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ABSTRACT

SEMANTIC SIMULTANEOUS LOCALIZATION AND MAPPING

Sean L. Bowman

George J. Pappas

Traditional approaches to simultaneous localization and mapping (SLAM) rely

on low-level geometric features such as points, lines, and planes. They are unable to

assign semantic labels to landmarks observed in the environment. Recent advances

in object recognition and semantic scene understanding, however, have made this

information easier to extract than ever before, and the recent proliferation of robots in

human environments demand access to reliable semantic-level mapping and localization

algorithms to enable true autonomy. Furthermore, loop closure recognition based on

low-level features is often viewpoint dependent and subject to failure in ambiguous

or repetitive environments, whereas object recognition methods can infer landmark

classes and scales, resulting in a small set of easily recognizable landmarks.

In this thesis, we present two solutions that incorporate semantic information into

a full localization and mapping pipeline. In the first, we propose a solution method

using only single-image bounding box object detections as the semantic measurement.

As these bounding box measurements are relatively imprecise when projected back

into 3D space and difficult to associate with existing mapped objects, we first present

a general method to probabilistically compute data associations within an estimation

framework and demonstrate its improved accuracy in the case of high-uncertainty

measurements. We then extend this to the specific case of semantic bounding box

measurements and demonstrate its accuracy in indoor and outdoor environments.

Second, we propose a solution based on the detection of semantic keypoints. These

semantic keypoints are not only more reliably positioned in space, but also allow us
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to estimate the full six degree-of-freedom pose of each mapped object. The usage

of these semantic keypoints allows us to effectively reduce the problem of semantic

mapping to that of the much more well studied problem of mapping point features,

allowing for its efficient solution and robustness in practice.

Finally, we present a method of robotic navigation in unexplored semantic en-

vironments that robustly plans paths through unknown and unexplored semantic

environments towards a goal location. Through the use of the semantic keypoint-based

semantic SLAM algorithm, we demonstrate the successful execution of navigation

missions through on-the-fly generated semantic maps.
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Chapter 1

Introduction

1.1 Motivation

In robotics, simultaneous localization and mapping (SLAM) is the problem of mapping

an unknown environment while estimating a robot’s pose within it. Reliable navigation,

object manipulation, autonomous surveillance, and many other tasks require accurate

knowledge of the robot’s pose and of the surrounding environment. Beginning with

the seminal works of Smith and Cheeseman (1986) and Leonard and Durrant-Whyte

(1991), the SLAM problem has seen decades of remarkable progress resulting in

numerous successful and commercially available SLAM systems. Until somewhat

recently, however, most of these methods have focused solely on creating a map of

low-level geometric features in the environment such as corners (Hesch et al., 2014),

lines (Kottas and Roumeliotis, 2013), and surface patches (Henry et al., 2012).

In contrast, high-level autonomy in unknown environments requires more mean-

ingful maps of objects with semantic content, such as windows, tables, and chairs.

The goal of this thesis is to address the metric and semantic SLAM problems jointly,

taking advantage of object recognition to tightly integrate both metric and semantic

information into the sensor state and map estimation. In addition to providing a

meaningful interpretation of the scene, semantically-labeled landmarks address two

critical issues of geometric SLAM: data association (matching sensor observations to

map landmarks) and loop closure (recognizing previously-visited locations). In the

1



process of answering this question, we also present a probabilistic method of data

association, allowing for the incorporation of measurements with a very high degree of

uncertainty, as some semantic observations are, into a successful SLAM system.

1.2 Related Work

Initial approaches to SLAM were typically based on filtering methods in which only

the most recent robot pose is estimated (Durrant-Whyte and Bailey, 2006). This

approach is in general very computationally efficient, however because of the inability

to estimate past poses and relinearize previous measurement functions, errors can

compound (Hesch et al., 2014). More recently, batch methods that optimize over larger

fractions of the robot trajectory or even entire trajectories have significantly increased

in popularity. Successful batch methods typically represent optimization variables

as a set of nodes in a graph (a “pose graph” or a “factor graph”). Two robot-pose

nodes share an edge if an odometry measurement is available between them, while a

landmark and a robot-pose node share an edge if the landmark was observed from the

corresponding robot pose. This pose graph optimization formulation of SLAM traces

back to Lu and Milios (1997). In recent years, the state of the art (Kümmerle et al.,

2011; Kaess et al., 2012) consists of iterative optimization methods (e.g., nonlinear

least squares via the Gauss-Newton algorithm) that achieve excellent performance but

depend heavily on linearization of the sensing and motion models. This becomes a

problem when we consider including discrete observations, such as detected object

classes, in the sensing model.

One of the first systems that used both spatial and semantic representations was

proposed by Galindo et al. (2005). A spatial hierarchy contained camera images, local

metric maps, and the environment topology, while a semantic hierarchy represented

concepts and relations, which allowed room categories to be inferred based on object

2



detections. Many other approaches (Civera et al., 2011; Pronobis, 2011; Stückler

et al., 2013; Vineet et al., 2015; Leibe et al., 2007; Pillai and Leonard, 2015) extract

both metric and semantic information but typically the two processes are carried out

separately and the results are merged afterwards. Fei and Soatto (2018) augment

an existing SLAM system with a probabilistic object detector. Rosinol et al. (2020)

present a dense semantic mapping system that creates a mesh of triangulated points

which is then filled with semantic information via back-projection of images’ semantic

segmentation. The lack of integration between the metric and the semantic mapping

does not allow the object detection confidence to influence the performance of the

metric optimization. Focusing on the localization problem only, Atanasov et al. (2014)

incorporated semantic observations in the metric optimization via a set-based Bayes

filter.

An additional class of algorithms may perform localization and semantic mapping

jointly but focus on a dense volumetric representation of the environment. Many

works (McCormac et al., 2017; Zhang et al., 2018; Rünz and Agapito, 2017; Barsan et al.,

2018) use either RGB-D or stereo cameras to directly create a dense reconstruction

of the environment. Zheng et al. (2019) adds semantic labeling to a dense RGB-D

reconstruction (e.g. KinectFusion), and derives a method of next best view selection to

minimize the uncertainty of both the geometric reconstruction and semantic labeling.

Grinvald et al. (2019) combine a geometric-semantic segmentation algorithm with an

RGB-D camera with a method of object instance data association across multiple

frames to create a semantically-informed volumetric reconstruction of the environment.

The works that are closest to ours consider both localization and mapping and

carry out metric and semantic mapping jointly. SLAM++ (Salas-Moreno et al., 2013)

focuses on a real-time implementation of joint 3-D object recognition and RGB-D

SLAM via pose graph optimization. A global optimization for 3D reconstruction and

3



semantic parsing has been proposed by Kundu et al. (2014). In this work, the 3D

space is voxelized and landmarks and/or semantic labels are assigned to voxels which

are connected in a conditional random field rather than estimating the continuous pose

of objects. Bao and Savarese (2011) incorporate camera parameters, object geometry,

and object classes into a structure from motion problem, resulting in a detailed and

accurate but large and expensive optimization.

The works that are closest to ours jointly optimize a semantic map and the robot

trajectory using only a monocular camera and inertial measurement unit. Nicholson

et al. (2018) models objects as ellipsoids in 3D space and derives a measurement model

describing how bounding box detections constrain these ellipsoids. Yang and Scherer

(2019) similarly simplifies object geometry, presenting a monocular SLAM system

that represents semantic objects as cuboids in space. Shan et al. (2020) describes an

algorithm that estimates a map of objects represented as both a bounding ellipsoid

and semantic keypoint-based model, but operates in a filtering context, marginalizing

out objects that have left the field of view.

1.3 The Semantic SLAM Problem

To begin, we will consider a general semantic SLAM problem without a specific

sensor configuration or measurement model. In the classical simultaneous localization

and mapping problem, a mobile sensor moves through an unknown environment,

modeled as a collection L , {`m}Mm=1 of M static landmarks. Given a set of sensor

measurements Z , {zk}Kk=1, the task is to estimate the landmark positions L and a

sequence of poses X , {xt}Tt=1 representing the sensor trajectory. A mathematical

statement of the SLAM problem is then the following MAP estimation problem:

X̂ , L̂ = arg max
X ,L

log p(X ,L|Z), (1.1)

4



or, with a uniform or uninformative prior on p(X ,L) as is typically assumed, the

following ML estimation problem:

X̂ , L̂ = arg max
X ,L

log p(Z|X ,L). (1.2)

By making certain independence assumptions on the measurements, we are able to

decompose this optimization into a form that is known as a factor graph optimization.

A factor graph is a convenient way of representing an optimization problem for which

there exists a clear physical structure or a sparse constraint set. Graphically, a factor

is a generalization of an edge that allows connectivity between more than two vertices.

A factor f in the graph is associated with a cost function that depends on a subset of

the variables V such that the entire optimization is of the form

V̂ = arg min
V

∑
f∈F

f(V). (1.3)

For example, consider a simple case of a mobile ground robot equipped with wheel

encoders. Along its trajectory, between each pair of poses xi and xi+1, the integrated

wheel encoders report a pose difference zi = xi+1 − xi + wi, where wi ∼ N (0,Ri) is

some Gaussian noise. It is then easy to see that the solution for the estimation in

Equation (1.2) (or Equation (1.1) with a uniform prior on p(X ,L)) is given by

x̂1:T = arg max
x

log p(z1:T−1|x1:T ). (1.4)

Assuming conditional independence of measurements given the trajectory and

5



using the known distribution of z, this can be written as

x̂1:T = arg min
x

T−1∑
i=1

‖zi − (xi+1 − xi)‖2
Ri

(1.5)

which we see is a factor formulation as in (1.3) with

f(xi,xi+1) = ‖zi − (xi+1 − xi)‖2
Ri
. (1.6)

More generally, suppose a robot receives several different classes of measurements

Z1, . . . ,ZN , e.g. odometry, GPS, visual, etc. Assuming measurements are conditionally

independent given the trajectory and map, and a uniform prior on Z1, we can write (1.1)

as

X̂ , L̂ = arg max
X ,L

log p(Z|X ,L)p(X ,L) (1.7)

= arg max
X ,L

[
N∑
i=1

log p(Zi|X ,L) + log p(X ,L)

]
(1.8)

= arg min
X ,L

[
−

N∑
i=1

log p(Zi|X ,L)− log p(X ,L)

]
, (1.9)

and so we see that negative measurement log-likelihoods correspond exactly to the

factors in (1.3). Additionally, we see the inherent modularity in the factor graph

formulation; new information or measurement types results in only another additive

term to the optimization. For example, suppose an existing SLAM system exists

in the form of Equation (1.9) and we wish to additionally include a set of semantic

1As mentioned before Equation (1.2), most methods additionally assume a uniform prior on
p(X ,L) and perform a maximum likelihood estimation; however later in Chapter 4 we will use this
term to capture semantic object structure.
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measurements S; the new formulation simply becomes

X̂ , L̂ = arg min
X ,L

[
−

N∑
i=1

log p(Zi|X ,L)− log p(X ,L)− log p(S|X ,L)

]
. (1.10)

This modularity not only improves the ease with which problems can be formulated and

implemented in terms of existing software packages, but also produces a predictable

sparsity that can sometimes significantly improve the performance of their solution in

practice (Triggs et al., 2000).

Although the formulation as presented here is widespread and useful in practice,

hidden in each term p(Z|X ,L) is the fact that the data association for each measure-

ment z ∈ Z is a priori unknown; before the term can be computed, the question of

which landmark `j generated each specific measurement z must be answered. In the

following chapter we will see the effect of considering this question more explicitly and

a method of answering it probabilistically.
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Chapter 2

Probabilistic Data Association

2.1 Probabilistic Data Association in SLAM

Consider again the classical localization and mapping problem, in which a mobile

sensor moves through an unknown environment, modeled as a collection L , {`m}Mm=1

of M static landmarks. Given a set of sensor measurements Z , {zk}Kk=1, the task is to

estimate the landmark positions L and a sequence of poses X , {xt}Tt=1 representing

the sensor trajectory. Most existing work focuses on estimating X and L and rarely

emphasizes that the data association D , {(αk, βk)}Kk=1 stipulating that measurement

zk of landmark `βk was obtained from sensor state xαk is in fact unknown. A complete

statement of the SLAM problem (cf. Equation (1.2)) involves maximum likelihood

estimation of X , L, and D given the measurements Z:

X̂ , L̂, D̂ = arg max
X ,L,D

log p(Z|X ,L,D) (2.1)

The most common approach to this maximization has been to decompose it

into two separate estimation problems. First, given prior estimates X 0 and L0, the

maximum likelihood estimate D̂ of the data association D is computed (e.g., via

joint compatibility branch and bound (Neira and Tardós, 2001) or the Hungarian

algorithm (Munkres, 1957)). Then, given D̂, the most likely landmark and sensor
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states are estimated1:

D̂ = arg max
D

p(D|X 0,L0,Z) (2.2a)

X̂ , L̂ = arg max
X ,L

log p(Z|X ,L, D̂) (2.2b)

The second optimization above is typically carried out via filtering (Mourikis and

Roumeliotis, 2007; Bloesch et al., 2015; Forster et al., 2014) or pose-graph optimiza-

tion (Kaess et al., 2012; Kümmerle et al., 2011).

The above process has the disadvantage that an incorrectly chosen data association

may have a highly detrimental effect on the estimation performance. Moreover, if

ambiguous measurements are discarded to avoid incorrect association choices, they

will never be reconsidered later when refined estimates of the sensor pose (and hence

their data association) are available. Instead of a simple one step process, then, it is

possible to perform coordinate descent, which iterates the two maximization steps

as follows:

Di+1 = arg max
D

p(D|X i,Li,Z) (2.3a)

X i+1,Li+1 = arg max
X ,L

log p(Z|X ,L,Di+1) (2.3b)

This resolves the problem of being able to revisit association decisions once state

estimates improve but does little to resolve the problem with ambiguous measurements

since a hard decision on data associations is still required. To address this, rather

than simply selecting D̂ as the mode of p(D|X ,L,Z), we should consider the entire

density of D when estimating X and L. Given initial estimates X i, Li, an improved

1Note that the first maximization in (2.2a) assumes that p(D|X 0,L0) is uniform. This is true
when there are no false positive measurements or missed detections. A more sophisticated model can
be obtained using ideas from Atanasov et al. (2016).

9



estimate that utilizes the whole density of D can be computed by maximizing the

expected measurement likelihood via expectation maximization (EM):

X i+1,Li+1 =arg max
X ,L

ED
[
log p(Z|X ,L,D) | X i,Li,Z

]
(2.4)

=arg max
X ,L

∑
D∈D

p(D|X i,Li,Z) log p(Z|X ,L,D)

where D is the space of all possible values of D. This EM formulation has the advantage

that no hard decisions on data association are required since it “averages” over all

possible associations. To compare this with the coordinate descent formulation in (2.3),

we can rewrite (2.4) as follows:

arg max
X ,L

∑
D∈D

K∑
k=1

p(D|X i,Li,Z) log p(zk|xαk , `βk)

= arg max
X ,L

K∑
k=1

M∑
j=1

 ∑
D∈D(k,j)

p(D|X i,Li,Z)

 log p(zk|xαk , `j)

= arg max
X ,L

K∑
k=1

M∑
j=1

wikj log p(zk|xαk , `j) (2.5)

where

wikj ,
∑

D∈D(k,j)

p(D|X i,Li,Z) (2.6)

is a weight, independent of the optimization variables X and L, that quantifies the

influence of the “soft” data association, and D(k, j) , {D ∈ D | βk = j} ⊆ D is the

set of all data associations such that measurement k is assigned to landmark j. Note

that the coordinate descent optimization (2.3b) after expanding the measurement

likelihoods has a similar form to (3.18), except that for each k there is exactly one j

10



such that wikj = 1 and wikl = 0 for all l 6= j.

We can also show that the EM formulation, besides being a generalization of

coordinate descent, is equivalent to the following matrix permanent maximization

problem.

Proposition 1. If p(D | X i,Li) is uniform, the maximizers of the EM formulation

in (2.4) and the optimization below are equal:

X i+1,Li+1 = arg max
X ,L

per(Qi(X ,L)),

where per denotes the matrix permanent2, Qi(X ,L) is a matrix with elements [Qi]kj :=

p(zk|xij, `ij)p(zk|xj, `j) and {(xij, `ij)} and {(xj, `j)} are enumerations of the sets X i×Li

and X × L, respectively.

Proof. First, we rewrite the optimization in (2.4) without a logarithm and similarly

expand the expectation:

X i+1,Li+1 =arg max
X ,L

ED
[
p(Z|X ,L,D) | X i,Li,Z

]
(2.7)

=arg max
X ,L

∑
D∈D

p(D|X i,Li,Z)p(Z|X ,L,D)

The data association likelihood can then be rewritten as

p(D|X i,Li,Z) =
p(Z|X i,Li,D)p(D|X i,Li)

p(Z|X i,Li) (2.8)

=
p(Z|X i,Li,D)p(D|X i,Li)∑
D p(Z|X i,Li,D)p(D|X i,Li) (2.9)

=
p(Z|X i,Li,D)∑
D p(Z|X i,Li,D)

(2.10)

2The permanent of an n × m matrix A = [A(i, j)] with n ≤ m is defined as per(A) :=∑
π

∏n
i=1A(i, π(i)), where the sum is over all one-to-one functions π : {1, . . . , n} → {1, . . . ,m}.
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with the last equality due to the assumption that p(D|X ,L) is uniform. We can next

decompose the measurement likelihood

p(Z|X ,L,D) =
∏
k

p(zk|xαk , `βk), (2.11)

and so

X i+1,Li+1 =arg max
X ,L

∑
D∈D

p(D|X i,Li,Z)p(Z|X ,L,D) (2.12)

=arg max
X ,L

∑
D∈D

∏
k

p(zk|xiαk , `iβk)p(zk|xαk , `βk)∑
D p(Z|X i,Li,D)

The result then follows by noting that the normalizing denominator is independent

of the optimization variables and from the definition of the matrix permanent.

Similar to the coordinate descent formulation, the EM formulation (3.18) allows us

to solve the permanent maximization problem iteratively. First, instead of estimating

a maximum likelihood data association, we estimate the data association distribution

p(D|X i,Li,Z) in the form of the weights wikj (the “E” step). Then, we maximize the

expected measurement log likelihood over the previously computed distribution (the

“M” step).

2.2 Simulations

To observe the effect of incorporating a probabilistic model of data association and

using Proposition 1 on the performance of an actual SLAM algorithm, we implemented

a simple 2D SLAM simulator of a bicycle robot equipped with a range and bearing

sensor around a field of fixed landmarks. The model is the same used in Bailey et al.

(2006), and the MATLAB code is partially based on the accompanying code (Bailey,

2021).

12



The simulated SLAM state consists of the 2D vehicle state

xk =


xk

yk

φk

 (2.13)

and the locations of each of the mapped landmarks `i ∈ R2 observed in the environment.

The vehicle motion model is taken to be the trajectory of the front wheel of a bicycle

subject to rolling motion constraints,

xk = f(xk−1,uk) =


xk−1 + Vk∆T cos(φk−1 + γk)

yk−1 + Vk∆T sin(φk−1 + γk)

φk−1 + Vk∆T
B

sin(γk)

 , (2.14)

where uk = [Vk γk]
T is the controls vector containing the velocity and steering angle,

respectively, and B is the wheelbase between the front and rear axles of the bicycle.

The observation model for a range-bearing measurement generated at time k by

landmark `j = [x`j y`j ]
T is given by

h(xi, `j) =

√(xi − x`j)2 + (yi − y`j)2

arctan
yi−y`j
xi−x`j

− φk

 . (2.15)

To estimate the robot and map state at time k, we use a general factor graph

formulation as given in Equation (3.18):

X̂, L̂ = arg max
X ,L

K∑
k=1

M∑
j=1

wikj log p(zk|xαk , `j) +
T∑
t=1

log p(zodom,t|xt,xt−1), (2.16)

where we assume the weights on odometric constraints have w = 1 due to there being
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no data association ambiguity.

To measure the effect of probabilistic data association on the estimation perfor-

mance, we solve for the weights wikj in two ways. First, we use the probabilistic

formulation as outlined in Section 2.1:

wikj ,
∑

D∈D(k,j)

p(D|X i,Li,Z). (2.17)

We refer to this as the probabilistic formulation.

Second, we use a maximum likelihood formulation of the data association problem,

in which we set wikj equal to 1 for exactly one j, the mode of the data association

distribution, and 0 everywhere else:

wikj ,


1 if j = arg max

s
p(zk|xi, `s)

0 else ,

(2.18)

this is equal to the standard maximum likelihood SLAM formulation and we refer to

it as the ML formulation here. The resulting least-squares system in both cases is

solved with a simple custom Levenberg-Marquardt solver that simply solves the full

system at each time step.

An example trajectory solved with the ML formulation under high noise conditions

immediately after a first loop closure is shown in Figure 1. The true trajectory is

shown as a black line and its estimate is shown in purple. The latest robot position

estimate is shown as a triangle along with its associated covariance ellipse in blue. True

feature locations are shown as green stars and their estimated locations are shown as

red dots; the associated covariance ellipses are plotted around each estimated feature

as a red ellipse. These “high” noise conditions are set so the standard deviation of the
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Figure 1: Simulated trajectory after successful loop closure

range measurement noise is σrange = 0.25 meters, and the standard deviation of the

bearing measurement noise is σbear = 5 degrees.

An alternate example trajectory at the same point and under the same noise

conditions in an ML formulation-solved trajectory after the first loop closure was

misdetected is shown in Figure 2. In this case, the detection of one of the features

near the beginning of the trajectory was falsely associated with a neighboring feature

rather than the true feature that generated it. Due to the ML formulation of the data

association solution, this misassigned constraint was given the full weight, resulting in

not only the trajectory estimate jumping away from the true position, but also the

estimator becoming inconsistent; note how the covariance ellipses of both the robot

and some mapped features do not contain the true position.

One would expect under a probalistic formulation for the errors created in such a
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Figure 2: Simulated trajectory after wrong loop closure
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situation to be smaller; this incorrect loop closure will have a smaller measurement

likelihood, leading to the constraint weight wkj to being smaller, which injects less

information into the system. The effect of this is both that the covariance ellipses will

be shrunk less by this incorrect loop closure and that the estimate will deviate from

its prior position by a smaller amount.

To test this over numerous such trajectories, we ran 1000 Monte Carlo simulations

of the same trajectory for both the ML and probabilistic association methods. Each

trajectory consisted of two loops around the shown environment, with the successful

estimations able to make two loop closures. The final position errors over all such

runs are shown as box plots in Figure 3; the boxes show the median, 25th, and 75th

percentiles of the final errors with whiskers extending to the set of outlier trials. From

this plot it is seen that the both the median error and the bulk of the error distribution

of the trials using probabilistic association are lower than those using ML association;

this is due to the ML association creating false loop closures and highly confident but

wrong associations under the given high measurement noise conditions.

A distribution of all used measurement weights in the probabilistic association

case is shown in Figure 4. Most measurements were included in the final estimation

with a weight near 1, with a sharply decreasing tail as w decreases past 0.8. The

complete lack of any weights less than 0.1 is due to a heuristic threshold in which we

discarded any extremely unconfident and ambiguous measurements with w < 0.1.

A second set of Monte Carlo experiments was also run in a lower-noise condition,

with σbear = 1 degree. The box plots of the final position errors are shown in Figure 5,

and the histogram of probabilistic measurement constraint weights is shown in Figure 6.

As can be seen in Figure 5, the median position error at the end of the trajectory

is very close to 0, reflecting the fact that most associations over the trajectory were

performed correctly for both the ML and probabilistic methods. As most associations
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Figure 3: Distributions of final trajectory position errors for ML and Probabilistic
association methods under high noise conditions, with σbear = 5 degrees.
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Figure 4: Distribution of all included measurement weights for probabilistic associations
under high noise conditions, with σbear = 5 degrees.
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Figure 5: Distributions of final trajectory position errors for ML and Probabilistic
association methods under low noise conditions, with σbear = 1 degree.
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Figure 6: Distribution of all included measurement weights for probabilistic associations
under low noise conditions, with σbear = 1 degree.
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were correct, the ML association method actually has a slightly lower median error

(0.25 meters) compared to the probabilistic association method (0.35 meters). This

is expected, as if all associations are correct, the ML method will weight them more

highly than the probabilistic method. The lower uncertainty in each measurement

assignment can also be seen in the histogram in Figure 6, with the majority of weights

near 1 and none below 0.6.
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Chapter 3

Semantic SLAM with Bounding Box

Detections

3.1 Problem Formulation

In this chapter, we focus on a particular formulation of the SLAM problem (Bowman

et al., 2017; Atanasov et al., 2018) that in addition to sensor and landmark poses

involves landmark classes (e.g ., door, chair, table) and semantic measurements in the

form of object detections. We will demonstrate that the expectation maximization

formulation (3.18) is an effective way to solve the semantic SLAM problem.

Let the state ` of each landmark consist of its position `p ∈ R3 as well as a class

label `c from a discrete set C = {1, . . . , C}. To estimate the landmark states L and

sensor trajectory X , we utilize three sources of information: inertial, geometric point

features, and semantic object observations. The purpose for the inclusion of these

three source of information is that they are all complementary to each other. IMUs

and inertial measurements are ideal for tracking the state of the robot over very

short periods of time, in cases of temporary occlusion of the camera or feature-less

environments to improve robustness, and over periods of very dynamic motion where

image processing becomes difficult. Geometric features extracted from images, on

the other hand, are able to track motion and build relative motion constraints over

medium time frames. Finally, in addition to the already discussed inherently useful
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Figure 7: Example keyframe image overlaid with ORB features (green points) and
object detections

qualities of building a semantic map, semantic information is useful for the most

long-term motion tracking and viewpoint-independent loop closure.

Examples of the geometric features (ORB features) and semantic bounding box

observations extracted from a single image can be seen in Figure 7, and will be

discussed in detail in the upcoming sections.

3.1.1 Inertial information

We assume that the sensor package consists of an inertial measurement unit (IMU)

and one monocular camera. A subset of the images captured by the camera are

chosen as keyframes (e.g ., by selecting every nth frame as a keyframe). The sensor

state corresponding to the tth keyframe is denoted xt and consists of the sensor 6-D

pose, velocity, and IMU bias values. We assume that the IMU and camera are time

synchronized, so between keyframes t and t + 1, the sensor also collects a set It of
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Figure 8: Estimated sensor trajectory (blue) and landmark positions and classes using
inertial, geometric, and semantic measurements such as those in Fig. 7.

IMU measurements (linear acceleration and rotational velocity).

3.1.2 Geometric information

In addition to the inertial measurements It, we utilize geometric point measurements

(e.g ., Harris corners, SIFT, SURF, FAST, BRISK, ORB, etc.) Yt. From each

keyframe image, these geometric point features are extracted and tracked forward to

the subsequent keyframe. In our experiments we extract ORB features (Rublee et al.,

2011) from each keyframe and match them to the subsequent keyframe by minimizing

the ORB descriptor distance. Since these features are matched by an external method,

we assume that their data association is known.

3.1.3 Semantic information

The last type of measurement used are object detections St extracted from every

keyframe image. An object detection sk = (sck, s
s
k, s

b
k) ∈ St extracted from keyframe t

consists of a detected class sck ∈ C, a score ssk quantifying the detection confidence, and

a bounding box sbk. Such information can be obtained from any modern approach for

object recognition such as Ren et al. (2015); Bochkovskiy et al. (2020); Srinivas et al.
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(2021); Carion et al. (2020). In our implementation, we use a deformable parts model

(DPM) detector from Felzenszwalb et al. (2010); Zhu et al. (2014); Dubout and Fleuret

(2013), which runs on a CPU in real time. If the data association Dk = (αk, βk) of

measurement sk is known, the measurement likelihood can be decomposed as follows:

p(sk|xαk , `βk) = p(sck|`cβk)p(s
s
k|`cβk , s

c
k)p(s

b
k|xαk , `pβk). (3.1)

The density p(sck|`cβk) corresponds to the confusion matrix of the object detector

and is learned offline along with the score distribution p(ssk|`cβk , sck). The bounding-

box likelihood p(sbk|xαk , `pβk) is assumed normally distributed with mean equal to

the perspective projection of the centroid of the object onto the image plane and

covariance proportional to the dimensions of the detected bounding box.

Problem 1 (Semantic SLAM). Given inertial I , {It}Tt=1, geometric Y , {Yt}Tt=1,

and semantic S , {St}Tt=1 measurements, estimate the sensor state trajectory X and

the positions and classes L of the objects in the environment.

The inertial and geometric measurements are used to track the sensor trajectory

locally and, similar to a visual odometry approach, the geometric structure is not

recovered. The semantic measurements, in contrast, are used to construct a map of

objects that can be used to perform loop closure that is robust to ambiguities and

viewpoint and is more efficient than a SLAM approach that maintains full geometric

structure.

3.2 Semantic SLAM using EM

Following the observations from Chapter 2, we apply expectation maximization to

robustly handle the semantic data association. In addition to treating data association

as a latent variable, we also treat the discrete landmark class labels as latent variables
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in the optimization, resulting in a clean and efficient separation between discrete

and continuous variables. As mentioned in Section 3.1.2, the data association of

the geometric measurements is provided by the feature tracking algorithm, so the

latent variables we use are the data association D of the semantic measurements

measurements and the object classes `c1:M . The following proposition specifies the

EM steps necessary to solve the semantic SLAM problem. The initial guess X (0) is

provided by odometry integration; the initial guess L(0) can be obtained from X (0) by

initializing a landmark along the detected camera ray.

Proposition 2. If p(D|X ,L) is uniform and the semantic measurement data associ-

ations are independent across keyframes1, i.e.,

p(D|S,X ,L) =
T∏
t=1

p(Dt|St,X ,L), (3.2)

the semantic SLAM problem can be solved via the expectation maximization algorithm

by iteratively solving for (1) data association weights wtij (the “E” step) and (2)

continuous sensor states X and landmark positions `p1:M (the “M” step) via the

following equations:

w
t,(i)
kj =

∑
`c∈C

∑
Dt∈Dt(k,j)

κ(i)(Dt, `c) ∀t, k, j (3.3)

X (i+1), `
p,(i+1)
1:M = arg min

X ,`p1:M

T∑
t=1

∑
sk∈St

M∑
j=1

−wt,(i)kj log p(sk|xt, `j)

− log p(Y|X )− log p(I|X ) (3.4)

1This “näıve Bayes” assumption might not always hold perfectly in practice but it significantly
simplifies the optimization and allows for efficient implementation.

27



where

κ(i)(Dt, `c) =
p(St|X (i),L(i),Dt)∑

`c

∑
Dt∈Dt p(St|X (i),L(i),Dt)

,

Dt is the set of all possible data associations for measurements received at timestep t,

and Dt(i, j) ⊆ Dt is the set of all possible data associations for measurements received

at time t such that measurement i is assigned to landmark j.

Proof. Suppose we have some initial guess given by θ(i) = {X (i), `p,(i)}. We can

then compute an improved estimate of θ = {X , `p} by maximizing the expected log

likelihood:

θ(i+1) = arg max
θ

ED,`c|θ(i) [log p(D, `c,S,Y , I|θ)] (3.5)

Expanding the expectation,

ED,`c|θ(i) [log p(D, `c,S,Y , I|θ)]

=
∑
D,`c

p(D, `c|S,Y , I, θ(i)) log p(S,Y , I,D, `c|θ) (3.6)

=
∑
D,`c

p(D, `c|S, θ(i)) log[p(S,D, `c|θ)p(Y|θ)p(I|θ)] (3.7)

Letting κ(D, `c) , p(D, `c|S, θ(i)), a constant with respect to the optimization

variables, we continue:

E[·] =
∑
D,`c

κ(D, `c) log p(S,D, `c|θ) +
∑
D,`c

κ(D, `c) log[p(Y|θ)p(I|θ)] (3.8)

=
∑
D,`c

κ(D, `c) log p(S,D, `c|θ) + log[p(Y|θ)p(I|θ)]
∑
D,`c

κ(D, `c) (3.9)

=
∑
D,`c

κ(D, `c) log p(S,D, `c|θ) + log p(Y|θ) + log p(I|θ), (3.10)
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as
∑
D,`c κ(D, `c) = 1.

Focusing on the leftmost summation over data associations and landmark classes,

∑
D,`c

κ(D, `c) log p(S,D, `c|θ) (3.11)

=
∑
D,`c

κ(D, `c) log p(S|D, `c, θ) +
∑
D,`c

κ(D, `c) log p(D, `c|θ)

Using the assumption that p(D, `c|θ) is a uniform distribution over the space of

data associations and landmark classes, this term doesn’t affect which θ maximizes

the objective, so for optimization purposes we have

∑
D,`c

κ(D, `c) log p(S,D, `c|θ) =
∑
D,`c

κ(D, `c) log p(S|D, `c, θ) (3.12)

=
∑
t

∑
i

∑
Dt,`c

κ(Dt, `c) log p(si|xt, `βi) (3.13)

Note that if we let D(i, j) be the subset of all possible data associations that assign

measurement i to landmark j, we can further decompose this summation as

∑
D,`c

κ(D, `c) log p(S,D, `c|θ) =
∑
t

∑
i

∑
j

∑
`c

∑
Dt∈D(i,j)

κ(Dt, `c) log p(si|xt, `j) (3.14)

Finally, letting wtij ,
∑
`c

∑
Dt∈D(i,j)

κ(Dt, `c), we can write the final expectation maxi-

mization as

θ(i+1) = arg max
θ

∑
t

∑
i

∑
j

wtij log p(si|xt, `j) + log p(Y|θ) + log p(I|θ). (3.15)

While Proposition 2 allows us to iteratively solve the semantic SLAM problem in a
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probabilistic EM framework, the computation of the weights w
t,(i)
kj requires summations

over exponentially large data association spaces and can become prohibitively expensive

when the number of landmarks or measurements grows large. Similar to the expression

in Proposition 1, it is possible to express this weight as a matrix permanent.

Proposition 3. If p(D|X ,L) is uniform and the semantic measurement data associ-

ations are independent across keyframes, i.e.,

p(D|S,X ,L) =
T∏
t=1

p(Dt|St,X ,L), (3.16)

the semantic SLAM problem can be solved via the expectation maximization algorithm

by iteratively solving for (1) data association weights wtij (the “E” step) and (2)

continuous sensor states X and landmark positions `p1:M (the “M” step) via the

following equations:

w
t,(i)
kj = γitl

t
kj per Lt

−kj (3.17)

X (i+1), `
p,(i+1)
1:M = arg min

X ,`p1:M

T∑
t=1

∑
sk∈St

M∑
j=1

−wt,(i)kj log p(sk|xt, `j)

− log p(Y|X )− log p(I|X ) (3.18)

where γit is a normalizing factor such that
∑

k w
t,i
kj = 1, per denotes the matrix

permanent, Lt is the matrix of individual measurement likelihoods with ltkj = p(stk|xt, `j),

and Lt
−ij is the matrix Lt with the ith row and jth column removed.
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Proof. From Proposition 2, the weights w
t,(i)
kj are defined as

w
t,(i)
kj =

∑
`c∈C

∑
Dt∈Dt(k,j)

p(St|X (i),L(i),Dt)∑
`c

∑
Dt∈Dt p(St|X (i),L(i),Dt)

(3.19)

= γit
∑
`c∈C

∑
Dt∈Dt(k,j)

p(St|X (i),L(i),Dt), (3.20)

where

γit =
1∑

`c

∑
Dt∈Dt p(St|X (i),L(i),Dt)

(3.21)

is a constant normalizing factor.

Now, given a data association, individual measurements are independent and so

we can expand

w
t,(i)
kj = γit

∑
`c

∑
Dt∈Dt(k,j)

∏
sk∈St

p(sk|xt, `βk). (3.22)

where βk is the landmark index as given by the data association Dt such that the kth

measurement was generated by the βkth landmark.

For all Dt ∈ Dt(k, j) we have βk = j by definition, so

w
t,(i)
kj = γit p(sk|xt, `j)

∑
Dt∈Dt(k,j)

∏
sm∈St;m 6=k

p(sm|xt, `βm) (3.23)

From the definition of the matrix permanent,

per L =
∑
π

Kt∏
s=1

lts,π(s) (3.24)

where the first sum is over all one-to-one functions π : {1, . . . , Kt} → {1, . . . ,M} and
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where Kt = |St|. This is exactly our definition of a valid data association, and with

the definition of L as given in the statement of the proposition,

per L =
∑
D∈D

Kt∏
s=1

lts,βs (3.25)

=
∑
D∈D

∏
sk∈St

p(sk|xt, `βk) (3.26)

Similarly, the permanent of Lt
−kj will include a sum over all one-to-one functions

π : {1, . . . , Kt} \ {k} → {1, . . . ,M} \ {j}. It is now easy to see that

per Lt
−kj =

∑
Dt∈Dt(k,j)

∏
sm∈St;m 6=k

p(sm|xt, `βm) (3.27)

and so combining Equations (3.23) and (3.27) we have the final expression

wt,ikj = γit p(sk|xt, `j) per Lt
−kj (3.28)

= γit l
t
kj per Lt

−kj. (3.29)

Crucially, the above proposition allows us to take advantage of matrix permanent

approximation algorithms (Jerrum et al., 2004; Law, 2009) that have been developed.

Proposition 3 thus allows us to effectively summarize the combinatorially large data

association space in polynomial time, making probabilistic data association feasible

for even a large number of measurements.

3.2.1 Object classes and data association (E step)

The computation of the weights for a single keyframe require several combinatorial sums

over all possible data associations. However, due to the assumption of independent
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associations among keyframes and the fact that only few objects are present within

the sensor field-of-view, it is feasible to compute the summations and hence wtkj for

all keyframes t, measurements k, and landmarks j extremely efficiently in practice.

Once the weights w
t,(i)
kj are computed for each measurement-landmark pair, they are

used within the continuous optimization over sensor states and landmark positions.

Additionally, maximum likelihood landmark class estimates `c can be recovered from

the computed κ values:

ˆ̀c
1:M = arg max

`c
p(`c1:M |θ,Z) = arg max

`c

T∏
t=1

∑
Dt∈Dt

κ(Dt, `c)

3.2.2 Pose graph optimization (M step)

Equation (3.4) forms the basis of our pose graph optimization over sensor states and

landmark positions. A pose graph is a convenient way of representing an optimization

problem for which there exists a clear physical structure or a sparse constraint set.

The graph consists of a set of vertices V , each of which corresponds to an optimization

variable, and a set of factors F among the vertices that correspond to individual

components of the cost function. Graphically, a factor is a generalization of an edge

that allows connectivity between more than two vertices. A factor f in the graph is

associated with a cost function that depends on a subset of the variables V such that

the entire optimization is of the form

V̂ = arg min
V

∑
f∈F

f(V) (3.30)

In addition to providing a useful representation, factor graphs are advantageous in

that there exist computational tools that allow efficient optimization (Dellaert, 2012;

Kümmerle et al., 2011).
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Our graph has a vertex for each sensor state xt and for each landmark position

`pi . Contrary to most prior work in which a hard data association decision results in

a measurement defining a single factor between a sensor pose and a landmark, we

consider soft semantic data association multiple factors.

Semantic Factors

A measurement sk from sensor state xi defines factors f skj(xi, `j) for each visible

landmark j. Assuming the number of visible landmarks and the number of received

measurements are approximately equal, with this method the number of semantic

factors in the graph is roughly squared. Note that since `c is fixed in (3.4), p(ss|`c, sc)

and p(sc|`c) are constant. Thus, log p(s|x, `) = log p(sb|x, `p) + log p(ss|`c, sc)p(sc|`c)

and so the latter term can be dropped from the optimization.

Let hπ(x, `p) be the standard perspective projection of a landmark `p onto a camera

at pose x. We assume that the camera measurement of a landmark `p from camera

pose x is Gaussian distributed with mean hπ(x, `p) and covariance Rs. Thus, a camera

factor corresponding to sensor state t, measurement k, and landmark j, f skj, becomes

f skj(X ,L) = −wt,(i)kj log p(sbk|xt, `pj) (3.31)

= ‖sbk − hπ(xt, `j)‖2

Rs/w
t,(i)
kj

(3.32)

Those semantic factors due to the re-observation of a previously seen landmark

are our method’s source of loop closure constraints.

Geometric Factors

Following Forster et al. (2015) and Mourikis and Roumeliotis (2007), we incorporate

geometric measurements into the pose graph as structureless constraints between

the camera poses that observed them. We can rewrite the term corresponding to
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geometric factors in (3.4) as

− log p(Y|X ) = −
Ny∑
i=1

∑
k:βyk=i

log p(yk|xαyk) (3.33)

where Ny is the total number of distinct feature tracks, i.e. the total number of

observed physical geometric landmarks.

Letting ρβyk be the 3D position in the global frame of the landmark that generated

measurement yk, and assuming as before that the projection has Gaussian pixel noise

with covariance Ry, we have

− log p(Y|X ) =

Ny∑
i=1

∑
k:βyk=i

‖yk − hπ(xαyk , ρi)‖
2
Ry

(3.34)

For a single observed landmark ρi, the factor constraining the camera poses which

observed it takes the form

f yi (X ) =
∑
k:βyk=i

‖yk − hπ(xαyk , ρi)‖
2
Ry

(3.35)

Because we use iterative methods to optimize the full pose graph, it is necessary

to linearize the above cost term. The linearization of the above results in an inner

cost term of the form

ci =
∑
k:βyk=i

‖Hρ
ikδρi + Hx

ikδxαyk + bik‖2 (3.36)

where Hρ
ik is the Jacobian of the cost function with respect to ρβyk , Hx

ik is the Jacobian

with respect to xαyk , bik is a function of the measurement and its error, and the

linearized cost term is in terms of deltas δx, δρ rather than the true values x, ρ.
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Writing the inner summation in one matrix form by stacking the individual

components, we can write this simply as

ci = ‖Hρ
i δρi + Hx

i δxαy(i) + bi‖2. (3.37)

To avoid optimizing over ρ values, and hence to remove the dependence of the cost

function upon them, we project the cost into the null space of its Jacobian. We

premultiply each cost term by Ai, a matrix whose columns span the left nullspace of

Hρ
i . The cost term for the structureless geometric features thus becomes a function of

only the states which observe it:

ci = ‖AiH
x
i δxαy(i) + Aibi‖2 (3.38)

Inertial Factors

To incorporate the accelerometer and gyroscope measurements into the pose graph, we

use the method of preintegration factors detailed in Forster et al. (2015). The authors

provide an efficient method of computing inertial residuals between two keyframes xi

and xj in which several inertial measurements were received. By “preintegrating” all

IMU measurements received between the two keyframes, the relative pose difference (i.e.

difference in position, velocity, and orientation) between the two successive keyframes

is estimated. Using this estimated relative pose, the authors provide expressions

for inertial residuals on the rotation (r∆Rij), velocity (r∆vij), and position (r∆pij)

differences between two keyframes as a function of the poses xi and xj. Specifically,
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they provide said expressions along with their noise covariances Σ such that

fIi (X ) = − log p(Iij|X ) (3.39)

= ‖r∆Rij‖2
ΣRij

+ ‖r∆vij‖2
Σvij

+ ‖r∆pij‖2
Σpij

(3.40)

= ‖rIij‖2
Σij

(3.41)

The full pose graph optimization corresponding to equation (3.4) is then a nonlinear

least squares problem involving semantic observation terms (see (3.32)), geometric

observation terms (see (3.38)), and inertial terms (see (3.41)).

x̂1:T , ˆ̀
1:M = arg min

X ,`1:M

K∑
k=1

M∑
j=1

f skj(X , `p1:M) +

Ny∑
i=1

f yi (X ) +
T−1∑
t=1

fIt (X ) (3.42)

We solve this within the iSAM2 framework (Kaess et al., 2012), which is able to

provide a near-optimal solution with real-time performance.

3.3 Experiments

We implemented our algorithm in C++ using GTSAM (Dellaert, 2012) and its

iSAM2 implementation as the optimization back-end. All experiments were able to be

computed in real-time.

The front-end in our implementation simply selects every 15th camera frame as

a keyframe. As mentioned in section 3.1.2, the tracking front-end extracts ORB

features (Rublee et al., 2011) from every selected keyframe and tracks them forward

through the images by matching the ORB descriptors. Outlier tracks are eliminated by

estimating the essential matrix between the two views using RANSAC and removing

those features which do not fit the estimated model. We assume that the timeframe

between two subsequent images is short enough that the orientation difference between
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Figure 9: Sensor trajectory and estimated landmarks for the first office experiment

the two frames can be estimated accurately by integrating the gyroscope measurements.

Thus, only the unit translation vector between the two images needs to be estimated.

We can then estimate the essential matrix using only two point correspondences (Kottas

et al., 2013).

The front-end’s object detector is an implementation of the deformable parts

model detection algorithm (Dubout and Fleuret, 2013). On the acquisition of the

semantic measurements from a new keyframe, the Mahalanobis distance from the

measurement to all known landmarks is computed. If all such distances are above

a certain threshold, a new landmark is initialized in the map, with initial position

estimate along the camera ray, with depth given by the median depth of all geometric

feature measurements within its detected bounding box (or some fixed value if no
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Figure 10: Estimated trajectories in first office experiment.

Figure 11: Estimated trajectory in second office experiment from our algorithm (blue
line) along with our estimated door landmark positions (blue circles), overlaid onto
partial ground truth map (red) along with ground truth door locations (green squares)
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such features were tracked successfully).

While ideally we would iterate between solving for constraint weights wij and

poses as Proposition 3 suggests, in practice for computational reasons we solve for the

weights just once per keyframe.

Our experimental platform was a VI-Sensor (Nikolic et al., 2014) from which we

used the IMU and left camera. We performed three separate experiments. The first

consists of a medium length (approx. 175 meters) trajectory around one floor of an

office building, in which the object classes detected and kept in the map were two types

of chairs (red office chairs and brown four-legged chairs). The second experiment is a

long (approx. 625 meters) trajectory around two different floors of an office building.

The classes in the second experiment are red office chairs and doors. The third and

final trajectory is several loops around a room equipped with a vicon motion tracking

system, in which the only class of objects detected is red office chairs. In addition to

our own experiments, we applied our algorithm to the KITTI dataset (Geiger et al.,

2012) odometry sequences 05 and 06.

The final trajectory estimate along with the estimated semantic map for the first

office experiment is shown in Figure 9. The trajectories estimated by our algorithm,

by the ROVIO visual-inertial odometry algorithm (Bloesch et al., 2015), and by the

ORB-SLAM2 visual SLAM algorithm (Mur-Artal et al., 2015; Mur-Artal and Tardós,

2016), projected into the x-y plane, are shown in Figure 10. Due to a lack of inertial

information and a relative lack of visual features in the environment, ORB-SLAM2

frequently got lost and much of the trajectory estimate is missing, but was always

able to recover when entering a previously mapped region.

The second office experiment trajectory along with the estimated map is shown in

Figure 8. An example image overlaid with object detections from near the beginning

of this trajectory is displayed in Figure 7. We constructed a partial map of the top
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Figure 12: Partial ORB-SLAM2 trajectory after incorrect loop closure in second office
experiment.

floor in the experiment using a ground robot equipped with a LIDAR scanner. On

this ground truth map, we manually picked out door locations. The portion of the

estimated trajectory on the top floor is overlaid onto this partial truth map (the two

were manually aligned) in Figure 11, Due to the extremely repetitive nature of the

hallways in this experiment, bag-of-words based loop closure detections are subject

to false positives and incorrect matches. ORB-SLAM2 was unable to successfully

estimate the trajectory due to such false loop closures. A partial trajectory estimate

after an incorrect loop closure detection is shown in Fig. 12.
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Figure 13: Sensor trajectory and estimated landmarks for the vicon experiment
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Figure 14: Position errors with respect to vicon ground truth.
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The vicon trajectory and the estimated map of chairs is shown in Figure 13. We

evaluated the position error with respect to the vicon’s estimate for our algorithm,

ROVIO, and ORB-SLAM2 and the results are shown in Figure 14. Note that the

spikes in the estimate errors are due to momentary occlusion from the vicon cameras.

We also evaluated our algorithm on the KITTI outdoor dataset, using odometry

sequences 05 and 06. The semantic objects detected and used in our algorithm were

cars. Rather than use inertial odometry in this experiment, we used the VISO2 (Geiger

et al., 2011) visual odometry algorithm as the initial guess X (0) for a new keyframe

state. Similarly, we replaced the preintegrated inertial relative pose (cf. Section 3.2.2)

with the relative pose obtained from VISO in the odometry factors. The absolute

position errors over time for KITTI sequence 05 with respect to ground truth for our

algorithm, VISO2, and ORB-SLAM2 with monocular and stereo cameras are shown

in Figure 15. The same for sequence 06 are shown in Figure 16. Finally, the mean

translational and rotational errors over all possible subpaths of length (100, 200, ...,

800) meters are shown in Figure 18.

44



0 20 40 60 80100120140160180200220240260280300
0

5

10

15

20

25

t [s]

A
b
so
lu
te

tr
an
sl
at
io
n
er
ro
r
[m

] Sequence 05

Ours
VISO2
OrbSLAM Mono
OrbSLAM Stereo

Figure 15: Norm of position error between estimate and ground truth, KITTI seq. 05
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Figure 16: Norm of position error between estimate and ground truth, KITTI seq. 06

KITTI Sequence 05
Method Trans. err [%] Rot. err [deg/m]

Ours 1.31 0.0038
VISO2 4.08 0.0050

ORBSLAM2 Mono 5.39 0.0019
ORBSLAM2 Stereo 0.63 0.0017

Figure 17: KITTI sequence 05 mean translational and rotational error over path
lengths (100, 200, . . . , 800) meters.
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KITTI Sequence 06
Method Trans. err [%] Rot. err [deg/m]

Ours 0.77 0.0037
VISO2 1.81 0.0036

ORBSLAM2 Mono 6.71 0.0015
ORBSLAM2 Stereo 0.29 0.0013

Figure 18: KITTI sequence 06 mean translational and rotational error over path
lengths (100, 200, . . . , 800) meters.
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Chapter 4

Semantic SLAM via Semantic Key-

points

4.1 Introduction

While the methods described in the preceding section as demonstrated can fairly

robustly perform object-level SLAM over long trajectories given only bounding box

measurements, it suffers from several issues. First, objects are represented solely as

a position `p ∈ R3, while we would desire a richer representation as a full pose in

`p ∈ SE(3). Second, even under a probabilistic association framework, the small

two-dimensional measurement space and ambiguities to scale and rotation render

data association difficult and often ambiguous. Finally, triangulation of bounding

box centroids sometimes may result in unreliable object localization and may have

initialization issues.

To ameliorate these issues, we now focus on a more complex object representation.

In this chapter, an object is represented as its pose o ∈ SE(3) in addition to a set

of semantic keypoints `i ∈ R3. These semantic keypoints consist of semantically

meaningful points on the object that can be reliably found across different instances

of the object class and meaningfully located in space. For example, the object class

car may have among its semantic keypoints those of “front left wheel” and “rear

right headlight.” Using the methods of Pavlakos et al. (2017), an object’s semantic
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Figure 19: Example detected semantic keypoints for the object classes bicycle, bus,
car, and chair (from Pavlakos et al. (2017))

keypoints are able to be reliably detected and identified across various viewpoints.

For example, in Figure 19 various semantic keypoint detections for the object classes

bicycle, bus, car, and chair are shown.

To account for intraclass variation of the shape of particular object instances, an

object with in a particular class is represented as a static deformation of a shape

model. This shape model consists of two components: (1) the mean shape (taken over

all representative instances from the class) of each of its p semantic keypoints relative

to its own pose o, along with several modes of possible shape variability (computed by

principal component analysis). More specifically, let S ∈ R3×p be a matrix consisting

of an object’s p keypoints represented in the object’s own frame stacked horizontally.

We then have

S(c) = B0 +
k∑
i=1

ciBi, (4.1)

where B0 is the object class’s mean shape and B1, . . . ,Bk are the modes of possible
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Figure 20: Example factor structure for a car object observed from two camera poses

shape variability (Pavlakos et al., 2017), written as a function of the deformation

coefficients c ∈ Rk.

Intuitively, repeated observations of a keypoint `j are used to triangulate it in

space; the deformable shape model of the known object class is then used to indirectly

estimate both the deformation coefficients c and the overall object pose o. See Figure 20

for an example of a car being observed from two camera poses. The semantic keypoints,

denoted by colored circles and their associated image patches, are constrained in space

by the corresponding image observations, denoted by red lines drawn to the camera

positions. The object pose, represented by the axis in the middle of the car, is then

constrained by the deformable object structure, denoted by the purple lines drawn to

the keypoints.

The full SLAM problem under the expanded keypoint-based object model can now
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be stated as the following MAP estimation problem (cf. Equation (1.1)):

X̂ , Ô, L̂, Ĉ = arg max
X ,O,L,C

log p(X ,O,L, C|Z) (4.2)

= arg min
X ,O,L,C

[
−

N∑
i=1

log p(Zi|X ,O,L, C)− log p(X ,O,L, C)
]
, (4.3)

where the second equality is from Equation (1.9), and where O,L, and C are the sets of

all objects, semantic keypoints, and deformation coefficients, respectively. As an object

measurement solely measures that object’s semantic keypoints, and as our object

model priors are independent of any particular trajectory, we can further simplify this

as

X̂ , Ô, L̂, Ĉ = arg min
X ,O,L,C

[
−

N∑
i=1

log p(Zi|X ,L)− log p(O,L, C)
]
. (4.4)

Notice that the usual factor graph terms p(Zi|X ,L) involve only the semantic keypoint

positions L; the full object poses are only determined through the object structure

“prior” term p(O,L, C).

4.2 Semantic Measurement Model

Formally, an object in the map consists of four elements: its class oC , its pose

o ∈ SE(3), the positions of its keypoints `i ∈ R3, i = 1, . . . , p, and its deformation

coefficients c ∈ Rk. Note that we include the landmark positions `i explicitly as an

optimization variable as we allow them to deviate from the positions implied from the

object pose o and deformation parameters c.

When a camera x observes this object o, the measurement h(x, o) consists of
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projections of each of the object’s semantic keypoints onto the image plane:

h(x, o) =

[
hπ(x, `1)T · · · hπ(x, `p)

T

]T
, (4.5)

where hπ(x, `) is the standard perspective projection of a point at ` onto a camera at

pose x.

The likelihood of a single semantic measurement z = [zT1 · · · zTp ]T is given as

p(x, o, `, c|z) = p(o, c|x, `, z)p(x, `|z). (4.6)

Note that the actual measurement z observes only the semantic keypoints ` and

not the overall object pose o, and that given a particular class an object’s pose and

structure is uniquely determined by the position of its set of keypoints {`}. Thus, we

have p(o, c|x, `, z) = p(o, c|`), and so

p(x, o, `, c|z) = p(o, c|`)p(x, `|z) (4.7)

=
p(`|o, c)p(o, c)

p(`)

p(z|x, `)p(x, `)
p(z)

(4.8)

∝ p(z|x, `)p(`|o, c)p(o, c), (4.9)

where we assume uniform priors p(`), p(x, `), and p(z).

Let us first examine the first term in (4.9), p(z|x, `), and begin to compute log-

probabilities as required in (4.4). As the measurements z are simply perspective

projections of the keypoints onto an image plane with some additive (Gaussian)
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measurement noise, we have

log p(z|x, `) ∝ log

p∏
i=1

p(zi|x, `i) (4.10)

∝ −
p∑
i=1

‖zi − hπ(x, `i)‖2
R, (4.11)

where R ∈ R2×2 is the image measurement covariance matrix.

Next, let us examine the second term p(`|o, c). This probability relates to the

deformable object structure, and describes how likely a given object configuration is

given the learned object basis structure. Let Gq̄O and GpO be the rotation and position,

respectively, of the object with respect to the global frame. Following equation (4.1),

we have

`i = R(Gq̄O)

(
bi0 +

k∑
j=1

cjb
i
j

)
+ GpO, i = 1, . . . , p (4.12)

= R(Gq̄O)σi(c) + GpO, i = 1, . . . , p, (4.13)

where bij is the ith column of Bj, and σi(c) is the ith structure-determined keypoint

position in the local frame with deformation coefficients c (the ith column of S(c) as

given in Equation 4.1).

Because the deformable shape model may not perfectly capture all intraclass

variation, and because keypoint positions will not be estimated perfectly due to image

noise and state uncertainty, we allow for estimated keypoints ` to vary from their

structure σ(c) by introducing a gaussian noise term wst ∼ N (0,Rstruct). Here Rstruct

acts as more of a parameter describing how closely the learned object model fits

the actual object class than a true measurement noise and should be chosen to be a
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relatively small value. We then write a probabilistic expression for `i as

`i = R(Gq̄O)σi(c) + GpO + wst, i = 1, . . . , p. (4.14)

We can now write the desired log-probability as

log p(`|o, c) = log

p∏
i=1

p(`i|o, c) (4.15)

∝ −
p∑
i=1

‖`i −R(Gq̄O)σi(c)− GpO‖2
Rstruct

. (4.16)

Finally, let us examine the term p(o, c). We assume that the deformation coefficients

are independent of the object pose and that the pose prior p(o) is uniform, so we

have p(o, c) ∝ p(c). As in Pavlakos et al. (2017), we use the term p(c) as a simple

regularizer on the coefficients c:

log p(c) ∝ −λ‖c‖2
2, (4.17)

where λ is a chosen regularization parameter.

Combining equations (4.9), (4.11), (4.16), and (4.17), we can now write the ex-

pression for the full semantic measurement log-probability,

− log p(x, o, `, c|z) ∝
p∑
i=1

‖zi − hπ(x, `i)‖2
R

+

p∑
i=1

‖`i −R(Gq̄O)σi(c)− GpO‖2
Rstruct

+ λ‖c‖2
2.

(4.18)

In practice, a single object is necessarily observed from multiple different camera

poses. While each observation alters the measurement probability (equation (4.11))

associated with the object, the structure probabilities (equations (4.16) and (4.17))
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remain the same. Suppose an object is observed by a set of measurements {zi}Ki=1.

We can write the full log-probability associated with this object as

− log p(x, o, `, c|z1:K) ∝
K∑
k=1

p∑
i=1

‖[zk]i − hπ(x, `i)‖2
R

+

p∑
i=1

‖`i −R(Gq̄O)σi(c)− GpO‖2
Rstruct

+ λ‖c‖2
2,

(4.19)

where [zk]i is the ith keypoint measurement in measurement zk.

More generally, we can now consider the entire trajectory and thus the entire

SLAM problem. Assuming a known data association, let βk be the index of the

mapped object that generated the kth semantic measurement, i.e. such that sk is a

measurement of object oβk . Next, as the number and structure of semantic keypoints

per object varies with respect to the class of that object, let p(oC) be the number of

keypoints for an object with object class oC , and let σi(c|oC) be the local position

of object o’s keypoint as before given that object o is of class oC . Finally, slightly

abusing notation, let `i(o) be the ith keypoint of the keypoints that belong to object

o. We can now write the following proposition.

Proposition 4. Under the semantic keypoint measurement model described in Sec-

tion 4.2, the Semantic SLAM problem (Problem 1) can be solved with the following

factor graph estimation problem:

X̂ , L̂ = arg min
X ,L

T∑
t=1

∑
sk∈St

p(oCβk
)∑

i=1

‖[sk]i − hπ(xt, `i(oβk))‖2
R

+
M∑
j=1

p(oCj )∑
i=1

‖`i(oj)−R(Gq̄Oj)σi(c|oCj )− GpOj‖2
Rstruct

+ λ
M∑
j=1

‖cj‖2
2 − log p(Y|X )− log p(I|X ).

(4.20)
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As in Section 3.2.2, we can write this in an even more explicitly factor-graph based

formulation by writing expressions for the semantic keypoint and semantic object

structure factors. Similar to the definition of βk, let αk be the index of the sensor

pose at which semantic measurement k was taken, i.e. such that measurement sk was

taken at pose xαk . Let a semantic keypoint factor for measurement sk be given as

fkeyk (X ,L) =

p(oCβk
)∑

i=1

‖[sk]i − hπ(xαk , `i(oβk))‖2
R, (4.21)

and let a semantic structure factor for object oj be given as

f structj (X ,L) =

p(oCj )∑
i=1

‖`i(oj)−R(Gq̄Oj)σi(c|oCj )− GpOj‖2
Rstruct

+ λ‖cj‖2. (4.22)

Equation 4.20, and hence the full Semantic SLAM problem, is then equal to the

following factor graph optimization:

X̂ , L̂ = arg min
X ,L

K∑
k=1

fkeyk (X ,L) +
M∑
j=1

f structj (X ,L) +

Ny∑
i=1

f yi (X ) +
T−1∑
t=1

fIt (X ), (4.23)

where as defined in Section 3.2.2, f y and fI are geometric and inertial factors defined

in Equations (3.38) and (3.41), respectively, and Ny is the total number of distinct

geometric feature tracks.

Note that unlike the exposition in Chapter 2 and the probabilistic association

methods used in Chapter 3, in the above formulation we have assumed a known

data association. It is worth exploring why this is the case. When extracting an

object measurement as the centroid of a detected bounding box, a large of inherent

measurement error is present; while a difference of a few pixels in the border of a

bounding box may almost be imperceptible to a human observing the measurement
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quality on an image, the resulting difference of a few pixels in its centroid can have a

very large effect on triangulation and estimation quality. In contrast, the detection

of semantic keypoints is associated with a much smaller error; the movement of a

keypoint detection in an image by several pixels is often easily noticeable, and errors

typically seen in real world detections are on the order of pixels.

Furthermore, even if a bounding box centroid were able to be extracted without

any associated measurement error, the measurement model itself used in Chapter 3

is highly ambiguous as it is invariant to several transformations of the camera and

object pose. Scaling the distance between the camera and the object, scaling the

size of the object, and rotating the object about any axis do not affect the received

centroid measurement. As a result of this small (2-dimensional) measurement space,

very distant objects (in either position or orientation in space) may generate very close

(in the measurement space R2) measurements, resulting in numerous highly ambiguous

measurements encountered and data association distributions that in general wide

and multi-modal.

In contrast, the semantic keypoint measurement model used in this chapter allevi-

ates many of the problems mentioned above. In general, due to the richer measurement

model and much larger measurement space, sets of semantic keypoint measurements

si, sj are only close in the 2p-dimensional measurement space if objects oi and oj

are close in both position and orientation in physical space, resulting in much fewer

ambiguous measurements encountered. In practice, this results in a much more “peaky”

data association distribution; if we were to implement the methods of Chapter 2 and

compute data association weights wkj, it is almost always be the case that for a given

measurement sk, there exist one j such that wkj ≈ 1, and wks ≈ 0 for all s 6= j.

Examining the equations in Proposition 2, we can see that this then reduces exactly

to the case of computing a maximum likelihood data association and assuming it
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known in the factor graph optimization over X , L. Additional comparison with the

data association simulation results from Section 2.2 would suggest that a maximum

likelihood association would produce better performance in practice for these relatively

low noise measurements, and this is indeed what we saw in experiments.

4.3 Implementation

While the factor graph optimization in Chapter 3 to solve the Semantic SLAM problem

given bounding box measurements is largely similar to a typical point feature visual

SLAM estimation, the inclusion of the semantic structures f structj produce multiple

complicated relationships between variables in the pose graph. As a result, methods

designed to solve the former may fail to work well or efficiently on the latter; in

particular, after implementing Equation (4.23) with GTSAM as the optimization

backend, we observed iSAM and iSAM2 to require many more linearizations than

before and produce poor performance in many situations.

As a result, the implementation of semantic keypoint SLAM requires a more

thoughtful implementation strategy. In particular, we adopt a sliding window solution

method. Upon receiving the T th keyframe and extracting the semantic measurements

ST , a sliding window of length W is created. Within the estimation, the pose variables

x1, . . . , xT−W are frozen, to be held constant in the factor graph optimization, leaving

xT−W+1, . . . ,xT as free variables in the estimation.

Let Ot be the set of semantic objects that were observed in the tth keyframe, i.e.

using the data association notation from the preceding section, Ot = {oβk | sk ∈ St}.

The objects observed at any point in the sliding window are then given by ∪Tt=T−W+1Ot
and are allowed to vary in the optimization carried out at time step T ; all other

objects L\∪Tt=T−W+1Ot are treated as constants. In this way, we are able to efficiently

perform a local optimization while ensuring all relevant objects’ pose is updated given
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all known information.

As a sliding window in the above fashion obviously does not allow for loop

closures to be properly handled, we add a separate loop closing thread that is run in

parallel to the sliding window optimization. On detection of a loop closure (defined

as the observation of an object oj that is not in the sliding window’s visible set

oj 6∈ ∪T−1
t=T−W+1Ot), a separate loop closure thread is started. This loop closure thread

optimizes the same factor graph, Equation (4.23), as the sliding window, per-keyframe

optimizing thread, but over an expanded set of variables. Let xa be the first x that

observed the loop-closing object oj ; the set of variables allowed to vary within the loop

closure optimization is then the sensor poses xa,xa+1, . . . ,xT and the objects ∪Tt=aOt.

This (potentially large, slow) optimization is allowed to run in the background until

completion, at which point the sensor poses and objects are updated with the result.

We implemented the keypoint-based Semantic SLAM system as described, and

specifically implemented Equation (4.23), using Google’s Ceres nonlinear optimization

library (Agarwal et al.) as the optimization backend. The Ceres solver was used to

solve both the sliding window local optimization and the background loop closing

optimizations. For the front end of our implementation, we chose the simple method

of selecting every 10th camera frame as a semantic keyframe. The front end applies

to each image the Faster R-CNN object detector (Ren et al., 2015) to detect object

bounding boxes. To each detected bounding box, we applied the semantic keypoint

detector from Pavlakos et al. (2017) to detect the object’s semantic keypoints. Next,

the Mahalanobis distance between each measurement and each object in the map of

the same class is computed, and a simple maximum likelihood data association is

performed with the Hungarian algorithm (Munkres, 1957). The resulting keypoint

measurements and their data associations were then used within a custom factor graph

library built around the Ceres solver as mentioned above.
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Figure 21: Image from early in the KITTI dataset trajectory 05, showing a line of
parked cars.

4.3.1 Visual-Semantic SLAM on KITTI

In the first set of experiments, we apply our algorithm again to the outdoor KITTI (Geiger

et al., 2012) dataset. The KITTI dataset consists of a vehicle equipped with several

sensors driving through an urban environment, and parked cars were used as the

estimated semantic objects. Rather than including inertial odometry factors as shown

in Equation (4.23), we instead include simple relative pose factors computed using

the VISO2 (Geiger et al., 2011) visual odometry algorithm. We applied our algorithm

to trajectory 05 in the KITTI Geiger et al. (2012) outdoor dataset.

See Figure 21 for an example image taken from early in the KITTI dataset

trajectory 05, showing a challenging example of a line of parked cars with numerous

occlusions and that is traversed at relatively high speed. Our algorithm’s estimate of

the trajectory along with the estimated cars is shown in Figure 22. Although some

detections were missed, the detections and estimated poses and keypoints are very

accurate given the conditions.

In Figure 23, our algorithm’s trajectory and map estimate after a longer trajectory

is shown. Even in long trajectories with numerous objects in the map and several

loop closure situations, our algorithm is able to localize not only the camera’s position

along the trajectory, but also the position and orientation of parked cars along the
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Figure 22: Resulting trajectory from our keypoint-based Semantic SLAM system,
showing the area of space that is captured in the photograph from Figure 21.

path.

4.3.2 Clearpath Husky Experiments

We additionally experimented with the application our semantic factors to a dataset

collected with a Clearpath Husky robot, as shown in figure 24. LiDAR and camera

data was collected from trajectories in an urban environment and processed offline.

See Figure 25 for an example image collected along the trajectory along with semantic

keypoints detected on a window, and see Figure 26 for the system’s estimate of the

robot trajectory and map at the time the picture in Figure 25 was taken. Note the one

detected and localized window shown in the estimate, along with the four semantic

keypoints that correspond to the window corners.

Continuing the trajectory Figure 27 shows a later point in the experiment after

a longer path through the urban environment, showing the estimated trajectory,

occupancy grid, and several estimated window objects.
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Figure 23: Estimated trajectory and objects from KITTI trajectory 05 after a longer
duration

Our method is also able to perform well at single-object localization up close, with

applications of manipulation or other interaction where precise pose estimates are

necessary. A robot was driven on a straight line trajectory towards a black crate placed

on the ground and images were continuously taken of the crate. See Figure 28 for an

example of an image as the robot nears the crate, and Figure 29 for the estimated

trajectory and crate pose along with the position of the crate’s semantic keypoints.

Note how the keypoints line up directly over the occupancy grid-shown obstacle that

the crate represents, as well as the subjective quality of the keypoint localization

relative to their displayed positions on the crate in Figure 28.
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Figure 24: Clearpath Husky robot used in first series of experiments

Figure 25: Example image collected from Husky robot along with semantic keypoint
detections
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Figure 26: Estimate of the robot trajectory, map, and detected window object at the
time at which the image in Figure 25 was taken. The central sphere of the window
corresponds to the object position while the four bordering spheres represent the
semantic keypoint locations. The grid on the ground displays the estimated occupancy
grid map, and the translucent points display the most recent LIDAR measurement
data.
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Figure 27: Estimate of the trajectory after a longer path through the same environment
as seen in Figures 25 and 26.
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Figure 28: Image as a robot nears a black crate placed on the ground along with
detected semantic keypoints.

Figure 29: Estimate of the trajectory as the robot approaches the crate along with its
detected pose and 3D keypoint positions.
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Chapter 5

Reactive Planning in Unexplored Se-

mantic Environments

5.1 Introduction

The inclusion of semantic information within a SLAM framework not only can improve

the accuracy of mapping and localization systems and provide human-understandable

maps to an operator, but can also be used to improve autonomy and plan high

level semantically-meaningful missions. In particular, in this chapter we consider a

particular application of the methods outlined in Chapter 4: the problem of navigation

in unexplored semantic environments.

The problem of navigation is a fundamental problem in robotics. In the case

of navigating a perfectly known environment, the problem is reducible to a purely

reactive (i.e. closed loop state feedback based) solution (Rimon and Koditschek, 1992).

In the case of an imperfectly known and explored environment, “doubly reactive”

methods (methods that not only construct the robot’s trajectory online but also the

control vector field that generate it) have shown success in the case of sufficiently

“nice” obstacles (spaced sufficiently far apart and convex) (Paternain et al., 2018; Ilhan

et al., 2020).

Densely cluttered or non-convex obstacles, however, have generally required incre-

mental and random sampling-based planning, the probabilistic completeness guarantees
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of which can be slow to realize in practice (Noreen et al., 2016). Furthermore, the

setting of navigation within an imperfectly known environment has received little

theoretical attention. Some exceptions include considerations of optimality in un-

known spaces, online modifications to temporal logic specifications or deep learning

algorithms that assure safety against obstacles, or the use of trajectory optimization

along with offline computed reachable sets for online policy adaptations. However,

none of these advances has achieved simultaneous guarantees of obstacle avoidance

and convergence. In this chapter we present an algorithm that extends these two

guarantees of obstacle avoidance and convergence to the setting of an environment

containing non-convex and unknown or moving targets.

5.2 Problem Formulation

We consider a circular robot with radius r, centered at position x ∈ R2, navigating

a compact, polygonal and potentially non-convex workspace W ⊂ R2 with known

boundary ∂W , towards a target location xd ∈ W . The robot is assumed to possess a

sensor with fixed range R for recognizing familiar objects and estimating the distance

to nearby obstacles. We further define the enclosing workspace as the convex hull of

the closure of the workspace W , i.e.

We , {x ∈ R2 | x ∈ Conv(W)}. (5.1)

The workspaceW is cluttered by a finite but unknown number of disjoint and fixed

obstacles, denoted by Õ , {Õ1, Õ2, . . . }. This set Õ also includes any non-convex

“intrusions” of the boundary of the physical workspace W into We. We define the

freespace F as the set of collision free placements of the robot within the physical

workspace, i.e. the set of collision-free placements of the closed ball B(x, r) centered
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at x with radius r in W :

F ,

{
x ∈ We | B(x, r) ⊆ We \

⋃
i

Õi

}
, (5.2)

and we similarly define the enclosing freespace as

Fe , {x ∈ R2 | x ∈ Conv(F)}. (5.3)

We assume that none of the positions of any of the obstacles Õi are a-priori

known, however we assume that a subset P̃ , {P̃i}i∈NP ⊆ Õ of these obstacles,

indexed by ÑP , {1, . . . , NP}, is “familiar” in the sense of having a known and readily

recognizable polygonal geometry, that the robot can instantly identify and localize. In

this chapter, this corresponds exactly to the set of known semantic objects which are

detectable and localizable via the methods of Chapter 4. The remaining obstacles in

C̃ , Õ \ P̃ are assumed to be strongly convex with an additional curvature constraint

as in Assumption 2 from Arslan and Koditschek (2019) but are otherwise completely

unknown to the robot.

To simplify the notation, we neglect the robot dimensions, and assume that the

robot is a point navigating within the freespace F by dilating each obstacle in Õ by r.

We denote the set of dilated obstacles in Õ, P̃, and C̃ by O, P, and C, respectively.

We then describe each polygonal obstacle Pi ∈ P ⊆ O by an obstacle function βi(x),

a real-valued map providing an implicit representation of the form

Pi = {x ∈ R2 | βi(x) ≤ 0} (5.4)

that is constructable by the robot after it has localized the obstacle Pi.

We finally require the following separation assumptions on the obstacles:
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Assumption 1. Each obstacle Ci ∈ C has a positive clearance d(Ci, Cj) > 0 from any

other obstacle Cj ∈ C, j 6= i.

Assumption 2. Each obstacle Ci ∈ C satisfies d(Ci, ∂F) > 0.

Assumption 3. For each Pi ∈ P, there exists an εi > 0 such that the set

Sβi , {x | βi(x) ≤ εi} (5.5)

has a positive clearance d(Sβi , C) > 0 from any obstacle C ∈ C.

We additionally impose an assumption stating that a solution exists:

Assumption 4. The freespace F is path-connected.

Considering our robot with first order dynamics ẋ = u(x) and equipped with

these assumptions, the navigation problem consists of finding a Lipschitz continuous

controller u : F → R2 that leaves the freespace F positively invariant and directs

the robot towards the goal xd ∈ F .

5.3 Approach and Planning Space Construction

An overview of the solution is as follows. We interpolate a sequence of spaces between

the physical space and a topologically equivalent but geometrically simple model

space. Within this simpler model space, we design a control input which we can then

transform through the inverse of the diffeomorphism between the physical and model

space to find the commands in the physical space. In the following sections, we outline

the distinct representations of the environment that we refer to as the planning spaces.

An outline of the planning spaces and their relation can be seen in Figure 30
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Figure 30: Illustration of the planning spaces (from Vasilopoulos et al. (2020a).)

5.3.1 Physical Space

The physical space denotes the actual physical workspace; this is the workspace We

punctured by the obstacles Õ, the knowledge of which is inaccessible to the robot.

The robot navigates in this space towards the desired location xd and discovers and

localizes new objects along the way. Let P̃I = {P̃i}i∈I ⊆ P̃ denote the set of physically

instantiated familiar objects, i.e. the set of objects whose geometry and pose is either

known to the robot before hand (for example the workspace intrusions from a known

wall or room layout), or those objects that have been detected and localized online and

whose pose has been estimated by the semantic SLAM system. This set is indexed by

a set I ⊆ NP .

5.3.2 Semantic Space

The semantic space FIsem describes the robot’s actual current and continuously updated

information about the environment. This consists of the |I| instantiated familiar

obstacles as well as the observable portions of the unrecognized obstacles in the space.

We denote this latter set of unrecognized obstacles within the semantic space by

Csem , {Ci}i∈JC , which is indexed by a set JC ⊆ NC . Similarly, we denote the former

set of familiar obstacles within the semantic space as the set PIsem , ti∈IPi. Note in

particular the use of a disjoint union in the construction here; it will become important

when we consider the Mapped Space. Within this space, as we are considering the
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sets of dilated obstacles, the robot is treated as a single point.

5.3.3 Mapped Space

Note that Assumptions 1 through 3 do not exclude obstacles in P from overlapping

with each other, and as such, the semantic space does not explicitly contain topological

information about the explored environment. Hence, we form a mapped space by

taking (non-disjoint) unions of elements of PIsem, creating a new set of consolidated

familiar obstacles PImap , {Pi}i∈J I . This set is indexed by the set J I , with |J I | ≤ |I|.

The space additionally includes copies of the unknown obstacles, Cmap = Csem, because

the assumptions preclude these obstacles from overlapping.

The next step is to separate the mapped familiar objects that intersect the boundary

of the freespace with those that do not. In the construction of the diffeomorphism to

the simple model space, those that intersect the boundary should be merged into the

boundary itself, while those that do not should be deformed into disks. Thus, for any

connected component P of PImap that intersects the boundary ∂Fe, we let B , P ∩Fe
and include B in a new set BImap indexed by J IB . Similarly, the rest of the components

in PImap that do not intersect ∂Fe are included in a set DImap, indexed by J ID .

5.3.4 Model Space

Lastly, we have the model space FImodel. This space is a topologically equivalent but

geometrically simplified version of the mapped space FImap. This model space FImodel
has the same boundary as Fe, and the |JC | unrecognized visible obstacles in the

mapped space are simply copied into the model space. The |J ID | consolidated familiar

obstacles in DImap are deformed to disks, and the boundary consolidated obstacles BImap
are merged into the boundary ∂Fe to make FImap and FImodel topologically equivalent

through a mapping hI , which we will describe next.
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Figure 31: Diffeomorphism construction via convex decomposition (from Vasilopoulos
et al. (2020a))

5.4 Diffeomorphism Construction

The construction of the diffeomorphism hI between FImap and FImodel relies on the

convex decomposition of each obstacle P ∈ PImap. We assume for each obstacle that

the robot has access to such a decomposition; here, we compute such a decomposition

of the obstacle polygons using Greene’s method and its C++ implementation in CGAL.

As shown in Figure 31, such a decomposition results in a tree of convex polygons

TPi , (VPi , EPi) corresponding to Pi, where VPi is a set of vertices identified with

each component convex polygon and EPi is a set of edges corresponding to polygon

adjacency. We can therefore pick any polygon as the root of the tree TPi and construct

the tree based on the adjacency properties.

As the present work is focused largely on the reactive planning controller design

and diffeomorphism construction as an application of the semantic mapping methods

outlined in Chapter 4, we leave the precise mathematics and further details of the

construction of hI to the technical report (Vasilopoulos et al., 2020b) and proceed

with a high level description. The map hI is constructed iteratively in several steps by

composing individual purging transformations for all leaf polygons of all obstacles P

in BImap and DImap. This composition continues, during execution time, until all root

polygons have been reached.

The construction of each of these individual purging transformations can be seen

in Figure 31. Each leaf polygon is associated with a center (denoted for polygon ji
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as x∗ji) as well as a polygonal collar Qji , shown in red. The purging transformation

is then defined in terms of a function σji that smoothly varies from 0 outside of the

collar Qji to 1 inside the polygon ji, allowing for a smooth transformation collapsing

the leaf polygon ji into its parent to be written as

hIji , σji(x)x∗ji + (1− σji(x))x. (5.6)

The final step is then the transformation of each root polygon into a disk, as shown

in the second to last transformation in Figure 31. This transformation is constructed

in a similar fashion along with a deforming factor for each obstacle; see Vasilopoulos

et al. (2020b) for details.

5.5 Reactive Planning Algorithm

Equipped with the diffeomorphism hI between the mapped space FImap and the model

space FImodel, we can now describe the reactive planning algorithm itself. Because we

assume the space is a priori unexplored and new obstacles enter the robot’s field of

view as it progresses through the environment, new obstacles are incorporated and the

semantic map is modified over time. Thus, we give a hybrid systems description of the

controller, where each mode is defined by an index set I ∈ 2NP of familiar obstacles

stored in the semantic map, the guards describe the sensor trigger events where a

previously unexplored obstacle is discovered, and the resets describe transitions to new

modes that are equal to the identity in the physical space but may result in discrete

jumps of the robot position in model space as a result of the diffeomorphism hI being

updated to account for the newly discovered object.

In each mode I, the robot with dynamics ẋ = u(x), u ∈ R2, is given as (Vasilopou-
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los et al., 2020a)

uI(X) = k
[
DxhI

]−1 ·
(
vI ◦ hI(x)

)
, (5.7)

where Dx is the derivative operator with respect to x, and the control input vI in the

model space is given as

VI(y) = −
(
y − ΠLF(y)(yd)

)
, (5.8)

where y = hI(x) and yd = hI(xd) are the robot’s position and desired position in the

model space, respectively, and ΠLF(y) is the projection onto the convex local freespace

for y, LF(y), defined as the Voronoi cell separating y from all model space obstacles.

The main result of Vasilopoulos et al. (2020a) and this chapter is then the following

Theorem:

Theorem 1. With I the terminal mode of the hybrid controller, the reactive controller

in (5.7) leaves the freespace FImap positively invariant, and asymptotically reaches a

constant xd with its unique continuously differentiable flow from almost any placement

x ∈ FImap, while strictly decreasing ‖hI(x)− hI(xd)‖ along the way.

Proof. See Vasilopoulos et al. (2020b).

5.6 Experiments

The reactive planner from Section 5.5 and semantic mapping pipeline as described in

4.3 were integrated into an architecture as overviewed in Figure 32.

In addition to the semantic mapping pipeline outlined in Section 4.3 and the

reactive planner, we included the approach from Kolotouros et al. (2019) to estimate

the 3D mesh of detected people in the robot’s field of view as an additional mapped
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Figure 32: Online reactive planning and semantic mapping architecture
(from Vasilopoulos et al. (2020a)).

semantic obstacle. The main computer used is an Nvidia Jetson AGX Xavier GPU,

responsible for running both the navigation and perception algorithms. The GPU

communicates with a Hokuyo LIDAR used to detect unknown obstacles, and a ZED

Mini stereo camera used for both a visual-inertial odometry into the semantic SLAM

pipeline and as the camera input to the object and human detectors. The mapping

pipeline was implemented in the same way as described in Section 4.3, and the reactive

controller was implemented in C++ using Boost Geometry (Schäling, 2014) for the

underlying polygon operations and runs at 30Hz.

The reactive planning system was tested on two separate robots: the Turtle-

bot (TurtleBot2, 2019), and the more dynamic Ghost Spirit legged robot (Ghost

Robotics, 2021). Several experiments were run using the two platforms; see Figure 33

for some representations of the environments and a visualization of the platforms used

in our experiments.

The experiments used the human detection component of the architecture to set

the desired location xd: the robot was given the task of navigating to a (moving)

target while avoiding obstacles in an unknown environment. Figure 34 shows a Spirit

robot following a human in a previously unexplored hallway environment, containing

both catalogued obstacles localized with the semantic mapping pipeline (chairs), and

unknown obstacles avoided via LiDAR.

In this and several similar environments the controller and mapping pipelines
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Figure 33: Types of environments and platforms used in our experiments
(from Vasilopoulos et al. (2020a)).

proved robust and adaptable and were able to successfully complete the goal while

avoiding detected obstacles.

A similar experiment was performed, as seen in Figure 35 in which a Turtlebot

was given the task of following a detected human until a “stop” gesture (raising the

hand) is detected. At that point, the Turtlebot was instructed to return to its start

position. As can be seen in the trajectory history and mapped objects in the rightmost

two images in Figure 35, the robot successfully followed the person to the opposite

corner of the room while avoiding the mapped objects, and subsequently returned to

its original position in the bottom right.
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Figure 34: Ghost Spirit following a human while avoiding obstacles in a previously
unexplored environment. Shown on the left are the output of the ZED camera and
the object detector, and on the right the mapping system’s internal representation of
the world is shown, with the robot trajectory shown in green, the detected objects
in blue, triangulated geometric features (cf. Section 3.2.2) in red, and the detected
human mesh in grey (from Vasilopoulos et al. (2020a))
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Figure 35: Top: The Turtlebot follows a human until a stop gesture is given and
detected. Bottom: the Turtlebot safely returns to its starting position
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Chapter 6

Conclusions
High-level autonomy in unknown environments requires advancements past typical

metric SLAM; it requires robust and efficient semantic mapping system. In this thesis,

we have presented two main contributions to semantic mapping and localization. The

first is the methods of probabilistic data association presented in Chapter 2. By

exploiting the full shape of the data association distribution rather than simply its

modes, even highly ambiguous measurements such as object bounding box detections

from a single image are able to be integrated into a SLAM system and used to create

a robust semantic map of an unknown environment. This was shown in the direct

simulations in Chapter 2, and also in Chapter 3 and the experiments within, where

these methods were show to be effective in incorporating semantic information into a

SLAM system in both small-scale indoor and large-scale outdoor environments.

The second primary contribution is the keypoint-based semantic SLAM system

described in Chapter 4. By effectively reducing the problem of multi-object pose

estimation to the much simpler and more heavily studied problem of SLAM with

point features (the semantic keypoints), we presented a system that was able to both

precisely localize the 6 degree-of-freedom pose of catalogued semantic objects and

optimize the resulting factor graph estimation in an efficient way. The effectiveness of

this was also shown in several experiments.

Finally, a high-level usage of the semantic SLAM system was given with the reactive

planning algorithm described in Chapter 5. Through the use of the keypoint-based
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semantic SLAM algorithm, a robot is able to robustly navigate through unexplored

semantic environments and perform logically complex tasks presented in a high-level

way.
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