
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Virtualizing Reconfigurable Architectures: From Fpgas To Beyond Virtualizing Reconfigurable Architectures: From Fpgas To Beyond

Yue Zha
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Zha, Yue, "Virtualizing Reconfigurable Architectures: From Fpgas To Beyond" (2022). Publicly Accessible
Penn Dissertations. 5418.
https://repository.upenn.edu/edissertations/5418

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5418
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fedissertations%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5418?utm_source=repository.upenn.edu%2Fedissertations%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5418
mailto:repository@pobox.upenn.edu

Virtualizing Reconfigurable Architectures: From Fpgas To Beyond Virtualizing Reconfigurable Architectures: From Fpgas To Beyond

Abstract Abstract
With field-programmable gate arrays (FPGAs) being widely deployed in data centers to enhance the
computing performance, an efficient virtualization support is required to fully unleash the potential of
cloud FPGAs. However, the system support for FPGAs in the context of the cloud environment is still in its
infancy, which leads to a low resource utilization due to the tight coupling between compilation and
resource allocation. Moreover, the system support proposed in existing works is limited to a
homogeneous FPGA cluster comprising identical FPGA devices, which is hard to be extended to a
heterogeneous FPGA cluster that comprises multiple types of FPGAs. As the FPGA cloud is expected to
become increasingly heterogeneous due to the hardware rolling upgrade strategy, it is necessary to
provide efficient virtualization support for the heterogeneous FPGA cluster.

In this dissertation, we first identify three pairs of conflicting requirements from runtime management and
offline compilation, which are related to the tradeoff between flexibility and efficiency. These conflicting
requirements are the fundamental reason why the single-level abstraction proposed in prior works for the
homogeneous FPGA cluster cannot be trivially extended to the heterogeneous cluster. To decouple these
conflicting requirements, we provide a two-level system abstraction. Specifically, the high-level
abstraction is FPGA-agnostic and provides a simple and homogeneous view of the FPGA resources to
simplify the runtime management and maximize the flexibility. On the contrary, the low-level abstraction is
FPGA-specific and exposes sufficient low-level hardware details to the compilation framework to ensure
the mapping quality and maximize the efficiency. This generic two-level system abstraction can also be
specialized to the homogeneous FPGA cluster and/or be extended to leverage application-specific
information to further improve the efficiency. We also develop a compilation framework and a modular
runtime system with a heuristic-based runtime management policy to support this two-level system
abstraction. By enabling a dynamic FPGA sharing at the sub-FPGA granularity, the proposed virtualization
solution can deploy 1.62x more applications using the same amount of FPGA resources and reduce the
compilation time by 22.6% (perform as many compilation tasks in parallel as possible) with an acceptable
virtualization overhead, i.e.,

Finally, we use Liquid Silicon as a case study to show that the proposed virtualization solution can be
extended to other spatial reconfigurable architectures. Liquid Silicon is a homogeneous reconfigurable
architecture enabled by the non-volatile memory technology (i.e., RRAM). It extends the configuration
capability of existing FPGAs from computation to the whole spectrum ranging from computation to data
storage. It allows users to better customize hardware by flexibly partitioning hardware resources between
computation and memory based on the actual usage. Instead of naively applying the proposed
virtualization solution onto Liquid Silicon, we co-optimize the system abstraction and Liquid Silicon
architecture to improve the performance.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Electrical & Systems Engineering

First Advisor First Advisor
Jing Li

Keywords Keywords
Cloud computing, FPGA, RRAM, Virtualization

Subject Categories Subject Categories
Computer Engineering

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5418

https://repository.upenn.edu/edissertations/5418

VIRTUALIZING RECONFIGURABLE ARCHITECTURES:

FROM FPGAS TO BEYOND

Yue Zha

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2022

Supervisor of Dissertation Graduate Group Chairperson

Jing Li, Associate Professor Alejandro Ribeiro, Professor

Electrical and Systems Engineering Electrical and Systems Engineering

Committee:

André DeHon, Professor of Electrical and Systems Engineering
University of Pennsylvania

Zhiru Zhang, Associate Professor of Electrical and Computer Engineering
Cornell University

Jing Li, Associate Professor of Electrical and Systems Engineering
University of Pennsylvania

VIRTUALIZING RECONFIGURABLE ARCHITECTURES:

FROM FPGAS TO BEYOND

COPYRIGHT

2022

Yue Zha

ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Prof. Jing Li. I have been extremely

fortunate to join her group and have the opportunity to work with her. I have learned a

lot from her over the last several years. Her expertise, insight, and seemingly unlimited

support have guided this work in the best of ways. Thank you!

I also want to thank the members of my defense committee: Prof. André DeHon and

Prof. Zhiru Zhang. They provide valuable feedback and comments that largely improve

the quality of this dissertation.

I am also grateful to my colleagues in PennCIL group for the cherished time spent

together in the lab. In particular, I would like to thank Jialiang Zhang and Nick Beckwith,

who have taught me many import techniques and provided much support in both research

and life.

I would also like to thank my parents for their invaluable support, encouragement, and

unwavering belief in me. Without you, I would not be the person I am today.

Finally, I would like to thank my wife Mingxi for her love and for all the late nights

and early mornings. This work would not come to a successful end without her constant

support.

iii

ABSTRACT
VIRTUALIZING RECONFIGURABLE ARCHITECTURES:

FROM FPGAS TO BEYOND

Yue Zha

Jing Li

With field-programmable gate arrays (FPGAs) being widely deployed in data centers

to enhance the computing performance, an efficient virtualization support is required to

fully unleash the potential of cloud FPGAs. However, the system support for FPGAs in

the context of the cloud environment is still in its infancy, which leads to a low resource

utilization due to the tight coupling between compilation and resource allocation. Moreover,

the system support proposed in existing works is limited to a homogeneous FPGA cluster

comprising identical FPGA devices, which is hard to be extended to a heterogeneous FPGA

cluster that comprises multiple types of FPGAs. As the FPGA cloud is expected to become

increasingly heterogeneous due to the hardware rolling upgrade strategy, it is necessary to

provide efficient virtualization support for the heterogeneous FPGA cluster.

In this dissertation, we first identify three pairs of conflicting requirements from runtime

management and offline compilation, which are related to the tradeoff between flexibility

and efficiency. These conflicting requirements are the fundamental reason why the single-

level abstraction proposed in prior works for the homogeneous FPGA cluster cannot be

trivially extended to the heterogeneous cluster. To decouple these conflicting requirements,

we provide a two-level system abstraction. Specifically, the high-level abstraction is FPGA-

agnostic and provides a simple and homogeneous view of the FPGA resources to simplify the

runtime management and maximize the flexibility. On the contrary, the low-level abstrac-

tion is FPGA-specific and exposes sufficient low-level hardware details to the compilation

framework to ensure the mapping quality and maximize the efficiency. This generic two-

level system abstraction can also be specialized to the homogeneous FPGA cluster and/or be

extended to leverage application-specific information to further improve the efficiency. We

iv

also develop a compilation framework and a modular runtime system with a heuristic-based

runtime management policy to support this two-level system abstraction. By enabling a

dynamic FPGA sharing at the sub-FPGA granularity, the proposed virtualization solution

can deploy 1.62× more applications using the same amount of FPGA resources and reduce

the compilation time by 22.6% (perform as many compilation tasks in parallel as possible)

with an acceptable virtualization overhead, i.e., < 10% degradation in single application’s

performance.

Finally, we use Liquid Silicon as a case study to show that the proposed virtualization

solution can be extended to other spatial reconfigurable architectures. Liquid Silicon is a

homogeneous reconfigurable architecture enabled by the non-volatile memory technology

(i.e., RRAM). It extends the configuration capability of existing FPGAs from computation

to the whole spectrum ranging from computation to data storage. It allows users to better

customize hardware by flexibly partitioning hardware resources between computation and

memory based on the actual usage. Instead of naively applying the proposed virtualization

solution onto Liquid Silicon, we co-optimize the system abstraction and Liquid Silicon

architecture to improve the performance.

v

TABLE OF CONTENTS

ACKNOWLEDGMENT . iii

ABSTRACT . iv

LIST OF TABLES . x

LIST OF ILLUSTRATIONS . xi

1 Introduction . 1

1.1 Thesis . 1

1.2 Motivation . 1

1.3 Target Service Model . 4

1.4 Prior Virtualization Solutions and Our Goals 5

1.5 Overview and Contributions . 8

2 FPGA Background . 11

2.1 FPGA Architecture . 11

2.2 FPGA Compilation Flow . 14

2.3 Partial Reconfiguration . 15

2.4 FPGA Integration . 16

2.5 Cloud Instance Characterization . 18

3 System Abstraction for Cloud FPGAs . 19

3.1 Design Requirements . 19

3.2 Two-Level System Abstraction . 24

vi

3.2.1 FPGA Overlay . 27

3.2.2 Virtual-to-Physical Mapping . 29

3.2.3 Design Space Exploration . 30

3.3 Specialized to a Homogeneous Cluster . 33

3.4 Case Study: Extend to Support Application-Specific ISA 36

3.5 Results . 40

3.5.1 Two-Level System Abstraction . 40

3.5.2 Single-Level System Abstraction . 44

3.5.3 Creating Multiple Types of Physical Blocks 46

3.5.4 Discussion . 48

4 Compilation Framework . 51

4.1 Compilation Framework for Two-Level Abstraction 51

4.1.1 Recursive Partition Process . 57

4.2 Compilation Framework for Single-Level Abstraction 59

4.3 Compilation Framework for Application-Specific ISA 62

4.3.1 Decomposing Step . 62

4.3.2 Partition Step . 67

4.4 Results . 69

4.4.1 Compilation Time . 70

4.4.2 Compilation Quality . 74

4.4.3 Case Study: AS ISA-based Accelerator 79

5 Scheduling and Resource Management . 84

5.1 Modular Runtime System . 84

5.1.1 Specialized for A Homogeneous FPGA Cluster 86

5.2 Task Scheduling Policy . 86

5.3 Resource Allocation Policy . 87

5.3.1 Possible Extension . 89

vii

5.4 Results . 89

5.4.1 Design Space Exploration on Parameter N and K 90

5.4.2 Improvement Over Non-virtualized Environment 92

5.4.3 Comparison between Variants of Two-Level System Abstraction . . 93

6 Extend to Liquid Silicon . 96

6.1 Background . 96

6.1.1 RRAM and Access Device . 96

6.1.2 Related Work . 98

6.2 Liquid Silicon Architecture . 99

6.2.1 Overview . 99

6.2.2 Configuration Modes . 102

6.2.3 Comparison With FPGAs . 107

6.2.4 Circuit Implementation . 108

6.3 Custom Compilation Framework . 117

6.3.1 Adaptive Resource Partition . 120

6.4 Chip Demonstration . 121

6.4.1 Operational Modes . 123

6.4.2 Write Operation . 131

6.4.3 Discussion . 133

6.5 Extend Virtualization Solution . 134

6.6 Results . 136

6.6.1 Evaluation Setup . 136

6.6.2 Traditional FPGA Benchmarks . 140

6.6.3 Search-intensive Applications . 142

6.6.4 Neural Network Benchmarks . 143

6.6.5 Chip Results . 144

6.6.6 Virtualization Evaluation . 149

viii

7 Conclusion . 152

7.1 Limitation and Possible Future Works . 153

BIBLIOGRAPHY . 156

ix

LIST OF TABLES

1.1 A comparison of prior virtualization support for FPGAs and our design
goals. 7

3.1 Resources provided by one physical block and the maximum communi-
cation bandwidth provided by the intra-die and inter-die interconnections. 41

3.2 The amount of resources exposed to users. 50

4.1 The resource usages of evaluated benchmarks. 71
4.2 Hardware implementation results of the two baseline accelerators. . . . 80
4.3 The latency of LSTM/GRU inference tasks. 82

6.1 Description of the search-intensive benchmark set. 138
6.2 Topology for BNN benchmarks. 139
6.3 Liquid Silicon Chip Specification . 146
6.4 Comparison with state-of-the-art AI chips 147
6.5 Comparison with nv-FPGA . 149

x

LIST OF ILLUSTRATIONS

1.1 (a) A conceptual diagram to illustrate the management method used
in existing FPGA clouds. It only supports a static resource allocation
due to the lack of an abstraction, leading to an inefficient resource uti-
lization. (b) Several works [13][21] (including the low-latency mode of
AmorphOS [67]) abstract FPGAs into a pool of slots to enable a dy-
namic resource allocation, thereby improving the resource utilization.
However, this improvement could be limited due to the internal frag-
mentation issue. Moreover, users need to manually partition applica-
tions and handle the inter-slot communication if they cannot fit into
one slot. (c) The high-throughput mode of AmorphOS enables FPGA
sharing by combining multiple applications during the compilation pro-
cess. However, this method does not decouple compilation and resource
allocation, and neither makes full use of FPGA resources due to the
lack of multi-FPGA support. 2

1.2 (a) The amount of resource used by several representative FPGA ap-
plications (C-LSTM [129], DeltaRNN [43], BNN 1 [163], BNN 2 [83],
FPGP [31], GraVF [37], GraphOps [100], ForeGraph [32]). The results
are normalized to the capacity of Xilinx VU13P FPGA. (b) The FPGA
capacity keeps growing due to technology advances. 3

1.3 A conceptual diagram illustrates the service models defined for cloud
FPGAs . 5

2.1 A conceptual diagram of the island-style FPGA architecture. The key
building blocks of one CLB in Xilinx UltraScle FPGA is drawn as an ex-
ample. Note that the commercial-grade FPGA architecture introduces
additional features that are not drawn in this diagram for simplicity. . 12

2.2 A conceptual diagram to illustrate the clock distribution network in the
prior FPGAs (left) and the UltraScale FPGA (right). 13

2.3 A conceptual diagram illustrates the additional architectural features to
support the multi-die package. The routing fabric and hard IP blocks
are not drawn for simplicity. 14

2.4 (a) A typical FPGA compilation flow that comprises a front-end and
a back-end. (b) A conceptual diagram to illustrate the tight coupling
between compilation results and resource allocation. Specifically, differ-
ent spatial resource constraints of the allocated FPGA resource lead to
distinct compilation results. 15

xi

2.5 A conceptual diagram to illustrate the constraints when creating mul-
tiple partial reconfigurable regions in Xilinx FPGAs. Specifically, the
partial reconfigurable region #1 and #2 can co-exist on one FPGA de-
vice, while region #1 and #3 cannot be created on the same FPGA
device. The reconfigurable resources are not drawn for simplicity. . . . 17

2.6 Conceptual diagrams illustrate the popular integration methods for
FPGAs, which are (a) tightly integrated with CPU in the same pack-
age or on the same board, (b) connected to CPU through PCIe, or (c)
directly attached to the datacenter network. (d) Commercial FPGA
clouds [40][4] typically use a hybrid method, which is also the integra-
tion method targeted in this dissertation. 18

3.1 A conceptual diagram illustrated the basic structure of the system ab-
straction and the mapping process. 20

3.2 A conceptual diagram illustrates the conflicting requirements on the sys-
tem abstraction. Specifically, a homogeneous system abstraction (top)
provides portability across different heterogeneous FPGA clusters, but
has non-negligible resource waste due to the mismatched spatial re-
source constraints. On the contrary, a heterogeneous abstraction with
specialized virtual blocks can achieve a high resource utilization at the
cost of no portability. 22

3.3 A conceptual diagram to illustrate the difference between an asyn-
chronous interface (top) and an synchronous interface (bottom). Specifi-
cally, the asynchronous interface enables a dynamic runtime deployment
at the cost of additional buffers and control logic. On the contrary, the
synchronous interface can be efficiently implemented but only support
a static deployment that is determined at offline compile time. 23

3.4 A conceptual diagram illustrates the two-level system abstraction for
a heterogeneous FPGA cluster. (a) The high-level abstraction com-
prises a pool of high-level virtual blocks (HL virtual blocks) that are
connected by an all-to-all network. An asynchronous interface is pro-
vided for the inter-block communication. One HL virtual block has
no spatial resource constraint to hide the heterogeneity across FPGAs.
(b) The low-level abstraction comprises multiple arrays of low-level vir-
tual blocks (LL virtual blocks), where one array abstracts one type of
FPGA. One LL virtual block contains a certain amount of reconfigurable
resources that are organized in pre-defined spatial resource constraints.
A synchronous interface is provided for the intra-array communication,
while an asynchronous interface is also provided to implement the asyn-
chronous interface in the high-level abstraction. 26

3.5 The physical FPGA is divided into Service Region and User Region to
support the two-level system abstraction. The virtualization support for
on-board DRAM is drawn as an example. Note that the actual layout
of these regions is tailored to a specific type of FPGA. 28

xii

3.6 A conceptual diagram illustrates the virtual-to-physical mapping, where
one HL virtual block is offline mapped into an array of LL virtual blocks
and then deployed into one FPGA of the corresponding type at runtime.
Multiple mapping results are offline generated for one HL virtual block
so that it can be deployed into different types of FPGAs at runtime. . 28

3.7 A conceptual diagram illustrates the benefits of the constrained map-
ping strategy (right). Specifically, this strategy ensures that the inter-
block timing does not change under the dynamic runtime deployment.
Moreover, this strategy also simplifies the interconnection network be-
tween physical blocks. On the contrary, the unconstrained mapping
strategy (left) has a varying inter-block timing under different runtime
deployment. Moreover, a dedicated interconnection needs to be pro-
vided for each pair of physical blocks to ensure that the inter-block
connections are not shared between applications, leading to a complex
interconnection network. 31

3.8 (a) Multiple LL virtual block arrays with different combination of the
synchronous interfaces are provided for one type of FPGA to account
for the difference between the inter-die and intra-die communication
latency. (b) One LL virtual block array could be shared among a set
of FPGAs if these FPGAs reuses the same die design. This effectively
amortizes the compilation cost. The service region in physical FPGAs
is not drawn for simplicity. 32

3.9 A conceptual diagram illustrates that smaller physical blocks can be
created if multiple types of LL virtual blocks are provided for one type
of physical FPGAs (ignoring the heterogeneity caused by the multi-die
package). 33

3.10 (a) A conceptual diagram illustrates the single-level system abstraction
specialized for the homogeneous FPGA cluster, which comprises a 1D
array of identical virtual blocks. (b) This single-level system abstraction
minimizes the compilation cost as one compilation result can be used
for different runtime deployments. Only physical blocks are drawn for
simplicity. (c) The single-level system abstraction and two-level system
abstraction effectively complement each other. Although they require
different FPGA overlays, they can co-exist in a homogeneous FPGA
cluster enabled by the FPGA’s programmability. 35

xiii

3.11 A Communication Region is included to implement the latency-
insensitive interface. (a) As the width of the physical block is larger
than its height, placing the communication region between two physical
blocks reduces the interconnection length and supports more intercon-
nections compared with placing the communication region on left/right
side of physical blocks. (b) The communication region needs to created
as partial reconfigurable regions to support various latency-insensitive
interface. This substantially reduces the number of physical blocks pro-
vided by one FPGA due to the constraint in creating partial reconfig-
urable regions. (c) Thus, we only create communication regions that
support inter-FPGA communications for the physical blocks on the top
and bottom. The communication regions in the middle only support
intra-FPGA communication and are created as static regions. Note
that the actual layout of these regions is tailored to a specific type of
FPGA. 37

3.12 (a) An application-specific abstraction layer can be added on top of the
two-level system abstraction to support application-specific ISA. This
additional layer comprises a pool of soft blocks. Same as the high-
level virtual blocks, these soft blocks also have variable spatial resource
constraints to simplify the partition process. (b) The soft block has a
multi-level tree structure, where one soft block can have an arbitrary
number of child blocks that are connected either in the data parallelism
or pipeline parallelism. (c) These two primitive parallel patterns are
sufficient to construct other complex patterns, such as the adder tree. . 38

3.13 A conceptual diagram to illustrate that the extracted parallel patterns
are leveraged to simplify the mapping from the additional abstraction
layer to the high-level abstraction layer. 39

3.14 The commercial FPGA XCVU37P from Xilinx is partitioned into re-
gions to support the two-level system abstraction. User Region that
is indexed with U is exposed to users, while the Service Region that
is indexed with S is reserved by the system. The circuits in the system-
reserved regions are pre-implemented and cannot be modified by users.
The mapping results are obtained from Vivado 2020.1. 41

3.15 The commercial FPGA XCKU115 from Xilinx is partitioned into re-
gions to support the two-level system abstraction. User Region that
is indexed with U is exposed to users, while the Service Region that
is indexed with S is reserved by the system. The circuits in the system-
reserved regions are pre-implemented and cannot be modified by users.
The mapping results are obtained from Vivado 2020.1. 43

xiv

3.16 The commercial FPGA XCVU37P from Xilinx is partitioned into three
regions to support the single-level system abstraction. User Region
that is indexed with U is exposed to users, while the Service Re-
gion that is indexed with S and the Communication Region that is
indexed with C are reserved by the system. The circuits in the system-
reserved regions are pre-implemented and cannot be modified by users.
The partition pins are only drawn for illustration purpose, which are
not the actual position. The mapping results are obtained from Vivado
2020.1. 45

3.17 The commercial FPGA XCKU115 from Xilinx is partitioned into three
regions to support the single-level system abstraction. User Region
that is indexed with U is exposed to users, while the Service Re-
gion that is indexed with S and the Communication Region that is
indexed with C are reserved by the system. The circuits in the system-
reserved regions are pre-implemented and cannot be modified by users.
The partition pins are only drawn for illustration purpose, which are
not the actual position. The mapping results are obtained from Vivado
2020.1. 46

3.18 Two types of physical blocks are created on XCVU37P FPGA when im-
plementing the two-level system abstraction. An additional sub-region
S-5 is created to share the DDR4/PCIe interface and the inter-FPGA
interconnection among these smaller physical blocks. The mapping re-
sults are obtained from Vivado 2020.1. 47

3.19 Two types of physical blocks are created on XCKU115 FPGA when im-
plementing the two-level system abstraction. An additional sub-region
S-4 is created to share the DDR4/PCIe interface and the inter-FPGA
interconnection among these smaller physical blocks. The mapping re-
sults are obtained from Vivado 2020.1. 49

4.1 The compilation framework for the two-level system abstraction. The
steps using custom tools are highlighted in blue. 52

4.2 A conceptual diagram illustrates the latency-insensitive interface gen-
erated for one HL virtual block. 53

4.3 A conceptual diagram illustrates the process of mapping one high-level
virtual block onto physical FPGAs. The local routing step is not drawn
in the figure for simplicity. 55

4.4 One application is recursively partitioned into multiple HL virtual blocks. 57
4.5 A conceptual diagram to illustrate that improving K only leads to non-

negligible runtime performance improvement in limited scenarios. . . . 58
4.6 The compilation framework for the single-level system abstraction. The

steps using custom tools are highlighted in blue. 59

xv

4.7 (a) A conceptual diagram to illustrate the the quality of the local place-
ment step for single-level system abstraction is more sensitive to the
position of partition pins compared with that of the monolithic place-
ment step in two-level system abstraction. This mainly because the local
placement step has a smaller placement region (one physical block) and
more partition pins. (b) An iterative partition method is applied to ob-
tain a fine-grained partition results when mapping user logic into virtual
blocks. The fine-grained partition results are leveraged to determine the
position of partition pins. In the drawn example, the partition result
obtained from the third iteration is used to determine the position of
partition pins. 60

4.8 When the inter-FPGA connection is implemented for one interface, then
the implementation of the remaining interfaces are all determined based
on the number of physical blocks provided by one FPGA. In the drawn
example, one FPGA provides N physical blocks. Then the control logic
for the intermediate blocks can be merged and implemented in the inter-
FPGA connection. This figure only draws the implementation for one
dataflow (from top to bottom) for simplicity. 62

4.9 A conceptual diagram illustrates the decomposing flow, where (a) the
control and data path in one AS ISA-based accelerator design is first
separated into two soft blocks, and the soft block that contains data
path can be decomposed either in (b) a top-down flow or (c) a bottom-
up flow. 64

4.10 Conceptual diagrams illustrate (a) the step of extracting the data par-
allelism within a leaf soft block, (b) the step of identifying inter-block
data parallelism, and (c) the step of identifying pipeline parallelism. . 66

4.11 (a) A conceptual diagram illustrates the technique of scaling down one
AS ISA-based accelerator. Specifically, one AS ISA-based accelerator
is split into two smaller one. Each one has a complete control path and
only computes part of the computation results. We provide a template
module for inter-FPGA synchronization (highlighted in blue). (b) The
key building blocks of this synchronization module are drawn in the figure. 68

4.12 A conceptual diagram illustrates the template architecture used for gen-
erating different variants of accelerator designs. A multi-level distribu-
tion network and pipeline registers are included for better timing. . . . 70

4.13 The runtime breakdown of different compilation process for the evalu-
ated accelerator designs. For each accelerator design (small, medium
or large), from top to bottom, the runtime of the baseline compilation
flow, the compilation flow for two-level abstraction that has one type of
LL virtual block for one FPGA, the compilation flow for the single-level
abstraction, and the compilation flow for the two-level abstraction that
has two types of LL virtual blocks for one FPGAs are drawn. 72

4.14 The aggregated compilation time of different compilation flows. 75

xvi

4.15 The operating frequency of the accelerators mapped onto the two-level
system abstraction, which is normalized to that mapped by the conven-
tional FPGA flow. For each benchmark, the result of three accelerator
variants are provided (from left to right is large, medium and small). . 76

4.16 The average operating frequency obtained under different n values,
which is normalized to that mapped by the conventional FPGA com-
pilation flow. The average partition time with different n values is also
reported. The parameter n is defined in Section 4.2. 77

4.17 The required communication bandwidth of the inter-block interconnec-
tions when mapping applications onto the two-level system abstraction
and the single-level system abstraction. Enabled by the two-level system
abstraction, the corresponding compilation framework can effectively
identify the boundary with the low bandwidth requirement to partition
these benchmarks. On the contrary, due to the unified asynchronous
interface in the single-level abstraction, the corresponding compilation
framework cannot find such boundary. 78

4.18 A conceptual diagram illustrates the organization of the AS ISA-based
accelerator design and the decomposing results. 80

4.19 The floorplanning is leveraged to improve the mapping quality of the
baseline accelerator. Part of the floorplanning used for XCVU37P FPGA
is shown in (a). This function is also leveraged to improve the mapping
quality of one virtual block to ensure a fair comparison. The optimized
implementation result is shown in (b). 81

4.20 The impact of the inter-FPGA communication latency on the inference
latency when the AS ISA-based accelerator is deployed onto two FPGA
devices . 83

5.1 (a) The two-level modular runtime management system for the hetero-
geneous FPGA cluster. The on-demand and spot instances are defined
in Section 2.5. (b) The single-level runtime management system for the
homogeneous FPGA cluster. 85

5.2 (a) A conceptual diagram illustrates that an inappropriate resource allo-
cation leads to resource fragmentation issue. (b) A conceptual diagram
illustrates the calculation of the fragmentation score. Service region in
FPGAs is not drawn for simplicity. 87

5.3 A conceptual diagram to illustrate the flow of allocating resources for
one application. Only one bottom-level manager is drawn for simplicity. 88

5.4 The normalized response time for on-demand and spot instances under
different N and K. The percentage of on-demand instances and batch
workloads are 50%. 91

5.5 (a) The comparison of the normalized response time over the non-
virtualized environment for the heterogeneous FPGA cluster. (b) The
comparison of the normalized response time delivered by the two-level
system abstraction and single-level system abstraction for the homoge-
neous FPGA cluster. The results of the non-virtalized environment is
not drawn in (b) for better clarity. 92

xvii

5.6 The normalized response time under different percentages of (a) on-
demand instances and (b) batch workloads. The resource contention
ratio is 0.9 in both experiments. The percentage of batch workloads is
50% in (a), and the percentage of on-demand instances is 50% in (b). . 94

5.7 The performance comparison between the two different variants of the
two-level system abstraction. 95

6.1 (a) The Ir/Ta2O5−δ/TaOx/TaN structure [132] of one RRAM cell. (b)
The resistive switching I-V curve. 97

6.2 Liquid Silicon provides a user-controlled resource provisioning to cover
the whole spectrum, from data-intensive to compute-intensive. On the
contrary, FPGAs only provide an efficient support on compute-intensive
applications. 99

6.3 (a) To improve resource utilization, one tile can be partitioned between
heavy-weight compute mode and interconnect mode. (b) This flexibility
results in better mapping with low routing pressure compared to FPGAs.100

6.4 A conceptual diagram illustrates the Liquid Silicon architecture. 2× 2
tiles are drawn in the example. In one tile, the 1D1R-based crossbar
array is stacked atop connection nodes (CMOS circuits) and does not
consume die area. The key building blocks of one connection node is
also drawn in the figure. 101

6.5 One tile in the light-weight compute mode supports the parallel search
operation. The data entries can be stored either row-wise (left) or
column-wise (right). The matched entry is highlighted in blue. 103

6.6 The light-weight compute mode is also used to implement the binarized
neural network, and the data layout in one tile can be either horizontally
or vertically. 104

6.7 The operation of the heavy-weight compute mode is illustrated (left)
and four logic functions are packed and mapped onto one tile. The
operation of the interconnect mode is illustrated (middle). These two
modes can be co-existed in the same tile (right). 105

6.8 An example illustrates (a) the read operation and (b) the write opera-
tion in the memory mode. This memory block stores 4 2-bit words. . . 106

6.9 Detailed implementation of one connection node. 110
6.10 The implementation of the S/A design. 111
6.11 (a) The voltages on WLs and the RRAM states are presented. The

corresponding discharge current for these two BLs are also drawn. (b)
The voltages on these two BLs. (c) The voltage on the node SN in
the S/A. (d) The output of S/A. (e) The output of the configurable
dynamic inverter, and (f) this output is latched by the reference timing
signal. 111

6.12 Circuit design of the configurable dynamic inverter. 112
6.13 (a) Circuit implementation of the non-volatile configuration memory,

and voltage setups for three operations are highlighted. (b) 3D2R cells
can be organized in a crossbar structure and the voltage setup to pro-
gram one RRAM cell (in blue) is illustrated. 114

xviii

6.14 One example illustrates sensing operations when providing (a) one sens-
ing clock or (b) two sensing clocks. 115

6.15 Physical design of a tile under 40nm technology. 116
6.16 Workflow of the compilation framework. The back-end is modified to

support the features provided in Liquid Silicon. 118
6.17 (a) This Liquid Silicon test chip comprises a 2D array of identical tiles,

and each tile contains a 1T1R memory array and several connection
nodes. Note that the adjacent tile is rotated by 90 degree. The pitch
mismatch between WL and BL can be resolved in the connection node
through a two-metal transition routing network. (b) The schematic of a
1T1R memory cell, and (c) key building blocks of the connection node
are drawn in the figure. 122

6.18 (a) The read data path for the sensing operation is drawn in the figure.
(b) The conceptual diagram illustrates the sensing operation. 123

6.19 (a, b) An arbitrary AND function is implemented on one row (BL). (c)
Multiple functions are implemented in one array with a compact mapping.125

6.20 (a) Three adjacent tiles are used to implement a memory block that
stores 16 2-bit words. (b) The left tile implements the row address
decoder and routes column address to the central tile. (c) The central
tile implements the column address decoder and stores data. (d) The
bottom tile implements the selection logic to generate the read result. 127

6.21 The timing diagram of the read operation. 128
6.22 (a) An optimal selection of the row/column address bits leads to a

32-bit (16 2-bit words) of memory capacity, as compared with (b) a
non-optimal one which leads to a 24-bit (12 2-bit words) of memory
capacity given the same area. (c) The optimal address selection for a
memory block with a 4-bit word size, which achieves 48-bit (12 4-bit
word) of memory capacity. The left/bottom tiles are not drawn in this
figure for simplicity. 129

6.23 One tile can be configured to perform parallel search operations. 129
6.24 One tile can be configured to implement binarized neural networks. . . 131
6.25 (a) The write data path for programming a selected 1T1R cell is drawn

in figure. The conceptual diagram illustrates the operation to (b) set
the selected RRAM into LRS, and (c) reset the selected RRAM into
HRS. (d) The output voltages of HV-drivers are summarized in the table.132

6.26 (a) The distributions of the effective resistance for both match and
1-bit mismatch cases. (b) The maximum operating frequency, power
consumption, and array efficiency under different array sizes. (c) The
power efficiency and area efficiency for machine learning and big data
applications under different array sizes. 133

6.27 A conceptual diagram illustrates low-level abstraction modified for Liq-
uid Silicon. 135

6.28 A conceptual diagram illustrates the hybrid routing fabric in the mod-
ified Liquid Silicon. The cluster contains 2× 2 tiles in the example. . . 136

6.29 The compilation framework for the virtualized Liquid Silicon. 137

xix

6.30 From top to bottom are Area, delay, energy efficiency (energy-delay
product, EDP) and routing usage results. Results of the SRAM-based
FPGA are used as baseline, and other results are normalized to them.
The routing usage is the ratio between routing area and total used area
when mapping benchmark circuits. In Liquid Silicon, it is obtained
by first calculating the ratio between routing area and total used area
(routing+logic) of each tile and averaging across all tiles. 141

6.31 The area saving (top), throughput improvement (middle) and power
reduction (bottom) are presented. All results are normalized to that of
SRAM-based FPGA. The area result is plotted in logarithmic scale. . . 142

6.32 The runtime speedup (top), energy consumption (middle) and area (bot-
tom) results are presented. All results are normalized to that of SRAM-
based FPGA. 144

6.33 (a) Die photo and (b) the integration flow [50]. 145
6.34 (a) The measured resistance distribution under the switching condi-

tion: Forming 4V@40µs, SET 2V@100ns, RESET 2.5V@100ns, (b) the
measured voltage frequency scaling, and (c) the measured waveform for
logic ‘1’ output (Computation mode: ‘True’, Storage mode: ‘1’, Search
mode: ‘match’, NN mode: ‘active’) and logic ‘0’ output (Computation
mode: ‘False’, Storage mode: ‘0’, Search mode: ‘mismatch’, NN mode:
‘inactive’). These measurements are conducted at room temperature. . 145

6.35 The area, delay and EDP (energy-delay product) results of mapping
application onto the virtualized Liquid Silicon architecture, which are
normalized to those of the non-virtualized one. 150

6.36 The delay result (left) and the number of tracks per unit length (right)
of mapping application onto the virtualized Liquid Silicon, which are
normalized to that of the FPGA architecture. 150

6.37 The runtime of the compilation framework developed for the virtual-
ized environment is normalized to that of the framework for the non-
virtualized one. Results of sequentially executing all compilation tasks
(top) and parallel executing all tasks (bottom) are presented. Only the
key compilation tasks are drawn in the figure for simplicity. 151

xx

Chapter 1

Introduction

1.1 Thesis

A system abstraction and a compilation framework are developed for the heterogeneous

FPGA cluster in the context of the cloud environment. By enabling a dynamic FPGA

sharing in the spatial domain at the sub-FPGA granularity and providing multi-FPGA

support, the proposed virtualization solution can deploy 1.62× more applications using the

same amount of FPGA resources with a marginal degradation in the single application’s

performance (no more than 10%) compared to that in the non-virtualized environment. This

virtualization solution can also be extended to other spatial reconfigurable architectures,

such as Liquid Silicon, a RRAM-based reconfigurable architecture.

1.2 Motivation

Integrating field-programmable gate arrays (FPGAs) into cloud infrastructures to enhance

their computing performance is one important trend in recent years, mainly because of the

high energy efficiency, predictable latency, and the superior flexibility of accelerating diverse

applications, including machine learning [23][117][159], data analysis [82][41][63] and graph

processing [31][32][37]. However, the system support for FPGAs in the context of the cloud

environment is still in its infancy. Consequently, the resource management strategy used in

the embedded computing environment is adopted in existing FPGA clouds (e.g., Amazon

AWS F1 [4]) to manage the pool of FPGA resources at a per-device granularity, i.e., one or

1

Interconnection

FPGA Cluster

Applications

Resource Waste

(No Abstraction)

Interconnection

OR

Slots

Applications

Offline

Manual

Partition

Runtime

Static

resource

allocation

Interconnection

FPGA Cluster

Dynamic resource

allocation

Resource Waste

(Internal

Fragmentation)

(a)

(b)
(c)

Applications

Interconnection

FPGA Cluster

Combine

Static

resource

allocation

Resource Waste

(No multi-

FPGA support)

Figure 1.1: (a) A conceptual diagram to illustrate the management method used in existing
FPGA clouds. It only supports a static resource allocation due to the lack of an abstraction,
leading to an inefficient resource utilization. (b) Several works [13][21] (including the low-
latency mode of AmorphOS [67]) abstract FPGAs into a pool of slots to enable a dynamic
resource allocation, thereby improving the resource utilization. However, this improvement
could be limited due to the internal fragmentation issue. Moreover, users need to manually
partition applications and handle the inter-slot communication if they cannot fit into one
slot. (c) The high-throughput mode of AmorphOS enables FPGA sharing by combining
multiple applications during the compilation process. However, this method does not de-
couple compilation and resource allocation, and neither makes full use of FPGA resources
due to the lack of multi-FPGA support.

2

LUT DFF BRAM DSP

0

20

10

30

N
o
rm

a
li

ze
d

U
ti

li
za

ti
o
n

(%
)

1

10

100

N
o
rm

a
li

ze
d

 C
a
p

a
ci

ty

90 65 40 28 16

Technology Node (nm)

Logic

Cells
Memory DSP

(a) (b)

Figure 1.2: (a) The amount of resource used by several representative FPGA applica-
tions (C-LSTM [129], DeltaRNN [43], BNN 1 [163], BNN 2 [83], FPGP [31], GraVF [37],
GraphOps [100], ForeGraph [32]). The results are normalized to the capacity of Xilinx
VU13P FPGA. (b) The FPGA capacity keeps growing due to technology advances.

multiple physical FPGA devices are exclusively allocated to one application (Figure 1.1a).

This coarse-grained management strategy leads to an inefficient utilization of the FPGA

resources due to the mismatch between the amount of resources required by applications and

the capacity of FPGAs, i.e., applications cannot fully utilize the allocated FPGA resources

(Figure 1.1a). This mismatch comes from the diversity in both applications and the FPGA

devices. Specifically, the increasingly diverse applications that are deployed in the cloud

require different amount of resources (Figure 1.2a). The on-demand computing model also

allows users to deploy distinct FPGA accelerators (even for the same application) to account

for the varying demands on performance and cost, which further increases the diversity in

resource usage. Moreover, benefiting from the advanced technology node and packaging

(e.g., multi-die packaging [111]), the capacity of FPGAs keeps growing (Figure 1.2b). On

the one hand, this increases the diversity in FPGA capacity due to the hardware rolling

upgrade. On the other hand, this inevitably leads to a mismatch between the resource usage

of legacy FPGA accelerators and the capacity of the latest FPGAs.

The root cause of the inefficient resource utilization is the lack of virtualization support.

Specifically, due to the lack of an abstraction, the FPGA compilation results are tightly

coupled with the physical resource allocation (Section 2.2) and applications need to be

3

recompiled in case of any physical resource change (either capacity or location). Unlike the

compilation process for CPUs, the FPGA compilation process has a high time complexity

and may take hours or even days depending on the complexity of applications. Thus,

although runtime recompilation can improve the resource utilization, it incurs a prohibitive

runtime overhead that limits the physical resource allocation to the offline compile time.

The inability to dynamically respond to the actual load and resource availability at runtime

leads to the inefficient utilization of FPGA resources.

This dissertation describes a virtualization support for cloud FPGAs to efficiently im-

prove the resource utilization with a marginal virtualization overhead. We note that the

virtualization support developed for CPUs cannot be trivially applied to FPGAs due to

the fundamental difference between their architecture and computing models. Specifically,

an FPGA application describes the physical hardware circuits wired together under spatial

resource constraints, while a CPU application is a sequence of pre-defined instructions ex-

ecuting in the temporal domain. Thus, this dissertation presents a new system abstraction

tailored to the spatial reconfigurable architecture. A compilation framework is also provided

to compile applications onto this system abstraction. The existing FPGA commercial tools

are maximally reused in this compilation framework to minimize the development effort

and ensure the compilation quality.

1.3 Target Service Model

Different service models require distinct virtualization support. Thus, it is necessary to

determine the target service model before exploring the virtualization support for FPGAs.

Following the definition of the service model provided by the CPU-based clouds, we broadly

define three service models for the FPGA cloud. The first one is the Infrastructure-as-a-

Service (IaaS) model. Under this service model, only the I/O interface of FPGA devices is

virtualized through an shell, while reconfigurable resources (e.g., lookup tables) are not vir-

tualized and users can directly manage these physical reconfigurable resources (Figure 1.3).

The virtualization support proposed in [17][70][106][119][162] is developed for this service

4

Networking

FPGAs

Shell

Compilation

Resource

Management

Application

Data

Infrastructure-as-a-Service

(IaaS)

Networking

FPGAs

Resource

Management

Application

Data

Platform-as-a-Service

(PaaS)

Compilation

System Abstraction

Networking

FPGAs

Resource

Management

Application

Data

Software-as-a-Service

(SaaS)

Compilation

System Abstraction

Managed by the virtualization methods Controlled by users

Figure 1.3: A conceptual diagram illustrates the service models defined for cloud FPGAs

model. The second one is the Platform-as-a-Service (PaaS) model. Under this service

model, both the I/O interface and the reconfigurable resources are virtualized through a

system abstraction. Users can only request virtualized resources with no control on the

physical resources (Figure 1.3). The virtualization support proposed in [7][21][67][73][160]

is developed for this service model. The last one is the Software-as-a-Service (SaaS) model.

Under this service model, a set of application-specific accelerators are abstracted into pre-

defined APIs, which are exposed to users (Figure 1.3). The virtualization support proposed

in [40][54][55][149] is developed for this service model. In this dissertation, we choose to

explore the virtualization support for the PaaS model, mainly because (1) the virtualization

support for the IaaS model is relatively simple and has been well studied in prior works,

and (2) the PaaS model provides a scalable platform for application developers to build

their own FPGA accelerators and can be easily extended to the SaaS model.

1.4 Prior Virtualization Solutions and Our Goals

The existing virtualization solutions for the PaaS model can be broadly categorized into two

groups: time-multiplexing and space-multiplexing. Time-multiplexing methods [33][18][123][9]

[66][120][80] share FPGA resources among multiple applications in the temporal domain

5

through context switching. These works typically use multi-context FPGAs to hide the

context switching overhead. Different from the commercial FPGA that is a single-context

architecture and can only store one context of configuration, multi-context FPGAs contain

multiple sets of configuration memories to store several contexts of configuration. When

one context of configuration is used for computation, a new context can be simultaneously

loaded to hide the configuration overhead. However, the additional configuration mem-

ories significantly reduce the amount of FPGA resources available to users, thus, multi-

context FPGAs (such as Tabula [52]) are less popular than single-context FPGAs and

time-multiplexing is less attractive than the space-multiplexing. Space-multiplexing meth-

ods [21][160][73][7][13][38][72][71][125] (including the low-latency mode of AmorphOS [67])

abstract FPGA resources into a pool of slots (slot-based methods) and partition physical

FPGAs into regions, where one region is used to implement one slot (Figure 1.1b). This

method decouples the compilation and resource allocation, thereby enabling dynamic FPGA

sharing at the sub-FPGA granularity (Table 1.1). However, due to the lack of multi-slot

support, i.e., one application needs to be mapped into a single slot, these methods face a

dilemma when determining the capacity of the slot. A larger slot size increases the amount

of wasted resources due to internal resource fragmentation, while a smaller slot size increases

the burden on users, i.e., more applications need to be manually partitioned (Figure 1.1b).

Thus, the improvement in resource utilization obtained from these methods can be limited.

The virtualization solution provided in AmorphOS [67] achieves better FPGA sharing

than other space-multiplexing methods by providing two operating modes: a low-latency

mode and a high-throughput mode. The low-latency mode applies the slot-based method

and thus also faces the same dilemma. The high-throughput mode wraps multiple applica-

tions into a single application, which is then compiled onto a single physical FPGA to enable

fine-grained FPGA sharing (Figure 1.1c). While achieving better resource utilization than

the slot-based methods, this high-throughput mode may still suffer from the resource frag-

mentation issue due to the lack of multi-FPGA support. Moreover, this high-throughput

mode does not decouple the compilation and resource allocation. Thus, it needs to of-

6

Table 1.1: A comparison of prior virtualization support for FPGAs and our design goals.

Method
FPGA Multi-FPGA Resource Virtualization

Sharing Support Utilization Overhead

Time-Multiplexing [33] Support No Medium High

Slot-based methods [21] Support No Medium Low

AmorphOS∓ [67] Support No High High

Multi-FPGA Framework [32] No Support Medium Low

SCORE [35] Support† Support Medium Low

Our Goal Support Support High Low

∓ High-throughput mode † Hard to provide sufficient isolation

fline generate the compilation results for many combinations to support various resource

allocations at runtime. When one application changes, the compilation results of all com-

binations related to this application need to be regenerated. Thus, this method has a high

offline compilation overhead.

Several frameworks [104][32][44][23] are developed to deploy one application onto multi-

ple FPGAs. These frameworks are not developed for the PaaS model but fall into the broad

context of FPGA virtualization. Some commercial evaluation platforms (e.g., Cadence Pro-

tium S1 [14]) also use multiple FPGAs for emulation. These frameworks/platforms provide

valuable experience in providing multi-FPGA support. However, they do not address the

tight coupling between compilation and resource allocation. Thus, the resource allocation

still needs to be performed at offline compile time and thus these frameworks cannot enable

dynamic FPGA sharing among multiple users at sub-FPGA granularity.

SCORE [35][15][16] is an early pioneer work that falls into the broad context of FPGA

virtualization before cloud computing became ubiquitous. It aims to reduce the FPGA

programming complexity and provide multi-FPGA support by providing a stream-oriented

compute model and a new abstraction. It partitions physical FPGAs into compute and

memory regions that are connected by an all-to-all network to support the proposed com-

7

pute model and abstraction. These regions are required to be identical to decouple the

compilation and resource allocation, thereby enabling dynamic FPGA sharing. While the

methodology presented in SCORE is inspiring, it mainly targets the single-user, single-

application environment for embedded computing systems. Thus, it cannot be trivially

applied to cloud FPGAs. For instance, it is hard to provide a strong isolation across ap-

plications because of the shared all-to-all interconnection network, which also reduces the

amount of resources that are exposed to users.

As shown in Table 1.1, we have two design goals when developing the virtualization

support for cloud FPGAs. (1) Providing a system abstraction to decouple the compilation

and resource allocation, thereby enabling dynamic FPGA sharing at sub-FPGA granular-

ity without incurring high compilation overhead. (2) Providing multi-FPGA support to

mitigate the resource fragmentation issue caused by the physical FPGA boundary.

1.5 Overview and Contributions

The rest of the dissertation is organized as follows. Chapter 2 provides the necessary

background information for exploring the FPGA virtualization, including the FPGA archi-

tecture and the compilation flow. With this background information, it then explains the

tight coupling between the compilation and resource allocation. This chapter also discusses

the FPGA integration methods and the characteristics of cloud instances.

Chapter 3 describes the system abstraction developed for cloud FPGAs. It starts with

a two-level system abstraction that is developed for the heterogeneous FPGA cluster. This

system abstraction not only decouples the compilation and resource allocation, but also

simultaneously satisfies the conflicting requirements of runtime management and offline

compilation. This two-level abstraction is then merged into a single-level one that is spe-

cialized for the homogeneous FPGA cluster. Moreover, this generic two-level system ab-

straction can also be extended to support the SaaS model. This chapter presents a case

study that extends this abstraction to support application-specific ISA-based accelerators

[40]. The corresponding compilation frameworks that map applications onto the proposed

8

system abstraction are presented in Chapter 4. These compilation frameworks maximally

reuse existing FPGA compilation tools to minimize the development efforts and ensure

the compilation quality. Custom tools are developed for the new steps that are not sup-

ported by the conventional FPGA compilation tool. Chapter 5 presents the scheduling

and resource management policy. A heuristic method is presented to efficiently reduce the

resource fragmentation.

Chapter 6 presents a RRAM-based reconfigurable architecture, namely Liquid Silicon,

and uses it as a case study to show that the proposed virtualization solution can be extended

to other spatial reconfigurable architectures. This chapter first describes the key building

blocks of Liquid Silicon that extend the configuration capability of existing FPGAs from

computation to the whole spectrum ranging from computation to data storage. It then

presents a compilation framework that is developed to fully exploit the unique programma-

bility provided by Liquid Silicon. Finally, the proposed system abstraction for FPGAs and

the Liquid Silicon architecture are co-optimized to apply the proposed virtualization solu-

tion onto Liquid Silicon. Chapter 7 highlights the main points of our work and concludes

this dissertation.

In particular, we made the following major contributions in this dissertation:

• A new system abstraction and a compilation framework are developed to virtualize

cloud FPGAs. This virtualization solution improves the overall resource utilization

by enabling a dynamic FPGA sharing at sub-FPGA granularity and reduces the

compilation time. It can also be extended to better support a homogeneous FPGA

cluster and the SaaS model. This part of work is published in [154][156][155].

• A RRAM-based reconfigurable architecture, namely Liquid Silicon, is developed to

address the limitations of existing FPGAs. (1) It provides a flexible resource provi-

sioning between computation and storage that can be controlled by users to better

match applications’ requirements, while FPGAs have a fixed resource provisioning

that is determined by vendors. (2) It supports a coarse-grained logic implementa-

tion that effectively reduces the routing overhead. This part of work is published in

9

[152][153][150][151][158][157].

• We use Liquid Silicon as a case study to show that the proposed virtualization support

can be extended to other spatial reconfigurable architectures.

10

Chapter 2

FPGA Background

2.1 FPGA Architecture

A simplified view of FPGA architecture that is frequently cited in textbooks or publicly

available tutorials is drawn in Figure 2.1, i.e., an island-style heterogeneous architecture that

comprises a 2D array of configurable logic blocks (CLBs), switch blocks (SBs), connection

blocks (CBs) and hard IP blocks. Specifically, CLBs contain several look-up tables (LUTs)

and each LUT stores a truth table to implement an arbitrary 6-input logic function or two

logic functions with 5 or less inputs. The output of LUTs can be optionally connected to

a flip-flop to implement sequential circuits. CLBs also comprise hardened multiplexers and

a carry chain to efficiently implement complex circuits with more than 6 inputs, such as

adder [141]. Besides implementing logic functions, CLBs can also be configured as storage

elements in modern FPGAs. SBs and CBs form an extensive bit-wise network to route the

interconnections between CLBs and hard IP blocks. Hard IP blocks are scarce hardware

resources that are included for augmenting the capability of FPGAs in performing specific

functions. For instance, block RAMs (BRAMs) are used for on-chip data storage and DSPs

are used for arithmetic computations.

Inherited from multiple product generations, contemporary commercial FPGAs have

more complex architectural features that are not included in the simplified view. It is nec-

essary to understand these additional features when developing the virtualization support.

In this chapter, we use the widely used UltraScale FPGA from Xilinx as an example to

11

Configurable

Logic Block

Inputs Outputs

D

F7MUX

Q

I0
I1
I2
I3
I4
I5

O6

O5

LUT

D Q

I0
I1
I2
I3
I4
I5

O6

O5

LUT

I0
I1
I2
I3
I4
I5

O6

O5

LUT D Q

Switch Block Connection Block

Hard IP Block

(e.g., BRAM)
Routing Channel

Figure 2.1: A conceptual diagram of the island-style FPGA architecture. The key building
blocks of one CLB in Xilinx UltraScle FPGA is drawn as an example. Note that the
commercial-grade FPGA architecture introduces additional features that are not drawn in
this diagram for simplicity.

12

Clock Distribution Network

in UltraScale FPGA

Clock Distribution Network

in Prior FPGA

Clock Root Clock Skew Clock Region

Figure 2.2: A conceptual diagram to illustrate the clock distribution network in the prior
FPGAs (left) and the UltraScale FPGA (right).

explain these additional architectural features.

Clock Region. Instead of having a single clock distribution network for the entire

FPGA, UltraScale FPGAs comprise a 2D array of clock regions and each region has its own

clock distribution network, as illustrated in Figure 2.2. These clock regions are independent

from each other, i.e., (1) the clock distribution network in one clock region can be turned off

without affecting the distribution network in other clock regions, thereby reducing the power

consumption, and (2) different clock signals can be distributed in different clock regions to

further increase the programmability of FPGAs. While the clock region design can reduce

the clock skew as the scale of the clock distribution network is reduced (Figure 2.2), this

clock skew still needs to be considered when developing the virtualization support.

Multi-die Package. UltraScale FPGAs comprise multiple dies in a single package

to increase the capacity. To route the cross-die interconnections, (1) super long lines are

included between every two dies [140], and (2) CLBs at pre-defined locations close to the

13

FPGA Die

FPGA Die

Super Long Line

One Clock

Region High

Configurable

Logic Block

Laguna

Figure 2.3: A conceptual diagram illustrates the additional architectural features to support
the multi-die package. The routing fabric and hard IP blocks are not drawn for simplicity.

boundary of dies are replaced by the Laguna cells [141], as illustrated in Figure 2.3. This

leads to additional heterogeneity in the FPGA architecture, i.e., intra-die routing vs inter-

die routing and CLBs vs Laguna, which needs to be carefully handled when developing the

virtualization support.

2.2 FPGA Compilation Flow

FPGA compilation is a process that directly maps the data flow of applications onto the

physical hardware. As shown in Figure 2.4a, the FPGA compilation process can be divided

into two stages. The first stage is the front-end that comprises a high-level synthesis tool to

convert applications written in high-level programming languages into Verilog RTL code.

The second stage is the back-end that contains three steps to process the Verilog RTL

code. The first step contains a parser to synthesize the Verilog RTL code into different

levels of intermediate representation, including control data-flow graphs, data-flow graphs

and a netlist of primitives (e.g., logic gates and hard IP blocks). The second step is the

technology mapping that maps logic gates in the netlist into LUTs and flip-flops. The last

14

Application

TensorFlow,

OpenCL…

High-Level

Synthesis

Verilog

Parser

Primitives

Technology

Mapping

LUTs,

DFFs…

Physical

Mapping

Bitstreams

Front-end

Back-end

(a) (b)

Application

Control

Compute Storage

Allocated FPGA resources Allocated FPGA resources

Unused CLB

Used CLB

Unused BRAM

Used BRAM

Unused DSP

Used DSP

Routed

Interconnections

Figure 2.4: (a) A typical FPGA compilation flow that comprises a front-end and a back-
end. (b) A conceptual diagram to illustrate the tight coupling between compilation results
and resource allocation. Specifically, different spatial resource constraints of the allocated
FPGA resource lead to distinct compilation results.

step performs physical optimization, including clustering/packing, placement and routing.

This step is is NP-hard [135] with a high timing complexity and can take up to several

hours or even days, since it needs to place up to millions of primitives onto the physical

hardware and route numerous interconnections between them. As illustrated in Figure 2.4b,

the placement and routing are performed under specific spatial resource constraints, i.e.,

the layout of the reconfigurable resources, and different spatial resource constraints lead

to distinct mapping results. Thus, the compilation results are tightly coupled with the

allocated resource.

2.3 Partial Reconfiguration

Partial reconfiguration [64] is one key technology that enables an efficient FPGA-sharing

in the spatial domain. With this technology, a sub-region of one FPGA device can be de-

clared as a partial reconfigurable region. Then this sub-region can be reconfigured to run

15

different applications without affecting the applications running on the remaining part of

the same FPGA device. For Xilinx FPGAs, there are two constraints when creating mul-

tiple partial reconfigurable regions on one FPGA device. (1) These partial reconfigurable

regions cannot be overlapped with each other. (2) One column of reconfigurable resources

(e.g., CLB, DSP and BRAM) in one clock region cannot be split into multiple partial re-

configurable regions, as illustrated in Figure 2.5. The second constraint comes from the

organization of the underlying configuration memory in Xilinx FPGAs [143]. Specifically,

the configuration memory is organized into an array of configuration frames, which are the

smallest addressable segments and are one element (e.g., CLB, BRAM and DSP) wide by

one clock region high. The entire content in one configuration frame will be modified during

the partial reconfiguration process, thus, it cannot be included in multiple partial recon-

figurable regions. While Intel and Xilinx FPGAs have a similar underlying organization of

configuration memory, Intel FPGA provides an additional two-pass configuration method

(AND/OR mode) to allow the sharing of one column of reconfigurable resources among

multiple partial reconfigurable regions at the cost of increased configuration time and bit-

stream size [58]. Thus, Intel FPGAs do not have the second constraint when creating the

partial reconfigurable regions.

2.4 FPGA Integration

This section broadly discusses the integration methods of FPGAs (not limited to the

cloud environment). We focus on the integration methods that offload compute tasks to

FPGAs, while methods such as using FPGAs as the network switch for software-defined

network [144][146] are not included.

Tightly-attached: FPGAs can be tightly integrated with CPUs either in the same

package [29][56] or on the same board using a low-latency and cache-coherent interconnec-

tion (Figure 2.6a), such as Intel QuickPath Interconnect (QPI) [165][57][112]. Nevertheless,

such tight integration is not expected to be widely adopted in cloud, since it breaks the

homogeneity of computing modules and increases the complexity of design, deployment and

16

#1

#2

#3

FPGA

Clock

Region

Partial

Reconfigurable

Region

Figure 2.5: A conceptual diagram to illustrate the constraints when creating multiple partial
reconfigurable regions in Xilinx FPGAs. Specifically, the partial reconfigurable region #1
and #2 can co-exist on one FPGA device, while region #1 and #3 cannot be created on
the same FPGA device. The reconfigurable resources are not drawn for simplicity.

maintenance [130].

PCIe-attached: FPGAs can be implemented on a daughter-card and connected to the

host CPU through the high-speed point-to-point PCIe interconnection (Figure 2.6b). This

is a popular deployment option and has been used for other hardware accelerators such as

GPUs.

Network-attached: FPGAs can also be directly connected to the datacenter network

and communicate with CPU nodes through this network (Figure 2.6c). This reduces the

deployment and management complexity and has been used for deploying other hardware

accelerators such as Google TPU [47].

Existing commercial clouds typically adopt a hybrid method to integrate FPGAs. For

instance, Microsoft [40] and Amazon [4] attach one or multiple FPGAs to the host CPUs

using PCIe and deploy a secondary network for inter-FPGA communication (Figure 2.6d).

This is also the integration method targeted in this dissertation.

17

CPU

FPGA

Package

CPU

FPGA

Node

PCIe

CPUCPUCPU

FPGAFPGAFPGA

Network

CPU

Nodes

FPGA

Nodes

CPU

FPGA

Node

CPU

FPGA

Node

PCIe PCIe

N
et

w
o

rk

(a) (b) (c) (d)

Figure 2.6: Conceptual diagrams illustrate the popular integration methods for FPGAs,
which are (a) tightly integrated with CPU in the same package or on the same board, (b)
connected to CPU through PCIe, or (c) directly attached to the datacenter network. (d)
Commercial FPGA clouds [40][4] typically use a hybrid method, which is also the integration
method targeted in this dissertation.

2.5 Cloud Instance Characterization

Commercial cloud platforms allow users to request different cloud instances to account for

the varying demands on cost and performance. On-demand instances and spot instances

(or preemptible instances in Google cloud) are the two major types of instances in exist-

ing cloud [1][49]. The main difference is that on-demand instances cannot be interrupted

and have a higher priority for scheduling, while the spot instances can be interrupted by

the management system with a lower priority, thereby having a lower cost. These two

types of instances are also available for hardware accelerators such as GPU [3] and Google

TPU [48]. Although only on-demand instances are provided for FPGAs in existing com-

mercial clouds [2], we expect both instances will be available when cloud FPGA resources

are virtualized, following the same trend as in other hardware accelerators. Thus, both

instances will be considered when designing the runtime scheduling policy (Section 5).

18

Chapter 3

System Abstraction for Cloud FPGAs

This chapter presents the system abstraction developed for the heterogeneous FPGA clus-

ter that (1) serves as an intermediate layer between physical FPGAs and the compilation

framework (Chapter 4) to decouple the compilation and resource allocation, and (2) creates

a homogeneous resource pool for the runtime system to simplify the resource management

(Chapter 5). To better explore the design space, we first present the key design require-

ments identified from the compilation process, the runtime management and the FPGA

implementation (Section 3.1). Based on these design requirements, Section 3.2 describes a

two-level system abstraction that achieves both high flexibility and efficiency. While being

designed as application-independent to support PaaS model, this two-level system abstrac-

tion can also be extended to leverage application-specific information and support SaaS

model. Section 3.4 provides a case study that extends this two-level system abstraction to

support the application-specific ISA, a popular SaaS model for cloud FPGAs. Section 3.5

presents the evaluation results obtained from commercial FPGAs.

3.1 Design Requirements

We first identify two design requirements from the nature of the FPGA compilation process

and our design goals. Based on these two design requirements, the basic structure of the

system abstraction can be determined. With this basic structure, we further identify three

pairs of conflicting design requirements that are related to the tradeoff between flexibility

and efficiency.

19

In
terco

n
n

ectio
n

N
etw

o
rk

Application

Automatically

Partitioned

by Compiler

User

Logic

Virtual

Blocks

A certain amount of FPGA

resources organized in pre-defined

spatial resource constraints

CLB BRAM DSP

Figure 3.1: A conceptual diagram illustrated the basic structure of the system abstraction
and the mapping process.

The basic structure of the system abstraction for cloud FPGAs is drawn in Figure 3.1,

which is determined by two design requirements. The first design requirement comes from

the FPGA compilation process. As discussed in Section 2.2, the existing FPGA compi-

lation process has a high timing complexity. Thus, this compilation process needs to be

performed offline to map applications onto the system abstraction in the virtualized envi-

ronment. Moreover, since the FPGA compilation process (and the compilation process of

most spatial reconfigurable architectures) is performed under specific resource constraints,

the system abstraction needs to expose certain spatial resource constraints to the compi-

lation tools. Thus, we can only abstract FPGA resources into virtual blocks, where each

virtual block comprises a certain amount of FPGA resources that are organized in pre-

defined spatial resource constraints, as illustrated in Figure 3.1. This is consistent with the

design choice made in prior works, such as slot-based methods [21] and SCORE [35]. The

second design requirement comes from our design goal of maximizing the resource utiliza-

tion. To avoid the dilemma in determining the capacity of one virtual block, we require that

20

the compilation framework needs to be able to partition applications into multiple virtual

blocks, as illustrated in Figure 3.1. Thus, the capacity of virtual blocks can be reduced

to minimize the resource waste caused by internal fragmentation without increasing the

burden on users. To support this mapping strategy, the system abstraction is required to

contain an interconnection network to connect these virtual blocks (Figure 3.1).

With the basic structure drawn in Figure 3.1, we further identify three pairs of conflicting

design requirements that are related to the tradeoff between flexibility and efficiency:

(1) Homogeneous or Heterogeneous System Abstraction

A homogeneous system abstraction with identical virtual blocks can simplify the runtime

management and provides portability across different FPGA clusters (flexibility), while a

heterogeneous system abstraction with different types of virtual blocks that are specialized

to each type of FPGA can improve the resource utilization (efficiency), as illustrated in Fig-

ure 3.2. Specifically, different spatial resource constraints lead to distinct mapping results,

as illustrated in Figure 2.4b. While it is possible to configure one FPGA using the compi-

lation result generated from different spatial resource constraints, which has been explored

in prior works [11][89][59] to enable code portability across different types of FPGAs, this

strategy could incur a high resource waste due to the mismatch of the spatial resource con-

straints (requiring 40× ∼ 100× more FPGA resources), as reported in prior works [11][89].

Thus, it is preferred to provide multiple types of virtual blocks in the system abstraction,

one for each type of FPGA, to ensure the mapping quality. However, such a heterogeneous

system abstraction is coupled with the composition of the FPGA cluster, i.e., the system

abstraction needs to be modified when a new type of FPGA is added into the FPGA cluster.

Thus, it is hard to apply such a heterogeneous abstraction onto different FPGA clusters.

On the contrary, a homogeneous system abstraction can support different FPGA clusters

at the cost of low resource utilization.

(2) Asynchronous or Synchronous Interfaces

An asynchronous interface (or a latency-insensitive interface) for the communication

between virtual blocks enables a dynamic runtime deployment (flexibility), while a syn-

21

Heterogeneous FPGA Cluster Heterogeneous FPGA Cluster

System Abstraction with

Identical Virtual Blocks

Interconnection Network

Portable

System Abstraction with Specialized Virtual Blocks

Interconnection Network Interconnection Network

High Resource Utilization

FPGA

Type 1

FPGA

Type 2

FPGA

Type 3

Virtual block

specialized for

FPGA type 1

Virtual block

specialized for

FPGA type 2

Virtual block

specialized for

FPGA type 3

Generalized

virtual block

Figure 3.2: A conceptual diagram illustrates the conflicting requirements on the system ab-
straction. Specifically, a homogeneous system abstraction (top) provides portability across
different heterogeneous FPGA clusters, but has non-negligible resource waste due to the
mismatched spatial resource constraints. On the contrary, a heterogeneous abstraction with
specialized virtual blocks can achieve a high resource utilization at the cost of no portability.

22

OR

FPGA FPGAs

Dynamic runtime

deployment

Virtual Blocks

FPGA

Static runtime

deployment

Virtual Blocks

User

Logic

Asynchronous

Interface

Buffer

Buffer

C
o

n
tr

o

l L
o

g
ic

Synchronous

Interface

Figure 3.3: A conceptual diagram to illustrate the difference between an asynchronous inter-
face (top) and an synchronous interface (bottom). Specifically, the asynchronous interface
enables a dynamic runtime deployment at the cost of additional buffers and control logic.
On the contrary, the synchronous interface can be efficiently implemented but only support
a static deployment that is determined at offline compile time.

chronous interface improves the mapping quality (efficiency), as illustrated in Figure 3.3.

Specifically, as the asynchronous interface can hide the latency difference between on-chip

and off-chip interconnection networks, virtual blocks can be either deployed onto the same

FPGA device or different FPGA devices at runtime without incurring timing error. More-

over, by hiding the low-level latency, the asynchronous interface can also support different

inter-FPGA networks, no matter whether it has deterministic latency or not. Nevertheless,

since the on-chip interconnection network has a deterministic latency that can be resolved

at the offline compile time, a synchronous interface is sufficient for the on-chip communica-

tion, which requires less resources to implement compared with an asynchronous interface.

Moreover, a synchronous interface also exposes more low-level hardware details (i.e., the

maximum bandwidth provided by the interconnection network) to the compilation frame-

work to improve the mapping quality (Section 4.1).

(3) All-to-all Network or Direct Interconnections

Using an all-to-all interconnection network increases the flexibility of the partition pro-

cess when mapping applications into multiple virtual blocks (flexibility), while providing

direct interconnections between certain pairs of virtual blocks increases the resource uti-

lization by reducing the amount of system-reserved resources (efficiency). Specifically, an

23

all-to-all interconnection network can support applications with a large Rent’s exponent [76]

and provide better support for large-scale applications. On the contrary, only providing di-

rect interconnections between certain pairs of virtual blocks largely reduces the amount

of resources reserved for implementing the interconnection network, thereby increasing the

amount of resources available to users. It is also easier to isolate the inter-block communi-

cation of different applications (in terms of both performance and security) when using the

direct interconnection compared to using an all-to-all network.

3.2 Two-Level System Abstraction

This dissertation provides a new two-level system abstraction to decouple the aforemen-

tioned conflicting design requirements. Overall, the high-level abstraction provides a ho-

mogeneous view of the FPGA cluster to hide the heterogeneity across FPGAs, thereby

simplifying the runtime resource management and enables portability. On the contrary, the

low-level abstraction exposes the heterogeneous spatial resource constraints to the compi-

lation framework to ensure the compilation quality. Moreover, the high-level abstraction

provides an all-to-all network with an asynchronous interface to support large-scale appli-

cations and a flexible runtime deployment, while the low-level abstraction organizes virtual

blocks into a 1D array and adopts direct interconnections with a synchronous interface

between adjacent virtual blocks to maximize the utilization of the on-chip interconnection

network and minimize the amount of system-reserved resources.

The high-level abstraction is designed to be FPGA-agnostic to hide as many hardware

details as possible. As depicted in Figure 3.4a, the high-level abstraction comprises a pool

of high-level virtual blocks (HL virtual blocks) that are connected by an all-to-all network

through the asynchronous (latency-insensitive) interface. This interconnection design not

only enables a flexible runtime deployment and supports various inter-FPGA networks, but

also provides an efficient support for compiling large-scale applications that have a high

Rent’s exponent. To abstract away the heterogeneity across FPGAs, the capacity and

the spatial resource constraints of the HL virtual blocks can be arbitrarily chosen by the

24

compilation framework (Section 4.1.1). Consequently, one HL virtual block can be migrated

across different types of FPGAs at runtime. Each HL virtual block also contains interfaces

for peripherals to provide the necessary virtualization support.

The low-level abstraction is designed to be FPGA-specific and expose as much hardware

details as possible to the compilation framework. As illustrated in Figure 3.4b, it uses an ar-

ray of identical low-level virtual blocks (LL virtual blocks) to virtualize the resources of one

FPGA and comprises multiple arrays to support different types of FPGAs. The number of

LL virtual blocks in one array is arbitrarily chosen by the compilation framework, while the

number of LL virtual block arrays is equal to the number of FPGA types in the cluster. The

capacity and spatial resource constraints of one LL virtual block is tailored to a specific type

of FPGA, as explained in Section 3.2.1. To expose more details on the interconnection net-

work, the LL virtual blocks provide two inter-block communication interface (Figure 3.4b).

A latency-insensitive interface is provided to implement the latency-insensitive interface in

the high-level abstraction and a synchronous interface with a deterministic latency and a

pre-defined maximum bandwidth is provided for the communication between adjacent LL

virtual blocks in one array. By applying additional constraints on the virtual-to-physical

mapping (Section 3.2.2), the latency-insensitive interface in both high-level and low-level

abstraction is only used for the inter-FPGA communication, while the synchronous interface

in the low-level abstraction is only used for the intra-FPGA communication. This allows

the compilation framework to apply appropriate optimization goals for different intercon-

nections to improve the mapping quality, i.e., minimizing the required bandwidth for the

inter-FPGA communication to reduce the burden on the off-chip interconnection network,

while maximizing the utilization of the on-chip interconnection network (i.e., FPGA routing

fabric). The virtual-to-physical mapping strategy also constrains that one array of LL vir-

tual blocks is deployed into one FPGA device. This limits the scale of the LL virtual block

array, thereby using simple direct interconnections does not lead to a scalability concern.

25

High-Level

Abstraction

For FPGA Type 1

(a)

(b)

Latency-insensitive Interface Synchronous Interface

Interface to

Peripherals

High-Level Virtual Block

Latency-Insensitive Interface

Interface to Peripherals

High-Level Virtual Block

Latency-Insensitive Interface

Interface to Peripherals

All-to-all Network

Low-Level

Virtual

Block

Low-Level

Virtual

Block

DSP CLBBRAM

Low-Level

Virtual Block

Low-Level

Virtual Block

For FPGA Type 2

DSP CLBBRAM

Low-Level

Abstraction

Figure 3.4: A conceptual diagram illustrates the two-level system abstraction for a het-
erogeneous FPGA cluster. (a) The high-level abstraction comprises a pool of high-level
virtual blocks (HL virtual blocks) that are connected by an all-to-all network. An asyn-
chronous interface is provided for the inter-block communication. One HL virtual block has
no spatial resource constraint to hide the heterogeneity across FPGAs. (b) The low-level
abstraction comprises multiple arrays of low-level virtual blocks (LL virtual blocks), where
one array abstracts one type of FPGA. One LL virtual block contains a certain amount of
reconfigurable resources that are organized in pre-defined spatial resource constraints. A
synchronous interface is provided for the intra-array communication, while an asynchronous
interface is also provided to implement the asynchronous interface in the high-level abstrac-
tion.

26

3.2.1 FPGA Overlay

An FPGA overlay is created to support the proposed system abstraction. In this section,

we use Xilinx FPGAs as an example to illustrate this overlay, which can also be created for

Intel FPGAs using the same strategy. Specifically, one physical FPGA device is partitioned

into two regions to support the proposed abstraction, i.e., the Service Region and User

Region, as illustrated in Figure 3.5. The Service Region is reserved by the system

and is not exposed to users. It contains dedicated modules to realize the virtualization

support for the peripheral devices attached to the physical FPGAs, such as the on-board

DRAM (Figure 3.5). The User Region is further divided into a group of physical blocks.

The LL virtual blocks are deployed into these physical blocks at runtime. These physical

blocks are created to be identical, so that one LL virtual block can be relocated into an

arbitrary physical block at runtime without recompilation to minimize the compilation

cost. As illustrated in Figure 2.1, the existing FPGAs have a column-based architecture

comprising multiple columns where each column contains the same type of resources. Thus,

we can partition the User Region in the row direction to preserve the periodicity in the

architecture and create identical physical blocks (Figure 3.5). As discussed in Section 2.3,

we cannot create two physical blocks in one clock region due to the constraint from the

organization of the underlying configuration memories. Thus, the height of the physical

blocks should be equal to that of one or multiple clock regions to avoid resource waste.

This requirement also ensures that the clock skew is not changed when relocating LL virtual

blocks across physical blocks, since the routing of clock signals are not changed. Then the

height of the physical block is set to the minimal value, i.e., the height of one clock region, to

minimize the capacity of one physical block, thereby reducing the resource waste caused by

the internal fragmentation. The additional heterogeneity caused by the multi-die package

is handled by the virtual-to-physical mapping, as explained in Section 3.2.2.

27

FPGA

C
o
n

tr
o
ll

er

S
w

it
ch

Address

Translation

Address

Translation

Monitor

Monitor

Physical

Block

Physical

Block

Virtual

Address
Physical

Address

DRAM

Service

Region

Physical

Block

User Region

Figure 3.5: The physical FPGA is divided into Service Region and User Region to support
the two-level system abstraction. The virtualization support for on-board DRAM is drawn
as an example. Note that the actual layout of these regions is tailored to a specific type of
FPGA.

OfflineHigh-Level

Virtual Block

Low-Level

Virtual Block

Low-Level

Virtual Block

FPGA

Type 1

Low-Level

Virtual

Block

Low-Level

Virtual

Block

Runtime FPGA

Type 2

Latency-insensitive Interface Synchronous Interface Interface to Peripherals

Figure 3.6: A conceptual diagram illustrates the virtual-to-physical mapping, where one
HL virtual block is offline mapped into an array of LL virtual blocks and then deployed
into one FPGA of the corresponding type at runtime. Multiple mapping results are offline
generated for one HL virtual block so that it can be deployed into different types of FPGAs
at runtime.

28

3.2.2 Virtual-to-Physical Mapping

The virtual-to-physical mapping strategy is illustrated in Figure 3.6. Specifically, one HL

virtual block is offline mapped into an array of LL virtual blocks and then deployed into

one physical FPGA at runtime. To support a flexible runtime deployment, one HL virtual

block is offline mapped onto all feasible LL virtual block arrays. One LL virtual block array

is feasible if it provides all the resources required by the HL virtual block. Consequently,

one HL virtual block can have multiple mapping results, and the runtime system selects the

appropriate mapping result to deploy one HL virtual block into the corresponding type of

FPGA at runtime (Figure 3.6). In principle, multiple HL virtual blocks of one application

can be deployed onto the same FPGA device. In this case, the asynchronous latency-

insensitive interface in the high-level abstraction will be used for both on-chip and off-chip

communication, leading to an efficient utilization of the on-chip interconnection network.

Thus, we require that HL virtual blocks of one application cannot be deployed into the same

FPGA device. Thus, the asynchronous interface in both high-level and low-level abstraction

is only used for the inter-FPGA communication, while the synchronous interface in the low-

level abstraction is only used for intra-FPGA communication. This allows the compilation

framework to apply different optimization goals for these two types of interconnections,

as described in Section 4.1. Note that HL virtual blocks of different applications can be

deployed onto the same FPGA device to improve the resource utilization.

One and only one LL virtual block (contains both user logic and the latency-insensitive

interface) can be deployed into one physical block at runtime. In principle, we can deploy

multiple LL virtual blocks into one physical block to maximize the utilization of this phys-

ical block. This strategy is not adopted mainly due to two reasons. At first, this requires

an additional checking process at runtime to avoid potential resource conflicts. On the

one hand, this additional checking process inevitably increases the runtime management

complexity. On the other hand, it is also hard to perform such a checking process as user

applications are encrypted in most FPGA clouds (e.g., AWS F1 [5]). Moreover, deploying

multiple LL virtual blocks into one physical block also leads to security concerns, such as

29

side channel attack [107][161], as applications from different users are not physically iso-

lated. Thus, we choose to deploy at most one LL virtual block into one physical block to

simplify the runtime management and provide a strong isolation. An array of LL virtual

blocks is deployed into an array of physical blocks, where adjacent LL virtual blocks are

deployed into adjacent physical blocks, as illustrated in Figure 3.7. While this requirement

slightly reduces the runtime deployment flexibility, it brings two advantages. At first, it

guarantees that the inter-block timing keeps the same under different runtime deployments

especially when a synchronous interface is adopted for inter-block communication. More-

over, it simplifies the implementation of the interconnection network while still isolating the

inter-block communication of different applications.

In order to handle the additional heterogeneity caused by the multi-die package, the

low-level abstraction comprises multiple LL virtual block arrays for one type of FPGA to

account for the difference between intra-die and inter-die communication, as illustrated in

Figure 3.8a. One HL virtual block is mapped onto all these LL virtual block arrays to

support different runtime deployments. The number of required LL virtual block arrays is

equal to the number of physical blocks in one die. As vendors typically adopt small dies to

improve yield, the number of required LL virtual block arrays and the added compilation

cost is limited, e.g., 4 for XCVU37P FPGA. Moreover, one LL virtual block array could

be reused across a set of FPGAs to effectively amortize the compilation cost (Figure 3.8b).

This is because vendors reuse a large portion of one die design across a set of FPGAs1 to

minimize the design cost [139]. The major difference is the number of dies and the provided

I/O components (e.g., the high-speed transceivers), which does not change the low-level

abstraction.

3.2.3 Design Space Exploration

The aforementioned low-level abstraction only provides one type of LL virtual block for

one type of physical FPGA (if ignoring the heterogeneity caused by the multi-die package).

1For instance, VU31P, VU33P, VU35P, VU37P, VU45P, VU47P and VU57P from Xilinx have a similar
die design.

30

#1

#2

#3

#1

#2

Low-Level

Virtual Blocks

Physical Blocks

Application #1

OR

Application #2

#1

#2

#3

#1

#2

#1

#2

#1

#2

#3

Simple

inter-block

network

Physical Blocks

OR

#1

#2

#3

#1

#2

#1

#2

#1

#2

#3

Complex

inter-block

network

Unconstrained

Mapping

Strategy

Constrained

Mapping

Strategy

Unchanged

inter-block

timing

Varying

inter-block

timing

Figure 3.7: A conceptual diagram illustrates the benefits of the constrained mapping strat-
egy (right). Specifically, this strategy ensures that the inter-block timing does not change
under the dynamic runtime deployment. Moreover, this strategy also simplifies the inter-
connection network between physical blocks. On the contrary, the unconstrained mapping
strategy (left) has a varying inter-block timing under different runtime deployment. More-
over, a dedicated interconnection needs to be provided for each pair of physical blocks to
ensure that the inter-block connections are not shared between applications, leading to a
complex interconnection network.

31

Offline

High-Level

Virtual Block

LL

Virtual

Block

Runtime

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block
OR

Physical

FPGA

Die

Physical

Block

Deployed

LL virtual

block

Multiple LL virtual block arrays for the same type of FPGA

High-Level

Virtual Block

LL

Virtual

Block

LL

Virtual

Block

LL

Virtual

Block OR

FPGA Type 1 FPGA Type 2
Offline Runtime

Latency-

insensitive

Interface

Synchronous

Interface for

Intra-Die

Communication

Interface to

Peripherals

Synchronous

Interface for

Inter-Die

Communication

(a)

(b)

Figure 3.8: (a) Multiple LL virtual block arrays with different combination of the syn-
chronous interfaces are provided for one type of FPGA to account for the difference between
the inter-die and intra-die communication latency. (b) One LL virtual block array could be
shared among a set of FPGAs if these FPGAs reuses the same die design. This effectively
amortizes the compilation cost. The service region in physical FPGAs is not drawn for
simplicity.

32

FPGA

Physical

Block

User Region

Service

Region

FPGA

Physical

Block

User Region

Service

Region

Two types of LL

virtual blocks

Three types of LL

virtual blocks

Figure 3.9: A conceptual diagram illustrates that smaller physical blocks can be created if
multiple types of LL virtual blocks are provided for one type of physical FPGAs (ignoring
the heterogeneity caused by the multi-die package).

Then, the physical block needs to contain an entire row of FPGA resources, as described in

Section 3.2.1. The size of the physical blocks can be reduced by providing multiple types of

LL virtual blocks for one type of FPGA. This allows us to reduce the width of the physical

blocks, as illustrated in Figure 3.9. While reducing the resource waste caused by the internal

fragmentation, this increases the compilation overhead as one HL virtual block needs to be

mapped into all feasible LL virtual block arrays. To explore this tradeoff between resource

utilization and compilation overhead, we create a new low-level abstraction that provides

two types of LL virtual blocks for each type of FPGA (if ignoring the heterogeneity caused

by the multi-die package). Section 3.5.3 shows the FPGA implementation results, Section

4.4.1 presents the compilation cost of using such low-level abstraction, and Section 5.4.3

discusses the runtime performance.

3.3 Specialized to a Homogeneous Cluster

While the two-level system abstraction can be directly applied to a homogeneous FPGA

cluster by only providing one type of LL virtual blocks in the low-level abstraction (if ig-

noring the heterogeneity caused by the multi-die package), we further propose a specialized

abstraction for the homogeneous FPGA cluster with reduced compilation cost. Specifically,

we can merge the two-level system abstraction into a single-level one. As illustrated in Fig-

33

ure 3.10a, the LL virtual block with the pre-defined capacity and spatial resource constraints

is used in this abstraction. These virtual blocks are organized in a 1D array to simplify

the required interconnection network, while a latency-insensitive interface is applied for the

inter-block communication. By using the asynchronous interface, one compilation result

can support all possible runtime deployments (Figure 3.10b), thereby minimizing the com-

pilation overhead. Nevertheless, this single-level system abstraction has two limitations.

(1) It is hard to support large-scale applications that have a large Rent’s exponent, and

(2) the asynchronous interface leads to an inefficient utilization of the on-chip interconnec-

tions, which reduces the mapping quality. Thus, it is preferred to apply this single-level

system abstraction for small-scale applications that do not have restrictive requirements

on the mapping quality. We note that enabled by the programmability of FPGAs, the

two-level and single-level system abstraction can co-exist in a homogeneous FPGA cluster

(Figure 3.10c) to balance the tradeoff between compilation quality and compilation cost.

While using the latency-insensitive interface for inter-block communication reduces the

compilation cost, it also reduces the amount of resources exposed to users, since the im-

plementation of a latency-insensitive interface requires more FPGA resources than that of

a synchronous interface due to the additional data buffers and control logic. To reduce

the amount of resources reserved by the system, we eliminate the buffers for the on-chip

inter-block interconnection by leveraging the fact that the on-chip communication has a

deterministic latency that can be resolved at the offline compile time. Then the compila-

tion framework can generate the control logic that calculates the arrival time of input data

based on the specific communication latency and resumes the execution of user logic to

consume the input data when it arrives (Section 4.2). The implementation of the latency-

insensitive interface for the inter-FPGA communication still contains data buffers since the

inter-FPGA communication latency is non-deterministic.

With the above optimization technique, the latency-insensitive interface of one virtual

block has different implementations for intra-FPGA and inter-FPGA communication. If

the latency-insensitive interface is still combined with user logic and mapped into physi-

34

DSP CLBBRAM

DSP CLBBRAM

A 1D array of identical

virtual blocks

Application #1

Application #2

Application #3

One mapping

result support

various runtime

deployments

Latency-insensitive Interface

Interface to Peripherals

Virtual Blocks

#1

#2

#2

#3

Interconnection

OR

#1

#3

#2

#3

Interconnection

Managed by two-level

system abstraction

Managed by single-level

system abstraction

(a)

(b)

(c)

A homogeneous FPGA cluster

Figure 3.10: (a) A conceptual diagram illustrates the single-level system abstraction spe-
cialized for the homogeneous FPGA cluster, which comprises a 1D array of identical virtual
blocks. (b) This single-level system abstraction minimizes the compilation cost as one com-
pilation result can be used for different runtime deployments. Only physical blocks are
drawn for simplicity. (c) The single-level system abstraction and two-level system abstrac-
tion effectively complement each other. Although they require different FPGA overlays,
they can co-exist in a homogeneous FPGA cluster enabled by the FPGA’s programmabil-
ity.

35

cal blocks (the mapping strategy used in two-level system abstraction), then four mapping

results need to be generated for each virtual block, i.e., two latency-insensitive interfaces

in each virtual block (Figure 3.10a) and each interface has two possible implementations.

This increases the compilation cost by roughly 4×. To minimize the compilation cost, we

create an additional Communication Region to map the latency-insensitive interface, as

illustrated in Figure 3.11a. This region needs to be defined as partial reconfigurable re-

gions, as the implementation of the latency-insensitive interface varies for different virtual

blocks. Moreover, this region is preferred to be placed between physical blocks to min-

imize the interconnection delay and maximize the number of supported interconnections

(Figure 3.11a). Nevertheless, this substantially reduces the number of physical blocks pro-

vided by one FPGA device due to the constraints in creating partial reconfigurable regions

(Section 2.3), as illustrated in Figure 3.11b. To address this issue, we restrict that only

the physical blocks on the top and bottom can access the inter-FPGA network, while the

physical blocks in the middle can only have intra-FPGA communication, as illustrated in

Figure 3.11c. The communication region for implementing intra-FPGA communication in-

terface only needs to provide DFFs for timing isolation, and we can create such a region

for the worst case to support all virtual blocks. Then these communication regions can

be created as small static regions to minimize the resource waste, as illustrated in Fig-

ure 3.11c. The control logic for the intra-FPGA communication interface is merged into

the inter-FPGA communication interface, as described in Section 4.2.

3.4 Case Study: Extend to Support Application-Specific ISA

While being designed to be application-independent, this generic two-level system abstrac-

tion can be easily extended to leverage application-specific information and support SaaS

model. In this section, we use the application-specific ISA (AS ISA) [40] as a case study to

show this extendability.

As illustrated in Figure 3.12a, an additional abstraction layer is added on top of the two-

level system abstraction. This additional abstraction layer comprises a pool of soft blocks

36

S
er

v
ic

e
R

eg
io

n

To other

FPGAs

Communication Region

(For inter-FPGA communication)FPGA

Buffers

Transceiver

Control Logic

Physical

Block

Physical

Block

Communication

Region

User Logic

User Logic

Control

Logic
Buffers

Physical

Block

Physical

Block

Communication

Region

User Logic

User Logic

C
o

n
tr

o
l

L
o

g
ic

B
u

ffer
s

Inter-Block

Interconnection(a)

One Clock Region High

C
o

m
m

u
n

ica
tio

n

R
eg

io
n

s

(b)

FPGA

Communication Region

(For intra-FPGA communication)

(c)

P
h

y
si

ca
l

B
lo

ck
s

Figure 3.11: A Communication Region is included to implement the latency-insensitive
interface. (a) As the width of the physical block is larger than its height, placing the commu-
nication region between two physical blocks reduces the interconnection length and supports
more interconnections compared with placing the communication region on left/right side
of physical blocks. (b) The communication region needs to created as partial reconfig-
urable regions to support various latency-insensitive interface. This substantially reduces
the number of physical blocks provided by one FPGA due to the constraint in creating par-
tial reconfigurable regions. (c) Thus, we only create communication regions that support
inter-FPGA communications for the physical blocks on the top and bottom. The commu-
nication regions in the middle only support intra-FPGA communication and are created as
static regions. Note that the actual layout of these regions is tailored to a specific type of
FPGA.

37

Soft

Block

+

+

+

+

+

+

+

Pipeline Parallelism

Data Parallelism
+

+ + + + + +

+ An RTL module that implements an adder

High-Level Abstraction

Low-Level Abstraction

Top-Level Abstraction

Application-

Independent

Abstraction

Application-

Specific

Abstraction

Variable spatial

resource constraints

Variable spatial

resource constraints

Variable spatial

resource constraints

Child

Block

Child

Block

Data Parallelism

Parent Block

Child

Block

Child

Block

Parent Block

Pipeline Parallelism

Three-Level

Adder Tree

(a)

(b) (c)

A pool of

soft blocks

Latency-

Insensitive

Interface

Figure 3.12: (a) An application-specific abstraction layer can be added on top of the two-
level system abstraction to support application-specific ISA. This additional layer comprises
a pool of soft blocks. Same as the high-level virtual blocks, these soft blocks also have
variable spatial resource constraints to simplify the partition process. (b) The soft block
has a multi-level tree structure, where one soft block can have an arbitrary number of child
blocks that are connected either in the data parallelism or pipeline parallelism. (c) These
two primitive parallel patterns are sufficient to construct other complex patterns, such as
the adder tree.

38

and each soft block provides an asynchronous interface for the inter-block communication.

In comparison to the high-level and low-level abstraction that adopts a single-level structure,

this abstraction layer adopts a multi-level tree structure to represent the application-specific

parallel patterns extracted from AS ISA-based accelerators. Specifically, a leaf soft block

contains a basic module, where the basic module is defined as a Verilog module that does not

instantiate other Verilog modules. A non-leaf soft block can have an arbitrary number of soft

blocks as its child blocks, and these child blocks are connected by one of the two primitive

parallel patterns, i.e., the data parallelism and pipeline parallelism (Figure 3.12b). These

two parallel patterns are selected because they are sufficient to construct other complex

parallel patterns [105], e.g., the reduction pattern is drawn in Figure 3.12c. Similar to the

HL virtual block, the capacity and the spatial resource constraints of the soft blocks are

arbitrarily chosen to simplify the compilation process. The extracted parallel patterns are

then leveraged to simplify the process of partitioning applications into HL virtual blocks, as

illustrated in Figure 3.13. A more detailed partition process is described in Section 4.3.2.

#1 #2 #3

Soft

Block

Pipeline

Parallelism
#2 #3#1

High

Bandwidth

Requirement

Low

Bandwidth

Requirement

#1 #2

#3

High-Level

Virtual Block

High-Level

Virtual Block

#1 #2 #3

Data

Parallelism
#1 #2 #3

#1 #3

#2

High-Level

Virtual Block

High-Level

Virtual Block

Figure 3.13: A conceptual diagram to illustrate that the extracted parallel patterns are
leveraged to simplify the mapping from the additional abstraction layer to the high-level
abstraction layer.

39

3.5 Results

The proposed system abstraction is implemented on a custom-built FPGA cluster that

has three Xilinx Virtex UltraScale+ FPGAs (XCVU37P) and one Xilinx UltraScale FPGA

(XCKU115). These four FPGAs are attached to the host machine through PCIe, and a sec-

ondary bidirectional ring network is deployed to connect these FPGAs. Specifically, Xilinx

XCVU37P is a large and latest FPGA device fabricated in the 14/16nm technology node.

One FPGA board provides four 1 × 4 ganged 28Gb/s QSFP+ cages for 100Gb Ethernet

connection. Two DIMM sites are provided and each supports up to 128GB DDR4×72 with

ECC. XCKU115 is a relatively small and old FPGA device fabricated in the 20nm technol-

ogy node. One FPGA board provides two QSFP28 cages for 40Gb/s Ethernet connection.

It also provides 12GB DDR4 memory with ECC and 4GB DDR4 memory without ECC.

Vivado 2020.1 is applied to generate the mapping results of the FPGA overlay (Sec-

tion 3.2.1). Most results are directly obtained from Vivado, such as the capacity of one

physical block. A small benchmark is created to measure the inter-FPGA communication

bandwidth and delay. This benchmark comprises two building blocks that are mapped onto

two FPGAs. The building block A generates random data tokens that are sent to the build-

ing block B through the inter-FPGA network. The building block B then sends the data

token back to block A so that block A can measure the communication latency/bandwidth.

This strategy has also been used in prior works for measuring the performance of the inter-

FPGA interconnection [119].

3.5.1 Two-Level System Abstraction

The FPGA overlay implemented on the XCVU37P FPGA is shown in Figure 3.14, which

contains two regions as discussed in Section 3.2.1. The sub-regions indexed with S belong to

the Service Region, while the sub-regions indexed with U belong to the User Region.

Specifically, the user region is further partitioned into 10 physical blocks (U-0 to U-9).

The capacity of each physical blocks is reported in Table 3.1. Note that the a small portion

of reconfigurable results in the middle of the FPGA device is not included in the physical

40

U-0

U-1

U-2

U-3

U-4

U-5

U-6

U-7

U-8

U-9

S-0

S-0

S-1

S-1

S-2

S-3

S-4

U-0 U-9

Physical Block 0 -9

S-0

Service Region

User region

High-Speed

Transceiver

S-1

Multiplexers that shares

inter-FPGA connection

between physical blocks

S-2 DDR4 Controller

S-3 PCIe Controller

S-4

Multiplexers that shares

DRAM/PCIe Interface

between physical blocks

Die

Boundary

One

Clock

Region

High

Two

Clock

Region

High

Figure 3.14: The commercial FPGA XCVU37P from Xilinx is partitioned into regions to
support the two-level system abstraction. User Region that is indexed with U is exposed
to users, while the Service Region that is indexed with S is reserved by the system.
The circuits in the system-reserved regions are pre-implemented and cannot be modified by
users. The mapping results are obtained from Vivado 2020.1.

Table 3.1: Resources provided by one physical block and the maximum communication
bandwidth provided by the intra-die and inter-die interconnections.

LUTs DFFs BRAM DSPs Intra-die Inter-die

Two-Level VU37P 86.88K 173.76K 4.64 Mb 696 Native∓ Native

Abstraction KU115 58.08K 116.16K 6.75Mb 528 Native Native

Single-Level VU37P 83.52K 127.04K 4.64Mb 672 40K × f 13K × f

Abstraction KU115 51.36K 72.72K 5.91Mb 528 30K × f 8K × f

43.48K 87.36K 2.53Mb 336

Two-Level
VU37P

36.48K 72.96K 1.27Mb 312
Native Native

Abstraction†
KU115

24.96K 49.92K 2.95Mb 288
Native Native

21.60K 43.20K 2.95Mb 192

∓: Equal to the bandwidth provided by the underlying FPGA routing fabric.
†: Two-level system abstraction with two types of LL virtual blocks.
f : Operating frequency of users’ applications.

41

blocks. This is because the DDR4 controller (implemented in sub-region S-2) utilizes the

reconfigurable resources near the IO column in block U-9. Thus, in order to create identical

physical blocks, a small portion of reconfigurable resources near the central IO column is

excluded from all physical blocks. The DDR4 controller also utilizes the routing resources

in the physical block U-9. To avoid conflict on routing resources, one virtual block is first

mapped into the physical block U-9 and is then relocated into other physical blocks (e.g.,

U-5). By providing a synchronous interface for the communication between physical blocks,

the intra-die and inter-die communication latency/bandwidth provided by this overlay is

the same as that provided by the native FPGA routing fabric, thereby fully utilizing the

on-chip routing fabric. The Service Region contains the standard IP cores to share the

interface of DRAM, PCIe and multiplexing network. The sub-region S-0 implements the

IP core that utilizes the high-speed transceiver to provide the inter-FPGA communication

interface, which is shared between physical blocks by the multiplexers implemented in sub-

region S-1. The maximum bandwidth provided by this interface is 90Gb/s and the latency

is 52ns. A DDR4 controller is implemented in the sub-region S-2 and is shared between

physical blocks in a round-robin manner through the AXI Interconnect IP implemented in

the sub-region S-4. This sub-region S-4 also implements another AXI Interconnection IP

to share the PCIe module implemented in the sub-region S-3 among physical blocks in a

round-robin manner.

The FPGA overlay implemented on the XCKU115 FPGA is shown in Figure 3.15. Com-

pared with that of XCVU37P, the major difference is that the User Region on XCKU115

only provides 8 physical blocks. The capacity of each physical block is presented in Table

3.1. The maximum inter-FPGA communication bandwidth is 36Gb/s and the latency is

40ns. This communication latency is slightly lower than that in XCVU37P. This is because

the height of XCKU115 (in terms of clock regions) is smaller than that of XCVU37P, thus,

the multiplexing network in the sub-region S-1 needs less pipeline registers to propagate

the signals.

Due to the requirement of creating identical physical blocks, we found that a non-

42

S-0

S-2

U-0 U-7

Physical Block 0 -7

S-0

Service Region

User region

High-Speed

Transceiver

S-1

Multiplexers that shares

inter-FPGA connection

between physical blocks

S-2 DDR4 Controller

PCIe Controller

S-3

Multiplexers that shares

DRAM/PCIe Interface

between physical blocks

U-0

U-1

U-2

U-3

U-4

U-5

U-6

U-7

S-0

S-1

S-1

S-3
Die

Boundary

One

Clock

Region

High

Two

Clock

Region

High

Figure 3.15: The commercial FPGA XCKU115 from Xilinx is partitioned into regions to
support the two-level system abstraction. User Region that is indexed with U is exposed
to users, while the Service Region that is indexed with S is reserved by the system.
The circuits in the system-reserved regions are pre-implemented and cannot be modified by
users. The mapping results are obtained from Vivado 2020.1.

43

negligible amount of FPGA resources are wasted, mainly in the sub-region S-2. Specifically,

the DDR4 controller implemented in S-2 runs at a high internal frequency, thus, its logic

needs to be placed close to the IO column. This leads to the unused resources in the left part

of the sub-region S-2. Moreover, the multiplexer networks implemented in sub-region S-1

and S-4 only utilize the LUTs and DFFs, while the DSPs and BRAMs in these sub-regions

are totally wasted (∼ 10% of the total DSPs/BRAMs). This issue can be largely alleviated

if the logic implemented in Service Region is replaced by dedicated hard IP blocks, such

as hardened DDR4 controller. We expect this will be realized in future FPGAs as the

function provided by Service Region requires limited reconfigurability and a hardened

memory controller is already provided by some types of FPGAs.

3.5.2 Single-Level System Abstraction

The implementation of the single-level system abstraction on the XCVU37P FPGA is shown

in Figure 3.16. The major differences between the implementation of the single-level system

abstraction and that of the two-level one are: (1) One XCVU37P FPGA can only provide

8 physical blocks due to the additional communication region (C-0 and C-1). (2) The

physical blocks in the middle (U-1 to U-6) has no access to the inter-FPGA network, thus,

the sub-region S-1 only needs to implement pipeline registers to propagate signals to C-1

instead of the multiplexers in the implementation of the two-level abstraction. (3) Pipeline

registers are included for the inter-die communication (between U-2/U-6 and U-3/U-7) to

isolate the timing of the inter-die connection from the intra-block timing. (4) Partition pins

are created for every physical block to assist the local placement. 40K partition pins (half of

them are input pins) are created for each physical block for the intra-die interconnections.

These partition pins are evenly distributed on the boundary of physical blocks (Figure 3.10).

In addition, 13K partition pins (half of them are input pins) are created for the inter-die

interconnections. These partition pins are placed close to the LAGUNA cells to simplify

the creation of this overlay at the cost of an increased compilation time. These partition

pins determine the upper bound of the intra-FPGA communication bandwidth, as reported

in Table 3.1. The latency of both inter-die and intra-die communication is one clock cycle.

44

U-0

U-1

U-3

U-4

U-5

U-6

U-7

S-0

S-0

S-1

S-1

S-2

S-3

S-4

U-0 U-7

Physical Block 0 - 7

S-0

Service Region

User region

High-Speed

Transceiver

S-1
Pipeline

registers to C-1

S-2 DDR4 Controller

S-3 PCIe Controller

S-4

Multiplexers that shares

DRAM/PCIe Interface

between physical blocks

Die

Boundary

One

Clock

Region

High

Two

Clock

Region

High

C-0

C-1

C-0 C-1

Inter-FPGA communication

Communication region

U-2

Partition pins

Figure 3.16: The commercial FPGA XCVU37P from Xilinx is partitioned into three re-
gions to support the single-level system abstraction. User Region that is indexed with
U is exposed to users, while the Service Region that is indexed with S and the Com-
munication Region that is indexed with C are reserved by the system. The circuits in
the system-reserved regions are pre-implemented and cannot be modified by users. The
partition pins are only drawn for illustration purpose, which are not the actual position.
The mapping results are obtained from Vivado 2020.1.

(5) Additional reconfigurable regions are created on the left and right side of the physical

blocks for propagating the control signals of the asynchronous interface for the intra-FPGA

communication (explained in Figure 4.8). These reconfigurable regions are not drawn in the

figure due to their narrow width but are reflected in Table 3.1, which reduce the capacity

of the physical blocks.

The implementation on XCKU115 FPGA is shown in Figure 3.17. Only 6 physical blocks

are provided by one FPGA due to the additional communication region. 30K partition

pins (half of them are input pins) are created for each physical block for the intra-die

interconnections. Moreover, 8K partition pins (half of them are input pins) are created for

the inter-die interconnections. The number of partition pins is lower than that in XCVU37P

45

S-0

S-2

C-0

U-0

U-1

U-2

U-4

U-5

C-1

S-0

S-1

S-3
Die

Boundary

One

Clock

Region

High

Two

Clock

Region

High

U-3

U-0 U-5

Physical Block 0 - 5

S-0

Service Region

User region

High-Speed

Transceiver

S-1
Pipeline

registers to C-1

S-2 DDR4 Controller

PCIe Controller

S-3

Multiplexers that shares

DRAM/PCIe Interface

between physical blocks

C-0 C-1

Inter-FPGA communication

Communication region

Partition pins

Figure 3.17: The commercial FPGA XCKU115 from Xilinx is partitioned into three regions
to support the single-level system abstraction. User Region that is indexed with U is
exposed to users, while the Service Region that is indexed with S and the Communi-
cation Region that is indexed with C are reserved by the system. The circuits in the
system-reserved regions are pre-implemented and cannot be modified by users. The parti-
tion pins are only drawn for illustration purpose, which are not the actual position. The
mapping results are obtained from Vivado 2020.1.

FPGA because the size of the physical block is relatively smaller than that in XCVU37P (in

terms of the number of resource columns). The capacity of one physical block is reported

in Table 3.1.

3.5.3 Creating Multiple Types of Physical Blocks

For the two-level system abstraction, we provide another implementation that contains two

types of physical blocks on one FPGA device. For the XCVU37P FPGA, this implementa-

tion is shown in Figure 3.18. Compared to the implementation in Figure 3.14, one physical

block is further partitioned into two smaller physical blocks (e.g., U-0 is partitioned into

U-0L and U-0R). An additional sub-region S-5 (belongs to Service Region) is created

46

U-0L

U-1L

U-2L

U-3L

U-4L

U-5L

U-6L

U-7L

U-8L

U-9L

S-0

S-0

S-1

S-1

S-2

S-3

S-4

U-0L U-9R

Physical Block 0 -9

S-0

Service Region

User region

High-Speed

Transceiver

S-1

Multiplexers that shares

inter-FPGA connection

between physical blocks

S-2 DDR4 Controller

S-3 PCIe Controller

S-4

Multiplexers that shares

DRAM/PCIe Interface

between physical blocks

Die

Boundary

One

Clock

Region

High

Two

Clock

Region

High

U-0R

U-1R

U-2R

U-3R

U-4R

U-5R

U-6R

U-7R

U-8R

U-9R

S-5

S-5

Multiplexers that shares

DRAM/PCIe Interface and

inter-FPGA connection

between physical blocks

Figure 3.18: Two types of physical blocks are created on XCVU37P FPGA when imple-
menting the two-level system abstraction. An additional sub-region S-5 is created to share
the DDR4/PCIe interface and the inter-FPGA interconnection among these smaller physi-
cal blocks. The mapping results are obtained from Vivado 2020.1.

47

to (1) provide the access to the DDR4/PCIe interface for the physical blocks on the left

and (2) provide the access to the inter-FPGA interconnection for the physical blocks on

the right. Although the smaller physical blocks could reduce the resource waste caused

by the internal fragmentation issue. The additional region reduces the amount of FPGA

resources provided by one FPGA device, which is about 20% for the scarce BRAM re-

sources as reported in Table 3.1. Moreover, for the inter-FPGA communication, additional

bits need to be reserved in the packet for selecting the physical blocks. This reduces the

maximum inter-FPGA communication bandwidth to 84.4Gb/s. Thus, it is not obviously

that this implementation is better than the original one in Figure 3.14. Section 5.4.3 will

show that this implementation only achieves a negligible improvement in the aggregated

system throughput. This variant is also implemented on XCKU115 FPGA, as shown in

Figure 3.19.

3.5.4 Discussion

The total amount of FPGA resources exposed by these different system abstractions is

presented in Table 3.2. In the two-level system abstraction, the service regions occupy about

30% of the total FPGA resources. Nevertheless, the resource utilization of these service

regions is lower than 40%. Nevertheless, due to the constraint of creating identical physical

blocks, the unused FPGA resources in the service region cannot be allocated to create

additional physical blocks. One possible solution is providing hardened service regions.

For instance, if a hardened DDR4 controller is provided, then the FPGA resources in the

service region S-2 (occupy 15 ∼ 20% of the entire FPGA resources) can be used to create

additional physical blocks to increase the amount of resources exposed to users. In the

single-level system abstraction, additional communication regions (C-1 and C-2) further

reduce the amount of FPGA resources exposed to users. Similar to the service region, the

resource utilization in the communication region is also low (< 25%). However, due to

the constraint of partial reconfiguration (Section 2.3), the height of these communication

regions cannot be reduced, which leads to the waste of FPGA resources. One possible

solution is reducing the height of clock regions in the FPGA architecture to decrease the

48

S-0

S-2

U-0L

U-1L

U-2L

U-3L

U-4L

U-5L

U-6L

U-7L

S-0

S-1

S-1

Die

Boundary

One

Clock

Region

High

Two

Clock

Region

High

U-0R

U-1R

U-2R

U-3R

U-4R

U-5R

U-6R

U-7R

S-4 S-3

U-0L U-7R

Physical Block 0 -7

S-0

Service Region

User region

High-Speed

Transceiver

S-1

Multiplexers that shares

inter-FPGA connection

between physical blocks

S-2 DDR4 Controller

PCIe Controller

S-3

Multiplexers that shares

DRAM/PCIe Interface

between physical blocks

S-4

Multiplexers that shares

DRAM/PCIe Interface and

inter-FPGA connection

between physical blocks

Figure 3.19: Two types of physical blocks are created on XCKU115 FPGA when imple-
menting the two-level system abstraction. An additional sub-region S-4 is created to share
the DDR4/PCIe interface and the inter-FPGA interconnection among these smaller physi-
cal blocks. The mapping results are obtained from Vivado 2020.1.

49

Table 3.2: The amount of resources exposed to users.

LUTs DFFs BRAM DSPs

Two-Level VU37P 868.8K (66.6%) 1.74M (66.6%) 46.4Mb (65.4%) 6960 (77.1%)

Abstraction KU115 464.6K (70.0%) 929.3K (70.0%) 54.0Mb (71.1%) 4224 (76.5%)

Single-Level VU37P 668.2K (51.2%) 1.02M (40.0%) 37.1Mb (52.3%) 5376 (59.6%)

Abstraction KU115 308.2K (46.5%) 436.3K (32.9%) 35.5Mb (46.8%) 3168 (57.4%)

Two-Level VU37P 799.6K (61.3%) 1.60M (61.4%) 38.0Mb (53.6%) 6480 (71.8%)

Abstraction† KU115 372.5K (56.2%) 745.0K (56.2%) 47.2Mb (62.2%) 3840 (69.6%)

†: Two-level system abstraction with two types of LL virtual blocks.

size of the communication regions. In the two-level system abstraction that provides two

types of LL virtual block for one type of FPGA, the additional multiplexers for sharing the

peripheral interfaces slightly reduce the amount of resources exposed to users. We note that

the circuits for sharing peripheral interfaces do not require superior programmability. Thus,

it might be beneficial to harden these circuits to further increase the amount of resources

exposed to users.

50

Chapter 4

Compilation Framework

This chapter describes a new compilation framework that can map applications onto the

proposed system abstraction (Chapter 3). The key design principle is maximally reuse the

existing FPGA compilation tools to (1) minimize the engineering efforts of developing this

compilation framework and (2) ensure the compilation quality to minimize the virtualization

overhead. Custom tools are developed for the unique steps that are not supported by the

conventional FPGA compilation tools. The following sections first describe the compilation

framework developed for the two-level system abstraction and then extend this compilation

framework to support the single-level system abstraction specialized for the homogeneous

FPGA cluster as well as the three-level system abstraction for application-specific ISA. In

this chapter, FPGA compilation tool from Xilinx (Vivado) is used to build a compilation

framework for Xilinx FPGAs, while the same strategy can be applied to build a compilation

framework for Intel FPGAs.

4.1 Compilation Framework for Two-Level Abstraction

This compilation framework comprises six steps: synthesis, high-level partition, low-level

partition, local routing, relocation and global place&route, as illustrated in Figure 4.1. The

steps that use custom tools are highlighted. These custom tools are either developed from

scratch or by leveraging the APIs provided by RapidWright [77][78]. The remaining steps

reuse the proprietary FPGA tools (Vivado in our implementation) to achieve a compilation

quality comparable to the conventional FPGA compilation flow.

51

Applications

TensorFlow, OpenCL …

High-Level

Synthesis
Verilog RTL

Partition Latency-Insensitive

Interface Generation

High-Level Partition

Custom

Interface

DescriptionParser
Technology

Mapping

Floorplanning

Constraint File

Monolithic Placement
(Commercial FPGA Tool)

Low-Level

Partition

Design

Check Point

Placement Splitting
Local Routing

(Commercial FPGA Tool)

Design

Check

Point

Relocation

Design Check Point

Global Place&Route
(Commercial FPGA Tool)

Bitstream

Figure 4.1: The compilation framework for the two-level system abstraction. The steps
using custom tools are highlighted in blue.

Step 1: Synthesis. This step reuses existing high-level synthesis tools to convert

applications written in high-level programming languages into Verilog RTL code. Different

high-level synthesis tools can be integrated into this compilation framework (extendability)

as long as the synthesis tools output Verilog RTL code.

Step 2: High-Level Partition. The step has two sub-steps to map the input RTL code

onto the high-level abstraction. The first sub-step uses a custom tool to partition the RTL

code into a given number of HL virtual blocks with the optimization goal of minimizing

the inter-block communication cost (in terms of the number of inter-block connections).

As the capacity of one HL virtual block can be arbitrarily chosen, this partition step is

performed with no hardware constraint to simplify the partition process. This custom

tool builds the dataflow graph (DFG) of the input RTL and uses simulated annealing

algorithm [127] (or min-cut algorithm [115]) to partition one application. This partition

process is performed at the granularity of Verilog modules, i.e., one node in the built DFG

is a module. This effectively prunes the search space with a negligible degradation in the

partition quality since inter-module communication bandwidth is typically much lower than

the intra-module communication bandwidth. A recursive method is applied in this partition

process, as described in Section 4.1.1.

52

Latency-Insensitive Interface

Standard DRAM Interface

Data

Datapath

(2 cycles)

Valid

FIFO Write

Enable

To another HL

virtual block

FIFO
FIFO

Data

Adder

(1 cycle)

Full

Empty

NOR

Clock

Enable

Write

Enable

To another HL

virtual block

From another HL

virtual block

DFF

Figure 4.2: A conceptual diagram illustrates the latency-insensitive interface generated for
one HL virtual block.

The second sub-step uses a custom tool to generate the latency-insensitive interface

for each HL virtual block obtained from the partition process. Rather than transferring

the output signals of user logic in a cycle-by-cycle manner, the generated interface only

transfers the valid output data. This is achieved by leveraging the observation that most

FPGA applications use standard interfaces (e.g., AXI interface [75]) to fetch input data

from peripherals (e.g., DRAM) and these interfaces contain the data valid signal. This

custom tool then generates necessary logic to propagate this valid signal into the latency-

insensitive interface, so that the interface only buffers the valid output data, as illustrated

in Figure 4.2. Users can also provide a description of the custom interface used in the

application to leverage this optimization. If the modules in one HL virtual block does not

utilize such interfaces, then the generated latency-insensitive interface will transfer output

signals in a cycle-by-cycle manner to ensure the correctness. The output signals that share

the same valid signals are combined and buffered by the same FIFO to minimize the number

53

of required FIFOs and the overhead of control logic.

The latency-insensitive interface also needs to halt the execution of user logic when

the corresponding input FIFO is empty or the output FIFO is full. The key is to keep

the internal states of user logic unmodified when the execution is halted, such as the on-

chip memory, result registers in an accumulator and the state registers in FSMs. The

custom tool identifies the logic primitives that store the internal states, e.g., DFFs within a

feedback loop, and generates the control signal to their clock enable port2, as illustrated in

Figure 4.2. When execution is halted, the states of these elements are not modified because

of the disabled clock. The custom tool also generates control signals to the write enable

port of on-chip memories to guarantee that the content of these memories is not modified.

Step 3: Low-Level Partition. This step has three sub-steps to place the user logic and

the latency-insensitive interface in one HL virtual block into an array of LL virtual blocks.

Instead of first partitioning one HL virtual block and then placing each partition into one

LL virtual block, we choose to reuse the commercial place&route tool to monolithically

place one HL virtual block onto a given region on the physical FPGA and then split the

placement result to generate the placement of each LL virtual block. The synchronous

interface between LL virtual blocks enables this flow. The size of the pre-defined region is

determined by the amount of resource required by the user logic in one HL virtual block.

This flow has three benefits compared to the alternative flow: (1) the placement of all

LL virtual blocks are jointly optimized in the monolithic mapping process, (2) the highly-

optimized commercial FPGA place&route tool ensures the quality of the placement result,

and (3) this flow can better utilize the direct interconnections between adjacent physical

blocks. The placement process of all possible regions can be fully parallelized to minimize

the compilation time (Figure 4.3). Moreover, since the monolithic placement process is the

same as the placement process in the conventional FPGA compilation flow, the techniques

proposed in prior works [51][136][138] that improve the placement quality and reduce the

compilation time could also be applied onto this step.

2This process is performed at the netlist level in the actual implementation, but it is drawn as performed
before technology mapping in Figure 4.1 for simplicity.

54

User

Logic

Asynchronous

Interface

High-Level

Virtual Block

Physical FPGA

Floorplanning based

on resource usage

An allocated

region for

monolithic

placement

Parallel

Out-of-context

Placement

Physical FPGA

Physical FPGA Physical FPGA

Physical FPGA Physical FPGA Physical FPGA

Split Placement

Placed

Low-Level

Virtual Block

Physical FPGA Physical FPGA Physical FPGA

Relocation

Physical FPGA Physical FPGA

Physical FPGA Physical FPGA

Figure 4.3: A conceptual diagram illustrates the process of mapping one high-level virtual
block onto physical FPGAs. The local routing step is not drawn in the figure for simplicity.

55

The first sub-step uses a custom tool to estimate the number of LL virtual blocks required

by one HL virtual block. It then generates the Vivado constraint file to specify a region on

the physical FPGA that comprises the given number of LL virtual blocks, as illustrated in

Figure 4.3. The commercial FPGA place&route tool is used to map the input HL virtual

block into the defined region using the out-of-context flow [142]. The third sub-step then

uses a custom tool that utilizes the APIs provided by RapidWright to split the monolithic

placement result. The key APIs used in this custom tool are (1) Cell.getSite().getName()

to obtain the placement result of one primitive and determine which LL virtual block it

belongs to, and (2) Design.createAndPlaceCell() to create and place one logic primitive

into the corresponding LL virtual block. This step also generates the partition pins for

the wires that are passing through blocks based on the placement results obtained from

the Monolithic Placement step. This process has a low timing complexity as it only needs

to read the placement result of each logic primitive (e.g., LUT6) and assign it into the

corresponding LL virtual block. Compared with the monolithic placement process, the

runtime of this step is negligible.

Step 4: Local Routing. This step reuses the commercial FPGA place&route tool

to perform the local routing for each LL virtual block. The local routing of all LL virtual

blocks can be performed in parallel to reduce the compilation time.

Step 5: Relocation. This step uses a custom tool that leverages the APIs provided

by RapidWright to relocate one mapped LL virtual block into other feasible physical blocks

without recompilation (Figure 4.3). The key APIs used in this custom tool are (1) Mod-

ule.setAnchor() to generate relative placement and routing for the given anchor (a logic

primitive such as BRAM), and (2) Module.place() to generate a new placement and routing

result for a given new anchor.

Step 6: Global Place&Route. This step reuses the commercial FPGA tools to

integrate the individually mapped components into a complete design and generate the

partial reconfigurable bitstreams to support dynamic runtime management. This process

is not supported by the Vivado GUI and we develop a Tcl script to automate it.

56

K Pairs

Application

User

Logic

High-Level

Virtual Block

N Iterations

Can be used to

deploy this

application into

two FPGAs

Can be used to deploy this application into three FPGAs

Figure 4.4: One application is recursively partitioned into multiple HL virtual blocks.

4.1.1 Recursive Partition Process

We adopt a recursive partition method to map one application into HL virtual blocks. As

illustrated in Figure 4.4, one application is first mapped into a single HL virtual block,

which is then partitioned into two HL virtual blocks. This process is recursively performed

N times and totally generates 2N+1 − 1 HL virtual blocks. All these HL virtual blocks are

mapped onto LL virtual blocks using the flow illustrated in Figure 4.3 to support various

runtime deployments, such as deploying the application into a single FPGA or up to 2N

FPGAs, as illustrated in Figure 4.4. Each round can generate K different partition results

to further increase the runtime deployment flexibility. Overall, the number of HL virtual

blocks generated by this step is

#Blocks = 1 +K
N∑
i=1

2i = 2K(2N − 1) + 1 = O(K2N)

We need to judiciously determine the value of parameter N and K to balance the

57

K=1 One mapping result

with two HL virtual blocks

K=2 Two mapping results,

each has two HL virtual blocks

OR

Physical Block

occupied by other

applications

Interconnection Interconnection Interconnection

Resource AvailabilityHigh Low

Same runtime

performance

(both can be deployed)

Same runtime

performance

(Neither can be deployed)

K=2 is better

Figure 4.5: A conceptual diagram to illustrate that improvingK only leads to non-negligible
runtime performance improvement in limited scenarios.

compilation cost and the runtime deployment flexibility. For a specific application, it is

obviously that a larger K leads to better runtime performance. Nevertheless, this is not the

case when considering the entire system. Specifically, when the system has abundant FPGA

resources, then the runtime system can find an appropriate resource allocation to deploy one

application in most cases, even if this application only has one mapping result (K = 1), as

illustrated in Figure 4.5. On the contrary, when the system has a low resource availability

(high resource contention), no matter how many mapping results are generated for one

application, the runtime system might not be able to find a feasible resource allocation due

to the low resource availability, as illustrated in Figure 4.5. Thus, improving K might only

lead to a non-negligible runtime performance improvement in limited scenarios (Figure 4.5).

Based on this analysis, we choose K = 1 in our compilation framework. For the parameter

N , the mapping result that can deploy one application into multiple FPGAs (N ≥ 1) is

needed to alleviate the resource fragmentation caused by the boundary of physical FPGAs.

Moreover, the value of parameter N is also related to the size of the application, where

58

Applications

TensorFlow, OpenCL …

High-Level

Synthesis

Netlist
Partition

Latency-Insensitive

Interface Generation

Parser
Technology

Mapping

Local

Place&Route
(Commercial

FPGA Tool)

Relocation

Global Place&Route
(Commercial FPGA Tool)

Bitstream

Netlist

Netlist

Design

Check

Point

Design

Check

Point

Figure 4.6: The compilation framework for the single-level system abstraction. The steps
using custom tools are highlighted in blue.

a large application needs a large N to generate HL virtual blocks that are small enough.

Based on our design space exploration (Section 5.4.1), for applications that can fit into one

FPGA device (the majority of existing FPGA applications), N = 1 is sufficient to achieve a

high aggregated system performance. Thus, we choose N = 1 and K = 1 in our compilation

framework.

4.2 Compilation Framework for Single-Level Abstraction

The compilation framework developed for the single-level system abstraction is drawn in

Figure 4.6. Compared with the one for the two-level system abstraction (Figure 4.1), this

compilation framework merges the two partition steps (high-level and low-level partition)

into one step to map applications into virtual blocks. As the virtual blocks in the single-level

system abstraction have fixed capacity and resource constraints, the goal of this partition

step is minimizing the number of inter-block connections under the given resource con-

straints. Thus, we choose to perform this partition step at the netlist level, as this level

provides an accurate estimation on the low-level resource usages (e.g., number of LUTs and

BRAMs), which is difficult to be obtained in the level of control data-flow graphs and the

level of data-flow graphs. Simulated annealing algorithm is applied for this partition step.

This partition step also needs to optimize the location of partition pins to ensure the

59

p1 p2

p3 p4 p5 p5p4 p3

p2 p1

OR

p1 p2 p3 p4

p5 p6 p7 p8 p9

p1 p2p3 p4

p5 p6p7 p8 p9

OR

Monolithic Placement for Two-Level Abstraction

Local Placement for Single-Level Abstraction

Partition pin Logic Primitive
Routed

Interconnection

Iteration 1

Iteration 2

Iteration 3

(a) (b)

Logic Primitive InterconnectionPartition pin

Figure 4.7: (a) A conceptual diagram to illustrate the the quality of the local placement
step for single-level system abstraction is more sensitive to the position of partition pins
compared with that of the monolithic placement step in two-level system abstraction. This
mainly because the local placement step has a smaller placement region (one physical block)
and more partition pins. (b) An iterative partition method is applied to obtain a fine-grained
partition results when mapping user logic into virtual blocks. The fine-grained partition
results are leveraged to determine the position of partition pins. In the drawn example,
the partition result obtained from the third iteration is used to determine the position of
partition pins.

60

quality of the local placement. Partition pins are used as virtual IO pins in the out-

of-context flow [142] to guide the placement process (Figure 4.7a). Compared with the

monolithic placement step in Figure 4.1, the local place&route step in this compilation

framework has a smaller placement region and more partition pins. Thus, the quality of the

local placement result is more sensitive to the location of the partition pins compared to that

of the monolithic placement step, as illustrated in Figure 4.7a. In order to ensure the quality

of the local placement, an iterative partition process is applied to optimize the position of

partition pins, as illustrated in Figure 4.7b. This partition tool places logic primitives into

given blocks with the goal of minimizing the total wire length and then a partition result

is generated based on the placement result. More specifically, user logic is partitioned into

virtual blocks in the first iteration. Then one virtual block is partitioned into two sub-blocks

and the user logic partitioned into this virtual block in the first iteration is partitioned into

these two sub-blocks. In the following iterations, one sub-block is further partitioned into

two sub-blocks and the user logic partitioned into this sub-block in the previous iteration

is partitioned into the newly generated sub-blocks. This fine-grained partition result is

then used to determine the location of partition pins. We use a parameter n to control

the number of iterations, and a large n leads to better placement of partition pins. In

Section 4.4.2, a design space exploration is performed to determine the value of n.

The latency-insensitive interface generation step is slightly different from that described

in Section 4.1, mainly because of the different implementations of the intra-FPGA com-

munication interface. The implementation of the intra-FPGA communication interface is

illustrated in Figure 4.8. Specifically, when the inter-FPGA connection is generated for

one specific inter-block communication interface, then the implementation of the remain-

ing communication interfaces (inter-FPGA or intra-FPGA) are all determined (Figure 4.8),

since only two physical blocks in one FPGA device provide the access to the inter-FPGA

network. Thus, the control logic for the intra-FPGA communication interface can be in-

cluded in the implementation of the inter-FPGA communication interface, and additional

paths are generated to propagate the control signals (Figure 4.8). With this method, the

61

Virtual Block #0

Virtual Block #1

Virtual Block #2

Virtual Block #3

Virtual Block #N

Virtual Block #(N+1)

Virtual Block #0
Implementation for inter-FPGA connection

Input

Buffers

Control Logic for

block #1 to #N

Implementation for inter-FPGA connection

Output

Buffers

Path for propagating control

signals and output buffer’s status
Implementation for intra-FPGA communication

Figure 4.8: When the inter-FPGA connection is implemented for one interface, then the
implementation of the remaining interfaces are all determined based on the number of
physical blocks provided by one FPGA. In the drawn example, one FPGA provides N
physical blocks. Then the control logic for the intermediate blocks can be merged and
implemented in the inter-FPGA connection. This figure only draws the implementation for
one dataflow (from top to bottom) for simplicity.

communication region for intra-FPGA communication does not need to reserve resources

for control logic, which minimizes the amount of resources reserved by the system.

4.3 Compilation Framework for Application-Specific ISA

Two additional steps are developed for the three-level system abstraction (Figure 3.12), i.e.,

a decomposing step to map applications onto the top-level abstraction layer that comprises

a pool of soft blocks (added before the partition step in Figure 4.1), and a partition step

to map applications from the top-level abstraction layer to the high-level abstraction layer

(replace the partition step in Figure 4.1).

4.3.1 Decomposing Step

A given AS ISA-based accelerator is decomposed onto the top-level abstraction layer by

extracting all fine-grained parallel patterns (data parallelism or pipeline parallelism). This

62

decomposing step is performed at the RTL level, as this allows us to provide an extendable

framework to support various high-level programming languages/frameworks [102][92][24][30]

[26][131]. To decompose a monolithic AS ISA-based accelerator, we first split the control

and data path at the top level of the design and map them into two separate soft blocks

(Figure 4.9a). This is feasible since AS ISA-based accelerators are FPGA-based soft pro-

cessors with well-separated control and data path. Explicitly separating the control and

data path enables the optimization technique used for improving the runtime performance

(Section 4.3.2). We then recursively decompose the soft block that contains the data path

while keeping the soft block with control path unchanged. The soft block with the data

path can be decomposed either in a top-down flow or a bottom-up flow. In the top-down

flow, one soft block is decomposed into multiple child blocks based on one of the two primi-

tive parallel patterns (Figure 4.9b). This decomposing process is recursively applied on the

newly generated soft block until it contains a basic module (a Verilog module that does not

instantiate other Verilog modules). Alternatively, in the bottom-up flow, we first extract

all basic modules contained in the data path and assign each of them into a leaf soft block

(Figure 4.9c). We then identify a cluster of soft blocks that are connected in one of the two

primitive patterns and create a parent soft block for them. This cluster is then replaced by

the created soft block and this process is recursively performed until there is no soft block

that can be clustered.

While experienced system designs might be able to manually decompose small AS ISA-

based accelerators based on the aforementioned process by directly examining the source

code, this decomposing process may become more difficult and time-consuming for large

and complicated accelerators. Therefore, we develop a software tool to automate this de-

composing process using the bottom-up flow due to the ease of implementation. Also, as

it is hard to automatically identify the control path from the RTL source code, we need

system designer’s assistance to mark the control path by providing the corresponding RTL

module name to the automation tool. We expect the required effort is relatively trivial

as these modules can be easily identified at the top level. For HLS-generated RTL code

63

AS ISA-based

accelerator
Control

Path

Data

Path
Separate control

and data path

Latency-

insensitive

Interface

Decompose

data path
Data Path

Decompose

generated

child blocks

Data Path

Create parent

block

RTL Design Soft Block

(a)

(c)

Child blocks connected

in data parallelism

Child blocks connected

in pipeline parallelism

Soft Block Soft Block

Data

Path

Soft Block

(b)

Data

Path

Soft Block

Create leaf

blocks

Figure 4.9: A conceptual diagram illustrates the decomposing flow, where (a) the control
and data path in one AS ISA-based accelerator design is first separated into two soft blocks,
and the soft block that contains data path can be decomposed either in (b) a top-down flow
or (c) a bottom-up flow.

64

that might not be human-readable, this marking process can be performed at the level of

HLS code. Specifically, system designers separate the HLS code for control and data path

and synthesize them separately to obtain the RTL module name for control path. The

decomposing tool has following five steps:

1. Build block graph: This step parses the input RTL design to extract all basic

modules and then identifies the basic modules that belong to the data path. Each of these

basic modules are assigned into one soft block. The inter-block connection is built based

on the interconnection between the corresponding basic modules.

2. Extract Intra-Block Data Parallelism: This step is applied to extract the fine-

grained data parallelism inside a soft block. The data parallelism can be identified by

performing the equivalence checking on the logic within a soft block [45][93][126]. A group

of child blocks will be created for one soft block if it has data parallelism (Figure 4.10a).

3. Identify Inter-Block Data Parallelism: This step checks whether two input

blocks of one soft block have data parallelism (Figure 4.10b). Three cases are considered:

1) the two input blocks are identical, then a parent block will be created for these two soft

blocks, 2) one input block has child blocks connected in data parallelism and the other

input block is the same as the child block, then these soft blocks will be grouped into a

single sub-tree, and 3) both input blocks have child blocks connected in data parallelism

and these child blocks are identical, then these child blocks will be grouped into a single

sub-tree. This step iterates through all soft blocks and terminates when no such pattern is

identified.

4. Identify Pipeline Parallelism: The step checks whether the child blocks of two

soft blocks are connected in pipeline parallelism. Specifically, if these two blocks both have

child blocks that are connected in data parallelism and the number of child blocks are the

same, then these child blocks will be grouped into a two-level sub-tree, where the top level

is data parallelism and the bottom level is pipeline parallelism (Figure 4.10c). This step

also iterates through all soft blocks and terminates when no such pattern is identified.

5. Iteration: Step 3 and 4 are repeated to identify all parallel patterns and terminate

65

𝒂 + 𝒃

Extract Data

parallelism

𝒂 + 𝒃

𝒂𝟎 + 𝒃𝟎 𝒂𝒏 + 𝒃𝒏

Block Graph

#1

Block Tree

#2#1 #2#1

#3

Soft block #1 and #2 are identical

#1

#2

Soft block #1, #2 and #3 are identical

#2#1 #3 #2#1 #3

Soft block #1, #2, #3 and #4 are identical

#2#1

#1

#2

#3

#4

Soft block #1 and #2 are identical

Soft block #3 and #4 are identical

(a)

(b)

(c)

RTL Design Soft Block Child blocks connected

in data parallelism

Child blocks connected

in pipeline parallelism

#2

#1

#2

#1

#2

#3

#1

#2

#3

#4

#1

#2

#3

#4

#3 #4 #2 #3 #4#1

#1

#2

#3

#4

#2#1 #3 #4 #3 #2 #4#1

Figure 4.10: Conceptual diagrams illustrate (a) the step of extracting the data parallelism
within a leaf soft block, (b) the step of identifying inter-block data parallelism, and (c) the
step of identifying pipeline parallelism.

66

when no soft block can be merged.

4.3.2 Partition Step

Similar to the partition step in the compilation framework for the two-level system abstrac-

tion (Figure 4.1), this partition step also uses a recursive partition process. Specifically, the

top-level soft block is mapped into one HL virtual block and is then partitioned into two HL

virtual blocks. The newly generated HL virtual blocks are recursively partitioned. Different

from the partition step in the compilation framework for the two-level system abstraction,

the extracted parallel patterns are leveraged to simplify this partition step. Specifically,

if the child blocks of the soft block mapped to one HL virtual block are connected in the

pipeline parallelism, the tool will examine all inter-block connections and identify the one

with the minimal communication bandwidth to divide these child blocks into two clusters.

Alternatively, if the child blocks are connected in the data parallelism, these child blocks

will be evenly grouped into two clusters. Two parent soft blocks are then created for these

two clusters, which are mapped into two HL virtual blocks. This recursive partition process

is also controlled by the parameter N and K. As discussed in Section 4.1.1, we choose

N = 1 and K = 1 for this process.

Partition Data Path Only. The above recursive partition method is a generic solution

that partitions the entire accelerator into multiple HL virtual blocks, which will be deployed

into multiple FPGAs at runtime. Nevertheless, the limited inter-FPGA communication

bandwidth and the long communication latency might degrade the performance. Leveraging

the decomposing results, we propose a technique that only partitions the data path to

effectively overlap the inter-FPGA communication and computation. This technique is

applied to the AS ISA-based accelerators that have data parallelism in the root soft block

of the data path. We expect this is a common case for AS ISA-based accelerators as most of

them implement data processors to fully exploit the abundant spatial parallelism in FPGAs.

Instead of partitioning an AS ISA-based accelerator into multiple HL virtual blocks,

we propose to scale down one accelerator into multiple smaller accelerators and map these

accelerators into HL virtual blocks. As illustrated in Figure 4.11a, scaling down one accel-

67

Control Path

Buffer

Result

Vector
𝑽𝟎 𝑽𝟏 𝑽𝟐 𝑽𝟑

0

Synchronization Module

S
IM

D
 U

n
it

𝟎 𝑽𝟏 𝑽𝟐 𝑽𝟑

Control Path

Buffer

Result

Vector

S
IM

D
 U

n
it

0

Synchronization Module

Control Path

Buffer

0 0

Inter-FPGA

connection

(a) (b)

Write

Request

Comparator
Addr

To

DRAM

To other

FPGA

FIFO
From

other

FPGA

Data

Read

Request
Comparator

Addr

Response

from

DRAM

Valid

Empty
Data

Index

Register

Read

Response

S
IM

D
 U

n
it

S
IM

D
 U

n
it

S
IM

D
 U

n
it

S
IM

D
 U

n
it

S
IM

D
 U

n
it

S
IM

D
 U

n
it

S
IM

D
 U

n
it

𝑽𝟎
Result

Vector
𝟎 𝟎 𝟎

Figure 4.11: (a) A conceptual diagram illustrates the technique of scaling down one AS
ISA-based accelerator. Specifically, one AS ISA-based accelerator is split into two smaller
one. Each one has a complete control path and only computes part of the computation
results. We provide a template module for inter-FPGA synchronization (highlighted in
blue). (b) The key building blocks of this synchronization module are drawn in the figure.

68

erator is realized by (1) duplicating the accelerator design and (2) reducing the number of

SIMD units to obtain a smaller accelerator design, which only generates part of the compu-

tation results. As the control path (e.g., instruction decoder) is not modified, the original

software programs can still run on these small accelerators. The partial computation results

generated by these smaller accelerators needs to be combined and the execution of these

accelerators need to be synchronized. We provide a parameterized template module and

reuse the instructions for reading/writing on-board DRAM to perform inter-FPGA com-

munication for result combination and synchronization. As illustrated in Figure 4.11b, this

template module monitors the DRAM interface for reading/writing data. If a data entry

is written into a pre-defined address (e.g., an out-of-range address), then this module will

send this data entry to the corresponding accelerator through the inter-FPGA network. If

the accelerator reads a pre-defined address, this module will send a response to the acceler-

ator only when it receives data from another accelerator to realize a barrier synchronization

(assuming the accelerator implements an in-order processor). This module sets a flag when

identifying this special read request. When this flag is set, this module will combine the

received data entry and the data entry read from the DRAM based on the index register

for the next read request (Figure 4.11b). This module invalidates these special read/write

requests to ensure functional correctness. The parameters of this template module (e.g.,

buffer width, the value of pre-defined address and the content in the index register) are

configured during the offline compilation time. A custom tool is developed for a specific

AS ISA to automatically insert the corresponding DRAM read/write instructions for a

given software program. We also provide another custom tool for a specific AS ISA to

perform instruction reordering under the dependency constraint to maximally overlap the

communication and computation.

4.4 Results

The developed compilation framework is evaluated using the widely used Rosetta bench-

mark suite [164][137]. These benchmarks are highly optimized HLS-based FPGA designs

69

Kernel Kernel Kernel Kernel

AXI Interconnect IP (from Vivado)

AXI Interconnect IP

(from Vivado)

AXI Interconnect IP

(from Vivado)

Pipeline

Registers

Pipeline

Registers

Pipeline

Registers

Pipeline

Registers

Parameter NUM_KERNEL

A partition

boundary with low

interconnection

bandwidth

AXI Interconnection

Top-Level Ports

Figure 4.12: A conceptual diagram illustrates the template architecture used for generating
different variants of accelerator designs. A multi-level distribution network and pipeline
registers are included for better timing.

from machine learning and image/video processing domains. To better account for the

varying performance and cost demands in the dynamic cloud environment, we create a

template architecture to scale up one given kernel so that it can process multiple tasks in

parallel, as illustrated in Figure 4.12. This organization is used to evaluate the quality of

the partition tool developed for both two-level and single-level system abstraction. Specifi-

cally, an application with this organization can be partitioned into multiple parts that has

a low bandwidth requirement for the cross-boundary communication (Figure 4.12). Thus,

this synthetic organization can be utilized to show whether the developed partition tool can

find this boundary and generate high-quality partition results when the input applications

contain such boundaries. Using this template architecture, three variants of accelerator

designs (small, medium and large) are created for each benchmark. The characteristics of

these accelerator designs are reported in Table 4.1.

4.4.1 Compilation Time

The runtime breakdown of the three compilation flows, i.e., the baseline conventional com-

pilation flow, the compilation flow for the two-level system abstraction, and the compilation

70

Table 4.1: The resource usages of evaluated benchmarks.

Benchmark Size
Resource Usage

LUTs DFFs DSPs BRAMs

Rendering

Small 43.5k 46.1k 48 10.3Mb

Medium 130.5k 137.3k 144 30.8Mb

Large 195.0k 179.5k 192 41.1Mb

Digit

Recognition

Small

Medium

Large

32.1k

88.6k

165.0k

42.5k

114.9k

175.2k

1

3

5

6.9Mb

20.6Mb

34.3Mb

Spam

Filtering

Small

Medium

Large

41.7k

112.4k

221.3k

87.3k

151.9k

296.7k

896

1792

3584

9.4Mb

18.8Mb

37.7Mb

Optical

Flow

Small

Medium

Large

94.7k

157.3k

282.6k

87.5k

144.4k

258.1k

372

620

1116

7.3Mb

12.2Mb

22.0Mb

BNN

Small

Medium

Large

35.9k

71.1k

140.3k

61.6k

121.9k

240.8k

16

32

64

4.0Mb

8.0Mb

16.0Mb

Face

Detection

Small

Medium

Large

92.5k

139.0k

230.9k

87.4k

130.8k

217.7k

152

228

380

5.8Mb

8.6Mb

16.0Mb

71

3D Rendering

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Digit

Recognition

Spam Filter

Optical Flow

Face Detection

BNN

Runtime (s)

1000 2000 3000 4000 5000 6000

Baseline

Two-Level abstraction

with one type of LL

virtual block

Single-Level abstraction

Two-Level abstraction

with two types of LL

virtual block

Figure 4.13: The runtime breakdown of different compilation process for the evaluated
accelerator designs. For each accelerator design (small, medium or large), from top to
bottom, the runtime of the baseline compilation flow, the compilation flow for two-level
abstraction that has one type of LL virtual block for one FPGA, the compilation flow for
the single-level abstraction, and the compilation flow for the two-level abstraction that has
two types of LL virtual blocks for one FPGAs are drawn.

72

flow for the single-level system abstraction, is drawn in Figure 4.13. In this runtime mea-

surement, compilation tasks such as local placement are performed in parallel to exploit the

parallelism provided by the compilation framework. Overall, the compilation flow for the

two-level system abstraction that has one type of LL virtual block for one FPGA is 31.4%

lower than that of the conventional compilation flow on average. Nevertheless, we also note

that the compilation flow for the two-level abstraction has a relatively longer runtime time

compared to the baseline flow for the small accelerator design. This mainly because the

runtime reduction from the local placement/routing step is not sufficient to compensate the

runtime of the additional steps, e.g., the global place&route step. We verified that the addi-

tional steps using custom tools, i.e., high-level partition, placement splitting and relocation,

only incur a marginal runtime overhead, since the tasks performed by these steps have a

much lower timing complexity than the place&route steps. Finally, the two-level system

abstraction that has two types of LL virtual blocks for one FPGA can support a smaller

physical block than the alternative two-level abstraction, thereby reducing the local routing

time. Nevertheless, more physical blocks are provided by one FPGA device (Figure 3.18),

leading to a longer global place&route time. Thus, the total compilation time for these two

variants of the two-level system abstraction is comparable.

The compilation flow for the single-level system abstraction also reduces the runtime

by 22.6% compared to the conventional compilation flow. This reduction is slightly lower

than that achieved by the compilation flow for the two-level system abstraction. This

mainly caused by the overhead of the partition step. This step uses the simulated annealing

algorithm to place hundreds of thousands of logic primitives into virtual blocks and generates

the partition result based on the placement result. Although a packing step is included

in the partition tool to reduce the timing complexity, the long runtime of this step still

outweighs the runtime reduction from the local place&route step. Nevertheless, by using an

asynchronous interface in the single-level abstraction (one compilation result can be used for

different runtime deployments), this compilation flow generates fewer compilation results

than the flow for the two-level system abstraction for each virtual block. Thus, the total

73

compilation cost (the runtime summation of all compilation tasks) of this compilation flow

is 1.95× lower than that for the two-level abstraction on average, as shown in Figure 4.14.

The compilation flow for the two-level system abstraction needs to generate multiple

compilation results to account for the heterogeneity caused by the multi-die package (Sec-

tion 3.2.2). Therefore, the aggregated compilation time of all compilation tasks of this

compilation flow is 4.27× longer than that of the baseline compilation flow on average (Fig-

ure 4.14). This compilation overhead is acceptable since the compilation process in the

virtualized environment is a one-time offline process (the cloud environment is not likely to

be used as a development environment). Moreover, the compilation flow for the two-level

system abstraction has a higher parallelism than the conventional compilation flow, thus, it

can better utilize the abundant resources in the cloud for compilation tasks. Providing two

types of LL virtual blocks for one FPGA further increases the compilation time by another

1.9× on average. This additional compilation cost does not lead to significant improvement

in runtime performance, as shown in Section 5.4.3. Thus, the two-level system abstraction

with one type of LL virtual block for one FPGA is preferred.

4.4.2 Compilation Quality

The compilation framework for the two-level system abstraction maximally reuses the ex-

isting commercial FPGA compilation tools (Section 4.1). Thus, the operating frequency of

the mapped FPGA accelerator is comparable to that mapped by the conventional compi-

lation flow, as shown in Figure 4.15. The gap in the operating frequency is less than 5%.

Nevertheless, when mapping the accelerators onto the single-level system abstraction, the

gap in the operating frequency is about 10% even using a large n, as shown in Figure 4.16.

This mainly because the partition tool developed for the single-level system abstraction

only considers wire length when performing the placement (Figure 4.7). More sophisticated

factors, such as routing congestion, are not implemented in this partition tool to reduce

its timing complexity. Thus, the quality of the placement result generated by this parti-

tion tool is lower than that of the commercial placement tool, leading to a lower operating

frequency. Nevertheless, this simplified placement process leads to a good scalability with

74

0 2 4 6 8 10 12

3D Rendering

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Small

Medium

Large

Digit

Recognition

Spam Filter

Optical Flow

Face Detection

BNN

Baseline

Compilation Flow for

Two-Level System

Abstraction

Compilation Flow for

Single-Level System

Abstraction

Compilation Flow for

Two-Level System

Abstraction
(Two types of LL virtual

block for one FPGA)

Normalized Total Compilation Time

Figure 4.14: The aggregated compilation time of different compilation flows.

75

3D

Rendering

Digit

Recognition

Spam

Filter

Optical

Flow

Face

Detection

BNN
0

20

40

60

80

100

N
o

rm
a

li
ze

d
O

p
er

a
ti

n
g

F
re

q
u

en
cy

 (
%

)

Figure 4.15: The operating frequency of the accelerators mapped onto the two-level system
abstraction, which is normalized to that mapped by the conventional FPGA flow. For each
benchmark, the result of three accelerator variants are provided (from left to right is large,
medium and small).

respect to the parameter n (Figure 4.16). Thus, the parameter n is set to 16 in our com-

pilation framework when mapping applications onto the single-level system abstraction to

obtain the optimal mapping quality.

Another key quality metric is the required inter-block communication bandwidth, which

is drawn in Figure 4.17. This result confirms that the compilation framework for the two-

level system abstraction can fully utilize both off-chip and on-chip interconnection networks.

Specifically, the high-level partition step can effectively find the appropriate boundary to

partition applications into multiple HL virtual blocks with a low requirement on the com-

munication bandwidth (< 10Gb/s). This largely reduces the burden on the off-chip inter-

FPGA network. On the contrary, enabled by the synchronous interface between the LL

virtual blocks, the monolithic placement step can fully utilize the on-chip routing fabric to

ensure the mapping quality. In the single-level system abstraction, a unified asynchronous

interface is used for both off-chip and on-chip interconnections. Thus, the compilation

framework for this abstraction cannot separately process this two types of interconnections.

Consequently, all inter-block interconnections require similar communication bandwidth, as

shown in Figure 4.17. On the one hand, the generated communication interfaces cannot

76

n

1 2 4 8 16

n

1 2 4 8 16

100

0

200

300

A
v

er
a

g
e

P
a

rt
it

io
n

T
im

e
(s

)

0

20

40

60

80

100

N
o

rm
a

li
ze

d
 O

p
er

a
ti

n
g

F
re

q
u

en
cy

 (
%

)

91.1%

Figure 4.16: The average operating frequency obtained under different n values, which
is normalized to that mapped by the conventional FPGA compilation flow. The average
partition time with different n values is also reported. The parameter n is defined in
Section 4.2.

fully utilize the on-chip routing fabric. On the other hand, the required communication

bandwidth is also higher than that provided by the inter-FPGA interconnection network.

Therefore, it is preferred to apply the single-level system abstraction for small applications

that do not have strict requirements on performance.

When mapping these benchmarks onto the proposed system abstractions, BRAM re-

sources are the bottleneck. Thus, it is meaningful to report the utilization of the BRAM

resources provided by the allocated physical blocks. In the two-level and single-level system

abstraction, the amount of wasted BRAM resources caused by the internal fragmentation

issue is 9.7% ∼ 37.5%. For the two-level abstraction with two types of LL virtual blocks for

one type of FPGA, the resource waste caused by internal fragmentation is 4.3% ∼ 16.9%,

which is lower than that in the other two abstractions due to the smaller physical blocks.

It is hard to reduce the resource waste caused by the internal fragmentation, since it is

hard to create identical physical blocks that can be fully utilized by diverse workloads with

distinct resource usages. One possible solution is mapping multiple LL virtual blocks into

one physical block. However, as discussed in Section 3.2.2, this mapping strategy increases

77

Required Communication Bandwidth (Gb/s)

1 10 100 1000 10000

3D Rendering

Large

Medium

Small

Digit

Recognition

Spam Filter

Optical Flow

Face Detection

BNN

Large

Medium

Small

Large

Medium

Small

Large

Medium

Small

Large

Medium

Small

Large

Medium

Small

Results for

Two-Level

Abstraction

Results for

Single-Level

Abstraction

Figure 4.17: The required communication bandwidth of the inter-block interconnections
when mapping applications onto the two-level system abstraction and the single-level system
abstraction. Enabled by the two-level system abstraction, the corresponding compilation
framework can effectively identify the boundary with the low bandwidth requirement to
partition these benchmarks. On the contrary, due to the unified asynchronous interface
in the single-level abstraction, the corresponding compilation framework cannot find such
boundary.

78

the runtime management complexity and might also lead to security concerns. The internal

fragmentation issue needs more careful exploration, which is one possible future work.

4.4.3 Case Study: AS ISA-based Accelerator

In this case study, anAS ISA similar to the one proposed in Microsoft BrainWave project [40]

is applied to evaluate the performance of the specialized compilation framework (Sec-

tion 4.3). This AS ISA is chosen because it is a representative use case and has been

deployed in the commercial FPGA cloud to build a product-scale system for the low-latency

DNN inference. Specifically, we develop a parameterized accelerator design for this AS ISA

as the design of the BrainWave project is not publicly available. The organization of this

accelerator design is similar to that described in [40], e.g., tile engines and multi-function

units as illustrated in Figure 4.18. It uses the block floating point format (BFP) for the

matrix-vector multiplication to increase the computing capability and half-precision float-

ing point format (float16) for other secondary operations to reduce quantization noise (e.g.,

point-wise vector multiplication and activation). The number of tile engines in this design

can be adjusted to generate accelerator instances with different computing capabilities to

account for the varying performance/cost demands. A parameterized memory module is

developed so that the accelerator design can leverage the URAM resources when being

mapped onto the UltraScale+ FPGA. While this solution provides a unified memory inter-

face to simplify the design of the accelerator, it leads to a under-utilization of the URAM

resources as URAM provides a large capacity (4096 72-bit words) than the BRAM does

(512 72-bit words). Further exploration on optimizing the accelerator design could be one

of the future work. Moreover, an instruction buffer is included in the accelerator design to

minimize the memory access.

This accelerator then can be decomposed using the provided compilation framework.

The root soft block of the data path has child blocks connected in the pipeline parallelism.

Nevertheless, the FP16-to-BFP converter and the vector register file are much smaller than

the remaining components. Thus, we mark these two components as control logic and

group them into the soft block that contains the control logic (Figure 4.18). With this

79

Instruction

Decoder/Scheduler

Tile

Engine

MFU

Vector Register File

Decompose

Instruction

Decoder/Scheduler

V
ec

to
r

R
eg

is
te

r
F

il
e

F
P

1
6
-t

o
-B

F
P

 C
o
n

v
er

te
r DPE

BFP to

FP16

MFU

MFU

Tile

Engine

MFU

DPE
BFP to

FP16

MFU

MFU

Soft Block With

Control Logic

Soft Block With

Datapath

Figure 4.18: A conceptual diagram illustrates the organization of the AS ISA-based accel-
erator design and the decomposing results.

Table 4.2: Hardware implementation results of the two baseline accelerators.

Device
#MVM LUTs DFFs BRAMs URAMs DSPs Freq. Peak

Tiles (MHz) TFLOPS

VU37P 21 610k 659K 51.5Mb 22.5Mb 7517 400 36

KU115 13 367k 386k 45.4Mb - 5073 300 16.7

modification, the soft block of the data path has data parallelism and the optimization

described Section 4.3.2 can be applied on this accelerator design.

In order to provide a high-quality baseline and ensure a fair comparison, the floor-

planning function provided by Vivado is applied to improve the implementation quality

by manually optimizing the placement, as shown in Figure 4.19a. The resource usage and

the performance of the baseline accelerator on the two types of FPGAs are reported in

Table 4.2. By leveraging floorplanning, the peak throughput of the baseline accelerator is

comparable to that reported in [40]. This floorplanning is also reused when placing virtual

blocks (LL virtual block in the two-level abstraction and virtual block in the single-level

abstraction) into physical blocks for a fair comparison (Figure 4.19b).

DeepBench [97] that contains representative layers from various DNN models is used

80

(b)

(a)

Figure 4.19: The floorplanning is leveraged to improve the mapping quality of the baseline
accelerator. Part of the floorplanning used for XCVU37P FPGA is shown in (a). This
function is also leveraged to improve the mapping quality of one virtual block to ensure a
fair comparison. The optimized implementation result is shown in (b).

to evaluate the compilation quality. Specifically, this benchmark suite provides several

GRU/LSTM inference tasks and the latency of these tasks with a batch size of one is

measured. Two different scenarios are considered when evaluating the inference latency: 1)

the AS ISA-based accelerator used to process one inference task is deployed onto a single

FPGA device (no inter-FPGA communication overhead), and 2) the accelerator is deployed

onto two FPGA devices. The inference latency in the first scenario is reported in Table 4.3.

We observe that there is only a marginal increase in the inference latency (3% ∼ 8%),

which is mainly caused by the latency-insensitive interface between HL virtual blocks. This

negligible overhead is achieved by leveraging the extracted parallel patterns. Specifically,

the partition tool described in Section 4.3.2 can avoid placing the pipelined data path within

a SIMD unit across HL virtual blocks by leveraging the parallel patterns. Consequently, it

effectively minimizes the additional latency introduced by the latency-insensitive interface.

We then evaluate the impact of the inter-FPGA communication latency when one AS

ISA-based accelerator is deployed onto two FPGA devices. We implement a programmable

module that includes a counter and a FIFO on FPGAs to intentionally add a certain amount

of latency into the inter-FPGA communication. This allows us to comprehensively evaluate

the effectiveness of the proposed optimization technique (Section 4.3.2) under various condi-

tions. As shown in Figure 4.20, the proposed technique can effectively hide the inter-FPGA

81

Table 4.3: The latency of LSTM/GRU inference tasks.

Benchmark Device
Latency (ms)

Baseline This dissertation Overhead

GRU VU37P 0.0131 0.0136 3.8%

h=512 t=1 KU115 0.0227 0.0236 3.9%

GRU VU37P 5.01 5.4 7.8%

h=1024 t=1500 KU115 18.5 19.9 7.8%

GRU VU37P 1.83 1.96 7.5%

h=1536 t=375 KU115 6.91 7.43 7.5%

LSTM VU37P 0.726 0.767 5.7%

h=256 t=150 KU115 1.31 1.38 5.6%

LSTM VU37P 0.129 0.136 5.3%

h=512 t=25 KCU115 0.232 0.245 5.3%

LSTM VU37P 0.146 0.157 7.0%

h=1024 t=25 KCU115 0.263 0.282 7.1%

LSTM VU37P 0.238 0.258 8.4%

h=1536 t=50 KCU115 - - -

-: Cannot fit into the FPGA.

82

In
fe

re
n

ce
 L

a
te

n
cy

 (
m

s)

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8 1.0
Additional Latency (µs)

7

h=1024 t=1500

h=2560 t=375

0.2 0.4 0.6 0.8 1.0
Additional Latency (µs)

In
fe

re
n

ce
 L

a
te

n
cy

 (
m

s)

0

0.2

0.1

h=1024 t=25

h=2048 t=25

GRU LSTM

Figure 4.20: The impact of the inter-FPGA communication latency on the inference latency
when the AS ISA-based accelerator is deployed onto two FPGA devices

communication latency for LSTM inference tasks by overlapping the data transfer of vector

ht and the matrix multiplication related to xt. For GRU inference tasks, this technique can

overlap the data transfer and computation for small GRU model (h = 1024) when the added

communication latency is less than 0.6µs. Nevertheless, the inter-FPGA communication

latency cannot be hided for a large GRU model (h = 2560). This is because a large GRU

model needs a large AS ISA-based accelerator that provides sufficient on-chip storage for

weight. Such a large accelerator also provides more computation capability than the one

used for a small model, leading to a shorter computation time. On the other hand, the data

transfer time increases in a larger model as it has a longer vector. Therefore, compared

with small GRU models, it is harder to hide the inter-FPGA communication latency for

large GRU models.

Overlapping the inter-FPGA communication latency and computation means that one

application can be deployed onto multiple physical FPGA devices without affecting the

inference latency. Thus, this optimization technique allows us to treat more applications

as batch workloads (not sensitive to inter-FPGA communication latency) during runtime

deployment, which improves the runtime performance as shown in Figure 5.6b,

83

Chapter 5

Scheduling and Resource Management

This chapter presents a preliminary exploration of the runtime system for cloud FPGAs.

Specifically, enabled by the proposed two-level system abstraction (Section 3.2), a modular

runtime management system is designed for the heterogeneous FPGA cluster. This modular

design provides extendability to support clusters with different types of FPGAs. This

chapter then describes a heuristic-based policy for resource allocation to better utilize the

flexibility provided by the proposed system abstraction and avoid performance degradation

caused by the resource fragmentation and the long inter-FPGA communication latency. A

scheduling policy is also developed that considers the distinct characteristics of different

cloud instances (Section 2.5) to improve the overall system performance.

5.1 Modular Runtime System

Due to the hardware rolling upgrade strategy, the types of FPGAs contained in one hetero-

geneous FPGA cluster keep changing. Thus, it is necessary to design an extendable runtime

system to support such a scenario. Enabled by the proposed two-level system abstraction,

a two-level modular runtime management system is designed, as illustrated in Figure 5.1a.

Overall, this runtime management system comprises a top-level manager for task scheduling

and multiple bottom-level managers (one for each type of FPGAs) to perform the resource

allocation and low-level tasks such as loading bitstreams onto FPGAs. New bottom-level

manager can be added into this runtime system when a new type of FPGAs is deployed to

provide a good extendability.

84

Hypervisor

APIs

Heterogeneous FPGA Cluster

Task Queue: On-Demand Instance

Task Queue: Spot Instance

Resource

Allocator

Top-Level

Manager

Compilation

Database

(HL Virtual

Block Only)

Bottom-Level

Manager

Resource

Database

Controller

for FPGA

Type 1

Compilation

Database

(LL Virtual

Block Only)

Resource

Database

Controller

for FPGA

Type 1

Compilation

Database

(LL Virtual

Block Only)

FPGA

Type 1

FPGA

Type 2

(a)

Hypervisor

APIs

Task Queue: On-Demand Instance

Task Queue: Spot Instance

Resource

Allocator

Resource

Database

Compilation

Database

(Virtual Block)

Homogeneous

FPGA Cluster

(b)

Figure 5.1: (a) The two-level modular runtime management system for the heterogeneous
FPGA cluster. The on-demand and spot instances are defined in Section 2.5. (b) The
single-level runtime management system for the homogeneous FPGA cluster.

85

As illustrated in Figure 5.1a, the top-level manager maintains two task queues to sched-

ule on-demand and spot instances separately using the scheduling policy described in Sec-

tion 5.2. To allocate FPGA resources for one scheduled instance, this top-level manager

first obtains the HL virtual blocks generated for the corresponding application from the

database that stores the compilation results. It then sends these HL virtual blocks to all

bottom-level managers. After receiving one HL virtual block, the bottom-level manager

first obtains the corresponding LL virtual block arrays and the resource availability of the

specific type of FPGAs from the database (Figure 5.3). It then uses the heuristic-based

policy (Section 5.3) to allocate LL virtual block arrays for deploying the given HL virtual

block. The bottom-level manager finally returns the highest heuristic score for deploying

one HL virtual block into the corresponding type of FPGAs to the top-level manager. After

collecting the heuristic scores from all bottom-level managers, the top-level manager uses

a heuristic method to generate the optimal resource allocation and then sends requests to

the corresponding bottom-level managers to deploy the scheduled instance.

5.1.1 Specialized for A Homogeneous FPGA Cluster

Similar to the process of merging the two-level system abstraction into a single-level one

for a homogeneous FPGA cluster, the two-level runtime management system is merged

into a single-level one to manage the homogeneous FPGA cluster, as illustrated in Fig-

ure 5.1b. Specifically, the runtime manager for homogeneous FPGA cluster performs both

task scheduling and resource allocation using the policy described in Section 5.2 and 5.3,

respectively.

5.2 Task Scheduling Policy

As illustrated in Figure 5.1a, the top-level manager maintains two task queues to schedule

on-demand and spot instances separately. Specifically, on-demand instances are scheduled in

a first-come first-served (FCFS) manner to guarantee the performance, while spot instances

are scheduled whenever the FPGA cluster has sufficient resources to improve the aggregated

system performance by exploring the opportunity of task backfilling [39]. When the FPGA

86

FPGALL Virtual

Block Arrays

Application #1

Application #2

FPGA FPGA FPGA

𝑭𝒓𝒂𝒈𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝑺𝒄𝒐𝒓𝒆 = 𝑮𝒆𝒐𝒎𝒆𝒂𝒏(
#𝑪𝒐𝒏𝒕𝒊𝒈𝒖𝒐𝒖𝒔 𝑷𝒉𝒚𝒔𝒊𝒄𝒂𝒍 𝑩𝒍𝒐𝒄𝒌𝒔

𝑭𝑷𝑮𝑨 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚
)

𝟎. 𝟑𝟎𝟔 𝟎. 𝟔𝟐𝟓𝟎. 𝟐𝟓

(a) (b)

Figure 5.2: (a) A conceptual diagram illustrates that an inappropriate resource allocation
leads to resource fragmentation issue. (b) A conceptual diagram illustrates the calculation
of the fragmentation score. Service region in FPGAs is not drawn for simplicity.

cluster does not have sufficient resources for a newly arrived on-demand instance, deployed

spot instances will be interrupted and evacuated from the cluster one by one based on

the deployment sequence until the cluster has sufficient resources. The evacuated spot

instances are placed at the end of the corresponding task queue, thus, spot instances are

backfilled in a round-robin manner to ensure fairness. It is possible that the newly arrived

on-demand instance cannot be deployed after evacuating all running spot instances. Then

the system controller will try to deploy it again when one running on-demand instance

is terminated. This scheduling policy is effective in the cloud environment, which has

insufficient runtime information to support a more sophisticated policy. For instance, it

is impossible to obtain/estimate the completion time of instances, as instances can be

terminated by users at anytime under the pay-as-you-go pricing mechanism.

5.3 Resource Allocation Policy

A heuristic-based resource allocation policy is provided to minimize the resource waste

caused by the fragmentation issue and the performance degradation due to inter-FPGA

communication. Specifically, as an array of LL virtual blocks for one HL virtual block needs

to be deployed into contiguous physical blocks (Section 3.2.2), arbitrarily allocating physical

blocks is likely to cause resource fragmentation, as illustrated in Figure 5.2a. To address

87

Top-Level

Manager

Request to deploy

one application

Compilation

Database

(HL Virtual

Block Only)

1

2 Fetch HL

virtual blocks

#1 #2_1 #2_2OR +
Send to

bottom-level

manager

3

Bottom-Level

Manager

Resource

Database

Compilation

Database

(LL Virtual

Block Only)

4
Fetch LL virtual

block arrays and

resource availability

5

Find the optimal

fragmentation score for

each HL virtual block

#1

0.6

#2_1

0.7

#2_2

0.5
OR +

6

Send

back

7

Calculate the

fragmentation

score
#1

#2_1

0.7

#2_2

0.5
OR +

𝟎. 𝟔 𝟎. 𝟓𝟗 × 𝒑

8

Find the allocation

with the highest score

and send it to the

corresponding

bottom-level manager

Figure 5.3: A conceptual diagram to illustrate the flow of allocating resources for one
application. Only one bottom-level manager is drawn for simplicity.

this issue, a fragmentation score is calculated for every possible resource allocation. As

illustrated in Figure 5.2b, this fragmentation score is calculated as the geometric mean of the

ratio between the number of contiguous physical blocks after one specific resource allocation

and the total number of physical blocks provided by one FPGA. A higher fragmentation

score means this FPGA can provide more contiguous physical blocks (thus less resource

fragmentation) after this resource allocation.

The bottom-level manager calculates the fragmentation score for all possible resource al-

locations of one HL virtual block. The highest fragmentation score for this HL virtual block

is returned to the top-level manager. As one application might be partitioned into multiple

HL virtual blocks, the top-level manager generates all possible combinations for deploying

one specific application, as illustrated in Figure 5.3. A fragmentation score is calculated

for each combination, which is the geometric mean of the score of the HL virtual blocks in

one combination. For the combination that deploys one application into multiple FPGAs,

a multi-FPGA penalty p < 1 is applied to avoid severe performance degradation caused by

88

the inter-FPGA communication. The basic principle for determining the value of p is an

application whose performance is sensitive to the inter-FPGA communication latency will

have a smaller p. For instance, an application that performs streaming processing will have

a smaller p compared to one that performs batch processing. For instance, the application

that performs batch processing can set p = 1, while the application that performs stream

processing can set p = 0. This p coefficient can also be controlled by users to account for

the varying demand on performance and cost. For example, users that do not have strict

requirements on performance can set p to 1 to minimize the cost. Finally, the combination

with the highest fragmentation score is applied to deploy the application into the FPGA

cluster (Figure 5.3).

5.3.1 Possible Extension

This heuristic-based method can be easily extended to take more factors into consideration.

For example, if the required DRAM bandwidth of one application is available, then a

new DRAM contention score can be calculated to minimize the resource contention when

deploying multiple applications onto the same FPGA device. One possible way to calculate

the DRAM contention score is Total DRAM Bandwidth/
∑

Required Bandwidth, which

is the higher the better. Other factors such as power consumption (contention on the power

distribution network) can also be included. These possible extensions require additional

profiling tools to obtain the applications’ characteristics, which are not included in this

dissertation, as they are not indispensable building blocks for a virtualization framework.

5.4 Results

As there is no publicly available real-world cloud workloads using FPGAs, we follow the

widely used approach [101] to synthetically generate several workload sets to evaluate the

scheduling and resource allocation policy. Each workload set contains a sequence of ac-

celerator designs from the benchmark set used for evaluating the compilation framework

(Table 4.1). The requests for deploying these workloads are issued with a random time in-

terval to emulate the dynamic cloud environment. A resource contention ratio is calculated

89

to characterize these workload sets. This resource contention ratio is calculated as the ratio

between the amount of FPGA resources that are required so that every workload can be

immediately deployed without waiting and the amount of FPGA resources provided by the

cluster. When this ratio is smaller than or equal to one, no contention happens and every

workload can be deployed without waiting. The ratio between the number of on-demand

and spot instances and the ratio between the number of batch and streaming workloads in

one workload set can also be adjusted to provide a comprehensive evaluation.

For one workload set, all workloads will be compiled onto the proposed system abstrac-

tion using the provided compilation framework to obtain the key performance metric, such

as throughput, latency and resource usage. This information is the input of a software em-

ulator that contains a controller and a FPGA status maintainer. Specifically, the controller

implements the described scheduling policy and resource allocation policy, while the FPGA

status maintainer using the results generated from the compilation framework to track the

FPGA status. This emulator can generate a trace that contains the resource allocation and

deallocation operations, which is validated on the custom-built FPGA cluster (Section 3.5).

This emulator outputs the normalized response time as the performance metric, which is

calculated as

wait time + execution time

execution time

5.4.1 Design Space Exploration on Parameter N and K

We perform a design space exploration to evaluate the impact of the parameter N and

K. As shown in Figure 5.4-top, with a fixed parameter K, increasing parameter N from 0

(applications can only be mapped into a single FPGA) to 1 (applications can be mapped

into up to two FPGAs) effectively reduces the normalized response time of the on-demand

instances by 20.4% under the high resource contention, while further increasing it to 2

(applications can be mapped into up to four FPGAs) only leads to a marginal reduction

(< 1%). A similar trend is also identified for the spot instances. This is because N = 0

cannot enable FPGA sharing across physical FPGA boundaries, degrading the runtime

90

0.5

1.0

1.5

0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10

Resource Contention Ratio

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0 0

10

20

30

40

50

60

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

Resource Contention Ratio

0.2

0.4

1.2

Resource Contention Ratio

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

0.6

0.8

1.0

0

10

20

30

40

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

Resource Contention Ratio

On-demand Instances Spot Instances

On-demand Instances Spot Instances

N = 0

K = 2

N = 1

K = 2
N = 2

K = 2

N = 1

K = 1

N = 1

K = 2
N = 1

K = 3

0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10

0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10 0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10

Figure 5.4: The normalized response time for on-demand and spot instances under different
N and K. The percentage of on-demand instances and batch workloads are 50%.

91

10

70

100

Resource Contention Ratio

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

On-demand Instances

20

30

40

50

60

80

90

10

70

100

Resource Contention Ratio

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

Spot Instances

20

30

40

50

60

80

90

Non-virtualized Environment Two-Level System Abstraction

0.5

1.0

1.5

Resource Contention Ratio

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

On-demand Instances

0

10

20

30

40

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

Resource Contention Ratio

Spot Instances

Two-Level System Abstraction Single-Level System Abstraction

(a)

(b)

0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10 0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10

0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10 0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10

1
1

1.003

1
1.001

1
1

1.003

1.002

1.005

Figure 5.5: (a) The comparison of the normalized response time over the non-virtualized
environment for the heterogeneous FPGA cluster. (b) The comparison of the normalized
response time delivered by the two-level system abstraction and single-level system abstrac-
tion for the homogeneous FPGA cluster. The results of the non-virtalized environment is
not drawn in (b) for better clarity.

performance due to the lack of multi-FPGA support. Since N = 1 already provides multi-

FPGA support that effectively reduces external resource fragmentation, larger N only leads

to a marginal improvement. We also confirm that the parameter K has a marginal impact

on the normalized response time (< 4% as shown in Figure 5.4-bottom), which is consistent

with our analysis in Section 4.1.1. Thus, we use parameter N = 1 and K = 1 in all

evaluations.

5.4.2 Improvement Over Non-virtualized Environment

The runtime performance of the virtualized environment is compared with that of the non-

virtualized environment (i.e., allocating an entire FPGA to one application). Overall, the

92

two-level system abstraction can effectively reduce the normalized response time compared

to the non-virtualized case under high resource contention (Figure 5.5a). Since the wait

time will be accumulated when deploying a sequence of applications, it is meaningful to

report the highest resource contention ratio that can be supported when the normalized

response time is lower than a given threshold. Specifically, if the normalized response time

is required to be lower than 1.005 (to avoid a rapid accumulation of wait time), the two-

level system abstraction can support a 1.62× higher resource contention ratio compared

to the non-virtualized case when using the same FPGA cluster. This is enabled by the

fine-grained FPGA sharing enabled by the two-level system abstraction. The heuristic-

based resource allocation policy also effectively reduces the resource waste caused by the

external fragmentation. Specifically, the utilization of the physical blocks is about 94% on

average. Figure 5.5b shows the performance comparison between the two-level system ab-

straction and single-level system abstraction on a homogeneous FPGA cluster. Specifically,

if the normalized response time is required to be lower than 1.005, the two-level system ab-

straction can support a 1.19× higher resource contention ratio compared to the single-level

abstraction when using the same FPGA cluster. This is because the additional communi-

cation region in the single-level system abstraction reduces the amount of FPGA resources

provided by the FPGA devices. We also confirm that the runtime policy can support the

dynamic cloud environment and provide a stable performance under different composition

of cloud instances and workloads (Figure 5.6ab).

5.4.3 Comparison between Variants of Two-Level System Abstraction

The performance comparison between the two variants of the two-level system abstraction

is shown in Figure 5.7. By managing the FPGA resource in a more fine-grained man-

ner, the two-level system abstraction that provides two types of LL virtual blocks for one

FPGA effectively reduces the normalized response time by up to 20.5% compared with

the one with one type of LL virtual block. Nevertheless, the reduction for the on-demand

instance is marginal (< 3%). This mainly because that the runtime scheduling policy can

effectively reduce the normalized response time for the performance-driven on-demand in-

93

1

2

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Percentage of on-demand instances

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

1

6

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Percentage of batch workloads

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

2

3

4

5

7

8

On-demand Instance Spot Instance

(a) (b)

Figure 5.6: The normalized response time under different percentages of (a) on-demand
instances and (b) batch workloads. The resource contention ratio is 0.9 in both experiments.
The percentage of batch workloads is 50% in (a), and the percentage of on-demand instances
is 50% in (b).

stances. Consequently, the improvement from the abstraction is limited. Since the two-level

system abstraction that provides two types of LL virtual blocks for one FPGA has a higher

compilation cost (Section 4.4.1), it is preferred to utilize the simple one that only provides

one type of LL virtual block for one FPGA.

94

0.2

1.0

1.2

Resource Contention Ratio

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

0

On-demand Instances

0.4

0.6

0.8

0

10

20

30

40

N
o

rm
a

li
ze

d
 R

es
p

o
n

se
 T

im
e

Resource Contention Ratio

Spot Instances

Two-Level System Abstraction With One

Type of LL virtual block for one FPGA

Two-Level System Abstraction With Two

Types of LL virtual block for one FPGA

0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10 0.15 0.28 0.45 0.6 0.75 0.9 1.0 1.05 1.10

Figure 5.7: The performance comparison between the two different variants of the two-level
system abstraction.

95

Chapter 6

Extend to Liquid Silicon

This chapter presents a new reconfigurable architecture, namely Liquid Silicon, that is used

as a case study to show that the proposed virtualization solution can be extended to other

spatial reconfigurable architectures. Enabled by the non-volatile memory technology (i.e.,

RRAM), Liquid Silicon has a homogeneous architecture comprising a two-dimensional (2D)

array of identical “tiles”. Different from the heterogeneous FPGA architecture that uses

specialized hard IP blocks for dedicated functions (Figure 2.1), each tile in Liquid Silicon

can be configured into one or a combination of four modes: heavy-weight compute mode,

light-weight compute mode, interconnect mode, and memory mode. Such flexibility allows

users to partition resources based on applications’ needs, in contrast to the fixed resource

provisioning in FPGAs that is determined by the vendors during manufacturing. The

following sections first present the necessary background information and then describe the

architecture and the custom compilation framework developed for Liquid Silicon. A chip

demonstration of Liquid Silicon is also provided. Finally, the method of extending the

proposed virtualization solution to Liquid Silicon is presented.

6.1 Background

6.1.1 RRAM and Access Device

Resistive random access memory (RRAM) is one promising non-volatile memory technology

because of the small cell size (4F 2), fast switching time (as low as 10ns [122]), excellent

96

Voltage (V)
-1 -0.5 0 0.5 1

C
u
r
r
e
n
t

(
A
)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Abrupt

SET

Gradual

RESET

(a) (b)

TaOx
W-plug

W-plug

Ta2O5-d

Top Electrode

Top Electrode

Bottom Electrode

Figure 6.1: (a) The Ir/Ta2O5−δ/TaOx/TaN structure [132] of one RRAM cell. (b) The
resistive switching I-V curve.

scalability (< 10nm [134]), and good endurance (up to 1012 cycles [79]). The TaOx RRAM

device from Panasonic [132] is used in this dissertation that has already been used in

commercial products since 2013 [103]. The structure and the resistive switching I-V curve

of this TaOx RRAM cell are drawn in Figure 6.1. This RRAM device is used to build

the crossbar array in Liquid Silicon. Benefiting from the CMOS-compatible monolithic 3D

fabrication process, the RRAM crossbar array can be stacked atop CMOS circuits in the

back end of line (BEOL), thereby not consuming the die area as illustrated in Figure 6.4.

In the crossbar array, an access device is needed to pair with one RRAM device to

suppress the leakage current on the sneak path. This access device can effectively reduce

the power consumption when writing the RRAM array [20]. It also eliminates the sneak

path leakage current during computation (Section 6.2.4-Crossbar Array). Among various

access devices [113][128], we choose the FAST selector [62] to build the crossbar array in Liq-

uid Silicon. It is a two-terminal bi-directional diode with a high selectivity (∼ 1010), a steep

turn on slope (< 5mV/dec), a BEOL-compatible fabrication process, and an adjustable

turn on voltage.

97

6.1.2 Related Work

Several works proposed to use the nanowire-based crossbar array to build nanoscale re-

configurable computing architectures [34][36][46][109]. In these architectures, a group of

logic gates can be implemented by nanowire-based crossbar arrays. Due to the small fea-

ture size of the nanowire, they consume less area and achieve higher performance than the

CMOS-based implementations. Liquid Silicon is different from them in two aspects. At

first, besides implementing logic functions, crossbar arrays in Liquid Silicon can also im-

plement other functions, e.g., memory and ternary content-addressable memory (TCAM),

thereby improving the hardware utilization for supporting diverse workloads. In addition,

these nanowire-based architectures require the logic functions mapped onto one crossbar

have the same data-flow direction, i.e., all inputs need to be applied on the word-lines and

all outputs are on the bit-lines, and vice versa. On the contrary, Liquid Silicon allows more

fine-grained control, i.e., inputs and outputs can have different data-flow directions in one

crossbar. This flexibility is utilized by the custom compilation framework to improve the

mapping quality.

Numerous research efforts have been devoted to investigate novel FPGA architectures

based on non-volatile memory technologies [22][25][42][53][84]. In these architectures, non-

volatile memory cells (e.g., RRAMs) are used to either 1) replace the SRAM cells in LUTs,

2) replace the pass gates in routing fabric (connection blocks and switch blocks) as pro-

grammable switches, or 3) build dense on-chip memory blocks. Benefiting from the BEOL-

compatible fabrication process and non-volatility, these implementations reduce the chip

area and power consumption, without changing the basic architecture of FPGAs. Never-

theless, these architectures use non-volatile memory cells as a direct drop-in replacement

of the SRAM cell. On the contrary, Liquid Silicon provides a radically different reconfig-

urable architecture that is tailored to the RRAM technology, which allows flexible resource

partitioning among computation, storage and routing.

In another interesting work, a configurable memory array is built upon a crossbar array

using conventional SRAM [60], which can also be configured to perform TCAM/CAM func-

98

User-controller resource partition in Liquid Silicon

Data

Intensive Intensive Intensive

Search Compute Compute-to-memory

access ratio

FPGA provides

1) Fixed resource partition between

computation and storage

2) Limited on-chip storage

Tile configured in different modes:

Light-weight compute

Memory

Heavy-weight compute

or interconnect

FPGA blocks:

Block RAM (data storage)

Configurable logic block

(computation)
*Routing blocks in FPGAs are not drawn

Compute-to-memory

access ratio

Low High

Figure 6.2: Liquid Silicon provides a user-controlled resource provisioning to cover the whole
spectrum, from data-intensive to compute-intensive. On the contrary, FPGAs only provide
an efficient support on compute-intensive applications.

tion and bit-wise logic operations. It stores words column-wise in TCAM/CAM mode, but

row-wise in logic mode. Consequently, it requires data reshuffling when performing different

operations, thereby reducing the flexibility and efficiency. On the contrary, Liquid Silicon

does not have any of these restrictions, and words (data entries) can be stored in either

direction. Additionally, this work only implements a single SRAM block to realize simple

bit-wise logic function (e.g., AND and NOR), while Liquid Silicon can implement arbitrary

complex logic with a full-fledged compilation tool to support the application mapping.

6.2 Liquid Silicon Architecture

6.2.1 Overview

Liquid Silicon is a homogeneous architecture that comprises a 2D array of identical building

blocks (also referred to as “tiles“), as illustrated in Figure 6.4. Different from the island-

style FPGA architecture that contains specialized hard IP blocks for dedicated functions,

each tile in Liquid Silicon can be configured into one or a combination of four distinct

modes: 1) light-weight compute mode, 2) heavy-weight compute mode, 3) interconnect

mode, and 4) memory mode, depending on the workloads (Figure 6.2). In addition to the

99

Resource used for:

Heavy-weight compute

Interconnect

FPGA Liquid Silicon

(a) (b)

Figure 6.3: (a) To improve resource utilization, one tile can be partitioned between heavy-
weight compute mode and interconnect mode. (b) This flexibility results in better mapping
with low routing pressure compared to FPGAs.

coarse-grained (tile-wise) configuration that allows Liquid Silicon to provide an adjustable

compute-to-memory access ratio (defined in [159]), Liquid Silicon also allows a flexible

resource partitioning within a tile between heavy-weight compute and interconnect in a

more fine-grained manner based on the actual usage (Figure 6.3a). Such a combination

of coarse-grained and fine-grained controls leads to an improved utilization and reduced

routing pressure over conventional FPGAs (Figure 6.3b).

Despite the rich configuration modes supported by each tile, the tile has a relatively

simple structure with two basic building blocks: a crossbar array and a set of connection

nodes, as illustrated in Figure 6.4.

The crossbar array contains multiple work-lines (WLs) and bit-lines (BLs), where one

cell containing one diode and one RRAM is placed at the intersection of a WL and a BL,

as illustrated in Figure 6.4. The array itself can be fully reused across the four modes

of operations, i.e., implementing arbitrary logic functions (heavy-weight compute mode),

TCAM function (light-weight compute mode), memory and routing. Previously, an 8Mb

multi-layered crossbar array using the TaOx-based 1D1R cell has been demonstrated by

Panasonic [65], which presents the details of fabricating RRAM crossbar.

The connection node is used for connecting WLs (BLs) of two adjacent crossbar arrays,

restoring small analog signals to full-swing digital signals for noise tolerance, and supporting

100

Tile

Connection Node

bit-line

w
o
rd

-l
in

eConnection Node

Memory

Element

Via

Physical View

Data flow

1D1R Cell

Configuration

Memory

S/A
Voltage

Driver

Access

Device

DFF

S/A
DFFVoltage

Driver

Figure 6.4: A conceptual diagram illustrates the Liquid Silicon architecture. 2 × 2 tiles
are drawn in the example. In one tile, the 1D1R-based crossbar array is stacked atop
connection nodes (CMOS circuits) and does not consume die area. The key building blocks
of one connection node is also drawn in the figure.

101

the operations of four configuration modes. The key building blocks in one connection

node are sense amplifiers (S/As), skippable flip-flop, skippable inverter, voltage driver and

configuration memories, as illustrated in Figure 6.4. Different from the large and power-

hungry conventional current of voltage S/As, a compact and low-power RC-based S/A

(adapt the design in [81]) is employed to improve noise tolerance. It detects the small analog

signal changes on a WL (or a BL) in one array and generates a full-swing digital output to

drive the correspondingWL (or BL) in the adjacent array, and vice versa. The skippable flip-

flop is used to implement sequential circuits. The skippable inverter is included for logical

completeness. The voltage driver can be configured to generate different drive voltages for

four modes, controlled by the configuration memories. The configuration memories also

control the dataflow direction of the connection node, which is designed with two copies of

circuits to operate bidirectionally. We note that connection nodes can also be disabled if

not in use to save power. More details of the circuit design are presented in Section 6.2.4.

6.2.2 Configuration Modes

Light-weight Compute Mode

One tile in this mode can be configured as an embedded TCAM block that can be

used to implement high-performance parallel search or binarized network [28]. The idea is

inspired by the fact that a TCAM array based on non-volatile memory [81] has the same

physical design as a memory array and thus the crossbar array can be reused to implement

the TCAM function as a dedicated light-weight configuration mode.

Figure 6.5 provides an example of the parallel search operation. The two adjacent

RRAM cells are paired to store one bit of the word entry. Specifically, these two cells are

programmed into complementary states to represent logic 1 or 0, and both of them are

programmed into the high resistance state to represent X that can match with any input.

Then the search key (101 in the drawn example) is applied on WLs (or BLs), where one

bit of the search key is applied on two adjacent WLs (or BLs). This search key is then

compared with every data entry that is stored in the crossbar array in parallel. Finally, the

S/As output a match vector in which a logic 0 indicates a mismatch between the search

102

101

Store

Entry

100

110

001

000

11X

Search key 101

from upper tiles

Post-match operation (e.g., priority encoding)

implemented by adjacent tiles configured in

heavy-weight compute mode

Search key

101 from

right tiles

Match

Vector

1

0

0

0

0

0
10 0 0 0 0

Program RRAM

into low

resistance state

Store

Entry

Match

Vector

Figure 6.5: One tile in the light-weight compute mode supports the parallel search operation.
The data entries can be stored either row-wise (left) or column-wise (right). The matched
entry is highlighted in blue.

inputs and the stored entry, while a logic 1 indicates a match. The match vector can be

further fed to the adjacent tiles for post processing, such as priority encoding.

The TCAM implementation in Liquid Silicon provides three advantages over other stan-

dalone TCAM designs [81][85][19]. 1) It can implement TCAM blocks with different sizes

and/or aspect ratios by coalescing adjacent tiles. 2) It allows data to be stored in either a

row-wise or a column-wise manner. 3) It allows users to flexibly define their custom post-

match functions such as a priority encoder or a population counter by configuring adjacent

tiles into heavy-weight compute mode.

This mode also provides a native implementation of the binarized neural network (BNNs).

As illustrated in Figure 6.6, this is equivalent to a TCAM function. Specifically, the bi-

nary weights are stored in the crossbar arrays (like the stored data entry in TCAM), while

the input vector is applied on the WLs (or BLs) of the tile (like the search inputs). The

S/A implements the equivalent count, normalization and activation function in the neural

network.

Heavy-weight Compute and Interconnect Mode.

103

101

Store

Weight

100

110

001

000

111

Compute

results

Program RRAM into

low resistance state Configured one connection node to output “1” if at

least 1 bit of the weight is same with input vector

Configured one connection node to

output “1” if at least 2 bits of the

weight are same with input vector

Configured one connection node to output “1” if at

least 3 bits of the weight are same with input vector

Input vector 101

from upper tiles

1

1

0

1

0

1

Store

Weight

Input vector

101 from

right tiles

Compute

results

1 10101

Figure 6.6: The light-weight compute mode is also used to implement the binarized neural
network, and the data layout in one tile can be either horizontally or vertically.

The heavy-weight compute mode and the interconnect mode are described together due

to the similarities between them. In the Berkeley Logic Interchange Format (BLIF) [10], an

AND logic function can be represented by a combination of 0, 1 and -. For example, function

F = ABC is represented as 111, while F = ĀB̄C̄ (or F = A+B + C) is represented as

000. In case of unused inputs, - will be used to mask them. For instance, when the inputs

are A, B, C and D, the function F = ĀBC̄ can be represented as 010-. We observe that

this representation is fully compatible with the TCAM function, i.e., we can apply the three

states in TCAM (0, 1, X) to represent the three states (0, 1, -) in BLIF to implement AND

logic functions, and use search keys to represent its logic inputs.

Based on this observation, the light-weight compute mode can be extended to the heave-

weight compute mode, i.e., one tile can implement arbitrary combinational logic functions

in situ in the crossbar array without using ALUs. Sequential circuits can be implemented by

configuring the skippable flip-flop in the connection node. Figure 6.7 provides an example

to show that how to map a group of combinational logic functions onto one tile. Overall,

there are three key features for such crossbar-based logic implementation: 1) each data

104

𝑨 ഥ𝑨 𝑩 ഥ𝑩

𝑪
ഥ𝑪

𝑫
ഥ𝑫

𝑭 = 𝑨𝑩

𝑮 = ഥ𝑨ഥ𝑩

𝑯 = ഥ𝑪ഥ𝑫 𝑰 = 𝑪𝑫

Outputs

to right

tiles

Input from upper tiles

Program RRAM into low resistance state

𝑭 = 𝑨𝑩

𝑮 = ഥ𝑨

𝑯 = ഥ𝑪ഥ𝑫 𝑰 = 𝑪

𝑨 ഥ𝑨 𝑩

𝑪
ഥ𝑪

ഥ𝑫

Figure 6.7: The operation of the heavy-weight compute mode is illustrated (left) and four
logic functions are packed and mapped onto one tile. The operation of the interconnect
mode is illustrated (middle). These two modes can be co-existed in the same tile (right).

entry of a tile can implement a multi-input-single-output logic function (up to 256 inputs).

2) The logic inputs are shared among the logic functions in the same tile. 3) The data flow

direction can be controlled at a fine granularity of entry level (instead of tile level). The

inputs and outputs can be applied on either the top/bottom or left/right side of a tile.

The interconnect mode can be treated as a special case of heavy-weight compute mode,

in which one data entry implements a buffer function (F = A). As shown in Figure 6.7,

one input can be routed to any of the other three directions in a tile by programming the

crossbar array and the connection nodes accordingly. Additionally, this mode is able to

co-exist with the heavy-weight compute mode in the same tile (Figure 6.7).

Memory Mode.

In this mode, four adjacent tiles are used to implement a single-port memory block. As

illustrated in Figure 6.8, one tile is configured as a memory array and a small fraction of this

tile (∼ 4.7%) is used to implement the column address decoding logic. The remaining three

tiles are configured in the heavy-weight compute mode to implement row address decoder

and read/write column select logic. It might appear that using four tiles to implement one

memory block is inefficient. However, due to the ultra-dense array organization and much

simplified pitch match between the array and the periphery, the overhead is negligible.

Moreover, since all peripheral circuits are implemented in a soft-logic style (instead of

ASIC), users can flexibly adjust the logical aspect ratio of the memory array. Our custom

105

WE 𝐴0 𝐴1

Disabled

during

read

Column

Address

Decode

Logic

Read Column

Select Logic

𝑑𝑎𝑡𝑎0

𝑑𝑎𝑡𝑎1

(a) Read operation

𝐴0

𝑑0

WH

𝑑1

WH

Memory

Array
Row Address

Decode Logic

WE 𝐴0 𝐴1

𝐴0

𝑑0

WH

𝑑1

WH

Memory

Array
Row Address

Decode Logic

Write

Column

Select Logic

Disabled

during

write

(b) Write operation

Figure 6.8: An example illustrates (a) the read operation and (b) the write operation in
the memory mode. This memory block stores 4 2-bit words.

106

compilation tools support varying logical aspect ratios from 4b×15616 to 32b×1952 (61kb in

total) by default, and more logical aspect ratios can be realized by configuring the peripheral

circuits.

The read operation is performed in several steps, as illustrated in Figure 6.8a. First, the

row address is decoded by the row address decoding logic in the right tile, and the outputs

are sent the memory array (central tile). Meanwhile, the column address is also sent to the

column address decoding logic in the memory array in the same direction as the decoded

row address. After performing sensing by the connection nodes (highlighted in blue), the

read column select logic (NOR gates in the top tile) is applied on the outputs of the memory

array to generate the final read results. Note that, the write column select logic in bottom

tile is disabled during the read operation.

The write operation is performed in two consecutive steps to write logic 1 and logic 0,

controlled by the write high (WH) signal. In write operation, row address decoding logic

and write column select logic generates the appropriate drive voltage, based on the address,

WH, and the write data. Note that during write, the read column select logic and column

adderss decode logic are disabled (Figure 6.8b).

6.2.3 Comparison With FPGAs

Liquid Silicon shares some similarities with FPGAs in its reconfigurable data-flow architec-

ture, but it also radically differs from FPGAs by providing the following features.

Hardware support for light-weight computation. Liquid Silicon provides na-

tive TCAM hardware support by virtue of a dedicated light-weight compute mode, whereas

FPGAs need to consume scarce on-chip memory resources to emulate the equivalent TCAM

function. Moreover, this mode also provides an efficient implementation of binarized neu-

ral networks, which nevertheless requires costly hardware resources (including both logic

and on-chip memory) in FPGA for the same purpose. Therefore, search-/data-intensive

applications can be performed more efficiently on Liquid Silicon than FPGAs.

Flexible memory blocks. Liquid Silicon provides a flexible memory support to better

customize the capacity and location of on-chip memory, depending on workloads. For

107

instance, one can configure more tiles into the memory mode to achieve high capacity and

in close proximity to compute units to better exploit data locality to save power. On the

contrary, memory blocks are hard-wired resource in FPGA and thus their capacity and

location cannot be changed after manufacturing.

Coarse-grained logic implementation As presented in the heavy-weight compute

mode (Section 6.2.2), tiles in Liquid Silicon supports logic functions with a large number of

inputs. To improve tile utilization (the percentage of resources of a tile used for mapping),

our compilation optimization has taken advantage of this architectural feature and employs

a coarse-grained logic implementation, i.e., applications are synthesized into complex logic

functions with larger granularity (∼ 30 inputs). On the contrary, logic implementation in

the FPGA is fine-grained, where applications are synthesized into a netlist of simple logic

gates (⩽ 6 inputs), and these gates are mapped onto 6-input lookup tables (LUTs) in an

FPGA. As compared with FPGA, the coarse-grained logic implementation in Liquid Silicon

results in shallower logic depth, less routing pressure (Figure 6.3b), better tile utilization

and thus higher performance and energy efficiency than FPGAs.

Fully exploit RRAM technology. Enabled by the nonvolatile nature of RRAM

technology, Liquid Silicon does not need to load bitstreams from external memory when it

is powered on, thereby reducing the configuration times and power. The nonvolatile nature

also improves its security as the bistreams are stored internally. It eliminates the security

vulnerability caused by the external bitstream loading process in FPGA which creates an

easily exploitable, non-invasive conduit by which the FPGA’s IP can be captured and copied.

Efficient resource partitioning. In Liquid Silicon, the hardware resources can be

flexibly partitioned by the compilation framework between logic and interconnect based on

the actual usage (Figure 6.3a), leading to better resource utilization than FPGA.

6.2.4 Circuit Implementation

Crossbar Array

In Liquid Silicon, each tile contains one crossbar array, which is built upon 1D1R cells

comprising a RRAM device and an access device placed at the intersection of a bit-line (BL)

108

and a word-line (WL), as illustrated in Figure 6.4. When one tile is configured to implement

one of the four modes (Section 6.2.2), the RRAM cells in the crossbar are programmed into

appropriate resistance states (LRS or HRS), and the BLs (or WLs) in the crossbar are

either driven or sensed by the connection nodes.

Proper voltages are applied on BLs (or WLs) to eliminate the sneak path leakage during

computation. More specifically, when one BL (or WL) is driven by the connection node, it

can have two voltage levels, i.e., Vinput0 and Vinput1 to represent logic 0 and 1, respectively.

When it is sensed by the connection node, the voltage on this line is between Vprecharge and

Vdischarge based on the sensing scheme (Section 6.2.4-Connection Node). To eliminate

the sneak path leakage, these voltages need to satisfy the following requirements3.

(1)Vinput1 − Vinput0 < VT (2)Vprecharge − Vdischarge < VT

(3)Vprecharge − Vinput0 > VT (4)Vprecharge − Vinput1 < VT

Satisfying the requirement (1) means that when one BL and one WL are both driven by

the connection nodes, the access device (diode) at the intersection is turned off, therefore

no direct path is formed between two voltage sources (no static current). Satisfying the

requirement (2) indicates that when one BL and one WL are both sensed by the connection

nodes, the access device at the intersection is turned off, thereby disconnecting these two

lines. Requirements (3)-(4) are given by the sensing scheme, which will be discussed in

Section 6.2.4-Connection Node.

Based on these requirements, the voltages used in Liquid Silicon are Vinput0 = −0.3V ,

Vinput1 = 0V , Vprecharge = 0.5V , Vdisharge = 0.3V and VT = 0.6V .

Connection Node

The circuit implementation of one connection node is depicted in Figure 6.9. The

key building blocks are 1) sense amplifier (S/A) for sensing the voltage changes on the

connected BL (or WL), 2) configurable dynamic inverter to assist implementing the OR

3VT is the turn on voltage for the access device, and Vdd = 1V under 45nm technology.

109

T-Gate

C-Mem

S/A

Sensing

Clock C-Mem

DFF

Reference

Timing

Signal Clock

Driver 1

Data-flow

direction

T-Gate Transmission gate
RRAM-based

configuration memory

Configurable

dynamic inverter

C-Mem

DFF

C-Mem

T-Gate

C-Mem

S/A

Sensing

ClockC-Mem

DFF

Reference

Timing

SignalClock

Driver 2

C-Mem

DFF

C-Mem

C-Mem

Figure 6.9: Detailed implementation of one connection node.

gates in the Sum-Of-Product (SOP) terms, 3) flipflops for implementing sequential circuits,

4) voltage driver to generate the required voltages for different modes, and 5) RRAM-based

configuration memories to control the various operations of the connection node.

Building Block - Sense Amplifier

The circuit implementation of the S/A is presented in Figure 6.10, which contains three

parts: 1) precharging circuit (P1 and the transmission gate), 2) discharging circuit (N1

and N2), and 3) inverters to generate a full swing output. To illustrate the sensing scheme

used in this S/A design, we assume that the data entry is stored on BLs, and inputs are

applied on WLs by driving them to Vinput0 or Vinput1. Note that the same sensing circuit

and scheme can still be applied when the data entry is stored on WLs.

The sensing operation is controlled by the sensing clock and is performed in two stages:

precharge and evaluation. In the precharge stage, the BL is charged to Vprecharge through

the transmission gate, and the node SN is precharged to Vdd through P1. Then, in the

evaluation stage, BL is floating and starts to discharge (Figure 6.11b) at a rate depending

on the number of WLs that are pulled down to Vinput0 (requirement 3) and the resistance

110

Vprecharge

Vdd

N2 N1

P1

SN

Output

Sensing

Clock

Sensed

Line

Figure 6.10: The implementation of the S/A design.

Discharge current
Width indicates the

current strength

Vinput0 Vinput1 Vinput1 Vinput0

BL0

BL1

RRAM in LRS

RRAM in HRS

(a)

BL1

BL0

Precharge Evaluation

V
o
lt

a
g
e

o
n

 B
L

Time

(b)

V
o
lt

a
g
e

o
n

 S
N

Time

BL1

BL0

Precharge Evaluation

S
/A

 o
u

tp
u

t

Time

Precharge Evaluation

BL1 BL0

V
o
lt

a
g
e

o
n

 S
N

Time

Precharge Evaluation

BL1 BL0

Reference Timing Signal

L
a
tc

h
ed

o
u

tp
u

t

Time

Precharge Evaluation

BL1

BL0

Reference Timing Signal

(c) (d)

(e) (f)

Figure 6.11: (a) The voltages on WLs and the RRAM states are presented. The corre-
sponding discharge current for these two BLs are also drawn. (b) The voltages on these two
BLs. (c) The voltage on the node SN in the S/A. (d) The output of S/A. (e) The output
of the configurable dynamic inverter, and (f) this output is latched by the reference timing
signal.

111

C-Mem

Vdd

Sensing Clock

Input

Connect to

adjacent node

Connect to

adjacent node

Output

C-Mem

RRAM-based

configuration

memory

Figure 6.12: Circuit design of the configurable dynamic inverter.

states of RRAMs on the BL (Figure 6.11a). Note that, no discharging current flows through

the WLs that connected to Vinput1 (requirement 4) due to the isolation of the access device,

regardless of the resistance states of RRAMs. At the same time, node SN is also discharging

to ground since N1 and N2 are opened (Figure 6.11c), and the discharging rate is controlled

by the gate voltage of N2, i.e., the voltage of the BL. In a match case (BL1 in Figure 6.11),

SN has a higher discharging rate and the output switches to logic 1 in a shorter time,

compared to the mismatch case (BL0 in Figure 6.11d).

Building Block - Configurable Dynamic Inverter

The configurable dynamic inverters are included to improve the mapping quality. As

discussed in Section 6.3, applications are synthesized into SOP terms in the technology

mapping stage, where each SOP term comprises a group of AND gates and one OR gate.

While it is efficient to map the group of AND gates onto tiles, it leads to a low utilization

when mapping the OR gates onto tiles. More specifically, these OR gates do not share their

inputs with other logic gates, and when mapping them onto tiles, the WLs (or BLs) they

occupy cannot be utilized by other gates mapped in the same tile. This reduces the amount

of logic gates that can be mapped onto one tile and results in a degraded performance (e.g.

area). Using configurable dynamic inverters to implement these OR gates can improve the

mapping quality.

The circuit implementation of a configurable dynamic inverter is shown in Figure 6.12,

which contains one dynamic inverter and one NMOS. The dynamic inverter is controlled

112

by the same sensing clock that is applied to the S/A, and its operation is illustrated in

Figure 6.11e. The NMOS can be configured to connect the adjacent connection nodes,

therefore, a multi-input dynamic NOR gate can be formed among adjacent nodes.

Building Block - Flip-flops

As shown in Figure 6.9, one connection node contains two flip-flops for one data-flow

direction. One flip-flop is conditionally included to implement the sequential circuit. The

other one (marked in grey in Figure 6.9) is included to latch the output (Figure 6.11f) of

the configurable dynamic inverter, which is controlled by the reference timing signal. This

reference timing signal is locally generated by one reserved entry (WL or BL) in every tile.

This allows each tile to have its own reference timing control, therefore, it works for all

configuration modes without any modification.

Building Block - Driver Circuits

Driver circuits are included to generate the correct drive voltages based on the input

signal and the sensing clock. Controlled by one configuration memory, they also can be

disabled to save power. Two types of driver circuits are used in the connection node.

Driver 1 contains a negative voltage level shifter to generate the Vinput0, and the driver 2

extends the driver 1 by adding a positive voltage level shifter to provide the write voltages

for the memory mode. Since the row address decode logic and write column select logic

(Figure 6.8) can only be placed on the right and bottom side of the memory array, only one

data-flow direction needs to use the large driver circuits (Driver 2), as shown in Figure 6.9.

Building Block - Configuration Memory

In Liquid Silicon, we also use RRAM devices to build non-volatile configuration memory

in the connection node. Each configuration memory is structured with a 3D2R cell, two

inverters, and two MOSFETs (Figure 6.13a) and can be organized as a crossbar array

(Figure 6.13b), by connecting theWLs (WLT andWLB), BLs and LOAD lines. Information

is stored in each configuration memory cell using two RRAM devices, which are programmed

to have complementary states (one in HRS and the other in LRS). For example, the RRAM

113

ҧ𝑆𝑆

Node S
Node A

I

WLB

WLT

Vdd

gnd

gnd

gnd

BL

Vdd/2

gnd

LOAD

Vdd

gnd

Loading

configuration

During running

application

a) gnd gnd 2V/3 gnd

V

2V/3

V/3

V/3

Write one RRAM cell (blue)

b)

Figure 6.13: (a) Circuit implementation of the non-volatile configuration memory, and
voltage setups for three operations are highlighted. (b) 3D2R cells can be organized in a
crossbar structure and the voltage setup to program one RRAM cell (in blue) is illustrated.

device in blue (Figur 6.13a) is programmed into LRS to store logic 1, otherwise it stores

logic 0.

To program the RRAM device in configuration memory, the “V/3” write scheme [20] is

used, and one example (Figure 6.13b) is given to illustrate the applied voltages for writing

one RRAM device (blue).

In the read operation, WLT is connected to Vdd, and WLB is connected to gnd. A

voltage divider is formed between two WLs, and the voltage on Node A (Figure 6.13a)

is determined by the resistance states of the two RRAM devices. The degraded voltage

level on Node A due to the limited resistance ratio is restored to a full voltage swing by

the inverters to generate final digital outputs. In addition, Vdd/2 is applied on BL to turn

off the access device in red (Figure 6.13a), thereby disconnecting 3D2R cells from BL and

isolating them from each other. Finally, the LOAD line is connected to Vdd, and the stored

configuration bit is loaded into the storage node (Node S).

During normal operations, WLs, BL and LOAD line are all connected to gnd (Fig-

ure 6.13a). Therefore, 3D2R cells have zero standby power consumption, and configuration

bits are retained without the need of an external power supply.

114

Time

C
ri

ti
ca

l
P

a
th

Time

C
ri

ti
ca

l
P

a
th

Sensing

Clock

Connection node that is

performing sensing operation

Connection node that is not

performing sensing operation

Signal propagates

through 4 nodes

(a) (b)

Figure 6.14: One example illustrates sensing operations when providing (a) one sensing
clock or (b) two sensing clocks.

Power-Saving Techniques

S/A is the most power consuming part in the connection node because it needs to

frequently precharge the BL or WL (large capacitance). To reduce the power, we apply two

techniques when designing the S/A. The first technique is that we reduce the precharging

voltage, i.e., using Vprecharge instead of Vdd. In addition, instead of a rail-to-rail voltage

swing, the voltage on the BL or WL is a small voltage difference between Vdischarge and

Vprecharge, which is 0.2V in this design. This technique reduces the power consumption for

one precharging operation.

The other technique is that, instead of only having one sensing clock, multiple sensing

clocks that have same the frequency but different phases are provided, and S/As choose

one of them to perform the sensing operation. This can reduce the operation frequency

of the S/A, thereby reducing the power consumption, as illustrated in Figure 6.14. More

specifically, one critical path of the mapped application can have n connection nodes. If

only one sensing clock is provided, then in order to run the application under frequency

f , the sensing clock frequency needs to be nf . On the contrary, if two sensing clocks are

provided, then the sensing clock frequency can be reduced to nf/2. More sensing clocks

115

87.87µm

87.24µm

Connection Node

43.92µm× 0.34 µm

Connection nodes are fully buried

underneath the crossbar array

Figure 6.15: Physical design of a tile under 40nm technology.

lead to lower power consumption, but they require more multiplexers and configuration

memories for selecting clocks (large area). In this design, we choose to include two sensing

clocks which reduces the power consumption of Liquid Silicon without noticeably increasing

the design complexity.

Physical Design

As described in Section 6.1.1, the fabrication process of the RRAM and access device is

BEOL compatible. Therefore, the crossbar arrays are implemented on upper level metals

i.e., M3 and M4 layers while the connection nodes use lower level metals, i.e., M1 and

M2 layers for local routing and are buried underneath the arrays. We perform layout

optimization by judiciously increasing the pitch size of the crossbar array, which will ease

the placement of connection nodes fully below the array to achieve the minimal Si area.

Additionally, we share common circuits (e.g. S/A and voltage driver) as much as possible

between tiles to further reduce the area. As shown in Figure 6.15, we complete the physical

design using 40nm CMOS technology. The area of one tile is measured to be 87.87µm ×

87.24µm. The physical design information will be used for the evaluation in Section 6.6.1.

Configuration and Other Issues

In Section 6.2.4-Connection Node, we discussed the methods to program configuration

memory in the connection nodes. In this Section, we present the method to program crossbar

116

array.

In Liquid Silicon, buffers are inserted between crossbar arrays, which can be configured

to connect or disconnect multiple WLs (or BLs) in the adjacent tiles when programming

Liquid Silicon. Logically, Liquid Silicon only contains one crossbar array during configura-

tion, and it can be programmed by the widely used write scheme (e.g. “V/3” or “V/2” write

scheme)[20]. Additionally, write-and-verify schemes can be applied to program RRAM cells

into the required resistance level. Physically, WLs and BLs are separated by the buffers,

therefore the configuration process does not have severe IR-drop issue. The configuration

bitstream is generated by the compilation tool (Section 6.3) in an offline process.

With the manufacturing process getting mature, there has been steady improvement

in RRAM technologies based on engineering approaches. Rather than taking over the

dominant markets of incumbent technologies such as DRAM or FLASH, a relative low-

hanging fruit is to apply RRAM to Liquid Silicon, as it has less stringent requirements on

endurance, write speed and power, etc., from the technology point of view. For RRAMs of

interest, 108 cycles of endurance is likely sufficient to sustain the life time of Liquid Silicon,

which is quite achievable in commercial products. For the memory mode, since any tile can

be configured as memory blocks, wear leveling can be performed by optimally placing the

memory blocks, thereby reducing the pressure on endurance. Evaluation of this technique

will be our future work. High write power and low write speed per bit compared to SRAMs

is less of a concern, as configuration is not done as frequently as updates on main memory

and not all applications utilize the memory mode.

6.3 Custom Compilation Framework

Each Liquid Silicon contains hundreds of thousands of tiles with Gb-scale RRAM that

needs to be configured to run an application. Therefore, it is intractable to custom-tailor

each memory element for application mapping. To address this issue, a custom compilation

framework is presented to facilitate application development for Liquid Silicon.

Figure 6.16 depicts the compilation framework for Liquid Silicon. It comprises a flexible

117

High-level SynthesisApplication

Output to

configure L-Si

TensorFlow, OpenCL …

Front-end

Parser

Technology

Mapping

Place&Route

Bitstream

Verilog

RTL

Back-end

Add support for:

1) Light-weight computation

2) Flexible memory blocks

Add support for:

1) Coarse-grained

logic implementation

Add support for:

1) Adaptive Resource Partition

Place

Route

Adaptive

Resource

Partition

Resource used for:

Heavy-weight compute Interconnect

Figure 6.16: Workflow of the compilation framework. The back-end is modified to support
the features provided in Liquid Silicon.

front-end that supports a wide range of popular high-level programming languages and

frameworks, and a custom back-end that can fully exploit the low-level architectural features

of Liquid Silicon to achieve optimal code mapping on target hardware. More specifically, the

front-end takes an application written in high-level programming languages/frameworks as

an input and translates it into synthesizable Verilog RTL code. The front-ends that generate

a common code representation in Verilog RTL can be integrated into this framework. Thus,

this compilation framework is reusable and extendable to other front-ends.

The back-end further synthesizes the Verilog RTL code into bitstreams, which are used

to configure Liquid Silicon. This custom back-end is adpated from one of the most popular

open-source retargetable toolchains — Verilog to Routing (VTR) [87][96] that has been de-

veloped for mapping applications written in Verilog onto FPGA. Nevertheless, several major

modifications are made to VTR to account for the fundamental architectural differences be-

tween FPGA and Liquid Silicon for optimal code mapping. As shown in Figure 6.16, the

back-end contains three stages, i.e., parser, technology mapping and place&route. Specifi-

cally, the parse from VTR is modified to support the four configurations. The technology

mapping tool from VTR is modified to realized the coase-grained logic implementation.

The place&route tool in VTR is replaced by a custom tool that fully utilize the unique flex-

118

ibility provided by Liquid Silicon. The key modifications are highlighted in the following

discussion.

Compiler support for light-weight compute mode. As VTR is originally de-

veloped for FPGAs, which do not have dedicated configuration support for light-weight

computation (Figure 6.5), we modify it to add compiler support for such a new feature in

Liquid Silicon. More specifically, we add two new Verilog modules for TCAM and BNN

that can be instantiated in the Verilog RTL code. The parser is modified to identify the

instantiations of these modules and convert them into a logical netlist. In case the size of

some modules exceeds a predefined threshold, the parser will split it into multiple smaller

ones to ensure it is physically realizable. The place&route tool then takes the netlist as an

input and maps it onto physical tiles.

Compiler support for flexible memory blocks. Although VTR provides compiler

support for mapping memory modules on FPGA, the mapping is subject to the constraint of

physical hardware IP blocks with fixed size and location. Here, we modify it to better exploit

the flexibility of Liquid Silicon. Specifically, an additional parsing step, which is needed in

VTR to split a large memory module into smaller ones in order to fit into physical BRAM

blocks with fixed size and location, is no longer needed in the case of Liquid Silicon, whose

architecture naturally supports flexible size and location.

Compiler support for coarse-grained logic implementation. VTR has a fine-

grained logic implementation in the technology mapping stage, which synthesizes the logic

netlist into simple logic gates with ⩽ 6 inputs. To adapt VTR to Liquid Silicon, we modify

the technology mapping tool and use the cut enumeration with the priority cuts algo-

rithm [94] to pack the simple logic gates into large clusters (e.g. complex logic functions

with ∼ 30 inputs), thereby improving the tile utilization.

Compiler support for adaptive resource partitioning. VTR utilizes dedicated

hardware (CBs and SBs in Figure 2.1) for routing, while in Liquid Silicon, routing is flexible

and can co-exist with the heavy-weight compute mode within a tile. As such, the custom

place&route tool exploits the unused portion of a tile to perform routing. More specifi-

119

cally, we propose a technique called Adaptive Resource Partition to partition the hardware

resources in one tile between heavy-weight compute mode (logic) and interconnect mode

(routing) to achieve high tile utilization.

6.3.1 Adaptive Resource Partition

The custom place&route tool utilizes the simulated annealing algorithm [127] to place logic

functions into tiles and routes the interconnections between them. In order to adaptively

adjust the resource provisioning between logic and routing for each tile, this custom tool

perform place and route simultaneously, rather than sequentially as in FPGA place&route

tool. Specifically, given a new placement, the routing paths for all interconnection nets are

generated. Then the resource provisioning between logic and routing in each tile is updated

based on the actual usage, and the placement is updated based on the new resource provi-

sioning. As a result, the resource provisioning in each tile can be independently controlled

and adjusted.

New Cost Function: To achieve this adaptive resource partition, a new cost func-

tion is designed to account for both place and route. Based on the negotiation idea in

PathFinder [91], the cost function for a given logic primitive i (e.g., a logic function) is

given by:

Cost = (B −A(i))× f(i) +B × C × g(i)

where A(i) is the length of the longest path that contains logic primitive i, B is the length

of the critical path. The term f(i) represents the cost of placement and is related to the

utilization of the tile in which logic primitive i is placed. More specifically, its value is

chosen to be small, e.g., 0.01 if that tile is not over utilized. Otherwise, it is a large positive

number. The term g(i) is the routing cost of logic primitive i, and its value is the average

length of routing paths. The value of the parameter C is chosen to be 1 initially, and

decreases if any tile is over utilized. The total cost is the summation of costs for all logic

primitives in the netlist.

With this new cost function, we can optimize delay on the critical path as the term

120

(B−A(i)) becomes zero. On the contrary, on the non-critical paths, it tends to place logic

primitives in tiles with low utilization and thus optimizes area. Therefore, we can achieve

the best trade offs between performance and area.

6.4 Chip Demonstration

A test chip is fabricated to demonstrate the Liquid Silicon architecture. In this test chip,

each tile is structured with a 1T1R memory array (not 1D1R array to reduce the fabrication

difficulty) and a set of connection nodes, as illustrated in Figure 6.17. The schematic of

the 1T1R memory cell is shown in Figure 6.17b, which contains an access transistor and

an RRAM element. The 1T1R memory array is identical to the array structure in the

conventional nonvolatile memory design while the array-to-array interconnection is radically

different from that in the conventional memory. In particular, the word line (WL)/bit line

(BL)/source line (SL) connections to adjacent tiles are realized via the connection nodes

which comprises CMOS circuits to support the essential operations of Liquid Silicon. Note

that when making the tile-to-tile connection, adjacent tile is rotated by 90 degree to make

the data flow between tiles easier and each connection node is responsible for connecting

the BLs of the memory array in one tile to the WLs of the memory array in the adjacent

tile, and drive the corresponding SLs. Since the adjacent tile is rotated by 90 degree, one

WL in Liquid Silicon can either select 1) a row of RRAM cells, or 2) a column of RRAM

cells, depending on the orientation of the tile. This is different from that in conventional

memory, where one WL is used to select a row of cells.

Figure 6.17c shows the key building blocks of a connection node, which contains separate

circuits for read (Section 6.4.1) and write operations (Section 6.4.2) respectively. The read

circuits include a sense amplifier (SA), an inverter, a flip-flop, a low-voltage driver (LV-

driver) and two multiplexers (controlled by two 1-bit configuration memories). The write

circuits include high-voltage drivers (HV-driver) based on thick-oxide FETs, special registers

(2-bit WL Sel, 1-bit Bit Mask and 2-bit Data) and some decoding logic. The SA, LV-driver

and HV-drivers are connected to the BL/SL/WL by the write enable signal, depending on

121

Tile

RRAM

Access

Transistor

BL

SL

WL

(b) 1T1R Cell

SA
DFF

WL_Sel

LV-

driver

WL

HV-

driver

BL

SL
Bit Mask

Data

Controlled by

Write Enable (c) Connection Node
Configuration

Memory

(a)

HV-

driver

HV-

driver

P1

CLK

Write

Circuits

Read

Circuits

Figure 6.17: (a) This Liquid Silicon test chip comprises a 2D array of identical tiles, and each
tile contains a 1T1R memory array and several connection nodes. Note that the adjacent
tile is rotated by 90 degree. The pitch mismatch between WL and BL can be resolved in
the connection node through a two-metal transition routing network. (b) The schematic of
a 1T1R memory cell, and (c) key building blocks of the connection node are drawn in the
figure.

122

BL0

SA

VDD

GND

Voltage

On BL

V

V

t

Precharge Evaluation

Reference

Timing

Vth

0

RRAM in Low

Resistance State

RRAM in High

Resistance State

Transistor is off

Transistor is on

Large current

Small current

(b)

SA
DFF

WL_Sel

LV-driver
WL

HV-driver

SL
Bit Mask

DataHV-driver

HV-driver

P1
CLK

(a)

BL

SL0 BL1 SL1

WL1

WL0

SA

t

V

V

t
Reference

Timing

Vth

1

t

Precharge Evaluation

Sensing

Output

Figure 6.18: (a) The read data path for the sensing operation is drawn in the figure. (b)
The conceptual diagram illustrates the sensing operation.

the read or write operation. A scanchain (not drawn in the figure for simplicity) is used to

load data into the configuration memories and the special registers.

6.4.1 Operational Modes

This section first describe the read/sensing operation that is most performance critical and

commonly used in all operational modes, and then present the details of each mode.

The read data path to perform the sensing operation is shown in Figure 6.18a. The

BL is connected to the SA, and the WL and the SL are connected to the LV-driver and

ground respectively. We apply the same circuit as in [81] to implement the SA to achieve

low power, high speed, and good noise tolerance. The sensing operation is controlled by the

sensing clock (CLK) and is performed in two stages: precharge and evaluation, as shown

in Figure 6.18b. In the precharge phase (CLK=0), all WLs are connected to ground to

turn off the access transistors in the 1T1R cells, and the BL is charged through P1. In the

evaluation phase (CLK=1), BL is floating (P1 is off), and WLs are either connected to VDD

or GND, depending on the input values. The BL then starts to discharge to ground at a

rate depending on the number of low-resistance pull-down paths. Large discharging current

123

occurs if an RRAM element is in the low resistance state (LRS) and the corresponding access

transistor is turned on. If the BL voltage drops across a certain threshold (Vth) before the

reference timing, the SA outputs a ‘0’ (BL0 in Figure 6.18b). Otherwise, it outputs a ‘1’

(BL1 in Figure 6.18b). A redundant BL is reserved in each tile to generate the reference

timing signal to better track process, voltage and temperature (PVT) variations. As a result

of the analog nature of RRAM, the reference timing (the falling edge of the SA output) is

highly tunable as further adjustment can be performed via programming of RRAM cells

on this BL. In the current setup, the reference BL is monitored and programmed by the

external tester through write-verify operations.

The same sensing operation is performed across all operational modes. The key differ-

ence among these operational modes is the different data encoding of the inputs applied

on WLs, the resistance values stored in the resistive elements and the SA’s outputs. Based

on the value stored in the configuration memories, the sensing result (SA’s output) can be

inverted and/or latched before sending to the next tile. The sensing outputs of a tile are

applied to drive the WLs of the memory array in the adjacent tile. More detailed discussion

is presented in the following four operational modes.

Heavy-weight Compute and Interconnect Mode

An arbitrary multi-input-single-output logic function is implemented by one BL in this

mode. The inputs to the logic function are applied on the WLs, and sensing operation is

performed to generate the output of this function on the BL. In this operational mode, logic

input values are encoded into different voltage levels to ensure a correct operation. In par-

ticular, a logic input ‘0’ is encoded into a voltage level of VDD on a WL, while a logic input

‘1’ is encoded into GND. In addition to the inputs, the type of logic operations is encoded

into the corresponding resistance values. For instance, Figure 6.19a shows the implementa-

tion of a three-input AND function (Out = ABC). The RRAM elements associated with

the WLs that carry the inputs to this logic function are programmed into LRS, while other

RRAM elements are written into high resistance state (HRS). As shown in Figure 6.19a,

if any of the inputs A, B or C is logic ‘0’ (apply VDD on the corresponding WL), the BL

124

Logic

Input

𝑨 = 𝟎

𝑩 = 𝟏

𝑪 = 𝟏

VDD

GND

GND

SA

BL SL

𝑶𝒖𝒕 = 𝑨𝑩𝑪
= 𝟎

t

V

Vth Voltage

on BL

t

V

Output

Reference

Timing
0

(a)

RRAM in LRS RRAM in HRS Transistor is off Transistor is on Large

current

Small

current

WL0

WL1

WL2

𝑶𝒖𝒕 = 𝑨𝑩𝑪
= 𝟏

t

V

Vth

t

V

Output

Reference

Timing
1

(b)

𝑨 = 𝟏

𝑩 = 𝟏

𝑪 = 𝟏

GND

GND

GND

SA

BL SL

WL0

WL1

WL2

Voltage

on BL

(c)

Logic

Input

Vth

GND

t

V

BL0

t

V

Out0

Reference

Timing
1

𝑶𝒖𝒕𝟎 = 𝑨𝑩
= 𝟏

𝑨 = 𝟏

𝑩 = 𝟏

𝑪 = 𝟎

GND

SA

BL0 SL0

VDD

𝑶𝒖𝒕𝟏 = 𝑩𝑪
= 𝟎

SA

BL1 SL1

𝑶𝒖𝒕𝟐 = 𝑨
= 𝟏

SA

BL2 SL2

Logic

Input

WL0

WL1

WL2

t

V

t

V

Out1

Reference

Timing
0

t

V

t

V

Out2

Reference

Timing
1

BL1 BL2

Figure 6.19: (a, b) An arbitrary AND function is implemented on one row (BL). (c) Multiple
functions are implemented in one array with a compact mapping.

will have a large discharging current, which will be detected by the SA, outputting a ‘0’.

Otherwise, if all the inputs are logic ‘1’, the SA outputs a ‘1’ (Figure 6.19b). By controlling

the configuration memory, the sensing result can be further inverted to implement a NAND

function on one BL, and it can also be latched to implement a sequential logic.

Multiple logic functions can be implemented in one tile, as shown in Figure 6.19c. A

shared logic input (e.g., input B) is applied on the same WL to improve the array utilization.

The unused inputs can be simply masked out by programming the corresponding RRAM

cells into HRS. For instance, the logic functions of Out0 = AB and Out2 = A do not have

input C. Although applying a logic ‘0’ to input C would turn on all access transistors

in the corresponding row and discharge all three BLs, the BL0 and BL2 only have a small

discharging current, thus, the corresponding SAs will generate the correct outputs (Out0 = 1

and Out2 = 1). Moreover, one BL can also be used to route a logic signal by implementing

a one-input buffer function (Out2 = A). This is used in the Memory mode to route the

column address.

125

Memory Mode

Three adjacent tiles are utilized to implement a memory block (Figure 6.20a). The left

tile operates in the Heavy-Weight Compute Mode to implement the row address decoder

and route the column address to the central tile. The central tile stores data and implements

the column address decoder. The bottom tile also operates in the Computation mode to

implement the selection logic and generate the read result. The data and input encoding

in the left/bottom tile are the same as that in the Computation mode. For the central tile,

selecting a row for read is encoded into applying a voltage level of VDD on the corresponding

WL, while GND is applied on the WLs of the unselected rows. Data bit ‘1’ is encoded as

programming an RRAM element into HRS, while data bit ‘0’ is encoded as programming

an RRAM element into LRS.

Figure 6.20 provides a conceptual diagram to show the implementation of a memory

block that stores 16 2-bit words. The memory address A[3 : 2] is used as the row address,

while A[1 : 0] is used as the column address. The left tile implements the logic functions to

decode the row address (Figure 6.20b). Based on the decoded results, appropriate voltages

are applied on the WLs of the central tile (Figure 6.20c). The column address is then

decoded by the central tile. As shown in Figure 6.20c, the BL of an unselected column has

a large discharging current flows through the 1T1R cells in the address decoder region, thus,

the SA always outputs logic ‘0’ for the unselected column, independent of the data value

stored in the data array region. For the selected column, the sensing result is determined by

the RRAM state in the selected 1T1R cell, and the SA will output logic ‘1’ if this RRAM

is in HRS (store bit ‘1’), otherwise output ‘0’ (store bit ‘0’). Finally, the outputs from the

central tile are ORed by the selection logic in the bottom tile to generate the read result

(Figure 6.20d). The timing diagram of the read operation is shown in Figure 6.21. For

the write operation, in principle, we can apply the same decoding scheme as read operation

to write data into memory. Nevertheless, due to die area constraint, we choose to use the

write data path as described in Section 6.4.2 to write data into the memory block in this

test chip.

126

Row Address Column Address

R
o
w

A
d

d
re

ss
D

ec
o
d

er

R
o
u

te
C

o
lu

m
n

A
d

d
re

ss

𝑨 𝟑 + 𝑨[𝟐] = 𝟏

𝑨 𝟑 + 𝑨[𝟐] = 𝟎

𝑨[𝟑] + 𝑨[𝟐] = 𝟏

𝑨[𝟑] + 𝑨 𝟐 = 𝟏

𝑨[𝟏] = 𝟏

𝑨[𝟏] = 𝟎

𝑨[𝟎] = 𝟎

𝑨[𝟎] = 𝟏

VDD GND GND VDD GND VDD VDD GND
SA

𝑨 𝟑 + 𝑨[𝟐] = 𝟏

Unselected

Row

𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟏

SA

𝑨 𝟑 + 𝑨[𝟐] = 𝟎

Selected

Row

(b) Row

Address

Decoder

(c) Data

Array &

Column

Address

Decoder

(d) Selection

Logic
(a) Memory Block

SA

SA

𝟎

𝟏

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎

V
D

D

G
N

D

R
ea

d
 R

esu
lt

(d) Bottom

Tile

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

(b) Left Tile

RRAM

In LRS

RRAM

in HRS

Transistor

is off

Transistor

is on

Large

current

Small

current

SA

𝑨[𝟎] = 𝟏

Route Column

Address

𝑺𝟎

𝑺𝟏

D
a
ta

A
rra

y

C
o
lu

m
n

 A
d

d
ress

D
eco

d
er

𝟏

𝟎

𝟏

𝟏

𝟏

𝟏

𝟎

𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎

𝟏 GND

𝟏 GND

𝟏 GND

𝟏 GND

𝟏 GND

𝟎 VDD

𝟎 VDD

𝟎 VDD

D
ec

o
d

ed

R
o
w

 A
d

d
re

ss

C
o
lu

m
n

A
d

d
re

ss

Selected Columns

SA SA SA

𝟎 𝟎 𝟏

Selected

Column

(c) Central Tile

Unselected

Column

Selected

Column𝑺𝟐

𝑺𝟑

𝑺𝟒

Figure 6.20: (a) Three adjacent tiles are used to implement a memory block that stores
16 2-bit words. (b) The left tile implements the row address decoder and routes column
address to the central tile. (c) The central tile implements the column address decoder and
stores data. (d) The bottom tile implements the selection logic to generate the read result.

127

CLK

S0=A[3]+A[2]

𝑺𝟑

𝑺𝟒

SA output of

central tile

Read

result

𝐀[𝟑]

𝐀[𝟐]

Row

Address

𝐀[𝟏]

𝐀[𝟎]

Column

Address
Address decoded

by left tile

S1=A[1]

S2

Sensing results

generated by central tile

Final read results

generated by bottom tile

Figure 6.21: The timing diagram of the read operation.

We made several design decisions in this Memory mode. At first, we choose to use

the left/bottom tile to implement peripheral circuits (e.g. address decoder) rather than

using dedicated CMOS-based circuits for two reasons. i) It allows us to flexible select the

number of row/column address bits to implement memory blocks, as compared with hard-

wired CMOS decoding circuits which only support fixed row/column address bits. ii) The

CMOS-based peripheral circuits are only useful for this Memory mode and will be wasteful

when a tile operates in other three modes.

Secondly, with such flexibility, we need to judiciously select the number of row/column

address bits to maximize the achievable memory capacity. Figure 6.22a shows an example

in which the optimal address selection achieves the memory capacity of 16 2-bit words, as

compared with a non-optimal one which can only store 12 2-bit words given the same area

(Figure 6.22b). Since the number of possible selections is limited (< 8), the compilation

framework can examine all the cases to find the optimal one. It is also worth noting

that the optimal address selection varies with the word size. For instance, the optimal

selection of a memory block with a 4-bit word size (3-bit row address and 1-bit column

address, Figure 6.22c) is different from that of a memory block with a 2-bit word size (2-bit

column/row address, Figure 6.22a).

128

(a)

Column

Address

Decoder

A 2-bit word

2-bit row address

2-bit column address

16 2-bit words

3-bit row address

1-bit column address

12 2-bit words
(b)

3-bit row address

1-bit column address

12 4-bit words

(c)

Decoded Row

Address

Column Address

A 4-bit word

RRAM in LRS

RRAM in HRS

Figure 6.22: (a) An optimal selection of the row/column address bits leads to a 32-bit (16
2-bit words) of memory capacity, as compared with (b) a non-optimal one which leads to a
24-bit (12 2-bit words) of memory capacity given the same area. (c) The optimal address
selection for a memory block with a 4-bit word size, which achieves 48-bit (12 4-bit word)
of memory capacity. The left/bottom tiles are not drawn in this figure for simplicity.

Bit ‘1’Bit ‘X’

Output ‘1’

Match

Output ‘0’

Mismatch

RRAM in Low

Resistance State

RRAM in High

Resistance State

Transistor

is off

Transistor

is on

Large

discharging

current

Small

discharging

current

Bit ‘0’S
ea

rc
h

 I
n

p
u

t
(S

[1
:0

]
=

 0
1

)

𝐒
[𝟎
]
=
𝟏

VDD

GND

GND

SA

BL0 SL0

WL0

WL1

WL2

𝐒
[𝟏
]
=
𝟎

VDD

BL1 SL1

SA

Bit ‘1’
WL3

t

VthVoltage

on BL0

t

V
Reference

Timing

t

Vth

t

V
Reference

Timing

Voltage

on BL1

Figure 6.23: One tile can be configured to perform parallel search operations.

Finally, another optimization we performed is on the column address decoder to maxi-

mize the resource utilization. As shown in Figure 6.20c, the column address decoder occupies

multiple rows in the central tile, which reduces the number of rows that can be used for data

storage. Thus, it is desirable to minimize the number of rows used for column decoding.

As such, we choose the decoding scheme by routing the column address to the central tile

which only occupies 2×N rows for an N-bit address. In contrast, if the column address is

decoded in the left tile (same as the row address), the decoder will occupy 2N rows for an

N-bit address, resulting in a significantly reduced memory capacity.

129

Light-weight Compute Mode

One tile can implement parallel search operations for pattern matching (Figure 6.23).

This mode is critical for supporting big data applications that are often search-intensive.

In this mode, the search keys are applied on WLs and sensing operation is performed to

generate search results by comparing the data entries stored in the memory array with the

incoming search keys. The SA outputs a ‘1’, indicating a match and vice versa. To support

search, the data encoding in this mode is very different from that in Heavy-weight Compute

and Memory modes. In this mode, a logical grouping of two adjacent WL inputs and two

adjacent memory cells are applied to encode a single bit. As shown in Figure 6.23, one bit

of the search key is encoded into a complementary voltage levels applied on the pair of WLs

(e.g. bit ‘0’ is encoded as applying GND on the top WL and VDD on the bottom WL). One

data entry is stored in one column. RRAM elements in the pair of two cells are programmed

into complementary states to store bit ‘0’ or ‘1’, or are both programmed into HRS to store

“don’t care” state (denoted by an ‘X’). As shown in Figure 6.23, if there is a mismatch

between the stored entry and the search key, the BL (BL1) has a large discharging current,

which is detected by the SA to output ‘0’ (mismatch), otherwise, it outputs ‘1’ (match).

One tile can also implement binarized neural networks (BNNs). The input vector is

applied on the WLs, and the sensing operation is applied to perform the BNN operations,

i.e., bit-wise XNOR, population count and activation. The data encoding in this mode is

similar to that in Search. We logically group two adjacent WL inputs and two adjacent

memory cells to encode a single bit of value. As shown in Figure 6.24, applying complemen-

tary voltage values (VDD and GND) on adjacent WLs is used to encode input ‘0’ and ‘1’.

Each weight vector is stored in one column and two adjacent 1T1R cells are programmed

into complementary states to store a single-bit weight value. The XNOR count and acti-

vation operations are implemented by the SAs in the connection nodes. During sensing,

the BLs are first precharged and the input vector is applied on the WLs. Each BL then

performs a bitwise XNOR, and discharges at different rates (represent the XNOR count

result), which is detected by the SA to generate the output. Specifically, the SA will output

130

Slope represents the

XNOR count result

Adjust reference

timing to implement

activation function

Weight

Vector

Bit ‘0’Bit ‘1’

Bit ‘0’

In
p

u
t

(I
n

[1
:0

]
=

 0
1

)

In
[𝟎
]
=
𝟏

VDD

GND

GND

SA

BL0 SL0

WL0

WL1

WL2

In
[𝟏
]
=
𝟎

VDD

BL1 SL1

SA

Bit ‘1’
WL3

1

0

RRAM in Low

Resistance State

RRAM in High

Resistance State

Transistor

is off

Transistor

is on

Large discharging

current

Small discharging

current

tVthBL0

t

V
Reference

Timing

tVth

t

V
Reference

Timing

BL1

V V

Figure 6.24: One tile can be configured to implement binarized neural networks.

‘0’ if the discharging rate exceeds a given threshold, otherwise, it will output ‘1’ (equivalent

to performing activation function). This threshold can be adjusted by tuning the reference

BL timing to implement different activation functions. More details on tuning the reference

timing can be found in the description of the sensing operation in Section 6.4.1.

6.4.2 Write Operation

The write data path to program a selected 1T1R cell is shown in Figure 6.25a. The

BL/SL/WL are connected to the HV-drivers, which contain level-shifters and multiplex-

ers to connect WL/BL/SL to different voltage supplies (0.8V, 2V, 2.5V, 3.2V, 4V) based on

the value stored in the registers. To set a selected RRAM element into LRS (Figure 6.25b),

2V is applied on the WL of the selected row by loading ‘01’ into the corresponding WL Sel

register. While other unselected WLs are connected to ground by loading ‘00’ into the

WL Sel registers. For the selected column, ‘1’ is loaded into the Bit Mask and ’00’ is loaded

into the Data register. Then the HV-drivers apply a 2V voltage pulse (100ns) on the SL and

connect the BL to ground for this selected column. A current flows through the selected

RRAM element to set it into LRS. For the unselected columns, ‘0’ is loaded in the Bit Mask,

and both BL and SL are connected to ground. No current flows through the unselected

1T1R cells and their resistance states remain unchanged, since 1) the access transistor is

turned off for the unselected rows, and/or 2) no voltage drop across BL and SL for the uns-

elected columns. To reset a selected RRAM element into HRS (Figure 6.25c), ‘10’ is loaded

131

Bit Mask

1

Transistor is off Voltage Pulse

(a)

W
L

_
S

el
0

0

WL_Sel WL

11 0.8V

10 3.2V

01 2V

00 0V

SA
DFF

WL_Sel

LV-driver
WL

HV-driver

Bit Mask

DataHV-driver

HV-driver

P1
CLK

BL

2
V

G
N

D

GND

SL

(b)

(c) (d)

Transistor is on Set/Reset Current

2V

Bit

Mask
Data

BL

(V)

SL

(V)

1 10 0 4

1 01 2.5 0

1 00 0 2

0 - 0 0

W
L

_
S

el
0

1

Data

00

Bit Mask

0

Data

-

GND GND

Bit Mask

1

W
L

_
S

el
0

0

3
.2

V
G

N
D

GND2.5V

W
L

_
S

el
1

0

Data

01

Bit Mask

0

Data

-

GND GND

Selected Cell

BL0 SL0 BL1 SL1

BL0 SL0 BL1 SL1

Figure 6.25: (a) The write data path for programming a selected 1T1R cell is drawn in
figure. The conceptual diagram illustrates the operation to (b) set the selected RRAM into
LRS, and (c) reset the selected RRAM into HRS. (d) The output voltages of HV-drivers
are summarized in the table.

in the WL Sel register to apply 3.2V on the WL of the selected row. The bits stored in the

Bit Mask registers are the same as that in the set operation, but ‘01’ is loaded into the Data

register for the selected column. Then the HV-drivers apply a 2.5V voltage pulse (100ns)

on the BL and connect SL to ground. The current flows through the selected RRAM in the

opposite direction (as compare with the set operation) to reset it into HRS. The setup for

forming a selected RRAM element is similar to that of the set operation, but it loads ‘11’

into the WL Sel register of the selected row and ‘10’ into the Data register of the selected

column. This applies 0.8V on the corresponding WL and a 4V voltage pulse (40µs) on the

corresponding SL. Output voltages of the HV-drivers are summarized in Figure 6.25d.

132

F
re

q
u

en
cy

F
re

q
u

en
cy

F
re

q
u

en
cy

F
re

q
u

en
cy

Resistance (kΩ)
0 16014012010080604020

Match

1-bit Mismatch

20.8

12.6

7.8

4.9

(a)

F
re

q
u

en
cy

(M
H

z)

0

10

20

30

40

50

60

70

P
o

w
er

/T
il

e
(m

W
)

0

5

10

15

20

25

30

A
rr

a
y

 E
ff

ic
ie

n
cy

 (
%

)

0

10

20

30

40

50

Array Size

Array Size

Array Size

𝟑𝟐 × 𝟑𝟐 Array

𝟔𝟒 × 𝟔𝟒 Array

𝟏𝟐𝟖 × 𝟏𝟐𝟖 Array

𝟐𝟓𝟔 × 𝟐𝟓𝟔 Array

(b)

P
o

w
er

 E
ff

ic
ie

n
cy

(T
O

P
S

/W
)

Machine

Learning

0

60

10

20

30

40
50

P
o

w
er

 E
ff

ic
ie

n
cy

(T
O

P
S

/W
)

A
re

a
 E

ff
ic

ie
n

cy

(T
O

P
S

/m
m

2
)

0

0.2

0.4
0.6
0.8

1.0
1.2

1.4

Array Size

Array Size

P
o

w
er

 E
ff

ic
ie

n
cy

(T
b

-S
ea

rc
h

/s
/W

)

0

5

10

15

20

25

30

A
re

a
 E

ff
ic

ie
n

cy

(T
b

-S
ea

rc
h

/s
/m

m
2
)

0

0.1
0.2

0.3
0.4
0.5
0.6
0.7

Big

Data

Array Size Array Size(c)

Match: The input search key is identical to the stored data entry.

1-bit Mismatch: Only one bit in the search key is different from

the data entry.

Tb-Search/s: The product of the search key width and search throughput.

Figure 6.26: (a) The distributions of the effective resistance for both match and 1-bit
mismatch cases. (b) The maximum operating frequency, power consumption, and array
efficiency under different array sizes. (c) The power efficiency and area efficiency for machine
learning and big data applications under different array sizes.

6.4.3 Discussion

To explore the design trade-offs between speed, power and area efficiency, we evaluate

the performance of Liquid Silicon under different array sizes by varying the number of

rows/columns. We first study how the maximum operating frequency, power consumption,

and array efficiency of one tile vary with different array sizes through simulation. As shown

in Figure 6.26b, the maximum operating frequency decreases when increasing the array size.

The reason is that larger array degrades sensing margin (Figure 6.26a) and thus the SA needs

a longer discharging time to generate the correct output. We also observe that the power

consumption increases in a larger array (Figure 6.26b), as it has more discharging paths

and a longer discharging time, which increase the voltage swing on the BL. Nevertheless, a

larger memory array has a higher array efficiency (Figure 6.26b).

To determine the optimal array size, we further evaluate the power efficiency (OPS/W)

133

and area efficiency (OPS/mm2) for mapping machine learning and big data applications

onto the tiles. As shown in Figure 6.26c, the power efficiency increases with a larger array

size, as increasing array size can improve the algorithmic mapping efficiency, i.e., performing

more effective computations (e.g. bitwise XNOR operations in the Neural Network mode) in

a single sensing operation. This improvement compensates the degradation in the operating

frequency and power consumption, thereby leading to a higher power efficiency. However,

when increasing the array size from 128 to 256, we see a diminishing return in the power

efficiency, as the degradation in frequency and power has outweighed the improvement in

the algorithmic mapping. We observe a similar trend for the area efficiency (Figure 6.26c).

When the array size is less than 256, the improvement in array efficiency can compensate the

degradation in the operating frequency, thereby leading to a higher area efficiency. However,

increasing the array size beyond 256 does not improve the area efficiency any further. To

account for these results and the die area constraint, we choose the array size of 128× 128

in our implementation.

6.5 Extend Virtualization Solution

Instead of naively applying the proposed virtualization solution to the Liquid Silicon archi-

tecture, we can co-optimize the virtualization solution and the Liquid Silicon architecture

to maximize the performance. The key observation is that while using tiles for routing can

enable a flexible resource partition (Figure 6.3) and is efficient for short-distance intercon-

nections, this routing solution is not efficient for long-distance interconnections that need

to be routed through several tiles. Based on the quantitative study, the routing consumes

about 42% of the total area and contributes to about 61% of the total delay in large ap-

plications that have a large number of long-distance interconnections. On the contrary, the

routing only consumes less than 12% of the total area and contributes to less than 19%

of the total delay in the same applications that only have short-distance interconnections.

The two-level system abstraction is modified to address this limitation.

As illustrated in Figure 6.27, the low-level abstraction is modified into a 2D array of LL

134

Latency-insensitive

Interface
Synchronous Interface

Interface to

Peripherals

Low-Level

Virtual

Block

Low-Level

Virtual

Block

Low-Level

Abstraction for

Liquid Silicon

Low-Level

Virtual

Block

Low-Level

Virtual

Block

Low-Level

Virtual

Block

Low-Level

Virtual

Block

Figure 6.27: A conceptual diagram illustrates low-level abstraction modified for Liquid
Silicon.

virtual blocks. One LL virtual block is mapped into a cluster of tiles, while the synchronous

interface for the communication between LL virtual blocks is implemented by a FPGA-like

routing fabric (Figure 6.28). This hybrid routing fabric effectively address the aforemen-

tioned limitation. Specifically, the FPGA-like segment-based routing fabric is efficient to

implement the long-distance global interconnections, while the tiles can efficiently imple-

ment the short-distance local interconnections. The clustering of tiles effectively reduces

the number of long-distance global interconnections, thereby avoiding the routing overhead

in conventional FPGA architecture. The compilation framework for this modified system

abstraction is drawn in Figure 6.29. Compared with the original compilation framework

(Figure 4.1), the key modifications are (1) the partition tool developed for the single-level

system abstraction is utilized to partition one HL virtual block into a 2D array of LL virtual

blocks, (2) the custom tool developed for Liquid Silicon is used to map one LL virtual block

into a cluster of tiles, (3) the routing tool in VTR is reused to route the interconnections

between clusters of tiles. An architecture file that defines a new type of block to represent

the cluster of tiles is provided for reusing VTR’s routing tool. And (4) no additional custom

135

Local

Routing

Global

Routing

Tile

Cluster

Routing ChannelSwitch Block

Connection

Block

S/A

DFF

Output

Input

Figure 6.28: A conceptual diagram illustrates the hybrid routing fabric in the modified
Liquid Silicon. The cluster contains 2× 2 tiles in the example.

tool is needed for relocation as the results generated by Liquid Silicon Place&Route tool is

already relocatable. While the 2D array of LL virtual blocks can have an arbitrary width,

we choose to restrict it to have a fixed width to reduce the compilation cost and simplify

the runtime management.

6.6 Results

This section first presents the simulation results that compares the Liquid Silicon architec-

ture with the FPGA architecture, and then provides the chip measurement results. Finally,

the efficiency of the virtualization solution on Liquid Silicon architecture is evaluated.

6.6.1 Evaluation Setup

Benchmark Selection.

Several factors have been taken into consideration when selecting the benchmarks. 1)

They should be sufficiently representative and diverse enough to cover a range of workload

characteristics in the form of compute-to-memory access ratio [159], ranging from compute-

intensive applications to data-/search-intensive applications. 2) They should account for

the demands of potential new applications which may not be amenable for FPGA-like

136

Applications

TensorFlow, OpenCL …

High-Level

Synthesis
Verilog RTL

Partition Latency-Insensitive

Interface Generation

High-Level Partition

Custom

Interface

DescriptionParser
Technology

Mapping

Local Place&Route
(Liquid Silicon Tool)

Bitstream

Low-Level

Partition

Global Route
(VTR)

Architecture File

Figure 6.29: The compilation framework for the virtualized Liquid Silicon.

acceleration but can better exploit the flexible resources of Liquid Silicon.

Based on these factors, three sets of benchmarks are used: 1) traditional FPGA bench-

marks, 2) search-intensive benchmarks and 3) binarized neural network benchmarks. The

traditional FPGA benchmarks contain benchmarks from the MCNC suite [145], which have

been widely used by the FPGA community to evaluate reconfigurable architectures [98].

We note that the benchmarks in this evaluation are originally developed for FPGA under

the constraint of limited on-chip memory support and thus are compute-intensive applica-

tions with high compute-to-memory access ratio. The search-intensive and binarized neural

network benchmarks, on the other hand, are representative of emerging applications with

low compute-to-memory access ratio and are mainly used to evaluate the unique flexibilities

of Liquid Silicon in supporting light-weight computation. In the following discussion, we

provide more details about the search-intensive and binarized neural network benchmarks.

The search-intensive benchmark set contains four representative workloads obtained

from a diverse set of application domains. In these benchmarks, most of the runtime/energy

is spent on the search operation, therefore they can be used to evaluate the light-weight

compute mode of Liquid Silicon. In addition, these benchmarks require different post-

match processing (e.g. priority encoding and population count) and have different search

key widths, thereby covering the different use cases. More details are presented in Table 6.1.

137

Table 6.1: Description of the search-intensive benchmark set.

Benchmark Description
Search Key Post-match

Width (bit) Processing

String Match [108]
Scan a list of encrypted words for

80 Bitwise OR
occurrences of a set of keys

Classify every incoming packet Priority

by comparing its header fields EncodingPacket Classification [121]

against a filter set.

104

Word Count [108]
Count the occurrences of each

184
Population

unique word in a document. Count

Data mining technique for

various applications
[88][12][74][110].

Priority

A TCAM-based implementation Encoding
Similarity Search [114]

is realized in [114].

288

The binarized neural network benchmark set contains five binary neural network (BNN)

designs. A BNN stores weights as 1-bit binary numbers (+1/-1), thereby significantly re-

ducing the size of weights, as well as the computational complexity (perform bit-wise XNOR

instead of floating-point multiplication in Convolutional Neural Networks or CNNs) [28].

We note that the primary reason for choosing BNNs over CNNs in our evaluation is its

simplicity and efficiency to be implemented on hardware. Although the precision of weights

is reduced, BNNs still provide comparable classification accuracy compared to CNNs on

several datasets [28][27][124][69]. Due to these advantages, there has been a growing ef-

fort devoted to implementing BNN on different platforms, e.g., CPU, GPU, TrueNorth and

FPGA [124][163][99][28][27].

Among the five BNN benchmarks, two are binarized convolutional neural networks

(BNN1 and BNN2), while the rest are multilayer perceptrons (BNN3, BNN4 and BNN5)

with three hidden layers, as listed in Table 6.2. Their reported error rates are comparable

to their non-binarized counterparts [124][28]. In these BNN benchmarks, the key processing

units (perform XNOR, count and normalize operations) are highly pipelined and optimized

for performance. Additionally, we assume the training is done offline and only evaluate the

138

Table 6.2: Topology for BNN benchmarks.

Binarized CNN Topology Description

BNN1

3x3conv-3x3conv-2x2pool (output depth 64)

3x3 conv - 3x3 conv - 2x2 pool (output depth 128)

3x3 conv - 3x3 conv - 2x2 pool (output depth 256)

two FC layers with 512 neurons

BNN2

3x3conv-3x3conv-2x2pool (output depth 128)

3x3 conv - 3x3 conv - 2x2 pool (output depth 256)

3x3 conv - 3x3 conv - 2x2 pool (output depth 512)

two FC layers with 1024 neurons

Binarized MLP Neurons in each layer

BNN3 784-256-256-256-10

BNN4 784-1024-1024-1024-10

BNN5 784-2048-2048-2048-10

conv: convolution layer. pool: max pooling layer. FC: fully connected layer.

performance of inference as most prior works did.

Baseline.

FPGA is used as a baseline since it is the most popular commercially available reconfig-

urable architecture. More importantly, Liquid Silicon shares some similarities to FPGAs in

its morphable data-flow architecture, despite a number of radical differences (Section 6.2.3).

Moreover, the goal of this evaluation is to provide insights in comparing two architec-

tures (Liquid Silicon, FPGA) paired with two technologies (RRAM, SRAM). To ensure the

benefits that we gained in Liquid Silicon are not simply due to the advance in technology,

we also include two more cases (RRAM-based FPGAs and SRAM-based Liquid Silicon) in

our evaluation. We note that commercially off-the-shelf FPGAs are SRAM-based FPGAs

and will be chosen to be our baseline. The RRAM-based FPGA is a drop-in replacement for

a SRAM-based FPGA while maintaining the same architecture. Similarly, in the SRAM-

based Liquid Silicon, the RRAMs are replaced with SRAMs. In the rest of the discussion,

we also refer to Liquid Silicon as RRAM-based Liquid Silicon to distinguish it from SRAM-

139

based Liquid Silicon.

Simulation Setup.

For Liquid Silicon, 1) the applications are mapped using the custom compilation frame-

work (Section 6.3), 2) the delay and power consumption are obtained from the HSPICE sim-

ulation (45nm PTM HP model [8]), and 3) the area is measured based on our custom phys-

ical design (Section 6.2.4-Physical Design). More specifically, in the HSPICE simulation,

two Verilog-A modules are created to simulate the behavior of the TaOx RRAM device [132]

and the diode [62]. The characteristics of RRAM devices are (1) Ron/Roff = 5kΩ/ 100kΩ

and (2) 1.8V@100ns/-1V@100ns pulse for SET/RESET [133]. The turn on voltage of the

diode is 0.4V [62]. In the physical design, the size of the crossbar array is chosen to be

256× 256. For FPGA, the mapping of benchmarks is generated by the VTR tool set. The

area, delay and power are estimated based on the models of SRAM-based FPGAs provided

by VTR. The architecture file k6 frac N10 frac chain mem32K 40nm.xml is used.

6.6.2 Traditional FPGA Benchmarks

In this evaluation, the traditional FPGA benchmark set is applied to evaluate the perfor-

mance of Liquid Silicon. The SRAM-based FPGA architecture is chosen as the baseline,

and the performances of other architectures are normalized to it.

Area: RRAM-based Liquid Silicon achieves 81% area savings compared to SRAM-

based FPGAs (Figure 6.30). We also observe that it consumes 31% less area than RRAM-

based FPGAs, which implies that this area reduction is not simply due to a drop-in re-

placement for SRAMs with dense RRAMs. It is also worth noting that among the four

architectures, SRAM-based Liquid Silicon has the largest area cost, indicating that Liquid

Silicon is more amenable to pair with the RRAM technology. Our evaluation confirmed

the compilation framework can effectively utilize tiles, and the average utilization of tiles is

above 70%.

Delay: The delay results are presented in Figure 6.30. For all benchmarks, RRAM-

based Liquid Silicon outperforms the other three architectures on average. The improvement

140

776 1118 542 989 232 747 335 405 318 557 508 289

0
50

100
150

A
re

a
 (

%
)

0
50

100
150

D
el

a
y

 (
%

)

118 114

380 391 346 662 427 331 354 202 311 266 222

0
50

100
150

E
D

P
 (

%
)

0

20

40

60

R
o

u
ti

n
g

U
sa

g
e

(%
)

SRAM-based FPGA RRAM-based FPGA SRAM-based Liquid Silicon RRAM-based Liquid Silicon

Save

81%

Reduce

52%

Improve

86%

58.36%

15.41%

Figure 6.30: From top to bottom are Area, delay, energy efficiency (energy-delay product,
EDP) and routing usage results. Results of the SRAM-based FPGA are used as baseline,
and other results are normalized to them. The routing usage is the ratio between routing
area and total used area when mapping benchmark circuits. In Liquid Silicon, it is obtained
by first calculating the ratio between routing area and total used area (routing+logic) of
each tile and averaging across all tiles.

in delay mainly comes from the coarse-grained logic implementation of Liquid Silicon, which

has also been confirmed in our experiments. Specifically, the technology mapping stage

generates net lists with much shallower depth, resulting in a reduced number of logic gates

on the critical paths in Liquid Silicon. Therefore, the delay of Liquid Silicon is 52% less

than that of SRAM-based FPGAs, on average.

The delays of the SRAM-based Liquid Silicon and RRAM-based FPGA increase by

14% and 18%, respectively, compared to the SRAM-based FPGA. We note that the delay

becomes worse in SRAM-based Liquid Silicon due to the fact that the increase in unit

delay per tile caused by longer wires (larger RC constant) is much more significant than the

decrease in logic depth. The minor increase in delay for the RRAM-based FPGA is because

of the longer sensing time of the RRAM array due to its higher Ron compared to that of a

MOSFET.

Another advantage of Liquid Silicon is that it makes better use of the routing resources as

compared with FPGAs, due to its coarse-grained logic implementation and flexible resource

partitioning between logic and routing. Overall, the area consumed by routing in Liquid

141

100
10

1
0.1

0.01

A
re

a
 (

%
)

51.2
6.7

0.4

150
100

50

0T
h

ro
u

g
h

p
u

t

(%
)

142.9
126.4 130.9 148.7 169.2

Increase with wider key

60
40
20
0P

o
w

er
 (

%
)

70.7

23.4
6.0

80
100

SRAM-based

FPGA

RRAM-based

FPGA

SRAM-based

Liquid Silicon

RRAM-based

Liquid Silicon

Figure 6.31: The area saving (top), throughput improvement (middle) and power reduction
(bottom) are presented. All results are normalized to that of SRAM-based FPGA. The
area result is plotted in logarithmic scale.

Silicon is only 15% of the total used area, compared to 58% in the SRAM-based FPGA

(Figure 6.30).

Energy Efficiency: The energy efficiency results are presented in Figure 6.30. On

average, RRAM-based Liquid Silicon achieves 86% improvement in energy efficiency com-

pared to the SRAM-based FPGA. This improvement is mainly due to the coarse-grained

logic implementation of Liquid Silicon. Not only does the coarse-grained logic implementa-

tion lead to a smaller delay, but it also consumes less hardware resources used for routing

and thus reduces energy consumption on data transfer.

6.6.3 Search-intensive Applications

In this subsection, the search-intensive benchmark set is applied to evaluate Liquid Silicon.

All results are normalized to the SRAM-based FPGA baseline. Overall, across all search-

intensive workloads, we observe that the area/throughput/power improvement in Liquid

Silicon are substantially higher than that in the FPGA baseline as well as the other two

architectures (RRAM-based FPGA and SRAM-based Liquid Silicon), as compared with the

evaluation results for traditional FPGA benchmarks in Section 6.6.2. Thus, we confirm the

142

effectiveness of the new light-weight compute mode of Liquid Silicon in accelerating search-

intensive applications. In the following discussion, we present the detailed evaluation results

for area, throughput and power for these benchmarks.

Area: On the four evaluated benchmarks, Liquid Silicon achieves a 99.6% average area

reduction compared with the FPGA baseline (SRAM-based FPGA) (Figure 6.31-top). It is

also interesting to observe that the SRAM-based Liquid Silicon even consumes 44.5% less

area than the RRAM-based FPGA, indicating that the benefits gained from the light-weight

compute mode prevails the area overhead imposed by the larger cell size of SRAM.

Throughput: On average, the RRAM-based Liquid Silicon achieves 1.43× improve-

ment in search throughput over the FPGA baseline. Across the benchmarks, we observe a

trend that the improvement in search throughput increases with a wider search key. This is

mainly because a wide/long search key needs to be split into multiple smaller ones and fed to

a local search unit that is implemented using a large amount of logic and BRAM resources

in FPGA [61]. The search outputs from these local search units need to be collected globally

and processed to generate a final result. Such a distributed implementation consumes more

routing resources, thereby increasing the search delay and reducing the throughput. On

the contrary, Liquid Silicon is capable of processing wide search keys locally and directly

by coalescing adjacent tiles configured in the light-weight compute mode. Therefore, the

search delay and throughput of Liquid Silicon is insensitive to the search key width.

Power: For all benchmarks, Liquid Silicon outperforms the other three architectures in

power consumption, and achieves a 94.0% average power reduction compared to the FPGA

baseline. The power saving is mainly due to the more efficient mapping of search operations

on Liquid Silicon, which dominate the power consumption in these applications.

6.6.4 Neural Network Benchmarks

In this subsection, we further evaluate the effectiveness of Liquid Silicon in accelerating

neural network workloads (specifically BNNs) which are data-intensive. The evaluation

results for FPGAs and Liquid Silicon on BNNs are presented in Figure 6.32. For Liquid

Silicon, on average, it achieves 52.3× speedup, 113.9× reduction in energy consumption,

143

100

10

1

10-3

10-2

10-1

10 0

R
u

n
ti

m
e

S
p

ee
d

u
p

N
o
rm

a
li

ze
d

E
n

er
g

y

N
o
rm

a
li

ze
d

A
re

a
 (

%
)

0
25
50
75

100

229 401 236 321 336 297

18.9

0.01

52.3

BNN1 BNN2 BNN3 BNN4 BNN5 Geomean

SRAM-based

FPGA

RRAM-based

FPGA

SRAM-based

Liquid Silicon

RRAM-based

Liquid Silicon

Figure 6.32: The runtime speedup (top), energy consumption (middle) and area (bottom)
results are presented. All results are normalized to that of SRAM-based FPGA.

and 81% area reduction compared with the FPGA baseline (SRAM-based FPGA). This

improvement mainly comes from two sources. First, in Liquid Silicon, the weights are stored

and processed (bit-wise XNOR) in situ inside the same RRAM crossbar, therefore elimi-

nating the frequent memory access to fetch key neural network parameters (e.g. weights)

in FPGA. The second reason is that the count, normalization and activation operations are

all performed in connection nodes using simple analog circuits, i.e., S/A (as discussed in

Section 6.2.2), whereas FPGA needs complex logic i.e. adders and comparators to perform

these operations, resulting in larger delay and energy consumption. Moreover, as the on-

chip memory capacity is fixed in FPGA but can be flexibly configured by users in Liquid

Silicon, Liquid Silicon is expected to achieve even more improvement in performance and

energy efficiency than FPGA as the size of the neural network grows exceeding the capacity

of the FPGA’s on-chip memory.

6.6.5 Chip Results

Liquid Silicon test chip is fabricated in commercial 130-nm CMOS process and HfO2/Ti/TiN

RRAM technology. Figure 6.33 shows the die photo and the major integration process flow.

OxRAM technology is integrated with Si CMOS by first defining the TiN bottom electrode

on top of the Cu Metal 4, and then depositing an HfO2 10nm/Ti 10nm/TiN stack after the

CMP touch [50]. More details about the fabrication process can be found in [50].

144

Via

Ø300nm Mesa

Patterning

Encapsulation

and CMP

Testing Board

2091µm

1
6
6
3
µ

m

Tile

RRAM

Array

Connection

Nodes

Connection

Nodes

Control &

Timing Gen

AlCu M5
RRAM

Cu M4

Cu M3

Via

1T1R Cell

Standard Foundary Wafer

CMOS 130nm + 4 Cu Metal

TiN Bottom

Electrode Definition

CMP touch

Memory stack deposition

(HfO2 10nm/Ti 10nm/TiN)

M5

(a) (b)

Figure 6.33: (a) Die photo and (b) the integration flow [50].

C
L

K
B

L
S

en
si

n
g

O
u

tp
u

t

1
0

Resistance (Ω)

103 104 105 106 107

F
re

q
u

en
cy

(a)

(b)

(c)

F
re

q
u

en
cy

 (
M

H
z)

Supply Voltage (V)

Figure 6.34: (a) The measured resistance distribution under the switching condition: Form-
ing 4V@40µs, SET 2V@100ns, RESET 2.5V@100ns, (b) the measured voltage frequency
scaling, and (c) the measured waveform for logic ‘1’ output (Computation mode: ‘True’,
Storage mode: ‘1’, Search mode: ‘match’, NN mode: ‘active’) and logic ‘0’ output (Compu-
tation mode: ‘False’, Storage mode: ‘0’, Search mode: ‘mismatch’, NN mode: ‘inactive’).
These measurements are conducted at room temperature.

145

Table 6.3: Liquid Silicon Chip Specification

Process Technology 130-nm CMOS + HfO2 RRAM

Cell Structure 1T1R

Cell Size 1.83 × 4 µm2

Array Size 128 × 128 bit

Number of Tiles 2

Frequency 10 MHz

Supply Voltage 0.65∼1.2V

Power Efficiency 60.9 TOPS/W

Area Efficiency 188.4 GOPS/mm2

RRAM Forming: 4V@40µs

Switching SET: 2V@100ns

Condition RESET: 2.5V@100ns

We first measure the RRAM resistance distribution [50] and the average resistance

ratio is 2500 (Figure 6.34a). We then measure the waveform (Figure 6.34c) to confirm the

sensing operation performed by the connection nodes. The measured maximal operating

frequency under different supply voltages is shown in Figure 6.34b. The results show that

Liquid Silicon chip can reliably operate when scaling the voltage from 1.2V to 0.65V, with

a 2.7mW power consumption per tile at the nominal supply voltage of 1.2V. The chip

specification is summarized in Table 6.3.

Comparison With Prior AI Accelerators

We first compare Liquid Silicon with prior CMOS-based [95][148][68][147][6] and RRAM-

based [116][86] accelerators. These domain-specific accelerators achieve high efficiency at

the cost of limited flexibility, i.e., they can only support machine learning applications.

On the contrary, Liquid Silicon is not only more flexible (support both machine learning

and big data applications), but also outperforms these accelerators in the machine learning

applications.

In order to quantitatively evaluate the power and area efficiency, we map a fully con-

nected binarized neural network onto Liquid Silicon and these AI accelerators. The re-

sults are summarized in Table 6.4. Overall, Liquid Silicon achieves better or comparable

146

Table 6.4: Comparison with state-of-the-art AI chips

Metric

Moons Yin Khwa Yin Ando Su Liu

Liquid CICC VLSI ISSCC VLSI VLSI VLSI ISSCC

Silicon 2018 2018 2018 2018 2017 2017 2016

[95] [148] [68] [147] [6] [116] [86]

CMOS Process 130nm 28nm 28nm 65nm 28nm 65nm 150nm 65nm

RRAM Type HfO2 - - - - - HfO2 TiN/TiON

Power

60.95 230 90 111.6 19.9 2.3 0.46 0.03Efficiency

(TOPS/W)

Area

Efficiency

(GOPS/mm2)

188.4 232.1 99.1 N/A 33.8 365 2.77 0.02

power efficiency (60.95 TOPS/W) and area efficiency (188.4 GOPS/mm2) than these AI

accelerators, even Liquid Silicon is fabricated in an older-generation CMOS process technol-

ogy. Comparing with the CMOS-based AI accelerators, Liquid Silicon improves the power

and area efficiency by 3.1× and 5.6×, respectively. This improvement mainly comes from

the better algorithmic mapping in Liquid Silicon, i.e., Liquid Silicon can perform multiple

computations (e.g. XNOR and count) in a single sensing operation, while CMOS-based

accelerators need to implement discrete logic gates with extensive routing to perform these

computations. Liquid Silicon also improves power efficiency (> 132×) and area efficiency

(> 68×) over the RRAM-based accelerators. This is because these accelerators either 1)

simply use RRAM cells as non-volatile storage units and still perform computation us-

ing discrete logic gates, or 2) use RRAM crossbar to perform multiplication in the analog

domain, and the performance suffers from the power-hungry and area-inefficient multi-bit

ADC/DAC.

We provide a back-of-the-envelop calculation to explain why Liquid Silicon using an

older-generation CMOS technology (130nm) when being augmented with post-CMOS tech-

nology (i.e., RRAM) can achieve better area efficiency than the CMOS-based accelerators at

an advanced technology node (28nm). To make an apple-to-apple comparison, we choose to

compare Liquid Silicon with the chip reported in [148], since the algorithm (neural network

147

model) used in both chips are the same. For Liquid Silicon, the tile area is 0.46mm2 with

a 26% array efficiency. In every clock cycle, one column (BL) in the tile performs 128 oper-

ations (64 XNOR and 64 addition), thus, the area efficiency of one tile is 360GOPS/mm2.

The overall area efficiency is 198GOPS/mm2, since tiles occupy about 55% of the total die

area. For the CMOS-based accelerator, its area efficiency is reported as 99.1GOPS/mm2.

Thus, Liquid Silicon can achieve 1.99× higher area efficiency than this CMOS-based ac-

celerator, even when Liquid Silicon is fabricated in an older-generation CMOS technology,

which is consistent with the data reported in Table 6.4. We also note that, if considering

technology scaling, i.e., Liquid Silicon is also fabricated in an advanced CMOS technology

node (28nm), it will achieve 42× higher area efficiency than the CMOS-based accelerator

in [148].

Comparison With nv-FPGA

We then compare Liquid Silicon with the nonvolatile FPGA (nv-FPGA) [118][84]. Both

of them provide high flexibility, i.e., support both machine learning and big data applica-

tions, but Liquid Silicon has higher efficiency due to its novel architecture. To quantitatively

evaluate the efficiency, we map a fully connected binarized neural network and a content-

based similarity search (a key big data application [114]) onto Liquid Silicon and nv-FPGA.

The results show that Liquid Silicon achieves better power and area efficiency than nv-

FPGA (Table 6.5), mainly because 1) nv-FPGA uses small look-up tables (LUTs) and an

extensive routing network to implement discrete logic gates (e.g. XNOR) for computation,

whereas Liquid Silicon consolidates more effective computations within a compact array

structure, resulting in a better algorithmic mapping, and 2) nv-FPGA does not provide a

native support for the search operation (use hashing-based implementation) while Liquid

Silicon provides a dedicated operational mode (Search) to achieve higher mapping efficiency.

As a result, Liquid Silicon achieves high power efficiency (0.48 TOPS/W) and area efficiency

(0.74 GOPS/mm2) for the search-intensive application, which is > 100× higher than that

of nv-FPGA.

148

Table 6.5: Comparison with nv-FPGA

Liquid Suzuki Liauw

Metric Silicon VLSI ISSCC

2017 [118] 2012 [84]

CMOS Process 130nm 90nm 180nm

RRAM Type HfO2 p-MTJ∗ AlOx

Machine Power Efficiency (TOPS/W) 60.95 2 0.63

Learning Area Efficiency (GOPS/mm2) 188.4 0.2 0.1

Big Power Efficiency (TOPS/W) 0.48 0.004 0.0013

Data Area Efficiency (GOPS/mm2) 0.74 0.0003 0.0002

* Perpendicular magnetic tunnel junction (p-MTJ) devices, another type of nonvolatile memory.

6.6.6 Virtualization Evaluation

This subsection evaluates the performance of the virtualized Liquid Silicon. Specifically,

5 × 5 tiles are grouped together to form one block, which has 25 outputs and 100 input

at each side. For the connection blocks, Fcin is set to 0.15, and Fcout is set to 0.10. The

routing channel consists of segments of length 2 wires, while the switch block type is chosen

to be Wilton [90]. As the purpose of this evaluation is to demonstrate that the proposed

virtualization solution can be efficiently extended to Liquid Silicon, so the design space (such

as the block size) is not explored, which is one possible future work. Without completing the

physical design, it is difficult to determine the exact area savings obtained from burying the

routing circuits under the crossbar array using monolithic 3D integration in the virtualized

Liquid Silicon. Thus, the area of the worst case is presented in the evaluation, i.e., the

routing circuits are not buried and the area of these circuits is simply added with the area

of blocks to obtain the overall area results. Nine large benchmarks from MCNC benchmark

set that require at least two blocks are used in the evaluation. The VTR framework is

applied to obtain the performance of the FPGA architecture.

The performance comparison between the virtualized Liquid Silicon and the non-virtualized

one is presented in Figure 6.35. Overall, the virtualized Liquid Silicon reduces the routing

latency by 46.9% compared to the non-virtualized one, indicating that the abstraction-

149

apex2 clma des diffeq elliptic frisc s38417 s38584 tseng Geomean
0

20
40
60
80

100
120
140
160
180

N
o

rm
a

li
ze

d
 R

es
u

lt
 (

%
)

Increase 19.2%

Decrease 46.9%

Decrease 66.2%

Area

Delay

EDP

Figure 6.35: The area, delay and EDP (energy-delay product) results of mapping application
onto the virtualized Liquid Silicon architecture, which are normalized to those of the non-
virtualized one.

0

20

40

60

80

100

N
o

rm
a

li
ze

d
 D

el
a

y
 (

%
)

Reduce

36.0%

0

20

40

60

80

N
o

rm
a

li
ze

d
 #

T
ra

ck
/µ

m
 (

%
)

Reduce

50.2%

Figure 6.36: The delay result (left) and the number of tracks per unit length (right) of
mapping application onto the virtualized Liquid Silicon, which are normalized to that of
the FPGA architecture.

architecture co-optimization effectively improves the routing performance. This shorter

routing latency also leads to better energy efficiency (energy-delay product), which is im-

proved by 66.2% in the virtualized Liquid Silicon. Nevertheless, the area of mapping ap-

plications onto the virtualized Liquid Silicon is 19.2% larger than the non-virtualized one.

This is mainly caused by the additional FPGA-like routing circuits. The trade-off between

the routing area and routing latency is also one interesting direction to be explored in the

future work.

The performance of the virtualized Liquid Silicon is then compared to that of the FPGA

architecture. As shown in Figure 6.36, the virtualized Liquid Silicon reduces the total

latency by 36.0% compared to FPGA. Moreover, using tiles for local routing within one

block also reduces the global routing pressure. Thus, the virtualized Liquid Silicon also

reduces the amount of required routing resources (in terms of the number of required routing

channels) by 50.2% on average.

150

0%
20%
40%
60%
80%

100%
120%
140%
160%

Reduce

59.36%

Reduce

81.46%

0%

20%

40%

60%

80%

100%
N

o
rm

a
li

ze
d

 R
u

n
ti

m
e

Low-Level Partition

Local P&R

Global P&R

Figure 6.37: The runtime of the compilation framework developed for the virtualized en-
vironment is normalized to that of the framework for the non-virtualized one. Results of
sequentially executing all compilation tasks (top) and parallel executing all tasks (bottom)
are presented. Only the key compilation tasks are drawn in the figure for simplicity.

Finally, the compilation time reduction is shown in Figure 6.37. Specifically, the runtime

of the compilation framework for virtualized Liquid Silicon is 2.46× shorter than the one

developed for the non-virtualized one. If performing compilation tasks in parallel, it achieves

5.39× reduction. This reduction is higher than that in the FPGA compilation framework

(Figure 4.13). This is because the simulated annealing algorithm used in Liquid Silicon’s

compilation framework has a higher timing complexity than the algorithm used in FPGA

compilation framework. Thus, partitioning applications and performing the placement at a

smaller granularity are more beneficial in Liquid Silicon.

151

Chapter 7

Conclusion

A two-level system abstraction is developed for virtualizing the heterogeneous FPGA clus-

ter, which decouples the conflicting requirements from runtime management and offline

compilation. Specifically, the high-level abstraction provides a homogeneous view of the

FPGA resources to simplify the runtime management. It also provides an asynchronous in-

terface for the communication to enable a flexible runtime deployment and support various

inter-FPGA network. An all-to-all network is also included in the high-level abstraction to

provide an efficient support for large FPGA applications with a high rent’s exponent. On

the contrary, the low-level abstraction is designed to be FPGA specific to expose the spatial

resource constraints to the compilation framework to ensure the mapping quality. A syn-

chronous interface is applied in the low-level abstraction so that the compilation framework

can fully utilize the on-chip routing fabric. Simple direct interconnections are included for

the communication that minimizes the amount of resources reserved by the system, thereby

maximizing the amount of resources available to users.

We further show that this two-level system abstraction can be specialized into a single-

level one to virtualize the homogeneous FPGA cluster. Compared to the two-level system

abstraction, this single-level one reduces the compilation overhead at the cost of a reduced

mapping quality. Thus, it can be utilized for the applications that do not have strict re-

quirements on performance. We also note that due to the reconfigurability provided by

FPGAs, these two system abstractions can co-exist in one homogeneous FPGA cluster to

balance the compilation cost and the compilation quality. This generic two-level system ab-

152

straction can also be extended to leverage application-specific information to better support

the SaaS model. In this dissertation, we use the application-specific ISA as a case study to

demonstrate this.

A compilation framework is developed for mapping applications onto the two-level sys-

tem abstraction. The key design principle is maximally reusing the commercial FPGA

compilation tools to minimize the engineering efforts and ensure the compilation quality.

The compilation framework is also extended to support the single-level system abstraction

and the abstraction for application-specific ISA.

Enabled by the two-level system abstraction, a two-level modular runtime system is de-

signed to provide a good extendability across different heterogeneous FPGA cluster. When

a new type of FPGAs is integrated in the cloud, only a new bottom-level controller needs to

be added into the management system without modifying other components. We also pro-

vide a heuristic-based resource management policy to minimize the resource waste caused

by the fragmentation issue. This heuristic-based policy can be easily extended to take other

runtime factors into consideration, such as the contention on the DRAM bandwidth.

Finally, we use Liquid Silicon, an RRAM-based homogeneous reconfigurable architec-

ture, as a case study to show that the proposed virtualization solution can be extended to

other spatial reconfigurable architectures. Instead of naively applying the proposed virtual-

ization solution onto Liquid Silicon, the two-level system abstraction and the Liquid Silicon

architecture are co-optimized to maximize the efficiency.

7.1 Limitation and Possible Future Works

This dissertation presents our initial efforts on the virtualization of reconfigurable architec-

tures. Nevertheless, we also note that virtualizing reconfigurable architectures is a more

challenging task than virtualizing traditional computing devices (e.g., CPUs). The major

limitations of this dissertation and several possible future directions are listed:

1. Exploring abstraction-architecture co-design for FPGAs

In order to be applied to commercial FPGA devices, the system abstraction proposed in

153

this dissertation is designed under the given architectural constraints. It might be interesting

to explore the abstraction-architecture co-design for the FPGA architecture to answer the

question — how the FPGA architecture should be designed to provide better virtualization

support. Section 3.5.4 discusses several possible modifications on the FPGA architecture

from the perspective of resource utilization. Nevertheless, improving resource utilization is

only one goal of virtualization, and other design goals, such as providing better isolation for

both security and performance, should also be considered when exploring the abstraction-

architecture co-design.

2. Comprehensive exploration on runtime system

This dissertation focuses on the development of the system abstraction and the compi-

lation framework, while only a basic runtime system is provided for evaluating the runtime

performance. A more comprehensive exploration on the runtime system could be one pos-

sible future direction. This future direction contains several possible tasks. (1) A better

strategy for sharing peripheral devices, such as on-board DRAM. Specifically, the peripheral

devices are shared in a round-robin manner among physical blocks in the current system

abstraction design, which could be replaced with a more sophisticated strategy to reduce

the performance interference. Moreover, the heuristic-based resource allocation policy could

also be extended to take the peripheral devices into consideration. For instance, the policy

could be modified to avoid deploying two applications that have high demand on the on-

board DRAM bandwidth onto the same physical FPGA device to reduce the performance

interference. (2) A comprehensive evaluation on the runtime performance. In particular, it

might be interesting to evaluate the benefits of supporting heterogeneous FPGA clusters,

i.e., the benefits of splitting one application and deploying it onto different types of FPGAs.

This is not well evaluated in this dissertation due to the limited size of the custom FPGA

cluster. (3) A runtime system that provides additional useful features, such as supporting

workload migration for fault tolerance.

3. Better virtualization support for Liquid Silicon

In this dissertation, Liquid Silicon architecture is used as a case study to show that

154

the proposed virtualization solution can be extended to other reconfigurable architectures.

Only necessary modifications are applied to the proposed virtualization solution during the

extension, while custom tools are reused as much as possible to minimize the engineering

efforts. Nevertheless, Liquid Silicon architecture provides additional flexibility compared

to the FPGA architecture. For instance, Liquid Silicon architecture has less restricted

constraints on the shape of physical blocks compared to the FPGA architecture. It might

be interesting to further optimize the virtualization solution for Liquid Silicon by exploiting

the unique flexibility provided by the Liquid Silicon architecture.

155

BIBLIOGRAPHY

[1] Amazon. Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/.

[2] Amazon. Amazon EC2 Spot Instances Pricing. https://aws.amazon.com/ec2/spot/
pricing/.

[3] Amazon. Introducing Amazon EC2 P3 Instances. https://aws.amazon.com/

about-aws/whats-new/2017/10/introducing-amazon-ec2-p3-instances/.

[4] Amazon. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/

instance-types/f1/, 2016.

[5] Amazon. Accelerated Computing on AWS. http://asapconference.org/slides/

amazon.pdf, 2017.

[6] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, M. Ikebe,
T. Asai, S. Takamaeda-Yamazaki, T. Kuroda, et al. Brein memory: A 13-layer 4.2 k
neuron/0.8 m synapse binary/ternary reconfigurable in-memory deep neural network
accelerator in 65 nm cmos. In 2017 Symposium on VLSI Circuits, pages C24–C25.
IEEE, 2017.

[7] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne. Virtualized Execution
Runtime for FPGA Accelerators in the Cloud. IEEE Access, 5:1900–1910, 2017.

[8] ASU. Predictive technology model (ptm). http://ptm.asu.edu/.

[9] V. Baena-Lecuyer, M. Aguirre, A. Torralba, L. G. Franquelo, and J. Faura. Decoder-
Driven Switching Matrices in Multicontext FPGAs: Area Reduction and Their Effect
on Routability. In Circuits and Systems, 1999. ISCAS’99. Proceedings of the 1999
IEEE International Symposium on, volume 1, pages 463–466. IEEE, 1999.

[10] U. Berkeley. Berkeley logic interchange format (BLIF), 1992.

[11] A. Brant and G. G. Lemieux. ZUMA: An Open FPGA Overlay Architecture. In
FCCM, pages 93–96. IEEE, 2012.

[12] J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics, 17(5):419–428, 2001.

156

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/about-aws/whats-new/2017/10/introducing-amazon-ec2-p3-instances/
https://aws.amazon.com/about-aws/whats-new/2017/10/introducing-amazon-ec2-p3-instances/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
http://asapconference.org/slides/amazon.pdf
http://asapconference.org/slides/amazon.pdf
http://ptm.asu.edu/

[13] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow. FPGAs in the
Cloud: Booting Virtualized Hardware Accelerators with OpenStack. In 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom Computing
Machines, pages 109–116. IEEE, 2014.

[14] Cadence. Protium S1 FPGA-Based Prototyping Plat-
form. https://www.cadence.com/content/dam/cadence-www/

global/en_US/documents/tools/system-design-verification/

protium-s1-fpga-based-prototyping-platform-ds.pdf.

[15] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon. Stream Computa-
tions Organized for Reconfigurable Execution (SCORE). In International Workshop
on Field Programmable Logic and Applications, pages 605–614. Springer, 2000.

[16] E. Caspi, A. DeHon, and J. Wawrzynek. A Streaming Multi-Threaded Model, 2001.

[17] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, et al. A Cloud-Scale Acceleration Archi-
tecture. In 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 1–13. IEEE, 2016.

[18] D. Chang and M. Marek-Sadowska. Partitioning Sequential Circuits on Dynamically
Reconfigurable FPGAs. IEEE Transactions on Computers, 48(6):565–578, 1999.

[19] M.-F. Chang, C.-C. Lin, A. Lee, C.-C. Kuo, G.-H. Yang, H.-J. Tsai, T.-F. Chen, S.-S.
Sheu, P.-L. Tseng, H.-Y. Lee, et al. 17.5 A 3T1R nonvolatile TCAM using MLC
ReRAM with Sub-1ns search time. In Solid-State Circuits Conference-(ISSCC), 2015
IEEE International, pages 1–3. IEEE, 2015.

[20] A. Chen. A Comprehensive Crossbar Array Model With Solutions for Line Resis-
tance and Nonlinear Device Characteristics. IEEE Transactions on Electron Devices,
60(4):1318–1326, 2013.

[21] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang. Enabling
FPGAs in the Cloud. In Proceedings of the 11th ACM Conference on Computing
Frontiers, pages 1–10, 2014.

[22] Y.-C. Chen et al. Non-volatile 3D Stacking RRAM-based FPGA. In FPL, 2012.

[23] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, et al. Serving DNNs in Real Time at
Datacenter Scale with Project Brainwave. IEEE Micro, 38(2):8–20, 2018.

[24] E. S. Chung, J. D. Davis, and J. Lee. Linqits: Big data on little clients. In ACM
SIGARCH Computer Architecture News, volume 41, pages 261–272. ACM, 2013.

[25] J. Cong et al. FPGA-RPI: A Novel FPGA Architecture with RRAM-based Pro-
grammable Interconnects. IEEE Transactions on VLSI, 22(4):864–877, 2014.

157

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/protium-s1-fpga-based-prototyping-platform-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/protium-s1-fpga-based-prototyping-platform-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/protium-s1-fpga-based-prototyping-platform-ds.pdf

[26] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–491, 2011.

[27] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, pages 3123–3131, 2015.

[28] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[29] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart. The Zynq
Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All
Programmable Soc. Strathclyde Academic Media, 2014.

[30] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto,
J. Wong, P. Yiannacouras, and D. P. Singh. From OpenCL to High-Performance
Hardware on FPGAs. In FPL, pages 531–534. IEEE, 2012.

[31] G. Dai, Y. Chi, Y. Wang, and H. Yang. FPGP: Graph Processing Framework on
FPGA A Case Study of Breadth-First Search. In FPGA, pages 105–110. ACM, 2016.

[32] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang. ForeGraph: Exploring
Large-Scale Graph Processing on multi-FPGA Architecture. In FPGA, pages 217–226.
ACM, 2017.

[33] A. DeHon. DPGA Utilization and Application. In Fourth International ACM Sym-
posium on Field-Programmable Gate Arrays, pages 115–121. IEEE, 1996.

[34] A. Dehon. Nanowire-based Programmable Architectures. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 1(2):109–162, 2005.

[35] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh,
and J. Wawrzynek. Stream Computations Organized For Reconfigurable Execution.
Microprocessors and Microsystems, 30(6):334–354, 2006.

[36] C. Dong et al. 3-D nFPGA: A Reconfigurable Architecture for 3-D
CMOS/nanomaterial Hybrid Digital Circuits. IEEE Transactions on Circuits and
Systems I: Regular Papers, 54(11):2489–2501, 2007.

[37] N. Engelhardt and H. K.-H. So. GraVF: A Vertex-Centric Distributed Graph Pro-
cessing Framework on FPGAs. In FPL, pages 1–4. IEEE, 2016.

[38] S. A. Fahmy, K. Vipin, and S. Shreejith. Virtualized FPGA Accelerators for Efficient
Cloud Computing. In Cloud Computing Technology and Science, 2015 IEEE 7th
International Conference on, pages 430–435. IEEE, 2015.

[39] D. G. Feitelson and A. M. Weil. Utilization and Predictability in Scheduling the
IBM SP2 with Backfilling. In Proceedings of the First Merged International Parallel

158

Processing Symposium and Symposium on Parallel and Distributed Processing, pages
542–546. IEEE, 1998.

[40] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman, L. Adams, M. Ghandi, et al. A Configurable Cloud-Scale DNN Pro-
cessor for Real-Time AI. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pages 1–14. IEEE, 2018.

[41] P. Francisco et al. The Netezza data appliance architecture: A platform for high
performance data warehousing and analytics, 2011.

[42] P.-E. Gaillardon et al. GMS: Generic Memristive Structure for Non-volatile FPGAs.
In VLSI-SoC, pages 94–98. IEEE, 2012.

[43] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck. DeltaRNN: A Power-efficient
Recurrent Neural Network Accelerator. In FPGA, pages 21–30. ACM, 2018.

[44] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and M. Herbordt. FPDeep:
Acceleration and Load Balancing of CNN Training on FPGA Clusters. In FCCM,
pages 81–84. IEEE, 2018.

[45] E. I. Goldberg, M. R. Prasad, and R. K. Brayton. Using SAT for Combinational
Equivalence Checking. In Proceedings Design, Automation and Test in Europe. Con-
ference and Exhibition 2001, pages 114–121. IEEE, 2001.

[46] S. C. Goldstein and M. Budiu. NanoFabrics: Spatial Computing Using Molecular
Electronics. In ISCA 01. Citeseer, 2001.

[47] Google. Cloud TPU - System Architecture. https://cloud.google.com/tpu/docs/
system-architecture.

[48] Google. Cloud TPU Pricing. https://cloud.google.com/tpu/pricing.

[49] Google. GCP Pricing — Google Cloud. https://cloud.google.com/pricing.

[50] A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. El Ha-
jjam, R. Crochemore, J. Nodin, P. Olivo, et al. Fundamental Variability Limits
of Filament-based RRAM. In 2016 IEEE International Electron Devices Meeting
(IEDM), pages 4–7. IEEE, 2016.

[51] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang, and J. Cong. Auto-
Bridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-Frequency
HLS Design on Multi-Die FPGAs. In 2021 International Symposium on Field-
Programmable Gate Arrays (FPGA), 2021.

[52] T. R. Halfhill. Tabula’s Time Machine Rapidly Reconfigurable Chips Will Challenge
Conventional FPGAs. Microprocessor report, 2010.

[53] K. Huang et al. A Low Active Leakage and High Reliability Phase Change Memory
(PCM) Based Non-volatile FPGA Storage Element. IEEE Transactions on Circuits
and Systems I: Regular Papers, 61(9):2605–2613, 2014.

159

https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/pricing
https://cloud.google.com/pricing

[54] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie, and J. Cong. Program-
ming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter
Scale. In Proceedings of the Seventh ACM Symposium on Cloud Computing, pages
456–469, 2016.

[55] InAccel. Coral FPGA Resource Manager. https://inaccel.com/

coral-fpga-resource-manager/, 2018.

[56] Intel. Intel SoC FPGAs. https://www.intel.com/content/www/us/en/products/

programmable/soc.html.

[57] Intel. Intel Processors and FPGAs - Better Together. https://itpeernetwork.

intel.com/intel-processors-fpga-better-together/#gs.73kkg1, 2018.

[58] Intel. Intel Quartus Prime Standard Edition User Guide: Partial Reconfiguration.
https://www.intel.com/content/www/us/en/programmable/documentation/

wck1529450731513.html, 2018.

[59] A. K. Jain, D. L. Maskell, and S. A. Fahmy. Throughput oriented FPGA overlays
using DSP blocks. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1628–1633. IEEE, 2016.

[60] S. Jeloka et al. A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using Push-
Rule 6T Bit Cell Enabling Logic-in-Memory. JSC, 51(4), 2016.

[61] W. Jiang. Scalable ternary content addressable memory implementation using fpgas.
In ANCS, pages 71–82, Oct 2013.

[62] S. H. Jo et al. 3D-Stackable Crossbar Resistive Memory Based on Field Assisted
Superlinear Threshold (FAST) Selector. In IEDM, pages 6.7.1–6.7.4, Dec 2014.

[63] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, et al. BlueDBM:
An Appliance for Big Data Analytics. In ISCA, pages 1–13. IEEE, 2015.

[64] C. Kao. Benefits of Partial Reconfiguration. Xcell journal, 55:65–67, 2005.

[65] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa, K. Tsuji,
S. Yoneda, A. Himeno, K. Shimakawa, et al. An 8 mb multi-layered cross-point
reram macro with 443 mb/s write throughput. IEEE Journal of Solid-State Circuits,
48(1):178–185, 2013.

[66] D. Kawakami, Y. Shibata, and H. Amano. A Prototype Chip of Multicontext FPGA
with DRAM for Virtual Hardware. In Proceedings of the 2001 Asia and South Pacific
Design Automation Conference, pages 17–18. ACM, 2001.

[67] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach.
Sharing, Protection, and Compatibility for Reconfigurable Fabric with AmorphOS.
In 13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18), pages 107–127, 2018.

160

https://inaccel.com/coral-fpga-resource-manager/
https://inaccel.com/coral-fpga-resource-manager/
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.73kkg1
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.73kkg1
https://www.intel.com/content/www/us/en/programmable/documentation/wck1529450731513.html
https://www.intel.com/content/www/us/en/programmable/documentation/wck1529450731513.html

[68] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu, P.-Y. Chen, Q. Li,
S. Yu, et al. A 65nm 4kb algorithm-dependent computing-in-memory sram unit-macro
with 2.3 ns and 55.8 tops/w fully parallel product-sum operation for binary dnn edge
processors. In 2018 IEEE International Solid-State Circuits Conference-(ISSCC),
pages 496–498. IEEE, 2018.

[69] M. Kim and P. Smaragdis. Bitwise neural networks. arXiv preprint arXiv:1601.06071,
2016.

[70] R. Kirchgessner, G. Stitt, A. George, and H. Lam. VirtualRC: A Virtual FPGA
Platform for Applications and Tools Portability. In Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays, pages 205–208, 2012.

[71] O. Knodel, P. R. Genssler, and R. G. Spallek. Virtualizing Reconfigurable Hardware
to Provide Scalability in Cloud Architectures. Reconfigurable Architectures, Tools and
Applications, RECATA, 2017.

[72] O. Knodel and R. G. Spallek. Computing Framework for Dynamic Integration of Re-
configurable Resources in a Cloud. In 2015 Euromicro Conference on Digital System
Design, pages 337–344. IEEE, 2015.

[73] O. Knodel and R. G. Spallek. RC3E: Provision and Management of Reconfigurable
Hardware Accelerators in a Cloud Environment. arXiv preprint arXiv:1508.06843,
2015.

[74] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image
search. In Computer Vision, 2009 IEEE 12th International Conference on, pages
2130–2137. IEEE, 2009.

[75] P. Kumbhare and V. Krishna. Designing High-Performance Video Systems in 7 Series
FPGAs with the AXI Interconnect. Xilinx, Inc., San Jose, CA, USA, Appl. Note,
7:1–24, 2012.

[76] B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions of
logic graphs. IEEE Transactions on computers, 100(12):1469–1479, 1971.

[77] C. Lavin and A. Kaviani. RapidWright: Enabling Custom Crafted Implementations
for FPGAs. In 26th Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 133–140. IEEE, 2018.

[78] C. Lavin and A. Kaviani. Build Your Own Domain-Specific Solutions with Rapid-
Wright: Invited Tutorial. In Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’19, page 14–22, New York,
NY, USA, 2019. Association for Computing Machinery.

[79] M.-J. Lee et al. A Fast, High-Endurance and Scalable Non-Volatile Memory De-
vice Made From Asymmetric Ta2O5−x/TaO2−x Bilayer Structures. Nature materials,
10(8):625–630, 2011.

161

[80] T.-Y. Lee, C.-C. Hu, L.-W. Lai, and C.-C. Tsai. Hardware Context-Switch Methodol-
ogy for Dynamically Partially Reconfigurable Systems. Journal of Information Science
and Engineering, 26(4):1289–1305, 2010.

[81] J. Li, R. K. Montoye, M. Ishii, and L. Chang. 1 Mb 0.41 µm2 2T-2R Cell Nonvolatile
TCAM with Two-bit Encoding and Clocked Self-Referenced Sensing. IEEE Journal
of Solid-State Circuits, 49(4):896–907, 2014.

[82] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G. Andersen,
O. Seongil, S. Lee, and P. Dubey. Architecting to Achieve a Billion Requests Per
Second Throughput on a Single Key-Value Store Server Platform. In ACM SIGARCH
Computer Architecture News, volume 43, pages 476–488. ACM, 2015.

[83] Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren. A 7.663-TOPS 8.2-W Energy-efficient
FPGA Accelerator for Binary Convolutional Neural Networks. In FPGA, pages 290–
291. ACM, 2017.

[84] Y. Y. Liauw et al. Nonvolatile 3D-FPGA With Monolithically Stacked RRAM-based
Configuration Memory. In ISSCC, pages 406–408. IEEE, 2012.

[85] C.-C. Lin et al. 7.4 A 256b-wordlength ReRAM-based TCAM with 1ns search-time
and 14× improvement in wordlength-energyefficiency-density product using 2.5 T1R
cell. In ISSCC, pages 136–137. IEEE, 2016.

[86] Y. Liu, Z. Wang, A. Lee, F. Su, C.-P. Lo, Z. Yuan, C.-C. Lin, Q. Wei, Y. Wang,
Y.-C. King, et al. 4.7 a 65nm reram-enabled nonvolatile processor with 6× reduction
in restore time and 4× higher clock frequency using adaptive data retention and self-
write-termination nonvolatile logic. In 2016 IEEE International Solid-State Circuits
Conference (ISSCC), pages 84–86. IEEE, 2016.

[87] J. Luu et al. VTR 7.0: Next generation architecture and CAD system for FPGAs.
TRETS, 7(2):6, 2014.

[88] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: efficient in-
dexing for high-dimensional similarity search. In Proceedings of the 33rd international
conference on Very large data bases, pages 950–961. VLDB Endowment, 2007.

[89] R. Lysecky, K. Miller, F. Vahid, and K. Vissers. Firm-core Virtual FPGA for Just-in-
Time FPGA Compilation. In Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages 271–271, 2005.

[90] M. I. Masud. FPGA Routing Structures: A Novel Switch Block and Depopulated
Interconnect Matrix Architectures. Master’s thesis, University of British Columbia,
1999.

[91] L. McMurchie and C. Ebeling. PathFinder: A Negotiation-based Performance-Driven
Router for FPGAs. In FPGA, pages 111–117. ACM, 1995.

[92] R. Menotti, J. M. Cardoso, M. M. Fernandes, and E. Marques. Automatic Generation
of FPGA Hardware Accelerators Using A Domain Specific Language. In FPL, pages
457–461. IEEE, 2009.

162

[93] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een. Improvements to Combi-
national Equivalence Checking. In 2006 IEEE/ACM International Conference on
Computer Aided Design, pages 836–843. IEEE, 2006.

[94] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Combinational and Sequential
Mapping with Priority Cuts. In Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design, pages 354–361. IEEE Press, 2007.

[95] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst. Binareye: An
always-on energy-accuracy-scalable binary cnn processor with all memory on chip in
28nm cmos. In 2018 IEEE Custom Integrated Circuits Conference (CICC), pages 1–4.
IEEE, 2018.

[96] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha,
A. G. Graham, J. Wu, M. J. Walker, et al. VTR 8: High-performance cad and cus-
tomizable fpga architecture modelling. ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), 13(2):1–55, 2020.

[97] S. Narang and G. Diamos. Baidu DeepBench. https://github.com/

baidu-research/DeepBench, 2017.

[98] R. Njuguna. A survey of FPGA benchmarks. Project Report, November, 24, 2008.

[99] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr. Accelerat-
ing binarized neural networks: Comparison of fpga, cpu, gpu, and asic. Proc. ICFPT,
2016.

[100] T. Oguntebi and K. Olukotun. GraphOps: A Dataflow Library for Graph Analytics
Acceleration. In FPGA, pages 111–117. ACM, 2016.

[101] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk.
Energy Efficient Architecture for Graph Analytics Accelerators. In ISCA, pages 166–
177. IEEE, 2016.

[102] M. A. Özkan, O. Reiche, F. Hannig, and J. Teich. FPGA-based Accelerator Design
From A Domain-Specific Language. In FPL, pages 1–9. IEEE, 2016.

[103] Panasonic. Panasonic Starts World’s First Mass Production of ReRAM Mounted
Microcomputers, 2013.

[104] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and H. Esmaeilzadeh. Scale-out
Acceleration for Machine Learning. In MICRO. ACM, 2017.

[105] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun. Plasticine: A Reconfigurable Architecture for Parallel
Patterns. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 389–402. IEEE, 2017.

[106] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al. A Reconfigurable Fabric for

163

https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench

Accelerating Large-Scale Datacenter Services. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pages 13–24. IEEE, 2014.

[107] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement, D. Holcomb,
and R. Tessier. FPGA Side Channel Attacks Without Physical Access. In 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 45–52. IEEE, 2018.

[108] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
MapReduce for Multi-core and Multiprocessor Systems. In High Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on, pages
13–24. Ieee, 2007.

[109] W. Rao et al. Logic Mapping in Crossbar-based Nanoarchitectures. IEEE Design &
Test of Computers, 26(1):68–77, 2009.

[110] D. Ravichandran, P. Pantel, and E. Hovy. Randomized algorithms and nlp: using
locality sensitive hash function for high speed noun clustering. In Proceedings of
the 43rd annual meeting on association for computational linguistics, pages 622–629.
Association for Computational Linguistics, 2005.

[111] K. Saban. Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough
FPGA Capacity, Bandwidth, and Power Efficiency. Xilinx, White Paper, 1(1):1–10,
2011.

[112] D. Sheffield. IvyTown Xeon + FPGA: The HARP Program. https://cpufpga.

files.wordpress.com/2016/04/harp_isca_2016_final.pdf, 2016.

[113] R. S. Shenoy et al. MIEC (Mixed-Ionic-Electronic-Conduction)-Based Access Devices
for Non-volatile Crossbar Memory Arrays. Semiconductor Science and Technology,
29(10):104005, 2014.

[114] R. Shinde, A. Goel, P. Gupta, and D. Dutta. Similarity Search and Locality Sensitive
Hashing Using Ternary Content Addressable Memories. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 375–386.
ACM, 2010.

[115] M. Stoer and F. Wagner. A Simple Min-Cut Algorithm. Journal of the ACM (JACM),
44(4):585–591, 1997.

[116] F. Su, W.-H. Chen, L. Xia, C.-P. Lo, T. Tang, Z. Wang, K.-H. Hsu, M. Cheng, J.-Y.
Li, Y. Xie, et al. A 462gops/j rram-based nonvolatile intelligent processor for energy
harvesting ioe system featuring nonvolatile logics and processing-in-memory. In 2017
Symposium on VLSI Technology, pages T260–T261. IEEE, 2017.

[117] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo, and
Y. Cao. Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale
Convolutional Neural Networks. In FPGA, pages 16–25. ACM, 2016.

164

https://cpufpga.files.wordpress.com/2016/04/harp_isca_2016_final.pdf
https://cpufpga.files.wordpress.com/2016/04/harp_isca_2016_final.pdf

[118] D. Suzuki, M. Natsui, A. Mochizuki, S. Miura, H. Honjo, H. Sato, S. Fukami, S. Ikeda,
T. Endoh, H. Ohno, et al. Fabrication of a 3000-6-input-luts embedded and block-
level power-gated nonvolatile fpga chip using p-mtj-based logic-in-memory structure.
In 2015 Symposium on VLSI Circuits (VLSI Circuits), pages C172–C173. IEEE, 2015.

[119] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and P. Chow.
Enabling Flexible Network FPGA Clusters in a Heterogeneous Cloud Data Cen-
ter. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 237–246, 2017.

[120] K. Tatsumura, M. Oda, and S. Yasuda. A Pure-CMOS Nonvolatile Multi-
Context Configuration Memory for Dynamically Reconfigurable FPGAs. In Field-
Programmable Technology (FPT), 2014 International Conference on, pages 215–222.
IEEE, 2014.

[121] D. E. Taylor and J. S. Turner. Classbench: A Packet Classification Benchmark.
IEEE/ACM Transactions on Networking (TON), 15(3):499–511, 2007.

[122] A. C. Torrezan et al. Sub-nanosecond Switching of a Tantalum Oxide Memristor.
Nanotechnology, 22(48):485203, 2011.

[123] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A Time-Multiplexed FPGA.
In Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines Cat. No. 97TB100186), pages 22–28. IEEE, 1997.

[124] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers. Finn: A framework for fast, scalable binarized neural network inference.
arXiv preprint arXiv:1612.07119, 2016.

[125] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. Resource Elastic Virtualization
for FPGAs Using OpenCL. In 28th International Conference on Field Programmable
Logic and Applications, pages 111–1117. IEEE, 2018.

[126] C. Van Eijk. Sequential Equivalence Checking based on Structural Similarities.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(7):814–819, 2000.

[127] P. J. Van Laarhoven and E. H. Aarts. Simulated Annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

[128] C.-H. Wang et al. Three-Dimensional 4F 2 ReRAM Cell With CMOS Logic Compat-
ible Process. In IEDM, pages 29–6. IEEE, 2010.

[129] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang. C-LSTM:
Enabling Efficient LSTM using Structured Compression Techniques on FPGAs. In
FPGA, pages 11–20. ACM, 2018.

[130] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. Enabling FPGAs in
Hyperscale Data Centers. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence
and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing

165

and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), pages 1078–1086. IEEE, 2015.

[131] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong. Au-
tomated Systolic Array Architecture Synthesis for High Throughput CNN Inference
on FPGAs. In DAC, page 29. ACM, 2017.

[132] Z. Wei et al. Switching and Reliability Mechanisms for ReRAM. In IEEE International
Interconnect Technology Conference, pages 349–352, May 2014.

[133] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii,
K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima,
K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi,
R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima. Highly reliable taox reram
and direct evidence of redox reaction mechanism. In 2008 IEEE International Electron
Devices Meeting, pages 1–4, Dec 2008.

[134] H.-S. P. Wong et al. Metal-oxide RRAM. Proceedings of the IEEE, 100(6), 2012.

[135] Y.-L. Wu and D. Chang. On the NP-completeness of regular 2-D FPGA routing
architectures and a novel solution. In ICCAD, pages 362–366. IEEE Computer Society
Press, 1994.

[136] Y. Xiao, S. T. Ahmed, and A. DeHon. Fast linking of separately-compiled fpga blocks
without a noc. In 2020 International Conference on Field-Programmable Technology
(ICFPT), 2020.

[137] Y. Xiao, A. DeHon, et al. PLD: Fast FPGA Compilation to Make Reconfigurable Ac-
celeration Compatible with Modern Incremental Refinement Software Development.
In Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2022.

[138] Y. Xiao, D. Park, A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi, R. Rubin, and
A. DeHon. Reducing FPGA Compile Time with Separate Compilation for FPGA
Building Blocks. In 2019 International Conference on Field-Programmable Technology
(ICFPT), pages 153–161. IEEE, 2019.

[139] Xilinx. UltraScale Architecture and Product Data Sheet: Overview.
https://www.xilinx.com/support/documentation/data_sheets/

ds890-ultrascale-overview.pdf.

[140] Xilinx. Large FPGA Methodology Guide. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf, 2012.

[141] Xilinx. UltraScale Architecture Configurable Logic Block. https://www.xilinx.

com/support/documentation/user_guides/ug574-ultrascale-clb.pdf, 2017.

[142] Xilinx. Vivado Design Suite User Guide Hierarchical Design. https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/

ug905-vivado-hierarchical-design.pdf, 2017.

166

https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug905-vivado-hierarchical-design.pdf

[143] Xilinx. Vivado Design Suite User Guide Partial Reconfiguration. https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/

ug909-vivado-partial-reconfiguration.pdf, 2018.

[144] K. Yamazaki, Y. Nakajima, T. Hatano, and A. Miyazaki. Lagopus FPGA–A Repro-
grammable Data Plane for High-Performance Software SDN Switches. In 2015 IEEE
Hot Chips 27 Symposium (HCS), pages 1–1. IEEE, 2015.

[145] S. Yang. Logic synthesis and optimization benchmarks user guide: version 3.0. MCNC,
1991.

[146] A. Yazdinejad, A. Bohlooli, and K. Jamshidi. Efficient Design and Hardware Imple-
mentation of the OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. The Journal
of Supercomputing, 74(3):1299–1320, 2018.

[147] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei. An ultra-high energy-
efficient reconfigurable processor for deep neural networks with binary/ternary weights
in 28nm cmos. In 2018 IEEE Symposium on VLSI Circuits, pages 37–38. IEEE, 2018.

[148] S. Yin, P. Ouyang, S. Zheng, D. Song, X. Li, L. Liu, and S. Wei. A 141 uw, 2.46
pj/neuron binarized convolutional neural network based self-learning speech recog-
nition processor in 28nm cmos. In 2018 IEEE Symposium on VLSI Circuits, pages
139–140. IEEE, 2018.

[149] S. Zeng, G. Dai, H. Sun, K. Zhong, G. Ge, K. Guo, Y. Wang, and H. Yang. En-
abling Efficient and Flexible FPGA Virtualization for Deep Learning in the Cloud.
In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020.

[150] Y. Zha and J. Li. Reconfigurable in-memory computing with resistive memory cross-
bar. In Proceedings of the 35th International Conference on Computer-Aided Design,
pages 1–8, 2016.

[151] Y. Zha and J. Li. RRAM-based reconfigurable in-memory computing architecture
with hybrid routing. In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 527–532. IEEE, 2017.

[152] Y. Zha and J. Li. Liquid silicon: A data-centric reconfigurable architecture enabled by
rram technology. In Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 51–60, 2018.

[153] Y. Zha and J. Li. Liquid silicon-monona: A reconfigurable memory-oriented comput-
ing fabric with scalable multi-context support. ACM SIGPLAN Notices, 53(2):214–
228, 2018.

[154] Y. Zha and J. Li. Virtualizing FPGAs in the Cloud. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 845–858, 2020.

167

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf

[155] Y. Zha and J. Li. Hetero-ViTAL: a virtualization stack for heterogeneous FPGA
clusters. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 470–483. IEEE, 2021.

[156] Y. Zha and J. Li. When application-specific ISA meets FPGAs: a multi-layer virtual-
ization framework for heterogeneous cloud FPGAs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 123–134, 2021.

[157] Y. Zha, E. Nowak, and J. Li. Liquid Silicon: A Nonvolatile Fully Programmable
Processing-In-Memory Processor with Monolithically Integrated ReRAM for Big
Data/Machine Learning Applications. In 2019 Symposium on VLSI Circuits, pages
C206–C207. IEEE, 2019.

[158] Y. Zha, E. Nowak, and J. Li. Liquid silicon: A nonvolatile fully programmable
processing-in-memory processor with monolithically integrated ReRAM. IEEE Jour-
nal of Solid-State Circuits, 55(4):908–919, 2020.

[159] J. Zhang and J. Li. Improving the Performance of OpenCL-based FPGA Accelerator
for Convolutional Neural Network. In FPGA, pages 25–34. ACM, 2017.

[160] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and T. Moscibroda.
The Feniks FPGA Operating System for Cloud Computing. In Proceedings of the 8th
Asia-Pacific Workshop on Systems, pages 1–7, 2017.

[161] M. Zhao and G. E. Suh. FPGA-based Remote Power Side-Channel Attacks. In 2018
IEEE Symposium on Security and Privacy, pages 229–244. IEEE, 2018.

[162] Q. Zhao, T. Nakamichi, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi. hCODE:
An Open-Source Platform for FPGA Accelerators. In International Conference on
Field-Programmable Technology, pages 205–208. IEEE, 2016.

[163] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and
Z. Zhang. Accelerating Binarized Convolutional Neural Networks with Software-
Programmable FPGAs. In FPGA, pages 15–24. ACM, 2017.

[164] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H.
Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang. Rosetta: A Realistic High-
Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), Feb 2018.

[165] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek. Intel® QuickPath Inter-
connect Architectural Features Supporting Scalable System Architectures. In 18th
Symposium on High Performance Interconnects, pages 1–6. IEEE, 2010.

168

	Virtualizing Reconfigurable Architectures: From Fpgas To Beyond
	Recommended Citation

	Virtualizing Reconfigurable Architectures: From Fpgas To Beyond
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Thesis
	Motivation
	Target Service Model
	Prior Virtualization Solutions and Our Goals
	Overview and Contributions

	FPGA Background
	FPGA Architecture
	FPGA Compilation Flow
	Partial Reconfiguration
	FPGA Integration
	Cloud Instance Characterization

	System Abstraction for Cloud FPGAs
	Design Requirements
	Two-Level System Abstraction
	FPGA Overlay
	Virtual-to-Physical Mapping
	Design Space Exploration

	Specialized to a Homogeneous Cluster
	Case Study: Extend to Support Application-Specific ISA
	Results
	Two-Level System Abstraction
	Single-Level System Abstraction
	Creating Multiple Types of Physical Blocks
	Discussion

	Compilation Framework
	Compilation Framework for Two-Level Abstraction
	Recursive Partition Process

	Compilation Framework for Single-Level Abstraction
	Compilation Framework for Application-Specific ISA
	Decomposing Step
	Partition Step

	Results
	Compilation Time
	Compilation Quality
	Case Study: AS ISA-based Accelerator

	Scheduling and Resource Management
	Modular Runtime System
	Specialized for A Homogeneous FPGA Cluster

	Task Scheduling Policy
	Resource Allocation Policy
	Possible Extension

	Results
	Design Space Exploration on Parameter N and K
	Improvement Over Non-virtualized Environment
	Comparison between Variants of Two-Level System Abstraction

	Extend to Liquid Silicon
	Background
	RRAM and Access Device
	Related Work

	Liquid Silicon Architecture
	Overview
	Configuration Modes
	Comparison With FPGAs
	Circuit Implementation

	Custom Compilation Framework
	Adaptive Resource Partition

	Chip Demonstration
	Operational Modes
	Write Operation
	Discussion

	Extend Virtualization Solution
	Results
	Evaluation Setup
	Traditional FPGA Benchmarks
	Search-intensive Applications
	Neural Network Benchmarks
	Chip Results
	Virtualization Evaluation

	Conclusion
	Limitation and Possible Future Works

	BIBLIOGRAPHY

