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Abstract: Off-grid power systems are often used to supply electricity to remote households, cottages,
or small industries, comprising small renewable energy systems, typically a photovoltaic plant
whose energy supply is stochastic in nature, without electricity distributions. This approach is
economically viable and conforms to the requirements of the European Green Deal and the Fit for
55 package. Furthermore, these systems are associated with a lower short circuit power as compared
with distribution grid traditional power plants. The power quality parameters (PQPs) of such small-
scale off-grid systems are largely determined by the inverter’s ability to handle the impact of a device;
however, this makes it difficult to accurately forecast the PQPs. To address this issue, this work
compared prediction models for the PQPs as a function of the meteorological conditions regarding
the off-grid systems for small-scale households in Central Europe. To this end, seven models—the
artificial neural network (ANN), linear regression (LR), interaction linear regression (ILR), quadratic
linear regression (QLR), pure quadratic linear regression (PQLR), the bagging decision tree (DT), and
the boosting DT—were considered for forecasting four PQPs: frequency, the amplitude of the voltage,
total harmonic distortion of the voltage (THDu), and current (THDi). The computation times of these
forecasting models and their accuracies were also compared. Each forecasting model was used to
forecast the PQPs for three sunny days in August. As a result of the study, the most accurate methods
for forecasting are DTs. The ANN requires the longest computational time, and conversely, the LR
takes the shortest computational time. Notably, this work aimed to predict poor PQPs that could
cause all the equipment in off-grid systems to respond in advance to disturbances. This study is
expected to be beneficial for the off-grid systems of small households and the substations included in
existing smart grids.

Keywords: forecasting; renewable energy; meteorological data; off-grid system; smart grid

1. Introduction

Electricity is one of the basic necessities of life; it is needed to power homes, factories,
and even entire cities. Given that the fuel used in traditional power plants for electricity
generation contributes toward environmental pollution, modern power plants employ
renewable energy to generate electricity. The use of renewable energy sources has been
widely promoted because it helps reduce the carbon footprint [1]. Consequently, the
construction of modern power plants has increased considerably, and such power plants
are either operated separately (i.e., off-grid systems) or connected to an external power grid
(i.e., on-grid systems). Currently, power grids require smart systems for their operation.
However, it remains challenging to develop a smart system that is able to both control the
power grid production and maintain the generated power within power quality limits as far
as possible [2]. Power quality is typically evaluated using power quality parameters (PQPs)
according to specific standard ranges [2]. These parameters include harmonics, power
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frequency variations, voltage and current imbalances, transients, flickers, and voltage sag
or dips. Among these, the most important parameters are the magnitude of the supply
voltage, power frequency, total harmonic distortion of voltage (THDu), and total harmonic
distortion of current (THDi) [2]. Accordingly, this study focuses on these parameters.
Although many previous studies have focused on reconfiguring on-grid power systems,
few studies have focused on off-grid systems; this is discussed in detail in Section 2. For
the development of smart control models, two main aspects should be considered: a
forecasting model (the main and most challenging aspect) and an optimisation model [3,4].
The forecasting process is an important part of smart control units; however, applying
real-time smart control systems with renewable energy (off-grids) remains challenging
and unaddressed, owing to the nonlinearity of weather conditions. To address this issue,
this study aimed to test three prediction models with an artificial neural network (ANN),
a decision tree (DT), and linear regression (LR) for predicting (PQPs) using power and
weather data. The mean absolute percentage error (MAPE) was then used to evaluate and
compare the prediction results. In this work, an experimental off-grid platform based on
an AC/DC system was employed. This experimental off-grid platform was developed by a
team from the ENET Centre, which is located on the campus of VŠB-Technical University of
Ostrava. The main purpose of this experimental off-grid platform is to simulate households
with common household appliances, thus contributing toward the development of modern
green technologies, such as vehicle to grid technology [5,6] or research on prediction and
optimisation [7–9].

The contributions of this work can be summarised as follows:

• An innovative concept for forecasting the PQPs of household off-grid systems is
presented.

• The accuracies of forecasting models based on PQP datasets with meteorological data
are compared considering household off-grid environments.

• The computation times of these forecasting models are also compared.

The remainder of this paper is organised as follows. Section 2 provides a literature
review of the related works. Section 3 describes the off-grid hardware, appliances, and
data acquisition. Section 4 addresses the theory governing the prediction method used
in this study, Section 5 describes the proposed model, Section 6 summarises the results
of the experiments, and Section 7 discusses these results. Lastly, Section 8 presents the
conclusions drawn based on this study.

2. Related Work

The development of smart power systems, especially off-grid systems, is significantly
challenging. This section discusses previous research focusing on the prediction of PQPs,
reconfiguration of power systems, and optimisation of power quality, with the overarching
goal of generating good-quality power. These previous studies can be divided into two
main categories: studies dealing with off-grid systems and studies dealing with on-grid
power systems.

2.1. Research on Off-Grid Systems

Among the studies reported in this field, in [10], a random decision forest optimised
via multi-objective optimisation was used to predict PQPs (power frequency, amplitude
of the voltage, total harmonic distortion, and flicker severity in an off-grid platform). The
corresponding simulation results revealed that the forecasting results exceeded 90% for
forecasting time step of 15 min. Furthermore, two models, a decision tree and a neural
network, have been proposed for the short-term forecasting of five PQPs pertaining to off-
grid systems: power frequency, magnitude of the supply voltage, total harmonic distortion
of voltage, total harmonic distortion of current, and short-term flicker severity. Based
on the experimental results, the proposed approach was evaluated using the average
MAPE for six days, and the best results were achieved using the DT [11]. In [12], an
ANN with backpropagation was used as learning algorithm for forecasting the following
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PQPs: power frequency, total harmonic distortion of voltage, total harmonic distortion of
current, and long-term flicker severity. This task was used to optimise the power quality
of an off-grid system. Moreover, two methods—random forest and extreme learning
machines (feedforward neural networks)—were used to forecast the THDi of the power
photovoltaic [13]. A comparison of the results indicated that the prediction performance
of the random forest method exceeded that of the neural network. In [14], simple binary
classification was used to predict PQPs, focusing on the frequency, THDu, and THDi
forecasting. The performance of the proposed model outperformed that of the system
in [12]. Moreover, in [1], ANN was used to forecast the power frequency, THDu, and
long-term flicker severity. The model employed referred to weather conditions for the
prediction of these PQPs. In [15] proposed model using machine learning and regression
techniques for power quality prediction, the model used PQPs values and home appliances
as input variables for forecasting PQPs in off-grid system. In [16] a differential polynomial
neural network, deep learning, and regression models for predicting PQPs for one day
ahead were applied.

2.2. Distribution Power Grid

In [17], a long short-term memory network was used to forecast the voltage and
current in a power grid system. This model achieved better results terms of the voltage and
current forecasting across the low voltage range, as compared to others. For generating
good quality power, [18] proposed the use of machine learning for reconfiguring power
systems. This was tested within the IEEE 14-bus and 30-bus systems. The results proved
the validity of this suggested approach. To reduce power losses and improve power grid
stability, in [19], a genetic algorithm with particle swarm optimisation was employed for
power distribution grid reconfiguration. This model used the IEEE 33-bus distribution
system. Experimental results confirmed the effectiveness of this system in optimising
the power distribution grid. Furthermore, in [20], modified particle swarm optimisation
was applied to determine the optimal reconfiguration for a power distribution grid. This
system was tested among 33 IEEE bus systems, and the results of the model were compared
with those obtained under other modes of the particle swarm optimisation algorithm.
Notably, it was concluded that the reduction in power loss could be improved, along with
a decrease in the computational time. The optimal configuration of a power distribution
grid contributes toward a reduction in the active power losses. In [21], an ANN reduced by
modified dynamic fuzzy c-means was used as a model for power system reconfiguration.
The proposed model was tested on the IEEE 33-bus and 69-bus systems and also compared
with others, it offers the following advantages: simple design, short implementation time,
and high efficiency. To reduce active power losses and improve the voltage magnitude, a
cuckoo search algorithm was used in [22] to reconfigure a power network. This system
was tested for the IEEE 33, IEEE 69, and IEEE 119 distribution systems. Numerical results
confirmed the validity of this designed system for power network reconfiguration, as
compared with others. Additionally, a grey wolf optimisation algorithm for power network
reconfiguration was proposed in [23]. This approach was tested with the standard IEEE
33 bus and IEEE 69 bus distribution networks. Experiments were performed to determine
the optimal configuration of the switch combinations combination to achieve the lowest
active power loss. Numerical results confirmed confirmed the performance of this designed
system. Moreover, real-time autonomous dynamic reconfiguration based on a long short-
term memory network for power network restoration [24] was proposed in Taiwan. This
approach was tested under two different types of power distribution bus systems. It
was concluded that this system requires less computation and can handle unusual cases.
In [25], modified selective particle swarm optimisation was proposed to minimise the active
losses and optimise the voltage profiles for a power grid system, in order to determine the
optimal reconfiguration of the power grid. The model was tested using the IEEE 33-bus
system. Experimental results demonstrated that the active power was improved under
different load conditions. Manta ray foraging optimisation was applied to achieve the
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power grid’s optimal restoration. The proposed system was also investigated for the IEEE
33-bus and IEEE 85-bus systems. The performance of the system was compared with that
of particle swarm optimisation and grey wolf optimisation. Numerical results showed that
the proposed approach was efficient in restoring the power grid [26]. An online network
reconfiguration based on a deep q-learning model was also investigated in [27], it was used
to determine the best switch combination of the network topology. The performance of this
system was compared with that of others, considering two types of power bus systems.
Experimental results revealed that this model was more efficient than the others, required
less computational time, and applicable for online grid reconfiguration. Binary particle
swarm optimisation (BPSO) combined with the traditional particle swarm optimisation
(PSO) was developed in [28]. The BPSO algorithm was used to determine the optimal
power system restoration, whereas PSO was used to estimate the distributed generation
positions. This approach was tested using the IEEE 33-bus and IEEE 69- bus systems, under
three different loads. The corresponding results proved the validity of this model in terms
of determining the optimal form of switch combination and better locations for distributed
generation. Furthermore, a stochastic fractal search (DFS) algorithm was applied to obtain
the best switch combination of a power grid. The designed planned pattern was studied
with respect to the 33, 69, 84, 119, and 136 bus distribution systems. A comparison of the
results showed that the designed framework achieved better solutions than others [29]. To
minimise power losses and improve power quality, the Salp swarm algorithm was used to
solve the reconfiguration problem for a power grid system. The designed form was studied
for different cases with 33-bus and 69-bus distribution system. The corresponding results
confirmed the efficiency of this system [30]. Furthermore, other forecast methods are used
to optimally design elements or parts of the network [31].

3. Platform Description

The off-grid test platform used for this research simulates the electricity consump-
tion of a typical single-family home. It is an off-grid system based on a hybrid AC/DC
architecture. This section provides a detailed overview of this platform.

3.1. Off-Grid Hardware

Figure 1 shows a schematic of the off-grid system used to perform the experiments
in this study. This off-grid system consists of two parts: the first part is based on the DC
bus, whereas the second part is based on the AC bus. The DC part consists of a Conext
XW+ 8548 E hybrid inverter and two Conext 80 600 DC/DC-MPPT solar inverters; these
are used to convert photovoltaic (PV) electricity arrays. The off-grid energy storage system
uses Hawker 12XFC115 lead-acid batteries connected in parallel. The nominal voltage and
capacity of one battery are 12 V and 115 Ah, respectively. These batteries are connected in a
battery bank, forming four groups, each including four batteries. The nominal voltage of
the main DC bus is 48 V; this voltage varies from 40.5 to 64 V DC depending on the state
of charge of the battery and the charging process. The rated power of each of the two PV
strings is 2 kW. The solar inverters can supply up to 2 × 80 A to the DC bus. However, the
maximum current of each MPPT inverter is limited by the total installed capacity of the PV
string and the current battery voltage.

The AC part of the off-grid system is based on a 230 V AC bus with a frequency of 50 Hz.
The AC bus is drawn directly from the hybrid inverter to which the individual household
appliances are then connected. The primary energy source for the off-grid system is the
energy generated by the PV panels. However, considering the atmospheric conditions in
Central Europe, it is not economically feasible to meet the off-grid consumption demands
using the PV panels and batteries alone. Hence, a conventional distribution energy system
was adopted as a second energy source for the off-grid platform [32].
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Figure 1. Schematic of off-grid system.

3.2. Off-Grid Appliances

The off-grid test platform includes common appliances, simulating a typical family
household.

Table 1 describes the types of appliances, along with the measured electrical values
of each appliance. These electrical parameters were measured during the operation of the
off-grid power system. Each appliance was measured separately, using a KMB SMC 144
measuring device.

Table 1. Measured electrical characteristics of the appliances used in the experiment [8].

Appliance
Load (W) Power Actor (-)

Avg Min Max Avg Characteristic

Mower 537.6 532.1 549.27 0.52 Inductive
Drill 157.1 149.5 167 0.49 Inductive

Kettle 619.1 617 628.3 1 Resistive
Fridge 207.6 195.5 219.5 0.72 Inductive

AC Heating-AC Cooling 880 852.5 910 0.91 Inductive
Microwave 203 76.8 1348.3 0.84 Inductive

Boiler 307 305.8 346.5 0.99 Inductive
TV 44 42.8 50.5 0.6 Capacitive

Lights 156 152.5 165.1 0.84 Capacitive

3.3. Data Acquisition
3.3.1. Power Quality

The PQ evaluation and measurements were performed in accordance with the Eu-
ropean standards EN 50160 and EN 61000-2-2. In our off-grid facility, measurements
are performed using the KMB SMC 144 PQ analyser. This analyser measures the power
quality across the AC bus and is specially designed for the remote monitoring of energy
consumption and its quality. The DIN rail, featuring a display-less design with multiple
communication options, is suitable for a wide spectrum of automation tasks associated
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with modern buildings, infrastructure monitoring, and remote load management. It can
monitor parameters such as voltage, currents, flicker, power factors, active power, and
reactive power. The measured data are stored in a database for future research on the
power optimisation of off-grid systems and PQ prediction. Table 2 shows the individual
values of European Standards for PQ.

Table 2. Limits of European Standards for PQPs [2,33].

Parameter European PQ Standards

EN 50160 EN 61000-2-2

Voltage frequency

Mean value measured over
10 s ±1% (49.5 Hz–50.5 Hz)
for 99.5% of week
−6%/+4% (47–52 Hz)
for 100% of week

±2%

Voltage magnitude
variations

Mean 10-min RMS values
±10% for 95% of the week

±10% applied for
15 min

Harmonic Voltage
(% of fundamental
supply voltage)

5% 3rd, 6% 5th, 5% 7th,
1.5% 9th, 3.5%, 11th 3%
13th, 0.5% 15th, 2% 17th,
1.5% 19th 23rd and 25th

6% 5th, 5% 7th,
3.5% 11th, 3% 13th,
THD <8%

3.3.2. Meteorological Data

The meteorological data used in this study were obtained from a weather station
managed by the Czech Hydrometeorological Institute (CHMI); this station is located on
the same site as the off-grid building (campus of VSB Technical University of Ostrava).
These meteorological data are stored in a database, along with the PQ data, for future
comparisons.

4. Formal Methods
4.1. Artificial Neural Network

An ANN is a computational system that attempts to mimic the human brain’s ability
to solve certain complex problems. ANNs consist of three main units: the input layer
(which accepts the input data and passes them to the hidden layer), the hidden layer(s), and
the output layer (which receives the signal from the hidden layer and generates the output
signal). A simple ANN consists of one hidden layer, whereas deep learning networks
require many hidden layers. Among the many types of ANNs, we used a multilayer
ANN with backpropagation as the learning method in this study. The artificial neuron has
inputs and a signal output that can be sent to other neurons. All the signal inputs of each
neuron are multiplied with an associated weight and summed together as expressed in
Equation (1). This summed value is then passed through an activation function to produce
the final output of this neuron as indicated in Equation (2). Subsequently, the output of this
neuron is passed to the other neurons in the next layer. Many types of activation functions
exist, such as the step, linear, and Sigmoid functions. For further details regarding ANNs,
please refer to [34].

X =
m

∑
i=1

xiwj (1)

where xi is the input signal, and wj is the weight connected between two neuron units

output = f (X) =

{
1 if ∑ xiwj ≥ 0
0 if ∑ xiwj < 0

(2)
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4.2. Multiple Linear Regression

LR serves as a method for establishing a relationship between an input variable (x) and
one output signal (y). The output (y) can be estimated based on the combination dataset
of the input variables (x) during the learning phase. In the case of one input variable (x),
this approach is termed as simple linear regression, as shown in Equation (3). By contrast,
in the case of the more than one input variable (x1, x2, x3, . . . xn), this method is termed as
multiple linear regression as shown in Equation (4) [35].

y = bx + a (3)

y = a + b1x1 + b2x2 + b3x3 + · · ·+ bnxn (4)

In the experiments, we applied linear regression with four different forms: standard
linear regression (LR), quadratic linear regression (QLR), interaction linear regression (ILR),
and pure quadratic linear regression (PQLR):

• Linear: The model consists of an intercept and a linear term for each predictor.
• Interactions: The model consists of an intercept, a linear term for each predictor, and

all products of the pairs of distinct predictors as shown below [36].

y = a + b1x1 + b2x2 + b3x1x2 (5)

Furthermore, higher order interactions are possible, as shown in the equation below,
which illustrates third order interactions:

y = a + b1x1 + b2x2 + b3x3 + b4x1x2 + b5x1x3 + b6x2x3 + b7x1x2x3 (6)

• Quadratic: the model consists of an intercept term, linear and squared terms for each
predictor, and all products of the pairs of distinct predictors:

y = a + b1x1 + b2x2
1 + c1x2 + c2x2

2 + dx1x2 (7)

• Pure quadratic: the model consists of an intercept term, linear and squared terms for
each predictor, shown in Equation (8):

y = a + b1x1 + b2x2 (8)

where a, b, c, d are the regression coefficients [36]; x represents the input variables—
solar irradiance, wind speed, air pressure, air temperature, and power load; and y
represents the output one of PQPs (frequency, voltage, THDu, and THDi).

4.3. Regression Tree

A supervised learning method in the form of a decision tree is used for classification
and regression purposes. It serves a decision-making model. Here, the main objective is to
create a form that can estimate the target output by guiding the dataset through decision
rules extracted from the dataset during the learning phase. The regression tree consists
of a root node, a decision node, and a terminal node or leaf. In the regression tree, the
target output is a number, unlike in the classification tree, where the output is a class. The
decision tree process commences by splitting the dataset from the main root. This decision
process continues splitting the dataset as final nodes, which contain the final decision, or as
brunch nodes, which feed the subsequent nodes.

The learning process of a regression tree begins when the dataset is passed to the root
node. In the root node, samples are split into two or more branches. In the decision node,
these samples are split into different sub-nodes. The nodes that are not split are termed as
terminal nodes, and these contain the numerical regression results. The regression tree is
thus created by splitting the samples and minimising the residual sum of squares (RSS) as
shown in Equations (9) and (10).
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RSS =
n

∑
i=1

(yi − f (xi))
2 (9)

f (xi) = (a + bxi) (10)

where n—sample size of data set, xi—input variables, yi—actual value of PQPs, f (xi)—
predicted value of PQPs, and a and b—constants. Additional details regarding the regres-
sion tree can be found in [35].

Decision-Tree-Based Ensemble Model

Ensemble models combine many decision trees to achieve better decision results than
with a single decision tree. The basic principle of the ensemble technique is to combine
all weak learners into one strong learner. For this purpose, two techniques are employed:
bagging and boosting.

• Bagging: Bagging (also known as Bootstrap aggregation) is a technique that helps
reduce the variance of the decision tree. The basic idea is to randomly select a subset
of the training dataset with replacement.
A separate tree model is created for each subset. Thus, a separate tree is created for
the subset after training is completed. The final result is the average of the outputs of
all of the individual trees [37].

• Boosting: This refers to the sequential training of a subtree. Each tree learns from the
mistakes of the previous tree. Essentially, boosting serves to improve the mistakes of
the previous model stage at the subsequent model stage [37].

5. Proposed Model

In our experiments, we compared the performance of seven approaches for PQP
forecasting: the ANN, LR, ILR, PQLR, QLR, bagging DT, and boosting DT. The ANN was
run in three configurations, i.e., two hidden layers with 10, 20, and 30 neurons in each layer.
Two hidden layers with 20 neurons were chosen as the comparison model, because they
afforded better results than the other two configurations. Linear regression was used with
four different types of linear regression (LR): the linear (LR) system contains an intercept
and linear term for each predictor; interactions (ILR) contains an intercept, linear term
for each predictor, and all products of pairs of distinct predictors; pure quadratic (PQLR)
contains an intercept term and linear and squared terms for each predictor; and quadratic
(QLR) contains an intercept term, linear, and squared terms for each predictor, and all
products of pairs of distinct predictors. Each designed model included four forecasting
systems: power frequency, amplitude of voltage power, total harmonic distortion of voltage
(THDu), and total harmonic distortion of current (THDi). Every system consists of multiple
input variables (weather condition and load) and one output (frequency, voltage, THDu, or
THDi). Therefore, every model has multiple inputs and multiple outputs. This is depicted
in Figure 2, in Table 3, as well as in the structure of the dataset in Figures 3 and 4 depicts
the flowchart of the experiments. The dataset is then fed directly to the forecasting systems.

The experiments were performed using EXCEL and MATLAB, according to the fol-
lowing steps:

• The dataset was prepared and cleaned using EXCEL.
• MATLAB code for reading the dataset, merging the power with weather data, and

splitting the data into training and test datasets was designed.
• MATLAB code for the seven forecast models, plotting the results, and errors. Each

model was designed separately, and all the models were subsequently combined into
a single complex model using MATLAB.

These experiments were performed on a Lenovo computer with the following specifi-
cations: processor Intel(R) Pentium(R) CPU 5405U @ 2.30 GHz 2.30 GHz, installed RAM
4.00 GB (3.88 GB usable). The operating system used was Windows 11 Home, version 21H2.
Programming language: MATLAB version R2018a.
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Figure 2. Scheme of the designed model. The input variables are solar irradiance (SI), wind speed
(WS), air pressure (PR), air temperature (TEM), and power load (PL). The output are frequency,
voltage, THDu, and THDi.

Table 3. Input and output variables.

Parameter Parameter Details Parameter Type

Gr Global Solar Irradiance Input
WS Wind Speed Input

Press Air Pressure Input
Tem Air Temperature Input
PL Power Load Input

Freq Power Frequency Output
V Voltage Amplitude Output

THDu THD of Voltage Output
THDi THD of Current Output

Figure 3. Structure of training and testing dataset.

Figure 4. Flowchart of the designed model. The experiment procedure was done the same way as in
this flowchart for all days and for all models.
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5.1. Datasets

Figure 3 presents the structure of the dataset, and Figures 5 and 6 show the weather
conditions and PQPs values for August 2021, respectively. Tables 4 and 5 present the
weather dataset and PQP values. The datasets were obtained from two sources: the power
dataset was obtained from the off-grid system installed at VSB-Technical University of
Ostrava, whereas the weather dataset was obtained from the Czech Hydrometeorological
Institute (CHMI) in Poruba, Ostrava. The off-grid system employed wind turbine and
two solar panels; it supplied electricity to household appliances, acting as a load, and
simultaneously recorded the state of these appliances when they were in operation or idle.
In an off-grid system, weather conditions directly affect the PQPs, and the power quality is
sensitive to the variations in the weather conditions [38]. In our experiments, all the input
variables that directly affect the PQPs were selected to build the model. The selected input
variables were: the global solar irradiance, wind speed, air pressure, air temperature, and
power load, whereas the output PQPs were: the power frequency, the amplitude of power
voltage, THDu, and THDi, as can be seen in Table 3.

Figure 5. Variations in weather conditions in August 2021.

Figure 6. Variations in PQPs in August 2021.
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Table 4. Weather dataset values.

Shortcut Parameter Min. Max. Avg. Modus Median

Gr Global Solar Irradiance (W·m−2) 0 1033 227.02 0 89
Pr Atmospheric Pressure (hPa) 976.4 995.3 987.07 988.5 987.2

Tem Air Temperature (°C) 9.2 32.2 17.69 14.9 16.5
WS Wind speed (m·s−1) 0 5.7 1.81 0.8 1.7

Table 5. PQPs dataset values.

Shortcut Parameter Min. Max. Avg. Modus Median

PL Power Load (kW) 0.06 2.61 0.45 0.19 0.31
Freq Frequency (Hz) 49.90 50.08 50.01 50.01 50.01

V Voltage (V) 223.96 245.64 228.85 224.15 225.59
THDu THD of voltage (%) 0.51 5.75 2.58 3.37 2.78
THDi THD of current (%) 4.48 61.68 22.77 22.34 22.19

The August 2021 dataset (accessed on 1 April 2022) is available free of charge from
the ENET Centre at this link (https://github.com/Sal0043?tab=projects). This dataset is
available in two EXCEL formats: weather conditions and PQPs. Interested readers can
download these data for scientific research.

5.2. Experimental Setup

The dataset used for the experiments contained data for August 2021. The off-grid
system was connected to the external power grid from 16:30 to 22:30, which implies that it
functioned as an on-grid system during this period. The weather dataset, collected by the
Czech Hydrometeorological Institute (CHMI) located in Poruba, Ostrava, contained data
measured at intervals of 10 min. The power dataset, collected using the off-grid system at
the VSB- Technical University of Ostrava, contained data measured at intervals of 1 min.
The power dataset adopted intervals of 10 min to match the weather dataset. Thus, for
each day, 144 samples were acquired, which were then divided into two parts: the off-grid
part, which included 107 samples, and the on-grid part, which included 37 samples. The
experiments focused on the off-grid part of the system. This dataset of August 2021 was
used to build our models. The dataset of the first two weeks of August was used for
training, whereas the data for 16–18 August were used for forecasting and testing the
models. Forecasting was performed hourly from 01:00 h until 16:00 h, thus, a total of
14 points were forecasted. This is depicted in the dataset in Figure 3.

6. Results
6.1. Forecasting Results

The most common metric for evaluating a forecasting model is the mean absolute
percentage error (MAPE) [39–41] and was used to evaluate the forecasting results in this
study. Tables 6–12 list the results for the: ANN, LR, ILR, QLR, PQLR, the boosting DT, and
the bagging DT, respectively, for 16–18 August 2021. The average error was determined for
each PQP. The residual results of the frequency, voltage, THDu, and THDi, for the training
phase of the boosting DT and bagging DT are shown in Figures 7 and 8, respectively.

The average error of the ANN for the power frequency across these three days, with
respect to voltage, THDu, and THDi, was approximately 3.09 × 10−4%, 0.223%, 5.15%, and
20.85%, respectively.

For LR, the average error in the frequency for all three days with respect to voltage,
THDu, and THDi was approximately 8.16× 10−5%, 0.28%, 12.62%, and 41.42%, respectively.
For ILR, the average error in the frequency for all three days with respect to voltage, THDu,
and THDi was approximately 8.13 × 10−5%, 0.28%, 12.14%, and 43.58%, respectively. For

https://github.com/Sal0043?tab=projects
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QLR, the average error in the frequency for all three days with respect to voltage, THDu,
and THDi was approximately 8.71 × 10−5%, 0.20%, 11.96%, and 44.76%, respectively.

Table 6. Forecasting error (MAPE in %) for 16–18 August 2021, when using ANN with two hidden
layers and 20 neurons in each layer.

PQP Type 16th 17th 18th Average

Frequency 5.3 × 10−4% 1.88 × 10−4% 2.03 × 10−4% 3.09 × 10−4%
Voltage 0.143% 0.08% 0.446% 0.223%
THDu 6.46% 4.16% 7.85% 5.15%
THDi 25.05% 14.55% 45.27% 20.85%

Table 7. Forecasting error (MAPE in %) for 16–18 August 2021, when using LR.

PQP Type 16th 17th 18th Average

Frequency 9.48 × 10−5% 4.55 × 10−5% 1.01 × 10−4% 8.16 × 10−5%
Voltage 0.28% 0.335% 0.23% 0.28%
THDu 10.26% 12.72% 14.89% 12.62%
THDi 24.07% 49.85% 50.34% 41.42%

Table 8. Forecasting error MAPE (%) of 16–18 August 2021, using Interactions LR (ILR).

PQP Type 16th 17th 18th Average

Frequency 1 × 10−4% 4.4 × 10−5% 1 × 10−4% 8.13 × 10−5%
Voltage 0.29% 0.34% 0.23% 0.28%
THDu 9.66% 12.74% 14.03% 12.14%
THDi 30.5% 52.9% 47.36% 43.58%

Table 9. Forecasting error (MAPE in%) for 16–18 August 2021, when using QLR.

PQP Type 16th 17th 18th Average

Frequency 1.08 × 10−4% 4.94 × 10−5% 1.04 × 10−4% 8.71 × 10−5%
Voltage 0.22% 0.23% 0.16% 0.20%
THDu 12.22% 11.56% 12.11% 11.96%
THDi 28.61% 58.1% 47.58% 44.76%

Table 10. Forecasting error (MAPE in%) for 16–18 August 2021, when using PQLR.

PQP Type 16th 17th 18th Average

Frequency 9.33 × 10−5% 4.60 × 10−5% 1.01 × 10−4% 8.02 × 10−5%
Voltage 0.20% 0.24% 0.180% 0.20%
THDu 11.29% 10.25% 11.96% 11.16%
THDi 27.68% 54.81% 47.36% 43.28%

Table 11. Forecasting error (MAPE in%) for 16–18 August 2021, when using the boosting DT.

PQP Type 16th 17th 18th Average

Frequency 1.35 × 10−4% 8.07 × 10−5% 1.53 × 10−4% 1.2 × 10−4%
Voltage 0.054% 0.040% 0.094% 0.06%
THDu 4.39% 1.66% 5% 3.68%
THDi 4.86% 8.04% 20.79% 11.23%
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Table 12. Forecasting error (MAPE in%) for 16–18 August 2021, when using the bagging DT.

PQP Type 16th 17th 18th Average

Frequency 9.35 × 10−5% 4.7 × 10−5% 1 × 10−4% 2.3 × 10−4%
Voltage 0.10% 0.05% 0.051% 0.06%
THDu 3.00% 3.00% 5.00% 3.66%
THDi 5% 6.19% 19.23% 10.14%

For PQLR, the average error in the frequency for all three days with respect to voltage,
THDu, and THDi was approximately 8.02 × 10−5%, 0.20%, 11.16%, and 43.28%. respec-
tively. For the bagging DT, the average error in the frequency for all three days, with
respect to voltage, THDu, and THDi was approximately 2.3 × 10−4%, 0.06%, 3.66%, 10.14%
respectively.

For the boosting DT, the average error in the frequency for all three days, with respect
to voltage, THDu, and THDi, was approximately 1.2 × 10−4%, 0.06%, 3.68%, 11.23%
respectively.

As the difference between the actual and forecasted frequencies was significantly
small, the curves plotted using these values appear identical. Comparisons between the
actual and forecasted values of voltage, THDu, THDi when using the regression tree are
presented in Figures 9–11, respectively.

Figure 7. Residual results of the frequency, voltage, THDu, and THDi of the training phase of
boosting DT.
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Figure 8. Residual results of the frequency, voltage, THDu, and THDi of the training phase of
bagging DT.
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Figure 9. Comparison of actual and forecasted voltage when using DT.
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Figure 10. Comparison of actual and forecasted THDu when using DT.
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Figure 11. Comparison of actual and forecasted THDi when using DT.

6.2. Computational Time

Table 13 lists the approximate computational times required for the tests performed in
this study. The execution time for forecasting all four PQPs ranged from 47.81 to 56.76 s for
ANN, from 4.12 to 4.75 s for the LR variations, from 11.10 to 10.50 s for the bagging DT,
and from 9.04 to 9.51 s for the boosting DT.
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Table 13. Approximate computational times for different models.

Model
Day

16th 17th 18th

ANN 47.81 s 56.76 s 49.47 s
LR 4.19 s 4.19 s 4.12 s
ILR 4.40 s 4.37 s 4.75 s

PQLR 4.22 s 4.22 s 4.64 s
QLR 4.44 s 4.35 s 4.30 s

Boosting DT 9.04 s 9.51 s 9.45 s
Bagging DT 10.16 s 10.50 s 11.10 s

7. Discussion
7.1. Forecasting Comparison

A comparison of the forecasting results from the seven models is presented in Table 14
and Figure 12; these explain the results of the average error for the compared models. The
power frequency appears to remain constant; the maximum value of the power frequency
was 50.0076 Hz, whereas its minimum value was 50.0069 Hz. Hence, the power frequency
forecasts obtained using the bagging and boosting DTs had little more error than those from
the other models. The experiment focused on the power consumption and generation for a
typical small household, considering an off-grid system. This is associated with a lower
short circuit power. As a result, devices in smaller off-grid systems have a greater impact on
the power quality than appliances connected to the distribution grid. The power quality in
an off-grid system is largely determined by the inverter’s ability to handle the influence of
the appliances. This results in significant total harmonic distortion in these systems. None
of the existing standards apply to small, private off-grid systems. Hence, this work was
aimed at predicting such situations in order to ensure appropriate responses in advance.
The results show that the the total harmonic distortion values are complicated to predict.
Furthermore, the dataset and results indicate that the larger the range of power quality
values, the lower the prediction accuracy is. When measuring the individual appliances,
we found that the lamps and the microwave oven have the greatest impact on the total
harmonic distortion in our chosen off-grid system. Overall, the best forecasting results for
the power frequency were obtained using PQLR, followes by those afforded by ILR, LR,
QLR, the boosting and bagging DTs, and the ANN, respectively. With regard to the voltage,
the best results were obtained using the bagging and boosting DTs, followed by those from
PQLR and QLR, the ANN, and LR and ILR, respectively. For THDu and THDi parameters,
the good results were achieved by bagging DT, and boosting DT ranked second, then ANN,
and the worst results were achieved by variations of LR models. Based on the results, as
mentioned earlier, the frequency patterns appear identical, and the bagging and boosting
DTs involve smaller errors than the other models. However, among the PQPs, the best
voltage forecasts were afforded by the bagging DT, followed by those from the boosting
DT; additionally, these results were better than those of the other models.

Table 14. Average error for 16–18 August 2021, obtained when using the ANN, LR, ILR, QLR, PQLR,
the boosting DT, and the bagging DT.

PQP Type
Model

ANN LR ILR QLR PQLR Boosting DT Bagging DT

Frequency 1.08 × 10−4% 8.16 × 10−5% 8.13 × 10−4% 8.7 × 10−5% 8.02 × 10−5% 1.2 × 10−4% 2.3 × 10−4%
Voltage 0.22% 0.28% 0.28% 0.20% 0.20% 0.06% 0.06%
THDu 12.22% 12.62% 12.14% 11.96% 11.16% 3.68% 3.66%
THDi 28.61% 41.42% 43.58% 44.76% 43.28% 11.23% 10.14%
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Figure 12. Comparison of the error results for the forecasting models, a, b, c, d for frequency, voltage,
THDu, and THDi, respectively.

7.2. Comparison of Model Performance

In this work, we applied bagging and boosting DTs, which are relatively new tech-
niques. The performance of these methods was compared with that of the other traditional
methods, such as the ANN and LR. In our experiments, we developed seven complex mod-
els for forecasting four PQPs. We used weather and power load data to build these models.

Because the PQPs are very sensitive to the power load, they can be affected by weather
conditions [38]. Our experiments were tested for three days ahead and considered the
forecasting error and the execution time of tested models. In reference [15] home appliances
and PQPs were used to forecast future PQPs, and in [16] the experiments tested for one
day ahead. One of the advantages of the ANN is that it can be configured in many forms;
however, it requires a significant amount of time for learning. LR is a considerably simple
model and exhibits shorter computational times; however, it suffers from limitations in
dealing with nonlinear data. When using ILR, the effect of one feature on the forecasted
value is dependent on the other features; however, these interactions can increase the noise
in the data and the learning time, especially for higher-order interactions. PQLR can handle
nonlinear data but requires additional data points. Furthermore, the QLR interaction affects
the results, in addition to the effects of individual features, and requires additional data
points with a higher order of interactions; this may lead to an increase in the learning time.
The boosting DT is capable of handling missing values and requires less computational
time, as compared with the other models; however, in certain cases, overfitting can occur.
The bagging DT can handle missing data, but the final results depend on the average of the
sub-trees outputs. Table 15 presents the advantages and disadvantages of the models used
in this study.
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Table 15. Approximation of comparison of the used models.

Model Type Advantage Disadvantage

ANN It can be set up in different
configurations Longer computation time

LR Very simple and fast in
computing

Difficulty in dealing with
nonlinear data

ILR

The effect of one feature on
the forecasted result is

dependent on the remaining
features

Interactions can increase the
noise in data and computation

time of higher-order
interactions

PQLR It handles nonlinear data More data points required

QLR

It is suitable for nonlinear
data. The effect of one feature

on the forecasted result is
dependent on the remaining

features

More data points and longer
computational time are

required

Boosting DT
It handles missing data and

takes less time compared with
bagging DT

Longer computation time
compared with LR versions

Bagging DT It handles higher dimensional
data handles missing data

The final results are based on
mean average results from sub
trees, which does not render

precise forecasting values

8. Conclusions

In summary, this study compared seven forecasting models for the PQPs of small-scale
household off-grid systems. The models considered were the ANN, DTs, LR, ILR, QLR,
and PQLR. Furthermore, with regard to the PQPs, we emphasised the power frequency,
voltage, total harmonic distortion voltage and current. In addition, the MAPE was used to
compare and evaluate the performance of these forecasting systems. The power frequency
is given that shows the model’s prediction on minimal values of the differences. These
minor differences are smaller than the measurement error. The article used frequency to
show how the different models deal with this. The experimental results of the study can be
summarised as follows:

• The best voltage forecasting accuracy was achieved by the bagging and boosting DTs
(approximately 0.06%), followed by those of QLR (approximately 0.20%), PQLR, LR,
and ILR, respectively. In this case, the worst results were afforded by the by ANN.

• The boosting DT achieved the best forecasting accuracy of THDu (3.68%), followed by
the bagging DT (3.66%) and the ANN. The lower accuracies were afforded by the LR
models (11.16% to 12.62%).

• The best forecasting accuracy results of THDi were achieved by the bagging DT
(approximately 10.14%), followed by the boosting DT (11.23%) and the ANN; the
worst forecasting results were yielded by the LR model (41.42%).

• With regard to frequency, the best forecasting accuracy results were achieved by PQLR,
followed by those from ILR, LR, QLR, the boosting DT, the bagging DT, and the ANN,
respectively.

• The ANN required more computational time than the other models (47.81 s to 56.76 s).
By contrast, the LR models required the shortest computational times (4.12 to 4.44 s).
Furthermore, the bagging DT required 10.10 to 10.50 s, and the boosting DT required
9.04 to 9.51 s.

These experimental results are expected to be used for developing off-grid control
systems. In addition, these prediction models can contribute toward optimisation processes
that ensure the appropriate operation of the entire system. The results of this work can also
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be used to develop more in-depth power quality parameter forecasting methods to improve
their accuracy for small-household off-grid systems. The study dealt with forecasting power
quality parameters based on meteorological data in Central Europe. Different results may
come out in other parts of the world under different climatic conditions and experimental
infrastructure. The study was mainly concerned with the presentation and application
of the idea. In the future, we plan to apply these methods to large-scale off-grid systems,
such as municipal buildings or industrial facilities cooperating with the vehicle-to-grid
technology.
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