradient boosting regression (hGBR) and XGBoost regression
(XGB), is carried out. A multi-attribute decision making method called TOPSIS (technique for order
of preference by similarity to ideal solution) is used to select the best ML metamodel. A large dataset
on cement-based mortars consisting of 424 sample points is used. The compressive strength of
cement-based mortars is predicted based on six input parameters, i.e., the age of specimen (AS), the
cement grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B), the
superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S). XGBoost regression is found
to be the best ML metamodel while simple metamodels like linear regression (LR) are found to be
insufficient in handling the non-linearity in the process. This mapping of the compressive strength of
mortars using ML techniques will be helpful for practitioners and researchers in identifying suitable
mortar mixes.

Keywords: machine learning; predictive models; compressive strength; regression; TOPSIS

1. Introduction

Rapid urbanization throughout the globe has increased the demand for construction
materials. Concrete is perhaps the most widely used artificial material in the construction
industry. However, the recent impetus of the world towards finding sustainable and eco-
friendly means of construction has led to a lot of research on improving concretes and
trying to reduce their adverse impact on the earth. Many researchers in this regard suggest
the use of metakaolin (MK) as a partial replacement for Portland cement [1]. MK is obtained
by high-temperature (700–900 ◦C) calcination of silica and alumina. Khatib et al. [2] suggest
that MK can be used to replace some amount of cement in mortars, resulting in significant
improvement in the mechanical performance of concretes. It has been reported by other
researchers as well that the addition of MK can help in the improvement of the compressive
strength (CS) of mortars [3].

Some analytical formulas have been derived by researchers for estimating the CS of
mortars [4]. However, these analytical relations are difficult to derive when MK is present
in the mortars. Significant non-linearity has been reported by researchers in such cases,
making simple statistical models like response surface methodology insufficient. Machine
learning (ML) metamodels are viable alternatives in such cases. Among various ML
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methods, artificial neural networks (ANN) have received a lot of attention in this field. Onal
and Ozturk [5] tried to derive a cause–effect synergy between microstructural characteristics
and CS of cement mortars. They relied on ANN metamodels and found that CS and
microstructural characteristics share a strong correlation. Asteris et al. [6] employed ANN
to estimate the mortar compressive strength based on its mixed components. Eskandari-
Naddaf and Kazemi [7] used ANN to predict the compressive strength of cement mortar.
They carried out experimental verification for their ANN metamodels and concluded that
the cement strength class is also a significant input parameter and thus should be included
in data-driven methods. Sharifi and Hosseinpour [8] developed a new formula to express
the CS as a function of input parameters by using ANN metamodels.

Some researchers have also relied on metaheuristic algorithms to train and enhance
the ANNs. For example, Asteris et al. [9] in a recent study used metaheuristic algorithms
like biogeography-based optimization (BBO) and invasive weed optimization algorithms to
train ANN for predicting the CS of mortars. Ly et al. [10] used a particle swarm optimization
(PSO) algorithm to train ANNs in the prediction of CS for foamed concrete. They showed
the PSO-trained ANN to be significantly better than vanilla ANN. Zhao et al. [11] used
BBO and a multi-tracker optimization algorithm to enhance the performance of ANN
in prediction tasks of the CS of manufactured-sand concrete. A similar attempt was
made by Sun et al. [12] by incorporating an artificial bee colony algorithm to train the
hyperparameters of ANN.

The majority of the literature on the estimation of the CS of mortars is seen to be
focused on the use of ANNs. In some cases, researchers have compared the performance
of ANNs with other MLs. For example, Armaghani and Asteris [13] compared ANN
metamodels with ANFIS metamodels for the prediction of the CS of mortars and reported
that ANFIS metamodels were prone to overfitting in some cases. Sevim et al. [14] too
compared the utility of ANFIS and ANN in such applications. Asteris et al. [15] used
ANN and genetic programming (GP) metamodels for estimating the 28-day CS of cement–
metakaolin mortars. They found ANNs to be superior to the GP metamodels. Dao et al. [16]
compared several Gaussian process regression (GPR) metamodels with ANN metamodels
and reported that the GPR metamodel with a Matern32 kernel function outperforms
others. Mohammed et al. [17] carried out a comparison of ANN, M5P trees and non-linear
regression methods. They found curing time to be the most important input parameter in
estimating the CS of mortars. Similarly, Abdalla and Salih [18] compared M5P trees, GP
and ANN metamodels.

Comparison studies on the application of ML algorithms other than ANNs for the esti-
mation of the CS of cement mortars are relatively fewer. Asteris et al. [19] in a recent study
compared the performance of k-nearest neighbors (kNN), decision tree regression (DT),
support vector regression (SVR), random forest regression (RFR) and AdaBoost regression
(ABR) algorithms. They reported RFR and ABR algorithms to be the most apt for the task.
Çalışkan et al. [20] compared group methods of data handling, SVR and extreme learning
machine (ELM) and found ELM to outperform the other two metamodels. Ozcan et al. [21]
used SVR, RFR, ABR and Bayes classifier to develop estimation metamodels for CS based
on four input parameters.

From the above literature survey, it is observed that most of the researchers have
mostly relied on ANNs for the prediction modelling of the CS of mortar mixes. Very few
comparative studies of ML techniques have been carried out, but they too have generally
compared only two to three ML techniques. Thus, there is a literature gap in terms of a
comprehensive comparison of ML techniques. In this paper, nine popular ML methods
(namely, linear regression (LR), RFR, SVR, ABR, multi-layer perceptron (MLP), gradient
boost regression (GBR), DT, hist gradient boost regression (hGBR) and XGBoost regression
(XGB)) have been compared for developing metamodels for the CS of mortar mixes. The
hyperparameters of the metamodels are tuned for unbiased comparison.
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2. Machine Learning Methods
2.1. Linear Regression

Linear regression (LR) is a statistical method widely used for analyzing the effect
of input (independent) and output (dependent) variables. Recently it has been widely
implemented in various machine learning libraries and thus has become extremely popular
as a machine learning algorithm [22].

LR is capable of deriving linear models, i.e., a model that establishes the dependent
variable (y) as a linear function of the independent variables (x). In simple LR, only one
independent variable (x) is present, whereas in multiple LR, two or more independent
variables (x) are present. In simple LR, the model is of the following form:

y = b 0 + b 1 x (1)

Equation (1) above represents the equation of a straight line, where b 0 and b 1 are the
y-intercepts and the slope, respectively.

In multiple LR, instead of the line, a plane or a hyper-plane is used. The model takes
the following form in multiple LR:

y = b0 + b 1x 1 + b 2x 2 + b 3x 3 + . . . + b nx n (2)

In Equation (2), there are n number of predictors (x1, x2, . . . , xn).

2.2. Random Forest Regression

The random forest algorithm is an ensemble technique. It can be employed to perform
both regression and classification. The random forest algorithm uses simple decision trees
as the base learners [23]. It employs many decision trees to generate a model for the problem.
It trains multiple trees simultaneously by using the technique of bootstrap aggregating
or bagging. From a given set of training data (X), bagging techniques repeatedly select
B number of times random samples (with replacement) of training data and trains the
decision trees. These decision trees do not interact with each other during the building
phase and are generated parallelly. Once trained, these trees can be used to predict the
unknown samples (x′) by using the following equation:

f̂ =
1
B

B

∑
b=1

fb
(

x′
)

(3)

In general, the decision trees have high variance. However, when they are combined
parallelly to form the random forest, the overall variance becomes low. During classification
tasks, the random forest algorithm uses the mode of the classes, whereas during regression,
it uses the mean of decision trees.

2.3. Support Vector Regression

Support vector machine (SVM) can be employed for both regression and classification
tasks [24]. The prime objective of SVM is to generate the best decision boundary that can
separate n-dimensional space into distinct classes. In SVM, the best decision boundary is
referred to as a hyperplane. The algorithm chooses support vectors which can then aid
in the creation of the hyperplane. SVM can be linear or non-linear. If the data is linearly
separable, linear SVM is used. In such cases, the data can be segregated into two classes by
a straight line. In cases when the data cannot be segregated by using a single straight line,
non-linear SVM is used.

2.4. AdaBoost Regression

AdaBoost or adaptive boosting is an ensemble technique. AdaBoost works by con-
jugating several weak learners into a single strong learner. Generally, AdaBoost uses
single split decisions, called decision stumps, as the weak learners [25]. AdaBoost allocates
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weights to the classification instances depending on the difficulty level, i.e., instances that
are difficult to classify are allocated higher weights than those instances that are easy to
classify. Adaptive boosting can be employed for both regression and classification tasks.

Switching from LR to AdaBoost allows mapping of many more non-linear relation-
ships, which results in better estimation and, thus, higher accuracy. As a general principle,
AdaBoost builds ensembles by sequentially adding members which have been trained on
those instances of data which are proving the most difficult to correctly predict. Each new
predictor is given a training set where the difficult examples are increasingly represented;
this is achieved either through weighting or resampling.

An ABR is a meta-estimator which initiates by training a regressor on the training
dataset and then trains further replicas of the regressor on the training data. However,
in the training of the subsequent regressors, weights of instances are attuned depending
on the error encountered in the current regressor. Thus, successive regressors attain more
accuracy by focusing more on difficult cases.

2.5. Multi-Layer Perceptron

Multi-layer perceptron (MLP) is a machine-learning and deep-learning method that
defines a complex architecture for artificial neural networks [26]. The method is generally
used for the supervised learning format. MLP is typically a feed-forward neural network
which produces a set of output from a set of input. It is broadly created from several layers
of the perceptron. The multiple layers of input nodes are linked just like a directed graph.
In MLP, the adaline rule and perceptron rule are used in training a neural network of a
single layer, and weights are updated based on the unit function on a linear function in the
adaline or perceptron rule.

An MLP is a fully linked neural network. It consists of three layers which include a
hidden layer. When there is more than one hidden layer, it is referred to as a deep artificial
neural network (ANN). The number of neurons and the number of layers are the ones that
require tuning. To find the ideal values for the hyperparameters (number of neurons and
number of layers), cross-validation approaches are employed. Backpropagation assists in
training weight adjustments.

The MLP approach involves three steps:

• Forward propagation—data propagation begins at the input layer and forwards to the
output layer;

• Error calculation—find the error (variation between the estimated and known out-
comes) based on the output;

• Backpropagate the error—the derivative based on respective weights in the network
is determined, and then the model is updated.

The steps are repeated across multiple epochs to establish ideal weights, and then the
output is taken through a threshold function to get the estimated class labels.

2.6. Gradient Boosting Regression

Gradient boosting is an ensemble technique. It is primarily used for regression tasks.
The method works on the boosting principle where several weak learners are conjugated to
form a strong learner. Generally, decision trees are used as the weak learners. First, base
trees with single nodes are constructed. Subsequent trees are constructed depending on the
errors of the previous trees. The trees are scaled by using the learning rate, which ensures
the contribution of each tree to the overall prediction. The subsequent trees are joined with
the preceding trees to predict the response. The process is repeated unless the maximum
number of trees is reached or the resulting responses are not improved [27].

Gradient boosting regression can help in expressing dependent variables as functions
of independent variables. GBR can be used for the prediction of the numeric output; thus,
the response variable should be numeric.
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2.7. Decision Tree Regression

Decision tree regression uses the characteristics of an object to train a model within
the tree structure to estimate future data to generate meaningful continuous data. It
encompasses interrogating the data through a series of questions with each question
narrowing the possible values until a confident model is developed. The decision tree
regression decomposes a given dataset into smaller datasets. It consists of a decision leaf
that splits into two or more branches which present the value of the attribute that is being
examined. The node that is at the top, i.e., topmost, is the most suitable predictor, and it is
referred to as the root node. The decision tree regression technique uses a top–down tactic.
Splits are made based on standard deviation. When a sample is entirely homogenous, its
standard deviation is 0, whereas when the standard deviation is greater, it implies that the
degree of homogeneity is higher [28].

Decision tree regression generally uses mean squared error (MSE) to decide on splitting
a node into two or more sub-nodes. In decision tree regression, the way to find the best
split is to try each variable and every potential value of the given variable and identify the
variable and value that give a split with the best score.

2.8. Hist Gradient Boosting Regression

Hist gradient boosting regression is a method for training faster decision trees em-
ployed in gradient boosting. Binning or discretizing can be used to dramatically speed up
the process of training trees which are added to an ensemble. This makes the hist gradient
boosting method implement its algorithm for the input variables. Each of the trees that are
added to an ensemble tries to correct the forecasted errors through the models that already
exist in the ensemble.

The hGBR technique is implemented along with other techniques. For example, it can
be implemented with the scikit-learn machine learning, which is a library that gives an ex-
perimental implementation of gradient boosting which underpins the histogram approach.
In particular, it provides the HistGradientBoostingRegressor and HistGradientBoostingClassifier
classes. According to the scikit-learn documentation, hGBR implementation has faster
orders of magnitude compared to the default GBR implementation offered by the library.

2.9. XGBoost Regression

XGBoost or extreme gradient boosting is a popular and powerful ML technique for
building supervised regression models [29]. XGB is highly efficient and computationally
effective. It has remarkably higher accuracy than decision trees but lacks the interpretation
ability of decision trees. Base learners are needed in XGB. The algorithm trains and keeps on
adding base learners to form an ensemble learning which then can perform the prediction.
The objective function of the XGB contains a regularization term and the loss function. The
variation in the target values and the predicted values, i.e., the variation between the model
predictions and actual values, is known using the objective function.

3. Problem Description

The compressive strength of cement-based mortars is the most important property
to be considered while selecting the appropriate mixture for construction. A large experi-
mental dataset on cement-based mortars is collected from the literature [19]. This dataset
has 424 data points generated experimentally by 20 different research studies [1,30–48].
However, all these studies have followed the same testing standards. The dataset contains
information about the CS of mortar mixes with and without MK. In addition, superplas-
ticizers (SP) are present in some of the experiments. The dataset has six different input
parameters, namely the age of specimen (AS), the cement grade (CG), the metakaolin-to-
total-binder ratio (MK/B), the water-to-binder ratio (W/B), the superplasticizer-to-binder
ratio (SP) and the binder-to-sand ratio (B/S). The AS is measured in days, while CG and
CS are measured in MPa. The MK/B, W/B, SP and B/S are measured as w/w. It should
be noted that one of the most prominent features of the dataset is the inclusion of CG,
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which, despite being an important input parameter, has often been missed by previous
computational modelling studies [19]. The objective of this computational modelling study
is to use the ML algorithms in developing metamodels to express the CS as a function of
the six input parameters.

4. Results and Discussion
4.1. Characteristics of the Cement-Based Mortars Database

The collated database is analyzed to reveal the statistical characteristics (Table 1) of
all the input and output parameters. The range of the CS of the tested mortar mixes is
found to be between 4.1 MPa and 115.25 MPa, which indicates the diversity in the test
samples considered in the dataset. Figure 1 contains pair plots that show the level-wise
spread of the data points. It is observed that the dataset contains CS values for only five
possible binder-to-sand ratios (B/S). The range of the B/S in the dataset varies from 0.33 to
0.51, indicating that researchers agree that typically a binder-to-sand ratio of 1:3 or 1:2 is
desirable. Similarly, from Figure 1, it is observed that the experimental dataset contains CS
values for only seven possible cement grades (CG). Despite this, a close investigation of
the CG pair plot indicates that the researchers prefer CG in three distinct zones, i.e., low
(~32 MPa), mid (~42 MPa) and high (~53 MPa).
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Table 1. Statistical summary of the dataset.

Statistic AS (Days) CG (MPa) MK/B (w/w) W/B (w/w) SP (w/w) B/S (w/w) CS (MPa)

Count 424 424 424 424 424 424 424
Mean 29.80981 42.39151 12.39811 0.457476 0.208325 0.411132 46.42219
Std 29.28965 9.151924 10.00436 0.069217 0.493958 0.083049 21.79888
Min 0.67 32 0 0.3 0 0.33 4.1
25% 7 32 0 0.4 0 0.33 31.1675
50% 28 42.5 10 0.46 0 0.36 44.315
75% 28 52.5 20 0.5 0.01 0.5 56.76
Max 91 53.5 30 0.6 2.35 0.51 115.25

To check for multicollinearity, the Pearson’s correlation coefficients are computed for
the input and the output parameters and presented as a heatmap in Figure 2. The relatively
strongest correlation coefficient between any two inputs is seen for the water-to-binder ratio
(W/B) and the superplasticizer-to-binder ratio (SP) at −0.44, indicating a weak negative
correlation. The other inputs share weak to negligible correlations amongst themselves.
The strongest relation between any input and CS is seen for the water-to-binder ratio (W/B)
and CS at −0.58.
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4.2. Tuning of ML Metamodels

The ML metamodels are initially tuned to optimize the most prominent hyperparame-
ters. This is done by varying the number of estimators and training the ML metamodels.
These trained ML metamodels are then tested on the test dataset, and their MAE, MSE and
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R2 are recorded and analyzed. Figure 3 shows the effect of the number of estimators in RF
on the accuracy of the metamodel. It is seen that the effect is quite non-linear and, thus,
underlines the fact that the number of estimators in RF cannot be set arbitrarily without
carrying out a pilot study. The MAE of RF is found to be lowest at 300 estimators while
MSE is lowest at 700 estimators. The R2 of RF is found to be highest at 700 estimators, and
thus, it is selected for the study.
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In Figure 4, the effect of change in estimators on the AdaBoost accuracy is analyzed and
found that 200 estimators are sufficient. Similarly, in Figure 5 for MLP, the improvement in
its performance is found to be directly related to the number of perceptrons used. However,
beyond a threshold, the rate of improvement is found to be negligible. Thus, for further
analysis in the study with MLP, the number of perceptrons is fixed at 2750.
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In the case of GBR, as shown in Figure 6, the metamodel’s accuracy is seen to be quite
significantly affected by the number of estimators. For GBR, 1400 estimators were found to
be the most optimized value for maintaining the high accuracy of the metamodel.
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4.3. Prediction of Cement-Based Mortars’ Compressive Strength

The tuned ML metamodels are then deployed on the collated dataset to predict the
CS of mortar mixes. The scatter plots of the actual versus the ML predictions are plotted
in Figure 7 for both training and testing data. The prediction scatter by LR in Figure 7a
shows that these simple linear metamodels are insufficient in capturing all the variance in
the training data and, thus, naturally are bound to record a poorer performance on testing
data. The predictions of the LR metamodel are seen to differ greatly from the true values.
The performances of the metamodels are also assessed by using statistical error metrics like
R2, MSE, MAE and maximum error. These are reported in Table 2 for training data and
in Table 3 for testing data. The R2 of the LR metamodel is found to be below 50% on both
training and testing datasets, thereby confirming its inability in handling the non-linearity
in the association of inputs to the CS of mortar mixes.



Processes 2022, 10, 1387 10 of 16Processes 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 7. Cont.



Processes 2022, 10, 1387 11 of 16Processes 2022, 10, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 7. Actual versus predicted compressive strength of cement-based mortars using (a) linear 
regression, (b) random forest regression, (c) support vector regression, (d) AdaBoost regression, (e) 
multi-layer perceptron and (f) gradient boosting regression. Actual versus predicted compressive 
strength of cement-based mortars using (g) decision tree regression, (h) hist gradient boosting re-
gression and (i) XGBoost regression. 
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Figure 7. Actual versus predicted compressive strength of cement-based mortars using (a) linear
regression, (b) random forest regression, (c) support vector regression, (d) AdaBoost regression,
(e) multi-layer perceptron and (f) gradient boosting regression. Actual versus predicted compressive
strength of cement-based mortars using (g) decision tree regression, (h) hist gradient boosting
regression and (i) XGBoost regression.

Table 2. Performance of the ML metamodels on training data.

Metamodel R2 MSE MAE Maximum Error

Linear Regression (LR) 46% 254.99 12.59 49.13
Random Forest Regression (RFR) 99% 4.60 1.35 10.72
Support Vector Regression (SVR) 95% 26.05 1.92 41.19
AdaBoost Regression (ABR) 84% 77.67 7.08 21.24
Multi-layer Perceptron (MLP) 84% 77.42 6.08 42.71
Gradient Boosting Regression (GBR) 99% 3.48 1.13 11.40
Decision Tree Regression (DT) 100% 2.14 0.44 9.51
Hist Gradient Boosting Regression (hGBR) 95% 23.39 3.11 26.93
XGBoost Regression (XGB) 100% 2.23 0.62 9.75

Figure 7b presents the performance of RFR, and it is seen that its performance is near
ideal for training data. Almost all the datapoints are found to be within the ±20% error
bound. The RFR metamodel is seen to be more accurate for higher CS values as compared
to the CS values below 40 MPa. The R2 of the RFR on training and testing is seen to
be 99% and 97%, respectively. The SVR metamodel’s performance in Figure 7c is found
to be somewhat poorer than RFR. Here too, at low CS values, the prediction errors are
significantly higher. The R2 of the SVR on training and testing is realized to be 95% and
93%, respectively. In Figure 7d, the ABR is found to perform very poorly for CS values
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less than 60 MPa. Even at higher CS regions, the ABR is seen to go beyond the ±20%
error bound. The R2 of the ABR is around 80% for both training and testing, indicating the
metamodel is able to explain only 80% of the variance in the dataset.

Table 3. Performance of the ML metamodels on testing data.

Metamodel R2 MSE MAE Maximum Error

Linear Regression (LR) 48% 233.53 11.27 37.10
Random Forest Regression (RFR) 97% 13.25 2.38 11.63
Support Vector Regression (SVR) 93% 30.24 3.19 21.27
AdaBoost Regression (ABR) 78% 96.84 7.95 20.44
Multi-layer Perceptron (MLP) 90% 46.82 4.69 20.84
Gradient Boosting Regression (GBR) 98% 11.10 2.31 9.09
Decision Tree Regression (DT) 94% 26.09 3.23 21.20
Hist Gradient Boosting Regression (hGBR) 97% 12.25 2.43 11.24
XGBoost Regression (XGB) 97% 11.25 2.00 11.30

The MLP metamodel’s performance is also seen to be similar to that of ABR. However,
its performance on testing data is found to be relatively better than its performance on
training data (Figure 7e). The R2 of the MLP on training and testing is found to be 84%
and 90%, respectively. GBR metamodels show remarkable accuracy in predicting the CS
of mortar mixes (Figure 7f). The prediction scatter of DT, hGBR and XGB metamodels
is shown in Figure 7g–i, respectively. Both DT and XGB are found to have excellent
prediction performances.

The computational experiments are carried out on a windows platform with Intel(R)
Core (TM) i7 CPU @3.40 GHz and 24 GB RAM. All the ML algorithms are programmed
and realized using Python in Jupyter Notebook 6.4.5. The approximate computational time
for the deployment of each ML algorithm is presented in Figure 8. LR takes the least time
to deploy while MLP takes the most time. Overall, the LR, XGB, hGBR and SVR are found
to remarkably faster than GBR, ABR, RFR and MLP.
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4.4. TOPSIS-Based Selection of ML Metamodel

As evidenced from the previous section, some of the developed ML metamodels have
conflicting characteristics. For example, the LR metamodel has the lowest computational
time requirement but is not able to achieve high accuracy. Similarly, the XGB metamodel is
very accurate but has a high computational time requirement. Thus, it is essential to select
an appropriate metamodel which presents a balanced solution. However, the selection of
the best metamodel cannot be done arbitrarily and, thus, a multi-attribute decision-making
(MADM) method called TOPSIS (technique for order of preference by similarity to ideal
solution) is used. The description of TOPSIS is beyond the scope of this article and can
be found elsewhere [49,50]. The initial decision matrix for TOPSIS is shown in Table 4. It
has nine alternatives and nine criteria. The training R2, MSE, MAE and maximum error
as well as testing R2, MSE, MAE and maximum error along with computational time are
considered as the nine criteria. Since, for ML-based approaches, more importance should
be given to the performance of metamodels on test data as compared to training data, in
this study, 0.05 weight is allocated to training R2, MSE, MAE and maximum error each
while 0.15 weight is allocated to testing R2, MSE, MAE and maximum error. Computational
time is accorded 0.2 weight. Using TOPSIS methodology, the weighted normalized decision
matrix is calculated and shown in Table 5. The Euclidian distance of each metamodel
from the hypothetical ideal solution derived by TOPSIS is shown in Figure 9. For the best
metamodel, the Si

+ distance should be low while the Si
− should be high, indicating that

the metamodel is close to the positive ideal solution (PIS) but away from the negative ideal
solution (NIS). As per TOPSIS, XGB and hGBR are found to be the best two metamodels.

Table 4. Initial decision matrix for TOPSIS.

ML Metamodel Train R2 Train MSE Train MAE Train Max. Error Test R2 Test MSE Test MAE Test Max. Error Time

LR 0.4642 254.9905 12.5909 49.1344 0.4790 233.5340 11.2675 37.1014 0.0157
RFR 0.9903 4.6019 1.3541 10.7207 0.9704 13.2542 2.3791 11.6316 60.1560
SVR 0.9453 26.0509 1.9248 41.1870 0.9325 30.2384 3.1906 21.2661 4.5255
ABR 0.8368 77.6693 7.0753 21.2384 0.7840 96.8379 7.9491 20.4384 56.1910
MLP 0.8373 77.4222 6.0752 42.7065 0.8955 46.8205 4.6858 20.8425 76.3300
GBR 0.9927 3.4802 1.1267 11.3979 0.9752 11.0971 2.3057 9.0895 55.1308
DT 0.9955 2.1444 0.4435 9.5050 0.9418 26.0865 3.2279 21.2000 49.5710

hGBR 0.9508 23.3947 3.1075 26.9261 0.9727 12.2548 2.4347 11.2410 1.1601
XGB 0.9953 2.2291 0.6163 9.7533 0.9749 11.2493 1.9959 11.3029 0.9138

Criteria Type Benefit Cost Cost Cost Benefit Cost Cost Cost Cost

Weights 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.15 0.2

Table 5. Weighted normalized decision matrix for TOPSIS.

ML Metamodel Train R2 Train MSE Train MAE Train Max. Error Test R2 Test MSE Test MAE Test Max. Error Time

LR 0.0086 0.0456 0.0389 0.0283 0.0268 0.1341 0.1061 0.0927 0.0000
RFR 0.0182 0.0008 0.0042 0.0062 0.0543 0.0076 0.0224 0.0291 0.0894
SVR 0.0174 0.0047 0.0059 0.0237 0.0522 0.0174 0.0301 0.0531 0.0067
ABR 0.0154 0.0139 0.0218 0.0122 0.0438 0.0556 0.0749 0.0511 0.0835
MLP 0.0154 0.0138 0.0187 0.0246 0.0501 0.0269 0.0441 0.0521 0.1134
GBR 0.0183 0.0006 0.0035 0.0066 0.0545 0.0064 0.0217 0.0227 0.0819
DT 0.0183 0.0004 0.0014 0.0055 0.0527 0.0150 0.0304 0.0530 0.0736

hGBR 0.0175 0.0042 0.0096 0.0155 0.0544 0.0070 0.0229 0.0281 0.0017
XGB 0.0183 0.0004 0.0019 0.0056 0.0545 0.0065 0.0188 0.0282 0.0014

PIS 0.0183 0.0004 0.0014 0.0055 0.0545 0.0064 0.0188 0.0227 0.0000

NIS 0.0086 0.0456 0.0389 0.0283 0.0268 0.1341 0.1061 0.0927 0.1134
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5. Conclusions

In this paper, a comprehensive comparison of nine different ML metamodels (namely
LR, RFR, SVR, ABR, MLP, GBR, DT, hGBR and XGB) is carried out for predicting the CS of
mortar mixes. A large dataset on cement-based concretes consisting of 424 samples was
used in the study. Six input parameters, namely the age of specimen (AS), the cement
grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B),
the superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S) were studied
to assess their influence on the CS of mortar mixes. Based on the study, the following
conclusion can be drawn:

• In terms of R2 measured on the testing data, the RFR, SVR, ABR, MLP, GBR, DT, hGBR
and XGB metamodels are found to 103%, 95%, 64%, 87%, 104%, 97%, 103% and 104%
better than the LR metamodel;

• The RFR, SVR, ABR, MLP, GBR, DT, hGBR and XGB metamodels showed 94%, 87%,
59%, 80%, 95%, 89%, 95% and 95% lower MSE on the testing data as compared to the
LR metamodel;

• The improvement in terms of MAE on testing data is seen to be 79%, 72%, 29%,
58%, 80%, 71%, 78% and 82% for RFR, SVR, ABR, MLP, GBR, DT, hGBR and XGB
metamodels over the LR metamodel;

• The RFR, SVR, ABR, MLP, GBR, DT, hGBR and XGB metamodels are found to have
69%, 43%, 45%, 44%, 76%, 43%, 70% and 70% lower maximum testing error than the
LR metamodel;

• In terms of computational time, the metamodels can be arranged from most expensive
to least expensive as MLP > RFR > ABR > GBR > DT > SVR > hGBR > XGB > LR;

• Using a MADM method called TOPSIS, the metamodels can be ranked from best to
worst based on a compromise solution as XGB > hGBR > SVR > GBR > DT > RFR >
MLP > ABR > LR.
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