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ABSTRACT

ESSAYS ON THE INTERSECTION OF HEALTHCARE OPERATIONS AND

ECONOMICS

Jong Myeong Lim

Hummy Song

Ken Moon

The essays in this dissertation wrestle with unique challenges presented by multiple, inter-

acting entities within the healthcare industry. The essay, “Searching for the Best Yardstick:

Cost of Quality Improvements in the U.S. Hospital Industry,” takes the perspective of the

regulator in improving incentive programs designed to induce hospitals to invest in qual-

ity. The key challenge in evaluating potential changes to such programs is to understand

the underlying incentives that hospitals have in responding to the new incentives. Using

structural estimation methods, the parameters of each hospital’s decision-making process

are estimated. The counterfactual analyses quantify the effects of recalibrating the Hospital

Value-based Purchasing Program. The essay, “The Spillover Effects of Capacity Pooling in

Hospitals,” focuses on the unintended effects of off-service placement, a common capacity

pooling strategy. Building on previous studies that document negative first-order effects on

patients who are placed off service themselves, the spillover effects onto patients who are

placed on service are analyzed. The instrumental variables approach reveals that there is a

significant causal impact of off-service placement on patients who are placed on service. The

essay, “Should We Worry About Moral Hazard? Estimation of the Slutsky Equation Using

Indemnity Health Insurance Contracts,” uncovers the differential response of consumers to

different designs of health insurance. While previous studies have convincingly shown that

ex-post moral hazard in health care does exist, there has been a lack of empirical evidence

on the degree in which such moral hazard is welfare-reducing. Using a novel setting, the

analysis provides evidence that moral hazard can lead to a significant welfare loss.
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CHAPTER 1

Introduction

One of the defining characteristics of the healthcare industry is the existence of multiple

entities with unique goals and incentives. The success of a healthcare system, therefore, relies

not only on managing the unique challenges that each entity faces but also on analyzing the

interactions among the different entities. This dissertation focuses on three main perspectives

within the healthcare system: regulator, healthcare organizations, and patients.

First, the regulator designs the nature of healthcare markets, for instance, the market for

healthcare where patients seek medical care and healthcare organizations. The role of the

regulator has become even more salient as the industry is shifting towards “value-based” care,

where the goal is to focus more resources on high-value care while curtailing the growth of

costs. Designing appropriate payment schemes and analyzing the impact of various incentive

policies have become important issues. Second, various types of healthcare organizations seek

to provide direct and indirect medical care to consumers. The healthcare organizations are

faced with unique challenges in managing various aspects of healthcare delivery, including

staffing, capacity management, and quality improvements. The decisions made by healthcare

organizations, often in response to changes in incentive structures, involve trade-offs where

the impacts on patients and workflows are not immediately obvious and can be unintended.

Lastly, patients are the ultimate users of the healthcare system. Any organization-level

or policy-level change will have an impact on patient behavior. Therefore, it is important

to understand the impact that the interaction between patient population and healthcare

organizations as well as payors have on health care systems.

Chapter 2 focuses on analyzing policy levers designed to incentivize quality improvements in

hospitals. Policy levers are especially important in the hospital market because without any

external incentives, financial gains from quality improvements are realized only when patient

volume increases as a result of higher quality relative to competitors. However, there is a
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limited patient response to quality because hospitals often operate as local monopolies or

oligopolies and because an increasing number of insurance plans limit in-network hospitals.

This unique structure of the hospital market makes the laissez-faire approach of relying on

patient choice an insufficient strategy for incentivizing hospitals to improve their quality

of care. The essay, “Searching for the Best Yardstick: Cost of Quality Improvements in the

U.S. Hospital Industry,” takes the perspective of the policymakers to analyze and improve

incentive programs that are designed to induce investments in quality of care.

Using data on Medicare’s Value-Based Purchasing (VBP) Program, the essay first seeks to

understand how organizations respond to financial incentives. Using structural estimation

methods, parameters that govern hospitals’ investment decisions are recovered. Specifically,

a dynamic equilibrium model that involves investment decisions and a nested quality ladder

is employed and estimated. Then, based on the estimated system, the counterfactual analyses

explore the benefits, on the one hand, of modifying the overall size of the incentives and,

on the other hand, of implementing a more focused program tailored to hospital type. The

essay finds that increasing the size of the incentives from 2% to 4% would have resulted in an

additional quality investment of US$1.2B from 2011 to 2018, leading to a 3.3% reduction in

the average rate of central-line associated bloodstream infections (CLABSI). Furthermore,

applying the incentives to the tailored hospital peer groups, even without changing the size of

the incentives, can lead to an average reduction of 1.4% in the rate of CLABSI among groups

of hospitals associated with the highest costs of quality investment. The results suggest that

hospitals with higher costs of quality investment, and hence often of lower quality, are in fact

under-incentivized in the current scheme, and the system would be better off if hospitals of

similar types competed within a smaller peer group.

Chapter 3 turns to analyzing the impact of organization-level decisions on productivity and

efficiency. In particular, the essay, “The Spillover Effects of Capacity Pooling in Hospitals,”

focuses on a capacity pooling strategy, often referred to as off-service placement, that ad-

dresses the day-to-day mismatch between the supply and demand of hospital beds. The key
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issue is that demand has large variance, in terms of both the number of arrivals and the

types of patients, while supply of hospital beds is fixed, at least in the short run. This leads

to situations where a patient must be placed in a bed that is not allocated to the specialty

service the patient is admitted to, creating an off-service placement. Building on prior work

that documents the negative first-order effects of off-service placement on patients who are

placed off service themselves, this essay reveals that off-service placement causes a substan-

tial spillover effect onto patients who are placed on service. Through causal inference, the

essay finds that a one percentage point increase in the average proportion of the service’s

patients who are placed off service during a patient’s hospitalization leads to a 2.7% increase

in length of stay. Through a series of counterfactual analyses, alternate routing policies that

could meaningfully improve the efficiency of care are considered.

Chapter 4 analyzes patient behaviors under different types of insurance contracts. The phe-

nomenon in which the level of healthcare consumption increases when consumers have health

insurance plans that reduce the purchasing price of medical care has been the focal point of

a large stream of literature in health economics. While there has been convincing evidence

documenting the existence of such “ex-post” moral hazard, the question of how much moral

hazard is in fact welfare-reducing has been less studied. The key idea is that changes in

consumer behavior is only welfare-reducing if such changes are driven by the substitution

effect, in other words, purely driven by distortions in the price of healthcare. On the other

hand, changes in consumer behavior caused by the income effect, or driven by changes in

the purchasing power caused by lower prices in healthcare, are not welfare-reducing. Most

of the health economics literature has assumed that most of the distortions in behavior due

to moral hazard is welfare-reducing, while a few has argued that a substantial portion of the

changes in consumer behavior is not welfare-reducing.

The challenge in tackling this debate is the lack of an appropriate setting where lump-

sum transfer insurance contracts exist. The essay, “Should We Worry About Moral Hazard?

Estimation of the Slutsky Equation Using Indemnity Health Insurance Contracts,” exploits

3



the private insurance market in South Korea where fixed indemnity contracts are popular.

Since a lump-sum transfer does not alter the price of healthcare, changes in the behavior

of patients with fixed indemnity contracts can be used to estimate the extent to which

changes in consumer behavior is driven by non-welfare-reducing income effect. Subsequently,

the changes in the behavior of patients with price-changing insurance contract in the same

market can be used to identify the total magnitude of moral hazard. This results in the ability

to indirectly estimate the portion of moral hazard that is in fact welfare-reducing. Using a

nationwide representative sample, each component of the Slutsky equation is estimated, and

the essay finds that around 80% of observable moral hazard is welfare-reducing and confirms

the long-held belief.

Chapter 5 concludes, summarizes the findings, and lays out the directions for future research.
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CHAPTER 2

Searching for the Best Yardstick: Cost of Quality

Improvements in the U.S. Hospital Industry

2.1. Introduction

Yardstick competition is a policy tool deployed by regulators to engage firms in induced

market competition beyond their local market boundaries. It can be especially useful when

managing the incentive structure of firms that have local monopoly or oligopoly power, as

often is the case in the health care industry. In its original formulation by Shleifer (1985),

yardstick competition focused on extracting cost reduction efforts from monopolists by set-

ting the firm’s price, or compensation level, to be equal to the average cost of production

among firms in the same industry. Tying the price to an industry cost benchmark creates

an effective competition among monopolists operating in separate local markets. The driv-

ing force behind yardstick competition is the fact that the cost reduction efforts of a single

firm not only result in extra profits for that firm, thereby incentivizing its cost-saving ef-

forts, but also lead to lower prices for all other firms in the industry, ultimately forcing

decreases in both costs and prices. Thus, individual firms’ competitive efforts for cost re-

duction globally—and as Shleifer (1985) shows, efficiently—decrease both costs and prices

across the covered markets.

Medicare as well as many large insurance firms in the U.S. have been utilizing the principles of

such cost-based yardstick competition for inpatient care. Hospitals are compensated using a

fixed-price payment scheme based on the given patient’s “diagnostic-related groups” (DRGs),

intended to create incentives for hospitals to improve efficiency and reduce the cost of care to

maximize profits. The fixed-price system, otherwise known as prospective payment system,

closely follows the original formulation of the yardstick competition by setting the level of

payments in each DRG based on the expected utilization of resources needed to provide

appropriate care for an average patient within that DRG. The idea of cost-based yardstick
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competition has been widely accepted and applied in the health care setting, and the general

trend has been to expand the scope of the induced competition to include outpatient care

as well as post-acute care within the framework of the “bundled payment” model.

However, these programs leave a gap in incentivizing quality of delivered care. In addition

to the cost of care, the quality of care has always been considered as one of the most crucial

characteristics of any health care system. In an ideal world, patients would be able to assess

and compare the quality of care and choose hospitals based on the quality of care they deliver.

The first barrier in regulating quality competition among care providers is that information

about the quality of a given hospital is often difficult for patients to acquire and interpret.

Medicare has partially addressed this issue by incentivizing the disclosure of quality-of-care

data, organizing the data in a public website, and using a simple “star rating” system for

hospitals. However, even if the quality of hospital care is known, hospitals operating as

local monopolies or oligopolies may not respond strongly to patient choice behavior. As the

hospital industry becomes increasingly concentrated owing to recent waves of mergers and

acquisitions as well as tightening regulations that increase the barriers to entry, the ability of

patients to actively select hospitals on the basis of quality of care may become more limited.

In this regard, using quality-based yardstick incentives presents a promising policy solution.

In general, a quality-based yardstick competition program should collect relevant quality

data from all firms in the industry and institute transfer payments that reward firms for

higher quality services while effectively penalizing their lower-quality peers. Along these

lines, Savva et al. (2019) propose modifying yardstick competition to induce hospitals to

reduce patient wait times. Under their proposed scheme, hospital fixed-price reimbursements

are complemented by payments that depend, for each hospital, on the difference between

the average patient wait time at that hospital and the industry-average patient wait time.

In this paper, we focus on Medicare’s Hospital Value-Based Purchasing (VBP) Program,

which implements multidimensional quality-based yardstick competition pursuant to the

Affordable Care Act of 2010. All hospitals in the U.S. with inpatient volume from Medicare
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patients are subject to this program, and 2% of all Medicare inpatient reimbursements are

withheld and redistributed across hospitals based on their performance on a common set of

selected quality measures. This program allows us to empirically investigate an influential

nation-wide policy implementing dynamic quality competition under yardstick incentives.

Conceptually, the quality-based yardstick competition mirrors its cost-based counterpart in

that hospitals’ current cost or quality levels can be observed, but the hospitals’ respective

abilities to reduce costs or improve quality are private information. Indeed, Shleifer (1985)’s

yardstick regime shares similarities with the mechanism design literature, which focuses

on inducing efficient actions under private information. However, our setting departs from

Shleifer (1985) in one critical aspect. In the original cost-based setting, the profit-maximizing

firm fully internalizes the gains from its own cost reductions. This leads to efficient cost

reductions in the absence of any detailed knowledge, from the policymaker’s perspective,

of individual firms’ efforts associated with cost reductions. In contrast, under the VBP

Program, hospitals do not automatically capture the entire economic benefit from their own

quality improvements. Therefore, calibrating the yardstick incentives based on informed

estimates of the costs of quality investment is an important element in the design of the

quality-based yardstick competition.

In the setting we analyze, hospitals decide whether to invest in quality based on their assess-

ment of the yardstick incentive payments they expect to receive and the costs they incur.

Clearly, if the size of yardstick incentives is too small compared to the cost of quality in-

vestment, hospitals will not respond to the yardstick competition. Furthermore, because the

costs of quality investment are likely to differ across hospitals, it is important to understand

the distribution of investment costs to assess the impact of the VBP incentives on the entire

hospital industry. In our analysis, we adopt the perspective of government regulators, such

as the Centers for Medicare and Medicaid Services (CMS), and analyze the outcomes of the

current version of the VBP Program with the goal of estimating the unobserved costs of

quality investment for all hospitals subject to the program. Accomplishing this goal allows
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us to focus on the following research questions:

1. How are the quality-of-care outcomes affected by the size of the yardstick incentives?

2. What are the potential effects of tailoring yardstick incentives to hospital types?

An important feature of the outcomes of quality investment is that they cannot be analyzed

in a static manner: improvements in quality achieved in a particular time period will affect

the quality of care at the same hospital in future time periods. Therefore, we adopt a

dynamic approach to modeling hospital decisions and use a dynamic equilibrium model to

describe the evolution of the entire hospital industry. In our model, each hospital engages

in repeated rounds of the yardstick competition against all other hospitals and determines

its best-response investment policy that maximizes the hospital’s total discounted payoffs.

We employ a novel application of structural estimation methods by clustering hospitals

into a “quality ladder” (Pakes and McGuire, 1994) using a multidimensional notion of care

quality based on measures used by the VBP Program and applying a hidden Markov chain

framework to describe transitions within the ladder.

As a result, we recover key parameters that govern hospitals’ decisions to invest in quality of

care, including financial and non-financial investment costs, as well as parameters that shape

stochastic investment outcomes. Furthermore, as a byproduct of the estimation process, we

recover for every hospital the information on the quality level to which the hospital belonged

throughout the implementation of the VBP Program. To answer our research questions, we

use our estimates to perform counterfactual analyses and compare the efficacy of the current

program against alternative designs of the quality-based yardstick competition. In particular,

we find that increasing the size of the incentives from 2% to 4% would have resulted in an

additional quality investment of US$1.2B from 2011 to 2018, which can lead to a 3.3%

reduction in the average rate of central line-associated bloodstream infections (CLABSI)

and a 1% increase in the average proportion of patients who rate their hospitals 9 or 10 on a

10-point scale. We also find that applying yardstick incentives to the tailored hospital peer

8



groups, even without changing the size of the incentives, can lead to an average reduction

of 1.4% in the rate of CLABSI among groups of hospitals associated with the highest costs

of quality investment.

The rest of the paper is structured as follows. In Section 2.2, we review the related literature.

In Section 2.3, we provide a detailed description of the VBP Program and the data we use.

In Section 2.4, we introduce the structural model that serves as the basis for our estimation.

The results of the estimation are presented in Section 2.5. In Section 2.6, we evaluate the

alternative designs for the quality-based yardstick competition using counterfactual analyses.

We summarize our findings in Section 2.7.

2.2. Related Literature

Yardstick competition was first introduced and analyzed by Shleifer (1985), which led to

a stream of literature focusing on theoretical development (Dalen, 1998; Tangerås, 2002;

Lefouili, 2015) as well as on examining applications across many industries including en-

ergy and electricity (Kuosmanen and Johnson, 2020), water (Sawkins, 1995; Cowan, 1997;

Marques, 2006), railway (Mizutani, 1997), motor-vehicle inspections (Ylvinger, 1998), and

port infrastructure (Estache et al., 2002). The industry that gained the most momentum

in terms of both application and research has been the health care industry, especially the

prospective payment system implemented by Medicare (Ellis and McGuire, 1986; Dranove,

1987; Dada and White, 1999).

More closely related to this work are studies that expand the original notion of cost-

based yardstick competition to quality-based yardstick competition. Savva et al. (2019) and

Tangeras (2009) explore modifying the cost-based yardstick competition in the health care

industry to include a component that contracts on a quality indicator. The Hospital VBP

Program analyzed in this paper is an example of a quality-based yardstick competition, and

it has gained attention, especially in the medical literature. However, the existing literature

on the impact of the VBP Program shows mixed findings. Ryan et al. (2017) and Lee et al.

(2020) find that hospitals positively responded to the program by improving quality, whereas
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Hong et al. (2020) find that there has not been any discernible impact on care processes or

patient outcomes.

A similar program that targets readmission rates, the Hospital Readmission Reduction Pro-

gram (HRRP), has gained traction in the operations management literature. Zhang et al.

(2016) find that a significant number of hospitals are not incentivized by HRRP because

the cost associated with reducing readmission is too high relative to the penalty imposed by

the program. They also suggest localizing the benchmarking process, which we investigate

in this paper by analyzing the impact of tailoring yardstick-based incentives to peer groups

of similar hospitals. Arifoğlu et al. (2021) extend Zhang et al. (2016) by proposing an al-

ternative payment scheme to overcome the shortcomings of the current design of HRRP.

Chen and Savva (2018), Bastani et al. (2019), and Batt et al. (2020) explore unintended

consequences and “spillover” effects of the program.

More broadly, this paper contributes to the operations management literature on incen-

tive alignment in health care settings. In particular, payment policies, including bundled

payment, have been shown to be effective in managing the incentives of different players

in the health care industry, including providers (Aswani et al., 2019; Adida et al., 2017;

Rajagopalan and Tong, 2021), hospitals (Andritsos and Tang, 2018; Guo et al., 2019), and

pharmaceutical firms (So and Tang, 2000). Performance-based incentives, such as pay-for-

performance systems, represent a more direct form of contracts that can be used to manage

incentives. Lee and Zenios (2012) examine the pay-for-compliance system used for dialysis

treatments, Jiang et al. (2012) analyze the impact of performance-based contracts on the

allocation of outpatient care, and Adida and Bravo (2019) explore penalty contracts for

referrals and outsourced care. This paper also adds to the stream of empirical studies focus-

ing on quality-of-care in the hospital setting (KC and Terwiesch, 2011; Wang et al., 2019;

Kuntz et al., 2019; Bartel et al., 2020).

Methodologically, this paper builds on a stream of literature on estimating dynamic choice

models initiated by Rust (1987), which was extended to include various settings and to im-
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prove computational efficiency (Pesendorfer and Schmidt-Dengler, 2003; Bajari et al., 2007).

We build on the quality ladder structure first proposed by Ericson and Pakes (1995) and

Pakes and McGuire (1994), who model investment decisions in a Markov-perfect Nash equi-

librium setting. Xu et al. (2018) find that the quality ladder model is well suited for analyzing

industry response to regime changes. A key departure of this paper from the aforementioned

work is that most of the previous studies assume that actions are observed, whereas in our

setting actions are unobserved, and we must infer the investment decisions of hospitals as

well as any cost associated with investment. Furthermore, we apply the structural estima-

tion methods in a novel setting to investigate firm-level responses to a yardstick competition

regime and examine the efficacies of alternative designs of yardstick competition.

2.3. Hospital VBP Program and Data

The Hospital VBP Program withholds 2% of all Medicare inpatient payments and redis-

tributes them to hospitals as incentive payments based on the hospitals’ performance on

selected quality measures. Because any general acute care hospital with inpatient volume

from Medicare patients is subject to the program, the VBP Program creates an induced

yardstick competition that effectively spans the entire U.S. hospital industry.

An important feature of the program is that all of the quality measures it uses are also

included in the Hospital Inpatient Quality Reporting Program, which incentivizes hospitals

to disclose and report quality data to regulators as well as consumers. In our study, we

use the data archives recording hospital performance in quality measures under the VBP

Program from its first implementation in 2011 to the latest available data in 2018. The

program has been using a total of 36 measures spanning multiple dimensions of quality,

including clinical care process, outcomes, safety, patient satisfaction, and cost reductions.

The VBP Program’s payments are awarded in the form of percentage point changes to

Medicare reimbursement rates for inpatients in the fiscal year following the performance

assessment. The rates are designated based on each hospital’s composite score, which com-

bines its performance across the tracked quality measures, and under a budget balancing
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constraint. We next describe the VBP Program in detail. At the end of the section, we

provide descriptions of the datasets that provide us with operational and financial data.

2.3.1. Quality Measures and Scores

Over the study period, between 20 and 26 quality measures were selected annually (and 36

over the entire period) for inclusion in the VBP Program’s composite performance scores for

hospitals. Measures used over this time period include, for example, the rates of hospital-

acquired infections, the mortality and complication rates of specific patient groups, patient

satisfaction survey results, and Medicare spending per beneficiary as a cost reduction proxy.

Timing of assessment. In converting a quality metric into a program score, two time

periods are relevant. First, a hospital’s current performance is tracked during the “perfor-

mance period,” which usually follows the current calendar year. In contrast, the program

seeks to provide hospitals with a clear objective before each performance period begins,

allowing each hospital to know how its performance during the upcoming calendar year will

be evaluated. Therefore, the performance of a hospital during the performance period is

compared with the past performances of other hospitals as well as the hospital’s own histor-

ical performance during the “baseline period,” which usually follows the calendar year two

years prior to the performance period. The only exception to this design is the measure that

tracks cost reductions; under this measure, the performance period doubles as the baseline

period so that the respective dollar figures are compared directly without the use of any

time discounting. Lastly, a hospital’s scores from the performance period feed into the VBP

Program’s incentive payments applied in the following fiscal year.

Point-based score assessment. Let H denote the set of hospitals subject to the VBP

Program. Each hospital h ∈ H reports its measured performance in the jth quality metric

tracked by the program as q
(j)
ht in year t. To illustrate the process of assigning a numerical

point score corresponding to the hospital’s reported performance, Figure 2.1 provides an

example using AMI-7a that tracks the percentage of patients with acute myocardial infarc-

tion (AMI) who received fibrinolytic therapy within 30 minutes of hospital arrival. In this
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Figure 2.1: Example of hospital earning points under achievement or improvement

Note. Federal register. Vol. 76, No. 88. Friday, May 6, 2011. Department of Health and Human
Services. Centers for Medicare & Medicaid Services.

example, 81.63% of AMI patients received therapy within 30 minutes at hospital h, i.e.,

q
(j)
ht = 81.63%.

First, the hospital’s performance is compared with the performances of peer hospitals, re-

sulting in “achievement” points, SAchieve,j
ht . To assign achievement points, an evaluation lower

bound (“achievement threshold”) LB(j)
t−2 = 65.48% is established at the median performance

of all hospitals, and an evaluation upper bound (“benchmark”) UB
(j)
t−2 = 91.91% is estab-

lished by the average performance of the top 10% of all hospitals. The “achievement range,”

which spans from the achievement threshold to the benchmark, is partitioned into equally

sized achievement-point subranges from 1 to 10. The measured position of q(j)ht is rounded

to the nearest integer as its achievement points SAchieve,j
ht . Performance below (above) the

achievement range would round to 0 (10) points. In this case, the score rounds to 6 achieve-
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ment points. Mathematically,

SAchieve,j
ht =



10, if q(j)ht ≥ UB
(j)
t−2,

0, if q(j)ht < LB
(j)
t−2,

⌊9× q
(j)
ht −LB

(j)
t−2

UB
(j)
t−2−LB

(j)
t−2

+ 0.5⌉, otherwise,

(2.1)

where ⌊ ⌉ is the rounding operator that rounds the bracketed value up to the nearest integer.

Second, the hospital’s performance is compared with the hospital’s own historical perfor-

mance, resulting in “improvement” points, SImprove,j
ht . Because the same hospital previously

provided timely fibrinolytic therapy to 42.97% of AMI patients during the baseline period,

an “improvement range” is constructed from the past metric, from q
(j)
h,t−2 = 42.97% as the

lower bound up to UB
(j)
t−2 = 91.91%. The improvement range is similarly partitioned into

equi-distant point subranges from 0 to 9. Once again, q(j)ht ’s position is rounded to the nearest

integer—in this example, resulting in 7 improvement points.

The score S
(j)
ht is the greater of the hospital’s achievement points, SAchieve,j

ht , and its improve-

ment points, SImprove,j
ht . Therefore, the hospital’s final AMI-7a score

S
(j)
ht = max

(
SAchieve,j
ht , SImprove,j

ht

)
= 7.

Scores for all measures are determined in the same manner, and hospitals receive points in

each measure, S(j)
ht ∈ {0, . . . , 10}.

Quality metric domains. Each quality metric q
(j)
ht , and hence its associated score S

(j)
ht ,

belongs to one of five “domains”: Clinical care process, Clinical care outcomes, Safety, Patient

experience, and Efficiency. The VBP composite score’s coverage of domains has varied by

program year, ranging from two domains (Clinical care process and Patient experience) in

its first performance year to four domains in 2020 (Clinical care outcomes, Safety, Patient

experience, and Efficiency). The list of measures and domains used in VBP from fiscal year

2013 to fiscal year 2020 are presented in Tables A.1 and A.2 of Appendix A.1, respectively.
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2.3.2. Composite Scores and Incentive Payments

A hospital’s points in quality measures are first aggregated to the domain level and finally

combined into a single composite score ranging from 0 to 100 based on pre-specified weights.

Table A.3 of Appendix A.1 lists the domains and their weights used to calculate the com-

posite scores. Let {Sht ∈ [0, 100] : h ∈ H} denote the hospitals’ composite scores achieved

under such weights in the performance year t.

Incentive payments. We characterize the resulting incentive payments. The incentive

payments are applied to Medicare inpatient payments in the fiscal year following the end of

the performance period. For example, the performance during the 2018 calendar year results

in incentive payments during the 2020 fiscal year, which begins in October 2019 and ends

in September 2020. During the nine-month gap between the end of the performance period

and the beginning of the following fiscal year, the CMS collects and processes performance

data from all hospitals and resolves any potential discrepancies in the data. Accordingly, let

Rht′ denote Medicare inpatient reimbursements charged by hospital h prior to any program

adjustments or withholding in the fiscal year following t (we denote the fiscal year by t′).

Finally, let S̄t denote the reimbursement-weighted industry average composite score for

performance year t:

S̄t :=

∑
h∈H Sht ×Rht′∑

h∈H Rht′
. (2.2)

Under the VBP Program, 2% of Medicare inpatient reimbursements are first withheld, sup-

plying a total budget of 2%×
∑

h∈H Rht′ to be redistributed as incentives. A linear exchange

function is calibrated with rate rt such that a hospital with composite score Sht will receive

an incentive payment percentage of rt × Sht% on its Medicare inpatient reimbursements in

the fiscal year following the end of the performance period. The VBP Program is budget-

neutral, implying that for budget balance,
∑

h∈H(rt × Sht%− 2%)×Rht′ = 0.
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Therefore, with some algebra, the VBP Program delivers hospital h a net benefit of

2%×Rht′ ×
(
Sht

S̄t
− 1

)
(2.3)

in the next fiscal year t′. The benefit is positive if hospital h’s score Sht exceeds the

reimbursement-weighted industry average S̄t and is negative if it is less. No hospital can

lose more than 2% of reimbursements under the VBP Program.

2.3.3. Financial and Operational Data

In addition to the data on hospital quality performance, we require operational and financial

data on the hospitals to understand how the hospitals respond to the yardstick incentives.

In this work, we combine the American Hospital Association (AHA) survey data, financial

data from the Healthcare Cost Report Information System (HCRIS), and the Inpatient Uti-

lization and Payment Public Use File (PUF). AHA survey data are collected through annual

surveys on all member hospitals as well as any other voluntary hospitals. Being a national

organization, the AHA is able to collect data that comprises of nearly all hospitals in the

U.S. with detailed characteristics, including operating location, inpatient bed size, number

of total inpatient and outpatient cases, as well as any special designations, such as being a

teaching hospital. The HCRIS data include information on the revenues and costs of oper-

ation. Although the data include a more detailed breakdown of revenues and costs, we rely

on total inpatient and outpatient revenues and total operating costs given that accounting

policies may differ across hospitals. Furthermore, any costs associated with investment are

likely grouped differently across hospitals. In most cases, they will be indistinguishable from

the baseline cost of operation, essentially meaning that they are unobserved. Lastly, we use

Inpatient PUF data, which include average payments that Medicare made to hospitals as

well as the number of cases in each DRG. 1

Using these three datasets, we compute the average revenue per case that hospitals receive
1Inpatient PUF data are accessible at https://www.cms.gov/Research-Statistics-Data-and-

Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Inpatient. AHA survey data and
HCRIS data were accessed through Wharton Research Data Services.
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from Medicare inpatient cases, non-Medicare inpatient cases, and outpatient cases. To com-

pute the average revenue per case for Medicare inpatient and non-Medicare inpatient cases,

we take the total inpatient revenues and first separate this value into Medicare and non-

Medicare portions using the Inpatient PUF data. Then, we divide the total revenues by the

number of cases in each type. Similarly, average revenue per case for an outpatient visit

is calculated by dividing the total outpatient revenues by the total number of outpatient

cases. In addition, we use the reported figures in the AHA survey and the HCRIS data to

estimate, for each hospital, the number of cases for each patient type and the annual total

cost of operation.

2.4. Model

In this section, we introduce the major components of our model that describe hospitals’

best-response investment policies and the resulting equilibrium in the presence of yardstick

incentives. The equilibrium best-response investment policies are used to estimate the model

parameters that best maximize the likelihood of the observed hospital performance in quality

measures and the observed financial data. We essentially combine two models. First, we

introduce a quality ladder model that captures the dynamic evolution of hospital quality, in

which hospitals are positioned at discrete quality levels that can be improved by investing to

earn stochastic quality jumps. Thus, the transitions between quality levels are modeled as

a choice-dependent Markov chain. Second, we model the hospitals’ rewards under the VBP

Program. Hospitals weigh the expected benefits of quality improvement in the form of future

VBP incentive payments against the costs associated with investment in quality. The key

feature of the model, and of yardstick competition, is that a hospital’s expected rewards are

determined not only by its own quality alone but also by the performance of peer hospitals

in the quality metrics. The goal of the combined model is to capture how hospitals respond

to yardstick competition through dynamic investment policies.
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2.4.1. Quality Ladder

Hospitals. We consider a system of H hospitals, denoted h = 1, . . . ,H, that make in-

vestment decisions at times t = 1, 2, . . . ,∞. We denote the fiscal years in which incentive

payment percentages are applied as t′ = 1, 2, . . . ,∞ such that performance at time t results

in incentive payments at time t′. The state space consists of five quality types, or ladder

levels, denoted ωht ∈ Ω, that summarize the overall quality of the hospital h at time t. We

choose five levels following the CMS’s Five-Star Quality Rating System (Adelman, 2020),

and although the ladder structure is largely an arbitrary simplification that provide us with

tractability, estimating the emission distributions of actual performances in quality measures

will allow us to transition back into characterizing the system in a tangible manner.

Quality measures. The performance of hospital h in quality measures q
(j)
ht is indexed by

j ∈ J := {1, . . . , 36}. We use Jt ⊂ J to denote the subset of quality metrics tracked by the

yardstick competition at time t. Given a current quality ladder level ωht ∈ Ω, hospital h

emits an array of stochastic quality metrics q⃗ht :=
(
q
(1)
ht , . . . , q

(J)
ht

)
∈ RJ . Performance in each

quality measure q
(j)
ht follows a distribution G

(j)
ω that depends on the hospital’s quality level

ωht. Based on considerations of tractability and fit, we specify G
(j)
ω to be a rectified normal

distribution parameterized by its mean of µ(j)
ω and standard deviation of σ(j)

ω . We use rectified

normal distributions because for most of the measures there are natural bounds in which

performance is tracked, e.g., the upper bound of a quality measure that tracks the number

of infections would be zero, and a measure that tracks the proportion of patients receiving

appropriate care would be bounded between zero and one. Consistent with the notion of a

vertical quality ladder, we impose monotonicity, in the sense of stochastic dominance, on

each quality metric to increase up the quality ladder levels.

2.4.2. Transitions on the Quality Ladder

Quality investment. Hospitals individually transition between levels on the quality lad-

der through investment, denoted xht. First, we simplify investment to be a binary action,

i.e., a hospital either invests or does not invest by comparing expected payoffs conditional
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on each action. We assume that investment incurs both financial and non-financial costs per

patient, denoted c1h and c2h, respectively, for hospital h. Financial costs include additional

labor and capital needed to improve quality, such as instituting a team of analysts or hiring

additional medical staff, and non-financial costs include institutional hurdles, such as the

cost of devising new contracts or implementing new internal policies and initiatives that may

not affect the financials of the hospital but end up being too costly for the hospital to invest

in quality. Hospitals also incur baseline operating costs per patient, denoted c0h, which are

independent of the investment decision. We assume that both investment costs and baseline

operating costs per patient are heterogeneous across hospitals but are time invariant.

We assume that c0h and c1h are independently drawn across hospitals from a common bivariate

lognormal distribution, i.e., log c0h and log c1h are bivariate normally distributed. We denote

the parameters of the distribution of (log c0h, log c
1
h) by (µc0 , σ

2
c0 , µc1 , σ

2
c1 , ρc). Similarly, c2h

is independently drawn across hospitals from a common lognormal distribution, and we

assume that log c2h is normally distributed with mean of µc2 and variance of σ2
c2 . For brevity,

we define ch = (c0h, c
1
h, c

2
h), µc = (µc0 , µc1 , µc2), and σc = (σc0 , σc1 , σc2).

Transitions. The initial distribution of quality levels is denoted F0. Investment, xht, af-

fects the transition probabilities, denoted Fx, between quality levels such that investment in

quality at time t increases the probability of the hospital moving up to a higher quality level

and decreases the probability of moving down to a lower quality level at time t+1. Therefore,

Fx essentially is a set of two 5 × 5 transition matrices given the investment decision with

Fx=investment stochastically dominating Fx=no investment.

We make two assumptions for computational and identification purposes. First, we assume

that hospitals have a positive probability of moving up to a higher quality level only if they

invest in quality, i.e., quality improvements can only occur if hospitals actively invest in

quality. Second, we assume that hospitals only have positive probabilities to transition to

the adjacent quality levels. This assumption implies that changes in the quality of a hospital

occur gradually, e.g., a hospital with mediocre quality cannot suddenly become one of the
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top quality hospitals even if investment is made. If the current level is either the lowest or

the highest, hospitals cannot move outside the five quality ladder levels. These assumptions

provide computational benefits by significantly reducing the number of transition parameters

we must estimate.

2.4.3. Program Incentives

Calculating incentive rewards. Under the VBP Program, a hospital’s realized per-

formance signals q⃗ht are evaluated against industry performance benchmarks to yield its

composite score Sht based on achievement points and improvement points. By applying

the incentives disbursal formula (2.3) to the body of scores {Sht : h ∈ H}, we obtain the

incentive payments the program delivers to each hospital.

For reasons of tractability, our model simplifies the composite scores in the following way.

Under the VBP convention, a hospital’s scores in each metric j ∈ Jt,

S
(j)
ht = max

(
SAchieve,j
ht , SImprove,j

ht

)
,

are aggregated to the domain level and then averaged under pre-determined weights to arrive

at the hospital’s composite score Sht. Under our simplification, we ignore the improvement

points SImprove,j
ht —instead, we handle each metric j’s achievement points SAchieve,j

ht as though

they were the metric scores S
(j)
ht . We then follow the VBP convention in aggregating to the

domain level and calculating the weighted average S̃ht as the hospital’s alternative composite

score. By construction, S̃ht is biased downward in comparison to the true composite score

Sht; hence, we correct for the bias by regressing Sht on S̃ht:

Sht = α+ β × S̃ht + ϵht, (2.4)

and then using the estimated coefficients α̂ and β̂ to project the bias-corrected composite

scores Ŝht = α̂+β̂×S̃ht. In short, we construct the composite scores S̃ht using the achievement

points instead of the maximum of the achievement and improvement points in each area j
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Table 2.1: Regression of observed composite scores on simplified composite scores only based on
achievement points

(1)
Simplified composite score calculated using achievement points 0.859∗∗∗

(0.00366)

Constant 10.36∗∗∗

(0.108)
Observations 11278
R2 0.875

Note. Robust standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

and then bias-correct to arrive at Ŝht. The bias-correcting regression is presented in Table

2.1.

Through this simplification, we abstract away from tracking the past performance in all

measures Jt for each individual hospital. Conceptually, we therefore focus our model on the

incentives generated by industry benchmarking, which is the central mechanism of inter-

est in yardstick competition. Empirically, we verify that Ŝht accurately approximates the

original composite score Sht, capturing 87.5% of its variation. Thus, the modeled incentive

payments are derived by applying the incentives disbursal formula (2.3) to the body of scores{
Ŝht : h ∈ H

}
.

2.4.4. Expected payoffs.

Hospital h’s expected payoff at time t is

E[π(ωht, xht)] = (1− at)p
M
htλ

M
ht + pMP

ht λM
ht + pChtλ

C
ht + pOhtλ

O
ht︸ ︷︷ ︸

Baseline revenues

+β2E[bht′ |ωht]p
M
ht′λ

M
ht′︸ ︷︷ ︸

Incentive payments

− (c0h + (c1h + c2h)1(xht = investment))λadj
ht︸ ︷︷ ︸

Total costs

. (2.5)

Baseline revenues. We assume that hospitals receive three different types of patient

flows: Medicare inpatient, non-Medicare inpatient, and outpatient. The throughput for each

category of patients is denoted λM
ht , λ

C
ht, and λO

ht, respectively, and they generate marginal

revenues denoted pMht , p
C
ht, and pOht, respectively. We separate out out-of-pocket payments for
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Medicare inpatient cases, denoted pMP
ht , as these are not subject to payment withholdings

for the VBP Program. Note that the marginal revenues are indexed by both h and t, and the

hospital and time heterogeneity in reimbursement rates comes from differences in case mix,

geographic and market-level factors, and hospital-specific factors, such as being a teaching

hospital. Lastly, at is the percentage of Medicare inpatient payments that are withheld for

the VBP Program.

Incentive payments. bht′ is the incentive payment percentage determined by the quality

level ωht. It is applied to revenues from Medicare inpatient cases during the following fiscal

year, denoted t′. We assume a common discount factor of β = 0.97, and given the 21-month

lag between the beginning of the performance period, i.e., when investment decisions are

made, and the following fiscal year, we simply assume that incentive payments are discounted

by β2.

Total costs. We introduce λadj
ht to denote adjusted number of patients, which is a com-

monly used measure to represent the overall workload of a hospital. It essentially is an

inpatient-equivalent volume of total cases, and it is calculated by taking the total number

of inpatient cases then adding the number of outpatient cases weighted by the proportion

of revenue from inpatient versus outpatient sources. In essence, the adjusted number of pa-

tients provides us with a single measure of throughput on which we apply marginal costs.

c0h is the baseline operating costs per patient, c1h and c2h are the costs of investment, and xht

is hospital h’s investment decision at time t.

2.4.5. Dynamic Investment Policies

Bellman solution. Given the expected payoffs conditional on quality levels and invest-

ment decisions at time t, hospitals solve an infinite-horizon Markov decision process for the

optimal investment policy by maximizing the expected payoffs. The approximation of the

expected incentive payments that restricts the dependency to the current quality position

allows us to impose a Markovian structure where the current quality and the current in-

vestment decision provide sufficient information on the dynamics of the trajectory of quality
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levels. Therefore, the optimal policy of Markov strategy can be recovered by recursively

solving for the Bellman equation

Vht(ωht) = max
xht

E[π(ωht, xht)] + β
∑
Ω

P (ωh,t+1|ωht, xht)Vh,t+1(ωh,t+1). (2.6)

Informational assumptions. We make the following assumptions about the model and

the information that is available to the hospitals. We assume that the trajectory of number

of patients served is deterministic and known. Our rationale is that it is reasonable to assume

that patient demand is not significantly influenced by the quality scores given the fact that

one of the purposes of a yardstick competition is to impose an induced competition to

mitigate monopolistic behaviors. We empirically test this assumption by regressing hospital

throughput on composite scores using a fixed-effects framework. The results are presented

in Appendix A.2, and we do not find any distinguishable pattern that may suggest that

hospital throughput is positively correlated with performances in quality measures that we

observe through the VBP Program. Similarly, we assume that the reimbursement levels are

deterministic and known. In other words, we do not consider the possibility that hospitals

have increased bargaining powers as a result of increases in quality scores.

Structural estimation. The key challenge in the estimation process is that we do not

directly observe hospitals’ quality levels, their investment decisions, and the breakdown

of total operating costs into the baseline operating costs and costs associated with qual-

ity investment. Using the expectation-maximization algorithm and a hidden Markov chain

framework, we iteratively find the maximum likelihood estimates of the parameters of the

common distribution of operating and investment costs (µc, σc, ρc), the parameters of the

emission distribution of performances in quality measures (µj
ω, σ

j
ω), the transition matri-

ces conditional on investment decision Fx, and the initial distribution of quality levels F0.

As a byproduct of the estimation process, we also recover the quality levels each hospital

belonged throughout the implementation of the VBP Program as well as each hospital’s

baseline operating costs and investment costs. We provide details of the estimation process
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in Appendix A.3.

2.5. Estimation Results

In this section, we report the results of the structural estimation. We first present the

estimates, for each hospital, of the baseline operating costs and investment costs. Given the

estimated cost values, we evaluate goodness-of-fit by comparing the point estimates of the

total costs with the observed total costs for each hospital. Furthermore, we analyze how

the cost of quality investment is correlated with any observed hospital characteristics, such

as hospital size and type. Next, we present parameters related to the quality levels of the

hospitals: the distribution of hospitals over the quality ladder, transition matrices conditional

on investment decisions, and emission parameters of performances in the quality measures

used in the VBP Program. While the estimated parameters and cost values are interesting in

their own right, they also serve as the building blocks of the counterfactual studies that we

describe in Section 2.6, where we evaluate alternative designs of the yardstick competition.

2.5.1. Parameters and Estimated Values Related to Operating and Investment

Costs

Estimated parameters. We summarize the estimates of the parameters in Table 2.2. The

estimated parameters of the common log-normal distribution of hospitals’ baseline costs per

adjusted patient are 9.34 and 0.30. In other words, the logged values of the baseline costs

per adjusted patient for all hospitals follow a normal distribution with mean of 9.34 and

standard deviation of 0.30, which translates to an average of $11,908 per patient. Similarly,

the parameters of the log-normal distribution of the financial costs of quality investment

are 0.78 and 2.36, which translates to an average of $35 per patient. The parameters of the

log-normal distribution of the non-financial costs of quality investment are -4.55 and 0.03,

and the estimated correlation factor between the baseline costs per adjusted patient and

financial costs of investment is 0.28.

Empirical distribution. In addition to estimating the parameters of the common dis-

tributions, our estimation process allows us to recover the cost values of each hospital with
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Table 2.2: Estimated cost parameters and empirical distribution

Estimated parameters Empirical distribution
(1)

Per patient, logged
(2)

Per patient, in $
(3)

Annual, in $
Baseline operating costs 9.34 (0.30) 11,908 (3,654) 314,140,000 (352,350,000)
Financial costs of investment 0.78 (2.36) 35.33 (571.2) 281,680 (462,670)
Non-financial costs of investment -4.55 (0.03) 0.011 (0.00032) 258 (205)

Note. Standard deviations in parentheses. (1) presents the estimated parameters. (2) presents the
arithmetic mean and standard deviation given by the log-normal distribution. (3) presents the mean
and standard deviation of the empirical distribution.

the highest likelihood. In other words, while we assume that the cost values of each hospital

are drawn from the distribution with parameters described above, we can pinpoint which

draw can most likely explain the observed data. We refer to the set of cost values with high-

est likelihood for each hospital as the “empirical distribution” of cost values. We find that

the mean and standard deviation of the estimated annual baseline costs are $314,140,000

and $352,350,000, respectively. The mean and standard deviation of the financial costs of

investment per year are $281,680 and $462,670, respectively, and the mean and standard

deviation of the non-financial costs of investment per year are $258 and $205, respectively.

As expected from the estimated cost parameters, we find that the cost values are

long-tailed, in line with an often-cited characteristic of the U.S. hospital industry

(National Center for Health Statistics, 2017). Furthermore, both financial and non-financial

costs associated with investment in quality exhibit large variance across hospitals, suggest-

ing that the same yardstick incentives applied to the entire hospital industry may not be

the most effective method for inducing competition among hospitals. Lastly, we find that

non-financial costs of investment are dominated by financial costs, which suggests that hos-

pitals do not face institutional burdens of investing in quality that are not passed through

as financial costs.

Goodness-of-fit. Using the estimated cost values for each hospital, we test goodness-of-

fit of the estimated cost values by comparing the estimated total costs that each hospital

incurred during a given year, including any financial costs of investment, with the observed

total costs that each hospital incurred during the same year. We use the estimated ladder-
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Figure 2.2: Cumulative distribution functions of estimated and observed total costs
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based quality trajectory and the optimal investment policy to identify whether a given

hospital made investments toward quality improvement. We discuss the estimated quality

trajectory in more detail in Section 2.5.2. We present the cumulative distribution functions

of the estimated total costs compared with the observed total costs in Figure 2.2. Although

the estimation slightly underestimates the proportion of hospitals in the lower end of the

cost spectrum, we find that our estimation process is able to predict the observed costs with

rather high accuracy.

Cost of investment by hospital characteristics. Next, we further delve into invest-

ment costs and perform analyses to identify any pattern present in the distribution of in-

vestment costs. To do so, we regress the cost of investment per adjusted patient on various

hospital characteristics. We present the results in Table 2.3. First, we look into whether

the size of a hospital has any correlation with the cost of investment. A priori it is unclear

whether a larger hospital would need to incur higher or lower cost in order to improve its
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Table 2.3: Hospital characteristics and cost of quality investment

(1)
Investment cost, in $

Bed size type
49 or less beds (.) (.)
50–99 beds -0.479 (0.837)
100–199 beds 1.397 (0.846)
200–299 beds 4.317∗∗∗ (0.951)
300–399 beds 4.938∗∗∗ (1.011)
400–499 beds 7.089∗∗∗ (1.490)
500 or more beds 7.056∗∗∗ (1.278)

Teaching status
Not a teaching hospital (.) (.)
Teaching hospital 4.604∗∗∗ (1.180)

CBSA type
Metro (.) (.)
Micro -1.904∗∗∗ (0.438)
Rural -1.915∗ (0.769)

Control type
For-profit (.) (.)
Government -5.184∗∗∗ (0.754)
Nonprofit -3.642∗∗∗ (0.609)

Constant 9.872∗∗∗ (0.944)
Observations 1960

Note. Robust standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. (.) indicates
variable dropped due to collinearity.

quality. On the one hand, larger hospitals may have lower costs of investment per patient

due to economies of scale. In other words, the cost of inputs necessary for quality improve-

ment, such as a policy initiative or an additional team of analysts, could be spread among

a bigger patient base, reducing the cost of investment per patient. On the other hand, since

larger hospitals are more likely to be associated with a more complex internal structure,

such hospitals may need to incur higher costs to improve their quality. Using the estimated

cost values, we find that hospitals with a larger number of inpatient beds are associated with

higher cost of investment. In particular, we find that medium hospitals with 200–299 beds

are associated with higher cost of investment per adjusted patient by $4 compared to small

hospitals. Hospitals with 400 or more beds are associated with higher cost of investment by

$7 compared to small hospitals and $3 compared to medium hospitals.

Aligned with the idea that hospitals with more complex internal structures must incur
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Figure 2.3: Estimated distribution of hospitals within the quality ladder from 2011 to 2018
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additional cost of investment, we find that teaching hospitals tend to have higher cost of

investment compared to non-teaching hospitals. We also find that the location in which a

hospital operates has an effect on the cost of quality investment. We test this using the

core-based statistical area (CBSA) in which each hospital belongs. Areas under CBSA are

grouped into three categories: metropolitan, micropolitan, and rural. We find that hospitals

that operate in metropolitan areas incur higher cost of investment compared to hospitals

that operate in micropolitan and rural areas. Finally, we find that for-profit hospitals tend

to have the highest investment costs and government hospitals tend to have the lowest

investment costs, with nonprofit hospitals in the middle. We use the result of this exercise

as motivation for the counterfactual analyses, discussed in Section 2.6, where we test the

efficacy of yardstick competitions with tailored peer groups in which hospitals only compete

with other hospitals of the same type. The rationale is that since different types of hospitals

have different underlying distribution of investment costs, the yardstick competition should

be more inducive to quality improvement when the competition occurs among hospitals with

a similar level of investment costs.
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Figure 2.4: Changes in the distribution within the quality ladder
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2.5.2. Quality Ladder

Similar to the cost of investment, we also recover the most likely path of quality levels for

each hospital. We present the distribution of hospitals in each quality level in Figure 2.3.

We find that a large portion of hospitals (40%) are in the middle level. 37% of hospitals

are in the second bottom level, indicating that the majority of the hospitals fall somewhere

in the middle or the lower level. 12% of hospitals are in the lowest level, and 5% and 6%

of hospitals are in the highest and the second highest level, respectively. This finding is

in line with the intuition on the hospital industry that the majority of the hospitals have

medium quality and there are hospitals with lower quality and a small set of hospitals with

exceptional quality.

Next, we examine the changes in the distribution within the quality ladder from the be-

ginning of the implementation of the VBP Program until 2018. Figure 2.4 highlights the

dynamic nature of quality improvements and how hospitals responded to the yardstick com-

petition. First, we find that the distribution of hospitals in each quality level rapidly changed

from 2011 to 2014. Beginning in 2015, the distribution settles down, suggesting that hos-
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pitals first actively responded to the yardstick incentives until an equilibrium was reached

in 2015. Second, the percentage of hospitals in the top two quality ladder levels actually

decreased over the implementation of the VBP Program. This finding is in line with the

intuition behind the yardstick competition in which a hospital does not necessarily have to

be the absolute best hospital, but it just has to be above enough hospitals to be rewarded

incentive payments. In contrast, we find that hospitals in the second lowest level were most

incentivized by the program, which again intuitively makes sense because a hospital needs

to beat the median performance of all peer hospitals in order to start earning incentive

payments. The hospitals in the lowest level seem to respond at first to the yardstick compe-

tition and improve their quality. However, as they discover that the distribution of quality

also increased, primarily driven by the second lowest group, the hospitals eventually lose

interest, and we find that the percentage of hospitals in the lowest group rapidly drops for

the first three years or so and then gradually increases again. Overall, the yardstick compe-

tition resulted in more hospitals converging toward the middle, resulting in decreases in the

percentage of hospitals in both the higher and lower quality groups.

In terms of mobility within the quality ladder, we find that only 16% of all hospitals stayed

in the same quality level over the entire study period. In total, 63% of all hospitals moved

up a quality level at least once, and 58% moved down a quality level at least once. In terms

of range of movement between quality levels, we find that 69% of all hospitals stayed within

a single level or a nearest level, 24% of hospitals were part of three quality levels during

the study period, and the remaining 7% were part of more than four quality levels. This

suggests that hospitals were able to improve their quality, or let their quality degrade, as

measured by the quality measures included in the Hospital VBP Program. Furthermore, this

again provides evidence that a large number of hospitals did in fact respond to the yardstick

incentives created by the Hospital VBP Program.
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2.5.3. Emission Distributions of Performances in Quality Measures

Next, we present the parameters of the distributions of performances for hospitals in each

quality level. Table 2.4 presents the means and standard deviations for each quality measure

used in the Hospital VBP Program by quality levels. The estimated parameters show that the

distributions of performance scores across quality levels for most measures are significantly

different from each other, suggesting that the hospitals can be considered clustered by the

quality ladder structure as we have assumed. Furthermore, the differences in the distributions

across quality levels imply that hospitals have ample incentive to invest in quality, i.e., to

move up a quality ladder to receive higher performance scores, which in turn are translated

into higher incentive payments.
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Table 2.4: Emission distributions of performance scores by quality ladder

Measure ID Quality level 1
(lowest)

Quality level 2 Quality level 3 Quality level 4 Quality level 5
(highest)

AMI-7a 0.000 (0.000) 0.754 (0.784) 0.754 (0.780) 1.000 (0.045) 1.000 (0.000)
AMI-8a 0.905 (0.132) 0.960 (0.097) 0.984 (0.061) 0.984 (0.091) 1.000 (0.000)
COMP-HIP-KNEE -0.026 (0.007) -0.026 (0.005) -0.026 (0.005) -0.026 (0.007) -0.024 (0.004)
HAI-1 -0.726 (0.869) -0.517 (0.566) -0.458 (0.589) -0.271 (1.364) -0.271 (0.614)
HAI-2 -0.720 (0.823) -0.720 (0.692) -0.720 (0.784) -0.360 (1.779) -0.360 (0.896)
HAI-3 -0.841 (1.061) -0.834 (0.827) -0.834 (0.804) -0.709 (1.499) -0.489 (0.796)
HAI-4 -0.738 (1.148) -0.738 (1.162) -0.738 (1.014) -0.738 (0.888) -0.738 (0.953)
HAI-5 -1.090 (1.124) -0.879 (0.810) -0.818 (0.821) -0.818 (1.567) -0.518 (1.160)
HAI-6 -0.820 (0.462) -0.820 (0.377) -0.793 (0.426) -0.793 (0.923) -0.793 (0.500)
HCAHPS-CD 0.744 (0.033) 0.780 (0.025) 0.814 (0.025) 0.834 (0.034) 0.850 (0.025)
HCAHPS-CM 0.570 (0.038) 0.612 (0.027) 0.653 (0.029) 0.673 (0.043) 0.702 (0.033)
HCAHPS-CN 0.719 (0.034) 0.768 (0.021) 0.809 (0.022) 0.819 (0.028) 0.850 (0.020)
HCAHPS-CQ 0.585 (0.049) 0.623 (0.043) 0.676 (0.043) 0.708 (0.043) 0.732 (0.043)
HCAHPS-CT 0.432 (0.038) 0.490 (0.029) 0.537 (0.031) 0.537 (0.048) 0.595 (0.033)
HCAHPS-DI 0.825 (0.033) 0.861 (0.023) 0.882 (0.021) 0.882 (0.029) 0.903 (0.018)
HCAHPS-OVR 0.594 (0.052) 0.679 (0.040) 0.739 (0.043) 0.739 (0.060) 0.801 (0.041)
HCAHPS-PM 0.636 (0.037) 0.681 (0.022) 0.719 (0.024) 0.719 (0.040) 0.755 (0.027)
HCAHPS-RS 0.567 (0.051) 0.621 (0.038) 0.680 (0.042) 0.717 (0.050) 0.748 (0.045)
HF-1 0.892 (0.138) 0.935 (0.081) 0.960 (0.040) 0.960 (0.144) 1.014 (0.058)
IMM-2 0.913 (0.103) 0.943 (0.063) 0.961 (0.035) 0.961 (0.073) 0.992 (0.013)
MORT-30-AMI 0.859 (0.012) 0.859 (0.013) 0.859 (0.013) 0.859 (0.008) 0.859 (0.010)
MORT-30-HF 0.880 (0.013) 0.880 (0.015) 0.880 (0.015) 0.880 (0.011) 0.881 (0.011)
MORT-30-PN 0.886 (0.015) 0.886 (0.016) 0.886 (0.016) 0.886 (0.015) 0.889 (0.013)
MSPB-1 -1.016 (0.076) -1.001 (0.060) -0.987 (0.059) -0.966 (0.077) -0.958 (0.063)
PC-01 -0.001 (0.055) -0.001 (0.050) -0.001 (0.050) 0.000 (0.000) 0.000 (0.000)
PN-3b 0.964 (0.042) 0.979 (0.027) 0.984 (0.017) 0.984 (0.047) 1.009 (0.023)
PN-6 0.941 (0.061) 0.960 (0.036) 0.960 (0.027) 0.960 (0.074) 1.012 (0.037)
PSI-90 -0.599 (0.164) -0.571 (0.146) -0.538 (0.137) -0.525 (0.101) -0.506 (0.104)
SCIP-Card-2 0.927 (0.081) 0.971 (0.029) 0.991 (0.014) 1.008 (0.158) 1.026 (0.046)
SCIP-Inf-1 0.974 (0.036) 0.987 (0.014) 0.995 (0.007) 1.005 (0.102) 1.005 (0.018)
SCIP-Inf-2 0.969 (0.036) 0.987 (0.012) 0.994 (0.006) 1.000 (0.088) 1.004 (0.016)
SCIP-Inf-3 0.949 (0.045) 0.976 (0.017) 0.984 (0.010) 0.984 (0.079) 1.000 (0.020)
SCIP-Inf-4 0.935 (0.056) 0.958 (0.040) 0.978 (0.026) 0.980 (0.081) 0.997 (0.032)
SCIP-Inf-9 0.923 (0.091) 0.961 (0.035) 0.990 (0.014) 1.008 (0.140) 1.008 (0.023)
SCIP-VTE-1 0.960 (0.039) 0.983 (0.013) 0.996 (0.006) 0.998 (0.154) 1.007 (0.015)
SCIP-VTE-2 0.961 (0.049) 0.981 (0.021) 0.996 (0.010) 1.003 (0.137) 1.003 (0.015)

Note. Standard deviations in parentheses.
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Note that the distributional assumption that the performance scores follow rectified normal

distributions implies that some of the estimated means will be above the upper bound of a

measure. E.g., quality level 5’s mean for HF-1, which measures the proportion of heart failure

patients given appropriate discharge instructions, is 1.014. This implies that the hospitals

in the highest quality level on average have latent quality with a mean above the upper

bound, and the latent performances are censored by the upper bound. The quality measures

with negative mean indicate that the performance in the measure is scored in a way that a

lower absolute value of the score indicates better performance. We simply multiply negative

one to these measures so that a higher number, whether negative or positive, indicates

better performance. For example, the highest quality level’s expected score on HAI-1, which

measures the rate of CLABSI acquired within the hospital, is 0.271, whereas the expected

score on the same measure for the lowest quality level is 0.726. We therefore both report

and treat them in our analyses as negative numbers.

2.5.4. Transition Matrices

Lastly, we present the estimated investment-dependent transition matrices. As discussed

in Section 2.4.2, we assume that the quality of a hospital follows an investment-dependent

Markov process where the state consists of five quality levels. Table 2.5 presents the transition

matrices governing the Markov process. The results show that hospitals in the lower spot

on the ladder tend to have smaller probability of the quality decreasing when investment

is not made. For instance, the probability of moving down from the second level (0.12) is

much lower than the probability of moving down from the fourth level (0.45) or the top

level (0.39). In contrast, investment is more likely to result in improvement in quality when

hospitals are in a lower spot on the ladder. For instance, the probability of moving up from

the first level (0.48) is much higher than the probability of moving up from the fourth level

to reach the top level (0.21). This result is coherent with the intuition that improving quality

becomes increasingly difficult for hospitals already with high quality. In other words, from

the perspective of a hospital with relatively low quality, investment in quality may result in

a much more certain improvement because the hospitals can choose to tackle “low-hanging
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Table 2.5: Investment-dependent transition matrices

No investment Investment

1 2 3 4 5 1 2 3 4 5

1 1.00 0 0 0 0 1 0.52 0.48 0 0 0

2 0.12 0.88 0 0 0 2 0.07 0.65 0.28 0 0

3 0 0.17 0.83 0 0 3 0 0.12 0.78 0.10 0

4 0 0 0.45 0.55 0 4 0 0 0.40 0.40 0.21

5 0 0 0 0.39 0.61 5 0 0 0 0.28 0.72

Note. Each box represents the probability of transitioning from the quality level on the left to that
on the top. Level 5 represents the group with the highest quality.

fruits” and implement policies to improve the quality of care to a certain level. However,

once those options are exhausted, future investment in quality will need to be more subtle

and strategic.

2.6. Implications for Alternative Designs of the Yardstick Competition

The structural estimation method employed in this work allows us to not only recover unob-

served parameters around cost of quality improvement and outcomes of investment but also

perform counterfactual analyses to simulate different designs of the yardstick competition.

The benefit of performing counterfactual analyses is that we can evaluate the current policy

against alternative policies and ultimately have the ability to prescribe a policy based on

the goal of the firms or government agencies implementing yardstick competitions.

First, we examine the responses of the hospitals to changes in the size of the yardstick

incentives. The current program redistributes 2% of all Medicare payments, and we simulate

the responses of the hospitals under a range of schemes that redistributes 1% of payments

all the way up to 4% of payments in 0.25% increment. We find that the industry overall

invests more heavily in quality improvements as the size of the yardstick incentives increases.

However, the marginal gain from investment in terms of quality improvements decreases as

the total cost of investment that the entire industry incurs increases.

Second, we simulate tailored policies where hospitals compete for yardstick incentives against
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other hospitals of similar type. Motivated by the finding that the distribution of cost of

investment varies by a significant amount across hospitals with different sizes, locations,

and types, we simulate two yardstick competitions with tailored peer groups: (1) size-based

competition where hospitals compete with other hospitals with similar bed size and (2) type-

based competition where hospitals compete with other hospitals that operate in a similar

setting.

Counterfactual equilibrium Before we present the results of the counterfactual studies,

we describe the method in which we obtain counterfactual results. Obtaining the equilibrium

under a counterfactual policy requires that the investment decisions, and subsequently the

trajectory of quality levels and performances in quality measures, are self-consistent with

the environment in which each hospital competes. In other words, while we assume that

hospitals take into consideration not each and every other hospital participating in the

yardstick competition but rather the distribution of all other hospitals, the performances

in quality measures and the composite scores that each hospital receives must be able to

regenerate the industry-level distribution.

We compute the counterfactual equilibrium through an iterative process, where we first ob-

tain optimal dynamic investment policies given observed distributions of performances in

quality measures and composite scores. Using the initial quality levels identified through the

estimation process, we forward simulate the trajectory within the quality ladder for subse-

quent periods using the dynamic investment policies and investment-dependent transition

matrices. We then draw performances in each quality measure for each hospital using the

estimated emission distributions given the sample path of quality levels for the hospital. In

turn, we use the performances in quality measures to compute the composite scores that

each hospital receives. In the next iteration, we update the industry-level distributions of

performances in quality measures and composite scores by combining all hospitals’ draws

of performances in quality measures and composite scores. We repeat the first steps of ob-

taining dynamic investment policies, forward simulating the trajectory within the quality

ladder, and drawing performances in quality measures and composite scores. We iterate this
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process until the distributions of performances in quality measures and composite scores

converge to stationary points, i.e., updated distributions no longer deviate from previous

iterations. We discuss the details of the convergence criteria in Appendix A.4.

2.6.1. Changing the Size of Yardstick Incentives

One of the most salient aspects of the yardstick competition from the perspective of the

hospitals that are subject to the program is the size of the incentive payments. For the case

of the VBP Program, the size of the incentive payments is directly related to the percentage

of Medicare payments withheld and redistributed. In the first set of counterfactual analyses,

we examine the effect of changes in the percentage of Medicare payments that are withheld.

Conceptually, hospitals overall would respond to higher incentive payments by investing in

quality more frequently. On the other hand, if the size of the incentive payments is too small,

then more and more hospitals will find the incentive payments to be not worth the cost of

investment. However, the degree to which hospitals respond to different sizes of yardstick

incentives is not clear and must be empirically analyzed.

To examine the responses of hospitals to changes in the size of yardstick incentives, we vary

the percentage of Medicare payment withholdings from 1% to 4% in increments of 0.25%.

Noting that the current program started off withholding 1% of payments and then gradually

increased the percentage to 2% over a five-year period, we follow the same suit and increase

the payment percentage in a linear manner from 1% to the counterfactual target percentage

over a five-year period. The exact payment percentages withheld used in the counterfactual

analyses are presented in Table A.4 of Appendix A.1.

To illustrate the effect of changing the size of yardstick incentives, we present in Figure

2.5 the impact on two selected quality measures that represent two different dimensions of

quality: CLABSI and hospital overall rating. First, CLABSI is one of the most common,

yet potentially lethal, hospital-acquired infections where bacteria or viruses enter the blood-

stream through the central venous catheter and cause an infection (Haddadin et al., 2021).

It is estimated that as many as 28,000 patients die from CLABSI annually in the U.S. alone
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Figure 2.5: Counterfactual results of changes in Medicare payment withholding percentage
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(AHRQ, 2021). We find that increasing the percentage of payments that are withheld for the

program from 2% to 3% results in an increase of $646M in total investment in quality from

2011 to 2018, which can lead to a 2.1% decrease in the average rate of infection. Increasing

the size of yardstick incentives even further to 4% can result in an average decrease of 3.3%

in the rate of infection.

Second, hospital overall rating represents patient satisfaction, and it is measured by the

proportion of patients who gave the hospital a 9 or 10 on a patient satisfaction survey

question asking the patient to rate the hospital on a 10-point scale. We find that increasing

the size of yardstick incentives to 4% can result in a 1% increase in the average proportion

of patients who would rate their hospital as 9 or 10. On the other hand, reducing the size of

yardstick incentives to 1% can lead to a 1.4% decrease in the average proportion of patients

who are satisfied with their hospital.

Overall, we confirm that hospitals respond to changes in the size of yardstick incentives by

changing their investment decisions, and this analysis highlights the importance of setting

the appropriate size of yardstick incentives. Furthermore, it can be used to prescribe a

specific level of incentive payments given a desired average level of quality.

2.6.2. Tailored Peer Groups

The next set of counterfactual analyses is motivated by our finding that the costs associ-

ated with investment in quality significantly vary across different types of hospitals. Shleifer

(1985) posits that modifying the yardstick competition by adjusting the compensation based

on the expected cost of effort can result in optimal outcomes when firms have heterogeneous

costs of effort. The intuition is that hospitals with higher cost of investment will find in-

centive payments to be insufficient as hospitals with lower cost push up the distribution of

quality. In contrast, hospitals with lower cost of investment will find quality improvements

to be even more rewarding as the incentive payments are in part made higher due to the

lack of investment from hospitals with higher costs. Therefore, tailoring the peer groups in

which hospitals compete for yardstick incentives can be an effective solution if the goal of
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the policymaker is to ensure a certain level of quality over the entire industry, i.e., reduce

the variation in quality, or induce quality investments from hospitals with higher cost of

investment.

One potential implementation of such modification is to group hospitals by characteristics

that are known to be associated with cost of investment, making hospitals compete with peer

hospitals with similar distribution of cost of investment. We examine two alternative schemes

based on our finding that the cost of investment has statistically significant association with

the size of the hospital, measured by the number of inpatient beds, and operating location,

grouped by metropolitan, micropolitan, and rural areas, as well as being a teaching hospital.

Under each of these alternative schemes, the overall size of the yardstick incentives is kept

at the “baseline” level of 2%.

First, we analyze the effect of a yardstick competition with size-based peer groups in which

hospitals are categorized based on the size of the hospital. In particular, we divide the

hospitals into six categories: less than 49 beds, 50–99 beds, 100–199 beds, 200–299 beds,

300–399 beds, and 400 or more beds. We choose these categories following how Medicare

classifies hospitals by bed size. As presented in Section 2.5.1, we find that larger hospitals

tend to incur higher cost of investment, likely driven by their more complex organizational

structures. Second, we analyze the effect of type-based peer groups in which hospitals that

operate in a similar setting, in terms of location and teaching designation, are grouped

together. The location is categorized by metropolitan, micropolitan, and rural areas, and we

separate teaching hospitals as an individual group because we find that teaching hospitals

incur higher cost of investment even after the operating location is controlled for. This is

in line with the idea that even if two hospitals operate in the same metropolitan area, for

example, an academic medical center will be vastly different from a community hospital.

Again, we highlight the counterfactual results using two quality measures: CLABSI and

hospital overall rating. We report our findings in Figure 2.6, where we compare the out-

comes of tailored yardstick competitions against the “blanket approach” where all hospitals
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Figure 2.6: Counterfactual results of yardstick competition with tailored peer groups
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non-discriminatorily compete for the same yardstick incentives. We find that both tailored

yardstick competitions are successful in inducing quality improvements from groups of hos-

pitals associated with higher cost of investment. In particular, we find that hospitals with

400 or more beds, the group associated with highest cost of investment, having the hospitals

compete for yardstick incentives within the group of largest hospitals results in an average

reduction of 1.2% in the rate of infection as well as an increase of 0.45% in the proportion

of patients who rate their hospital as 9 or 10. We find similar patterns for the tailored yard-

stick competition with type-based peer groups that categorize hospitals based on location

and teaching designation. We find that for teaching hospitals, the group associated with

higher cost of investment, tailored peer groups lead to a reduction of 1.4% in the rate of

infection and an improvement of 0.5% in the proportion of patients who are satisfied with

their hospital. In contrast, we find that in both tailored yardstick competitions, the average

quality of the groups with lower cost of investment actually declines by a small margin,

suggesting that hospitals with lower cost of investment are over-incentivized and hospitals

with higher cost of investment are under-incentivized under the blanket approach.

Our finding not only supports the intuition on how different hospitals with different cost of

investment respond to yardstick incentives but also highlights the importance of understand-

ing the underlying distribution of costs associated with quality investment. The two sets of

counterfactual analyses lend themselves to the possibility of combining the two approaches

we explored. For instance, since we observe that larger hospitals and teaching hospitals have

the highest cost of investment, and therefore generally lower performance in quality mea-

sures, policymakers can combine the two approaches and vary the size of yardstick incentives

in each peer group for a more effective competition.

2.7. Discussion and Conclusion

In this work, we employ a novel application of structural estimation methods to empirically

investigate the VBP Program, a quality-based yardstick competition that involves almost the

entire hospital industry in the U.S. We model hospitals’ responses to the quality-based yard-
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stick competition as a dynamic equilibrium where hospitals engage in quality investments

by weighing the costs of investment against the expected benefits from incentive rewards

that take into account both the individual hospital’s quality as well as the distribution of

peer hospitals’ quality. Using a hidden Markov chain framework to model changes in quality

of care, we estimate structural parameters that allow us to analyze how hospitals respond

to the yardstick competition.

In our analysis, we adopt the perspective of the payer for health care services and treat the

current implementation of the VBP Program as a diagnostic tool that reveals the hidden

costs of quality investments within the U.S. hospital system. Our initial goal, the estimation

of financial and non-financial costs associated with quality investment for individual hospitals

comprising this system, serves as a bridgehead for the main task of designing future yardstick

incentive schemes. Our analysis focuses on two alternatives to the current implementation of

the yardstick incentives. Under the first alternative, the peer yardstick group encompasses

all hospitals, as is done under the current VBP Program, but the overall size of the yardstick

incentives is varied. Under the second alternative, the size of the yardstick incentives is kept

at the current 2% level, but we design tailored peer groups that only include hospitals with

similar type or size. We find that increasing the size of the incentives from 2% to 4% can

lead to a 3.3% reduction in the average rate of CLABSI and a 1% increase in the average

proportion of patients who rate their hospital 9 or 10 on a 10-point scale. We also find that

designing tailored peer groups, even without changing the size of the incentives, can lead to

an average reduction of 1.4% in the rate of CLABSI among groups of hospitals associated

with the highest costs of quality investment. Our analysis is designed to enable payers to

perform quantitative assessments of the impact of alternative yardstick programs on the

achieved quality of patient care.

Our work has significant managerial and policy implications. Most directly, the underlying

structure and parameters estimated in this work can be used to inform policymakers on how

to better design yardstick competitions. Furthermore, large insurance firms in the U.S. have
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also been incorporating both cost-based and quality-based yardstick incentives into their

provider reimbursement policies and, thus, can utilize our findings to better understand how

effective these policies can be. Although we focus our analysis on the hospital industry in the

U.S., our work has further implications for other industries with potential to use yardstick

incentives to motivate behavioral changes. For instance, online gig-economy platforms can

use yardstick incentives to induce competition among service providers that reaches outside

of a particular local market or service area. Yardstick competition can be utilized in other

settings in the health care industry as well, such as for large “home-based” health care

agencies with offices in multiple locations or different physician groups within a large hospital

system.

Finally, there are limitations in this work that also outline avenues for future research.

First, our assumption that investment in quality is a binary action may not hold in reality.

Although the framework that we propose can be easily modified to include multiple levels of

investment decisions, the estimation of an increased set of parameters would require much

more detailed data collected over a longer observation period. Second, although we do not

find evidence that the change in performance on the set of quality measures selected for the

VBP Program leads to changes in hospital throughput, the quality of care may be positively

correlated with patient demand for care in settings where there exists a significant level of

local competition among hospitals. An examination of the impact of geographic competition

on the performance of yardstick incentives represents an interesting direction for future work.
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CHAPTER 3

The Spillover Effects of Capacity Pooling in Hospitals

3.1. Introduction

Hospitals often face significant variability in demand, both in terms of the number of patients

needing care and the type of care needed by each patient. While such variability exists on

the demand side, hospitals operate with a fixed number of beds, not only across the entire

hospital but also within each specialty service (e.g., Cardiology, General Surgery, etc.), which

is allocated a fixed number of beds. The mismatch between the number and type of patient

arrivals and the capacity of hospital beds presents significant challenges in matching the

supply with the demand.

One of the strategies employed by hospitals and many other industries that face similar

problems is capacity pooling. This practice allows the hospital to utilize underused capacity

in a less busy service when other services are at or near full capacity. Pooling the capac-

ity of hospital beds results in the placement of patients of a focal service in a bed that

is located in a unit that has been designated for another service; this is called “off-service

placement” (Dong et al., 2020; Stylianou et al., 2017; Song et al., 2020). While off-service

placement allows for a more efficient use of beds, recent empirical work has found that off-

service placement has negative consequences when it comes to the care provided for the

patients who are placed off service. Stylianou et al. (2017) find that these patients have

longer lengths of stay on average. Song et al. (2020) obtain similar results using an instru-

mental variable approach to estimate the causal effect of off-service placement, finding that

off-service patients experience longer lengths of stay and a higher likelihood of readmission

within 30 days.

An important question that remains is whether the practice of off-service placement has any

downstream effects on the rest of the patient population that is not impacted by the prac-

tice first-hand. In other words, are there any spillover effects of off-service placement that
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hospital administrators should be aware of? The existing literature has not yet explored this

possibility of off-service placement having a broader spillover effect on patients who have

not been placed off service themselves but do belong to the same service that has some of

its patients placed off service. A priori, the answer to this question is not obvious. While it

is possible that the consequences of off-service placement are limited to the negative first-

order effects previously documented, the broader impact on the workflow of the physicians

who are caring for all patients on their service—regardless of their placement—could lead

to substantial negative spillover effects whereby patients who are placed on service are also

negatively impacted. Understanding these spillover effects is important to hospital adminis-

trators because they have significant implications for managing hospital capacity, especially

given many hospitals operate at very high levels of utilization.

In this paper, we quantify the spillover effects of off-service placement as they are experienced

by on-service patients of the same specialty service. From the perspective of an on-service

patient, the extent to which patients who belong to the same service are placed off ser-

vice will change constantly over the course of her hospitalization due to the inbound and

outbound movements of other patients. To fully capture the spillover effect of off-service

placement while simultaneously accounting for its time-varying nature, we operationalize

two key components of off-service placement experienced by a given on-service patient: the

level of off-service placement (i.e., the overall degree to which patients belonging to the

service are placed off service) and the volatility of off-service placement (i.e., the frequency

and the magnitude of the changes in the degree to which patients belonging to the service

are placed off service).

Using an instrumental variable approach, we find that off-service placement has substantial

negative spillover effects on the efficiency and quality of care received by on-service patients.

First, patients placed on service tend to experience longer lengths of stay when the average

level of off-service placement for the service is high. Specifically, a one standard deviation

increase in the level of off-service placement during a patient’s hospitalization is associated
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with a 29% increase in length of stay. When the volatility of off-service placement is high,

patients experience not only longer lengths of stay but also a higher likelihood of readmission

to the hospital within 30 days and a higher likelihood of clinical trigger activation. In this

case, a one standard deviation increase in the volatility of off-service placement during a

patient’s hospitalization is associated with a 13% increase in length of stay.

Using the point estimates from our empirical analyses, we conduct a series of counterfactual

analyses to show the expected performance of several alternate routing policies that may be

able to reduce the negative impact of off-service placement while retaining the benefits of

capacity pooling. We find that limiting the practice of reserving on-service beds in antici-

pation of future demand can lead to significant reductions in the overall level of off-service

placement, which in turn is expected to result in better patient outcomes. A policy of board-

ing patients for an extra hour when an on-service bed is expected to become available soon

and another policy of prioritizing early discharges may also be effective in reducing the level

of off-service placement; both of these policies are expected to lead to shorter lengths of stay

and a decreased likelihood of clinical trigger activation.

A key contribution of this work lies in the quantification of the spillover effects of off-service

placement. In doing so, we add to the recent stream of work analyzing the effects of off-service

placement in health care delivery settings, especially with regards to challenges and unin-

tended consequences when implementing capacity pooling strategies (Stylianou et al., 2017;

Song et al., 2020; Dong et al., 2020; Kim et al., 2020). More broadly, this work also con-

tributes to the literature on capacity management in health care delivery settings (Shi et al.,

2016; Xie et al., 2020; Dai and Shi, 2020; Dong and Perry, 2020). The practical implications

of our work are substantial, given many hospitals utilize off-service placement as a capac-

ity pooling strategy. For hospital managers, our work further highlights the importance of

better managing off-service placement since its impact is not only limited to those patients

who are placed off service themselves but also extends to the patients who are placed in

on-service beds, effectively impacting the entire population of hospitalized patients.

46



The rest of the paper is organized as follows. Section 3.2 discusses off-service placement in

more detail, paying particular attention to the level and the volatility of off-service placement

as it impacts on-service patients. The research setting and data are introduced in Section 3.3.

Section 3.4 motivates our empirical strategy of using instrumental variables. We specify the

empirical models and present the main results in section 3.5. Section 3.6 presents alternate

specifications, including nonlinear analyses and additional robustness checks. The procedures

and results of the counterfactual simulation studies are discussed in section 3.7. Section 3.8

concludes.

3.2. Off-Service Placement: First-Order Effects and Spillover Effects

In recent years, there has been a growing body of work that seeks to understand the effects

of off-service placement on patient outcomes and system performance. In this section, we

provide a brief overview of the existing literature and motivate why there is a need to better

understand the potential spillover effects of this practice.

3.2.1. First-order Effects of Off-service Placement

To date, the research that studies this widespread practice of off-service placement can be

characterized as focusing on its first-order effects. Some of this work has sought to ad-

dress the question of how off-service placement impacts the efficiency and quality of care

received by patients who themselves have been placed off service. Using an instrumental

variables approach, Song et al. (2020) estimate that being placed off service is associated

with a 23% increase in length of stay and 13% increase in the likelihood of 30-day hospi-

tal readmission for hospitalized medical/surgical inpatients. Similar effects are documented

in studies that focus on specific specialty services, such as general medicine (Kohn et al.,

2020a; Bai et al., 2018), pulmonary medicine (Kohn et al., 2020b), and cardiac medicine

(Alameda and Suárez, 2009).

Meanwhile, others have focused on the decision-making process underlying the bed place-

ments and its impact on system-wide performance. Shi et al. (2016) develop a stochastic

network model that allows for off-service placement to show the effects of this practice
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on average waiting time performance. Dong et al. (2020) find that bed managers are more

likely to place patients off service when the service is busy and the admission occurs during

the overnight shift. They also illustrate that a more uniform routing policy could reduce

the overall levels of off-service placement and improve system performance. In contrast,

Dai and Shi (2019) treat the bed manager’s decision-making process as a Markov decision

process and solve for the optimal routing policy using approximate dynamic programming.

Izady and Mohamed (2021) propose a routing policy in which a cluster of services have a

designated flex unit to which patients can be admitted. They find that an optimal configu-

ration of these clusters can lead to reductions in the cost of denied admissions.

3.2.2. Spillover Effects of Off-service Placement

Beyond the first-order effect, placing patients off service may have an important second-

order effect as well, which we refer to as the spillover effect. There are two ways in which a

spillover effect of off-service placement could impact on-service patients. First, there may be

a spillover effect at the service level, wherein on-service patients belonging to a particular

service may be impacted by the extent to which there are off-service patients who also

belong to the same service. Second, there may be a spillover effect at the unit level, wherein

on-service patients located in a particular unit may be impacted by the extent to which

there are off-service patients who are located in the same unit. In this paper, we focus

specifically on the service-level spillover effects for two inter-related reasons. First, we are

interested in understanding how the practice of off-service placement impacts the work being

carried out by physicians and nurses. Whereas unit-level spillover effects are expected to be

impacted by the work being done by nurses, service-level spillover effects should be impacted

by the work of both nurses and physicians. Second, prior work by Song et al. (2020) shows

that the work of physicians may be more impacted by off-service placement than that of

nurses, given their examination of potential mechanisms underlying the first-order effects

of off-service placement. For brevity, we refer to service-level spillover effects simply as the

“spillover effect” in the remainder of this paper.
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Prior research shows convincingly that the efficiency and quality of care for patients

is impacted by operational factors such as the system’s load (Kc and Terwiesch, 2009;

Kuntz et al., 2015; Berry Jaeker and Tucker, 2017), service level mismatch (Kim et al., 2015;

Chan et al., 2019), and facility layout (Meng et al., 2020). The spillover effect of off-service

placement, separately accounting for the previously documented operational factors such

as system load, may be another important aspect that has been overlooked. It is also par-

ticularly difficult to operationalize because the extent to which the service is engaged in

off-service placement is continuously changing over the course of a given patient’s hospital-

ization. For the sake of exposition, consider for example Patient A who was admitted to

the General Medicine service and placed in an on-service bed. When she was first admit-

ted, say the General Medicine service had 100 patients under its care, of whom 20 were

placed off service. As other patients are admitted to, discharged from, and transferred into

and out of the General Medicine service, both the total number of patients who belong to

the General Medicine service and the number of General Medicine patients who are placed

off service continuously changes. Say halfway through her hospitalization, the service has

110 patients under its care with 30 placed off service. By the time she is ready to be dis-

charged, the service has 90 patients with 12 placed off service. In this example, the extent to

which the General Medicine service is engaged in off-service placement during Patient A’s

hospitalization evolves over time from 20% to 27% to 13%.

The example of Patient A highlights that there may be two relevant dimensions through

which off-service placement may impact patients who are placed on service: the level of off-

service placement as experienced by the on-service patient and the volatility of off-service

placement as experienced by the on-service patient. While the former captures the extent

to which the service engages in off-service placement on average, the latter captures the

fluctuation in off-service placement that occurs during the course of the on-service patient’s

hospitalization. We hypothesize that each of these factors will have a negative impact on

the efficiency and quality of care experienced by patients who are placed on service.
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There are several potential mechanisms through which increases in the level of off-service

placement might negatively impact on-service patients. First of all, physicians provide care

for all patients who belong to the service, regardless of whether the patient is placed in an

on-service bed or in an off-service bed. In contrast, nurses are only responsible for the care of

patients who are located in their unit, regardless of the service to which the patient belongs.

As a result, having patients placed in an off-service unit creates an ad hoc team comprised

of the service’s physicians and the unit’s nurses, who do not have an established working

relationship. Higher levels of off-service placement may increase the number of such ad hoc

teams being formed, which are likely to result in increased coordination costs (Reagans et al.,

2005; Dobson et al., 2009). Having more off-service patients may also create disruptions to

the provider workflow, as the care coordination meetings and rounds for off-service patients

require physicians to allocate additional time outside of their normal routine (Gesensway,

2010). Typically, this involves physically traveling to the unit where the off-service patient

is located, which consumes additional time and further disrupts the physician’s workflow.

Although we do not focus on distance as a key metric in this paper, Meng et al. (2020)

find that the distance between patient beds and the nurses’ station significantly affects care

patterns, such that nurses are more likely to batch tasks for patients who are located in

rooms that are farther away. Similarly, we expect the provision of care to be different for

patients who are placed on service versus off service, and that the care provided for off-

service patients may in turn affect the way in which care is provided for on-service patients.

Taken together, we hypothesize that increases in the level of off-service placement will lead

to decreases in the efficiency and quality of care for patients who are placed on service.

There are also several ways in which the volatility of off-service placement, caused by large

and frequent changes in off-service placement, may create disruptions to the process of deliv-

ering care to on-service patients. In the operations management literature, it has long been

established that high levels of variability—a measure of volatility—are associated with higher

cost and lower quality (Lee and Tang, 1998; de Treville and Antonakis, 2006; Sriram et al.,

2015; Lee et al., 2004; Fisher and Raman, 1996). In the health care setting specifically, re-
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ducing variability in patient flow and patient types is associated with improvements in op-

erational efficiency (Chand et al., 2009; Litvak et al., 2005; Soremekun et al., 2011). When

it comes to off-service placement, we expect that having highly volatile levels of off-service

placement across the service would be associated with disruptions to the care delivery pro-

cess and higher demands on physicians’ time, since admissions, transfers, and discharges

involving off-service patients mechanically increase the volatility of off-service placement.

Admissions into off-service beds create disruptions for on-service patients because physi-

cians must now travel to and care for patients located elsewhere. When patients are located

farther away rather than co-located, the additional travel increases the workload, further ex-

acerbating the negative effects of increased workload on outcomes (Kc and Terwiesch, 2009;

Aiken et al., 2002). Even when off-service patients are discharged, which would lower the

level of off-service placement and the workload of the service’s physicians, physicians must

dedicate additional time and attention during these events (e.g., to disposition decisions

and discharge planning), which can in turn cause disruptions for other patients who are

on service. Such disruptions are exacerbated by the fact that otherwise-routine rounds and

meetings with nursing teams (during which discharge planning is often discussed) are usually

absent for off-service patients. Furthermore, movements involving off-service patients result

in the formation and dissolution of ad hoc teams of physicians and nurses, which can also

disrupt the care of other patients who are on service. Thus, we hypothesize that large and

frequent changes, regardless of the direction, in the level of off-service placement will lead

to decreases in the efficiency and quality of care for patients who are placed on service.

3.3. Research Setting and Data

3.3.1. Research Setting

We collaborated with a large academic medical center located in the northeastern region

of the United States. As of 2016, this hospital had 473 medical/surgical inpatient beds,

which were located across 17 units and allocated to eight services. Here, a unit refers to a

physical location where there are a certain number of beds. In turn, each unit is designated
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to a particular service, which is a department comprised of a single clinical specialty or a

related group of specialties that tend to have smaller volumes. Figure B.1 in Appendix B.1

shows which units are designated for which services in the study hospital. Because each unit

belongs to a specific service, we are able to determine whether the patient occupying a bed

in a particular unit has been placed on service (if she belongs to the service for which the

unit has been designated) or off service (if she belongs to a service other than the one for

which the unit has been designated). Thus, at the service level, the number of patients who

are placed off service can vary over time, and the number of distinct off-service units across

which these patients are placed can also vary over time.

In our study hospital, there are eight unique services: Cardiac Medicine, Cardiac Surgery,

East Surgery, General Medicine, Neurology, Oncology Medicine, Transplant, and West

Surgery.2 It is important to note that physicians belong to a particular service, whereas

nurses belong to a particular unit. Such organization is ubiquitous among hospitals as physi-

cians often specialize in particular clinical specialties, while nurses are generally trained to

provide nursing care for all types of medical/surgical inpatients.3 In effect, this means that

physicians are responsible for the care of all patients who belong to their service, regardless

of whether the patient is placed on or off service. In contrast, nurses are responsible for the

care of all patients who are located in their unit, regardless of the service to which the patient

belongs. This has implications for the familiarity that accumulates between physicians and

nurses; the most frequent teamwork and coordination happens between physicians of a given

service and the nurses working on the unit that is designated to that particular service.

While physicians and nurses are responsible for the care of the patient, the decision to place

the patient in a particular on- or off-service bed is made by the hospital’s bed managers. Bed

managers are centralized at the hospital level and serve the role of admission controllers.

They are experienced nurses with clinical knowledge, and they coordinate with the admitting
2East and West Surgery are groups of relatively smaller surgical specialties.
3Exceptions include Hospitalists, who specialize in providing inpatient care rather than a specific type

of condition or a body part, and Oncology nurses, who specialize in administering chemotherapy and other
cancer treatments.
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service and the various units across the hospital to assign the patient to a specific inpatient

bed. The bed manager does not have any discretion over which service to admit the patient

to; the service makes this determination based on the patient’s medical conditions and

clinical needs. The bed manager, however, does have the discretion to determine where

to physically place the patient given the availability of beds in different units across the

hospital. For example, if there is an incoming Cardiac Medicine patient but all on-service

beds for Cardiac Medicine are occupied, the bed manager can assign this patient to an open

bed in a unit that belongs to General Medicine; this creates an off-service placement for

the Cardiac Medicine service. Note, when the bed manager decides to place a patient off

service, only other medical/surgical beds within the same level of care are considered. In

other words, this Cardiac Medicine patient would not be placed in a critical care bed (e.g.,

in a Cardiac Intensive Care unit) or a non-medical/surgical bed (e.g., in an Obstetrics unit).

3.3.2. Data and Analysis Sample

Our data consist of detailed patient and operational data from October 1, 2015 to September

30, 2016. By combining multiple proprietary data sources, we are able to accurately track the

location of all patients at the bed-hour level over the entire study period. In addition, we have

detailed information about each patient encounter, including demographic characteristics,

primary diagnosis, complications, and comorbidities. A direct comparison of the patient’s

service and bed assignment allows us to determine whether the patient was placed on or off

service. The granularity of our data also allows us to track, at the hour level, the number of

on- and off-service patients belonging to a given service.

During the 12-month study period, there were a total of 52,476 patient encounters at this

hospital. To define our analysis sample, we first exclude patient encounters without any

time in a medical/surgical bed. Since our analysis focuses on how the on-service patient

population is impacted by the spillover effects of off-service placement, we further restrict

our sample to patients who were placed in an on-service bed. In addition, we exclude patients

who were transferred from an on-service bed to an off-service bed, or vice versa, in order
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Table 3.1: Summary statistics of analysis sample

Mean SD Min Max
Mean of proportion off service 0.16 0.12 0 0.49
SD of proportion off service 0.021 0.017 0 0.17
Length of stay (days) 4.16 3.33 0.70 23.8
Logged length of stay (days) 1.48 0.54 0.53 3.21
Hospital readmission (%) 18.9 39.1 0 100
Clinical trigger activation (%) 8.65 28.1 0 100
In-hospital mortality (%) 1.05 10.2 0 100
Age (years) 62.1 16.7 16.8 107.4
Female (%) 50.4 50.0 0 100
DRG cost weight 1.82 1.37 0.49 17.7
Complications or comorbidities (%) 24.6 43.1 0 100
Number of transfers 2.82 0.89 2 9
Unit-level utilization (%) 91.4 6.91 26.2 100
Service-level utilization (%) 91.2 5.68 50.2 99.9
ICU encountered (%) 14.9 35.6 0 100
Admitted on weekday (%) 84.9 35.8 0 100
Admission shift

AM shift 12.1 32.6 0 100
PM shift 27.7 44.8 0 100
Overnight shift 60.2 48.9 0 100

Note. N = 14,793. SD, standard deviation.

to isolate the spillover effect of off-service placement from the direct effect of being placed

off service. In other words, we restrict our analysis sample to those who were placed in an

on-service bed during the entire duration of their hospital stay, which leaves us with a total

of 14,793 patient encounters across 13,295 unique patients.

3.3.3. Outcome Measures

We consider four patient-level outcome measures that proxy for the efficiency and quality

of care: (1) hospital length of stay, (2) hospital readmission, (3) clinical trigger activation,

and (4) in-hospital mortality. We define length of stay as the time from each patient’s

first admission into a medical/surgical bed until the patient’s discharge. For example, if a

patient’s first entry point to the hospital is the emergency department, we do not consider the

patient to have begun her hospital stay until the patient is transferred out of the emergency

department and into a medical/surgical bed. Our definition of length of stay is purposefully

aligned with the goal of analyzing the impact of off-service placement and is designed to

represent the efficiency of care a patient receives once the patient begins her stay in a

54



medical/surgical bed. Because this measure is right-skewed, we log transform it to calculate

the logged length of stay. Each of the remaining three measures—hospital readmission,

clinical trigger activation, and in-hospital mortality—are operationalized as binary variables.

Hospital readmission is defined as an all-cause readmission to the hospital within 30-days

after discharge. A clinical trigger is a discretionary or a non-discretionary alarm notifying

the physician and the nursing team of a potential deterioration in the patient’s condition.

In-hospital mortality is another measure that proxies for care quality and captures whether

the patient died during the course of the hospitalization. We report summary statistics of

each of these measures in Table 3.1.

3.3.4. Key Explanatory Variables

We have two key explanatory variables of interest: the level of off-service placement and

the volatility of off-service placement as experienced by the focal on-service patient during

her hospitalization. We measure each using hourly snapshots of the proportion of a service’s

patients who are placed off service, which is calculated by dividing the number of off-service

patients by the total number of patients belonging to the focal service; this measures the

extent to which a service’s patients are placed off-service. Using these hourly snapshots, we

then define the level of off-service placement by calculating the mean of the hourly snapshots

over the duration of each on-service patient’s hospital stay. We define the volatility of off-

service placement by calculating the standard deviation of the hourly snapshots over the

duration of each on-service patient’s hospital stay. Table 3.1 reports summary statistics of

each of these measures.

To illustrate these two key measures, Figure 3.1 depicts how the proportion of a service’s

patients who are placed off service evolved over the course of the hospitalization of 3 different

patients who were placed on service. We observe that patient A was admitted when her

service had 16% of its patients placed off service, which soon increased to 23% and gradually

decreased to 12% by the time she was nearing discharge. In contrast, patient B was admitted

when his service had 11% of its patients off service, which stayed relatively constant until
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Figure 3.1: Hourly snapshots of proportion off service

Note. This figure shows, for three different patients who were placed on service, hourly snapshots of
the proportion of their respective service’s patients who were placed off service over the course of
their hospitalization. The horizontal dashed line shows the mean of the hourly snapshots. The mean
and standard deviation of the hourly snapshots are shown in the upper-right corner for each patient.

the last 10 hours of his hospitalization when it increased to 17%. For patient C, her service’s

proportion of patients who were placed off service remained relatively constant at around

21% throughout her hospitalization. As we can see from the summary statistics shown in

each panel, the mean and standard deviation of these hourly snapshots vary significantly

across the three patients.

3.3.5. Patient and Operational Characteristics

In our estimations, we account for several patient and operational characteristics that may

also impact our outcome measures of interest. We control for patient demographic charac-

teristics, including age and gender. We also account for three proxies of patient severity:

DRG cost weight, an indicator for the presence of complications or comorbidities, and an

indicator for whether the patient spent time in the intensive care unit (ICU). The DRG cost

weight represents the relative level of resources needed to treat a patient with a certain diag-

nosis. The average DRG cost weight of all patients admitted to a given hospital is sometimes
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referred to as the Case Mix Index (CMI), and the average DRG cost weight in our analysis

of 1.82 indicates that patients admitted to our study hospital have diagnoses that are on

average 82% more costly to treat than the average Medicare patient. We also observe and

account for the presence of complications or comorbidities as classified in the DRG. Another

proxy of severity is whether the patient spent time in the ICU, which suggests the need for

higher-intensity care.

We also account for several characteristics of each patient’s hospitalization, including the

number of intra-hospital transfers, the time of day when the patient was admitted, whether

the patient was admitted on a weekday, and the type of service to which the patient was

admitted. The average patient in our analysis sample had 2.82 transfers during her hospi-

talization, which includes the admission and discharge events, as these constitute transfer

events into or out of a bed. We observe and account for heterogeneity in admission time

and day by controlling for the shift during which the patient was admitted and whether the

patient was admitted on a weekday. Controlling for the type of service to which the patient

was admitted helps us address heterogeneity across patient types.

Finally, we account for operational factors that may impact a patient’s stay. In particular,

we account for the overall busyness of the unit and of the service, so that we can isolate

these effects from the spillover effect that we are interested in identifying. Specifically, we

control for the average hourly utilization level of the unit in which each patient was placed

and the service to which the patient belonged. We construct the hourly unit-level utilization

by dividing the number of beds that are unavailable for an incoming patient (i.e., occupied,

reserved, or closed beds) by the number of total beds in the unit (i.e., all unavailable beds

plus open beds). Similarly, we construct the hourly service-level utilization by dividing the

number of unavailable beds by the total number of beds in all units that have been designated

to the service. Given the prior research that shows that high levels of workload impose an

inverted U-shaped effect on patient outcomes (Kuntz et al., 2015; Berry Jaeker and Tucker,

2017), we include the squared terms of both unit-level and service-level utilization measures
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in our analyses as well.

3.4. Empirical Strategy

To identify the spillover effects of off-service placement, our goal is to estimate the following:

yi = β0+β1·Level of off-service placementi+β2·Volatility of off-service placementi+ρ·Xi+ϵi

(3.1)

Here, yi is the outcome measure of interest for patient i, Xi is a vector of control variables,

and ϵi captures the error term. The spillover effect of off-service placement is captured by

the coefficients on the level and volatility of off-service placement.

3.4.1. Endogeneity of the Level of Off-service Placement

From previous studies, we know that the decision to place patients in an on- versus off-service

bed is a function of patient severity that is unobservable to the econometrician (Song et al.,

2020). Although we focus in this paper on the population of on-service patients in order

to estimate the spillover effects of off-service placement, the selection of patients into the

on-service population still poses endogeneity concerns. For example, if the focal service is

near full capacity, a relatively sicker patient arriving to the service is more likely to be placed

on service than a relatively healthier patient. If we were to assume that services tend to have

a higher proportion of off-service patients when they are near capacity, this will lead to a

biased selection of sicker patients into the population of on-service patients. In turn, this

would mean that sicker patients who are placed on service are more likely to begin their

hospitalization when the service is carrying a higher proportion of off-service patients. In

this case, we would expect β1 to be an overestimate of the true spillover effect attributable

to the level of off-service placement.

While we do indeed observe that the proportion of a service’s patients who are placed off

service is often low when the service’s level of utilization is low, we also observe that, when

the service’s level of utilization is high, there is a large heterogeneity in the proportion of

patients who are placed off service. In fact, the correlation coefficient between the proportion
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Table 3.2: Expected placement decision when the service is near full capacity

(i) Focal patient is of
lower severity

(ii) Focal patient is of
higher severity

(a) High level of off-service
placement at service level

More likely to be
placed on service

More likely to be
placed on service

(b) Low level of off-service
placement at service level

More likely to be
placed off service

More likely to be
placed on service

of patients off service at the time of admission and the service’s level of utilization at one

hour prior to admission is quite low (r = 0.19). This prompts us to separately examine cases

when the level of off-service placement at the time of the focal patient’s admission is high

versus low, conditional on the service being near full capacity.

The difference in the likelihood of being placed off service for a sicker patient versus a

healthier patient largely stems from the bed manager’s decision to keep some on-service

beds reserved in anticipation of the arrival of future patients with higher level of severity.

Nevertheless, the ability to place a patient off service is also limited by the capacity con-

straints in units belonging to other services, both in terms of not having any available beds

themselves or trying to keep some beds open in anticipation of patients arriving to those

other services. Therefore, having many patients placed off service already (i.e., a high level

of off-service placement at the service level) will make it harder for the focal service to place

additional patients off service, forcing more of the incoming patients to be placed on service

until all on-service beds are full. This is illustrated in row (a) of Table 3.2. On the other

hand, if a service has a relatively small number of patients who are currently placed off

service, this suggests that there is a greater chance of being able to place incoming patients

off service. In this case, healthier patients will be more likely to be placed off service while

sicker patients will be more likely to be placed on service, as we see in row (b) of Table 3.2.

To articulate the endogeneity concern, we reexamine the relationships summarized in Table

3.2 by columns as opposed to by rows. Overall, we see that lower severity (healthier) patients

are more likely to be placed off service compared to higher severity (sicker) patients only

when the service has a relatively small number of its patients already placed off service.

This pattern would result in nonrandom assignment of the level of off-service placement
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where healthier patients who are placed in on-service beds experience a disproportionately

higher level of off-service placement at the time of their admission (column (i)) compared

to sicker patients (column (ii)). Since healthier patients tend to experience both a higher

level of off-service placement and better outcomes, we would expect β1 in Equation (3.1)

to underestimate the true spillover effect of off-service placement in this case. Such routing

behaviors, and the resulting endogeneity, is exhausted once all on-service beds are occupied,

at which point all patients regardless of their level of severity will be routed to off-service

beds until the entire hospital reaches full capacity.

This endogeneity concern hinges, in part, on the previously stated assumption that the

bed manager’s off-service placement decisions are limited by capacity constraints. We can

test this assumption empirically by examining whether the number of off-service patients

belonging to the service at the time of the focal patient’s admission has a concave relationship

with the focal patient’s likelihood of being placed off service. If so, this would suggest that

patients are less likely to be placed off service when the service already has a high level of

off-service patients at the time of the focal patient’s admission. Table 3.3 shows the results

from regressing the probability of a focal patient being placed off service on the linear and

squared terms of the number of off-service patients that the focal patient’s service has at the

time of her admission. The concave relationship illustrated by the coefficients suggests that

off-service placements are indeed restricted by capacity constraints. We conduct a similar

test by fitting a quadratic probability model that predicts the focal patient’s probability of

being placed off service using the number of off-service patients belonging to the relevant

service at the time of her admission. Figure 3.2 shows these results, which again validates

our assumption.

While the level of off-service placement may be endogenously determined by patient severity,

the volatility of off-service placement, as experienced by patients who have been placed on

service, does not suffer from the same endogeneity concern. This is because the volatility of

the service’s off-service placement during the patient’s hospitalization captures the degree
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Table 3.3: Probability of off-service placement based on the number of off-service patients at admis-
sion

Off-service placement
Number of off-service patients at admission 0.0127∗∗∗

(22.98)

(Number of off-service patients at admission)2 -0.000149∗∗∗

(-14.58)

Constant 0.0509∗∗∗

(10.61)
Observations 18351

Note. t-statistics in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 3.2: Quadratic probability model predicting the likelihood of off-service placement as a func-
tion of the number of off-service patients at admission

Note. This figure plots the resulting fit of a quadratic probability model that predicts a patient’s
probability of being placed off service using the number of off-service patients belonging to the focal
service at the time of admission.
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of disruption that occurs after the placement decision for the focal patient has already

occurred. Events that drive the volatility of off-service placement are functions of overall

demand shocks and the characteristics of other patients as opposed to the focal patient.

Specifically, unobserved factors concerning the focal patient do not affect the bed managers’

decisions to place other patients into on- versus off-service beds during the remainder of the

focal patient’s hospital stay. Furthermore, we control for hourly utilization at both the unit

level and at the service level to separately account for demand shocks, such as an unexpected

influx of patients, which could affect both the outcome variables and the volatility of off-

service placement.

3.4.2. Instrumental Variables

We use an instrumental variable (IV) approach to address the endogeneity problem in the

level of off-service placement. This allows us to recover a causal estimate of the spillover effect

of the level of off-service placement. For an IV to be valid, it must satisfy two conditions: (1)

it must be correlated with the endogenous variable (i.e., the mean of the service’s proportion

of off-service patients), and (2) it must be uncorrelated with the structural error term, ϵi,

which captures unobserved patient characteristics conditional on all of the control variables

as well as the main explanatory variables.

For our analyses, we use two IVs: (1) the preadmission service-to-hospital utilization ratio

and (2) the preadmission hospital utilization excluding the focal service. We measure each

variable in the hour prior to the focal patient’s time of admission. The two IVs reflect

key information that bed managers use when making the placement decision for the focal

patient; the one-hour lead accounts for the delays between when the patient is assigned to

a particular bed and when the patient is physically transported and placed in that bed.

We expect each of these IVs to be correlated with the level of off-service placement in the

following way: a service has a greater proportion of its patients placed off service when (a)

it is busier relative to the overall hospital and when (b) the rest of the hospital (excluding

the focal service) is less busy (i.e., there are off-service beds available to send patients to).
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In other words, we expect the level of off-service placement to increase as the service-to-

hospital-utilization ratio increases and as the rest of the hospital’s utilization decreases. A

simple regression, as we will see in section 3.5.1, illustrates that this indeed is the pattern that

we observe in the data, allowing us to reject the null hypothesis that there is no relationship

between the endogenous variables and each of the IVs. Specifically, we find that the level

of off-service placement is positively associated with the service-to-hospital-utilization ratio

and negatively associated with the rest of the hospital’s utilization.

With regards to the exclusion condition, each of the IVs must be uncorrelated with un-

observed factors captured by the structural error term, ϵi. Stated differently, each of the

IVs should affect the outcome variable only through the endogenous variable, conditional

on the control variables. We rely on the fact that both IVs are measured in the hour prior

to admission, which should rule out any potential connection between the instruments and

unobserved patient severity. For the exclusion restriction to be valid, it is also crucial that

the IVs capture utilization at the hospital and the service level as opposed to at the unit

level. While utilization at the unit level may be correlated with unobserved patient severity

since the bed manager could select sicker patients to be admitted when the unit’s utilization

level increases (Dong et al., 2020), utilization at the hospital level and at the service level

are determined exogenously, since the bed manager does not have the discretion to turn

patients away or assign a patient to a different service. Thus, utilization at the hospital and

service levels are not correlated with unobserved factors related to patient severity. Instead,

they reflect the overall conditions of the hospital and of the relevant service at the time of

the bed manager’s decision making.

One mechanism through which the exclusion condition could be violated is if the pread-

mission utilization levels remain relatively stable throughout the patient’s hospitalization.

This would result in a strong positive correlation between the preadmission utilization lev-

els and the average utilization levels that the patient experiences during her hospital stay.

Prior research has documented that high levels of utilization have a negative effect on the
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efficiency and quality of care (Kc and Terwiesch, 2009; Aiken et al., 2002), and therefore it

is important to separately account for the utilization level experienced by the patient during

the course of her hospitalization. To separately account for this factor, we control for the

average utilization level of both the unit and the service in all of our analyses.

3.5. Empirical Models and Estimation Results

3.5.1. Spillover Effects of Off-service Placement

Using the two IVs discussed in section 3.4.2, we estimate the causal spillover effect of off-

service placement using a two-stage approach. For the continuous outcome measure—logged

length of stay—we use a two-stage least squares (2SLS) model. For the binary outcome

variables—hospital readmission, trigger activation, and in-hospital mortality—we use a two-

stage residual inclusion (2SRI) model, otherwise known as the control function approach.

We begin by estimating the following first-stage equation at the patient level, which is

common to both the 2SLS and 2SRI models:

Mean of proportion off servicei

= γ0 + γ1 · Service-to-hospital utilization ratioi

+ γ2 · Hospital utilization excluding focal servicei

+ γ3 · SD of proportion off servicei + δ ·Xi + ei (3.2)

For the 2SLS approach, we then estimate the following second-stage equation:

yi = β0 + β1 · ̂Mean of proportion off servicei + β2 · SD of proportion off servicei + ρ ·Xi + ϵi

(3.3)

Including the predicted Mean of proportion off servicei from the first-stage equation as an

explanatory variable in the second-stage equation allows us to causally estimate the spillover

effect by exploiting variation in the Mean of proportion off servicei that is caused by the two

IVs.
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For the 2SRI approach, we estimate the following second-stage Probit model:

P (yi = 1|Mean of proportion off servicei,SD of proportion off servicei, Xi)

= Φ(β0+β1 ·Mean of proportion off servicei+β2 ·SD of proportion off servicei+ρ·Xi+êi)

(3.4)

Including the residuals from the first-stage equation, êi, allows us to consistently estimate

the causal effect of the spillover effect stemming from off-service placement.

We report the results from these estimations in Table 3.4.4 In column (1), the first-stage

results show that the preadmission service-to-hospital utilization ratio is positively asso-

ciated with the mean of the proportion of a service’s patients who are placed off service

(γ1 = 0.070, p < 0.001). Specifically, a one standard deviation increase in this ratio is as-

sociated with a 0.5 percentage point increase in the mean of the service’s proportion of

off-service patients. On the other hand, the preadmission utilization of the rest of the hos-

pital (excluding the focal service) is negatively associated with the mean of the proportion

off service (γ2 = −0.125, p < 0.001). Here, a one standard deviation increase in the rest of

the hospital’s utilization is associated with a 0.6 percentage point increase in the mean of

the service’s proportion of off-service patients. Both of these results are consistent with our

expectation as discussed in section 3.4.2. In addition, the large Kleibergen-Paap F-statistic

(F = 71.96) suggests that these two IVs are strong joint predictors of the endogenous re-

gressor, Mean of proportion off servicei.

In columns (2) to (5), we estimate the second stage equations. Our results show that there

are substantial negative spillover effects of off-service placement. We find that a higher level

of off-service placement that a service has during a patient’s hospitalization is associated

with a longer length of stay for the focal patient, and that greater volatility in the level of

off-service placement is associated with both a longer length of stay and a higher likelihood

of experiencing a clinical trigger activation. Specifically, the coefficients indicate that a 1
4See Appendix B.2 for full results tables including coefficients for all control variables.
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percentage point increase in the mean of the proportion of patients placed off service leads

to a 2.5% increase in length of stay and a 1 percentage point increase in its standard deviation

leads to a 7.8% increase in length of stay. With regards to the likelihood of experiencing

a clinical trigger activation, a 1 percentage point increase in the standard deviation of the

proportion of patients placed off service is associated with a 1.45 percentage point increase

in the likelihood of experiencing a clinical trigger activation.

One way to put into perspective the magnitude of these coefficients is to calculate the

marginal change associated with a one standard deviation increase in the variable of in-

terest. A back-of-the-envelope calculation indicates that a one standard deviation increase

in the level of off-service placement is associated with a 28.8% increase in length of stay,

whereas a one standard deviation increase in the volatility of off-service placement is asso-

ciated with a 12.9% increase in length of stay and a 2.6 percentage point increase in the

likelihood of experiencing a clinical trigger activation. Given that 8.6% of all on-service pa-

tients experienced at least one clinical trigger activation during their hospitalization, a 2.4

percentage point increase can be interpreted as a 29.5% increase at the mean.

3.5.2. Potential Mechanisms Underlying the Spillover Effects

Challenges in Coordinating with Nursing Teams Caring for Off-service Patients.

A potential mechanism that could underlie the negative spillover effects of off-service place-

ment is the challenges in coordination between physicians and nursing teams that arise when

patients are placed off service. To examine this possibility, we conduct additional analyses

in which we substitute, in the first- and second-stage equations, the proportion of patients

placed off service with the number of units across which off-service patients have been placed.

If coordination challenges were to explain our findings, then we would expect to continue to

see these negative spillover effects when accounting for the number of separate units across

which a service has placed off-service patients, i.e., the number of nursing teams with which

the service’s physicians must coordinate. Since physicians routinely conduct rounds only

on the units that are designated to the service, they typically do not have regular working
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Table 3.4: Spillover effect of off-service placement, operationalized using the service’s proportion of
patients placed off service

(1) (2) (3) (4) (5)
Mean of

proportion
off service

Logged
length of stay

Hospital
readmission

Trigger
activation

In-hospital
mortality

Preadmission service-to-hospital 0.0699∗∗∗
utilization ratio (0.0105)

Preadmission hospital utilization -0.125∗∗∗
excluding focal service (0.0157)

Mean of proportion off service 2.484∗∗∗ -0.348 -1.263 -0.870
(0.567) (1.384) (1.812) (4.775)

SD of proportion off service 1.358∗∗∗ 7.753∗∗∗ 2.694 10.47∗∗∗ -0.812
(0.0559) (0.867) (2.012) (2.499) (7.293)

Controls Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes
Model 2SLS 2SLS 2SRI 2SRI 2SRI

1st stage 2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. Controls not shown include age, sex, DRG cost
weight, complications and comorbidities, number of transfers, ICU encountered, unit-level utilization,
(unit-level utilization)2, service-level utilization, (service-level utilization)2, service type, admission
shift, and weekday admission. * p < 0.05, ** p < 0.01, *** p < 0.001.

relationships with nursing teams based in other (off-service) units. As a result, we would

expect that having to coordinate care with a greater number (i.e., higher level) of or with a

frequently changing number (i.e., higher volatility) of nursing teams in off-service units will

decrease the efficiency and quality of care for patients who are placed on service.

The results of these estimations are shown in Table 3.5. We find that having off-service

patients placed across a greater number of units, on average, is associated with longer lengths

of stay for on-service patients. When the number of units across which off-service patients

are placed is more volatile, on-service patients experience longer lengths of stay, higher

likelihood of readmission to the hospital, and higher likelihood of clinical trigger activation.

Specifically, we find that having off-service patients in one additional unit is associated with

a 4.4% increase in length of stay for on-service patients who belong to the same service.

In addition, a one unit increase in the standard deviation of the number of units with off-

service patients is associated with a 31.9% increase in length of stay, a 2.7 percentage point
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Table 3.5: Spillover effect of off-service placement, operationalized using the number of units across
which the service has patients placed off service

(1) (2) (3) (4) (5)
Mean of units
with off-service

patients
Logged

length of stay
Hospital

readmission
Trigger

activation
In-hospital
mortality

Preadmission service-to-hospital 4.558∗∗∗
utilization ratio (0.323)

Preadmission hospital utilization -4.051∗∗∗
excluding focal service (0.537)

Mean of units with 0.0441∗∗∗ 0.00658 -0.0188 -0.0134
off-service patients (0.0108) (0.0353) (0.0357) (0.1000)

SD of units with 0.923∗∗∗ 0.319∗∗∗ 0.107∗ 0.276∗∗∗ 0.0557
off-service patients (0.0535) (0.0178) (0.0431) (0.0380) (0.117)
Controls Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes
Model 2SLS 2SLS 2SRI 2SRI 2SRI

1st stage 2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. Controls not shown include age, sex, DRG cost
weight, complications and comorbidities, number of transfers, ICU encountered, unit-level utilization,
(unit-level utilization)2, service-level utilization, (service-level utilization)2, service type, admission
shift, and weekday admission. * p < 0.05, ** p < 0.01, *** p < 0.001.

increase in the likelihood of readmission, and a 4.1 percentage point increase in the likelihood

of clinical trigger activation. A similar back-of-the-envelope calculation as discussed earlier

shows that a one standard deviation increase in the average number of units with off-service

patients is associated with a 15.6% increase in length of stay for on-service patients, and that

a one standard deviation increase in the standard deviation of the number of units with off-

service patients is associated with a 15.3% increase in length of stay, a 6.9% increase in the

likelihood of readmission, and a 22.5% increase in the likelihood of clinical trigger activation.

Challenges During High-workload Periods Associated with Patients Placed Off

Service.

To examine a second mechanism, we focus on the finding that it is not only the level but

also the volatility associated with off-service placement that seems to result in the negative

spillover effects. Volatility in the proportion of a service’s patients who are placed off service is

generated by admissions into and discharges out of off-service units. Furthermore, compared

to the interim period of a patient’s hospitalization, the periods when a patient is being
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admitted and discharged tend to demand the most time and attention from the physician.

In the next set of analyses, we examine whether challenges associated with these high-

workload periods due to movements into and out of off-service units might be another

mechanism underlying our main findings.

To test our hypothesis that the higher workload experienced while managing the admissions

and discharges of off-service patients contributes to the negative spillover effects, we con-

struct a new explanatory variable: the count of total movements into and out of off-service

units incurred by patients belonging to the same service during the focal patient’s hospi-

talization. Since the average rate of admissions and discharges varies significantly across

different services, we demean the count of movements at the service level. Then, we substi-

tute the volatility measure in Equations (3.2), (3.3), and (3.4) with this demeaned count

of movements in off-service units. The results of estimating this new set of second-stage

equations, shown in Table 3.6, illustrate that the negative spillover effects of the volatility

of off-service placement continue to hold with this alternate specification. Increases in the

number of movements into and out of off-service units during a given on-service patient’s

hospitalization are associated with a longer length of stay, a higher likelihood of readmission,

and a higher likelihood of clinical trigger activation.

Of course, it is possible that movements into and out of on-service units also contribute

to periods of higher levels of workload and create disruptions for other patients who are

placed on service. However, we would expect that the potential impact of movements into

and out of off-service units would have a larger spillover effect than movements into and out

of on-service units. This is because providing care for patients who are placed off service

creates additional disruptions beyond providing care for on-service patients, given the need

to take extra time away from routine rounds and to coordinate care with nursing teams

whom the physician may not have well-established working relationships. To examine this

possibility, we test whether the spillover effect of movements into and out of off -service units

is statistically significantly greater than the spillover effect of movements into and out of
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Table 3.6: Spillover effect of off-service placement, operationalized using the number of movements
into and out of off-service units

(1) (2) (3) (4)
Logged

length of stay
Hospital

readmission
Trigger

activation
In-hospital
mortality

Mean of proportion off service 2.593∗∗∗ -0.216 -1.100 -1.086
(0.470) (1.679) (2.132) (4.124)

Demeaned count of movements 0.00521∗∗∗ 0.000862∗∗∗ 0.00433∗∗∗ 0.000729
into and out of off-service units (0.000132) (0.000233) (0.000279) (0.000552)
Controls Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Model 2SLS 2SRI 2SRI 2SRI

2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. Controls not shown include age, sex, DRG cost
weight, complications and comorbidities, number of transfers, ICU encountered, unit-level utilization,
(unit-level utilization)2, service-level utilization, (service-level utilization)2, service type, admission
shift, and weekday admission. * p < 0.05, ** p < 0.01, *** p < 0.001.

on-service units.

A straightforward approach to compare these two effects would be to include both types of

movements (vis-à-vis off-service units and on-service units) in a single regression analysis,

and then compare the coefficients using a statistical test. However, there exists a high level

of correlation (r = 0.91) between these two measures, which results in multicollinearity. To

avoid this issue, we estimate a seemingly unrelated regression with two models, with each

model accounting for either the demeaned count of movements into and out of off-service

units or the same for on-service units. In Table 3.7, we see that the spillover effects stemming

from movements into and out of off-service units have a greater impact on the length of stay

than those stemming from movements into and out of on-service units. Performing a Wald

test confirms that the difference between these two coefficients is statistically significant at

the 0.001 level.

3.6. Alternate Specifications

To assess the robustness of our findings and further evaluate model fit, we consider additional

specifications.
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Table 3.7: Seemingly unrelated regression on spillover effects of movements into and out of on-service
units versus off-service units

(1) (2)
Logged length of stay Logged length of stay

Mean of proportion off service 2.777∗∗∗ 2.884∗∗∗
(0.503) (0.454)

Demeaned count of movements 0.00267∗∗∗
into and out of off-service units (0.000132)

Demeaned count of movements 0.00153∗∗∗
into and out of on-service units (0.0000719)
Controls Yes Yes
Month FE Yes Yes
Model 2SRI 2SRI

2nd stage 2nd stage
Observations 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. Controls not shown include age, sex, DRG cost
weight, complications and comorbidities, number of transfers, ICU encountered, unit-level utilization,
(unit-level utilization)2, service-level utilization, (service-level utilization)2, service type, admission
shift, and weekday admission. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.6.1. Nonlinear Analyses

We begin by considering nonlinear models to estimate the spillover effects. Nonlinear mod-

els may provide a more comprehensive picture of how off-service placement impacts the

efficiency and quality of care for on-service patients. To allow for a high degree of flexi-

bility in our model, we perform a semiparametric analysis for each of the outcome vari-

ables. To address the endogeneity concern regarding the level of off-service placement, we

use the same 2SRI approach described in section 3.5. Then, we follow Robinson (1988)

to estimate partially linear models where each of the explanatory variables of interest,

Mean of proportion off servicei and SD of proportion off servicei, is assumed to have a non-

parametric functional form. In addition, we include the squared term of the linear explana-

tory variable to allow for as much flexibility as possible. In effect, we estimate the following

two equations for each outcome variable:

yi = β0 +G(Mean of proportion off servicei) + β1 · SD of proportion off servicei

+ β2 · SD of proportion off service2i + ρ ·Xi + êi + ϵi (3.5)
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yi = β0 +G(SD of proportion off servicei) + β1 · Mean of proportion off servicei

+ β2 · Mean of proportion off service2i + ρ ·Xi + êi + ϵi (3.6)

The nonparametric function, G, is estimated using a kernel regression, and êi is estimated

by the residuals from the first-stage equation. We present these estimation results visually

in Figure 3.3.

The results of the semiparametric analysis suggest that the spillover effects are generally

linear with a few notable exceptions. For the spillover effects stemming from the level of

off-service placement, the semiparametric plots show that when the proportion of a service’s

patients who are placed off service is very low (less than 5%), we do not find evidence of a

spillover effect leading to increases in the length of stay (panel 1a) or higher likelihoods of

clinical trigger activation (panel 3a). We see a similar pattern with respect to the spillover

effects from the volatility of off-service placement on length of stay. The marginal effect of

the volatility of off-service placement on length of stay is relatively small when the standard

deviation of the proportion of patients placed off service is low (panel 1b). The magnitude

of the effect increases as the volatility of off-service placement increases, until it starts

to decrease again once the volatility increases even further (panel 1b). This suggests that

there may be an upper bound at which the volatility of off-service placement affects patient

outcomes.

3.6.2. Maximum Positive Deviation and Maximum Negative Deviation

Next, we employ an alternate operationalization of the volatility of off-service placement.

One possible critique of our current approach is that the standard deviation of the proportion

of a service’s patients who are placed off service may simply capture sporadic increases in the

level of off-service placement. In other words, it is possible that the negative spillover effects

that we identify using the standard deviation of proportion off service are purely driven by

increases in off-service placement that are not captured by the mean of the proportion off

service. To examine whether both positive and negative deviations in the proportion of off-
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Figure 3.3: Semiparametric estimations of the spillover effect of off-service placement

Note. This set of figures presents the results of conducting semiparametric analyses using partially
linear models where one explanatory variable is estimated nonparametrically (Robinson, 1988). Para-
metric residuals (blue dots) represent the variation in the outcome variables that are not explained
by the parametric portion of the model. The fitted line is generated using a Gaussian kernel weighted
local polynomial regression. The grey band around the fitted line shows the 95% confidence interval
around the nonparametric fit.

service patients negatively impact the efficiency and quality of care, we perform an additional

analysis wherein we substitute the standard deviation of the proportion off service with the

maximum positive and maximum negative deviations, respectively, from the proportion of

off-service patients at the time of admission. The results, reported in Table 3.8, show that the

deviation in both the positive direction and in the negative direction have similar negative

spillover effects on the length of stay and trigger activation likelihood for on-service patients.

3.7. Counterfactuals

So far, we have focused on identifying and quantifying the spillover effects of off-service

placement. Our analyses suggest that, not only does off-service placement have a negative

first-order effect on those patients who are placed off service, it also has a negative spillover

effect on patients who are placed on service. In what follows, we conduct a series of coun-

terfactual analyses to identify which, if any, alternate routing policies may be successful

in mitigating the spillover effects of off-service placement and to estimate the magnitude

of the potential gains from adopting each of the policies. These analyses will help hospital
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Table 3.8: Spillover effect of off-service placement, operationalized using the maximum positive and
negative deviations from the proportion off service at time of admission

(1) (2) (3) (4)
Logged

length of stay
Hospital

readmission
Trigger

activation
In-hospital
mortality

Mean of proportion off service 2.128∗∗∗ -0.484 -1.852 -1.529
(0.570) (1.749) (2.094) (4.467)

Maximum positive deviation 3.530∗∗∗ 0.615 5.034∗∗∗ 1.996
in proportion off service (0.354) (1.074) (1.298) (2.832)

Maximum negative deviation 2.502∗∗∗ 0.941 4.001∗∗ -2.020
in proportion off service (0.343) (0.967) (1.216) (2.711)
Controls Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Model 2SLS 2SRI 2SRI 2SRI

2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. Controls not shown include age, sex, DRG cost
weight, complications and comorbidities, number of transfers, ICU encountered, unit-level utilization,
(unit-level utilization)2, service-level utilization, (service-level utilization)2, service type, admission
shift, and weekday admission. * p < 0.05, ** p < 0.01, *** p < 0.001.

administrators determine ways in which they can continue to enjoy the benefits of capacity

pooling while minimizing their negative spillover effects.

3.7.1. Setup of Counterfactual Analyses

We leverage the granularity of our data and perform simulations using the actual admissions,

transfers, and discharges of patients in the observed data.5 Similar to the approach used in

Bertsimas and Pauphilet (2020), we assume that our data provide an accurate representation

of the underlying data-generating process, which includes the patient flow, the severity of

different types of patients, and the service rates for patients as a function of both observable

and unobservable factors.

To begin the simulation, we take a snapshot of the hospital on the first day, and then we im-

plement an alternate routing policy whenever patients move into and out of medical/surgical
5Another approach would be to construct a queueing model consisting of arrival rates and service rates

that are functions of the spillover effects we estimated. While such an approach provides flexibility to simulate
virtually any counterfactual policies, its accuracy is limited by the many necessary assumptions underlying
the model. We bypass these concerns regarding the extent to which such assumptions would represent the
real world by using a data-based approach.
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units. Throughout the simulation, we carefully track the utilization of each unit and each

service at the hour level. Because non-medical/surgical units (e.g., intensive care units, ob-

servation beds) are beyond the scope of this study, we route movements into and out of those

units to reflect the observed movements. Once all patients are re-routed using an alternate

routing policy, we then calculate the (counterfactual) proportion off service that each pa-

tient experienced in each hour of her hospital stay. These hourly snapshots are then used to

calculate the mean and the standard deviation of the proportion of patients off service, in

exactly the same way that they were calculated using the observed data for the empirical

analyses.

Next, we calculate the predicted counterfactual outcomes for three measures: length of stay,

likelihood of hospital readmission, and likelihood of trigger activation. Because our empirical

analyses suggest that there are no spillover effects with respect to in-hospital mortality, we do

not calculate a predicted counterfactual likelihood for that outcome measure. In calculating

these predictions, we make a slight modification to our previous approach discussed in section

3.5. Specifically, we separately identify spillover effects for medical specialty services versus

surgical specialty services in order to utilize more granular effect estimates for different

patient types.6

As with the empirical analyses, we focus our counterfactual analyses on the spillover effects

of off-service placement onto the population of patients who are placed on service. The

first-order effects of off-service placement on the outcomes of patients who are themselves

placed off service has been previously studied and are beyond the scope of this paper (see

Song et al., 2020). As a result, we focus strictly on the counterfactual outcomes of patients

who are placed on service. Of course, one of the goals of the alternate routing polices is

to reduce the overall number of off-service patients, which in turn is expected to reduce

the spillover effects of off-service placement. Given that the previous literature has found

negative first-order effects of off-service placement on patients who have been placed off
6See Appendix B.3 for details on how we identify heterogeneous treatment effects by service type.
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service, the counterfactual results from our simulations can be considered a lower bound of

the total effect, as they account for only the reduced spillover effects and not the reduced

first-order effects. These results are also conservative because we hold the universe of on-

service patients fixed as those in the observed data and do not allow for the possibility of

more admissions when patients in the system are discharged at a faster rate.

3.7.2. Alternate Routing Policies

On until 0 beds.

Bed managers in the hospital often keep some number of on-service beds reserved in antici-

pation of future admissions or transfers, especially when the number of open beds remaining

on service is small and the arriving patient seems to have a relatively low level of severity.

This first policy does not allow for on-service beds to be left unoccupied in anticipation of

future demand. Instead, all arriving patients are placed in on-service beds until there are no

more beds available. Once all on-service beds have been exhausted, patients are placed in

the service’s primary off-service unit; once that is full, they are placed in the service’s sec-

ondary off-service unit. For each service, we define a primary and secondary off-service unit

by using the observed data and identifying the two units where the greatest number of off-

service patients were placed; these are shown in Figure B.2 of Appendix B.1. Restricting the

number of units across which off-service patients are placed could help reduce coordination

costs between physicians and nursing teams. In cases when a service has multiple on-service

units, we prioritize placements into units that do not serve as a designated off-service unit

for another service to ensure that as many patients as possible are placed on service. Once

both primary and secondary off-service units have been exhausted, patients are placed in

any medical/surgical unit with the greater number of available beds.

On until 0 beds + boarding.

One way to reduce the incidence of off-service placement is to allow for some additional

boarding time prior to admission into a medical/surgical bed. While excessive time spent

boarding is associated with undesirable outcomes (Chalfin et al., 2007; Mathews and Long,
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2015; Rabin et al., 2012), if it helps avoid an off-service placement, the combined benefits

may outweigh the losses. Since bed managers can observe which beds are expected to become

available in the next few hours (e.g., due to an expected discharge or expected transfer), if

they are given the discretion to delay the bed placement of an incoming patient when an

on-service bed is expected to become available soon, it may be possible to place the patient

on service and avoid an off-service placement. Based on discussions with clinical leaders at

our study hospital and to err on the side of being too conservative, we allow for only one

hour of additional boarding time.

On until 0 beds + earlier discharge.

Rather than allowing for additional boarding, which aims to reduce off-service placements by

delaying admissions, another option would be to expedite discharges. In other words, hospi-

tals could prioritize discharging patients earlier in the day (i.e., morning versus afternoon or

evening) to facilitate admissions into on-service beds (Shi et al., 2016). Benson et al. (2006)

find that 12% of all surgical patients in a UK hospital experienced delays in discharge despite

being medically fit to leave. When simulating this policy, we assume that patients who were

discharged between 11AM and 5PM could have been discharged at 11AM if physicians and

nurses had reorganized their days to prioritize discharges; these times were also determined

based on our discussions with clinical leaders at our study hospital. When discharges occur

earlier in the day, patients arriving in the afternoon who would otherwise have been placed

in an off-service bed could be placed on service.

On until 0 beds + hospital-wide flex units.

Rather than designating primary and secondary off-service units for each service, this policy

designates two units as hospital-wide flex units. From the observed data, we identify the two

units that received the highest number of off-service patients and designate these as the two

hospital-wide flex units. These two units no longer serve as on-service units for a specific

service; instead, they provide off-service care for off-service patients across all services. Under

this policy, each incoming patient is placed on service as long as there is an available on-
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service bed. Once there are no more on-service beds available, patients are sent to the flex

unit with the most available beds. Once both flex units become full, patients are then placed

in any medical/surgical unit with the most available beds.

On until a few beds.

This policy seeks to mimic the behavior that was prohibited in the three polices above—

reserving on-service beds in anticipation of future arrivals. Here, we allow patients to be

placed off service when there are fewer than five on-service beds remaining. To simulate

the bed managers’ decisions, we use the following approach to calculate probabilities from

the observed data, which will allow us to determine the likelihood of a given patient being

placed off service. First, for each service, we calculate the proportion of patients who were

placed off service given x open beds at the time of their arrival (where x ≤ 5). For example,

if there were 100 admissions to the General Surgery service when 1 General Surgery bed

was open and 30 of these patients were placed off service, the probability of an incoming

General Surgery patient being placed off service when exactly 1 on-service bed is available

is 0.3. Then, using these probabilities, if a patient is assigned to be placed off service, we

first route them to the primary off-service unit, and then to the secondary off-service unit.

We show the set of computed probabilities for each service in Table B.1 of Appendix B.1.

On until a few beds + protected services.

Across the different services within the hospital, some tend to have higher levels of their

patients placed off service than others. Specifically at our study hospital, the Cardiac Surgery,

East Surgery, Oncology, and Transplant services are specialized services that try to minimize

the incidence of placing their patients in off-service beds; this can be seen in Figure B.3 of

Appendix B.1. In some cases, this is due to licensing restrictions. For example, administering

chemotherapy requires special nursing training and licensing, so patients who are admitted

for cancer treatment will always be placed on service in a unit designated for the Oncology

service. As another alternate routing policy, we designate these four services as “protected

services” and minimize the chances of their needing to place their own patients off service by
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restricting off-service patients from other services from flowing into units that are designated

to them. In other words, on-service units for the protected services do not serve as designated

off-service units for other services, and patients in the protected services are always placed

on service as long as there is an open bed. For the non-protected services, we continue to

implement the “on until a few beds” policy. This alternate routing policy is the strictest

policy that we test in the sense that it explicitly reduces the level of capacity pooling in an

attempt to reduce off-service placements and their associated spillover effects.

3.7.3. Simulation Results.

The counterfactual results derived from our simulations illustrate that alternate routing

policies could indeed reduce the overall level of off-service placement and, in turn, result in

reductions in the average patient length of stay. On the other hand, the volatility of off-service

placement is much more challenging to address as it stems from the inherent variability in

patient demand; as a result, most of the alternate routing policies we consider are not

successful in meaningfully reducing the volatility of off-service placement. Nevertheless, we

find meaningful impacts on the outcome measures of interest.

The boxplots in Figure 3.4 report the counterfactual mean (panel 1) and standard deviation

(panel 2) of the proportion of patients who are placed off service. The top row labeled

“Baseline” reflects the observed data. The subsequent rows represent each alternate routing

policy described in section 3.7.2. Next, Figure 3.5 plots the sample mean and 95% confidence

interval of average length of stay, predicted likelihood of hospital readmission, and predicted

likelihood of clinical trigger activation.

Based on the counterfactual outcomes from implementing the “on until 0 beds” policy, we

see that the practice of reserving on-service beds in anticipation of a future arrival is one

of the drivers that increases the overall level of off-service placement. Significant reductions

in off-service placement can be achieved by restricting bed managers from reserving on-

service beds and allowing them to place patients off service only if there is no available

bed on service. That said, the observed behavior of reserving beds could be a result of the
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Figure 3.4: Counterfactual mean and standard deviation of proportion of patients who are placed
off service

Note. This figure reports the counterfactual mean and standard deviation of the proportion of
patients who are placed off service. Each box plot shows, for the corresponding measure and routing
policy, the sample mean and its 95% confidence interval, the median, the first and third quartile,
and the minimum and maximum (excluding outliers).

80



Figure 3.5: Counterfactual length of stay, likelihood of hospital readmission, and likelihood of trigger
activation

Note. This figure shows, for the corresponding measure and routing policy, the counterfactual mean
and its 95% confidence interval.

bed manager having private information (unobservable to the researcher) about upcoming

patient arrivals. Thus, the true gains from implementing a “on until 0 beds” policy may be

more muted. Nevertheless, our results suggest that the practice of reserving beds should be

limited and only be utilized when absolutely necessary.

We consider boarding and earlier discharge as an add-on to the “on until 0 beds” policy.

We find that boarding a patient for an extra hour when an on-service bed is anticipated to

become available may be an effective policy that could reduce both the overall level and the

volatility of off-service placement. In practice, boarding patients who are transferred from

other areas of the hospital (e.g., the emergency department) will demand additional resources

from those areas; thus, the overall impact on the entire system must be considered. For

patients who are being admitted directly, boarding the patient for a little more time until an

on-service bed becomes available, as opposed to admitting the patient as soon as possible into

an off-service bed, can be an effective solution. The benefits of additional boarding, however,
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must be weighed against potential clinical concerns in delaying care provision (Chalfin et al.,

2007; Mathews and Long, 2015; Rabin et al., 2012). Early discharge also seems to reduce the

overall level and volatility of off-service placement.

Finally, the outcomes from implementing the “on until 0 beds + hospital-wide flex units”

and the “on until a few beds + protected services” policies provide insight into why careful

planning of capacity pooling is crucial. While the two policies differ in their approach,

neither policy is successful in reducing the overall level and volatility of off-service placement

because each fails to sufficiently account for the capacity constraints of the units that are

on the receiving end of off-service placements. Our simulations illustrate that cordoning off

a set of protected services leads to situations where patients arriving to the other (non-

protected) services experience high rates of off-service placement for sustained periods of

time due to limited on-service capacity for prolonged periods. Similarly, with two hospital-

wide flex units, patients on average experienced a large increase in the volatility of off-service

placement because of the capacity constraints imposed on each of the two services that, in

effect, lost one on-service unit. Furthermore, there were frequent periods of time when the

two flex units did not provide enough capacity to place off-service patients across the eight

services.

3.8. Discussion and Conclusions

In this paper, we investigate whether, and to what extent, there is a spillover effect of off-

service placement that impacts the efficiency and quality of care for patients who are placed

on service. This is a challenging question to address empirically for two reasons: (a) the

service’s level of off-service placement constantly changes over time, which means a given

on-service patient may experience both high and low levels of off-service placement during

her hospitalization, and (b) there is an endogeneity concern stemming from non-random

assignment of patients into the on-service population. We address both of these challenges

using detailed patient and operational data and an instrumental variable approach. To ad-

dress the former, we characterize how a given on-service patient may be affected by off-service
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placement by operationalizing both the overall level and the volatility of off-service place-

ment. We measure these two dimensions separately using bed-hour level data that tracks

the location, service, and on- versus off-service status of each patient in the hospital. To

address the latter, we identify two IVs that allow us to overcome the endogeneity concerns

and estimate the causal spillover effects of off-service placement. We find that the on-service

patient population experiences substantial negative spillover effects from off-service place-

ment. Specifically, on-service patients experience longer lengths of stay when the service’s

average level of off-service placement is high during their hospitalization. When the volatility

of off-service placement is high, they experience not only longer lengths of stay but also a

higher likelihood of hospital readmission and a higher likelihood of clinical trigger activation.

Our findings have important managerial implications. For hospital administrators, this

work further highlights the importance of better managing the practice of off-service place-

ment, which is widespread among hospitals all around the world (e.g., Shi et al., 2016,

Stylianou et al., 2017). Our findings illustrate that the effects of off-service placement reach

beyond the patients who are placed off service and, instead, impact all patients through-

out the hospital; this highlights the urgent need to re-examine the way in which hospitals

leverage various capacity management strategies.

Our counterfactual results from the simulation studies provide insight into which other

routing policies may be effective in reducing the incidence of off-service placement and

improving outcomes for all patients, regardless of their placement location. Our findings

suggest that hospitals should limit the practice of reserving on-service beds in anticipation

of future arrivals of sicker patients, and that they should place off-service patients across

fewer units in order to minimize coordination costs between physicians and nurses. Policies

like earlier discharge initiatives, which do not target off-service placement specifically but are

designed to improve overall efficiency, can also lead to meaningful improvements by allowing

more patients to be placed on service. In cases when the bed manager has visibility into

upcoming discharges, another possibility would be to board a patient a little longer when
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an on-service bed is expected to open up soon. Of course, each of these policies must be

carefully considered by weighing the benefits of reducing off-service placement against the

potential costs incurred by doing so (e.g., increased boarding time).

Our work opens up several avenues for further investigation of capacity pooling strategies

and its implications for patient care. Although our findings are robust to several alternate

specifications, our data come from a single hospital. Given the widespread use of off-service

placement, we invite other researchers to study these effects of off-service placement in

different settings to provide external validation to our findings. Methodologically, our study

relies on the validity of the IVs used to address the endogeneity concern. Although we verify,

to the best of our ability, the assumptions necessary to consider the instruments to be valid,

a research setting that allows for random assignment of patients to on- versus off-service beds

would be more robust. Future work could also extend our counterfactual analyses by moving

beyond the first-order effect of the alternate routing policies. When considering the potential

implications for throughput, the reduction in the counterfactual length of stay represents a

lower bound of the potential gains, since policies that decrease patients’ average length of

stay would allow the hospital to admit additional patients and, thereby, increase throughput.

Hospitals continue to innovate to find ways to improve their efficiency and performance

while operating with limited capacity. Understanding and addressing the various challenges

surrounding the practice of placing patients off service will help hospital administrators

implement better capacity management practices and improve the efficiency and quality of

care.
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CHAPTER 4

Should We Worry About Moral Hazard? Estimation of the

Slutsky Equation Using Indemnity Health Insurance Contracts

4.1. Introduction and Motivation

The increase in the consumption of medical care when individuals are insured, known as

moral hazard, has been identified as one of the main inefficiencies of health insurance (Pauly,

1968). The price distortion, generated by insurance coverage, alters the optimal medical care

consumption by individuals as long as the demand is not perfectly inelastic, as pointed out in

Pauly’s seminal contribution, and could result in individuals purchasing more medical care

units for which their value is below marginal cost. This increase in medical care consumption

due to insurance was tested in the RAND Health Insurance Experiment (Manning et al.,

1987) and found to be empirically relevant.

An assumption that is present in Pauly’s original paper is the absence of “significant income

effect”, and therefore, all the increase in the quantity of medical care due to insurance is

attributed to the distortion in prices introduced by insurance, and therefore, is considered

inefficient. Under this framework, it is then optimal that insurance exhibit gaps in coverage,

especially for those more price elastic services, and the use of deductibles and coinsurance to

control medical care utilization would increase efficiency. This view is challenged by Nyman

(1999), who emphasized the access motive of health insurance arguing that the income effects

could be substantial.

In particular, Nyman (1999) argues that using the Marshallian demand to estimate the

welfare loss from insurance results in an overstatement of that welfare loss, as it also includes

the effects of income transfers from the healthy to the sick, which do not have a distortionary

effect on prices. According to Nyman’s calculations, the true welfare loss is about one third

of the one estimated ignoring the income effects. This new insight puts into question the

expenditure controls introduced by the insurance industry in their contract designs and
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the whole managed care model, calling for a reevaluation of the focus on cost-sharing and

managed care by academics and policymakers.

Not surprisingly, the discussion at the beginning of this century was very active and contro-

versial, not only in academia, but also in important popular press outlets (Gladwell, 2005).

Despite the active discussion, no conclusion was reached as there was no credible measure-

ment of the income and substitution effects of insurance. According to Nyman (1999) the

ideal setting to answer this question would be one where indemnity and traditional insur-

ance coexist. In the case of indemnity insurance, the insured receives a lump sum transfer of

money in the bad state without affecting the relative prices, which identifies the income ef-

fect of insurance. Indemnity insurance is virtually extinct in most countries, which frustrated

the efforts to provide a conclusion to this debate based on empirical analysis.

In this paper, we are able to measure the relative magnitude of the income and substitution

effect of insurance by studying the market for supplemental health insurance in South Korea,

where both indemnity and traditional insurance coexist. The National Health Insurance

system in South Korea provides virtually universal coverage to all South Korean citizens,

who are mandated to contribute to this system. This public insurance presents large gaps

that implies high out-of-pocket payments by citizens, who then seek to alleviate the financial

burden of these gaps by contracting with private companies through either indemnity or

traditional health insurance policies.

In this setting, we are able to estimate the components of the Slutzky equation, which al-

lows us to identify the elasticities of the Marshallian and Hicksian demands. Because we

can estimate the response of consumers to price-reducing insurance plans and to income-

transferring insurance plans, we can measure how much of the total moral hazard effect is

welfare-reducing. Our data comes from the Korea Health Panel, which is a nationally repre-

sentative annual survey tracking close to 8,000 households and more than 24,000 individuals

over time. Important for this study, the survey provides data on medical care utilization,

insurance status, and demographics among other important variables.
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We find that 94% of moral hazard comes from the substitution effect, and therefore, the role

of income effects is very limited. This result holds in general across several conditions and

across categories of care. For patients with diabetes, heart diseases and stroke, chronic back

conditions, and arthritis, we find similar magnitudes as the general results, and for patients

with cancer, the income effect seems to be larger. For patients with cancer, for example,

59% of moral hazard is welfare-reducing. These results are also robust for different types of

care, such as inpatient, outpatient and emergency care. In the case of inpatient care, 93%

of moral hazard corresponds to the substitution effect, and similarly 95% of moral hazard

is welfare-reducing. These results, contrast with the emergency care setting, where a lower

79% is due to inefficiencies.

Because our data comes from the decisions that people make in the market, the selection

into the different kinds of plans is a concern. We exploit the institutions of the South Korean

supplemental insurance market to assuage the concerns about selection, and in addition, we

implement several tests that are commonly used in the literature, such as the correlation test

of Chiappori and Salanié (2000), identifying the marginal consumer in a matching model,

and explicitly adding consumers’ private information to the estimation among others. Our

results from these robustness analyses indicate that selection does not introduce major

concerns for the interpretation of our results.

4.2. Theory and Empirical Strategy

4.2.1. Income and substitution effect

To set up the frame in which our empirical approach is used, we first decompose the phe-

nomenon in which the level of consumption changes in response to a change in the price of

the same good into two parts: the income effect and the substitution effect. The two com-

ponents of the total price effect are related to the two effects that consumers face when the

price of a good changes. Consider the case of a decrease in purchasing price of health care

due to the consumer having access to health insurance. First, because the price of health

care decreased, now the consumer has access to additional purchasing power and is free
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to spend it however they want. Given that health care is a normal good, the consumption

of health care will increase alongside with overall increase in the consumption of all other

normal goods. The income effect refers to such increase in the level of consumption, repre-

sented by movement from x∗ to xh in Figure 4.1, that is the result of the increase in the

overall purchasing power of the consumer. It is important to note that the portion of the

total price effect that is attributable to the income effect does not take distortions in prices

into account, rather, it is simply the response of the consumer facing increased purchasing

power.

Second, because the price of health care decreased, now the consumer faces a choice set in

which health care becomes relatively cheaper than all other goods, making it more attractive

to the consumer. The resulting increase in the consumption of health care is referred to as

the substitution effect. While there are different ways of identifying the substitution effect,

we present the method using equivalent variation, which is a deliberate choice given the

empirical setting that we exploit in this paper. Using the equivalent variation approach, the

magnitude of the substitution effect is the difference between the level of consumption after

the price change, represented by x′ in Figure 4.1, and the level of consumption the consumer

would have chosen under original prices but if they were given lump sum transfers that made

them as satisfied as after the price change, represented by xh. As seen in Figure 4.1, the sum

of the income and the substitution effect equals the total price effect.

Note that both panel (A) and panel (B) in Figure 4.1 portray the same amount of increase in

the level of consumption caused by the same amount of decrease in price. The key difference

between the two cases is the degree to which the total price effect can be explained by the

income effect. In panel (A), the income effect is the dominating force as most of the increase

in the level of consumption would have occurred even if the consumer were simply given a

lump sum transfer. On the other hand, in panel (B), the income effect explains very little of

the total price effect, and the substitution effect is the dominating force. Most of the increase

in the level of consumption only occurs due to changes in the relative prices of health care
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Figure 4.1: Indifference curve decomposition of the price effect

Y Y

qhc qhcx* x′xh x* x′xh

(A) (B)

against all other goods. In this case, if the consumer were given a lump sum transfer, they

would spend minimal amount on seeking additional health care.

4.2.2. Welfare implications

The welfare implications of the two scenarios depicted in the two panels can be seen easily by

the resulting Marshallian and Hicksian demand curves following the decomposition approach

using the equivalent variation. Figure 4.2 presents the two types of demand curves that are

the respective results of the different shapes of the indifference curves depicted in panel

(A) and (B) of Figure 4.1. Note that the slopes of the Marshallian demand curves are the

same across the two panels because a Marshallian demand curve plots the overall changes

in the level of demand following changes in the price. On the other hand, the slopes of

the Hicksian demand curves are determined by the relative magnitude of the income effect

as the Hicksian demand curve plots the level of demand holding utility fixed at the post-

price change level. While a Hicksian demand curve will always be weakly steeper than a

Marshallian demand curve, if the income effect is the dominating force as in panel (A) of

Figure 4.2, the Hicksian demand curve will have a much steeper slope that departs away

from the Marshallian demand curve. On the other hand, if the substitution effect is the

dominating force as depicted in panel (B), the Hicksian demand curve will have a relatively
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Figure 4.2: Hicksian demand curve decomposition of the price effect
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similar slope as the Marshallian demand curve.

The critical welfare implication of the two alternate scenarios is the difference in magnitudes

of deadweight loss. The deadweight loss must be calculated by using the Hicksian demand

curve (Hausman, 1981) because the portion of the total price effect explained by the income

effect is not caused by distortions in price, and therefore only the portion of the total

price effect explained by the substitution effect has bearings on market efficiency. Therefore

the degree of market inefficiency can be represented by the triangle BCD in Figure 4.2.

Depending on which panel in Figure 4.2 we believe better represents the market for health

care, magnitude of deadweight loss caused by moral hazard can be hugely different. If the

income effect dominates as in panel (A), most of the changes in consumer behavior is, in

fact, optimal. There is little deadweight loss from health insurance because it is the increases

in consumption power that drives increases in health care consumption, rather than the

distortion in relative price of health care. On the other hand, if the substitution effect

dominates as in panel (B), most of the changes in consumer behavior results in deadweight

loss. The suboptimal level of consumption is caused by the fact that health care simply

becomes relatively cheaper, and health insurance induces overconsumption of health care

that individuals would not have consumed if they were given a lump sum transfer instead.
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4.2.3. Empirical strategy

Since the decomposition involves three components, total price effect, income effect, and sub-

stitution effect, the estimation of the decomposition of the price effect will require estimating

at least two of the components. Directly estimating the substitution effect is a challenge be-

cause the estimation process would involve observing changes in consumer behavior holding

the level of utility fixed. Given that utility is not easily measurable, a better empirical strat-

egy would be to estimate the total price effect and the income effect to make inference on the

magnitude of the substitution effect. One way to directly estimate the income effect would

be to observe a market where consumers were randomly assigned to insurance plans that

give out lump sum transfers. Observing the baseline expenditure, the amount of lump sum

transfer, and the resulting changes in the level of health care expenditure would allow the

econometrician to infer the magnitude of the income effect by measuring the proportion of

each unit of additional income that is spent in health care. If the magnitude of the total price

effect can be measured in the same market, for example by randomly assigning consumers

to insurance plans that reduce the purchasing price of health care, then the measurement

of the total price effect and the income effect can be used to infer the magnitude of the

substitution effect, i.e., the portion of moral hazard that results in deadweight loss.

Suppose there is a market where individuals are randomly assigned to one of the following:

(1) insurance that reduces the purchasing price of health care, (2) insurance that provides

lump sum transfers in case the consumer requires health care, and (3) no insurance. Given

that we observe the level of health care expenditure of each individual as well as the amount

of insurance payments that individuals received from each type of insurance, we can estimate
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the following models.

yit = β0 + β1 × payments from insurance type 1it

+ β2 × payments from insurance type 2it +Xitγit + ϵit

(4.1)

log(yit) = δ0 + δ1 × enrolled in insurance type 1it

+ δ2 × enrolled in insurance type 2it +Xitγit + ϵit

(4.2)

where yit measures the individual’s level of health care expenditure, and Xit includes in-

dividual characteristics such as age, gender, overall level of health, and binary variables

indicating insurance enrollment in each type. Note that yit is not a measure of out-of-pocket

spending, rather it measures the level of expenditure, i.e., spending on health care before

insurance. payments from insurance type 1 measures the amount of payments that individu-

als received from price-reducing insurance. In other words, if such insurance plan reimburses

90% of spending on health care and a given individual’s spending was $100, then the amount

of payment from the insurance plan would be $90. payments from insurance type 2 mea-

sures the amount of payments that individuals received from plans with lump sum transfer

contracts. Such plan would involve pre-specified amount of lump sum transfer that triggers

when an individual ends up in a “bad” state.

With careful interpretation, the coefficients estimated from models (4.1) and (4.2) allow us to

recover the decomposition of the total price effect. First, note that β1 measures the amount

of increases in health care expenditure per each dollar of payment from a price-reducing

insurance plan. Defining ȳ as the average level of health care spending by an individual with

no insurance and r as the proportion of total spending to be covered by insurance, we can

intuitively write β1 as follows.

β1 =
y − ȳ

ry
(4.3)

Note that r = 1 − p′, where p′ is the relative price of health care after insurance. We can
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then rewrite (4.3) as follows.

β1 =
y − ȳ

y
× 1

1− p′
(4.4)

Then, we use δ1, which measures the percentage change in health care expenditure for those

enrolled in price-reducing health insurance, as follows.

β1(δ1 + 1) =
y − ȳ

y
× 1

1− p′
×
(y − ȳ

ȳ
+ 1

)
=

y − ȳ

ȳ
× 1

1− p′

=
% change in health care expenditure

% change in price of health care
(4.5)

Therefore, β1(δ1 + 1) represents the Marshallian price elasticity of demand for health care.

On the other hand, β2 measures the amount of increases in the level of health care expen-

diture per one dollar of lump sum transfer by an insurance plan. Note that such lump sum

transfer does not affect the price of health care in any way. Defining T as the amount of

lump sum transfer by insurance, we can write β2 as follows.

β2 =
y − ȳ

T
(4.6)

By multiplying (4.6) by wȳ
wȳ , where w is the level of income, we can rewrite (4.6) as follows.

β2 =
ȳ

w
× y − ȳ

ȳ
× w

T

= α× % change in health care expenditure
% change in income due to lump sum transfer

, (4.7)

where α is the proportion of total income spent on health care. Therefore, β2 represents the

income elasticity of demand for health care multiplied by proportion of total income spent

on health care.

93



Using the Slutsky equation, the Marshallian price elasticity is,

ηp = ηhp + αηw, (4.8)

where ηhp is the Hicksian compensated price elasticity and ηw is the income elasticity. By

substituting the results in (4.5) and (4.7), we can infer the Hicksian compensated price

elasticity.

ηhp = β1(δ1 + 1)− β2 (4.9)

Therefore, given the ability to estimate the consumer response to price-reducing insurance

plans and income-transferring insurance plans as modelled in (4.1) and (4.2), we can use the

estimates to infer how much of moral hazard caused by price-reducing health insurance is

in fact welfare-reducing.

4.3. Empirical Setting

The practical problem of estimating the decomposition is that insurance plans that involve

lump sum transfers has been extinct at least in the U.S. for quite some time. Therefore, we

exploit the private insurance market in South Korea where there exists insurance contracts

with lump sum transfers that are designed to trigger when consumers are diagnosed with

pre-specified conditions. In this section, we outline the basic institutional details of the health

insurance market in South Korea, provide an overview of the private insurance market, and

discuss insurance plans offered in the private insurance market and how they fit our setting.

4.3.1. The National Health Insurance in South Korea

The health care system in South Korea can be characterized by the universal coverage de-

livered through the National Health Insurance (NHI) system.7 All Korean citizens, legal

residents, and foreign nationals who reside in Korea for more than six months are legally

required to enroll in the NHI, resulting in approximately 97% coverage of the entire pop-

ulation. Contributions to the NHI are proportional to wage (around 5%) for employees of
7We refer readers who are interested in further details on the National Health Insurance and the general

health care system of South Korea to (Kwon et al., 2015)
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private firms and organizations, government, and private and public schools. For the self-

employed, contributions take both the level of income and the value of total assets into

account. There is only a single uniform plan which provides all enrollees with access to the

identical benefits package.

The benefits are explicitly defined in a positive list and covers essential health care services

including diagnostic services, treatments, emergency care, pharmaceuticals, and dental care

as well as medical check-ups. Quasi-government agencies decide the set of services and drugs

to be included in the package mostly based on cost-effectiveness criteria and budgetary

concerns. Figure 4.3 outlines the coinsurance rates for the services that are covered by the

NHI. The coinsurance rate ranges from 20% for inpatient care to 35-60% for outpatient care

depending on the type of provider. For example, the coinsurance rate for a consultation

visit at a hospital outpatient is set higher than the same visit provided at a physician clinic

in order to induce people to utilize low cost options first. There is an out-of-pocket ceiling

with the amount depending on income. However, the ceiling only applies to services that are

covered by the NHI, and therefore spending on care not covered by the NHI are not subject

to any financial protection.

With limited amount of funding, covering the entire population was and still is the priority

more so than the scope of services that are covered. Limited funding, together with the

strict positive system of coverage, leads to many services and procedures to be left out of

the NHI’s coverage. Services and procedures that are not covered by the NHI generally fall

into two categories: diagnostic/curative services and elective services. The former category

includes medically necessary procedures that are not evaluated yet or deemed not as cost-

effective. It also includes services that are conditionally covered, such as MRIs where only

up to a certain number of tests are covered. Spending on medical care in this category is

often a source of financial burden for consumers. The latter category includes services that

are deemed to be non-medically necessary, e.g. elective cosmetic surgeries.

Together with non-covered services and relatively high coinsurance rate, the percentage of
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Figure 4.3: Coinsurance Rates
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total medical expenditure that the NHI accounts for has been fairly low. According to the

2017 Korea Healthcare Quality Report by the Korea Institute for Health and Social Affairs

(Kang et al., 2017), the government and the NHI spending only accounted for 56% of the

total health care expenditure in 2016. It is estimated that 37% of the total health care

expenditure came from out-of-pocket payments, which is fairly high when compared to the

OECD average of 20% despite having universal coverage. Private health insurance accounted

for the remaining 7% of total health care expenditure.

4.3.2. The private health insurance market

One of the solutions that consumers have turned to alleviate high burden of out-of-pocket

costs is private health insurance that provides coverage in addition to the mandatory in-

surance. There is no clear data on the size of the private health insurance market due to

the difficulty of collecting proprietary data across multiple firms, but in 2016 around 73%

of total households were estimated to have private health insurance (Choi and Lee, 2017).

The general consensus is that the private health insurance market is still growing.

The most critical aspect of the private health insurance market that we exploit in this paper

is the two types of bases in which insurance payments are reimbursed to the consumers.

Insurance plans sold in the private insurance market can be broadly categorized into plans

that pay a pre-specified amount of money based on various triggers and plans that provide

reimbursements based on the actual spending incurred by the consumer. In this paper, we

define fixed indemnity plans as the plans that have a predefined set of triggers and associated

set amount of money to be paid out to the consumers. Conversely, we define supplementary

plans to be the plans that reimburse consumers based on how much they actually spent on

eligible medical care.

First, supplementary insurance is the type of health insurance plans that consumers in the

U.S. are familiar with. These plans provide reimbursements for out-of-pocket medical ex-

penses including copays and coinsurance for services covered by the NHI as well as medically

necessary services and procedures that are not covered by the NHI. In other words, sup-
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plementary insurance reimburses consumers for coinsurance paid on all medically necessary

procedures and services regardless of whether they are covered by the NHI or not. Sup-

plementary plans do not provide coverage for non-medically necessary elective procedures,

such as plastic surgery performed for cosmetic reasons. Unlike the NHI and health insurance

plans sold in the U.S., supplementary plans in South Korea usually have annual maximum

reimbursements ranging from approximately $30,000 to $100,000 for inpatient care and $100-

$500 for each outpatient visit. Supplementary plans themselves also incorporate measures of

coinsurance. For inpatient visits, the patient is expected to pay 10-20% of total reimbursable

expenses. For example, for an individual who purchased a plan with 10% coinsurance rate,

if the total inpatient cost was $5000 and the NHI covered $4000, the patient first pays

$1000 to the health care provider, then the patient can submit a reimbursement claim for

$900, lowering the net out-of-pocket payments to $100. Similarly, for outpatient visits and

prescription drugs, different rates of copays apply, usually in the range of $10-$20 (Shin,

2015). In essence, the behavior of the consumers with supplementary insurance allows us to

estimate the total price effect of health insurance in the sense that these plans distort the

purchasing price of health care exactly through the same mechanism as all insurance plans

sold in the U.S. market.

Fixed indemnity insurance plans have been the more popular form of insurance in South

Korea. These are contracts that pay a pre-specified amount of money contingent on various

triggers that range from diagnosis of certain condition to certain types of surgery. For exam-

ple, a fixed indemnity plan with a cancer diagnosis trigger will pay the pre-specified amount

of money when the policy holder is diagnosed with cancer. The condition that is the basis

of the contract can vary from cancer, acute myocardial infarction, cerebral hemorrhage, to

bone fracture. There are also plans with procedural triggers that pay when policy holders

receive pre-defined types of surgery, which can be combined with a restriction contingent on

the diagnosis of a pre-specified condition. Most of the plans that are offered in the market

have core packages that cover more serious conditions, such as cancer, AMI, and stroke.

Once consumers pick the base coverage, they can often choose add-on coverage on other
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conditions including, but not limited to, bone fractures, heart conditions, arthritis, demen-

tia, and dentures/implants. Some contracts also pay a fixed amount of money per hospital

stay, either covering all or a specific set of diagnoses.

Critical to our study, fixed indemnity payments based on changes in the state of the con-

sumers, e.g. diagnosis of a medical condition, do not affect the price of health care that the

consumers face in any way. Payments from these contracts are not contingent on utilization

(except the visit and any necessary diagnostic services to confirm the diagnosis), and con-

sumers are free to spend the money in any way they see fit. The proportion of indemnity

payments that consumers decide to spend on health care provide us with the ability to di-

rectly estimate the magnitude of the income effect and in turn the ability to disentangle the

total price effect of health insurance.

4.3.3. Adverse selection in the private health insurance market

While we perform extensive statistical tests in Section 4.6 to confirm that there is minimal

bias from adverse selection, there are institutional details of the private health insurance

market that allows to explain the results of our tests. First, consumers are legally required to

disclose previous medical history and utilization records when applying for private insurance

plans. Using the information, the private insurance companies are freely allowed to employ

differential pricing, reject applications, and deny coverage for pre-existing conditions. For

example, if an insurance company decides an applicant is high-risk but does not warrant a

complete rejection, it can raise premiums, reduce benefits, and restrict coverage based on

pre-existing conditions (Shin, 2015).

In practice, insurance firms usually dispatch investigators when a consumer files a claim

within three years of enrollment. Consumers are contractually required to allow the investi-

gators to access their medical history to a certain degree, otherwise the insurance company

can postpone or reject any claims, and the investigator pays close attention to any viola-

tion in the disclosure requirements. If the investigator discovers evidence of non-disclosed

pre-existing conditions, the insurance company can not only deny the claim but can also
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cancel the enrollment altogether. Ultimately, these tools not only allow both low-risk and

high-risk individuals to stay in the market but also resolve adverse selection not by rely-

ing on self-sorting, e.g., by offering a menu of plans that offer varying degrees of financial

protection, but through the firm essentially offering a personalized plan with premiums and

coverage determined for each individual. Such lack of regulation, compared to other coun-

tries that adopted various systems of community rating, allows us to rule out issues rising

from selection bias to the degree in which insurance firms have access to information.

Furthermore, the mandatory NHI alleviates at least some portion of the health risk that

individuals face, and therefore the degree of adverse selection arising from private informa-

tion on health risk should be lower in the private insurance market. In contrast, insurance

markets where plans that are sold are expected to be the primary source of financial pro-

tection face potentially larger effect of adverse selection. For instance, the insurance market

for individuals who do not have access to employer-based government-based plans in the

U.S., especially before the reform in 2010, has been known to suffer from adverse selection

as evidenced by higher average risk and higher premiums (Browne, 1992; Hackmann et al.,

2015). In this market, the only way for high-risk individuals without access to group insur-

ance plans to acquire financial protection is to enroll in individual health insurance plans,

ultimately driving both the average risk and premiums higher. The idea is that if these

individuals had access to basic insurance plans offered by the government, the financial risk

that consumers face, on average, would be lower, and therefore the degree in which adverse

selection occurs would be curtailed.

4.4. Data and Summary Statistics

4.4.1. Data

The data used in this paper were provided by the Korea Health Panel, an annual survey data

jointly administered by the Korea Institute for Health and Social Affairs and the National

Health Insurance Service. Being nationally representative, the Korea Health Panel data have

been used in numerous studies across disciplines as well as policy designs and evaluations.
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It began tracking 7,866 households and 24,616 individuals in 2008. By 2016, the latest data

available, the retention rate was approximately 65%. To maintain adequate number of ob-

servations as well as representativeness, 2,520 households and 7,387 individuals were added

in 2012 (the retention rate for the new group in 2016 was approximately 75%). We drop

data before 2010 because important covariates including self-reported health began to be

collected from 2010. Also, we exclude 2016 data since there can be time lags between when

consumers receive health care and submit claims to private health insurance companies, and

therefore a big portion of claims for care received in 2016 has not been included. From 2010

to 2015, there are total of 102,980 observations, and for our analysis we drop observations

with missing data on individual’s health and household characteristics, resulting in the final

sample size of 72,925. For the purposes of this paper, we construct a dataset consisting of

comprehensive variables related to health care consumption, private health insurance en-

rollment and reimbursements, and sociodemographic characteristics. All monetary variables

are converted into 1,000 South Korean won (KRW). For simplicity, we refer to 1,000 KRW

as 1 U.S. dollar (USD) when interpreting our results.8

As the main outcome variable, we use the total amount of each individual’s spending on

health care including inpatient, outpatient, emergency services, and prescription drug uti-

lization. Note that the amount that we observe is the total amount of spending after NHI

coverage, but not taking into account any reimbursements from private insurance, because

the NHI preemptively adjusts the purchasing price of health care. In contrast, all private

health insurance plans operate under a strict ex-post reimbursement system. Patients need

to submit evidence, such as payment receipts and/or medical records, to the insurance

company to receive reimbursements in an ex-post fashion after the actual utilization oc-

curs. Therefore, the compulsory nature of the NHI implies that the total amount of health

care spending that we observe essentially measures the total health care expenditure of

each individual. As a robustness check, we also perform estimations using spending at the

household level. Similar to the individual spending, the household spending is calculated by
8At the time of writing, the U.S. dollar to South Korean won exchange rate is at 1133.60.
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aggregating health care spending of all members of the household. The additional benefit

of confirming our analysis using the household-level variable is that it includes the amount

of health care related expenses, such as transportation costs, midwives, long-term care, and

over-the-counter drugs.

Private health insurance enrollment is tracked annually for all individuals that are part of the

data. Although the specific plan that an individual is enrolled is tracked using a masked plan

ID, it is not identifiable, i.e., we cannot look up plan details such as which insurance company

offered the plan. However, plan type (indemnity versus supplementary) associated with each

plan ID is available, giving us the ability to track whether an individual was enrolled in a

plan offering indemnity insurance and/or a plan offering supplementary insurance. Data

on the amount as well as the type of payments received from private health insurance

are available at the plan level for each individual, enabling us to observe how much each

individual received from private insurance by three categories: fixed indemnity payments

based on changes in state of the individual (i.e., diagnosis, accidents, etc.), fixed indemnity

payments triggered by utilization (i.e., fixed amount per hospital day), and supplementary

payments on actual medical spending.

Detailed data on socioeconomic characteristics allow us to control for a rich set of covariates.

We control for gender, age, marital status, employment status, years of education, logged

household size, logged household income, and city/province of residence as sociodemographic

characteristics. To control for variations in underlying health conditions and lifestyles that

may affect both purchasing decisions of private health insurance and health care consump-

tion, we control for whether the individual had a childbirth in the year of the survey, presence

of chronic conditions, disability, physical limitation, days engaged in vigorous or moderate

physical activities, days walked for more than ten minutes, and self-reported health status

structured as a five-level Likert scale. Lastly, we exploit the panel nature of the data and

include individual fixed effects to control for time-invariant unobserved individual charac-

teristics.
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Table 4.1: Summary statistics

Mean SD Min Max
Individual spending 601.8 1250.7 0 52484.3
Enrolled in supplementary insurance (%) 29.5 45.6 - -
Enrolled in indemnity insurance (%) 67.9 46.7 - -
Supplementary insurance payments 18.8 273.5 0 35000
Indemnity payments based on state 68.2 2012.2 0 400000
Indemnity payments based on utilization 30.0 569.3 0 110000
Female (%) 54.8 49.8 - -
Age 51.0 16.9 17 102
Married (%) 71.1 45.3 - -
Employed (%) 59.7 49.0 - -
Years of education 11.2 4.28 0 19
Household income 42917.6 33074.3 20 1036000
Number of household members 3.24 1.31 1 11
Childbirth (%) 0.94 9.67 - -
Chronic conditions (%) 61.8 48.6 - -
Disabled (%) 6.21 24.1 - -
Physical limitation (%) 5.56 22.9 - -
Days in a week engaged in vigorous physical activity 0.76 1.67 0 7
Days in a week engaged in moderate physical activity 1.49 2.26 0 7
Days in a week walked for more than ten minutes 3.94 2.74 0 7
Self-reported health

Very good (%) 5.85 23.5 - -
Good (%) 37.7 48.5 - -
Moderate (%) 41.2 49.2 - -
Bad (%) 13.8 34.4 - -
Very bad (%) 1.45 12.0 - -

4.4.2. Summary statistics

Table 4.1 provides the summary statistics of the variables used in the analysis as well as the

unconditional probabilities of enrollment in private health insurance plans by type. 67.9%

and 29.5% of the total population respectively was enrolled in indemnity insurance plans

and supplementary insurance plans. The summary statistics confirm previous research and

show that the enrollment rate for the indemnity insurance plans are much higher than the

supplementary insurance. Average payments from private insurance plans shown in Table

4.1 are calculated over the entire population as opposed to only those enrolled in each type

of insurance.

Table 4.2 provides the summary statistics by enrollment in each type of insurance. Compar-
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Table 4.2: Summary statistics by enrollment in each type of private insurance

(1) (2)
Indemnity Supplementary

Mean SD Mean SD
Individual spending 573.5 1225.5 554.4 1207.5
Female (%) 55.1 49.7 57.1 49.5
Age 47.2 14.1 43.3 12.8
Married (%) 76.2 42.6 75.7 42.9
Employed (%) 66.3 47.3 68.1 46.6
Years of education 12.1 3.62 12.9 2.97
Household income 49129.2 33945.9 53598.4 33724.7
Number of household members 3.43 1.21 3.59 1.13
Childbirth (%) 1.17 10.7 1.67 12.8
Chronic conditions (%) 56.8 49.5 50.2 50.0
Disabled (%) 3.84 19.2 1.98 13.9
Physical limitation (%) 2.91 16.8 1.65 12.7
Days in a week engaged in vigorous physical activity 0.86 1.74 0.88 1.74
Days in a week engaged in moderate physical activity 1.60 2.27 1.59 2.23
Days in a week walked for more than ten minutes 3.92 2.70 3.90 2.69
Self-reported health

Very good (%) 6.18 24.1 6.71 25.0
Good (%) 40.7 49.1 42.9 49.5
Moderate (%) 42.1 49.4 42.2 49.4
Bad (%) 10.2 30.3 7.77 26.8
Very bad (%) 0.72 8.47 0.40 6.31
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ing the average statistics of individuals enrolled in indemnity and supplementary insurance

shows that the two groups are relatively similar in terms of most covariates including gender

composition, marital status, education, household size, and self-reported health. Individuals

who purchased supplementary insurance are slightly younger, have higher income, and are

less likely to be disabled or have physical limitations. Compared to the population average,

being younger, married, employed, having more education and higher household income, and

being in a larger household are all correlated with private insurance enrollment. On the con-

trary, having a chronic disease, being disabled, and having limitations in daily activities are

all negatively correlated with private health insurance enrollment. The negative correlation

is the opposite of what economic theory of adverse selection would predict. This pattern

is again evident in the self-reported health variable, as individuals with the worst health

have the lowest rates of insurance enrollment. These results are likely due to the fact that

the insurers are relatively successful in preventing adverse selection by being able to deny

applicants without any restrictions, deny specific coverages based on pre-existing conditions,

and transfer any calculated risk to the consumer by increasing the premium.

4.4.3. Actuarial values of private insurance plans

The estimated actuarial values of the two types of private insurance plans can be calculated

by taking the sample mean of the amount of insurance payments that enrollees receive.

First, we find the likelihood of receiving insurance payments from an indemnity plan to

be 4.87% given enrollment. More specifically, 2.15% of indemnity plan enrollees received

payments triggered by changes in state, and 3.09% of enrollees received payments triggered

by health care utilization. As for supplementary plans, 9.37% of enrollees received payments.

The higher likelihood of receiving payments from supplementary plans is expected because

indemnity plans require more specific conditions to trigger payments.

Conditional on receiving any amount of payment from respective type of insurance, indi-

viduals received $4,673 from indemnity payments triggered by state, $1,430 from indemnity

payments triggered by utilization, and $681 from supplementary payments. Again, the larger
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amount of average payments from indemnity plans is expected due to the nature of the differ-

ences in the type of insurance. Combining the likelihood of receiving any amount of payment

and the conditional average amount of payments, the estimated average actuarial value of

indemnity plans based on state is $100.44, $44.16 for indemnity plans based on utilization,

and $63.79 for supplementary plans.

4.5. Results

Table 4.3 presents the result of the estimation of model (4.1). We find that a one dollar of

insurance payment from a supplementary plan is associated with $0.54 increase in health

care expenditure. On the other hand, a one dollar of payment from indemnity insurance

triggered by changes in the state of an individual is associated with $0.04 increase in health

care expenditure. We present the result of the estimation of model (4.2) in Table 4.4. We

find that enrollment in a supplementary insurance plan is associated with 19.84% increase in

health care expenditure by exponentiating the point estimate. In other words, we estimate

β1, β2, and δ1 to be 0.536, 0.0404, and 0.181 respectively.

Using the Slutsky equation and the formulation in (4.9), we estimate the Hicksian compen-

sated price elasticity of health care to be 0.593. In comparison to the total uncompensated

price elasticity, which we estimate to be 0.633, we find that 94% of moral hazard caused by

health insurance can be attributed as market inefficiency.

4.5.1. Nonlinear marginal effects

Our finding that 94% of moral hazard caused by health insurance leads to market inefficiency

applies to the overall market for health care. However, at the individual level, it is plausible

that both the magnitude of the total price effect and the decomposition into income and

substitution effect can have large heterogeneity. For example, the demand for health care

would be much more inelastic for individuals with a more serious condition compared to the

average consumer. As a first test to detect such variation across the population, we perform

nonlinear analysis by estimating polynomial specifications of model (4.1). Specifically, we

fit a model with quadratic terms of payments from each type of private insurance plan. We
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Table 4.3: Estimation of model (4.1)

(1) (2)
Health care
expenditure

Health care
expenditure

Supplementary insurance payments 0.572∗∗∗ 0.536∗∗
(0.170) (0.173)

Indemnity payments based on state 0.0455 0.0404
(0.0257) (0.0235)

Control variables Yes Yes
Individual fixed effects No Yes
Observations 72925 72925

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 4.4: Estimation of model (4.2)

(1) (2)
Logged health care

expenditure
Logged health care

expenditure
Enrolled in supplementary insurance 0.304∗∗∗ 0.181∗∗∗

(0.0191) (0.0328)

Enrolled in indemnity insurance 0.296∗∗∗ 0.0582
(0.0186) (0.0413)

Control variables Yes Yes
Individual fixed effects No Yes
Observations 72925 72925

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.
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present the results in Table 4.5.

As theory would suggest, the marginal effects of all types of insurance payments on health

care consumption decrease as the amount of payments increase. One dollar of payment from

supplementary insurance is associated with $0.99 increase in health care expenditure when

the amount of insurance payment is very small. The magnitude of the consumer response to

supplementary insurance decreases until the amount of insurance payment reaches $14,500

at which point the demand for health care becomes perfectly inelastic to price. On the other

hand, one dollar of indemnity payment based on changes in the state of an individual is

associated with $0.11 increase in health care expenditure when the amount of insurance

payment is very small. The consumer response to additional purchasing power on health

care consumption decreases until the amount of indemnity payment reaches $191,800 at

which point the demand for health care becomes perfectly inelastic to income. Note that

supplementary payment of $14,500 and indemnity payment of $191,800 are larger than the

top 0.1% among all individuals who received any amount of payment from each insurance

type.

This suggests that health care as a good does not become perfectly inelastic to either price

or income except for individuals in extreme circumstances who are in the top 0.1% in terms

of health care spending among all individuals with any level of health care consumption.

Additionally, we compute the predicted amount of insurance payments from each type of

insurance at different levels of health care spending by regressing the amount of insurance

payments on health care spending among those who received insurance payments from each

type of insurance. Then, using the marginal effects recovered in Table 4.5, we estimate

the total uncompensated price elasticity and the income elasticity to infer the Hicksian

compensated elasticity. This in turn allows us to measure the degree in which moral hazard

from health insurance is welfare-reducing at different levels of health care spending. We find

that even at the top 99 percentile in terms of health care spending among individuals with

any level of health care consumption, 89% of the total price effect is caused by substitution
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Table 4.5: Quadratic specification of model (4.1)

(1) (2)
Health care
expenditure

Health care
expenditure

Supplementary insurance payments 1.0264∗∗∗ .9943∗∗∗
(.06479) (.06714)

Supplementary insurance payments2 -3.5e-05∗∗∗ -3.4e-05∗∗∗
(3.4e-06) (3.2e-06)

Indemnity payments based on state .11416∗∗∗ .10663∗∗∗
(.01472) (.01421)

Indemnity payments based on state2 -3.0e-07∗∗∗ -2.8e-07∗∗∗
(3.8e-08) (3.6e-08)

Control variables Yes Yes
Individual fixed effects No Yes
Observations 72925 72925

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

effect, and therefore results in market inefficiency.

4.5.2. Disease category

A more direct approach to measure variations in the magnitude of the total price effect

and the decomposition of the price effect into income and substitution effect is to consider

individuals with specific health conditions. Cancer, diabetes, heart diseases and stroke, hy-

pertension, arthritis and osteoporosis, and chronic back conditions are selected based on

topics of priority from CDC’s initiative Healthy People 2020 and rate of prevalence in the

South Korean population.

First, we identify individuals with positive spending related to each medical condition using

diagnosis codes attached to health care utilization reports. Then, we estimate models (4.1)

and (4.2) on subsets of data in which individuals had positive spending on each type of

medical condition during the year. We summarize the results in Table 4.6. With the exception

of individuals diagnosed with cancer in which we find that 59% of the total price effect of
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Table 4.6: Subgroup analysis of individuals with positive spending in each condition

(1) (2) (3) (4)
N β1 β2 δ1 ηhp/ηp

Cancer 2150 0.180 0.0822∗∗∗ 0.107 59%
(0.104) (0.0143) (0.0792)

Diabetes 4615 1.338∗∗∗ 0.122∗ -0.0195 91%
(0.285) (0.0519) (0.0472)

Heart diseases and stroke 3490 0.733∗∗∗ 0.0720 0.0724 91%
(0.142) (0.0379) (0.0574)

Hypertension 14277 0.773∗∗∗ 0.169∗∗∗ 0.0869∗∗ 80%
(0.185) (0.0350) (0.0279)

Arthritis and osteoporosis 10211 0.995∗∗∗ 0.135∗∗ 0.0998∗∗ 88%
(0.0916) (0.0474) (0.0372)

Chronic back conditions 10361 1.085∗∗∗ 0.0922∗∗ 0.210∗∗∗ 93%
(0.0969) (0.0303) (0.0336)

Note. For individuals with diabetes, we assume δ1 = 0. Robust standard errors in parenthesis.
Controls not shown include sex, age, marital status, employment status, years of education, logged
household income, logged household size, childbirth, chronic conditions, disability, physical limita-
tions, days engaged in moderate physical activities, days engaged in vigorous physical activities,
days walked for more than ten minutes, self-reported health, city/province of residence, and year
fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

health insurance is welfare-reducing, the point estimates show that roughly 90% of the

total price effect leads to market inefficiency across individuals with medical conditions with

varying degrees of severity and acuteness. This result is consistent with our finding using

quadratic models presented in Section 4.5.1, and it provides further evidence that a large

portion of moral hazard caused by health insurance results in market inefficiency even among

individuals with medical conditions.

4.6. Selection Bias

So far, we have interpreted the results in Section 4.5 as if individuals were randomly selected

to be enrolled in each type of insurance. We are especially concerned about the estimate of

δ1. Because we would over-estimate δ1 if adverse selection occurs for supplementary plans,

we would also over-estimate the compensated price elasticity. On the other hand, if advan-

tageous selection occurs in the market for supplementary plans, we would under-estimate

δ1 and therefore under-estimate the compensated price elasticity. While in an ideal world,

we would have had the ability to randomly assign individuals to each type of insurance, we
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rely on the features of the private insurance market and utilize series of statistical tests to

confirm that our estimation strategy does not suffer from significant bias from selection.

First, we exploit the fact that individuals are asked to rate their own health, which may con-

tain private information about the health status of the individuals, and use this information

to see if it is a strong predictor of private insurance enrollment. Secondly, we use residuals

from the main models to detect any presence of unobserved factors, conditional on all of the

control variables, that may affect both the decision on the level of health care consumption

and enrollment in private insurance. Lastly, we identify a group of marginal consumers who

are indifferent between the two different types of insurance, and we confirm our findings

by performing the estimations using only the group of individuals whom we identify as

marginal consumers. In all of our tests, we either do not find significant presence of selection

bias or find that there is a slight advantageous selection in the supplementary insurance

market, suggesting that our estimate of the compensated price elasticity and therefore the

welfare-reducing proportion of the total price effect are most likely a lower bound.

4.6.1. Self-reported health as predictor of private insurance enrollment

Although private insurance firms in South Korea can ask for nearly all information regarding

an applicant’s health including previous utilization and medical history, there is one partic-

ular variable that the survey asks that the firms do not have access: self-reported health.

Assuming that individuals partaking the survey were honest when they were asked to rate

their overall health, self-reported health may contain information that is known to the in-

dividual but is not revealed to the insurer through previous utilization and/or diagnostic

history. One way to test whether individuals are successful in withholding information from

the firm and select into the “right” plan is to see if current and/or previous health status

can predict private health insurance enrollment. Table 4.7 presents the result of this exer-

cise and shows that self-reported health is not a particularly strong predictor of insurance

enrollment. When considering the point estimates, individuals that indicated their health

to be worse are in fact slightly less likely to enroll in both indemnity and supplementary
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Table 4.7: Self-reported health as predictor of private insurance enrollment

(1) (2)
Indemnity Supplementary

Self-reported health lagged by one year
Good 0.178∗∗∗ (0.0485) 0.0142 (0.0442)
Moderate 0.146∗∗ (0.0489) 0.000490 (0.0448)
Bad -0.00449 (0.0558) -0.156∗∗ (0.0554)
Very bad -0.124 (0.103) -0.244 (0.136)

Self-reported health
Good 0.100 (0.0511) -0.0368 (0.0455)
Moderate 0.0829 (0.0515) -0.0122 (0.0461)
Bad -0.0522 (0.0584) -0.143∗ (0.0567)
Very bad -0.170 (0.106) -0.369∗ (0.143)

Control variables Yes Yes
Observations 54278 54278

Note. Self-reported health: Excellent is the baseline. Robust standard errors in parenthesis. Controls
not shown include sex, age, marital status, employment status, years of education, logged household
income, logged household size, childbirth, chronic conditions, disability, physical limitations, days
engaged in moderate physical activities, days engaged in vigorous physical activities, days walked
for more than ten minutes, self-reported health, city/province of residence, year fixed effects, and
individual fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

insurance. This provides an evidence against any adverse selection, and helps us interpret

our results on changes in health care expenditure as the response to insurance enrollment,

rather than the effect of hidden information.

4.6.2. Correlation test

Another statistical test to detect selection bias resulting from unobserved factors can be

performed using the residuals from model (4.1) presented in Table 4.3. The residuals of this

estimation represent unobserved factors that are correlated with health care consumption

after taking into account the main explanatory variables as well as all of the control variables.

If we find that the residuals are a strong predictor of enrollment in private insurance, we

would worry that there is an unobserved variable that enters both the spending decision

as well as the decision to enroll in private health insurance, such as private information on

risk type, resulting in selection bias. We present the result in Table 4.8 where we use the

residuals from the model with individual fixed effects in Table 4.3 as a predictor of private

insurance enrollment in a logit model. We find that the residuals from model (4.1) do not

112



Table 4.8: Correlation test using residuals from model (4.1)

(1) (2)
Indemnity Supplementary

Residuals -2.8e-06 1.2e-05
(2.3e-05) (1.9e-05)

Individual fixed effects Yes Yes
Model Logit Logit
Observations 9366 17734

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

have statistically significant association with enrollment in either type of private insurance,

suggesting that selection bias is mitigated through features of the private insurance market

alongside the available control variables.

4.6.3. Identifying the Marginal Consumer

Yet another possible way of detecting for any potential selection bias is to focus the analysis

on the individuals whom we believe are the marginal consumers who are indifferent between

purchasing indemnity and supplementary insurance. One method of identifying the marginal

consumers is to compute the likelihood of each individual purchasing either type of insurance

based on all of the covariates that are available, then selecting a subset of individuals with

approximately equal likelihood of choosing either type.

An issue with implementing this approach is that the number of individuals with supplemen-

tary insurance is lower than the number of individuals with indemnity insurance. Therefore,

a simple predictive model, such as logit or probit, on the full sample of individuals will be

skewed towards indemnity insurance such that the likelihood of purchasing indemnity insur-

ance will be higher than the likelihood of purchasing supplementary insurance. To mitigate

this issue, we use propensity score matching with no replacement to first create a balanced

subsample consisting of all individuals with only supplementary insurance and their match-

ing counterpart with only indemnity insurance. The same control variables that are used
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Table 4.9: Estimation of model (4.1) among marginal consumers

(1) (2)
Health care
expenditure

Health care
expenditure

Supplementary insurance payments 0.861∗∗∗ 0.799∗∗∗
(0.0927) (0.0965)

Indemnity payments based on state 0.140∗∗∗ 0.142∗∗∗
(0.0269) (0.00424)

Control variables Yes Yes
Individual fixed effects No Yes
Observations 2549 2549

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

in the main specification are used for matching. Using this method, a subsample of 2,453

observations in each group (total number of observations being 4,906 with additional 2,453

matched samples) is selected.

Next, we fit a logit model on this subsample to estimate the probability of each individual

choosing either supplementary or indemnity insurance. To be consistent with the main speci-

fication, all of the control variables used in the main specification are used in the logit model.

Then, individuals with close to equal probability of choosing the two types of insurance are

selected to be the best representation of the marginal consumers. Table 4.9 presents the

result on the final subsample of 2,549 individuals with probability of choosing either type

of insurance ranging from 0.48 to 0.52. The results are consistent with the estimates using

the full sample in both specifications including or excluding individual fixed effects.

4.7. Extensions and Robustness Checks

4.7.1. Including expenses related to health care consumption

The household spending variable captures total health care spending as well as relevant ex-

penses, such as transportation costs, midwives, long-term care, and over-the-counter drugs.

Therefore, performing estimations using the household spending as the dependent variable
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allows us to test the possibility that indemnity payments are used to cover health care re-

lated expenses. We present the results in Table 4.10. We find that the relationship between

supplementary insurance payments and spending including relevant expenses is not statisti-

cally distinguishable from the same relationship with the spending variable that only focuses

on direct health care expenses. This is expected as supplementary insurance payments are

only based on direct health care spending, i.e., supplementary plans do not reimburse indi-

viduals for relevant expenses, such as transportation or over-the-counter drugs. We also find

that indemnity payments are not associated with larger increases in health care spending

even when accounting for related expenses. In other words, the results provide an evidence

against the possibility that a significant portion of indemnity payments are used to cover

health care related expenses.

Another extension that is possible using the household spending variable is to focus on

households of size one. This allows us to capture individual spending including any relevant

expenses without complicating the result with decisions of other household members. In our

data, there are total of 1,527 unique single-member households. The results of the estimation

performed in the subgroup is presented in the second row of Table 4.10. While the results

should be taken with a grain of salt given the significant reduction in the number of sam-

ples, we do find that indemnity payments are marginally associated with higher increase in

spending including related expenses compared to the increase in spending excluding related

expenses. We find that 90% of the total price effect can be attributed to substitution effect,

and therefore leads to market inefficiency.

4.7.2. Health status-dependent marginal effect

Another way to measure differential effect across individuals with different health status is to

allow the effect of insurance payments and enrollment to differ across health status. For the

purposes of this analysis, we group individuals who answered that their health is good or very

good as “good” health and those who answered that their health is moderate, bad, or very

bad as “bad” health. Then, we use this binary indicator of good health and interact it with
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Table 4.10: Estimation using household spending including relevant expenses

(1) (2) (3) (4)
N β1 β2 δ1 ηhp/ηp

Full sample 72848 0.628∗∗∗ 0.0496 0.0814∗∗∗ 93%
(0.188) (0.0281) (0.0101)

Single-member households 5581 0.611∗∗ 0.0692 0.122 90%
(0.198) (0.0423) (0.0759)

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 4.11: Interaction using self-reported health

(1) (2) (3) (4)
β1 β2 δ1 ηhp/ηp

Baseline 0.391∗ 0.0319 0.175∗∗∗ 93%
(0.196) (0.0218) (0.0361)

Baseline × good health 0.451 0.0518 0.0121 92%
(0.236) (0.0304) (0.0381)

Note. N = 72, 925. Robust standard errors in parenthesis. Controls not shown include sex, age,
marital status, employment status, years of education, logged household income, logged household
size, childbirth, chronic conditions, disability, physical limitations, days engaged in moderate physical
activities, days engaged in vigorous physical activities, days walked for more than ten minutes, self-
reported health, city/province of residence, year fixed effects, and individual fixed effects. * p < 0.05,
** p < 0.01, *** p < 0.001.

insurance payments and enrollment. The first row of Table 4.11 provides the result of the

estimation on the baseline group, which include individuals in bad health. The second row

provides the coefficients of the interaction terms. We compute the proportion of total price

effect that is welfare-reducing for individuals with good health by adding the point estimate

of the interaction term and the baseline term. First, the result shows that individuals with

good health show much more elastic behavior in terms of both price and income, which is

expected and confirms our findings in previous analyses. Second, even though the magnitude

of the price effect is different between the two groups, the proportion that is welfare-reducing

is surprisingly consistent. We find that 93% and 92% of the total price effect is associated

with market inefficiency among individuals with bad and good health respectively.
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Table 4.12: Individuals with income below poverty line

(1) (2) (3) (4)
N β1 β2 δ1 ηhp/ηp

Income below poverty line 4072 0.813∗∗∗ 0.422∗∗∗ 0.428∗ 64%
(0.128) (0.107) (0.202)

Income above poverty line 68853 0.531∗∗ 0.0400 0.175∗∗∗ 94%
(0.173) (0.0233) (0.0332)

Note. Robust standard errors in parenthesis. Controls not shown include sex, age, marital status,
employment status, years of education, logged household income, logged household size, childbirth,
chronic conditions, disability, physical limitations, days engaged in moderate physical activities, days
engaged in vigorous physical activities, days walked for more than ten minutes, self-reported health,
city/province of residence, year fixed effects, and individual fixed effects. * p < 0.05, ** p < 0.01,
*** p < 0.001.

4.7.3. Individuals with income below poverty line

Next, we examine whether individuals with financial constraints have different price and

income elasticities and consequently the welfare implication of moral hazard. We stratify the

sample into two groups: (1) individuals whose household income was below the poverty line

for at least one year during the data collection period and (2) individuals whose household

income was never below the poverty line. The poverty line is set by the Ministry of Health

and Welfare and is around $1,000 USD for single-member households and increases as the

number of individuals in the household increases. Approximately 6% of individuals in the

sample were ever considered to have income below the poverty line. Results are presented

in Table 4.12, and we find that individuals with income below the poverty line have both

higher price and income elasticities. Furthermore, we find that the proportion of the total

price effect that can be attributed to the substitution effect is 64% among the individuals

with income below the poverty line.

4.7.4. Inpatient, outpatient, vs. emergency services

We measure differential effect based on the type of health care service by dividing individuals’

health care spending into expenses incurred for inpatient, outpatient, and emergency ser-

vices. Table 4.13 shows that 93% and 95% of the total price effect on inpatient and outpatient

care respectively can be attributed as substitution effect. We find that the price and income
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Table 4.13: Estimation using spending in each category of care

(1) (2) (3) (4)
β1 β2 δ1 ηhp/ηp

Inpatient 0.413∗∗ 0.0358 0.216∗∗∗ 93%
(0.135) (0.0201) (0.0179)

Outpatient 0.152∗∗∗ 0.00929 0.252∗∗∗ 95%
(0.0459) (0.00541) (0.0172)

Emergency care 0.00289∗ 0.000648 0.0506∗∗∗ 79%
(0.00125) (0.000450) (0.00862)

Note. N = 72, 925. Robust standard errors in parenthesis. Controls not shown include sex, age,
marital status, employment status, years of education, logged household income, logged household
size, childbirth, chronic conditions, disability, physical limitations, days engaged in moderate physical
activities, days engaged in vigorous physical activities, days walked for more than ten minutes, self-
reported health, city/province of residence, and year fixed effects. * p < 0.05, ** p < 0.01, ***
p < 0.001.

elasticities for emergency care are significantly smaller than elasticities for inpatient and

outpatient care. Furthermore, we find that 79% of the total price effect is welfare-reducing,

which is relatively smaller than what we find for inpatient and outpatient care.

4.8. Discussion and Conclusion

In this paper, we use the unique private health insurance market in South Korea to provide

an empirical evidence on the degree in which moral hazard in health care utilization is

welfare-reducing. Our estimate of the price elasticity of health care utilization in the South

Korean market is 0.633, of which 94% can be attributed to the substitution effect. We

conduct multiple analyses that estimate the decomposition of moral hazard across different

consumer types and care settings. Our estimates are consistent with economic theory in

that the welfare-reducing proportion of the total price effect is smaller for patients with

severe and acute medical conditions and individuals with lower income. We also find that

the deadweight loss from moral hazard is less of a concern in medical care provided in

emergency care settings.

Our work has policy implications that are in line with the theoretical development around

issues of ex-post moral hazard in health care utilization. Various measures that can curtail

moral hazard, such as coinsurance and deductibles, have been the focal point of countless
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policy debates in the U.S. Our estimates of the decomposition of moral hazard support

such concerns in that insurance-induced overconsumption of health care carries significant

deadweight welfare loss in the general population. At the same time, our work also supports

proponents of increased financial protection for individuals with lower income as well as

individuals with severe and acute diseases as the welfare-reducing proportion of moral hazard

is lower among these individuals.
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CHAPTER 5

Conclusion and Future Directions

Each essay in this dissertation takes a unique perspective that together comprises a complex

healthcare system. In Chapter 2, the focus was on the decisions of the regulator in managing

the incentives of healthcare organizations around quality improvements. In evaluating the

VBP program, the essay takes the current measures of quality as given and focuses more

on designing the financial aspects of the incentive program. However, questions still remain

as to the validity of the quality measures that are currently used. Quality, especially in

healthcare, is multidimensional by nature. Therefore, future research needs to evaluate the

effectiveness of different quality measures in distinguishing true underlying quality as well

as incentivizing changes in organizational behaviors. For instance, mortality rates, while

included in the VBP program, can be difficult to accurately measure, let alone improve.

Further analysis should consider a more focused incentive program that targets a narrower,

strategically selected sets of quality measures.

Furthermore, any unintended negative consequence of such incentive programs should be

analyzed. The operations management literature has well documented the “speed-quality”

tradeoff similar to the idea of the iron triangle in health economics. However, the possibility

of a “quality-quality” tradeoff where improving one aspect of quality can lead to decreases

in, or be at the expense of, another aspect of quality. Ultimately, the response of health-

care organizations on incentive programs is a resource allocation problem. Therefore, careful

analysis is needed to make sure that placing financial or non-financial incentives on very spe-

cific quality measures does not harm quality in other aspects, possibly manifesting through

different patient types or procedures that are not directly incentivized. On the other hand,

such analysis could in fact reveal that there is a positive spillover effect, where a healthcare

organization’s effort to improve quality in one aspect can indirectly lead to quality improve-

ments in other aspects. Understanding such spillover effects can be an important factor in

designing incentive programs in the future.
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Chapter 3 studies the impact of operational decisions of a healthcare organization. In con-

junction with the incentives set forth by the regulator, whether directly through incentive

programs like the VBP program or indirectly through payment schemes, a natural followup

question is the impact of operational decisions on the ability of healthcare organizations to

respond to the designed incentives. For instance, the relationship between physicians and

hospitals have been changing towards a more integrated model where hospitals tend to di-

rectly hire physicians rather than giving them admitting privileges. Analyzing the impact

of such operational and organizational decisions is an important aspect in understanding

how the healthcare system operates and how to best design incentives that can promote

efficiency and quality of care. This is especially important and timely as innovative delivery

models, such as telemedicine and personalized care, emerge. It is important to develop a

better understanding of the impact of these new delivery models in conjunction with other

operational decisions as well as the incentives faced by healthcare organization.

Chapter 4 illustrates the importance of patient-level decisions and the impact they have on

healthcare systems. Understanding the incentives that the patients have and how their be-

haviors change accordingly have significant implications on organization-level an regulator-

level decisions. For instance, various national incentive programs are grounded in the idea

that policy interventions are necessary due to the lack of quality competition. While a pos-

itive relationship between demand and quality seems intuitive and reasonable, it is unclear

what the effect would be when throughput is considered. If certain healthcare organizations

are already at full capacity, improving quality could in fact lead to lower throughput, harm-

ing patient access. Therefore, identifying the market-level characteristics that determine the

degree of consumer response to quality as well as the mechanism in which quality improve-

ments lead to changes in patient demand and throughput has an important implication on

improving the performance of healthcare systems.

Moving forward, I hope to continue to examine the interconnected nature of different entities

within the healthcare system and study how operational challenges experienced by health-
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care organizations relate to changes in the regulator’s decisions as well as patient behavior.

My vision is to produce research that helps managers at healthcare organizations, insurance

firms, and policymakers to improve healthcare systems to be as productive as possible in

delivering high quality and efficient care.
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APPENDIX A

Appendix for “Searching for the Best Yardstick: Cost of

Quality Improvements in the U.S. Hospital Industry”

A.1. Additional figures and tables
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Table A.1: List of hospital quality measures and domains

Measure ID Measure Description Domain
AMI-7a Fibrinolytic therapy received within 30 minutes of hospital

arrival
Clinical Care - Process

AMI-8a Primary PCI received within 90 minutes of hospital arrival Clinical Care - Process
HF-1 Discharge instructions Clinical Care - Process
IMM-2 Influenza immunization Clinical Care - Process
PN-3b Blood cultures performed in the ED prior to initial antibi-

otic received in hospital
Clinical Care - Process

PN-6 Initial antibiotic selection for CAP in immunocompetent
patient

Clinical Care - Process

SCIP-Card-2 Surgery patients on a beta blocker prior to arrival that
received a beta blocker during the perioperative period

Clinical Care - Process

SCIP-Inf-1 Prophylactic antibiotic received within one hour prior to
surgical incision

Clinical Care - Process

SCIP-Inf-2 Prophylactic antibiotic selection for surgical patients Clinical Care - Process
SCIP-Inf-3 Prophylactic antibiotics discontinued within 24 hours after

surgery end time
Clinical Care - Process

SCIP-Inf-4 Cardiac surgery patients with controlled 6AM postopera-
tive serum glucose

Clinical Care - Process

SCIP-Inf-9 Postoperative urinary catheter removal on post operative
day 1 or 2

Clinical Care - Process

SCIP-VTE-1 Surgery patients with recommended venous thromboem-
bolism prophylaxis ordered

Clinical Care - Process

SCIP-VTE-2 Surgery patients who received appropriate venous throm-
boembolism prophylaxis within 24 hours prior to surgery
to 24 hours after surgery

Clinical Care - Process

PC-01 Elective delivery prior to 39 completed weeks gestation Clinical Care - Process
(Safety from FY 2018)

MORT-30-AMI Acute myocardial infarction (AMI) 30-day mortality rate Clinical Care - Outcomes
MORT-30-HF Heart failure (HF) 30-day mortality rate Clinical Care - Outcomes
MORT-30-PN Pneumonia (PN) 30-day mortality rate Clinical Care - Outcomes
COMP-HIP-KNEE Total hip arthroplasty (THA)/total knee arthroplasty

(TKA) complication rate
Clinical Care - Outcomes

PSI-90 Complication/patient safety for selected indicators Clinical Care - Outcomes
(Safety from FY 2017)

HAI-1 Central line-associated blood stream infection Clinical Care - Outcomes
(Safety from FY 2017)

HAI-2 Catheter-associated urinary tract infection Clinical Care - Outcomes
(Safety from FY 2017)

HAI-3 Surgical site infection (SSI) - colon surgery Clinical Care - Outcomes
(Safety from FY 2017)

HAI-4 Surgical site infection (SSI) - abdominal hysterectomy Clinical Care - Outcomes
(Safety from FY 2017)

HAI-6 Clostridium difficile infection Safety
HAI-5 Methicillin-resistant staphylococcus aureus Safety
HCAHPS-CN Communication with nurses Patient Experience
HCAHPS-CD Communication with doctors Patient Experience
HCAHPS-RS Responsiveness of hospital staff Patient Experience
HCAHPS-PM Pain management Patient Experience
HCAHPS-CM Communication about medicines Patient Experience
HCAHPS-CQ Cleanliness and quietness of hospital environment Patient Experience
HCAHPS-DI Discharge information Patient Experience
HCAHPS-OVR Overall rating of hospital Patient Experience
HCAHPS-CT Care transition Patient Experience
MSPB-1 Medicare spending per beneficiary Efficiency
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Table A.2: Measures included in the Hospital VBP Program from FY 2013 to FY 2020

Measure ID FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2018 FY 2019 FY 2020
AMI-7a ✓ ✓ ✓ ✓ ✓
AMI-8a ✓ ✓ ✓
HF-1 ✓ ✓ ✓
IMM-2 ✓ ✓
PN-3b ✓ ✓ ✓
PN-6 ✓ ✓ ✓ ✓
SCIP-Card-2 ✓ ✓ ✓ ✓
SCIP-Inf-1 ✓ ✓ ✓
SCIP-Inf-2 ✓ ✓ ✓ ✓
SCIP-Inf-3 ✓ ✓ ✓ ✓
SCIP-Inf-4 ✓ ✓ ✓
SCIP-Inf-9 ✓ ✓ ✓
SCIP-VTE-1 ✓ ✓
SCIP-VTE-2 ✓ ✓ ✓ ✓
PC-01 ✓ ✓ ✓ ✓
MORT-30-AMI ✓ ✓ ✓ ✓ ✓ ✓ ✓
MORT-30-HF ✓ ✓ ✓ ✓ ✓ ✓ ✓
MORT-30-PN ✓ ✓ ✓ ✓ ✓ ✓ ✓
COMP-HIP-KNEE ✓ ✓
PSI-90 ✓ ✓ ✓ ✓
HAI-1 ✓ ✓ ✓ ✓ ✓ ✓
HAI-2 ✓ ✓ ✓ ✓ ✓
HAI-3 ✓ ✓ ✓ ✓ ✓
HAI-4 ✓ ✓ ✓ ✓ ✓
HAI-6 ✓ ✓ ✓ ✓
HAI-5 ✓ ✓ ✓ ✓
HCAHPS-CN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-CD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-RS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-PM ✓ ✓ ✓ ✓ ✓
HCAHPS-CM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-CQ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-DI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-OVR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HCAHPS-CT ✓ ✓ ✓
MSPB-1 ✓ ✓ ✓ ✓ ✓ ✓
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Table A.3: List of domains and their weights used in the Hospital VBP Program from FY 2013 to FY 2020

Domains FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2018 FY 2019 FY 2020
Clinical Care - Process 70% 45% 20% 10% 5%
Clinical Care - Outcomes 25% 30% 40% 25% 25% 25% 25%
Safety 20% 25% 25% 25%
Patient Experience 30% 30% 30% 25% 25% 25% 25% 25%
Efficiency 20% 25% 25% 25% 25% 25%
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Table A.4: Medicare payment withholding percentages used in counterfactual analyses

Target
Percentage Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00%
1.25% 1.00% 1.06% 1.13% 1.19% 1.25% 1.25% 1.25% 1.25%
1.50% 1.00% 1.13% 1.25% 1.38% 1.50% 1.50% 1.50% 1.50%
1.75% 1.00% 1.19% 1.38% 1.56% 1.75% 1.75% 1.75% 1.75%
2.00% 1.00% 1.25% 1.50% 1.75% 2.00% 2.00% 2.00% 2.00%
2.25% 1.00% 1.31% 1.63% 1.94% 2.25% 2.25% 2.25% 2.25%
2.50% 1.00% 1.38% 1.75% 2.13% 2.50% 2.50% 2.50% 2.50%
2.75% 1.00% 1.44% 1.88% 2.31% 2.75% 2.75% 2.75% 2.75%
3.00% 1.00% 1.50% 2.00% 2.50% 3.00% 3.00% 3.00% 3.00%
3.25% 1.00% 1.56% 2.13% 2.69% 3.25% 3.25% 3.25% 3.25%
3.50% 1.00% 1.63% 2.25% 2.88% 3.50% 3.50% 3.50% 3.50%
3.75% 1.00% 1.69% 2.38% 3.06% 3.75% 3.75% 3.75% 3.75%
4.00% 1.00% 1.75% 2.50% 3.25% 4.00% 4.00% 4.00% 4.00%

Note. The first column represents target percentage of Medicare payments that withheld. Withhold-
ing percentages all begin at 1% and are gradually increased over a five-year period until the target
percentage is reached in Year 5.

A.2. Throughput elasticity with respect to performances in quality mea-

sures

To empirically test the assumption that the trajectory of hospital throughput is largely

independent of the performances in quality measures used in the VBP Program, we perform

a regression analysis that examine the relationship between composites scores and hospital

throughput. Specifically, we perform a fixed-effects Poisson regression using the following

specification:

log(E(λM
ht |Sht, S̄ht, t)) = α+ βHRR log(Sht) + γ log(S̄ht) + δt + ηh, (A.1)

where S̄ht is equal to the average composite scores of peer hospitals in the same Hospital

Referral Region (HRR) excluding own score. The set of βHRR is the estimated HRR-specific

throughput elasticity with respect to quality.

We present the results in Figure A.1. First, we qualitatively verify that there isn’t any

discernible pattern in HRRs with positive versus negative elasticities. We further examine

any correlation with market-level characteristics, including level of income, education, and
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Figure A.1: Medicare patient throughput elasticity with respect to quality by hospital referral regions

Estimated Elasticities
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Zero
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N/A

hospital density, and find that none of the market-level characteristics that we examine are

significantly correlated with throughput elasticity.

A.3. Structural estimation

The specific set of investment decisions prescribed by the optimal investment policy is a

function of the parameters governing the distributions of performance scores conditional on

quality levels (µj
ω, σ

j
ω), the initial distribution of quality levels F0, the transition matrices

conditional on investment decision Fx, and the parameters governing the common distribu-

tions of the operating and investment costs (µc, σc, ρc). The goal of the estimation process

is to recover the true values of the parameters under the assumption that the data were gen-

erated by Markov perfect equilibrium behavior. As a byproduct of the estimation process,

we also recover the most likely quality level of each hospital and the most likely investment

decision it made at each period we have data.

The key challenge in the estimation process is that we do not observe which level within

the quality ladder hospitals belonged, whether or not hospitals decided to invest in quality,

and the breakdown of total costs into the baseline operating costs that hospitals incurred

and the cost of investment that hospitals incurred or that may had prevented hospitals

from investing in quality. Therefore, we treat positions within the quality ladder, investment

decisions, operating costs, and investment costs as latent variables and utilize expectation-

128



maximization (EM) algorithm to find the maximum likelihood estimates of the parameters.

The estimation process can be summarized as an iterative process that cycles between two

main steps. In the first step, or the expectation step, we obtain posterior samples of the latent

variables given candidate estimates of the parameters. We utilize Metropolis-Hastings (MH)

algorithm, which can be used to draw random samples when the probability distribution

itself is not known but a function proportional to the density function is known and can

be computed. To draw posterior samples of the latent variables, we first draw candidate

samples of cost values for each hospital. Then, we compute optimal investment policy using

dynamic programming given the candidate cost values, then find the most likely trajectory of

quality levels and associated investment decisions using a hidden Markov chain framework.

Next, we evaluate the log-likelihood of each candidate sample of the latent variables, after

which the log-likelihood is used to either accept or reject into the set of posterior samples.

The second step consists of updating the estimates of the parameters. We take a sufficient

statistics approach and identify the set of parameters that maximizes the expected log-

likelihood given the posterior samples. In the next iteration, the updated parameters are

used to again draw posterior samples, which are then used to further update the estimates

of the parameters. The iterative process continues until the estimates of the parameters

have converged to stationary points. In the rest of this section, we describe in detail each

component of the estimation process.

A.3.1. Expectation-maximization algorithm

The three components that are used in the EM algorithm are observed data, latent data, and

parameters. The observed data used in the estimation are the vector of set of performances

in quality measures of hospital h over the study period, denoted q̂h = (q̂h1, . . . , q̂hT ) where

each q̂ht is a vector consisting of performances in all individual measures in period t, i.e.,

q̂ht = (q̂jht ∀j ∈ St), and the observed total costs, denoted πc
h = (πc

h1, . . . , π
c
hT ). T is the

last period in which we have data. The benefit of using observed total costs, as opposed to

total profits, is that we can separate out the incentive payments when estimating the cost
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parameters. In essence, performances in quality measures provide information on quality

ladder, including transitions and emission distributions within each level, and the observed

total costs provide information on cost parameters and how well the cost parameters fit the

observed total costs. We denote the set of observed data for hospital h by Xh = (q̂h,π
c
h). The

latent set of variables includes operating and investment costs per patient ch, sequence of

quality levels, denoted ωh = (ωh1, . . . , ωhT ), and sequence of investment decisions, denoted

xh = (xh1, . . . , xhT ). We denote the latent data for hospital h by Zh = (ch,ωh,xh). For

brevity, we define X = (X1, . . . ,XH) and Z = (Z1, . . . ,ZH). Finally, the parameters to be

estimated are θ = (µc, σc, ρc, F0, Fx, Gω, σu). The EM algorithm iteratively finds the values

of the parameters θ that maximize the likelihood function

L(θ;X) = P (X|θ)

=

∫
P (X,Z|θ)dZ.

(A.2)

The E-step can be formally written as

Q(θ|θ(t)) = EZ|X,θ(t) logL(θ;X,Z). (A.3)

In practice, computing the conditional expectation requires generating posterior samples

that follow the conditional distribution of Z given X and the current estimates of the

parameters θ(t). We generate the posterior samples by using MH algorithm, which can draw

samples from any probability distribution as long as there is a function that is proportional

to the density of the distribution, by exploiting the fact that logL(θ;X,Z) is a function

that is proportional to the conditional distribution of Z.

The MH algorithm involves choosing a first sample and drawing random perturbations

to draw candidate samples. The algorithm either accepts or rejects the candidate sample

by evaluating the function that is proportional to the density of the distribution to be

approximated. To facilitate the sample generation process, we use the current estimates of
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µc as the first sample of log ch. Rather than drawing random samples of the path of quality

ladder and investment decisions, we first recursively find the optimal policy by solving for

the following Bellman equation given the sample draw of ch and the current estimates of

the parameters θ(t)

Vht(ωht) = max
xht

E[π(ωht, xht)] + β
∑
Ω

P (ωh,t+1|ωht, xht)Vh,t+1(ωh,t+1). (A.4)

Given the optimal policy, we model transition of quality levels within the ladder as a hidden

Markov process with choice-dependent transition matrices and find the most likely path of

quality level, denoted ω∗
h, and the corresponding investment decisions, denoted x∗

h. In turn,

we evaluate logLh(θ;Xh,Zh) given the sample draw of ch, ω∗
h, and x∗

h. We describe the

hidden Markov model and the computation of logLh(θ;Xh,Zh) in detail in Section A.3.2.

For the next iteration of the MH algorithm, we draw random perturbations of cost values

by first using a zero-mean bivariate normal distribution with (σc0 , σc1 , ρc) as the standard

deviations and the correlation factor for candidate log c0h and log c1h. Similarly, we draw

random perturbation to draw candidate log c2h using a zero-mean normal distribution with

standard deviation of σc2 . Then, using the candidate cost values, we again find the optimal

policy, find the most likely path of quality levels and investment decisions, and evaluate

logLh(θ;Xh,Zh) under the new candidate sample. We accept or reject the candidate sam-

ple by comparing the values of logLh(θ;Xh,Zh) under the previous sample and the new

candidate sample. We allow a burn-in period of 4,000, i.e., we throw away the first 4,000

samples, then we take every 50th sample until we have 20 samples for each hospital. We

parallelize this process at the hospital level, and end up with 20NT posterior samples at

each iteration of the E-step.

The M-step involves finding the set of values of the parameters that maximize Q(θ|θ(t)) and

setting the argmax as θ(t+1) to be used in the next iteration of the algorithm. Rather than

performing a numerical maximization to find the argmax, we exploit the posterior samples

by using sufficient statistics approach. First, the parameters of the common distributions
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of the operating and investment costs (µc, σc, ρc) are estimated by taking the sample mean

and the sample variance of the posterior samples. The initial distribution F0 and the transi-

tion matrices Fx are estimated directly from the observed state transitions in the posterior

samples. The emission distributions of performances in quality measures Gω are estimated

by maximum likelihood estimates on the performances of hospitals in the posterior samples

that falls in each quality level. Finally, we construct a structural error term, uht by taking

the difference between the observed profits and the estimated profits. We assume that it fol-

lows the distribution uht ∼ N(0, σ2
u), and estimate the standard deviation of the structural

error term σu by the sample standard deviation of uht in the posterior samples.

A.3.2. Hidden Markov model

The estimation process requires the computation of logLh(θ;Xh,Zh) given candidate ch.

To do so, we model the path of quality levels as a hidden Markov process and find the most

likely path of quality levels and investment decisions and, in turn, the log-likelihood given

ch, ω∗
h, and x∗

h. We can write and expand the likelihood

Lh(θ;Xh,Zh) = P (Xh|Zh,θ)P (Zh|θ)

= P (q̂h|ω∗
h,θ)P (πc

h|ch,ω∗
h,x

∗
h,θ)P (ω∗

h,x
∗
h|ch,θ)P (ch|θ).

(A.5)

To find the most likely path of quality ladder and investment decisions, we first find the

optimal policy given ch by solving the Bellman equation

Vht(ωht) = max
xht

E[π(ωht, xht)] + β
∑
Ω

P (ωh,t+1|ωht, xht)Vh,t+1(ωh,t+1). (A.6)

Given the optimal investment policy, finding the most likely path of quality levels ω∗
h is

sufficient to find the most likely path of investment decisions x∗
h since they are simply the

investment decisions prescribed by the optimal investment policy at each point in the most

likely path of quality levels. To find ω∗
h conditional on a draw of ch and current estimates
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of θ, we define for each possible quality level, denoted k = 1, . . . , 5,

α1(k) = P (q̂h1|ωh1 = k)P (πc
h1|ωh1 = k)P (ωh1 = k). (A.7)

For t = 2, . . . , T , we compute

αt(k) = max
m∈{1,...,5}

P (q̂ht|ωht = k)P (πc
ht|ωht = k)P (ωht = k|ωh,t−1 = m)αt−1(m). (A.8)

In (A.7) and (A.8), P (q̂ht|ωht = k) is computed by following the rectified normal distribution

with upper bounds dj

P (q̂ht|ωht = k) =
∏
j∈St

(
1− Φ

(
dj − µj

k

σj
k

))1(q̂jht=dj)( 1

σj
k

ϕ

(
q̂jht − µj

k

σj
k

))1(q̂jht<dj)

. (A.9)

P (πc
ht|ωht = k) is computed by evaluating the difference between observed total costs and

estimated costs derived from the candidate cost values, current quality level, and the corre-

sponding investment decision specified by the optimal policy. P (ωh1 = k) is taken directly

from the initial distribution within the quality ladder F0, and lastly the transition matrices

Fx are used to identify P (ωht = k|ωh,t−1 = m).

We then find the most likely path of quality levels by finding the last quality level that

maximizes αT (k) and proceeding backwards by keeping track of each preceding state. Note

that the maximum value conditional on ch and θ

αT (k
∗) = max

k∈1,...,5
αT (k) (A.10)

= P (q̂h|ω∗
h,θ)P (πc

h|ch,ω∗
h,x

∗
h,θ)P (ω∗

h,x
∗
h|ch,θ) (A.11)

is equal to the first three terms in (A.5). Therefore, we can now compute

Lh(θ;Xh,Zh) = αT (k
∗)P (ch|θ), (A.12)
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where P (ch|θ) is computed using the density functions of the bivariate normal distribu-

tion with parameters (µc0 , σ
2
c0 , µc1 , σ

2
c1 , ρc) and the normal distribution with parameters

(µc2 , σ
2
c2). In practice, we compute the log-likelihood to avoid underflow. Using the log-

likelihood function, we iterate over the EM algorithm until the estimated parameters con-

verge. We discuss how we determine convergence and provide results in Appendix A.4.

A.4. Convergence criteria for estimates and counterfactual equilibria

To determine the convergence of the iterative estimation process, we first define θ̄
(k)
i as the

average of the last ten estimated values, i.e.,

θ̄
(k)
i =

∑i
j=i−9 θ

(k)
j

10
. (A.13)

Then, we use the following two criteria to define convergence of the ith estimate of parameter

θ
(k)
i :

θ
(k)
i has converged if


|(θ̄(k)i − θ

(k)
i )/θ̄

(k)
i | < ϵ(k) or

|θ̄(k)i − θ
(k)
i | < δ(k).

(A.14)

In practice, we use ϵ(k) = 0.025 and δ(k) = 0.001. We also qualitatively verify that conver-

gence has been reached using Figure A.2.

Similarly, we use the same criteria to determine the convergence in computing counterfactual

equilibrium presented in Section 2.6. To estimate the 95% confidence interval of the key

metrics we present, we independently repeat the computation of counterfactual equilibrium

100 times and choose the 2.5 and 97.5 percentile values as the lower bound and the upper

bound of the confidence interval.
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Figure A.2: Estimated values of selected parameters
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APPENDIX B

Appendix for “The Spillover Effects of Capacity Pooling in

Hospitals”

B.1. Additional figures and tables

Figure B.1: Service-to-unit mapping

Note. This figure shows the on-service designation for each unit.
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Figure B.2: Routing frequency to off-service units by service

Note. This figure shows which off-service units were used most frequently by each service. Darker
shades of red indicate a higher frequency of off-service placement to that unit by a given service.

Figure B.3: Daily proportion off service for protected versus unprotected services

Note. This figure plots daily proportion of patients who are placed off service by each service. The
first row shows the four services that are protected in the “on until a few beds + protected services”
policy described in section 3.7.2.
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Table B.1: Computed probabilities for the “on until a few beds” policy

# Open beds
on service

Cardiac
Medicine

Cardiac
Surgery

East
Surgery

General
Medicine Neurology Oncology

Medicine Transplant West
Surgery

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.52 0.03 0.04 0.37 0.41 0.14 0.14 0.37
2 0.43 0.01 0.02 0.37 0.27 0.14 0.07 0.31
3 0.37 0.01 0.02 0.37 0.20 0.09 0.04 0.29
4 0.31 0.01 0.01 0.35 0.18 0.08 0.04 0.22
5 0.23 0.01 0.01 0.35 0.13 0.08 0.01 0.22

Note. This table shows the probabilities that are used to route patients in the “on until a few beds”
policy described in section 3.7.2. Each value is computed by calculating the proportion of patients
who were placed off service given the number of open beds on service at the time of admission.
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B.2. Full results tables with control variables
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Table B.2: Spillover effect of off-service placement, operationalized using the service’s proportion of
patients placed off service

(1) (2) (3) (4) (5)
Mean of

proportion
off service

Logged
length of stay

Hospital
readmission

Trigger
activation

In-hospital
mortality

Preadmission service-to-hospital 0.0699∗∗∗
utilization ratio (0.0105)
Preadmission hospital utilization -0.125∗∗∗
excluding focal service (0.0157)
Mean of proportion off service 2.484∗∗∗ -0.348 -1.263 -0.870

(0.567) (1.365) (1.736) (5.282)
SD of proportion off service 1.358∗∗∗ 7.753∗∗∗ 2.694 10.47∗∗∗ -0.812

(0.0559) (0.867) (2.066) (2.629) (7.731)
Age (years) 0.000178∗∗∗ 0.000514 -0.00204∗∗ 0.00675∗∗∗ 0.0192∗∗∗

(0.0000346) (0.000275) (0.000747) (0.00113) (0.00278)
Female indicator 0.00172 -0.00109 -0.0932∗∗∗ 0.102∗∗ -0.0644

(0.00122) (0.00865) (0.0235) (0.0345) (0.0747)
DRG cost weight -0.000987∗ 0.0712∗∗∗ -0.00560 0.0573∗∗∗ 0.0654∗

(0.000495) (0.00432) (0.0111) (0.00917) (0.0262)
Complications or comorbidities -0.00460∗∗ 0.172∗∗∗ 0.106∗∗∗ 0.355∗∗∗ 0.666∗∗∗

(0.00156) (0.0121) (0.0252) (0.0355) (0.103)
Number of transfers -0.00394∗∗∗ 0.0624∗∗∗ -0.0563∗∗ 0.104∗∗∗ 0.141∗∗∗

(0.000810) (0.00697) (0.0200) (0.0185) (0.0418)
Unit-level utilization -1.988∗∗∗ 11.18∗∗∗ 6.953 6.165 14.98

(0.123) (1.366) (3.693) (7.461) (15.64)
(Unit-level utilization)2 1.426∗∗∗ -7.153∗∗∗ -4.749 -3.101 -9.773

(0.0734) (0.926) (2.453) (4.478) (10.23)
Service-level utilization -1.960∗∗∗ 20.52∗∗∗ 4.135 12.89 24.12

(0.234) (2.011) (4.775) (8.870) (28.59)
(Service-level utilization)2 1.137∗∗∗ -12.62∗∗∗ -2.001 -8.337 -13.31

(0.136) (1.167) (2.804) (5.137) (16.45)
Visited ICU during encounter 0.0378∗∗∗ -0.393∗∗∗ -0.123 -0.235∗∗ 0.609∗∗

(0.00197) (0.0268) (0.0800) (0.0787) (0.228)
Admitted during PM shift 0.00328 0.0799∗∗∗ -0.112∗ 0.0381 0.564∗∗

(0.00235) (0.0161) (0.0460) (0.0492) (0.205)
Admitted during overnight shift 0.00472∗ -0.0000911 -0.227∗∗∗ 0.0476 0.393

(0.00211) (0.0149) (0.0423) (0.0596) (0.213)
Admitted on weekday -0.0141∗∗∗ 0.0387∗ 0.0221 0.00353 0.0269

(0.00182) (0.0166) (0.0344) (0.0645) (0.123)
Surgical service -0.138∗∗∗ 0.200∗ -0.539∗∗ -0.332 -1.044

(0.00167) (0.0807) (0.187) (0.248) (0.821)
Mixed service -0.131∗∗∗ 0.182∗ -0.137 -0.583∗ -0.584

(0.00204) (0.0775) (0.183) (0.248) (0.741)
Controls Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes
Model 2SLS 2SLS 2SRI 2SRI 2SRI

1st stage 2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B.3: Spillover effect of off-service placement, operationalized using the number of units across
which the service has patients placed off service

(1) (2) (3) (4) (5)
Mean of units
with off-service

patients
Logged

length of stay
Hospital

readmission
Trigger

activation
In-hospital
mortality

Preadmission service-to-hospital 4.558∗∗∗
utilization ratio (0.323)
Preadmission hospital utilization -4.051∗∗∗
excluding focal service (0.537)
Mean of units with 0.0441∗∗∗ 0.00658 -0.0188 -0.0134
off-service patients (0.0108) (0.0305) (0.0381) (0.103)
SD of units with 0.923∗∗∗ 0.319∗∗∗ 0.107∗∗ 0.276∗∗∗ 0.0557
off-service patients (0.0535) (0.0178) (0.0380) (0.0434) (0.115)
Age (years) -0.000231 0.00125∗∗∗ -0.00212∗∗ 0.00674∗∗∗ 0.0173∗∗∗

(0.00121) (0.000240) (0.000653) (0.00103) (0.00267)
Female indicator 0.128∗∗ -0.00818 -0.0944∗∗∗ 0.0959∗∗ -0.0789

(0.0409) (0.00809) (0.0272) (0.0295) (0.0775)
DRG cost weight -0.139∗∗∗ 0.0803∗∗∗ -0.00513 0.0606∗∗∗ 0.0640∗

(0.0175) (0.00444) (0.00936) (0.0129) (0.0251)
Complications or comorbidities 0.165∗∗ 0.144∗∗∗ 0.101∗∗∗ 0.358∗∗∗ 0.637∗∗∗

(0.0532) (0.0113) (0.0271) (0.0391) (0.0976)
Number of transfers -0.0771∗∗ 0.0570∗∗∗ -0.0546∗∗ 0.110∗∗∗ 0.133∗∗

(0.0275) (0.00621) (0.0179) (0.0210) (0.0433)
Unit-level utilization -78.86∗∗∗ 10.30∗∗∗ 8.233∗ 7.306 17.94

(5.412) (1.177) (3.304) (9.856) (14.03)
(Unit-level utilization)2 55.90∗∗∗ -6.444∗∗∗ -5.697∗∗ -3.945 -11.76

(3.195) (0.770) (2.175) (5.878) (8.925)
Service-level utilization 17.48∗ 13.49∗∗∗ 4.799 15.32 32.83

(7.022) (1.695) (4.753) (8.125) (24.18)
(Service-level utilization)2 -14.19∗∗∗ -8.378∗∗∗ -2.369 -9.778∗ -18.68

(4.112) (0.987) (2.769) (4.710) (13.64)
Visited ICU during encounter 1.324∗∗∗ -0.354∗∗∗ -0.161∗∗ -0.253∗∗∗ 0.513∗∗

(0.0678) (0.0207) (0.0532) (0.0715) (0.158)
Admitted during PM shift 0.0779 0.0804∗∗∗ -0.118∗∗ 0.0346 0.578∗∗

(0.0783) (0.0147) (0.0458) (0.0668) (0.219)
Admitted during overnight shift 0.189∗∗ -0.00186 -0.234∗∗∗ 0.0383 0.415∗

(0.0711) (0.0135) (0.0416) (0.0586) (0.210)
Admitted on weekday -0.251∗∗∗ 0.00370 0.0330 0.0145 0.0158

(0.0609) (0.0126) (0.0374) (0.0418) (0.124)
Surgical service -3.735∗∗∗ -0.0449 -0.478∗∗∗ -0.281 -0.971

(0.0543) (0.0432) (0.119) (0.147) (0.497)
Mixed service -4.330∗∗∗ 0.0748 -0.0566 -0.465∗∗ -0.583

(0.0560) (0.0503) (0.146) (0.167) (0.469)
Controls Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes
Model 2SLS 2SLS 2SRI 2SRI 2SRI

1st stage 2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B.4: Spillover effect of off-service placement, operationalized using the number of movements
into and out of off-service units

(1) (2) (3) (4)
Logged

length of stay
Hospital

readmission
Trigger

activation
In-hospital
mortality

Mean of proportion off service 2.593∗∗∗ -0.216 -1.100 -1.086
(0.470) (1.638) (1.837) (4.223)

Demeaned count of movements 0.00521∗∗∗ 0.000862∗∗∗ 0.00433∗∗∗ 0.000729
into and out of off-service units (0.000132) (0.000224) (0.000276) (0.000522)
Age (years) 0.000734∗∗ -0.00196∗ 0.00733∗∗∗ 0.0194∗∗∗

(0.000236) (0.000820) (0.00109) (0.00316)
Female indicator -0.00764 -0.0953∗∗∗ 0.0947∗∗∗ -0.0635

(0.00757) (0.0246) (0.0264) (0.0715)
DRG cost weight 0.0519∗∗∗ -0.00732 0.0434∗∗∗ 0.0554∗

(0.00499) (0.0112) (0.0130) (0.0247)
Complications or comorbidities 0.0872∗∗∗ 0.0940∗∗ 0.294∗∗∗ 0.670∗∗∗

(0.0120) (0.0336) (0.0368) (0.109)
Number of transfers 0.0255∗∗∗ -0.0615∗∗∗ 0.0708∗∗∗ 0.134∗∗

(0.00640) (0.0163) (0.0192) (0.0412)
Unit-level utilization 11.60∗∗∗ 7.407 8.291 15.04

(1.226) (4.156) (10.61) (15.14)
(Unit-level utilization)2 -7.519∗∗∗ -5.075 -4.667 -9.844

(0.816) (2.856) (6.335) (9.744)
Service-level utilization 17.68∗∗∗ 3.704 8.535 19.57

(1.744) (5.141) (10.31) (27.75)
(Service-level utilization)2 -10.85∗∗∗ -1.713 -5.535 -10.73

(1.013) (2.928) (5.884) (15.84)
Visited ICU during encounter -0.416∗∗∗ -0.121 -0.266∗∗ 0.598∗

(0.0268) (0.0915) (0.0916) (0.244)
Admitted during PM shift 0.0751∗∗∗ -0.113∗ 0.0390 0.566∗∗

(0.0144) (0.0491) (0.0536) (0.203)
Admitted during overnight shift 0.0141 -0.227∗∗∗ 0.0568 0.402

(0.0130) (0.0424) (0.0544) (0.213)
Admitted on weekday 0.00776 0.0181 -0.0250 0.0309

(0.0146) (0.0559) (0.0678) (0.165)
Surgical service 0.167∗ -0.538∗ -0.320 -1.036

(0.0720) (0.246) (0.288) (0.737)
Mixed service 0.266∗∗∗ -0.0974 -0.384 -0.576

(0.0596) (0.196) (0.231) (0.531)
Controls Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Model 2SLS 2SRI 2SRI 2SRI

2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B.5: Seemingly unrelated regression on spillover effects of movements into and out of on-service
units versus off-service units

(1)
Logged length of stay Logged length of stay

Mean of proportion off service 2.777∗∗∗ 2.884∗∗∗
(0.410) (0.375)

Demeaned count of movements 0.00267∗∗∗
into and out of off-service units (0.000120)
Demeaned count of movements 0.00153∗∗∗
into and out of on-service units (0.0000717)
Age (years) 0.000677∗∗ 0.000639∗∗

(0.000209) (0.000203)
Female indicator -0.00560 -0.00513

(0.00687) (0.00646)
DRG cost weight 0.0667∗∗∗ 0.0508∗∗∗

(0.00319) (0.00348)
Complications or comorbidities 0.135∗∗∗ 0.128∗∗∗

(0.0102) (0.0102)
Number of transfers 0.0466∗∗∗ 0.0376∗∗∗

(0.00588) (0.00520)
Unit-level utilization 11.97∗∗∗ 11.62∗∗∗

(1.130) (1.030)
(Unit-level utilization)2 -7.729∗∗∗ -7.533∗∗∗

(0.761) (0.692)
Service-level utilization 19.33∗∗∗ 16.55∗∗∗

(1.698) (1.562)
(Service-level utilization)2 -11.84∗∗∗ -10.10∗∗∗

(0.976) (0.905)
Visited ICU during encounter -0.386∗∗∗ -0.396∗∗∗

(0.0253) (0.0232)
Admitted during PM shift 0.0808∗∗∗ 0.0648∗∗∗

(0.0118) (0.0109)
Admitted during overnight shift 0.00230 0.00171

(0.0114) (0.0102)
Admitted on weekday 0.0207 0.0248∗

(0.0133) (0.0122)
Surgical service 0.189∗∗ 0.219∗∗∗

(0.0632) (0.0583)
Mixed service 0.284∗∗∗ 0.299∗∗∗

(0.0517) (0.0478)
Controls Yes Yes
Month FE Yes Yes
Model 2SRI 2SRI

2nd stage 2nd stage
Observations 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B.6: Spillover effect of off-service placement, operationalized using the maximum positive and
negative deviations from the proportion off service at time of admission

(1) (2) (3) (4)
Logged

length of stay
Hospital

readmission
Trigger

activation
In-hospital
mortality

Mean of proportion off service 2.128∗∗∗ -0.484 -1.852 -1.529
(0.570) (1.543) (2.318) (5.300)

Maximum positive deviation 3.530∗∗∗ 0.615 5.034∗∗∗ 1.996
in proportion off service (0.354) (0.931) (1.408) (3.089)
Maximum negative deviation 2.502∗∗∗ 0.941 4.001∗∗ -2.020
in proportion off service (0.343) (0.799) (1.276) (3.016)
Age (years) 0.000413 -0.00204∗ 0.00663∗∗∗ 0.0199∗∗∗

(0.000258) (0.000816) (0.00115) (0.00329)
Female indicator -0.00214 -0.0932∗∗∗ 0.104∗∗∗ -0.0770

(0.00830) (0.0264) (0.0293) (0.0790)
DRG cost weight 0.0625∗∗∗ -0.00639 0.0426∗∗ 0.0575∗

(0.00448) (0.0113) (0.0143) (0.0238)
Complications or comorbidities 0.164∗∗∗ 0.105∗∗∗ 0.346∗∗∗ 0.677∗∗∗

(0.0119) (0.0302) (0.0474) (0.0873)
Number of transfers 0.0570∗∗∗ -0.0582∗∗ 0.0921∗∗∗ 0.134∗∗

(0.00702) (0.0197) (0.0251) (0.0436)
Unit-level utilization 10.64∗∗∗ 6.648 4.641 11.47

(1.333) (3.501) (8.840) (14.14)
(Unit-level utilization)2 -6.817∗∗∗ -4.543 -2.153 -7.622

(0.903) (2.352) (5.433) (9.327)
Service-level utilization 20.30∗∗∗ 3.806 13.05 28.37

(1.964) (4.487) (10.32) (23.62)
(Service-level utilization)2 -12.51∗∗∗ -1.803 -8.519 -15.93

(1.139) (2.605) (5.930) (13.57)
Visited ICU during encounter -0.395∗∗∗ -0.118 -0.248∗ 0.657∗∗∗

(0.0243) (0.0707) (0.0993) (0.184)
Admitted during PM shift 0.0690∗∗∗ -0.112∗∗ 0.0187 0.532∗

(0.0154) (0.0365) (0.0495) (0.225)
Admitted during overnight shift -0.000707 -0.225∗∗∗ 0.0455 0.362

(0.0144) (0.0372) (0.0465) (0.224)
Admitted on weekday 0.0339∗ 0.0189 -0.00120 0.00726

(0.0159) (0.0465) (0.0619) (0.145)
Surgical service 0.189∗ -0.554∗∗ -0.338 -1.113

(0.0763) (0.207) (0.310) (0.760)
Mixed service 0.132 -0.147 -0.677∗ -0.654

(0.0786) (0.213) (0.324) (0.745)
Controls Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Model 2SLS 2SRI 2SRI 2SRI

2nd stage 2nd stage 2nd stage 2nd stage
Observations 14793 14793 14793 14793

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. * p < 0.05, ** p < 0.01, *** p < 0.001.
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B.3. Heterogeneous treatment effects

Hospitals have multiple specialties that provide specific sets of services that can be broadly

categorized as medical or surgical. Since these two types of specialties provide two distinct

types of care, we examine spillover effects that are specific to each service type by stratifying

the sample into two subsamples: medical specialties versus surgical specialties. To separately

identify the spillover effects for each service type, we modify the analysis by including service-

level and unit-level fixed effects for each patient. To address service-type differences in the

level of off-service placement as well as differences in overall utilization, we vectorize the

IV by creating eight variables, with each corresponding to a particular service that equals

the service-to-hospital utilization ratio one hour prior to admission if the patient is in the

service, and zero otherwise.

We find that while patients in both medical and surgical services experience similar level of

spillover effects from the volatility of off-service placement when it comes to their lengths of

stay, only patients in the medical services are affected by the spillovers from experiencing a

high level of off-service placement. Furthermore, the volatility of off-service placement leads

to increases in readmission likelihood for surgical patients, whereas it leads to increases in

the likelihood of clinical trigger activation for both medical and surgical patients alike.

We apply service-type-specific estimates for our counterfactual analyses with a few necessary

modifications. First, we use maximum likelihood estimators for the binary outcome variables

instead of 2SRI estimators, so that we are able to calculate predicted probabilities. Second,

we drop unit-level fixed effects from the maximum likelihood estimators to ensure conver-

gence. We confirm that the coefficients derived with the modifications are not meaningfully

different from the estimates presented in Table B.7 of Appendix B.3.
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Table B.7: Spillover effect of off-service placement in medical and surgical services, operationalized
using the service’s proportion of patients placed off service

Medical services Surgical services
(1) (2) (3) (4) (5) (6)

Logged
length of stay

Hospital
readmission

Trigger
activation

Logged
length of stay

Hospital
readmission

Trigger
activation

Mean of proportion
off service

3.163∗ -1.199 -1.035 -0.503 -5.550 -6.838

(1.459) (4.294) (5.048) (1.319) (5.341) (6.647)
SD of proportion off
service

12.28∗∗∗ 2.975 10.30∗∗∗ 12.02∗∗∗ 10.37∗∗ 13.03∗∗

(0.770) (1.567) (1.855) (1.236) (3.572) (4.061)
Age (years) 0.00118∗∗∗ -0.00349∗∗∗ 0.00572∗∗∗ 0.00259∗∗∗ 0.00390∗∗ 0.0103∗∗∗

(0.000305) (0.000911) (0.00120) (0.000344) (0.00147) (0.00176)
Female indicator 0.00655 -0.0499 0.0169 0.00274 -0.0697 0.189∗∗∗

(0.0103) (0.0302) (0.0388) (0.0110) (0.0460) (0.0551)
DRG cost weight 0.0583∗∗∗ -0.0211 0.0702∗∗∗ 0.0845∗∗∗ -0.0214 0.0918∗∗∗

(0.00540) (0.0149) (0.0154) (0.00652) (0.0195) (0.0195)
Complications or
comorbidities

0.182∗∗∗ 0.112∗∗ 0.358∗∗∗ 0.0103 0.118 0.240∗∗

(0.0127) (0.0359) (0.0427) (0.0207) (0.0715) (0.0782)
Number of transfers 0.0738∗∗∗ -0.0209 0.0964∗∗∗ 0.0356∗∗∗ -0.0400 0.114∗∗

(0.00760) (0.0203) (0.0236) (0.00947) (0.0340) (0.0385)
Unit-level utilization 6.516∗∗∗ -4.307 4.907 17.02∗∗∗ 11.38 36.84∗∗∗

(1.400) (3.997) (5.716) (2.037) (7.545) (11.13)
(Unit-level
utilization)2

-3.734∗∗∗ 2.705 -2.729 -9.677∗∗∗ -7.072 -20.92∗∗

(0.836) (2.392) (3.395) (1.182) (4.434) (6.491)
Service-level utiliza-
tion

12.81∗∗∗ 3.741 19.49∗ 0.190 -12.58 -22.24

(2.127) (6.480) (9.006) (2.840) (10.78) (13.90)
(Service-level
utilization)2

-8.176∗∗∗ -2.192 -11.88∗ -1.311 7.498 12.21

(1.195) (3.658) (5.115) (1.679) (6.490) (8.369)
Visited ICU during
encounter

-0.345∗∗∗ -0.0291 -0.109 -0.158∗∗∗ -0.0816 -0.336∗

(0.0196) (0.0536) (0.0636) (0.0333) (0.112) (0.147)
Admitted during
PM shift

0.0713∗∗∗ -0.212∗∗∗ 0.0455 0.127∗∗∗ 0.123 0.114

(0.0185) (0.0516) (0.0695) (0.0236) (0.0870) (0.107)
Admitted during
overnight shift

0.0400∗ -0.253∗∗∗ 0.0750 -0.0166 -0.0685 -0.0807

(0.0181) (0.0501) (0.0677) (0.0195) (0.0763) (0.0950)
Admitted on week-
day

0.0275 0.0529 0.0107 -0.0961∗∗∗ -0.220∗∗ 0.0189

(0.0162) (0.0468) (0.0581) (0.0222) (0.0795) (0.109)
Controls Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Service FE Yes Yes Yes Yes Yes Yes
Unit FE Yes Yes Yes Yes Yes Yes
Model 2SLS 2SRI 2SRI 2SLS 2SRI 2SRI

2nd stage 2nd stage 2nd stage 2nd stage 2nd stage 2nd stage
Observations 8982 8981 8981 5811 5808 5425

Note. Standard errors (in parentheses) are heteroskedasticity robust for continuous outcome variables
and bootstrapped for binary outcome variables. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Appendix for “Should We Worry About Moral Hazard?

Estimation of the Slutsky Equation Using Indemnity Health

Insurance Contracts”

C.1. Full results tables with control variables
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Table C.1: Estimation of model 4.1

(1) (2)
Health care
expenditure

Health care
expenditure

Supplementary insurance payments 0.572∗∗∗ (0.170) 0.536∗∗ (0.173)
Indemnity payments based on state 0.0455 (0.0257) 0.0404 (0.0235)
Indemnity payments based on utilization 0.306∗ (0.122) 0.279∗∗ (0.106)
Enrolled in supplementary insurance 14.24 (13.97) 15.47 (25.90)
Enrolled in indemnity insurance 48.49∗∗∗ (11.79) 11.72 (25.12)
Female 49.06∗∗∗ (9.389)
Age 5.742∗∗∗ (0.472) 33.90∗∗∗ (3.828)
Married 87.00∗∗∗ (11.79) 101.7∗ (42.56)
Employed -123.4∗∗∗ (9.850) -49.45∗∗ (17.76)
Years of education -2.622 (1.646) 7.584 (12.91)
Logged household income 161.0∗∗∗ (9.076) 41.91∗∗ (15.85)
Logged number of household members -260.1∗∗∗ (14.67) -163.1∗∗∗ (43.85)
Childbirth 30.44 (30.14) -280.3∗∗∗ (39.03)
Chronic conditions 269.3∗∗∗ (9.530) 84.68∗∗∗ (20.67)
Disabled -38.92 (25.00) -158.8 (132.7)
Physical limitation 315.1∗∗∗ (37.08) 299.4∗∗∗ (43.71)
Days per week engaged in vigorous physical activity -1.755 (2.647) 0.316 (3.093)
Days per week engaged in moderate physical activity -3.659 (1.932) -8.141∗∗∗ (2.327)
Days per week walked for more than ten minutes -1.428 (1.672) -3.643 (2.080)
Self-reported health (low is good)=2 12.94 (13.47) 13.55 (15.49)
Self-reported health (low is good)=3 97.53∗∗∗ (13.96) 58.57∗∗∗ (16.72)
Self-reported health (low is good)=4 433.2∗∗∗ (22.37) 203.1∗∗∗ (26.39)
Self-reported health (low is good)=5 778.5∗∗∗ (92.85) 419.0∗∗∗ (95.01)
Constant -1444.8∗∗∗ (89.45) -1554.6∗∗∗ (256.3)
Individual fixed effects No Yes
City/province fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 72925 72925

Note. Robust standard errors in parenthesis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table C.2: Estimation of model 4.2

(1) (2)
Logged

health care
expenditure

Logged
health care
expenditure

Enrolled in supplementary insurance 0.304∗∗∗ (0.0191) 0.181∗∗∗ (0.0328)
Enrolled in indemnity insurance 0.296∗∗∗ (0.0186) 0.0582 (0.0413)
Female 0.629∗∗∗ (0.0172)
Age 0.0225∗∗∗ (0.000800) 0.0723∗∗∗ (0.00523)
Married 0.612∗∗∗ (0.0206) 0.585∗∗∗ (0.0798)
Employed -0.267∗∗∗ (0.0169) -0.0541∗ (0.0272)
Years of education -0.00771∗∗ (0.00253) -0.00821 (0.0206)
Logged household income 0.351∗∗∗ (0.0141) 0.0729∗∗∗ (0.0215)
Logged number of household members -0.586∗∗∗ (0.0240) -0.546∗∗∗ (0.0622)
Childbirth 0.644∗∗∗ (0.0779) -0.599∗∗∗ (0.0828)
Chronic conditions 1.665∗∗∗ (0.0209) 0.507∗∗∗ (0.0426)
Disabled -0.0565 (0.0312) -0.158 (0.101)
Physical limitation 0.273∗∗∗ (0.0324) 0.210∗∗∗ (0.0318)
Days per week engaged in vigorous physical activity -0.000255 (0.00512) -0.00805 (0.00517)
Days per week engaged in moderate physical activity 0.00970∗∗ (0.00367) -0.000866 (0.00365)
Days per week walked for more than ten minutes 0.00291 (0.00286) -0.00454 (0.00287)
Self-reported health (low is good)=2 0.115∗∗ (0.0382) 0.0524 (0.0381)
Self-reported health (low is good)=3 0.412∗∗∗ (0.0382) 0.182∗∗∗ (0.0390)
Self-reported health (low is good)=4 0.928∗∗∗ (0.0417) 0.342∗∗∗ (0.0427)
Self-reported health (low is good)=5 1.091∗∗∗ (0.0692) 0.496∗∗∗ (0.0651)
Constant -1.820∗∗∗ (0.149) -0.00509 (0.417)
Individual fixed effects No Yes
City/province fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 72925 72925

Note. Robust standard errors in parenthesis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table C.3: Quadratic specification of model 4.1

(1) (2)
Health care
expenditure

Health care
expenditure

Supplementary insurance payments 1.0264∗∗∗ (.06479) .9943∗∗∗ (.06714)
Supplementary insurance payments2 -3.5e-05∗∗∗ (3.4e-06) -3.4e-05∗∗∗ (3.2e-06)
Indemnity payments based on state .11416∗∗∗ (.01472) .10663∗∗∗ (.01421)
Indemnity payments based on state2 -3.0e-07∗∗∗ (3.8e-08) -2.8e-07∗∗∗ (3.6e-08)
Indemnity payments based on utilization .64394∗∗∗ (.05707) .58992∗∗∗ (.05908)
Indemnity payments based on utilization2 -5.2e-06∗∗∗ (5.0e-07) -4.7e-06∗∗∗ (5.2e-07)
Enrolled in supplementary insurance -13.999 (10.286) -9.9573 (23.595)
Enrolled in indemnity insurance 28.668∗∗ (10.623) -3.969 (24.392)
Female 44.676∗∗∗ (9.2443)
Age 5.8449∗∗∗ (.467) 33.58∗∗∗ (3.8006)
Married 82.532∗∗∗ (11.658) 87.479∗ (42.141)
Employed -123.47∗∗∗ (9.7247) -52.211∗∗ (17.315)
Years of education -2.4147 (1.6292) 8.6913 (12.815)
Logged household income 156.72∗∗∗ (8.9689) 48.56∗∗ (15.662)
Logged number of household members -250.67∗∗∗ (14.427) -164.78∗∗∗ (43.166)
Childbirth 47.283 (29.596) -277.61∗∗∗ (38.613)
Chronic conditions 259.29∗∗∗ (9.0308) 88.692∗∗∗ (20.089)
Disabled -36.213 (24.991) -147.36 (131.17)
Physical limitation 298.98∗∗∗ (36.242) 281.07∗∗∗ (43.156)
Days per week engaged in vigorous physical activity -1.9615 (2.6107) -.34209 (3.0129)
Days per week engaged in moderate physical activity -3.1425 (1.8914) -7.6004∗∗∗ (2.2681)
Days per week walked for more than ten minutes -1.2317 (1.6511) -3.4973 (2.0482)
Self-reported health (low is good)=2 3.4535 (13.027) 5.4025 (15.002)
Self-reported health (low is good)=3 85.196∗∗∗ (13.348) 49.84∗∗ (15.944)
Self-reported health (low is good)=4 406.56∗∗∗ (20.669) 184.51∗∗∗ (25.371)
Self-reported health (low is good)=5 733.36∗∗∗ (91.716) 387.35∗∗∗ (94.334)
Constant -1393.5∗∗∗ (88.319) -1606.7∗∗∗ (255.04)
Individual fixed effects No Yes
City/province fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 72925 72925

Note. Robust standard errors in parenthesis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table C.4: Self-reported health as predictor of private insurance enrollment

(1) (2)
Indemnity Supplementary

Self-reported health lagged by one year
Good 0.178∗∗∗ (0.0485) 0.0142 (0.0442)
Moderate 0.146∗∗ (0.0489) 0.000490 (0.0448)
Bad -0.00449 (0.0558) -0.156∗∗ (0.0554)
Very bad -0.124 (0.103) -0.244 (0.136)

Self-reported health
Good 0.100 (0.0511) -0.0368 (0.0455)
Moderate 0.0829 (0.0515) -0.0122 (0.0461)
Bad -0.0522 (0.0584) -0.143∗ (0.0567)
Very bad -0.170 (0.106) -0.369∗ (0.143)

Female 0.387∗∗∗ (0.0240) 0.329∗∗∗ (0.0227)
Age -0.0480∗∗∗ (0.00117) -0.0516∗∗∗ (0.00117)
Married 1.148∗∗∗ (0.0301) 0.979∗∗∗ (0.0329)
Employed 0.392∗∗∗ (0.0240) 0.259∗∗∗ (0.0237)
Years of education 0.00917∗ (0.00358) 0.0232∗∗∗ (0.00388)
Logged household income 0.841∗∗∗ (0.0213) 0.438∗∗∗ (0.0197)
Logged number of household members -0.860∗∗∗ (0.0362) -0.404∗∗∗ (0.0353)
Childbirth -0.184 (0.143) 0.0324 (0.101)
Chronic conditions 0.285∗∗∗ (0.0287) 0.0725∗∗ (0.0246)
Disabled -0.248∗∗∗ (0.0425) -0.490∗∗∗ (0.0609)
Physical limitation -0.232∗∗∗ (0.0476) -0.305∗∗∗ (0.0677)
Days per week engaged in vigorous physical activity 0.0200∗∗ (0.00744) 0.00165 (0.00668)
Days per week engaged in moderate physical activity 0.0134∗∗ (0.00521) 0.00203 (0.00506)
Days per week walked for more than ten minutes -0.00503 (0.00404) -0.00379 (0.00394)
Constant -6.304∗∗∗ (0.228) -4.382∗∗∗ (0.213)
Model Logit Logit
City/province fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 54278 54278

Note. Self-reported health: Excellent is the baseline. Robust standard errors in parenthesis. * p <
0.05, ** p < 0.01, *** p < 0.001.
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Table C.5: Estimation of model (4.1) among marginal consumers

(1) (2)
Health care
expenditure

Health care
expenditure

Supplementary insurance payments 0.861∗∗∗ (0.0927) 0.799∗∗∗ (0.0965)
Indemnity payments based on state 0.140∗∗∗ (0.0269) 0.142∗∗∗ (0.00424)
Indemnity payments based on utilization 0.646∗∗∗ (0.119) 0.868 (0.456)
Enrolled in supplementary insurance -23.34 (35.42) 326.7 (208.0)
Female 66.57 (35.41)
Age 5.209 (2.871) 11.50 (28.47)
Married 72.34 (65.41) 531.7 (370.6)
Employed -107.3∗ (46.66) 149.1 (139.5)
Years of education -21.29∗ (10.75) -23.08 (88.98)
Logged household income 149.9∗∗∗ (41.34) 30.87 (93.60)
Logged number of household members -137.9 (71.98) 298.9 (249.7)
Childbirth 400.8 (286.8) -463.8∗ (205.2)
Chronic conditions 228.5∗∗∗ (41.21) -227.1 (215.8)
Disabled -261.8 (152.1) 8.272 (118.1)
Physical limitation 49.35 (224.5) 283.8 (356.2)
Days per week engaged in vigorous physical activity 4.220 (14.58) -42.98 (28.78)
Days per week engaged in moderate physical activity -6.657 (10.06) 15.27 (20.53)
Days per week walked for more than ten minutes -8.862 (7.474) 0.346 (16.99)
Self-reported health (low is good)=2 -70.52 (61.53) 63.18 (74.94)
Self-reported health (low is good)=3 24.16 (64.73) 83.70 (91.41)
Self-reported health (low is good)=4 196.1∗ (97.30) 393.1∗∗ (138.7)
Self-reported health (low is good)=5 1281.0 (824.0) 439.3 (288.0)
Constant -1006.6∗ (439.1) -719.8 (1891.8)
Individual fixed effects No Yes
City/province fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 2549 2549

Note. Robust standard errors in parenthesis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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