
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2022 

Extracting Generalizable Hierarchical Patterns Of Functional Extracting Generalizable Hierarchical Patterns Of Functional 

Connectivity In The Brain Connectivity In The Brain 

Dushyant Sahoo 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Engineering Commons, Neuroscience and Neurobiology Commons, and the Statistics and 

Probability Commons 

Recommended Citation Recommended Citation 
Sahoo, Dushyant, "Extracting Generalizable Hierarchical Patterns Of Functional Connectivity In The Brain" 
(2022). Publicly Accessible Penn Dissertations. 5624. 
https://repository.upenn.edu/edissertations/5624 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5624 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fedissertations%2F5624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F5624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fedissertations%2F5624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fedissertations%2F5624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5624?utm_source=repository.upenn.edu%2Fedissertations%2F5624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5624
mailto:repository@pobox.upenn.edu


Extracting Generalizable Hierarchical Patterns Of Functional Connectivity In The Extracting Generalizable Hierarchical Patterns Of Functional Connectivity In The 
Brain Brain 

Abstract Abstract 
The study of the functional organization of the human brain using resting-state functional MRI (rsfMRI) 
has been of significant interest in cognitive neuroscience for over two decades. The functional 
organization is characterized by patterns that are believed to be hierarchical in nature. From a clinical 
context, studying these patterns has become important for understanding various disorders such as 
Major Depressive Disorder, Autism, Schizophrenia, etc. However, extraction of these interpretable patterns 
might face challenges in multi-site rsfMRI studies due to variability introduced due to confounding 
variability introduced by different sites and scanners. This can reduce the predictive power and 
reproducibility of the patterns, affecting the confidence in using these patterns as biomarkers for 
assessing and predicting disease. In this thesis, we focus on the problem of robustly extracting 
hierarchical patterns that can be used as biomarkers for diseases. 

We propose a matrix factorization based method to extract interpretable hierarchical decomposition of 
the rsfRMI data. We couple the method with adversarial learning to improve inter-site robustness in multi-
site studies, removing non-biological variability that can result in less interpretable and discriminative 
biomarkers. Finally, a generative-discriminative model is built on top of the proposed framework to extract 
robust patterns/biomarkers characterizing Major Depressive Disorder. 

Results on large multi-site rsfMRI studies show the effectiveness of our method in uncovering 
reproducible connectivity patterns across individuals with high predictive power while maintaining clinical 
interpretability. Our framework robustly identifies brain patterns characterizing MDD and provides an 
understanding of the manifestation of the disorder from a functional networks perspective which can be 
crucial for effective diagnosis, treatment and prevention. The results demonstrate the method's utility and 
facilitate a broader understanding of the human brain from a functional perspective. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Electrical & Systems Engineering 

First Advisor First Advisor 
Christos Davatzikos 

Subject Categories Subject Categories 
Engineering | Neuroscience and Neurobiology | Statistics and Probability 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5624 

https://repository.upenn.edu/edissertations/5624


EXTRACTING GENERALIZABLE HIERARCHICAL PATTERNS OF FUNCTIONAL

CONNECTIVITY IN THE BRAIN

Dushyant Sahoo

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2022

Supervisor of Dissertation

Christos Davatzikos, Professor of Radiology and Electrical and Systems Engineering

Graduate Group Chairperson

Alejandro Ribeiro, Professor of Electrical and Systems Engineering

Dissertation Committee

Pratik Chaudhari, Assistant Professor of Electrical and Systems Engineering
Ted Satterthwaite, Associate Professor of Psychiatry



ACKNOWLEDGEMENT

Looking back at the past five years, I realize that my Phd has been a very enriching journey. Not only

did I learn to become an independent researcher, but I also grew in other aspects of life to become

a more mature person. This thesis is a manifestation of that journey, and its completion would not

have been possible without the support from a large group of people.

First and foremost, I would like to warmly thank and express my highest appreciation to my adviser,

Dr. Christos Davatzikos, for his patience and guidance during the past few years. He provided me

with much freedom to explore issues and directions that interest me and always offered extremely

useful and thoughtful feedback during the exploration. His profound research insights and broad

vision have been foundational in shaping my identity as an independent researcher.

I express my heartfelt gratitude to my dissertation committee members, Dr. Pratik Chaudhari and Dr.

Theodore Satterthwaite for giving valuable feedback on my thesis. I would not be able to overcome

all the challenges along the journey without the support from my collaborators and all the people in

CBICA. I would like to especially thank Dr. Haochang Shou, Dr. Cynthia Fu, Dr. Yong Fan, Dhivya,

Dr. Junhao Wen, Dr. Mathilde Antoniades, Dr. Ahmed Abdulkadir and Dr. Guray Erus for their help

in research and outside.

I am beyond blessed to have so many amazing friends like family. I want to thank my friends– Aalok,

Abha, Arpit, Ishaan, Prathamesh, Rohan, Roopal, Sharath, Soham, and many more, who have always

been by my side in tough times.

Finally and most importantly, I would like to thank my parents Prem and Raj Sahoo and my brother

Abhimanyu for all the sacrifices they have made for this to be possible. Life is full of ups and downs,

but they are always my most vital support and my greatest motivation. The unconditional love that

they provided was always the largest comfort for me. Without them, I will not be the person I am

today. This thesis is dedicated to them!

ii



ABSTRACT

EXTRACTING GENERALIZABLE HIERARCHICAL PATTERNS OF FUNCTIONAL

CONNECTIVITY IN THE BRAIN

Dushyant Sahoo

Christos Davatzikos

The study of the functional organization of the human brain using resting-state functional MRI

(rsfMRI) has been of significant interest in cognitive neuroscience for over two decades. The

functional organization is characterized by patterns that are believed to be hierarchical in nature.

From a clinical context, studying these patterns has become important for understanding various

disorders such as Major Depressive Disorder, Autism, Schizophrenia, etc. However, extraction of

these interpretable patterns might face challenges in multi-site rsfMRI studies due to variability

introduced due to confounding variability introduced by different sites and scanners. This can reduce

the predictive power and reproducibility of the patterns, affecting the confidence in using these

patterns as biomarkers for assessing and predicting disease. In this thesis, we focus on the problem

of robustly extracting hierarchical patterns that can be used as biomarkers for diseases.

We propose a matrix factorization based method to extract interpretable hierarchical decomposition

of the rsfRMI data. We couple the method with adversarial learning to improve inter-site robustness

in multi-site studies, removing non-biological variability that can result in less interpretable and

discriminative biomarkers. Finally, a generative-discriminative model is built on top of the proposed

framework to extract robust patterns/biomarkers characterizing Major Depressive Disorder.

Results on large multi-site rsfMRI studies show the effectiveness of our method in uncovering

reproducible connectivity patterns across individuals with high predictive power while maintaining

clinical interpretability. Our framework robustly identifies brain patterns characterizing MDD and

provides an understanding of the manifestation of the disorder from a functional networks perspective

which can be crucial for effective diagnosis, treatment and prevention. The results facilitate a broader

understanding of the human brain from a functional perspective.
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CHAPTER 1

Introduction

1.1 Overview
The human brain is a complex structure that integrates and coordinates information in the human

body. It plays a central role in decision making by codifying instructions that control the rest of the

body. Anatomically, the brain is made up of a network of cell bodies that process information and

axons that relay the information. Functionally, it can be described as a network of regional hubs

working together to perform various tasks. Recent technological advancements such as Magnetic

Resonance Imaging, Electroencephalogram, etc., have allowed us to study networks to understand

the organization of the human brain, revealing communications in the human brain at micro-scale,

meso-scale, and macro-scale (Rauschecker and Scott, 2009; Gilbert and Li, 2013; Hirabayashi et al.,

2013; Van Kerkoerle et al., 2014). These studies have provided several insights into the functioning

of the healthy, aging and diseased human brain. In this thesis, we look at the patterns measured using

resting-state functional Magnetic Resonance Imaging (rsfMRI).

Resting-state functional Magnetic Resonance Imaging (rsfMRI) (Biswal et al., 1995; Raichle et al.,

2001) is a type of functional Magnetic Resonance Imaging (fMRI) to measure the brain activity

of different regions by detecting changes in the blood flow that occurs in the resting state. rsfMRI

can be used to measure the amount of co-activation or functional connectivity across different brain

regions at rest. Here the underlying assumption is that two brain regions which reliably co-activate

are more likely to participate in similar neural processes as opposed to two uncorrelated regions (Fox

and Raichle, 2007; Biswal et al., 1995; Buckner et al., 2008). Functional connectivity is commonly

estimated by computing the Pearson correlations between the time series recorded at different brain

locations. Functional connectivity measure is helpful to explore the organization of the human brain

and is used to extract functional networks, a set of distributed brain areas that show synchronous
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activities (Damoiseaux et al., 2006; Horovitz et al., 2008; Smith et al., 2009). It has been suggested

that the networks extracted from fMRI data exhibit hierarchical structure (Guye et al., 2010; Sporns

and Betzel, 2016). “This might provide evolutionary and adaptive advantages as different hubs

can respond to the evolutionary or environmental pressure without jeopardizing the functioning of

the entire brain” (Simon, 1991). Moreover, changes in the representation of functional networks

extracted from rsfMRI have been observed in groups suffering from brain diseases and with disorders

such as Spilepsy (Rajpoot et al., 2015; Riaz et al., 2013), schizophrenia (Kumari et al., 2009; Koch

et al., 2015), Attention Deficit Hyperactivity Disorder (ADHD) (Wang et al., 2013; Riaz et al., 2017),

Alzheimer’s disease (Wee et al., 2012), Parkinson’s disease (Díez-Cirarda et al., 2018; Wu et al.,

2009) and Major Depressive Disorder (MDD) (Dansereau et al., 2017; Xia et al., 2019), thus can

provide with potential biomarkers of illness.

Recently, with the introduction of several open-access neuroimaging data-sharing initiatives providing

large samples and high-quality data acquired from multiple sites, the changes in the functional patterns

can be investigated in large and varied populations (Alexander et al., 2017; Biswal et al., 2010;

Casey et al., 2018; Di Martino et al., 2017). These initiatives come with the benefits of higher

statistical power and better validations across different sites, which can help identify reliable patterns

of functional brain alterations in disorders such as MDD, ADHD, etc. But pooling of studies

results in demographic heterogeneity and non-biological variability, interfering in identifying robust

biomarkers depending on the task. In addition, the correlation between site effects and biological

predictors can lead to an incorrect inference of non-biological differences as biological. Therefore,

there is a need to develop novel methods to extract hierarchical patterns in large populations, which

can be reliably used as biomarkers for various diseases and help understand the functioning of the

human brain in multiple settings.

1.2 Aims of this thesis
This thesis aims to develop advanced machine learning methods based on matrix factorization and

adversarial learning to extract reproducible and interpretable patterns using fMRI data that can be
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used as biomarkers of various diseases. This goal is divided into four parts as described below:

Aim 1: Extracting hierarchical Sparse Connectivity Patterns

Functional networks of the human brain are typically extracted at a single scale using various methods,

including Independent Component Analysis (Smith et al., 2009), Non-Negative Matrix Factorization

(Potluru and Calhoun, 2008) and Sparse Dictionary Learning (Lee et al., 2010; Eavani et al., 2015a).

However, since numerous studies have suggested that the brain’s functional organization is hierarchi-

cal (Meunier et al., 2009; Park and Friston, 2013), hierarchical decompositions might better capture

functional connectivity patterns. Moreover, hierarchical decompositions can efficiently reduce the

very high dimensionality of functional connectivity data and help analyze the data at different scales.

Several multi-scale community detection methods have been developed to understand the hierarchical

organization of the human brain (Ferrarini et al., 2009; Al-Sharoa et al., 2018; Ashourvan et al.,

2019b). In addition to traditional methods, recently, deep learning based methods have been intro-

duced to estimate functional networks (Huang et al., 2017; Hu et al., 2018; Dong et al., 2019; Zhang

et al., 2020b,b). These methods have shown promising results in terms of prediction performances.

Still, there are one or more disadvantages: 1) removal of negative edge links in the method because

the negative links are treated as repulsions, 2) the inability to capture a subject-specific representation

of the patterns, and 3) “black-box” results due to non-linearity of the deep learning model causing

loss of interpretability.

To overcome these limitations, we develop a method to extract group-level interpretable hi-

erarchical patterns in the functional connectivity data while capturing heterogeneity in the

population.

Aim 2: Adversarial learning for hSCP

Robust and reproducible estimation of hSCP can be challenged by inter-scanner variations, rsfMRI

noise, irrelevant fluctuations, and other confounding variables. This can considerably reduce these

components’ reproducibility and hence their utility as biomarkers of diseases that disrupt functional

connectivity. This can cause unreliable measurements of disease biomarkers.
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To address this limitation, we introduce adversarial learning aiming to estimate hierarchical

components that are robust to such confounding variations.

Aim3: Robust to site effects hSCPs

Multi-site fMRI studies have recently garnered much attention due to improved generalizability and

replicability of brain patterns and evaluating a hypothesis in multiple sites/settings. However, they

face the challenge that the pooling introduces systematic non-biological site-specific variance due

to hardware, software, and environment. The non-biological variability introduced can affect the

biomarkers or common features extracted from fMRI data (Yu et al., 2018; Shinohara et al., 2017). It

can considerably reduce these features’ reproducibility across different datasets and their utility as

biomarkers for diseases that disrupt functional connectivity.

One of the common methods to remove site effects is the harmonization of data. Harmonization

of fMRI data especially derived measures, is very nascent, even though it is much needed with the

growing number of multi-site data sets (Adhikari et al., 2019). Many existing methods to reduce site

effects are based on an empirical Bayes method ComBat (Johnson et al., 2007), has been applied for

harmonizing different measures derived from functional MRI (Yu et al., 2018). However, ComBat and

its variants such as ComBat-GAM (Pomponio et al., 2020) can not be directly applied to connectivity

matrices since it can alter the structure of the connectivity matrix.

We tackle the above challenges by developing a matrix factorization and adversarial learning

based framework to reduce the effects of non-biological variations introduced due to pooling

data in multi-site studies.

Aim 4: Robust Hierarchical Patterns for identifying MDD patients

MDD is one of the most widespread psychiatric disorders characterized by abruptions in the con-

nectivity between functional networks (Wu et al., 2011; Zhu et al., 2012). Several studies have used

Multi Variate Pattern Analysis (MVPA) using the whole-brain functional connectivity matrix to find

significant patterns of altered connectivity between functional networks (Zhong et al., 2017; Nakano

et al., 2020; Yan et al., 2020). These methods are primarily two step procedures separating feature
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extraction from classification (Ravishankar et al., 2016; Hong et al., 2018). The first step consists

of capturing interpretable patterns and the second step uses these patterns as input for prediction.

Moreover, the methods focus on classification results at the expense of clinical interpretability.

Notably, consistent conclusions about the reproducible alternations of functional networks in MDD

patients are limited. This can be attributed to small sample size, heterogeneity in data due to varied

age and sex, and different hardware and software parameters when data is acquired from multiple

sites (Button et al., 2013; Gong and He, 2015). Demographic heterogeneity and non-biological

variability can interfere in identifying robust biomarkers depending on the task. Current multi-site

fMRI studies do not address the issue of heterogeneity of the data and its effect on the reproducibility

of extracted patterns.

Toward addressing the above limitations, we aim to reproducibly extract clinically relevant

patterns of brain activity characterizing MDD in a large multi-site rsfMRI data.

1.3 Contributions
Contributions of this thesis are summarized as follows:

1. Hierarchical Sparse Connectivity Patterns: We introduced a deep matrix factorization based

learning model to extract sparse, hierarchical, low-rank patterns. The method is termed as

hierarchical Sparse Connectivity Patterns (hSCPS) and is formulated as a large-scale non-

convex problem. The method is an extension of Sparse Connectivity Patterns (SCPs) by Eavani

et al. (2015b). We utilize advancement in optimization algorithms, and use adaptive gradient

descent along with alternating minimization to estimate the patterns. The method decomposes

the functional connectivity matrix of each subject into a positively weighted set of sparse

components, thus ensuring the positive semi-definite property of the input matrix. The sparse

components are shared across all subjects, and weights are calculated for each individual,

capturing heterogeneity in the data.

2. Adversarial Learning: We use the concept of attack and defense of adversarial learning

5



framework, traditionally used in supervised learning (Lowd and Meek, 2005; Farnia et al.,

2018) to improve the robustness of the hSCPs. We introduce an unsupervised adversarial

learning framework in our matrix factorization based approach. We model it as a two-player

game where the attacker is trying to force the model to deviate from the optimal solution,

and in defense, the model is trying to learn a robust solution. This method is validated using

simulated data and a real dataset showing improvement in the reproducibility of the extracted

components.

3. Reduce site effects in hSCPs: We introduce a novel model to reduce site effects in hSCPs. For

this, the method learns site-specific features and global space, storing the information about

the scanner and site, and uses these features to reduce site effects in the components. We also

use an adversarial learning approach on top of our method to improve the reproducibility and

generalizability of the components across components from the same site. We formulate the

method as a non-convex optimization problem and solve it using adaptive stochastic gradient

descent. Experiments on simulated and real datasets show that our method can improve the

reproducibility of the components while retaining age-related biological variability in the data,

thus capturing informative heterogeneity.

4. Robust Generative-Discriminative hSCPs: We introduce a novel method to extract robust

patterns characterizing MDD patients in a large heterogeneous dataset. The proposed method

consists of three building blocks: 1) a generative term to extract sparse patterns, 2) a dis-

criminative term to guide the model to find patterns that are associated with MDD, and 3) an

adversarial learning based term to reduce the effects of age, sex and site, thus reducing the

heterogeneity. Our generative discriminative method has good classification results without

compromising reproducibility and clinical interpretability of the patterns. This is ensured

through the generative loss function that encourages good reconstruction and discriminative

loss, which selects a subset of the patterns for classification. The findings of the method could

expand our understanding of MDD from a functional network perspective. To the best of our

knowledge, we are the first to propose a method that uses adversarial learning in a matrix
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factorization framework to reliably and robustly extract changes in functional patterns in MDD

from a purely data-driven perspective.

1.4 Organization of the Thesis
The two main methodological contributions of this thesis are described in Chapter 2, and 3 and

4, and application of the methods in Chapter 5. Chapter 2 discusses current methods used for

finding functional patterns, describes hierarchical Sparse Connectivity Patterns (hSCPs) method and

examines components extracted from the real dataset. In Chapter 3, we describe how adversarial

learning can be used in our matrix factorization based unsupervised setting and show improvement

in reproducibility using simulated and real datasets. Chapter 4 describes adversarial learning based

matrix factorization method to reduce site/scanner effects in hSCPs. The method’s effectiveness is

demonstrated by showing more reproducible and interpretable components than the vanilla approach.

In Chapter 5, we extract human brain patterns characterizing MDD and robust to effects of age,

sex and site in a large multi-site dataset. Chapter 6 summarizes the contribution of the thesis, and

discusses limitations and some interesting future directions.

7



CHAPTER 2

Extraction of Hierarchical Sparse Connectivity Patterns

In this chapter, we will introduce our framework to extract hierarchical Sparse Connectivity Patterns

(hSCPS). We will show that our method can extract sparse interpretable patterns of the human brain

with high reproducibility using real datasets and capturing heterogeneity in the data, which can be

useful in understanding varied populations.

2.1 Introduction
The hierarchical organization has been observed in large-scale computer architectures (Ozaktas,

1992), communication systems (Akyildiz et al., 2005), and social networks (Nickel and Kiela, 2017).

Such an organization provides a unique solution to balancing information within a group at a single

scale and between groups at multiple scales. It also promotes optimal and efficient information

processing and transmission in real-world information processing systems (Kinouchi and Copelli,

2006). The hierarchical organization is also seen in natural information processing systems such

as the human brain, where this organization is present both in space (Bassett et al., 2010) and time

(Chaudhuri et al., 2014).

It has been known that the human brain consists of spatially different regions which are functionally

connected to form networks (Sporns, 2010). In addition, these networks are thought to be hierarchi-

cally organized in the brain (Guye et al., 2010; Meunier et al., 2009; Ferrarini et al., 2009; Doucet

et al., 2011; Park and Friston, 2013; Sporns and Betzel, 2016). However, our understanding of the

hierarchical nature of these networks is limited due to their complex nature.

Outline: We start with literature review of the existing functional connectivity based approaches

in Section 2.2. In Section 2.3, we present the method for the extraction of hSCPs shared between

rs-fMRI scans. Section 2.4 presents experimental results for validation of the method on simulated

8



datasets and the effectiveness on the rs-fMRI scans of the 100 unrelated HCP subjects (Van Essen

et al., 2013) and 969 subjects from the Philadelphia Neurodevelopmental Cohort (PNC) data set

(Satterthwaite et al., 2014). We conclude with a discussion.

2.2 Literature Review
Seed based analysis: Correlation is a widely used statistical measure to estimate functional

connectivity by calculating a correlation matrix storing correlation between time series of different

“seed” Regions of Interests (ROIs). A high correlation between two seed regions would imply a strong

functional connection. A hypothesis test is usually performed to reveal significant brain connections

(Raichle, 2011). However, these approaches do not estimate the network structure since they can’t

cluster similar functional regions (Zhang et al., 2012). Another limitation is that it requires prior

knowledge of seed which can bias the finding towards specific structures (Buckner et al., 2008).

Community detection approaches: Several interesting multi-scale community detection meth-

ods have been developed for estimating the underlying hierarchical organization of human brain

connectivity (Ferrarini et al., 2009; Al-Sharoa et al., 2018; Akiki and Abdallah, 2019; Ashourvan

et al., 2019b). Ashourvan et al. (2019a) proposed agglomerative (“bottom-up”) type Hierarchical

Community Detection, where the method begins by regarding each element as a separate network and

then merging them into larger networks successively. Some approaches assume that the communities

are independent (Betzel and Bassett, 2017; Puxeddu et al., 2020; Betzel et al., 2015) where they

have investigated multi-scale brain networks and conducted multi-scale community detection by

manipulating the number of communities. But, this is not the case in the human brain, where it is

known that certain brain regions interact with multiple networks, i.e., the networks overlap (Xu et al.,

2016).

Moreover, negative edge links are treated as repulsions in community detection approaches. Previ-

ously, most approaches used thresholds before their analysis and estimated networks using sparse

graphs. The reason for thresholding was that the strong edges contain the most relevant information

leading to the removal of negative edges. In contrast, in resting fMRI, a negative edge link carries
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essential information on functional co-variation with the opposing phase (Rubinov and Sporns, 2011)

and has a substantial physiological basis (Zhan et al., 2017; Fox et al., 2005). These relations may

play an important role in neuropsychiatric disorders and cognitive differentiation (Fitzpatrick et al.,

2007). Some studies have recently shown that the weak network edges contain unique information

that can not be revealed by analysis of just strong edges (Goulas et al., 2015; Santarnecchi et al.,

2014). Assigning anti-correlated and correlated regions to the same component can reveal more

details about the organization of the human brain patterns (Eavani et al., 2015a), as long as interpreted

correctly. The major limitations of the community detection approaches are one or more than one of

the following: 1) the assumption of independent components, 2) not capturing heterogeneity in the

data, and 3) inability to detect weights while estimating links.

Matrix factorization methods: These approaches are also widely used along with community

detection methods. Most prevalent among them are Independent Component Analysis (ICA), Non-

negative Matrix Factorization (NMF) and Principle Component Analysis (PCA)(Beckmann et al.,

2005; Calhoun et al., 2009; Anderson et al., 2014; Zhou et al., 2009). ICA is increasingly used

to estimate spatio/temporal patterns directly using fMRI time series (Calhoun et al., 2009). The

main idea behind ICA is to extract independent patterns using higher-order moments. Spatial ICA is

widely utilized to obtain spatially independent patterns, commonly called “Intrinsic Connectivity

Networks (ICNs)” (Calhoun et al., 2003). In some cases, PCA is combined with ICA to extract these

independent patterns (Zhou et al., 2009; Allen et al., 2014). Smith et al. (2012) extended the above

method to find overlapping brain patterns by applying temporal ICA, thus overcoming the limitation

of non-overlapping patterns recovered by spatial ICA. Even though there is an improvement, these

patterns are still based on the notion of independent temporal structure, contrasting to the idea that

different brain regions take part in multiple complex functions.

Sparse representation and dictionary learning are another set of methods that have gained attention

in performing fMRI data analysis. Numerous novel approaches have been developed focussing on

finding sparse interpretable representation of fMRI data (Aharon et al., 2006; Lee et al., 2010; Lv

et al., 2014, 2017). One of the most prominent examples is sparse connectivity patterns (SCPs) by

Eavani et al. (2015a) which is the motivation of our work. It extracts sparse low-rank patterns using
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matrix factorization of functional connectivity matrices while capturing subject-specific information.

Various tensor decomposition works have been introduced based on the similar idea of factorizing

connectivity matrices into a lower-dimensional subspace (Wang et al., 2011; Hamdi et al., 2018;

Noroozi and Rezghi, 2020; Zhang et al., 2020c).

Non-negative Matrix Factorization (NMF) (Yang and Leskovec, 2013; Anderson et al., 2014) is

another common matrix decomposition approach that many researchers use for obtaining information

about community structure by analyzing low dimensional matrix. Recently, (Li et al., 2018a) used

Deep Semi Non-negative Matrix Factorization (Trigeorgis et al., 2017) for estimating hierarchical,

potentially overlapping, functional networks. The model given by (Li et al., 2018a) could only find

networks containing regions with a positive correlation between them as the method is based on

non-negative matrix factorization, thus limiting the model to only use positive matrices.

Deep learning based methods: The rise of deep learning has led researchers to move towards

a non-linear model with high representational and prediction power. Many studies have proposed

deep learning based framework for reconstructing functional networks, e.g., the Deep Convolutional

Auto Encoder (DCAE), Deep Belief Network (DBN) and Convolutional Neural Network (CNN),

Restricted Boltzmann Machine (RBM) (Hu et al., 2018; Huang et al., 2017; Dong et al., 2019; Zhang

et al., 2020b). These methods have reported the meaningful hierarchical temporal organization

of fMRI time series in the task-evoked fMRI data. Deep learning models have also found great

utility for disease prediction using functional connectivity. Most of the models use deep learning

as a black-box model and focus on disease classification, for example, Multi-Layered Perceptrons

(Heinsfeld et al., 2018), Deep Belief Networks (Akhavan Aghdam et al., 2018), Convolutional Neural

Networks (Khosla et al., 2018), Graph Convolutional Network (Wang et al., 2021). Still, there

are one or more disadvantages: 1) requirement of large training samples, 2) large computational

resources (GPUs or TPUs), 3) considerable training time; 4) low reproducibility of the extracted

patterns, 5) nonexistence of positively and negatively correlated nodes in a component, 6) inability to

capture heterogeneity in the data, and 7) “black box” results lacking explainability mainly due to

non-linearity in the hierarchical associations.
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2.3 Method
Our method aims to find Hierarchical Sparse Connectivity Patterns (hSCPs) by jointly decomposing

correlation matrices into multiple components having different ranks using a cascaded framework

for matrix factorization. hSCP addresses aforementioned limitations by modeling the fMRI data to

capture essential properties of the network, namely- 1) Sparsity: only a small subset of nodes interact

with other nodes in a given network; 2) Heterogeneity: some networks might be more prominent

in particular individuals as compared to others; 3) Existence of positively and negatively correlated

nodes in a network; 4) Overlapping networks, which is likely to reflect true brain organization, as

brain networks might share certain regional components; and 5) Hierarchy: By adding extra layers of

abstraction we can learn latent attributes and the hierarchy in the networks. Our method is built upon

Sparse Connectivity Patterns (SCPs) (Eavani et al., 2015a) which can be considered a symmetric CP

decomposition for which an indirect fitting procedure makes the model structure equivalent to the

PARAFAC2 model representation considered in (Madsen et al., 2017) with the addition of sparsity

rather than orthogonality.

Notations and Conventions: Lowercase boldface letters are used for vectors, and for matrices, we

use capital boldface letters. An element of a vector x is denoted by xi, and an element of a matrix A

is denoted by Ai,j . The set of symmetric positive definite matrices of size P ×P is denoted by SP×P
++ .

Matrix A with all the elements greater than or equal to 0 is denoted by A ≥ 0. JP denotes P × P

matrix with all elements equal to one. P × P identity matrix is denoted by IP and element-wise

product between two matrices A and B is denoted by A ◦B. We will be using the same notations

and conventions in the upcoming chapters.

2.3.1 Sparse Connectivity Patterns

Let Xn ∈ RP×T be the fMRI data of the nth subject having P regions and T time points, and

Θn ∈ SP×P
++ is the correlation matrix where Θn

m,o = corr(xi
m,xi

o) is the correlation between time

series of mth and oth node. We first define the model for estimating the Sparse Connectivity Patterns

(SCPs) (Eavani et al., 2015a) in the fMRI data which decomposes the correlation matrices into
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Figure 1: Schematic illustrating extraction of functional connectivity. We first extract region averaged
time series using a parcellation scheme and then extract the functional connectome storing pairwise
correlation in the average time courses.

non-negative linear combination of sparse low rank components such that for all n = 1, . . . , N we

have Θn ≈WΛnWT where W ∈ RP×k is a set of shared patterns across all subjects, k < P and

Λn ⪰ 0 is a diagonal matrix storing the subject specific information about the strength of each of

the components. Let wl ∈ RP be the lth column of W such that −1 ⪯ wl ⪯ 1 and let wl,s be the

sth element of wl vector, then wl represents a component which reflects the weights of the nodes

in the component and if wl,s is zero then sth node does not belong to lth component. If the sign of

weights of any two nodes in a component is same then they are positively correlated else they have

anti-correlation. To make the patterns sparse, each column of W was subjected to L1 penalty and

the below optimization is solved to obtain the SCPs:

minimize
W,Λ

N∑
n=1

||Θi −WΛnWT ||2F

subject to ∥wl∥1 ≤ λ, l = 1, . . . , k,

∥wl∥∞ ≤ 1, l = 1, . . . , k,

Λi ⪰ 0, n = 1, . . . , N,

(2.1)

where S is the total number of subjects and λ controls the sparsity of the components.

2.3.2 Hierarchical Sparse Connectivity Patterns

We have extended the above work and introduced Hierarchical Sparse Connectivity Patterns (hSCPs)

to estimate hierarchical sparse low rank patterns in the correlation matrices. In our model, a
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Θi ≈ Λi
1w1w

⊤
1 + Λi

1w2w
⊤
2 + Λi

1w3w
⊤
3

w1 → w2 → w3 →

Figure 2: Schematic illustrating SCP where Θi is a subject specific correlation matrix which is
approximated by non-negative sum of sparse rank one matrices.

correlation matrix is decomposed into K levels as -

Θn ≈W1Λ
n
1W

T
1 ,

Θn ≈W1W2Λ
n
2W

T
2 W

T
1 ,

...

Θn ≈W1W2 . . .WKΛn
KWT

KWT
K−1 . . .W

T
1 ,

(2.2)

where W1 ∈ RP×k1 and Wq ∈ Rkq−1×kq , Λi
q ∈ Rkq×kq is a diagonal matrix storing subject specific

information of the patterns, P ≫ k1 > k2 > . . . > kK , P ≫ K and WT is the transpose of W.

In the above formulation, W1 ∈ RP×k1 stores k1 components at the bottom most level, and each

successive multiplication by W2, W3, . . ., WK linearly transforms to a lower dimensional space of

k2, k3, . . ., kK dimension. Here kr is the number of components at the rth level, note that k1 is the

number of components at the lower most level of the hierarchy. If we consider 2 layer hierarchical

representation of a given correlation matrix then we can define Z1 = W1W2 to be a P × k2 matrix,

then Z1 is a coarse network which consist of weighted linear combination of W1 which are fine

level components where weights are stored in W2.

For better interpretability, for noise reduction in the model, but also because of our hypothesis that

brain subnetworks are relatively sparse (Achard and Bullmore, 2007), we have introduced sparsity

constraints on the W matrices. By making W1 sparse we are forcing the components to contain

few number of nodes and by forcing rest of the Ws to be sparse, we are forcing that the components

at each of the next level are sparse linear combination of previous components. The hierarchical
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Figure 3: Example of 2-layer hierarchical structure

networks can be estimated by solving the below minimization procedures simultaneously under the

constraints mentioned above

min
W1,Λ1

N∑
n=1

∥Θn −W1Λ
n
1W

T
1 ∥2F ,

min
W1,W2,Λ2

N∑
n=1

∥Θn −W1W2Λ
n
2W

T
2 W

T
1 ∥2F ,

...

min
W,ΛK

N∑
n=1

∥Θi −W1W2 . . .WKΛi
KWT

KWT
K−1 . . .W

T
1 ∥2F ,

(2.3)

whereW = {W1, . . . ,WK} is the set storing sparse components shared across all subjects. As

the above minimization procedures are inter-dependent, we need to solve them jointly. Let D =

{Λn
r | r = 1, . . . ,K;n = 1, . . . , N} be set storing subject specific diagonal matrix with Λn

r ≥ 0

and C = {Θn | n = 1, . . . , N} be the set storing correlation matrix for all subjects. The hierarchical

components are estimated by solving the below optimization problem:

minimize
W,D

H(W,D, C) =
N∑

n=1

K∑
r=1

∥Θn − (
r∏

j=1

Wj)Λ
n
r (

r∏
j=1

Wj)
⊤∥2F

subject to ∥wr
l ∥1 < λr, l = 1, . . . , kr and r = 1, . . . ,K,

∥wr
l ∥∞ ≤ 1, l = 1, . . . , kr and r = 1, . . . ,K,

Wj ≥ 0, j = 2, . . . ,K,

Λn
r ⪰ 0, n = 1, . . . , N and r = 1, . . . ,K,

trace(Λi
r) = 1, n = 1, . . . , N and r = 1, . . . ,K,

(2.4)
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where trace operator calculates sum of diagonal elements of a matrix. In the above minimization

procedure, the sum of diagonal values of Λn is fixed to be 1 such that the sparsity of W is not trivially

minimized. We will be denoting above constraint set as ΩW = {W | ∥wr
l ∥1 < τr, ∥wr

l ∥∞ ≤

1,Wj ≥ 0, j = 2, . . . ,K} and Ψ = {Λ | trace(Λn
r ) = 1,Λn

r ≥ 0}.

Note In the above formulation, the last level has the highest number of components k1, and in the

level after that we have k2 number of components which are linear combination of components at

previous level, so on and so forth. In this way, we have built up a hierarchical model where each

component is made up of linear combination of components at the previous hierarchy. Note that

we can not just use the last decomposition in the above architecture to get the hierarchy as different

layers have different ranks and different approximations, hence we will need all the approximations

to build the hierarchical structure. In addition, one would expect W2 and Ws to be degenerate, but

that would be the case only when W1 is orthogonal matrix. Consider the case where we have a two

level hierarchy, we can have better approximation by taking a linear combination of columns of W1

which we have also observed empirically.

2.3.3 Alternating Minimization

The optimization problem defined in 2.4 is a non-convex problem which we solved using alternat-

ing minimization. Algorithm 1 describes the complete alternating minimization procedure where

proj1(W, λ) operator projects each column of W into intersection of L1 and L∞ ball (Podosin-

nikova et al., 2013), and proj2 projects a matrix onto R+ by making all the negative elements in the

matrix equal to zero. As the gradients are not globally Lipschitzs, we don’t have bounds on the step

size for the gradients. For that reason, we have used AMSGrad (Reddi et al., 2019), ADAM (Kingma

and Ba, 2014) and NADAM (Dozat, 2016) as gradient descent algorithms which have adaptive step

size, and the update rules are defined in Appendix A. descent function in the Algorithm 1 is the

update rule used by different gradient descent techniques. The cost of computing gradients of Λ is

O(KSP 2k1) and of W is O(KSP 2k1 +K2SPk21). The overall cost of Algorithm 1 is number of

iterations ×O(KSP 2k1 +K2SPk21). From our previous assumption that P ≫ K, the final cost is

number of iterations ×O(KSP 2k1).
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Algorithm 1 hSCP
1: Input: Data C, number of connectivity patterns k1,. . . ,kK and sparsity λ1,. . . ,λK at different

level
2: W and D = Initialization(C)
3: repeat
4: for r = 1 to K do
5: Wr ← descent(Wr)
6: if r == 1 then
7: Wr ← proj1(Wr, λr)
8: else
9: Wr ← proj2(Wr)

10: for n = 1, . . . , N do
11: Λn

r ← descent(Λn
r )

12: Λn
r ← proj2(Λ

n
r )

13: until Stopping criterion is reached
14: Output: W and D

2.3.4 Gradients

In this section, we define gradients used for alternating gradient descent. Let

W̃0 = W0 = IP , Yr =
r∏

j=0

Wj , Tr
m,n = (

m−r∏
j=1

Wj)Λ
n
m−r(

m−r∏
j=1

Wj)
⊤.

The gradient of H with respect to Wr is written as:

∂H

∂Wr
=

N∑
n=1

K∑
j=r

−4Y⊤
r−1XnYr−1WrT

r
j,n + 4Y⊤

r−1Yr−1WrT
r
j,nW

⊤
r Y

⊤
r−1Yr−1WrT

r
j,n.

The gradient of H with respect to Λn
r is:

∂H

∂Λi
r

= (−2YT
r Θ

i
rYr + 2YT

r YrΛ
i
rY

T
r Yr) ◦ Ikr .

2.3.5 Initialization procedure for Gradient Descent

Single level matrix decomposition considered in hSCP is structurally similar to Singular Value

Decomposition (SVD) but with the dependent components and sparsity added. Hence, we believe
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Algorithm 2 Initialization
1: Input: Data Θ
2: for r = 1 to K do
3: for n = 1 to N do
4: if r == 1 then
5: UnVn(Ui)T = k1- rank SVD(Θn)
6: else
7: Vn = kr−1top values of Λn

r−1

8: Un = Permutation matrix
9: Λn

r = Vn

10: Wr =
1
N

∑S
n=1(U

n)

11: Output: W and D

that the final components estimated are a modification of singular vectors. Thus, we have initialized

theW and D in Algorithm 1 by taking SVD of input data matrix. This helps in making algorithm

deterministic. Define Θ̄ as the sample mean of Θn. We then perform k-rank SVD of Θ̄ and obtain

U and V such that UVU⊤ = k-rank SVD of Θ̄. We then initialize W1 by U and Λn
1 by Vn where

Vn can be obtained by taking k-rank SVD of Θn as described in Algorithm 2. For r > 1, Wr can

be initialized as a permutation matrix and Λr by top kr diagonal elements of kr−1 so that we don’t

have to perform SVD at each level. We empirically show in the next section that SVD initialization

results in faster convergence.

2.4 Experiments

2.4.1 Dataset

We used two real dataset for demonstrating the effectiveness of the method:

1. HCP- Human Connectome Project (HCP) (Van Essen et al., 2013) dataset is one of the widely

used dataset for fMRI analysis containing fMRI scans of 100 unrelated subjects as provided

at the HCP 900 subjects data release (Van Essen et al., 2012) which were processed using

ICA+FIX pipeline with MSMAll registration (Glasser et al., 2013). Each subject has 4004

time points and the time series were normalized to zero mean and unit L2 norm, averaged over

the 360 nodes of the multimodal HCP parcellation (Glasser et al., 2016).
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(a) k1 = 15, k2 = 5, λ1 = 9, λ2 = 7.5 (b) k1 = 15, k2 = 5, λ1 = 3.6, λ2 = 3

Figure 4: Performance comparison of different gradient descent techniques. SVD corresponds to
gradient descent with SVD initialization

2. PNC- Philadelphia Neuro-developmental Cohort (PNC) (Satterthwaite et al., 2014) dataset

contains 969 subjects (ages from 8 to 22) each having 120 time points and 121 nodes described

in (Doshi et al., 2016). The data were preprocessed using an optimized procedure (Ciric et al.,

2017) which includes slice timing, confound regression, and band-pass filtering.

2.4.2 Convergence Analysis

We compare AMSGrad, ADAM, NADAM and vanilla gradient descent with SVD initialization and

random initialization by measuring percentage error which is defined as:

∑N
n=1

∑K
r=1 ||Θn − (

∏r
j=1Wj)Λ

n
r (
∏r

j=1Wj)
T ||2F∑N

n=1

∑K
r=1 ||Θn||2F

.

For fair comparison, we set β1 = 0.9 and β2 = 0.99 for ADAM, NADAM and AMSGRAD

algorithm, where β1 and β2 are the hyperparameters used in the update rules of the gradient descent

algorithms. These are values are typically used as parameter settings for adaptive gradient descent

algorithms (Reddi et al., 2019). Figure 4 shows the convergence of the algorithm on the complete

HCP data for two different combinations of sparsity parameters at a particular set of k1 and k2. From

the Figure 4 we can see that the AMSGrad has the best convergence and SVD initialization gives a

better convergence rate. For rest of the experiments we have used AMSGrad algorithm with SVD

initialization to perform gradient descent.
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(a) Similarity comparison at fine scale (b) Similarity comparison at coarse scale

Figure 5: Comparison between ground truth and extracted hSCPs components on simulated dataset.
X axis corresponds to proportion of non-zeros in the estimated components.

2.4.3 Simulation

To evaluate the performance of the proposed model, we first use synthetic data. We compared the

hierarchical components extracted from hSCP to hierarchical overlapping communities obtained

using EAGLE (Shen et al., 2009) and OSLOM (Lancichinetti et al., 2011). Implementation of

EAGLE and OSLOM was obtained from the authors. We randomly generate V1 ∈ Rp×k1 with

percentage of non-zeros equal to µ1, W2 ∈ Rk1×k2 with percentage of non-zeros equal to µ2 and

Λn ∈ Rk2×k2 for n = 1, . . . , N . The goal is to generate V1W2Λ
nWT

2 V
T
1 matrices which are

close to a correlation matrix. For this, we first take mean of all Λi such that U = 1
n

∑N
n=1Λ

n and

generate T such that T = V1W2UWT
2 V

T
1 . Now, let D be a matrix containing diagonal elements

of T, to make T a correlation matrix, we modify V1 by multiplying it by D
1
2 . Let W1 = D

1
2V1,

then R = W1W2UWT
2 W

T
1 would be a correlation matrix. Now, we generate correlation matrix

for each subject by using the below equation

Θn = W1W2Λ
nWT

2 W
T
1 +En,

where En ∈ Rp×p such that W1W2Λ
nWT

2 W
T
1 matrix becomes a correlation. For the experiments,

the parameters were set as follows: n = 300, p = 100 k1 = 20, k2 = 6, µ1 = 0.4 and µ2 = 0.5.

We compare components derived from hSCP with k1 ∈ {10, 15, 20}, k2 ∈ {5, 6, 8}, λ1 ∈ P ×
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10 15 20

5
hSCP 0.8293± 0.0467 0.8097± 0.0728 0.8305± 0.0614

EAGLE 0.4051± 0.0304 0.4180± 0.0290 0.4068± 0.0070
OSLOM 0.6866± 0.0442 0.6955± 0.0362 -

6
hSCP 0.8421± 0.0585 0.8660± 0.0286 0.8497± 0.0292

EAGLE 0.3867± 0.0141 0.4855± 0.0731 0.4463± 0.0334
OSLOM 0.6249± 0.0554 0.7302± 0.0431 -

8
hSCP 0.8350± 0.0666 0.8457± 0.0353 0.8454± 0.0385

EAGLE 0.4408± 0.0857 0.5339± 0.0900 0.4099± 0.0274
OSLOM 0.6610± 0.0540 - -

Table 1: Similarity comparison (mean±std) on simulated dataset. The rows correspond to values of
k1 and the columns correspond to values of k2.

5(10[−3:−1]) and λ2 ∈ k1 × 10[−3:−1]. By varying λ values, we generate components with different

sparsity. We first compare fine-scale and coarse-scale components separately to demonstrate the

effect of sparsity on the performance. For a fixed k1 and λ1, we find k2 and λ2 giving the maximum

similarity with the ground truth and for a fixed k2 and λ2, we find k1 and λ1 giving the maximum

similarity with the ground truth over 10 runs. Here the similarity is defined as the average correlation

between extracted and the ground truth components. Fig. 5 shows the similarity of the fine-scale and

coarse-scale components with the ground truth. From the figure, we can see that the hSCP can extract

components that are highly similar to the ground truth. Also, as the fine-scale components become

sparse, the similarity decreases. Next, we compare hSCP to EAGLE and OSLOM. Hierarchical

components and communities with k1 ∈ {5, 6, 8}, k2 ∈ {10, 15, 20} were extracted from hSCP,

EAGLE and OSLOM. The correlation matrix averaged across all the subjects was used as an input to

EAGLE and OSLOM. For hSCP, among different values of λ1 and λ2, we extract components at

level k1 and k2, which have maximum similarity with the ground truth. Table 1 shows the similarity

of the extracted components with the ground truth. Some cells in the tables are empty as the EAGLE

and OSLOM algorithms were not able to generate hierarchical structures for particular values of k1

and k2. It can be seen that the hSCP method can extract the components which are closer to ground

truth as compared to other methods.
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Figure 6: Comparison of single scale (SCP) and hierarchical (HSCP) components on HCP dataset.
X axis corresponds to proportion of non-zeros in the components. All the HSCP are second level
components.

2.4.4 Comparison with single scale components

We also compared the reproducibility of the shared components extracted from the hierarchical model

(hSCP) versus single scale components (SCP). Reproducibility here is defined as the normalized

inner product of components derived from the two equal random sub-samples of the data averaged

across all the components. We decomposed the correlation matrix into two levels to demonstrate

the advantages of hierarchical factorization and show proof of concept. There might not be a

single K that best describes the data, and the algorithm allows us to investigate the continuum of

functional connectivity patterns at different Ks. We compare components derived from hSCP with

k1 ∈ {10, 15, 20, 25}, k2 ∈ {4, 5, 6, 8}, λ1 ∈ P × 5(10[−3:−1]) and λ2 ∈ k1 × 10[−3:−1], and from

SCP with k ∈ {4, 5, 6, 8, 10, 15, 20, 25} at λ ∈ P × 5(10[−4:−1]). At a fixed k2 and λ2, we find the

optimal k1 and λ1 by dividing the data into three equal parts: training, validation, and test data, and

choosing the parameters corresponding to maximum mean reproducibility over 20 runs on training

and validation set. Figure 6 and Figure 7 show the reproducibility of the components averaged over

20 runs on training and test data. We can see that the same number of components extracted from the

second level using hSCP are, on average, more reproducible than the components extracted using

SCP.

22



Figure 7: Comparison of single scale (SCP) and hierarchical (HSCP) components on PNC dataset.
X axis corresponds to proportion of non-zeros in the components. All the HSCP are second level
components.

2.4.5 Comparison of hSCP with existing approaches

We compared the reproducibility of hierarchical components extracted from hSCP to hierarchical

overlapping communities obtained using EAGLE (Shen et al., 2009) and OSLOM (Lancichinetti

et al., 2011). Implementation of EAGLE and OSLOM was obtained from the authors. Correlation

matrix averaged across all the subjects was used as an input to EAGLE and OSLOM. Hierarchical

components and communities with k1 ∈ {4, 5, 6, 8}, k2 ∈ {10, 15, 20, 25} were generated from

hSCP, EAGLE and OSLOM. Optimal λ1 and λ2 for hSCP were selected by dividing the data into

three equal parts: training, validation and test set, and performing the validation procedure as

described in Subsection 2.4.4. Reproducibility was computed using training and test for all the

methods for all combinations of k1 and k2. Table 2 and Table 3 show the reproducibility results on

HCP and PNC datasets. For a particular k1 and k2, reproducibility table show the average of the two

reproducibility values. The results clearly show that the hSCPs have better reproducibility than the

communities derived using EAGLE and OSLOM.
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10 15 20

4
hSCP 0.8885± 0.0441 0.8351± 0.0748 0.8507± 0.0635

EAGLE 0.3077± 0.0981 0.4158± 0.1321 -
OSLOM 0.7493± 0.0882 - -

5
hSCP 0.8753± 0.0348 0.8356± 0.0591 0.8281± 0.0656

EAGLE 0.2908± 0.0737 0.2664± 0.0333 0.0792± 0.1656
OSLOM 0.6092± 0.0733 - -

6
hSCP 0.8756± 0.0375 0.8461± 0.0486 0.8224± 0.0555

EAGLE 0.2356± 0.0196 0.3209± 0.1206 0.3717± 0.1698
OSLOM 0.5791± 0.0792 - -

8
hSCP 0.8781± 0.0694 0.8389± 0.0479 0.8240± 0.0460

EAGLE - - 0.3374± 0.1672
OSLOM - - -

Table 2: Reproducibility comparison (mean±std) on HCP dataset. The rows correspond to values of
k1 and the columns correspond to values of k2.

10 15 20

4
hSCP 0.8838± 0.0495 0.7998± 0.0766 0.8036± 0.0599

EAGLE 0.6287± 0.3005 0.6433± 0.1321 0.6046± 0.2981
OSLOM 0.6780± 0.0537 - -

5
hSCP 0.8785± 0.0675 0.8379± 0.0704 0.8099± 0.0736

EAGLE 0.6575± 0.1973 0.5327± 0.1828 0.5426± 0.1656
OSLOM 0.5867± 0.0869 - -

6
hSCP 0.8655± 0.0404 0.8364± 0.0649 0.8518± 0.0587

EAGLE 0.7571± 0.2366 0.6279± 0.1011 0.6244± 0.2627
OSLOM 0.6391± 0.1266 - -

8
hSCP 0.8670± 0.0559 0.8347± 0.0517 0.8340± 0.0657

EAGLE - 0.7451± 0.0319 0.5933± 0.2126
OSLOM 0.5479± 0.0987 - -

Table 3: Reproducibility comparison (mean±std) on PNC dataset. The rows correspond to values of
k1 and the columns correspond to values of k2.

2.4.6 Age prediction

We compared the predictability power on the age prediction problem of the hierarchical components

extracted from hSCP, EAGLE and OSLOM. Using PNC dataset, we first extracted the components

and their strength (Λ) for each individual. These strength values were then used to predict age of
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Correlation
10 15 20 25

4
hSCP 0.259± 0.010 0.301± 0.014 0.319± 0.012 0.377± 0.010
EAGLE 0.246± 0.004 0.298± 0.009 0.300± 0.004 0.347± 0.005
OSLOM 0.209± 0.007 - - -

5
hSCP 0.263± 0.010 0.327± 0.025 0.379± 0.028 0.403± 0.017
EAGLE 0.259± 0.003 0.298± 0.002 0.301± 0.006 -
OSLOM 0.217± 0.005 - - -

6
hSCP 0.257± 0.013 0.342± 0.027 0.381± 0.021 0.407± 0.022
EAGLE 0.281± 0.004 0.308± 0.005 0.321± 0.007
OSLOM 0.236± 0.008 - - -

8
hSCP 0.278± 0.022 0.372± 0.026 0.382± 0.023 0.409± 0.010
EAGLE - 0.311± 0.003 0.326± 0.007 -
OSLOM 0.264± 0.007 - - -

Table 4: Prediction performance comparison of hSCP, EAGLE and OSLOM

MAE (years)
10 15 20 25

4
hSCP 3.20± 0.06 3.16± 0.10 3.13± 0.09 3.06± 0.14
EAGLE 3.22± 0.01 3.20± 0.01 3.15± 0.01 3.10± 0.01
OSLOM 3.25± 0.01 - - -

5
hSCP 3.19± 0.07 3.10± 0.17 3.06± 0.21 3.03± 0.13
EAGLE 3.21± 0.01 3.13± 0.01 3.09± 0.01 -
OSLOM 3.24± 0.01 - - -

6
hSCP 3.20± 0.08 3.11± 0.18 3.06± 0.16 3.02± 0.18
EAGLE 3.18± 0.01 3.15± 0.01 3.14± 0.01 -
OSLOM 3.20± 0.01 - - -

8
hSCP 3.18± 0.14 3.07± 0.18 3.05± 0.17 3.02± 0.13
EAGLE - 3.17± 0.01 3.13± 0.02 -
OSLOM 3.20± 0.01 - - -

Table 5: Prediction performance comparison of hSCP, EAGLE and OSLOM

each individual using linear regression. Pearson correlation coefficient and mean absolute error

(MAE) between the predicted brain age and the true age was used as the performance measure for

comparison. Table 4 and 5 summarizes the result obtained.

To determine if our results are significantly better, the Wilcoxon signed-rank test was performed
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Correlation
10 15 20 25

4
EAGLE 0.0034 0.0229 3.6× 10−4 4.7× 10−5

OSLOM 4.7× 10−5 - - -

5
EAGLE 0.0447 1.1× 10−4 4.7× 10−5 -
OSLOM 4.7× 10−5 - - -

6
EAGLE 1 6.2× 10−4 4.7× 10−5 -
OSLOM 1.3× 10−4 - - -

8
EAGLE - 4.7× 10−5 4.7× 10−5 -
OSLOM 0.0175 - - -

Table 6: p-value from Wilcoxon signed-rank test on Correlation

as the information about the underlying distribution in case of different performance measures is

unknown. As the lower MAE is preferred, we performed a left-tailed hypothesis test when MAE

is used as a performance measure. A right-tailed hypothesis test is performed when correlation is

used as a performance measure because a higher value of correlation is better. Below is the null

hypotheses in the two case:

1. No difference between correlation values obtained from our method compared to other methods.

2. No difference between MAE values obtained from our method compared to other methods.

Table 6 and 7 demonstrates that the prediction model built using hSCPs performed significantly better

(p-value < 0.05) better than the model built using EAGLE and OSLOM components in the majority

of the cases. This indicates that the hSCPs were more informative for predicting brain age. One of

the reasons for the poor performance of EAGLE was that it only estimated if a region is present or

not present in a component. In contrast, hSCP can determine the strength of the presence, thus had

more degree of freedom resulting in better performance.

2.4.7 Clustering

An extension of the above method is presented below, which estimates hSCPs for better clustering

of the data and capturing of heterogeneity. Data clustering is performed using subject specific
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MAE (years)
10 15 20 25

4
EAGLE 0.0159 0.0108 0.0323 0.0351
OSLOM 0.0012 - - -

5
EAGLE 0.0447 0.1198 0.0108 -
OSLOM 0.0413 - - -

6
EAGLE 0.9727 0.0653 0.0145 -
OSLOM 1.3× 10−4 - - - 0.778

8
EAGLE - 0.0447 0.0209 -
OSLOM 0.0563 - - -

Table 7: p-value from Wilcoxon signed-rank test on MAE

information of the components. We add a penalty term for clustering in the objective function given

in problem 2.4. The modified objective function is given in problem 2.5. The joint minimization

problem for estimating hSCPs and using their subject specific information for clustering is given

below:

minimize
W,D,C

H(W,D) +
K∑
r=1

L∑
l=1

∑
n∈Ml

kr∑
d=1

||
xnd,r
∥xd,r∥

− cld,r||2

subject to ∥wr
l ∥1 < λr, l = 1, . . . , kr and r = 1, . . . ,K,

∥wr
l ∥∞ ≤ 1, l = 1, . . . , kr and r = 1, . . . ,K,

Wj ≥ 0, j = 2, . . . ,K,

Λn
r ⪰ 0, i = 1, . . . , S and r = 1, . . . ,K,

trace(Λn
r ) = 1, i = 1, . . . , S and r = 1, . . . ,K,

(2.5)

where clr is the lth cluster center at the rth level, L is the number of clusters, C = {clr}l=1:L,r=1:K ,

xn
r stores the diagonal elements of Λn

r andMl stores the information whether nth subject belongs to

lth cluster or not. In the above problem, || xn
d,r

∥xd,r∥ − cld,r||2 penalty is used for incorporating clustering

by penalizing distance between points in a cluster and cluster center, and xnd,r is divided by ∥xd,r∥

for normalization. The above non-convex problem can be solved in a similar way as the problem

2.4 is solved in Subsection 2.3.2 using alternating minimization. Algorithm 3 provides a complete

procedure for solving the problem. In the Algorithm 3, k-means(Λn
r ) is used for applying k-means
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Algorithm 3 hSCP-clust
1: Input: Data C, number of connectivity patterns k1,. . . ,kK and sparsity λ1,. . . ,λK at different

level
2: W and D = Initialization(C)
3: random initialization for (uniform sampling in [0, 1])
4: repeat
5: for r = 1 to K do
6: Step 5-9 from Algorithm 1
7: for n = 1, . . . , N do
8: Λn

r ← descent(ΛN
r )

9: Λn
r ← proj2(Λ

N
r )

10: C, {Ml}l=1:L ← k-means(Λn
r )

11: until Stopping criterion is reached
12: Output: W , D, C and {Ml}l=1:L

(a) Heterogeneity captured by subjects of cluster 1 (b) Heterogeneity captured by subjects of cluster 2

Figure 8: Heterogeneity captured by fine scale components in HCP. The color indicates the strength
(Λ2) of each component present in a subject. Maximum strength of a component across subjects is
fixed to be 1 for comparison purpose.

clustering (Wagstaff et al., 2001) on Λn
r and k-means(Λn

r ) outputs C as cluster centers and {Ml}l=1:L

as cluster assignments of L. We ran the algorithm on HCP data to extract the components and the

clusters in the data. Number of clusters was selected by first extracting the hierarchical components

without the penalty term and then clustering the data by using k-means on L. L which is number of

clusters was set to 2 by using the elbow method. Number of of coarse scale components was set to

be 4 and and fine scale components to be 10 since they exhibited the highest reproducibility between

the training and test sets. Figure 8 and Figure 9 show the distribution of fine and coarse components

in two clusters. From Figure 9, we can see that component A and C are more prominent in cluster 2

compared to cluster 1, and component B and D are prominent in cluster 1 compared to cluster 2. The
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(a) Heterogeneity captured by subjects of cluster 1 (b) Heterogeneity captured by subjects of cluster 2

Figure 9: Heterogeneity captured by coarse scale components in HCP. The color indicates the strength
(Λ1) of each component present in a subject. Maximum strength of a component across subjects is
fixed to be 1 for comparison purpose.

algorithm has forced Component A and its sub-components to have higher weights in one cluster.

But for component B, sub-components 2 and 3 are prominent in cluster 1 and sub-component 1 is

prominent in cluster 2 which can be seen in Figure 8. From the Figure 8 and 9, it can be seen that our

method can reveal heterogeneity in the population by capturing the strength of components’ presence

in each individual.

2.4.8 Results from resting state fMRI

Figure 10 displays the 10 fine level components, the 4 coarse level components and the hierarchical

structure. Nodes with red and blue color are correlated among themselves, but are anitcorrelated with

each other. Note that blue color does not need to be necessarily associate with positive or negative

correlation because the colors can be flipped without affecting the solution. We will be using similar

figures in upcoming chapter where the blue and and red color carry the same meaning. 2 and 3 show

different regions of Default Mode anti-correlated with the Dorsal Attention and Cingulo-Opercular

system. 8 show different regions of default mode anti-correlated with the sensori-motor areas. 4

and 5 shows different regions of Visual system anti-correlated with Salience and fronto-parietal

control systems. It can be clearly seen from Figure 10 that the fine and coarse level components are

overlapping and sparse, and coarse components are comprised of a sparse linear combination of fine

level components which helps in discovering the relation between different networks at different
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scales.

The ten fine level components obtained show the relation between different functional networks and

are similar to the SCPs extracted in (Eavani et al., 2015a). From Fig. 10, it can be seen that our

approach can separate task-positive regions and their associated task-negative regions into separate

patterns without using traditional seed-based methods that require knowledge of a seed region of

interest. Various studies have found that task-positive regions are positively correlated with each

other, and task-negative regions are positively correlated with each other. The regions in the two

networks are negatively correlated with each other, which aligns with our results (Raichle, 2015; Yeo

et al., 2014). Component 2 covers Default Mode Network and Dorsal Attention Network, which are

anti-correlated with each other. This result is a well-known finding, previously described using the

seed-based correlation method (Fox et al., 2005). Anti correlations between different brain regions

can represent interactions that are dependent on the state of the brain. As our method is not capturing

dynamics, it has captured the interactions between different regions in different components. An

example of this anti-correlation between the default mode network and the task positive network;

these interactions are thought to be facilitated by indirect anatomical connections between the regions

of two networks(Buckner et al., 2013). Component 8 shows different regions of DMN anti-correlated

with sensorimotor, described in separate study (Karahanoğlu and Van De Ville, 2015).

Component C comprises of three connectivity patterns that involve the sensorimotor areas and

its anti-correlations. Component A consists of Visual Network and Ventral Attention Network,

which are anti-correlated with each other. From Fig. 10, we can see that part of sensorimotor

and emotion networks (Drevets and Raichle, 1998) are anti-correlated with each other. These

connections highlighted by our method are corroborated by the fact that these regions have direct

anatomical pathways (Vergani et al., 2014). These negatively correlated networks can highlight

different interactions in different brain regions, such as suppression, inhibition, and neurofeedback.

An extension of this method that estimates dynamic components can help us understand different

anti-correlations mechanism between the regions. Future research is needed to understand more

about the anti-correlation and the source of these interactions.
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A

1 9

(a) A comprises of 1 and 9

C

6 7 8 10

(b) C comprises of 6, 7 and 8

B

1 2 3

(c) B comprises of 1, 2 and 3

D

4 5 6

(d) D comprises of 4, 5 and 6

Figure 10: Hierarchical components derived from HCP dataset showing the connection between 10
fine scale components (W1) denoted from 1 to 10 and 4 coarse scale components (W1W2) denoted
from A to D.

Our study also finds that compared to the primary sensory cortex, the higher-order association cortex

has more has more associations in different components, shown in previous studies (Geranmayeh

et al., 2014; Beldzik et al., 2013). Traditional seed-based approaches have been used to show that

these regions have functional connectivity with more heterogeneous regions implying that they

receive input and send outputs to more diverse brain regions (Katsuki and Constantinidis, 2012;

Crossley et al., 2014). Thus, allowing overlapping components and positive and negative correlations

within the same components provides additional insights. These features of the method facilitate

storing the relation of various overlapping regions within a functional system with other areas by

assigning them to different components.
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Another important observation is that each of the coarse components comprises fine level components

having major functional networks and their relation with other nodes. For instance, coarse component

B includes majorly of 2 and 3, which stores the link between regions of Default Mode network and

other nodes in the brain. Similarly, coarse component D saves the relationship between visual areas

and the rest of the brain regions using 4 and 5. Thus, hSCPs can provide novel insights into the

functioning of the brain by jointly uncovering both fine and coarse level components with the coarse

components comprised of similarly functioning fine components.

2.5 Conclusion
In this work, we proposed a novel technique for hierarchical extraction of sparse components from

correlation matrices, with application to rsfMRI data. The proposed method is a cascaded joint

matrix factorization problem where a correlation matrix corresponding to each individual’s data

is considered an independent observation, thus allowing us to model inter-subject variability. We

formulated the problem as non-convex optimization with sparsity constraints. It is important to note

that as the decomposition is not by itself unique, the ability to reproducibly recover components

hinges on imposing sparsity in the decomposition, which appears to provide useful and reproducible

representations. We used an adaptive learning rate based gradient descent algorithm to solve the

optimization problem. Compared to the implementation of SCP, which had random initialization, we

used SVD initialization which made the complete algorithm both deterministic and faster.

In addition to shared patterns, we are able to extract the ‘strength’ of these patterns in individual

components, thus capturing heterogeneity across data. Experimentally, we showed that our method is

able to find sparse, low rank hierarchical decomposition using cascaded matrix factorization, which

is highly reproducible across datasets. Experimental results using the PNC dataset demonstrate that

the hierarchical components extracted using our model could better predict brain age compared

to EAGLE and OSLOM. We also show that our model can capture heterogeneity using the HCP

dataset. Our model computationally extracts a set of hierarchical components common across

subjects, including resting state networks. At the same time, we capture individual information about
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subjects as a linear combination of these hierarchical components, making it a useful measure for

group studies. Importantly, our work provides a method to uncover hierarchical organization in the

functioning of the human brain.

There are several directions for future work. Firstly, it is possible to extend the idea to estimate

dynamic hierarchical components similar to (Cai et al., 2017) which can help reveal how the

hierarchical networks are varying over time. Secondly, generative-discriminative models can be

built on the top of hSCP to find the highly discriminative components of some particular groups.

For example, such a model can estimate the hierarchical components which are most discriminative

of a neurodegenerative disorder (more on this in Chapter 5). Third, it would be interesting to find

the guarantee on the estimation error of the hierarchical components. One possible approach is

to adapt the proof techniques of (Yu et al., 2020). Finally, future studies incorporating cognitive,

clinical, and genetic data, might elucidate the biological underpinning and clinical significance of the

heterogeneity captured by our approach.
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CHAPTER 3

Adversarial Learning for Hierarchical Patterns

In this chapter, we extend the hSCP method mentioned in the previous chapter by adding a general

adversarial learning framework to make the patterns robust and achieve better reproducibility. This

work provides strong evidence that of the adversarial learning framework for extraction of hSCP can

improve the robustness and reproducibility of these components.

3.1 Introduction
There has been a lot of research on estimating interpretable components of functional connectivity of

the brain. However, these components are often vulnerable to confounding variations, herein referred

to as “adversary” using ML language, such as inter-scanner and inter-protocol variations, and rsfMRI

noise or irrelevant fluctuations. This can considerably reduce these components’ reproducibility

and hence their utility as biomarkers of diseases that disrupt functional connectivity. To address

this limitation, in this chapter, we introduce adversarial learning aiming to estimate hierarchical

components that are robust to such confounding variations. The method is motivated by seminal

work of Goodfellow et al. (2014), which showed that the performance of machine learning methods

is vulnerable to adversarial attacks on the observed dataset. Adversarial training has been used to

mitigate this and improve the generalization and robustness of the machine learning methods (Madry

et al., 2018; Tramèr et al., 2018; Sinha et al., 2018; Farnia et al., 2018).

We introduce the Adversarial hSCPs (Adv. hSCPs) method to enhance the sparse component’s

robustness, improving its generalization performance. We formulate the problem as a bilevel matrix

factorization problem and solve it using alternate minimization. Our method is based on recent

advances in matrix factorization approaches that have used adversarial training to achieve state-of-

the-art performances (He et al., 2018; Luo et al., 2020). In a nutshell, it is a minimax game, where

the adversary perturbs model parameters to maximize or deteriorate our objective function, and
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in defense, we minimize the objective function. Empirical studies performed on simulations and

real-world datasets demonstrate that our model can generate more reproducible components than

other related methods. We also extract interpretable components using the HCP dataset.

Outline: We start by reviewing adversarial learning. Then, in Section 3.2.1, we present our method

Adversarial hSCP. In Section 3.3 that follows, we compare our method against existing methods on

simulated and real data.

3.1.1 Adversarial Training

A discriminative model is usually trained by minimizing the empirical expected loss over a function

class F = {fv : v ∈ V} parameterized by v and parameter space V:

min
v∈V

1

n

n∑
i=1

l(fv(xi), yi),

where l(·, ·) is a loss function, fv is the output function, xi is the feature vector and yi is the label.

Several recent papers (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2017) have revealed that

adding adversarial noise to the sample defined for a sample (x, y) as:

δadvv (x) := argmax
∥δ∥≤ϵ

l(fv(x+ δ), y), (3.1)

where ϵ > 0 is the adversarial noise power can drastically decrease model’s performance. Adversarial

training (Madry et al., 2018) was introduced to provide robustness against the adversaries defined

above. The training involves empirical risk minimization over the perturbed samples by solving

min
v∈V

1

n

n∑
i=1

l(fv(xi + δadvv (x)), yi).

35



The above formulation has a drawback that the accuracy drops drastically. To overcome this problem,

Mix-minibatch adversarial training (MAT) (Wong and Kolter, 2018) is performed by solving

min
v∈V

1

n

n∑
i=1

l(fv(xi + δadvv (x)), yi) + l(fv(xi), yi), (3.2)

which balances between accuracy on the clean examples and robustness on the adversarial examples.

Motivated by the above methodology, we build adversarial training for learning sparse hierarchical

connectivity components. As the above training regime was supervised, we use a different formulation

with the same idea for the unsupervised hSCP model.

3.2 Adversarial hierarchical Sparse Connectivity Patterns

3.2.1 Recap

Let there be N number of subjects or participants, and each subject’s BOLD fMRI time series has T

time points and P nodes representing regions of interest. The input to hSCP are correlation matrices

Θn ∈ SP×P
++ where ith and jth element of the matrix is the correlation between time series of ith and

jth node. hSCP then outputs a set of shared hierarchical patterns following the below equations:

Θn ≈W1Λ
n
1W

⊤
1 , . . . Θn ≈W1W2 . . .WKΛn

KW⊤
KW⊤

K−1 . . .W
⊤
1 ,

where Λn
k is a diagonal matrix having positive elements storing relative contribution of the com-

ponents for the nth subject at kth level, K is the depth of hierarchy and P > k1 > . . . > kK .

3.2.2 Adversarial Learning for hSCP

Adversarial learning has shown to achieve state-of-the-art performance of various matrix factorization

approaches (He et al., 2018; Luo et al., 2020). The method is based on perturbation of input data Θn

to learn stable components robust to adversaries. First the input data is perturbed to generate new data

Γn = Θn + σJP where σ is the standard deviation of the data. We consider this perturbation as rank
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one perturbation which will transform eigenvalues of each subject’s correlation matrix differently.

Since the addition of ones does not change the symmetric property of the matrix, we just scale

the matrix such that the diagonal matrix contains 1 and by Weyl’s inequality about perturbation

(Stewart, 1998) it will be positive definite. We have experimented with randomly positively scaled

rank one perturbation, but the results were worse than the standard hSCP. Also, using rank one

perturbation, it is easier to control eigenvalues (and noise added) of the modified matrix than using

rank k perturbation. The perturbed set of components W̃1 are then estimated using the new data

and are ensured to be close to W1 by solving the below minimization problem: In this section, we

demonstrate how to incorporate adversarial learning at one level for the hSCP method, which then

can be extended to multiple levels. The idea is to perturb input data Θi and learn stable components

W1 which are robust to adversaries, such as inter-scanner differences and unwanted rsfMRI noise.

There are two parts of the complete learning procedure-

Attack. We first manually perturb the input data to get perturbed data Γn = Θn + 0.1σ1P where

σ is the standard deviation of the data and use it to learn a perturbed weight matrix W̃1:

W̃1 = argmin
Ŵ1

α∥Ŵ1 −W1∥2F +

N∑
n=1

∥Γn − Ŵ1Λ
nŴ⊤

1 ∥2F . (3.3)

In the above equation, the first part is used to estimate W̃1, which is close to W1 in Frobenius norm,

thus mimicking the actual components but is learned from the noise-induced data. The second term

is used for learning W̃1 using a perturbed data matrix. The main goal of the attacker is to learn

W̃1 for a given Γi and fool the model by forcing the model to learn Λi from the perturbed data.

Our framework does not depend on the perturbations’ assumptions; the type of perturbation can be

varied depending on different types of practical noises such as site-induced or scanner-induced noise.

Finding optimal perturbation is left for future work.

Defense. Aim of the learner is to estimate Λn and W1 by minimizing the below cost function:

D(W,Λ) =

N∑
n=1

∥Θn − W̃1Λ
nW̃⊤

1 ∥2F + β
N∑

n=1

∥Θn −W1Λ
nW⊤

1 ∥2F , (3.4)
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for a fixed W̃1. Learner first estimates subject specific information Λn using perturbed weight

matrix and then use it to learn W1. We can now define the optimization problem for the complete

adversarial learning at single level using equation 3.3 and 3.4 as:

minimize
W1,Λn ∀n

N∑
n=1

∥Θn − W̃1Λ
nW̃⊤

1 ∥2F + β
N∑

n=1

∥Θn −W1Λ
nW⊤

1 ∥2F

subject to W̃1 = argmin
Ŵ1

α∥Ŵ1 −W1∥2F +
N∑

n=1

∥Γn − Ŵ1Λ
nŴ⊤

1 ∥2F .

(3.5)

The above equation is analogous to discriminate adversarial learning problem defined in equation 3.2.

Let W = {Wr | r = 1, . . . ,K}, C = {Θn | n = 1, . . . , N}, W̃ = {W̃r | r = 1, . . . ,K}, D =

{Λn
r | r = 1, . . . ,K;n = 1, . . . , N}, Ŵ = {Ŵr | r = 1, . . . ,K}, P = {Γn | n = 1, . . . , N} and

H(W,D, C) =
N∑

n=1

K∑
r=1

∥Θn − (
r∏

j=1

Wj)Λ
n
r (

r∏
j=1

Wj)
⊤∥2F .

Then the multi level formulation of can be written as:

minimize
W,D

J(W̃,W,D, C) = H(W̃,D, C) + βH(W,D, C)

subject to W̃r = argmin
Ŵr

α∥Ŵr −Wr∥2F +H(Ŵ,D,P).
(3.6)

3.2.3 Optimization

The complete algorithm to solve the above optimization problem is described in Algorithm 4 (Adv.

hSCP). First, the adversarial perturbations are generated by performing gradient descent on Ŵr, and

then the model parameters are updated using gradient descent. This process is repeated until the

convergence criteria is reached. descent is the update rules defined by AMSgrad (Reddi et al., 2019)

for performing gradient descent. Gradients are defined in the next section. proj1(A) (Podosinnikova

et al., 2013) function projects each column of A into intersection of L1 and L∞ ball and proj2(A)

function makes all the negative elements of A equal to zero. The model parameters are initialized by

first optimizing the hSCP model using svd− initialization algorithm [Alogirthm 2] in Subsection
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Algorithm 4 Adv. hSCP
1: Input: Data C, perturbed data P;W and D = hSCP(C)
2: repeat
3: for r = 1 to K do
4: Update adversarial perturbations
5: Ŵr ← descent(Ŵr)
6: Update model parameters
7: Wr ← descent(Wr)
8: if r == 1 then
9: Wr ← proj1(Wr)

10: else
11: Wr ← proj2(Wr)

12: Λn
r ← descent(Λn

r ); Λ
n
r ← proj2(Λ

n
r ) n = 1, . . . , N

13: until Stopping criterion is reached
14: Output: W and Λ

2.3.5, rather than randomly initialized. This makes algorithm deterministic, and the algorithm can

start from an optimal point on which adversarial learning can improve if there is overfitting.

3.2.4 Gradients

In this section, we define gradients used for alternating gradient descent. Let

W̃0 = W0 = IP , Yr =

r∏
j=0

Wj , Ỹr =

r∏
j=0

W̃j ,

Tr
m,n = (

m−r∏
j=1

Wj)Λ
n
m−r(

m−r∏
j=1

Wj)
⊤, T̃r

m,n = (
m−r∏
j=1

W̃j)Λ
n
m−r(

m−r∏
j=1

W̃j)
⊤.

We first define gradient for updating adversarial perturbations W̃r. The objective function is

F = α∥Ŵr −Wr∥2F +H(W̃,D,P) and gradient with respect to W̃r will be

F

∂W̃r

= 2α(Ŵr −Wr) +
∂H(W̃,D, C)

∂W̃r

= 2α(Ŵr −Wr) +

N∑
n=1

K∑
j=r

(
−4Ỹ⊤

r−1Γ
nỸr−1W̃rT̃

r
j,n

+ 4Ỹ⊤
r−1Ỹr−1W̃rT̃

r
j,nW̃

⊤
r Ỹ

⊤
r−1Ỹr−1W̃rT̃

r
j,n

)
.
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Figure 11: (a) Visualization of ground truth components at level 1. (b) Weight matrix used to generate
components at level 2. (c) Visualization of ground truth components at level 2.

We now define gradients for updating model parameters. The gradient of objective function J with

respect to Λn
r is:

∂J

∂Λn
r

=
∂H(W̃,D, C)

∂Λn
r

+ β
∂H(W,D, C)

∂Λn
r

=
[
(−2Ỹ⊤

r X
n
r Ỹr + 2Ỹ⊤

r ỸrΛ
n
r Ỹ

⊤
r Ỹr) + β(−2Y⊤

r X
i
rYr + 2Y⊤

r YrΛ
i
rY

⊤
r Yr)

]
◦ Ikr .

The gradient of J with respect to Wr is:

∂J

∂Wr
=

∂H(W,D, C)
∂Wr

=

N∑
n=1

K∑
j=r

−4Y⊤
r−1XnYr−1WrT

r
j,n + 4Y⊤

r−1Yr−1WrT
r
j,nW

⊤
r Y

⊤
r−1Yr−1WrT

r
j,n.

3.3 Experiments

3.3.1 Simulated dataset

We first use a simulated dataset to evaluate the performance of our model against SCP (Eavani et al.,

2015a), NMF (Potluru and Calhoun, 2008), adv. NMF (Luo et al., 2020) and ICA (Smith et al., 2009).

The values of α and β are set to be 10−3 and 0.5 respectively throughout this chapter. We generate

sparse components S1 ∈ RP×k1 with P = 50 and k1 = 8 and generate network structure from it.
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This network is then used as input to NetSim (Smith et al., 2011) with TR equal to 3 seconds to

generate time-series data of 100 subjects, each having 300 time-points. NetSim also adds Gaussian

noise to the time series of each node. We also add Poisson noise with a mean equal to 0.4 to check

how different methods perform in a high noise scenario.

We compare components/factors derived from all the models with k1 ∈ {6, 8, 10, 12}. Accuracy

is used as a performance measure defined as a normalized inner product between ground truth

components and estimated factors derived from various algorithms. The optimal sparsity parameter

λ1 in the hSCP is selected from P × 10[−2:1] having the highest average split-sample reproducibility

in 20 runs. Split-sample reproducibility of components is computed by randomly dividing the data

into two equal parts and then calculating normalized inner product between components extracted

from each sample. A high reproducibility value implies that the same component can be extracted

from multiple samples. Table 8 shows the comparison of the accuracy of different methods averaged

over 20 runs. As the hSCP method is deterministic, the output remains the same in every run. From

the table, it can be seen that adversarial training can significantly improve the accuracy of hSCP. An

important thing to note here is that adversarial training has also improved the accuracy of NMF, but

it remains less than that of hSCP.

We next generated a two-level hierarchy using the components defined above as the first layer.

We used linear operator for projection to lower dimensional space to get coarse components with

P = 50 and k2 = 4. Visualization of the components is in Figure 11. Time-series data were then

generated under the same settings presented above. Table 9 shows the components’ average accuracy

at two-level over 20 runs for hSCP and Adv. hSCP with Adv. hSCP method giving better results. We

did not use ICA and NMF as they can only generate components at only one level.

Resting state fMRI data

We used 100 unrelated subjects released within the 900 subjects data release from the publicly

available Human Connectome Project (HCP) (Van Essen et al., 2012) dataset for comparing different

methods. ICA+FIX pipeline (Glasser et al., 2013) is used to process the complete data. Each subject

has 4 scans, with each scan comprising 1001 time points and 360 nodes.
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Method k1 = 6 k1 = 8 k1 = 10 k1 = 12

hSCP 0.801 0.829 0.818 0.814
Adv. hSCP 0.832 0.847 0.867 0.864
ICA 0.656± 0.004 0.696± 0.022 0.734± 0.025 0.748± 0.011
NMF 0.650± 0.104 0.701± 0.071 0.708± 0.118 0.712± 0.085
Adv. NMF 0.695± 0.047 0.718± 0.069 0.720± 0.091 0.723± 0.114

Table 8: Accuracy on simulated dataset

k1 = 6 k1 = 8 k1 = 10 k1 = 12

k2 = 4
hSCP 0.821 0.837 0.827 0.819
Adv. hSCP 0.859 0.864 0.846 0.823

k2 = 6
hSCP 0.816 0.819 0.813 0.805
Adv hSCP 0.848 0.849 0.826 0.814

Table 9: Accuracy on simulated data with two level hierarchy

Method k1 = 6 k1 = 8 k1 = 10 k1 = 12

hSCP 0.798 0.779 0.739 0.724
Adv. hSCP 0.804 0.771 0.818 0.843
ICA 0.637± 0.015 0.671± 0.034 0.715± 0.027 0.738± 0.012
NMF 0.640± 0.101 0.655± 0.109 0.703± 0.079 0.704± 0.128
Adv. NMF 0.690± 0.079 0.681± 0.071 0.694± 0.080 0.682± 0.088

Table 10: Accuracy on simulated dataset with Pois(0.4) noise added

3.3.2 Convergence Analysis

We empirically validate the convergence using the reconstruction error:

∑N
n=1

∑K
r=1 ||Θn − (

∏r
j=1Wj)Λ

n
r (
∏r

j=1Wj)
T ||2F∑N

n=1

∑K
r=1 ||Θn||2F

.

In the figure 12, it can be seen that initially, the function value is low because the initial value is

an optimal value of W and Λ returned using the hSCP algorithm. As the adversarial attack begins,

the objective function value starts to fluctuate because of the minimax game, where the adversarial

perturbation tries to deviate the result from the optimal value. In defense, we try to minimize the

objective function. The algorithm converges when the optimal value becomes robust to perturbations.
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(a) k = 10 (b) k = 20

Figure 12: Convergence of Adv. hSCP algorithm using HCP dataset for different values of k.

Method 10 15 20 25

hSCP 0.749± 0.045 0.750± 0.046 0.712± 0.026 0.701± 0.019
Adv. hSCP 0.787± 0.052 0.765± 0.059 0.716± 0.020 0.721± 0.016
ICA 0.695± 0.067 0.638± 0.046 0.581± 0.039 0.523± 0.027
NMF 0.689± 0.038 0.657± 0.067 0.635± 0.053 0.629± 0.020
Adv. NMF 0.709± 0.073 0.659± 0.043 0.653± 0.026 0.633± 0.032

Table 11: Reproducibility on HCP dataset

3.3.3 Results from rsfMRI data

We compare components/factors derived from all the models with k1 ∈ {5, 10, 15, 20}. As the

ground truth is not known, we use split-sample reproducibility as a performance measure. We

first find the optimal value of λ1 from P × 10[−2:1] by dividing the data into three equal parts:

training, validation, and test data, and choosing the parameters corresponding to maximum mean

reproducibility over 20 runs on training and validation set. After the selecting the optimal parameter,

we compare results using training and test. Table 11 shows reproducibility calculated from training

and test data. It can be seen that the hSCP method can extract components with high reproducibility.

We have similar results presented in Table 12 for a two-level decomposition.

We extract 10 components at level 1, and 4 components at level 2 using Adv. hSCP learning from the

HCP dataset. Figure 13 shows two hierarchical components. Component 1 stores anti-correlation

information between Default Mode Network and Dorsal Attention Network previously studied using

seed-based correlation method (Fox et al., 2005). Component 2 stores anti-correlation between
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k1 = 10 k1 = 15 k1 = 20 k1 = 25

k2 = 4
hSCP 0.872± 0.044 0.853± 0.064 0.831± 0.075 0.826± 0.091
Adv. hSCP 0.895± 0.030 0.866± 0.029 0.848± 0.056 0.830± 0.061

k2 = 6
hSCP 0.856± 0.070 0.842± 0.062 0.828± 0.031 0.824± 0.035
Adv hSCP 0.877± 0.076 0.864± 0.067 0.843± 0.045 0.834± 0.048

Table 12: Reproducibility on HCP dataset with two level hierarchy

1 2

Figure 13: Hierarchical components estimated using Adv. hSCP. Red and blue color are used for
showing negative correlations between regions in a component.

Default Mode Network and extrastriate visual areas, which is another well-known finding (Uddin

et al., 2009). A more thorough discussion is needed for examining the differences and similarities

between the components derived from hSCP and Adv. hSCP, which we have left for future work.

3.4 Conclusion
In this chapter, we used adversarial learning to enhance the hSCP method by increasing the hierarchi-

cal components’ reproducibility. We formulate the problem as a bilevel optimization problem and

used adaptive gradient descent to solve it. Experimental results based on simulated data show that

Adv hSCP can extract components accurately compared to other methods. Results using real-world

rsfMRI data demonstrate the adversarial learning can improve the reproducibility of the components.

We also discuss the interpretability of the components extracted from the HCP dataset.

There are several applications of this work. Improved reproducibility of the components can increase

accuracy and confidence when applied to clinical applications such as age prediction, disease
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diagnosis, etc. Adversarial learning can be extended to other matrix factorization approaches used

for the analysis of fMRI data, such as dynamic sparse connectivity patterns (Cai et al., 2017), sparse

granger causality patterns (Sahoo et al., 2018), deep non-negative matrix factorization (Li et al.,

2018a), etc. It would be interesting to assess the impact of the method in characterizing activity in

terms of task-induced activations.
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CHAPTER 4

Robust Hierarchical Patterns in Multi-Site fMRI Studies

In the previous chapter, we saw an adversarial learning-based framework to improve the robustness

of the factors without knowing the type of noise in the dataset. In this chapter, we build an adversarial

learning-based model to reduce the variance introduced by pooling datasets from multiple sites and

use the previous chapter’s algorithm to estimate cleaner and robust patterns.

4.1 Introduction
Multi-site fMRI studies have gained a lot of interest over the last decade (Noble et al., 2017;

Di Martino et al., 2014). One reason for this is the necessity to evaluate a hypothesis in multiple

settings/sites and make the hypothesis result generalizable to a diverse population. Also, the pooling

of data is essential when studying rare disorders or neurological conditions where the aim is to

generalize the results to diverse populations (Dansereau et al., 2017; Keshavan et al., 2016). However,

the data pooling often results in the introduction of non-biological systematic variance due to

differences in scanner hardware and imaging acquisition parameters (Shinohara et al., 2017). This

additional variability can lead to spurious results and a decrease in statistical power. The variability

can also hinder in the estimation of true biological changes or in inferring non-biological differences

as biological because of the correlation between site effects and biological predictors. Many studies

working with multi-site data fMRI have reported considerable variability due site or scanner effects

(Abraham et al., 2017; Jovicich et al., 2016; Noble et al., 2017).

The non-biological variability introduced due to inter-scanner and inter-protocol variations can affect

the estimation of the common features derived from fMRI (Yu et al., 2018), such as functional

connectivity (Shinohara et al., 2017) or sparse hierarchical factors (this work). These features were

used for the study of the brain’s function during aging (Raichle, 2015), of various neurological

disorders (Fornito et al., 2016; Stam, 2014), and tasks (Cook et al., 2007). The non-biological
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variability can considerably reduce these features’ reproducibility across different datasets and hence

their utility as biomarkers for diseases that disrupt functional connectivity. Thus the removal of

non-biological variance introduced by pooling of the data is essential for many neuroimaging studies.

In this chapter, we focus on robust estimation of hSCPs in a multi-site regime.

One of the first investigations of batch effects in rs-fMRI was performed by Olivetti et al. (2012) using

extremely randomized trees along with dissimilarity representation. One of the common methods

to remove site effects is the harmonization of data. Harmonization of fMRI data especially derived

measures, is very nascent, even though it is much needed with the growing number of multi-site data

sets (Adhikari et al., 2019). Many existing methods to reduce site effects are based on an empirical

Bayes method ComBat (Johnson et al., 2007), which was developed to remove ‘batch effects’ in

genetics and has been applied for harmonizing different measures derived from structural (Pomponio

et al., 2020; Fortin et al., 2017) and functional MRI (Yu et al., 2018). However, ComBat and its

variants such as ComBat-GAM (Pomponio et al., 2020) can not be directly applied to connectivity

matrices since it can destroy the structure of the connectivity matrix and semi definiteness of the

connectivity matrix (more details in Section 4.2). A similar difficulty arises when applying ComBat

based harmonization to other structured data. Another approach is not to remove site effects, but

directly use site information for downstream analysis such as age prediction, finding associations

with various clinical variables, etc. Kia et al. (2020); Bayer et al. (2021) used normative modeling for

the age prediction task while keeping the site as one of the predictors. One limitation of the method

is that without removing the site effects, the biomarkers can not be used for downstream analysis by

the clinician, psychiatrist, etc., directly, which is one of the goals of the hSCP.

Recent work by Vega and Greiner (2018) analyzed the impact of covariate analysis, z-score normal-

ization, and whitening on batch effects. Domain adaption has also been introduced in removing

batch effects in rs-fMRI data. Domain adaption techniques aim to learn from multiple sources and

generalize the model to perform well on a new related target site. Extensive work has been done

on unsupervised domain adaptation approaches (Gholami et al., 2020; Zhao et al., 2019). Several

methods have been introduced for domain adaptation such as Multi-source Domain Adversarial Net-
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works (Zhao et al., 2018), Multi-Domain Matching Networks (Li et al., 2018b), Moment Matching

(Peng et al., 2019), etc. Readers can refer to the detailed survey by Zhao et al. (2020b). In multi-site

fMRI data, Wang et al. (2019) introduced a low-rank domain to remove batch effects. Other recent

approached include transport-based joint distribution alignment (Zhang et al., 2020a) and federated

learning (Li et al., 2020b) for fMRI data.

We develop a new model that is robust to site-effects in the estimation of sparse hierarchical

connectivity pattern components (rshSCP). For this, the method learns site-specific features and

global space, storing the information about the scanner and site, and uses these features to reduced

site effects in the components. We also use adversarial learning approach defined in the previous

chapter on top of our method to improve the reproducibility and generalizability of the components

across components from the same site. We formulate the method as a non-convex optimization

problem which is solved using stochastic gradient descent. Experiments on simulated and real

datasets show that our method can improve the split-sample and leave one site reproducibility of the

components while retaining age-related biological variability in the data, thus capturing informative

heterogeneity.

Outline: We start by reviewing hierarchial Sparse Connectivity Patterns (hSCPs) and adversarial

learning. Then, in Section 4.2, we present our method, extracting interpretable hSCPs which are

robust to site effects. In Section 4.4.1, we demonstrate the effectiveness of the method on simulated.

In Section 4.4.2, we show using a large multi-site dataset that the proposed method can extract more

reproducible and cleaner patterns compared to the standard approach.

4.2 Method

4.2.1 Recap

Let there be N number of subjects or participants, and each subject’s BOLD fMRI time series has T

time points and P nodes representing regions of interest. The input to hSCP are correlation matrices

Θn ∈ SP×P
++ where ith and jth element of the matrix is the correlation between time series of ith and
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jth node. hSCP then outputs a set of shared hierarchical patterns following the below equations:

Θn ≈W1Λ
n
1W

⊤
1 , . . . Θn ≈W1W2 . . .WKΛn

KW⊤
KW⊤

K−1 . . .W
⊤
1 ,

where Λn
k is a diagonal matrix having positive elements storing relative contribution of the compo-

nents for the nth subject at kth level, K is the depth of hierarchy and P > k1 > . . . > kK .

4.2.2 Can we use standard harmonization approaches?

These methods reduce site effects by adjusting for additive and multiplicative effects for each feature

in data separately and use emperical Bayes estimates the model parameters. These methods can be

used in the case of hSCP in two ways. First, harmonization can be directly applied to each element of

the correlation matrices, which is the input of hSCP. This will reduce site effects from each element

of the correlation matrix, thus from the complete input, but the final matrix that does not necessarily

follow the essential property of a correlation matrix i.e., positive definiteness. For similar reasons,

COMBAT can not be directly applied to time series; if applied, it can change the inference derived

from the correlation matrix. Second, harmonization can be directly applied to Λ to remove site

effects. To understand this, we look at the hSCP formulation at one level:

Θn ≈
k∑

l=1

dnl wlw
⊤
l ≈WΛnW⊤,

where dnl are non-zero elements storing the subject-specific information, which can be affected by

the variability introduced by the site. In this model, harmonizing each feature across different sites

will change the relative contribution of the components in each subject’s functional structure, which

is not desirable. Instead, a two step optimization procedure can be used to incorporate ComBat with

hSCP (ComBat hSCP). We first run hSCP and use ComBat on the extracted Λn to get harmonized

subject specific information ∆n ∈ Rk1×k1 for each subject. We then re-fitted W using the below

decomposition-

Θn ≈W(∆n + S)W⊤.
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We added a diagonal shift matrix S ∈ Rk1×k1 such that ∆n + S is positive for each subject and

performed the optimization to estimate W and S. We show through experiments that this baseline

two step optimization procedure is not optimal and performs worse than standard hSCP.

4.2.3 Robust to site hSCP

Estimating hSCPs in multi-site data can introduce non-biological variances in the components and the

subject-specific information. One of the typical approaches would be to use harmonization methods

mentioned previously, but it would lead to a loss in the structure of these features, which in turn will

lose interpretability. Instead of removing site effects after estimating the components, we jointly

model the sparse components and the site effects, and estimate robust to site hSCP (rshSCP). We

first look at the case when there is only one hierarchy level, which can then be extended to multiple

levels. Let there be total S sites, Is be the set storing the labels of subjects from the site s and

y ∈ RN×S be the one-hot encoded site labels. We hypothesize that there is a space V ∈ RP×P

storing site and scanner information for all the possible available data, and for each site s, we have

space Us ∈ RP×P storing site-specific information for s = 1, . . . , S. Based on the above hypothesis,

we decompose the correlation matrix Θn of n ∈ Is to jointly estimate the hSCPs, Us and V as:

Θn ≈ WΛnW⊤︸ ︷︷ ︸
decomposition of

subject components

+ UsV︸ ︷︷ ︸
decomposition of
site components

, (4.1)

where Us is constrained to be a diagonal matrix and L1 sparsity constraint is used for V to prevent

overfitting. In addition to estimating the site effects, we modify subject-specific information D such

that the predictive power to predict site is reduced, which can assist in removing site information.

There are two parts of this procedure. In the first part, we train a differentiable classification

model F (ζ,D) parameterized by ζ with input Λn that return site predictions ŷ ∈ RN×S . These

predictions indicate the probabilities that each of N inputs belongs to each of S site labels. The

classification model is trained by optimizing for ζ such that the cross-entropy loss L(ζ,D,y) between
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the predictions ŷ and the true site labels y is minimized:

ζ∗ = arg min
ζ
− 1

N

N∑
n=1

S∑
s=1

yn,s log ŷn,s. (4.2)

In the second part, using this classification model, we modify Λn such that its predictability power

reduces. We achieve this by maximizing the above loss with respect to D. This will result in a

minimax game, where the classifier learns to minimize the cross-entropy or the surrogate classification

loss, and D is adjusted to maximize the loss. The joint optimization problem can be written as:

max
ζ

min
W,D,U ,V

S∑
s=1

∑
n∈Is

∥Θn −WΛnW⊤ −UsV∥2F − γL(ζ,D,y)

s.t. W ∈ Ω, D ∈ Ψ, ∥vp∥1 < µ, p = 1, . . . , P,

(4.3)

where U = {Us|s = 1, . . . , S}, vp is the pth column of V,W = {Wr | r = 1, . . . ,K} be the set

storing sparse components shared across all subjects and D = {Λn
r | r = 1, . . . ,K;n = 1 . . . , N}

be set storing subject specific diagonal matrix with Λn
r ≥ 0.

4.2.4 Complete Model

We can combine the above formulation (4.3) at multi level with the adversarial learning (3.6) to

jointly model hSCPS and site effects. Let

G(W,D, C) =
S∑

s=1

∑
n∈Is

K∑
r=1

∥Θn − (
r∏

j=1

Wj)Λ
n
r (

r∏
n=1

Wn)
⊤ −Us

rVr∥2F , (4.4)

where C = {Θn | n = 1, . . . , N}, then the joint optimization problem can be written as:

max
ζ

min
W,D,U ,V

J(W̃,W,D, C) = G(W̃,D, C) + βG(W,D, C) + γL(ζ,D,y)

s.t. W̃r = argmin
Ŵr

α∥Ŵr −Wr∥2F +G(W̃,D,P) r = 1, . . . ,K

W̃r,Wr ∈ Ω D ∈ Ψ, ∥vp∥1 < µ, p = 1, . . . , P.

(4.5)
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The optimization problem defined above is a non-convex problem that we solve using alternating

minimization. Complete algorithm and the details about the optimization are described in Section

4.3. Note that the random initialization of the variables can result in a very different final solution

that might be far from the ground truth. One such solution for U and V would be the identity matrix

since all the correlation matrices have one as their diagonal element, which can drastically change

the final components. It might also be possible that V might store highly reproducible components

since they are present in most individuals, leading to a decrease in reproducibility of hSCPs. We

prevent these cases by using svd− initialization algorithm 2 forW and D defined in Subsection

2.3.5, where, in the starting, most of the variability associated with data is stored inW and D. In this

way, we can prevent V from storing highly reproducible components during initial iterations. We

initialize Us and V using the below equation:

Us
r =

 1

|Is|

∑
n∈Is

Θn − (

r∏
j=1

Wj)Λ
n
r (

r∏
n=1

Wn)
⊤

Jp

 ◦ Ip,
Vr =

1

P
JP .

(4.6)

This complete initialization procedure ensures that the algorithm starts with the majority of variability

in the data stored in W and D, and Us start from the residual variance left in site s after the

svd− initialization procedure. We show in the next sections that this simple strategy, though

sub-optimal, can help estimate reproducible components with diminished site effects.

4.3 Algorithm

4.3.1 Alternating Minimization

Algorithm 5 describes the complete alternating minimization procedure. W and D are initialized

using svd− initialization algorithm [Alogirthm 2] in Subsection 2.3.5, and U and V according to

the equation 4.6. proj1(W, τ) and proj2 operator are defined in Subsection 2.3.3 and proj3 operator

is used for projection onto L1 ball. We use AMSGrad (Reddi et al., 2019) denoted as descent in

the algorithm with gradients defined in the next section for performing gradient descent for all the
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Algorithm 5 rshSCP
1: Input: Data C, number of connectivity patterns k1, . . . , kK and sparsity τ1, . . . , τK at different

level, hyperparameters α, β, γ and µ.
2: InitializeW and D using svd− initialization
3: Initialize U and V using equation 4.6
4: repeat
5: for r = 1 to K do
6: if Starting criterion is met then
7: Update adversarial perturbations
8: Ŵr ← descent(Ŵr, α)
9: Wr ← descent(Wr)

10: if r == 1 then
11: Wr ← proj1(Wr, τr)
12: else
13: Wr ← proj2(Wr)

14: for n = 1, .., N do
15: Λn

r ← descent(Λn
r , β, γ)

16: Λn
r ← proj2(Λ

n
r )

17: for s = 1 to S do
18: Us ← descent(Us)

19: V← descent(V)
20: V← proj3(V, µ)
21: until Stopping criterion is reached
22: Output: W and D

variables. β1 and β2 are kept to be 0.9 and 0.999 in AMSGrad. We start adversarial training only

after the convergence of all the variables. We found that the algorithm uses 200 iterations to reach

convergence initially, as shown in Figure 15. The reason being that adversarial learning can start

from an optimal point on which it can improve upon if there is overfitting. When the adversarial

learning starts, first, the adversarial perturbations are generated by performing gradient descent on

Ŵr, and then the model parameters are updated using gradient descent. This process is repeated

until the convergence criteria is met.
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4.3.2 Gradient Calculations

In this section, we define gradients used for alternating gradient descent. Let

W̃0 = W0 = IP , Yr =

r∏
j=0

Wj , Ỹr =

r∏
j=0

W̃j ,

Tr
m,n = (

m−r∏
j=1

Wj)Λ
n
m−r(

m−r∏
j=1

Wj)
⊤, T̃r

m,n = (
m−r∏
j=1

W̃j)Λ
n
m−r(

m−r∏
j=1

W̃j)
⊤,

Xn
r = Θn −Us

rVr, Zn
r = Θn − (

r∏
j=1

Wj)Λ
n
r (

r∏
n=1

Wn)
⊤,

where n ∈ Is, Xn
r stores the information after removing site effects from Θn and Zn

r stores the

information after removing subject-wise and shared component information at the rth level. We first

define gradient for updating adversarial perturbations W̃r. The gradient of classifier loss with respect

to D is calculated using automatic differentiation provided by MATLAB. The objective function is

F = α∥Ŵr −Wr∥2F +H(W̃,D,P) and gradient with respect to W̃r will be

F

∂W̃r

= 2α(Ŵr −Wr) +
∂H(W̃,D, C)

∂W̃r

= 2α(Ŵr −Wr) +

N∑
n=1

K∑
j=r

(
−4Ỹ⊤

r−1Γ
nỸr−1W̃rT̃

r
j,n

+ 4Ỹ⊤
r−1Ỹr−1W̃rT̃

r
j,nW̃

⊤
r Ỹ

⊤
r−1Ỹr−1W̃rT̃

r
j,n

)
.

We now define gradients for updating model parameters. The gradient of objective function J with

respect to Λn
r is:

∂J

∂Λn
r

=
∂H(W̃,D, C)

∂Λn
r

+ β
∂H(W,D, C)

∂Λn
r

+ γ
∂L(ζ,D,y)

∂Λn
r

=
[
(−2Ỹ⊤

r X
n
r Ỹr + 2Ỹ⊤

r ỸrΛ
n
r Ỹ

⊤
r Ỹr) + β(−2Y⊤

r X
i
rYr + 2Y⊤

r YrΛ
i
rY

⊤
r Yr)

]
◦ Ikr + γF,
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where is F i.e ∂L(ζ,D,y)
∂Λi

r
is calcualted using automatic differentiation toolbox in MATLAB. The

gradient of J with respect to Wr is:

∂J

∂Wr
=

∂H(W,D, C)
∂Wr

=

N∑
n=1

K∑
j=r

−4Y⊤
r−1XnYr−1WrT

r
j,n + 4Y⊤

r−1Yr−1WrT
r
j,nW

⊤
r Y

⊤
r−1Yr−1WrT

r
j,n.

The gradient J with respect toUs and V are:

∂J

∂Us
=

(∑
n=Is

(Zn −UsV)V⊤

)
◦ Ip,

∂J

∂V
=

S∑
s=1

∑
n∈Is

Us (Zn −UsV) .

4.4 Experiments

4.4.1 Simulated Dataset

One level. We first generate simulated dataset at one level to evaluate the performance of our

model against the standard hSCP. We simulate data with p = 50, k1 = 10, S = 4 with 200, 300,

400 and 500 number of participants in each site. We generated sparse shared components W1 with

percentage of non-zeros equal to 60% and each element sampled from N (0, 1). We then generate

correlation matrix for nth subject belonging to sth site using:

Θn = (W1 +En
1 )Λ

n (W1 +En
2 )

⊤ +UsV +En
2 , (4.7)

where Us is a diagonal matrix with positive elements sampled from N (1, .1), V is a random matrix

sampled from wishart distribution, each element of Λn is sampled from N (4, 1) and En
1 is the noise

matrix added to the components whose each element is sampled from N (0, .1) and En
2 is added to
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Method k1 = 8 k1 = 10 k1 = 12 k1 = 14

hSCP 0.789 0.787 0.745 0.736
ComBat hSCP 0.763 0.759 0.731 0.718
Adv. hSCP 0.869 0.875 0.862 0.854
rshSCP 0.873 0.865 0.843 0.867
Adv. rshCP 0.903 0.910 0.902 0.908
rshSCP w/ rand. 0.856± 0.039 0.834± 0.055 0.824± 0.031 0.818± 0.036
Adv. rshSCP. w/ rand. 0.897± 0.030 0.895± 0.036 0.892± 0.023 0.886± 0.034

Table 13: Accuracy of the components on simulated dataset at one level.

ensure that the final matrix is positive definite. However the diagonal elements of Θn are not equal

to 1. To make them 1, we extract diagonal elements D of Θn and get the new correlation matrix as

D1/2ΘnD1/2. We used a feed-forward neural network for the classification model with two hidden

layers. The networks contain the following layers: a fully connected layer with 50 hidden unites,

dropout layer with rate 0.2, ReLU, a fully-connected layer with 4 hidden units and a softmax layer.

Optimal value of hyperparameters α, β, µ and τ1 are selected from [0.1, 1], [1, 5], [0.1, 0.5, 1] and

10[−2:2]. The criterion for choosing the best hyperparameter is maximum split-sample reproducibility.

The split sample reproducibility is the normalized inner product between the components estimated

on two random equal splits of the data. Split sample reproducibility tries to answer the question of

whether the components are generalizable across subjects from the same sites or not.

We compared different methods for estimation of hierarhical components- hSCP, ComBat hSCP,

hSCP with adversarial learning (Adv. hSCP), rshSCP, rshSCP with adversarial learning (Adv.

rshSCP), rshSCP and Adv. rshSCP with random initialization (rshSCP w/ rand. and Adv. rshSCP w/

rand.). Table 14 shows the reproducibility of the components generated from different methods. It is

computed over 15 runs in all the experiments. We used accuracy of the estimated components as a

performance measure. It is defined as the normalized inner product between ground truth components

and estimated components. All the experiments were run on a four i7-6700HQ CPU cores single

ubuntu machine.

Accuracy. Table 13 displays the accuracy of different methods on the simulated dataset. Here,

accuracy is defined as the average correlation between estimated components and the ground truth
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Method k1 = 8 k1 = 10 k1 = 12 k1 = 14

hSCP 0.769± 0.052 0.798± 0.047 0.739± 0.053 0.734± 0.047
ComBat hSCP 0.749± 0.040 0.750± 0.052 0.724± 0.049 0.719± 0.052
Adv. hSCP 0.781± 0.037 0.818± 0.031 0.780± 0.034 0.750± 0.031
rshSCP 0.825± 0.039 0.845± 0.030 0.826± 0.039 0.779± 0.036
Adv. rshSCP 0.840± 0.044 0.869± 0.034 0.815± 0.035 0.802± 0.030
rshSCP w/ rand. 0.804± 0.085 0.818± 0.086 0.780± 0.068 0.758± 0.071
Adv. rshSCP w/
rand.

0.826± 0.069 0.833± 0.081 0.801± 0.074 0.782± 0.077

Table 14: Split sample reproducbility on simulated dataset at one level.

µ k1 = 8 k1 = 10 k1 = 12 k1 = 14

0.1 0.799 0.756 0.761 0.782
0.5 0.873 0.865 0.843 0.867
1 0.801 0.789 0.767 0.754

Table 15: Change in accuracy of rshSCP with sparsity parameter (µ) of V on simulated dataset at
one level.

components. From the results, we can see that the rshSCP with adversarial learning can significantly

improve the components’ accuracy and the reproducibility of the components. The baseline (ComBat

hSCP) performs worse than standard hSCP. One reason for this might be that the harmonized Λ

extracted using ComBat might not necessarily result in optimal highly reproducible W. This result

bolsters our method that we need a joint optimization procedure to obtain W and Λ with reduced site

effects. The results using random initialization instead of using the initialization strategy mentioned in

the previous section indicates that random initialization brings significant variability to performance.

On average, it performs worse than our strategy, but there might be instances where the random

initialization can perform better, which might suggest that there might be some better strategy for

initialization. Also, for V, there is an optimal sparsity value, which achieves the best result. If V is

dense, then it might remove essential information that might reduce reproducibility, and if it is too

sparse, then we might not have desired effects to make the model robust. The results showing the

variation in the accuracy with the sparsity of V are in Table 15.

Site prediction. To check if the estimated subject information (Λ) has reduced predictive power to

predict the site to which the subject belonged, we performed a 5 fold cross-validation using SVM
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k2 = 4 k2 = 6

Method \ k1 8 10 12 14 8 10 12 14

hSCP 0.806 0.801 0.783 0.777 0.797 0.790 0.773 0.766
ComBat hSCP 0.788 0.776 0.743 0.729 0.779 0.766 0.747 0.734
Adv. hSCP 0.875 0.872 0.870 0.864 0.863 0.859 0.849 0.851
rshSCP 0.881 0.876 0.860 0.862 0.874 0.871 0.852 0.859
Adv. rshSCP 0.904 0.909 0.904 0.907 0.902 0.903 0.904 0.902

Table 16: Accuracy of the components on hierarchical simulated dataset.

with RBF kernel. We also ran our experiment using two different feed forward networks with two

different architectures:

1. a fully connected layer with 50 hidden units, dropout layer with the rate 0.2, ReLU, a fully-

connected layer with 4 hidden units and a softmax layer and

2. a fully connected layer with 50 hidden units, dropout layer with the rate 0.2, ReLU, a fully-

connected layer with 20 hidden units, dropout layer with rate 0.2, ReLU, a fully-connected

layer with 4 hidden units and a softmax layer.

Our model leads to a decrease in average cross-validation accuracy from 97.6% to 67% for SVM,

98.1% to 67.3% for neural network with architecture 1 and 98.2% to 66.9% for neural network with

architecture 2. This suggests that our model can reduce the prediction capability to predict site.

Two level. Under the same settings as defined above, we generate correlation matrix from two level

components with k2 = 4 using:

Θn = W̃1W̃2Λ
nW̃⊤

2 W̃
⊤
1 +UsV +En

3 ,

W̃1 = W1E
n
1 , W̃2 = W2 +En

2 ,

(4.8)

where each element of W2 is sampled from N (0, 1), the percentage of non-zeros equal to 40%, En
1

and En
2 is the noise added to the components whose each element is sampled from N (0, .1) and En

3

is added to ensure that the final matrix is positive definite. Table 16 shows the accuracy for different

values of k1 and k2. Selection of hyparameter is same as in the previous paragraph. We can see that

58



Method k1 = 8 k1 = 10 k1 = 12 k1 = 14

hSCP 97.3± 0.3 98.1± 0.4 97.1± 0.3 97.9± 0.2
Adv. rshSCP 65.5± 0.6 67.2± 0.5 67.5± 0.5 68.1± 0.7

Table 17: 5 fold cross validation accuracy (%) on simulated dataset at one level.

Method k1 = 8 k1 = 10 k1 = 12 k1 = 14

hSCP 0.801± 0.037 0.805± 0.042 0.787± 0.041 0.772± 0.037
ComBat hSCP 0.776± 0.041 0.756± 0.044 0.753± 0.045 0.745± 0.038
Adv. hSCP 0.808± 0.036 0.824± 0.034 0.799± 0.030 0.783± 0.038
rshSCP 0.850± 0.037 0.853± 0.031 0.839± 0.035 0.805± 0.034
Adv. rshSCP 0.852± 0.036 0.861± 0.038 0.842± 0.043 0.813± 0.035

Table 18: Reproducbility on simulated dataset (k2 = 4).

Method k1 = 8 k1 = 10 k1 = 12 k1 = 14

hSCP 0.786± 0.041 0.801± 0.039 0.771± 0.042 0.769± 0.038
ComBat hSCP 0.779± 0.044 0.770± 0.041 0.742± 0.040 0.734± 0.045
Adv. hSCP 0.793± 0.036 0.828± 0.038 0.789± 0.035 0.762± 0.036
rshSCP 0.833± 0.038 0.846± 0.031 0.831± 0.032 0.795± 0.034
Adv. rshSCP 0.841± 0.039 0.851± 0.035 0.835± 0.033 0.808± 0.039

Table 19: Reproducbility on simulated dataset (k2 = 6).

the proposed method estimates most accurate ground truth components.

4.4.2 Real Dataset

Data

We collected functional MRI data from 5 different multi-center imaging studies- 1) Baltimore

Longitudinal Study of Aging (BLSA) (Armstrong et al., 2019; Resnick et al., 2003), the Coronary

Artery Risk Development in Young Adults study (CARDIA) (Friedman et al., 1988), UK BioBank

(UKBB) (Sudlow et al., 2015), Open access series of imaging studies (OASIS) (Marcus et al., 2007)

and Aging Brain Cohort Study (ABC) from Penn Memory Center (Pluta et al., 2012). Although

UK Biobank has more than 20000 scans, we only used 2023 randomly selected scans to avoid

estimating the results that would be heavily influenced by the UK Biobank. We projected the data

into a lower-dimensional space such that the number of nodes in each subject’s data was 100. Table
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Figure 14: Violin plot of age for different sites.

Data Sites Participants % of Females Age Range (Median) Scanner
BLSA-3T 784 56.5 [22, 95](68) 3T Philips
CARDIA1 199 55.7 [42, 61](52) 3T Siemens Tim Trio
CARDIA2 321 51.4 [43, 61](52) 3T Philips Achieva
CARDIA3 278 55.3 [43, 62](52) 3T Philips Achieva
UKBB 2023 55.2 [45, 79](63) 3T Siemens Skyra
OASIS 847 56.0 [42.6, 97](70) 1.5T Siemens Vision
ABC 279 59.1 [23, 95](70) 3T Siemens Tim Trio

Table 20: Summary characteristics of the real dataset.

20 summarizes the number of participants in each site and age distribution. CARDIA data is divided

into three parts because of the acquisition at three different sites.

Data Preprocessing

The pooled dataset included scans of participants with absence of any known diagnosis of a neurologi-

cal or psychiatric disorder. FMRIB Software (Jenkinson et al., 2012) is used for initial pre-processing

as a part of the UK Biobank pipeline. The steps included the removal of the first five volumes, head

movement correction using FSL’s MCFLIRT (Jenkinson et al., 2012), global 4D mean intensity

normalization, and temporal high-pass filtering (> 0.01 Hz).

After standard pre-processing steps, we applied FIX (FMRIB’s ICA-based Xnoiseifier) (Salimi-

Khorshidi et al., 2014; Griffanti et al., 2014) to remove structured artefacts. In the next step, functional

images were co-registered to T1 using FLIRT with BBR as the cost function, and T1-weighted images
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(a) k1 = 10, k2 = 4 (b) k1 = 10, k2 = 6

Figure 15: Convergence of rshSCP algorithm using the complete dataset for different values of k2.

were registered to the MNI152 template using FSL’s FNIRT (non-linear registration). We projected

the data into a lower-dimensional space by extracting a set of group Independent Components (Smith

et al., 2014) having dimension 100 from individual subjects. These ICA maps can be considered

“parcellations” but contain a continuous range of values and not binary masks. For a given IC map,

the group IC spatial maps were mapped onto each subject’s resting fMRI time series to derive one

representative time series per IC component using Group Information Guided ICA(GIGICA) (Du

and Fan, 2013). Metrics used for quality control are defined in Appendix B.

Convergence results We empirically validate the convergence of Algorithm 5 using the reconstruc-

tion error:

∑S
s=1

∑
n∈Is

∑K
r=1 ||Θn − (

∏r
j=1Wj)Λ

n
r (
∏r

j=1Wj)
⊤ −UsV||2F∑N

n=1

∑K
r=1 ||Θn||2F

.

Figure 15 shows the convergence of the algorithm on the complete dataset. In the figure, for the

first 200 iterations, the algorithm converges without the adversarial perturbations. As the adversarial

perturbations are introduced, the loss starts to oscillate where the adversarial perturbations force the

algorithm to deviate from the optimal value. In defense, we minimize the objective function until

convergence is reached.

Reproducibility. Since we don’t have access to ground truth here, we compare the methods based

on the split sample and leave one site reproducibility. Leave one site out reproducibility is defined

as the similarity between components derived from the site s and all sites except s. Split sample
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Method k1 = 10 k1 = 15 k1 = 20 k1 = 25

hSCP 0.713± 0.039 0.707± 0.038 0.697± 0.035 0.683± 0.036
ComBat hSCP 0.673± 0.049 0.641± 0.051 0.639± 0.031 0.611± 0.038
Adv. hSCP 0.737± 0.041 0.719± 0.033 0.715± 0.037 0.710± 0.043
rshSCP 0.806± 0.036 0.768± 0.032 0.742± 0.033 0.743± 0.044
Adv. rshSCP 0.808± 0.030 0.772± 0.036 0.747± 0.034 0.746± 0.036

Table 21: Split-sample reproducbility on real dataset (k2 = 4).

Method k1 = 10 k1 = 15 k1 = 20 k1 = 25

hSCP 0.652± 0.038 0.618± 0.041 0.592± 0.033 0.571± 0.035
ComBat hSCP 0.614± 0.042 0.594± 0.035 0.542± 0.041 0.528± 0.039
Adv. hSCP 0.656± 0.035 0.629± 0.039 0.601± 0.035 0.584± 0.034
rshSCP 0.712± 0.034 0.701± 0.036 0.676± 0.038 0.665± 0.034
Adv. rshSCP 0.716± 0.032 0.709± 0.031 0.688± 0.034 0.671± 0.033

Table 22: Leave one site out reproducbility on real dataset(k2 = 4).

reproducibility tries to answer the question of whether the components are generalizable to other

sites or not. For estimating rshSCP with only one site, we used V estimated from all sites except

s since the idea behind V was to store information about the site/scanner from various sites. This

would also help analyze the generalization power of V. The optimum value of the hyperparameters

is selected from the range defined in Subsection 4.4.1. τ1 and τ2 are selected from 10[−2:2] based on

maximum split-sample reproducibility. The criterion for choosing the best value is the maximum

split sample reproducibility. Table 21 shows the split sample reproducibility for varied values of k1

and k2 = 4. Leave one site out reproducibility results are shown in Table 22. Table 23 and Table 24

shows split sample reproducibility and leave one site out reproducibility respectively at two-level for

k2 = 6. The results demonstrate that the proposed method can significantly improve the split sample

reproducibility and leave one site out reproducibility. For the remaining chapter, we focus on the

comparison between components learned using adversarial learning from hSCP and Adv. rshSCP.

Site prediction. We performed the same experiment under the same settings as mentioned in the

previous section to check Λ has reduced predictive power to predict the site. Using SVM, our model

leads to a decrease in average cross-validation accuracy from 51% to 32%. Using the first neural

network architecture defined in Subsection 4.4.1, the cross-validation accuracy for hSCP model is

62



Method k1 = 10 k1 = 15 k1 = 20 k1 = 25

hSCP 0.691± 0.034 0.688± 0.034 0.677± 0.029 0.668± 0.032
ComBat hSCP 0.670± 0.026 0.664± 0.028 0.635± 0.030 0.626± 0.028
Adv. hSCP 0.701± 0.026 0.696± 0.029 0.681± 0.028 0.679± 0.031
rshSCP 0.776± 0.027 0.748± 0.029 0.722± 0.032 0.721± 0.024
Adv. rshSCP 0.779± 0.029 0.751± 0.026 0.731± 0.027 0.732± 0.025

Table 23: Split-sample reproducbility on real dataset (k2 = 6).

Method k1 = 10 k1 = 15 k1 = 20 k1 = 25

hSCP 0.637± 0.035 0.600± 0.036 0.578± 0.031 0.560± 0.034
ComBat hSCP 0.618± 0.037 0.589± 0.033 0.543± 0.035 0.521± 0.032
Adv. hSCP 0.642± 0.028 0.608± 0.021 0.585± 0.023 0.572± 0.019
rshSCP 0.701± 0.032 0.691± 0.034 0.668± 0.031 0.659± 0.029
Adv. rshSCP 0.703± 0.033 0.695± 0.035 0.672± 0.030 0.666± 0.031

Table 24: Leave one site out reproducbility on real dataset(k2 = 6).

Method k1 = 10 k1 = 15 k1 = 20 k1 = 25

hSCP 6.490± 1.485 6.468± 1.442 6.425± 1.412 6.414± 1.417
Adv. rshSCP 6.494± 1.501 6.467± 1.475 6.432± 1.483 6.409± 1.470

Table 25: Mean absolute error (k2 = 4)

59.3% and for the rshSCP is 33.6%. Using the second architecture, the cross-validation accuracy

for hSCP model is 58.7% and for the rshSCP is 33.4%. This suggests that our model can reduce the

prediction capability to predict site.

Age prediction. We used subject specific information (Λ) having total k1 + k2 features from the

two layers to predict age of each subject. We used Bootstrap-aggregated (bagged) decision trees

to perform regression with 400 trees for each site separately. Table 25 and 26 shows the average

and standard deviation of 10 fold cross validation mean absolute error (MAE) across site for varied

values of k1 and k2 = 4, 6. We decided to perform age prediction of each site separately because

the age is confounded by the site. The correlation between age and site is 0.24 and reduction in

site effects would reduce the prediction capability in the pooled setting. From the table, we can see

that the proposed method has comparable performance as the hSCP suggesting that it preserves age

related biological variance.
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Method k1 = 10 k1 = 15 k1 = 20 k1 = 25

hSCP 6.472± 1.417 6.440± 1.470 6.418± 1.484 6.401± 1.478
Adv. rshSCP 6.475± 1.250 6.439± 1.411 6.421± 1.454 6.403± 1.474

Table 26: Mean absolute error (k2 = 6)

1 2 3 4 5 6 7 8 9 10

a
ρ 0.07 0.0 0.09 −0.12 −0.02 −0.07 −0.15 −0.04 −0.06 0.02

− ln(p) 9.28 0.27 15.0 35.3 1.57 9.32 33.3 3.10 5.98 1.27

b
ρ 0.05 −0.02 0.11 −0.07 −0.13 −0.05 −0.03 0.0 −0.02 0.02

− ln(p) 5.29 0.96 20.0 8.77 28.6 5.27 2.46 0.16 1.67 1.44

Table 27: Spearman correlation (ρ) and p-value of age (> 60) with Λ1 computed from hSCP (a) and
Adv. rshSCP (b).

4.4.3 Analysis of components

A robust method should be able to reduce non-biological variability caused by site and scanner while

retaining biological variability. In this study, we look at brain aging-related associations and leave

analysis with other variables for future work. We also discuss the difference between the components

with and reduced site effects. We selected the subjects with age greater than 60 to find an association

between brain aging and the components derived from hSCP and rshSCP. We computed spearman

correlation of age (> 60) with Λ1 and Λ2. We then calculated p-values for the hypothesis test of no

correlation against the alternative hypothesis of a nonzero correlation and are converted to − ln(p),

where ln is log base 2. Table 27 and 28 displays spearman correlation and negative log p-value.

The total number of subjects with age greater than 60 is 2746. In the case of negative log base 2, if

the value is greater than 2.99 then we consider it statistically significant, equivalent to p-value less

than 0.05. We derived 10 fine-scale (1− 10) and 4 coarse-scale components (I-IV) because of the

high split sample reproducibility and easier interpretation of each component. The correlation and

p-values are displayed in Table 27 and 28 for the hSCP and rshSCP.

We first compare components from the two methods. Figure 16 shows the components derived

from hSCP and the proposed method. Red and blue regions are anti-correlated with each other

but are correlated among themselves. The colors are not associated with negative or positive
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I II III IV

hSCP
ρ 0.02 −0.04 −0.08 −0.13

− ln(p) 1.69 3.68 9.83 24.7

Adv. rshSCP
ρ 0.05 −0.05 −0.06 −0.09

− ln(p) 4.95 5.34 6.98 13.8

Table 28: Spearman correlation (ρ) and p-value of age (> 60) with Λ2 computed from hSCP and
Adv. rshSCP.

correlation since they can be swapped without affecting the final inference. The first row of the figure

displays the components with anti-correlation between Default Mode Network (DMN) and Dorsal

Attention Network (DAN). The component derived using hSCP has a part of the visual area positively

associated with DMN, but the opposite is true, as shown by the previous sparse connectivity patterns

(Eavani et al., 2015a). On the other hand, the component with reduced site effects is cleaner since it

does not include that relation. This component has a negative correlation with age which has been

previously shown in resting-state fMRI and task-based fMRI (Spreng et al., 2016). The magnitude of

anti-correlation has been connected to individual differences in task performances in healthy young

adults (Keller et al., 2015). However, in the case of older adults, the behavioral implications of

reduced anti-correlation remain unclear. The second row of the Figure 16 displays another set of

components for comparison. The components stores information about the anti-correlation between

DMN and sensorimotor, which aligns with the previous literature (Karahanoğlu and Van De Ville,

2015). But the addition of a positive correlation of DMN with visual areas will cause misleading

inference since it contradicts the previous SCPs and studies. Hence making an inference without

removing the site effects can be misleading.

Figure 17 displays one of the hierarchical components with coarse-scale component storing relation

between different fine-scale components comprising DMN, sensorimotor, and visual areas, previously

studied by (Karahanoğlu and Van De Ville, 2015). These findings give evidence that even after

removal site effects, the components can have a meaningful interpretation. The results indicate that

our approach can extract robust informative patterns without using traditional seed-based methods

that are dependent on the knowledge of the seed region of interest.
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(a) Component 5 : ρ = −0.02, − ln(p) = 1.57 (b) Component 5 : ρ = −0.13, − ln(p) = 28.6

(c) Component 6 : ρ = −0.07, − ln(p) = 9.32 (d) Component 6 : ρ = −0.05, − ln(p) = 5.27

Figure 16: Left column ((a) & (c)) displays the components estimated using hSCP and right column
((b) & (d)) displays the components estimated using rshSCP.

II

2 7

Figure 17: One of the hierarchical components derived from rshSCP comprising of component 2 and
7 at fine scale and component II at coarse scale.

Between-network connectivity in aging. In this part, we discuss related work on changes in

between-network connectivity in older adults and connection to our results. Geerligs et al. (2014)

published one of the earliest studies on changes in between-network connectivity in older adults

using seed-based analysis while participants performed an oddball task. They observed stronger

connectivity (or weaker anticorrelations) between distinct functional networks. For example, they

found age-related connectivity increases between the DMN, and the somatosensory and the CEN,

which aligns with the results of current work. Several other studies reported similar results using

different approaches (Ferreira et al., 2016; Geerligs et al., 2015). The DAN and DMN appear to show

strong anticorrelations due to their presence in externally directed and internally directed cognition.

Spreng et al. (2016) used both resting and task data to show a decrease in anticorrelations between
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(a) Component 7 : ρ = −0.03, − ln(p) = 2.46 (b) Component 4 :ρ = −0.07, − ln(p) = 8.77

Figure 18: (a) Anticorrelation between Default Mode Network (DMN) and Salience Network (SN)
and (b) Anticorrelation between Default Mode Network (DMN) and Central Executive Network
(CEN).

these networks in older compared to younger.

The increase in connectivity between different networks can be thought of as a decrease in the

segregation of networks. Previous studies have indicated that this decrease in segregation causes a

reduction in the specialization of specialized networks, affecting information processing of the human

brain (Schaie and Willis, 2021). Grady et al. (2016) analyzed the connections between DMN, DAN

and CEN networks and observed a lower index of segregation in older as compared to young. Our

results also indicate a decrease in anticorrelation between various networks, which can be thought of

decrease in the segregation of networks, resulting in reorganization of the human brain in old age.

From the results, we can see that there is an increase (or decrease in anti-correlation) in connectivity

between different networks in the aging brain. This suggests that there is a reorganization of the

aging brain aligning with the previous findings (Damoiseaux, 2017). This can serve as a base to

explore rshSCP as a biomarker of neurodegenerative diseases.

4.5 Conclusion
In this work, we have presented a method for estimating site effects in hSCP. We formulated the

problem as a minimax non-convex optimization problem and solved it using AMSgrad. We also

propose a simple initialization procedure to make the optimization procedure deterministic and

improve the performance on an average on a simulated and real dataset. Experimentally, using a

simulated dataset, we showed that our method accurately estimates the ground truth compared to the

standard method with better reproducibility. On the real dataset, we show that the proposed method

can capture components with a better split sample and leave one site out reproducibility without
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losing biological interpretability and information. We also show that without removal of site effects,

we can have a noisy estimate of sparse components resulting in misleading downstream analysis.

Below we mention some directions for future research. First, it would be interesting to consider

the framework for the analysis of task-induced activity to investigate the extent of site effect and

corrections on underlying networks activated by the task. Second, one could look at the changes

in the associations of hSCPs with various clinical variables such as Mini-mental score, Digit Span

Forward score, etc., after removing site effects. Third, we can also look low-dimensional modeling

of V along with sparse constraints which has been used several robust matrix factorization problems.

Since we have only shown age related biological preservation, future studies will focus on whether

the proposed method preserves components associated with other demographic, clinical phenotypes,

and pathological biomarkers.

There are few weaknesses of our proposed model, which also adds directions for future work. First,

our method only captures linear site effects, it would be interesting to see if explicitly capturing non-

linear site effects can improve the performance of the model. Second, the result of the optimization

algorithm depends on the initialization procedure, which has been shown to perform well on the

simulated dataset and real dataset but can be sub-optimal.
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CHAPTER 5

Robust Hierarchical Patterns for identifying MDD patients

The previous chapters combined an adversarial learning framework with matrix factorization to

develop a robust to site model to estimate hierarchical sparse patterns. In this chapter, we extend

the above method to reduce the effects of age, sex and site, and capture robust human brain patterns

characterizing Major Depressive Disorder (MDD).

5.1 Introduction
Resting-State functional Magnetic Resonance Imaging (rs-fMRI) is a method of fMRI that can

capture patterns of co-activation in the human brain when there is no explicit task performed. These

patterns are believed to demonstrate the intrinsic communication between different brain regions (Fox

and Raichle, 2007). Consequently, rs-fMRI has been used to characterize neuropsychiatric disorders

such as Autism Spectrum Disorder (ASD) (Minshew and Keller, 2010; Heinsfeld et al., 2018;

Wolfers et al., 2019), Attention Deficit Hyperactivity Disorder (ADHD) (Bush et al., 2005; Wang

et al., 2018; Riaz et al., 2020), anxiety (ANX) (Frick et al., 2014; Liu et al., 2015) and schizophrenia

(Niznikiewicz et al., 2003; Rozycki et al., 2018; Yassin et al., 2020). However, researchers have

faced challenges to reliably predict clinical manifestations in patients due to the high dimensionality

of the data, and inter-patient variability (Benkarim et al., 2021). In addition, biomarkers learned from

small and homogenous datasets often result in poor generalization to new or future cohorts, thus

posing an issue of replicability of brain patterns valuable for prediction.

Several open-access neuroimaging data-sharing initiatives have been introduced to improve gen-

eralizability and replicability of brain patterns and evaluate a hypothesis in multiple sites/settings

(Alexander et al., 2017; Biswal et al., 2010; Casey et al., 2018; Di Martino et al., 2017). In these

initiatives, data is pooled from multiple sites to capture demographically diverse populations therefore

building heterogeneous datasets that are more likely to reflect the wider population. Surprisingly,
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multi-site studies based on supervised/unsupervised approaches have shown lower classification

performance and poor generalization to data from new cohorts compared to single-site studies

(Nielsen et al., 2013; Arbabshirani et al., 2017; Munafò et al., 2017; Nosek and Errington, 2017;

Dinga et al., 2019; He et al., 2020). Analyzing data from these initiatives poses an inherent chal-

lenge due to variability introduced from the diverging backgrounds of the subjects and from site

differences in MRI scanner hardware and software (Kostro et al., 2014; Shinohara et al., 2017; Noble

et al., 2017). The non-biological variability introduced due to pooling of the data can affect the

biomarkers or common features extracted from fMRI data (Yu et al., 2018), these include functional

connectivity (Shinohara et al., 2017) and sparse hierarchical factors (Sahoo and Davatzikos, 2021).

The non-biological variability can lead to decreased statistical power, spurious results and difficulty

in identifying robust biomarkers depending on the task. In addition, the correlation between site

effects and biological predictors can lead to an incorrect inference of non-biological differences

as biological. Thus, many neuroimaging studies need to develop robust models that remove the

non-biological variance and extract biologically relevant information.

This work focuses on extracting functional network-based biomarkers of Major Depressive Disorder

(MDD) in a multi-site study. MDD is one of the most widespread psychiatric disorders characterized

by persistent sadness, depressed mood, low self-esteem, sleep disturbances, emotional changes,

and loss of interest in pleasurable activities, causing disruptions to daily life (Belmaker and Agam,

2008). In addition, MDD causes more than 800, 000 deaths each year globally and is also the leading

cause of disability (Otte et al., 2016). Understanding the mechanism of MDD is crucial for effective

diagnosis, treatment and prevention, and understanding the functioning of the human brain in a

depressive state compared to a healthy one. Considering the breadth of symptoms of this disease,

it follows that disruptions within and across multiple brains systems and networks must be at play.

Indeed, much work has been done to understand the functional brain changes associated with MDD.

However, much remains unknown about the pathophysiology of the disease and the rates of relapse

and recurrence remain high (Mueller et al., 1999; Kessler, 2012).

Previous studies have shown that MDD is associated with disruptions in regional functional connec-
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tivity and abnormal functional integration of distributed brain regions (Greicius et al., 2007; Liu et al.,

2013; Wu et al., 2011; Zhu et al., 2012). More recent approaches using seed-based connectivity,

independent component analyses, network homogeneity and graph theory for functional connectivity

analyses have revealed similar findings- disruptions in functional networks and in between functional

networks across specific region pairs in MDD. The brain networks exhibiting abnormal interactions

in MDD include the Default Mode Network (awareness of internal states), Dorsal Attention Net-

work (external awareness), Fronto-Parietal Network (top-down regulation of attention and emotion),

Salient Network (salient events) and Affective Network (emotion processing) (Ye et al., 2015; Kaiser

et al., 2015; Yan et al., 2019; Mulders et al., 2015; Iwabuchi et al., 2015; Brakowski et al., 2017).

Many efforts have been made to build functional connectivity-based predictive models for identifying

network-based biomarkers of depression (Craddock et al., 2009; Zeng et al., 2012; Bhaumik et al.,

2017; Rosa et al., 2015; Zhao et al., 2020a). Majority of studies are based on multivariate pattern

analysis of functional connectivity and have faced challenges generalizing to new site. For instance,

Drysdale et al. (2017) created biomarkers from brain networks used in SVM model that achieved

more than 82% accuracy from 109 patients from the sites present in the training set and 68.8%

accuracy from 16 patients from an independent site. More recently, Yamashita et al. (2021, 2020)

used the ComBat harmonization method Johnson et al. (2007); Fortin et al. (2018); Yu et al. (2018) to

correct site differences in functional connectivity, but applying ComBat to the functional connectivity

matrix destroys its essential property of positive semi-definiteness.

This chapter is aimed to identify the hSCP biomarkers of MDD while reducing the effects of diversity

(age, sex, site) common to large pooled datasets. Our work builds on the hSCP model by using

the discriminative nature of the subject-specific weights extracted from hSCPs to classify MDD

via logistic regression in a large multi-site study. A similar generative-discriminative approach

has been used to classify young adults vs. children (Eavani et al., 2014) based on sparse patterns.

More recently, D’Souza et al. (2020) used sparse patterns based generative-discriminative model

to predict clinically relevant networks characteristic of Autism Spectrum Disorder. To tackle the

variability introduced due to pooling of the datasets, we use robust to site hSCP (rshSCP) presented

in the previous. The method can capture robust sparse human brain patterns while reducing the site
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effects improving the generalizability and reproducibility, and capturing aging related patterns. The

rshSCP method captures linear site effects and uses adversarial learning to reduce site effects in the

subject-specific coefficients. We extend robust to site hSCP and introduce discriminative rshSCP

(dis-rshSCP) to extract homogeneous components discriminative of MDD by reducing heterogeneity

introduced due to covariates (age, sex and site), which are known to affect neuroimaging analysis

(Alfaro-Almagro et al., 2021; Duncan and Northoff, 2013). Experiments on real datasets show

that reducing heterogeneity can improve the split-sample and leave one site predictability power of

the components while retaining the reproducibility of the components, thus capturing informative

heterogeneity. The classification performance on unseen data indicates the generalizability of the

model. Our results demonstrate that MDD is associated with increased and decreased representation

in patterns associated with various functional networks. The results demonstrate our framework’s

potential in identifying patient-predictive biomarkers of a MDD.

Outline: We start by presenting our method to extract interpretable hSCPs which are predictive of

MDD and are robust to covariates (age, sex and site) in Section 5.2. In Section 5.5, we demonstrate

that our method could extract hSCPs with high reproducibility and prediction power on a large

multi-site dataset. This is followed by a discussion on the interpretability of the extracted patterns,

limitations and future work.

5.2 Method
Problem Setup: The fMRI data of the ith subject having P regions and T time points is denoted

by Xi ∈ RP×T with total N number of subjects or participants. Let Θi ∈ SP×P
++ be the correlation

matrix where Θi
m,o stores the correlation between time series of mth and oth node. hSCP then

outputs a set of shared hierarchical patterns following the below equations:

Θn ≈W1Λ
n
1W

⊤
1 , . . . Θn ≈W1W2 . . .WKΛn

KW⊤
KW⊤

K−1 . . .W
⊤
1 ,

where Λn
k is a diagonal matrix having positive elements storing relative contribution of the com-

ponents for the nth subject at kth level, K is the depth of hierarchy and P > k1 > . . . > kK .
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Figure 19: A joint two level modeling for connectivity analysis and prediction. First part is functional
data representation depicted in blue box. Here the correlation matrices are decomposed into shared
components stored in a basis matrix and subject specific information. We learn this decomposition in
a robust manner to reduce variability due to site and demographics. To visualize each component, a
column of basis matrix is projected onto the brain. Second part is the prediction of MDD patients
depicted in green box.

Let W = {Wr | r = 1, . . . ,K} be the set storing sparse components shared across all subjects

and D = {Λn
r | r = 1, . . . ,K;n = 1 . . . , N} be set storing subject specific diagonal matrix with

Λn
r ≥ 0. Let there be total S sites in the multi-site data and Is be the set storing subjects from site

s. Let ysite ∈ RN×S be site labels encoded in one-hot manner, and yage ∈ RN , ysex ∈ RN and

ymdd ∈ RN be the vectors storing information about age, sex and MDD label. We aim to extract

set of hierarchical patterns representative of depression using fMRI data with reduced variability

introduced due to age, sex and site.

A graphical summary of our model is presented in Fig. 19. The two inputs to our model are the

rs-fMRI correlation matrices (upper left) and the binary scores depicting if a person is healthy or has

MDD (lower right). The correlation matrices are constructed from the time series data describing the

similarity using Pearson’s Correlation Coefficient between various nodes of the human brain. The

blue box in Fig 19 indicates the generative model estimating the components. Here, we decompose

correlation matrices into a set of components capturing co-activation patterns common across the
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entire cohort and subject-specific information capturing heterogeneity in the data representing the

strength of each component in each individual. We capture this information while reducing the

effects of demographics and site to improve the generalizability of the components and predictability

of the subject-specific information. The green box indicates the discriminative model guiding

the components to represent MDD. Here, we leverage the information from the subject-specific

coefficients to predict MDD via a classification model for each individual. f() takes subject-specific

information and a set of weights as input and maps it to a binary value representing 1 and 0 for MDD

and healthy subjects.

5.2.1 Robust to covariates hSCP

In the previous chapter, we saw that how site and scanner effects can be stored using U and V. In

this chapter, in addition to reducing site effects, we also reduce variability due to age and sex. For

this, we train a joint model F (ζ,D) parameterized by ζ with input Λn that return age ŷage ∈ RN ,

sex ŷsex ∈ RN and site ŷsite ∈ RN×S predictions. The model is trained by optimizing for ζ such

that the below loss function L1(ζ,D,ysite,yage,ysex) is minimized:

L1 = ∥ŷage − yage∥22︸ ︷︷ ︸
preserve age
information

−
S∑

s=1

N∑
n=1

yn,ssite log ŷ
n,s
site︸ ︷︷ ︸

preserve site
information

−
N∑

n=1

(ynsex log ŷ
n
sex + (1− ynsex) log(1− ŷnsex))︸ ︷︷ ︸

preserve sex
information

.

(5.1)

Let ζ∗ = arg min
ζ

L1 be optimum value which minimizes L1. The above problem is the Multi-task

learning (MTL) Caruana (1997); Zhang and Yang (2017) problem to learn multiple correlated tasks

at the same time. This formulation helps improve the performance of each and reduces the need to

introduce multiple models to solve individual tasks. We use the direct sum approach to combine

different objectives, a common approach in multi-task learning. We directly minimize the sum of

training losses of different tasks and additional constraints. Network architecture is based on the

hard parameter sharing strategy in MTL. In this strategy, parameters are shared by the bottom layers

among all tasks, while top layers are selected to be task-specific, helping with robustness against

overfitting Ruder (2017). It is a commonly used method for designing deep learning models in the

literature Long et al. (2017); Ruder et al. (2019); Sener and Koltun (2018). Figure 20 shows MTL
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Figure 20: Multi task learning framework

framework used in our problem. The shared layers contain the following layers: a fully connected

layer with 20 hidden units, dropout layer with rate 0.2, ReLU, a fully-connected layer with 10 hidden

units. Below are the layer detail for each task-

• Age prediction (Task 1)- A fully connected layer with 10 hidden units, ReLU, one output unit

• Site prediction (Task 2)- A fully connected layer with 10 hidden units, ReLU, a softmax layer

• Sex prediction (Task 3)- A fully connected layer with 10 hidden units, ReLU, a softmax layer

Using the loss function L1, we modify Λn such that its predictability power to predict site, age and

sex reduces. This can be achieved by maximizing L1 loss with respect to Λn. Note that we are trying

to solve two problems with one loss function, first is finding optimal ζ which minimizes L1 and

second is finding optimal Λn which maximizes L1. This will result in a minimax game, where the ζ

is learned to minimize the cross-entropy and regression loss, and Λn is adjusted to maximize the

loss. The minimax optimization problem can be written as:

max
ζ

min
W,D,U ,V,Z

S∑
s=1

∑
n∈Is

∥Θn −WZsΛnW⊤ −UsV∥2F − γ1L1(ζ,D,ysite,yage,ysex)

s.t. W ∈ Ω, D ∈ Ψ, ∥vp∥1 < µ, p = 1, . . . , P,

(5.2)

where U = {Us|s = 1, . . . , S}, Z = {Zs|s = 1, . . . , S} and vp is the pth column of V. Here

∥Θn −WZsΛnW⊤ −UsV∥2F is the total error in the representation of the S subjects and L1 is
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the robustness loss, and γ1 is the tradeoff between representation learning and robustness.

5.2.2 Joint modeling of MDD scores

The aim of the chapter is to learn components which are representative of MDD. For this, we build

discriminative rshSCP (dis-rshSCP) to use subject-specific information Λn
r to predict whether subject

n has MDD or not. Use this model we will subject-specific information which is most predictive of

MDD and will give components corresponding to that. We model MDD information using logistic

regression framework with parameter b ∈ Rf , where f =
∑K

r=1 kr, subject specific information of

all the levels combined tn = diag[Λn
1 , . . . ,Λ

n
K] and the loss function defined below:

L2(b,D,ymdd) = −
N∑

n=1

ynmdd log

(
1

1 + exp (−b⊤tn)

)
− (1− ynmdd) log

(
1− 1

1 + exp (−b⊤tn)

)
.

(5.3)

We minimize cross entropy loss L2(b,D,ymdd) with b as the parameters to be estimated. Now, let

the generative loss be

G(C,W,D,U ,V,Z) =
S∑

s=1

∑
n∈Is

K∑
r=1

∥Θn − (
r∏

j=1

Wj)Z
s
rΛ

n
r (

r∏
j=1

Wn)
⊤ −Us

rVr∥2F , (5.4)

which models the components and site information, then the joint optimization problem can be

written as:

max
ζ

min
W,D,U ,Z,V,b

G(C,W,D,U ,V,Z)︸ ︷︷ ︸
learn subject and
site information

−γ1 L1(ζ,D,ysite,yage,ysex)︸ ︷︷ ︸
reduce age, sex and

site information

+γ2 L2(b,D,ymdd)︸ ︷︷ ︸
preserve MDD

information

s.t. W ∈ Ω, D ∈ Ψ, ∥vp∥1 < µ, p = 1, . . . , P.

(5.5)

Here, in addition to representation learning and robustness loss, we also have prediction error L2. γ1

and γ2 are the trade-offs between representation learning, robustness, and prediction.
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5.2.3 Prediction on unseen data

To estimate Λ for a new subject, we first solve the optimization problem in equation 5.5 to estimate

W computed from the training data. The estimation of the coefficients of unseen subjects are then

estimated by solving the below minimization problem where W is computed from the training data:

max
ζ

min
D,U ,Z,V

G(C,W,D,U ,V,Z)− γ1L1(ζ,D,ysite,yage,ysex)

s.t. D ∈ Ψ, ∥vp∥1 < µ, p = 1, . . . , P.

(5.6)

The estimate for the MDD information for the test subject n is given by:

ynmdd =


1 if 1

1+exp (−b⊤tn)
≥ 0.5

0 otherwise,

where b and t is estimated from solving equation 5.5 and 5.6 respectively.

The optimization problems defined in 5.5 and above 5.6 are non-convex problems. We use alternating

minimization to solve the optimization procedure.

5.3 Algorithm

5.3.1 Alternating Minimization

We employ the same alternating minimization technique as used in previous chapters for estimating

model parameters. Here, we optimize the objective function 5.5 for each variable using adaptive gra-

dient descent (AMSGrad) Reddi et al. (2019) while holding estimates of other variables as constants.

β1 and β2 value in AMSGrad are kept to be 0.9 and 0.999. The gradients of each variable used

in gradient descent is defined in the next section. Algorithm 6 describes the complete alternating

minimization procedure to solve equation 5.5. Algorithm 6 can be modified for solving equation

5.6 by commenting out the gradient descent of b. U and V are initialized using equation 4.6

(site− initialization) defined in Subsection 4.2.4 and svd− initialization algorithm 2 in Subsec-
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Algorithm 6 dis-rshSCP
1: Input: Data C, number of connectivity patterns k1, . . . , kK and sparsity λ1, . . . , λK at different

level, hyperparameters µ, γ1 and γ2.
2: InitializeW and D using svd− initialization
3: Initialize U and V using site− initialization
4: repeat
5: for r = 1 to K do
6: if Starting criterion is met then
7: ζ ← descent(ζ)
8: b← descent(b)

9: if r == 1 then
10: Wr ← proj1(Wr, λr)
11: else
12: Wr ← proj2(Wr)

13: for n = 1, .., N do
14: Λn

r ← descent(Λn
r )

15: Λn
r ← proj2(Λ

n
r )

16: for s = 1 to S do
17: Us

r ← descent(Us
r)

18: Vr ← descent(Vr)
19: Vr ← proj3(Vr, µ)

20: until Stopping criterion is reached
21: Output: W , L and b

tion 2.3.5 is used to initializeW and D. proj1(W, λ), proj2 and proj3 operators are used directly

used from Subsection 2.3.3 .

5.3.2 Gradient Calculations

In this section, we define gradients used for alternating gradient descent, some of which are already

defined in previous chapters. Let

W̃0 = W0 = IP , Yr =
r∏

j=0

Wj , Qr
m,n = (

m−r∏
j=1

Wj)Z
s
m−rΛ

n
m−r(

m−r∏
j=1

Wj)
⊤,

Xn
r = Θn −Us

rVr, Hn
r = Θn − (

r∏
j=1

Wj)Z
s
m−rΛ

n
r (

r∏
j=1

Wn)
⊤,

where n ∈ Is, Xn
r stores the information after removing linear site effects from Θn and Hn

r stores

the information after removing subject-wise and shared component information at the rth level. The
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gradient of L1 and L2 with respect to D is calculated using automatic differentiation provided by

MATLAB. Let J be the objective function defined in 5.5 and then gradient of J with respect to Λn
r is:

∂J

∂Λn
r

=
∂G(C,W,D,U ,V,Z)

∂Λn
r

− γ1
∂L1(ζ,D,ysite,yage,ysex)

∂Λn
r

+ γ2
∂L2(b,D,ymdd)

∂Λn
r

= (−2Y⊤
r X

n
rYr + 2Y⊤

r YrZ
s
rΛ

n
rY

⊤
r Yr) ◦ Zs

r + F,

where is F i.e −γ1 ∂L1(ζ,D,ysite,yage,ysex)
∂Λn

r
+ γ2

∂L2(b,D,ymdd)
∂Λn

r
is calculated using automatic differenti-

ation. The gradient of J with respect to Wr is:

∂J

∂Wr
=

∂G(C,W,D,U ,V,Z)
∂Wr

=

N∑
n=1

K∑
j=r

−4Y⊤
r−1XnYr−1WrQ

r
j,n + 4Y⊤

r−1Yr−1WrQ
r
j,nW

⊤
r Y

⊤
r−1Yr−1WrQ

r
j,n.

The gradient J with respect to Us and V is:

∂J

∂Us
r

=

(∑
n=Is

(Hn
r −Us

rVr)V
⊤
r

)
◦ Ip

∂J

∂Vr
=

S∑
s=1

∑
n∈Is

Us
r (H

n
r −Us

rVr) .

The gradient of J with respect to Ks
r is:

∂J

∂Ks
r

=
∂G(C,W,D,U ,V,Z)

∂Ks
r

=
∑
n=Is

(−2Y⊤
r X

n
rYr + 2Y⊤

r YrZ
s
rΛ

n
rY

⊤
r Yr) ◦Λn

r .
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5.4 Materials

5.4.1 Participants

Five worldwide study samples totaling 1657 participants, including 733 with MDD and 924 healthy

controls (HC) contributed T1-weighted structural scans and resting-state fMRI data (rs-fMRI) to this

study. The included cohorts combine data from the following studies: EMBARC (4 centers across the

United States of America, Trivedi et al. (2016)), University of Oxford (United Kingdom, Godlewska

et al. (2014, 2018)), Sichuan University Cohort (China, Zhao et al. (2020c)) and STRADL (United

Kingdom, Navrady et al. (2018); Stolicyn et al. (2020)). Patient and controls were on average 68.6%

(50− 73.8%) and 54.5% (53− 70%) female. The mean age across samples was 47 (18− 78) years

in patients and 61 (16 − 84) years for controls. All patients in EMBARC, Oxford and SCU were

medication-free, and 15 in SNAP and 170 in STRADL were medicated at the time of scanning

and had a primary diagnosis of MDD that was a first episode or recurrent. MDD diagnosis was

based on standardized diagnostic criteria: DSM-IV (Oxford) and DSM-IV-TR (EMBARC, Stanford,

STRADL, SCU) Frances et al. (1995); First et al. (2004). Table 29 summarizes the number of

healthy and MDD participants in each site with their age and sex distribution. We used the same

preprocessing pipeline as mentioned in section 4.4.2 of the previous chapter.

5.5 Experiments

5.5.1 Convergence results

Reconstruction error is used to empirically validate the convergence of the Algorithm 6:

∑S
s=1

∑
n∈Is

∑K
r=1 ||Θi − (

∏r
j=1Wj)Z

sΛi
r(
∏r

j=1Wj)
⊤ −Us

rVr||2F∑N
n=1K||Θi||2F

.

Figure 21 shows the reconstruction loss, training error and test error of the algorithm on one of the

folds of 5 fold cross validation. We can see from the result that the algorithm converges after 400

iterations. In the figure, for the first 50 iterations, the algorithm converges without the adversarial and

80



Site Group Number %of F Age (y) Medicated Clinician
ratinga

Comorbid
patients

Recurrent

EMBARC-CU Healthy 12 60.0 [18, 54](34) 0.5(1.0)
Patient 77 68.3 [18, 64](30) 0 18.0(4.1) 0 76

EMBARC-MG Healthy 10 66.6 [18, 65](28) 0.6(1.0)
Patient 52 56.2 [18, 64](28.5) 0 19.1(4.0) 0 52

EMBARC-TX Healthy 11 50.0 [23, 57](26) 0.6(0.8)
Patient 97 67.7 [19, 65](44) 0 18.6(4.3) 0 96

EMBARC-UM Healthy 10 70.0 [23, 62](41.4) 0.7(0.7)
Patient 59 71.1 [18, 65](31) 0 18.5(4.6) 0 59

Oxford Healthy 31 58.0 [19, 58](28) 0.4(.8)
Patient 39 60.5 [20, 61](27) 0 22.8(4.4) 0 14

SCU Healthy 40 55.0 [16, 57](26.5) N.A.
Patient 30 50.0 [18, 60](30.5) 0 22.6(4.5) 0 N.A.

SNAP Healthy 55 65.3 [19, 58](28.8) 1.8(2.4)
Patient 55 63.6 [20, 56](28.2) 15 15.1(5.7) 22 38

STRADL Healthy 755 53.1 [26, 84](62) 3.5(2.2)
Patient 324 73.8 [26, 78](60) 170 7.0(4.8) 136 N.A.

Table 29: Demographic characteristics of participants. a The 17 item HAMD was used in EMBARC,
Oxford and SNAP, the 24 item HAMD was used in SCU and QIDS was used in STRADL

discriminative loss. As the adversarial and discriminative losses are introduced, the reconstruction

loss starts to oscillate and then converges to a sub optimal loss as compared to if there were no

additional losses were introduced. Whereas the training accuracy keeps on getting better but the test

accuracy converges after 200 iteration. This shows that the algorithm can overfit, hence necessary

cross-validation is important for selecting the hyperparamters in the loss function 5.5. We see during

convergence that the reconstructions loss is a little higher if we hadn’t introduced adversarial and

discriminative losses. Here, we can expect a trade-off between finding components with optimal

reconstruction, adversarial and discriminative loss that depends on γ1 and γ2. The optimal value of

these hyperparameters is selected using cross-validation, which we explain in the Subsection 5.5.

5.5.2 Evaluating predictive performance

We use two different strategies to evaluate the performance of dis-rshSCP. In the first strategy, we

compare five-fold cross-validation accuracy. The goal here is to check how well our model is able to

estimate Λ to classify MDD vs. healthy people. We train the model on 80% training set for each fold

and test on the remaining. Here training is referred to solving equation 5.5 to estimateW,D,U ,Z,V

and b. During the test, we fix b, estimate the rest of the parameters and evaluate the performance of
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(a) Training and test accuracy (b) Reconstruction loss

Figure 21: Convergence of dis-rshSCP algorithm using the complete dataset for k1 = 10 and k2 = 4.

the estimated parameters using b estimated from training. We use stratification to ensure each fold is

representative of all strata (age, sex, site, and MDD) of the data. This is performed to ensure each

class is approximately equally represented across each test and training fold. In the second strategy,

we compare leave one site out accuracy. We train the model on all sites except one and test the model

on the data from the remaining site.

We compare the performance of 4 different versions of the model: 1) standard hSCP without reduction

of any covariates, 2) dis-rshCP (demographics) model with reduction of effects of age and sex, 3)

dis-rshSCP (site) model with a reduction in site effects and 4) dis-rshSCP (complete) model with

a reduction in age, sex and site effects. We fix k2 = 4 for better interpretability and find optimal

value of k1 from the set {5, 10, 15, 20}. Note that even if we select a large value of k2, only a few

of those components will be used to predict MDD and our experiments show that it is less than 4.

Optimal value of hyperparameters µ, γ1, γ2 and λ1 are selected from [0.1, 1, 5], [.5, 1, 5], [0.1, 1, 5]

and [0.1, 1, 10].

Table 30 and Table 31 show results of five-fold and leave one site cross-validation. From the

results, we can see the baseline method’s dull prediction performance, which shows the difficulty

of the challenge we are tackling. It can be seen that dis-rshSCP has a better performance than

standard hSCP. Out of demographics and site as a covariate, we see that reducing site variability

has a major impact on the prediction performance compared to reducing demographics information.

The best performance is achieved when we remove both demographics and site information which
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Method k1 = 5 k1 = 10 k1 = 15 k1 = 20

hSCP 0.569± 0.024 0.571± 0.022 0.576± 0.022 0.578± 0.019
dis-rshSCP (demogra.) 0.618± 0.021 0.626± 0.019 0.635± 0.014 0.638± 0.015
dis-rshSCP (site) 0.667± 0.016 0.672± 0.020 0.673± 0.014 0.687± 0.015
dis-rshSCP (complete) 0.703± 0.018 0.727± 0.015 0.728± 0.016 0.731± 0.013

Table 30: Five fold cross validation for k2 = 4 (mean ± standard deviation).

Method k1 = 5 k1 = 10 k1 = 15 k1 = 20

hSCP 0.579± 0.036 0.583± 0.029 0.585± 0.014 0.593± 0.024
dis-rshSCP (demogra.) 0.618± 0.038 0.626± 0.027 0.635± 0.036 0.638± 0.032
dis-rshSCP (site) 0.620± 0.037 0.632± 0.050 0.634± 0.038 0.648± 0.026
dis-rshSCP (complete) 0.651± 0.031 0.680± 0.024 0.681± 0.042 0.689± 0.047

Table 31: Leave one site accuracy for k2 = 4 (mean ± standard deviation).

suggests that removing heterogeneity from the data can help improve the predictability power of

these components, thus giving more reliable components discriminative of MDD.

5.5.3 Reproducibility

We have shown that our method can extract components with high predictability power. This section

shows that these components are highly reproducible and generalizable, which is important for the

future application of our framework. We use split-sample reproducibly to measure the generalizability

of the components, which measures how likely a set of components is replicable across the same

population. First the optimal parameters are selected based on the highest five fold cross validation,

then the split sample reproducibility is computed by dividing the dataset into two random splits with

the same stratification and calculating the correlation between components derived from the two

splits.

Table 32 shows the split sample reproducibility of the components extracted from the different

methods. In all the experiments, results are generated by computing reproducibility over 20 runs. It

can be seen that the results are similar to prediction performance results, i.e., reducing demographics

and site information helps in improving reproducibility. This suggests even after adding prediction

loss, the method can find highly reproducible components.
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Method k1 = 5 k1 = 10 k1 = 15 k1 = 20

hSCP 0.752± 0.032 0.713± 0.037 0.688± 0.039 0.621± 0.021
dis-rshSCP (demogra.) 0.781± 0.024 0.749± 0.045 0.739± 0.038 0.688± 0.032
dis-rshSCP (site) 0.782± 0.031 0.739± 0.032 0.728± 0.025 0.661± 0.028
dis-rshSCP (complete) 0.805± 0.029 0.761± 0.026 0.725± 0.035 0.692± 0.031

Table 32: Split sample reproducibility for k2 = 4 (mean ± standard deviation).

(a) (b)

(c) (d)
(e)

Figure 22: (1) SMN, DMN and SN, (2) DMN and CEN, (3) VN, (4) DMN and (5) VN and CEN. We
use red and blue colors to represent two different sub-networks which are anti-correlated with each
other and regions with a colored part is correlated among themselves.

5.5.4 Analysis of Components

We select k1 based on optimal tradeoff between classification accuracy and reproducibility, the result

of which are provided in Table 30, 31 and 32. We can see from the Table 30 and 31 that classification

accuracy starts to plateau at k1 = 10, but if we look at reproducibility, it continues to decrease

linearly. Thus we choose k1 to have good classification accuracy without losing reproducibility of

the components. Our aim here is to analyze components that are most predictive of MDD. For this,

the components are selected on basis of b in the logistic regression (5.3). We perform a hypothesis

test with the null hypothesis being that the kth component is not discriminative of MDD, i.e., bk is 0

and p-value < 0.05. If a component has a significant positive value of bk, then it is likely to have

a higher weight in the MDD population than the healthy population and vice versa. Each column

of W contains a component storing information about a set of co-activated regions which can be

positively or negatively correlated with each other, and we map normalized values of each column

onto corresponding regions. On the basis of hypothesis test, we obtained 5 significant components
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5 2

Figure 23: Hierarchical component having significant predictive power. It is comprised of component
5 and 2. Here the coarse-scale component is storing the relation between different fine-scale
components comprising DMN, CEN, and VN.

out of 10.

Figure 22 displays components most predictive of MDD. Regions colored blue are anti-correlated

with displayed areas in red. The extracted components store information between various parts of the

human brain, i.e., whether the regions are correlated or anti-correlated with each other. These regions

could be clustered to form one or multiple resting-state functional networks. Component 1 comprises

of regions of Somatomotor Network (SMN), Default Mode Network (DMN) and Salience Network

(SN), where regions of DMN and SMN are anti-correlated with SN. Component 2 comprises regions

of DMN and Central Executive Network (CEN) anti-correlated with each other. Component 3 and 4

consists of regions of DMN and Visual Network (VN), and component 5 consists of regions of VN

and CEN positively correlated with each other. In addition to the 5 fine scale significant components,

we also recovered a significant hierarchical component comprising of 5 and 2 shown in Figure 23.

The strength of each component in MDD and healthy individuals is shown in Figure 24. We observe

decreased representation in components 2, 3 and 5 comprising the DMN, CEN and VN in MDD

subjects compared to healthy. Increased representation is seen in the components comprising SMN,

DMN and SN in MDD subjects compared to healthy.
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(a) Heterogeneity captured by MDD subjects (b) Heterogeneity captured by healthy subjects

Figure 24: Heterogeneity captured by components 1− 5. The color represents the strength (Λ1) of
each component in each individual. We normalized Λ1 for comparison purposes with 1 being the
highest value and 0 lowest.

5.6 Discussion

5.6.1 Method

Our aim was to identify sparse hierarchical connectivity patterns discriminative of MDD and we

achieved this with three coupled loss functions: 1) representation learning loss, 2) discriminative loss,

and 3) adversarial loss. Our model cleverly exploits the rs-fMRI correlation matrix structure to extract

sparse patterns through the representation learning loss. The model also serves as a dimensionality

reduction technique helping to extract low-rank sparse decomposition. The classification loss in the

model forces the decomposition to extract MDD specific group-level patterns. Notice that there is

a slight tradeoff in classification performance at the expense of representation learning loss. We

highlight this as it is essential for exploration.

This work provides proof-of-principle analysis focusing on age, sex, and site as diversity factors

in the dataset. Adversarial loss helps reduce these factors, resulting in improved reproducibility,

generalizability and prediction performance. Our results show that the largest improvement is

achieved when accounting for all factors instead of focusing on just one. However, other factors

could be considered for future work, such as comorbidity, ethnicity/race, open vs. closed eye during
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fMRI acquisition, etc. These factors could help further improve pattern stability and classification

performance.

Here, we used split-sample reproducibility along with cross-validation accuracy to extract components

with the aim to not just have high predictive power but also high reproducibility. We note here

that after a certain number of components, the addition of more components does not increase the

accuracy. However, the addition of components decreases the reproducibility, which can be attributed

to the model capturing noisy components which are not predictive of MDD. Future investigations

could look at various other reproducibility measures and classification metrics, and analyze optimality

of components in multiple settings to assess the impact on downstream analysis.

Compared to existing seed-based approaches to investigate the disruptions in the functional con-

nectivity, our method could extract patterns with high reproducibility and predictive power. One

of the limitations of seed-based approaches is the dependency of results on the size of the seed

and their inability to replicate even the consistent results, which might be due to high sensitivity to

seed-region selected for analysis (Mulders et al., 2015). Our method is completely data-driven that

could extract significant biomarkers by capturing the relation between different functional networks,

within networks, and also at multiple scales, as shown in Figure 23. Compared to existing methods

for analyzing MDD, our method can capture heterogeneity in the data, as shown in Figure 24, which

could uncover promising subtypes of MDD (Drysdale et al., 2017; Grosenick et al., 2019; Dinga et al.,

2019). This can help in optimizing the diagnosis and treatment of affected individuals. Although

generating subtypes is not the aim of this chapter, future studies could focus on defining subtypes

using the subject-specific information (Λ) in a multi-site dataset.

5.6.2 Components

We identified 5 components that are highly predictive of MDD status. These components store infor-

mation about the inter- and intra-connectivity within networks and suggest that MDD is characterized

by disruptions in the following networks: intra-connectivity in the visual and default mode networks,

inter-connectivity between the visual and central executive networks and inter-connectivity between
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the salience, default mode and central executive network. These discriminative patterns revealed by

our framework are consistent with the recent literature on changes in functional connectivity patterns

in MDD (Mulders et al., 2015; Luo et al., 2021).

We observed an increase in representation of component 1 storing anti-correlation between DMN

and SN, which aligns with the previous finding of functional and structural connectivity disruption

between DMN and SN (Mulders et al., 2015; Fang et al., 2012). This can be attributed to an

increased response to negative stimuli, common in depressed patients. We also found a decrease in

representation of component 2 storing anti-correlation between DMN and CEN. DMN has a role in

awareness and directed attention is dominant during default state (Leech and Sharp, 2014), and CEN

has a role in cognitive functioning (Corbetta and Shulman, 2002) and is dominant in the executive

state. A change in the interaction between them could be a sign of difficulty switching from default

to the executive state. (Hamilton et al., 2013). In addition, we found change in representation of

SMN and SN in MDD patients aligning with previous research (Sacchet et al., 2016).

Impaired visual perception has been found in patients with MDD. It is considered an important aspect

of the disease, whereby there is a positive correlation between the degree of visual disruption and the

severity of symptoms (Song et al., 2021), reduced visual network connectivity (Zeng et al., 2012;

Veer et al., 2010) and impaired connectivity between VN and DMN (Liu et al., 2020). Studies suggest

that perceptual impairments are linked to abnormal cortical processing and disrupted neurotransmitter

systems whilst retinal processing remains intact (Nikolaus et al., 2012; Salmela et al., 2021).

The DMN has frequently been implicated in MDD pathophysiology due to its role in producing

negative, self-referential, ruminative thoughts (Hamilton et al., 2015). There are previous reports of

both hypo- and hyper-connectivity within the DMN in depression (Kaiser et al., 2015; Tozzi et al.,

2021) but Liang et al. (2020) suggest that depression is characterized by two subgroups of patients

exhibiting opposing dysfunctional DMN connectivity. These inconsistent findings could be due to

sample variations in symptom profiles as variability in connectivity within the DMN is positively

correlated with levels of ruminative thoughts (Wise et al., 2017) while hypo-connectivity has been

associated with symptom severity in recurrent MDD (Yan et al., 2019).
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The inconsistent abnormalities of DMN connectivity in depression suggest that it could instead be

the interplay between the DMN and other networks that leads to the variety of symptoms observed in

depression. Indeed, our patient sample highly expressed abnormal connectivity across three networks,

the CEN, DMN and SN, which have been put forward as being part of a triple network model of

psychopathology (Menon, 2011). In this model, aberrant saliency attribution within the SN weakens

the engagement of the CEN and disengagement of the DMN, leading to cognitive and emotional

problems.

Therefore, identifying sparse connectivity patterns is crucial to understanding the interaction between

networks that give rise to disease. These findings show that the proposed method can extract

meaningful components with high reproducibility and clinical relevance without traditional seed-

based methods, which rely too heavily on a priori regions of interest. In a nutshell, these findings

could further our understanding of MDD from a functional network perspective.

5.6.3 Future work and limitations

There are several future directions from methodological and clinical perspectives. First, the model

robustness can be improved by introducing masking of correlation matrices. It has been shown that

masking of features (Devlin et al., 2019) while learning can improve the robustness of the model and

its predictability power. Second, instead of reducing age and sex related heterogeneity, one could

disentangle components and learn age, sex and MDD specific components. Our method is limited

to finding effects of MDD on brain connectivity; in the future, we will use the proposed approach

to study the effects of antidepressant medications on brain connectivity in MDD in resting-state or

task-based fMRI (Gudayol-Ferré et al., 2015; Brakowski et al., 2017). Another important direction

would be to combine structural connectivity information using Diffusion Tensor Imaging (DTI) in

our optimization model. Unifying structural, functional and disease information would give a more

comprehensive view of neurobiological abnormalities and altered brain functioning and improve

MDD diagnosing ability.

Our proposed model has a few weaknesses, adding directions for future work. First, we only consider
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logistic regression as our classification model, the results of which might be sub-optimal. Our

method can be modified to include various classifiers such as Support Vector Machines, Multi Layer

Perceptron, etc., and a comparison study can be performed to find the optimal classifier with more

emphasis on the classification performances. Here, using SVM like optimization models might be

more straightforward than incorporating XGBoost like models. In this study, our focus was on the

interpretation of the components; we did not evaluate the reproducibility and classification accuracy

for broad values of k1 and k2. Future models could benefit from a thorough investigation of this

shortcoming. However, this analysis is beyond the scope of this work. Second, the robust to covariate

model is a multi-task learning model whose loss weights are manually selected. More advanced

techniques such as the Pareto multi task learning model (Lin et al., 2019) and balanced multi task

learning framework (Liang and Zhang, 2020) can be used to improve the results. Our study lumps all

the MDD patients together and then analyzes the change in functional networks, but previous studies

have signaled that it is a highly heterogeneous psychiatric disorder (Hyman, 2008; Miller, 2010).

Clustering approaches can be used on Λ to find subtypes of MDD, the analysis of which is beyond

the scope of the current work.

5.7 Conclusion
This work presents an effective matrix decomposition strategy to combine rs-fMRI data with clinical

information. Our framework is completely data-dependent and makes minimal assumptions about

the data. We extended the method of reducing site effects in hSCP by adding additional loss terms

for reducing age and sex effects to estimate robust components discriminative of MDD. We added a

discriminator to extract components that represent the MDD population. The problem is formulated

as a minimax non-convex optimization problem and is solved using adaptive gradient descent. Exper-

imentally, using a pooled dataset from five different sites, we showed that reducing heterogeneity

introduced by age, sex, and site could improve the prediction capability of the components, which is

validated using fivefold and leave one site out cross-validation. Our framework robustly identifies

brain patterns characterizing MDD and provides an understanding of the manifestation of the disorder

from a functional networks perspective. Our evaluation on a large multi-site dataset validates the

90



reproducibility and generalizability of the framework. In addition, our model is not limited to MDD

and can be easily adapted to other disorders such as ASD, ADHD, etc. Moreover, it can easily

incorporate other models outside the medical domain, provided we have access to valid network

measures as an input. This greatly broadens the method’s applicability to numerous applications

from varied fields.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion
Extraction of site robust interpretable functional patterns using neuroimaging data is at an early stage.

We hope this thesis has not only shed light on using adversarial learning and matrix factorization with

functional neuroimaging data but will also lead to further understanding and progress in neuroscience

communities.

In this thesis, we first propose a novel technique for the hierarchical extraction of sparse components

from connectivity matrices, with application to rsfMRI data. The proposed hSCP method, an

extension of SCPs, is a cascaded joint matrix factorization problem where a correlation matrix

corresponding to each individual’s data is considered an independent observation. This allowed us

to model group-level hierarchical patterns and extract the ‘strength’ of these patterns in individual

components, capturing heterogeneity across data. Experimentally we showed that our method is able

to find sparse, low-rank hierarchical decomposition, which is highly reproducible across datasets.

Importantly, our work provides a method to uncover hierarchical organization in the functioning of

the human brain.

We extended the above method and used adversarial learning to enhance the hSCP method by increas-

ing the reproducibility of hierarchical components. Our experimental results based on simulated data

show that Adv hSCP can extract components accurately compared to other methods. Results using

real-world rsfMRI data demonstrate that adversarial learning can improve the reproducibility of the

components. This can help improve the confidence in using hSCP as biomarkers for downstream

analysis.

In our third methodological contribution, we developed a method for estimating and reducing site
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effects in hSCP using adversarial learning. On the real dataset, we show that the proposed method

can capture components with a better split sample and leave one site out reproducibility without

losing biological interpretability and information. We also show that we can have a noisy estimate of

the patterns without reducing site effects, resulting in a misleading downstream analysis. Using our

purely data-driven analysis pipeline, we discovered significant patterns of functional connectivity

changes associated with the aging brain in a large multi-site dataset.

The adversarial learning based formulation to extract robust patterns can be applied to any rsfMRI

study to reduce heterogeneous changes in the functional connectivity. The method is not just limited

to hSCP; it can be easily extended to various matrix factorization approaches such as Independent

Component Analysis, Non-negative Matrix Factorization, Dictionary Learning, etc., to improve the

reproducibility of functional networks/components. Our work not only has broader applicability in

terms of methods used for estimation of components but also to different types of neuroscience data,

which includes EEG, MEG, etc.

In our last contribution, we extended the above method and applied it to a large multi-site fMRI dataset

containing healthy and MDD subjects. We combined the rshSCP with a discriminative optimization

problem, extracting patterns predictive of MDD. The advantages of our method were evident from

the results; the method provided robust, interpretable, and predictive sparse low dimensional patterns.

This is the first study focusing on removing heterogeneity in the data to extract not only predictive but

also interpretable and reproducible biomarkers. Our analysis can be easily adapted to other disorders

such as ASD, ADHD, etc., and even other models outside the medical domain, provided we have

access to valid network measures. This greatly broadens the method’s applicability to numerous

applications from varied fields.

6.2 Future Work
All the methods described in this thesis and the pre-processing of the data are completely data-driven

and can be directly used for functional connectivity analysis in rs-fMRI. These methodological

contributions lay the groundwork for many interesting methodological future directions and clinical
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applications for disease analysis. Our work has some limitations and improvements which are left

for future work. Below we mention some of the future directions that can be pursued based on

contributions so far:

1. Uncertainty and consistency: Recently, many matrix factorization methods have been

developed for analyzing fMRI data that are being solved using non-convex optimization

algorithms that might converge to local minima (Li et al., 2017; Wu et al., 2021). Due to

reliability issues, either researcher starts their algorithm with good initialization to make the

complete algorithm deterministic or compute decompositions several times with different

initializations to verify the decomposition’s reproducibility. Assessing reproducibility in the

case of multiple initializations is non-trivial. Previously a clustering-based algorithm has

been proposed which clusters decomposition based on their local minimums. They employ

graph-based representation of the decompositions and then use clustering to get a low-rank

approximation (Van Eyndhoven et al., 2019). Recently, some have used fixed initialization

(Trigeorgis et al., 2017) including this work to make their algorithm deterministic. An exciting

direction would be to find an efficient algorithm to estimate the most reproducible components.

For this, one approach could be to use stochastic gradient descent as an approximate Bayesian

inference scheme (Mandt et al., 2017). This would allow us to measure the reliability of the

patterns at the convergence.

2. Dynamic Functional Connectivity: One major limitation of the current work is that we

assumed that the coupling between two regions is static since we only computed a single

correlation matrix for each individual using the complete time series. But, recent work has

shown that the functional connectivity is not static, and multiple methods have introduced

dynamics of the functional connectivity (Chang and Glover, 2010; Hutchison et al., 2013;

Warnick et al., 2018; Zhang et al., 2018). The sliding time window technique is a popular

method for studying dynamical functional connectivity and computing multiple correlation

matrices for each individual, providing a time series of correlation matrices. Cai et al. (2017)

proposed sliding time window based dynamic Sparse Connectivity Patterns where they find
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multiple SCPs for an individual using the sliding time window technique. The proposed

method by Cai et al. (2017) has limitations as they extract dynamics patterns at a single scale

and do not address the problem of heterogeneity in multi-site datasets. Our method could

be modified to include sliding time window based correlation matrices and extract dynamics

patterns robust to site effects.

3. Multimodal Integration of Functional and Structural Connectivity: The human brain

has been considered an interconnected network with structural pathways and functional sig-

naling as its two key elements. These two elements are distinct but are related and provide

complementary viewpoints. Structural connectivity can be extracted using DTI and functional

using rs-fMRI studies providing a dual brain representation. Previous research has provided

evidence of direct and indirect relationships between functional and structural pathways within

the human brain (Skudlarski et al., 2008; Honey et al., 2009; Fukushima et al., 2018). Neu-

roimaging studies have revealed that there might be direct or indirect anatomical connections

mediating the functional connectivity (Bowman et al., 2012; Atasoy et al., 2016). These

interesting studies have pivoted clinical research towards multimodal integration to infer brain

connectivity reliability and have provided key insights into brain dysfunction in neurological

disorders such as Autism (Mueller et al., 2013; Cociu et al., 2017), Schizophrenia (Qureshi

et al., 2017a; Li et al., 2020a), and ADHD (Qureshi et al., 2017b). However, hypothesis-driven

discovery still faces challenges in this domain due to high data dimensionality, environmental

confounds, and considerable inter-individual variability. Our work could be extended to de-

velop joint generative frameworks to overcome the above limitations and extract a multimodal

representation of brain connectivity.

4. Disease classification: Recent studies have shown that functional connectivity can be an

important biomarker for predicting different brain disorders such as epilepsy (Rajpoot et al.,

2015; Riaz et al., 2013), schizophrenia (Kumari et al., 2009; Koch et al., 2015), ADHD

(Wang et al., 2013; Riaz et al., 2017), Alzheimer’s disease (Wee et al., 2012) and Parkinson’s

disease (Díez-Cirarda et al., 2018; Wu et al., 2009). These disorders can alter the functional
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connectivity of the human brain, and extracting these altered connections can help understand

the underlying mechanisms of the disorder. Our framework robustly identifies brain patterns

characterizing MDD and provides an understanding of the manifestation of the disorder from

a functional networks perspective. Our model could be easily adapted to other disorders like

ASD, ADHD, etc., and can robustly estimate robust patterns of dysfunction.

5. Different adversarial learning approach: There is one major limitation to adversarial

learning in the model defined in Chapter 3. The model requires an instance-specific matrix

Γ for the learning process, a hyperparameter, and a principled process is required to select

the hyperparameter. The method is split into two parts: attack and defense. Instead of this

two-step process, a simpler approach motivated by Cai et al. (2021) can be used by learning an

adversary matrix R such that it maximizes the below reconstruction loss function:

N∑
n=1

∥Θn +R−W1Λ
nW⊤

1 ∥2F ,

where R ∈ RP×P , ∥R∥2F < ϵ and Θn +R ⪰ 0. Then the joint optimization problem to learn

W and Λn in a adversarial manner can be written as

min
W1,Λ

max
R

N∑
n=1

∥Θn +R−W1Λ
nW⊤

1 ∥2F .
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APPENDICES

Appendix A: Update rules
AMSgrad: Let gi be the partial derivative of the objective function with respect to the parameter wi

at ith iteration. Let mi and vi denote the decaying averages of past and past squared gradients, then

the update rule for AMSgrad is defined as:

mi = β1mi−1 + (1− β1)gi, vi = β2vi−1 + (1− β2)g
2
i

m̂i =
mi

1− βi
1

v̂i = max(v̂i−1, vi) wi+1 = wi −
η√

v̂i + ϵ
m̂i,

where β1 = 0.9, β2 = 0.99, ϵ = 10−8 and η = 0.1. β1 and β2 are the hyperparameters in the update

rules described above. These are typical values for the practical applications Reddi et al. (2019).

NADAM: The update rule for NADAM is defined as:

m̂i =
mi

1− βi
1

v̂i =
vi

1− βi
2

wi+1 = wi −
η√

v̂i + ϵ

(
β1m̂i +

(1− β1)gi
1− βi

1

)
,

where gi, wi,mi and vi are defined above. The typical values for the practical applications as

β1 = 0.9, β2 = 0.999, ϵ = 10−8 and η = 0.1.

ADAM: The update rule for ADAM is defined as:

m̂i =
mi

1− βi
1

v̂i =
vi

1− βi
2

wi+1 = wi −
η√

v̂i + ϵ
m̂i,

where gi, wi,mi and vi are defined above. The typical values for the practical applications as

β1 = 0.9, β2 = 0.999, ϵ = 10−8 and η = 0.1.
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Appendix B: Quality Control
Quality control of the dataset is based on below metrics-

1. Mean Relative (frame-wise) Displacement (MRD): We used MRD calculated by MCFLIRT to

quantify head motion Jenkinson (1999). We set a threshold 0.2mm.

2. Time course Signal to Noise Ratio (tSNR): tSNR is an important metric for evaluating the ability

of the fMRI acquisition to detect neural signal changes in the time series. It is is defined as the

ratio of mean intensity and standard deviation across time within the evaluated Region of Interest

Triantafyllou et al. (2005). We excluded the subjects having temporal SNR less than 100.

3. Framewise Displacement (FD): It evaluates the head motion of each volume compared to the

previous volume Power et al. (2012); Jenkinson et al. (2002). We set the threshold for FD to be

0.2 mm Power et al. (2012); Yan et al. (2013).
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Karahanoğlu, Fikret Işik and Van De Ville, Dimitri. Transient brain activity disentangles fmri resting-
state dynamics in terms of spatially and temporally overlapping networks. Nature communications,
6(1):1–10, 2015.

Katsuki, Fumi and Constantinidis, Christos. Unique and shared roles of the posterior parietal and
dorsolateral prefrontal cortex in cognitive functions. Frontiers in integrative neuroscience, 6:17,
2012.

Keller, Joseph B; Hedden, Trey; Thompson, Todd W; Anteraper, Sheeba A; Gabrieli, John DE, and
Whitfield-Gabrieli, Susan. Resting-state anticorrelations between medial and lateral prefrontal
cortex: association with working memory, aging, and individual differences. Cortex, 64:271–280,
2015.

Keshavan, Anisha; Paul, Friedemann; Beyer, Mona K; Zhu, Alyssa H; Papinutto, Nico; Shinohara,
Russell T; Stern, William; Amann, Michael; Bakshi, Rohit; Bischof, Antje, and others, . Power
estimation for non-standardized multisite studies. NeuroImage, 134:281–294, 2016.

Kessler, Ronald C. The costs of depression. Psychiatric Clinics, 35(1):1–14, 2012.

Khosla, Meenakshi; Jamison, Keith; Kuceyeski, Amy, and Sabuncu, Mert R. 3d convolutional
neural networks for classification of functional connectomes. In Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support, pages 137–145. Springer, 2018.

Kia, Seyed Mostafa; Huijsdens, Hester; Dinga, Richard; Wolfers, Thomas; Mennes, Maarten;
Andreassen, Ole A; Westlye, Lars T; Beckmann, Christian F, and Marquand, Andre F. Hierarchical
bayesian regression for multi-site normative modeling of neuroimaging data. In International

109



Conference on Medical Image Computing and Computer-Assisted Intervention, pages 699–709.
Springer, 2020.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kinouchi, Osame and Copelli, Mauro. Optimal dynamical range of excitable networks at criticality.
Nature physics, 2(5):348–351, 2006.

Koch, Stefan P; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian,
and Sterzer, Philipp. Diagnostic classification of schizophrenia patients on the basis of regional
reward-related fmri signal patterns. PloS one, 10(3):e0119089, 2015.

Kostro, Daniel; Abdulkadir, Ahmed; Durr, Alexandra; Roos, Raymund; Leavitt, Blair R; Johnson,
Hans; Cash, David; Tabrizi, Sarah J; Scahill, Rachael I; Ronneberger, Olaf, and others, . Correc-
tion of inter-scanner and within-subject variance in structural mri based automated diagnosing.
NeuroImage, 98:405–415, 2014.

Kumari, Veena; Peters, Emmanuelle R; Fannon, Dominic; Antonova, Elena; Premkumar, Preethi;
Anilkumar, Anantha P; Williams, Steven CR, and Kuipers, Elizabeth. Dorsolateral prefrontal
cortex activity predicts responsiveness to cognitive–behavioral therapy in schizophrenia. Biological
psychiatry, 66(6):594–602, 2009.

Lancichinetti, Andrea; Radicchi, Filippo; Ramasco, José J, and Fortunato, Santo. Finding statistically
significant communities in networks. PloS one, 6(4):e18961, 2011.

Lee, Kangjoo; Tak, Sungho, and Ye, Jong Chul. A data-driven sparse glm for fmri analysis using
sparse dictionary learning with mdl criterion. IEEE Transactions on Medical Imaging, 30(5):
1076–1089, 2010.

Leech, Robert and Sharp, David J. The role of the posterior cingulate cortex in cognition and disease.
Brain, 137(1):12–32, 2014.

Li, Hongming; Satterthwaite, Theodore D, and Fan, Yong. Large-scale sparse functional networks
from resting state fmri. Neuroimage, 156:1–13, 2017.

Li, Hongming; Zhu, Xiaofeng, and Fan, Yong. Identification of multi-scale hierarchical brain
functional networks using deep matrix factorization. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 223–231. Springer, 2018a.

Li, Peng; Jing, Ri-Xing; Zhao, Rong-Jiang; Shi, Le; Sun, Hong-Qiang; Ding, Zengbo; Lin, Xiao;
Lu, Lin, and Fan, Yong. Association between functional and structural connectivity of the
corticostriatal network in people with schizophrenia and unaffected first-degree relatives. Journal
of Psychiatry and Neuroscience, 45(6):395–405, 2020a.

Li, Xiaoxiao; Gu, Yufeng; Dvornek, Nicha; Staib, Lawrence H; Ventola, Pamela, and Duncan,
James S. Multi-site fmri analysis using privacy-preserving federated learning and domain adapta-
tion: Abide results. Medical Image Analysis, 65:101765, 2020b.

110



Li, Yitong; Murias, Michael; Major, Samantha; Dawson, Geraldine, and Carlson, David E. Extracting
relationships by multi-domain matching. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 6799–6810, 2018b.

Liang, Sicong and Zhang, Yu. A simple general approach to balance task difficulty in multi-task
learning. arXiv preprint arXiv:2002.04792, 2020.

Liang, Sugai; Deng, Wei; Li, Xiaojing; Greenshaw, Andrew J; Wang, Qiang; Li, Mingli; Ma,
Xiaohong; Bai, Tong-Jian; Bo, Qi-Jing; Cao, Jun, and others, . Biotypes of major depressive
disorder: Neuroimaging evidence from resting-state default mode network patterns. NeuroImage:
Clinical, 28:102514, 2020.

Lin, Xi; Zhen, Hui-Ling; Li, Zhenhua; Zhang, Qing-Fu, and Kwong, Sam. Pareto multi-task learning.
Advances in neural information processing systems, 32:12060–12070, 2019.

Liu, Feng; Guo, Wenbin; Liu, Ling; Long, Zhiliang; Ma, Chaoqiong; Xue, Zhimin; Wang, Yifeng; Li,
Jun; Hu, Maorong; Zhang, Jianwei, and others, . Abnormal amplitude low-frequency oscillations
in medication-naive, first-episode patients with major depressive disorder: a resting-state fmri
study. Journal of affective disorders, 146(3):401–406, 2013.

Liu, Feng; Guo, Wenbin; Fouche, Jean-Paul; Wang, Yifeng; Wang, Wenqin; Ding, Jurong; Zeng,
Ling; Qiu, Changjian; Gong, Qiyong; Zhang, Wei, and others, . Multivariate classification of
social anxiety disorder using whole brain functional connectivity. Brain Structure and Function,
220(1):101–115, 2015.

Liu, Yujie; Chen, Yaoping; Liang, Xinyu; Li, Danian; Zheng, Yanting; Zhang, Hanyue; Cui, Ying;
Chen, Jingxian; Liu, Jiarui, and Qiu, Shijun. Altered resting-state functional connectivity of
multiple networks and disrupted correlation with executive function in major depressive disorder.
Frontiers in Neurology, page 272, 2020.

Long, Mingsheng; Cao, Zhangjie; Wang, Jianmin, and Yu, Philip S. Learning multiple tasks with
multilinear relationship networks. Advances in neural information processing systems, 30, 2017.

Lowd, Daniel and Meek, Christopher. Adversarial learning. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, pages 641–647, 2005.

Luo, Lei; Zhang, Yanfu, and Huang, Heng. Adversarial nonnegative matrix factorization. In
International Conference on Machine Learning, pages 6479–6488. PMLR, 2020.

Luo, Liang; Wu, Huawang; Xu, Jinping; Chen, Fangfang; Wu, Fengchun; Wang, Chao, and Wang,
Jiaojian. Abnormal large-scale resting-state functional networks in drug-free major depressive
disorder. Brain imaging and behavior, 15(1):96–106, 2021.

Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhang, Shu; Zhao, Shijie; Chen, Hanbo; Zhang, Tuo;
Hu, Xintao; Han, Junwei, and others, . Holistic atlases of functional networks and interactions
reveal reciprocal organizational architecture of cortical function. IEEE Transactions on Biomedical
Engineering, 62(4):1120–1131, 2014.

111



Lv, Jinglei; Lin, Binbin; Li, Qingyang; Zhang, Wei; Zhao, Yu; Jiang, Xi; Guo, Lei; Han, Junwei;
Hu, Xintao; Guo, Christine, and others, . Task fmri data analysis based on supervised stochastic
coordinate coding. Medical image analysis, 38:1–16, 2017.

Madry, Aleksander; Makelov, Aleksandar; Schmidt, Ludwig; Tsipras, Dimitris, and Vladu, Adrian.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Madsen, Kristoffer H; Churchill, Nathan W, and Mørup, Morten. Quantifying functional connectivity
in multi-subject fmri data using component models. Human brain mapping, 38(2):882–899, 2017.

Mandt, Stephan; Hoffman, Matthew D, and Blei, David M. Stochastic gradient descent as approxi-
mate bayesian inference. Journal of Machine Learning Research, 18:1–35, 2017.

Marcus, Daniel S; Wang, Tracy H; Parker, Jamie; Csernansky, John G; Morris, John C, and Buckner,
Randy L. Open access series of imaging studies (oasis): cross-sectional mri data in young,
middle aged, nondemented, and demented older adults. Journal of cognitive neuroscience, 19(9):
1498–1507, 2007.

Menon, Vinod. Large-scale brain networks and psychopathology: a unifying triple network model.
Trends in cognitive sciences, 15(10):483–506, 2011.

Meunier, David; Lambiotte, Renaud; Fornito, Alex; Ersche, Karen, and Bullmore, Edward T.
Hierarchical modularity in human brain functional networks. Frontiers in neuroinformatics, 3:37,
2009.

Miller, Greg. Beyond dsm: seeking a brain-based classification of mental illness, 2010.

Minshew, Nancy J and Keller, Timothy A. The nature of brain dysfunction in autism: functional
brain imaging studies. Current opinion in neurology, 23(2):124, 2010.

Moosavi-Dezfooli, Seyed-Mohsen; Fawzi, Alhussein; Fawzi, Omar, and Frossard, Pascal. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1765–1773, 2017.

Mueller, Sophia; Keeser, Daniel; Samson, Andrea C; Kirsch, Valerie; Blautzik, Janusch; Grothe,
Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F, and others, . Con-
vergent findings of altered functional and structural brain connectivity in individuals with high
functioning autism: a multimodal mri study. PloS one, 8(6):e67329, 2013.

Mueller, Timothy I; Leon, Andrew C; Keller, Martin B; Solomon, David A; Endicott, Jean; Coryell,
William; Warshaw, Meredith, and Maser, Jack D. Recurrence after recovery from major depressive
disorder during 15 years of observational follow-up. American Journal of Psychiatry, 156(7):
1000–1006, 1999.

Mulders, Peter C; van Eijndhoven, Philip F; Schene, Aart H; Beckmann, Christian F, and Tendolkar,
Indira. Resting-state functional connectivity in major depressive disorder: a review. Neuroscience
& Biobehavioral Reviews, 56:330–344, 2015.

112



Munafò, Marcus R; Nosek, Brian A; Bishop, Dorothy VM; Button, Katherine S; Chambers, Christo-
pher D; Percie du Sert, Nathalie; Simonsohn, Uri; Wagenmakers, Eric-Jan; Ware, Jennifer J, and
Ioannidis, John. A manifesto for reproducible science. Nature human behaviour, 1(1):1–9, 2017.

Nakano, Takashi; Takamura, Masahiro; Ichikawa, Naho; Okada, Go; Okamoto, Yasumasa; Yamada,
Makiko; Suhara, Tetsuya; Yamawaki, Shigeto, and Yoshimoto, Junichiro. Enhancing multi-center
generalization of machine learning-based depression diagnosis from resting-state fmri. Frontiers
in Psychiatry, 11:400, 2020.

Navrady, LB; Wolters, MK; MacIntyre, DJ; Clarke, Toni-Kim; Campbell, AI; Murray, AD; Evans,
KL; Seckl, Jonathan; Haley, Christopher; Milburn, Keith, and others, . Cohort profile: stratifying
resilience and depression longitudinally (stradl): a questionnaire follow-up of generation scotland:
Scottish family health study (gs: Sfhs). International journal of epidemiology, 47(1):13–14g,
2018.

Nickel, Maximillian and Kiela, Douwe. Poincaré embeddings for learning hierarchical representa-
tions. Advances in Neural Information Processing Systems, 30:6338–6347, 2017.

Nielsen, Jared A; Zielinski, Brandon A; Fletcher, P Thomas; Alexander, Andrew L; Lange, Nicholas;
Bigler, Erin D; Lainhart, Janet E, and Anderson, Jeffrey S. Multisite functional connectivity mri
classification of autism: Abide results. Frontiers in human neuroscience, 7:599, 2013.

Nikolaus, Susanne; Hautzel, Hubertus; Heinzel, Alexander, and Müller, Hans-Wilhelm. Key players
in major and bipolar depression—a retrospective analysis of in vivo imaging studies. Behavioural
brain research, 232(2):358–390, 2012.

Niznikiewicz, Margaret A; Kubicki, Marek, and Shenton, Martha E. Recent structural and functional
imaging findings in schizophrenia. Current Opinion in Psychiatry, 16(2):123–147, 2003.

Noble, Stephanie; Scheinost, Dustin; Finn, Emily S; Shen, Xilin; Papademetris, Xenophon; McEwen,
Sarah C; Bearden, Carrie E; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S, and
others, . Multisite reliability of mr-based functional connectivity. Neuroimage, 146:959–970,
2017.

Noroozi, Ali and Rezghi, Mansoor. A tensor-based framework for rs-fmri classification and functional
connectivity construction. Frontiers in neuroinformatics, page 46, 2020.

Nosek, Brian A and Errington, Timothy M. Reproducibility in cancer biology: Making sense of
replications. Elife, 6:e23383, 2017.

Olivetti, Emanuele; Greiner, Susanne, and Avesani, Paolo. Adhd diagnosis from multiple data
sources with batch effects. Frontiers in systems neuroscience, 6:70, 2012.

Otte, Christian; Gold, Stefan M; Penninx, Brenda W; Pariante, Carmine M; Etkin, Amit; Fava,
Maurizio; Mohr, David C, and Schatzberg, Alan F. Major depressive disorder. Nature reviews
Disease primers, 2(1):1–20, 2016.

113



Ozaktas, Haldun M. Paradigms of connectivity for computer circuits and networks. Optical
Engineering, 31(7):1563–1567, 1992.

Park, Hae-Jeong and Friston, Karl. Structural and functional brain networks: from connections to
cognition. Science, 342(6158):1238411, 2013.

Peng, Xingchao; Bai, Qinxun; Xia, Xide; Huang, Zijun; Saenko, Kate, and Wang, Bo. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1406–1415, 2019.

Pluta, John; Yushkevich, Paul; Das, Sandhitsu, and Wolk, David. In vivo analysis of hippocampal
subfield atrophy in mild cognitive impairment via semi-automatic segmentation of t2-weighted
mri. Journal of Alzheimer’s disease, 31(1):85–99, 2012.

Podosinnikova, Anastasia; Hein, Matthias, and Gemulla, Rainer. Robust Principal Component
Analysis as a Nonlinear Eigenproblem. PhD thesis, Saarland University, 2013.

Pomponio, Raymond; Erus, Guray; Habes, Mohamad; Doshi, Jimit; Srinivasan, Dhivya; Mamourian,
Elizabeth; Bashyam, Vishnu; Nasrallah, Ilya M; Satterthwaite, Theodore D; Fan, Yong, and others,
. Harmonization of large mri datasets for the analysis of brain imaging patterns throughout the
lifespan. NeuroImage, 208:116450, 2020.

Potluru, Vamsi K and Calhoun, Vince D. Group learning using contrast nmf: Application to
functional and structural mri of schizophrenia. In 2008 IEEE International Symposium on Circuits
and Systems, pages 1336–1339. IEEE, 2008.

Power, Jonathan D; Barnes, Kelly A; Snyder, Abraham Z; Schlaggar, Bradley L, and Petersen,
Steven E. Spurious but systematic correlations in functional connectivity mri networks arise from
subject motion. Neuroimage, 59(3):2142–2154, 2012.

Puxeddu, Maria Grazia; Faskowitz, Joshua; Betzel, Richard F; Petti, Manuela; Astolfi, Laura, and
Sporns, Olaf. The modular organization of brain cortical connectivity across the human lifespan.
NeuroImage, page 116974, 2020.

Qureshi, Muhammad Naveed Iqbal; Oh, Jooyoung; Cho, Dongrae; Jo, Hang Joon, and Lee, Boreom.
Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain
functional connectivity and anatomical features with an extreme learning machine. Frontiers in
neuroinformatics, 11:59, 2017a.

Qureshi, Muhammad Naveed Iqbal; Oh, Jooyoung; Min, Beomjun; Jo, Hang Joon, and Lee, Boreom.
Multi-modal, multi-measure, and multi-class discrimination of adhd with hierarchical feature
extraction and extreme learning machine using structural and functional brain mri. Frontiers in
human neuroscience, 11:157, 2017b.

Raichle, Marcus E. The restless brain. Brain connectivity, 1(1):3–12, 2011.

Raichle, Marcus E. The brain’s default mode network. Annual review of neuroscience, 38:433–447,
2015.

114



Raichle, Marcus E; MacLeod, Ann Mary; Snyder, Abraham Z; Powers, William J; Gusnard, Debra A,
and Shulman, Gordon L. A default mode of brain function. Proceedings of the National Academy
of Sciences, 98(2):676–682, 2001.

Rajpoot, Kashif; Riaz, Atif; Majeed, Waqas, and Rajpoot, Nasir. Functional connectivity alterations
in epilepsy from resting-state functional mri. PloS one, 10(8):e0134944, 2015.

Rauschecker, Josef P and Scott, Sophie K. Maps and streams in the auditory cortex: nonhuman
primates illuminate human speech processing. Nature neuroscience, 12(6):718–724, 2009.

Ravishankar, Hariharan; Madhavan, Radhika; Mullick, Rakesh; Shetty, Teena; Marinelli, Luca, and
Joel, Suresh E. Recursive feature elimination for biomarker discovery in resting-state functional
connectivity. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 4071–4074. IEEE, 2016.

Reddi, Sashank J; Kale, Satyen, and Kumar, Sanjiv. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Resnick, Susan M; Pham, Dzung L; Kraut, Michael A; Zonderman, Alan B, and Davatzikos, Christos.
Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. Journal of
Neuroscience, 23(8):3295–3301, 2003.

Riaz, Atif; Rajpoot, Kashif, and Rajpoot, Nasir. A connectivity difference measure for identifica-
tion of functional neuroimaging markers for epilepsy. In 2013 6th International IEEE/EMBS
Conference on Neural Engineering (NER), pages 1517–1520. IEEE, 2013.

Riaz, Atif; Asad, Muhammad; Al-Arif, SM; Alonso, Eduardo; Dima, Danai; Corr, Philip, and
Slabaugh, Greg. Fcnet: a convolutional neural network for calculating functional connectivity
from functional mri. In International Workshop on Connectomics in Neuroimaging, pages 70–78.
Springer, 2017.

Riaz, Atif; Asad, Muhammad; Alonso, Eduardo, and Slabaugh, Greg. Deepfmri: End-to-end deep
learning for functional connectivity and classification of adhd using fmri. Journal of neuroscience
methods, 335:108506, 2020.

Rosa, Maria J; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J; Garrido, Marta I; Shawe-Taylor,
John, and Mourao-Miranda, Janaina. Sparse network-based models for patient classification using
fmri. Neuroimage, 105:493–506, 2015.

Rozycki, Martin; Satterthwaite, Theodore D; Koutsouleris, Nikolaos; Erus, Guray; Doshi, Jimit;
Wolf, Daniel H; Fan, Yong; Gur, Raquel E; Gur, Ruben C; Meisenzahl, Eva M, and others, .
Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia
detectable across diverse patient populations and within individuals. Schizophrenia bulletin, 44(5):
1035–1044, 2018.

Rubinov, Mikail and Sporns, Olaf. Weight-conserving characterization of complex functional brain
networks. Neuroimage, 56(4):2068–2079, 2011.

115



Ruder, Sebastian. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Ruder, Sebastian; Bingel, Joachim; Augenstein, Isabelle, and Søgaard, Anders. Latent multi-task
architecture learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4822–4829, 2019.

Sacchet, Matthew D; Ho, Tiffany C; Connolly, Colm G; Tymofiyeva, Olga; Lewinn, Kaja Z; Han,
Laura KM; Blom, Eva H; Tapert, Susan F; Max, Jeffrey E; Frank, Guido KW, and others, . Large-
scale hypoconnectivity between resting-state functional networks in unmedicated adolescent major
depressive disorder. Neuropsychopharmacology, 41(12):2951–2960, 2016.

Sahoo, Dushyant and Davatzikos, Christos. Learning robust hierarchical patterns of human brain
across many fmri studies. Advances in Neural Information Processing Systems, 34, 2021.

Sahoo, Dushyant; Honnorat, Nicolas, and Davatzikos, Christos. Gpu accelerated extraction of sparse
granger causality patterns. In 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), pages 604–607. IEEE, 2018.

Salimi-Khorshidi, Gholamreza; Douaud, Gwenaëlle; Beckmann, Christian F; Glasser, Matthew F;
Griffanti, Ludovica, and Smith, Stephen M. Automatic denoising of functional mri data: combining
independent component analysis and hierarchical fusion of classifiers. Neuroimage, 90:449–468,
2014.

Salmela, Viljami; Socada, Lumikukka; Söderholm, John; Heikkilä, Roope; Lahti, Jari; Ekelund,
Jesper, and Isometsä, Erkki. Reduced visual contrast suppression during major depressive episodes.
Journal of Psychiatry and Neuroscience, 46(2):E222–E231, 2021.

Santarnecchi, Emiliano; Galli, Giulia; Polizzotto, Nicola Riccardo; Rossi, Alessandro, and Rossi,
Simone. Efficiency of weak brain connections support general cognitive functioning. Human
brain mapping, 35(9):4566–4582, 2014.

Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Loughead, James; Prabhakaran, Karthik;
Calkins, Monica E; Hopson, Ryan; Jackson, Chad; Keefe, Jack; Riley, Marisa, and others, .
Neuroimaging of the philadelphia neurodevelopmental cohort. Neuroimage, 86:544–553, 2014.

Schaie, K Warner and Willis, Sherry. Handbook of the Psychology of Aging. Academic Press, USA,
2021.

Sener, Ozan and Koltun, Vladlen. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Shen, Huawei; Cheng, Xueqi; Cai, Kai, and Hu, Mao-Bin. Detect overlapping and hierarchical
community structure in networks. Physica A: Statistical Mechanics and its Applications, 388(8):
1706–1712, 2009.

Shinohara, Russell T; Oh, Jiwon; Nair, Govind; Calabresi, Peter A; Davatzikos, Christos; Doshi,
Jimit; Henry, Roland G; Kim, Gloria; Linn, Kristin A; Papinutto, Nico, and others, . Volumetric

116



analysis from a harmonized multisite brain mri study of a single subject with multiple sclerosis.
American Journal of Neuroradiology, 38(8):1501–1509, 2017.

Simon, Herbert A. The architecture of complexity. In Facets of systems science, pages 457–476.
Springer, 1991.

Sinha, Aman; Namkoong, Hongseok, and Duchi, John. Certifying some distributional robustness
with principled adversarial training. In International Conference on Learning Representations,
2018.

Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D; Hampson, Michelle; Skudlarska,
Beata A, and Pearlson, Godfrey. Measuring brain connectivity: diffusion tensor imaging validates
resting state temporal correlations. Neuroimage, 43(3):554–561, 2008.

Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E;
Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R, and others, . Correspondence
of the brain’s functional architecture during activation and rest. Proceedings of the national
academy of sciences, 106(31):13040–13045, 2009.

Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann,
Christian F; Nichols, Thomas E; Ramsey, Joseph D, and Woolrich, Mark W. Network modelling
methods for fmri. Neuroimage, 54(2):875–891, 2011.

Smith, Stephen M; Miller, Karla L; Moeller, Steen; Xu, Junqian; Auerbach, Edward J; Woolrich,
Mark W; Beckmann, Christian F; Jenkinson, Mark; Andersson, Jesper; Glasser, Matthew F, and
others, . Temporally-independent functional modes of spontaneous brain activity. Proceedings of
the National Academy of Sciences, 109(8):3131–3136, 2012.

Smith, Stephen M; Hyvärinen, Aapo; Varoquaux, Gaël; Miller, Karla L, and Beckmann, Christian F.
Group-pca for very large fmri datasets. Neuroimage, 101:738–749, 2014.

Song, Xue Mei; Hu, Xi-Wen; Li, Zhe; Gao, Yuan; Ju, Xuan; Liu, Dong-Yu; Wang, Qian-Nan; Xue,
Chuang; Cai, Yong-Chun; Bai, Ruiliang, and others, . Reduction of higher-order occipital gaba
and impaired visual perception in acute major depressive disorder. Molecular Psychiatry, pages
1–9, 2021.

Sporns, Olaf. Networks of the Brain. MIT press, 2010.

Sporns, Olaf and Betzel, Richard F. Modular brain networks. Annual review of psychology, 67:
613–640, 2016.

Spreng, R Nathan; Stevens, W Dale; Viviano, Joseph D, and Schacter, Daniel L. Attenuated
anticorrelation between the default and dorsal attention networks with aging: evidence from task
and rest. Neurobiology of aging, 45:149–160, 2016.

Stam, Cornelis J. Modern network science of neurological disorders. Nature Reviews Neuroscience,
15(10):683–695, 2014.

117



Stewart, Gilbert W. Perturbation theory for the singular value decomposition. Technical report, 1998.

Stolicyn, Aleks; Harris, Mathew A; Shen, Xueyi; Barbu, Miruna C; Adams, Mark J; Hawkins,
Emma L; de Nooij, Laura; Yeung, Hon Wah; Murray, Alison D; Lawrie, Stephen M, and others,
. Automated classification of depression from structural brain measures across two independent
community-based cohorts. Human brain mapping, 41(14):3922–3937, 2020.

Sudlow, Cathie; Gallacher, John; Allen, Naomi; Beral, Valerie; Burton, Paul; Danesh, John; Downey,
Paul; Elliott, Paul; Green, Jane; Landray, Martin, and others, . Uk biobank: an open access
resource for identifying the causes of a wide range of complex diseases of middle and old age.
Plos med, 12(3):e1001779, 2015.

Tozzi, Leonardo; Zhang, Xue; Chesnut, Megan; Holt-Gosselin, Bailey; Ramirez, Carolina A, and
Williams, Leanne M. Reduced functional connectivity of default mode network subsystems in
depression: meta-analytic evidence and relationship with trait rumination. NeuroImage: Clinical,
30:102570, 2021.

Tramèr, Florian; Kurakin, Alexey; Papernot, Nicolas; Goodfellow, Ian; Boneh, Dan, and McDaniel,
Patrick. Ensemble adversarial training: Attacks and defenses. In International Conference on
Learning Representations, 2018.

Triantafyllou, Christina; Hoge, Richard D; Krueger, Gunnar; Wiggins, Christopher J; Potthast,
Andreas; Wiggins, Graham C, and Wald, Lawrence L. Comparison of physiological noise at 1.5 t,
3 t and 7 t and optimization of fmri acquisition parameters. Neuroimage, 26(1):243–250, 2005.

Trigeorgis, George; Bousmalis, Konstantinos; Zafeiriou, Stefanos, and Schuller, Björn W. A deep
matrix factorization method for learning attribute representations. IEEE transactions on pattern
analysis and machine intelligence, 39(3):417–429, 2017.

Trivedi, Madhukar H; McGrath, Patrick J; Fava, Maurizio; Parsey, Ramin V; Kurian, Benji T;
Phillips, Mary L; Oquendo, Maria A; Bruder, Gerard; Pizzagalli, Diego; Toups, Marisa, and others,
. Establishing moderators and biosignatures of antidepressant response in clinical care (embarc):
Rationale and design. Journal of psychiatric research, 78:11–23, 2016.

Uddin, Lucina Q; Clare Kelly, AM; Biswal, Bharat B; Xavier Castellanos, F, and Milham, Michael P.
Functional connectivity of default mode network components: correlation, anticorrelation, and
causality. Human brain mapping, 30(2):625–637, 2009.

Van Essen, David C; Ugurbil, Kamil; Auerbach, Edward; Barch, Deanna; Behrens, TEJ; Bucholz,
Richard; Chang, Acer; Chen, Liyong; Corbetta, Maurizio; Curtiss, Sandra W, and others, . The
human connectome project: a data acquisition perspective. Neuroimage, 62(4):2222–2231, 2012.

Van Essen, David C; Smith, Stephen M; Barch, Deanna M; Behrens, Timothy EJ; Yacoub, Essa;
Ugurbil, Kamil; Consortium, Wu-Minn HCP, and others, . The wu-minn human connectome
project: an overview. Neuroimage, 80:62–79, 2013.

Van Eyndhoven, Simon; Vervliet, Nico; De Lathauwer, Lieven, and Van Huffel, Sabine. Identifying

118



stable components of matrix/tensor factorizations via low-rank approximation of inter-factorization
similarity. In 2019 27th European Signal Processing Conference (EUSIPCO), pages 1–5. IEEE,
2019.

Van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper;
Van Der Togt, Chris, and Roelfsema, Pieter R. Alpha and gamma oscillations characterize feedback
and feedforward processing in monkey visual cortex. Proceedings of the National Academy of
Sciences, 111(40):14332–14341, 2014.

Veer, Ilya M; Beckmann, Christian; Van Tol, Marie-Jose; Ferrarini, Luca; Milles, Julien; Veltman,
Dick; Aleman, André; Van Buchem, Mark A; Van Der Wee, Nic JA, and Rombouts, Serge AR.
Whole brain resting-state analysis reveals decreased functional connectivity in major depression.
Frontiers in systems neuroscience, 4:41, 2010.

Vega, Roberto and Greiner, Russ. Finding effective ways to (machine) learn fmri-based classifiers
from multi-site data. In Understanding and Interpreting Machine Learning in Medical Image
Computing Applications, pages 32–39. Springer, 2018.

Vergani, Francesco; Lacerda, Luis; Martino, Juan; Attems, Johannes; Morris, Christopher; Mitchell,
Patrick; de Schotten, Michel Thiebaut, and Dell’Acqua, Flavio. White matter connections of the
supplementary motor area in humans. Journal of Neurology, Neurosurgery & Psychiatry, 85(12):
1377–1385, 2014.

Wagstaff, Kiri; Cardie, Claire; Rogers, Seth; Schrödl, Stefan, and others, . Constrained k-means
clustering with background knowledge. In Icml, volume 1, pages 577–584, 2001.

Wang, Huahua; Banerjee, Arindam, and Boley, Daniel. Common component analysis for multiple
covariance matrices. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 956–964, 2011.

Wang, Lebo; Li, Kaiming, and Hu, Xiaoping P. Graph convolutional network for fmri analysis based
on connectivity neighborhood. Network Neuroscience, 5(1):83–95, 2021.

Wang, Mingliang; Zhang, Daoqiang; Huang, Jiashuang; Yap, Pew-Thian; Shen, Dinggang, and
Liu, Mingxia. Identifying autism spectrum disorder with multi-site fmri via low-rank domain
adaptation. IEEE transactions on medical imaging, 39(3):644–655, 2019.

Wang, Xun-Heng; Jiao, Yun, and Li, Lihua. Identifying individuals with attention deficit hyperactivity
disorder based on temporal variability of dynamic functional connectivity. Scientific reports, 8(1):
1–12, 2018.

Wang, Xunheng; Jiao, Yun; Tang, Tianyu; Wang, Hui, and Lu, Zuhong. Altered regional homogeneity
patterns in adults with attention-deficit hyperactivity disorder. European journal of radiology, 82
(9):1552–1557, 2013.

Warnick, Ryan; Guindani, Michele; Erhardt, Erik; Allen, Elena; Calhoun, Vince, and Vannucci,

119



Marina. A bayesian approach for estimating dynamic functional network connectivity in fmri data.
Journal of the American Statistical Association, 113(521):134–151, 2018.

Wee, Chong-Yaw; Yap, Pew-Thian; Zhang, Daoqiang; Denny, Kevin; Browndyke, Jeffrey N; Potter,
Guy G; Welsh-Bohmer, Kathleen A; Wang, Lihong, and Shen, Dinggang. Identification of mci
individuals using structural and functional connectivity networks. Neuroimage, 59(3):2045–2056,
2012.

Wise, T; Marwood, L; Perkins, AM; Herane-Vives, A; Joules, R; Lythgoe, DJ; Luh, WM; Williams,
SCR; Young, AH; Cleare, AJ, and others, . Instability of default mode network connectivity in
major depression: a two-sample confirmation study. Translational psychiatry, 7(4):e1105–e1105,
2017.

Wolfers, Thomas; Floris, Dorothea L; Dinga, Richard; van Rooij, Daan; Isakoglou, Christina; Kia,
Seyed Mostafa; Zabihi, Mariam; Llera, Alberto; Chowdanayaka, Rajanikanth; Kumar, Vinod J,
and others, . From pattern classification to stratification: towards conceptualizing the heterogeneity
of autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 104:240–254, 2019.

Wong, Eric and Kolter, Zico. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pages 5286–5295. PMLR,
2018.

Wu, Fan; Cai, Jiahui; Wen, Canhong, and Tan, Haizhu. Co-sparse non-negative matrix factorization.
Frontiers in Neuroscience, 15, 2021.

Wu, Qi-Zhu; Li, Dong-Ming; Kuang, Wei-Hong; Zhang, Ti-Jiang; Lui, Su; Huang, Xiao-Qi; Chan,
Raymond CK; Kemp, Graham J, and Gong, Qi-Yong. Abnormal regional spontaneous neural
activity in treatment-refractory depression revealed by resting-state fmri. Human brain mapping,
32(8):1290–1299, 2011.

Wu, Tao; Wang, Liang; Chen, Yi; Zhao, Cheng; Li, Kuncheng, and Chan, Piu. Changes of functional
connectivity of the motor network in the resting state in parkinson’s disease. Neuroscience letters,
460(1):6–10, 2009.

Xia, Mingrui; Si, Tianmei; Sun, Xiaoyi; Ma, Qing; Liu, Bangshan; Wang, Li; Meng, Jie; Chang,
Miao; Huang, Xiaoqi; Chen, Ziqi, and others, . Reproducibility of functional brain alterations in
major depressive disorder: Evidence from a multisite resting-state functional mri study with 1,434
individuals. Neuroimage, 189:700–714, 2019.

Xu, Jiansong; Potenza, Marc N; Calhoun, Vince D; Zhang, Rubin; Yip, Sarah W; Wall, John T; Pearl-
son, Godfrey D; Worhunsky, Patrick D; Garrison, Kathleen A, and Moran, Joseph M. Large-scale
functional network overlap is a general property of brain functional organization: reconciling in-
consistent fmri findings from general-linear-model-based analyses. Neuroscience & Biobehavioral
Reviews, 71:83–100, 2016.

Yamashita, Ayumu; Sakai, Yuki; Yamada, Takashi; Yahata, Noriaki; Kunimatsu, Akira; Okada,
Naohiro; Itahashi, Takashi; Hashimoto, Ryuichiro; Mizuta, Hiroto; Ichikawa, Naho, and others, .

120



Generalizable brain network markers of major depressive disorder across multiple imaging sites.
PLoS biology, 18(12):e3000966, 2020.

Yamashita, Ayumu; Sakai, Yuki; Yamada, Takashi; Yahata, Noriaki; Kunimatsu, Akira; Okada,
Naohiro; Itahashi, Takashi; Hashimoto, Ryuichiro; Mizuta, Hiroto; Ichikawa, Naho, and others, .
Common brain networks between major depressive-disorder diagnosis and symptoms of depression
that are validated for independent cohorts. Frontiers in psychiatry, 12:888, 2021.

Yan, Baoyu; Xu, Xiaopan; Liu, Mengwan; Zheng, Kaizhong; Liu, Jian; Li, Jianming; Wei, Lei;
Zhang, Binjie; Lu, Hongbing, and Li, Baojuan. Quantitative identification of major depression
based on resting-state dynamic functional connectivity: a machine learning approach. Frontiers in
neuroscience, 14:191, 2020.

Yan, Chao-Gan; Craddock, R Cameron; He, Yong, and Milham, Michael P. Addressing head
motion dependencies for small-world topologies in functional connectomics. Frontiers in human
neuroscience, 7:910, 2013.

Yan, Chao-Gan; Chen, Xiao; Li, Le; Castellanos, Francisco Xavier; Bai, Tong-Jian; Bo, Qi-Jing;
Cao, Jun; Chen, Guan-Mao; Chen, Ning-Xuan; Chen, Wei, and others, . Reduced default mode
network functional connectivity in patients with recurrent major depressive disorder. Proceedings
of the National Academy of Sciences, 116(18):9078–9083, 2019.

Yang, Jaewon and Leskovec, Jure. Overlapping community detection at scale: a nonnegative matrix
factorization approach. In Proceedings of the sixth ACM international conference on Web search
and data mining, pages 587–596. ACM, 2013.

Yassin, Walid; Nakatani, Hironori; Zhu, Yinghan; Kojima, Masaki; Owada, Keiho; Kuwabara,
Hitoshi; Gonoi, Wataru; Aoki, Yuta; Takao, Hidemasa; Natsubori, Tatsunobu, and others, .
Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk
and first-episode psychosis. Translational psychiatry, 10(1):1–11, 2020.

Ye, Ming; Yang, Tianliang; Qing, Peng; Lei, Xu; Qiu, Jiang, and Liu, Guangyuan. Changes of
functional brain networks in major depressive disorder: a graph theoretical analysis of resting-state
fmri. PloS one, 10(9):e0133775, 2015.

Yeo, BT Thomas; Krienen, Fenna M; Chee, Michael WL, and Buckner, Randy L. Estimates
of segregation and overlap of functional connectivity networks in the human cerebral cortex.
Neuroimage, 88:212–227, 2014.

Yu, Meichen; Linn, Kristin A; Cook, Philip A; Phillips, Mary L; McInnis, Melvin; Fava, Maurizio;
Trivedi, Madhukar H; Weissman, Myrna M; Shinohara, Russell T, and Sheline, Yvette I. Statistical
harmonization corrects site effects in functional connectivity measurements from multi-site fmri
data. Human brain mapping, 39(11):4213–4227, 2018.

Yu, Ming; Gupta, Varun, and Kolar, Mladen. Recovery of simultaneous low rank and two-way sparse
coefficient matrices, a nonconvex approach. Electronic Journal of Statistics, 14(1):413–457, 2020.

121



Zeng, Ling-Li; Shen, Hui; Liu, Li; Wang, Lubin; Li, Baojuan; Fang, Peng; Zhou, Zongtan; Li,
Yaming, and Hu, Dewen. Identifying major depression using whole-brain functional connectivity:
a multivariate pattern analysis. Brain, 135(5):1498–1507, 2012.

Zhan, Liang; Jenkins, Lisanne M; Wolfson, Ouri E; GadElkarim, Johnson Jonaris; Nocito, Kevin;
Thompson, Paul M; Ajilore, Olusola A; Chung, Moo K, and Leow, Alex D. The significance
of negative correlations in brain connectivity. Journal of Comparative Neurology, 525(15):
3251–3265, 2017.

Zhang, Chao; Baum, Stefi A; Adduru, Viraj R; Biswal, Bharat B, and Michael, Andrew M. Test-retest
reliability of dynamic functional connectivity in resting state fmri. NeuroImage, 183:907–918,
2018.

Zhang, Jie; Cheng, Wei; Wang, ZhengGe; Zhang, ZhiQiang; Lu, WenLian; Lu, GuangMing, and
Feng, Jianfeng. Pattern classification of large-scale functional brain networks: identification of
informative neuroimaging markers for epilepsy. PloS one, 7(5):e36733, 2012.

Zhang, Junyi; Wan, Peng, and Zhang, Daoqiang. Transport-based joint distribution alignment for
multi-site autism spectrum disorder diagnosis using resting-state fmri. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages 444–453. Springer,
2020a.

Zhang, Wei; Zhao, Shijie; Hu, Xintao; Dong, Qinglin; Huang, Heng; Zhang, Shu; Zhao, Yu; Dai,
Haixing; Ge, Fangfei; Guo, Lei, and others, . Hierarchical organization of functional brain
networks revealed by hybrid spatiotemporal deep learning. Brain connectivity, 10(2):72–82,
2020b.

Zhang, Yipu; Xiao, Li; Zhang, Gemeng; Cai, Biao; Stephen, Julia M; Wilson, Tony W; Calhoun,
Vince D, and Wang, Yu-Ping. Multi-paradigm fmri fusion via sparse tensor decomposition in
brain functional connectivity study. IEEE journal of biomedical and health informatics, 25(5):
1712–1723, 2020c.

Zhang, Yu and Yang, Qiang. A survey on multi-task learning. arXiv preprint arXiv:1707.08114,
2017.

Zhao, Han; Zhang, Shanghang; Wu, Guanhang; Moura, José MF; Costeira, Joao P, and Gordon,
Geoffrey J. Adversarial multiple source domain adaptation. Advances in neural information
processing systems, 31:8559–8570, 2018.

Zhao, Jianlong; Huang, Jinjie; Zhi, Dongmei; Yan, Weizheng; Ma, Xiaohong; Yang, Xiao; Li,
Xianbin; Ke, Qing; Jiang, Tianzi; Calhoun, Vince D, and others, . Functional network connectivity
(fnc)-based generative adversarial network (gan) and its applications in classification of mental
disorders. Journal of neuroscience methods, 341:108756, 2020a.

Zhao, S; Li, B; Yue, X; Gu, Y; Xu, P; Hu, R; Chai, H, and Keutzer, K. Multi-source domain adaptation
for semantic segmentation”, advances in neural information processing systems. Advances in
neural information processing systems, 2019.

122



Zhao, Sicheng; Li, Bo; Xu, Pengfei, and Keutzer, Kurt. Multi-source domain adaptation in the deep
learning era: A systematic survey. arXiv preprint arXiv:2002.12169, 2020b.

Zhao, Youjin; Niu, Running; Lei, Du; Shah, Chandan; Xiao, Yuan; Zhang, Wenjing; Chen, Ziqi;
Lui, Su, and Gong, Qiyong. Aberrant gray matter networks in non-comorbid medication-naive
patients with major depressive disorder and those with social anxiety disorder. Frontiers in Human
Neuroscience, 14:172, 2020c.

Zhong, Xue; Shi, Huqing; Ming, Qingsen; Dong, Daifeng; Zhang, Xiaocui; Zeng, Ling-Li, and Yao,
Shuqiao. Whole-brain resting-state functional connectivity identified major depressive disorder:
a multivariate pattern analysis in two independent samples. Journal of Affective Disorders, 218:
346–352, 2017.

Zhou, Zhenyu; Ding, Mingzhou; Chen, Yonghong; Wright, Paul; Lu, Zuhong, and Liu, Yijun.
Detecting directional influence in fmri connectivity analysis using pca based granger causality.
Brain research, 1289:22–29, 2009.

Zhu, Xueling; Wang, Xiang; Xiao, Jin; Liao, Jian; Zhong, Mingtian; Wang, Wei, and Yao, Shuqiao.
Evidence of a dissociation pattern in resting-state default mode network connectivity in first-
episode, treatment-naive major depression patients. Biological psychiatry, 71(7):611–617, 2012.

123


	Extracting Generalizable Hierarchical Patterns Of Functional Connectivity In The Brain
	Recommended Citation

	Extracting Generalizable Hierarchical Patterns Of Functional Connectivity In The Brain
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Overview
	Aims of this thesis
	Contributions
	Organization of the Thesis

	Extraction of Hierarchical Sparse Connectivity Patterns
	Introduction
	Literature Review
	Method
	Sparse Connectivity Patterns
	Hierarchical Sparse Connectivity Patterns
	Alternating Minimization
	Gradients
	Initialization procedure for Gradient Descent

	Experiments
	Dataset
	Convergence Analysis
	Simulation
	Comparison with single scale components
	Comparison of hSCP with existing approaches
	Age prediction
	Clustering
	Results from resting state fMRI

	Conclusion

	Adversarial Learning for Hierarchical Patterns
	Introduction
	Adversarial Training

	Adversarial hierarchical Sparse Connectivity Patterns
	Recap
	Adversarial Learning for hSCP
	Optimization
	Gradients

	Experiments
	Simulated dataset
	Convergence Analysis
	Results from rsfMRI data

	Conclusion

	Robust Hierarchical Patterns in Multi-Site fMRI Studies
	Introduction
	Method
	Recap
	Can we use standard harmonization approaches?
	Robust to site hSCP
	Complete Model

	Algorithm
	Alternating Minimization
	Gradient Calculations

	Experiments
	Simulated Dataset
	Real Dataset
	Analysis of components

	Conclusion

	Robust Hierarchical Patterns for identifying MDD patients
	Introduction
	Method
	Robust to covariates hSCP
	Joint modeling of MDD scores
	Prediction on unseen data

	Algorithm
	Alternating Minimization
	Gradient Calculations

	Materials
	Participants

	Experiments
	Convergence results
	Evaluating predictive performance
	Reproducibility
	Analysis of Components

	Discussion
	Method
	Components
	Future work and limitations

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	APPENDICES
	Update rules
	Quality Control

	BIBLIOGRAPHY

