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ABSTRACT

MECHANICAL PROPERTIES OF FIBROUS NETWORK MATERIALS

Russell Spiewak

Prashant K. Purohit

We discuss mechanical behavior of specific fibrous network materials, including the evolution of tension

in fibrin clots, compression of pulmonary emboli, and fracture of Whatman filter paper.

The first material, fibrin clots, consist of random networks of fibrin fibers. When clots form by polymer-

ization they develop tensile pre-stresses. We construct a mathematical model for the evolution of tension

in isotropic fibrin gels. As the fiber diameter grows over time, properties which depend on it, such as the

stored energy per unit length of a single fiber, the force-stretch relation of a fiber, and therefore the tension

in the network as a whole, also evolve over time.

The second fibrous network is pulmonary emboli, which consist of random networks of fibrin fibers with

fluid-filled pores and red blood cells (RBCs). Stress-strain responses of human pulmonary emboli under

cyclic compression were measured, revealing that emboli exhibit hysteretic stress-strain curves characteristic

of foams. We describe the hysteretic response of emboli using a model of phase transitions, in which the

compressed embolus is segregated into coexisting rarefied and densified phases whose fractions change as

compression progresses. Our model takes into account RBC rupture in compressed emboli and stresses due

to fluid flow through their small pores. The mechanical response of emboli is shown to vary depending on

their RBC content.

The third fibrous network is Whatman filter paper. The effect of humidity on properties such as out-of-

plane fracture toughness of Whatman filter paper is studied for a broad range of relative humidities. Crack

growth is modeled using traction-separation laws, whose parameters are fitted to experiments. Additionally,

a novel model is developed to capture the high peak and sudden drop in the experimental force measurement

caused by the existence of an initiation region, an imperfect zone ahead of a nascent crack. The relative

effect of each independent parameter is explored to better understand the humidity dependence of the

traction-separation parameters.

The materials studied have biological, clinical, and industrial applications, and the methods described

here are also applicable to other fibrous network materials.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENT iii

ABSTRACT iv

LIST OF TABLES vii

LIST OF FIGURES viii

1 Introduction 1
1.1 Biomechanical Origins of Inherent Tension in Fibrin Networks . . . . . . . . . . . . . 5
1.2 Structure, Mechanical Properties, and Modeling of Cyclically Compressed Pulmonary

Emboli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Humidity Dependence of Fracture Toughness of Cellulose Fibrous Networks . . . . . 8

2 Biomechanical Origins of Inherent Tension in Fibrin Networks 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Fibrin Network Polymerization Model . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Fiber Radius as a Function of Fibrin Polymerization Time . . . . . . . . . . . 22

2.3 Force in Helical Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Tensile Force in a Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Kinematics of Fiber Relaxation After Transverse Cutting . . . . . . . . . . . 35
2.3.3 Continuum Model of Fibrin Gel . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Distribution of Fibrin Fiber Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 Summary of Full Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Structure, Mechanical Properties, and Modeling of Cyclically Compressed Pul-
monary Emboli 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Modeling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Fibrin network contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1.1 Rarefied Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1.2 Densified Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1.3 Transition phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.1.4 Cauchy stress to Piola stress conversion . . . . . . . . . . . . . . . . 66

3.3.2 RBC contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Fluid contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Model application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Phase boundary motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.1 Stress-strain curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.2 Repeated compression-decompression cycles . . . . . . . . . . . . . . . . . . . 78
3.6.3 Response structural dependence . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.4 Comparison of different emboli . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.5 Heterogeneity of emboli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6.6 Comparisons with other studies . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



3.6.7 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Humidity Dependence of Fracture Toughness of Cellulose Fibrous Networks 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 Conditioning and Specimen Preparation . . . . . . . . . . . . . . . . . . . . . 95
4.2.3 Out-of-plane Tensile Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.4 Double Cantilever Beam Testing . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Theory and Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.1 Cohesive Zone Model, Traction-Separation Law, Critical Energy Release Rate,

and Non-Dimensional Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Experimental Critical Energy Release Rate . . . . . . . . . . . . . . . . . . . 101
4.4.2 Finite Element Modeling Results . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2.1 Exponential vs. Linear Softening . . . . . . . . . . . . . . . . . . . . 103
4.4.2.2 Parameters for Different Relative Humidities . . . . . . . . . . . . . 103
4.4.2.3 Parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.2.4 Comparison of experiments and simulations . . . . . . . . . . . . . . 112

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Conclusions 114

BIBLIOGRAPHY 117

vi



LIST OF TABLES

Table 2.1 Fiber lengths and relaxation times for relaxing fibers . . . . . . . . . . . . . . 40
Table 2.2 Computed values for stresses for “network” of uniform vertical fibers . . . . . . 55

Table 3.1 Initial and final measurements of emboli . . . . . . . . . . . . . . . . . . . . . 71
Table 3.2 Fitting parameters for emboli #1 and #2 . . . . . . . . . . . . . . . . . . . . . 72
Table 3.3 Fitting parameters for emboli #3a, #3b, and #3c . . . . . . . . . . . . . . . . 73

Table 4.1 Out-of-plane material properties . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 4.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 4.3 Simulation parameter values with initiation region . . . . . . . . . . . . . . . . 107
Table 4.4 Toughness values from experiments and simulations . . . . . . . . . . . . . . . 113

vii



LIST OF FIGURES

Figure 1.1 Images of fibrous network materials . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.2 Experimental setup to measure inherent tension in fibrin fibrous networks . . 6
Figure 1.3 Experimental setup to obtain data for cyclical compression of pulmonary emboli 8
Figure 1.4 Reference and deformed configurations of Whatman filter paper DCB specimen 10

Figure 2.1 Cartoon depicting the experimental setup using a rheometer. . . . . . . . . . 13
Figure 2.2 Schematic representation of fibrin fibers . . . . . . . . . . . . . . . . . . . . . 15
Figure 2.3 Average number of protofibrils per fiber cross-section vs. polymerization time 20
Figure 2.4 Parameter study ofinput parameters to fiber polymerization model . . . . . . 21
Figure 2.5 Tensile force vs. stretch in an individual fiber . . . . . . . . . . . . . . . . . . 34
Figure 2.6 Tensile force in individual fiber vs. polymerization time . . . . . . . . . . . . 36
Figure 2.7 Length of relaxing fiber as it relaxes over time . . . . . . . . . . . . . . . . . 39
Figure 2.8 Cartoon depicting 8-chain model of fibrous network materials . . . . . . . . . 43
Figure 2.9 Network stress as a function of polymerization time . . . . . . . . . . . . . . 47
Figure 2.10 Effect of fiber length and radius on network stress, with fixed number density 48
Figure 2.11 Effect of fiber measures on network stress, with fixed solid volume fraction . . 48
Figure 2.12 Probability distributions of fiber lengths and subsequent network stresses . . 49
Figure 2.13 Individual fiber Young’s modulus vs. fiber radius . . . . . . . . . . . . . . . . 53

Figure 3.1 Experimental setup to obtain data for cyclical compression of pulmonary emboli 61
Figure 3.2 Diagram of rarefied and densified regions in relation to reference frame . . . . 65
Figure 3.3 Stress-strain response of embolus #1 to compression and decompression . . . 74
Figure 3.4 Contributions to stress-strain response of embolus #1 . . . . . . . . . . . . . 75
Figure 3.5 Phase boundary locations for embolus #1 . . . . . . . . . . . . . . . . . . . . 76
Figure 3.6 Stress-strain response of embolus #2 to compression and decompression . . . 77
Figure 3.7 Contributions to stress-strain response of embolus #2 . . . . . . . . . . . . . 78
Figure 3.8 Phase boundary locations for embolus #2 . . . . . . . . . . . . . . . . . . . . 79
Figure 3.9 Stress-strain response of embolus #3a to compression and decompression . . 80
Figure 3.10 Contributions to stress-strain response of embolus #3a . . . . . . . . . . . . . 81
Figure 3.11 Phase boundary locations for embolus #3a . . . . . . . . . . . . . . . . . . . 82
Figure 3.12 Stress-strain response of embolus #3b to compression and decompression . . 83
Figure 3.13 Contributions to stress-strain response of embolus #3b . . . . . . . . . . . . . 84
Figure 3.14 Phase boundary locations for embolus #3b . . . . . . . . . . . . . . . . . . . 85
Figure 3.15 Stress-strain response of embolus #3c to compression and decompression . . 86
Figure 3.16 Contributions to stress-strain response of embolus #3c . . . . . . . . . . . . . 87
Figure 3.17 Phase boundary locations for embolus #3c . . . . . . . . . . . . . . . . . . . 88

Figure 4.1 Schematic of DCB specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 4.2 Diagram of finite element simulation . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 4.3 Comparison of simulations using CPE4 and CPS4 elements . . . . . . . . . . 101
Figure 4.4 Force-displacement and energy release rate plots . . . . . . . . . . . . . . . . 102
Figure 4.5 Comparisons between simulations with linear and exponential softening . . . 103
Figure 4.6 Force-displacement plots from simulations . . . . . . . . . . . . . . . . . . . . 104
Figure 4.7 Cohesive parameters and cohesive law at different relative humidities . . . . . 105
Figure 4.8 Stress profiles along direction of crack propagation . . . . . . . . . . . . . . . 106
Figure 4.9 Cartoon depicting initiation region . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 4.10 Force-displacement plots from simulations with initiation region . . . . . . . . 108
Figure 4.11 Simulations with both initiation and steady state regions, compared to only one109
Figure 4.12 Parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 4.13 Results for fixing the NDP in the initiation region . . . . . . . . . . . . . . . 112

viii



Chapter 1

Introduction

Materials comprised of networks of fibers are ubiquitous both in nature and man-made components.

Such fibrous network materials include blood clots [1, 2], cytoskeletons [3], collagen networks [4],

and other tissues, as well as papers [5–9], carbon nanotube networks [10], felt [6, 11, 12], rubber

[13, 14], epoxy [15, 16], gels [17–20], and textiles [6, 11]. Because fibrous network materials are so

ubiquitous, it is important to understand the general properties of the materials and the physics

and microstructures on which those properties depend. Also, because fibrous networks generally

perform a structural function, their mechanical properties are of critical importance. Much research

has been done studying such fibrous networks and generalized fibrous network materials, including

their formation, fiber properties such as alignment and orientation, and global material properties

such as anisotropic moduli, response to tension, compression, and shear, and fracture properties.

Works discussing some of these properties will be briefly reviewed shortly.

Properties of general fiber networks have been studied recently by Deogekar and Picu [21], Shah-

savari and Picu [22], Picu and Sengab [23], Zhang et al. [24], Deogekar et al. [25], Deogekar et

al. [26], Islam and Picu [27] and Deogekar and Picu [28], who have studied cross-linked random fiber

networks [21, 22, 25], non-crosslinked random fiber networks with inter-fiber adhesion [23], random

fiber networks embedded in an elastic matrix [24], random fiber networks with inclusions [27], and

cross-linked fiber networks of cellular shape [25, 26, 28], with large scale finite element simulations.

In these works, the fibers are endowed with bending and stretching stiffnesses, and the cross-links

connecting the fibers are also endowed with stiffnesses in tension, compression, and shear.

These types of large finite element studies have been going on for at least two decades, if not

longer. For example, Onck et al. [29] studied strain stiffening of filamentous protein networks

in shear using finite element simulations with finite strains of a two-dimensional network model

of cross-linked semiflexible filaments. They show that stiffening is caused by non-affine network

rearrangements that govern a transition from a bending-dominated response at small strains to
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a stretching-dominated response at large strains [29]. Zagar et al. [30] numerically studied the

elastic properties of a discrete, fully three-dimensional model for an isotropic filamentous networks,

where athermal filaments of finite length were interconnected by rigid cross-links. They suggested a

relation for the initial network shear modulus as a function of network connectivity, and showed that

a nonlinear strain hardening is exhibited when the network is sheared to large strains [30]. Zagar

et al. [31] used large scale computer simulations of a random network comprised of cross-linked

biopolymer-like fibers to explore strain-stiffening trends in bipolymer networks, and suggested two

universal stiffening mechanisms [31].

In related work Broedersz et al. [32] developed a model for disordered 3D fiber networks to study

their linear and nonlinear elastic responses. They determined that responses are primarily controlled

by fiber length [32]. Shivers et al. [33] considered 2D and 3D disordered networks, comprising

interconnected one-dimensional Hookean springs, of varying network geometries, to study anomalies

in the Poisson effect and strain fluctuations. They demonstrated that these phenomena are controlled

by a collective mechanical phase transition that occurs at a critical uniaxial strain that depends on

network connectivity [33]. All of these studies used large scale simulations and focused on tension

and shear.

In a slightly different approach based on combining Kinetic Monte Carlo techniques for bond-

breaking with finite element simulations of beam networks, Abhilash et al. [34] presented a compu-

tational model to capture cell-mediated remodeling within fibrous matrices using large scale finite

element–based discrete fiber network simulations. They quantified the effect of cell contractility and

cell shape anisotropy on matrix remodeling and force transmission [34]. Ban et al. [35] developed

these ideas further and used large scale fiber network simulations to model plastic deformation by

the formation of new cross-links between fibers [35]. Ban et al. [36] used a microstructural network

model and a coarse-grained constitutive framework that predicts the network Poisson effect and

stress–strain responses in uniaxial, biaxial, and triaxial modes of deformation as a function of the

microstructural properties of the network, including fiber mechanics and pore size of the network.

They found that accounting for the Poisson effect leads to a 100-fold increase in the perceived elastic

stiffness of thin collagen samples in extension tests [36].

All of the above authors studied important properties of fiber networks, but they used large scale

computer models or finite element simulations. Our approach in this dissertation is different because

we do not use computer simulations of discrete fiber networks to analyze their mechanical behavior.
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(a) 3D reconstruction of hydrated fibrin network [37]. (b) SEM image of Whatman filter paper [38].

Figure 1.1: Images of fibrous networks materials. (a) 3D reconstruction of hydrated fibrin network
using fluorescent confocal microscopy [37]. (b) SEM image of a surface of Whatman filter paper [38].
Images reproduced with permission from the authors.

Instead, we describe the mechanics of fiber networks in terms of continuum models that are far less

computationally intensive and reveal physical insights that would be difficult to deduce from a finite

element simulation of a network of discrete fibers.

Here, we focus on more specific fibrous network materials such as fibrin fiber networks in blood

clots, pulmonary emboli, and Whatman filter paper cellulose networks, and on specific behavior such

as development of pre-stress, compression, and fracture. These materials specifically are comprised

of randomly oriented, relatively stiff, straight fibers that are joined together to form networks (see

Figure 1.1). Studies of these types of polymeric hydrogel fibrous networks began originally with

deriving nonlinear models for rubbers and rubber-like materials [13, 14, 39–41] from existing elastic

theories, as well as from fluid-saturated porous soils [42], since these hydrogel materials also contain

liquid. Based on these and their derivative works, analytical models of the response of fibrous

networks to compression have been developed in [6, 43]. Works such as [1, 44] have also incorporated

concepts of fiber buckling from analytical models of foams [45] and a continuum theory of phase

transitions [46] to connect the densified phase, in which fibers have bent and buckled and the

network has become more compact, to the rarefied phase, in which all fibers are still straight,

with an intermediary phase in which some fibers are still straight but some have bent or buckled.

The framework derived from these studies can be adapted for the networks of randomly oriented,

relatively stiff, straight fibers connected together through weak bonds. These materials differ from

3



material such as aegagropilae in which the fibers are interwoven and held together only by friction [47],

and also from thermoresponsive materials such as agarose gels [48] and poly(n-isopropylacrylamide)

[p(NiPAm)] gels [18–20] which behave as colloidal suspensions above a volume phase transition

temperature (VPTT) [18] or lower critical solution temperature (LCST) [20] and then gelate due to

ionic cross-linking or protein configuration transition.

Additionally, the mechanical properties studied here comprise three stages of life that materials

frequently will experience: first, fiber strands grow and connect to become a network, and the

material forms; then, natural forces act upon the material, resulting in physical and structural

changes in the material; and finally, the material undergoes failure processes, and the material

breaks down. These stages are represented here in the following fashion: First, the growth of

a fibrous network material, specifically a fibrin network, is studied analytically from the level of

individual fibers and their molecular polymerization, from which material properties are extracted

using an 8-chain model [41, 49–51]. Then, since such a material in nature experiences forces which

act upon it and change its structural and physical properties, the loading and unloading cycles of

compression and decompression experienced by fibrin network blood clots and thromboemboli in

veins are simulated here by cyclical compression and decompression of ex vivo pulmonary emboli

between parallel rheometer plates. Finally, a common failure process is fracture under tensile forces,

which is modeled here using continuum cohesive zone traction-separation laws and small scale finite

element analysis of Whatman filter paper cellulose fibrous networks. The work here differs from

previous studies mentioned earlier in that we do not perform large scale finite element calculations,

rather we focus on continuum mechanical models to study mechanical behaviors of these networks.

Unlike large finite element calculations, these continuum mechanical models are built to capture

specific mechanical behaviors, and their origins are in disparate fields which have little to do with

networks. Additionally, the models derived for each of the specific materials can be applied to the

other materials discussed, as well as to other fibrous network materials, with some parameter changes

and possibly other minor variations.
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1.1 Biomechanical Origins of Inherent Tension in Fibrin Net-

works

Blood forms clots to fuse tears in blood vessels, in order to stop hemorrhaging and heal wounds.

Blood clots are composed of networks of fibrin fibers, and often have red blood cells (RBCs), among

many other types of cells, lodged between fibers. The pre-cursor molecule to the formation of a

clot is fibrinogen. Fibrinogen is transformed into fibrin monomers by the cleavage of fibrinopeptides

by thrombin. The fibrin monomers then aggregate in register into half-staggered, double-stranded

oligomers, which lengthen into protofibrils. Next, protofibrils aggregate laterally to form fibers,

which over time then branch to yield the three dimensional networks which constitute the structural

scaffolding of blood clots [52]. Since the minimum energy conformation of protofibrils is when they

are straight rather than bent [53], the outer protofibrils of the helical fiber store more energy in

their curvatures than do protofibrils closer to the central stem of the helical fiber. The fiber bundle

will stop growing in diameter when the energy required to bind another protofibril to the bundle

becomes less than the energy required to stretch and bend the protofibril around the helical fiber

[53].

Once the clot forms from the fiber bundles, it can serve its purpose to fuse tears in blood vessels.

To serve its purpose of healing wounds, the clot pulls the edges of the wound closer together so that

growth/repair can occur. The clot must be in tension in order to close the wound; the tension is

generated actively by platelets which grab adjacent fibrin fibers and contract [52, 54–56]. However,

in this dissertation we show that a polymerizing fibrin network develops a pre-tension even in the

absence of platelets. The magnitude of pre-tension and its evolution with time was inferred from

experiments carried out in a parallel plate rheometer with fibrin polymerizing between the plates.

If the top plate of the rheometer is allowed to move as the clot formed below it the plate was found

to move toward the bottom plate just as would be expected in clot contraction. If, on the other

hand, the rheometer plates are held fixed, the clot experiences tension instead of contracting, and

the stress form this tension on the rheometer plates can be measured (see Figure 1.2).

We will construct a model for the evolution of tension in isotropic fibrin gels by accounting for

kinetics of the polymerization reaction that evolves the size of the fibrin fibers in a network model.

The model will use a system of ordinary differential equations based on [57] to compute the evolution

of the fiber radius from the concentration of fibrin monomers, and the network model will be based
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Figure 1.2: Cartoon depicting the experimental setup to measure development of inherent tension
in fibrin fibrous networks. Rheometer plates are shown in black. The dark gray shapes represent the
fibrin network material, the green lines in the fibrin network material represent the isotropic form
of the fiber network, and the randomly placed purple dots represent fibrinoigen monomers floating
around randomly in the material. Fibrinogen monomers and thrombin are placed between rheometer
plates which leads to a polymerization reaction that forms a fibrin network. The rheometer plates
are held fixed such that instead of the network contracting, a tension in the network develops. The
tensile stress on the rheometer plates is measured as a function of time.

on the Arruda-Boyce 8-chain model [41] used in Brown et al. [50] and Purohit et al. [51]. As the

fiber radius grows over time, properties which depend on the fiber radius, such as the stored energy

per unit length of a single fiber, the force-stretch relation of a fiber, and therefore the tension in the

network as a whole, will also change over time.

The inherent tension of fibrin clots has a number of conceivable biological implications. First, it

may comprise a thermodynamic mechanism to control the diameter of fibrin fibers, as the lateral ag-

gregation of protofibrils stops when the protofibril stretching energy surpasses the energy of bonding

[53]. Since fiber diameter is related to a network porosity, fiber length, branch point density, etc.,

the inherent tension of fibrin clots may modulate the overall network structure. Second, the inherent

tension in fibrin fibers can affect the rate of fibrinolysis both at the individual fiber level [58–60] and

in whole clot [61] because susceptibility of fibrin to fibrinolytic enzymes depends strongly on the

mechanical tension of the proteinaceous fibrous substrate. In aggregate, modulation of the structure

of a fibrin network along with the tension of fibers can affect mechanical and enzymatic stability of

entire blood clots and thrombi that determine the course and outcomes of various hemostatic disor-

ders [37, 62]. Notably, the magnitude of inherent tension in fibrin networks should be quite variable

since it must depend on multiple local and systemic influences that determine fibrin polymerization,

including physiological and pathological variations in blood composition.
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1.2 Structure, Mechanical Properties, and Modeling of Cycli-

cally Compressed Pulmonary Emboli

As mentioned previously, blood forms clots comprised mostly of a network of fibrin fibers to fuse

tears in blood vessels, in order to stop hemorrhaging and heal wounds. However, clots can also

form in veins and blood vessels if the flow rate becomes too low. These clots can be compressed

by muscular contractile forces and can undergo densification by platelet action, becoming thrombi.

The thrombi can break off from the vessel walls, forming emboli. The emboli then flow down the

bloodstream, and can obstruct the flow of blood with fatal consequences. For example, pulmonary

embolism occurs when blood flow to a part of the lungs is blocked by a venous thrombus that has

traveled from the lower limbs. Thrombi are subject to many types of forces, such as those generated

in the vasculature by blood flow and those generated by platelets pulling on fibrin in clot contraction,

and forces as a result of muscle contraction of the vessel wall, cardiac muscle, and striated muscles

adjacent to the blood vessels, especially in the veins of the lower limbs. Therefore, to understand

how clots help in healing wounds and to more effectively prevent their negative consequences, it is

necessary to understand the mechanical properties of clots and their response to compression, shear,

and tension.

As mentioned previously, blood clots are composed of networks of fibrin fibers, and often have

red blood cells (RBCs), among many other types of cells, lodged between fibers. The formation of

clots has been extensively studied, but the mechanical properties of clots and emboli are not as well

understood. As the primary function of clots is mechanical, specifically to stop the flow of blood,

understanding the mechanical responses of blood clots to various stimuli, such as radial compression

(as occurs in the compression and decompression of arteries and veins) and oscillatory shearing (as

experienced by blood flow being pumped due to the beating of the heart), is important. A number

of models have been developed to quantify and help to understand the mechanical properties of

blood clots, including compressive studies of platelet-poor, platelet-rich and whole blood clots [63].

It has been demonstrated that fibrin networks exhibit foam–like behavior under compression [44].

Most of those studies of clot mechanics, including compression of blood clots, have been carried

out in vitro using clots made only of fibrin or whole blood [63–66], but the structure of in vivo

thrombi or emboli differ [67]. Understanding the nuances in mechanical properties of in vivo emboli

will garner a deeper understanding of thromboembolisms, therapeutic disintegration, and removal
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Figure 1.3: Experimental set-up to obtain rheological data for compression experiments. Schematic
illustration of compression of an embolus placed between the rheometer plates. Rheometer plates are
shown in black. The dark gray shapes represent the embolus, while the light gray shape represents
the liquid expelled from the embolus during the compression cycle. The embolus was compressed
as the upper rheometer plate moved down, squeezing liquid out of the embolus. Dashed line shows
changes in area after the embolus was compressed. Arrows indicate liquid expelled from the embolus.
The green lines in the embolus represent the isotropic form of the fiber network.

of intravascular thrombi using mechanical means such as ultrasound, aspiration, and mechanical

thrombectomy.

Here, we will develop a model similar to [63], but for ex vivo emboli instead of in vitro blood

clots, for the response of emboli to compression (see Figure 1.3). The emboli come from patients

post-mortem, and are subject to cycles of compression and relaxation in different ranges of strain.

Our model will account not only for the response to compression of the fibrin network and red blood

cells (RBCs) similar to work in previous literature (such as [63]), including the pre-stress of the

fibrin network derived from the previous discussion (see Section 1.1) and [68], but also the fluid flow

that results from RBC lysis, which we develop from basic principles.

1.3 Humidity Dependence of Fracture Toughness of Cellulose

Fibrous Networks

Experiments exploring fracture properties of pulmonary emboli could be difficult to preform, due

to the difficulties involved in their proper adhesion to testing apparatuses; even fracture of fibrin
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networks in blood clots has only been recently studied [69, 70]. As such, here we develop a fracture

model using cellulose, a fibrous network material on which experimentation is much easier. Cellulose

fibrous networks and fibrin networks in pulmonary emboli and blood clots are similar in that they

both consist of networks of randomly oriented, relatively stiff, straight fibers, but fibrin network gels

can stretch to much higher strains [50], even up to 100 or 200% [71], before failure, whereas the

strains experienced by cellulose fibrous networks before failure are still securely in the linear elastic

regime. As such, the same theory developed here can be applied to pulmonary emboli and fibrin

networks in blood clots, and, in fact, to other fibrous networks with randomly oriented, relatively

stiff, straight fibers, with some modifications and parameter changes.

Cellulose is an abundantly available polymer in nature. Cellulose networks have good mechanical

[72, 73] and barrier [74] properties. Copy paper is a cellulose network which consists of a parallel

array of cellulose fibers bound together by the polymer, lignin, whereas filter paper is a cellulose

network consisting of pure cellulose fibers bound to each other mechanically by entanglement and

chemically by hydrogen bonds. The fibers are flattened hollow tubes, typically 25 to 35 microns

wide with thickness 1 to 4 microns. A paper sheet thus consists of a dense three-dimensional array

of fibers, bound together at regions where they cross. The strength of a paper sheet arises from

the strength of fibers and the number and strength of the fiber-fiber bonds. When paper is loaded

in tension, work must be done on the specimen to produce permanent deformation by breaking

inter-fiber bonds (namely, a surface area of multiple hydrogen bonds connecting two fibers) [75, 76]

and removal of micro-crimps. These cellulose networks can fail when subjected to tensile loads

during manufacture or in subsequent converting operations. It has been demonstrated [77] that

these failures often occur by rapid propagation of pre-existing flaws, such as notches or creases. On

account of the presence of a stress concentration around the flaw, the stress at which failure occurs

is well below the strength of a sheet without flaws, thus making fracture toughness, the ability to

resist crack growth, of cellulose networks an important performance parameter to be studied.

The objectives of this work are to characterize the out-of-plane z-direction fracture of cellulose

networks using cohesive zone modeling and filter paper (a porous 100% cellulose network) as a

function of humidity. Using a double cantilever beam (DCB) configuration, cohesive zone modeling,

and finite element simulations, we study the dependence on humidity of the toughness value and

other cohesive parameters of Whatman filter paper cellulose networks. Continuum cohesive zone

models provide the convenience of tuning a few parameters such as peak stress and separation at
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(a) Reference Configuration (b) Deformed Configuration

Figure 1.4: Depiction of the (a) Reference configuration, and (b) Deformed configuration, of a
Whatman filter paper specimen in the double cantilever beam (DCB) geometry.

failure to model one-dimensional fracture propagation. Use of cohesive zone models also allows us to

bypass expensive finite element simulations of discrete fiber networks which require the specification

of a host of parameters for the fibers and bonds. For these reasons, and since we do not have control

over individual fiber and fiber-fiber bonds properties in cellulose networks, we describe the fracture

behavior through continuum traction-separation laws. We perform finite element simulations and

input cohesive parameters (see Figure 1.4), and then calculate the toughness values using the traction-

separation law from the cohesive zone model. We then compare our results to experimental data.
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Chapter 2

Biomechanical Origins of Inherent

Tension in Fibrin Networks

This chapter is based on work published in [68] R. Spiewak, A. Gosselin, D. Merinov, R. I. Litvinov,

J. W. Weisel, V. Tutwiler, and P. K. Purohit. “Biomechanical origins of inherent tension in fibrin

networks”, Journal of the Mechanical Behavior of Biomedical Materials, (In Preparation).

Abstract

Blood clots form at the site of vascular injury to seal the wound and prevent bleeding. Clots

are in tension as they perform their biological functions and withstand hydrodynamic forces of

blood flow, vessel wall fluctuations, extravascular muscle contraction and other forces. There are

several mechanisms that generate tension in a blood clot, of which the most well-known is the

contraction/retraction caused by activated platelets. Here we show through experiments and

modeling that clot tension is generated by the polymerization of fibrin. Our mathematical model

is built on the hypothesis that the shape of fibrin monomers having two-fold symmetry and off-

axis binding sites is ultimately the source of inherent tension in individual fibers and the clot.

As the diameter of a fiber grows during polymerization the fibrin monomers must suffer axial

twisting deformation so that they remain in register to form the half-staggered arrangement

characteristic of fibrin protofibrils. This deformation results in a pre-strain that causes fiber

and network tension. Our results for the pre-strain in single fibrin fibers is in agreement with

experiments that measured it by cutting fibers and measuring their relaxed length. We connect

the mechanics of a fiber to that of the network using the 8-chain model of polymer elasticity. By

combining this with a continuum model of swellable elastomers we can compute the evolution

of tension in a constrained fibrin gel. The temporal evolution and tensile stresses predicted

by this model are in qualitative agreement with experimental measurements of the inherent

tension of fibrin clots polymerized between two fixed rheometer plates. These experiments also

revealed that increasing thrombin concentration leads to increasing internal tension in the fibrin
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network. Our model may be extended to account for other mechanisms that generate pre-strains

in individual fibers and cause tension in three-dimensional proteinaceous polymeric networks.

2.1 Introduction

Blood clots are formed at the sites of vessel wall injuries to seal or plug the damage and stem

bleeding. Clots result from multiple reactions that involve blood cells and plasma components,

including fibrinogen, the soluble protein converted enzymatically to insoluble fibrin [52]. A three-

dimensional polymeric fibrin network comprises the scaffold of a blood clot and, in combination with

embedded platelets and red blood cells [1], largely determines the clot’s biological and mechanical

properties.

To fulfill its biomechanical function and prevent or stop bleeding, the blood clot and the fibrin

scaffold must have certain mechanical resilience to be able to withstand hydrodynamic forces of

blood flow, pulsation of a vessel wall, extravascular muscle contraction, and more [37]. Among

many factors that contribute to the mechanical behavior of fibrin, one of the least studied is the

physiological tension of the fibrin network generated by at least two mechanisms. The most apparent

and well-studied is the external traction and compression of fibrin clots driven by activated platelets,

with each individual platelet exerting contractile forces on the order of tens of nano-Newtons on

adjacent fibrin fibers [54–56, 78]. However, there is strong evidence that fibrin clots generate inherent

(internal or intrinsic) tension unrelated to platelet contractility or any other external mechanical

perturbations. For example, the individual hydrated fibrin fibers observed in a light microscope are

straight, not sinuous, suggesting that each fiber is under inherent tension [79]. Tension of individual

fibrin fibers was introduced in [53], and their elasticity has been shown and quantified in AFM pulling

experiments [80] and by active flexing or stretching a separate fibrin fiber using optical tweezers [81].

Finally, the inherent fibrin fiber tension has been established directly by severing these fibers and

watching them retract [60]. If a great number of such taut individual fibers form a three-dimensional

network, then the entire network must also be under tension. From the general theory of polymer

mechanics, tension is self-generated in the polymers that possess some degree of non-uniformity and

thermodynamic instability of the major structural elements [82, 83]. The complex spatial axial and

lateral packing of the fibrin monomers and oligomers dictates their deviation (stretching) from the

relaxed and stable conformational state that provides a fundamental structural and thermodynamic
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Figure 2.1: Cartoon depicting the experimental setup using a rheometer. Testing apparatus, includ-
ing rheometer plates, force sensor, and humidity chamber, are shown in black. The light purple
shape represents the fibrin network material, the purple lines in the fibrin network represent the
isotropic fiber network, and the off-white ovals next to the clot represent the mineral oil added to
prevent sample drying during testing. The rheometer plates are held fixed such that a tension in
the network results in pulling on the upper plate.

basis for the existence of inherent tension of fibrin networks [84–90].

The inherent tension of fibrin clots has a number of conceivable biological implications. First,

it may comprise a thermodynamic mechanism to control the diameter of fibrin fibers, as the lat-

eral aggregation of protofibrils stops when the protofibril stretching energy surpasses the energy of

bonding [53]. Since fiber diameter is related to network porosity, fiber length, branch point density,

etc., the inherent tension of fibrin clots may modulate the overall network structure. Second, the

inherent tension in fibrin fibers can affect the rate of fibrinolysis both at the individual fiber level

[58–60] and in whole clot [61] because susceptibility of fibrin to fibrinolytic enzymes depends strongly

on the mechanical tension of the proteinaceous fibrous substrate. In aggregate, modulation of the

structure of a fibrin network along with the tension of fibers can affect the mechanical and enzymatic

stability of entire blood clots and thrombi that determine the course and outcomes of various hemo-

static disorders [37, 62]. Notably, the magnitude of inherent tension in fibrin networks should be

quite variable since it must depend on multiple local and systemic influences that determine fibrin

polymerization, including physiological and pathological variations in blood composition.

Here, our goal is to construct a mathematical model for the evolution of tension in isotropic

fibrin networks by accounting for the kinetics of the fibrin polymerization reaction that regulates

the size and structure of the fibrin fibers in a network model, accounting for the idea in [53] that

twisted monomers make a twisted protofibril, and the aggregation in register with a 22.5nm repeat

introduces tension. In the following we describe a model for capturing the evolution of tension in

a fibrin gel, as the fibers in the network polymerize between rheometer plates (see Figure 2.1). We

show how tension develops in a polymerizing fibrin fiber as its diameter increases, then use this

13



information in a continuum model to predict the evolution of tension in a constrained fibrin clot.

2.2 Theoretical Model

The basis of this mathematical model is that each fiber making up the fibrin network is under tension,

and the tension increases as the fiber diameter increases due to polymerization. The existence

of tension in fibrin fibers has been demonstrated by cutting individual fibers and observing their

retraction [60]. The origin of tension in fibrin fibers is not known, but it may have to do with the

spatial geometry of monomeric fibrin and oligomeric protofibrils [53, 92]. The protofibrils making

up a fibrin fiber are twisted into a helical shape in their stress-free state due to small axial twisting

of the fibrin monomers that polymerize axially and laterally (see Figure 2.2(a) and Figure 2.2(b)).

When they come together to form a fiber, the molecules making up a protofibril must be in registry

[53, 94], or properly aligned perpendicularly, in order for the linkages between them to form properly

(see Figure 2.2(c) and Figure 2.2(d)). However, as the diameter of the fiber increases, the stress-free

helix must deform in order for the molecules to be in registry (see Figure 2.2(d) and Figure 2.2(e)),

leading to some geometric frustration from the opposing forces [95, 96]. This causes strain in the

helical protofibrils and induces stress. This stress is ultimately responsible for the tension in a fibrin

fiber.

No models exist for quantifying the tension in a fibrin fiber, let alone as a function of its diameter.

Here we build such a model by analyzing the deformation of helical protofibrils and considering the

change in radius and pitch of a helical rod. The evolution of the diameter of a fiber is given by a

system of ordinary differential equations, based on [57], which track the concentrations of various

species as the polymerization reaction proceeds. The helical rod model for a fibrin fiber then outputs

the tension in an individual constrained fiber as a function of its (evolving) diameter. We show how

a single fiber under tension relaxes when the constraint is removed; this mimics recent experiments

in which individual fibers are cut and allowed to relax to determine their pre-strain [60]. Next, we

connect the mechanics of a single fiber to the constitutive response of a network using the 8-chain

model of polymer elasticity [41, 49–51]. We then use a continuum mechanical model of swellable

elastomers [97] to predict the network tension as a function of time in a constrained fibrin gel.

Initially we let the network solid volume fraction increase while holding constant the number of

fibers per unit reference volume, and then we hold constant the network solid volume fraction to
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(a) Fibrin monomers aggregating and helically twisting to form a double-stranded protofibril.

(b) The same helically twisted protofibril, modeled as a pair of helically twisted rods.

(c) Three helically twisted protofibrils, each modeled as a single rod, twisted around each other.

(d) Helical fiber.

(e) Thicker and shorter helical fiber after more protofibrils have aggregated.

Figure 2.2: Schematic representations of fibrin fibers. (a) A protofibril constructed from fib-
rin monomers [91], twisted due to the two-axis symmetry and off-axis binding sites [92], depicting
the 22.5nm half-staggered periodicity. Brace indicates one full monomer. (b) A protofibril modeled
as a pair of helical rods. Each rod of the protofibril is comprised of fibrin monomers stacked end
to end, twisting around the other rod in a helical fashion. (c) Three helically twisted protofibrils,
each formed of the same structure as (b) but depicted and modeled here as a single rod instead,
twisted around each other. Dashed lines emphasize the 22.5nm vertical striation necessitated to
maintain longitudinal periodicity. (d) The outer shell of a helical fiber modeled as a collection of
protofibrils helically twisted around the fiber core (not shown). Each protofibril is depicted and
modeled here as a single rod. (e) The new outer shell of the same fiber as in (d) after additional
protofibril aggregation. When additional protofibrils aggregate onto a growing fiber, the fiber radius
gets bigger, but the fiber contracts (i.e., the length of the fiber gets shorter) and the pitch angle α
becomes smaller so that the protofibrils can maintain the 22.5nm half-staggered registry (although
at the scale of this image the difference between the scale bars here and in (d) is difficult to see).
Once again, each protofibril is modeled as a single rod.
All scale bars are 22.5nm. All black areas of protein densification [93] correspond to the DED struc-
tures in the half-staggered packing. All red angular measures represent the pitch angle α.
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better mimic experiments.

2.2.1 Fibrin Network Polymerization Model

Weisel and Nagaswami [57] propose a system of ordinary differential equations (ODEs), to describe

the polymerization of fibrin fibers, comprising fibrin network, from a fibrinogen solution. The poly-

merization process they describe consists of the following steps – beginning with a concentration of

fibrinogen and thrombin (which cleaves the A fibrinopeptides from the fibrinogen to create fibrin

monomers), association of fibrin monomers to form double-stranded half-staggered protofibrils, and

then aggregation of protofibrils into fibrin firbers, which branch and grow to create the fibrin net-

work gel. Their polymerization process includes a minimum length requirement (which we will call

lagg + 1) for protofibrils to be capable of aggregation, which produces the observed lag period in

the number of protofibrils per fiber. Their model, including the polymerization chemical reaction

equations and the resulting system of ODEs, for the example of lagg = 10, is given as follows (with

some modification of the explanatory text only, to better reflect our current understanding of fibrin

polymerization):

fA
kA→ f fibrinopeptide A cleavage to convert fibrinogen to monomeric fibrin (2.1)

f + f
kpi→ f2 fibrin monomers associate to yield small longitudinal oligomers,

protofibril precursors (2.2)

f2 + f
kpi→ f3 (2.3)

f3 + f
kpi→ f4 (2.4)

...

f9 + f
kpi→ f10 (2.5)

f10 + f
kpi→ fn longer oligomers are formed until they reach the length of protofibrils

capable of lateral association (2.6)

fn + f
kpg→ fn protofibrils grow in length (2.7)

fn + fn
kfi→ fr two protofibrils aggregate laterally to initiate a fiber (2.8)

fr + fn
kfg→ fr additional protofibrils add to a transversely growing fiber (2.9)
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d[fA]

dt
= −kA[fA] (2.10)

d[f ]

dt
= kA[fA]− kpi[f ] (2[f ] + [f2] + [f3] + · · ·+ [f10])− kpg[f ][fn] (2.11)

d[f2]

dt
= kpi[f ] ([f ]− [f2]) (2.12)

d[f3]

dt
= kpi[f ] ([f2]− [f3]) (2.13)

...

d[f10]

dt
= kpi[f ] ([f9]− [f10]) (2.14)

d[fn]

dt
= kpi[f ][f10]− 2kfi[fn][fn]− kfg[fr][fn] (2.15)

d[fr]

dt
= kfi[fn][fn] (2.16)

d[f tot
n ]

dt
= 2kfi[fn][fn] + kfg[fr][fn] (2.17)

d[cfn ]

dt
= 11kpi[f ][f10] + kpg[fn][f ]− 2kfi[fn][cfn ]− kfg[fr][cfn ] (2.18)

d[cfr ]

dt
= 2kfi[fn][cfn ] + kfg[fr][cfn ] (2.19)

n =
[cfn ]

[fn]
(2.20)

m =
[f tot

n ]

[fr]
(2.21)

l =
[cfr ]

[f tot
n ]

, (2.22)

where fA represents fibrinogen, f represents fibrin monomers, f2 through f10 represent fibrin

oligomers comprised of 2 through 10 monomers, fn represent protofibrils, fr represent fibrin fibers,

[f tot
n ] represents total protofibrils in fibers, [cfn ] represents total fibrin [monomers] in protofibrils,

[cfr ] represents total fibrin in fibers, n is the average number of fibrin per protofibril, m is the average

number of protofibrils per fiber, and l is the average length of fibers.

Weisel and Nagaswami [57] also mention that the model should also account for longitudinal

oligomer-monomer and oligomer-oligomer interactions in the intermediate stages of protofibril for-

mation, which are not explicitly accounted for in the above model. A logical extension to this, which

is also mentioned by Weisel and Nagaswami [57], would be to include protofibril growth due to inter-

actions with oligomers, which is also not included in the above model. They additionally describe

that a reaction can be included to account for fiber-fiber interactions. Taking these additions into
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account, we can write the following chemical polymerization reactions:

fA
kA→ f1 (2.23)

fi + fj
kpi→















fi+j i+ j < lagg + 1

fn i+ j ≥ lagg + 1

, ∀j ∈ [i, lagg] ∀i ∈ [1, lagg] (2.24)

fn + fi
kpg→ fn ∀i ∈ [1, lagg] (2.25)

fn + fn
kfi→ fr (2.26)

fr + fn
kfg→ fr (2.27)

fr + fr
kfA→ fr (2.28)

These polymerization reactions result in the following system of ODEs:

d[fA]

dt
= −kA[fA] (2.29)

d[f1]

dt
= −kpi



[f1][f1] + [f1]

lagg
∑

i=1

[fi]



− kpg[f ][fn] + kA[fA] (2.30)

d[fj ]

dt
= kpi







⌊ j
2⌋
∑

i=1

[fi][fj−i]− [fj ][fj ]− [fj ]

lagg
∑

i=1

[fi]






− kpg[fn][fj ] ∀j ∈ [2, lagg] (2.31)

d[fn]

dt
= kpi







⌊

lagg+1

2

⌋

∑

j=1





(

[fj ] + [flagg+1−j ]
)

lagg
∑

i=lagg+1−j

[fi]










− 2kfi[fn][fn]− kfg[fr][fn] (2.32)

d[fr]

dt
= kfi[fn][fn]− kfA[fr][fr] (2.33)

d[f tot
n ]

dt
= 2kfi[fn][fn] + kfg[fr][fn] + kfA[fr][fr] (2.34)

d[cfn ]

dt
= kpi

lagg
∑

i=1






(lagg + i)

⌊

lagg+i

2

⌋

∑

j=i

[fj ][flagg+i−j ]






+ kpg[fn]

lagg
∑

i=1

[fi]− kfi[fn][cfn ]− kfg[fr][cfn ]

(2.35)

d[cfr ]

dt
= 2kfi[fn][cfn ] + kfg[fr][cfn ] + kfA[fr][fr]. (2.36)
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We retain the same definitions

n =
[cfn ]

[fn]
(2.37)

m =
[f tot

n ]

[fr]
(2.38)

l =
[cfr ]

[f tot
n ]

. (2.39)

The parameters in this system are as follows:

• lagg + 1, the minimum length for protofibrils to be capable of lateral aggregation: Since the

length of protofibrils is about 500nm [52, 98] and the half-staggered length of monomers is

about 22.5nm [52, 53, 93, 98, 99], and thus the number of fibrin monomers in protofibrils are

about 20 [52], lagg = 20 is chosen.

• fA0
, the initial concentration of fibrin(ogen): fA0

= 2.8229mg/mL is chosen to match the

initial fibrin(ogen) concentration value of 5× 1018molecules/L of Weisel and Nagaswami [57].

• kA, the rate of fibrinopeptide A cleavage to convert fibrinogen to fibrin monomers: kA = 1s−1.

• kpi, the rate of association of fibrin monomers to yield small oligomers and initiate protofibril

formation: kpi = 6.0× 10−20L/molecule s.

• kpg, the rate of protofibril growth in length by longitudinal association with monomers or

shorter oligomers: kpg = 1.4× 10−17L/molecule s.

• kfi, the rate of protofibril lateral aggregation to initiate a fiber: kfi = 1.0×10−20L/molecule s.

• kfg, the rate of fiber growth by association with additional protofibrils: kfg = 2.0 ×

10−16L/molecule s.

• kfA, the rate of lateral aggregation of fibers: the value kfA = 1.0 × 10−19L/molecule s is

chosen to be in a similar range as the other rate constants.

The rate constants were selected to be similarly valued to those used by Weisel and Nagaswami [57],

and the conditions kpi < kpg and kfi < kfg in Weisel and Nagaswami [57] were ensured.

The output parameter that is most important for this context is m, the average number of

protofibrils per fiber cross-sectional area, since that is the one from which the radius of the fiber is
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Figure 2.3: The average number of protofibrils per fiber cross-section m over time t, given the
input parameters fA0

= 2.8229mg/mL, lagg = 20, kA = 1s−1, kpi = 6.0 × 10−20L/molecule s,
kpg = 1.4 × 10−17L/molecule s, kfi = 1.0 × 10−20L/molecule s, kfg = 2.0 × 10−16L/molecule s,
and kfA = 1.0× 10−19L/molecule s.

estimated (see Section 2.2.2). For the parameter choice given above, the evolution of m over time

can be seen in Figure 2.3.

To study the effect of each parameter on the evolution of m over time, we ran the calculations for

a 20% change in each parameter and plotted the results together (see Figure 2.4). As can be seen

in Figure 2.4(a), a 20% change in the initial concentration of fibrin(ogen) affects the slope of the

increase in thickness: a larger fA0
causes a greater slope. Similarly, as can be seen in Figure 2.4(b),

lagg also affects the slope of the increase in thickness, but in the opposite way: a larger lagg results

in a smaller slope. In Figure 2.4(c), it can be seen that small changes in kA have only a very small

effect similar to lagg. Figure 2.4(d) shows that small changes in kpi have a similar effect as fA0
,

whereas Figure 2.4(e) depicts that small changes in kpg have a similar effect as lagg. Figure 2.4(f)

demonstrates that small changes in kfi result in changes in the value of the asymptotic limit plateau

region of the average number of protofibrils per fiber m: smaller values of kfi yield larger values of
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(a) Variation of fA0 .
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(b) Variation of lagg.
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(c) Variation of kA.
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(d) Variation of kpi.
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(e) Variation of kpg.
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(f) Variation of kfi.
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(g) Rate of fiber growth in diame-
ter by association with additional
protofibrils kfg ( L

molecule s
).
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(h) Variation of kfA.

Figure 2.4: Parameter study of the input parameters in the fiber formation model. Each parameter
was both increased and decreased by 20%. (a) Variation of initial concentration of fibrinogen fA0

( mg
mL

). (b) Variation of the minimum length for protofibrils to be capable of lateral aggregation
lagg + 1 (number of monomers). (c) Variation of the rate of fibrinopeptide A cleavage to convert
fibrinogen to fibrin monomers kA ( 1

s
). (d) Variation of the rate of association of fibrin monomers to

yield small oligomers and initiate protofibril formation kpi ( L
molecule s

). (e) Variation of the rate of
protofibril growth in length by association with oligomers kpg ( L

molecule s
). (f) Variation of the rate

of protofibril lateral aggregation to initiate a fiber kfi ( L
molecule s

). (g) Variation of the rate of fiber
growth in diameter by association with additional protofibrils kfg ( L

molecule s
). (h) Variation of the

rate of lateral aggregation of fibers kfA ( L
molecule s

).
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the limit. In contrast, Figure 2.4(g) shows that kfg has the opposite effect: smaller values of kfg

yield smaller values of the limit. Finally, Figure 2.4(h) depicts that kfA has a small affect on the

slope of the asymptotic limit plateau region of m: larger values of kfA result in larger slopes in the

asymptotic limit plateau region of m.

2.2.2 Fiber Radius as a Function of Fibrin Polymerization Time

If the radius of the region occupied by a single protofibril is given as rm, then the cross-sectional

area occupied by a single protofibril is

a0 = πr2m. (2.40)

Similarly, if the radius of a fiber is R, then the cross-sectional area of a fiber is given by

Afiber = πR2. (2.41)

Since the average number of protofibrils per fiber is given above as m,

Afiber = a0m, (2.42)

which gives us

πR2 = πr2mm, (2.43)

or

R(t) = rm
√

m(t). (2.44)

This is similar to the expression derived in [100]. The polymerization parameters (see Section 2.2.1)

which most directly control the plateau value of R(t) are kfi and kfg .
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2.3 Force in Helical Rods

Since it has been observed [53, 91] that both protofibrils and fibrin fibers are comprised of smaller

units helically twisted around a central stem, the derivation for the force in a helical fiber is presented

here.

A circular helix of radius r and pitch p with right-handed chirality can be described in lab-frame

Cartesian coordinates as

r(ζ) = r cos(ζ)e1 + r sin(ζ)e2 +
( p

2π

)

ζe3, (2.45)

and we denote

1

η
=

∣

∣

∣

∣

dr(ζ)

dζ

∣

∣

∣

∣

=

√

r2 +
( p

2π

)2

(2.46)

for simplicity. If s(ζ) is an arc-length coordinate along the contour of the helix, then

s(ζ) =

∫ ζ

0

∣

∣

∣

∣

dr(σ)

dσ

∣

∣

∣

∣

dσ =
ζ

η
, (2.47)

and the helix can be rewritten as

r(s) = r cos(ηs)e1 + r sin(ηs)e2 +
( p

2π

)

ηse3. (2.48)

The tangent to the helix is given as

t̂(s) =
dr(s)

ds
= −rη sin(ηs)e1 + rη cos(ηs)e2 +

( p

2π

)

ηe3, (2.49)

which is clearly a unit vector since

|t̂(s)|2 = η2
(

r2 +
( p

2π

)2
)

= 1. (2.50)

We can define the curvature

κ =

∣

∣

∣

∣

dt̂(s)

ds

∣

∣

∣

∣

= rη2 (2.51)
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and unit normal vector

ν̂(s) =
1

κ

(

dt̂(s)

ds

)

= − cos(ηs)e1 − sin(ηs)e2 + 0e3, (2.52)

from which we can also define the unit binormal vector

β̂(s) = t̂(s)× ν̂(s) =
( p

2π

)

η sin(ηs)e1 −
( p

2π

)

η cos(ηs)e2 + rηe3 (2.53)

and right-handed torsion

τ = (t̂× ν̂) · dν̂
ds

=
( p

2π

)

η2. (2.54)

(Note that for a helix with left chirality, for example r(s) = r sin(ηs)e1 + r cos(ηs)e2 +
(

p
2π

)

ηse3,

the right-handed torsion is τ = −
(

p
2π

)

η2, but with the given definitions the difference has no other

effect.) From here it is clear that

κ2 + τ2 = η2 (2.55)

and thus

r =
κ

κ2 + τ2
(2.56)

( p

2π

)

=
τ

κ2 + τ2
. (2.57)

It can be verified that the three vectors t̂(s), ν̂(s), and β̂(s) are orthonormal, and that the Frenet-

Serret theorem

d

ds













t̂(s)

ν̂(s)

β̂(s)













=













0 κ 0

−κ 0 τ

0 −τ 0

























t̂(s)

ν̂(s)

β̂(s)













(2.58)
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holds. As such, it is logical to express the lab-frame in the Frenet frame, using the transformations













t̂(s)

ν̂(s)

β̂(s)













=













−rη sin(ηs) rη cos(ηs)
(

p
2π

)

η

− cos(ηs) − sin(ηs) 0
(

p
2π

)

η sin(ηs) −
(

p
2π

)

η cos(ηs) rη

























e1

e2

e3













(2.59)













e1

e2

e3













=













−rη sin(ηs) − cos(ηs)
(

p
2π

)

η sin(ηs)

rη cos(ηs) − sin(ηs) −
(

p
2π

)

η cos(ηs)
(

p
2π

)

η 0 rη

























t̂(s)

ν̂(s)

β̂(s)













. (2.60)

Having described the kinematics of a helical rod we now want to examine equilibria with curvature

κ and torsion τ , both independent of s. It is assumed that the helical rod can carry forces and

moments and that it is acted upon by body forces and body moments. The goal is to find the force

and moment in the helical rod, given κ, τ , and the body forces and body moments. In the Frenet

frame, the body force per unit length on the helix, assumed independent of position on the helix s,

can be written

f = ftt̂+ fν ν̂ + fββ̂, (2.61)

and the force vector at any point s in the helix can be written

n(s) = ntt̂+ nν ν̂ + nββ̂. (2.62)

Conservation of linear momentum requires

dn(s)

ds
+ f = 0, (2.63)

which, using the Frenet-Serret theorem Eq. (2.58), reduces to

dnt

ds
− nνκ+ ft = 0 (2.64)

dnν

ds
− nβτ + ntκ+ fν = 0 (2.65)

dnβ

ds
+ nντ + fβ = 0. (2.66)
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Differentiating Eq. (2.65) with respect to s, and substituting in for dnt

ds
from Eq. (2.64) and dnβ

ds

from Eq. (2.66), results in

d2nν

ds2
+ η2nν + (τfβ − κft) = 0, (2.67)

which has solution

nν(s) = A cos(ηs) +B sin(ηs)− 1

η2
(τfβ − κft), (2.68)

where A and B are two constants. Putting Eq. (2.68) into Eq. (2.64) and Eq. (2.66), we have

dnt

ds
= Aκ cos(ηs) +Bκ sin(ηs)− κ

η2
(τfβ − κft)− ft (2.69)

dnβ

ds
= −Aτ cos(ηs)−Bτ sin(ηs) +

τ

η2
(τfβ − κft)− fβ , (2.70)

which can be integrated with respect to s to get

nt =
Aκ

η
sin(ηs)− Bκ

η
cos(ηs)− κs

η2
(τfβ − κft)− fts+Dt (2.71)

nβ = −Aτ

η
sin(ηs) +

Bτ

η
cos(ηs) +

τs

η2
(τfβ − κft)− fβs+Dβ , (2.72)

where Dt and Dβ are arbitrary constants. Substituting Eq. (2.71), Eq. (2.68), and Eq. (2.72) into

Eq. (2.65) yields

fν = τDβ − κDt. (2.73)

It is useful to recast the force balance in the directors di, i = 1, 2, 3 of a material frame in the

reference configuration of the circular cross-section of the rod comprising the helix. This frame is a

rotation by an angle

φ(s) = (κ3 − τ) s (2.74)
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about the normal vector t̂, where κ3 is a constant. In this frame,













d1(s)

d2(s)

d3(s)













=













0 cosφ sinφ

0 − sinφ cosφ

1 0 0

























t̂(s)

ν̂(s)

β̂(s)













, (2.75)

and













t̂(s)

ν̂(s)

β̂(s)













=













0 0 1

cosφ − sinφ 0

sinφ cosφ 0

























d1(s)

d2(s)

d3(s)













. (2.76)

The material frame also has the property

ddi

ds
= κ× di, i = 1, 2, 3, (2.77)

where the curvature vector can be represented

κ = κ1d1 + κ2d2 + κ3d3, (2.78)

or, in the Frenet frame, as

κ = (κ1 cosφ− κ2 sinφ) ν̂ + (κ1 sinφ+ κ2 cosφ) β̂ + κ3t̂ (2.79)

= κ3t̂+ κβ̂, (2.80)

with

κ1 = κ sin ((κ3 − τ) s) (2.81)

κ2 = κ cos ((κ3 − τ) s) (2.82)

κ3 = constant. (2.83)

We next analyze the angular momentum. Conservation of angular momentum can be expressed
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as

dm

ds
+ t̂× n+ ℓ = 0, (2.84)

where m is the moment at any point on the helix and ℓ is a body moment per unit arc length.

Following the example of Nizette and Goriely [101], to relate the moment m and the curvature

vector κ, we use the constitutive relation from linear elasticity for a rod of circular cross section

m = Kb (κ1 − κ01)d1 +Kb (κ2 − κ02)d2 +Kt (κ3 − κ03)d3, (2.85)

where

Kb = E
πr4

4
(2.86)

is the bending modulus with E the Young’s modulus of the rod,

Kt = G
πr4

2
(2.87)

is the twisting modulus with G the shear modulus of the rod, and

κ01 = κ0 sin ((κ3 − τ)s) , (2.88)

κ02 = κ0 cos ((κ3 − τ)s) , (2.89)

κ03, and κ0 are the spontaneous curvatures of the helix in the stress-free state. In the Frenet frame,

the constitutive relation giving the moment m can be written

m = Kb (κ− κ0) β̂ +Kt (κ3 − κ03) t̂. (2.90)

As in [101], we also take the body moment

ℓ = 0. (2.91)
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Now, the conservation of angular momentum reduces to the following three equations:

Kt

dκ3

ds
= 0 (2.92)

Kt (κ3 − κ03)κ−Kb (κ− κ0) τ − nβ = 0 (2.93)

nν = 0, (2.94)

recalling that

κ =
r

r2 +
(

p
2π

)2 , (2.95)

κ0 =
r0

r20 +
(

p0

2π

)2 , (2.96)

and κ03 are constants. Eq. (2.92) shows that κ3 is constant, and Eq. (2.93) shows that

nβ = Kt (κ3 − κ03)κ−Kb (κ− κ0) τ, (2.97)

which is therefore also a constant. Combining Eq. (2.94) with Eq. (2.68), we have

0 = A cos(ηs) +B sin(ηs)− 1

η2
(τfβ − κft) ∀s. (2.98)

In order for this equation to be true for all s, we must conclude that

A = B = 0, (2.99)

τfβ = κft. (2.100)

Using these conclusions, Eq. (2.71) and Eq. (2.72) become

nt = Dt − fts (2.101)

nβ = Dβ − fβs. (2.102)

However, since we have also Eq. (2.97) independent of s, from the last equation we must conclude
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also that

fβ = 0 (2.103)

Dβ = nβ = Kt (κ3 − κ03)κ−Kb (κ− κ0) τ. (2.104)

Since we also have Eq. (2.100), if fβ = 0, we must also have

ft = 0, (2.105)

and therefore

nt = Dt (2.106)

is also a constant. Thus, we have

n = Dtt̂+ (Kt (κ3 − κ03)κ−Kb (κ− κ0) τ) β̂ (2.107)

f =
(

Kt (κ3 − κ03)κτ −Kb (κ− κ0) τ
2 − κDt

)

ν̂. (2.108)

In the material frame, the body force per unit length on the helix can be written

f = f1d1 + f2d2 + f3d3, (2.109)

and the force vector at any point s in the helix can be written

n(s) = n1d1 + n2d2 + n3d3. (2.110)

From our previous analysis, we have

n =
(

Kt (κ3 − κ03)−Kb (κ− κ0)
τ

κ

)

(κ1d1 + κ2d2) +Dtd3 (2.111)

f =

(

Kt (κ3 − κ03) τ −Kb (κ− κ0)
τ2

κ
−Dt

)

(κ2d1 − κ1d2), (2.112)
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which gives us

n1 =
(

Kt (κ3 − κ03)−Kb (κ− κ0)
τ

κ

)

κ1 (2.113)

n2 =
(

Kt (κ3 − κ03)−Kb (κ− κ0)
τ

κ

)

κ2 (2.114)

n3 = Dt (2.115)

f1 =

(

Kt (κ3 − κ03) τ −Kb (κ− κ0)
τ2

κ
−Dt

)

κ2 (2.116)

f2 = −
(

Kt (κ3 − κ03) τ −Kb (κ− κ0)
τ2

κ
−Dt

)

κ1 (2.117)

f3 = 0. (2.118)

Suppose there is a force F = Fe3 applied on the helical filament along its axis. This applied

force in the Frenet frame can be expressed

F = Fe3 = F
(( p

2π

)

ηt̂+ rηβ̂
)

. (2.119)

The filament will carry the force as the force vector n = F. Thus, in the Frenet frame, we have

Dt = F
( p

2π

)

η (2.120)

Kt (κ3 − κ03)κ−Kb (κ− κ0) τ = Frη. (2.121)

Solving the second of these two equations for F and substituting back into the first, we arrive at

Dt =
(

Kt (κ3 − κ03)−Kb (κ− κ0)
τ

κ

)

τ. (2.122)

Thus, the body force per unit length on the helix and the force vector at any point s on the helix

become

f = 0 (2.123)

n =
(

Kt (κ3 − κ03)−Kb (κ− κ0)
τ

κ

)

(κ1d1 + κ2d2 + τd3). (2.124)
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In the case when κ0 = κ03 = 0, the force vector

n

Kb

=

(

Kt

Kb

κ3 − τ

)

[κ− (κ3 − τ)d3] (2.125)

from Nizette and Goriely [101] is recovered.

The magnitude of the force vector is

n =
∣

∣

∣

(

Kt (κ3 − κ03)−Kb (κ− κ0)
τ

κ

)∣

∣

∣
η. (2.126)

In the main text we assume there is no twisting moment acting on the helix, so Kt(κ3 − κ03) = 0.

2.3.1 Tensile Force in a Fiber

It has been observed [53, 91] that protofibrils and fibrin fibers are comprised of smaller longitudinal

units helically twisted around a central stem. Thus, the theory developed in 2.3 is applicable to the

components of both fibrin fibers and protofibrils. For a helix of radius r and pitch p, the pitch angle

is given by

tanα =
∣

∣

∣

τ

κ

∣

∣

∣ =
p

2πr
(2.127)

where τ is the torsion of and κ is the curvature of the helical curve. Additionally, since the adjacent

helical protofibrils must maintain registry required for the 22.5nm half-staggered longitudinal band

pattern [52, 53, 98], the pitch angle must remain constant through the cross-section of the fiber at

different values of the radius r. As r evolves in time the pitch angle also evolves. For example,

the pitch angle α = 80.8◦ calculated from the measured quantities r = 50nm and p = 1930nm for

fibrin fibers [53]. The pitch angle α = 85.5◦ calculated from the extracted quantities r = 5nm and

p = 400nm from simulations of equilibrated molecular structures [91]. Assuming also that there is

no twisting moment, so that κ3 = κ03, the magnitude of the force in a protofibril can be written as

(see 2.3)

n(r) =

∣

∣

∣

∣

−Kb sinα
1

r

(

cos2 α

r
− κ0

)∣

∣

∣

∣

, (2.128)
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where Kb is a bending modulus and κ0 is a spontaneous curvature, both material properties of

the helical protofibrils. In a tension-free state with pitch angle αs (for example, in a hypothetical

free-floating twisted but unstretched fiber) the total force on the fiber is F = 0. Since the radial dis-

tribution of protofibrils is disordered [53], the number density of protofibrils per unit cross-sectional

area is assumed to be constant and the fiber cross-section is taken as being circular of radius R.

Then, the force balance in the tension-free fiber cross-section is

∫ R

rm

2πr

a0
n(r)dr = 0, (2.129)

where again

a0 = πr2m (2.130)

is the area occupied by one protofibril. Since Kb, a0, and αs are constant, the integral simplifies to

∫ R

rm

cos2 αs

r
dr =

∫ R

rm

κ0dr, (2.131)

which gives

cos2 αs =
κ0(R− rm)

ln
(

R
rm

) . (2.132)

This sets the pitch angle of the fiber as a function of the radius R in a stress-free state.

For a fiber of pitch angle αe 6= αs both twisted and stretched to connect to a network, the total

force on the fiber is F 6= 0. In this case, the force balance for the cross-section of a fiber under

tension is

∫ R

rm

2πr

a0
n(r)dr = F. (2.133)

This time, the solution of the integral for the force on the fiber is

F =
2π

a0
Kb sinαe

(

κ0(R− rm)− cos2 αe ln

(

R

rm

))

. (2.134)
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Figure 2.5: Tensile force F vs. stretch λe in an individual fiber for different fiber radii. Thicker
fibers develop higher tensile forces.

If we define

λe =
tanαe

tanαs

(2.135)

as the elastic stretch of the fiber between the twisted but unstretched state with pitch angle αs and

the twisted and stretched state with pitch angle αe, then the force on the fiber Eq. (2.134) can be

considered as a function of λe and αs(R), where αs(R) is known from Eq. (2.132), and R(t) from

Eq. (2.44) can be calculated from the fiber polymerization equations in Section 2.2.1. The result

from Eq. (2.134) for different values of R, in line with previously reported range of fibrin fiber radii

of 25−115nm [69], are shown in Figure 2.5 for parameter values discussed below. Note that F = 0 at

λe = 1 for all values of R. This will be useful when we define a stress-free intermediate configuration

in the continuum model (see Section 2.3.3).

The parameters in Eq. (2.134) are as follows: a0 = πr2m, the area of a circular region of radius rm
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occupied by one protofibril (plus surrounding fluid); Kb, the bending modulus of the fiber; λe, the

stretch of the fiber between the twisted but unstretched state with pitch angle αs and the twisted

and stretched state with pitch angle αe; and κ0, the spontaneous curvature in the stress-free state.

The radius of the area occupied by a single protofibril is known to be rm = 6.5nm [88, 91, 102]. With

an estimate of the persistence length of protofibrils of Lp = 400nm [91] and a room temperature of

T = 290K, the bending modulus can be estimated as Kb = kBTLp ≈ 1600pN nm2, where kB is the

Boltzmann constant. κ0 can be estimated in two ways: the first way utilizes the relationship between

curvature and the radius and pitch of a helix Eq. (2.96), and the extracted quantities r0 = 5nm

and p0 = 400nm from simulations of equilibrated molecular structures of free protofibrils [91], which

gives a value κ0 ≈ 1.226 × 10−3nm−1; the second way rearranges Eq. (2.132), uses tanαs = p
2πR ,

and takes the average value of κ0 for the values of R = 50nm and the range p = 1930± 280nm from

[53], which gives a value 〈κ0〉 ≈ 1.235× 10−3nm−1. These two estimates are in excellent agreement,

so the value κ0 = 1.23× 10−3nm−1 is chosen.

Using these values, the tensile force F in a fiber vs time t in polymerization can be seen in

Figure 2.6 with λe = 1.501 held fixed.

2.3.2 Kinematics of Fiber Relaxation After Transverse Cutting

According to the theory presented in Section 2.3.1, a fiber of length l in a network will relax to an

equilibrium length l/λe when cut transversely. This assertion can be confirmed by solving for the

length of a fiber over time as it relaxes. Here, the fiber will be modeled as a rod relaxing through a

fluid. Similar to [103], the kinematics over time t are developed for a rod-like structure of length l

in one spatial dimension characterized by the reference configuration variable ς. All relevant vectors

have the same direction along the length of the fiber from ς = 0 to l, so they will be treated as

scalars with unit vector direction along the length of the fiber. The fiber is assumed to be moving in

a fluid, which itself is flowing with velocity v, which causes a drag force. Thus, the spatial position

of a material point ς at time t is z(t , ς), the velocity of the spatial point is ∂z
∂t

, and the stretch

λ =

∣

∣

∣

∣

∂z

∂ς

∣

∣

∣

∣

=
tanα

tanαe

(2.136)

depends on both position and time. Here α(ς, t) is the current pitch angle and we have chosen the

reference state to be the one with uniform stretch λe everywhere. The balance of linear momentum
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Figure 2.6: Tensile force F in individual fibers vs time t in polymerization for the values rm = 6.5nm,
Kb = 1600pN nm2, λe = 1.501, and κ0 = 1.23× 10−3nm−1.

for a segment of the fiber in this reference configuration can be written

d

dt

∫ ς2

ς1

ρ
∂z

∂t

dς = F (t , ς2)− F (t , ς1) +

∫ ς2

ς1

b(t , ς)dς, (2.137)

where the linear density ρ is mass per unit length of the fiber, F = F (t , ς) is the force at time t

acting on material point ς, and b = b(t , ς) is a distributed load per unit length at ς. Here, the inertia

force is negligible, so ρ = 0. The distributed body force

b(t , ς) = −dw

(

∂z(t , ς)

∂t

− v

)

(2.138)

where dw is the effective drag coefficient caused by the drag force exerted on the fiber by the

surrounding fluid. The effective drag coefficient dw is estimated using results proposed by [104]

for thin bodies in flow with low Reynolds’ number. These results take advantage of thinness to

36



make simplifications to approximate solutions for the flow around these bodies, and superimpose

fundamental singularities around the body to solve for complex flows. Exact solutions can be

obtained for mathematically simple bodies in mathematically simple flows. Their expression for the

axial drag coefficient is

dw =
2πµ

ln
(

l
R

)

+ c
, (2.139)

where µ is the fluid viscosity, l is the length of the body, R is the radius of gyration of the body, and

c depends on the shape of the body. For a uniform cylinder,

c = ln 2− 3

2
. (2.140)

As such, the linear momentum equation becomes

F (t , ς2)− F (t , ς1)−
∫ ς2

ς1

dw

(

∂z(t , ς)

∂t

− v

)

dς, (2.141)

which can be localized to

∂F (t , ς)

∂ς
= dw

(

∂z(t , ς)

∂t

− v

)

(2.142)

since there are no discontinuities. In this case, the fluid is not flowing, so v = 0. Therefore, the

localized balance of linear momentum becomes

∂F (t , ς)

∂ς
= dw

(

∂z(t , ς)

∂t

)

. (2.143)

We take the constitutive law for the force F to be the same as in Eq. (2.134),

F (t , ς) =
2π

a0
Kb sinα

(

κ0(R− rm)− ln

(

R

rm

)

cos2 α

)

, (2.144)

with

tanα =
∂z

∂ς
tanαe. (2.145)
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For the fiber in question, one end is assumed fixed and the free end has no force. Therefore, the

boundary conditions are

z(t , ς = 0) = 0, (2.146)

F (t , ς = l) = 0. (2.147)

The initial condition at time t = 0+ is that z(ς) = ς everywhere except very close to the end which

is severed. At the severed end the tension instantaneously goes to zero. Since we integrate the PDE

for the relaxation numerically by a finite difference method we give the initial condition in discrete

form as:

z(t = 0, ς) =















ς, 0 ≤ ς ≤ 0.99l,

tanαs

tanαe
(ς − 0.99l) + 0.99l, 0.99l < ς ≤ l,

(2.148)

where the last (100th) element is assumed to be at zero force.

Eq. (2.143) can be solved using a finite difference method. Eq. (2.143) is discretized for numerical

calculation as

Fi,j+ 1
2
− Fi,j− 1

2

∆ς
= dw

zi+1,j − zi,j
∆t

, (2.149)

where j denotes the jth node and i denotes the ith time step, ∆ς is the element length, and ∆t is

the time step. From this, the position of the fiber at the next time increment can be calculated by

zi+1,j =
Fi,j+ 1

2
− Fi,j− 1

2

∆ς

∆t

dw
+ zi,j . (2.150)

The condition

∆t ≤ dw
2ka

(∆ς)2, (2.151)

with the largest slope of the force-stretch relation curve

ka =
2π

a0
Kb tanαe cos

3 αs

(

κ0(R− rm) + (1 + sin2 αs) ln

(

R

rm

))

, (2.152)
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(b) Length z(t , ς = l) of the fiber relaxing over time
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Figure 2.7: Length z(t , ς = l) of the fiber relaxing over time t for different initial lengths l and
different stretch λe values. (a) Length z(t , ς = l) of the fiber relaxing over time t , with R = 78nm,
tanαs = 5.22, tanαe = 7.84, λe = 1.501, and the initial length values l = 0.5µm, l = 0.75µm, and
l = 1.0µm. Inset: the same curves with y-axis normalized by the initial lengths of the fibers z(t =
0, ς = l). For λe = 1.501, the fibers relax to the lengths 0.34µm, 0.50µm, and 0.67µm, respectively,
from Eq. (2.143), in excellent agreement with the lengths l/λe = 0.33µm, l/λe = 0.50µm, and
l/λe = 0.67µm from the theory proposed in Section 2.3.1. (b) Length z(t , ς = l) of the fiber relaxing
over time t for different stretch λe values, with R = 78nm, tanαs = 5.22, l = 1.0µm, and the stretch
and pitch angle values λe = 1.2 and tanαe = 6.27, λe = 1.501 and tanαe = 7.84, and λe = 1.8 and
tanαe = 9.40.

must be satisfied to ensure stability of the method.

The inputs to this partial differential equation are as follows: the fiber radius, R; the pitch angle

of the fiber in the stress-free state, αs; the pitch angle of the fiber in the state in which it is twisted,

stretched, and connected to the network, αe; the fluid viscosity, µ; and the length of the fiber l when

it is connected to the network. The fiber radius R is chosen from the final value calculated from

the polymerization over time t, Eq. (2.44), which is in line with the previously reported range of

fibrin fiber radii of 25 − 115nm [69]. The pitch angle in the stress-free state αs is calculated as in

Eq. (2.132), and the pitch angle of the fiber αe in its connected state is computed from Eq. (2.135)

with the fixed value λe = 1.501 used above in Section 2.3.1. Since the fluid in which the rod resides

predominantly behaves like water, µ = 1.002×10−3Pa s, the fluid viscosity of water. The probability

density function of the fiber lengths P (l) in a network is a log-normal distribution function of l with

parameters µ = 0.53 and σ = 0.78, as found in [105]. The most probable value is l = 0.9µm, with

a likely range of about 0.5µm ≤ l ≤ 2µm (see also 2.4). Figure 2.7 depicts the length z(t , ς = l)
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z(t = 0, ς = l) = l tf z(t = tf , ς = l) l
λe

L = l
λeλs

0.5µm 0.12ms 0.34µm 0.33µm 0.81µm
0.75µm 0.23ms 0.50µm 0.50µm 1.22µm
1.0µm 0.34ms 0.67µm 0.67µm 1.62µm
1.5µm 0.62ms 1.01µm 1.00µm 2.44µm
2.0µm 0.98ms 1.35µm 1.33µm 3.25µm

Table 2.1: Relaxation times tf and lengths, both calculated from Eq. (2.143) and from l/λe from
the theory proposed in Section 2.3.1, for different initial lengths z(t = 0, ς = l) = l. Relaxation time
tf was taken as the amount of time required to reach the expected length l/λe± 1% from the theory
proposed in Section 2.3.1.

of the fiber relaxing over time t , with R = 78nm, tanαs = 5.22, tanαe = 7.84, λe = 1.501, and

l = 0.5µm. For λe = 1.501, the fiber relaxes to the length 0.34µm in time tf = 0.12ms from

Eq. (2.143), in excellent agreement with the length l/λe = 0.33µm from the theory proposed in

Section 2.3.1. Relaxation time tf was taken as the amount of time required to reach the expected

length l/λe ± 1% from the theory proposed in Section 2.3.1. Relaxation times and lengths, both

calculated from Eq. (2.143) and from l/λe from the theory proposed in Section 2.3.1, for different

initial lengths l are presented in table Table 2.1.

Studies such as [106] (specifically as interpreted by [60]) demonstrate that fibrin fibers recoil in a

timescale on the order of milliseconds or even submilliseconds. The relaxation times tf given by the

theory developed here agree with the millisecond and submillisecond recoil times presented by [106].

Additionally, recent works of Cone, et al. [60] have also measured lengths of individual fibers from

fibrin networks prior to cleavage and the subsequent fragments, and calculated the average prestrain

value as 〈ε〉 = 23± 11%. The prestrain from the model presented here can be calculated as

ε = 1− 1

λe

. (2.153)

With the value of λe = 1.501 calculated from the mechanisms in Section 2.3.3, the prestrain is

ε = 33%. This value is in excellent agreement with the prestrain measured by Cone et al. [60]. This

suggests that our assumption that λe ≈ 1.5 is reasonable.

2.3.3 Continuum Model of Fibrin Gel

Consider a hypothetical free fibrin fiber polymerizing in space, beginning as a string of length L of

protofibrils in this initial configuration. As it is not attached to any other fibers, such an imaginary

fiber would not be constrained by outside agents (note that an actual fibrin fiber would polymerize
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attached to other fibers in a network and would thus be under tension). As polymerization of this

imaginary fiber proceeds, protofibrils aggregate laterally around the initial protofibril. If the fiber

is not constrained in any way, the length of the fiber will decrease as the radius increases, as outer

protofibrils stretch and protofibrils near the center contract in order for the protofibrils to maintain

registry required for the 22.5nm half-staggered pattern [52, 53, 90, 98]. Let us assume that the

stretch of this fiber (with respect to the initial configuration of length L) is

λs(t) ≤ 1, (2.154)

where t is the elapsed time since the start of polymerization (see Section 2.2.1). If there was an

unconstrained isotropic network of such fibers which we describe as a continuum then this network

will shrink compared to its configuration at t = 0 and the deformation gradient will be given by:

Fs(t) = λs(t)I. (2.155)

Following the framework developed in [97] we will call this state of the continuum as an intermediate

stress-free configuration. In this state, the length of the fibers is λsL, and the fibers are twisted

helically but are not under tension. Imagine next that the network was actually formed between

two rheometer plates whose normals are in the z-direction. If the distance between the plates is not

allowed to change then the network is constrained and it will pull on the plates as the fiber diameter

increases. Accordingly, there is a force along the ez direction, and there are zero forces in the ex

and ey directions. Thus, due to this constraint, the fibers will be in a twisted and stretched state

and the continuum representing the network has stretches λex(t), λey(t), and λez(t) measured with

respect to the intermediate state, giving a deformation gradient

Fe(t) =
∂xe

∂xs

, (2.156)

41



where xe is the position in the fully deformed configuration of a particle whose position in the

intermediate configuration is xs, and the elastic right Cauchy-Green tensor is

Ce = F
T
e Fe =













λ2
ex 0 0

0 λ2
ey 0

0 0 λ2
ez













. (2.157)

The total deformation gradient is then

F(t) = Fe(t)Fs(t). (2.158)

Next, we need to give an expression for the stored energy density in the continuum as a function

of F. To this end, we will use the 8-chain model proposed in [41, 49, 107]. This model was shown to

describe fibrin networks [50, 51], rubbers and elastomers [41, 107], actin filament networks [100], and

other random networks. In [50] the stored energy density had two parts – (a) due to the deformation

of the fibrin fibers, for which we use the Arruda-Boyce 8-chain model [41], and (b) due to volumetric

deformation that the 8-chain model cannot capture for which we use a bulk-modulus. In the 8-chain

model, the network is represented by a cube of length a in the reference (undeformed) configuration

with eight fibers (or chains) of length

L =

√
3

2
a (2.159)

connecting each of the vertices to the center of the cube (see Figure 2.8). If the sides of the cube

are parallel to the principal coordinates of the deformation, then after the deformation the length

of each fiber is λe(t)λs(t)L, where

λe =

√

λ2
ex + λ2

ey + λ2
ez

3
. (2.160)

If the strain energy per unit reference length of the fiber in the intermediate configuration due to the

elastic deformation is G(λe), then the stored energy in each fiber is G(λe)λsL, and the force-extension

relation of a fiber is

F (λe) =
dG(λe)

dλe

. (2.161)
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Figure 2.8: Cartoon depicting the 8-chain model representing fibrous network materials. A node in
the center of an imaginary cube of initial side length a is connected to the eight vertices by eight
chains, each of initial length L =

√
3
2 a.

The contribution of fiber deformation to the total strain energy per unit volume is ν
λ3
s
λsLG(λe),

where

ν = νnd =
3
√
3

L3
(2.162)

is the density of fibers in the reference configuration. Next, we need to account for the energy of

volumetric deformation that is not captured by the 8-chain model. If the volume of the cube in the

intermediate configuration is Vs and the volume change of the cube to the final configuration is ∆V ,

then

∆V

Vs

= λexλeyλez − 1. (2.163)

The strain energy per unit intermediate volume due to this volumetric deformation is denoted as

g(λexλeyλez). Thus, the strain energy density per unit volume of the cube in the intermediate

configuration is given by

Ue(λex, λey, λez) =
ν

λ3
s

λsLG(λe) + g(λexλeyλez). (2.164)

By observing that the strain energy density in the reference configuration U is related to the strain

energy density in the intermediate configuration by

U = λ3
sUe, (2.165)
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the strain energy density in the intermediate configuration can be converted into the strain energy

density in the reference configuration as

U(λex, λey, λez, λs) = νλsLG(λe) + λ3
sg(λexλeyλez). (2.166)

Having described the kinematics and energetics of the continuum in this way we now want to

enforce equilibrium. A comprehensive continuum mechanical theory to do this exercise for gels is

given in [97]. We refer the reader to [97] for detailed derivations of the equations used below. Similar

to the analyses in [97], the second Piola-Kirchoff stress can be written

Te = 2Fe

∂U

∂Ce

(2.167)

TR = 2Fe

∂U

∂Ce

F
−T
s , (2.168)

where TR is the reference Piola-Kirchoff stress that satisfies the equilibrium equation

DivTR = 0 (2.169)

in the reference configuration. Using our expression for the stored energy function we get,

Te =
νλsL

3λe













λex 0 0

0 λey 0

0 0 λez













F (λe) + λ3
sf(λexλeyλez)













1
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0 1
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λez
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


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



λexλeyλez (2.170)

TR =
νL

3λe










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λex 0 0
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








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




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









λexλeyλez. (2.171)

where f(∆V
Vs

) = g′(∆V
Vs

). It should be noted that the shear components of Te and TR are all

0 in principal coordinates. Since there are no forces or constraints applied on the fibers in the

intermediate configuration, it is reasonable to assume F (1) = f(1) = 0.

In the present case with a network polymerizing in between fixed rheometer plates with surfaces
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perpendicular to the axial ez direction, forces are applied only in the axial ez direction, and

TRxx = TRyy = 0. (2.172)

Due to isotropy,

λex = λey = λ∗ (2.173)

are also expected, and so

λx = λy = λ∗λs (2.174)

λz = λezλs. (2.175)

Since during polymerization the rheometer plates are fixed,

λz = 1. (2.176)

Hence,

λez =
1

λs

. (2.177)

As such, equilibrium in terms of the Piola-Kirchoff stresses reduce to the following two equations:

0 =
νL

3λe

λ∗F (λe) + λsλ∗f

(

λ2
∗

λs

)

(2.178)

TRzz =
νL

3λeλs

F (λe) + λ2
sλ

2
∗f

(

λ2
∗

λs

)

, (2.179)

for the two unknowns λ∗ and TRzz, where now

λe =

√

2λ2
∗λ

2
s + 1

3λ2
s

. (2.180)

The network stress TRzz can be multiplied by the area of the rheometer plate to get the force exerted

on the network due to polymerization.

The unknowns in this model are as follows: L, the length of the fiber in the imaginary refer-
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ence configuration; F (λe), the force-stretch relation of a fiber; f , the relationship between volumetric

strain and pressure; λs, the stretch between the imaginary reference configuration and the intermedi-

ate configuration; λ∗, the stretches between the intermediate configuration and the final configuration

in the directions other than that in the axial ez direction; and, in the fixed solid volume fraction

formulation, the solid volume fraction φs. The length of the fiber L in the imaginary reference

configuration can be found by calculating

L =
l

λeλs

, (2.181)

from the distribution found in [105], as discussed in Section 2.3.2. The force-stretch relation of a

fiber F (λe) is the same as the force in a fiber Eq. (2.134) derived in Section 2.3.1. The relationship

between volumetric strain and pressure is taken to be

f

(

λ2
∗

λs

)

= K

(

λ2
∗

λs

− 1

)

, (2.182)

where K = 1314.67Pa is a bulk modulus as found in [2]. We have verified that a higher bulk modulus

value of K = 100KPa has little effect on the results. The stretch between the imaginary reference

configuration and the intermediate configuration is taken to be

λs(R(t)) =
tanαs(R(t))

tanα0
, (2.183)

where tanαs(R(t)) is given by Eq. (2.132), and tanα0 = 400
2π×5 for a single protofibril based on [91].

The stretches λ∗ between the intermediate configuration and the final configuration in the directions

other than that in the axial ez direction can be solved for each elapsed polymerization time t from

Eq. (2.178). This calculated value of λ∗, along with the λs value, can be used to calculate λe in

Eq. (2.180). In solving these equations, we use λe = 1.501. Finally, the network Piola-Kirchhoff

stress TRzz can be computed from Eq. (2.179).

Using the above values and choosing l = 0.5µm, the Piola-Kirchhoff stress TRzz as a function of

polymerization time t can be seen in Figure 2.9. As the clot polymerizes the tension increases, as

expected. Steady state is reached by about 1000 seconds, in qualitative agreement with experiments.

To study the effect of the estimated parameter length l and final fiber radius R on the net-

work Piola stress TRzz, we ran simulations with different values for each and compared the re-
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Figure 2.9: Piola-Kirchhoff stress TRzz in the network in the fixed number density formulation as a
function of polymerization time t, using the length of the fiber connected in a network l = 0.5µm.

sults. Figure 2.10(a) depicts the change in Piola stress TRzz for fiber length l values in the range

0.5µm ≥ l ≥ 2.0µm. As can be seen in Figure 2.10(a), larger fiber lengths produce smaller network

Piola stresses TRzz. Additionally, as can be seen in Figure 2.10(b), thicker fibers of the same length

produce larger network Piola stresses TRzz.

The above discussion held the number of fibers per unit reference volume constant, giving a

density νnd. If, instead, as in experiments in Figure 2 in [68]and in other experiments [69], the solid

volume fraction φS is held constant at φs = 0.01 or 1%, a value previously estimated for plasma clot

fibrin networks (see Figures S3 and S4 in the supplement of [69]), the density becomes

ν = νvf =
φs

πR2λeλsL
. (2.184)

When using this density in the calculations of network stress, results for varying different input pa-

rameters are more consistent. As can be seen in Figure 2.11(a), fibers of different lengths produced

the same network stress TRzz; this is not the same effect as in Figure 2.10(a) which held the number
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(b) Effect of estimated fiber radius R on the net-
work Piola stress TRzz for ν = νnd.

Figure 2.10: (a) Effect of estimated fiber length l on the network Piola stress TRzz using five values
of l from the most likely range of l from the experimental probability distribution found in [105],
as discussed in Section 2.3.2. These plots assume that l remains fixed as solid volume fraction φs

evolves with time. (b) Network Piola stress TRzz vs. polymerization time t for constant fiber length
l = 0.5µm, for different final values of fiber radius Rf . Thicker fibers contribute more network Piola
stress TRzz.
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(a) Effect of estimated fiber length l on the net-
work Piola stress TRzz for ν = νvf .
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Figure 2.11: (a) Effect of estimated fiber length l on the final network Piola stress TRzz using five
values of l from the most likely range of l from the probability distribution found in [105], as discussed
in Section 2.3.2. (b) Effect of final fiber radius R on final network Piola stress TRzz, for constant
fiber length l = 0.5µm. Thinner fibers contribute more network Piola stress TRzz. Since the solid
volume fraction during polymerization is not constant, only the values calculated from the final time
in the polymerization have been included. The final solid volume fraction for each of these points is
φs = 0.01.
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Figure 2.12: Probability distributions of (b) fiber lengths as found in [105], and (b) network stresses
based on the fiber lengths and holding constant the solid volume fraction φs = 0.01 as estimated in
[69].

density of fibers fixed, where larger fiber lengths produce smaller network Piola stresses TRzz. Also,

the estimated final values of the tensile stress are in agreement with experimental results in Figure 2

of [68]. Additionally, as can be observed in Figure 2.11(b), thinner fibers of the same length produce

larger network Piola stresses TRzz, which is also different from the trend observed in Figure 2.10(b)

which held the number density fixed. Recall from experiments [68] that increased thrombin con-

centration causes decrease in turbidity, which is related to the average protofibrils per fiber m [57],

leading to a decrease in R. Thus, these results for ν = νvf are in agreement with the trend expected

from [57] and the results from experiments where increased thrombin concentration yields increased

magnitude of network stress (see Section 2.6 in [68]). In a real network there is a distribution of fiber

lengths, so we accounted for this in rudimentary way in 2.4 and showed that the resulting values of

final tensile stress are not very different from those reported in Figure 2.11.

2.4 Distribution of Fibrin Fiber Lengths

Figure 2.12(a) depicts the probability distribution of fiber lengths in a fibrin network, as found in

[105]. The probability density function is a log-normal distribution function of l with parameters

µ = 0.53 and σ = 0.78, as found in [105]. Figure 2.12(b) depicts the probability density of l vs the

peak stress TRzz from the simulations utilizing that l as an input parameter, with the radius for
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that given l calculated by

R =

√

φs

νπl
, (2.185)

where the density ν = 0.1µm−3, as measured in [44], and TRzz is also calculated using ν = 0.1µm−3

from [44]. The mean value of TRzz is 1.21Pa. This mean value is roughly of the same order of

magnitude as the network Piola stresses TRzz calculated from the simulations in Figure 2.9. The

stress values resulting from these computations are also of the same order of magnitude as the values

produced by experiments in Section 2.6 in [68].

2.4.1 Summary of Full Mathematical Model

The model can be summarized as follows: The system of ODEs, resulting from the chemical rate

equations governing fiber polymerization, are as follows:

d[fA]

dt
= −kA[fA] (2.186)

d[f1]

dt
= −kpi



[f1][f1] + [f1]

lagg
∑

i=1

[fi]



− kpg[f ][fn] + kA[fA] (2.187)

d[fj ]

dt
= kpi







⌊ j
2⌋
∑

i=1

[fi][fj−i]− [fj ][fj ]− [fj ]

lagg
∑

i=1

[fi]






− kpg[fn][fj ] ∀j ∈ [2, lagg] (2.188)

d[fn]

dt
= kpi







⌊

lagg+1

2

⌋

∑

j=1





(

[fj ] + [flagg+1−j ]
)

lagg
∑

i=lagg+1−j

[fi]










− 2kfi[fn][fn]− kfg[fr][fn] (2.189)

d[fr]

dt
= kfi[fn][fn]− kfA[fr][fr] (2.190)

d[f tot
n ]

dt
= 2kfi[fn][fn] + kfg[fr][fn] + kfA[fr][fr] (2.191)

d[cfn ]

dt
= kpi

lagg
∑

i=1






(lagg + i)

⌊

lagg+i

2

⌋

∑

j=i

[fj ][flagg+i−j ]






+ kpg[fn]

lagg
∑

i=1

[fi]− kfi[fn][cfn ]− kfg[fr][cfn ]

(2.192)

d[cfr ]

dt
= 2kfi[fn][cfn ] + kfg[fr][cfn ] + kfA[fr][fr]. (2.193)
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with

m =
[f tot

n ]

[fr]
. (2.194)

The fiber radius R as a function of the average number of protofibrils per fiber cross-section m is

R(t) = rm
√

m(t). (2.195)

The stretch connecting the imaginary reference configuration and the intermediate configuration of

a fiber, as a function of fiber radius R, is given by

λs(R(t)) =
tanαs(R(t))

tanα0
=

√

ln(R(t)
rm

)
κ0(R(t)−rm) − 1

400
2π×5

. (2.196)

The stretch between the intermediate configuration and the final configuration of the whole network

in the directions other than that in the axial ez direction λ∗ is calculated by solving

0 =
νL

3λe

λ∗F (λe) + λsλ∗f

(

λ2
∗

λs

)

(2.197)

using the force in a fiber

F =
2π

a0
Kb sinα

(

κ0(R− rm)− cos2 α ln

(

R

rm

))

(2.198)

with

tanα = λe tanαs = λe

√

√

√

√

ln
(

R(t)
rm

)

κ0(R(t)− rm)
− 1, (2.199)

the stretch between the intermediate configuration and the final configuration

λe =

√

2λ2
∗λ

2
s + 1

3λ2
s

, (2.200)

51



and the relationship between volumetric strain and pressure

f

(

λ2
∗

λs

)

= K

(

λ2
∗

λs

− 1

)

. (2.201)

Then, the network Piola stress can be computed from

TRzz =
νL

3λeλs

F (λe) + λ2
sλ∗f

2

(

λ2
∗

λs

)

. (2.202)

The model takes the unknown input parameters initial concentration of fibrinogen fA0
, rate of

fibrinopeptide A cleavage to convert fibrinogen to fibrin monomers kA, the rate of association of

fibrin monomers to yield small oligomers and initiate protofibril formation kpi, the rate of protofibril

growth in length by association with oligomers kpg, the rate of protofibril aggregation to initiate

a fiber kfi, the rate of fiber growth by association with additional protofibrils kfg, the rate of

interactions between fibers kfA, and initial length of a fiber connected in a network l. The model

outputs the radius of a polymerizing fiber R(t), force on a fiber F , the stretches λs and λe, the

relaxed length of a fiber l/λe, and the network Piola stress TRzz.

2.5 Discussion

In this paper we have followed [53, 57] and modeled fibrin clot formation – from fibrinogen to fibrin

monomers and oligomers to protofibrils to fiber formation – by a set of ODEs for the chemical rate

of change in concentration of the reacting structures of each individual stage. The solution of that

system of ODEs gives the average number of protofibrils per fiber cross-section as a function of poly-

merization time. Variation of the rate constants involved in the intermediary biochemical reactions

demonstrates that the two most important stages determining final fiber radius are fiber initiation

by lateral aggregation of protofibrils and fiber growth by transverse association with additional

protofibrils. The resulting (final value of) average number of protofibrils per fiber cross-sectional

area is directly related to the radius of a fiber. Therefore, we can calculate how the radius of a fiber

evolves in time. This radius is used as an input to calculate the evolving tensile force in a fiber which

ultimately determines the tensile force in a network constrained between two rheometer plates.

We assumed that since the radial distribution of protofibrils is disordered [53, 90], the number

density of protofibrils per unit fiber cross-sectional area is constant. In particular, we assumed that
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Figure 2.13: Calculated Young’s modulus of an individual fiber in a fibrin network vs. fiber radius.
Note the trend that the Young’s modulus decreases with increasing radius.

a single protofibril occupies a circle of radius 6.5nm in the fiber cross-section. Thus, if the number of

protofibrils in a fiber is known (from the solution of the ODEs), the radius of the fiber as a function

of time can be calculated. The resulting values of the fiber radius are in line with the previously

reported range of fibrin fiber radii of 25 − 115nm [69]. However, we note that other works suggest

that the density of protofibrils per fiber cross-sectional area is not constant [86, 93, 108–111]; the

number of protofibrils per fiber cross sectional area is proportional to D1.3 [109] or D1.4±0.2 [111],

and not D2 as we have used. It has also been suggested that the fiber core is more dense than the

periphery layers [111]. We used the constant number density assumption in our calculations due to

its simplicity and also because a specific numerical value (6.5nm) for the inter-protofibril distance

was available. On the other hand, other works [109, 111] provide scaling laws which do not furnish

enough information to compute actual numerical values of the fiber radius. Additionally, even if

a more accurate relationship between the number of protofibrils per fiber cross sectional area is

specified, it will only change the computation of the radius from the average number of protofibrils

in a fiber. Our overall approach of computing the fiber tension and the network tension will still

remain the same. Furthermore, our simple assumption of constant number density of protofibrils

per fiber cross-sectional area is able to capture a crucial experimental observation that the Young’s

modulus of a fibrin fiber decreases with increasing radius, as demonstrated below.

Our equation (see Eq. (2.134)) for the force-stretch relation of a single fiber is derived by math-

ematicizing ideas in [53] which trace the origin of tension in fibrin fibers to the two-axis symmetry

and off-axis binding sites of individual fibrin monomers. This causes protofibrils to be helical as
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clearly seen in the the simulations of [91] and images of [94]. If a number of such helical protofibrils

are to form a fibrin fiber by lateral aggregation then it is necessary that the individual monomers

be properly aligned. This causes some protofibrils to stretch and others to shorten so that there

is overall force balance in the cross-section [53]. We have enforced this force balance in a fiber

cross-section by considering the equilibrium of each individual helical protofibril, which may have

stretched or shortened depending on its location in the fiber cross-section. This force balance is

expressed as Eq. (2.134) and the radius R of a fiber enters as a parameter in this equation. Starting

with the force F in Eq. (2.134) and dividing by the assumed cross sectional area πR2, we get the

stress σ in a fiber due to external force F . Then, since this stress and the stretch in Eq. (2.135) are

both functions of the variable tanαe, the Young’s modulus E of a fiber may be calculated as

E =
dσ/dαe

dλe/dαe

∣

∣

∣

∣

λe=1

=
4

a0R2
Kbκ0(R− rm) sin3 αs. (2.203)

The results of this equation can be found in Figure 2.13, and the trend of decreasing Young’s modulus

with increasing radius is similar to the trend in [110]. There may be additional contributions to

individual fiber modulus, for example the long and largely unstructured α-C regions may have

significant contribution as well [110], but we have captured the general trend in Figure 2.13.

The force-stretch relation given by Eq. (2.134) and Eq. (2.135) can be combined with the equation

of motion of a fiber subject to fluid drag to predict the relaxation to equilibrium of a severed fibrin

fiber. Here we have shown that the relaxation time depends on the fiber length and radius and

the resulting time scales as well as fiber pre-strains are in excellent agreement with the cutting

experiments of [60]. Importantly, we made no attempt to compare the forces (or stresses) in our

calculations with those documented in [60] because the experimental values of the forces are obtained

from the strains using a Young’s modulus that is different from those calculated in Figure 2.13. Also,

a simple linear relation between stress and strain in a single fibrin fiber may not be appropriate at

large strains. Finally, we acknowledge that the process of enzymatic cleavage of a fibrin fiber (as in

[112]) is quite complex since one would have to also model the diffusion and binding/unbinding of

the enzyme together with mechanics of cleavage of individual protofibrils.

Finally, we connect the mechanical behavior of a fibrin network to that of individual fibers

by using the 8-chain model [41, 49] together with the continuum mechanics of swellable gels [97].

Interestingly, models of ‘swellable’ elastomers are applicable here even though fibrin fibers tend to
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R (nm) λe F (pN) Afiber (nm2) σ (Pa)
74 1.48 0.78 17, 200 45.4
78 1.50 0.83 19, 100 43.5
82 1.52 0.88 21, 100 41.7

Table 2.2: Computed values for fiber (and network) stresses, given a fixed and uniform fiber radius
for a “network” of fibers vertically connected between two horizontal plates with a fixed separation
distance 0.5µm. The fiber stretches λe are calculated using Eq. (2.184) in Eq. (2.178). Inherent
forces in fibers F are computed from Eq. (2.134), using pitch angles calculated from Eq. (2.135).
The cross-sectional area of each fiber Afiber = πR2. Inherent fiber stresses σ are computed by
dividing the force F by the fiber cross-sectional area Afiber.

‘shrink’ in length as their diameter increases with time. We show that the inherent tensile stress in

polymerizing fibrin networks depends on fiber length, radius, solid volume fractions, etc. Our results

from the continuum model in Section 2.3.3 are in agreement with the results from experiments. The

order of magnitude of the inherent tension is the same in both experiments and continuum model

and steady state is reached by around 1000s in both the model and the experiments. Additionally,

our continuum model can recover the trend that thinner fibers produce larger network stress for

fixed solid volume fraction as observed in recent experiments [68] coupled with the study of the

effect of thrombin concentration on turbidity in [57], although the predicted trends from the model

are weaker than those from experiments.

This trend in Figure 2.11(b) that thinner fibers produce larger network stress is not obvious.

One hypothesis to explain this phenomenon involves the following simplified scenario: imagine that

two fixed horizontal plates are connected by a “network” consisting of only vertical fibers of uniform

thickness. Since the fibrin volume fraction is constant irrespective of the fiber radius, the total sum

of the cross-sectional area of all those fibers will be the same whether the fibers are thinner or thicker,

but there will be more thinner fibers in such a scenario than if the fibers were thicker. Now, from

Eq. (2.134), the force in a fiber can be calculated as a function of the fiber radius, from which the

inherent stress in the fiber can be computed by dividing by the cross-sectional area of a fiber πR2.

If the cross-sectional area of a fiber increases faster as the radius increases than does the force in the

fiber, the inherent stress in the fiber will decrease with radius, and the total “network” stress will

decrease with fiber radius as well.

This can be better illustrated by the use of concrete examples, such as the three radii in Fig-

ure 2.11(b), namely, R = 74nm, R = 78nm, and R = 82nm. For these radii and choosing the same

fiber length l = 0.5µm, the resulting fiber stretches λe from using Eq. (2.184) in Eq. (2.178) are
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λe = 1.48, λe = 1.50, and λe = 1.52, respectively. With these values and computing the pitch angle

αe from Eq. (2.135), the inherent forces in each fiber are F = 0.78pN , F = 0.83pN , and 0.88pN ,

respectively. The cross-sectional area of each fiber is Afiber = 17200nm2, Afiber = 19100nm2, and

Afiber = 21100nm2, respectively, which, combined with the inherent forces in the fibers, yields the

fiber inherent stresses σ = 45.4Pa, σ = 43.5Pa, and 41.7Pa, respectively. It should be noted that

these calculations were performed in a simplified scenario to illustrate one possible hypothesis, and

they do not take into account confounding factors such as the isotropic nature of fibrin gels or branch

points, although they give some physical intuition for the phenomenon.

Our calculation based on the 8-chain model assumes a given constant length of all fibers, but

this is not the case for real fibrin networks. The constant length we use to compute pre-tension

should really be interpreted as the average fiber length in a network. We may be able to do slightly

better by using the probability density function for the fiber lengths and computing a probability

density for the pre-tension values obtained (see 2.4). However, this still does not account exactly

for the different values of pre-tension in each fiber of a real fibrin gel, although it does utilize known

information about the structure of a true fibrin network. A proper accounting of the variation of

fiber lengths to predict pre-tension in a network will likely require computations that are beyond

the scope of the research presented in this paper.

Pre-tension in fibrin networks specifically is important because it contributes to the stability of

the material. Fibrin fiber networks, as well as many other biological networks, have connectivity

(average number of fibers connected at a junction) below the Maxwell isostatic threshold, which, for

networks with a large number of elements, is twice the dimensionality [113–115]. Thus, if the fiber

interactions were limited to tension and compression central forces, the network materials would

be unstable for small deformations and would be floppy rather than rigid [114, 115]. The presence

of pre-tension in fibrin networks, similar to the presence of fiber bending in F-actin networks in

cytoskeletons [116], active stresses generated by myosin motors in cytoskeletal networks [117] and

in fibrin networks in blood clots [118], thermal fluctuations [49, 119], and osmotic pressure in actin

networks [100], stabilizes and rigidifies the network material [114, 115].

Estimations of inherent stress in a fibrin fiber network, as well as of other network material

properties, will be useful in interpreting experiments performed on blood clots and thrombi, in the

use of fibrin as a biomaterial – for example, the inherent tension may comprise a thermodynamic

mechanism to control fiber diameter, and thus modulate the overall network structure – and in
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the application and development of novel methods of treatment of thrombotic states such as in

mechanical thrombectomy since the susceptibility of fibrin to fibrinolytic enzymes depends strongly

on the mechanical tension of the proteinaceous fibrous substrate [58–61]. Thus, variation of the

tension in fibers and the structure of the fibrin network can affect mechanical and enzymatic stability

of entire blood clots and thrombi, which determines the course and outcome of hemostatic disorders

[37, 62].
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Chapter 3

Structure, Mechanical Properties,

and Modeling of Cyclically

Compressed Pulmonary Emboli

This chapter is based on work published in [1] I. N. Chernysh, R. Spiewak, C. L. Cambor, P. K.

Purohit, and J. W. Weisel. “Structure, mechanical properties, and modeling of cyclically compressed

pulmonary emboli”, Journal of the Mechanical Behavior of Biomedical Materials, 105: 103699,

(2020). DOI:10.1016/j.jmbbm.2020.103699.

Abstract

Pulmonary embolism occurs when blood flow to a part of the lungs is blocked by a venous

thrombus that has traveled from the lower limbs. Little is known about the mechanical behavior

of emboli under compressive forces from the surrounding musculature and blood pressure. We

measured the stress-strain responses of human pulmonary emboli under cyclic compression, and

showed that emboli exhibit a hysteretic stress-strain curve. The fibrin fibers and red blood

cells (RBCs) are damaged during the compression process, causing irreversible changes in the

structure of the emboli. We showed that damage is accumulated as more cycles are applied.

The stress-strain curves depend on embolus structure, such that variations in composition give

quantitatively different responses. Emboli with a high fibrin component demonstrate higher

normal stress compared to emboli that have a high RBC component. We describe the hysteretic

response characteristic of foams, using a model of phase transitions in which the compressed

foam is segregated into coexisting rarefied and densified phases whose fractions change during

compression. Our model takes account of the rupture of RBCs in the compressed emboli and

stresses due to fluid flow through their small pores. Our results can help in classifying emboli as

rich in fibrin or rich in red blood cells, and can help in understanding what responses to expect
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when stresses are applied to thrombi in vivo.

3.1 Introduction

Venous thromboembolism is a pathological condition in which a blood clot forms in the veins, most

often in the deep veins of the lower extremity, groin, or less commonly in the upper extremity. Ve-

nous thrombi result from a combination of hypercoagulability with injured or activated endothelium

and impaired blood flow [120, 121] with one of the most serious and common consequences being

pulmonary embolism. The propagation and dissolution of venous thrombi are associated with the

balance between local and systemic thrombogenic stimuli and protective anticoagulant and fibri-

nolytic mechanisms [122–124]. If part of a thrombus embolizes and travels in the circulation and

lodges in the lungs, the result is pulmonary embolism. Because the clot can block blood flow to part

of the lungs, pulmonary embolism is often a fatal type of vascular disease, with an estimated global

incidence rate of 115-269 per 100,000 and mortality rate of 9.4-32.3 per 100,000 [125]. Around 23%

of patients with pulmonary embolism die, either undiagnosed or within one day of diagnosis [126],

with the high mortality rate being attributed in part to difficulties in identification and management.

Pulmonary embolism is a complex disorder divided into four major disease processes, including

venous thrombosis, thrombus in transit or pulmonary embolism, acute pulmonary embolism, and

pulmonary circulation reconstruction. All these aspects of pulmonary embolism have been studied

intensively using a variety of approaches ranging from epidemiological and diagnostic studies to some

detailed molecular, cellular and genetic approaches, as well as ex vivo pathological studies and clinical

trials. Those studies were primarily focused on the pathological changes in the blood component of

the disease, coagulation pathways, the function of vascular smooth muscle cells, microvesicles, and

the inflammatory pathways that play key roles in pulmonary embolism [127–131].

Less is known about the mechanical properties of thrombi or thromboemboli. Thrombi are

subject to many types of forces, such as those generated in the vasculature by blood flow and those

generated by platelets pulling on fibrin in clot contraction, and forces as a result of muscle contraction

of the vessel wall, cardiac muscle and striated muscles adjacent to the blood vessels, especially in

the veins of the lower limbs. As a result, the structure of the developing thrombus can be modified

from these forces, and on the other hand, increasing thrombus size alters blood flow. Irregular vessel

geometry due to thrombus development may result in stenosis and complicated flow patterns. For
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example, reduction in a vessel diameter by 75% stenosis results in 94% decrease in luminal cross

section area that causes approximately a 64-fold increase in wall shear, such that pathological shear

rates may exceed 250,000 s−1 [132, 133]. Increasing shear rate impairs normal vascular function and

may result in embolization of thrombi [134, 135]. In summary, there are multiple forces acting on a

growing thrombus, including shear, tensile, and compressive forces.

A number of models have been developed to quantify and help to understand the mechanical

properties of blood clots, including compressive studies of platelet-poor, platelet-rich and whole

blood clots [63]. It has been demonstrated that fibrin networks exhibit foam–like behavior with

compression [44]. Most of those studies of clot mechanics, including compression of blood clots,

have been carried out in vitro using clots made only of fibrin or whole blood [63–66], but the

structure of in vivo thrombi or emboli differ [67].

There are not many ex vivo studies on thrombi or emboli because of the difficulty of obtaining

such material. In one study, tensile loading of a thrombus showed that the material exhibited linear

or mildly non-linear response [136, 137], while the results from another group clearly demonstrated

non-linear elastic behavior [138]. A study of the effects of aging on compression of human throm-

boemboli demonstrated that aged thromboemboli had a highly compact structure and were prone

to fragmentation compared to fresh thromboemboli, which are soft and elastic [139]. Another study

showed that applying and holding a low (5%) compressive strain over time results in a decrease of

compressive load during a stress–relaxation test [140].

In this study, we used ex vivo human pulmonary emboli as a model for thromboemboli and

investigated the mechanical response and structural changes with cycling of compression to maximum

compressive strain and passive decompression. Compression impinges on thrombi developing inside a

vessel, where they are subject to the forces from contraction of the vessel wall or muscles surrounding

the vessel, or cardiac muscle. Moreover, cyclic compression arises from pulsatile blood flow. This new

knowledge is important to understand structural changes that may happen during thromboemboli

developing in vivo in a vessel, and may help to evaluate risks of embolization of thrombi as well as

for developing new approaches to therapy, such as removal by thrombectomy.
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Figure 3.1: Experimental set-up to obtain rheological data for compression experiments. Schematic
illustration of compression of an embolus placed between the rheometer plates. Rheometer plates are
shown in black. The dark gray shapes represent the embolus, while the light gray shape represents
the liquid expelled from the embolus during the compression cycle. The embolus was compressed
as the upper rheometer plate moved down, squeezing liquid out of the embolus. Dashed line shows
changes in area after the embolus was compressed. Arrows indicate liquid expelled from the embolus.
The green lines in the embolus represent the isotropic form of the fiber network.

3.2 Materials and methods

Pulmonary emboli (n=3) were obtained during autopsies performed in the Department of Pathology,

Hospital of the University of Pennsylvania (Philadelphia, Pennsylvania, USA), within 24 hours after

the patient’s death. These specimens from pulmonary arteries were all large (several centimeters)

and from patient review most likely arose from the lower limbs. The emboli were stored in phosphate

buffered saline, pH 7.4, and experiments were carried out in a timely fashion to minimize storage

time. Changes that might have occurred post mortem are unknown but no morphological signs of

fibrinolysis [141] or other post-mortem changes were observed.

Emboli were positioned between two 40 mm plates of a rheometer (ARG2; TA Instruments, New

Castle, DE) with a built-in temperature control system, and compressed continuously at rates of

10 µm/min (see Figure 3.1). After the upper plate was moved down to apply an axial force on the

upper surface of the embolus and the maximum compressive strain was achieved, the upper plate

was returned to its starting position at the same rate. However, since the embolus is not attached

to the rheometer plate, it was allowed to rise back up by passive decompression with no external

forces applied. Emboli were exposed to repeated compressive/decompressive loads. Emboli were
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vertically squeezed to various degrees of compression: the first set of compression/decompression

cycles was at 0 ≤ ǫ ≤ 0.5 compressive strain, the second set of compression/decompression cycles

was at 0.5 ≤ ǫ ≤ 0.75 or 0.5 ≤ ǫ ≤ 0.8, and the third set of compression/decompression cycles was at

0.75 ≤ ǫ ≤ 0.9 or 0.8 ≤ ǫ ≤ 0.9. Three cycles were done for each set of compression /decompression.

The compressive strain (degree of compression) was defined as the absolute fractional change in

embolus thickness ǫ = |∆h/h0|, where ∆h = h − h0, and h0 and h are the thickness dimensions of

the uncompressed and compressed embolus, respectively. During compression and decompression,

the normal stress was measured and stress-strain curves were plotted for further analysis.

3.3 Modeling framework

Blood clots and thrombi/emboli are composed of a fibrin network, platelets, and Red Blood Cells

(RBCs), and the RBCs release fluid upon lysis. We develop a simple microscopically informed

model, taking into account the lysis of RBCs and leakage of fluid under compression. A key feature

of our model is the transition from a rarefied to a densified phase of the fiber network that is

characteristic of foams under compression; hence, we do not assume the material to be homogeneous

after deformation.

The total stress in blood clots or thrombi under compression can be modeled as a combination

of the stress carried by the fibrin network σnet, the stress carried by RBCs σRBC , and the stress due

to fluid flow σfl:

σ = σnet + σRBC + σfl. (3.1)

Following previous work [63], we denote compressive stresses and compressive strains as positive

(σ > 0 and ǫ > 0 for compression).

3.3.1 Fibrin network contribution

It has been demonstrated earlier that the stress-strain response of the fibrin network is composed of

three segments: a rarefied phase, a densified phase, and a transition phase between them [63].
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3.3.1.1 Rarefied Phase

The rarefied phase has a linear stress-strain response [29, 63]

ǫ = ΓL(σ) =
σ − σpre

EL

, (3.2)

where EL is the modulus of the fibrin network and σpre ≤ 0 is a pre-stress to account for the effect

of platelets [63, 142, 143]. It has been shown [45, 63] that EL is related to the Young’s modulus of

a single fiber Es by

EL = Esφ
2
0, (3.3)

where φ0 is the volume fraction of the fibrin network. Additionally, since platelets are much smaller

than RBCs, they make up a much smaller part of the volume of the clot than the RBCs. Additionally,

whereas RBCs flow with the fluid at low stresses and lyse at higher stresses, the platelets are firmly

adherent to the fibrin. However, platelets do apply contractile forces to the fibrin network, the effect

of which is a pre-tension in the network. We account for this pre-tension as σpre.

3.3.1.2 Densified Phase

In the densified phase, fibers are bent and buckled, and some have even broken. The nonlinear

stress-strain response for dense networks has the form [6, 11, 63]

σ = kEs(φ
3 − φ3

0), (3.4)

where k ≈ 0.1 is determined by the material and loading conditions [44, 63], and

φ =
φ0

1− ǫ
(3.5)

is the increase in volume fraction of the clot with clot compression [44, 63], where φ0 is the initial

volume fraction of the clot.

Additionally, fibrin fibers sticking to each other reduces the free energy of the network. We can

treat each contact point between fibers as a bond that releases free energy Ubond, so that the total
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free energy per unit deformed volume is given by [63]

E = NcUbond +

∫

σdǫ, (3.6)

where

Nc = Cφ2 (3.7)

is the number of contact points per unit volume in a dense isotropic network [6, 63] and C is a

material constant. Inserting Eqs. (3.7), (3.4), and (3.5) into Eq. (3.6) and then differentiating with

respect to ǫ, we arrive at a new stress-strain law for the densified region [63]:

σ =
2Cφ2

0Ubond + kEsφ
3
0

(1− ǫ)3
− kEsφ

3
0 =

K −∆G

(1− ǫ)3
−K, (3.8)

where

K = kEsφ
3
0 (3.9)

is a constant with units of stress and

∆G = −2CUbondφ
2
0 (3.10)

is a normalized bonding energy density.

Thus, the densified phase has nonlinear stress-strain response [6, 44, 63, 144]

ǫ = ΓH(σ) = 1−
(

K −∆G

σ +K

)
1
3

, (3.11)

3.3.1.3 Transition phase

As a fibrin network is compressed, it transitions from being fully in the rarefied phase to being fully

in the densified phase. In the transition phase, the rarefied phase and densified phase coexist in

distinct regions separated by a phase transition front or phase boundary [63, 64]. The transition

to the densified phase begins at stress σLH < σM , where σM is the maximum stress at which the

rarefied phase can exist. Similarly, for decompression, the network starts in the densified phase, and

the transition to the rarefied phase begins at σHL > σm, where σm is the minimum stress at which

the densified phase can exist. Also, σLH > σHL, so both phases can exist at stress σ in the region
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Figure 3.2: Diagram of the rarefied and densified regions in relation to the reference frame.

σHL ≤ σ ≤ σLH . The transformation strain is defined as [46, 63]

γT (σ) = ΓH(σ)− ΓL(σ) = 1−
(

K −∆G

σ +K

)
1
3

− σ − σpre

EL

, (σm ≤ σ ≤ σM ). (3.12)

During loading and unloading, we assume that the phase transition occurs under quasi-static con-

ditions, so the stress in any part of the embolus is the same. Letting h be the initial height of the

embolus, and z (0 ≤ z ≤ h) be the reference coordinate along the direction of loading, w(z, t) be the

local vertical displacement, and fixing the reference frame z = 0 at the bottom of the embolus, then

w(0, t) = 0 for all t. The displacement at the top of the embolus is denoted as δ(t) = w(h, t) [63]. If

for σHL ≤ σ ≤ σLH there is a separation at z = h − s(t) between the two parts of the continuum,

such that for z < h− s(t) the network is in the rarefied phase and for z > h− s(t) the network is in

the densified phase, the displacement at the top is given by [63]

δ(t) = ΓL (σ(t)) [h− s(t)] + ΓH (σ(t)) s(t). (3.13)

Thus, h − s(t) represents the height of the phase boundary (see Figure 3.2), and s(t)
h

is the

fraction of densified phase. To describe the motion of the phase boundary s(t) as it moves from the

top of the clot to the bottom, a kinetic law is introduced [46, 63]:

ṡ = Φ(f) =































MLH(f − fLH), f > fLH

0, fHL ≤ f ≤ fLH

MHL(f − fHL), f < fHL

, (3.14)
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where Φ is a material property [46, 63]and

f(σ) =

∫ σ

σ0

γT (σ
′)dσ′ (3.15)

is the driving force on the phase boundary [46, 63]. f is assumed to be a unique function of stress,

σ0 is a Maxwell stress at which the Gibbs free energy of both phases are equal, MLH > 0 and

MHL > 0 are mobilities that could be fitted to experimental data and are not necessarily equal,

and fLH = f(σLH) and fHL = f(σHL) [46, 63]. Φ(f) must also satisfy the dissipation condition

fΦ(f) ≥ 0 [46, 63]. The nucleation criteria can be defined as follows: the stress σLH at which the

densified phase nucleates in the rarefied phase during loading is assumed to be where the driving

force f is just greater than fLH , and the stress σHL at which the rarefied phase nucleates in the

densified phase during unloading is assumed to be where the driving force f is just less than fHL.

This is done so that the phase boundary begins to move as soon as it appears [63]. Finally, the

differential equation governing the phase transition is [63]

σ̇ =

γT (σ)
h

(

γT (σ)ṡ− δ̇
)

ΓL(σ)Γ′
H(σ)− Γ′

L(σ)ΓH(σ)− γ′
T (σ)

δ
h

. (3.16)

Thus, the stress contribution from the network σnet is defined as

σnet ≡































σnet = −σpre + ELǫ, fully rarefied phase

σ̇net =
γT (σ)

h (γT (σ)ṡ−δ̇)
ΓL(σ)Γ′

H
(σ)−Γ′

L
(σ)ΓH(σ)−γ′

T
(σ) δ

h

, transition phase

σnet =
K−∆G
(1−ǫ)3 −K, fully densified phase

. (3.17)

3.3.1.4 Cauchy stress to Piola stress conversion

The phase transition theory discussed above uses the Piola, or nominal stress. The derivations

below for RBC contribution and fluid contribution use Cauchy stress. To be consistent and work

with Piola stress, we must convert the Cauchy stresses to Piola stress. This conversion can be done

by considering the definitions of Cauchy stress σ = F
A

and of Piola stress τ = F
A0

, where F is the

applied force, A is the cross-sectional area of the current configuration, and A0 is the cross-sectional
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area of the reference configuration. Since F is the same in both expressions,

τ =
A

A0
σ. (3.18)

The current cross-sectional area A of the deformed embolus is computed by linear interpolation of

the experimentally measured initial cross-sectional area A0 and final cross-sectional area Af :

A =
Af −A0

ǫf − ǫ0
(ǫ− ǫ0) +A0, (3.19)

where ǫ0 = 0 since there is no strain before any compression and ǫf = 1− hf

h
, where h is the initial

height of the embolus and hf is the final height of the embolus. Thus, the conversion from Cauchy

stress σ to Piola stress τ is

τ =
A

A0
σ =

(

Af

A0
− 1

1− hf

h

ǫ+ 1

)

σ. (3.20)

3.3.2 RBC contribution

The large deformation response of RBCs under tension and compression has been studied [145, 146]

using a nonlinearly elastic neo-Hookean model given by [147–149]. This model was shown to predict

the compression response of blood clots quite well [63]. In our notation (in which σ > 0 and ǫ > 0

for compression), this model for RBCs in uniaxial deformation is given by [150]

σneo = 2Cneo

(

3ǫ+
ǫ3

1− ǫ

)

, (3.21)

where Cneo is a material constant that can be fitted to the experimental data [63]. Since only the

RBCs from the densified phase become deformed, of the initial volume fraction of RBCs in the

clot, only the fraction of RBCs that were in the densified region carry stress. Denoting the initial

volume fraction of RBCs for a given cycle as f0,min≤ǫ≤max in a strain region min ≤ ǫ ≤ max, we

then approximate the stress carried by the RBCs, after converting from Cauchy stress to Piola stress

(details for which can be found in Section 3.3.1.4), as

σRBC =
A

A0
f0,min≤ǫ≤max

s(t)

h
σneo =

A

A0
f0,min≤ǫ≤max

s(t)

h
2Cneo

(

3ǫ+
ǫ3

1− ǫ

)

, (3.22)
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where A is the current cross-sectional area of the embolus and A0 is the initial cross-sectional area.

f0,min≤ǫ≤max can be fitted to experimental data for a given region, with the caveat that since some

RBCs lyse during compression, f0,min≤ǫ≤max should be reduced for every subsequent cycle.

3.3.3 Fluid contribution

Liang, et al. have shown that the stress-strain response and the width of the phase boundary in

thrombi depend on the compression rate. This suggests that the poroelastic effects of fluid pumping

significantly contribute to the stress [63]. It has been observed by Kim, et al. that in a clot compressed

from the top, labeled beads situated at the bottom of the clot only move when the phase boundary

reaches the bottom of the clot [44]. Thus, fluid at the bottom does not move much before the

phase boundary reaches the bottom. On the other hand, at the top of the clot, the clot is densified

and the fluid is pumped out. Accordingly, the stress contribution from the fluid pumping must be

dependent upon the size of the densified region or the location of the phase boundary, and not simply

the analytic formula for compressive stress of a poro-viscoelastic foam under compression given by

[45, 63]. Following Gibson and Ashby [45], we will use Darcy’s law to relate the flux of fluid to the

local pressure gradient in the porous medium:

q = −k

µ

dp

dx
≈ k

µ

σ

L
, (3.23)

where µ is the viscosity of fluid, the permeability k ∝ l2(1 − ǫ), where l is the pore size in the

reference configuration, and the pressure gradient dp
dx

≈ − σ
L

, where L is the horizontal dimension of

the clot in the deformed configuration. Note that the stress σ is the same in both the densified and

rarefied region but it is carried differently due to the strain ǫH in the densified region being different

from the strain ǫL in the rarefied region. Let the velocity of compression at the top of the clot be V

relative to the reference frame, the velocity of the phase boundary in the deformed configuration be

vph, the height of the clot in the reference configuration be h, and the permeability and viscosity in

the rarefied phase and densified phase be kL ∝ l2(1− ǫL), µL, kH ∝ l2(1− ǫH), and µH , respectively.

Following Gibson and Ashby [45], and equating the fluxes of fluid through the sides of the clot to

the fluxes due to vertical compression and applying Darcy’s law, we have the two equations

kH
µH

σ

L
=

(V − vph)L

2s(t)(1− ǫH)
(3.24)
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kL
µL

σ

L
=

(vph)L

2 (h− s(t)) (1− ǫL)
, (3.25)

from which we conclude that the Cauchy stress σ due to fluid flow, in terms of the current area A,

is

σ = V
A

l2
1

(h−s(t))(1−ǫL)2

µL
+ s(t)(1−ǫH)2

µH

. (3.26)

Converting to Piola stress, as described in Section 3.3.1.4 above, yields

σfl = V
A2

A0l2
1

(h−s(t))(1−ǫL)2

µL
+ s(t)(1−ǫH)2

µH

. (3.27)

Gibson and Ashbey [45] give the contribution of pore fluid in foams as

σ∗
g =

Cµǫ̇

1− ǫ

(

L

l

)2

, (3.28)

where the strain rate

ǫ̇ =
V

h(1− ǫ)
. (3.29)

If we take s(t) = 0 as is the case in the fully rarefied phase, then Eq. (3.26) becomes

σ =
V

h

A

l2
µL

(1− ǫL)2
, (3.30)

and we recover the result Eq. (3.28) in terms of current area A. Similarly, if we take s(t) = h as is

the case in the fully densified phase, then Eq. (3.26) becomes

σ =
V

h

A

l2
µH

(1− ǫH)2
, (3.31)

which again is the same form as Eq. (3.28) with different constants.

3.4 Model application

The stress-strain curves of emboli under compression can be computed using these ideas and fitted

to the experimental data, as follows. The initial and final heights and cross-sectional areas, h and hf ,

and A0 and Af , respectively, of an embolus are given, as well as the compression rate V . We begin by
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fitting the high strain non-linear response of the network using the data in the decompression cycle

of the chosen fitting region and Eq. (3.11). We choose a region of data points in the decompression

cycle for which we assume that the transition to the rarefied phase has not yet begun. We use the

decompression cycle because only the network carries stress in the decompression cycle; since the

embolus is not attached to the compression plate, fluid is not pumped back into the embolus, and

since the RBCs do not re-form once they lyse, RBCs do not contribute to decompression stresses.

Next, we fit the low strain linear response of the network using the data from the decompression

cycle in the approximate strain region 0 ≤ ǫ ≤ 0.05 and Eq. (3.2), and obtain values for σpre and

EL.

Then, we consider the transition region, and remember that the curve is given by ǫ = δ(t)
h

(see

Eq. (3.13) and Eq. (3.16)). With ΓL(σ) and ΓH(σ) already known, we want to fit the plateau

regions of the stress-strain curves using Eq. (3.16). Our remaining fitting parameters are, for the

upper plateau, σLH and MLH , and for the lower plateau, σHL and MHL.

Next we consider the RBC contribution, using Eq. (3.22). The fitting parameters are Cneo

and f0,ǫmin≤ǫ≤ǫmax
. We can estimate the order of magnitude of Cneo by considering small strains

such that Eq. (3.22) can be approximated linearly as σRBC ≈ 6Cneof0,min≤ǫ≤maxǫ, the network

contribution is just σnet = (1− f0,min≤ǫ≤max)ELǫ, and the fluid contribution is zero because fluids

are released mostly due to lysis of RBC. Thus,

σ ≈ (6Cneof0,min≤ǫ≤max + (1− f0,min≤ǫ≤max)EL) . (3.32)

Approximating EL ≈ 1 kPa, the stress at strain ǫ ≈ 0.15 in Figure 3(B) of [1], where f0,min≤ǫ≤max =

0.7, is σ ≈ 5.7 kPa. Thus, from Eq. (3.32), Cneo ≈ 9 kPa. More exact values of Cneo can be fit from

the experimental data (see Table 3.2). Some RBCs are irreversibly damaged as loading/unloading

ensues. The damaged cells will not be able to carry load, so the fraction of load-carrying (or intact)

red blood cells (f0) also decreases from one cycle to the next. However, the mechanical properties

of the load carrying red blood cells (Cneo) do not change.

Finally, we consider the fluid contribution using Eq. (3.27). Since the entire fluid contribution in

our model comes from fluid leaking out of RBCs and in the very first cycle no RBCs have lysed, for

the very first cycle σfl = 0. Since the fluid that leaks out of RBCs that have lysed is basically water

and is the same in both the rarefied region and the densified region, µL = µH = 1.002× 10−6 kPa s.
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Embolus h (mm) hf (mm) A0 (mm2) Af (mm2)
1 5.3 0.5 158.8 1489
2 2.56 0.2 131.2 313.7
3a 2.60 0.33 120.81 266.4
3b 2.80 0.35 74 383
3c 2.23 0.28 177.4 236

Table 3.1: Initial and final heights and cross-sectional areas of emboli #1, #2, #3a, #3b, and #3c.

Thus, the fitting parameter is l, which can be estimated from Figure 5 in [1] to be less than a micron

for pulmonary emboli. This is smaller than that in whole blood clots shown in Figure 4 in [1].

A nice feature of this theoretical study is that it can reveal the location of the phase boundary as

a function of ǫ, which the experiments cannot directly observe. The locations of the phase boundaries

are found using s(t)
h

, and inverting Eq. (3.13) after substituting in the relation ǫ = δ(t)
h

.

3.5 Results and Discussion

Embolus #1 has initial and final heights and cross- sectional areas h = 5.3mm, hf = 0.5mm,

A0 = 158.8mm2, and Af = 1489mm2, respectively, and embolus #2 has h = 2.56mm, hf = 0.2mm,

A0 = 131.2mm2, and Af = 313.7mm2 (see Table 3.1). Embolus #3 was cut into three sections (a, b,

and c), each of which was treated individually. The stress- strain responses of sections a, b and c were

measured and fitted separately. Embolus #3a has h = 2.60mm, hf = 0.33mm, A0 = 120.81mm2,

and Af = 266.4mm2. Embolus #3b has h = 2.80mm, hf = 0.35mm, A0 = 74mm2, and Af =

383mm2. Embolus #3c has h = 2.23mm, hf = 0.28mm, A0 = 177.4mm2, and Af = 236mm2 (see

Table 3.1).

All the fitting parameters are summarized in Table 3.2(a) for embolus #1 and Table 3.2(b) for

embolus #2, and in Table 3.3(a) for embolus #3a, Table 3.3(b) for embolus #3b, and Table 3.3(c)

for embolus #3c. For all parameters, we used numbers that gave us the best agreement with

experimental data. These fits are not expected to be perfect, because emboli are complex materials

with varying compositions. Rather, the purpose of our model is to account for the general trends

seen in the cyclic stress-strain response of emboli in terms of the stress-strain responses of the main

constituents, which are the fibrin network and the RBCs.

71



(a) Emb. #1 σpre EL l K ∆G σLH σHL MLH MHL Cneo f0,ǫi Fitting region
ǫ1 Cycle 1 -0.25 0.9 3.75 10.48 10.12 0.08 -18 3.6 24 2.75 0.30 -

Cycle 2 -0.35 0.7 4.00 10.48 10.12 0.08 -0.03 3.6 24 2.75 0.12 -
Cycle 3 -0.40 0.4 4.25 10.48 10.12 0.08 -0.03 3.6 24 2.75 0.11 -

ǫ2 Cycle 1 -0.40 0.4 4.75 10.48 10.12 0.08 -0.03 3.6 24 2.75 0.09 (0.65,0.8)
Cycle 2 -0.40 0.4 6.75 9.68 9.39 0.08 -0.03 3.6 24 2.75 0.06 (0.65,0.8)
Cycle 3 -0.40 0.4 6.75 5.41 5.24 0.08 -0.03 3.6 24 2.75 0.03 (0.65,0.8)

ǫ3 Cycle 1 -0.40 0.4 6.75 5.41 5.24 0.08 -0.03 3.6 24 2.75 0.01 -
Cycle 2 -0.40 0.4 8.75 5.41 5.24 0.08 -0.03 3.6 24 2.75 0.01 -

(b) Emb. #2 σpre EL l K ∆G σLH σHL MLH MHL Cneo f0,ǫi Fitting region
ǫ1 Cycle 1 0 0.9 2.75 11.12 10.86 0.08 -18 3.6 24 2.75 0.80 -

Cycle 2 -0.2 0.7 3.00 11.12 10.86 0.08 -0.03 3.6 24 2.75 0.50 -
Cycle 3 -0.2 0.4 3.25 11.12 10.86 0.08 -0.03 3.6 24 2.75 0.40 -

ǫ2 Cycle 1 -0.4 0.4 3.35 11.12 10.86 0.08 -0.03 3.6 24 2.75 0.38 (0.69,0.8)
Cycle 2 -0.4 0.4 3.40 11.26 11.02 0.08 -0.03 3.6 24 2.75 0.25 (0.69,0.8)
Cycle 3 -0.4 0.4 3.45 11.30 11.07 0.08 -0.03 3.6 24 2.75 0.20 (0.69,0.8)

ǫ3 Cycle 1 -0.4 0.4 3.50 11.30 11.07 0.08 -0.03 3.6 24 2.75 0.15 -
Cycle 2 -0.4 0.4 3.55 11.30 11.07 0.08 -0.03 3.6 24 2.75 0.15 -

Table 3.2: Fitting parameters for (a) embolus #1 and (b) embolus #2. The three strain regions are
ǫ1 ∈ [0, 0.5], ǫ2 ∈ [0.5, 0.8], and ǫ3 ∈ [0.8, 0.92]. σpre is the pre-stress in the network with units kPa,
EL is the Young’s modulus in the rarefied phase with units kPa, l is the pore size with units 10−7m,
K is the stress constant in the densified phase with units kPa, ∆G is the normalized bonding energy
density with units kPa, σLH and σHL are nucleation stresses with units kPa, MLH and MHL are
phase boundary mobilities with units 10−6

kPa s
, Cneo is the RBC elasticity coefficient with units kPa,

and f0,ǫi = f0,ǫmin≤ǫ≤ǫmax
is the initial fraction of RBCs for the strain region [ǫmin ≤ ǫ ≤ ǫmax] for

ǫi ∈ {ǫ1, ǫ2, ǫ3}. Also listed are the fitting regions of ǫ for the densified phase constants.

3.5.1 Phase boundary motion

The phase boundary, or transition front, between the densified region and rarefied region in the

transition phase has been observed in compression experiments on blood clots formed from whole

blood [63]. For emboli extracted from patients, however, it is significantly more difficult to observe.

Our model reveals the location of the phase boundary, as can be observed for embolus #2 in Fig-

ure 3.8. In the strain region ǫ1 ∈ [0, 0.5], the phase boundary appears and the transition region

begins at higher strains for each subsequent loading cycle (see Figure 3.8). The phase boundary in

the unloading cycle does not generally have to be at the same location as it was in the loading cycle

because the stress carried by the network during loading is different from that during unloading (for

example, fluid pumping does not contribute to the stresses during unloading). As such, the phase

boundary may not return to the top of the embolus at the same strain at which it was originally

manifest during the corresponding loading cycle. This is the case in the strain region ǫ2 ∈ [0.5, 0.8],

where the phase boundary is not in the same location after unloading to strain ǫ = 0.5 as it was at

the beginning of the loading in that cycle. Once again, the phase boundary also appears at higher
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(a) Emb. #3a σpre EL l K ∆G σLH σHL MLH MHL Cneo f0,ǫi Fitting region
ǫ1 Cycle 1 0 0.80 2.75 6.87 6.61 0.08 -18 3.6 24 2.75 0.40 -

Cycle 2 0 0.75 3.00 6.87 6.61 0.08 -0.03 3.6 24 2.75 0.30 -
Cycle 3 0 0.40 3.25 6.87 6.61 0.08 -0.03 3.6 24 2.75 0.28 -

ǫ2 Cycle 1 -0.40 0.40 3.35 6.87 6.61 0.08 -0.03 3.6 24 2.75 0.20 (0.62,0.75)
Cycle 2 -0.40 0.40 3.40 5.95 5.68 0.08 -0.03 3.6 24 2.75 0.10 (0.62,0.75)
Cycle 3 -0.40 0.40 3.45 6.13 5.86 0.08 -0.03 3.6 24 2.75 0.10 (0.62,0.75)

ǫ3 Cycle 1 -0.40 0.40 6.00 6.13 5.86 0.08 -0.03 3.6 24 2.75 0.02 -

(b) Emb. #3b σpre EL l K ∆G σLH σHL MLH MHL Cneo f0,ǫi Fitting region
ǫ1 Cycle 1 0 0.90 2.50 11.52 11.01 0.08 -18 3.6 24 2.75 0.32 -

Cycle 2 0 0.70 2.85 11.52 11.01 0.08 -0.03 3.6 24 2.75 0.22 -
Cycle 3 0 0.40 3.00 11.52 11.01 0.08 -0.03 3.6 24 2.75 0.20 -

ǫ2 Cycle 1 -0.40 0.40 4.50 11.52 11.01 0.08 -0.03 3.6 24 2.75 0.10 (0.62,0.75)
Cycle 2 -0.40 0.40 4.55 12.75 12.23 0.08 -0.03 3.6 24 2.75 0.07 (0.62,0.75)
Cycle 3 -0.40 0.40 4.60 12.95 12.45 0.08 -0.03 3.6 24 2.75 0.05 (0.62,0.75)

ǫ3 Cycle 1 -0.40 0.40 4.75 12.95 12.45 0.08 -0.03 3.6 24 2.75 0.02 -
Cycle 2 -0.40 0.40 4.75 12.95 12.45 0.08 -0.03 3.6 24 2.75 0.02 -
Cycle 3 -0.40 0.40 4.75 12.95 12.45 0.08 -0.03 3.6 24 2.75 0.02 -

(c) Emb. #3c σpre EL l K ∆G σLH σHL MLH MHL Cneo f0,ǫi Fitting region
ǫ1 Cycle 1 -0.08 0.90 1.75 18.10 17.27 0.08 -18 3.6 24 2.75 0.90 -

Cycle 2 -0.08 0.70 2.00 18.10 17.27 0.08 -0.03 3.6 24 2.75 0.70 -
Cycle 3 -0.08 0.40 2.25 18.10 17.27 0.08 -0.03 3.6 24 2.75 0.65 -

ǫ2 Cycle 1 -0.40 0.40 2.25 18.10 17.27 0.08 -0.03 3.6 24 2.75 0.55 (0.62,0.75)
Cycle 2 -0.40 0.40 2.50 15.76 15.04 0.08 -0.03 3.6 24 2.75 0.45 (0.62,0.75)
Cycle 3 -0.40 0.40 2.50 14.87 14.20 0.08 -0.03 3.6 24 2.75 0.35 (0.62,0.75)

ǫ3 Cycle 1 -0.40 0.40 4.75 14.87 14.20 0.08 -0.03 3.6 24 2.75 0.02 -
Cycle 2 -0.40 0.40 4.75 14.87 14.20 0.08 -0.03 3.6 24 2.75 0.02 -
Cycle 3 -0.40 0.40 4.75 14.87 14.20 0.08 -0.03 3.6 24 2.75 0.02 -

Table 3.3: Fitting parameters for (a) embolus #3a, (b) embolus #3b, and (c) embolus #3c. The
three strain regions are ǫ1 ∈ [0, 0.5], ǫ2 ∈ [0.5, 0.75], and ǫ3 ∈ [0.75, 0.92]. σpre is the pre-stress in
the network with units kPa, EL is the Young’s modulus in the rarefied phase with units kPa, l
is the pore size with units 10−7m, K is the stress constant in the densified phase with units kPa,
∆G is the normalized bonding energy density with units kPa, σLH and σHL are nucleation stresses
with units kPa, MLH and MHL are phase boundary mobilities with units 10−6

kPa s
, Cneo is the RBC

elasticity coefficient with units kPa, and f0,ǫi = f0,ǫmin≤ǫ≤ǫmax
is the initial fraction of RBCs for

the strain region [ǫmin ≤ ǫ ≤ ǫmax] for ǫi ∈ {ǫ1, ǫ2, ǫ3}. Also listed are the fitting regions of ǫ for the
densified phase constants.

strains for each subsequent cycle (see Figure 3.8).

3.6 Discussion

A few general observations can be made from these tables. First, the pore size in the stress-free

state becomes larger after each loading/unloading cycle. This is due to bundling of fibers and

re-arrangement of embolus microstructure. Second, the Young’s modulus in the rarefied phase

decreases after the first few cycles of loading/unloading and then remains constant for subsequent

cycles. This is due to re-arrangement of embolus microstructure and possible damage of the fibrin
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.8 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.8 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.8

(g) Cycle 1, 0.8 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.8 ≤ ǫ ≤ 0.92

Figure 3.3: The stress-strain response of embolus #1 to compression and decompression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.8 ((d), (e), and (f)), and region
0.8 ≤ ǫ ≤ 0.92 ((g) and (h)). The circles represent data points from the experiments, the solid blue
lines represent the fully rarefied phase, the dashed red lines represent the transition phase, and the
solid black lines represent the fully densified phase.

fibers comprising the network. Both of these observations are consistent with earlier work on the

compression of whole blood clots, platelet-rich plasma clots and platelet-poor plasma clots [63].

There are also some differences between emboli and blood clots. First, in the early load-

ing/unloading cycles, the contribution to stresses due to the deformation of the fibrin network

is lower in emboli than it is in blood clots. This is because RBCs flow out of blood clots during

compression, but are unable to escape through the smaller pores in the emboli. As a result, the

stress in emboli is largely carried by the deformation of RBCs at low strains and by the pumping of

liquid released by lysis of RBCs at higher strains. Second, the fraction of RBCs in emboli becomes

smaller after each cycle of loading/unloading, because they are lysed due to the large deformations
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.8 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.8 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.8

(g) Cycle 1, 0.8 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.8 ≤ ǫ ≤ 0.92

Figure 3.4: The contributions in the stress-strain response of embolus #1 to compression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.8 ((d), (e), and (f)), and region
0.8 ≤ ǫ ≤ 0.92 ((g) and (h)). The circles represent data points from the experiments, the purple
dotted lines represent the pre-stress, the solid lines represent the total stresses, the dashed lines
represent the network contributions, the dotted lines represent the RBC contributions, and the dot-
dashed lines represent the fluid contributions.

suffered. In contrast, in blood clots the RBCs that flowed out of the network under compressive

loading were sucked back in during unloading, and their volume fraction does not change much after

each loading/unloading cycle. Third, the phase boundary, or transition front, between the densified

region and rarefied region in the transition phase has been observed in compression experiments

on blood clots formed from whole blood [63]. For emboli extracted from patients, however, it is

significantly more difficult to observe. Our model reveals the location of the phase boundary, as

can be observed for embolus #2 in Figure 3.8. More details regarding the phase boundary and its

motion are discussed in Section 3.5.1.
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Figure 3.5: Phase boundary location for loading (l, dashed lines) and unloading (u, dotted lines)
phases of embolus #1, cycles 1, 2, and 3 of strain regions ǫ1 ∈ [0, 0.5] and ǫ2 ∈ [0.5, 0.8].

3.6.1 Stress-strain curves

In the present ex vivo study, the mechanical response of pulmonary emboli to axial compression

and passive decompression was experimentally measured, correlated with structural changes, and

modeled. We observed directly for the first time that pulmonary emboli behave like foams (open

soft network of fibers with pores) in response to compression and passive decompression, which is

in agreement with prior work in which the compression responses of platelet- poor plasma clots,

platelet-rich plasma clots, and whole blood clots was demonstrated [63]. The stress-strain curves of

emboli for strains up to ǫ = 0.9 for all cycles of the emboli revealed four characteristic portions for

compression and passive decompression: for compression 1) linear regime in which the normal stress

increased proportionally with increasing compressive strain, and 2) non-linear response as result

of densification of the fibrin network and severe deformation/rupture of the RBCs; for the passive

decompression portion of the cycle, 3) non-linear elastic region or re-stretching of the network, when

normal stress dropped rapidly; 4) lowering strains further, the normal stress was rather insensitive to

decompression because no external forces were applied, which resulted in a closed cycle. Stress–strain

curves showed some similarity to those for blood clots formed in vitro; the same four linear and

non–linear regimes are present [63]. However, for emboli there were no sudden changes in slope

when the linear regime changed to non-linear for the compression and decompression parts of curves,

as observed for all three types of blood clots formed in vitro in [63] in Figure 2. Those differences in

mechanical response could be due to structural differences between clots formed in vitro compared

to those formed in vivo.

An embolus that forms within a vessel and then travels to the lungs is a much more complicated
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.8 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.8 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.8

(g) Cycle 1, 0.8 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.8 ≤ ǫ ≤ 0.92

Figure 3.6: The stress-strain response of embolus #2 to compression and decompression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.8 ((d), (e), and (f)), and region
0.8 ≤ ǫ ≤ 0.92 ((g) and (h)). The circles represent data points from the experiments, the solid blue
lines represent the fully rarefied phase, the dashed red lines represent the transition phase, and the
solid black lines represent the fully densified phase.

structure than a clot formed in vitro [151]. Clots formed in vitro have a foam-like structure with

open space of more than 50% due to the space not occupied by RBCs, white blood cells, and platelets

that are incorporated into the fibrin mesh, whereas clots formed in vivo are denser, with less than 1%

open space. These differences in structure may contribute to the observed smooth transition without

a sudden change in slope from the linear to the non–linear regime in the mechanical response. In

addition, sudden changes in slope were not observed in the decompression part of the curve, due

to differences in experimental conditions [63]. Here, we observed passive decompression, since the

emboli were not attached to rheometer plates, as were the clots in our previous work. Therefore, we

could only measure the mechanical response from the elastic energy that was accumulated in the
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.8 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.8 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.8

(g) Cycle 1, 0.8 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.8 ≤ ǫ ≤ 0.92

Figure 3.7: The contributions in the stress-strain response of embolus #2 to compression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.8 ((d), (e), and (f)), and region
0.8 ≤ ǫ ≤ 0.92 ((g) and (h)). The circles represent data points from the experiments, the purple
dotted lines represent the pre-stress, the solid lines represent the total stresses, the dashed lines
represent the network contributions, the dotted lines represent the RBC contributions, and the dot-
dashed lines represent the fluid contributions.

emboli during compression, because no direct forces could be applied to return the embolus to its

original thickness. This response may be more physiological, since it mimics the mechanical response

when a thrombus within a blood vessel responds to forces of blood flow or vessel wall contraction.

3.6.2 Repeated compression-decompression cycles

All emboli were subjected to three loading and unloading cycles for 3 sets of compressive strains:

0 ≤ ǫ ≤ 0.5; 0.5 ≤ ǫ ≤ 0.75 or 0.5 ≤ ǫ ≤ 0.8, and 0.75 ≤ ǫ ≤ 0.9 or 0.8 ≤ ǫ ≤ 0.9. We found that the

stress-strain curves of the first cycle differed from those of the second and third cycles for all sets
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Figure 3.8: Phase boundary location for loading (l, dashed lines) and unloading (u, dotted lines)
phases of embolus #2, cycles 1, 2, and 3 of strain regions ǫ1 ∈ [0, 0.5] and ǫ2 ∈ [0.5, 0.8].

of compression strains. Compression and decompression do not follow the same pathway, meaning

that the stress-strain behavior of pulmonary emboli exhibits a hysteresis loop upon cyclical loading,

as a result of the dissipation of energy.

This effect has also been previously observed in compression/decompression of blood clots formed

in vitro as well as for carbon nanotube forests [63, 152]. These findings indicate that there were

structural changes in the emboli, some of which were reversible and others irreversible, as shown

before for platelet-poor, platelet-rich and whole blood clots formed in vitro. During compression, the

presence of fiber bundles increased, the pore size decreased, fibers become aligned, and the network

density increased. As compression proceeds, the fibrin network is densified, as fibers criss–cross

and increasingly bundle. Moreover, RBCs escape from the fibrin network during the compression

part of the cycle and some are sucked back in during the decompression part of the cycle. Since

the embolus has become distorted by irreversible changes in the network, such as smaller pore

size and fibrin fibers alignment, the RBCs must fit into new spaces that are now more compact

and aligned due to fibrin fiber and bundle alignment. These structural changes resulted in shape

transformation of some RBCs from biconcave to polyhedral or polyhedral with orientation, as a

result of fibrin network alignment. During decompression, some fibers unbundle while others stay

associated, resulting in new clot structures after compression/decompression cycles. As a result, not

all RBCs return back into the embolus during passive decompression. Therefore, every new cycle

of compression/decompression starts with an embolus with changed structures. In addition, some

RBC deformation is reversible, but RBC breakage is irreversible, so those cells do not participate in

the subsequent mechanical responses.
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.75 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.75 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.75

(g) Cycle 1, 0.75 ≤ ǫ ≤ 0.92

Figure 3.9: The stress-strain response of embolus #3a to compression and decompression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.75 ((d), (e), and (f)), and region
0.75 ≤ ǫ ≤ 0.92 ((g)). The circles represent data points from the experiments, the solid blue lines
represent the fully rareied phase, the dashed red lines represent the transition phase, and the solid
black lines represent the fully densified phase.

3.6.3 Response structural dependence

We demonstrated that variations in the composition of emboli can lead to quantitatively different

normal stress-strain responses. Emboli with high fibrin content demonstrate higher normal stress

compared to emboli that have high RBC content. This finding agrees with in vitro results, where it

was demonstrated that increasing fibrinogen concentration dramatically increased the normal stress

but increasing RBC concentration did not much affect the normal stress, because they start to

rupture at higher stresses [1].

The mechanical response of emboli depends on the relative proportions of fibrin and RBCs.

Under compression, fibrin fibers and RBCs may undergo large deformation without rupture. For
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.75 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.75 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.75

(g) Cycle 1, 0.75 ≤ ǫ ≤ 0.92

Figure 3.10: The contributions in the stress-strain response of embolus #3a to compression for
the regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.75 ((d), (e), and (f)), and region
0.75 ≤ ǫ ≤ 0.92 ((g)). The circles represent data points from the experiments, the purple dotted
lines represent the pre-stress, the solid lines represent the total stresses, the dashed lines represent
the network contributions, the dotted lines represent the RBC contributions, and the dot-dashed
lines represent the fluid contributions.

example, RBCs change shape from normal biconcave to polyhedral and may return to their original

shape following decompression [63, 153]. Compression of emboli caused some RBCs to be squeezed

out, due to their flexibility, in agreement with results from compression of whole blood clots [63].

3.6.4 Comparison of different emboli

Recall that embolus #1 has initial and final heights and cross- sectional areas h = 5.3mm,

hf = 0.5mm, A0 = 158.8mm2, and Af = 1489mm2, respectively, and the fitting parameters

are listed in Table 3.2(a). Embolus #2 has h = 2.56mm, hf = 0.2mm, A0 = 131.2mm2, and
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Figure 3.11: Phase boundary location for loading (l, dashed lines) and unloading (u, dotted lines)
phases of embolus #3a, cycles 1, 2, and 3 of strain regions ǫ1 ∈ [0, 0.5] and ǫ2 ∈ [0.5, 0.75].

Af = 313.7mm2, and the fitting parameters are listed Table 3.2(b). Multiplying through, embolus

#1 has initial volume V0 = 841.64mm3 and final volume Vf = 744.5mm3, whereas embolus #2 has

V0 = 335.87mm3 and Vf = 62.74mm3. The fraction of volume change in embolus #2 ∆V/V0 = 0.81

is significantly higher than ∆V/V0 = 0.12 in embolus #1, suggesting that the initial volume fraction

of RBCs (f0,0≤ǫ≤0.5 in cycle 1) in embolus #2 is significantly higher than in embolus #1. This

is consistent with our fitting parameters in Table 3.2 which have been obtained solely from the

stress-strain curves. A higher f0,0≤ǫ≤0.5 in cycle 1 means that the proportion of stress carried by

the RBCs (than that carried by the network) in embolus #2 is larger than embolus #1. This trend

is confirmed when we look at the stress-strain plots of embolus #1 and embolus #2 in Figure 3.4

and Figure 3.7, where the contributions of network, RBCs, and fluids are plotted separately.

3.6.5 Heterogeneity of emboli

Although our model treats thrombi as being homogeneous, thrombi are not necessarily so, especially

large thrombi. Embolus #3, for example, is clearly heterogeneous. Recall that embolus #3 was

cut into three sections (a, b, and c), each of which was treated individually, and that the stress-

strain responses of sections a, b, and c were measured and fitted separately. Embolus #3a has h =

2.60mm, hf = 0.33mm, A0 = 120.81mm2, and Af = 266.4mm2. Embolus #3b has h = 2.80mm,

hf = 0.35mm, A0 = 74mm2, and Af = 383mm2. Embolus #3c has h = 2.23mm, hf = 0.28mm,

A0 = 177.4mm2, and Af = 236mm2. Multiplying through, embolus #3a has V0 = 313.56mm3,

Vf = 86.58mm3, and ∆V/V0 = 0.72, embolus #3b has V0 = 206.51mm3, Vf = 134.15mm3, and

∆V/V0 = 0.35, and embolus #3c has V0 = 394.97mm3, Vf = 65.98mm3, and ∆V/V0 = 0.83. The
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.75 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.75 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.75

(g) Cycle 1, 0.75 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.75 ≤ ǫ ≤ 0.92 (i) Cycle 3, 0.75 ≤ ǫ ≤ 0.92

Figure 3.12: The stress-strain response of embolus #3b to compression and decompression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.75 ((d), (e), and (f)), and region
0.75 ≤ ǫ ≤ 0.92 ((g), (h), and (i)). The circles represent data points from the experiments, the solid
blue lines represent the fully rarefied phase, the dashed red lines represent the transition phase, and
the solid black lines represent the fully densified phase.

fitting parameters for embolus #3a can be found in Table 3.3(a), for embolus #3b in Table 3.3(b),

and for embolus #3c in Table 3.3(c). From the volume changes and the fits, it is clear that each

piece of embolus #3 is different. The fraction of volume change of embolus #3b is relatively small,

as is the case in embolus #1, whereas the fraction of volume changes in embolus #3a and embolus

#3c are large, as is the case in embolus #2. Accordingly, f0,0≤ǫ≤0.5 in cycle 1 is higher in embolus

#3a and embolus #3c than in embolus #3b (see Table 3.3).
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.75 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.75 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.75

(g) Cycle 1, 0.75 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.75 ≤ ǫ ≤ 0.92 (i) Cycle 3, 0.75 ≤ ǫ ≤ 0.92

Figure 3.13: The contributions in the stress-strain response of embolus #3b to compression for
the regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.75 ((d), (e), and (f)), and region
0.75 ≤ ǫ ≤ 0.92 ((g), (h), and (i)). The circles represent data points from the experiments, the
purple dotted lines represent the pre-stress, the solid lines represent the total stresses, the dashed
lines represent the network contributions, the dotted lines represent the RBC contributions, and the
dot-dashed lines represent the fluid contributions.

3.6.6 Comparisons with other studies

Some relevant studies in the literature will be mentioned here but more may be found in a recent

review of research on the mechanical behavior of clots and thrombi based on experimental, analytical,

and computational methods [154]. Uniaxial and biaxial tensile tests on thrombi have been reported

[136–138, 155, 156], comparisons of ex vivo thrombi and in vitro thrombus models [50, 154, 157],

shear testing of ex vivo thrombi [158], in vitro thrombus models [159], and compression testing of

in vitro thrombus models [44, 139, 140, 144, 160], and for ex vivo thrombi [139, 140, 161]. Linear

models [105, 155, 158], nonlinear continuum models [137, 144, 158, 159], and computational methods
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Figure 3.14: Phase boundary location for loading (l, dashed lines) and unloading (u, dotted lines)
phases of embolus #3b, cycles 1, 2, and 3 of strain regions ǫ1 ∈ [0, 0.5] and ǫ2 ∈ [0.5, 0.75].

[136, 156, 160] have been used to interpret data from various experiments.

While tensile strength of fibrin networks is important in the context of fibrin’s use as a bioma-

terial, and shear oscillatory forces occur due to blood flow, thrombi in vivo are primarily subject

to compressive forces due to the compression of vascular walls by surrounding musculature. Our

compression experiments differ from previous compression tests of in vitro thrombi since we ex-

tracted natural in vivo emboli, which have much smaller pore sizes than artificial in vitro thrombi

because they have already undergone clot contraction (see [1] Supplementary Material Figure 1).

This structural difference also allows RBCs to flow out from artificial in vitro thrombi, but not from

our natural ex vivo emboli, since the pores are too small. Our compression tests differ from some

others [139, 140, 161] in the following ways: they studied differences between thrombi, including

aged vs. red, calcified vs. non-calcified, and thrombi from different species, using force-controlled

experiments. Although they apply large strains (up to 95%) and get nonlinear stress-strain curves,

they do not provide a mathematical model to identify the mechanisms that lead to stresses due to

these deformations. In contrast, we do provide such a mathematical framework. Ashton et al. rec-

ognized that thrombi are heterogeneous, as they discuss three layers of thrombi that have different

compositions and different mechanical behaviors [140]. These authors treat the thrombi as linear

viscoelastic materials, but they only studied small strains. They also prepared mimics of thrombi

varying the levels of fibrinogen, thrombin and calcium, but do not discuss the mechanical effects of

RBCs, fluid flow, and clot contraction caused by platelets [140]. Xie et al. focused on aged thrombi,

discussed the compression geometry, and primarily compared ultrasound measurements to those

from their compressive device while carefully accounting for friction between the device plates and

85



(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.75 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.75 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.75

(g) Cycle 1, 0.75 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.75 ≤ ǫ ≤ 0.92 (i) Cycle 3, 0.75 ≤ ǫ ≤ 0.92

Figure 3.15: The stress-strain response of embolus #3c to compression and decompression for the
regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.75 ((d), (e), and (f)), and region
0.75 ≤ ǫ ≤ 0.92 ((g), (h), and (i)). The circles represent data points from the experiments, the solid
blue lines represent the fully rarefied phase, the dashed red lines represent the transition phase, and
the solid black lines represent the fully densified phase.

the sample [161]. However, they confine their studies to small strains and therefore do not comment

on the densification of the sample. That being said, the moduli obtained in all these studies were in

the kPa range, validating our results.

Our model differs from previously published models in a number of ways. Firstly, even though

some other previous models considered poroelasticity and viscoelasticity [144, 156, 158–160], our

model also includes a phase change from the linear rarefied phase to the nonlinear densified phase

with a propagating interface. Thus, we identify phase boundary propagation as another source of

dissipation in addition to dissipation caused by fluid flow and the viscoelastic nature of the network.

Next, even aforementioned nonlinear models assume the thrombi are incompressible, isotropic, and
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(a) Cycle 1, 0 ≤ ǫ ≤ 0.5 (b) Cycle 2, 0 ≤ ǫ ≤ 0.5 (c) Cycle 3, 0 ≤ ǫ ≤ 0.5

(d) Cycle 1, 0.5 ≤ ǫ ≤ 0.75 (e) Cycle 2, 0.5 ≤ ǫ ≤ 0.75 (f) Cycle 3, 0.5 ≤ ǫ ≤ 0.75

(g) Cycle 1, 0.75 ≤ ǫ ≤ 0.92 (h) Cycle 2, 0.75 ≤ ǫ ≤ 0.92 (i) Cycle 3, 0.75 ≤ ǫ ≤ 0.92

Figure 3.16: The contributions in the stress-strain response of embolus #3c to compression for
the regions 0 ≤ ǫ ≤ 0.5 ((a), (b), and (c)), region 0.5 ≤ ǫ ≤ 0.75 ((d), (e), and (f)), and region
0.75 ≤ ǫ ≤ 0.92 ((g), (h), and (i)). The circles represent data points from the experiments, the
purple dotted lines represent the pre-stress, the solid lines represent the total stresses, the dashed
lines represent the network contributions, the dotted lines represent the RBC contributions, and the
dot-dashed lines represent the fluid contributions.

homogeneous, whereas we recognize that some of these assumptions do not always hold. Liquid

is forced out during compression, thus making the thrombi compressible. Additionally, since the

two phases coexist [44], thrombi are not truly homogeneous under applied loads; in fact, we have

shown that different regions of the same embolus (embolus #3) may have different mechanical

properties. Furthermore, it has been shown that densified emboli have fibers predominantly aligned

in a plane perpendicular to the compression direction [44], so emboli are not isotropic under loads.

Finally, our model accounts for the primary microscopic components (fibrin network, RBCs, fluid)

of the emboli separately, instead of considering the entire embolus as one uniform material, better

describing emboli of different component concentrations. Also similar to some models that track
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Figure 3.17: Phase boundary location for loading (l, dashed lines) and unloading (u, dotted lines)
phases of embolus #3c, cycles 1, 2, and 3 of strain regions ǫ1 ∈ [0, 0.5] and ǫ2 ∈ [0.5, 0.75].

damage evolution [162], we track how the moduli, pore size, etc., evolve from one cycle to the next,

although we do not give specific quantitative expressions for the evolution.

3.6.7 Implications

Thrombi in vivo undergo dramatic deformations under (patho) physiological conditions such as

hydrodynamic blood shear, contraction of platelets, and contraction of surrounding muscle tissue.

Therefore, the outcomes of many thrombotic disorders, including deep vein thrombosis, other venous

thrombosis, and embolization, are largely determined by the mechanical behavior of thrombi. Here

we have shown that emboli share some similarities with whole blood clots, such as similar hysteretic

stress-strain response to cyclic compression, but also differ from them in important ways. The

pore size in thrombi is smaller than that in blood clots, thus their mechanical behavior is strongly

influenced by the presence of RBCs that cannot escape under compression.

Thromboemboli represent a unique biological material that has some unusual mechanical prop-

erties that have implications for the pathophysiology of deep vein thrombosis and other thrombotic

conditions. This new information may be important for understanding the response of thrombi

to compressive forces and to predicting the likelihood of embolization, which is the most serious

consequence of deep vein thrombosis, as well as embolization in the arterial system resulting in

stroke.

Although there are some structural differences between pulmonary emboli and their parent deep

vein thrombi, they are similar in structure and thus similar in mechanical properties. The response

of deep vein thrombi to compression is important for the design and use of thrombectomy or even
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ultrasound devices for removal of these thrombi. The fact that our model accounts for general trends

seen in cyclic stress- strain response of emboli in terms of fibrin and RBC content means it can help

in classifying emboli as rich in fibrin or rich in red blood cells, and can help in understanding what

responses to expect when stresses are applied by removal devices to thrombi in vivo. The results

here provide a basis for making such devices that work more effectively because they are based on

the real compressive responses of the thrombi.

3.7 Conclusions

Here we characterized the mechanical response of pulmonary emboli to cyclic compression while

simultaneously tracking changes in their structure. We observed directly for the first time that

pulmonary emboli behave like foams (open soft network of fibers with large pores) in response to

compression and passive decompression.

Stress-strain curves for all pulmonary emboli revealed four portions. The compression part of

curve has the following regions: 1) linear regime in which normal stress increases proportionally with

increasing compressive strain, and 2) non-linear response as result of rapid upturn in normal stress.

The passive decompression part of curve has the following regions: 3) non-linearly elastic region or

re-stretching of the network, in which normal stress dropped rapidly; 4) at lower strains, the normal

stress was rather insensitive to decompression, reflecting a linear response to strain and resulting

in a closed cycle. Thus, compression and decompression do not follow the same pathway, meaning

that the stress- strain behavior of pulmonary emboli exhibits a hysteresis loop upon cyclic loading,

indicating the dissipation of energy. We described this behavior using a continuum theory of phase

transitions, which acknowledges that within a range of compressive stresses the fibrin network of

the embolus can have co-existing rarefied and densified phases. The fibers are mostly straight in the

rarefied phase, while they are significantly bent with a number of contacts in the densified phase.

The fractions of each phase change as the embolus is compressed or decompressed. The fibrin fibers

and RBCs are damaged during the compression process, causing irreversible changes in the structure

of the emboli.

We showed that the stress response of emboli depends on their structure. Variations in the

composition of emboli can lead to quantitatively different normal stress-strain responses. Emboli

with a high fibrin component demonstrate higher normal stress compared to emboli that have a high
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RBC component.

Understanding these nuances in mechanical properties of emboli will garner a deeper understand-

ing of thromboembolisms and therapeutic disintegration and removal of intravascular thrombi using

mechanical means such as ultrasound, aspiration, and mechanical thrombectomy.
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Chapter 4

Humidity Dependence of Fracture

Toughness of Cellulose Fibrous

Networks

This chapter is based on work published in [163] R. Spiewak, G. S. Vankayalapati, J. M.

Considine, K. T. Turner, and P. K. Purohit. “Humidity dependence of fracture tough-

ness of cellulose fibrous networks”, Engineering Fracture Mechanics, 264: 108330, (2022).

DOI:10.1016/j.engfracmech.2022.108330.

Abstract

Cellulose-based materials are increasingly finding applications in technology due to their

sustainability and biodegradability. The sensitivity of cellulose fiber networks to environmental

conditions such as temperature and humidity is well known. Yet, there is an incomplete un-

derstanding of the dependence of the fracture toughness of cellulose networks on environmental

conditions. In the current study, we assess the effect of moisture content on the out-of-plane (i.e.,

z-dir.) fracture toughness of a particular cellulose network, specifically Whatman cellulose filter

paper. Experimental measurements are performed at 16% RH along the desorption isotherm

and 23, 37, 50, 75% RH along the adsorption isotherm using out-of-plane tensile tests and double

cantilever beam (DCB) tests. Cohesive zone modeling and finite element simulations are used

to extract quantitative properties that describe the crack growth behavior. Overall, the fracture

toughness of filter paper decreased with increasing humidity. Additionally, a novel model is

developed to capture the high peak and sudden drop in the experimental force measurement

caused by the existence of an initiation region. This model is found to be in good agreement with

experimental data. The relative effect of each independent cohesive parameter is explored to

better understand the cohesive zone-based humidity dependence model. The methods described
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here may be applied to study rupture of other fiber networks with weak bonds.

4.1 Introduction

Cellulose is an abundantly available polymer in nature. Cellulose networks have good mechanical

[72, 73] and barrier [74] properties. Filter paper is a network consisting of pure cellulose fibers bound

to each other mechanically by entanglement and chemically by hydrogen bonds. The cellulose fibers

are flattened hollow tubes, typically 25−35 micrometers wide with thicknesses of 1 to 4 micrometers.

When the paper is loaded in tension, permanent deformation occurs through the breaking of inter-

fiber bonds (namely, a surface area of multiple hydrogen bonds connecting two fibers) [75, 76] and

removal of microcrimps. These cellulose networks can fail when subjected to tensile loads during

manufacture or in successive operations. It has been demonstrated [77] that these failures generally

occur due to rapid propagation of cracks from pre-existing flaws, such as notches or creases. On

account of the presence of a stress concentration around a flaw, the stress at which failure occurs is

well below the strength of an un-flawed sheet, thus making fracture toughness, the ability of cellulose

networks to resist crack growth, an important performance parameter to be studied.

Previous work in the application of fracture mechanics to paper has been carried out by Wani-

garatne [164], Tryding et al. [165] and Zechner et al. [166]. Work of fracture methods that were de-

veloped to estimate the fracture toughness of ductile materials have been applied to paper [167, 168].

Atomistic modeling of cellulose networks has also been used to shed light on the fracture of paper

[169]. There are some works using cohesive zone modeling to model the fracture of paper, including

[166, 170–172]. Zechner et al. [166] developed a method combining images from experiments with

cohesive zone modeling to reliably determine the crack tip, and therefore also the fracture initia-

tion toughness value, of commercial printing paper. Mao et al. [170] used a cohesive zone model

to describe the fracture behavior of notched cellulose nanopaper, commercial printing paper, and

buckypaper. Makela and Ostlund [171] studied fracture of copy paper along combinations of ma-

chine- and cross-directions, also utilizing a cohesive zone model. Meng et al. [172] modeled fracture

of cellulose nanofibril network papers using cohesive zone properties derived from the potential en-

ergy differences during fiber pullout at the interfaces between hydrogen bonds at a molecular scale.

These previous works have shown that cohesive zone modeling is an effective technique to estimate

the fracture toughness of cellulose networks, which otherwise cannot be evaluated accurately as these
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networks exhibit a nonlinear and ductile fracture behavior, but no work has been done extending

this technique to study the influence of humidity on these networks.

The macroscale behavior of fibrous networks, in general, depends on the properties of the fibers

and the bonds between the fibers; the effects of microscale fiber properties on macroscale material

behavior have been studied in networks of random fibers [21, 25, 29–31] and of fibers with cellular

shapes [25, 26, 28], using large scale finite element simulations. Since fibrous networks generally

perform structural functions, their macroscale mechanical properties such as fracture toughness are

of critical importance. Network rupture has been studied in [21] by allowing the bonds connecting

the fibers to fail in tension as well as shear through finite element simulations of three-dimensional

isotropic random fiber networks. However, while it is true that fibrous materials can be three-

dimensionally isotropic, they are also often found as sheets which are orthotropic in nature. It is

difficult to identify the z-direction properties of thin web orthotropic materials, so fracture studies

of such materials are few. Since cellulose papers are a common two-dimensional fibrous network we

use it as a vehicle to develop methods to characterize fracture toughness of such materials.

Additionally, as mentioned previously, rupture has been studied in [21] in generalized three-

dimensional random fibrous networks by allowing the bonds connecting the fibers to fail. The

resulting stress-stretch curves show an initial positive slope which decreases to zero as more bonds

break, then the slope of the stress-stretch curve becomes negative and the stress ultimately goes

to zero. This resembles traction-separation laws used in cohesive-zone modeling, which account for

damage accumulation. Similar stress-strain curves were obtained by [173], who studied mechanics

of random fiber networks using stochastic breaking of bonds.

The properties of paper in the thickness direction (i.e., z-direction), although not necessary for

conventional paper use and difficult to measure since the characteristic length scales are of the

same order of magnitude as the fibrous microstructure of the material, are needed to extend the

use of paper for novel applications such as in the fabrication of piezoelectric cellulose sheets and

batteries [174–177], Moreover, the information about the out-of-plane properties of paper are helpful

in studying scoring, folding and 3-D forming operations.

Earlier works of measuring the mechanical properties of paper in the z-direction are few [178–

181]. Nygards et al. [179] used a double notch shear (DNS) test to measure the out-of-plane

shear strength of paperboard. The DNS test is advantageous because of its ability to overcome the

potential drawbacks arising from the conventional out-of-plane tests which require the paper to be
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glued between rigid blocks. Ostlund et al. [178] developed experimental techniques to measure the

out-of-plane normal and shear properties of paperboard using an extended double notch shear test.

Humidity is an important parameter that can significantly affect the mechanical properties of

cellulose networks. Increases in environmental humidity increases the moisture content in the paper

and in turn reduces the stiffness of the fibers and the number of fiber-fiber bonds, and thus lead to

mechanical changes of the overall network. The effect of humidity on the mechanical and fracture

properties of paper is important during converting operations and use by consumers.

Many studies have examined the effect of humidity on the tensile properties of cellulose networks

[5, 8, 9, 15, 182–188]. Gamstedt et al. [9] and Celino et al. [8] reviewed works involving moisture-

induced softening and swelling of plant and natural cellulose fiber composites. Placet et al. [183]

found that water sorption showed a significant influence on the tensile properties and fracture mode

of cellulose-based hemp fibers. Alamri et al. [15] investigated cellulose-reinforced epoxy composites

at two different humidities and found that strength, modulus, and fracture toughness decreased as

a result of moisture absorption. Benitez et al. [184], and Meng et al. [185] also observed decrease in

modulus, strength and tensile toughness of cellulose nanopaper sheets with the increase of relative

humidity as a result of easier interfacial debonding between cellulose nanofibers (CNFs), which they

attribute to moisture induced bond weakening. Benitez et al. [184] also showed a clear transition

of the fracture mechanism of cellulose nanopaper network from brittle to pull-out phenomena when

varied between 0 and 100% RH. Moropoulou et al. [186] reported a decrease in the tensile strength

of filter paper with increase in moisture content and also showed the hysteresis effect of adsorption

and desorption. Nissan et al. [5] explored the effect of moisture on the Young’s modulus of hydrogen

bond dominated solids like paper, and also established an empirical relation between the modulus

and moisture content. Of all the aforementioned earlier works involving both pure cellulose (micro

and nano) networks and cellulose-based composites, the effect of humidity on the fracture toughness

of porous cellulose networks has not been studied.

The objectives of this work are to characterize the z-direction properties using tensile tests and

out-of-plane fracture of filter paper (a porous 100% cellulose network) as a function of moisture

content using a double cantilever beam (DCB) specimen and model the fracture properties using

cohesive zone modeling. Continuum cohesive zone models provide the convenience of tuning a few pa-

rameters such as peak stress and separation at failure to model one-dimensional fracture propagation.

Use of cohesive zone models also allows us to bypass expensive finite element simulations of discrete
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fiber networks which require the specification of a host of parameters for the fibers and bonds. For

these reasons, and since we do not have control over individual fiber and fiber-fiber bonds properties

in cellulose networks, we describe the fracture behavior through continuum traction-separation laws.

The paper is organized as follows: In Section 4.2 and Section 4.3, we discuss the materials,

methods, and theory used in this study. The results of the experiments and simulations, and related

discussion, is provided in Section 4.4. Finally, the main conclusions are discussed in Section 4.5.

4.2 Materials and Methods

4.2.1 Materials

Commercial poly(methyl methacrylate) (PMMA) sheets (Curbell Plastics, Inc.), hydrophobic in na-

ture [189], with thickness 2.85− 3.05 mm were used as the top and bottom beams of the DCB. GE

Whatman Grade-1 Filter Paper (Sigma Aldrich Inc.) with a nominal thickness of 170 micrometers

is the cellulose network that is studied. Whatman filter paper was chosen since its manufacturing

process is well established, so the properties of commercially available Whatman paper are relatively

consistent. Additionally, Whatman filter paper is 100% cellulose, thicker, and weaker than commer-

cial copy paper, so there is a greater chance of the crack propagating entirely through the paper and

not shifting to an interface. Copy paper also contains inorganic materials to increase brightness and

surface smoothness. The filter paper was bonded to the PMMA beams using Loctite 409 (McMaster

Inc.). The thickness of the adhesive layer was carefully controlled to ensure that it did not fully

infiltrate the paper layer (details below).

4.2.2 Conditioning and Specimen Preparation

If the relative humidity (RH) approaches a particular value from a lower RH (adsorption), the paper

contains less water than if approached from a higher value (desorption). This hysteresis is well

known in the paper industry. Since the direction from which a particular RH is approached plays

an important role, it is a standard practice to convert relative humidity to moisture content. Here,

the humidities 23%, 37%, 50%, and 75% are approached along an adsorption isotherm and 16% RH

is achieved along a desorption isotherm. The filter paper specimens were conditioned for 48 hours

at every humidity at room temperature before measuring the mass of the specimens. These paper

specimens were then adhered to the PMMA substrates and left in the humidity chamber for another
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Figure 4.1: Schematic of the DCB specimen in this study.

48 hours before testing. The dry weight of the specimens was measured by placing the filter papers

in a vacuum oven at 50◦C for 48 hours. Moisture content is measured as Eq. (4.1).

mc =
mw −md

md

∗ 100 (4.1)

where md is the mass of the dry specimen, mw is the mass of filter paper specimens at a particular

RH, and mc is the moisture content.

The PMMA beams that used in the DCB have a width of 9.5-10 mm and length of 70 mm. The

beams are laser cut (Universal Laser PLS 4.75 flatbed laser cutter) from PMMA sheets of thickness

2.85-3.05 mm. After multiple trials using multiple adhesives and epoxies, thin pressure sensitive

adhesives, and a thick 3M VHB tape, 70% wt./wt. Loctite 409 in acetone was determined to be the

optimum composition of the adhesive to bond filter paper and the PMMA beams. This particular

adhesive solution was strong enough to hold the filter paper between the two beams, thin enough

to not penetrate into the filter paper, and sufficiently stiff to not deform meaningfully and affect

measurements. An adjustable thin film coating applicator (Futiantian Technology Co., Ltd., China)

is used to generate adhesive coatings of thickness 10 micrometers on PMMA surfaces. Samples

were scrutinized both under optical microscope and SEM images to verify that the adhesive did not

penetrate into the filter paper. An initial crack of length ai ≈ 27mm is obtained by placing the filter

paper at a distance of 30 mm from the beginning between the beams (see Figure 4.1).
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4.2.3 Out-of-plane Tensile Test

Cellulose fibrous networks have out-of-plane modulus and strength typically an order of magnitude

(or two) less than the in-plane properties. Filter paper is held in between two aluminum loading

blocks using double-sided Norton polyurethane foam tape (1mm thick). The aluminum blocks (5mm

× 5mm) are mounted onto the machine using single pin joints on the top and bottom to help with

self-correcting any misalignment during the test. Peak stress/traction of filter paper in the out-of-

plane direction is calculated from the maximum measured force during the test. A uniaxial testing

machine in displacement control (Criterion Model 43, MTS) was used for all mechanical testing. A

displacement rate of 1mm/min is used in the tests. Since most of the displacement applied deforms

the foam tapes, optical measurements were performed (on the machine direction (MD) edge of the

specimen) to measure the initial strain; from this strain and the measured stress the modulus was

calculated. The tests are recorded at 30 frames per second, and up to 200 frames are used to calculate

strain (eg. strain at 200th frame = 4.2±1.0 %). The images were converted to grayscale images and

line profiles of pixel intensity were extracted at 4 different locations to measure deformation of the

paper during the test. The width at the average half peak intensity was measured in all images and

used to calculate strain by comparing the average thickness to the one from the first frame.

4.2.4 Double Cantilever Beam Testing

Double cantilever beam (DCB) tests were performed to determine the out-of-plane fracture toughness

of the filter paper when the crack runs in the machine direction (MD). A displacement rate of 1

mm/min is used in all the tests. The load is applied to loading blocks adhered to the PMMA beams.

From the loading cycle, the applied load versus displacement curve was obtained, and the crack length

a and the strain energy release rate G were calculated using the following equations obtained by

modifying (for different beam and foundation materials) the augmented double cantilever approach

by Kanninen [190]:

a =

(

CE
′

bh3

8

)
1
3

− ξ (4.2)

G =
12P 2a2

E′b2h3

(

1 + ξ
1

a

)2

(4.3)

ξ =

(

h3hf

6

E′

Ef

)
1
4

, (4.4)
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where h is the thickness of each PMMA beam, b is the width of the beam, E
′

is the plane-strain

modulus of the beam, hf is the thickness of the Whatman paper foundation material, Ef is the

out-of-plane modulus of the Whatman paper foundation material, C is the compliance of the elastic

specimen measured from the force-displacement curve, and P is the applied load.

4.3 Theory and Calculations

4.3.1 Cohesive Zone Model, Traction-Separation Law, Critical Energy

Release Rate, and Non-Dimensional Parameter

Cohesive zone models have been shown to be effective at describing adhesion and fracture at material

interfaces [191, 192]. Since we have a thin sample of cellulose material in which the crack moves

straight ahead in a one-dimensional manner, we use cohesive zone models to study crack propagation

in our Whatman filter paper specimens.

The specimen and loading conditions were designed to maintain mode I fracture and to prevent

shear loading at the interface. As such, the shear stress is negligible, and only the normal traction

tn must be considered. Therefore, similar to the derivation in [192], from initial stress until final

failure, there are two regions characterized by the presence or absence of damage: the opening region

before damage initiation, and the softening region after damage initiation until final failure. In the

opening region the traction-separation law is linear-elastic:

tn = Knδn, (4.5)

where Kn is the stiffness in the normal direction and δn is the displacement. Once the traction

reaches the critical value t0n at displacement δ0n = t0n/Kn, damage initiation occurs. Then, in the

softening region, the damage evolves as the traction predicted by the traction-separation law in the

linear-elastic region multiplied by the damage parameter (1−D). With a linear damage parameter

(1−D) =

(

δ0n
δn

)

(

δfn − δn

δfn − δ0n

)

, (4.6)

where δfn is the normal displacement to failure, the traction-separation law in the softening region
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becomes

tn = Knδ
0
n

(

δfn − δn

δfn − δ0n

)

. (4.7)

Thus, the complete traction-separation law with linear softening is

tn =















Knδn, 0 ≤ δn ≤ δ0n

Knδ
0
n

(

δfn−δn

δ
f
n−δ0n

)

, δn ≥ δ0n

, (4.8)

where

δ0n =
t0n
Kn

, (4.9)

with the following parameters: t0n, the critical normal traction, peak stress, or cohesive strength of

the cellulose network; Kn, the normal stiffness; and δfn, the displacement to failure.

With an exponential damage parameter

(1−D) =

(

δ0n
δn

)



1−
1− exp

[

−α
(

δn−δ0n
δ
f
n−δ0n

)]

1− exp (−α)



 , (4.10)

where δfn is once again the normal displacement to failure and α is the exponential parameter, the

traction-separation law in the softening region becomes

tn = Knδ
0
n



1−
1− exp

[

−α
(

δn−δ0n
δ
f
n−δ0n

)]

1− exp (−α)



 . (4.11)

Thus, the complete traction-separation law with exponential softening is

tn =























Knδn, 0 ≤ δn ≤ δ0n

Knδ
0
n



1−
1−exp

[

−α

(

δn−δ0n

δ
f
n−δ0n

)]

1−exp (−α)



 , δn ≥ δ0n

, (4.12)

where the parameters t0n, Kn, and δfn are the same as in the traction-separation law with linear

softening (Eq. (4.8)), and α is the exponential parameter governing the shape of the exponential

softening.
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The toughness, or critical energy release rate, is the area under the traction-separation law curve

and it can be expressed in terms of the previously defined parameters as [193–196]:

GIc =

∫ δc

0

tndδn. (4.13)

Consistent with previous work [192, 197], a non-dimensional parameter (NDP ) is constructed

to enable comparison between materials:

NDP =
EPMMAGIc

(t0n)
2
h

. (4.14)

The NDP is a measure of the toughness of a material: the lower the NDP , the tougher the material.

4.3.2 Finite element analysis

Finite element (FE) modeling and analysis was used to find the force-displacement curves corre-

sponding to the cohesive parameters of different relative humidities. FE analysis was performed

using the commercial software ABAQUS\Standard (Dassault Systèmes Simulia Corp) using a 2D

plane strain model. The PMMA beams have length 67 mm and height 2.86 mm, and the Whatman

filter paper has length 40 mm and height 171 µm. The Whatman filter paper region was aligned

with the free end of the PMMA rectangular regions to give a pre-crack length of 27 mm (see Fig-

ure 4.2). Displacement controlled vertical loading was applied at the top and bottom corners of

the PMMA beams (see Figure 4.2), and the inner corners of the PMMA beams are fixed in the

horizontal direction. The PMMA beams were modeled as CPE4 plane strain elements, with Young’s

modulus 2.016 GPa to include both the contribution from the PMMA itself and the layer of Loctite

adhering the Whatman filter paper to the PMMA beams, and Poisson’s ratio γ = 0.4 (see Figure 4.3

for a brief discussion of element types). The Whatman filter paper was modeled as a single row

of COH2D4 cohesive elements with material properties captured by the cohesive parameters. The

mesh was refined closer to the COH2D4 cohesive elements, and through a mesh convergence study,

the number of elements in the mesh was selected to be approximately 22,000. This method of using

cohesive elements with uniform properties is a standard technique to model the fracture of materials.
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Fixed Horizonal Boundary Condition

Fixed Displacement Rate Boundary Condition

Figure 4.2: Diagram of the part, partitions, and mesh density used in the finite element simulations.
Also depicted are the length and height dimensions (not drawn to scale), as well as the locations of
the loading (purple arrows) and fixed boundary (blue triangles) conditions.
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Figure 4.3: Comparison of experimental results and simulations using both plane stress CPS4 and
plane strain CPE4 elements to represent the PMMA beams. The plane strain element CPE4 in
ABAQUS is, according to the ABAQUS documentation, a special case of plane stress element CPS4.
The modifications ABAQUS makes include modifying the input Young’s modulus E to use the
effective plane strain modulus E′ = E/(1−ν2). Therefore, as expected, results are identical for plane
stress CPS4 and plane strain CPE4 elements, when using the modified input modulus E′′ = E(1−ν2)
for the plane strain CPE4 elements, where E is the modulus for the plane stress CPS4 elements.

4.4 Results and Discussion

4.4.1 Experimental Critical Energy Release Rate

Force versus displacement data obtained from the loading of DCB specimens is used to calculate

crack length a and energy release rate G from the compliance model using modified beam theory

given by Eq. (4.2) and Eq. (4.3). Figure 4.4 shows an example force-displacement curve and GC as a

function of the crack length a calculated from this curve. G is not defined when a < ai. The energy

release rate decreases as the crack grows (a > ai) and stabilizes over a set of crack lengths as the

crack propagates. The average energy release rate in the steady state region (gray shaded region) is

taken as the critical energy release rate Gc. This value is representative of the toughness of a sharp

crack tip in a uniform material; the initial crack tip here is blunt, and there are other factors as
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Humidity Moisture Content (%) Young’s modulus E(MPa) Toughness GIc(J/m
2)

16% RH 2.71 6.41± 1.75 16.34± 1.19
23% RH 3.17 5.57 12.90± 1.16
37% RH 4.05 4.28 9.27± 2.55
50% RH 5.11 3.12± 0.85 7.26± 0.65
75% RH 9.03 0.86± 0.34 2.32± 0.56

Table 4.1: Summary of out-of-plane toughness values of filter paper as a function of humidity. Two
or three experiments were performed for each RH, and the results are given in the form X ± Y ,
where X represents the mean value and Y represents the standard deviation.

Displacement (mm)

0

1

2

3

4

5

6

F
o

rc
e

 (
N

)

20 4 6

(a) Force versus Displacement

0.02 0.03 0.04 0.05 0.06 0.07
Cracklength (m)

0

5

10

15

20

25

30

35

40

45

G
IC

 (
J
/m

2
)

average value of G
IC

 in the shaded region is 

the steady state critical energy release rate

(b) Energy Release Rate versus Crack
length

Figure 4.4: Representative Force-Displacement and subsequent Energy Release Rate plots at 23%
RH from a DCB specimen

well such as artificial compression induced by the scissor cut at the edge, which is why the initial

energy release rate is higher than the steady state value. This is a commonly observed phenomenon

in the absence of sharp crack or some other artifact at the pre-crack in a DCB configuration, as

reported by River and Okkonen [198] who categorized the quantities as crack initiation energy and

crack arrest energy, and as explained by Long and Hui [199] who depicted why the assumption of

translational invariance, or steady-state crack growth, does not hold in the crack initiation region

using the example of hydrogels. In principle, especially for soft materials and for materials with no

sharp crack, an extra term of stress and deformation fields due to crack initiation must be included

in G.

Table 4.1 shows the variation of critical energy release rate as a function of moisture content.

As moisture content increases, the toughness of the paper decreases, which is expected due to the

weakening of the individual cellulose fibers and the bonds between them. This behavior of modulus

with moisture content was also observed in similar earlier works [5, 200–203].
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Figure 4.5: Comparisons between experimental data (blue hollow circles) and simulation results for
traction-separation law with linear softening Eq. (4.8) (red solid curve) and traction-separation law
with exponential softening Eq. (4.12) (yellow dashed curve) for 23% RH.

4.4.2 Finite Element Modeling Results

4.4.2.1 Exponential vs. Linear Softening

Simulations for 23% relative humidity were run with both linear softening Eq. (4.8) and exponential

softening Eq. (4.12), to determine which traction-separation law fit best with the experimental results

(Figure 4.5). As can be seen in Figure 4.5, the results from both simulations were almost identical.

As such, the traction-separation law with linear softening Eq. (4.8) was chosen for the remainder of

the simulations because it has fewer parameters and has a slight advantage in terms of the speed of

simulations.

4.4.2.2 Parameters for Different Relative Humidities

The parameters for the simulations were selected in the following manner. tn was chosen as the

measured peak stress from the out-of-plane tensile tests . K0 was chosen as

K0 =
Ef

hf

, (4.15)

based on the out-of-plane modulus Ef of the filter paper from the out-of-plane tensile tests and the

thickness of the filter paper hf . δf was then chosen such that the resulting toughness value Eq. (4.13)

from the traction-separation law Eq. (4.8) was within the uncertainty range of the toughness values
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Figure 4.6: Force displacement plots from simulations (solid curves) as compared with experimental
data (hollow circles) at different relative humidities (a) 16% RH, (b) 23% RH, (c) 37% RH, (d) 50%
RH, and (e) 75% RH.

from the experimental data. Finally, NDP was calculated using Eq. (4.14).

The parameters for which the force displacement plots from simulations of different relative

humidity (Figure 4.6) best fit with the corresponding force displacement plots from experiments are

listed in Table 4.2, and the peak stresses t0n and displacements δc and δf are plotted vs. humidity

in Figure 4.7(a).

Figure 4.7(b) shows the traction-separation laws with linear softening (Eq. (4.8)) for the different

relative humidities. The toughness, or critical energy release rate, value from the simulations is found

by calculating the area under the traction-separation curve (Eq. (4.13)).

As can be seen in Figure 4.6, the initial loading portion of the simulations and the unloading

stable crack growth regions fit well with the experimental data, but the simulations do not capture

the large peak force and sudden drop which are present in the plots from the experimental data. The

reason that these simulations cannot capture the peak force and sudden drop from the experimental

results is, as mentioned earlier in Section 4.4.1, that the Whatman filter paper in the experiments
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%RH K0 (1010 Pa/m) t0n (MPa) δf (µm) GIc (J/m2) NDP (unit-less) Fmax (N)
16 3.77 0.800 19.63 16.34 17.00 1.94
23 3.28 0.600 24.69 12.90 23.86 1.86
37 2.52 0.400 30.46 9.27 38.57 1.64
50 1.84 0.310 29.95 7.26 50.31 1.41
75 0.51 0.075 47.04 2.32 274.64 0.81

Table 4.2: Simulation parameter values by humidity for which force displacement plots from simu-
lations at different relative humidities best fit with the corresponding force displacement plots from
experiments.
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Figure 4.7: Cohesive parameters and cohesive law at different relative humidities: (a) Plots of the
parameters peak stress t0n, and displacements δf and δc vs. %RH (relative humidity), and (b)
Traction-separation law plots from simulations at different relative humidities, using the traction-
separation law with linear softening (Eq. (4.8)).

does not have a sharp crack, and the crack must be initiated before fracture mechanics applies

[198, 199]. We also considered other possibilities, such as compressive stresses far ahead of the

crack and non-uniform drying. Since there is compression ahead of the cohesive zone as can be

seen in Figure 4.8, the cellulose network ahead of the crack could be damaged by the compression

[1, 63, 199, 204] and could have a lower toughness than the initial region which is only subject

to tension. Additionally, the specimens are cut to the required sizes using scissors which could

potentially induce an artificial compression at the edge (pre-crack), which increases the resistance

to the crack propagation at the pre-crack tip.

From Figure 4.8 it can be observed that the maximum compressive stress ahead of the crack is

around 0.55 MPa for the 16% RH and 0.15 MPa for the 75% RH. From Table 4.1, the out-of-plane

Young’s modulus of the filter paper at 16% RH is 6.41 MPa and at 75% RH is 0.86 MPa. Hence,

105



0.03 0.035 0.04
-6

-4

-2

0

2

4

6

8
105

Figure 4.8: Stress profile along the direction of crack propagation, in the simulation frame just before
the crack begins to open initially. Crack tip position initially, before the crack begins to open, is at
27 mm.

the compressive strain in the cellulose fibers ahead of the crack tip is around 0.55/6.41 = 0.086

for 16% RH and 0.15/0.86 = 0.17 for 75% RH. Buckling typically starts around compressive strain

of 0.05 in foams and fiber networks [45], which is smaller than the compressive strains calculated

above. However, the compressive stiffness is likely higher than the tensile stiffness, especially because

compressing porous fibrous networks causes an increase in density which therefore could increase

compressive stiffness [205, 206], and this could likely lower the calculated compressive strains. More-

over, the peak compressive stress/strain is millimeters ahead of the crack tip before the crack starts

to propagate, whereas the sudden drop from peak force happens even before the crack starts to

propagate. Additionally, the compressive strain limit of 0.05 in general foams and fiber networks

[45] is valid for 3D isotropic materials. This is not necessarily the limit for cellulose networks, in

particular filter paper, which are non-isotropic materials and most of the fibers are not aligned in

the out-of-plane direction of loading. This implies that the presence of compressive stresses ahead

of the crack tip may not be a significant factor contributing to the force anomaly.

To study the impact of artifacts at the pre-crack, such as having a blunt crack or scissors-induced

compression, a new type of experiment was done at one humidity (31% RH) with multiple loading-

unloading cycles. The phenomenon of initial high peak force and sudden drop can be clearly isolated

(as shown in Figure 7(a) in [163]) from the region of stable crack growth using the equation resulting

in a flat R-curve (as shown in Figure 7(b) in [163]) using (4.2) and (4.3). This experiment shows
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Figure 4.9: Cartoon depicting the changes made to the model in order to incorporate the tougher
initiation region cohesive elements, as well as the regular cohesive elements. (Note: This image is
not to scale.)

%RH Element Type K0 (1010 Pa/m) t0n (MPa) δf (µm) GIc (J/m2) NDP (unit-less) Fmax (N)

16
Initiation Cohesive Elements 781.77 8.000 21.36 89.50 0.93 6.41

Steady State Cohesive Elements 3.77 0.800 19.63 16.34 17.00

23
Initiation Cohesive Elements 692.94 6.000 19.14 59.98 1.11 5.04

Steady State Cohesive Elements 3.28 0.600 24.69 12.90 23.86

37
Initiation Cohesive Elements 517.65 4.000 20.22 41.98 1.75 3.70

Steady State Cohesive Elements 2.52 0.400 30.46 9.27 38.57

50
Initiation Cohesive Elements 255.29 3.100 20.84 34.18 2.39 3.05

Steady State Cohesive Elements 1.84 0.310 29.95 7.26 50.31

75
Initiation Cohesive Elements 55.41 0.750 16.59 6.73 7.96 1.03

Steady State Cohesive Elements 0.51 0.075 47.04 2.32 274.64

Table 4.3: Simulation parameter values by humidity for which force displacement plots from sim-
ulations including the initiation element region at different relative humidities best fit with the
corresponding force displacement plots from experiments.

that among the reasons causing the initial high peak force, artifacts at the pre-crack, such as having

a blunt crack or scissors-induced compression are the primary reason for the force anomaly and

further corroborates that compression ahead of the crack-tip is not a significant factor.

Inspired by a previous report [199], to account for the change in behavior from crack initiation to

crack propagation, cohesive elements representing the Whatman paper are divided into two regions:

a crack initiation region with parameters that give higher toughness, and the steady state crack

growth region comprising the rest of the Whatman filter paper with parameters estimated before

(see Figure 4.9). We choose a length for this crack initiation region to be 1 mm since this is about

10 times larger than the root radius of the initial crack. We choose the cohesive parameters for this

initiation region by using the following process: First, as the toughness value we take the maximum

energy release rate in the experimental data (as calculated by Eq. (4.3)). We choose the peak stress

t0n to be exactly one order of magnitude larger than in the steady state region, and we choose the

stiffness K0 to be about two orders of magnitude larger than in the steady state region. We calculate

the displacement to failure δf parameter from the toughness relation Eq. (4.13), and NDP from

Eq. (4.14).
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Figure 4.10: Force displacement plots from simulations including the tougher cohesive element crack
initiation regions (solid curves) as compared with experimental data (colored circles) at different
relative humidities (a) 16% RH, (b) 23% RH, (c) 37% RH, (d) 50% RH, and (e) 75% RH.

As can be seen in Figure 4.10, the simulations including the initiation region to represent the

apparent toughness due to the artifacts at the pre-crack, such as having a blunt crack or scissors-

induced compression, capture not only the initial loading portion and the steady state crack growth

region of the unloading portion of the force-displacement curves, but also the peak force and the

sudden drop. The transition between the initiation region and steady state crack growth region is

known to be complex [199], so we do not model it here. The parameters of the simulations using the

initiation region model for which the force displacement plots from simulations of different relative

humidities (Figure 4.10) best fit with the corresponding force displacement plots from experiments

are listed in Table 4.3. There is some variability in the experimental data, and small variations in the

thickness and modulus of the PMMA have a large effect on the energy release rate (see Eq. (4.3))

so the fits are not exact, but the key qualitative features of the force-displacement curve can be

explained by the presence of an initiation region to represent the apparent toughness due to the

pre-crack artifacts in our finite element calculations (see Figure 4.11 for verification that both the
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Figure 4.11: Experimental results compared to simulation results using the model developed in the
manuscript (solid curve), a simulation in which all the cohesive elements had the same parameters
as in the initiation region (dotted curve), and the simulation from the manuscript using only the
parameters from the steady state region (dashed curve).

initiation region and steady state region are necessary to capture the experimental results).

The results shown here with the high peak force and sudden drop to a plateau region of steady

state crack growth, both in experiments and simulations, resemble results from earlier works such

as [198]. Depicted there is a plot for three different materials exhibiting the same behavior with an

initial high peak force and then a sudden drop to a lower plateau (see Figure 11 in [198]). However,

these plots exhibit a saw-tooth pattern due to a boundary condition of holding opening displacement

of the DCB fixed in cycles. This is not seen in our experimental results since we continuously increase

the opening displacement of our DCB, not doing so in a step-wise fashion. In our simulations the

opening displacement is increased in a step-wise fashion but those steps are small so that it mimics

a continuous increase. Nonetheless, it is clear that there is a direct analogy between the crack

initiation energy in [198] and our initiation region toughness value GIi, and between the crack arrest

energy in [198] and our steady state crack growth region toughness value GIc.

Generally, it is preferable to design experiments in such a way that either a sharp crack is

produced before any measurements are taken or precautions are taken to make sure the material

is uniform throughout the length, to avoid high peaks and sudden drops in the force-displacement

data. However, in some systems it is difficult to introduce a sharp crack initially, such as in [198]

or when studying the fracture toughness of the out-of-plane direction of two-dimensional sheets

as we do here. Our simulation approach which includes an initial crack initiation region with
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tougher/stronger cohesive elements to represent the apparent toughness due to artifacts, followed

by steady-state crack growth region cohesive elements accounts for this difficulty in the experiment

and allows for extraction of useful data even in such situations in which experimentally obtaining a

sharp crack is difficult or even impossible.

4.4.2.3 Parametric study

In studying the effect on the force-displacement plot of each of the five different parameters in the

bi-linear traction-separation law, it is important to keep in mind that only three of them can be

independent for any given simulation. For example, the parameter GIc defined above (Eq. (4.13))

for the bi-linear traction-separation law Eq. (4.8) can be rewritten as

GIc =
t0n
2

(

t0n
Kn

+ δf

)

, (4.16)

and therefore the parameter NDP defined above (Eq. (4.14)) can also be rewritten

NDP =
EPMMA

2h

(

1

Kn

+
δf
t0n

)

, (4.17)

both now entirely in terms of cohesive properties t0n, Kn, and δf . Alternatively, the above equations

Eq. (4.16) and Eq. (4.17) can be rearranged into

t0n =

√

EPMMAGIc

h NDP
(4.18)

δf =

√

EPMMAGIc

h NDP

(

2h NDP

EPMMA

− 1

Kn

)

, (4.19)

such that the cohesive parameters δf and tn are entirely in terms of cohesive parameters Kn, GIc,

and NDP . The latter three are the ones we use in our parameter study below.

As can be seen in Figure 4.12(a), a 10% change in the K0 value, both higher and lower, has no

visible effect on the force-displacement plots. The 10% lower K0 = 5.91∗1012 Pa/m yields a slightly

lower peak force of 5.37 N and pulls the sudden drop to a slightly lower displacement of 0.968 mm,

and vice versa for the 10% higher K0. Similarly, as can be seen in Figure 4.12(b), a 10% change in

the NDP parameter has little visible effect; a 10% lower NDP = 0.90 yields a slightly higher peak

force of 5.41 N and pushes the sudden drop to a slightly higher displacement of 0.98 mm, and a

10% higher NDP = 1.10 yields a slightly lower peak force of 5.34 N and pulls the sudden drop to a
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(c) Varying G1c

Figure 4.12: Study of the effects of how 10% changes in tough initiation region cohesive parameters
affect the force-displacement results plots. The three independent cohesive parameters studied were
(a) K0, (b) NDP , and (c) G1c. In all of these simulations, the regular cohesive parameters were
K0 = 2.56524 ∗ 1012 Pa/m, σ0 = 8.89728 ∗ 106 Pa, δf = 7.76926 ∗ 10−6 m, G1c = 18.064 J/m2,
and NDP = 1.00. (a) Varying K0: tough initiation region cohesive parameter NDP was held fixed
at 1.00 and G1c was held fixed at 58.62 J/m2, while tough initiation region cohesive parameters
K0 = 5.91 ∗ 1012 Pa/m, tn = 7.02 ∗ 106 Pa, and δf = 15.54 ∗ 10−6 m (blue solid curve), K0 =
6.57 ∗ 1012 Pa/m, tn = 7.02 ∗ 106 Pa, and δf = 15.66 ∗ 10−6 m (red dashed curve), and K0 =
7.22 ∗ 1012 Pa/m, tn = 7.02 ∗ 106 Pa, and δf = 15.75 ∗ 10−6 m (yellow dotted curve). (b) Varying
NDP : tough initiation region cohesive parameter K0 was held fixed at 6.56524 ∗ 1012 Pa/m and
G1c was held fixed at 58.6179 J/m2, while tough initiation region cohesive parameters NDP = 0.90,
tn = 7.40 ∗ 106 Pa, and δf = 14.74 ∗ 10−6 m (blue solid curve), NDP = 1.00, tn = 7.02 ∗ 106 Pa,
and δf = 15.66 ∗ 10−6 m (red dashed curve), and NDP = 1.10, tn = 6.69 ∗ 106 Pa, and δf =
16.52 ∗ 10−6 m (yellow dotted curve). (c) Varying G1c: tough initiation region cohesive parameter
K0 was held fixed at 6.56524 ∗ 1012 Pa/m and NDP was held fixed at 1.00, while tough initiation
region cohesive parameters G1c = 52.79 J/m2, tn = 6.66 ∗ 106 Pa, and δf = 14.85 ∗ 10−6 m (blue
solid curve), G1c = 58.62 J/m2, tn = 7.02 ∗ 106 Pa, and δf = 15.66 ∗ 10−6 m (red dashed curve),
and G1c = 64.54 J/m2, tn = 7.36 ∗ 106 Pa, and δf = 16.20 ∗ 10−6 m (yellow dotted curve).

slightly lower displacement of 0.96 mm, both as compared to the NDP = 1.00 with a peak force of

5.39 N and sudden drop at a displacement of 0.97 mm. (Larger changes in NDP may have more

significant effects.) However, as can be seen in Figure 4.12(c), a 10% change in the GIi parameter

has a much more significant effect on the force-displacement plots; a 10% lower GIi = 52.79 J/m2

yields a lower peak force of 5.11 N and pulls the sudden drop to a lower displacement of 0.92 mm,

and a 10% higher GIi = 64.54 J/m2 yields a higher peak force of 5.62 N and pushes the sudden

drop to a higher displacement of 1.01 mm, both as compared to the GIi = 58.62 J/m2 with a peak

force of 5.39 N and sudden drop at displacement 0.97 mm.

It should also be noted that, as expected, for each of the simulations, the toughness value is
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Figure 4.13: Results for fixing the NDP in the initiation region instead of the peak stress there.

(approximately) directly proportional to the square of the peak force value:

GIi ≈ 2F 2
max. (4.20)

4.4.2.4 Comparison of experiments and simulations

As can be seen in Figure 4.10, the force-displacement plots obtained from the finite element calcu-

lations with linear softening and tougher initiation region fit the experimental data quite well. For

example, for 16% relative humidity in Figure 4.10(a), the loading slopes from the experimental data

and the simulation results are almost identical, the peak forces are very close, and the unloading

curves are similar in shape and magnitude, including the sudden drop from the peak force and its

location in the plot. The same is true for 23% relative humidityṪhe peak forces are less close in

(Figure 4.10(b)), 37% relative humidity (Figure 4.10(c)), 50% relative humidity (Figure 4.10(d)), and

75% relative humidity (Figure 4.10(e)), but all other characteristics of the experiment are captured.

It should be noted that small variations in the thickness and modulus of the PMMA have a large

effect on the energy release rate (see Eq. (4.3)) so the fits are not exact. Additionally, if the NDP

in the initiation region is held fixed at 1 instead of specifying the peak stress there, the fits would

improve (see Figure 4.13).

It should also be noted that the displacement value used here for comparison in both the exper-

imental data and the simulation results is δ = ∆/2, or half of the distance between the two ends of

the original crack tip, and not ∆, the full distance between the two ends of the original crack tip.

A comparison of the toughness values measured from experiments to those calculated from the

simulation results for different relative humidities can be found in Table 4.4. The toughness values
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RH: 16% 23% 37% 50% 75%
Simulation GIc(J/m

2): 16.33 12.90 9.27 7.26 2.32
Experiment GIc(J/m

2): 16.34± 1.19 12.90± 1.16 9.27± 2.55 7.26± 0.65 2.32± 0.56

Table 4.4: Toughness values calculated from simulations at different relative humidities and the
corresponding values as measured from experiments. The experimental results are given in the
form X ± Y , where X represents the mean value and Y represents the standard deviation. The
toughness values calculated from the simulation results for all five relative humidities are within the
measurement errors of the toughness values measured from the experimental data.

calculated from the simulation results for all five relative humidities are within the measurement

errors of the toughness values measured from the experimental data.

The reader can also simultaneously look at Supplementary Material Video 1 of [163], to visualize

the crack propagation during fracture in the experiment and simulation.

4.5 Conclusion

In the current study, the effect of moisture content on out-of-plane toughness of cellulose filter

paper was studied using double cantilever beam fracture tests. Cohesive zone modeling was used

to describe crack propagation in the filter paper. The parameters of the traction-separation laws

were fitted to experimental data. Experimental measurements revealed a decreasing trend in the

modulus and fracture toughness with an increase in moisture content, as a consequence of moisture

induced weakening of cellulose network. Due to pre-crack artifacts, there is a higher peak force and

sudden decrease as the crack grows, which was captured by the newly developed finite element model

involving two kinds of cohesive elements: tough elements near the initial crack tip to represent the

apparent toughness due to artifacts at the pre-crack, such as having a blunt crack or scissors-induced

compression, succeeded by steady state crack growth elements. The effect of each independent

cohesive parameter was also investigated, and the overall force-displacement curves of the DCB

specimens was captured quite well.

113



Chapter 5

Conclusions

In this dissertation, we focus on specific fibrous network materials such as fibrin fiber networks

in blood clots, pulmonary emboli, and Whatman filter paper cellulose networks, and on specific

behavior such as development of pre-stress, compression, and fracture. These materials specifically

are comprised of randomly oriented, relatively stiff, straight fibers, and the mechanical properties

studied here comprise three stages of life that materials frequently will experience: first, fiber strands

grow and connect to become a network, and the material forms; then, natural forces act upon the

material, resulting in physical and structural changes in the material; and finally, the material

undergoes failure processes, and the material breaks down. These stages are represented here in

the following fashion: First, the growth of a fibrous network material, specifically a fibrin network,

is studied analytically from the level of individual fibers and their molecular polymerization, from

which material properties are extracted using an 8-chain model [41, 49–51]. Then, since such a

material in nature experiences forces which act upon it and change its structural and physical

properties, the loading and unloading cycles of compression and decompression experienced by fibrin

network blood clots and thromboemboli in veins are simulated here by cyclical compression and

decompression of ex vivo pulmonary emboli between parallel rheometer plates. Finally, a common

failure process is fracture under tensile forces, which is modeled here using continuum cohesive zone

traction-separation laws and small scale finite element analysis of Whatman filter paper cellulose

fibrous networks. These are three basic stages of the life-cycle of fibrous network materials, properties

studied here of fibrous network materials which emerge from these life-cycles, and the specific fibrous

network materials studied.

We modeled blood clot formation – from fibrinogen to fibrin monomers and oligomers, to protofib-

rils to fiber formation – as a set of ODEs for chemical rate of change in concentration of the reacting

structures of each individual stage. The solutions to that system of ODEs give the average number

of protofibrils per fiber cross-section as a function of fibrin polymerization time. By variation of
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the rate constants involved in the intermediary biochemical reactions, we demonstrated that the

two most important stages determining final fiber thickness are the reactions for fiber initiation

by lateral aggregation of protofibrils, and fiber growth by association with additional protofibrils.

The resulting average number of protofibrils per fiber cross-section is directly related to the radius

of a fiber, yielding the radius of a fiber as a function of polymerization time. This fiber radius is

used as an input in calculating the evolving tensile force on a helical fiber. We derive the tensile

force in a helical fiber by a force balance on the fiber cross-section in which some protofibrils are

stretched and others are shortened. The tensile force in a network fiber depends on the fiber radius

and the stretch of the fiber with respect to a (hypothetical) free fiber in equilibrium. We also model

relaxation of a fiber transversely cut from a network, yielding the relaxation time, which seems to

depend on the stretch of the fiber as well as the fiber length and radius. The resulting timescales

and fiber strains are in excellent agreement with previous reports of cutting of fibrin fibers from

a network [60]. Finally, we derive network properties such as stress due to polymerization and/or

external forces from fiber properties using an 8-chain model [41, 49]. We show that the inherent

tensile stress in polymerizing fibrin networks depends on fiber length, radius, solid volume fractions,

etc. The computed inherent network stress is in agreement with experimental results. Estimations

of inherent stress in a fibrin fiber network, as well as of other network material properties, will be

useful in interpreting experiments performed on blood clots and thrombi, in the use of fibrin as a

biomaterial, and in the application and development of novel methods of treatment of thrombotic

states such as in mechanical thrombectomy and thrombolysis.

We then characterized the mechanical response of pulmonary emboli to cyclic compression while

simultaneously tracking changes in their structure. We observed directly for the first time that

pulmonary emboli behave like foams (open soft network of fibers with large pores) in response to

compression and passive decompression. Additionally, stress-strain curves for all pulmonary emboli

revealed four portions characteristic of a hysteresis loop. The compression part of curve has the

following regions: 1) linear regime in which normal stress increases proportionally with increasing

compressive strain, and 2) non-linear response as result of rapid upturn in normal stress. The

passive decompression part of curve has the following regions: 3) non-linearly elastic region or re-

stretching of the network, in which normal stress dropped rapidly; 4) at lower strains, the normal

stress was rather insensitive to decompression, reflecting a linear response to strain and resulting

in a closed cycle. Thus, compression and decompression do not follow the same pathway, meaning
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that the stress- strain behavior of pulmonary emboli exhibits a hysteresis loop upon cyclic loading,

indicating the dissipation of energy. We described this behavior using a continuum theory of phase

transitions, which acknowledges that within a range of compressive stresses the fibrin network of

the embolus can have co-existing rarefied and densified phases. The fibers are mostly straight in the

rarefied phase, while they are significantly bent with a number of contacts in the densified phase.

The fractions of each phase change as the embolus is compressed or decompressed. The fibrin fibers

and RBCs are damaged during the compression process, causing irreversible changes in the structure

of the emboli. We also showed that the stress response of emboli depends on their structure, namely,

that variations in the composition of emboli can lead to quantitatively different normal stress-strain

responses. Emboli with a high fibrin component demonstrate higher normal stress compared to

emboli that have a high RBC component. Understanding these nuances in mechanical properties

of emboli will garner a deeper understanding of thromboembolisms and therapeutic disintegration

and removal of intravascular thrombi using mechanical means such as ultrasound, aspiration, and

mechanical thrombectomy.

Next, we studied the effect of moisture content on out-of-plane toughness of cellulose filter paper

using double cantilever beam fracture tests. Cohesive zone modeling was used to describe crack

propagation in the filter paper. We fitted the parameters of the traction-separation laws to experi-

mental data. Experimental measurements revealed a decreasing trend in the modulus and fracture

toughness with an increase in moisture content, as a consequence of moisture induced weakening of

the cellulose network. Due to pre-crack artifacts, there is a higher peak force and sudden decrease

as the crack grows, which we captured by the newly developed finite element model involving two

kinds of cohesive elements: tough elements near the initial crack tip to represent the apparent tough-

ness due to artifacts at the pre-crack, such as having a blunt crack or scissors-induced compression,

succeeded by steady state crack growth elements. We investigated the effect of each independent

cohesive parameter and captured the overall force-displacement curves of the DCB specimens quite

well.

The work on the mechanics of fibrous networks discussed here differs from previous studies in

that we did not perform large scale finite element calculations, rather we focused on continuum

mechanical models to study mechanical behaviors of these networks. Unlike large finite element

calculations, these continuum mechanical models are built to capture specific mechanical behaviors,

and their origins are in disparate fields which have little to do with networks. Additionally, the
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models derived for each of the specific materials can be applied to the other materials discussed, as

well as to other fibrous network materials, with some parameter changes and possibly other minor

variations. For example, the cohesive zone model presented for cellulose networks can be applied to

fibrin networks in blood clots. We think this is feasible because [207] have revealed with simulations

for cracked specimens stress-strain curves of the same shape as in the traction-separation laws in

cohesive zone models for cellulose networks. This and other aspects of the work in this dissertation

can also be expanded upon and applied to additional problems in the future, such as how inherent

tension in fibrin fiber networks affects the fracture toughness of the network material; how the

properties of individual fibers in, and helical structure of, other types of fibrous network materials,

such as carbon nanotubes in hierarchically arranged helical fiber ropes [208, 209], would affect the

properties of those materials; how fluid flow would affect the rate-dependent mechanical behavior of

the network; how additional substances in fibrous networks would affect the material properties of

the network, similar to how red blood cells affect the material properties of emboli; and modulating

the fracture properties of cellulose network materials with a physical parameter other than the

humidity dependence studied here.

The works presented here have direct relevance to biological, clinical, and industrial applications

including in the use of fibrin as a biomaterial – for example, the inherent tension may comprise a

thermodynamic mechanism to control fiber diameter, and thus modulate the overall network struc-

ture – and in the application and development of novel methods of treatment of thrombotic states

such as in mechanical thrombectomy since the susceptibility of fibrin to fibrinolytic enzymes de-

pends strongly on the mechanical tension of the proteinaceous fibrous substrate [58–61]; garnering a

deeper understanding of thromboembolisms, therapeutic disintegration and removal of intravascular

thrombi using mechanical means such as ultrasound, aspiration, and mechanical thrombectomy; and

in the fabrication of piezoelectric cellulose sheets and batteries [174–177, 210], and in studying scor-

ing, folding and 3-D forming operations. Thus, as well as in mechanics and materials disciplines, this

work is important in furthering scientific knowledge from biological, clinical, and industrial settings.

117



BIBLIOGRAPHY

[1] I. N. Chernysh, R. Spiewak, C. L. Cambor, P. K. Purohit, and J. W. Weisel. “Struc-

ture, mechanical properties, and modeling of cyclically compressed pulmonary emboli”,

Journal of the Mechanical Behavior of Biomedical Materials, 105: 103699, (2020).

DOI:10.1016/j.jmbbm.2020.103699.

[2] M. T. J. J. M. Punter, B. E. Vos, B. M. Mulder, and G. H. Koenderink. “Poroelasticity of

(bio)polymer networks during compression: theory and experiment”, Soft Matter, 16: 1298–

1305, (2020). DOI:10.1039/C9SM01973A.

[3] D. A. Fletcher and R. D. Mullins. “Cell mechanics and the cytoskeleton”, Nature, 463: 485–492,

(2010). DOI:10.1038/nature08908.

[4] K. A. Jansen, A. J. Licup, A. Sharma, R. Rens, F. C. MacKintosh, and G. H. Koenderink. “The

role of network architecture in collagen mechanics”, Biophysical Journal, 114(11): 2665–2678,

(2018). DOI:10.1016/j.bpj.2018.04.043.

[5] A. H. Nissan. “H-Bond Dissociation in Hydrogen Bond Dominated Solids”, Macromolecules,

9(5): 840–850, (Sept. 1976). DOI:10.1021/ma60053a026.

[6] S. Toll. “Packing mechanics of fiber reinforcements”, Polymer Engineering and Science, 38(8):

1337–1350, (1998). DOI:10.1002/pen.10304.

[7] F. Lundell, L. D. Söderberg, and P. H. Alfredsson. “Fluid mechanics of

papermaking”, Annual Review of Fluid Mechanics, 43(1): 195–217, (2011).

DOI:10.1146/annurev-fluid-122109-160700.

[8] A. Célino, S. Fréour, F. Jacquemin, and P. Casari. “The hygroscopic behavior of plant fibers: a

review”, Frontiers in Chemistry, 1(43): 1–12, (Jan. 2014). DOI:10.3389/fchem.2013.00043.

[9] E. K. Gamstedt. “Moisture induced softening and swelling of natural cellulose fibres

in composite applications”, in 37th Riso International Symposium on Materials Science,

vol. 139: 012003, IOP Conference Series: Materials Science and Engineering, (2016).

DOI:10.1088/1757-899X/139/1/012003.

118

https://dx.doi.org/10.1016/j.jmbbm.2020.103699
https://dx.doi.org/10.1039/C9SM01973A
https://dx.doi.org/10.1038/nature08908
https://dx.doi.org/10.1016/j.bpj.2018.04.043
https://dx.doi.org/10.1021/ma60053a026
https://dx.doi.org/10.1002/pen.10304
https://dx.doi.org/10.1146/annurev-fluid-122109-160700
https://dx.doi.org/10.3389/fchem.2013.00043
https://dx.doi.org/10.1088/1757-899X/139/1/012003


[10] A. Saha, C. Jiang, and A. A. Martí. “Carbon nanotube networks on different platforms”,

Carbon, 79: 1–18, (2014). DOI:10.1016/j.carbon.2014.07.060.

[11] C. M. van Wyck. “Note on the compressibility of wool”, Journal of the Textile Institute

Transactions, 37(12): T285–T292, (1946).

[12] X. Liu and X. Wang. “A comparative study on the felting propensity of animal fibers”, Textile

Research Journal, 77(12): 957–963, (2007). DOI:10.1177/0040517507083517.

[13] P. J. Flory and J. Rehner. “Statistical mechanics of cross-linked polymer networks

i. rubberlike elasticity”, The Journal of Chemical Physics, 11(11): 512–520, (1943).

DOI:10.1063/1.1723791.

[14] P. J. Flory and J. Rehner. “Statistical mechanics of cross-linked polymer networks ii. swelling”,

The Journal of Chemical Physics, 11(11): 521–526, (1943). DOI:10.1063/1.1723792.

[15] H. Alamri and I. Low. “Mechanical properties and water absorption behaviour of recycled

cellulose fibre reinforced epoxy composites”, Polymer Testing, 31(5): 620–628, (Aug. 2012).

DOI:10.1016/j.polymertesting.2012.04.002.

[16] F. Xu, Y. Cui, D. Bao, D. Lin, S. Yuan, X. Wang, H. Wang, and Y. Sun. “A

3d interconnected cu network supported by carbon felt skeleton for highly thermally

conductive epoxy composites”, Chemical Engineering Journal, 388: 124287, (2020).

DOI:https://doi.org/10.1016/j.cej.2020.124287.

[17] J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J.

Vlassak, and Z. Suo. “Highly stretchable and tough hydrogels”, Nature, 489: 133–136, (2012).

DOI:10.1038/nature11409.

[18] T. Gan, Y. Zhang, and Y. Guan. “In situ gelation of p(nipam-hema) microgel dispersion and

its applications as injectable 3d cell scaffold”, Biomacromolecules, 10(6): 1410–1415, (2009).

DOI:10.1021/bm900022m.

[19] T. Itahara, T. Tsuchida, and M. Morimoto. “Solvent-driven swelling and shrinking of

poly(nipam) gels crosslinked by tris-methacrylated phloroglucinol derivatives”, Polymer Chem-

istry, 1: 1062–1066, (2010). DOI:10.1039/C0PY00068J.

119

https://dx.doi.org/10.1016/j.carbon.2014.07.060
https://dx.doi.org/10.1177/0040517507083517
https://dx.doi.org/10.1063/1.1723791
https://dx.doi.org/10.1063/1.1723792
https://dx.doi.org/10.1016/j.polymertesting.2012.04.002
https://dx.doi.org/https://doi.org/10.1016/j.cej.2020.124287
https://dx.doi.org/10.1038/nature11409
https://dx.doi.org/10.1021/bm900022m
https://dx.doi.org/10.1039/C0PY00068J


[20] B. S. Hwang, J. S. Kim, J. M. Kim, and T. S. Shim. “Thermogelling behaviors of aque-

ous poly(n-isopropylacrylamide-co-2-hydroxyethyl methacrylate) microgel–silica nanoparticle

composite dispersions”, Materials, 14(5): 1212, (2021). DOI:10.3390/ma14051212.

[21] S. Deogekar and R. C. Picu. “On the strength of random fiber networks”, Journal of the

Mechanics and Physics of Solids, 116: 1–16, (2018). DOI:10.1016/j.jmps.2018.03.026.

[22] A. S. Shahsavari and R. C. Picu. “Size effect on mechanical behavior of random fiber

networks”, International Journal of Solids and Structures, 50(20-21): 3332–3338, (2013).

DOI:10.1016/j.ijsolstr.2013.06.004.

[23] R. C. Picu and A. Sengab. “Structural evolution and stability of non-crosslinked fiber networks

with inter-fiber adhesion”, Soft Matter, 14(12): 2254–2266, (2018). DOI:10.1039/c7sm02555f.

[24] L. Zhang, S. P. Lake, V. H. Barocas, M. S. Shephard, and R. C. Picu. “Cross-linked

fiber network embedded in an elastic matrix”, Soft Matter, 9(28): 6398–6405, (2013).

DOI:10.1039/C3SM50838B.

[25] S. Deogekar, M. Islam, and R. Picu. “Parameters controlling the strength of stochastic fi-

brous materials”, International Journal of Solids and Structures, 168: 194–202, (2019).

DOI:10.1016/j.ijsolstr.2019.03.033.

[26] S. Deogekar, Z. Yan, and R. C. Picu. “Random Fiber Networks With Superior Properties

Through Network Topology Control”, Journal of Applied Mechanics, 86(8): 081010, (06 2019).

DOI:10.1115/1.4043828.

[27] M. R. Islam and R. C. Picu. “Random fiber networks with inclusions: The mechanism of rein-

forcement”, Physical Review E, 99(6): 063001, (2019). DOI:10.1103/PhysRevE.99.063001.

[28] S. Deogekar and R. C. Picu. “Strength of stochastic fibrous materials under multiaxial loading”,

Soft Matter, 17: 704–714, (2021). DOI:10.1039/D0SM01713B.

[29] P. R. Onck, T. Koeman, T. Van Dillen, and E. Van Der Giessen. “Alternative explanation

of stiffening in cross-linked semiflexible networks”, Physical Review Letters, 95(17): 178102,

(2005). DOI:10.1103/PhysRevLett.95.178102.

[30] G. Žagar, P. R. Onck, and E. V. der Giessen. “Elasticity of rigidly cross-linked networks of

athermal filaments”, Macromolecules, 44: 7026–7033, (2011). DOI:10.1021/ma201257v.

120

https://dx.doi.org/10.3390/ma14051212
https://dx.doi.org/10.1016/j.jmps.2018.03.026
https://dx.doi.org/10.1016/j.ijsolstr.2013.06.004
https://dx.doi.org/10.1039/c7sm02555f
https://dx.doi.org/10.1039/C3SM50838B
https://dx.doi.org/10.1016/j.ijsolstr.2019.03.033
https://dx.doi.org/10.1115/1.4043828
https://dx.doi.org/10.1103/PhysRevE.99.063001
https://dx.doi.org/10.1039/D0SM01713B
https://dx.doi.org/10.1103/PhysRevLett.95.178102
https://dx.doi.org/10.1021/ma201257v


[31] G. Žagar, P. R. Onck, and E. V. der Giessen. “Two fundamental mechanisms govern

the stiffening of cross-linked networks”, Biophysical Journal, 108: 1470–1479, (2015).

DOI:10.1016/j.bpj.2015.02.015.

[32] C. P. Broedersz, M. Sheinman, and F. C. MacKintosh. “Filament-length-controlled

elasticity in 3d fiber networks”, Physical Review Letters, 108: 078102, (2012).

DOI:10.1103/PhysRevLett.108.078102.

[33] J. L. Shivers, S. Arzash, and F. C. MacKintosh. “Nonlinear poisson effect governed

by a mechanical critical transition”, Physical Review Letters, 124: 038002, (2020).

DOI:10.1103/PhysRevLett.124.038002.

[34] A. S. Abhilash, B. M. Baker, B. Trappmann, C. S. Chen, and V. B. Shenoy.

“Remodeling of fibrous extracellular matrices by contractile cells: Predictions from

discrete fiber network simulations”, Biophysical Journal, 107: 1829–1840, (2014).

DOI:http://dx.doi.org/10.1016/j.bpj.2014.08.029.

[35] E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaud-

huri, J. T. Liphardt, and V. B. Shenoy. “Mechanisms of plastic deformation in colla-

gen networks induced by cellular forces”, Biophysical Journal, 114: 450–461, (2018).

DOI:https://doi.org/10.1016/j.bpj.2017.11.3739.

[36] E. Ban, H. Wang, J. M. Franklin, J. T. Liphardt, P. A. Janmey, and V. B. Shenoy. “Strong tri-

axial coupling and anomalous poisson effect in collagen networks”, Proceedings of the National

Academy of Sciences, 116(14): 6790–6799, (2019). DOI:10.1073/pnas.1815659116.

[37] R. I. Litvinov and J. W. Weisel. “Fibrin mechanical properties and their structural origins”,

Matrix Biology, 60-61: 110–123, (2017). DOI:10.1016/j.matbio.2016.08.003.

[38] G. S. Vankayalapati and K. T. Turner. “Hierarchical architected cellulose sheets with improved

toughness using elastic heterogeneity”, Cellulose, (In Preparation).

[39] R. S. Rivlin and D. W. Saunders. “The free energy of deformation for vulcanized rubber”,

Transactions of the Faraday Society, 48: 200–206, (1952). DOI:10.1039/TF9524800200.

[40] R. OGDEN. “Elastic deformations of rubberlike solids”, in Mechanics of Solids

121

https://dx.doi.org/10.1016/j.bpj.2015.02.015
https://dx.doi.org/10.1103/PhysRevLett.108.078102
https://dx.doi.org/10.1103/PhysRevLett.124.038002
https://dx.doi.org/http://dx.doi.org/10.1016/j.bpj.2014.08.029
https://dx.doi.org/https://doi.org/10.1016/j.bpj.2017.11.3739
https://dx.doi.org/10.1073/pnas.1815659116
https://dx.doi.org/10.1016/j.matbio.2016.08.003
https://dx.doi.org/10.1039/TF9524800200


(H. HOPKINS and M. SEWELL, eds.): 499–537. Oxford: Pergamon, (1982).

DOI:https://doi.org/10.1016/B978-0-08-025443-2.50021-5.

[41] E. M. Arruda and M. C. Boyce. “A three-dimensional constitutive model for the large stretch

behavior of rubber elastic materials”, Journal of the Mechanics and Physics of Solids, 41(2):

389–412, (1993). DOI:10.1016/0022-5096(93)90013-6.

[42] M. A. Biot. “General theory of three-dimensional consolidation”, Journal of Applied Physics,

12(2): 155–164, (1941). DOI:10.1063/1.1712886.

[43] T. Komori, M. Itoh, and A. Takaku. “A model analysis of the compress-

ibility of fiber assemblies”, Textile Research Journal, 62(10): 567–574, (1992).

DOI:10.1177/004051759206201002.

[44] O. V. Kim, X. Liang, R. I. Litvinov, J. W. Weisel, M. S. Alber, and P. K. Purohit. “Foam-

like compression behavior of fibrin networks”, Biomechanics and Modeling in Mechanobiology,

15(1): 213–228, (2016). DOI:10.1007/s10237-015-0683-z.

[45] L. J. Gibson and M. F. Ashby. Cellular Solids: Structure and Properties. New York: Cambridge

University Press, New York, (1999).

[46] R. Abeyaratne and J. K. Knowles. Evolution of Phase Transitions: A Continuum Theory.

Cambridge, U.K.: Cambridge University Press, Cambridge, U.K., (2006).

[47] G. Verhille, S. Moulinet, N. Vandenberghe, M. Adda-Bedia, and P. L. Gal. “Structure and

mechanics of aegagropilae fiber network”, Proceedings of the National Academy of Sciences,

114(18): 4607–4612, (2017). DOI:10.1073/pnas.1620688114.

[48] A. Ed-Daoui and P. Snabre. “Poroviscoelasticity and compression-softening of agarose hydro-

gels”, Rheologica Acta, 60: 327–351, (2021). DOI:10.1007/s00397-021-01267-3.

[49] H. J. Qi, C. Ortiz, and M. C. Boyce. “Mechanics of biomacromolecular networks containing

folded domains”, Journal of Engineering Materials and Technology, Transactions of the ASME,

128(4): 509–518, (2006). DOI:10.1115/1.2345442.

[50] A. E. X. Brown, R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel. “Multiscale

mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water”, Science,

325(5941): 741–744, (2009). DOI:10.1126/science.1172484.

122

https://dx.doi.org/https://doi.org/10.1016/B978-0-08-025443-2.50021-5
https://dx.doi.org/10.1016/0022-5096(93)90013-6
https://dx.doi.org/10.1063/1.1712886
https://dx.doi.org/10.1177/004051759206201002
https://dx.doi.org/10.1007/s10237-015-0683-z
https://dx.doi.org/10.1073/pnas.1620688114
https://dx.doi.org/10.1007/s00397-021-01267-3
https://dx.doi.org/10.1115/1.2345442
https://dx.doi.org/10.1126/science.1172484


[51] P. K. Purohit, R. I. Litvinov, A. E. X. Brown, D. E. Discher, and J. W. Weisel. “Protein

unfolding accounts for the unusual mechanical behavior of fibrin networks”, Acta Biomaterialia,

7: 2374–2383, (2011). DOI:10.1016/j.actbio.2011.02.026.

[52] J. W. Weisel and R. I. Litvinov. Fibrin Formation, Structure and Properties : ch. 13, 405–456.

Cham: Springer International Publishing, (2017). DOI:10.1007/978-3-319-49674-0_13.

[53] J. W. Weisel, C. Nagaswami, and L. Makowski. “Twisting of fibrin fibers limits their radial

growth”, Proceedings of the National Academy of Sciences of the United States of America,

84: 8991–8995, (1987). DOI:10.1007/s10704-012-9758-3.

[54] O. V. Kim, R. I. Litvinov, M. S. Alber, and J. W. Weisel. “Quantitative structural mechanobi-

ology of platelet-driven blood clot contraction”, Nature Communications, 8(1): 1274, (2017).

DOI:10.1038/s41467-017-00885-x.

[55] W. A. Lam, O. Chaudhuri, A. Crow, K. D. Webster, T.-D. Li, A. Kita, J. Huang, and D. A.

Fletcher. “Mechanics and contraction dynamics of single platelets and implications for clot

stiffening”, Nature Materials, 10: 61–66, (2011). DOI:10.1038/nmat2903.

[56] Y. Sun, O. Oshinowo, D. R. Myers, W. A. Lam, and A. Alexeev. “Resolving the missing

link between single platelet force and clot contractile force”, iScience, 25(1): 103690, (2022).

DOI:10.1016/j.isci.2021.103690.

[57] J. W. Weisel and C. Nagaswami. “Computer modeling of fibrin polymerization ki-

netics correlated with electron microscope and turbidity observations: clot structure

and assembly are kinetically controlled”, Biophysical Journal, 63: 111–128, (1992).

DOI:10.1016/S0006-3495(92)81594-1.

[58] N. E. Hudson. “Biophysical mechanisms mediating fibrin fiber lysis”, BioMed Research Inter-

national, 2017: 2748340, (2017). DOI:10.1155/2017/2748340.

[59] W. Li, T. Lucioni, R. Li, K. Bonin, S. S. Cho, and M. Guthold. “Stretching

single fibrin fibers hampers their lysis”, Acta Biomaterialia, 60: 264–274, (2017).

DOI:10.1016/j.actbio.2017.07.037.

[60] S. J. Cone, A. T. Fuquay, J. M. Litofsky, T. C. Dement, C. A. Carolan, and N. E. Hudson.

123

https://dx.doi.org/10.1016/j.actbio.2011.02.026
https://dx.doi.org/10.1007/978-3-319-49674-0_13
https://dx.doi.org/10.1007/s10704-012-9758-3
https://dx.doi.org/10.1038/s41467-017-00885-x
https://dx.doi.org/10.1038/nmat2903
https://dx.doi.org/10.1016/j.isci.2021.103690
https://dx.doi.org/10.1016/S0006-3495(92)81594-1
https://dx.doi.org/10.1155/2017/2748340
https://dx.doi.org/10.1016/j.actbio.2017.07.037


“Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis”, Acta

Biomaterialia, 107: 164–177, (2020). DOI:10.1016/j.actbio.2020.02.025.

[61] I. VARJÚ, P. SÓTONYI, R. MACHOVICH, L. SZABÓ, K. TENEKEDJIEV, M. M. C. G.

SILVA, C. LONGSTAFF, and K. KOLEV. “Hindered dissolution of fibrin formed un-

der mechanical stress”, Journal of Thrombosis and Haemostasis, 9(5): 979–986, (2011).

DOI:10.1111/j.1538-7836.2011.04203.x.

[62] T. Feller, S. D. A. Connell, and R. A. S. Ariëns. “Why fibrin biomechanical properties matter

for hemostasis and thrombosis”, Journal of Thrombosis and Haemostasis, 20(1): 6–16, (2022).

DOI:10.1111/jth.15531.

[63] X. Liang, I. Chernysh, P. K. Purohit, and J. W. Weisel. “Phase transitions during compression

and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood”,

Acta Biomaterialia, 60: 275–290, (2017). DOI:10.1016/j.actbio.2017.07.011.

[64] O. V. Kim, R. I. Litvinov, J. Chen, D. Z. Chen, J. W. Weisel, and M. S. Alber. “Compression-

induced structural and mechanical changes of fibrin-collagen composites”, Matrix Biology,

60-61: 141–156, (2017). DOI:10.1016/j.matbio.2016.10.007.

[65] S. Duffy, M. Farrell, K. McArdle, J. Thornton, D. Vale, E. Rainsford, L. Morris, D. S. Liebe-

skind, E. MacCarthy, and M. Gilvarry. “Novel methodology to replicate clot analogs with

diverse composition in acute ischemic stroke”, Journal of NeuroInterventional Surgery, 9(5):

486–491, (2017). DOI:10.1136/neurintsurg-2016-012308.

[66] J. Gralla, G. Schroth, L. Remonda, K. Nedeltchev, J. Slotboom, and C. Breken-

feld. “Mechanical thrombectomy for acute ischemic stroke: Thrombus-device inter-

action, efficiency, and complications in vivo”, Stroke, 37(12): 3019–3024, (2006).

DOI:10.1161/01.STR.0000248457.55493.85.

[67] J. E. FRENCH. “The structure of natural and experimental thrombi.”, Annals of the Royal

College of Surgeons of England, 36: 191–200, (1965).

[68] R. Spiewak, A. Gosselin, D. Merinov, R. I. Litvinov, J. W. Weisel, V. Tutwiler, and P. K. Puro-

hit. “Biomechanical origins of inherent tension in fibrin networks”, Journal of the Mechanical

Behavior of Biomedical Materials, (In Preparation).

124

https://dx.doi.org/10.1016/j.actbio.2020.02.025
https://dx.doi.org/10.1111/j.1538-7836.2011.04203.x
https://dx.doi.org/10.1111/jth.15531
https://dx.doi.org/10.1016/j.actbio.2017.07.011
https://dx.doi.org/10.1016/j.matbio.2016.10.007
https://dx.doi.org/10.1136/neurintsurg-2016-012308
https://dx.doi.org/10.1161/01.STR.0000248457.55493.85


[69] V. Tutwiler, J. Singh, R. I. Litvinov, J. L. Bassani, P. K. Purohit, and J. W. Weisel. “Rupture

of blood clots: Mechanics and pathophysiology”, Science Advances, 6(35): eabc0496, (2020).

DOI:10.1126/sciadv.abc0496.

[70] S. Liu, G. Bao, Z. Ma, C. J. Kastrup, and J. Li. “Fracture mechanics of blood clots: Measure-

ments of toughness and critical length scales”, Extreme Mechanics Letters, 48: 101444, (2021).

DOI:https://doi.org/10.1016/j.eml.2021.101444.

[71] W. Liu, L. M. Jawerth, E. A. Sparks, M. R. Falvo, R. R. Hantgan, R. Superfine, S. T. Lord, and

M. Guthold. “Fibrin fibers have extraordinary extensibility and elasticity”, Science, 313(5787):

634–634, (2006). DOI:10.1126/science.1127317.

[72] H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai. “Transparent and High Gas

Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation”, Biomacro-

molecules, 10(1): 162–165, (Jan. 2009). DOI:10.1021/bm801065u.

[73] A. Isogai. “Wood nanocelluloses: fundamentals and applications as new bio-

based nanomaterials”, Journal of Wood Science, 59(6): 449–459, (Dec. 2013).

DOI:10.1007/s10086-013-1365-z.

[74] S. Paunonen. “Strength and Barrier Enhancements of Cellophane and Cel-

lulose Derivative Films: A Review”, BioResources, 8: 3098–3121, (2013).

DOI:10.15376/BIORES.8.2.3098-3121.

[75] F. J. Schmied, C. Teichert, L. Kappel, U. Hirn, W. Bauer, and R. Schennach. “What holds

paper together: Nanometre scale exploration of bonding between paper fibres”, SCIENTIFIC

REPORTS, 3: 2432–2438, (2013). DOI:10.1038/srep02432.

[76] U. Hirn. “Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of

fiber bonding in paper”, Scientific Reports, 5: 10503, (2015). DOI:10.1038/srep10503.

[77] A. Tanaka and T. Yamauchi. “Deformation and fracture of paper during the in-plane fracture

toughness testing–Examination of the essential work of fracture method”, Journal of Materials

Science, 35: 1827–1833, (2000). DOI:10.1023/A:1004797023064.

[78] S. J. Pathare, W. Eng, S.-J. J. Lee, and A. K. Ramasubramanian. “Fibrin prestress due to

125

https://dx.doi.org/10.1126/sciadv.abc0496
https://dx.doi.org/https://doi.org/10.1016/j.eml.2021.101444
https://dx.doi.org/10.1126/science.1127317
https://dx.doi.org/10.1021/bm801065u
https://dx.doi.org/10.1007/s10086-013-1365-z
https://dx.doi.org/10.15376/BIORES.8.2.3098-3121
https://dx.doi.org/10.1038/srep02432
https://dx.doi.org/10.1038/srep10503
https://dx.doi.org/10.1023/A:1004797023064


platelet aggregation and contraction increases clot stiffness”, Biophysical Reports, 1(2): 100022,

(2021). DOI:10.1016/j.bpr.2021.100022.

[79] S. Britton, O. Kim, F. Pancaldi, Z. Xu, R. I. Litvinov, J. W. Weisel, and M. Al-

ber. “Contribution of nascent cohesive fiber-fiber interactions to the non-linear elastic-

ity of fibrin networks under tensile load”, Acta Biomaterialia, 94: 514–523, (2019).

DOI:10.1016/j.actbio.2019.05.068.

[80] W. LIU, C. R. CARLISLE, E. A. SPARKS, and M. GUTHOLD. “The mechanical properties

of single fibrin fibers”, Journal of Thrombosis and Haemostasis, 8(5): 1030–1036, (2010).

DOI:10.1111/j.1538-7836.2010.03745.x.

[81] J.-P. Collet, H. Shuman, R. E. Ledger, S. Lee, and J. W. Weisel. “The elasticity of an individual

fibrin fiber in a clot”, Proceedings of the National Academy of Sciences, 102(26): 9133–9137,

(2005). DOI:10.1073/pnas.0504120102.

[82] A. Zhang, H. Jiang, Z. Wu, C. Wu, and B. Qian. “Internal stress, lattice deformation,

and modulus of polymers”, Journal of Applied Polymer Science, 42(6): 1779–1791, (1991).

DOI:https://doi.org/10.1002/app.1991.070420635.

[83] Y. Li, A. Nese, X. Hu, N. V. Lebedeva, T. W. LaJoie, J. Burdyńska, M. C. Stefan, W. You,

W. Yang, K. Matyjaszewski, and S. S. Sheiko. “Shifting electronic structure by inherent tension

in molecular bottlebrushes with polythiophene backbones”, ACS Macro Letters, 3(8): 738–742,

(2014). DOI:10.1021/mz5003323.

[84] J. Torbet, J. M. Freyssinet, and G. Hudry-Clergeon. “Oriented fibrin gels formed by polymeriza-

tion in strong magnetic fields”, Nature, 289: 91–93, (January 1981). DOI:10.1038/289091a0.

[85] G. Caracciolo, M. De Spirito, A. C. Castellano, D. Pozzi, G. Amiconi, A. De Pas-

calis, R. Caminiti, and G. Arcovito. “Protofibrils within fibrin fibres are packed to-

gether in a regular array”, Thrombosis and Haemostasis, 89(04): 632–636, (2003).

DOI:10.1055/s-0037-1613569.

[86] C. Yeromonahos, B. Polack, and F. Caton. “Nanostructure of the fibrin clot”, Biophysical

Journal, 99(7): 2018–2027, (2010). DOI:10.1016/j.bpj.2010.04.059.

126

https://dx.doi.org/10.1016/j.bpr.2021.100022
https://dx.doi.org/10.1016/j.actbio.2019.05.068
https://dx.doi.org/10.1111/j.1538-7836.2010.03745.x
https://dx.doi.org/10.1073/pnas.0504120102
https://dx.doi.org/https://doi.org/10.1002/app.1991.070420635
https://dx.doi.org/10.1021/mz5003323
https://dx.doi.org/10.1038/289091a0
https://dx.doi.org/10.1055/s-0037-1613569
https://dx.doi.org/10.1016/j.bpj.2010.04.059


[87] G. Portale and J. Torbet. “Complex strain induced structural changes observed in fibrin

assembled in human plasma”, Nanoscale, 10: 10063–10072, (2018). DOI:10.1039/C8NR00353J.

[88] K. A. Jansen, A. Zhmurov, B. E. Vos, G. Portale, D. Hermida-Merino, R. I. Litvinov,

V. Tutwiler, N. A. Kurniawan, W. Bras, J. W. Weisel, V. Barsegov, and G. H. Koenderink.

“Molecular packing structure of fibrin fibers resolved by x-ray scattering and molecular model-

ing”, Soft Matter, 16: 8272–8283, (2020). DOI:10.1039/D0SM00916D.

[89] J. W. Weisel, G. N. Phillips Jr., and C. Cohen. “The structure of fibrinogen and fibrin: Ii.

architecture of the fibrin clot*”, Annals of the New York Academy of Sciences, 408(1): 367–379,

(1983). DOI:10.1111/j.1749-6632.1983.tb23257.x.

[90] J. W. Weisel. “The electron microscope band pattern of human fibrin: Various stains, lat-

eral order, and carbohydrate localization”, Journal of Ultrastructure and Molecular Structure

Research, 96(1): 176–188, (1986). DOI:10.1016/0889-1605(86)90019-4.

[91] A. Zhmurov, A. D. Protopopova, R. I. Litvinov, P. Zhukov, J. W. Weisel, and

V. Barsegov. “Atomic structural models of fibrin oligomers”, Structure, 26: 857–868, (2018).

DOI:10.1016/j.str.2018.04.005.

[92] J. W. Weisel. “Molecular symmetry and binding sites in fibrin assembly”, Thrombosis Research,

48(5): 615–617, (1987). DOI:10.1016/0049-3848(87)90395-1.

[93] I. S. Yermolenko, V. K. Lishko, T. P. Ugarova, and S. N. Magonov. “High-resolution visualiza-

tion of fibrinogen molecules and fibrin fibers with atomic force microscopy”, Biomacromolecules,

12(2): 370–379, (2011). DOI:10.1021/bm101122g.

[94] L. Medved’, T. Ugarova, Y. Veklich, N. Lukinova, and J. Weisel. “Electron microscope inves-

tigation of the early stages of fibrin assembly: Twisted protofibrils and fibers”, Journal of

Molecular Biology, 216(3): 503–509, (1990). DOI:10.1016/0022-2836(90)90376-W.

[95] G. M. Grason. “Frustration and packing in curved-filament assemblies: from isometric to

isomorphic bundles”, Soft Matter, 9: 6761–6772, (2013). DOI:10.1039/C3SM50229E.

[96] D. W. Atkinson, C. D. Santangelo, and G. M. Grason. “Mechanics of metric frustration in

contorted filament bundles: From local symmetry to columnar elasticity”, Phys. Rev. Lett.,

127: 218002, (Nov 2021). DOI:10.1103/PhysRevLett.127.218002.

127

https://dx.doi.org/10.1039/C8NR00353J
https://dx.doi.org/10.1039/D0SM00916D
https://dx.doi.org/10.1111/j.1749-6632.1983.tb23257.x
https://dx.doi.org/10.1016/0889-1605(86)90019-4
https://dx.doi.org/10.1016/j.str.2018.04.005
https://dx.doi.org/10.1016/0049-3848(87)90395-1
https://dx.doi.org/10.1021/bm101122g
https://dx.doi.org/10.1016/0022-2836(90)90376-W
https://dx.doi.org/10.1039/C3SM50229E
https://dx.doi.org/10.1103/PhysRevLett.127.218002


[97] S. A. Chester and L. Anand. “A coupled theory of fluid permeation and large deformations

for elastomeric materials”, Journal of the Mechanics and Physics of Solids, 58: 1879–1906,

(2010). DOI:10.1016/j.jmps.2010.07.020.

[98] I. N. Chernysh, C. Nagaswami, and J. W. Weisel. “Visualization and identification of the

structures formed during early stages of fibrin polymerization”, Blood, 117(17): 4609–4614,

(2011). DOI:10.1182/blood-2010-07-297671.

[99] H. P. Erickson and W. E. Fowler. “Electron microscopy of fibrinogen, its plasmic fragments

and small polymers”, Annals of the New York Academy of Sciences, 408(1): 146–163, (1983).

DOI:10.1111/j.1749-6632.1983.tb23242.x.

[100] J. S. Palmer and M. C. Boyce. “Constitutive modeling of the stress-strain be-

havior of f-actin filament networks”, Acta Biomaterilia, 4(3): 597–612, (2008).

DOI:10.1016/j.actbio.2007.12.007.

[101] M. Nizette and A. Goriely. “Towards a classification of euler–kirchhoff filaments”, Journal of

Mathematical Physics, 40(6): 2830–2866, (1999). DOI:10.1063/1.532731.

[102] A. Zhmurov, A. D. Protopopova, R. I. Litvinov, P. Zhukov, M. J. W. W. Alexander R, and

V. Barsegov. “Structural basis of interfacial flexibility in fibrin oligomers”, Structure, 24:

1907–1917, (2016). DOI:10.1016/j.str.2016.08.009.

[103] R. Raj and P. K. Purohit. “Phase boundaries as agents of structural change in macro-

molecules”, Journal of the Mechanics and Physics of Solids, 59: 2044–2069, (2011).

DOI:10.1016/j.jmps.2011.07.003.

[104] C. Brennen and H. Winet. “Fluid mechanics of propulsion by cilia and flagella”, Annual Review

of Fluid Mechanics, 9: 339–398, (1977). DOI:10.1146/annurev.fl.09.010177.002011.

[105] O. V. Kim, R. I. Litvinov, J. W. Weisel, and M. S. Alber. “Structural basis for the nonlinear

mechanics of fibrin networks under compression”, Biomaterials, 35(25): 6739–6749, (2014).

DOI:10.1016/j.biomaterials.2014.04.056.

[106] N. E. Hudson, F. Ding, I. Bucay, E. T. O’Brien, III, O. V. Gorkun, R. Superfine, S. T.

Lord, N. V. Dokholyan, and M. R. Falvo. “Submillisecond elastic recoil reveals molecu-

128

https://dx.doi.org/10.1016/j.jmps.2010.07.020
https://dx.doi.org/10.1182/blood-2010-07-297671
https://dx.doi.org/10.1111/j.1749-6632.1983.tb23242.x
https://dx.doi.org/10.1016/j.actbio.2007.12.007
https://dx.doi.org/10.1063/1.532731
https://dx.doi.org/10.1016/j.str.2016.08.009
https://dx.doi.org/10.1016/j.jmps.2011.07.003
https://dx.doi.org/10.1146/annurev.fl.09.010177.002011
https://dx.doi.org/10.1016/j.biomaterials.2014.04.056


lar origins of fibrin fiber mechanics”, Biophysical Journal, 102(12): 2671–2680, (2013).

DOI:10.1016/j.bpj.2013.04.052.

[107] J. E. Bischoff, E. M. Arruda, and K. Grosh. “A new constitutive model for the compressibility

of elastomers at finite deformations”, Rubber Chemistry and Technology, 74(4): 541–559,

(2001). DOI:10.5254/1.3544956.

[108] Z. Yang, I. Mochalkin, and R. F. Doolittle. “A model of fibrin formation based

on crystal structures of fibrinogen and fibrin fragments complexed with synthetic pep-

tides”, Proceedings of the National Academy of Sciences, 97(26): 14156–14161, (2000).

DOI:10.1073/pnas.97.26.14156.

[109] M. Guthold, W. Liu, B. Stephens, S. T. Lord, R. R. Hantgan, D. A. Erie, R. M. Taylor, Jr., and

R. Superfine. “Visualization and mechanical manipulations of individual fibrin fibers suggest

that fiber cross section has fractal dimension 1.3”, Biophysical Journal, 87(6): 4226–4236,

(December 2004). DOI:10.1529/biophysj.104.042333.

[110] W. Li, J. Sigley, M. Pieters, C. C. Helms, C. Nagaswami, J. W. Weisel, and M. Guthold.

“Fibrin fiber stiffness is strongly affected by fiber diameter, but not by fibrinogen glycation”,

Biophysical Journal, 110(6): 1400–1410, (March 2016). DOI:10.1016/j.bpj.2016.02.021.

[111] W. Li, J. Sigley, S. Baker, C. Helms, M. Kinney, M. Pieters, P. Brubaker, R. Cubcciotti, and

M. Guthold. “Nonuniform internal structure of fibrin fibers: Protein density and bond density

strongly decrease with increasing diameter”, BioMed Research International, 2017: 6385628,

(October 2017). DOI:10.1155/2017/6385628.

[112] S. R. Lynch, S. M. Laverty, B. E. Bannish, and N. E. Hudson. “Microscale struc-

tural changes of individual fibrin fibers during fibrinolysis”, Acta Biomaterialia, (2022).

DOI:10.1016/j.actbio.2022.01.006.

[113] J. C. Maxwell, F.R.S. “L. on the calculation of the equilibrium and stiffness of frames”, The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(182): 294–

299, (1864). DOI:10.1080/14786446408643668.

[114] M. Vahabi, A. Sharma, A. J. Licup, A. S. G. van Oosten, P. A. Galie, P. A. Janmey, and

F. C. MacKintosh. “Elasticity of fibrous networks under uniaxial prestress”, Soft Matter, 12:

5050–5060, (2016). DOI:10.1039/C6SM00606J.

129

https://dx.doi.org/10.1016/j.bpj.2013.04.052
https://dx.doi.org/10.5254/1.3544956
https://dx.doi.org/10.1073/pnas.97.26.14156
https://dx.doi.org/10.1529/biophysj.104.042333
https://dx.doi.org/10.1016/j.bpj.2016.02.021
https://dx.doi.org/10.1155/2017/6385628
https://dx.doi.org/10.1016/j.actbio.2022.01.006
https://dx.doi.org/10.1080/14786446408643668
https://dx.doi.org/10.1039/C6SM00606J


[115] S. Arzash, J. L. Shivers, A. J. Licup, A. Sharma, and F. C. MacKintosh. “Stress-stabilized

subisostatic fiber networks in a ropelike limit”, Phys. Rev. E, 99: 042412, (Apr 2019).

DOI:10.1103/PhysRevE.99.042412.

[116] D. A. Head, A. J. Levine, and F. C. MacKintosh. “Deformation of cross-

linked semiflexible polymer networks”, Phys. Rev. Lett., 91: 108102, (Sep 2003).

DOI:10.1103/PhysRevLett.91.108102.

[117] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C. MacKintosh, J. H. Hartwig,

T. P. Stossel, and D. A. Weitz. “An active biopolymer network controlled by molecular

motors”, Proceedings of the National Academy of Sciences, 106(36): 15192–15197, (2009).

DOI:10.1073/pnas.0903974106.

[118] K. A. Jansen, R. G. Bacabac, I. K. Piechocka, and G. H. Koenderink. “Cells actively stiffen

fibrin networks by generating contractile stress”, , 105(10): 2240–2251, (NOVEMBER 2013).

DOI:10.1016/j.bpj.2013.10.008.

[119] T. Su and P. K. Purohit. “Semiflexible filament networks viewed as fluctuating beam-frames”,

Soft Matter, 8: 4664–4674, (2012). DOI:10.1039/C2SM07058H.

[120] R. Al Dieri, F. Peyvandi, E. Santagostino, M. Giansily, P. M. Mannucci, J. F. Schved,

S. Béguin, and H. C. Hemker. “The thrombogram in rare inherited coagulation disorders:

Its relation to clinical bleeding”, Thrombosis and Haemostasis, 88(4): 576–582, (2002).

DOI:10.1055/s-0037-1613258.

[121] A. S. Wolberg, M. M. Aleman, K. Leiderman, and K. R. Machlus. “Procoagulant activity

in hemostasis and thrombosis: Virchow’s triad revisited”, Anesthesia and Analgesia, 114(2):

275–285, (2012). DOI:10.1213/ANE.0b013e31823a088c.

[122] L. Wilhelmsen, K. Svardsudd, K. Korsan-Bengtsen, B. Larsson, L. Welin, and G. Tibblin.

“Fibrinogen as a risk factor for stroke and myocardial infarction”, New England Journal of

Medicine, 311(8): 501–505, (1984). DOI:10.1056/NEJM198408233110804.

[123] G. A. Allen, A. S. Wolberg, J. A. Oliver, M. Hoffman, H. R. Roberts, and D. M. Mon-

roe. “Impact of procoagulant concentration on rate, peak and total thrombin genera-

tion in a model system”, Journal of Thrombosis and Haemostasis, 2(3): 402–413, (2004).

DOI:10.1111/j.1538-7933.2003.00617.x.

130

https://dx.doi.org/10.1103/PhysRevE.99.042412
https://dx.doi.org/10.1103/PhysRevLett.91.108102
https://dx.doi.org/10.1073/pnas.0903974106
https://dx.doi.org/10.1016/j.bpj.2013.10.008
https://dx.doi.org/10.1039/C2SM07058H
https://dx.doi.org/10.1055/s-0037-1613258
https://dx.doi.org/10.1213/ANE.0b013e31823a088c
https://dx.doi.org/10.1056/NEJM198408233110804
https://dx.doi.org/10.1111/j.1538-7933.2003.00617.x


[124] D. A. Gorog, Z. A. Fayad, and V. Fuster. “Arterial thrombus stability: Does it matter and

can we detect it?”, Journal of the American College of Cardiology, 70(16): 2036–2047, (2017).

DOI:10.1016/j.jacc.2017.08.065.

[125] A. M. Wendelboe and G. E. Raskob. “Global burden of thrombosis: Epidemiologic aspects”,

Circulation Research, 118(9): 1340–1347, (2016). DOI:10.1161/CIRCRESAHA.115.306841.

[126] S. Lauber, A. Limacher, T. Tritschler, O. Stalder, M. Méan, M. Righini, M. Aschwanden,

J. H. Beer, B. Frauchiger, J. Osterwalder, N. Kucher, B. Lämmle, J. Cornuz, A. Angelillo-

Scherrer, C. M. Matter, M. Husmann, M. Banyai, D. Staub, L. Mazzolai, O. Hugli,

N. Rodondi, and D. Aujesky. “Predictors and outcomes of recurrent venous thromboem-

bolism in elderly patients”, American Journal of Medicine, 131(6): 703.e7–703.e16, (2018).

DOI:10.1016/j.amjmed.2017.12.015.

[127] J. W. G. Yarnell, I. A. Baker, P. M. Sweetnam, D. Bainton, J. R. O’Brien, P. J. Whitehead,

and P. C. Elwood. “Fibrinogen, viscosity, and white blood cell count are major risk factors

for ischemic heart disease. the caerphilly and speedwell collaborative heart disease studies”,

Circulation, 83(3): 836–844, (1991). DOI:10.1161/01.cir.83.3.836.

[128] J. A. Heit. “Epidemiology of venous thromboembolism”, Nature Reviews Cardiology, 12(8):

464–474, (2015). DOI:10.1038/nrcardio.2015.83.

[129] S. R. Poort, F. R. Rosendaal, P. H. Reitsma, and R. M. Bertina. “A common genetic varia-

tion in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma

prothrombin levels and an increase in venous thrombosis”, Blood, 88(10): 3698–3703, (1996).

DOI:10.1182/blood.v88.10.3698.bloodjournal88103698.

[130] O. K. Baskurt and H. J. Meiselman. “Red blood cell mechanical stability test”, Clinical

Hemorheology and Microcirculation, 55(1): 55–62, (2013). DOI:10.3233/CH-131689.

[131] A. L. C. La Corte, H. Philippou, and R. A. S. Arins. “Role of fibrin structure in thrombosis

and vascular disease”, Advances in Protein Chemistry and Structural Biology, 83: 75–127,

(2011). DOI:10.1016/B978-0-12-381262-9.00003-3.

[132] D. L. Bark and D. N. Ku. “Wall shear over high degree stenoses perti-

nent to atherothrombosis”, Journal of Biomechanics, 43(15): 2970–2977, (2010).

DOI:10.1016/j.jbiomech.2010.07.011.

131

https://dx.doi.org/10.1016/j.jacc.2017.08.065
https://dx.doi.org/10.1161/CIRCRESAHA.115.306841
https://dx.doi.org/10.1016/j.amjmed.2017.12.015
https://dx.doi.org/10.1161/01.cir.83.3.836
https://dx.doi.org/10.1038/nrcardio.2015.83
https://dx.doi.org/10.1182/blood.v88.10.3698.bloodjournal88103698
https://dx.doi.org/10.3233/CH-131689
https://dx.doi.org/10.1016/B978-0-12-381262-9.00003-3
https://dx.doi.org/10.1016/j.jbiomech.2010.07.011


[133] J. J. Hathcock. “Flow effects on coagulation and thrombosis”, Arteriosclerosis, Thrombosis, and

Vascular Biology, 26(8): 1729–1737, (2006). DOI:10.1161/01.ATV.0000229658.76797.30.

[134] J.-J. Chiu and S. Chien. “Effects of disturbed flow on vascular endothelium: Pathophys-

iological basis and clinical perspectives”, Physiological Reviews, 91(1): 327–387, (2011).

DOI:10.1152/physrev.00047.2009.

[135] P. F. Davies. “Hemodynamic shear stress and the endothelium in cardiovascular patho-

physiology”, Nature Clinical Practice Cardiovascular Medicine, 6(1): 16–26, (2009).

DOI:10.1038/ncpcardio1397.

[136] E. Di Martino, S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and

R. Fumero. “Biomechanics of abdominal aortic aneurysm in the! presence of endolu-

minal thrombus: Experimental characterisation and structural static computational anal-

ysis”, European Journal of Vascular and Endovascular Surgery, 15(4): 290–299, (1998).

DOI:10.1016/S1078-5884(98)80031-2.

[137] J. P. Vande Geest, M. S. Sacks, and D. A. Vorp. “A planar biaxial constitutive relation

for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms”, Journal of

Biomechanics, 39(13): 2347–2354, (2006). DOI:10.1016/j.jbiomech.2006.05.011.

[138] Z. Teng, J. Feng, Y. Zhang, Y. Huang, M. P. F. Sutcliffe, A. J. Brown, Z. Jing, J. H.

Gillard, and Q. Lu. “Layer- and direction-specific material properties, extreme extensi-

bility and ultimate material strength of human abdominal aorta and aneurysm: A uni-

axial extension study”, Annals of Biomedical Engineering, 43(11): 2745–2759, (2015).

DOI:10.1007/s10439-015-1323-6.

[139] J. Y. Chueh, A. K. Wakhloo, G. H. Hendricks, C. F. Silva, J. P. Weaver, and M. J. Gou-

nis. “Mechanical characterization of thromboemboli in acute ischemic stroke and labora-

tory embolus analogs”, American Journal of Neuroradiology, 32(7): 1237–1244, (2011).

DOI:10.3174/ajnr.A2485.

[140] J. H. Ashton, J. P. Vande Geest, B. R. Simon, and D. G. Haskett. “Compres-

sive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms

and fibrin-based thrombus mimics”, Journal of Biomechanics, 42(3): 197–201, (2009).

DOI:10.1016/j.jbiomech.2008.10.024.

132

https://dx.doi.org/10.1161/01.ATV.0000229658.76797.30
https://dx.doi.org/10.1152/physrev.00047.2009
https://dx.doi.org/10.1038/ncpcardio1397
https://dx.doi.org/10.1016/S1078-5884(98)80031-2
https://dx.doi.org/10.1016/j.jbiomech.2006.05.011
https://dx.doi.org/10.1007/s10439-015-1323-6
https://dx.doi.org/10.3174/ajnr.A2485
https://dx.doi.org/10.1016/j.jbiomech.2008.10.024


[141] Y. Veklich, C. W. Francis, J. White, and J. W. Weisel. “Structural studies of fibrinolysis by

electron microscopy”, Blood, 92(12): 4721–4729, (1998). DOI:10.1182/blood.v92.12.4721.

[142] J. P. Collet, G. Montalescot, C. Lesty, and J. W. Weisel. “A structural and dynamic investiga-

tion of the facilitating effect of glycoprotein iib/iiia inhibitors in dissolving platelet-rich clots”,

Circulation Research, 90(4): 428–434, (2002). DOI:10.1161/hh0402.105095.

[143] J.-P. Collet, C. Lesty, G. Montalescot, and J. W. Weisel. “Dynamic changes of fibrin architec-

ture during fibrin formation and intrinsic fibrinolysis of fibrin-rich clots”, Journal of Biological

Chemistry, 278(24): 21331–21335, (2003). DOI:10.1074/jbc.M212734200.

[144] J. Noailly, H. Van Oosterwyck, W. Wilson, T. M. Quinn, and K. Ito. “A porovis-

coelastic description of fibrin gels”, Journal of Biomechanics, 41(15): 3265–3269, (2008).

DOI:10.1016/j.jbiomech.2008.09.002.

[145] M. Dao, C. T. Lim, and S. Suresh. “Mechanics of the human red blood cell deformed by

optical tweezers”, Journal of the Mechanics and Physics of Solids, 51(11-12): 2259–2280,

(2003). DOI:10.1016/j.jmps.2003.09.019.

[146] C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew. “Large deforma-

tion of living cells using laser traps”, Acta Materialia, 52(7): 1837–1845, (2004).

DOI:10.1016/j.actamat.2003.12.028.

[147] J. C. Simo and K. S. Pister. “Remarks on rate constitutive equations for finite deformation

problems: computational implications”, Computer Methods in Applied Mechanics and Engi-

neering, 46(2): 201–215, (1984). DOI:10.1016/0045-7825(84)90062-8.

[148] E. A. Evans and R. M. Hochmuth. “Membrane viscoelasticity”, Biophysical Journal, 16(1):

1–11, (1976). DOI:10.1016/S0006-3495(76)85658-5.

[149] R. M. Hochmuth, P. R. Worthy, and E. A. Evans. “Red cell extensional recovery and

the determination of membrane viscosity”, Biophysical Journal, 26(1): 101–114, (1979).

DOI:10.1016/S0006-3495(79)85238-8.

[150] R. W. Ogden. Non-linear Elastic Deformations. North Chelmsford, MA: Courier Corporation,

North Chelmsford, MA, (1997).

133

https://dx.doi.org/10.1182/blood.v92.12.4721
https://dx.doi.org/10.1161/hh0402.105095
https://dx.doi.org/10.1074/jbc.M212734200
https://dx.doi.org/10.1016/j.jbiomech.2008.09.002
https://dx.doi.org/10.1016/j.jmps.2003.09.019
https://dx.doi.org/10.1016/j.actamat.2003.12.028
https://dx.doi.org/10.1016/0045-7825(84)90062-8
https://dx.doi.org/10.1016/S0006-3495(76)85658-5
https://dx.doi.org/10.1016/S0006-3495(79)85238-8


[151] V. Fineschi, E. Turillazzi, M. Neri, C. Pomara, and I. Riezzo. “Histological age determination of

venous thrombosis: A neglected forensic task in fatal pulmonary thrombo-embolism”, Forensic

Science International, 186(1-3): 22–28, (2009). DOI:10.1016/j.forsciint.2009.01.006.

[152] J. R. Raney, F. Fraternali, and C. Daraio. “Rate-independent dissipation and loading direc-

tion effects in compressed carbon nanotube arrays”, Nanotechnology, 24(25): 255707, (2013).

DOI:10.1088/0957-4484/24/25/255707.

[153] D. B. Cines, T. Lebedeva, C. Nagaswami, V. Hayes, W. Massefski, R. I. Litvinov, L. Rauova,

T. J. Lowery, and J. W. Weisel. “Clot contraction: Compression of erythrocytes into tightly

packed polyhedra and redistribution of platelets and fibrin”, Blood, 123(10): 1596–1603, (2014).

DOI:10.1182/blood-2013-08-523860.

[154] S. Johnson, S. Duffy, G. Gunning, M. Gilvarry, J. P. McGarry, and P. E. McHugh.

“Review of mechanical testing and modelling of thrombus material for vascular implant

and device design”, Annals of Biomedical Engineering, 45(11): 2494–2508, (2017).

DOI:10.1007/s10439-017-1906-5.

[155] T. C. Gasser, G. Görgülü, M. Folkesson, and J. Swedenborg. “Failure properties of intraluminal

thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads”, Journal

of Vascular Surgery, 48(1): 179–188, (2008). DOI:10.1016/j.jvs.2008.01.036.

[156] M. K. Rausch and J. D. Humphrey. “A microstructurally inspired damage model for early

venous thrombus”, Journal of the Mechanical Behavior of Biomedical Materials, 55: 12–20,

(2016). DOI:10.1016/j.jmbbm.2015.10.006.

[157] E. Saldívar, J. N. Orje, and Z. M. Ruggeri. “Tensile destruction test as an estimation of

partial proteolysis in fibrin clots”, American Journal of Hematology, 71(2): 119–127, (2002).

DOI:10.1002/ajh.10199.

[158] E. A. Van Dam, S. D. Dams, G. W. M. Peters, M. C. M. Rutten, G. W. H. Schurink,

J. Buth, and F. N. Van De Vosse. “Non-linear viscoelastic behavior of abdominal aortic

aneurysm thrombus”, Biomechanics and Modeling in Mechanobiology, 7(2): 127–137, (2008).

DOI:10.1007/s10237-007-0080-3.

134

https://dx.doi.org/10.1016/j.forsciint.2009.01.006
https://dx.doi.org/10.1088/0957-4484/24/25/255707
https://dx.doi.org/10.1182/blood-2013-08-523860
https://dx.doi.org/10.1007/s10439-017-1906-5
https://dx.doi.org/10.1016/j.jvs.2008.01.036
https://dx.doi.org/10.1016/j.jmbbm.2015.10.006
https://dx.doi.org/10.1002/ajh.10199
https://dx.doi.org/10.1007/s10237-007-0080-3


[159] T. H. S. Van Kempen, A. C. B. Bogaerds, G. W. M. Peters, and F. N. Van De Vosse. “A

constitutive model for a maturing fibrin network”, Biophysical Journal, 107(2): 504–513,

(2014). DOI:10.1016/j.bpj.2014.05.035.

[160] C. L. Slaboch, M. S. Alber, E. D. Rosen, and T. C. Ovaert. “Mechano-rheological prop-

erties of the murine thrombus determined via nanoindentation and finite element model-

ing”, Journal of the Mechanical Behavior of Biomedical Materials, 10: 75–86, (2012).

DOI:10.1016/j.jmbbm.2012.02.012.

[161] H. Xie, K. Kim, S. R. Aglyamov, S. Y. Emelianov, M. O’Donnell, W. F. Weitzel, S. K. Wrob-

leski, D. D. Myers, T. W. Wakefield, and J. M. Rubin. “Correspondence of ultrasound elasticity

imaging to direct mechanical measurement in aging dvt in rats”, Ultrasound in Medicine and

Biology, 31(10): 1351–1359, (2005). DOI:10.1016/j.ultrasmedbio.2005.06.005.

[162] M. K. Rausch and J. D. Humphrey. “A computational model of the biochemomechan-

ics of an evolving occlusive thrombus”, Journal of Elasticity, 129(1-2): 125–144, (2017).

DOI:10.1007/s10659-017-9626-5.

[163] R. Spiewak, G. S. Vankayalapati, J. M. Considine, K. T. Turner, and P. K. Purohit. “Hu-

midity dependence of fracture toughness of cellulose fibrous networks”, Engineering Fracture

Mechanics, 264: 108330, (2022). DOI:10.1016/j.engfracmech.2022.108330.

[164] D. M. S. Wanigaratne, Investigation of An Alternative Technique to Measure Fracture Tough-

ness of Paper. Ph.D. dissertation, MONASH University, (2004).

[165] J. Tryding, G. Marin, M. Nygårds, P. Mäkelä, and G. Ferrari. “Experimental and theoret-

ical analysis of in-plane cohesive testing of paperboard”, International Journal of Damage

Mechanics, 26(6): 895–918, (Aug. 2017). DOI:10.1177/1056789516630776.

[166] J. Zechner, M. Janko, and O. Kolednik. “Determining the fracture resistance of thin sheet fiber

composites – Paper as a model material”, Composites Science and Technology, 74: 43–51, (Jan.

2013). DOI:10.1016/j.compscitech.2012.10.007.

[167] D. Wanigaratne, W. Batchelor, and I. Parker. “Comparison of Fracture Toughness of Paper

with Tensile Properties”, in 55th Appita Annual Conference, Hobart, Australia 30 April-2 May

2001: Proceedings: 217–223, Appita Inc., (2001).

135

https://dx.doi.org/10.1016/j.bpj.2014.05.035
https://dx.doi.org/10.1016/j.jmbbm.2012.02.012
https://dx.doi.org/10.1016/j.ultrasmedbio.2005.06.005
https://dx.doi.org/10.1007/s10659-017-9626-5
https://dx.doi.org/10.1016/j.engfracmech.2022.108330
https://dx.doi.org/10.1177/1056789516630776
https://dx.doi.org/10.1016/j.compscitech.2012.10.007


[168] S. Golling, D. Fròmeta, D. Casellas, an Granstr om, P. Jonsén, and M. Oldenburg. “Determi-

nation of the essential work of fracture at high strain rates”, in 6th International Conference

Hot Sheet Metal Forming of High-Performance Steel CHS2: 261–269, Association for Iron &

Steel Technology, (2017).

[169] H. Zhu, S. Zhu, Z. Jia, S. Parvinian, Y. Li, O. Vaaland, L. Hu, and T. Li. “Anomalous scaling

law of strength and toughness of cellulose nanopaper”, Proceedings of the National Academy

of Sciences, 112(29): 8971–8976, (July 2015). DOI:10.1073/pnas.1502870112.

[170] R. Mao, S. Goutianos, W. Tu, N. Meng, G. Yang, L. A. Berglund, and T. Peijs. “Comparison

of fracture properties of cellulose nanopaper, printing paper and buckypaper”, Journal of

Materials Science, 52(16): 9508–9519, (Aug. 2017). DOI:10.1007/s10853-017-1108-4.

[171] P. Mäkelä and S. Östlund. “Cohesive crack modelling of thin sheet material exhibiting

anisotropy, plasticity and large-scale damage evolution”, Engineering Fracture Mechanics, 79:

50–60, (2012). DOI:https://doi.org/10.1016/j.engfracmech.2011.10.001.

[172] Q. Meng, B. Li, T. Li, and X.-Q. Feng. “A multiscale crack-bridging model of cellu-

lose nanopaper”, Journal of the Mechanics and Physics of Solids, 103: 22–39, (2017).

DOI:10.1016/j.jmps.2017.03.004.

[173] A. S. Abhilash, P. K. Purohit, and S. P. Joshi. “Stochastic rate-dependent elasticity and failure

of soft fibrous networks”, Soft Matter, 8: 7004–7016, (2012). DOI:10.1039/C2SM25450F.

[174] S. Yun, J. H. Kim, Y. Li, and J. Kim. “Alignment of cellulose chains of regenerated cellulose

by corona poling and its piezoelectricity”, Journal of Applied Physics, 103: 083301, (2008).

DOI:10.1063/1.2908883.

[175] C. Yang, J.-H. Kim, J.-H. Kim, J. Kim, and H. S. Kim. “Piezoelectricity of wet drawn

cellulose electro-active paper”, Sensors and Actuators A: Physical, 154: 117–122, (2009).

DOI:10.1016/j.sna.2009.07.016.

[176] R. F. Service. “A battery made with paper: Nanotubes on photocopy paper could lead to cheap,

flexible source of power”, American Association for the Advancement of Science: Science,

(2009). DOI:10.1126/article.31438.

136

https://dx.doi.org/10.1073/pnas.1502870112
https://dx.doi.org/10.1007/s10853-017-1108-4
https://dx.doi.org/https://doi.org/10.1016/j.engfracmech.2011.10.001
https://dx.doi.org/10.1016/j.jmps.2017.03.004
https://dx.doi.org/10.1039/C2SM25450F
https://dx.doi.org/10.1063/1.2908883
https://dx.doi.org/10.1016/j.sna.2009.07.016
https://dx.doi.org/10.1126/article.31438


[177] L. Zeng, S. Chen, M. Liu, H.-M. Cheng, and L. Qiu. “Integrated paper-based flexible li-ion

batteries made by a rod coating method”, American Chemical Society Applied Materials and

Interfaces, 11: 46776–46782, (2019). DOI:10.1021/acsami.9b15866.

[178] S. Östlund and M. Nygårds. “Through-thickness mechanical testing and computational mod-

elling of paper and board for efficient materials design”, in Hannu Paulapuro Symposium, Esbo,

Finland: 69–82, (2009).

[179] M. Nygårds, C. Fellers, and S. Östlund. “Measuring Out-of-Plane Shear Properties of Paper-

board”, JOURNAL OF PULP AND PAPER SCIENCE, 33(2): 6, (2007).

[180] M. Nygårds. “Experimental techniques for characterization of elasticplastic material proper-

ties in paperboard”, Nordic Pulp & Paper Research Journal, 23(4): 432–437, (Dec. 2008).

DOI:10.3183/npprj-2008-23-04-p432-437.

[181] M. Nygårds, N. Hallbäck, M. Just, and J. Tryding. “A finite element model for simulations of

creasing and folding of paperboard”, in ABAQUS User’s Conference: 1–15, (2005).

[182] M. Jajcinovic, W. J. Fischer, A. Mautner, W. Bauer, and U. Hirn. “Influence of relative

humidity on the strength of hardwood and softwood pulp fibres and fibre to fibre joints”,

Cellulose, 25(4): 2681–2690, (Apr. 2018). DOI:10.1007/s10570-018-1720-8.

[183] V. Placet, O. Cisse, and M. L. Boubakar. “Influence of environmental relative humidity on

the tensile and rotational behaviour of hemp fibres”, Journal of Materials Science, 47(7):

3435–3446, (Apr. 2012). DOI:10.1007/s10853-011-6191-3.

[184] A. J. Benítez, J. Torres-Rendon, M. Poutanen, and A. Walther. “Humidity and Multiscale

Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose

Nanofibrils”, Biomacromolecules, 14(12): 4497–4506, (Dec. 2013). DOI:10.1021/bm401451m.

[185] Q. Meng and T. J. Wang. “Mechanics of Strong and Tough Cellulose Nanopaper”, Applied

Mechanics Reviews, 71(4): 040801, (July 2019). DOI:10.1115/1.4044018.

[186] A. Moropoulou and S. Zervos. “The Immediate Impact of Aqueous Treatments on the Strength

of Paper”, Restaurator, 24(3): 160–177, (Jan. 2003). DOI:10.1515/REST.2003.160.

[187] T. Vitale. “Effects of Water on the Mechanical Properties of Paper and their Relationship to the

Treatment of Paper”, MRS Proceedings, 267: 397–427, (1992). DOI:10.1557/PROC-267-397.

137

https://dx.doi.org/10.1021/acsami.9b15866
https://dx.doi.org/10.3183/npprj-2008-23-04-p432-437
https://dx.doi.org/10.1007/s10570-018-1720-8
https://dx.doi.org/10.1007/s10853-011-6191-3
https://dx.doi.org/10.1021/bm401451m
https://dx.doi.org/10.1115/1.4044018
https://dx.doi.org/10.1515/REST.2003.160
https://dx.doi.org/10.1557/PROC-267-397


[188] H. W. Haslach, Jr. “The moisture and rate-dependent mechanical properties of pa-

per: A review”, Mechanics of Time-Dependent Materials, 4(3): 169–210, (2000).

DOI:10.1023/A:1009833415827.

[189] J. Ko, K. Cho, S. W. Han, H. K. Sung, S. W. Baek, W.-G. Koh, and J. S. Yoon. “Hy-

drophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using

poly(ethylene glycol) grafting”, Colloidsand Surfaces B: Biointerfaces, 158: 287–294, (2017).

DOI:10.1016/j.colsurfb.2017.07.017.

[190] M. F. Kanninen. “An augmented double cantilever beam model for studying crack propagation

and arrest”, International Journal of Fracture, 9: 83–92, (1973). DOI:10.1007/BF00035958.

[191] J. W. Hutchinson and A. G. Evans. “Mechanics of materials: Top-down approaches to fracture”,

Acta Materialia, 48: 125–135, (2000). DOI:10.1016/S1359-6454(99)00291-8.

[192] S. Gowrishankar, H. Mei, K. M. Liechti, and R. Huang. “A comparison of direct and iterative

methods for determining traction-separation relations”, International Journal of Fracture, 177:

109–128, (2012). DOI:10.1007/s10704-012-9758-3.

[193] J. R. Rice. “A path independent integral and the approximate analysis of strain concentration

by notches and cracks”, Journal of Applied Mechanics, 35: 379–386, (1968).

[194] J. R. Rice. “Mathematical analysis in the mechanics of fracture”, in Fracture: An Advanced

Treatise (H. Liebowitz, ed.): ch. 3, 191–311. New York: Academic Press, (1968).

[195] V. Tvergaard and J. W. Hutchinson. “The relation between crack growth resistance and

fracture process parameters in elastic-plastic solids”, Journal of the Mechanics and Physics of

Solids, 40(6): 1377–1397, (1992). DOI:10.1016/0022-5096(92)90020-3.

[196] M. F. Kanninen and C. H. Popelar. Advanced Fracture Mechanics. New York: Oxford Univer-

sity Press, New York, (1985).

[197] M. Thouless and Q. Yang. “Chapter 7 - measurement and analysis of the frac-

ture properties of adhesive joints”, in Adhesion Science and Engineering (D. Dillard,

A. Pocius, and M. Chaudhury, eds.): 235–271. Amsterdam: Elsevier Science B.V., (2002).

DOI:10.1016/B978-0-444-51140-9.50034-2.

138

https://dx.doi.org/10.1023/A:1009833415827
https://dx.doi.org/10.1016/j.colsurfb.2017.07.017
https://dx.doi.org/10.1007/BF00035958
https://dx.doi.org/10.1016/S1359-6454(99)00291-8
https://dx.doi.org/10.1007/s10704-012-9758-3
https://dx.doi.org/10.1016/0022-5096(92)90020-3
https://dx.doi.org/10.1016/B978-0-444-51140-9.50034-2


[198] B. H. River and E. A. Okkonen. “Contoured Wood Double Cantilever Beam Specimen for

Adhesive Joint Fracture Tests”, Journal of Testing and Evaluation, 21(1): 21–28, (1993).

DOI:10.1520/JTE11737J.

[199] R. Long and C.-Y. Hui. “Fracture toughness of hydrogels: measurement and interpretation”,

Soft Matter, 12: 8069–8086, (2016). DOI:10.1039/C6SM01694D.

[200] M. Lee, S. Kim, H.-Y. Kim, and L. Mahadevan. “Bending and buckling of wet paper”, Physics

of Fluids, 28(4): 042101, (Apr. 2016). DOI:10.1063/1.4944659.

[201] E. Linvill and S. Östlund. “The Combined Effects of Moisture and Temperature on the

Mechanical Response of Paper”, Experimental Mechanics, 54(8): 1329–1341, (Oct. 2014).

DOI:10.1007/s11340-014-9898-7.

[202] S. Zauscher, D. F. Caulfield, and A. H. Nissan. “The influence of water on the elastic modulus

of paper”, Tappi Journal, 80(1): 214–223, (1997).

[203] D. Caulfield. “Effect of Moisture and Temperature on the Mechanical Properties of Paper”, in

Solid Mechanics Advances in Paper Related Industries (R. W. Perkins, R. E. Mark, and J. L.

Thorpe, eds.), Proceedings of the National Science Foundation Workshop: 50–62, (1990).

[204] X. Liang, J. Shin, D. Magagnosc, Y. Jiang, S. Jin Park, A. John Hart, K. Turner, D. S.

Gianola, and P. K. Purohit. “Compression and recovery of carbon nanotube forests described

as a phase transition”, International Journal of Solids and Structures, 122-123: 196–209,

(2017). DOI:10.1016/j.ijsolstr.2017.06.025.

[205] V. Negi and R. Picu. “Mechanical behavior of cross-linked random fiber networks with inter-

fiber adhesion”, Journal of the Mechanics and Physics of Solids, 122: 418–434, (Jan. 2019).

DOI:10.1016/j.jmps.2018.09.027.

[206] S. R. Burke, M. E. Möbius, T. Hjelt, and S. Hutzler. “Properties of lightweight fibrous struc-

tures made by a novel foam forming technique”, Cellulose, 26(4): 2529–2539, (Mar. 2019).

DOI:10.1007/s10570-018-2205-5.

[207] V. Tutwiler, F. Maksudov, R. I. Litvinov, J. W. Weisel, and V. Barsegov. “Strength and

deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture”,

Acta Biomaterialia, 131: 355–369, (2021). DOI:10.1016/j.actbio.2021.06.046.

139

https://dx.doi.org/10.1520/JTE11737J
https://dx.doi.org/10.1039/C6SM01694D
https://dx.doi.org/10.1063/1.4944659
https://dx.doi.org/10.1007/s11340-014-9898-7
https://dx.doi.org/10.1016/j.ijsolstr.2017.06.025
https://dx.doi.org/10.1016/j.jmps.2018.09.027
https://dx.doi.org/10.1007/s10570-018-2205-5
https://dx.doi.org/10.1016/j.actbio.2021.06.046


[208] J. Deng, Y. Xu, S. He, P. Chen, L. Bao, Y. Hu, B. Wang, X. Sun, and H. Peng. “Preparation

of biomimetic hierarchically helical fiber actuators from carbon nanotubes”, Nature Protocols,

12: 1349–1358, (2017). DOI:10.1038/nprot.2017.038.

[209] Z.-L. Zhao, H.-P. Zhao, J.-S. Wang, Z. Zhang, and X.-Q. Feng. “Mechanical properties of

carbon nanotube ropes with hierarchical helical structures”, Journal of the Mechanics and

Physics of Solids, 71: 64–83, (2014). DOI:10.1016/j.jmps.2014.06.005.

[210] L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. L. Mantia, L.-F. Cui, and Y. Cui. “Highly conductive

paper for energy-storage devices”, Proceedings of the National Academy of Sciences, 106(51):

21490–21494, (2009). DOI:10.1073/pnas.0908858106.

140

https://dx.doi.org/10.1038/nprot.2017.038
https://dx.doi.org/10.1016/j.jmps.2014.06.005
https://dx.doi.org/10.1073/pnas.0908858106

	Mechanical Properties Of Fibrous Network Materials
	Recommended Citation

	Mechanical Properties Of Fibrous Network Materials
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Biomechanical Origins of Inherent Tension in Fibrin Networks
	Structure, Mechanical Properties, and Modeling of Cyclically Compressed Pulmonary Emboli
	Humidity Dependence of Fracture Toughness of Cellulose Fibrous Networks

	Biomechanical Origins of Inherent Tension in Fibrin Networks
	Introduction
	Theoretical Model
	Fibrin Network Polymerization Model
	Fiber Radius as a Function of Fibrin Polymerization Time

	Force in Helical Rods
	Tensile Force in a Fiber
	Kinematics of Fiber Relaxation After Transverse Cutting
	Continuum Model of Fibrin Gel

	Distribution of Fibrin Fiber Lengths
	Summary of Full Mathematical Model

	Discussion

	Structure, Mechanical Properties, and Modeling of Cyclically Compressed Pulmonary Emboli
	Introduction
	Materials and methods
	Modeling framework
	Fibrin network contribution
	Rarefied Phase
	Densified Phase
	Transition phase
	Cauchy stress to Piola stress conversion

	RBC contribution
	Fluid contribution

	Model application
	Results and Discussion
	Phase boundary motion

	Discussion
	Stress-strain curves
	Repeated compression-decompression cycles
	Response structural dependence
	Comparison of different emboli
	Heterogeneity of emboli
	Comparisons with other studies
	Implications

	Conclusions

	Humidity Dependence of Fracture Toughness of Cellulose Fibrous Networks
	Introduction
	Materials and Methods
	Materials
	Conditioning and Specimen Preparation
	Out-of-plane Tensile Test
	Double Cantilever Beam Testing

	Theory and Calculations
	Cohesive Zone Model, Traction-Separation Law, Critical Energy Release Rate, and Non-Dimensional Parameter
	Finite element analysis

	Results and Discussion
	Experimental Critical Energy Release Rate
	Finite Element Modeling Results
	Exponential vs. Linear Softening
	Parameters for Different Relative Humidities
	Parametric study
	Comparison of experiments and simulations


	Conclusion

	Conclusions
	BIBLIOGRAPHY

