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your past. See you soon in Zürich. I would like to thank Vasso, Spyros, Vassilis, Ioanna,

and Vassilis Tzoumas for helping me settle in Philadelphia and making me feel like home.

Many thanks to the Brunch group: Andreea, Achin, Alëna, Matei, Kuk, and Heejin. I
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Abstract

STATISTICAL LEARNING FOR SYSTEM IDENTIFICATION, ESTIMATION, AND

CONTROL

Anastasios Tsiamis

George J. Pappas

Despite the recent widespread success of machine learning, we still do not fully under-

stand its fundamental limitations. Going forward, it is crucial to better understand learning

complexity, especially in critical decision making applications, where a wrong decision can

lead to catastrophic consequences. In this thesis, we focus on the statistical complexity of

learning unknown linear dynamical systems, with focus on the tasks of system identifica-

tion, prediction, and control. We are interested in sample complexity, i.e. the minimum

number of samples required to achieve satisfactory learning performance. Our goal is to

provide finite-sample learning guarantees, explicitly highlighting how the learning objective

depends on the number of samples. A fundamental question we are trying to answer is how

system theoretic properties of the underlying process can affect sample complexity.

Using recent advances in statistical learning, high-dimensional statistics, and control

theoretic tools, we provide finite-sample guarantees in the following settings. i) System

Identification. We provide the first finite-sample guarantees for identifying a stochastic

partially-observed system; this problem is also known as the stochastic system identifica-

tion problem. ii) Prediction. We provide the first end-to-end guarantees for learning the

Kalman Filter, i.e. for learning to predict, in an offline learning architecture. We also pro-

vide the first logarithmic regret guarantees for the problem of learning the Kalman Filter

v



in an online learning architecture, where the data are revealed sequentially. iii) Difficulty

of System Identification and Control. Focusing on fully-observed systems, we investigate

when learning linear systems is statistically easy or hard, in the finite sample regime. Sta-

tistically easy to learn linear system classes have sample complexity that is polynomial

with the system dimension. Statistically hard to learn linear system classes have worst-case

sample complexity that is at least exponential with the system dimension. We show that

there actually exist classes of linear systems, which are hard to learn. Such classes include

indirectly excited systems with large degree of indirect excitation. Similar conclusions hold

for both the problem of system identification and the problem of learning to control.
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E∥A − ÂN∥2, for identifying (6.3), is less than ϵ. The sample complexity

appears to be increasing exponentially with the dimension n under the least

squares algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Sample complexity of identifying the Jordan block of size n and eigenvalues

all λ, actuated from the last state. The figure shows the minimum number of

samples N such that the (empirical) average error E∥A − ÂN∥2 is less than
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Chapter 1

Introduction

In the last decade, we have witnessed an unprecedented growth of machine learning and ar-

tificial intelligence applications. Renewed interest was sparked by the successful deployment

of deep learning in tasks like computer vision (Krizhevsky et al., 2012), recommendation sys-

tems (Zhang et al., 2019), natural language processing (Young et al., 2018), biology (Jumper

et al., 2021), and finance (Heaton et al., 2017). This success was also accelerated by the

availability of large-scale data and specialized hardware. It is more accessible than ever to

apply machine learning tools in any task with potential real-world impact.

However, despite its potential, it is still challenging to apply machine learning in certain

settings, especially when dealing with critical physical applications involving decision mak-

ing, e.g. self-driving cars, autonomous systems etc. Reinforcement learning has been effec-

tively used to control systems in structured environments, e.g. in games (Silver et al., 2017),

robotic manipulation in the lab (Levine et al., 2016), and simulated physics tasks (Lillicrap

et al., 2015) to name a few. However, unless the environment is structured, e.g. games,

simulators, or the lab, it is a very challenging problem to guarantee safe deployment of

machine learning systems in real world decision and control systems. Without any guaran-

tees, in the worst case there could be unpredictable consequences leading to system failure.

Naturally, a question that arises is can we learn to control systems with guarantees? What

are the fundamental limitations of learning in the context of control systems?
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In this thesis, we take a step towards studying the limitations of learning in the con-

text of control systems. We focus on linear systems driven by stochastic noise. Linear

systems are simple enough to allow for an in-depth theoretical analysis, yet exhibit suffi-

ciently rich behavior so that we can draw conclusions about control of more general system

classes (Recht, 2019). Even in this simple setting, understanding learning limitations is

quite challenging and highly non-trivial.

There are many different aspects of learning complexity. From a computational point

of view, a learning task is difficult if it requires a lot of computational resources. From a

statistical point of view, the difficulty of learning is captured by the amount of data needed

to achieve satisfactory performance. In this thesis, we are interested in the latter, i.e. the

statistical difficulty of learning in stochastic control systems.

Typically, there are two main tasks in stochastic control systems, the prediction and the

regulation problem. In the former task, our goal is to predict the state of the underlying

physical process based on noisy measurements, while in the latter our goal is to drive the

process to a desired set-point or trajectory based on state feedback. Traditionally, the

implementation of both procedures requires a model of the underlying system. However, in

reality, the system might be unknown and we might not have access to such a model. This

might happen if, for example, the physics are complex or some parameters are uncertain.

In this case, we need to learn how to do control/prediction based on data.

Of course, the problem of learning unknown linear dynamical systems from data was

studied extensively before in the context of system identification (Ljung, 1999) and adaptive

control (Goodwin et al., 1981), long before the recent resurgence of machine learning. The

convergence and statistical properties of such algorithms has been well understood in the

asymptotic regime, i.e. when we have an infinite number of samples. However, in reality we

only have access to a finite number of samples. In the finite-sample regime, tools like the

Central Limit Theorem, can be only applied heuristically, while any existing rigorous results

are conservative (Vershynin, 2018). Besides, under the big-O notation, it is not always clear

how the learning performance depends on various system theoretic properties. Hence, there

2



is a gap in our theoretical understanding of the statistical complexity of learning.

With the advances in statistical learning and high-dimensional statistics (Vershynin,

2018), there has been a recent shift of focus from asymptotic analysis with infinite data

to statistical analysis with finite data (Matni & Tu, 2019; Matni et al., 2019). Inspired

by this recent line of work, the goal of this thesis is to contribute towards a finite-sample

complexity theory for dynamical systems learning. We aim to understand the relation

between the number of samples and accuracy of control/prediction. We are also interested in

understanding how system theoretic properties affect statistical learning difficulty. Towards

this goal, we leverage modern statistical learning results (Vershynin, 2018) to bypass the

limitations of asymptotic tools. Such tools should be applied carefully since the learning

and control components interact with each other. Besides, time-series data are highly

correlated, unlike the standard statistical learning setting where the collected samples are

independent (Shalev-Shwartz & Ben-David, 2014).

1.1 Learning unknown linear systems

In this thesis, we focus on unknown linear systems of the form:

xk+1 = Axk +Buk + wk

yk = Cxk + vk,

(1.1)

where xk is the state, uk is the control input, and yk is the measured output. The noise

signals wk, vk represent the process and measurement noise respectively. Typically, we

have access to an input-output data-set of length N , where N denotes the number of

samples; the data can belong to either a single trajectory or multiple trajectories. Since

system (1.1) is unknown, we have to use data in order to learn how to control the system

or predict its evolution. Our main focus in this thesis is how the number of samples N

affects learning performance. Of course learning performance can vary since there are many

different learning methods that we can deploy. The selection of learning method depends

3



on the nature of the data but also on our own engineering choices. Below, we list some of

the most important conceptual and architectural distinctions.

Model-based versus model-free learning. One way to control or predict the evolution

of system (1.1) is to first learn a model, i.e. estimate the unknown parameters A,B,C and

potentially the noise profiles from data. This problem is of independent interest and has been

known as the system identification problem Ljung (1999). After obtaining the model, we

can design a controller or a filter. Any method that uses some kind of a model representation

in order to control or predict system (1.1), will be called a model-based method. At the

other end, we have model-free learning methods. In this case, we directly parameterize the

control policy or the predictor based on some parameter, say θ, and use the data to find

a value of θ that leads to good control/prediction performance. Of course, the distinction

between model-based and model-free methods goes beyond the class of linear systems. It

is a design choice whether to choose the former or the latter as both have advantages and

disadvantages. For example, model-based methods can be more interpretable for some

systems; also it might be easier to argue about robustness or guarantees once we have a

model. However, if the assumed model class is wrong, the introduced bias might affect

control performance significantly. Such methods are paired well with Model Predictive

Control implementations. On the other hand, model-free methods might be more suitable

for complex control tasks, but they might require more samples. Such methods have been

studied in the model-free Reinforcement Learning literature. In this thesis we focus mostly

on model-based methods.

Offline versus online learning. An important architectural distinction is whether learn-

ing is performed offline or online. In the offline setting, we have access to pre-collected

input-output data. We perform learning once and we deploy the learned controller or pre-

dictor without using any of the new data that become available as the system is evolving.

Learning and decision making happen in separate steps. In the online setting, at every

time step the new measurement data yt are revealed sequentially, and only after the con-
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troller applies input ut−1 or we make a prediction ŷt. Learning and decision making occur

and interact simultaneously. The problem of learning to control/predict (1.1) online is

also known as the adaptive control/filtering problem in the control theoretic literature. In

principle, the online learning setting seems superior since the learning algorithm can adapt

to changes in the dynamics or the environment. However, deploying adaptive algorithms

in practice has proved to be challenging; because of their complexity, they might lead to

unpredictable and abrupt behaviors (Anderson & Dehghani, 2007), unless we carefully tune

their parameters (Moden, 1995).

Statistical versus adversarial learning. In the stochastic noise setting, the process and

measurement noises wk, vk are randomly generated, typically independent from the control

inputs uk. In this case, the noise does not act against the control/prediction objective but it

corrupts the measurement data, reducing learning accuracy. The name statistical learning

suggests that we are dealing with stochastic noise. In the adversarial noise (adversarial

learning) setting, the process and measurement noises wk, vk corrupt the process and the

measurements to actively obstruct the learning algorithm. In practice, it is a design choice

whether we assume that the noise is stochastic or adversarial. Typically, the former choice

prioritizes performance, while the latter prioritizes safety.

1.2 Contributions

In this thesis, we focus on the model-based statistical learning paradigm, where the uncer-

tainty is stochastic. Our contributions can be divided into two main themes: i) Statistical

Learning of the Kalman Filter and ii) Statistical Difficulty of Learning Linear Systems.

Statistical Learning of the Kalman Filter In the first part of this thesis, we study

the finite-sample complexity of learning the Kalman Filter, i.e. we focus on the problem of

prediction. Prediction is a critical component of decision making. It is also the main task

of interest in the case of time-series data, i.e. when B = 0 in (1.1).
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When system (1.1) is known with known noise statistics, we can employ the celebrated

Kalman filter which is the optimal predictor, namely it minimizes the mean square pre-

diction error. The stability and statistical properties of the Kalman filter have been well

studied when the system model is known. However, when the model is unknown, we have to

learn how to predict from data. Our goal is to learn a data-based predictor that competes

with the Kalman Filter that has access to the true underlying model.

Here, we study this scenario, and provide finite-data prediction guarantees. We consider

both an offline and an online learning architecture. In the offline architecture–see Chap-

ters 3, 4, we perform system identification based on pre-collected data followed by a filter

design stage. In the online learning architecture–see Chapter 5 we simultaneously predict

and update the model continuously.

Our contributions are the following.

1. Finite-Sample Analysis of Stochastic Identification. We perform, to the best of

our knowledge, the first finite sample analysis of identifying an unknown autonomous

LTI system (1.1), with B = 0, also known as the stochastic system identification prob-

lem (Van Overschee & De Moor, 2012). We provide the first finite-sample guarantees

for the estimation of matrices A,C as well as the Kalman filter gain of (1.1). We

show that we can achieve a finite-sample statistical rate of O(1/
√
N), up to logarith-

mic factors, where N is the number of samples. More details can be found Chapter 3.

2. Offline Learning Guarantees. We provide, to the best of our knowledge, the

first end-to-end sample complexity bounds for the Kalman Filtering of an unknown

system, in the case of offline learning. In particular, we show that the mean square

error between our data-driven predictor and the Kalman Filter with access to the

true model is, with high probability, bounded by O(1/
√
N), where N is the number

of samples collected in the system identification step. More details can be found

Chapter 4.

3. Online Learning Guarantees. To capture the finite-sample suboptimality of online
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prediction, we adopt the notion of regret (Cesa-Bianchi & Lugosi, 2006). It measures

how far our online predictions are from the optimal Kalman Filter predictions that

has access to the full system model. We define a notion of regret that has a natural,

system theoretic interpretation. The prediction error of an online prediction algorithm

is compared against the prediction error of the Kalman filter that has access to the

exact model, which is allowed to be arbitrary. We present the first online prediction

algorithm with provable logarithmic regret upper bounds for the classical Kalman Fil-

ter. In fact, we prove that with high probability the regret of our algorithm is of the

order of Õ(1), where Õ hides poly logN terms, where N is the number of observations

collected so far. More details can be found Chapter 5.

The material is based on our recent works Tsiamis & Pappas (2019); Tsiamis et al. (2020);

Tsiamis & Pappas (2020).

Statistical Difficulty of Learning Linear Systems In our second part, we study

when learning is statistically easy or hard in the case of fully observed linear systems (1.1)

with yk = xk. In Chapter 6, we study the difficulty of system identification. We define

as statistically easy, classes of systems whose finite-sample complexity is polynomial with

the system dimension. Most prior research in the finite-sample analysis of fully observed

systems falls in this category by assuming system (1.1) is fully excited by the process noise

wk. We define as statistically hard, classes of linear systems whose worst-case sample

complexity is at least exponential with the system dimension, regardless of the learning

algorithm. Using tools from minimax theory, we show that classes of linear systems which

are statistically hard to learn do indeed exist. Such system classes include indirectly excited

systems with large degree of indirect excitation, also known as controllability index. As we

show in Chapter 6, structural properties like the controllability index can crucially affect

learnability, determining whether a problem is hard or not. In Chapter 7, we extend these

results to the problem of learning to control linear systems. In summary, our contributions

are the following.
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1. Exponential sample complexity of system identification is possible. We

identify classes of under-actuated linear systems whose worst-case sample complexity

increases exponentially with the state dimension n regardless of learning algorithm

(see Chapter 6). These hardness results hold even for robustly controllable systems.

2. Stabilization from data can exhibit exponential sample complexity. We

extend the previous results to the problem of stabilizing a system from data (see

Chapter 7). We show that certain classes of under-actuated linear systems might

exhibit worst-case sample complexity which increases exponentially with the state

dimension n regardless of stabilization algorithm.

3. The regret of the online LQR problem can be exponential We also study

the difficulty of the online learning of the Linear Quadratic Regulator (LQR). We

show that the regret of online LQR can scale exponentially with the dimension as

exp(n)
√
T , where T is the number of samples collected so far (see Chapter 7) and n

is the state dimension of the system. Once again, this behavior can arise in the case

of under-actuated systems, which are in general hard to control.

4. Controllability index affects sample-complexity/regret. We prove that under

some standard algorithms, the sample complexity of identification is upper-bounded

by an exponential function of the system’s controllability index (see Chapter 6). Sim-

ilar results hold for the sample complexity of stabilization and the regret of the online

LQR (see Chapter 7). This implies that if the controllability index is small O(1) (with

respect to the dimension n), then learning is guaranteed to be easy.

The material of Chapter 6 is based on our recent paper (Tsiamis & Pappas, 2021). At the

time of writing this thesis, the material of Chapter 7 was submitted for publication (Tsiamis

et al., 2022).

8



1.3 Related work

Asymptotic analyses Control theory has a long history studying the statistical proper-

ties of system identification (Ljung, 1999), adaptive control (Åström & Wittenmark, 1973;

Goodwin et al., 1981), and adaptive filtering (Lai & Ying, 1991). Until recently, the main

focus was providing guarantees in the asymptotic regime, when the number of collected sam-

ples N tends to infinity. In the finite-sample regime, tools like the Central Limit Theorem,

can be only applied heuristically, while any existing rigorous results are conservative (Ver-

shynin, 2018). Besides, under the big-O notation, it is not always clear how the learning

performance depends on various system theoretic properties. Some more recent work in the

asymptotic regime can be found in Wang & Janson (2021); Lu & Mo (2021).

Finite-sample analysis of system identification The first works on the finite-sample

analysis of system identification appeared in the 90s (Dahleh et al., 1993; Poolla & Tikku,

1994; Weyer et al., 1999) and 2000s (Campi &Weyer, 2002; Vidyasagar & Karandikar, 2008).

After the papers by Abbasi-Yadkori & Szepesvári (2011) and Dean et al. (2017), there has

been a resurgence of interest. Over the past years there have been significant advances in un-

derstanding finite sample system identification for both fully-observed systems Simchowitz

et al. (2018); Faradonbeh et al. (2018a); Sarkar & Rakhlin (2018); Fattahi et al. (2019);

Jedra & Proutiere (2019); Wagenmaker & Jamieson (2020) as well as partially-observed

systems Oymak & Ozay (2018); Sarkar et al. (2019); Simchowitz et al. (2019); Tsiamis &

Pappas (2019); Lee & Lamperski (2020); Zheng & Li (2020); Lee (2020); Lale et al. (2020b).

A tutorial can be found in Matni & Tu (2019). The above approaches offer mainly data-

independent bounds which reveal how the state dimension n and other system theoretic

parameters affect the sample complexity of system identification qualitatively. This is dif-

ferent from finite sample data-dependent bounds-see for example bootstrapping Dean et al.

(2017) or Carè et al. (2018), which might be more tight and more suitable for applications

but do not necessarily reveal this dependence.
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Prediction In Tsiamis et al. (2020); Lee & Zhang (2020) the problem of end-to-end

prediction guarantees was studied, in an offline learning architecture. Online prediction

was studied in the case of systems without internal states (such as ARMA - autoregressive

moving average) Anava et al. (2013). Prediction of observations generated by state space

models in the case of exogenous inputs and adversarial noise but with a bounded budget

was studied in Hazan et al. (2018). Recently, Kozdoba et al. (2019) introduced regret

bounds for the Kalman Filter in the restricted context of scalar and bounded observations.

The regret is shown to be of the order of
√
N along with a small linear term. Here, we

improve the state of the art to logarithmic bounds for general observations. Concurrently

and independently Ghai et al. (2020) also proved logarithmic regret bounds for the Kalman

Filter. Our analysis here is different focusing on persistency of excitation, which can also

provide simultaneous parameter estimation guarantees. After our work Tsiamis & Pappas

(2020), regret bounds were extended to the case where the Kalman Filter closed-loop matrix

is close to instability Rashidinejad et al. (2020).

Sample Complexity of Learning Feedback Laws. The sample complexity of learn-

ing (stabilizing) feedback laws from data was studied before in the case of stochastic (Dean

et al., 2017; Tu et al., 2017; Faradonbeh et al., 2018b; Mania et al., 2019) as well as ad-

versarial (Chen & Hazan, 2021) disturbances. The standard paradigm has been to perform

system identification, followed by a robust control or certainty equivalent gain design. Typ-

ically, apart from stability, another goal is to also achieve as good control performance as

the optimal LQR controller that has access to the true model Dean et al. (2017); Mania

et al. (2019). Similar issues were studied in the partially observed setting (Zheng et al.,

2021).

Online Control Recently, there have been important results addressing the online learn-

ing of the Linear Quadratic Regulator (LQR) problem Abbasi-Yadkori & Szepesvári (2011);

Faradonbeh et al. (2020b); Ouyang et al. (2017b); Dean et al. (2018); Mania et al. (2019);

Cohen et al. (2019). The best regret for LQR is sublinear and of the order of Õ(
√
N), where

10



N is the numbers of state samples collected; an in-depth survey can be found in Matni et al.

(2019). It was shown recently that this rate is in fact tight; in the worst case, the regret

is indeed of the order of Ω(N) Simchowitz & Foster (2020); Ziemann & Sandberg (2020).

Online control of linear systems has also been studied in the case of more general convex

consts Plevrakis & Hazan (2020). When the system model is known, then the Kalman filter

is the dual of the Linear Quadratic Regulator, suggesting that this duality can be exploited

in deriving learning guarantees for the Kalman filter. However, when the system model is

unknown, the Linear Quadratic Regular and the Kalman filter are not dual problems. As

the state is fully observed in LQR, the system identification reduces to a simple least squares

problem. In the Kalman filter case, the state is partially observed resulting in non-convex

system identification problems requiring us to consider a different approach.

A different line of work studies adaptive stabilization of unstable systems in the setting

of noiseless (Talebi et al., 2021) or noisy (Faradonbeh et al., 2018b) systems.
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Part I

Statistical Learning of the Kalman

Filter
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Chapter 2

Introduction and Background

The celebrated Kalman Filter (Anderson & Moore, 2005; Kailath et al., 2000) has been

a fundamental approach for estimation and prediction of time-series data, with diverse

applications ranging from control systems and robotics (Bertsekas, 2017; Durrant-Whyte

& Bailey, 2006) to computer vision (Coskun et al., 2017), economics (Harvey, 1990; Bauer

& Wagner, 2002), and machine learning. Given a known system model with known noise

statistics, the Kalman Filter predicts future observations of a partially observable dynamical

process by filtering past observations. A well-studied setting is the case of autonomous linear

time invariant (LTI) systems driven by Gaussian noise:

xk+1 = Axk + wk

yk = Cxk + vk,

(2.1)

where xk is the internal state, yk are the observations (measurements), wk is the Gaus-

sian process noise, and vk is the Gaussian measurement noise. In this setting, the Kalman

Filter is optimal in the sense that it minimizes the mean square prediction error of the

state/observations. Since Kalman’s seminal paper (Kalman, 1960), the stability and statis-

tical properties of the Kalman Filter have been well studied when system (2.1) is known.

In reality, in many practical cases of interest (e.g., tracking moving objects, stock price

forecasting), the system model (2.1) is unknown, and we have to learn how to predict based
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on data. However, learning to predict unknown partially observable systems is a signifi-

cantly more challenging problem. Even in the case of linear systems, learning directly the

model parameters of the system results in nonlinear, non-convex problems (Yu et al., 2018).

Besides, learning the system under finite samples, inevitably introduces parametric errors

in model (2.1), which leads to a KF with suboptimal prediction performance (El Ghaoui &

Calafiore, 2001).

In this part, we study exactly this scenario, and provide finite-sample prediction guar-

antees for the Kalman filtering of an unknown autonomous LTI system (2.1). We consider

two possible architectures: a) an offline learning scheme, where we perform system identifi-

cation based on batch data followed by a filter design stage-see Chapters 3, 4; b) an online

learning scheme, where we simultaneously predict and update the model continuously–see

Chapter 5.

In this chapter, we provide a brief high-level overview of the offline/online learning

architectures. We also review for completeness, some well-known properties of the Kalman

Filter in Section 2.3.

2.1 Offline learning architecture

In the offline learning architecture-see Fig. 2.1, we have access to batch observation data

y0, . . . , yN collected offline, where N is the number of data. Based on the collected samples,

we learn a Kalman Filter for system (2.1), which predicts the system’s state. In this

architecture, the learning and the prediction phases are decoupled. As shown in Fig. 2.1,

the online data are only used for prediction. For the learning phase, we consider the following

simple two step procedure, which has been a standard paradigm in control theory. In the

first step, using system identification tools rooted in subspace methods, we obtain finite-

data estimates of the state-space parameters, and Kalman gain describing system (2.1).

Then, in the second step, we use these approximate parameters to design a filter which

predicts the system state.

Note that in this offline architecture, we only perform learning once. As a result, we
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Sys. ID
Ch. 3

Filter Synthesis
Ch. 4

y0, . . . , yN

offline data

model

estimate

FN

FN

y0, . . . , yt

online data

ŷt+1

prediction

Figure 2.1: Offline Learning Architecture. In the offline architecture, we learn a filter FN

once based on batch offline collected data. First, we learn a model of the system based on system
identification, and then we perform filter design to obtain a (suboptimal) filter FN . Second, we
deploy the filter for prediction. The learning and prediction phases are decoupled. The online data
are only used for prediction.

cannot adapt to changes in the dynamics or the environment. Hence, offline learning is

more suitable for applications where the environment is in steady-state or does not change

significantly. Nonetheless, offline learning algorithms are more simple, they are easier to

analyze, and they lead to more predictable behaviors when deployed online.

Here, our goal is to provide finite-sample guarantees for the prediction performance

of the offline learning architecture. We study the stages of system identification and fil-

ter design separately in Chapter 3 and Chapter 4 respectively. The material is based on

the publications Tsiamis & Pappas (2019); Tsiamis et al. (2020). Our contributions are

summarized as follows. More details can be found in Chapters 3, 4.

i) We perform the first finite-sample analysis of identifying the stochastic system (2.1),

also known as the stochastic system identification problem (Van Overschee & De Moor,

2012). We provide the first non-asymptotic guarantees for the estimation of matrices A,C

as well as the Kalman Filter gain of (2.1).

ii) We analyze the sensitivity to modeling error of the filter design phase. We show that

if the system identification step produces sufficiently accurate estimates, or if the underlying

true Kalman Filter is sufficiently robust, then the data-based Kalman Filter enjoys near

optimal mean square prediction error.

iii) We integrate the above results with the finite-data system identification guarantees,

to provide, to the best of our knowledge, the first end-to-end sample complexity bounds for

the Kalman filtering of an unknown system. In particular, we show that the mean square
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y0, . . . , yt
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ŷt+1
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Figure 2.2: Online Learning Architecture. In the online architecture, the data are revealed
sequentially. Learning and prediction are performed simultaneously and continuously. Since we
continuously adapt to the data, the filter Ft changes with time t. Unlike the offline architecture,
the learning data are also used for prediction.

prediction error of the data-based Kalman Filter produced by the two step offline procedure

is, with high probability, bounded by Õ(1/
√
N), where N is the number of samples collected

in the system identification step.

2.2 Online learning architecture

In the online learning architecture-see Fig. 2.1, the data are revealed sequentially. At

each time step we use the new information to both adapt and predict. Learning and

prediction are performed simultaneously and continuously using the same data-set. From a

machine learning perspective this problem has been known as the online learning problem,

while from a control theoretic perspective this problem has been known as the adaptive

(Kalman) filtering problem. Similar to the offline case, our learning algorithm is based

system identification techniques, properly modified to account for the online adaptation.

The advantage of the online architecture is that the learning algorithm can adapt to changes

in the dynamics or the environment. However, online learning algorithms are more complex

in general and might be more challenging to analyze.

In Chapter 5, we provide finite-sample guarantees for the prediction performance of

the online architecture. The material is based on our preprint Tsiamis & Pappas (2020).

To capture the finite-sample suboptimality of online prediction, we adopt the notion of

regret Cesa-Bianchi & Lugosi (2006). It measures how far our online predictions are from

the optimal Kalman Filter predictions that has access to the full system model. Our goal

is to find an online prediction algorithm that has provably small regret. Our technical

contributions are (for more details see Chapter 5):

i) System theoretic regret. We define a notion of regret that has a natural, system
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theoretic interpretation. The prediction error of an online prediction algorithm is compared

against the prediction error of the Kalman Filter that has access to the exact model.

ii) Logarithmic regret for the Kalman Filter. We present the first online prediction

algorithm with provable logarithmic regret upper bounds. In particular, we prove that with

high probability the regret of our algorithm is of the order of Õ(1), where Õ hides poly logN

terms, where N is the number of observations collected. Our regret guarantees hold for the

class of non-explosive systems, which includes marginally stable linear systems.

iii) Learning gap between LQR and Kalman Filter: One of the implications of our

bounds is that learning to predict observations like the Kalman Filter is provably easier than

solving the online Linear Quadratic Regulator (LQR) problem, which in general requires

Ω(
√
N) regret Simchowitz & Foster (2020); Ziemann & Sandberg (2020). This might not be

surprising due to the fact that, in the case of exogenous inputs, we need to inject exploratory

signals into the system.

2.3 Kalman Filter preliminaries

Consider system (2.1), where xk ∈ Rn is the system state, yk ∈ Rm is the output, A ∈ Rn×n

is the system matrix, C ∈ Rm×n is the output matrix, wk ∈ Rn is the process noise, and

vk ∈ Rm is the measurement noise. The noises wk, vk are assumed to be i.i.d. zero mean

Gaussian, with covariance matrices Q and R respectively, and independent of each other.

The initial state x0 is also assumed to be zero mean Gaussian, independent of the noises,

with covariance Σ0. Matrices A, C, Q, R, Σ0 are initially unknown.

Let Fk ≜ {y0, . . . , yk} be the filtration generated by the observations up to time k. Let

Ld
2(Fk) denote the space of square integrable, Fk-measurable random vectors in Rd, for

some dimension d. Then, the minimum mean square error predictor is defined as:

ŷk+1 ≜ arg min
z∈Lm

2 (Fk)
E∥yk+1 − z∥22

x̂k+1 ≜ arg min
z∈Ln

2 (Fk)
E∥xk+1 − z∥22
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In the case of Gaussian noise, the above optimal predictors admit a closed-form expression,

which is the celebrated Kalman Filter

x̂k+1 = Ax̂k +Kk(yk − ŷk), x̂0 = 0

ŷk+1 = Cx̂k+1

Pk+1 = APkA
∗ +Q−APkC

∗(CPkC
∗ +R)−1CPA∗, P0 = Σ0

Kk = APkC
∗(CPkC

∗ +R)−1,

whereKk is the Kalman Filter gain. Matrix Pk = E(xk−x̂k)(xk−x̂k)
∗ is the state prediction

error covariance and satisfies a standard Riccati recursion.

For the Kalman Filter to be stable and well-behaved we typically make the following

standard observability assumption.

Assumption 2.1. The pair (A,C) is detectable, (A,Q1/2) is stabilizable and R is strictly

positive definite. ⋄

Under the above assumption, the Kalman Filter converges exponentially to its steady-

state, in the sense that the second order statistics converge.

Proposition 2.1 (KF convergence Anderson & Moore (2005)). Consider system (2.1)

under Assumption 2.1. The Kalman gain Kk and the covariance Pk converge exponentially

fast to their respective limits, which are well-defined

lim
k→∞

Kk = K, lim
k→∞

Pk = P.

The steady-state gain is given by

K = APC∗ (CPC∗ +R)−1 , (2.2)
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while P is the unique stabilizing solution1 to

P = (A−KC)P (A−KC)∗ +Q+KRK∗. (2.3)

As a result, the closed-loop matrix A−KC is stable, i.e. it has spectral radius ρ(A−KC) < 1.

The above expressions can be simplified if the initial covariance Σ0 is chosen such that

we start from steady state.

Corollary 2.1 (KF steady-state Anderson & Moore (2005)). Consider system (2.1) under

Assumption 2.1. Let Σ0 = P , where P is the solution to the algebraic Riccati equation (2.3).

Define the innovation process:

ek ≜ yk − ŷk (2.4)

Then, the Kalman Filter recursion is simplified to:

x̂k+1 = Ax̂k +Kek, x̂0 = 0

yk = Cx̂k + ek.

(2.5)

We conclude this brief section with some interesting observations about the Kalman

Filter and we also highlight two of its fundamental properties.

Remark 1 (equivalent representation). The Kalman Filter (2.5) is also sometimes called

predictor form (or innovation form) of system (2.1) in the system identification literature.

Interestingly, under Assumption 2.1 and Σ0 = P , systems (2.1), (2.5) are indistinguishable

from the perspective of the outputs/observations; both systems can produce observations

with identical distributions. Hence, we can view (2.5) as an alternative system representa-

tion. This implies that if system (2.1) is completely unknown, then we might have multiple

systems that explain the same observations. In other words, the representation of the

statistics of the observations is not unique, even if we keep A the same.

Remark 2 (KF properties). Consider the steady-state Kalman Filter (2.5). Two of the

1A stabilizing solution P to the Riccati equation defines a Kalman gain K such that ρ(A−KC) < 1.
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properties that make it desirable are i) stability, and ii) the orthogonality principle. Stability

of the Kalman Filter follows from observability ( Assumption 2.1) and implies that the

innovation sequence ek can reach steady-state. The orthogonality principle states that the

innovation process ek is orthogonal, i.e. Eeke∗t = 0 for k ̸= t. However, by Gaussianity of

ek, this will also imply that the sequence ek is independent. In addition, since we are at

steady state, the innovation ek is an i.i.d. sequence.
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Chapter 3

Finite Sample Analysis of

Stochastic System Identification

3.1 Introduction

In this chapter, we study the finite-sample complexity of system identification in the case of

stochastic systems. Recall from Chapter 2 that stochastic systems have the following form:

xk+1 = Axk + wk

yk = Cxk + vk,

(3.1)

namely the state is only driven by noise and we have no exogenous inputs. Our approach

will serve as the backbone of our analysis for both the offline and the online architecture.

Before we present the problem formulation, let us give a brief historical overview.

Most identification methods (Ljung, 2010) for linear systems either follow the predic-

tion error approach (Ljung, 1999) or the subspace method (Van Overschee & De Moor,

2012; Verhaegen & Verdult, 2007). The prediction error approach is usually non-convex

and directly searches over the system parameters A,B,C,D by minimizing a prediction

error cost. The subspace approach is a convex one; first, Hankel matrices of the system

are estimated, then, the parameters are realized via steps involving singular value decom-
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position (SVD). Methods inspired by machine learning have also been employed (Chiuso &

Pillonetto, 2019). In this thesis, we focus on the subspace identification approach–see (Qin,

2006) for an overview.

The asymptotic statistical properties of subspace algorithms have been well-studied in

the stationary regime (Deistler et al., 1995; Peternell et al., 1996; Viberg et al., 1997; Jansson

& Wahlberg, 1998; Knudsen, 2001; Bauer et al., 1999; Chiuso & Picci, 2004). In (Deistler

et al., 1995; Peternell et al., 1996), it is shown that the identification error can decay as

fast as O(1/
√
N) up to logarithmic factors, where N is the number of data. In (Bauer

et al., 1999; Chiuso & Picci, 2004) Central Limit Theorems for the identification errors

are established. The aforementioned results rely on the assumption of asymptotic stability

(spectral radius ρ(A) < 1) and hold as the number of data N grows to infinity. In the

non-stationary case, subspace identification for a subclass of marginally stable systems was

considered in Bauer & Wagner (2002), where it is shown that consistency can be guaranteed

asymptotically if the unit circle eigenvalues of A are all equal to 1 with simple Jordan blocks.

From a machine learning perspective, finite sample analysis has been a standard tool for

comparing algorithms in the non-asymptotic regime. A series of papers Faradonbeh et al.

(2018a); Simchowitz et al. (2018); Sarkar & Rakhlin (2018); Fattahi et al. (2019) studied

the finite sample properties of system identification from a single trajectory, when the

system state is fully observed (C = I). Finite sample results for partially observed systems

(C ̸= I), which is a more challenging problem, appeared recently in Oymak & Ozay (2018);

Simchowitz et al. (2019); Sarkar et al. (2019). These papers provide a non-asymptotic

convergence rate of 1/
√
N (up to logarithmic factors) for the recovery of matrices A,B,C,D

up to a similarity transformation. The results rely on the assumption that the system can

be driven by external inputs, i.e. B,D ̸= 0. In Simchowitz et al. (2019), it was shown that

consistency can be achieved even for arbitrary marginally stable systems, where ρ (A) ≤ 1.

Sample complexity of prediction error methods has also been considered Weyer et al. (1999);

Campi & Weyer (2002); Vidyasagar & Karandikar (2008); Hazan et al. (2018); Hardt et al.

(2018), where the main metric is prediction performance. Finite sample properties of system
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identification algorithms have also been used in robust and adaptive control Dean et al.

(2017); Rantzer (2018). The dual problem of Kalman filtering has not been studied yet in

this context; preliminary results for scalar observations appeared in Kozdoba et al. (2019).

In this thesis, we perform the first finite sample analysis of identifying system (3.1) in

the case B,D = 0, when we have no inputs, also known as stochastic system identification

(SSI) Van Overschee & De Moor (2012). We provide the first non-asymptotic guarantees

for the estimation of matrices A,C as well as the Kalman filter gain of (3.1). Similar

to Sarkar & Rakhlin (2018); Oymak & Ozay (2018), the analysis is based on new tools from

machine learning and statistics Vershynin (2018); Abbasi-Yadkori et al. (2011); Tu et al.

(2016). As in Weyer et al. (1999); Campi & Weyer (2002); Vidyasagar & Karandikar (2008);

Faradonbeh et al. (2018a); Simchowitz et al. (2018); Sarkar & Rakhlin (2018); Fattahi et al.

(2019); Oymak & Ozay (2018); Simchowitz et al. (2019); Sarkar et al. (2019), we focus on

data-independent bounds, i.e. bounds which reveal how the identification error depends

on the number of data N , and the system’s and algorithm’s parameters. An alternative

approach is to derive data-dependent bounds, see for example Carè et al. (2018). Such

bounds could potentially be more tight, however it is not yet clear how they vary with the

number of data N . In summary, our main contributions are:

• To the best of our knowledge, we provide the first finite sample upper bounds in

the case of stochastic system identification, where we have no inputs and the system

is only driven by noise. We also provide the first finite sample guarantees for the

estimation error of the Kalman filter gain.

• We prove that the outputs of the system satisfy persistence of excitation in finite time

with high probability. This result is fundamental for the analysis of many subspace

identification algorithms which use outputs as regressors.

• We show that we can achieve a non-asymptotic learning rate of O(
√
1/N) up to

logarithmic factors in the case of general marginally stable systems ρ(A) = 1, gener-

alizing the asymptotic results of Bauer & Wagner (2002). The learning rate is also
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valid in the case of repeated unit circle eigenvalues, when the system is unstable but

non-explosive. For stable systems (ρ(A) < 1), the non-asymptotic learning rate is

consistent with classical asymptotic results Deistler et al. (1995).

3.2 Problem formulation

Consider system (3.1), where xk ∈ Rn is the system state, yk ∈ Rm is the output, A ∈ Rn×n

is the system matrix, C ∈ Rm×n is the output matrix, wk ∈ Rn is the process noise, and

vk ∈ Rm is the measurement noise. The noises wk, vk are assumed to be i.i.d. zero mean

Gaussian, with covariance matrices Q and R respectively, and independent of each other.

The initial state x0 is also assumed to be zero mean Gaussian, independent of the noises,

with covariance Σ0.

Assumption 3.1. Matrices A, C, Q, R, Σ0 are initially unknown. The order of the system

n is known 2. The spectral radius ρ(A) of A is ρ (A) ≤ 1. The pair (A,C) is observable,

(A,Q1/2) is controllable and R is strictly positive definite. ⋄

The assumption ρ(A) ≤ 1 includes marginally stable systems as well as non-explosive un-

stable systems with repeated unit circle roots. It is more general than the stricter condition

ρ(A) < 1 found in previous works, see Deistler et al. (1995); Peternell et al. (1996); Viberg

et al. (1997); Jansson & Wahlberg (1998); Knudsen (2001); Bauer et al. (1999); Chiuso &

Picci (2004). The remaining conditions in Assumption 3.1, are standard for Kalman filter to

be well-behaved–see also Section 2.3. They are slightly stricter compared to the conditions

of Assumption 2.1 to guarantee that the system we try to learn is minimal. Next, we also

assume that the Kalman filter has reached its steady state.

Assumption 3.2. We assume that the initial state covariance is equal to the steady-state

covariance of the Kalman filter Σ0 = P , where P is defined in (2.3). ⋄

Since the Kalman filter converges exponentially fast to the steady-state gain, this as-

sumption is reasonable in many situations; it is also standard Deistler et al. (1995); Knudsen

2The results of Section 3.4 do not depend on the order n being known.
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(2001). Based on the above assumptions, by Corollary 2.1 the steady-state Kalman filter

of system (3.1) takes the following form:

x̂k+1 = Ax̂k +Kek, x̂0 = 0

yk = Cx̂k + ek,

(3.2)

where x̂k is the Kalman filter predicted state, ek = yk− ŷk is the innovation process, and K

is the filter gain, given by (2.2). We denote the covariance matrix of the prediction x̂k by:

Γk = E [x̂kx̂
∗
k] . (3.3)

The innovation error sequence ek has covariance

R̄ ≜ E [eke
∗
k] = CPC∗ +R. (3.4)

Since the original errors are Gaussian i.i.d., by the orthogonality principle the innovation

error sequence ek is also Gaussian and i.i.d.

In the classical stochastic subspace identification problem, the main goal is to identify the

Kalman filter parameters A,C,K from output samples y0 . . . , yN , see for example Chapter 3

of Van Overschee & De Moor (2012). The problem is ill-posed in general since the outputs

are invariant under any similarity transformation Ā = S−1AS, C̄ = CS, K̄ = S−1K. Thus,

we can only estimate A,C,K up to a similarity transformation.

Here, we will analyze the finite sample properties of a subspace identification algorithm,

which is based on least squares.

Problem 3.1 (Finite Sample Analysis of SSI). Consider a finite number N of output sam-

ples y0, . . . , yN−1, which follow model (3.1), and an algorithm A, which returns estimates

Â, Ĉ, K̂ of the true parameters. Given a confidence level δ provide upper bounds ϵA (δ,N),
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ϵC (δ,N), ϵK (δ,N) such that with probability at least 1− δ:

∥∥∥Â− S−1AS
∥∥∥
2
≤ ϵA (δ,N)∥∥∥Ĉ − CS

∥∥∥
2
≤ ϵC (δ,N)∥∥∥K̂ − S−1K
∥∥∥
2
≤ ϵK (δ,N) ,

(3.5)

for some invertible matrix S, where ∥·∥2 denotes the spectral norm. The bounds ϵ can also

depend on the model parameters n,A,C,R,Q as well as the identification algorithm used. ⋄

3.3 Subspace Identification Algorithm

The procedure of estimating the parameters A,C,K is based on a least squares approach,

see for example Deistler et al. (1995); Knudsen (2001). It involves two stages. First, we

regress future outputs to past outputs to obtain a Hankel-like matrix, which is a product

of an observability and a controllability matrix. Second, we perform a balanced realization

step, similar to the Ho-Kalman algorithm, to obtain estimates for A,C,K.

Before describing the algorithm, we need some definitions. Let p, f , with p, f ≥ n be two

design parameters that define the horizons of the past and the future respectively. Assume

that the total number of output samples is N̄ = N + p + f − 1. Then, the future outputs

Yk ∈ Rmf and past outputs Zk ∈ Rmp at time k ≥ p are defined as follows:

Yk ≜


yk
...

yk+f−1

 , Zk ≜


yk−p

...

yk−1

 , k ≥ p (3.6)

By stacking the outputs for all sample sequences, over all times p ≤ k ≤ N + p− 1, we form
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the batch outputs:

Ȳ ≜

[
Yp . . . YN+p−1

]
,

Z̄ ≜

[
Zp . . . ZN+p−1

]
,

The past and future noises Ek, E
+
k and the respective batch noises Ē, Ē+ are defined

similarly as

E+
k ≜


ek
...

ek+f−1

 , Ek ≜


ek−p

...

ek−1

 , k ≥ p

Ē+ ≜

[
E+

p . . . E+
N+p−1

]
, Ē ≜

[
Ep . . . EN+p−1

], (3.7)

where we hide the dependence on the past and future horizons p f , as well as the dependence

on the number of samples N . Next, define the batch states:

X̄ ≜

[
x̂0 . . . x̂N−1

]
.

The (extended) observability matrix Ok ∈ Rmk×n and the reversed (extended) controllabil-

ity matrix Kk ∈ Rn×mk associated to system (3.2) are defined as:

Ok ≜

[
C∗ A∗C∗ · · · (A∗)k−1C∗

]∗
, (3.8)

Kk ≜

[
(A−KC)k−1K . . . (A−KC)K K

]
(3.9)

respectively. We denote the Hankel-like matrix OfKp by:

G ≜ OfKp. (3.10)
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Finally, for any s ≥ 2, define the block-Toeplitz matrix:

Ts ≜



Im 0 0

CK Im · · · 0

...
...

...

CAs−2K CAs−3K · · · Im


. (3.11)

Based on the definition of the Toeplitz matrix, we can define the covariance matrices of the

weighted past and future noises in a compact way:

Σ+
E ≜ E

(
TfE+

k E
+∗
k T ∗

f

)
= Tf diag(R̄, . . . , R̄)T ∗

f (3.12)

ΣE ≜ E
(
TpEkE

∗
kT ∗

p

)
= Tp diag(R̄, . . . , R̄)T ∗

p . (3.13)

3.3.1 Regression for Hankel Matrix Estimation

First, we establish a linear relation between the future and past outputs. From (3.2), for

every k, the future outputs can be written as a linear combination of the initial predicted

state x̂k at time k and the future noises:

Yk = Of x̂k + TfE+
k .

Meanwhile, from (3.2), the predicted state x̂k can be expressed in terms of the past outputs:

x̂k = Kyk−1 + · · ·+ (A−KC)p−1Kyk−p + (A−KC)px̂k−p.

Combining the above expressions in their batch form, we arrive at

Ȳ = GZ̄ +Of (A−KC)pX̄ + Tf Ē+, (3.14)

which expresses the future outputs as a linear combination of past outputs, the initial

predicted states, and the future noises. Note that the regressors Z̄ and the residuals Ē+ are
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independent from each other column-wise. Hence, equation (3.14) resembles the standard

linear regression setting. However, the term Of (A −KC)pX̄ introduces a bias due to the

Kalman filter truncation, where we use only p past outputs instead of all of them. Based

on (3.14), we compute the least squares estimate

Ĝ = Ȳ Z̄∗(Z̄Z̄∗)−1. (3.15)

The Hankel matrix G can be interpreted as a (truncated) Kalman filter which predicts

future outputs directly from past outputs, independently of the internal state-space repre-

sentation Van Overschee & De Moor (2012). In this sense, the estimate Ĝ is a “data-driven”

Kalman filter. Notice that persistence of excitation of the outputs (invertibility of Z̄Z̄∗) is

required in order to compute the least squares estimate Ĝ.

3.3.2 Balanced Realization

This step determines a balanced realization of the state-space, which is only one of the pos-

sibly infinite state-space representations–see Section 3.6 for comparison with other subspace

methods. First, we compute a rank-n factorization of the full rank matrix Ĝ. Let the SVD

of Ĝ be:

Ĝ =

[
Û1 Û2

] Σ̂1 0

0 Σ̂2


 V̂ ∗

1

V̂ ∗
2

 , (3.16)

where Σ̂1 ∈ Rn×n contains the n−largest singular values. Then, a standard realization of

Of , Kp is:

Ôf = Û1Σ̂
1/2
1 , K̂p = Σ̂

1/2
1 V̂ ∗

1 . (3.17)

This step assumed knowing the order n of the system, see Assumption 3.1. In addition,

matrix Kp should have full rank n. This is equivalent to the pair (A,K) being controllable.

Otherwise, OfKp will have rank less than n making it impossible to accurately estimate

Of .

Assumption 3.3. The pair (A,K) is controllable. ⋄
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The above assumption is standard–see for example Knudsen (2001).

Based on the estimated observability/controllability matrices, we can approximate the

system parameters as follows:

Ĉ = Ôf (1 : m, :) , K̂ = K̂p (:, (p− 1)m+ 1 : pm) ,

where the notation Ôf (1 : m, :) means we pick the first m rows and all columns. The

notation for K̂p has similar interpretation. For simplicity, define

Ôu
f ≜ Ôf (1 : m(f − 1), :) ,

which includes the m(f −1) “upper” rows of matrix Ôf . Similarly, we define the lower part

Ôl
f . For matrix A we exploit the structure of the extended observability matrix and solve

Ôu
f Â = Ôl

f in the least squares sense by computing

Â =
(
Ôu

f

)†
Ôl

f ,

where † denotes the pseudoinverse.

The finite sample analysis of the above algorithm is divided in two parts. First, in

Section 3.4, we provide high probability upper bounds for the error ∥G−Ĝ∥2 in the regression

step. Then, in Section 3.5, we analyze the robustness of the balanced realization step.

3.4 Finite Sample Analysis of Regression

In this section, we provide the finite sample analysis of the linear regression step of the

identification algorithm. We provide high-probability upper bounds for the estimation error

∥G− Ĝ∥2 of the Hankel-like matrix G. Before we state the main result, recall the definition

of the covariance matrix R̄ in (3.4). Recall the definition of the past noises’ weighted

covariance

ΣE = E
[
TpEkE

∗
kT ∗

p

]
= Tp diag(R̄, . . . , R̄)T ∗

p .
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The least singular value of the above matrix is denoted by:

σE ≜ σmin (ΣE) . (3.18)

Lemma 3.3 in Section 3.7 proves that σE ≥ σmin (R) > 0.

Theorem 3.1 (Regression Step). Consider system (3.2) and let Assumptions 3.1, 3.2, 3.3

be in effect. Let Ĝ be the estimate (3.15) of the subspace identification algorithm given an

output trajectory y0, . . . , yN+p+f−1 and let G be as in (3.10). Fix a confidence δ > 0 and

define:

δN ≜ (2(N + p− 1)m)− log2(2pm) log(2(N+p−1)m) . (3.19)

There exist N0, N1, N2 such that if N ≥ N0, N1, N2, (see definitions (3.37), (3.41), (3.44)

in Section 3.7), then with probability at least 1− δN − 6δ:

∥G−Ĝ∥2≤C1
√

fmp

N
log

5fκN
δ︸ ︷︷ ︸

O
(√

p logN/N
)

+ C2 ∥(A−KC)p∥2︸ ︷︷ ︸
O(ρ(A−KC)p)

, (3.20)

where

κN =
4

σE

(
∥Op∥22 tr ΓN−1 + trΣE

)
+ δ (3.21)

over-approximates the condition number of E
[
Z̄Z̄∗] and

C1 = 8

√
∥Σ+

E∥2
σE

, C2 = 4∥Of∥2∥O†
p∥2, (3.22)

are system-dependent constants. ⋄

Remark 3 (Interpretation). From (3.14), (3.15) the estimation error consists of two terms:

Ĝ−G = Tf Ē+Z̄
∗ (Z̄Z̄∗)−1︸ ︷︷ ︸

Cross term

+Of (A−KC)p X̄Z̄∗ (Z̄Z̄∗)−1︸ ︷︷ ︸
Kalman filter truncation bias term

. (3.23)

The first term in (3.20) corresponds to the cross-term error, while the second term corre-
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sponds to the Kalman filter truncation bias term. To obtain consistency for Ĝ, we have to

let the term ∥(A−KC)p∥2 go to zero with N . Recall that the matrix A−KC has spectral

radius less than one, thus, the second term decreases exponentially with p. By selecting

p = β logN , for some sufficiently large β, we can force the Kalman truncation error term to

decrease at least as fast as the first one, see for example Deistler et al. (1995). In this sense,

the dominant term is the first one, i.e. the cross-term–this is formalized in the following

corollary. Notice that f can be kept bounded as long as it is larger than n. ⋄

The following result directly follows from Theorem 3.1.

Corollary 3.1 (Consistency). Consider the conditions of Theorem 3.1 and the definition

of δN in (3.19). Fix a confidence δ > 0 and let ρ > ρ(A−KC). Select

p = β logN, β > −1/2
1

log ρ
(3.24)

If N ≥ N0, N1, N2, (see definitions (3.37), (3.41), (3.44) in Section 3.7), then with proba-

bility at least 1− δN − 6δ:

∥∥∥G− Ĝ
∥∥∥
2
≤
√

∥Σ+
E∥2
σE

√
fmpÕ

(√
log 1/δ

N

)
, (3.25)

where Õ hides logarithmic terms of N , constants, and other system parameters. ⋄

The condition (3.24) guarantees that if we select a sufficiently large β, then the trun-

cation term will decay as fast as ∥(A−KC)p∥2 = o(1/
√
N), i.e. the truncation error will

decay faster than the statistical error.

Remark 4 (Statistical rates). For marginally stable systems or non-explosive unstable

systems (ρ(A) = 1) and p = β logN , we have log κN = O (logN), since ∥Op∥2 , tr ΓN depend

at most polynomially on p,N . In this case, (3.20) results in a rate of:

∥G− Ĝ∥2 = O

(
logN√

N
+

√
logN

N
log

1

δ

)
.

32



To the best of our knowledge, there have not been any bounds for subspace algorithms in

the general case of ρ(A) = 1.

In the case of asymptotically stable systems (ρ(A) < 1), we have κN = O (p), since

∥Op∥2 , tr ΓN , ∥Tp∥2 are now O(1). Hence, if p = c logN , we obtain a rate of:

∥∥∥G− Ĝ
∥∥∥
2
= O

(√
logN log logN

N
+

√
logN

N
log

1

δ

)
.

As a result, our finite sample bound (3.20) resembles the asymptotic bound in equation (14)

of Deistler et al. (1995). ⋄

In the absence of inputs (B,D = 0), the noise both helps and obstructs identification.

Larger noise leads to better excitation of the outputs, but also worsens the convergence of

the least squares estimator. To see how our finite sample bounds capture that, observe that

large noise leads to more excitation σE but also to larger future noise ∥Σ+
E∥2. This trade-off

is captured by the condition number of the noise C1.

If N is sufficiently large (condition N ≥ N0, N1), the outputs are guaranteed to be per-

sistently exciting in finite time; more details can be found in Sections 3.4.1, 3.7. Meanwhile,

condition N ≥ N2 is not necessary; it just leads to a simplified expression for the bound of

the Kalman filter truncation error–see Sections 3.4.3, 3.7. The definitions of N0, N1, N2 can

be found in (3.37), (3.41), (3.44). Their existence is guaranteed even if p varies slowly with

N , i.e. logarithmically.

Obtaining the bound on the error ∥G − Ĝ∥2 in (3.20) of Theorem 3.1 requires the

following three steps:

1. Proving persistence of excitation (PE) for the past outputs, i.e. invertibility of Z̄Z̄∗.

2. Establishing bounds for the cross-term error in (3.23).

3. Establishing bounds for the the truncation term in (3.23).

In the following subsections, we sketch the proof steps.
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3.4.1 Persistence of Excitation in Finite Time

The next theorem shows that with high probability the past outputs and noises are persis-

tently exciting in finite time. The result is of independent interest and is fundamental since

many subspace algorithms use past outputs as regressors.

Theorem 3.2 (Persistence of Excitation). Consider the conditions of Theorem 3.1 and N0,

N1 as in (3.37), (3.41). If N ≥ N0, N1, then with probability at least 1 − δN − 2δ both of

the following events occur:

EPE =

{
Z̄Z̄∗ ⪰ 1

2
OpX̄X̄∗O∗

p +
1

2
TpĒĒ∗T ∗

p

}
(3.26)

EE =

{
TpĒĒ∗T ∗

p ⪰ N

2
ΣE

}
, (3.27)

where ⪰ denotes comparison in the positive semidefinite cone. Hence, with probability at

least 1− δN − 2δ the outputs satisfy the PE condition:

Z̄Z̄∗ ⪰ N

4
σEImp,

where σE > 0 is defined in (3.18). ⋄

The above result implies that if the past noises satisfy a PE condition, then PE for the

outputs is also guaranteed; the noises are the only way to excite the system in the absence

of control inputs. The see why the outputs are persistently exciting, notice that the past

output correlations satisfy:

Z̄Z̄∗ =OpX̄X̄∗O∗
p + TpĒĒ∗T ∗

p +

OpX̄Ē∗T ∗
p + TpĒX̄∗O∗

p. (3.28)

We can first show PE for the noise correlations TpĒĒ∗T ∗
p , i.e. show that the event EE occurs

with high probability when N is sufficiently large (condition N ≥ N0). This behavior is

due to the fact that E
[
TpĒĒ∗T ∗

p

]
= NΣE and the sequence Ēk is component-wise i.i.d.
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To prove this step, we use Lemma C.2 from Oymak & Ozay (2018)–see Lemma 3.2 in

Section 3.7.

Meanwhile, the cross terms X̄Ē∗ are much smaller and their norm increases with a rate

of at most O(
√
N) up to logarithmic terms. This is since E

[
X̄Ē∗] = 0 and the product

X̄Ē∗ has martingale structure (see Section 3.7 and Theorem 3.3 below). Eventually, if the

number of samples N is large enough (condition N ≥ N1), the cross-terms will be dominated

by the noise and state correlations with high probability, which establishes output PE.

3.4.2 Cross-term error

To bound the cross-term error, we express it as a product of Ē+Z̄
∗ (Z̄Z̄∗)−1/2

, (Z̄Z̄∗)−1/2,

as in Sarkar & Rakhlin (2018). The second term of the product can be bounded by applying

Theorem 3.2. The first term is self-normalized and has martingale structure component-

wise. In particular, the product Z̄Ē∗
+ is equal to:

Z̄Ē∗
+ =

 N+p−1∑
k=p

Zke
∗
k . . .

N+p−1∑
k=p

Zke
∗
k+f−1

 ,

where every sum above is a martingale. To bound it, we apply the next theorem, which

generalizes Theorem 1 in Abbasi-Yadkori et al. (2011) and Proposition 8.2 in Sarkar &

Rakhlin (2018).

Theorem 3.3 (Cross terms). Let {Ft}∞t=0 be a filtration. Let ηt ∈ Rm, t ≥ 0 be Ft-

measurable, independent of Ft−1. Suppose also that ηt has independent components ηt,i

i = 1, . . . ,m, which are 1−sub-Gaussian:

E
[
eληt,i |Ft−1

]
= E

[
eληt,i

]
≤ eλ

2/2, for all λ ∈ R.

Let Xt ∈ Rd, t ≥ 0 be Ft−1−measurable. Assume that V is a d× d positive definite matrix.
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For any t ≥ 0, define:

V̄t = V +
t∑

s=1

XsX
∗
s , St =

t∑
s=1

XsH
∗
s ,

where

H∗
s =

[
η∗s . . . η∗s+r−1

]
∈ Rrm,

for some integer r. Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0

∥∥∥V̄ −1/2
t St

∥∥∥2
2
≤ 8r

(
log

r5m

δ
+

1

2
log det V̄tV

−1

)
. ⋄

The above theorem along with a Markov upper bound on Z̄Z̄∗ (see Lemma 3.4 in

Section 3.7) are used to bound Ē+Z̄
∗ (Z̄Z̄∗)−1/2

.

3.4.3 Kalman truncation error

For the Kalman truncation error term, we need to bound the term X̄Z̄∗(Z̄Z̄∗)−1, which

is O (1). Using the identities O†
pOpX̄ = X̄, and Z̄ = OpX̄ + TpĒ, we derive the following

equality:

X̄Z̄∗(Z̄Z̄∗)−1 = O†
p

(
Imp − TpĒĒ∗T ∗

p (Z̄Z̄∗)−1

−TpĒX̄∗O∗
p(Z̄Z̄∗)−1

)
(3.29)

From Theorem 3.2, we obtain
∥∥TpĒĒ∗T ∗

p (Z̄Z̄∗)−1
∥∥
2
≤ 2. The last term in (3.29) can be

treated like the cross-term in Section 3.4.2, by applying Theorems 3.2, 3.3 and Lemma 3.4.

It decreases with a rate of O
(
1/
√
N
)
up to logarithmic terms, so it is much smaller than

the other terms in (3.29). To keep the final bound simple, we select N2 such that

∥∥TpĒX̄∗O∗
p(Z̄Z̄∗)−1

∥∥
2
≤ 1 (3.30)

with high probability–see also (3.44) for the definition of N2.
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3.5 Robustness of Balanced Realization

In this section, we analyze the robustness of the balanced realization. In particular, we

upper bound the estimation errors of matrices A,C,K in terms of the estimation error

∥G− Ĝ∥2 obtained by Theorem 3.1.

Assume that we knew G exactly. Then, the SVD of the true G, would be:

G =

[
U1 U2

] Σ1 0

0 0


 V ∗

1

V ∗
2

 = U1Σ1V
∗
1 ,

for some Σ1 ∈ Rn×n. Hence, if we knew G exactly, the output of the balanced realization

would be:

Ōf = U1Σ
1/2
1 , K̄p = Σ

1/2
1 V ∗

1 . (3.31)

The respective matrices C̄, K̄, Ā are defined similarly, based on Ōf , K̄p, as described in

Section 3.3. The original matrices Of ,Kp and Ōf , K̄p are equivalent up to the similarity

transformation OfS = Ōf , S
−1Kp = K̄p where

S ≜ O†
f Ōf . (3.32)

The system matrices C̄, K̄, Ā are also equivalent to the original matrices C,K,A up to the

same similarity transformation C̄ = CS, K̄ = S−1K, Ā = S−1AS, with S defined as above.

For simplicity, we will quantify the estimation errors in terms of the similar Ā, C̄, K̄

instead of the original A,C,K. The next result follows the steps of Oymak & Ozay (2018)

and relies on Lemma 5.14 of Tu et al. (2016) and Theorem 4.1 of Wedin (1973). Let σn (·)

denote the n−th largest singular value.

Theorem 3.4 (Realization robustness). Consider the true Hankel-like matrix G defined

in (3.10) and the noisy estimate Ĝ defined in (3.15). Let Â, Ĉ, K̂, Ôf , K̂p be the output

of the balanced realization algorithm based on Ĝ. Let Ā, C̄, K̄, Ōf , K̄p be the output of

the balanced realization algorithm based on the true G. If G has rank n and the following
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robustness condition is satisfied:

∥∥∥Ĝ−G
∥∥∥
2
≤ σn (G)

4
, (3.33)

then there exists an orthonormal matrix T ∈ Rn×n such that:

∥∥∥Ôf − ŌfT
∥∥∥
2
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2∥∥∥Ĉ − C̄T

∥∥∥
2
≤
∥∥∥Ôf − ŌfT

∥∥∥
2∥∥∥Â− T ∗ĀT

∥∥∥
2
≤
√
∥G∥2 + σo

σ2
o︸ ︷︷ ︸

O(1)

∥∥∥Ôf − ŌfT
∥∥∥
2

∥∥∥K̂ − T ∗K̄
∥∥∥
2
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2
,

where σo = min
(
σn

(
Ôu

f

)
, σn

(
Ōu

f

))
. The notation Ôu

f , Ōu
f , refers to the upper part of the

respective matrix (first (f − 1)m rows)–see Section 3.3.2. ⋄

Remark 5. The result states that if the error of the regression step is small enough, then the

realization is robust. The singular value σn (G) can be quite small. Hence, the robustness

condition (3.33) can be restrictive in practice. However, such a condition is a fundamental

limitation of the SVD procedure; it guarantees that the singular vectors related to small

singular values of G are separated from the singular vectors coming from the noise G− Ĝ,

which can be arbitrary. See also Wedin’s theorem Wedin (1972). Such robustness conditions

have also appeared in model reduction theory Pernebo & Silverman (1982). ⋄

The term

√
∥G∥2+σo

σ2
o

which appears in the bound of A is O (1). Although, the value of

σ−1
o is random and depends on Ôh

f , we could replace it by a deterministic bound. From

σn

(
Ôh

f

)
≥ σn

(
Ōh

f

)
−
∥∥∥Ôf − ŌfT

∥∥∥
2
,

σo will eventually be lower bounded by σn

(
Ōh

f

)
/2 if the error ∥Ôf−ŌfT∥2 is small enough.

The norm ∥G∥2 ≤ ∥Of∥2 ∥Kp∥2 is upper bounded for all p, since A−KC is asymptotically
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stable and f is fixed.

Remark 6 (Total bounds). The final upper bounds for the estimation of the system pa-

rameters A,C,K, as stated in Problem 3.1, can be found by combining the finite sample

guarantees of the regression step (Theorem 3.1) with the robustness analysis of the realiza-

tion step (Theorem 3.4). All matrix estimation errors depend linearly on the Hankel matrix

estimation error ∥G − Ĝ∥2. As a result, all matrix errors have the same statistical rate as

the error of G, i.e. their estimation error decreases at least as fast as O
(
1/
√
N
)

up to

logarithmic factors. ⋄

3.6 Open Problems

One of the differences between the subspace algorithm considered in our work and other

subspace identification algorithms is the SVD step. Other algorithms perform SVD on

W1GW2 instead of G, where W1,W2 are full rank weighting matrices, usually data depen-

dent Van Overschee & De Moor (1995); Ljung (1999); Van Overschee & De Moor (2012).

From this point of view, the results of Section 3.4 (upper bound for ∥G−Ĝ∥ in Theorem 3.1

and persistence of excitation in Theorem 3.2) are fundamental for understanding the finite

sample properties of other subspace identification algorithms. Here, we studied the case

W1 = I,W2 = I, which is not the standard choice Knudsen (2001). Our results can be

extended to the case where W2 = (Z̄Z̄∗)1/2/
√
N , which is a variation of the MOESP algo-

rithm Qin (2006). Since we proved persistency of excitation, matrix W2 will be well-behaved

and all steps of our analysis carry through with minor changes. It is subject of future work

to formally treat the above choice as well as explore how other choices of W1,W2 affect the

realization step, especially the robustness condition of the SVD step.
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3.7 Proofs

3.7.1 Proof of Theorem 3.3

Let us first state a result which follows from the arguments of Chapter 4 of Vershynin

(2018). See also Proposition 8.1 of Sarkar & Rakhlin (2018).

Proposition 3.1 (Vershynin (2018)). Consider a matrix M ∈ Rm×n. Let Sn−1 denote the

unit sphere. Then for any ϵ > 0:

P (∥M∥2 ≥ t) ≤
(
1 +

2

ϵ

)n

max
x∈Sn−1

P (∥Mx∥2 ≥ t (1− ϵ))

⋄

Second, we state Theorem 1 of Abbasi-Yadkori et al. (2011), which upper bounds self-

normalized martingales.

Theorem 3.5 (Theorem 1 in Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration.

Let ηt ∈ R, t ≥ 0 be real-valued, Ft-measurable, and conditionally 1−sub-Gaussian:

E
[
eληt |Ft−1

]
≤ eλ

2/2, for all λ ∈ R. (3.34)

Let Xt ∈ Rd, t ≥ 0 be vector valued and Ft−1−measurable. Assume that V is a d×d positive

definite matrix. For any t ≥ 0, define:

V̄t = V +
t∑

s=1

XsX
∗
s , St =

t∑
s=1

ηsXs.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0

∥∥∥V̄ −1/2
t St

∥∥∥2
2
≤ 2 log

det
(
V̄t

)1/2
det (V )−1/2

δ
(3.35)

⋄

Finally, we state a standard linear algebra result. We include the proof for completeness.
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Lemma 3.1 (Block Matrix Norm). Assume

M =

[
M1 M2 . . . Mr

]
,

for matrices of appropriate dimensions. Then:

∥M∥2 ≤
√
r max
i=1,...,r

∥Mi∥2

⋄

Proof. Consider a vector x such that Mx is defined. Then, from triangle inequality, the

definition of matrix norm and Cauchy-Schwartz:

∥Mx∥2 = ∥M1x1 + · · ·+Mrxr∥2 ≤ ∥M1∥2 ∥x1∥2 + · · ·+ ∥Mr∥2 ∥xr∥2

≤
√

∥M1∥22 + · · ·+ ∥Mr∥22 ∥x∥2

≤ √
r max
i=1,...,r

∥Mi∥2 ∥x∥2 ,

where we used that ∥x∥22 = ∥x1∥22 + · · ·+ ∥xr∥2.

Now, we can prove Theorem 3.3. Notice that:

St =

[
t∑

s=1

Xsη
∗
s . . .

t∑
s=1

Xsη
∗
s+r−1

]
.

We can analyze each component V̄
−1/2
t

∑t
s=1Xsη

∗
k+i separately and apply a union bound

afterwards, since by Lemma 3.1:

∥∥∥V̄ −1/2
t St

∥∥∥
2
≤ √

r max
i=0,...,r−1

∥∥∥∥∥V̄ −1/2
t

t∑
s=1

Xsη
∗
s+i

∥∥∥∥∥
2

. (3.36)

Now, fix a 0 ≤ i < r and let

Si
t ≜

t∑
s=1

Xsη
∗
s+i.
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Consider an arbitrary element of the unit sphere ξ ∈ Sm−1. The scalar η∗s+iξ is conditionally

1-sub-Gaussian and satisfies the conditions of Theorem 3.5. Thus, with probability at least

1− δ
r5m :

∥∥∥V̄ −1/2
t Si

tξ
∥∥∥2
2
≤ CXH ≜ 2

(
log

r5m

δ
+

1

2
log det V̄tV

−1

)

Now, we apply Proposition 3.1 for ϵ = 1/2:

P
(∥∥∥V̄ −1/2

t Si
t

∥∥∥
2
≥ 2
√
CXH

)
≤ 5m max

ξ∈Sm−1
P
(∥∥∥V̄ −1/2

t Si
tξ
∥∥∥
2
≥
√
CXH

)
≤ δ

r
.

Finally, by (3.36) and a union bound over all components:

P
(∥∥∥V̄ −1/2

t St

∥∥∥
2
≥ 2

√
r
√
CXH

)
≤ P

(
max

i=0,...,r−1

∥∥∥V̄ −1/2
t Si

t

∥∥∥
2
≥ 2
√
CXH

)
≤

r−1∑
i=0

P
(∥∥∥V̄ −1/2

t Si
t

∥∥∥
2
≥ 2
√
CXH

)
≤ δ.

3.7.2 Persistence of Excitation

The main focus of this section is the proof of Theorem 3.2, which provides finite sample

guarantees for the PE of the past noises and the past outputs. We also include upper bounds

for the sample correlations of the past outputs and the states x̂k. Finally, we provide the

definition of N0, N1 that we hided in the main theorem statements.

The following result shows that with high probability, the past noises are persistently

exciting. It follows from Lemma C.2 of Oymak & Ozay (2018), which in turn is based on

results for random circulant matrices Krahmer et al. (2014).

Lemma 3.2 (Noise PE). Consider the conditions of Theorem 3.2 and the definition of δN
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in (3.19):

δN ≜ (2(N + p− 1)m)− log2(2pm) log(2(N+p−1)m) .

There exists a universal constant c (independent of system and algorithm parameters) such

that if N ≥ 2cpm log 1/δN , then with probability at least 1− δN the event:

EE =

{
1

2
ΣE ⪯ 1

N
TpĒĒ∗T ∗

p

}
,

occurs, where ΣE is defined in (3.12). ⋄

Proof. We can rewrite Ek = diag(R̄1/2, . . . , R̄1/2)Uk, where Uk is defined similarly to Ek

but has components with unit covariance. Now from Lemma C.2 of Oymak & Ozay (2018)

applied on Uk we obtain that with probability at least 1− δN :

1

N

N+p−1∑
k=p

UkU
∗
k ⪰ Imp/2.

Multiplying by Tp diag(R̄1/2, . . .) from the left and diag(R̄1/2, . . .)T ∗
p from the right gives

the desired result.

From the above lemma it follows that N should be large enough to guarantee PE for

the noises. In particular, N should be larger than N0, where

N0 = min {N : N ≥ 2cpm log 1/δN} (3.37)

= min
{
N : N ≥ 2cpm log2 (2pm) log2 (2(N + p− 1)m)

}
.

Such a N0 exists since the term 2cpm log2 (2pm) log2 (2(N + p− 1)m) depends logarithmi-

cally on N .

To guarantee PE for the noises, we also need to show that the smallest singular value

σE = σmin (ΣE) is positive.
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Lemma 3.3. Let ΣE be as in (3.12). Then:

σE ≥ σmin (R) > 0.

⋄

Proof. The past errors TpEk can be rewritten as:

TpEk = Zk −Opx̂k−p = Op (xk−p − x̂k−p) + Vk + T Wk,

where Vk, Wk are defined similarly to Zk and consist of the past measurement and process

noises respectively. Matrix T is a block Toeplitz matrix; we omit its analytical expression.

By independence of the measurement noise, the process noise and xk−p − x̂k−p:

ΣE ⪰ E [VkV
∗
k ] = diag(R, . . . , R).

This in turn implies σE ≥ σmin (R). By Assumption 3.1, R ≻ 0 and σmin (R) > 0.

Lemma 3.4 (Markov upper bounds). Consider system (3.2) and recall the definition of

Γk, ΣE in (3.3), (3.12). We have the following upper bounds:

P
(∥∥X̄X̄∗∥∥

2
≥ N

tr ΓN−1

δ

)
≤ δ (3.38)

P

(∥∥Z̄Z̄∗∥∥
2
≥ N

∥Op∥22 tr ΓN−1 + trΣE

δ

)
≤ δ. (3.39)

Proof. We only show (3.39). The proof of (3.38) is similar. From Markov’s inequality we

obtain:

P
(
∥Z̄Z̄∗∥2 ≥ ϵ

)
≤ E∥Z̄Z̄∗∥2

ϵ
.

What remains is to bound the expectation in the right-hand side. Notice that

∥Zk (Zk)
∗ ∥2 = trZkZ

∗
k ,
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since Zk has unit rank. Hence, by the triangle inequality:

E∥Z̄Z̄∗∥2 ≤
N+p−1∑
k=p

trE [ZkZk
∗].

The right hand side of the above inequality is

trE [ZkZk
∗] = tr

(
OpΓk−pO∗

p +ΣE

)
The result follows from tr

(
OpΓk−pO∗

p

)
≤ ∥Op∥22 tr Γk−p along with

tr

N+p−1∑
k=p

Γk−p ≤ N tr ΓN−1

since the sequence Γk is monotone (see the following Lemma).

The following result is standard and we include it for completeness.

Lemma 3.5 (Monotonicity of Γk). Consider system (3.2), under Assumption 3.1. The

sequence Γk = E [x̂kx̂
∗
k] is monotone: Γk ⪰ Γk−1.

Proof. Notice that since x̂0 = 0, we have Γ0 = 0. Define Q̄ = KR̄K∗. By the orthogonality

principle, x̂k and ek are uncorrelated. Hence

Γk = L (Γk−1) ≜ AΓk−1A
∗ + Q̄.

For k = 1 we obtain:

Γ1 = Q̄ ⪰ 0 = Γ0.

But the operator L is monotone, which implies:

Γ2 = L (Γ1) ⪰ L (Γ0) = Γ1

The result Γk ⪰ Γk−1 follows by induction.

45



Proof of Theorem 3.2

Some arguments are similar to Section 9 of Sarkar & Rakhlin (2018).

Step 1: Noise PE. Under the condition N ≥ N0, from Lemma 3.2 the event EE occurs

with probability at least 1− δN .

Step 2: Cross terms are small. Next, we show that the cross terms X̄Ē∗ are small.

As in Lemma 3.2, express Ē = diag(R̄1/2, . . . , R̄1/2)H̄, where H̄ is defined similarly to Ē

but has unit variance components. Define:

V̄N = X̄X̄∗ +
N

∥Op∥22
In, V =

N

∥Op∥22
In, VN = X̄X̄∗, SN = X̄Ē∗.

Notice that ∥∥∥V̄ −1/2
N SN

∥∥∥2
2
≤
∥∥R̄∥∥

2

∥∥∥V̄ −1/2
N X̄H̄∗

∥∥∥2
2

Hence, by Theorem 3.3 applied to V̄N , X̄H̄∗ the event:

E1 =
{∥∥∥V̄ −1/2

N SN

∥∥∥2
2
≤ 8p

∥∥R̄∥∥
2

(
log

p5m

δ
+

1

2
log det V̄NV −1

)}

occurs with probability at least 1− δ.

Next we upper bound term V̄N . From Lemma 3.4, the event:

E2 =
{
VN ⪯ N

tr ΓN−1

δ
In

}

occurs with probability at least 1− δ. This implies that:

log det V̄NV −1 ≤ log det

[(
N tr ΓN−1

δ
+

N

∥Op∥22

)
In

∥Op∥22
N

]

= log

(
∥Op∥22 tr ΓN−1

δ
+ 1

)n

= n log

(
∥Op∥22 tr ΓN−1

δ
+ 1

)

Combining the two events E1, E2 and by a union bound, with probability at least 1− 2δ
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the event:

EXE =

{∥∥∥V̄ −1/2
N SN

∥∥∥2
2
≤ CXE

∥∥R̄∥∥
2

}
,

occurs, where

CXE ≜ 8p

(
n

2
log

(
∥Op∥2 tr ΓN−1

δ
+ 1

)
+ log

p5m

δ

)
.

As a consequence, if u ∈ Rmp, ∥u∥2 = 1 is an arbitrary unit vector:

|u∗OpX̄Ē∗T ∗
p u| ≤ ∥u∗OpV̄

1/2
N V̄

−1/2
N SNT ∗

p ∥2

≤
√

u∗OpX̄X̄∗O∗
pu+N

u∗OpO∗
pu

∥Op∥22

√
CXE

∥∥R̄∥∥
2
∥Tp∥2

≤
√

u∗OpX̄X̄∗O∗
pu+N

√
CXE

∥∥R̄∥∥
2
∥Tp∥2 , conditioned on EXE (3.40)

Step 3: Output PE Consider an arbitrary unit vector u ∈ Rmp, ∥u∥2 = 1. Consider

the events EE and EXE from steps 1,2. With probability 1 − δN − 2δ, since N ≥ N0 the

event EE ∩ EXE occurs. It remains to show that on EE ∩ EXE the outputs satisfy PE for

sufficiently large N . Define

α ≜
1

N
u∗OpX̄X̄∗O∗

pu, β ≜
1

N
u∗TpĒĒ∗T ∗

p u

From (3.28), (3.40) for N ≥ N0 on EE ∩ EXE :

1

N
u∗Z̄Z̄∗u ≥ α+ β − 2 ∥Tp∥2

√
CXE

∥∥R̄∥∥
2

N︸ ︷︷ ︸
γN

√
α+ 1

with β ≥ σE/2. Now let N1 be such that:

N1 = min
{
N : γN ≤ min

{
1,

σE
4

}}
. (3.41)

Since CXE grows at most logarithmically with N , N1 always exists. Now, since N ≥ N1
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and β ≥ σE/2:

α+ β − γN
√
α+ 1 ≥ α+ β

2
.

The above inequality follows from the following lemma.

Lemma 3.6 (Minimum of function). Let β ≥ b > 0, for some b > 0 and consider the

function:

f(α, β) =
α+ β

2
− γ

√
α+ 1, for α ≥ 0, β ≥ b > 0

If γ ≤ 1, b
2 , then

f(α, γ) ≥ 0, for all α ≥ 0, β ≥ b > 0.

⋄

Proof. By elementary calculus:

min
α≥0

f(α, β) =

β−1−γ2

2 , if γ ≥ 1

β
2 − γ, if γ < 1

Thus, if γ ≤ 1, b/2, we have f (α, β) ≥ 0.

3.7.3 Proof of Theorem 3.1

Step 1: Since N ≥ N0, N1, from Theorem 3.2, with probability at least 1 − δN − 2δ, the

event EY ∩ EE occurs.

Step 2: Next, we analyze the cross term. Define:

ΨN = Z̄Z̄∗, Ψ̄N = ΨN +N
σE
4
Imp, SN = Tf Ē+Z̄

∗

Notice that on the event EY ∩ EE , we have that Ψ̄N ⪯ 2ΨN since ΨN ⪰ N σE
4 Imp. Hence,

∥∥∥SNΨ
−1/2
N

∥∥∥
2
≤

√
2
∥∥∥SN Ψ̄

−1/2
N

∥∥∥
2
.

Now the proof continues as in the case of cross-terms in the proof of Theorem 3.2. We
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apply Theorem 3.3 to Ψ̄N , SN and use Lemma 3.4 to upper bound Ψ̄N . Then, conditioned

on EY ∩ EE , with probability 1− 2δ:

∥∥∥SNΨ
−1/2
N

∥∥∥2
2
≤ 16

∥∥Σ+
E

∥∥
2

(
fmp

2
log

κN
δ

+ f log
5mf

δ

)
, (3.42)

where

κN =
4

σE

(
∥Op∥22 tr ΓN−1 + trΣE

)
+ δ.

Next, we bound ∥Ψ−1/2
N ∥ separately on the event EY ∩ EE by 2√

NσE
.

Finally, conditioned on EE ∩ EY , with probability at least 1− 2δ:

∥∥∥Tf Ē+Z̄
∗ (Z̄Z̄∗)−1

∥∥∥ ≤ C1√
N

√
fmp

2
log

κN
δ

+ f log
5mf

δ
. (3.43)

Step 3: We bound the Kalman truncation term. Recall that:

X̄Z̄∗(Z̄Z̄∗)−1 = O†
p

(
Imp − TpĒĒ∗T ∗

p (Z̄Z̄∗)−1 − TpĒX̄∗O∗
p(Z̄Z̄∗)−1

)
On the event EE ∩ EY , we have:

∥∥TpĒĒ∗T ∗
p (Z̄Z̄∗)−1

∥∥
2
≤ 2.

since Z̄Z̄∗ ⪰ 1
2TpĒĒ∗T ∗

p . Hence we obtain:

∥∥X̄Z̄∗(Z̄Z̄∗)−1
∥∥
2
≤
∥∥∥O†

p

∥∥∥
2

(
3 + ∥Tp∥2

∥∥ĒX̄∗O∗
p(Z̄Z̄∗)−1

∥∥
2

)

From the discussion in Section 3.4, we only need to find N2 such that for N ≥ N2 with high

probability:

∥Tp∥2
∥∥ĒX̄∗O∗

p(Z̄Z̄∗)−1
∥∥
2
≤ 1.

Define

BN = OpX̄X̄Op, B =
σE
2
NImp, B̄N = BN +B.
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Notice that on the event EE ∩ EY , we have Z̄Z̄∗ ⪰ 1
2B̄N , which implies:

∥ĒX̄∗O∗
p(Z̄Z̄∗)−1/2∥ ≤

√
2∥ĒX̄∗O∗

pB̄
−1/2
N ∥

Now we can treat the right-hand side in the same way as the cross-term above. By an

application of Theorem 3.3 and Lemma 3.4, we obtain that conditioned on EY ∩ EE , with

probability 1− 2δ:

∥∥ĒX̄∗O∗
p(Z̄Z̄∗)−1

∥∥ ≤
√
2
∥∥∥ĒX̄∗O∗

pB̄
−1/2
N

∥∥∥∥∥∥(Z̄Z̄∗)−1/2
∥∥∥
2

≤ 8

√
∥R̄∥2
σE

CN√
N

,

where

CN =

√√√√mp2

2
log

(
2 ∥Op∥22 tr ΓN−1

δσE
+ 1

)
+ p log

p5m

δ

Thus, we define:

N2 = min

N : 8

√
∥R̄∥2
σE

∥Tp∥2
CN√
N

≤ 1

 . (3.44)

Such an N2 exists since CN grows at most logarithmically with N .

Step 4: Final expression From the previous step and a union bound, for N ≥

N0, N1, N2 with probability at least 1− δN − 6δ:

∥∥∥G− Ĝ
∥∥∥
2
≤ C1√

N

√
fmp

2
log

κN
δ

+ f log
5mf

δ
+ C2 ∥A−KC∥p2 , (3.45)

Step 5: Simplification of final expression To simplify the final expression, we use

fmp

2
log κN + f log (5mf) ≤ fmp (log κN + log (5f)) = fmp log (5fκN )

and

fmp

2
log

1

δ
+ f log

1

δ
≤ fmp log

1

δ
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since p ≥ n+ 1 ≥ 2.

3.7.4 Proof of Theorem 3.4

The proof follows the steps of Oymak & Ozay (2018).

Step 1: Bounds for observability/controllability matrix

Denote the rank n approximation of Ĝ by

Ĝn ≜ Ôf K̂p

By definition, Ĝn is the matrix which minimizes
∥∥∥Ĝ−M

∥∥∥
2
, among all rank n matrices M .

Thus, by optimality: ∥∥∥Ĝ− Ĝn

∥∥∥
2
≤
∥∥∥Ĝ−G

∥∥∥
2
,

since G has also rank n. As a result, we have:

∥∥∥G− Ĝn

∥∥∥
2
≤
∥∥∥G− Ĝ

∥∥∥
2
+
∥∥∥Ĝ− Ĝn

∥∥∥
2
≤ 2

∥∥∥Ĝ−G
∥∥∥
2

(3.46)

From (3.46) and the robustness condition (3.33) we have:

∥∥∥G− Ĝn

∥∥∥
2
≤ 2

∥∥∥Ĝ−G
∥∥∥
2
≤ σn (G)

2
. (3.47)

Hence, we can now apply Theorem 5.14 of Tu et al. (2016), which states that there exists

an orthonormal matrix T such that:

√∥∥∥Ôf − ŌfT
∥∥∥2
F
+
∥∥∥K̂p − T ∗K̄p

∥∥∥2
F
≤
√

2(√
2− 1

)
σn (G)

∥∥∥G− Ĝn

∥∥∥
F
, (3.48)

where ∥·∥F denotes the Frobenius norm.

Since matrices G, Ĝn have rank-n, the sum G− Ĝn has rank at most 2n. Thus, we can
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bound the Frobenius norm
∥∥∥G− Ĝn

∥∥∥
F
in terms of spectral norm:

∥∥∥G− Ĝn

∥∥∥
F
≤

√
2n
∥∥∥G− Ĝn

∥∥∥
2
≤ 2

√
2n
∥∥∥Ĝ−G

∥∥∥
2

(3.49)

where the second inequality follows from (3.46). For simplicity, we also use 2√
2−1

≤ 5. Thus,

from (3.48) and the above inequalities:

√∥∥∥Ôf − ŌfT
∥∥∥2
F
+
∥∥∥K̂p − T ∗K̄p

∥∥∥2
F
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2
.

Finally, since the spectral norm is always smaller than the Frobenius one:

√∥∥∥Ôf − ŌfT
∥∥∥2
2
+
∥∥∥K̂p − T ∗K̄p

∥∥∥2
2
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2
, (3.50)

As a corollary,

max
{∥∥∥Ôf − ŌfT

∥∥∥
2
,
∥∥∥K̂p − T ∗K̄p

∥∥∥
2

}
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2
,

Step 2: Bounds for system parameters

Bounds for C,K

Since Ĉ − C̄T is a sub-matrix of Ôf − ŌfT , we immediately obtain:

∥∥∥Ĉ − C̄T
∥∥∥
2
≤
∥∥∥Ôf − ŌfT

∥∥∥
2
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2
.

Similarly, for K we have:

∥∥∥K̂ − T ∗K̄
∥∥∥
2
≤
∥∥∥K̂p − T ∗K̄p

∥∥∥
2
≤ 2

√
10n

σn (G)

∥∥∥G− Ĝ
∥∥∥
2

Bounds for A
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For simplicity, denote M̂ ≜ Ôh
f , M̄ ≜ Ōh

f and N̂ ≜ Ôl
f , N̄ ≜ Ōl

f . Based on this notation:

Â = M̂ †N̂ , Ā = M̄ †N̄ .

After some algebraic manipulations:

Â− T ∗ĀT =
(
M̂ † − T ∗M̄ †

)
N̄T + M̂ †

(
N̂ − N̄T

)
.

First, notice that
∥∥N̄∥∥

2
≤
∥∥Ōf

∥∥
2
=
√
∥G∥, where the inequality follows from the fact that

N̄ is a submatrix of Ōf ; equality follows from the definition of Ōf = U1Σ
1/2
1 . Second,∥∥∥M̂ †

∥∥∥
2
= 1

σn(M̂)
≤ 1

σo
and third

∥∥∥N̂ − N̄T
∥∥∥
2
≤
∥∥∥Ôf − ŌfT

∥∥∥
2
,

since N̂ − N̄T is a submatrix of Ôf − ŌfT . Finally, from Theorem 4.1 of Wedin (1972)

∥∥∥M̂ † − T ∗M̄ †
∥∥∥
2
≤
∥∥∥M̂ − T ∗M̄

∥∥∥
2
max

 1

σ2
n

(
M̂
) , 1

σ2
n

(
M̄
)
 ≤

∥∥∥Ôf − ŌfT
∥∥∥
2

1

σ2
o

.

Combining all previous bounds, we obtain

∥∥∥Â− T ∗ĀT
∥∥∥
2
≤
(√

G

σ2
o

+
1

σo

)∥∥∥Ôf − ŌfT
∥∥∥
2
.

3.7.5 Bounds for system matrices

In this section, we formally prove bounds for Ok, Tk,Γk, which we implicitly used in Sec-

tion 3.4.

First, we prove a standard result for the norm of (block) Toeplitz matrices.

Lemma 3.7 (Toeplitz norm). Let M ∈ Rm1n×m2n, for some integers n,m1,m2 be an
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(upper) block triangular Toeplitz matrix:

M =



M1 M2 M3 · · · · · · Mn

0 M1 M2 Mn−1

...
. . .

. . .
...

M1 M2

0 0 · · · 0 M1



,

where Mi ∈ Rm1×m2, i = 1, . . . , n. Then:

∥M∥2 ≤
n∑

i=1

∥Mi∥2

Proof. A standard technique in the analysis of Toeplitz matrices is to write them in terms of

linear combinations of powers of companion matrices (see Horn & Johnson (2012), equation

(0.9.7)). We can write M as:

M = In ⊗M1 +
n−1∑
i=1

J i
n ⊗Mi

where ⊗ is the Kronecker product, In is the identity matrix of dimension n, and Jn is the

companion matrix:

Jn = J =



0 1 · · · 0 0

0 0
. . .

...
...

. . .

0 1

0 0 · · · 0 0


,

But we have ∥D ⊗ F∥2 = ∥D∥2 ∥F∥2 for any matrices D,F (see Theorem 4.2.15 in Horn

& Johnson (1994)). Also the companion matrix has norm one ∥Jn∥2 = 1 since JnJ
∗
n =

diag(1, . . . , 1, 0). The result follows from the triangle inequality.
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Next, we provide a bound for the sum of powers of A.

Lemma 3.8. Consider the series St =
∑t

i=0

∥∥Ai
∥∥
2
. We have the following two cases:

• If the system is asymptotically stable ρ(A) < 1, then ∥St∥2 = O (1)

• If the system is marginally stable (ρ(A) = 1), then ∥St∥2 = O (tκ), where κ is the

largest Jordan block of A corresponding to a unit circle eigenvalue |λ| = 1.

Proof. Proof of first part. By Gelfand’s formula Horn & Johnson (2012), for every ϵ > 0,

there exists a i0 = i0(ϵ) such that
∥∥Ai

∥∥ ≤ (ρ(A) + ϵ)i, for all i ≥ i0. Just pick ϵ such that

ρ (A) + ϵ < 1. Then,

St ≤
i0∑
i=0

∥∥Ai
∥∥
2
+

1

1− ρ(A)− ϵ
= O (1) .

Proof of second part. Assume that A is equal to a n×n Jordan block corresponding

to λ = 1. The proof for the other cases is similar. Then we have that:

Ai =



1
(
i
1

)
. . .

(
i

n−1

)
0 1 . . .

(
i

n−2

)
. . .

0 0 . . . 1


By Lemma 3.7, we obtain:

∥∥Ai
∥∥
2
≤

n−1∑
k=0

(
i

k

)
≤
(

ei

n− 1

)n−1

where the second inequality is classical, see Exercise 0.0.5 in Vershynin (2018).

Finally, we have:

St ≤ t

(
et

n− 1

)n−1

= O (tn)

Corollary 3.2. The norms ∥Ok∥2, ∥Tk∥2, ∥Γk∥2 depend at most polynomially in k if

ρ (A) ≤ 1 (they are O (poly(k))). If the system is asymptotically stable they are upper
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bounded for all k (they are O (1)).

Proof. Observability matrix: Consider the sum St =
∑t

i=0

∥∥Ai
∥∥
2
of the previous lemma.

We have:

∥Ok∥2 ≤ ∥C∥2 Sk−1 = O (Sk) .

The result follows by applying the previous lemma.

Block Toeplitz matrix Consider the sum St =
∑t

i=0

∥∥Ai
∥∥
2
of the previous lemma.

By Lemma 3.7 we have:

∥Tk∥2 ≤ 1 + ∥C∥2 ∥K∥2 Sk−2 = O (Sk) .

The result follows by applying the previous lemma.

Covariance matrix We have

∥Γk∥2 ≤
∥∥KR̄K∗∥∥

2

k−1∑
i=0

∥∥Ai
∥∥2 .

The result follows by using a similar argument as in the previous lemma for
∑k−1

i=0

∥∥Ai
∥∥2.

Lemma 3.9 (Lest non-zero singular values of G, Op are increasing). The n−th singular

value of Op is increasing with p:

σn (Op1) ≥ σn (Op2) , for p1 ≥ p2.

The same is true for the n−th singular value of G:

σn (OfKp1) ≥ σn (OfKp2) , for p1 ≥ p2.

Proof. We only prove the first part. The other proof is similar. Notice that Op1 can be

rewritten as:

Op1 =

 Op2

M

 ,
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for some matrix M . Hence

O∗
p1Op1 ⪰ O∗

p2Op2 .

Thus σ2
n (Op1) ≥ σ2

n (Op2).
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Chapter 4

Offline Learning of the Kalman

Filter

4.1 Introduction

In this chapter, we study the problem of learning the Kalman Filter (KF) for unknown

systems. Similar to the previous chapters, we focus on autonomous LTI systems

xk+1 = Axk + wk

yk = Cxk + vk.

(4.1)

We provide finite-sample guarantees for the performance of the offline learning architecture,

where we learn the filter once based on batch data of finite size.

We consider a simple two step procedure. In the first step, using system identification

tools rooted in subspace methods (see Chapter 3), we obtain finite-data estimates of the

state-space parameters, and Kalman gain describing system (4.1). Then, in the second

step, we use these approximate parameters to design a filter which predicts the system

state. We provide an end-to-end analysis of this two-step procedure, and characterize the

sub-optimality of the resulting filter in terms of the number of samples used during the

system identification step. The sub-optimality is measured in terms of the mean square
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prediction error of the filter. A key insight that emerges from our analysis is that using

a Certainty Equivalent (CE) Kalman Filter, i.e., using a Kalman Filter computed directly

from estimated parameters, can yield poor estimation performance if the resulting Certainty

Equivalent Kalman Filter has eigenvalues close to the unit circle. To address this issue, we

propose a Robust Kalman Filter that mitigates these effects and that still enjoys provable

sub-optimality guarantees.

Our main contributions are that: i) we show that if the system identification step pro-

duces sufficiently accurate estimates, or if the underlying true Kalman Filter is sufficiently

robust, then the Certainty Equivalent Kalman Filter has near optimal mean square predic-

tion error, ii) we show when the Certainty Equivalent Kalman Filter is marginally stable,

i.e., when it has eigenvalues close to the unit circle, that a Robust Kalman Filter synthesized

by explicitly imposing bounds on the magnitude of certain closed loop maps of the system

enjoys similar mean square prediction error bounds as the Certainty Equivalent Kalman

Filter, while demonstrating improved stability properties, and iii) we integrate the above

results with the finite-data system identification guarantees of Chapter 3, to provide, to

the best of our knowledge, the first end-to-end sample complexity bounds for the Kalman

filtering of an unknown system. In particular, we show that the mean square estimation

error of both the Certainty Equivalent and Robust Kalman Filter produced by the two step

procedure described above is, with high probability, bounded by Õ(1/
√
N), where N is the

number of samples collected in the system identification step.

Related work. A similar two step process was studied for the Linear Quadratic (LQ)

control of an unknown system in Dean et al. (2017); Mania et al. (2019). While LQ opti-

mal control and Kalman filtering are known to be dual problems, this duality breaks down

when the state-space parameters describing the system dynamics are not known. In par-

ticular, the LQ optimal control problem assumes full state information, making the system

identification step much simpler – in particular, it reduces to a simple least-squares prob-

lem. In contrast, in the Kalman Filter setting, as only partial observations are available,

the additional challenge of finding an appropriate system order and state-space realization
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must be addressed. On the other hand, in the Kalman Filter problem one can directly

estimate the filter gain from data, which makes analyzing performance of the Certainty

Equivalent Kalman Filter simpler than the performance of the Certainty Equivalent LQ

optimal controller (Mania et al., 2019).

System identification of autonomous LTI systems (4.1) is referred to as stochastic system

identification (Van Overschee & De Moor, 2012). Classical results consider the asymptotic

consistency of stochastic subspace system identification, as in Deistler et al. (1995); Bauer

et al. (1999), whereas contemporary results seek to provide finite data guarantees (Tsiamis

& Pappas, 2019; Lee & Lamperski, 2020). Finite data guarantees for system identification

of partially observed systems can also be found in Oymak & Ozay (2018); Simchowitz et al.

(2019); Sarkar et al. (2019), but these results focus on learning the non-stochastic part of

the system, assuming that a user specified input is used to persistently excite the dynamics.

More references can be found in Chapter 3.

Classical approaches to robust Kalman filtering can be found in El Ghaoui & Calafiore

(2001); Sayed et al. (2001); Levy & Nikoukhah (2012), where parametric uncertainty is

explicitly taken into account during the filter synthesis procedure. Although similar in

spirit to our robust Kalman Filter procedure, these approaches assume fixed parametric

uncertainty, and do not characterize the effects of parametric uncertainty on estimation

performance, with this latter step being key in providing end-to-end sample complexity

bounds. We also note that although not directly comparable to our work, the filtering

problem for an unknown LTI system was also recently studied in the adversarial noise

setting in Hazan et al. (2018), where a spectral filtering technique is used to directly predict

the output bypassing the system identification step. In the stochastic noise case, online-

learning of the Kalman Filter was studied in Kozdoba et al. (2019), where the goal is to

predict a scalar output

Notation. We let bold symbols denote the frequency representation of signals. For

example, Φ =
∑∞

t=0Φtz
−t. If M is stable with spectral radius ρ(M) < 1, then we de-

note its resolvent by RM ≜ (zI − M)−1. The H2 system norm is defined by ∥Φ∥2H2
≜
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Sys. ID
Filter

Synthesis

y0, . . . , yN Â, Ĉ

K̂, ε

Lt

J̃

Figure 4.1: The proposed identification and filter synthesis pipeline. Using a single trajectory of N
samples {yt}Nt=0 generated by system (4.2), a system identification algorithm computes estimates of
(Â, Ĉ, K̂) with corresponding identification error bounds ϵ := max(ϵA, ϵC , ϵK). Then, using these
estimates, we synthesize a filter defined by dynamic gains {Lt}∞t=1, which has mean square prediction

error J̃ , defined in (4.3).

∑∞
t=0 ∥Φt∥2F , where ∥·∥F is the Frobenius norm. The H∞ system norm is defined by

∥Φ∥H∞
≜ sup∥z∥=1 ∥Φ(z)∥2, where ∥·∥2 is the spectral norm. Let 1

zRH∞ be the set of

real rational stable strictly proper transfer matrices.

4.2 Problem Formulation

Similar to Chapter 3, we consider the steady-state Kalman Filter form of system (4.1):

x̂k+1 = Ax̂k +Kek

yk = Cx̂k + ek,

(4.2)

where x̂k ∈ Rn is the prediction (state), yk ∈ Rm is the output, ek ∈ Rn is the innovation

process, and K is the Kalman filter gain defined in (2.2). The innovations ek are i.i.d.

zero mean Gaussians, with positive definite covariance matrix R̄–see (3.4), and the initial

predicted state is assumed to be x̂0 = 0. In general, the system (4.1) driven by i.i.d. zero

mean Gaussian process and sensor noise is equivalent to system (4.2) for a suitable gain

matrix K, as both noise models produce outputs with identical statistical properties–see

Remark 1 or (Van Overschee & De Moor, 2012, Chapter 3). Similar to Chapter 3, we

assume that the system is observable and minimal.

Assumption 4.1. Matrices A,C,K, R̄ are unknown. The order of the system n is known.

Let Assumptions 3.1, 3.2, 3.3 hold. Assume that matrix A has spectral radius less than 1,

i.e., ρ(A) < 1.

Assumptions 3.1, 3.2, 3.3 guarantee that the Kalman filter is well-defined and in steady
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state (see Corollary 2.1). They also guarantee minimality of system (4.2). We note that the

filter synthesis procedures we propose can be applied even if ρ(A) ≥ 1 – however, in this

case, we are unable to guarantee bounded estimation error for the resulting CE and robust

KFs (see Theorem 4.1 and Lemma 4.2).

Our goal is to provide end-to-end sample complexity bounds for the two step pipeline

illustrated in Fig. 4.1. First, we collect a trajectory {yt}Nt=0 of length N from system (4.2),

and use system identification tools with finite data guarantees to learn the parameters

Â, Ĉ, K̂ and bound the corresponding parameter uncertainties by (ϵA, ϵC , ϵK). Second, we

use these approximate parameters to synthesize a filter from the following class:

x̃k = Âx̃k−1 +
k∑

t=1

Lt(yk−t − Ĉx̃k−t), J̃ ≜

√√√√ lim
T→∞

1

T

T∑
k=0

∥x̃k − x̂k∥22 (4.3)

where {Lt}∞t=1 are to be designed and J̃ is the filter’s mean square prediction error as defined

with respect to the optimal KF. Note that the predictor class above includes the CE KF

– see Section 4.4 – and that if the the true system parameters are known, i.e., if Â = A,

Ĉ = C, K̂ = K, then the optimal mean squared prediction error J̃ = 0 is achieved.

Problem 4.1 (End-to-end Sample Complexity). Fix a failure probability δ > 0. Given a

single trajectory y0, . . . , yN of system (4.2), compute system parameter estimates Â, Ĉ, K̂, R̂,

and design a Kalman filter in class (4.3), defined by gains {Lt}∞t=1, such that with probability

at least 1− δ, we have that J̃ ≤ ϵJ , so long as N ≥ poly(1/ϵJ , log(1/δ)).

To address Problem 4.1, we will: i) leverage the results of the previous chapter regarding

the sample complexity of stochastic system identification, ii) provide estimation guarantees

for certainty equivalent as well as robust Kalman filter designed using the identified system

parameters (see Problem 4.2 below), and (iii) provide end-to-end performance guarantees

by integrating steps (i) and (ii) (see Problem 4.1 above).

In Chapter 3, we provided a finite sample analysis for stochastic system identification

which provides bounds on the identification error ϵ := max(ϵA, ϵC , ϵK). In this chapter,

we focus more on solving the Filter Synthesis task described below using both a certainty
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equivalent Kalman filter as well as a robust Kalman filter.

Problem 4.2 (Near Optimal Kalman Filtering of an Uncertain System). Consider sys-

tem (4.2). Let Â, Ĉ, K̂ be estimates satisfying ∥A − Â∥2 ≤ ϵA, ∥C − Ĉ∥2 ≤ ϵC , ∥K −

K̂∥2 ≤ ϵK . Design a Kalman filter in class (4.3), defined by gains {Lt}∞t=0, with mean

square prediction error decaying with the size of the parameter uncertainty, i.e., such that

J̃ ≤ O(ϵA, ϵC , ϵK).

Estimating the parameters of a partially observed system (4.2) is ill-posed, in that any

similarity transformation S can be applied to generate parameters (S−1AS,CS, S−1K, R̄)

describing the same system. Formally, we should state Problems 4.1, 4.2 up to some similar-

ity transformation S; to be more formal, we should define J̃ in terms of Sx̃k− x̂k up to such

a similarity transformation. For ease of exposition, we omit the transformation S in the

problem formulation. However, we include it in the formal end-to-end sample complexity

result.

4.3 System Identification Algorithm

In this section, we briefly present the stochastic identification algorithm. Here, we will con-

sider a slightly more general version of the identification algorithm considered in Section 3.3.

We borrow the notation of Section 3.3. The past and future horizons are denoted by p, f .

The future outputs Yk ∈ Rmf and past outputs Zk ∈ Rmp at time k ≥ p are defined as

Yk ≜


yk
...

yk+f−1

 , Zk ≜


yk−p

...

yk−1

 , k ≥ p,

where we assume that we are given N + p+ f − 2 output samples. The (extended) observ-

ability matrix Ok ∈ Rmk×n and the reversed (extended) controllability matrix Kk ∈ Rn×mk

are defined in (3.8) and (3.9) respectively. The Hankel-like matrix is defined as G = OfKp.

The covariance of the future noises Σ+
E is defined in (3.13).
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Algorithm 1 Stochastic Identification Algorithm

Require: p, f , y0, . . . , yN+p+f−2, W .

Ensure: Estimates: Ĉ, Â, K̂, R̂.

1: Compute Ĝ =
∑N+p−1

k=p YkZ
∗
k

(∑N+p−1
k=p ZkZ

∗
k

)−1
.

2: Compute SVD: ĜW =
[
Û1 Û2

] [ Σ̂1 0

0 Σ̂2

] [
V̂ ∗
1

V̂ ∗
2

]
, Σ̂1 ∈ Rn×n.

3: Set Ôf = Û1Σ̂
1/2
1 , K̂f = Σ̂

1/2
1 V̂ ∗

1 W
−1.

4: Set Ĉ = Ôf (1 : m, :), K̂ = K̂p(:,m(p− 1) + 1 : mp).

5: Set Â = Ôf (:, 1 : m(f − 1))†Ôf (:,m+ 1 : mf).

6: Set Σ̂+
E = 1/N

∑N+p−1
k=p (Yk − ĜZk)(Yk − ĜZk)

∗.

7: Set R̂ = Σ̂+
E(1 : m, 1 : m).

Again, we first regress future outputs to past outputs to obtain a Hankel-like matrix.

Then, we perform a realization step based on Singular Value Decomposition–see Section 3.3

for more details. The outline can be found in Algorithm 1. The algorithm is slightly

more general since we allow the use of a weighting matrix W that post-multiplies Ĝ be-

fore the realization step; carefully choosing the weighting matrix might often improve the

performance of subspace identification algorithms Van Overschee & De Moor (1995); Ljung

(1999); Van Overschee & De Moor (2012). We also provide an estimate R̂ of R̄. Note that

our finite-sample guarantees in Chapter 3 are for W = I and do not cover the recovery of

the innovation covariance R̄. It is straightforward to extend the sample-complexity bounds

to the case W =
(∑N+p−1

k=p ZkZ
∗
k

)1/2
3, which is the value we selected in simulations. It is

also straightforward to obtain upper bounds for the estimation error R̂− R̄ using the tools

of Chapter 3. We omit the formal proof here and we leave the detailed analysis for future

work.

3This is a variation of the MOESP algorithm Qin (2006).
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4.4 Prediction Error Guarantees for Certainty Equivalent

Kalman Filtering

For the Certainty Equivalent (CE) Kalman Filter, we directly use the estimated state-space

parameters from the system identification step. Based on the estimated K̂, R̂ we compute

the covariance: Q̂ Ŝ

Ŝ∗ R̂

 ≜ E

 K̂ek

ek

[ e∗kK̂
∗ e∗k

]
=

 K̂R̂1/2

R̂1/2

[ R̂1/2K̂∗ R̂1/2

]
.

Then, based on standard Kalman Filter theory, we compute the stabilizing solution (see

Chapter 2), of the following Riccati equation with correlation terms (Kailath et al., 2000):

P = ÂP Â∗ + Q̂− (ÂP Ĉ∗ + Ŝ)(ĈP Ĉ∗ + R̂)−1(ĈP Â∗ + Ŝ∗). (4.4)

Then, the CE Kalman Filter gain is static and takes the form

L1 = LCE ≜ (ÂP Ĉ∗ + Ŝ)(ĈP Ĉ∗ + R̂)−1, Lt = 0, for t = 2, . . . . (4.5)

Trivially, if ρ(Â − K̂Ĉ) < 1, then the stabilizing solution of the Riccati equation is P = 0

with LCE = K̂; the solution does not depend on R̂. Formally this follows from the theory

of non-stabilizable Riccati equations Chan et al. (1984). The following result explicitly

describes the certainty equivalent gain.

Lemma 4.1. Consider the assumptions of Problem 4.2. Assume that (Â, Ĉ) is observ-

able and R̂ is positive definite. The CE Kalman Filter gain LCE (4.5) has the following

properties:

• If ρ(Â− K̂Ĉ) < 1, then LCE = K̂ and Â− LCEĈ is asymptotically stable.

• If ρ(Â− K̂Ĉ) > 1, and Â− K̂Ĉ has no eigenvalues on the unit circle, then Â−LCEĈ

is asymptotically stable.
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• If Â− K̂Ĉ has eigenvalues on the unit circle, then (4.4) does not admit a stabilizing

solution.

Proof. After some algebraic manipulations–see also Kailath et al. (2000), the Riccati equa-

tion (4.4) can be rewritten as:

P = (Â− K̂Ĉ)P (Â− K̂Ĉ)∗ − (Â− K̂Ĉ)PĈ∗(ĈP Ĉ∗ + R̂)−1ĈP (Â− K̂Ĉ)∗

Notice that there is no Q term in the equivalent algebraic Riccati equation. If Â − K̂Ĉ

is already stable then the trivial solution P = 0 is the stabilizing one. If Â − K̂Ĉ is not

asymptotically stable the results follow from Theorem 3.1 of Chan et al. (1984).

The next result shows that if the underlying true Kalman Filter is sufficiently robust,

as measured by a spectral decay rate, and that estimation parameter errors are sufficiently

small, then the CE Kalman Filter achieves near optimal performance.

Theorem 4.1 (Near Optimal Certainty Equivalent Kalman Filtering). Consider Prob-

lem 4.2 and the CE Kalman Filter (4.5). For any ρ(A−KC) ≤ ρ < 1, define τ(A−KC, ρ) ≜

supt≥0

∥∥(A−KC)t
∥∥
2
ρ−t. If the robustness condition

2τ(A−KC, ρ) · (ϵA + ϵC(∥K∥2 + ϵK) + ϵK ∥C∥2) ≤ 1− ρ

is satisfied, then LCE = K̂ and:

J̃ ≤
√
3C̄ϵ

∥∥∥∥∥∥∥
 RAK

I

R1/2

∥∥∥∥∥∥∥
H2

where ϵ = max {ϵA, ϵC , ϵK}, C̄ = 2 τ(A−KC,ρ)
1−ρ (1 + ∥K∥2 + ϵK) and RA = (zI −A)−1.

When CE Kalman filtering fails. The transient behavior of the CE Kalman Filter

is governed by the closed loop eigenvalues of Â − K̂Ĉ, with performance degrading as

eigenvalues approach the unit circle. This may occur if the estimation errors (ϵA, ϵC , ϵK)

66



are large enough to cause ρ(Â − K̂Ĉ) ≈ 1 even if the true system has spectral radius

ρ(A−KC) < 1. We show in the next section that this undesirable scenario can be avoided

by explicitly constraining the transient response of the resulting Kalman Filter to satisfy

certain robustness constraints.

4.5 Prediction Error Guarantees for Robust Kalman Filter-

ing

To address the possible poor performance of the CE Kalman Filter when model uncertainty

is large, we propose to search over dynamic filters (4.3) subject to additional robustness

constraints on their transient response. Using the System Level Synthesis (SLS) frame-

work (Wang et al., 2019; Anderson et al., 2019) for Kalman filtering (Wang et al., 2015), we

parameterize the class of dynamic filters (4.3) subject to additional robustness constraints

in a way that leads to convex optimization problems.

4.5.1 SLS preliminaries

For this subsection, we assume that Â = A, Ĉ = C, K̂ = K. The case of model error A ̸= Â,

C ̸= Ĉ, K ̸= K̂ is studied in the following subsection. Using bold symbols to denote the

frequency representation of signals, we can rewrite the original system equation (4.2) and

the predictor equation (4.3) as:

(zI −A+KC)x̂ = Ky, (zI −A+LC)x̃ = Ly.

Subtracting the two equations and using the fact that y = Cx̂+ e, we obtain:

x̂− x̃ = (zI −A+LC)−1Ke− (zI −A+LC)−1Le
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Define the responses to Ke and e by Φw ≜ (zI−A+LC)−1 and Φv ≜ −(zI−A+LC)−1L

respectively. Then the error obtains the linear representation:

x̂− x̃ = (ΦwK +Φv)e

In (Wang et al., 2015), it is shown that these responses are in fact the closed loop maps

from process and sensor noise (w,v) (here Ke and e) to state estimation error, and that the

filter gain achieving the desired behavior can be recovered via L = −Φ−1
w Φv so long as the

responses (Φw,Φv) are constrained to lie in an affine space defined by the system dynamics–

see the following proposition. The following result from Wang et al. (2015) parameterizes

the set of stable closed-loop transfer matrices L.

Proposition 4.1 (Predictor parameterization). Consider system (4.2). Let 1
zRH∞ denote

the set of real rational stable strictly proper transfer matrices. The closed-loop responses

Φw, Φv from Ke and e to x̂− x̃ can be induced by an internally stable predictor L if and

only if they belong to the following affine subspace:

[
Φw Φv

] zI −A

−C

 = I, Φw, Φv ∈ 1

z
RH∞. (4.6)

Given the responses, we can parameterize the prediction gain as L = −Φ−1
w Φv.

Let Φw =
∑∞

t=0Φw,tz
−t and Φv =

∑∞
t=0Φv,tz

−t. The strictly proper condition enforces

the constraint Φw,0 = 0,Φv,0 = 0. The affine constraints simply imply that the system

responses Φw,Φv should satisfy the linear system recursions:

Φw,t+1 = Φw,tA+Φv,tC, t ≥ 1, Φw,1 = I

Assuming that the predictor is internally stable, then the mean square error is equal to

J̃ = ∥(ΦwK +Φv)R̄
1/2∥H2 ,
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where ∥ ·∥H2 is the H2 system norm. Hence, the error-free Kalman Filter synthesis problem

could be re-written as:

min
Φw,Φv

∥(ΦwK +Φv)R̄
1/2∥H2 , s.t. (4.6)

Of course, when the model knowledge is perfect, the solution to this problem is trivially

L = K, Φw = (zI −A+KC)−1, Φv = −(zI −A+KC)−1K, J̃ = 0.

4.5.2 Filter Synthesis and Prediction Error Analysis

For a given dynamic predictor L(z) =
∑∞

t=0 z
−tLt+1, we define the closed loop system

responses:

Φw(z) ≜ (zI − Â+LĈ)−1, Φv(z) ≜ −(zI − Â+LĈ)−1L. (4.7)

By expressing the mean squared prediction error of the filters (4.3) in terms of their system

responses, we are able to clearly delineate the effects of parametric uncertainty from the

cost of deviating from the CE Kalman Filter.

Lemma 4.2 (Error analysis). Consider system (4.2). Let ∆A ≜ A − Â, ∆C ≜ C − Ĉ,

∆K ≜ K − K̂. Any filter (4.3) with parameterization (4.7) has mean squared prediction

error given by

J̃ =

∥∥∥∥∥∥∥
[
Φw Φv

]
 ∆A ∆K

∆C 0


 RAK

I

+

 K̂

I


 R̄1/2

∥∥∥∥∥∥∥
H2

Based on the previous lemma, we can upper bound the mean squared prediction error

of filters (4.3) by

J̃ ≤
√
3ϵ

∥∥∥∥[ Φw Φv

]∥∥∥∥
H2

∥∥∥∥∥∥∥
 RAK

I

 R̄1/2

∥∥∥∥∥∥∥
H∞︸ ︷︷ ︸

parameter uncertainty term

+
∥∥∥ΦwK̂ +Φv

∥∥∥
H2

∥∥∥R̄1/2
∥∥∥
2︸ ︷︷ ︸

suboptimality term

,
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where ϵ = max {ϵA, ϵC , ϵK}. This upper bound clearly separates the effects of parameter

uncertainty, as captured by the first term, and the performance cost incurred by the fil-

ter L due to its deviation from the CE Kalman gain K̂, as captured by the second. In

order to optimally tradeoff between these two terms, we propose the following robust SLS

optimization problem:

min
Φw,Φv

∥∥∥ΦwK̂ +Φv

∥∥∥
H2

s.t.

∥∥∥∥[ Φw Φv

]∥∥∥∥
H2

≤ C,Φw(zI − Â)−ΦvĈ = I, Φw, Φv ∈ 1

z
RH∞

(4.8)

where the constant C is a regularization parameter, and the affine constraint Φw(zI − Â)−

ΦvĈ = I, Φw, Φv ∈ 1
zRH∞ parameterizes all filters of the form (4.3) that have bounded

mean squared prediction error (see Wang et al. (2015) for more details). As we formalize in

the following theorem, for appropriately selected regularization parameter C and sufficiently

accurate estimation errors (ϵA, ϵC), the robust KF has near optimal mean square estimation

error.

Theorem 4.2 (Robust Kalman Filter). Consider Problem 4.2 with Kalman Filters from

class (4.3) synthesized using the robust SLS optimization problem (4.8). If the regularization

parameter is chosen such that C ≥ 2(1 + ∥K∥2) ∥RA−KC∥H2
, and further, the estimation

errors (ϵA, ϵC) are such that

(ϵA + ϵC ∥K∥2) ∥RA−KC∥H∞
≤ 1/2 (4.9)

then the robust SLS optimization problem is feasible, and the synthesized robust Kalman

Filter has mean squared prediction error upper-bounded by

J̃ ≤
√
3Cϵ

∥∥∥∥∥∥∥
 RAK

I


∥∥∥∥∥∥∥
H∞

∥R̄1/2∥2 + 2ϵ ∥RA−KC∥H2
∥R̄1/2∥2, (4.10)

where ϵ = max {ϵA, ϵC , ϵK}.
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We further note that whenever the system responses induced by the CE Kalman Filter

Φ̃w ≜ (zI − Â+ K̂Ĉ)−1, Φ̃v ≜ −(zI − Â+ K̂Ĉ)−1K̂ are a feasible solution to optimization

problem (4.8), they are also optimal, resulting in a filter L = K̂ with performance identical

to the CE setting.

4.6 End-to-End Sample Complexity for the Kalman Filter

Theorems 4.1 and 4.2 provide two different solutions to Problem 4.2. Combining these

theorems with the finite data system identification guarantees of Chapter 3, we now derive,

to the best of our knowledge, the first end-to-end sample complexity bounds for the Kalman

filtering of an unknown system. For both the CE and robust Kalman Filter, we show

that the mean squared estimation error defined in (4.3) decreases with rate O(1/
√
N)

up to logarithmic terms, where N is the number of samples collected during the system

identification step.

Theorem 4.3 (End-to-end guarantees). Consider the conditions of Theorem 3.1 and sup-

pose Assumption 4.1 holds. Let p = β logN , p ≥ f > n, with β as in (3.24). Consider the

definition of S in (3.32) and δN in (3.19). Fix a failure probability δ ∈ (0, 1). Then, if

N ≥ poly(log(1/δ), β, σn(G)),

with probability at least 1−6δ−δN the identification and filter synthesis pipeline of Fig. 4.1,

with system identification performed as in Algorithm 1 with W = I and filter synthesis

performed as in Sections 4.4, 4.5, achieves mean squared prediction error satisfying

√√√√ lim
t→∞

1

t

t∑
k=0

∥x̃k − T ∗S−1xk∥2 ≤ CIDCKF Õ(

√
log 1/δ

N
) (4.11)
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for some orthonormal matrix T . Constant CKF is defined as:

CKF = inf
ρ>ρ(A−KC)

τ(A−KC, ρ)

1− ρ
(1 + ∥K∥2)

∥∥∥∥∥∥∥
 RAK

I

R1/2

∥∥∥∥∥∥∥
H2

in the case of CE Kalman filtering and

CKF = ∥RA−KC∥H2
(1 + ∥K∥2)

∥∥∥∥∥∥∥
 RAK

I

R1/2

∥∥∥∥∥∥∥
H∞

in the case of robust KF. Constant CID captures the difficulty of identifying system (4.2)

and is defined as:

CID =

√
∥Σ+

E∥2
σE

1

σn(Of−1S)
√

σn(G)

√
fmpn (4.12)

Here, Õ hides constants, other system parameters, and logarithmic terms.

The proof follows from combining Corollary 3.1 and Theorem 3.4 with Theorems 4.1, 4.2.

The notation poly(·) denotes a polynomial function of its arguments. Note that the con-

dition on N follows from the condition N ≥ N0, N1, N2 in Corollary 3.1 along with (3.25)

and the SVD robustness condition (3.33). Of course, the condition on N also depends on

other system theoretic quantities as well, e.g. ∥Tf∥2, which we omit for simplicity; they can

be inferred from the proof.

The constant CKF captures how robust the underlying open loop system A and closed

loop Kalman Filter A − KC are. We expect CKF to be small for systems that admit

optimal Kalman Filters with favorable robustness and transient performance. For example,

if the spectral gaps 1 − ρ(A) and 1 − ρ(A − KC) are small (close to instability), then

the constant CKF becomes large. In contrast, the constant CID captures how easy it is to

identify a system. The intuition is the following. The noise both excites the system and

also introduces errors that obstruct identification; this is captured by the square root of

the condition number of the covariances ΣE,f ,ΣE,p. Moreover, σn(Of−1S) quantifies how

easy it is to observe system (4.2). A similar interpretation holds for σn(G). Finally, larger
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dimensions f, p,m, n require more samples for identification since there are more unknowns

in matrix G.

The bound derived in Theorem 4.3 highlights an interesting tension between how easy

it is to identify the unknown system, and the robustness of the underlying optimal Kalman

Filter. Recent results for the fully observed setting (Simchowitz et al., 2018; Sarkar &

Rakhlin, 2018) suggest that systems with larger spectral radius are in fact easier to identify,

as they provide more “signal” to the identification algorithm. In this way, our upper bound

suggests that systems which properly balance between these two properties, robust transient

performance and ease of identification, enjoy favorable sample complexity.

Note that the mean squared prediction error in (4.11) is computed with respect to the

estimated state-space basis, i.e. up to the similarity transformation ST , where S is defined

in (3.32) and T is some orthonormal matrix. In terms of the original state-space basis, the

mean squared prediction error (4.11) would be:

√√√√ lim
t→∞

1

t

t∑
k=0

∥ST x̃k − xk∥2 ≤ ∥S∥2 CIDCKF Õ(

√
log 1/δ

N
)

From (3.32), the norms of S, S−1 are bounded, so, the bound (4.11) is not vacuous.

We also note that the degradation of our bound with the inverse of the spectral gap

1− ρ(A) appears to be a limitation of the proposed offline two step architecture – indeed,

Lemma 4.2 suggests that any estimation error in the state-space parameters (A,C) causes

an increase in mean squared prediction error as ∥RA∥ ∝ (1− ρ(A))−1 increases. As we will

see in the next chapter, we can avoid this limitation in the online estimation setting.
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4.7 Simulations

We perform Monte Carlo simulations of the proposed pipeline for the system

A =


0.8 1 0

0 0.9 1

0 0 0.9

 , C =

[
1 0 0

]
,

K =

[
1.5320 0.9401 0.1923

]∗
, R̄ = 10.6414.

for varying sample lengths N . We simulate both the CE and robust Kalman filters, and

set the regularization parameter to C = 10 in the robust SLS optimization problem (4.8).

For each iteration, we first simulate system (4.2) to obtain N output samples. Then, we

perform system identification to obtain the system parameters, after which we synthesize

both CE and robust Kalman filters. Finally, we compute the mean prediction error of the

designed filters.

For the identification scheme, we used W = (
∑N+p−1

k=p ZkZ
∗
k)

1/2, i.e. the variation of the

MOESP algorithm Qin (2006), which is more sample efficient in practice compared to the

choice W = I–see Algorithm 1. The basis of the state-space representation returned by the

subspace algorithm is data-dependent and varies with each simulation. For this reason, to

compare the performance across different simulations, we compute the mean square error

in terms of the original state space basis. Note that the SLS optimization problem (4.8)

is semi-infinite since we optimize over the infinite variables {Φw,t}∞t=1 and {Φv,t}∞t=0. To

deal with this issue, we optimize over a finite horizon T–see for example Dean et al. (2018),

which makes the problem finite and tractable. Here, we selected T = 30.

Figure 4.2 (a) and (b) show the empirically computed mean squared prediction errors

of the CE and Robust Kalman filters, with the mean, 95th, and 97.5th percentiles being

shown. Notice that both errors decrease with a rate of 1/
√
N , and that while the average

behavior of both filters is quite similar, there is a noticeable gap in their tail behaviors. We

observe that the most significant gap between the CE and Robust Kalman filters occurs
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Figure 4.2: The 95% and 97.5% empirical percentiles for the mean squared prediction error J̃ of the
CE and Robust Kalman filters. We run 1000 Monte Carlo simulations for different sample lengths
N (x-axis, number of samples).

when the eigenvalues of the CE matrix Â−LCEĈ are close to the unit circle. Fig. 4.3 shows

the empirical distribution of mean squared prediction errors conditioned on the event that

ρ(Â− LCEĈ) > 0.97. In this case, the CE filter can exhibit extremely poor mean squared

prediction error, with the worst observed error (not shown in Fig. 4.3 in the interst of

space) approximately equal to 70 – in contrast, the worst error exhibited by the robust

Kalman filter was approximately equal to 5. Thus, we were able to achieve a 14x reduction

in worst-case mean squared error. For some simulations the robust KF can exhibit worse

performance compared to the CE Kalman filter. However, over all simulations, the mean

squared error achieved by the robust Kalman filter was at most 1.64x greater than that

achieved by CE Kalman filter.

4.8 Conclusions & Future work

In this chapter, we proposed and analyzed a system identification and filter synthesis

pipeline. Leveraging contemporary finite data guarantees from system identification (Tsi-

amis & Pappas, 2019), as well as novel parameterizations of robust Kalman filters (Wang
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Figure 4.3: Performance improvement for the robust KF conditioned on the event that ρ(Â −
LCEĈ) > 0.97.

et al., 2015), we provided, to the best of our knowledge, the first end-to-end sample com-

plexity bounds for the Kalman filtering of an unknown LTI autonomous system, in an offline

learning context. Our analysis revealed that, depending on the spectral properties of the

CE Kalman filter, that a robust Kalman filter approach may lead to improved performance.

In future work, we would like to explore how to improve robustness and performance by

further exploiting information about system uncertainty, as well as how to integrate our

results into an optimal control framework, such as Linear Quadratic Gaussian control. We

would also like to explore more options for the regularization parameter C, for example, let

it depend on the data or the number of samples.

4.9 Proofs

Proof of Theorem 4.1

Let ∆Acl
= (A−KC)− (Â− K̂Ĉ). By adding and subtracting K̂C, we obtain the bound:

∥∆Acl
∥ ≤ ϵA + ∥K̂∥2ϵC + ϵK∥C∥2 ≤ ϵA + (∥K∥2 + ϵK)ϵC + ϵK ∥C∥2

Hence, from the robustness condition of the theorem it follows that

2τ(A−KC, ρ)∥∆Acl
∥2 ≤ 1− ρ (4.13)
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Now, from Lemma 5 in Mania et al. (2019) it follows that:

∥(Â−K̂Ĉ)k∥2 = ∥(A−KC−∆Acl
)k∥2 ≤ τ(A−KC, ρ)

(
τ(A−KC, ρ) ∥∆Acl

∥2 + ρ
)k

(4.14)

Combining (4.13), (4.14), we finally obtain:

∥(Â− K̂Ĉ)k∥2 ≤ τ(A−KC, ρ)

(
1 + ρ

2

)k

.

Thus, the H∞ norm of RÂ−K̂Ĉ is upper bounded by

∥∥∥RÂ−K̂Ĉ

∥∥∥
H∞

≤
∞∑
t=0

∥(Â− K̂Ĉ)t∥2

≤ τ(A−KC, ρ)
∞∑
k=0

(
1 + ρ

2

)k

=
2τ(A−KC, ρ)

1− ρ

This further implies

∥∥∥∥[ RÂ−K̂Ĉ −RÂ−K̂ĈK̂

]∥∥∥∥
H∞

≤ (1 + ∥K∥2 + ϵK)
∥∥∥RÂ−K̂Ĉ

∥∥∥
H∞

≤ (1 + ∥K∥2 + ϵK)
2τ(A−KC, ρ)

1− ρ
.

Now let Φw = RÂ−K̂Ĉ and Φv = −RÂ−K̂ĈK̂. The proof follows from Lemma 4.2 and

the inequality

∥∥∥∥∥∥∥
[
Φw Φv

] ∆A ∆K

∆C 0


 RAK

I


∥∥∥∥∥∥∥
H2

≤
∥∥∥∥[ ΦwΦv

]∥∥∥∥
H∞

∥∥∥∥∥∥∥
 ∆A ∆K

∆C 0


 RAK

I

 R̄1/2

∥∥∥∥∥∥∥
H2

≤
√
3ϵ(1 + ∥K∥2 + ϵK)

2τ(A−KC, ρ)

1− ρ

∥∥∥∥∥∥∥
 RAK

I

 R̄1/2

∥∥∥∥∥∥∥
H2

■
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Proof of Lemma 4.2

It is sufficient to show that

x̂− x̃ =
{
(Φw∆A +Φv∆C)RAK +Φw∆K +ΦwK̂ +Φv

}
e,

then the result follows from the definition of H2 norm and the fact that R̄−1/2e is white

noise with unit variance.

In frequency domain, equations (4.2), (4.3) can be rewritten as

(zI − Â)x̃ = L(y − Ĉx̃), (zI −A)x̂ = K(y − Cx̂)

Subtracting the two equations yields:

(zI − Â+LĈ)(x̂− x̃) + (−∆A −LĈ +KC)x̂ = (K −L)y

Using the fact that y = Cx+ e, we obtain:

(zI − Â+LĈ)(x̂− x̃) = (∆A −L[C − Ĉ])x̂+ (K −L)e.

Multiplying from the left by Φw and using the fact that Φv = −ΦwL

x̂− x̃ = (Φw∆A +Φv∆C)x̂+ (ΦwK +Φv)e

The result follows from adding and subtracting ΦwK̂e and the fact that x̂ = RAKe. ■
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Proof of Theorem 4.2

Step a: First we prove that when optimization problem (4.8) is feasible, the the mean

square error is bounded by:

J̃ ≤
√
3Cϵ

∥∥∥∥∥∥∥
 RAK

I


∥∥∥∥∥∥∥
H∞

∥R̄1/2∥2 + opt(C)∥R̄1/2∥2. (4.15)

Assume that (Φw,Φv) is an optimal solution to (4.8). From Lemma 4.2:

J̃ ≤
√
3ϵ

∥∥∥∥[ Φw Φv

]∥∥∥∥
H2

∥∥∥∥∥∥∥
 RAK

I


∥∥∥∥∥∥∥
H∞

∥R̄1/2∥2 +
∥∥∥(ΦwK̂ +Φv)

∥∥∥
H2

∥R̄1/2∥2,

≤
√
3Cϵ

∥∥∥∥∥∥∥
 RAK

I


∥∥∥∥∥∥∥
H∞

∥R̄1/2∥2 + opt(C)∥R̄1/2∥2,

where we used

∥∥∥∥[ Φw Φv

]∥∥∥∥
H2

≤ C and optimality of (Φw,Φv).

Step b: We prove that under condition (4.9), the static Kalman gain K is a feasible gain

for (4.8); equivalently, the responses Φ̃w = RÂ−KĈ , and Φ̃v = −RÂ−KĈK satisfy the

constraints of (4.8). Consider the responses Φw,opt ≜ RA−KC and Φv,opt ≜ −RA−KCK,

which are optimal for the original unknown system. They satisfy the affine relation for the

original system: [
Φw,opt Φv,opt

] zI −A

−C

 = I

Adding and subtracting the estimated matrices, we can show that they also satisfy a per-

turbed affine relation for the estimated system:

[
Φw,opt Φv,opt

] zI − Â

−Ĉ

 = I + (Φw,optδA +Φv,optδC)︸ ︷︷ ︸
∆

If the perturbation (I + ∆)−1 is stable, we can multiply both sides from the left, which
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yields: [
Φ̃w Φ̃v

] zI − Â

−Ĉ

 = I,

where we used the fact that:

(I +∆)−1Φw,opt = Φ̃w, (I +∆)−1Φv,opt = Φ̃v

Under condition (4.9), the perturbation ∆ has norm bounded by:

∥∆∥H∞
≤ (ϵA + ϵC ∥K∥2) ∥RA−KC∥H∞

≤ 1/2

Hence: ∥∥(I +∆)−1
∥∥
H∞

≤
∞∑
t=0

∥∆∥tH∞ ≤ 1

1− ∥∆∥H∞

= 2

which shows that the responses Φ̃w, Φ̃v are stable. By construction, they are also strictly

proper. What remains to show is that the robustness constraint holds. We have:

∥∥∥∥[ Φ̃w Φ̃v

]∥∥∥∥
H2

≤
∥∥∥∥(I +∆)−1

[
Φw Φv

]∥∥∥∥
H2

≤
∥∥(I +∆)−1

∥∥
H∞

(1 + ∥K∥2) ∥RA−KC∥H2

≤ 2(1 + ∥K∥2) ∥RA−KC∥H2
≤ C

Step c: Since K is a feasible gain, by suboptimality

opt(C) ≤
∥∥∥Φ̃wK̂ + Φ̃v

∥∥∥
H2

≤
∥∥(I +∆)−1

∥∥
H∞

∥∥∥ΦwK̂ +Φv

∥∥∥
H2

≤ 2
∥∥∥ΦwK̂ +Φv

∥∥∥
H2

= 2
∥∥∥Φw(K̂ −K)

∥∥∥
H2

≤ 2ϵ ∥RA−KC∥H2

where we used Φv = −ΦwK. ■
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Chapter 5

Online Learning of the Kalman

Filter

5.1 Introduction

In this chapter, we study the sample complexity of the online architecture for learning the

Kalman filter of an unknown LTI system. From a control theoretic perspective, this problem

has also been known as the adaptive filtering problem (Ljung, 1978; Moore & Ledwich, 1979;

Lai & Ying, 1991; Ding et al., 2006). Adaptive filtering algorithms address the problem of

making observation predictions when the system model or the noise statistics are unknown

or changing. These adaptive filtering approaches are usually based on variations of extended

least squares. The statistical analysis of their behavior has relied on asymptotic tools, which

assume that the number of collected data N is infinite. However, our asymptotic tools, e.g.

the Central Limit Theorem or Law of Large Numbers, do not always capture all aspects

of finite sample performance (Vershynin, 2018, Chapter 2). Moreover, the dependence of

prediction performance on various system theoretic parameters has been hidden under the

big-O notation.

Here, we consider the problem of predicting observations generated by an unknown,

partially observable LTI dynamical system under finite samples. The system dynamics and
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observation map are corrupted by Gaussian noise. For the theoretical analysis, we adopt the

notion of regret Cesa-Bianchi & Lugosi (2006), which captures the finite sample performance

of online prediction. It measures how far our online predictions are from the optimal Kalman

Filter predictions that has access to the full system model. Our goal is to find an online

prediction algorithm that has provably small regret. Our technical contributions are:

System theoretic regret: We define a notion of regret that has a natural, system

theoretic interpretation. The prediction error of an online prediction algorithm is compared

against the prediction error of the Kalman filter that has access to the exact model, which

is allowed to be arbitrary. Previous regret definitions Kozdoba et al. (2019) required the

model to lie in a finite set.

Logarithmic regret for the Kalman filter: We present the first online prediction

algorithm with provable logarithmic regret upper bounds for the classical Kalman filter.

In fact, we prove that with high probability the regret of our algorithm is of the order of

Õ(1), where Õ hides poly logN terms, where N is the number of observations collected.

Our algorithm is based on subspace system identification techniques Qin (2006). Instead of

optimizing over the state-space parameters, which is a non-convex problem, we convexify

the problem by establishing an approximate regression between the next observation and

past observations. Our analysis is based on the stability properties of the Kalman filter,

tools for self-normalized martingales and matrices, high-dimensional statistics Vershynin

(2018), and additional results for persistency of excitation developed here. We note that

our bounds are qualitative, showing how various system theoretic parameters affect learning

performance.

Logarithmic regret for non-explosive systems: Our regret guarantees hold for the

class of non-explosive systems, which includes marginally stable linear systems. This settles

an open question and concludes that online prediction performance does not depend on the

system stability gap (1/(1− ρ), where ρ is the spectral radius of the system). Although it

was recently shown that the stability gap does not affect system identification Simchowitz

et al. (2019), whether the stability gap affects online prediction under stochastic noise was

82



an open problem.

Regret analysis for other predictors: Our approach directly carries over to various

interesting online predictors. For example, our analysis can be directly extended to the

case of f−step ahead prediction of observations. Another extension focuses on the regret

of hidden state predictors when the state-space basis representation is known a priori. The

latter situation arises, for example, when the state-space model is known but the noise

statistics are unknown. Another case is prediction of stable closed-loop systems. All these

predictors enjoy similar logarithmic regret bounds.

Learning gap between LQR and Kalman filter: One of the implications of our

bounds is that learning to predict observations like the Kalman filter is provably easier than

solving the online Linear Quadratic Regulator (LQR) problem, which in general requires

Ω(
√
N) regret Simchowitz & Foster (2020); Ziemann & Sandberg (2020). This might not be

surprising due to the fact that, in the case of exogenous inputs, we need to inject exploratory

signals into the system.

5.1.1 Related work

Recently, there have been important results addressing the regret of the adaptive Linear

Quadratic Regulator (LQR) problem Abbasi-Yadkori & Szepesvári (2011); Faradonbeh et al.

(2020b); Ouyang et al. (2017b); Abeille & Lazaric (2018); Dean et al. (2018); Mania et al.

(2019); Cohen et al. (2019). The best regret for LQR is sublinear and of the order of

Õ(
√
N), where N is the numbers of state samples collected; an in-depth survey can be

found in Matni et al. (2019). When the system model is known, then the Kalman filter is

the dual of the Linear Quadratic Regulator, suggesting that this duality can be exploited in

deriving the regret of the Kalman filter. However, when the system model is unknown, the

Linear Quadratic Regular and the Kalman filter are not dual problems Tsiamis et al. (2020).

As the state is fully observed in LQR, the system identification in adaptive LQR reduces to

a simple least squares problem. In the adaptive Kalman filter, the state is partially observed

resulting in non-convex system identification problems requiring us to consider a different
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approach.

A related but different problem focuses on online prediction algorithms for systems with-

out internal states (such as ARMA - autoregressive moving average) Anava et al. (2013).

Prediction of observations generated by state space models in the case of exogenous in-

puts and adversarial noise but with a bounded budget was studied in Hazan et al. (2018).

Recently, Kozdoba et al. (2019) introduced regret bounds for the Kalman Filter in the re-

stricted context of scalar and bounded observations. The regret is shown to be of the order

of
√
N along with a small linear term. Here, we improve the state of the art to logarithmic

bounds for general observations. Concurrently and independently Ghai et al. (2020) also

proved logarithmic regret bounds for the Kalman Filter. Our analysis here is different focus-

ing on persistency of excitation, which can also provide simultaneous parameter estimation

guarantees. After our work, regret bounds were extended to the case where the Kalman

Filter closed-loop matrix is close to instability Rashidinejad et al. (2020). Finally, Lale

et al. (2020b) proved logarithmic regret bounds for the Linear Quadratic Gaussian (LQG)

control problem, which is different from the prediction problem studied here.

Our online algorithm is inspired by subspace identification techniques Bauer et al.

(1999). The technical approach is based on classical results for the analysis of the least-

squares estimator for time series Lai &Wei (1982), as well as modern results for finite sample

analysis of system identification in both the fully observed Faradonbeh et al. (2018a); Sim-

chowitz et al. (2018); Sarkar & Rakhlin (2018) and the partially observed case Hardt et al.

(2018); Oymak & Ozay (2018); Simchowitz et al. (2019); Sarkar et al. (2019); Tsiamis &

Pappas (2019).

Notation. The term universal constant is used for numbers which are independent of

the system’s (algorithm’s) parameters. The operator ⪰ denotes comparison in the positive

semi-definite cone. With ∥∥2 we denote the Euclidean norm for vectors and the spectral

norm for matrices. The spectral radius of a matrix A is denoted by ρ (A). The smallest

singular value of a matrix A is denoted by σmin(A). By A∗ we denote the transpose of A.

The big-O notation O(f(N)) represents a function that grows at most as fast as f(N). The
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Õ(·) notation hides poly-logarithmic terms. When it is not clear from the context, we write

Ox(·) to explicitly denote big-O notation with respect to x. The poly(x) notation means a

polynomial function of x.

5.2 Problem Formulation

As we covered in Chapter 2, the Kalman filter considers the problem of predicting observa-

tions generated by the following state-space LTI system:

xk+1 = Axk + wk, wk
i.i.d.∼ N (0, Q)

yk = Cxk + vk, vk
i.i.d.∼ N (0, R)

(5.1)

where xk ∈ Rn is the state, yk ∈ Rm, m ≤ n, are the observations (outputs), A ∈ Rn×n

is the system matrix and C ∈ Rm×n is the observation matrix. The time series wk, vk

represent the process and measurement noise respectively and are modeled as zero mean

i.i.d. Gaussian variables, independent of each other, with covariances Q and R respectively.

The initial state is zero mean Gaussian with covariance Σ0 and independent of the noises.

Similar to Chapter 3, we make the following assumption.

Assumption 5.1. The pair (A,C) is observable, (A,Q1/2) is stabilizable. Let Assump-

tion 3.2 hold, i.e. the Kalman filter has already reached steady state with Σ0 = P , where P

is defined in (2.3).

Then, by Corollary 2.1, the Kalman Filter of system (5.1) is given by:

x̂k+1 = Ax̂k +Kek, x̂0 = 0

yk = Cx̂k + ek,

(5.2)

where x̂k ∈ Rn is the prediction (state), yk ∈ Rm is the output, ek ∈ Rn is the innovation

process, and K is the Kalman filter gain defined in (2.2). Recall that the innovation process

ek ≜ yk − Cx̂k is i.i.d. Gaussian with covariance matrix R̄, defined in (3.4). The following

assumption also holds throughout the chapter.
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Assumption 5.2. Matrices A,C,Q,R,K, R̄ are unknown. System (5.1) is non-explosive,

namely the spectral radius is ρ(A) ≤ 1. The state matrices are bounded

∥A∥2, ∥C∥2, ∥Q∥2, ∥R∥2 ≤ M,

for some M ≥ 0. Let A = SJS−1 be the Jordan form decomposition of A, then the similarity

transformation is bounded ∥S∥2, ∥S−1∥2 ≤ M .

Contrary to the offline architecture, we can extend the prediction guarantees to the case

ρ(A) = 1, when the system is marginally stable or polynomially unstable; this is possible

only under an online learning architecture. The upper bound M captures the size of the

state parameters and we expect it to affect the learning complexity. For the economy of the

presentation we only use a common bound for all parameters. The next assumption makes

sure that system (5.2) is minimal.

Assumption 5.3. The pair (A,K) is controllable.

If the pair (A,K) is stabilizable, then the results of the chapter apply to the controllable

subspace of the state; the uncontrollable subspace remains zero.

The following assumption is for notational simplicity. It assumes that the largest eigen-

value of A−KC is simple. It also assumes that the responses C(A−KC)tK have bounded

norm. We could remove it at the expense of slightly more complicated bounds in the regret

analysis.

Assumption 5.4. For some all t ≥ 0, the closed-loop matrix satisfies
∥∥(A−KC)t

∥∥
2
≤

Mρ(A −KC)t. The Kalman Filter gain K and the innovation covariance R̄ are bounded

∥K∥2, ∥R̄∥2 ≤ M . The responses are upper bounded
∑

t≥0 ∥C(A−KC)tK∥ ≤ M .

Let Fk ≜ σ(y0, . . . , yk) be the filtration generated by the observations y0, . . . , yk with

Lm
2 (Fk) the space of square integrable Fk−measurable random vectors. Given the observa-

tions up to time k, the Kalman filter gives the optimal prediction ŷk+1 at time k+1 in the
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minimum mean square error (mmse) sense:

ŷk+1 ≜ arg min
z∈Lm

2 (Fk)
E
[
∥yk+1 − z∥22 |Fk

]
.

Of course to compute the Kalman filter prediction, knowledge of the system matrices

A,C,Q,R is required.

Our goal is to design an online predictor ỹk+1 ∈ Lm
2 (Fk) that adapts to the unknown

model and competes with the optimal Kalman filter. Since we do not have access to the

model, we can only rely on the data, which are revealed sequentially. To quantify the online

prediction performance, we define the regret of our online learning algorithm with respect

to the Kalman filter (5.2) that has full knowledge of system model (5.1). Our goal is to

achieve sublinear regret, as defined in the following problem statement.

Problem 5.1. Assume that A,C,Q,R in system model (5.1) are unknown. Consider

a sequence y0, y1 . . . of observations, which are generated sequentially by system (5.1).

Let ỹk ∈ Lm
2 (Fk) be the prediction of an online learning algorithm based on the his-

tory yk−1, . . . , y0 and ŷk be the Kalman filter prediction (5.2) that has full knowledge of

model (5.1). Define the regret:

RN ≜
N∑
k=1

∥yk − ỹk∥2 −
N∑
k=1

∥yk − ŷk∥2. (5.3)

Fix a failure probability δ > 0. Our goal is to find a learning algorithm such that with

probability at least 1− δ:

RN ≤ poly(log 1/δ)o(N),

where o(N) does not depend on δ.

The regret captures the average suboptimality of the online predictor. From this point

of view, if the regret is sublinear this implies average convergence since RN/N = o(1).

Recall that one of the main properties of the Kalman Filter is that the innovation

sequence ek = yk − ŷk is orthogonal and, by Gaussianity, also i.i.d. By the law of large
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numbers, this implies that the ℓ2 accumulative error
∑N

k=0 ∥yk − ŷk∥22 will be of the order of

Ω(N) almost surely. Predicting the true observations exactly is impossible in the stochastic

noise setting, even if we know the system.

Systems (5.1), (5.2) are statistically equivalent, i.e. they generate observations with the

same distribution. This implies that the noise parameterization is not unique Van Overschee

& De Moor (2012). Another source of ill-posedness is that the state space parameterization

is non-unique. Any similar system S−1AS, CS, S−1QS−∗ generates the same observations.

These problems will be addressed later by considering an alternative system representation.

5.3 Online Prediction Algorithm

Our online prediction algorithm is based on a system response representation (Markov

parameterization) that has been used in subspace system identification Bauer et al. (1999).

Let p be an integer that represents how far we look into the past. We define the vector of

past observations at time k:

Zk,p ≜

[
y∗k−p . . . y∗k−1

]∗
, k ≥ p. (5.4)

Define also the matrix of closed-loop responses:

Gp ≜

[
C(A−KC)p−1K · · · CK

]
, (5.5)

which are essentially the Markov parameters of the stochastic system. By expanding the

Kalman filter (5.2) p-steps into the past, the observation at time k can be rewritten as

yk = GpZk,p + C(A−KC)px̂k−p︸ ︷︷ ︸
bias

+ek. (5.6)

Instead of optimizing over system parameters A,C,K, which results in a non-convex opti-

mization problem, we optimize over (the higher dimensional) Gp, which makes the problem

convex. From an online learning perspective, this technique is also known as improper
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Algorithm 2 Online Prediction Algorithm

Input: β, λ, Tinit

for k = 0, . . . , Tinit − 1 do
Observe yk

end for
for i = 1, 2, . . . do

T = 2i−1Tinit

p = β log T
V̄T−1 = λI +

∑T−1
t=p Zt,pZ

∗
t,p

G̃T−1 =
(∑T−1

t=p ytZ
∗
t,p

)
V̄ −1
T−1

for k = T, . . . , 2T − 1 do
Predict ỹk = G̃k−1Zk,p

Observe yk
Update V̄k = V̄k−1 + Zk,pZ

∗
k,p

G̃k = G̃k−1 + (yk − ỹk)Z
∗
k,pV̄

−1
k

end for
end for

learning. Using this lifting, we can learn a least squares estimate G̃k,p by regressing outputs

yt to past outputs Zt,p for t ≤ k:

G̃k,p =

k∑
t=p

ytZ
∗
t,p

(
λI +

k∑
t=p

Zt,pZ
∗
t,p

)−1

, (5.7)

where λ > 0 is a regularization parameter to be designed. Then, to predict the next

observation, we can compute:

ỹk+1 = G̃k,pZk+1,p. (5.8)

Due to the stability properties of the Kalman filter (Chapter 2), if we consider p past

observations, then the bias term in equation (5.6) is of the order of ρ(A −KC)p ∥x̂x−p∥2.

Notice that for non-explosive systems the state x̂k−p can grow polynomially fast in the

worst case. Even if x̂k−p remains bounded, keeping the past p constant would lead to

a non-vanishing bias error (linear regret). Thus, to make sure that the prediction error

decreases, we need to gradually increase the past horizon p. For this reason, inspired by

the “doubling trick” Cesa-Bianchi & Lugosi (2006), we divide the learning in epochs, where

every epoch is twice longer than the previous one. During every epoch we keep the past
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horizon constant. Since ρ(A − KC)p is exponentially decreasing, it is sufficient to slowly

increase the past as p = O(log T ), where T is the epoch duration.

The pseudo-code of our online prediction approach can be found in Algorithm 2. Each

epoch lasts from time Ti, . . . , 2Ti− 1, where i = 1, . . . , is the epoch, Ti = 2i−1Tinit, and Tinit

is a design parameter (the length of the first epoch). During every epoch, we keep the past

pi = β log(Ti) constant, where β is a design parameter. Initially, from time 0 to Tinit − 1,

we have a warm-up phase where we gather enough observations to start predicting. To

make sure that pi < Ti, we tune Tinit accordingly. Within an epoch, the least squares based

predictor (5.8) can be implemented in a recursive way:

V̄k,pi = V̄k−1,pi + Zk,piZ
∗
k,pi

G̃k,pi = G̃k−1,pi + (yk − ỹk)Z
∗
k,pi

V̄ −1
k ,

which requires polynomial complexity and at most O(log Ti) memory. In the beginning of

an epoch, when pi is updated, we re-initialize the predictor based on the whole past, which

requires polynomial complexity and O(Ti) memory. Hence, in total, after N collected

samples, the computational complexity is polynomial and the memory requirement is linear

O(N).

No knowledge about the dynamics or even the state dimension n is required. We only

need to know an upper bound on the state dimension n in order to tune the past horizon

p–see Theorem 5.1. There is a tradeoff between the bias error and statistical efficiency.

Increasing the past horizon by selecting larger β leads to smaller bias error, but increases

the sample complexity of learning Gp since we have more unknowns.

5.4 Regret Analysis

In this section, we prove that with high probability the prediction regret is not only sub-

linear, but also of the order of poly logN (or Õ(1)), where N is the number of observations

collected so far. The challenge in the non-explosive regime is that the observations grow
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unbounded polynomially fast (Ω(
√
N)). Meanwhile, recent work in finite sample analysis of

system identification Oymak & Ozay (2018); Simchowitz et al. (2019); Tsiamis & Pappas

(2019); Sarkar et al. (2019) shows that the model parameters can be learned at a slower

rate (O(1/
√
N)). Therefore these system identification results cannot be directly applied

to obtain regret bounds for our problem. Nonetheless, we show that our online Algorithm 2

mitigates the effect of unbounded observations. As a result, the logarithmic regret bound

of Õ(1) remains valid even as we approach instability.

We provide two results, one for non-explosive systems (ρ(A) ≤ 1) and one for stable

systems (ρ(A) < 1). Before we present the regret results, let us introduce some notion. Let

a(s) = sd − ad−1s
d−1 · · · − a0 be the minimal polynomial of matrix A, i.e. the minimum

degree polynomial such that a(A) = 0. Denote its degree by d. We define the ℓ1 norm of

its coefficients as ∥a∥1 ≜ 1 +
∑d−1

i=0 |ai|; the ℓ2 norm ∥a∥2 is defined in a similar way. Let κ

be the dimension of the largest Jordan block of A. In general, κ ≤ d ≤ n. The minimum

singular value of R is denoted by σR. For brevity, we omit the first Tinit terms from the

regret. We also do not show the dependence on M and λ in the theorem statements. More

precise bounds can be inferred by the proofs, at the cost of more complicated and less

intuitive expressions.

Theorem 5.1 (Regret for non-explosive systems). Consider system (5.2) with ρ(A) ≤ 1.

Let y0, . . . , yN be the sequence of system observations. Let ỹ0, . . . , ỹN be the predictions of

Algorithm 2 with

β = Ω

(
κ

log(1/ρ(A−KC))

)
(5.9)

and fix a failure probability δ > 0. There exists a N0 = poly (n, β, log 1/δ, 1/σR), indepen-

dent of N , such that with probability at least 1− δ, if N > N0 then:

RN ≤poly(dκ, n, β, ∥a∥2 , log 1/δ, 1/σR)Õ(1). (5.10)

Theorem 5.1 provides the first logarithmic regret upper bounds for the general problem

of Kalman filter prediction. The burn-in time N0 is related to persistency of excitation
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conditions, i.e. initially we need enough samples to guarantee that the smallest singular

value of the Gram matrix V̄k increases linearly with k. Our bounds do not depend on the

stability gap 1/(1 − ρ(A)) and they do not degrade as we approach instability. However,

they suggest, via β, that the stability radius ρ(A − KC) of the Kalman filter closed-loop

matrix affects the learning difficulty.

The upper bound also depends on the quantities dκ and ∥a∥, both of which can be

exponential in the dimension of the system state n in the worst case. This can happen, for

example, if κ = n, i.e. the system is an n−th order integrator. Dependence of learning per-

formance on the coefficients of the characteristic or minimal polynomial has been found in

related work Hardt et al. (2018). This dependence can be improved–see for example Hazan

et al. (2018), Simchowitz et al. (2019), Ghai et al. (2020). However, it is an open question

whether it is possible to avoid the exponential dependence on κ. It might be possible that

systems with long chain structure, e.g. integrators, are harder to learn; such systems are

difficult to observe even in the known model case. In open-loop system identification Sim-

chowitz et al. (2019), such a dependence also appears. It might be an inherent limitation

of the problem, since fundamental quantities of the system, for example matrix Ai or the

observability matrix Oi scale with iκ–see Lemma 5.5.

The above issues can be avoided in the case of stable systems (ρ(A) < 1), by exploiting

stationarity. Let Γk ≜ Ex̂kx̂∗k be the covariance of the state with Γ∞ = limΓk the steady-

state covariance. Let the mixing time τmix be the minimum time such that the system is

close to steady-state:

∥Γ−1/2
∞ ΓkΓ

−1/2
∞ ∥2 ≤ 1/2, for all k ≥ τmix. (5.11)

Based on Lemma 5.7, the mixing time scales with:

τmix ≤ poly((log 1/ρ(A))−1, κ, log σmax(Γ∞)
σmin(Γ∞) ).

We obtain the following guarantees.
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Theorem 5.2 (Regret for stable systems). Consider system (5.2) with ρ(A) < 1. Let

y0, . . . , yN be the sequence of system observations. Let ỹ0, . . . , ỹN be the predictions of

Algorithm 2 with β as in (5.9). Fix a failure probability δ > 0. There exists

N s
0 = poly (n, β, log 1/δ, τmix, 1/σR)

such that with probability at least 1− δ, if N > N s
0 then:

RN≤poly(n, β, log 1/δ)Õ(1). (5.12)

Notice that for stable systems we no longer have quantities that depend exponentially

on the dimension n. The main bound (5.12) does not depend on the stability gap 1/(1 −

ρ(A)). However, via τmix in N s
0, the guarantees depend logarithmically on the inverse radius

log 1/ρ(A). This quantity affects the mixing time needed for a stable system to approach

stationarity.

The proofs of Theorem 5.1 and Theorem 5.2 can be found in Sections 5.7 and 5.8

respectively. In the next subsection, we provide an overview of the regret analysis and

explain why the quantities dκ and ∥a∥2 appear in the bound in Theorem 5.1. We also

explain what changes in the case of stable systems addressed by Theorem 5.2.

5.4.1 Regret analysis overview

Recall the definition of the innovation error ek = yk − ŷk. For brevity, we also define the

error ẽk ≜ ỹk − ŷk between the online prediction of Algorithm 2 and the Kalman Filter

prediction. Adding and subtracting ŷk in the first term:

RN =
N∑

k=Tinit

∥ek + ŷk − ỹk∥22 − ∥ek∥22

=
N∑

k=Tinit

∥ŷk − ỹk∥22︸ ︷︷ ︸
LN

+2
N∑

k=Tinit

e∗k (ŷk − ỹk)︸ ︷︷ ︸
martingale term
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It is sufficient to prove that the square loss ℓ2:

LN ≜
N∑

k=Tinit

∥ŷk − ỹk∥22 (5.13)

is logarithmic in N . Because the innovations are i.i.d., we have a martingale structure for

the second term since ek ∈ Fk, while ẽk ∈ Fk−1. The martingale term is small and can be

bounded in terms of the square loss LN . In particular, the quantity

(LN + 1)−1/2
N∑

k=Tinit

e∗k (ŷk − ỹk)

is a self-normalized martingale. In Chapter 3, we analyzed self-normalized martingales using

tools developed in Abbasi-Yadkori et al. (2011), Sarkar & Rakhlin (2018). In particular,

we utilized Theorem 3.3, which extends Theorem 1 in Abbasi-Yadkori et al. (2011) and

Proposition 8.2 in Sarkar & Rakhlin (2018). We repeat the statement of Theorem 3.3 below

for convenience.

Theorem 5.3 (Self-normalized martingales Theorem 3.3). Let {Ft}∞t=0 be a filtration. Let

ηt ∈ Rm, t ≥ 0 be Ft-measurable, independent of Ft−1. Suppose also that ηt ∼ N (0, I) is

isotropic Gaussian. Let Xt ∈ Rd, t ≥ 0 be Ft−1−measurable. Assume that V is a d × d

positive definite matrix. For any t ≥ 0, define:

V̄t = V +
t∑

s=1

XsX
∗
s , St =

t∑
s=1

XsH
∗
s

H∗
s =

[
η∗s . . . η∗s+r−1

]
∈ Rrm,

for some integer r. Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0

∥∥∥V̄ −1/2
t St

∥∥∥2
2
≤ 8r

(
log

r5m

δ
+ log det V̄tV

−1

)
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An application of the above theorem implies that

N∑
k=Tinit

e∗k (ŷk − ỹk) = Õ(
√
LN ),

with high probability. Hence, we focus on bounding LN .

For the remaining section, we will assume that we are within one epoch i so that the

past horizon p = pi and T = 2i−1Tinit are kept constant. For brevity, we omit the subscript

p from all variables and write G, G̃k, Zk instead of Gp, G̃k,p, Zk,p.

Define Sk−1 ≜
∑k−1

i=p eiZ
∗
i and V̄k−1 ≜ λI +

∑k−1
i=p ZiZ

∗
i . Then, the error between our

online prediction and the Kalman filter prediction can be written as:

ẽk = (G̃k−1 −G)Zk − C(A−KC)px̂k−p

= Sk−1V̄
−1
k−1Zk︸ ︷︷ ︸

regression

+ λGV̄ −1
k−1Zk︸ ︷︷ ︸

regularization

(5.14)

+ C(A−KC)p

(
k−1∑
i=T

x̂i−pZ
∗
i V̄

−1
k−1Zk − x̂k−p

)
︸ ︷︷ ︸

truncation bias

.

The regression term is due to the noise ek perturbing the system. The truncation bias is

due to using only p past observations and not all of them. The key ingredients to analyze

the cumulative error LN are i) the stability properties of the closed-loop matrix A −KC;

ii) self-normalization properties of predictor (5.8); and iii) persistency of excitation for the

past observations with high probability. By persistency of excitation we mean that the least

singular value of the Gram matrix V̄k is increasing as fast as O(k) with high probability.

Regression term. We can rewrite the regression term as a product of two separate

terms:

Sk−1V̄
−1
k−1Zk = (Sk−1V̄

−1/2
k−1 )(V̄

−1/2
k−1 Zk).

The first term, Sk−1V̄
−1/2
k−1 is a self-normalized martingale and can be bounded based on The-

orem 5.3 and Lemma 5.28. Thus, the term ∥Sk−1V̄
−1/2
k−1 ∥2, grows at most logarithmically
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with k. The martingale property comes from the fact that the innovation process ek of the

Kalman Filter is i.i.d.–see Chapter 2.

The second term, V̄
−1/2
k−1 Zk, is almost self-normalized since V̄k−1 is the Gram matrix of

Zk−1, . . . , Zp. It could be bounded using the following lemma which is inspired by Lai &

Wei (1982).

Lemma 5.1. Let V̄k−1 = λI +
∑k−1

i=p ZiZ
∗
i . Then:

2T∑
k=T+1

Zk−1V̄
−1
k−1Zk−1 ≤ log det(V̄2T−1V̄

−1
T−1)

The intuition is that Zk−1Z
∗
k−1 appears in V̄k−1 and, hence, it cancels out the effect of

Zk−1. Unfortunately, we cannot directly use the above inequality for V̄
−1/2
k−1 Zk since ZkZ

∗
k is

not explicitly contained in V̄k−1. However, we can exploit the fact that Zk does not change

too fast compared to the most recent past Zk−1, . . . , Zk−n.

Lemma 5.2 (ARMA-like representation). Let y0, y1 . . . be observations generated by sys-

tem (5.1). Fix a past horizon p and let a be the minimal polynomial of A with degree d.

Then, the past observations satisfy the following recursion

Zk = ad−1Zk−1 + · · ·+ a0Zk−d + δk, (5.15)

where δk ∈ Fk−1 with

∥δk∥2 ≤ ∆ sup
i≤k−1

∥ei∥2 , (5.16)

and ∆ = O(dκ−1 ∥a∥1
√
p)

The proof is in Section 5.7.2. Intuitively, the unbounded components of Zk are cap-

tured by the recent history Zk−1, . . . , Zk−d and the residual δk is bounded. Replacing Zk

with (5.15) we obtain by two Cauchy-Schwarz inequality applications:

∥V̄ −1/2
k−1 Zk∥22 ≤ 2 ∥a∥22

d−1∑
i=0

∥V̄ −1/2
k−1 Zk−d+i∥22 + 2∥V̄ −1/2

k−1 δk∥22.
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The terms V̄
−1/2
k−1 Zk−d+i in the sum are now indeed normalized and can be bounded using

Lemma 5.1. For V̄
−1/2
k−1 δk we exploit a new persistency of excitation result.

Lemma 5.3 (Uniform Persistency of Excitation). Consider the conditions of Theorem 5.1.

Select a failure probability δ > 0. Let T = 2i−1Tinit for some fixed epoch i with p = β log T

the corresponding past horizon. There exists a N0 = poly(n, β, log 1/δ) such that if T ≥ N0,

then with probability at least 1− δ:

k∑
j=p

ZjZ
∗
j ⪰ k

4
σRI, (5.17)

uniformly for all T ≤ k ≤ 2T − 1, where σR = σmin(R).

The above persistency of excitation condition holds uniformly over all times k as long

as k ≥ N0. This is why the burn-in time N0 appears in Theorem 5.1; if k is very small,

then matrix
∑k

j=p ZjZ
∗
j might not be invertible.

Regularization and Truncation terms. For the regularization term we follow the

same steps as with the regression one. Since matrix A−KC is stable, the truncation term

decreases exponentially fast with p. System quantity κ governs how fast the observations

grow polynomially. Parameter β should be large enough to cancel out this polynomial rate.

This explains why κ affects the choice of β in (5.9).

Stable Systems. If ρ(A) < 1, then we can exploit the fact that Zk converges ex-

ponentially fast to a stationary distribution. Hence the term V̄
−1/2
k−1 Zk will effectively be

self-normalized, without the need to express Zk as a function of the past observations. In

particular, for stable systems we prove a new and stronger persistency of excitation result.

Similar to the definition of the state covariance, we define the past outputs’ covariance

ΓZ,k ≜ EZkZ
∗
k . We have the following.

Lemma 5.4 (Uniform Persistency of Excitation: Stable case). Consider the conditions of

Theorem 5.2. Select a failure probability δ > 0. Let T = 2i−1Tinit for some fixed epoch i

with p = β log T the corresponding past horizon. There exists a N s
0 = poly(n, β, τmix, log 1/δ)
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such that if T ≥ N s
0, with probability at least 1− δ:

k−1∑
j=p

ZjZ
∗
j ⪰ k

8
ΓZ,∞, (5.18)

uniformly for all T ≤ k ≤ 2T − 1.

Hence, the term V̄
−1/2
k−1 Zk can be bounded by:

∥∥∥V̄ −1/2
k−1 Zk

∥∥∥
2
≤ O

(
1√
k

)∥∥∥Γ−1/2
Z,k Zk

∥∥∥
2

where now the normalized term Γ
−1/2
Z,k Zk behaves like a standard isotropic Gaussian variable.

5.4.2 Numerical example

For a sanity check, we perform simulations of our algorithm for a simple example. Let

A =


0.9 1 0

0 1 1

0 0 1

 , C =

[
1 0 0

]
, Q = I, R = 1.

The system is non-explosive with κ = 2. We select Tinit = 20, β = 2, λ = 1, N = 500. We

ignore the errors for the initial epoch until Tinit. We perform 1000 Monte Carlo simulations.

For every Monte Carlo simulation, we compute the regret trajectory Rk, k ≤ N . In Fig. 5.1,

show the mean, and the empirical 80% and 90% percentiles of the regret trajectories Rk,

k ≤ N . The simulations show that the regret is indeed logarithmic with high probability.

5.5 Discussion and Extensions

In this section, we discuss implications and generalizations of Algorithm 2 and the regret

analysis.
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Figure 5.1: The 80% and 90% empirical percentiles for the regret trajectories Rk, k ≤ N , for
N = 500. We run 1000 Monte Carlo simulation in total. The regret is indeed logarithmic with the
number of samples.

Comparison with online LQR Our bounds show that the problem of learning the

Kalman filter online is provably easier than the online LQR, in the case of unknown systems.

The latter requires in general regret of the order of Ω(
√
N) Simchowitz & Foster (2020);

Ziemann & Sandberg (2020). This is another reason why the problems are not dual in the

unknown model case Tsiamis et al. (2020). This gap might be expected since in the case of

control, there is a need for exogenous exploratory signals, which increase the LQR control

cost.

Parameter estimation Our regret analysis relied on proving persistency excitation in

finite time of the past outputs. A byproduct of this result is that we can also obtain

parameter estimation gurantees for the system responses C(A−KC)iK. In fact, following a

similar approach as in Sarkar & Rakhlin (2018); Tsiamis & Pappas (2019), we can show that

the estimation error ∥G̃k,p −Gp∥2 will decay with a rate of Õ(1/
√
k) with high probability.

This follows from the fact that if we ignore all other error components:

G̃k,p −Gp ≈ Sk−1V̄
−1
k−1 = (Sk−1V̄

−1/2
k−1 )V̄

−1/2
k−1 ,

where we used the notation of the previous section. We already showed previously that the

first term is a self-normalized matringale and can grow at most logarithmically. Meanwhile,
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the second term is decaying as fast as O(1/
√
k) thanks to persistency of excitation. Based on

the estimate of the responses we can obtain an estimate of the state space matrices Ã, C̃, K̃

(up to a similarity transformation) using any realization algorithm, e.g. the Ho-Kalman

algorithm Oymak & Ozay (2018).

f-steps ahead predictor An immediate generalization of Algorithm 2 is to consider the

f−steps ahead predictor, where f is some future horizon. Instead of predicting only the

next observation, we predict the sequence yk, . . . , yk+f−1. Denote the future observations

and noises by:

Yk =

[
y∗k · · · y∗k+f−1

]∗
E+

k =

[
e∗k · · · e∗k+f−1

]∗
.

Similar to (5.4), we can establish a regression:

Yk = OfKpZk +Of (A−KC)px̂k−p + TfE+
k

where Kp ≜

[
(A−KC)p−1K · · · K

]
, and Tf is a lower triangular block Toeplitz ma-

trix generated by I, CK, . . . , CAf−2K. The optimal Kalman filter predictor is:

Ŷk = OfKpZk +Of (A−KC)px̂k−p

Hence, the regret can be defined as in (5.3), with the lowercase y replaced with uppercase

Y . The online predictor (5.8) can be adapted here:

Ỹk = G̃k,f,pZk,

where G̃k,f,p is obtained similar to (5.7) by regressing future observations Yt to past obser-

vations Zt from time p up to k − f . The logarithmic regret guarantees of Õ(1) also hold

with the final bound depending polynomially on f and ∥Tf∥2.
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State prediction If we have some knowledge about the state, e.g. the state space basis

and the state space dimension n, then we can use the f−step ahead predictor to predict

the hidden state x̂k. Notice that the Kalman filter state prediction x̂k can be rewritten as:

x̂k = KpZk + (A−KC)px̂k−p = O†
f Ŷk

If we know Of and the future horizon is large enough f ≥ n we can compute the state

prediction:

x̃k = O†
f Ỹk,

where Ỹk is our f−step ahead prediction and † denotes the pseudo-inverse. In this case the

regret:

Rx,N ≜
N∑
k=1

∥xk − x̃k∥2 −
N∑
k=1

∥xk − x̂k∥2 (5.19)

will enjoy the same logarithmic guarantees. Hence, our algorithm can be used to solve the

adaptive Kalman filter problem posed in Mehra (1970); Anderson & Moore (2005), where

the dynamics A,C are known but the noise statistics Q,R are unknown, with logarithmic

regret.

Closed-loop prediction We can apply the same algorithm to closed-loop control sys-

tems Lee & Lamperski (2020):

x̂k+1 = Ax̂k +Buk +Kek

yk = Cx̂k + ek

sk+1 = Acsk +Bcyk + ηk

uk = Ccsk +Dcyk + ζk,

where sk is the internal state of the feedback controller. Extend the vector of past outputs

Zcl
k,p to also include all past internal states sk−1, . . . , sk−p and all inputs ζk−1, . . . , ζk−p. Then

similar to (5.6) we have an approximate linear relation:

yk = Gcl
p Z

cl
k,p + ek + C(A−KC)px̂k−p,
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for some appropriate matrix of closed-loop responses Gcl
p . The online predictor will be of

the form:

ỹk = G̃cl
k,pZ

cl
k,p,

where G̃cl
k,p is obtained by regressing observations to past observations and past controller

states. If the control law is internally stable, then we can apply Theorem 5.2 to obtain

logarithmic regret guarantees.

5.6 Conclusion and Future Work

We provided the first logarithmic regret upper bounds for learning the classical Kalman

filter of an unknown system with unknown stochastic noise. Our regret analysis holds for

non-explosive systems and our bounds do not degrade with the system stability gap. Going

forward, our work opens up several research directions. Our current bounds are mainly

qualitative and data-independent, focusing on how various system theoretic properties affect

learning. It is an open problem to develop sharper data-dependent bounds that are more

suitable for control applications, possibly at the cost of losing some interpretability. Another

interesting direction is to study how the learning performance is affected by system theoretic

properties, such as the exponential quantity dκ in the case of systems with long chain

structure, e.g. κ-order integrators. Analyzing the regret of other online algorithms, e.g.

extended least squares, is also an open problem. Another challenging problem for both

prediction and system identification is the case of explosive systems. Although in the fully

observed case, this problem has been studied Faradonbeh et al. (2018a); Sarkar & Rakhlin

(2018), it remains open in the case of partially observable systems.
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Table 5.1: Notation table for fixed past horizon p

Zt ≜
[
y∗t−p · · · y∗t−1

]∗
Past outputs at time t

Et ≜
[
e∗t−p · · · e∗t−1

]∗
Past noises at time t

Z̄k ≜
[
Zp · · · Zk

]
Batch past outputs up to time k

Ēk ≜
[
Ep · · · Ek

]
Batch past noises up to time k

X̄k ≜
[
x̂0 · · · x̂k−p

]
Batch past states up to time k

Sk ≜
∑k

t=p etZ
∗
t Correlation of current noise with past outputs

Vk ≜ Z̄kZ̄
∗
k =

∑k
t=p ZtZ

∗
t Gram matrix of past outputs

V̄k ≜ λI + Vk Regularized Gram matrix of past outputs

R̄ ≜ Eeke∗k Covariance of innovations

Tk ≜ Toep
(
I, CK, . . . , CAk−2K

)
Toeplitz matrix of responses CAtK (5.23)

ΣE ≜ ETpEtE
∗
t T

∗
p Covariance of weighted past noises

σR ≜ σmin(R) Smallest singular value of R

Γt ≜ Ex̂tx̂
∗
t Covariance of Kalman filter state prediction

ΓZ,t ≜ EZtZ
∗
t Covariance of past outputs

G ≜
[
C(A−KC)p−1K . . . CK

]
Kalman filter responses

5.7 Regret analysis for non-explosive systems

5.7.1 Notation and organization

Structure In Sections 5.7.2, 5.7.3 we review fundamental results from system theory and

statistics. These provide the main tools for proving Theorems 5.1, 5.2. In Section 5.7.4,

we provide finite sample complexity bounds and persistency of excitation (PE) results for

a fixed time k and fixed past horizon p. In Section 5.7.5, we generalize those results from

pointwise to uniform over all times k in one epoch. In Section 5.7.6 we prove Lemma 5.1.

By combining the uniform bounds and Lemma 5.1, we prove in Section 5.7.7 that the

square loss suffered within one epoch is logarithmic with respect the length of the epoch.

Hence, we can now prove Theorem 5.1–see Section 5.7.8. In Section 5.8, we analyze the

case of stable systems and prove Theorem 5.2. Section 5.9 includes some technical results

about logarithmic inequalities, which are used to show that the burn-in time N0 depends

polynomially on the various system parameters.

Notation A summary of the notation can be found in Table 5.1. We will analyze the
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performance of Algorithm 2 based mainly on a fixed epoch i. Since the past horizon p is

kept constant during an epoch, we drop the index p from Zk,p, Gp, G̃k,p, V̄k,p and write Zk,

G, G̃k, V̄k instead. Similar to the past outputs Zk, we also define the past noises:

Ek ≜

[
e∗t−p · · · e∗t−1

]∗
(5.20)

The batch past outputs, batch past noises, and batch past Kalman filter states are defined

as:

Z̄k ≜

[
Zp · · · Zk

]
, Ēk ≜

[
Ep · · · Ek

]
,

X̄k ≜

[
x̂0 · · · x̂k−p

] (5.21)

Recall the definition of the correlations between the current innovation and the past

outputs Sk ≜
∑k

t=p etZ
∗
t and the regularized autocorrelations of past outputs V̄k ≜ λI +

Z̄kZ̄
∗
k . The innovation sequence ek is i.i.d. zero mean Gaussian. Its covariance has a

closed-form expression and is defined as:

R̄ ≜ Eeke∗k = CPC∗ +R, (5.22)

where P is the solution to the Riccati equation (2.3). Next we define the Toeplitz matrix

Tk, for some k ≥ 1:

Tk ≜



Im 0 0

CK Im · · · 0

...
...

...

CAk−2K CAk−3K · · · Im


. (5.23)

The past outputs can be written as:

Zt = Opx̂t−p + TpEt (5.24)

104



The covariance of TpEt is denoted by:

ΣE ≜ ETpEtE
∗
t T ∗

p = Tp diag(R̄, . . . , R̄)T ∗
p . (5.25)

We define the covariance of the state predictions:

Γk ≜ Ex̂kx̂∗k (5.26)

and the covariance of the past outputs:

ΓZ,k ≜ EZkZ
∗
k = OpΓk−pO∗

p +ΣE . (5.27)

5.7.2 System Theoretic Bounds

Bounds for system and covariance matrices

Lemma 5.5. Consider matrix A with Jordan form SJS−1. Let κ be the largest Jordan

block of A. Then: ∥∥Ai
∥∥
2
≤ M2ρ(A)i−κ+1

(
ei

κ− 1

)κ−1

. (5.28)

As a result the following bounds hold:

∥∥At
∥∥
2
≤ M2O

(
tκ−1

)
, ∥Ot∥2 ≤ M3O (tκ) ,

∥Tt∥2 ≤ M3O (tκ) , ∥Γt∥2 ≤ M7O
(
t2κ−1

)
.

Proof. Recall the Jordan form of A = SJS−1. For simplicity, assume that J is equal to a
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n× n Jordan block with eigenvalue λ = ρ(A). Then we have that:

J i =



λi
(
i
1

)
λi−1 . . .

(
i

n−2

)
λi−n+2

(
i

n−1

)
λi−n+1

0 λi . . .
(

i
n−3

)
λi−n+3

(
i

n−2

)
λi−n+2

. . .

0 0 . . . λi
(
i
1

)
λi−1

0 0 . . . 0 λi


By Lemma 3.7 and Assumption 5.2, we obtain:

∥∥Ai
∥∥
2
≤ M2λi−n+1

n−1∑
k=0

(
i

k

)
≤ M2λi−n+1

(
ei

n− 1

)n−1

where the second inequality is standard (Vershynin, 2018, Exercise 0.0.5). This completes

the proof of (5.28). The proof for the other cases is similar since the Jordan matrix is block

diagonal.

The bounds on Ot, Tt,Γt follow from (5.28).

Lemma 5.6 (Monotonicity Tsiamis & Pappas (2019)). Consider system (5.2), with Γk ≜

Ex̂kx̂∗k. The sequence Γk is increasing in the positive semi-definite cone.

Lemma 5.7 (Mixing time). Consider system (5.2), with Γk ≜ Ex̂kx̂∗k. Assume that the

system is stable with ρ(A) < 1. Then, the sequence Γk converges to Γ∞ ≻ 0, the unique

positive definite solution of the Lyapunov equation:

Γ∞ = AΓ∞A∗ +KR̄K∗.

Let the mixing time τmix be defined as in (5.11). Then:

τmix ≤ 1

log 1/ρ(A)
Õ(max {log cond(Γ∞), κmax}),

with cond(Γ∞) = σmax(Γ∞)
σmin(Γ∞) .
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Proof. SinceA is stable, Γ∞ =
∑∞

k=0A
kKR̄K∗(A∗)k is well defined and solves the Lyapunov

equation. Since (A,K) is controllable Γ∞ is strictly positive definite: Γ∞ ⪰ KnK∗
n ≻ 0,

where the following controllability matrix has full rank

Kn ≜

[
KR1/2 AKR1/2 . . . An−1KR1/2

]
.

It is unique since the operator L(M) = M−AMA∗ is invertible; its eigenvalues are bounded

below by 1− ρ2(A).

Notice that Γ0 = 0 ⪯ Γ∞ and by induction, we can show that Γk ⪯ Γ∞. Since Γk is

also monotone, it converges to the unique Γ∞. Now after some algebra we obtain

Γk − Γ∞ = −AkΓ∞(A∗)k.

It is sufficient to find a τmix such that:

∥Aτmix∥2 σmax(Γ∞) ≤ σmin(Γ∞)

2

Since the norm of matrix A grows as fast as ∥Aτmix∥2 = O(ρ(A)τmix−κ+1τκ), it is sufficient

to pick:

τmix ≥ κ log τmix

log 1
ρ(A)

+
log cond(Γ∞)/2

log 1
ρ(A)

+ κ− 1.

By Lemma 5.17, the order of τmix is

τmix =
1

log 1/ρ(A)
Õ(max {log cond(Γ∞), κ})

Proof of Lemma 5.2

For the plain observations yk:

yk−t = CAd−tx̂k−d +
d∑

s=t+1

CAs−t−1Kek−s + ek−t,
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for t = 0, . . . , d. By the definition of the minimal polynomial:

CAdx̂k = ad−1CAd−1x̂k−1 + · · ·+ a0Cx̂k−d

which leads to:

yk = ad−1yk−1 + · · ·+ a0yk−d +
d∑

s=0

Lsek−s,

with L0 = I and

Ls = −ad−sIm −
s−1∑
t=1

ad−s+tCAt−1K + CAs−1K

The norm of the above matrices is upper bounded by

∥Ls∥2 ≤ ∥a∥1 ∥C∥2 ∥K∥2 max
0≤i≤d

∥∥Ai−1
∥∥
2
, (5.29)

where ∥a∥1 denotes the ℓ1 norm of the polynomial coefficients. The same will now hold for

the past outputs:

Zk = ad−1Zk−1 + · · ·+ a0Zk−p +
d∑

s=0

diag(Ls, . . . , Ls)Ek−s

where Ek is the vector of past noises. We can bound the residual

δk ≜
d∑

s=0

diag(Ls, . . . , Ls)Ek−s

by:

∥δk∥2 ≤ ∆ ∥es∥2 , where

∆ ≜ (d+ 1) max
0≤s≤d

∥Ls∥2
√
p. (5.30)

From (5.29), (5.28) it follows that ∆ = O(dκ−1 ∥a∥1
√
p). □
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5.7.3 Statistical Toolbox

Least singular value of Toeplitz matrix

Let ut ∈ Rm, t = 0, . . . be an i.i.d. sequence, where uk ∼ N (0, I) are isotropic Gaussians.

The following result, which is adapted from Lee (2020), shows that the Toeplitz matrix of

ut is well conditioned with high probability. Similar results appeared in Sarkar et al. (2019);

Oymak & Ozay (2018).

Lemma 5.8 (Toeplitz Isometry Lee (2020)). Let ut ∈ Rm, t = 0, . . . , be an i.i.d. sequence

of Gaussian variables with unit covariance matrix. Consider the Toeplitz matrix

U =



uk−p uk−p−1 . . . u0

uk−p+1 uk−p . . . u1
...

uk−1 uk−2 . . . up−1


.

Fix a failure probability 0 < δ < 1/2. There exists a universal constant C such that if

k ≥ Cpm log(pm/δ),

then with probability at least 1− δ:

1
2kI ⪯ UU∗ ⪯ 3

2kI. (5.31)

Proof. Define Ū =

[
U U0

]
, where

U0 =



0 0 . . . 0 0

u0 0 . . . 0 0

...

up−2 up−3 . . . u0 0


.
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Notice that we have:

∥UU∗ − kI∥2 ≤ ∥Ū Ū∗ − kI∥2 + ∥U0U
∗
0 ∥2

By (Lee, 2020, Theorem A.2) it follows that with prob. at least 1− δ/2:

∥∥Ū Ū∗ − kI
∥∥
2
≤ C ′(pm log(k/δ) +

√
kpm log(k/δ)),

for some universal constant C ′. To bound U0U
∗
0 , we follow the same steps as in the proof

of (Lee, 2020, Theorem A.2) (see bounds on U2U
∗
2 there). With probability at least 1−δ/2:

∥U0U
∗
0 ∥2 ≤ C ′′pm log(pm/δ),

for some other universal constant C ′′. By a union bound and if we select

k ≥ Cpm log(pm/δ),

with C large enough, we get that with probability at least 1− δ:

∥UU∗ − kI∥2 ≤ k/2.

The condition on k makes use of Lemma 5.17.

Gaussian suprema

Lemma 5.9. Consider vt ∈ Rd ∼ N (0, I) i.i.d., for t = 1, . . . , k. Let Xk ∈ Rq be a linear

combination:

Xk ≜
k∑

t=1

Mk,tvt, for k = 1, . . . , T

where Mt,k ∈ Rq×d. For some µ > 0 define:

Σk ≜ µI + EXkX
∗
k
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Fix a failure probability δ > 0. With probability at least 1− δ:

sup
k=1,...,T

∥Σ−1/2
k Xk∥2 ≤

√
q +

√
2 log

T

δ
(5.32)

If EXkX
∗
k , k ≤ T are invertible, the result holds for µ = 0.

Proof. Fix a k. An application of Jensen’s inequality gives:

E∥Σ−1/2
k Xk∥2 ≤

√
EX∗

kΣ
−1
k Xk =

√
tr Σ−1

k EXkX
∗
k ≤ √

q

Observe that we have EXkX
∗
k =

∑k
t=1MtM

∗
t . As a result,

∥∥∥∥Σ−1/2
k

[
M1 · · · Mk

]∥∥∥∥
2

≤ 1

since by definition Σk ⪰ EXkX
∗
k . Hence, the function ∥Σ−1/2

k Xk∥2 is 1−Lipschitz with

respect to vt,i, for t = 1, . . . , k, i = 1, . . . , d. By concentration of Lipschitz functions of

independent Gaussian variables (Boucheron et al., 2013, Theorem 5.6):

P (∥Σ−1/2
k Xk∥2 >

√
q + t) ≤ e−t2/2

Now select t =
√
2 log T

δ and take a union bound over k.

5.7.4 Finite sample bounds for fixed-time, fixed-past

In this subsection, we include results for persistence of excitation and for identification of

the system parameters for a fixed time instance k and a fixed past horizon p.

Theorem 5.4 (Finite-sample bounds for identification). Consider system (5.2) with ob-

servations y0, . . . , yk. Fix a past horizon p and recall the notation of Table 5.1 and the

111



universal constant C in Lemma 5.8. Define

k1(p, δ) ≜ Cpm log(pm/δ) (5.33)

k2(k, p, δ) ≜
512pn

min {4, σR}
log

(
5p

δ

n ∥Op∥22 ∥Γk−p∥2 + δ

δ

)

With probability at least 1− 5δ the following events hold:

a) Persistency of excitation

EPE ≜


TpĒkĒ

∗
kT ∗

p ⪰ k

2
ΣE ⪰ k

2
σRI,

Z̄kZ̄
∗
k ⪰ 1

2
OpX̄kX̄

∗
kO∗

p +
1

2
TpĒkĒ

∗
kT ∗

p ,

 (5.34)

if k satisfies the following perstistency of excitation requirement

k ≥ k3(k, p, δ) ≜ max {k1(p, δ), k2(k, p, δ)} . (5.35)

b) Bounded outputs

EZ̄ ≜
{
Z̄kZ̄

∗
k ⪯ k

mp

δ
ΓZ,k

}
(5.36)

c) Bounded correlations

Ecross ≜
{
∥SkV̄

−1/2
k ∥22 ≤ ε (k, p, δ)

}
, where (5.37)

ε (k, p, δ) ≜ 16∥R̄∥mp log
5mpk

(
∥ΓZ,k∥2λ−1 + 1

)
δ

(5.38)

Proof. Let W̄t, V̄t be the Gram matrices:

W̄k ≜ X̄kX̄
∗
k +W, W ≜

k

∥Op∥22
I (5.39)

V̄k ≜ Z̄kZ̄
∗
k + V, V ≜ λI. (5.40)
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Define the base events:

EX̄≜
{
X̄kX̄

∗
k⪯k

n

δ
Γk−p

}
, EE≜

{
TpĒkĒ

∗
kT ∗

p ⪰
k

2
ΣE

}
EXE≜

{∥∥∥W̄−1/2
k X̄kĒ

∗
kT ∗

p Σ
−1/2
E

∥∥∥2
2
≤8plog

p5mdet(W̄kW
−1)

δ

}
,

EEZ≜

{∥∥∥R̄−1/2SkV̄
−1/2
k

∥∥∥2
2
≤8log

5mdet(V̄kV
−1)

δ

}

We will show that EZ̄ and all of the base events occur with probability at least 1 − δ

each. Moreover

EPE ∩ Ecross ⊇ EX̄ ∩ EZ̄ ∩ EE ∩ EXE ∩ EZE .

Hence, by a union bound: P(EPE ∩ EZ̄ ∩ Ecross) ≥ 1− 5δ.

a) Base events: The fact that P (EX̄) ≥ 1−δ, P (EZ̄) ≥ 1−δ follows by a Markov inequality

argument–see (Simchowitz et al., 2018, Section 3). The fact that P(EE) ≥ 1−δ follows from

Lemma 5.10. For each of the remaining events, we apply Theorem 3.3; note that R̄−1/2ek

and Σ
−1/2
E TpEk are isotropic.

b) Event EPE: From Lemma 5.11 below, we have that EPE ⊇ EX̄ ∩ EE ∩ EXE if k satis-

fies (5.35).

c) Event Ecross: We show that Ecross ⊇ EZ̄ ∩ EZE. Conditioned on EZ̄ ∩ EZE, we have

∥SkV
−1/2
k ∥22 ≤ 8

∥∥R̄∥∥
2

(
log

5m

δ
+ log det V̄kV

−1

)
≤ 8

∥∥R̄∥∥
2

(
log

5m

δ
+mp log

(
k
mp

δ
∥ΓZ,k∥2λ−1 + 1

))
,

where the second inequality follows from | detL| ≤ ∥L∥mp
2 for any matrix L ∈ Rmp×mp. The

final bound is simplified using δ
mpk < 1 and log 5m

δ ≤ mp log 5mp
δ .

Next, we prove the persistency of excitation results that are required in the proof of the

above theorem.

Lemma 5.10 (Noise PE). Consider the conditions of Theorem 5.4 and the definition of
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k1(p, δ). If

k ≥ k1(p, δ) (5.41)

then with probability at least 1− δ

k

2
σRI ⪯ k

2
ΣE ⪯ TpĒkĒ

∗
kT ∗

p ⪯ 3k

2
ΣE .

Proof. Matrices Uk ≜ Σ
−1/2
E TpEk satisfy the conditions of Lemma 5.8. Hence, under (5.41),

with probability at least 1− δ:

k

2
I ⪯

k∑
t=p

UtU
∗
t ⪯ 3k

2
I.

Multiplying from both sides with Σ
1/2
E gives

k

2
ΣE ⪯ TpĒkĒ

∗
kT ∗

p ⪯ 3k

2
ΣE

Finally, from (Tsiamis & Pappas, 2019, Lemma 2), we have ΣE ⪰ σRI.

Next, we prove persistency of excitation for the past outputs.

Lemma 5.11 (Output PE). Consider the conditions of Theorem 5.4 and the definition of

k2(k, p, δ), EE, EX̄ , EXE. If:

k ≥ k2(k, p, δ) (5.42)

then the following output PE condition holds:

{
Z̄kZ̄

∗
k ⪰ 1

2
OpX̄kX̄

∗
kOp +

1

2
TpĒkĒkTp

}
⊇ EE ∩ EX̄ ∩ EXE

Proof. The batch past outputs can be written as:

Z̄k = OpX̄k + TpĒk.
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As a result, the sample-covariance matrix Z̄kZ̄
∗
k will be:

OpX̄kX̄
∗
kO∗

p + TpĒkĒ
∗
kT ∗

p +OpX̄kĒ
∗
kT ∗

p + TpĒkX̄
∗
kO∗

p

The proof proceeds in two steps. First, we bound the cross-terms based on the events

EX̄ , EXE . Second, we show that if k is large enough, then the cross-terms are dominated by

the auto-correlation terms:

OpX̄kĒ
∗
kT ∗

p +TpĒkX̄
∗
kO∗

p⪯
1

2

(
OpX̄kX̄

∗
kO∗

p+TpĒkĒ
∗
kT ∗

p

)
.

Cross-term bounds: For simplicity, we rewrite Σ
−1/2
E TpĒk = Ūk, where Ūk is defined

similarly to Ēk but has unit variance components. Conditioned on EX̄

log det W̄kW
−1 ≤ n log

(
n ∥Op∥22 ∥Γk−p∥2

δ
+ 1

)
,

where we used the property | detL| ≤ ∥L∥n2 , for any matrix L ∈ Rn. Conditioned also on

EXE : ∥∥∥W̄−1/2
k X̄kŪ

∗
k

∥∥∥2
2
≤ C2

XE

where we define

CXE ≜

√√√√8p

(
log

p5m

δ
+ n log

(
n ∥Op∥22 ∥Γk−p∥2

δ
+ 1

))
.

Let now u ∈ Rmp, ∥u∥2 = 1 be an arbitrary unit vector. Then, consider the quadratic

form

q(u) ≜
1

k

(
u∗OpX̄kŪ

∗
kΣ

1/2
E u+ u∗Σ

1/2
E ŪkX̄

∗
kO∗

pu
)
.

Conditioned on

{∥∥∥W̄−1/2
k X̄kŪ

∗
k

∥∥∥2
2
≤ CXE

}
∩EE ∩EX and using I = W̄kW̄

−1
k we can bound
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the quadratic form by:

|q(u)| ≤ 2

k

∥∥∥u∗OpW̄
1/2
k

∥∥∥
2

∥∥∥W̄−1/2
k X̄kŪ

∗
k

∥∥∥
2

∥∥∥Σ1/2
E u

∥∥∥
2

≤ 2

√
1

k
u∗OpX̄kX̄

∗
kO∗

pu+ 1
CXE√

k

∥∥∥Σ1/2
E u

∥∥∥
2

Cross-terms are dominated: Define variables:

a ≜
1

k
u∗OpX̄kX̄

∗
kO∗

pu, b ≜ u∗ΣEu

To complete the proof, it is sufficient to show that for any unit vector u if (5.42) holds then:

2
√
a+ 1

CXE√
k

√
b ≤ 1

2

(
a+

1

k
u∗Σ

1/2
E ŪkŪ

∗
kΣ

1/2
E u

)
.

But on EE we have Σ
1/2
E ŪkŪ

∗
kΣ

1/2
E ⪰ k/2ΣE . Thus, it is sufficient to show

2
√
a+ 1

CXE√
k

√
b ≤ a

2
+

b

4
.

To guarantee the inequality, we apply the following Lemma 5.12, where we exploit the fact

that b ≥ σmin (ΣE) ≥ σR. It follows that it is sufficient to have:

CXE/
√
k ≤ min {2,√σR} /8

To obtain the final expression for k2(k, p, δ) we use the simplification 8p log(p5m/δ) ≤

8pn log(5p/δ), since m ≤ n.

Lemma 5.12. Let a ≥ 0 and b ≥ σR > 0. Then if

γ ≤ min
{
2,
√
σR
}

8

then f(a, b) ≜ a
2 + b

4 − 2
√
a+ 1

√
bγ ≥ 0.
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Proof. By minimizing over a, we obtain:

min
0≤a

f(a, b) =
b/4− 2

√
bγ, if 2γ

√
b ≤ 1

b
(
1/4− 2γ2

)
− 1/2, if 2γ

√
b > 1

 .

If 2γ
√
b ≤ 1 then we have

min
0≤a,σR≤b

f(a, b) =
b

4
− 2

√
bγ ≥ b−√

bσR
4

≥ 0.

Since γ ≤ 1/4, the case 2γ
√
b > 1 can occur only if b > 4. But then, for b > 4

b

(
1

4
− 2γ2

)
− 1

2
≥ b

(
1

4
− 1

8

)
− 1

2
=

b− 4

8
≥ 0

5.7.5 Proof of Lemma 5.3

We prove a more general result.

Lemma 5.13 (Uniform bounds). Consider the conditions of Theorem 5.1. Select a fail-

ure probability δ > 0. Let T = 2i−1Tinit for some fixed epoch i with p = β log T the

corresponding past horizon. Consider the definition of ε(k, p, δ) in (5.38). There exists a

N0 = poly(n, β, log 1/δ, 1/σR) such that with probability at least 1−5
∑2T−1

k=T
1
k2
δ the follow-

ing events hold:

Eunif ≜
2T−1⋃
k=T


Z̄kZ̄

∗
k ⪯ k3mp

δ
ΓZ,k∥∥∥SkV̄

−1/2
k

∥∥∥
2
≤ ε(k, p, δ/k2)

 (5.43)

EPE
unif ≜

2T−1⋃
k=max{N0,T}

{
Z̄kZ̄

∗
k ⪰ k

4
σRI

}
(5.44)

Proof. Recall k3(k, p, δ) defined in (5.35) and let:

N0 ≜ min
{
t : k ≥ k3(k, p, δ/k

2), for all k ≥ t
}
. (5.45)
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Now, fix a k such that T ≤ k ≤ 2T − 1 apply Theorem 5.4 for δ replaced with δ/k2. Taking

the union bound over all T ≤ k ≤ 2T − 1, from (5.34), (5.36), (5.37) we obtain that:

P(Eunif ∩ EPE
unif) ≥ 1− 5

2T−1∑
k=T

1

k2
δ

What remains to show is that N0 depends polynomially on β, n, log 1/δ, 1/σR. Now, by

Lemma 5.5, the covariance matrix Γk increases at most as fast as M4k2κ−1 (a similar result

holds for the observability matrix). Hence, the dominant term in k3 is of the order of:

k3(k, β log k, δ/k2) ≤ βnκM
σR

log(1/δ)O(log2 k).

For simplicity define Ndiff = βnκM
σR

log(1/δ). By Lemmas 5.18, it follows that N0 is at

most of the order of:

N0 ≤ C ′Ndiff log2Ndiff ,

where C ′ is some universal constant.

5.7.6 Proof of Lemma 5.1

We prove a slightly more general version.

Lemma 5.14. Fix a p and consider the notation of Table 5.1. Consider an i ≥ 0. The

following inequality is true:

2T−1∑
k=T

Z∗
k−iV̄

−1
k Zk−i ≤ log det(V̄2T−i−1V̄

−1
T−i−1) (5.46)

Proof. Since V̄k is increasing in the positive semidefinite cone:

2T−1∑
k=T

Z∗
k−iV̄

−1
k Zk−i ≤

2T−1∑
k=T

Z∗
k−iV̄

−1
k−iZk−i

Hence, it is sufficient to prove the inequality for i = 0. Recall that V̄k−1 = V̄k − ZkZ
∗
k .
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Using the identity det(I + FB) = det(I +BF ) we obtain:

det V̄k−1 = det V̄k det
(
I − V̄

−1/2
k ZkZ

∗
k V̄

−1/2
k

)
= det V̄k

(
1− Z∗

k V̄
−1
k Zk

)
.

Rearranging the terms gives:

Z∗
k V̄

−1
k Zk = 1− det V̄k−1

det V̄k
≤ log det V̄k − log det V̄k−1,

where the inequality follows from the fact that the sequence V̄k ⪰ V̄k−1 is increasing and

the elementary inequality:

1− x ≤ log 1/x, for x ≤ 1.

Since the upper bound telescopes, we finally get

2T−1∑
k=T

Z∗
k V̄

−1
k Zk ≤ log det V̄2T−1 − log det V̄T−1

5.7.7 Analysis within one epoch

We will analyze the ℓ2 square loss for the duration of one epoch, from time T up to time

2T − 1 with fixed past horizon p = β log T . We have two cases: i) persistency of excitation

is established T ≥ N0, where N0 is defined in (5.45); ii) persistency of excitation is not

established T < N0.

Consider the ℓ2 loss within the epoch:

L2T−1
T ≜

2T−1∑
k=T

∥ŷk − ỹk∥22 . (5.47)

Based on the notation of Table 5.1, the error between the Kalman filter prediction and our
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online algorithm is:

ỹk − ŷk = Sk−1V̄
−1
k−1Zk + λGV̄ −1

k−1Zk

+ C(A−KC)p
(
X̄k−1Z̄k−1V̄

−1
k−1Zk − x̂k−p

)
.

By Cauchy-Schwarz, the submultiplicative property of norm and by the fact that

∥Z̄k−1V̄
−1/2
k−1 ∥2 ≤ 1

is normalized:

∥ỹk − ŷk∥22 ≤ 4
(
∥Sk−1V̄

−1/2
k−1 ∥22 + ∥λGV̄

−1/2
k ∥22

+ ∥C(A−KC)p∥22 ∥X̄k−1∥22
)
∥V̄ −1/2

k−1 Zk∥22

+ 4 ∥C(A−KC)p∥22 ∥x̂k−p∥22 . (5.48)

To obtain a bound on the square loss, it is sufficient to bound three terms: i) the supremum

over T ≤ t ≤ 2T − 1 of:

∥St−1V̄
−1/2
t−1 ∥22 + ∥λGV̄

−1/2
t ∥22 + ∥C(A−KC)p∥22

∥∥X̄t−1

∥∥2
2

ii) the sum ∥C(A−KC)p∥22
∑2T−1

k=T ∥x̂k−p∥22 .

iii) the sum
∑2T−1

k=T

∥∥∥V̄ −1/2
k−1 Zk

∥∥∥2
2
,

Theorem 5.5 (Square loss within epoch). Consider the conditions of Theorem 5.1. Let a be

the minimal polynomial of A with degree d, ∆ defined as in (5.30). Fix a failure probability

δ > 0 and consider N0 defined as in (5.45). Let T = 2i−1Tinit for some fixed epoch i ≥ 1

with p = β log T the corresponding past horizon. Let Cdiff = dκnβ∥a∥2 log 1/δ. Then, with

probability at least 1− 7
∑2T−1

k=T
1
k2
δ:

L2T−1
T ≤poly(Cdiff , λ−1)

(
Õ(T ) + Õ(ρ(A−KC)pT 2κ+1)

)
.
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If we have persistency of excitation, T ≥ N0, then:

L2T−1
T ≤ poly(Cdiff , σ−1

R )
(
Õ(1) + Õ(ρ(A−KC)pT 2κ)

)
.

Proof. Consider the uniform events Eunif and EPE
unif defined in (5.43), (5.44) and define the

events:

Ex ≜

{
sup

k≤2T−1
∥Γ−1/2

k x̂k∥2 ≤
√
n+

√
2 log

4T

δ1

}

Ee =
{

sup
k≤2T−1

∥R̄−1/2ek∥2 ≤
√
m+

√
2 log

2T

δ1

}
,

where δ1 =
∑2T−1

k=T δ/k2. Based on Lemma 5.13, Lemma 5.9, and a union bound the events

Eunif ∩ EPE
unif ∩ Ex ∩ Ee occur with probability at least 1 − 7

∑2T−1
k=T

1
k2
δ. We will bound all

terms of the square loss based on the above events.

i-a) For the term Sk−1V̄
−1/2
k−1 , based on event Eunif :

∥Sk−1V̄
−1/2
k−1 ∥22 ≤ ε2(2T, p, δ/(2T )2) = poly(Cdiff)Õ(1)

i-b) Regularization term: ∥λGV̄
−1/2
t ∥22 ≤ λ ∥G∥22

i-c) To bound the term ∥C(A−KC)p∥22
∥∥X̄t−1

∥∥2
2
, we use the inequality

∥∥X̄t−1

∥∥2
2
≤ 2T sup

k≤2T−1
∥x̂k∥22 .

Hence it is sufficient to upper-bound the norm of the states. Since the covariances Γk are

increasing:

sup
k≤2T−1

∥x̂k∥22 ≤ ∥Γ2T−1∥2 sup
k≤2T−1

∥∥∥Γ−1/2
k x̂k

∥∥∥2
2
.

Hence, conditioned on Ex and since ∥Γ2T−1∥2 = O(T 2κ−1):

∥C(A−KC)p∥22
∥∥X̄t−1

∥∥2
2
≤ poly(Cdiff)Õ(ρ(A−KC)pT 2κ)
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ii) To bound the sum ∥C(A−KC)p∥22
∑2T−1

k=T ∥x̂k−p∥22, we use the exact same steps as above

since:
2T−1∑
k=T

∥x̂k−p∥22 ≤ T sup
k≤2T−1

∥x̂k∥22

iii) To bound the sum of ∥V̄ −1/2
k−1 Zk∥22, we exploit the ARMA-like representation of the past

outputs (Lemma 5.2) along with Lemma 5.14. First, replace Zk = ad−1Zk−1+· · ·+a0Zk−d+

δk. Then, by two applications of Cauchy-Schwarz:

∥V̄ −1/2
k−1 Zk∥22 ≤ 2 ∥a∥22

d−1∑
i=0

Z∗
k−iV̄

−1
k−1Zk−i + 2∥V̄ −1/2

k−1 δk∥22.

By Lemma 5.14, we can bound the first summand by:

∥a∥22
2T−1∑
k=T

d−1∑
i=0

Z∗
k−iV̄

−1
k−1Zk−i ≤ d ∥a∥22 log det(V̄2T−1λ

−1)

The second summand can be bounded by:

2T−1∑
k=T

∥V̄ −1/2
k−1 δk∥22 ≤ ∆ sup

k≤2T
∥ek∥22

2T−1∑
k=T

∥V̄ −1/2
k−1 ∥22

He have two cases depending on persistency of excitation:

2T−1∑
k=T

∥V̄ −1/2
k−1 ∥22 ≤

4

σR

2T−1∑
T

1

k
≤ 4

σR
log

2T − 1

T − 1
, if T ≥ N0

2T−1∑
k=T

∥V̄ −1/2
k−1 ∥22 ≤

T

λ
, if T < N0.

The terms log det(V̄2Tλ
−1), supk≤2T ∥ek∥22 can be bounded by poly(Cdiff)Õ(1) based on

Eunif , Ee.
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5.7.8 Proof of Theorem 5.1

Recall that the regret can be decomposed into two terms:

RN = LN + 2
N∑

k=Tinit

e∗k (ŷk − ỹk)

where LN is the square loss and the other term is a martingale.

Square loss bound. Without loss of generality assume that N = 2Ti − 1 = Tinit2
i is

the end of an epoch, where i is the total number of epochs. The number of epochs i depends

logarithmically on N . Then the square loss LN is written as:

LN =

i−1∑
j=1

L2Tj−1
Tj

.

Let N0 be defined as in (5.45). Select

β ≥ 4
κ

log 1/ρ(A−KC)
. (5.49)

Then by Theorem 5.5 and a union bound over all epochs, with probability at least 1−7π2

6 δ:

LN = poly(Cdiff , λ−1)ÕN0(N0) + poly(Cdiff , σ−1
R )Õ(1).

Martingale term bound. Denote uk ≜ R̄−1/2ek and zk ≜ R1/2 (ŷk − ỹk). Then∑N
t=1 e

∗
t (ŷt − ỹt) =

∑N
t=1 u

∗
t zt =

∑N
t=1

∑m
i=1 ut,izt,i. To apply Theorem 3.3 we need to

slightly modify the definition of the filtration. Let Ft,i ≜ σ(Ft ∪ {ut+1,1, . . . , ut+1,i}), with

Ft+1 ≡ Ft,m and define:

F̃0 = F0 (5.50)

F̃s = Ft,s−tm, if tm+ 1 ≤ s ≤ (t+ 1)m (5.51)

By applying Theorem 3.3 with F̃s we can bound the sum in terms of the square loss
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LN . With probability at least 1− δ:

(
N∑
t=1

z∗t zt + 1

)−1/2 N∑
t=1

u∗t zt ≤ 8 log

(
5

δ

(
N∑
t=1

z∗t zt + 1

))

or using the fact that z∗kzk ≤
∥∥R̄∥∥

2
∥ŷk − ỹk∥22:

N∑
t=1

u∗t zt ≤
(∥∥R̄∥∥

2
LN + 1

)1/2
8 log

(
5

δ

(∥∥R̄∥∥
2
LN + 1

))
.

By a union bound, with probability at least 1− (7π2

6 + 1)δ:

RN = poly(Cdiff , λ−1)ÕN0(N0) + poly(Cdiff , σ−1
R )Õ(1).

To complete the proof, we re-scale δ and we re-write the bounds with respect δ̃ = (7π2

6 +

1)−1δ. □

5.8 Regret analysis for stable systems

In the case of stable systems, stationarity allows us to prove stronger persistency of excita-

tion results.

Lemma 5.15 (Stable: Output PE). Consider system (5.2) with observations y0, . . . , yk.

Let τ = τmix + p, where τmix is the mixing time defined in (5.11). Recall the universal

constant C in Lemma 5.8 and the notation of Table 5.1. Define:

k4(p, δ) ≜ Cτm log(τm/δ) (5.52)

k5(k, p, δ) ≜
512pn

min {4, σR}
log

(
5p

δ

n ∥Oτ∥22 ∥Γk−τ∥2
δ

+ 1

)
.

With probability at least 1− 3δ, if

k ≥ k6(k, p, δ) ≜ max {k4(p, δ), k5(k, p, δ)} , (5.53)

124



then the following output PE condition holds:

Z̄kZ̄
∗
k ⪰ k

4
ΓZ,τ ⪰ k

8
ΓZ,∞. (5.54)

Proof. Define the controllability matrix:

Ct ≜

[
At−1K . . . AK K

]
, t ≥ 1.

The state covariance at any time can be conveniently expressed in terms of the controllability

matrix:

Γt = Ct diag(R̄, . . . , R̄)C∗
t .

Combining the above equality with (5.27), we obtain that

ΓZ,τ=

[
OpCτmix Tp

]
diag(R̄, . . . , R̄)

[
OpCτmix Tp

]∗
.

Hence, by the definition of mixing time:

ΓZ,τ ⪰ ΓZ,∞/2. (5.55)

What remains is to show the first inequality in (5.54).

The proof is similar to the one of Lemma 5.11. We only need an additional step, to

further unroll x̂x−p for τmix time-steps into the past in (5.24). Extend the definition of the

past noises:

Eτ
t ≜

[
e∗t−τ · · · e∗t−1

]∗
.

Rolling out the state equations in (5.24), we obtain:

Zt = OpA
τmix x̂t−τ +

[
OpCτmix Tp

]
Eτ

t . (5.56)
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Define the isotropic variables:

Ut ≜ Γ
−1/2
Z,τ

[
OpCτmix Tp

]
Eτ

t ,

which are well-defined since ΓZ,τ ⪰ ΣE ⪰ σRI. This enables us to rewrite (5.56) as

Zt = OpA
τmix x̂t−τ + Γ

1/2
Z,τUt. (5.57)

Expanding the correlations gives:

ZtZ
∗
t = OpA

τmix x̂t−τ x̂
∗
t−τ (OpA

τmix)∗ + Γ
1/2
Z,τUtU

∗
t Γ

1/2
Z,τ

+OpA
τmix x̂t−τU

∗
t Γ

1/2
Z,τ + Γ

1/2
Z,τUtx̂

∗
t−τ (OpA

τmix)∗

The remaining proof is now identical to Lemma 5.11 and is, thus, omitted. To simplify the

notation for the expression of k5 we used ∥OpA
τmix∥2 ≤ ∥Oτ∥2 (OpA

τmix is a sub-matrix of

Oτ ). We also used σmin(ΓZ,∞) ≥ σmin(ΣE) ≥ σR in the step where we apply the technical

Lemma 5.12.

5.8.1 Proof of Lemma 5.4

We prove a more general version.

Lemma 5.16 (Stable case: Uniform PAC bounds). Consider the conditions of Theorem 5.1

with ρ(A) < 1. Select a failure probability δ > 0. Let T = 2i−1Tinit for some fixed epoch

i with p = β log T the corresponding past horizon. Consider also the definition of ε(k, p, δ)

in (5.38). There exists a N s
0 = poly(n, β, log 1/δ, τmix, 1/σR) such that with probability at
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least 1− 5
∑2T−1

k=T
1
k2
δ the following events hold:

Eunif ≜
2T−1⋃
k=T


Z̄kZ̄

∗
k ⪯ k3mp

δ
ΓZ,k∥∥∥SkV̄

−1/2
k

∥∥∥
2
≤ ε(k, p, δ/k2)

 (5.58)

EPE,s
unif ≜

2T−1⋃
k=max{Ns

0,T}

{
Z̄kZ̄

∗
k ⪰ k

8
ΓZ,∞

}
. (5.59)

Proof. The proof is identical to Lemma 5.13. The only difference is the definition of N s
0:

N s
0 ≜ min

{
t : k ≥ k6(k, p, δ/k

2), for all k ≥ t
}
, (5.60)

where k6 is defined in (5.53). As a result N s
0 is of the order of:

N s
0 ≤ C ′N s

diff log2N s
diff ,

where N s
diff = τmixβnκ

M
σR

log(1/δ), C ′ is some constant.

5.8.2 Proof of Theorem 5.2

Similar to the non-explosive case, we analyze the square loss for a single epoch. We addi-

tionally exploit the sharper persistency of excitation condition.

Theorem 5.6 (Square loss within epoch). Consider the conditions of Theorem 5.2. Fix a

failure probabilities δ > 0 and consider N s
0 defined as in (5.60). Let T = 2i−1Tinit for some

fixed epoch i ≥ 1 with p = β log T the corresponding past horizon. Let β satisfy (5.9). Let

Cs
diff = nβ log 1/δ. Then, with probability at least 1− 7

∑2T−1
k=T

1
k2
δ:

L2T−1
T ≤ ∥Γ∞∥2poly(Cs

diff , λ
−1)Õ(T ).

If moreover T ≥ N s
0 then also:

L2T−1
T ≤ poly(Cs

diff)Õ(1).
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Proof. Consider the uniform events Eunif and EPE,s
unif defined in (5.58), (5.59). Define also

Ex =

{
sup

k≤2T−1
∥Γ−1/2

k x̂k∥2 ≤
√
n+

√
2 log

4T

δ1

}

Ez =
{

sup
k≤2T−1

∥Γ−1/2
Z,k Zk∥2 ≤

√
pm+

√
2 log

2T

δ1

}
,

where δ1 =
∑2T−1

k=T δ/k2. Based on Lemma 5.16, Lemma 5.9, and a union bound the all

events Eunif ∩ EPE,s
unif ∩ Ex ∩ Ez occur with probability at least 1 − 7

∑2T−1
k=T

1
k2
δ. Now we

proceed as in the proof of Theorem 5.5. The only different step is the analysis of the sum

of ∥V̄ −1/2
k−1 Zk∥22, hence we omit the proof for the other terms.

The sum ∥V̄ −1/2
k−1 Zk∥22 is upper bounded by:

(
2T−1∑
k=T

∥∥∥V̄ −1/2
k−1 Γ

1/2
Z,k

∥∥∥2
2

)
sup

k≤2T−1

∥∥∥Γ−1/2
Z,k Zk

∥∥∥2
2

There are two cases:

2T−1∑
k=T

∥∥∥V̄ −1/2
k−1 Γ

1/2
Z,k

∥∥∥2
2
≤ 8

2T

T − 1
, if T ≥ N0

2T−1∑
k=T

∥∥∥V̄ −1/2
k−1 Γ

1/2
Z,k

∥∥∥2
2
≤ T

λ
∥ΓZ,2T−1∥2 , if T < N0.

Meanwhile, we upper-bound ∥Γ−1/2
Z,k Zk∥22 based on Ez.

The remaining steps are the same as in the proof of Theorem 5.1.

5.9 Technical lemmas

Lemma 5.17. Let c > 0. The inequality:

k ≥ c log k

is true if k ≥ max {2c log 2c, 1} .
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Proof. If c ≤ e, then the inequality is satisfied for all k > 0. To see why this holds

consider f(k) = k − e log k. The minimum is attained at f(e) = e − e log e = 0. Hence,

k ≥ e log k ≥ c log k. If c > e, then the function k−c log k is increasing for k ≥ c. Moreover,

2c log 2c ≥ c. As a result if k ≥ 2c log 2c then also:

k − c log k ≥ 2c log 2c− c log(2c log 2c) ≥ (c− c

e
) log 2c ≥ 0

where we used Lemma 5.19.

Lemma 5.18. Let c ≥ 0. The inequality:

k ≥ c log2 k

is true if k ≥ max
{
4c log2 4c, 4c log 4c, 1

}
.

Proof. If c ≤ 1, then the inequality is satisfied for k ≥ 1. To see why this holds define

f(k) = k − log2 k. Its derivative f ′(k) = 1 − 2 log k
k is always positive for k ≥ 1 since from

the proof of Lemma 5.17 k ≥ 2 log k. Hence f(k) ≥ f(1) = 1.

Consider now the case c > 1 and define g(k) = k − c log2 k. Its derivative is g′(k) =

1−2c log kk . From Lemma 5.17 g′(k) ≥ 0, for k ≥ max {4c log 4c, 1}. Now, pick k1 = 4c log2 4c

and observe that k1 ≥ 4c log 4c since 4c > e and log 4c > 1. Since g is increasing for k ≥ k1,

it is sufficient to prove that g(k1) > 0. Invoking Lemma 5.19, we obtain the inequality

c log2(k1) ≤ c

(
log 4c+

1

e
log 4c

)2

≤ 4c log2 4c = k1,

where (i) follows from Lemma 5.19 below.

Lemma 5.19. Let c ≥ e, then the following inequality holds:

log log c ≤ 1

e
log c
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Proof. Consider function f(c) = 1
e log c− log log c and compute the derivative:

f ′(c) =
1

ec
− 1

c log c

The minimum is attained at ee. Hence

f(c) ≥ f(ee) = 0

for all c ≥ e.
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Part II

Statistical Difficulty of Learning

Linear Systems
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Chapter 6

Difficulty of System Identification

6.1 Introduction

In this chapter, we study the statistical difficulty of system identification for fully-observed

linear systems of form:

xk+1 = Axk +Buk +Hwk, (6.1)

where xk represents the state, uk represents the control signal, and wk is the process noise.

The statistical analysis of system identification algorithms has a long history Ljung (1999).

Until recently, the main focus was providing guarantees for the convergence of system

identification in the asymptotic regime Deistler et al. (1995); Bauer et al. (1999); Chiuso &

Picci (2004), when the number of collected samples N tends to infinity. Under sufficient

persistency of excitation Bai & Sastry (1985), system identification algorithms converge

and the asymptotic bounds capture very well how the identification error decays with N

qualitatively.

However, our standard asymptotic tools (e.g. the Central Limit Theorem), do not always

capture all finite-sample phenomena (Vershynin, 2018, Ch 2). Moreover, the identification

error depends on various system theoretic constants, like the state space dimension n, which

might be hidden under the big-O notation in the asymptotic bounds. As a result, system

identification limitations, like the curse of dimensionality, although known to practitioners,
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are not always reflected in the theoretical asymptotic bounds.

With the advances in high-dimensional statistics Vershynin (2018), there has been a re-

cent shift from asymptotic analysis with infinite data to statistical analysis of system iden-

tification with finite samples. Over the past two years there have been significant advances

in understanding finite sample system identification for both fully-observed systems Campi

& Weyer (2002); Dean et al. (2017); Simchowitz et al. (2018); Faradonbeh et al. (2018a);

Sarkar & Rakhlin (2018); Fattahi et al. (2019); Jedra & Proutiere (2019); Wagenmaker &

Jamieson (2020) as well as partially-observed systems Oymak & Ozay (2018); Sarkar et al.

(2019); Simchowitz et al. (2019); Tsiamis & Pappas (2019); Lee & Lamperski (2020); Zheng

& Li (2020); Lee (2020); Lale et al. (2020b); Kozdoba et al. (2019); Tsiamis & Pappas

(2020). A tutorial can be found in Matni & Tu (2019). The above approaches offer mainly

data-independent bounds which reveal how the state dimension n and other system theoretic

parameters affect the sample complexity of system identification qualitatively. This is dif-

ferent from finite sample data-dependent bounds-see for example bootstrapping Dean et al.

(2017) or Carè et al. (2018), which might be more tight and more suitable for applications

but do not necessarily reveal this dependence.

Despite these advances, we still do not fully understand the fundamental limits of when

identification is easy or hard. In this chapter, we define as statistically easy, classes of

systems whose finite-sample complexity is polynomial with the system dimension. Most

prior research in the finite-sample analysis of fully observed systems falls in this category

by assuming system (6.1) is fully excited by the process noise wk. We define as statistically

hard, classes of linear systems whose worst-case sample complexity is at least exponential

with the system dimension, regardless of the learning algorithm. Using recent tools from

minimax theory Jedra & Proutiere (2019), we show that classes of linear systems which

are statistically hard to learn do indeed exist. Such system classes include, for example,

under-actuated systems with weak state coupling. The fact that linear systems may contain

exponentially hard classes has implications for broader classes of systems, such as nonlinear

systems, as well as control algorithms, such as the linear quadratic regulator Recht (2019)
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and reinforcement learning Du et al. (2019); Jiang et al. (2017).

By examining classes of linear systems that are statistically easy or hard, we quickly

arrive at the conclusion that system theoretic properties, such as controllability, fundamen-

tally affect the hardness of identification. In fact, as we show in this chapter, structural

properties like the controllability index can crucially affect learnability, determining whether

a problem is hard or not. In summary, our contributions are the following:

–Learnability of dynamical systems. We define two novel notions of learnability for

classes of dynamical systems. A class of systems is easy to learn if it exhibits polynomial

sample complexity with respect the state dimension n. It is hard to learn if for any possible

learning algorithm it has exponential worst-case complexity.

–Exponential sample complexity is possible. We identify classes of under-actuated

linear systems whose worst-case sample complexity increases exponentially with the state

dimension n regardless of learning algorithm. These hardness results hold even for robustly

controllable systems.

–Controllability index affects sample complexity. We prove that under the least

squares algorithm, the sample complexity is upper-bounded by an exponential function of

the system’s controllability index. This implies that if the controllability index is small O(1)

(with respect to the dimension n), the sample complexity is guaranteed to be polynomial

generalizing previous cases. If, however, the index grows linearly Ω(n), then there exist

non-trivial linear systems which are exponentially hard to identify.

–New controllability Gramian bound Our sample complexity upper bound is a conse-

quence of a new result that is of independent, system theoretic interest. We prove that for

robustly controllable systems, the least singular value of the controllability Gramian can

grow at most exponentially with the controllability index. Although it has been observed

empirically that the Gramian might be affected by the curse of dimensionality Baggio et al.

(2019), to the best of our knowledge this theoretical bound is new and has implications

beyond system identification.

Notation: The transpose operation is denoted by (·)′ and the complex conjugate (Her-
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mitian transpose) by ∗. By ei ∈ Rn we denote the i−th canonical vector. By σmin we

denote the least singular value. ⪰ denotes comparison in the positive semidefinite cone.

The identity matrix of dimension n is denoted by In. The spectral norm of a matrix A is

denoted by ∥A∥2. The notion of controllability and other related concepts are reviewed in

Sections 6.8, 6.9.

6.2 Learnability of System Classes

Consider system (6.1), where xk ∈ Rn is the state and uk ∈ Rp is the input. By wk ∈ Rr

we denote the process noise which is assumed to be Gaussian, i.i.d. with covariance Ir.

Without loss of generality the initial state is assumed to be zero x0 = 0.

Assumption 6.1. All state parameters are bounded: ∥A∥2, ∥B∥2, ∥H∥2 ≤ M , for some

positive constant M > 0. The noise has unknown dimension r and can be degenerate r ≤ n.

All parameters A,B,H, r are considered unknown. Matrices B,H have full column rank

rank(B) = p ≤ n, rank(H) = r ≤ n. We also assume that the system is non-explosive

ρ(A) ≤ 1. Finally, we assume that the control inputs have bounded energy Eu′tut ≤ M .

This setting is rich enough to provide insights about the difficulty of the general learning

problem. To simplify the setting we assume that the system is non-explosive. The analysis

of unstable systems is left for future research.

A system identification (SI) algorithm A receives a finite number N of input-state data

(x0, u0), . . . , (xN , uN ) generated by system (6.1), and returns an estimate of the unknown

system’s parameters ÂN , B̂N , ĤN . We denote by N the number of collected input-state

samples, which are generated during a single roll-out of the system, that is a single trajectory

of length N . For simplicity, we focus only on the estimation of matrix A here.

Our goal is to study when the problem of system identification is fundamentally easy or

hard. The difficulty is captured by the sample complexity, i.e. how many data N do we need

to achieve small identification error with high probability. Formally, let ϵ > 0, 0 < δ < 1

be the accuracy and confidence parameters respectively. Then, the sample complexity is
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the smallest possible number of samples N such that with probability at least 1− δ we can

estimate A with small error ∥A − ÂN∥ ≤ ϵ. Naturally, the sample complexity increases as

the accuracy/confidence parameters ϵ, δ decrease. The sample complexity also increases in

general with the state-space dimension n and the bound M on the state space parameters.

Ideally, the sample complexity should grow slowly with n,M, ϵ−1, δ−1. Inspired by

Provably Approximately Correct (PAC) learning Shalev-Shwartz & Ben-David (2014); Dann

et al. (2017), we classify an identification problem as easy when the sample complexity

depends polynomially on n,M, ϵ−1, δ−1. For brevity we will use the symbol S to denote

the tuple S = (A,B,H). Let PS denote the probability distribution of the input-state data

when the true parameters of the system are equal to S and we apply a control law ut ∈ Ft,

where Ft ≜ σ(x0, u0, . . . , ut−1, xt) is the sigma algebra generated by the previous outputs

and inputs. By Cn we will denote a class of systems with dimension n.

Definition 1 (poly-learnable classes). Let Cn be a class of systems. Consider a trajectory

of input-state data (x0, u0), . . . ,(xN , uN ), which are generated by a system S in Cn under

some control law ut ∈ Ft, t ≤ N . We call the class Cn poly(n)−learnable if there exists an

identification algorithm such that the sample complexity is polynomial: for any confidence

0 ≤ δ < 1 and any tolerance ϵ > 0:

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ, (6.2)

for N ≥ poly(n, 1/ϵ, log 1/δ,M),

where poly(·) is some polynomial function.

Definition 1 provides an intuitive definition for a class Cn of linear systems whose system

identification problem is easy. To prove that a class of systems Cn is easy, it suffices to

provide one algorithm that performs well for any system S ∈ Cn in the sense that it requires

at most a polynomial number of samples. This means that we should obtain sample

complexity upper bounds across all S ∈ Cn which is what the the supremum over S ∈ Cn

achieves in (6.2). Otherwise, we can construct trivial algorithms that perform well only on
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Figure 6.1: The minimum number of samples N such that the (empirical) average error E∥A−ÂN∥2,
for identifying (6.3), is less than ϵ. The sample complexity appears to be increasing exponentially
with the dimension n under the least squares algorithm.

one system and fail to identify the other.

In recent work Simchowitz et al. (2018); Sarkar & Rakhlin (2018); Fattahi et al. (2019),

it was shown that under the least squares algorithm, the sample complexity of learning

linear systems is polynomial. As we review in Section III, these results hold for classes of

linear systems where the noise is isotropic and hence directly exciting all states.

However, if we relax the last assumption it turns out that the sample complexity might

degrade dramatically. To raise this issue, consider the following example. Let Jn(1) be

a Jordan block of size n with eigenvalue 1 and let en be the n−th canonical vector. We

simulate the performance of least squares identification for the system

xk+1 = 0.5Jn(1)xk + en(uk + wk) (6.3)

Note that in system (6.3) the process noise is no longer isotropic. Figure 6.1 shows the

minimum number of samples N required to achieve (empirical) average error E∥A−ÂN∥ ≤ ϵ

(the details of the simulation can be found in Section 6.6). It seems that the sample

complexity increases exponentially rather than polynomially. Are the results in Figure 6.1

due to the choice of the algorithm or is there a fundamental limitation for all system

identification algorithms? We pose the following fundamental problem.

Problem 6.1. Do there exist classes of linear systems which are hard to learn, meaning

not poly-learnable by any system identification algorithm? Furthermore, can the sample
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complexity for a class of linear systems be exponential with state dimension n?

A class of linear systems Cn that is not poly-learnable will be viewed as hard. By

negating Definition 1, this notion of hardness means that given any system identification

algorithm, there exist instances S ∈ Cn that cannot have polynomial sample complexity. In

other words, a system class Cn is classified as hard when its impossible to find any system

identification algorithm that achieve polynomial sample complexity for all S ∈ Cn. This

can be viewed as a fundamental statistical limitation for the chosen class of systems Cn.

Motivated by Figure 6.1, we define an important subclass of hard problems, namely

linear system classes that have worst-case sample complexity that grows exponentially with

the dimension n regardless of identification algorithm choice.

Definition 2 (exp-hard classes). Let Cn be a class of systems of dimension n. Consider a

trajectory of input-output data (x0, u0), . . . ,(xN , uN ), which are generated by a system S in

Cn under some control law ut ∈ Ft, t ≤ N . We call a class Cn of systems exp(n)-hard if

the sample complexity is at least exponential with the dimension n: there exist confidence

0 ≤ δ < 1 and tolerance ϵ parameters such that for any identification algorithm:

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ,

only if N ≥ exp(n),

where exp(n) denotes an exponential function of n.

System classes Cn that are exp-hard are an important subset of hard system classes as

they are clearly not poly-learnable. However, not all classes that are not poly-learnable are

exp-hard.

In order to show that a class of systems Cn is exp-hard, one must show that for any

system identification algorithm the worst-case sample complexity is at least exponential in

state dimension n. Contrary to poly-learnable problems, for exponential hardness we should

establish sample complexity lower bounds.
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In this chapter, we first address Question 6.1 and show that exp-hard classes of linear

systems do indeed exist. While this can be viewed as a fundamental statistical limitation

for all system identification algorithms, our results open a new direction of research that

classifies when linear systems are easy to learn and when they are hard to learn. This leads

to the following important question.

Problem 6.2. When is a class of linear systems Cn guaranteed to be poly-learnable?

Based on prior work, we already have partial answers to Question 6.2 as we know that

linear systems with isotropic noise are poly-learnable. In Section 6.5, we seek to broaden

the classes of poly-learnable systems and discover their relation to fundamental system

theoretic properties such as controllability.

While Definitions 1, 2 are inspired by PAC learning, they have a different flavor. One

of the differences is that the guarantees in Definitions 1, 2 are stated in terms of recovering

the state-space parameters, while in PAC learning, they would be stated in terms of the

prediction error of the learned model or informally
∑N−1

k=0 E∥xk − Âxk−1 − B̂uk−1∥2.

6.3 Directly-excited systems are poly-learnable

In this section, we revisit state-of-the-art results in finite-sample complexity for fully-

observed linear systems and re-establish that they all lead to polynomial sample complexity.

In prior work Simchowitz et al. (2018); Sarkar & Rakhlin (2018); Fattahi et al. (2019), the

class of linear systems considered assumes that the stochastic process noise is isotropic, i.e.

HH ′ = σ2
wIn. Since all states are directly excited by the process noise, all modes of the

system are captured sufficiently in the data. To obtain polynomial complexity, it suffices to

use the least squares identification algorithm

[
ÂN B̂N

]
= arg min

{F,G}

N−1∑
t=0

∥xt+1 − Fxt −Gut∥22 (6.4)

with white noise inputs ut ∼ N (0, σ2
uI). Based on the algorithm analysis from Simchowitz

et al. (2018), let k be a fixed time index which is much smaller than the horizon N (see
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Theorem 2.1 in Simchowitz et al. (2018) for details). Let 0 < δ < 1 and ϵ be the confidence

and accuracy parameters respectively. Then, with probability at least 1 − δ, the error is

∥A− ÂN∥2 ≤ ϵ if:

N ≥ cσ2
w

σmin(Γk)

1

ϵ2

(
n log

n

δ
+ log det(ΓNΓ−1

k )
)
,

where c is a universal constant, and Γk = σ2
uΓk(A,B) + σ2

wΓk(A, In) is the (combined)

controllability Gramian. Uunder the isotropic noise assumption, the least singular value of

the Gramian Γk is bounded away from zero, σmin(Γk) ≥ σ2
w.

In a slight departure from Simchowitz et al. (2018); Sarkar & Rakhlin (2018); Fattahi

et al. (2019), we can show that the determinant of the Gramian det(ΓN ) can only increase

at most polynomially with the number of samples N and exponentially with state dimension

n. This is a direct consequence of the following lemma, which is a new result.

Lemma 6.1. Let A ∈ Rn×n have all eigenvalues inside or on the unit circle, with ∥A∥2 ≤

M . Then, the powers of matrix A are bounded by:

∥∥∥Ak
∥∥∥
2
≤ (ek)n−1max {Mn, 1} (6.5)

Lemma 6.1 enables us to eliminate the dependence on the condition number of the

Jordan form’s similarity transformation, which exists in prior bounds and can be arbitrarily

large. We avoid this dependence by using the Schur form of A Horn & Johnson (2012).

While this does not alter the already known sample complexity results, it allows us to have

sample complexity bounds that are uniform across all systems that satisfy Assumption 6.1.

As a result of Lemma 6.1, we obtain that the system identification problem for linear

systems with isotropic noise has polynomial sample complexity. The result can be broadened

to the more general case of direct excitation, where the covariance is lower bounded by

HH ′ +BB′ ⪰ σ2
wIn, for some σw > 0, as the following theorem states.

Theorem 6.1 (Directly-excited). Consider the class Cn of directly-excited systems S =

(A,B,H) ∈ Rn×(n+p+r) such that Assumption 6.1 is satisfied with covariance HH ′+BB′ ⪰
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σ2
wIn, for some σw > 0. The class Cn is poly−learnable under the least squares system

identification algorithm with white noise input signals uk ∼ N (0, Ip).

Proof. It follows as a special case of Theorem 6.4 for controllability index κ = 1.

Directly excited systems includes fully-actuated systems (number of inputs equal to the

number of states p = n), or systems with isotropic noise as special cases. However, having

direct excitation might not always be the case. The combined noise and input matrices

might be rank-deficient. For example, we might have actuation noise as in:

xt+1 = Axt +B(ut + wt).

In general, the noise might be ill-conditioned (zero across certain directions), while it might

be physically impossible to actuate every state of the system. We call such systems under-

actuated or under-excited. It might still be possible to identify underactuated systems, e.g.

if the pair (A,

[
H B

]
) is controllable. However, as we prove in the next section, the

identification difficulty might increase dramatically.

6.4 Exp-hard system classes

In this section, we show that there exist common classes of linear systems which are impos-

sible or hard to identify with a finite amount of samples. As we will see, this can happen

when systems are under-actuated and under-excited. When only a limited number of sys-

tem states is directly driven by inputs (or excited by noise) and the remaining states are

only indirectly excited, then identification can be inhibited.

6.4.1 Controllable systems with infinite sample complexity

For presentation simplicity, let us assume that there are no exogenous inputs B = 0. Similar

results also hold when B ̸= 0–see Remark 7. To fully identify the unknown matrix A, it

is necessary that the pair (A,H) is controllable. Furthermore, let’s assume that the noise
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is meaningful, that is σmin(H) ≥ σ for some σ > 0. However, controllability of (A,H)

and σmin(H) ≥ σ are not sufficient to ensure system identification from a finite numer of

samples. The following, perhaps unsurprising theorem, shows that for this class of linear

systems, the worst-case sample complexity is infinite.

Theorem 6.2 (Controllability is not sufficient for finite sample complexity). Consider the

class Cn of systems S = (A,H) ∈ Rn×(n+r) such that Assumption 6.1 is satisfied with (A,H)

controllable, and σmin(H) ≥ σ for some σ > 0. For any system identification algorithm the

sample complexity is infinite: there exist a failure probability 0 ≤ δ < 1 and a tolerance

ϵ > 0 such that we cannot achieve

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ

with a finite number of samples N .

Theorem 6.2 clearly shows that we may need stronger notions of controllability, as done

in Section 6.4.2, in order to find classes of systems whose sample complexity is finite. The

proof of Theorem 6.2 uses tools from minimax theory Jedra & Proutiere (2019). Adapting

these tools in our setting results in the following.

Lemma 6.2 (Minimax bounds). Let Cn be a class of systems. Consider a confidence

0 < δ < 1 and an accuracy parameter ϵ > 0. Denote by S1, S2 ∈ Cn any pair of two

systems with A1, H1, A2, H2 the respective unknown matrices, such that ∥A1 − A2∥ ≥ 2ϵ.

Let KL(PS1 ,PS2) be the Kullback-Leibler divergence between the probability distributions of

the data when generated under S1, S2 respectively. Then for any identification algorithm

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ

holds only if

KL(PS1 ,PS2) ≥ log
1

3δ
, (6.6)
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for all such pairs S1, S2 ∈ Cn.

Proof. Let S1, S2 be any pair satisfying the conditions. We trivially have that:

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ

only if

sup
S∈{S1,S2}

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ.

The remaining proof is identical to (Jedra & Proutiere, 2019, Proposition 2), where we

replaced constant 2.4 with 3 for simplicity and we did not expand the expression for

KL(PS1 ,PS2) explicitly (term EA(Lt) in Jedra & Proutiere (2019)).

Intuitively, to find difficult learning instances we construct systems which are sufficiently

separated (2ϵ away). Meanwhile, the systems should be similar enough to generate data

with as indistinguishable distributions as possible (small KL divergence). If the system is

hard to excite, then the distributions of the states will look similar under many different

matrices A, leading to smaller KL-divergence. Unless we bound the pair (A,H) away from

uncontrollability, it might be impossible to satisfy (6.6) for all pairs of systems with a finite

number of samples. For example consider:

A =


0 α 0

0 0 β

0 0 0

 , H =


1 0

0 0

0 1

 ,

It requires an arbitrarily large number of samples to learn α if the coupling β between

xt,2 and xt,3 is arbitrarily small. The distribution of xt,1 remains virtually the same as we

perturb α, since the state xt,2 is under-excited for small β.
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6.4.2 Robustly controllable systems can be exp-hard

Theorem 6.2 implies that we need to bound the system away from uncontrollability in order

to obtain non-trivial sample complexity bounds. In order to formulate this, we review the

notion of distance from uncontrollability, which is the norm of the smallest perturbation

that makes (A,H) uncontrollable.

Definition 3 (Distance from uncontrollability Eising (1984)). Let (A,H) ∈ Rn×(n+r) be

controllable. Then, the distance from uncontrollability is given by:

d(A,H) ≜ inf

{
∥
[
∆A ∆H

]
∥2 :

(A+∆A,H +∆H) uncontrollable} ,
(6.7)

where perturbations (∆A,∆H) ∈ Cn×(n+r) are complex.

Let us now consider linear systems that are robustly controllable. That is, classes of

controllable linear systems whose distance from uncontrollability is lower bounded. The

lower bound is allowed to degrade gracefully (polynomially) with the system dimension n.

Assumption 6.2 (Robust Controllability). Assume that system (A,H) is robustly control-

lable, that is (A,H) ∈ Rn×(n+m) is µ-away from uncontrollability:

d(A,H) ≥ µ, (6.8)

for some positive µ ≥ 0, with µ−1 ≤ poly(n).

Assumption 6.2 is not restrictive as long as we allow the bound to degrade with the

dimension. Common systems like the n−th order integrator have distance that degrades

linearly with n–see Lemmas 6.3, 6.4 in Section 6.9. However, even for system classes that

satisfy Assumption 6.2, the next theorem shows that system identification can be exp-hard.

Theorem 6.3 (Exp(n)-hard classes). Consider the set Cn of systems S = (A,H) such that

Assumptions 6.1, 6.2 are satisfied with d(A,H) ≥ µ = 8(n + 1)−1. Then, for any system
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identification algorithm A the sample complexity is exponential in the state dimension n.

There exist a confidence 0 ≤ δ < 1 and a tolerance ϵ > 0 such that

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ

is satisfied only if

N ≥ 4n−3

3ϵ2
log

1

δ
.

Theorem 6.3 shows that even for robustly controllable classes of linear systems satisfying

Assumptions 6.1, 6.2, any system identification algorithm will have worst-case sample com-

plexity that depends exponentially on the system dimension n. The proof of Theorem 6.3

is based once more on minimax theory used in Lemma 6.2.

The reason for this learning difficulty is due to the need for indirect excitation. Consider,

for example, chained systems, where every state indirectly excites the next one. If the states

are weakly-coupled, then the exploratory signal (noise or input) attenuates exponentially

fast along the chain. As a concrete example, consider the following system for ρ < 0.5:

A =



ρ ρ 0 · · · 0 0

0 ρ ρ · · · 0 0

. . .

0 0 0 · · · ρ ρ

0 0 0 · · · 0 ρ


, H =


1 0

...
...

0 ρ

 (6.9)

which satisfies Assumptions 6.1, 6.2. Matrix A has a chained structure with weak coupling

between the states. Noise can only excite states xt,1, xt,n directly. Until the exploratory

noise signal reaches xt,2 it decreases exponentially fast with the dimension n. As a result,

it is difficult to learn A12 due to lack of excitation. In terms of Lemma 6.2, the distribution

of xt,1 will remain virtually the same if we perturb A12 since xt,2 is under-excited.

Remark 7 (Exogenous inputs). When B ̸= 0 similar results hold but with an additional

interpretation. Consider system (6.9) but with H = e1, B = ρen. Then, if we apply
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white-noise input signals we have two possibilities: i) the control inputs have bounded

energy per Assumption 6.1 but we suffer from exponential sample complexity or ii) we

obtain polynomial sample complexity but we allow the energy of the inputs to increase

exponentially with the dimension. From this alternative viewpoint a system is hard to

learn if it requires exponentially large control inputs.

Remark 8. The constant 8 in 8(n+1)−1 in the statement of Theorem 6.3 is not important

in our analysis. We could modify Theorem 6.3 so that 8 can be replaced by any smaller

constant. In particular, we can decrease 8 by considering systems with smaller chains,

which still have exponential sample complexity. Instead of system (6.9), we can consider

for example the following. Let J⌊n/m⌋(1) be the Jordan block of size ⌊n/m⌋, for some m,

and eigenvalue 1 and define

A =

 ρJ⌊n/m⌋(1) 0

0 In−⌊n/m⌋

 , H =

[
e1 ρe⌊n/m⌋ e⌊n/m⌋+1 · · · en

]
.

Notice that we reduced the size of the chain by 1/m and we added n−⌊n/m⌋ directly excited

states. By increasing m, we can achieve a larger distance to uncontrollability (constant

smaller than 8). However, we will still have exponential sample complexity of the order of

at least ⌊n/m⌋, based on the length of the chain.

6.5 Controllability index affects learnability

Structural system properties of an underactuated system, such as the chained structure in

the dynamics, can be critical in making system identification easy or hard. This poses novel

questions about understanding how system theoretic properties affect system learnability

as defined in Definitions 1 and 2. We begin a new line of inquiry by characterizing how the

controllability index κ, a critical structural system property, affects the statistical properties

of system identification.

A brief review of the concept of controllability index can be found in Section 6.8. It can
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be viewed as a structural measure of whether a system is directly actuated or underactuated

resulting in long chains. In this section, we consider systems which have controllability

index κ. To avoid pathological examples, we require that the controllability index is equal

to κ in a robust way. Inspired by Definition 3, we define a notion of distance from losing

controllability index.

Definition 4 (Distance from losing index). Let (A,H) ∈ Rn×(n+r) be controllable and let

n ≥ τ ≥ 0 be some integer smaller than n. The distance from losing index τ is given by:

dτ (A,H) ≜ inf
(∆A,∆H)∈Cn×(n+r)

{
∥
[
∆A ∆H

]
∥2 : κ(A+∆A,H +∆H) > τ

}
, (6.10)

where κ(F,G) denotes the controllability index of a pair (F,G) with κ(F,G) = ∞ when

(F,G) is uncontrollable.

In other words, the distance dτ (A,H) is the smallest perturbation such that the control-

lability index is increased by at least τ+1. Note that when τ = n, then the above definition

coincides with the distance to uncontrollability. To avoid pathological systems which are

arbitrarily close to losing controllability index, we make the following assumption.

Assumption 6.3 (Robust Controllability Index). Assume that system (A,H) ∈ Rn×(n+r)

has µ-robust controllability index κ, that is κ(A,H) = κ and

dκ(A,H) ≥ µ, (6.11)

for some positive µ ≥ 0, with µ−1 ≤ poly(n).

The following theorem, is the first result connecting the controllability index with sample

complexity bounds.

Theorem 6.4 (Controllability index-dependent upper bounds). Consider the set Cn of

systems S = (A,B,H) such that Assumption 6.1 is satisfied. Assume that the controllability

index of all pairs (A,

[
H B

]
) in the class is upper bounded by κ. Let Assumption 6.3 be
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satisfied for the all pairs (A,

[
H B

]
). Then, under the least squares system identification

algorithm and white noise inputs uk ∼ N (0, Ip), we obtain that

sup
S∈Cn

PS(∥A− ÂN∥ ≥ ϵ) ≤ δ

is satisfied for

N ≥ polyκ(n,M)poly(ϵ−1, log 1/δ).

Theorem 6.4 formalizes our intuition since the controllability index is the length of the

chain from input excitation towards the most distant state in the chain. Hence, systems

with a large number of inputs (or noise) and small controllability index (κ << n) are easy

to identify. The directly excited case with isotropic noise, presented in Theorem 6.1, is

a special case corresponding to a controllability index κ = 1, recovering prior polynomial

bounds.

The implications of Theorems 6.3, 6.4 illustrate the impact controllability properties

have on system learnability–see Figure 6.4. Classes of systems with small controllability

index O(1) have polynomial sample complexity. Classes where the index grows linearly

Ω(n) can be exponentially hard in the worst case in general. There might still be subclasses

of systems with large controllability indexes which nonetheless can be identified with a

polynomial number of samples. However, we cannot provide any guarantees without further

assumptions.

The proof of Theorem 6.4 crucially depends on the following system theoretic result

that bounds the least singular value of the controllability Gramian (a quantitative measure

of controllability) with the controllability index (a structural measure of controllability).

Theorem 6.5 (Controllability gramian bound). Consider a system (A,H) that satisfies

Assumptions 6.1, 6.3. Let κ be its controllability index. Then, the least singular value of

the gramian Γκ is lower bounded by:

σ−1
min(Γκ) ≤ polyκ(M/µ).
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The above theorem is of independent interest, since it states that the controllability

index rather than the dimension n controls how fast the controllability Gramian degrades.

While the above bound may be loose in general, it gives us qualitative insights about how

system structure affects the hardness of input excitation and system identification. Our

proof exploits the so-called “staircase” (or Hessenberg) canonical representation (6.13) of

state space systems Dooren (2003)–see Section 6.8. The main idea is that if a system

is robustly controllable then the coupling between the states is bounded away from zero.

Hence, we can avoid the essentially uncontrollable systems of Theorem 6.2 which lead to

infinite sample complexity.

6.6 Simulations

We study three simulation scenarios to illustrate the qualitative implications of our results.

In the first two cases, we verify that the sample complexity of the least squares algorithm

can indeed grow exponentially with the dimension. In the third case, we investigate how the

controllability index affects the sample complexity. In all cases, we perform Monte Carlo

simulations to compute the empirical mean error ∥A − ÂN∥2 and we count the number of

samples required to have error less than ϵ, for some ϵ > 0. For numerical stability in the

least squares estimator (6.4) we used a regularization term (ridge regression) with coefficient

0.001.

In the first example in Section 6.2, Figure 6.1, we used 1000 Monte Carlo iterations to

approximate the empirical average. We modeled the noise as gaussian with wk ∼ N (0, 0.5)

and used white noise inputs uk ∼ N (0, 10). The sample complexity of the least squares

algorithm seems to be exponential with the dimension. In Section 6.4, we showed that

such systems exhibit exponential sample complexity due to the weak coupling between the

states.

In the second example, we study the behavior of Jordan blocks actuated from the last

state. Let Jn(λ) be a Jordan block of dimension n and eigenvalues all λ. We consider

the system A = Jn(λ), H = 0.1en, B = 5en, which means we excite directly only state
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Figure 6.2: Sample complexity of identifying the Jordan block of size n and eigenvalues all λ,
actuated from the last state. The figure shows the minimum number of samples N such that the
(empirical) average error E∥A − ÂN∥2 is less than 0.005. The sample complexity appears to be
increasing exponentially with the dimension n for λ < 1. For λ = 1, Matlab returns inaccurate
results for n ≥ 10 since the condition number of the data is very large. However, in the regime
5 ≤ n ≤ 9, the complexity seems to be polynomial, increasing in 5 sample increments.
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Figure 6.3: Sample complexity of identifying the Jordan block Jn(0.5) of size n and eigenvalues
all 0.5, for different values of the controllability index. The figure shows the minimum number of
samples N such that the (empirical) average error E∥A − ÂN∥2 is less than 0.005. The sample
complexity appears to be increasing exponentially with the dimension n for κ = Θ(n). For κ = 2,
the sample complexity is much smaller and increases polynomially.

xt,n. We repeat the same experiment as before for 1000 Monte Carlo simulations with

wk, uk ∼ N (0, 1) and for ϵ = 0.005. In Figure 6.2, it seems that the complexity of the least

squares algorithm is also exponential when 0 < λ < 1. In this case the coupling between the

states is not weak. However, certain subspaces might still be hard to excite. As λ approaches

the unit circle eigenvalue 1 the complexity improves. For λ = 1, after n = 9 Matlab returned

inaccurate results as the condition number of the data becomes very large. Hence, we do

not report any results beyond n = 9. However, based on simulations for small n it might

be possible that the system can be learned by only a polynomial number of samples. The

intuition might be that in this case instability helps with excitation Simchowitz et al. (2018).
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Figure 6.4: Sample complexity classes for linear systems. according to their controllability index.

It is an open problem to prove or disprove exponential lower bounds for the Jordan block

when 0 < λ < 1. Similarly, we leave it as an open problem to prove or disprove polynomial

upper bounds for the Jordan block when λ = 1.

In the third example, we consider the Jordan block A = Jn(0.5) with noise H = 0.1en.

We start from B = 5en and we gradually add more exogenous inputs to decrease the

controllability index: we try B = 5

[
en e⌈n/2⌉

]
and B = 5

[
en en−2 . . .

]
which

correspond to indices κ = ⌈n/2⌉ and κ = 2 respectively. We repeat the same experiment

as before for 1000 Monte Carlo simulations with wk, uk ∼ N (0, 1) and for ϵ = 0.005. In

Figure 6.3, it seems that the sample complexity remains exponential when κ = ⌈n/2⌉.

However, when κ = 2 there is a phase transition and the sample complexity becomes

polynomial with the dimension.

6.7 Conclusion

The results of this chapter paint a broader and more diverse landscape about the statistical

complexity of learning linear systems, summarized in Figure 6.4 according to the control-

lability index κ of the considered system class. While statistically easy cases that were

previously known are captured by Theorem 6.1, we also showed that hard system classes

exist (Theorem 6.3). By exploiting structural system theoretic properties, such as the con-

trollability index, we broadened the class of easy to learn linear systems (Theorem 6.4).

Our results pose numerous future questions for exploiting other system properties (e.g.

observability) for efficiently learning classes of partially-observed linear systems or nonlinear
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systems. It remains an open problem to prove whether or not the n−th order integrator is

poly-learnable as discussed in Section 6.6. Similarly, it is an open problem to prove whether

or not the Jordan block of size n and eigenvalues all 0 < λ < 1 has exponential complexity.

Finally, this chapter focuses only on the problem of system identification. In Chapter 7, we

will see that similar results hold for the problem of learning to control.

6.8 Controllability-related concepts

We briefly review the concept of controllability and other related concepts. We consider

the pair (A,H), but the same definitions hold also for (A,B). The controllability matrix of

(A,H) is defined as

Ck(A,H) ≜

[
H AH · · · Ak−1H

]
, k ≥ 1.

The pair (A,H) is controllable when the controllability matrix Cn(A,H) has full column

rank n. The controllability Gramian at time k is defined as :

Γk(A,H) ≜ Ck(A,H)C′
k(A,H) =

k−1∑
i=0

AiHH ′(A′)i.

If H is not a column matrix, the full column rank condition might be satisfied earlier for

some k ≤ n. The minimum time that we achieve controllability is the controllability index :

κ(A,H) ≜ min {k ≥ 1 : rank(Ck(A,H)) = n} . (6.12)

It is the lag between the time the disturbance wt is applied and the time t + κ by which

we see the effect of that disturbance in all states. This lag is non-trivial if the number of

disturbances r < n is smaller than the number of states; in this case we call the system

underactuated.

Based on the fact that the rank of the controllability matrix at time κ is n, we can

show that the pair (A,H) admits the following canonical representation, under a unitary
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similarity transformation Dooren (2003).

Proposition 6.1 (Staircase form). Consider a controllable pair (A,H) with controllability

index κ and controllability matrix Ck, k ≥ 0. There exists a unitary similarity transforma-

tion U such that U ′U = UU ′ = I and:

U ′H =

[
H ′

1 0 · · · 0

]′

U ′AU =



A1,1 A1,2 · · · A1,κ−1 A1,κ

A2,1 A2,2 · · · A3,κ−1 A2,κ

0 A3,2 · · · A3,κ−1 A3,κ

0 0 · · · A4,κ−1 A4,κ

...
...

0 0 · · · Aκ,κ−1 Aκ,κ


,

(6.13)

where Ai,j ∈ Rri×rj are block matrices, with ri = rank(Ci)− rank(Ci−1), r1 = r, H1 ∈ Rr×r.

Moreover, the matrices Ai+1,i have full row rank rank(Ai+1,i) = ri+1 and the sequence ri is

decreasing.

The above representation is useful as it captures the coupling between the several sub-

states via the matrices Ai+1,i. If one of these matrices Ai+1,i is close to zero then the

system will be close to being uncontrollable. On the other hand, if a system is robustly

controllable then these matrices are bounded away from being row-rank deficient. Since

the similarity transformation is unitary it does not affect properties of the system like the

minimum singular value of the controllability Gramian. The proof of Theorem 6.5 exploits

the above ideas–see Section 6.10.5 for more details.

6.9 Distance from uncontrollability properties

In this section we review properties of the distance from uncontrollability. The main focus

is to prove that standard systems, like the integrator, have distance to uncontrollability

which degrades linearly with the dimension n.
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Lemma 6.3. Let 0 < ρ < 1 and consider the perturbed n−th order integrator:

A = ρ



1 1 0 · · · 0 0

0 1 1 · · · 0 0

. . .

0 0 0 · · · 1 1

0 0 0 · · · 0 1


, H = ρ


0

...

1



The distance from uncontrollability is given by

d(A,H) = ρ sin

(
π

n+ 1

)
. (6.14)

As a result the distance degrades linearly:

ρ
2

n+ 1
≤ d(A,H) ≤ ρ

π

n+ 1
, (6.15)

for n ≥ 1.

Proof. The proof follows from the fact that the distance form uncontrollability is equiva-

lently given by the formula Eising (1984):

d(A,H) = inf
s∈C

σmin(

[
A− sI H

]
), (6.16)

and results about the eigenvalues of Toeplitz matrices Kulkarni et al. (1999).

In more detail, let ∗ denote the complex conjugate. We have:

[
A− sI H

] [
A− sI H

]∗
= Ts,
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where

Ts =



|ρ− s|2 + ρ2 ρ(ρ− s∗) 0 0

ρ(ρ+ s∗) |ρ− s|2 + ρ2 0 0

. . .

0 0 |ρ− s|2 + ρ2 ρ(ρ− s∗)

0 0 ρ(ρ+ s∗) |ρ− s|2 + ρ2


(6.17)

is a tri-diagonal Toeplitz matrix, with all diagonal elements equal to |ρ− s|2 + ρ2, all

superdiagonal elements equal to ρ(ρ − s∗) and subdiagonal elements equal to ρ(ρ + s∗).

Based on (Kulkarni et al., 1999, Th 2.2), the smallest eigenvalue of T is equal to:

σmin(Ts) = |ρ− s|2 + ρ2 − 2 |ρ| |ρ− s| cos(π/(n+ 1)).

The above quantity is minimized for ŝ = ρ+ |ρ| cos(π/(n+1)). Hence, we can compute the

distance to uncontrollability:

d(A,H) =
√

σmin(Tŝ) = |ρ| sin(π/(n+ 1)).

Finally (6.15) follows from (6.14) using the elementary calculus inequality

2x

π
≤ sinx ≤ x, for 0 ≤ x ≤ π/2,

which completes the proof.

Lemma 6.4. System (6.9) is µ-bounded away from uncontrollability with µ−1 ≤ ρ−1(n+1).

Proof. Let ∗ denote the complex conjugate. Then we have:

[
A− sI H

] [
A− sI H

]∗
= Ts + e1e

′
1 ⪰ Ts

where Ts is a tridiagonal Toeplitz matrix defined above in (6.17). Now the proof is identical
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to the proof of Lemma 6.3 but we have inequality instead of equality:

d(A,H) ≥
√
σmin(Tŝ) = |ρ| sin(π/(n+ 1)) ≥ 2 |ρ| /(n+ 1) ≥ |ρ| /(n+ 1).

Lemma 6.5 (Triangle inequality). Let d(A,H) be the distance to uncontrollability for some

matrices A ∈ Rn×n, H ∈ Rr×n and let ∥Â−A∥2 ≤ ϵ < d(A,H) for some matrix Â ∈ Rn×n.

Then:

d(Â,H) ≥ d(A,H)− ϵ. (6.18)

Proof. Assume that d(Â,H) < d(A,H)− ϵ and let

[
∆Â ∆Ĥ

]
be the perturbation such

that (Â+∆Â,H+∆Ĥ) is uncontrollable with d(Â,H) = ∥
[
∆Â ∆Ĥ

]
∥2. Then, we can

define a perturbation for the original pair (A,H) that contradicts the definition of d(A,H):

∆A = A− Â+∆Â, ∆H = ∆Ĥ.

The perturbation makes (A,H) uncontrollable and by the triangle inequality, it has norm

∥
[
∆A ∆H

]
∥2 ≤ d(Â,H) + ϵ < d(A,H). Since this is impossible (6.18) holds.

6.10 Proofs

6.10.1 Proof of Lemma 6.1

In this section, we establish upper bounds on the gramian matrices Γk. Contrary to previ-

ous approaches we avoid using the Jordan form of matrix A. We do not want our bounds to

depend on the condition number of the Jordan transformation which can be ill-posed and

badly conditioned. Instead, we should use stable transformations like the Schur decompo-

sition.

Proof. When n = 1 the proof is immediate. So let n ≥ 2. Consider the Schur triangular
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form (Horn & Johnson, 2012, Chapter 2.3) of A:

A = UDU∗,

where D is upper triangular, U is unitary, and ∗ denotes complex conjugate. Let Λ be the

diagonal part of D, which contains all eigenvalues of A as elements. Notice that D − Λ is

upper triangular with zero diagonal elements, while Λ is diagonal. Thus, any product of

the form

Λt0(D − Λ)s1Λt1 · · · (D − Λ)skΛtk = 0, if s1 + · · ·+ sk ≥ n.

where s1, . . . , sk and t0, t1, . . . , tk are two collections of integers, for some k ≥ 1. Now we

can simplify the expression:

Dk = (Λ +D − Λ)k =
∑

d1,...,dk∈{0,1}k
Fd1 · · ·Fdk

=
∑

d1,...,dk∈{0,1}k
d1+···+dk≤n−1

Fd1 · · ·Fdk ,

where F1 = D − Λ, F0 = Λ. Notice that ∥D − Λ∥2 ≤ ∥D∥2 = ∥A∥2 ≤ M , where the first

inequality follows from the fact that D − Λ is a submatrix if D. Since the eigenvalues of

A are inside or on the unit circle, we have
∥∥Λt
∥∥
2
≤ 1, for all t ≥ 0. Hence, by a counting

argument

∥∥∥Ak
∥∥∥
2
=
∥∥∥Dk

∥∥∥ ≤
n−1∑
t=0

(
k

t

)
max

{
M t, 1

}
≤

n−1∑
t=0

(
k

t

)
max

{
Mn−1, 1

}
.

To conclude, we use the known bound (Vershynin, 2018, Exercise 0.0.5):

n−1∑
t=0

(
k

t

)
≤
(

ek

n− 1

)n−1
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Since we obtained a bound on the powers of matrix A, we can immediately obtain an

upper bound on the Gramian as a corollary.

Corollary 6.1. Let A ∈ Rn×n have all eigenvalues inside or on the unit circle, with ∥A∥2 ≤

M . Let H ∈ Rn×r, r ≤ n with ∥H∥2 ≤ M . Then, the gramian Γk(A,H) is upper bounded

by:

∥Γk(A,H)∥2 ≤ e2n−2k2n−1max
{
M2n, 1

}
(6.19)

6.10.2 Proof of Theorem 6.2

Let β be any non-zero number. Fix an accuracy parameter ϵ > 0 and a confidence 0 < δ < 1.

Consider the systems:

A1 =


0 0 0

0 0 β

0 0 0

 , A2 =


0 2ϵ 0

0 0 β

0 0 0

 ,

H1 = H2 =

[
e1 e3

]
.

Both systems are controllable and belong to the class Cn for any non-zero β ̸= 0. However,

they are arbitrarily close to uncontrollability for small β. Let fSi(x0, . . . , xN ) denote the

probability density function of the distribution of the data under system Si, i = 1, 2. Then

the log-likelihood ratio under S1, S2 is:

LN = log
fS1(x0, . . . , xN )

fS2(x0, . . . , xN )
.

Due to the Markovian structure of the linear system, we can write fSi(x0, . . . , xN ) =∏N
k=1 fSi(xk|xk−1), for i = 1, 2. Moreover, due to the structure of the dynamical systems:

fSi(xk|xk−1) = fSi(xk,1|xk−1,2)fSi(xk,2, xk,3|xk−1,2xk−1,3).
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However, systems A1, A2 have identical distributions for xk,2 and xk,3. As a result, the

log-likelihood ratio becomes:

LN =
N∑
k=1

log
fS1(xk,1|xk−1,2)

fS2(xk,1|xk−1,2)
.

The KL divergence can now be computed:

KL(PS1 ,PS2) = ES1LN

= ES1

N∑
k=1

ES1

(
log

fS1(xk,1|xk−1,2)

fS2(xk,1|xk−1,2)
|Fk−1

)

= ES1

N∑
k=1

KL(N (0, 1),N (2ϵxk−1,2, 1))

= ES1

N∑
k=1

(2ϵxk−1,2)
2/2 ≤ 2ϵ2NΓN,22(A,H),

where we used ES1x
2
k−1,2 = Γk−1,22 ≤ ΓN,22 along with the fact that the KL-divergence

between two scalar Gaussians is:

KL(N (µ1, 1),N (µ2, 1)) = (µ1 − µ2)
2/2

A simple computation shows that Γk,22 = b2, for all k ≥ 1. Then, it follows from

Lemma 6.2 that (6.2) holds only if:

N ≥ 1

β22ϵ2
log

1

3δ
.

However β is arbitrary, which implies that (6.2) holds only if:

N ≥ sup
β ̸=0

1

β24ϵ2
log

1

3δ
= ∞.
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6.10.3 Proof of Theorem 6.3

Consider system (6.9) with ρ = 1/4 and the perturbed system Ã = A + 2ϵe1e
′
2, H̃ = H,

where we modify A12 by 2ϵ. Both pairs (A,H), (Â, Ĥ) are controllable. From Lemma 6.4,

we obtain that d(A,H) ≥ (4(n + 1))−1 ≥ (8(n + 1))−1. Fix an ϵ ≤ (16(n + 1))−1. Then,

from Lemma 6.5, we also get that d(Â, Ĥ) ≥ d(A,H) − 2ϵ ≥ (8(n + 1))−1. Hence, both

systems belong to the class Cn.

Define S1 = (A,H), S2 = (Â, Ĥ). Following the same arguments as in the proof of

Theorem 6.2, the KL divergence of the distribution of the data under A and Â is equal to

KL(PS1 ,PS2) = ES1LN

= ES1

N∑
k=1

ES1

(
log

fS1(xk,1|xk−1,2)

fS2(xk,1|xk−1,2)
|Fk−1

)

= ES1

N∑
k=1

KL(N (ρxk−1,2, 1),N ((ρ+ 2ϵ)xk−1,2, 1))

= ES1

N∑
k=1

(2ϵxk−1,2)
2/2 ≤ 2ϵ2NΓN,22(A,H).

From Lemma 6.6, we obtain the exponential decay bound:

ΓN,22(A,H) ≤ 4−n+2/3.

Finally, from Lemma 6.2, equation (6.2) holds only if:

N ≥ 1

2ϵ2ΓN,22(A,H)
log

1

3δ
≥ 4n−2

6ϵ2
log

1

3δ
.

Lemma 6.6. Consider system (6.9) with ρ < 1/2. Then

Γk,22(A,H) ≤ (2ρ)2n−2/(1− 4ρ2).
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Proof. Notice that e′2A
sH = 0 for all s ≤ n− 2 and ∥A∥ ≤ 2ρ < 1. Hence,

e′2Γk(A,H)e2 ≤
k∑

s=n−1

e2A
sQA

′se′2

≤
∞∑

s=n−1

(2ρ)2s = (2ρ)2n−2/(1− 4ρ2).

6.10.4 Proof of Theorem 6.4

By Γk = Γk(A,H) + Γk(A,B) we denote the Gramian under both H,B. Define also the

sigma-algebra:

F̄k = σ(w0, u0, . . . , wk, uk).

We will apply Theorem 2.4 in Simchowitz et al. (2018) to the combined state-input vectors

with three modifications since the noise is not isotropic. First, we compute the sub-Gaussian

parameter of the noise.

Definition 5. A zero mean random vector w ∈ Rr×1 is called σ2−sub-Gaussian with respect

to a sigma algebra F if for every unit vector u ∈ Rr×:

E
(
esu

′w|F
)
≤ es

2σ2/2.

From the definition, it follows that the non-isotropic Gaussian vector Hwk is sub-

Gaussian with parameter ∥H∥22.

Lemma 6.7. Let wk ∈ Rr×1 be 1-sub-Gaussian with respect to F̄k−1. Then Hwk is

∥H∥22−sub-Gaussian with respect to F̄k−1.

Proof. Let u ∈ Rr×1 be a unit vector. Then:

E
(
esu

′Hwk |F̄k−1

)
= E

(
e
s∥u′H∥ u′H

∥u′H∥wk |F̄k−1

)
≤ es

2∥u′H∥22/2 ≤ es
2∥H∥22/2
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Second, define yk =

[
x′k u′k

]′
. It follows that for all j ≥ 0 and all unit vectors

v ∈ R(n+p)×1, the following small-ball condition is satisfied:

1

2κ

2κ∑
t=0

P(
∣∣v′yt+j

∣∣ ≥√v′Γsbv|F̄j) ≥
3

20
, (6.20)

where

Γsb =

 Γκ 0

0 Ip

 . (6.21)

Equation (6.20) follows from the same steps as in Proposition 3.1 in Simchowitz et al. (2018)

with the choice k = 2κ.

Finally, we determine an upper bound Γ̄ for the gram matrix
∑N−1

t=0 yty
′
t. Using a Markov

inequality argument as in (Simchowitz et al., 2018, proof of Th 2.1), we obtain that

P(
N−1∑
t=0

yty
′
t ⪯ Γ̄) ≥ 1− δ,

where

Γ̄ =
n+ p

δ
N

 ΓN 0

0 Ip


Now we can apply Theorem 4.2 of Simchowitz et al. (2018). With probability at least

1− 3δ we have ∥A− ÂN∥ ≤ ϵ if:

N ≥ poly(n, log 1/δ,M)

ϵ2σmin(Γκ)
log det(Γ̄Γ−1

κ ),

where we have simplified the expression by including terms in the polynomial term. Based
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on Lemma 6.1 and Theorem 6.5, we can bound the right-hand side:

poly(n, log 1/δ,M)

ϵ2σmin(Γκ)
log det(Γ̄Γ−1

κ ) ≤ poly(n, ϵ−1, log 1/δ,M)poly

(
M

µ

)κ

logN

≤ poly(n, ϵ−1, log 1/δ,M)poly (M,n)κ logN,

where we used the fact that µ−1 ≤ poly(n). Hence, it is sufficient to have:

N ≥ poly
(
n, ϵ−1, log 1/δ,M

)
poly (M,n)κ logN.

To obtain the final polynomial bound, we need to remove the logarithm of N . It is sufficient

to apply the inequality:

N ≥ c logN if N ≥ 2c log 2c,

for c > 0 which follows from elementary calculus.

6.10.5 Proof of Theorem 6.5

Our goal is to upper bound the norm of the pseudo-inverse ∥C†
κ∥ =

√
σmin(Γκ), where the

equality follows from the SVD decomposition and the definition of the gramian. Towards

proving the result, we will work with the staircase form (6.13). First, we show that if the

system is µ-away from uncontrollability, then the subdiagonal matrices in the staircase form

are bounded away from zero.

Lemma 6.8 (Staircase form lower bound). Let (A,H) ∈ Rn×(n+r) be controllable and

let Assumption 6.3 hold. Consider the staircase form of (A,H), with Ai+1,i the subdiag-

onal matrices, for i = 1, . . . , κ − 1, where κ is the controllability index. Then, we have

Ai+1,iA
′
i+1,i ⪰ µ2Iri+1 for all i = 1, . . . , κ− 1. Moreover, H1H

′
1 ⪰ µ2Ir.

Proof. Let (Â, Ĥ) be the staircase form of (A,H) under the unitary similarity transfor-

mation U . First, we show that the distance from losing index κ is invariant to unitary
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transformations. Denote ∆Â = U∗∆AU , ∆Ĥ = U∗∆H. Then:

min

{
∥
[
∆A ∆H

]
∥2 : κ(A+∆A,H +∆H) > κ

}
= min

{
∥
[
∆Â ∆Ĥ

]
∥2 : κ(A+∆A,H +∆H) > κ

}
= min

{
∥
[
∆Â ∆Ĥ

]
∥2 : κ(Â+∆Â, Ĥ +∆Ĥ) > κ

}

where the first equality follows from ∥
[
∆A ∆H

]
∥2 = ∥

[
U∗∆AU U∗∆H

]
∥2. The

second equality follows from the fact that controllability index is preserved under similarity

transformations As a result, dκ(Â, Ĥ) = dκ(A,H) ≥ µ.

Note that Ai+1,i ∈ Rri+1×ri . Hence, it is sufficient to show that σri+1(Ai+1,i) ≥ µ,

where σri+1 denotes the ri+1 smallest singular value. Assume that the opposite is true

σri+1(Ai+1,i) < µ. We will show that this contradicts the fact that (Â, Ĥ) is µ-away from

losing controllability index. Let u and v be the singular vectors in the Singular Value

Decomposition of Ai+1,i corresponding to σri+1 . Let ∆Ai+1,i ≜ −σri+1(Ai+1,i)uv
′. Then

Ai+1,i + ∆Ai+1,i is rank deficient. Now let ∆Â be zero everywhere apart from the block

∆Ai+1,i. Then, we have that (Â+∆Â, Ĥ) at time κ has singular controllability matrix:

rank(Cκ(Â+∆Â, Ĥ)) < n.

In other words,

κ(Â+∆Â, Ĥ) > κ

and we lose controllability index, with ∥∆Â∥2 < µ ≤ dκ(Â, Ĥ), which is impossible. The

proof for H1 is similar.

The above result allows us to work with the staircase form (6.13), which has a nice

triangular structure. In fact the controllability matrix is block-triangular and we can upper-

bound its least singular value using a simple recursive bound. Since the least singular value

of the Gramian is invariant to similarity transformations, we will now assume that the
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system (A,H) is now already in form (6.13) with U = I. Let us define some auxiliary

matrices that will help us prove Theorem 6.5. With Ãk, for k ≤ κ we denote the submatrix

of A when we keep the k-upper left block matrices in (6.13) and we delete the remaining

columns and rows, e.g.:

Ã2 =

 A1,1 A1,2

A2,1 A2,2

 , Ã3 =


A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

0 A3,2 A3,3

 , . . .

Similarly, we define the submatrices H̃k where we keep only the upper k blocks of the matrix

H:

H̃1 = H1, H̃2 =

[
H ′

1 0

]′
, . . . .

Finally, define the upper-left controllability submatrices C̃k:

C̃k =

[
H̃k ÃkH̃k . . . Ãk−1

k H̃k

]
∈ R

∑k
i=1 ri×(kr). (6.22)

The benefit of working with the above matrices is that they are block upper-triangular. For

example:

C̃1 = H1, C̃2 =

 H1 A1,1H1

0 A2,1H1

 , . . .

By definition Ãκ = A, H̃κ = H, and C̃κ = Cκ.

Lemma 6.9 (Recursive definition of right-inverse). Assume the pair (A,K) is in the canon-

ical representation (6.13) with U = I. Let C̃k be the upper-left part of the controllabil-

ity matrix as defined in (6.22), with k ≤ κ, where κ is the controllability index. Let

Πk = H−1
1 A†

2,1A
†
3,2 · · ·A†

k,k−1, where † denotes the Moore-Penrose pseudo-inverse. Then,

the following inequality holds recursively:

∥C̃†
k∥2 ≤ ∥C̃†

k−1∥2 + ∥Πk∥2 + ∥C̃†
k−1Ã

k−1
k−1H̃k−1Πk∥2. (6.23)
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Proof. The upper-left controllability matrix C̃k, k ≤ κ has the following block triangular

structure:

C̃k =

[
H̃k . . . Ãk−1

k H̃k Ãk−1
k H̃k

]

=

 C̃k−1 Ãk−1
k−1H̃k−1

0 Ak,k−1Ak−1,k−2 . . . H1

 . (6.24)

Based on the above form, we can construct a right-inverse of matrix C̃k:

C̃♯
k ≜

 C̃†
k−1 −C̃†

k−1Ã
k−1
k−1H̃k−1Πk

0 Πk

 ,

which satisfies C̃kC̃♯
k = I. By the definition of C̃♯

k:

∥C̃♯
k∥2 ≤ ∥C̃†

k−1∥2 + ∥Πk∥2 + ∥C̃†
k−1Ã

k−1
k−1H̃k−1Πk∥2.

To conclude the proof, we invoke Lemma 6.10.

Lemma 6.10. Let M ∈ Rs×t be any matrix with full column rank s ≤ t. Let M ♯ be any

right inverse of M , i.e. MM ♯ = Is. Then the following inequality is true:

∥M †∥2 ≤ ∥M ♯∥2,

where M † is the Moore Penrose pseudo-inverse.

Proof. Notice that M(M † − M ♯) = 0. As a result, we can write M ♯ = M † + Mnull,

where Mnull is any matrix in the null space MMnull = 0. However, the Moorse-Penrose

pseudoinverse and Mnull are orthogonal

(M †)′Mnull = 0.

By orthogonality, for every x ∈ Rt×1 we have ∥M ♯x∥2 =
√
∥M †x∥2 + ∥Mnullx∥2 ≥ ∥M †x∥2.
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Since all coupling matrices Ak,k−1, . . . , A2,1, H1 have least singular value lower bounded

by µ, the product of their pseudo-inverses is upper bounded by:

∥Πk∥ ≤ µ−k.

So, we should expect (6.23) to grow no faster than exponentially with κ. However, the main

challenge is to control the last term in (6.23). Unless we follow a careful analysis, if we just

apply the submultiplicative property of the norm we will get bounds which are exponential

with κ2 instead of κ. The idea is the following. Since by definition C̃k−1 has full rank, then

there exists an appropriate matrix Λk−1 ∈ R(k−1)r×rk such that

Ãk−1
k−1H̃k−1Πk = C̃k−1Λk−1.

Then the above bound becomes:

∥C̃†
k∥ ≤ ∥C̃†

k−1∥+ µ−k + ∥Λk−1∥, (6.25)

where we used the fact that ∥C̃†
k−1C̃k−1∥ ≤ 1. For the remaining proof, we need to construct

such a matrix Λk−1 and upper bound it.

Lemma 6.11. Let Λk−2 ∈ R(k−2)r×rk−1 be any matrix such that:

Ãk−2
k−2H̃k−2Πk−1 = C̃k−2Λk−2

There exists a matrix Λk−1 ∈ R(k−1)r×rk such that:

Ãk−1
k−1H̃k−1Πk = C̃k−1Λk−1
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with

∥Λk−1∥2 ≤
2 +M

µ
∥Λk−2∥2 +

M

µ
∥C̃†

k−2∥2 + µ−kM. (6.26)

Proof. Part A: algebraic expression for Ãk−1
k−1H̃k−1Πk. Observe that every matrix Ãk−1

includes the previous as an upper-left submatrix:

Ãk−1 =

 Ãk−2 A1:k−2,k−1

Ak−1,1:k−2 Ak−1,k−1

 ,

with

A1:k−1,k−1 =


A1,k−1

...

Ak−2,k−1

 , Ak−1,1:k−2 =

[
0 · · · 0 Ak−1,k−2

]

Let also:

Qk = Ak,k−1Ak−1,k−2 · · ·H1.

A direct computation gives:

C̃k =


C̃k−2 Ãk−2

k−2H̃k−2 Ãk−1
k−2H̃k−2 +A1:k−2,k−1Qk−1

0 Qk−1 Ak−1,1:k−2Ã
k−2
k−2H̃k−2 +Ak−1,k−1Qk−1

0 0 Qk

 . (6.27)

As a result of (6.24) and (6.27),

Ãk−1
k−1H̃k−1Πk =

 Ãk−1
k−2H̃k−2 +A1:k−2,k−1Qk−1

Ak−1,1:k−2Ã
k−2
k−2H̃k−2 +Ak−1,k−1Qk−1

Πk.

We can simplify the above expression using Qk−1Πk−1 = I and Ãk−2
k−2H̃k−2Πk−1 = C̃k−2Λk−2:

Ãk−1
k−1H̃k−1Πk =

 Ãk−2C̃k−2Λk−2 +A1:k−2,k−1

Ak−1,1:k−2C̃k−2Λk−2 +Ak−1,k−1

 Ã†
k,k−1. (6.28)
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Part B: last rows as linear combination.

Our goal is to express (6.28) as a linear combination of the columns of:

C̃k−1 =

 C̃k−2 Ãk−2
k−2H̃k−2

0 Qk−1

 .

Since C̃k−1 has a triangular structure, we start from the last rk−1 rows of Ãk−1
k−1H̃k−1Πk

Exploiting the structure of Ak−1,1:k−2, which includes many zeros we can write:

Ak−1,1:k−2C̃k−2Λk−2 +Ak−1,k−1

=

[
0 · · · 0 Ak−1,k−2

] C̃k−3 Ãk−3
k−3H̃k−1

0 Ak−2,k−3Ak−3,k−4 . . . H1

Λk−2 +Ak−1,k−1

= Ak−1,k−2Qk−2Λk−2,k−2 +Ak−1,k−1

= Qk−1Λk−2,k−2 +Ak−1,k−1,

where Λk−2,k−2 ∈ Rr×rk−1 are the last r rows of matrix Λk−2:

Λk−2 =


Λk−2,1

...

Λk−2,k−2

 .

Finally, we car rewrite the last rk−1 rows of Ãk−1
k−1H̃k−1Πk as:

(Ak−1,1:k−2C̃k−2Λk−2 +Ak−1,k−1)Ã
†
k,k−1 = Qk−1(Λk−2,k−2 +Πk−1Ak−1,k−1)Ã

†
k,k−1 (6.29)

Part c: remaining rows.
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From (6.29), we can eliminate the last rows:

Ãk−1
k−1H̃k−1Πk −

 Ãk−2
k−2H̃k−2

Qk−1

 (Λk−2,k−2 +Πk−1Ak−1,k−1)Ã
†
k,k−1 =

 Ãk−2C̃k−2Λk−2 +A1:k−2,k−1 − Ãk−2
k−2H̃k−2Λk−2,k−2 − Ãk−2

k−2H̃k−2Πk−1Ak−1,k−1

0

 Ã†
k,k−1

=

 Ãk−2C̃k−2Λk−2 +A1:k−2,k−1 − Ãk−2
k−2H̃k−2Λk−2,k−2 − C̃k−2Λk−2Ak−1,k−1

0

 Ã†
k,k−1

Notice that by the shift structure of the controllability matrix:

Ãk−2C̃k−2Λk−2 − Ãk−2
k−2H̃k−2Λk−2,k−2

=

[
Ãk−2H̃k−2 . . . Ãk−2

k−2H̃k−2

]
Λk−2 − Ãk−2

k−2H̃k−2Λk−2,k−2

=

[
Ãk−2H̃k−2 . . . Ãk−3

k−2H̃k−2 0

]
Λk−2

=

[
H̃k−2 Ãk−2H̃k−2 . . . Ãk−3

k−2H̃k−2

]
Λshift
k−2

= C̃k−2Λ
shift
k−2 .

where

Λshift
k−2 =



0

Λk−2,1

...

Λk−2,k−3


.

Moreover, we can write A1:k−2,k−1 = C̃k−2C̃†
k−2A1:k−2,k−1

Part d: construction of Λk−1.
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Combining the above equalities:

Ãk−1
k−1H̃k−1Πk =

 Ãk−2
k−2H̃k−2

Qk−1

 (Λk−2,k−2 +Πk−1Ak−1,k−1)Ã
†
k,k−1

+

 C̃k−2

0

 (Λshift
k−2 + C̃†

k−2A1:k−2,k−1 − Λk−2Ak−1,k−1)Ã
†
k,k−1.

Hence we can select:

Λk−1 =


(
Λshift
k−2 + C̃†

k−2A1:k−2,k−1 − Λk−2Ak−1,k−1

)
Ã†

k,k−1

(Λk−2,k−2 +Πk−1Ak−1,k−1) Ã
†
k,k−1

 ,

with

∥Λk−1∥ ≤ (2 +M)µ−1 ∥Λk−2∥+Mµ−1∥C̃†
k−2∥+ µ−kM

Now we can complete the proof of Theorem 6.5. It is sufficient to select Λ1:

A1,1H1Π2 = H1H
−1
1 A1,1A

†
2,1 = C̃1Λ1,

with ∥Λ1∥2 ≤ Mµ−2. Let αk =

[
∥C̃†

k∥ ∥Λk∥ µ−k

]′
. From (6.25), (6.26) we obtain the

following recursion:

αk ≤


1 1 µ−1

M
µ

2+M
µ

M
µ

0 0 µ−1

αk−1,

where the inequality is interpreted coordinate-wise. Let Ξ be the matrix of the above

recursion. We have the crude bound:

∥C†
κ∥2 = ∥C̃†

κ∥2 ≤ ∥Ξκ−1∥2∥α1∥2,
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where ∥Ξκ∥2∥α1∥2 ≤ polyκ(M/µ). This completes the proof.
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Chapter 7

Difficulty of Learning to Control

Linear Systems

7.1 Introduction

Let us consider again linear systems of the form

S : xk+1 = Axk +Buk +Hwk, (7.1)

where xk ∈ Rn is the system state, uk ∈ Rp is some exogenous input, and wk ∈ Rr is some

random disturbance sequence. Control theory has a long history of studying how to design

controllers for system (7.1) when its model is known (Bertsekas, 2017). However, in reality

system (7.1) might be unknown and we might not have access to its model. In this case, we

have to learn how to control (7.1) based on data. In the previous chapter we only focused on

the problem of recovering the model of (7.1). In this chapter, we will focus on the problem

of learning to control (7.1).

Controlling unknown dynamical systems has also been studied from the perspective

of Reinforcement Learning (RL). Although the setting of tabular RL is relatively well-

understood (Jaksch et al., 2010), it has been challenging to analyze the continuous setting,

where the state and/or action spaces are infinite (Ortner & Ryabko, 2012; Kakade et al.,
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2020). Recently, there has been renewed interest in learning to control linear systems.

Indeed, linear systems are simple enough to allow for an in-depth theoretical analysis, yet

exhibit sufficiently rich behavior so that we can draw conclusions about continuous control

of more general system classes (Recht, 2019). Here, we focus on the following two problems.

Regret of online LQR. A fundamental benchmark for continuous control is the Linear

Quadratic Regulator (LQR) problem, where the goal is to compute a policy π that minimizes

J∗(S) ≜ min
π

lim
T→∞

1

T
ES,π

[
T−1∑
t=0

(x′tQxt + u′tRut) + x′TQTxT

]
. (7.2)

When model (7.1) is known, LQR enjoys a closed-form solution; the optimal policy is a

linear feedback law π⋆,t(xt) = K⋆xt, where the control gain K⋆ is given by solving the

celebrated Algebraic Riccati Equation (7.7). If model (7.1) is unknown, we have to learn

the optimal policy from data. In the online learning setting, the goal of the learner is to

find a policy that adapts online and competes with the optimal LQR policy that has access

to the true model. The suboptimality of the online learning policy at time T is captured

by the regret

RT (S) ≜
T−1∑
t=0

(x′tQxt + u′tRut) + x′TQTxT − TJ∗(S). (7.3)

The learning task is to find a policy with as small regret as possible.

Sample Complexity of Stabilization Another important benchmark is the problem

of stabilization from data. The goal is to learn a linear gain K ∈ Rm×n such that the

closed-loop system A + BK is stable, i.e., such that its spectral radius ρ(A + BK) is less

than one. Many algorithms for online LQR require the existence of such a stabilizing gain to

initialize the online learning policy (Simchowitz & Foster, 2020; Jedra & Proutiere, 2021).

Furthermore, stabilization is a problem of independent interest (Faradonbeh et al., 2018b).

In this setting, the learner designs an exploration policy π and an algorithm that uses

batch state-input data x0, . . . , xN , u0, . . . , uN−1 to output a control gain K̂N , at the end of

the exploration phase. Here we focus on sample complexity, i.e., the minimum number of

samples N required to find a stabilizing gain.
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Since the seminal papers by Abbasi-Yadkori & Szepesvári (2011) and Dean et al. (2017)

both LQR and stabilization have been studied extensively in the literature – see Sec-

tion 7.1.1. Current state-of-the-art results state that the regret of online LQR and the

sample complexity of stabilization scale at most polynomially with system dimension n

RT (S) ≲ Csys
1 poly(n)

√
T , N ≲ Csys

2 poly(n), (7.4)

where Csys
1 , Csys

2 are system specific constants that depend on several control theoretic

quantities of system (7.1). However, the above statements might not reveal the whole

picture.

In fact, system theoretic parameters Csys
1 , Csys

2 can actually hide dimensional depen-

dence on n. This dependence has been overlooked in prior work. As we show in this

chapter, there exist non-trivial classes of linear systems for which system theoretic param-

eters scale dramatically, i.e. exponentially, with the dimension n. As a result, the system

theoretic quantities Csys
1 , Csys

2 might be very large and in fact dominate the poly(n) term

in the upper bounds (7.4). This phenomenon especially arises in systems which are struc-

turally difficult to control, such as for example underactuated systems. Then, the upper

bounds (7.4) suggest that learning might be difficult for such instances. This brings up the

following questions. Can learning LQR or stabilizing controllers indeed be hard for such

systems? How does system structure affect difficulty of learning?

To answer the first question, we need to establish lower bounds. As we discuss in Sec-

tion 7.1.1, existing lower bounds for online LQR (Simchowitz & Foster, 2020) might not

always reveal the dependence on control theoretic parameters. Chen & Hazan (2021) pro-

vided exponential lower bounds for the start-up regret of stabilization. Still, to the best of

our knowledge, there are no existing lower bounds for the sample complexity of stabiliza-

tion. Recently, it was shown that the sample complexity of system identification can grow

exponentially with the dimension n (Tsiamis & Pappas, 2021). However, it is not clear if

difficulty of identification translates into difficulty of control. Besides, we do not always

need to identify the whole system in order to control it (Gevers, 2005). To answer the
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second question, we need to provide upper bounds for several control theoretic parameters.

Our contributions are the following:

Exp(n) Stabilization Lower Bounds. We prove an information-theoretic lower

bound for the problem of learning stabilizing controllers, showing that it can indeed be

statistically hard for underactuated systems. In particular, we show that the sample com-

plexity of stabilizing an unknown underactuated linear system can scale exponentially with

the state dimension n. To the best of our knowledge this is the first work to address this

issue and consider lower bounds in this setting.

Exp(n) LQR Regret Lower Bounds. We show that the regret of online LQR can

scale exponentially with the dimension as exp(n)
√
T . In fact, even common integrator-like

systems can exhibit this behavior. To prove our result, we leverage recent regret lower

bounds (Ziemann & Sandberg, 2022), which provide a more refined analysis linking regret

to system theoretic parameters. Chen & Hazan (2021) first showed that the start-up cost

of the regret (terms of low order) can scale exponentially with n. Here, we show that this

exponential dependence can also affect multiplicatively the dominant
√
T term.

Exponential Upper Bounds. Under some additional structural assumptions (bound-

ing systems away from uncontrollability), we provide matching global upper bounds. We

show that the sample complexity of stabilization and the regret of online LQR can be at

most exponential with the dimension n. In fact, we prove a stronger result, that they can be

at most exponential with the controllability index of the system, which captures the struc-

tural difficulty of control – see Section 7.3. This implies that if the controllability index is

small with respect to the dimension n, then learning is guaranteed to be easy.

7.1.1 Related Work

System Identification. A related problem is that of system identification, where the

learning objective is to recover the model parameters A,B,H from data (Matni & Tu,

2019). The sample complexity of system identification was studied extensively in the setting

of fully observed linear systems (Dean et al., 2017; Simchowitz et al., 2018; Faradonbeh et al.,

176



2018a; Sarkar & Rakhlin, 2018; Fattahi et al., 2019; Jedra & Proutiere, 2019; Wagenmaker

& Jamieson, 2020; Efroni et al., 2021) as well as partially-observed systems (Oymak &

Ozay, 2018; Sarkar et al., 2019; Simchowitz et al., 2019; Tsiamis & Pappas, 2019; Lee

& Lamperski, 2020; Zheng & Li, 2020; Lee, 2020; Lale et al., 2020b). Recently, it was

shown that the sample complexity of system identification can grow exponentially with the

dimension n (Tsiamis & Pappas, 2021).

Learning Feedback Laws. The problem of learning stabilizing feedback laws from data

was studied before in the case of stochastic (Dean et al., 2017; Tu et al., 2017; Faradonbeh

et al., 2018b; Mania et al., 2019) as well as adversarial (Chen & Hazan, 2021) disturbances.

The standard paradigm has been to perform system identification, followed by a robust

control or certainty equivalent gain design. Prior work is limited to sample complexity

upper bounds. To the best of our knowledge, there have been no sample complexity lower

bounds.

Online LQR. While adaptive control in the LQR framework has a rich history (Matni

et al., 2019), the recent line of work on regret minimization in online LQR begins with

Abbasi-Yadkori & Szepesvári (2011). They provide a computationally intractable algorithm

based on optimism attaining O(
√
T ) regret. Algorithms based on optimism have since been

improved and made more tractable (Ouyang et al., 2017a; Abeille & Lazaric, 2018; Abbasi-

Yadkori et al., 2019; Cohen et al., 2019; Abeille & Lazaric, 2020). In a closely related line of

work, Dean et al. (2018) provide an O(T 2/3) regret bound for robust adaptive LQR control,

drawing inspiration from classical methods in system identification and robust adaptive

control. It has since been shown that certainty equivalent control, without robustness, can

attain the (locally) minimax optimal O(
√
T ) regret (Mania et al., 2019; Faradonbeh et al.,

2020a; Lale et al., 2020a; Jedra & Proutiere, 2021). In particular, by providing nearly

matching upper and lower bounds, Simchowitz & Foster (2020) refine this analysis and

establish that the optimal rate, without taking system theoretic quantities into account, is

RT = Θ(
√
p2nT ). In this work, we rely on the lower bounds by Ziemann & Sandberg (2022),

which provide a refined instance specific analysis and also lower bounds for the partially
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observed setting. Since their bounds exhibit more direct dependencies on control-theoretic

parameters, we may use them here to show that certain non-local minimax complexities

can be far worse than RT = Ω(
√
p2nT ) and scale exponentially in the problem dimension.

Indeed, an exponential start-up cost has already been observed by Chen & Hazan (2021).

Here we show that this exponential dependency can persist multiplicatively even for large

T .

7.1.2 Notation

The transpose of X is denoted by X ′. For vectors v ∈ Rd, ∥v∥2 denotes the ℓ2-norm. For

matrices X ∈ Rd1×d2 , the spectral norm is denoted by ∥X∥2. For comparison with respect

to the positive semi-definite cone we will use ⪰ or ≻ for strict inequality. By P we will

denote probability measures and by E expectation. By poly(·) we denote a polynomial

function of its arguments. By exp(·) we denote a exponential function of its arguments.

7.2 Problem Statement

System (7.1) is characterized by the matrices A ∈ Rn×n, B ∈ Rn×p, H ∈ Rn×r. We assume

that wk ∼ N (0, Ir) is i.i.d. Gaussian with unit covariance. Without loss of generality the

initial state is assumed to be zero x0 = 0. In a departure from prior work, we do not

necessarily assume that the noise is isotropic. Instead, we consider a more general model,

where the noise Hwk is allowed to be anisotropic and potentially degenerate.

Assumption 7.1. Matrices A,B,H and the noise dimension r ≤ n are all unknown. The

unknown matrices are bounded, i.e. ∥A∥2, ∥B∥2, ∥H∥2 ≤ M , for some positive constant

M ≥ 1. Matrices B,H have full column rank rank(B) = p ≤ n, rank(H) = r ≤ n. We also

assume that the system is non-explosive ρ(A) ≤ 1.

The boundedness assumption on the state parameters allows us to argue about global

sample complexity upper bounds. To simplify the presentation, we make the assumption

that the system is non-explosive ρ(A) ≤ 1. This setting includes marginally stable systems
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and is rich enough to provide insights about the difficulty of learning more general systems.

A policy is a sequence of functions π = {πt}N−1
t=0 . Every function πt maps previ-

ous state-input values x0, . . . , xt, u0, . . . , ut−1 and potentially an auxiliary randomization

signal AUX to the new input ut. Hence all inputs ut are Ft-measurable, where Ft ≜

σ(x0, . . . , xt, u0, . . . , ut−1,AUX). For brevity we will use the symbol S to denote a system

S = (A,B,H). Let PS,π (ES,π(·)) denote the probability distribution (expectation) of the

input-state data when the true system is equal to S and we apply a policy π.

7.2.1 Difficulty of Stabilization

In the stabilization problem, the goal is to find a state-feedback control law u = Kx, where

K renders the closed-loop system A + BK stable with spectral radius less than one, i.e.,

ρ(A+BK) < 1. We assume that we collect data x0, . . . , xN , u0, . . . , uN , which are generated

by system (7.1) using any exploration policy π, e.g. white-noise excitation, active learning

etc. Since we care only about sample complexity, the policy is allowed to be maximally

exploratory. To make the problem meaningful, we restrict the average control energy.

Assumption 7.2. The control energy is bounded ES,π∥ut∥22 ≤ σ2
u, for some σu > 0.

Next, we define a notion of learning difficulty for classes of linear systems. By Cn we

will denote a class of systems with dimension n. We will define as easy, classes of linear

system that exhibit poly(n) sample complexity.

Definition 6 (Poly(n)-stabilizable classes). Let Cn be a class of systems. Let K̂N be a

function that maps input-state data (u0, x1), . . . ,(uN−1, xN ) to a control gain. We call the

class Cn poly(n)−stabilizable if there exists an algorithm K̂N and an exploration policy π

satisfying Assumption 7.2, such that for any confidence 0 ≤ δ < 1:

sup
S∈Cn

PS,π

(
ρ(A+BK̂N ) ≥ 1

)
≤ δ, if N ≥ poly(n, log 1/δ,M). (7.5)

The above class-specific definition can be turned into a local, instance-specific, definition

of sample complexity by considering a neighborhood around an unknown system. The

179



question then arises whether linear systems are generally poly(n)-stabilizable.

Problem 7.1. Are there linear system classes which are not poly(n)-stabilizable? When

can we guarantee poly(n)-stabilizability?

7.2.2 Difficulty of Online LQR

Consider the LQR objective (7.2). Let the state penalty matrix Q ∈ Rn×n ≻ 0 be positive

definite, with the input penalty matrix R ∈ Rp×p also positive definite. When the model is

known, the optimal policy is a linear feedback law π⋆ = {K⋆xk}T−1
k=0 , where K⋆ is given by

K⋆ = −(B′PB +R)−1B′PA, (7.6)

and P is the unique positive definite solution to the Discrete Algebraic Riccati Equation

P = A′PA+Q−A′PB(B′PB +R)−1B′PA. (7.7)

Throughout the chapter, we will assume that QT = P . If the model of (7.1) is unknown,

the goal of the learner is to find an online learning policy π that leads to minimum regret

RT (S). In the setting of online LQR, the data are revealed sequentially, i.e. xt+1 is revealed

after we select ut. Contrary to the stabilization problem, here we study regret, i.e. there

is a tradoff between exploration and exploitation. We will define a class-specific notion of

learning difficulty based on the ratio between the regret and
√
T .

Definition 7 (Poly(n)-Regret). Let Cn be a class of systems of dimension n. We say that

the class Cn exhibits poly(n) minimax expected regret if

min
π

sup
S∈Cn

ES,πRT (S) ≤ poly(n,M, log T )
√
T + Õ(1), (7.8)

where Õ(1) hides poly log T terms.

Our definition here is based on expected regret, but we could have a similar definition

based on high probability regret guarantees – see Dann et al. (2017) for distinctions between
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the two definitions. Similar to the stabilization problem, we pose the following questions.

Problem 7.2. Are there classes of systems for which poly(n)-regret is impossible? When

is poly(n)-regret guaranteed?

7.3 Classes with Rich Controllability Structure

Before we present our learning guarantees, we need to find classes of systems, where learning

is meaningful. To make sure that the stabilization and the LQR problems are well-defined,

we assume that system (7.1) is controllable4.

Assumption 7.3. System (7.1) is (A,B) controllable, i.e. matrix

Ck(A,B) ≜

[
B AB · · · Ak−1B

]
(7.9)

has full column rank rank(Ck(A,B)) = n, for some k ≤ n.

Unsurprisingly, the class of all controllable systems does not exhibit finite sample com-

plexity/regret, let alone polynomial sample complexity/regret. The main issue is that there

exist systems which satisfy the rank condition but are arbitrarily close to uncontrollability.

For example, consider the following controllable system, which we want to stabilize

xk+1 =

 1 α

0 0

xk +

 0

1

uk + wk.

The only way to stabilize the system is indirectly by using the second state xk,2, via the

coupling coefficient α. However, we need to know the sign of α. If α is allowed to be

arbitrarily small, i.e. the system is arbitrarily close to uncontrollability, then an arbitrarily

large number of samples is required to learn the sign of α, leading to infinite complexity.

To obtain classes with finite sample complexity/regret we need to bound the system in-

stances away from uncontrollability. One way is to consider the least singular value of the

4We can slightly relax the condition to (A,B) stabilizable (Lale et al., 2020a; Simchowitz & Foster, 2020;
Efroni et al., 2021). To avoid technicalities we leave that for future work.
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controllability Gramian Γk(A,B) at time k:

Γk(A,B) ≜
k−1∑
t=0

AtBB′(A′)t. (7.10)

An implicit assumption in prior literature is that σ−1
min(Γk(A,B)) ≤ poly(n). We will not

assume this here, since it might exclude many systems of interest, such as integrator-like

systems, also known as underactuated systems. Instead, we will relax this requirement to

allow richer system structures.

To avoid pathologies, we will lower bound the coupling between states in the case of

indirectly controlled systems. To formalize this idea, let us review some notions from system

theory. The controllability index is defined as follows

κ(A,B) ≜ min {k ≥ 1 : rank(Ck(A,B)) = n} , (7.11)

i.e., it is the minimum time such that the controllability rank condition is satisfied. It

captures the degree of underactuation and reflects the structural difficulty of control.

Based on the fact that the rank of the controllability matrix at time κ is n, we can

show that the pair (A,B) admits the following canonical representation, under a unitary

similarity transformation (Dooren, 2003). It is called the Staircase or Hessenberg form of

system (7.1).

Proposition 7.1 (Staircase form). Consider a controllable pair (A,B) with controllability

index κ and controllability matrix Ck, k ≥ 0. There exists a unitary similarity transforma-
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tion U ∈ Rn×n such that U ′U = UU ′ = I and:

U ′B =



B1

0

0

0

...

0


, U ′AU =



A1,1 A1,2 · · · A1,κ−1 A1,κ

A2,1 A2,2 · · · A3,κ−1 A2,κ

0 A3,2 · · · A3,κ−1 A3,κ

0 0 · · · A4,κ−1 A4,κ

...
...

0 0 · · · Aκ,κ−1 Aκ,κ


, (7.12)

where Ai,j ∈ Rpi×pj are block matrices, with pi = rank(Ci)− rank(Ci−1), p1 = p, B1 ∈ Rp×p.

Matrices Ai+1,i have full row rank rank(Ai+1,i) = pi+1 and the sequence pi is decreasing.

Matrix U is the orthonormal matrix of the QR decomposition of the first n independent

columns of Cκ(A,B). It is unique up to sign flips of its columns. The above representa-

tion captures the coupling between the several sub-states via the matrices Ai+1,i. It has

been used before as a test of controllability Dooren (2003). This motivates the following

definition, wherein we bound the coupling matrices Ai+1,i away from zero.

Definition 8 (Robustly coupled systems). Consider a controllable system (A,B) with con-

trollability index κ. It is called µ−robustly coupled if and only if for some positive µ > 0:

σp(B1) ≥ µ, σpi+1(Ai+1,i) ≥ µ, for all 2 ≤ i ≤ κ− 1, (7.13)

where B1, Ai+1,i are defined as in the Staircase form (7.12).

In the previous example, by introducing the µ−robust coupling requirement, we enforce

a lower bound on the coupling coefficient α ≥ µ, thus, avoiding pathological systems.

7.4 Difficulty of Stabilization

In this section, we show that there exist non-trivial classes of linear systems for which the

problem of stabilization from data is hard. In fact, the class of robustly coupled systems
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requires at least an exponential, in the state dimension n, number of samples.

Theorem 7.1 (Stabilization can be Hard). Consider the class Cµ
n,κ of all µ-robustly coupled

systems S = (A,B,H) of dimension n and controllability index κ. Let Assumption 7.2 hold

and let µ < 1. Then, for any stabilization algorithm, the sample complexity is exponential

in the index κ. For any confidence 0 ≤ δ < 1/2 the requirement

sup
S∈Cµ

n,κ

PS,π

(
ρ(A+BK̂N ) ≥ 1

)
≤ δ

is satisfied only if

Nσ2
u ≥ 1

2

(
1

µ

)2κ−2(1− µ

µ

)2

log
1

3δ
.

Theorem 7.1 implies that system classes with large controllability index, e.g. κ = n,

suffer in general from sample complexity which is exponential with the dimension n. In

other words, learning difficulty arises in the case of under-actuated systems. Only a limited

number of system states are directly driven by inputs and the remaining states are only

indirectly excited, leading to a hard learning and stabilization problem. Consider now

systems

Si : xk+1 =



1 αiµ 0 · · · 0

0 0 µ · · · 0

. . .
. . .

0 0 0 · · · µ

0 0 0 · · · 0


xk +



0

0

...

0

µ


uk +



1

0

...

0

0


wk, i ∈ {1, 2} , (7.14)

where 0 < µ < 1, α1 = 1, α2 = −1. Systems S1, S2 are almost identical with the exception

of element A12 where they have different signs. Both systems have one marginally stable

mode corresponding to state xk,1. The only way to stabilize xk,1 with state feedback is

indirectly, via xk,2. Given system S1, since α1µ > 0, it is necessary that the first component

of the gain is negative K̂N,1 < 0. This follows from the Jury stability criterion, a standard

stability test in control theory (Fadali & Visioli, 2013, Ch. 4.5)–see Section 7.9. On the
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other hand, we can only stabilize S2 if K̂N,1 > 0. Hence, the only way to stabilize the system

is to identify the sign of αi. In other words, we transform the stabilization problem into

a system identification problem. However, identification of the correct sign is very hard

since the excitation of xk,2 = µn−1uk−n+1 scales with µn−1. The proof relies on Birgé’s

inequality (Boucheron et al., 2013). In Section 7.9 we construct a slightly more general

example with non-zero diagonal elements. Our construction relies on the fact that µ < 1.

It is an open question whether we can construct hard learning instances for µ ≥ 1.

One insight that we obtain from the above example is that lack of excitation might lead

to large sample complexity of stabilization. In particular, this can happen when we have an

unstable/marginally stable mode, which can only be controlled via the system identification

bottleneck, like A1,2 in the above example.

7.4.1 Sample complexity upper bounds

As we show below, sample complexity cannot be worse than exponential under the assump-

tion of robust coupling. If the exploration policy is a white noise input sequence, then using

a least squares identification algorithm (Simchowitz et al., 2018), and a robust control de-

sign scheme (Dean et al., 2017), the sample complexity can be upper bounded by a function

which is at most exponential with the dimension n. In fact, we provide a more refined

result, directly linking sample complexity to the controllability index κ. Our proof relies

on bounding control theoretic quantities like the least singular value of the controllablility

Gramian. The details of the proof and the algorithm can be found in Section 7.10.

Theorem 7.2 (Exponential Upper Bounds). Consider the class C
µ
n,κ of all µ-robustly cou-

pled systems S = (A,B,H) of dimension n and controllability index κ. Let Assumption 7.2

hold. Then, the sample complexity is at most exponential with κ. There exists an exploration

policy π and algorithm K̂N such that for any δ < 1:

sup
S∈Cµ

n,κ

PS,π

(
ρ(A+BK̂N ) ≥ 1

)
≤ δ, if Nσ2

u ≥ poly

((M
µ

)κ
,Mκ, n, log 1/δ

)
.
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Assume that the constants µ and M are dimensionless. Then, our upper and lower

bounds match qualitatively with respect to the dependence on κ. Theorem 7.2 implies that

if the degree of underactuation is mild, i.e. κ = O(log n), then robustly coupled systems

are guaranteed to be poly(n)-stabilizable. Our upper bound picks up a dependence on the

quantity M/µ. Recall that M upper-bounds the norm of A. Hence, it captures a notion

of sensitivity of the dynamics A to inputs/noise. In the lower bounds only the coupling

term µ appears. It is an open question to prove or disprove whether the sensitivity of A

affects stabilization or it is an artifact of our analysis. Another important open problem

is to determine the optimal constant that multiplies κ in the exponent. Our lower bound

suggests that the exponent can be at least of the order of 2 times κ. In our upper bounds,

by following the proof, we get an exponent which is larger than 2.

7.5 Difficulty of online LQR

In the following theorem, we prove that classes of robustly coupled systems can exhibit

minimax expected regret which grows at least exponentially with the dimension n. Let Cµ
n,κ

denote the class of µ-robustly coupled systems S = (A,B,H) of state dimension n and

controllability index κ. Define the ϵ-dilation C
µ
n,κ(ϵ) of C

µ
n,κ as

Cµ
n,κ(ϵ) ≜

{
(A,B,H) : ∥

[
A− Ã B − B̃

]
∥2 ≤ ϵ, for some (Ã, B̃,H) ∈ Cµ

n,κ

}
,

which consists of every system in C
µ
n,κ along with its ϵ−ball around it.

Theorem 7.3 (Exponential Regret Lower Bounds). Consider the class Cµ
n,κ of all µ-robustly

coupled systems S = (A,B,H) of state dimension n and controllability index κ, with κ ≤

n− 1. For every ϵ > 0 define the ϵ-dilation C
µ
n,κ(ϵ). Let QT = P , the solution to the ARE

(7.7), and assume µ < 1. Let 0 < α < 1/4. For any policy π

lim inf
T→∞

sup
S∈Cµ

n,κ(T−α)

ES,π
RT (S)√

T
≥ 1

4
√
n
2

κ−1
2 .
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When the controllability index is large, e.g. κ = n, then the lower bounds become

exponential with n. Hence, achieving poly(n)-regret is impossible in the case of general

linear systems. Let us now explain when learning can be difficult. Consider the following

1−strongly coupled system, which consists of two independent subsystems

A =



0 0 0 0 0

0 1 1 0 0

. . .

0 0 0 1 1

0 0 0 0 1


, B =



1 0

0 0

...

0 1


uk, H = In, Q = In, R = I2, (7.15)

where the first subsystem is a memoryless system, while the second one is the discrete

integrator of order n− 1. Since the sub-systems are decoupled, the optimal LQR controller

will also be decoupled and structured

K⋆ =

 0 0

0 K⋆,0

 ,

where K⋆,0 is the optimal gain of the second subsystem. The first subsystem (upper-left) is

memoryless and does not require any regulation, that is, [K⋆]11 = 0.

Consider now a perturbed system Ã = A − ∆K⋆, B̃ = B + ∆, for some ∆ ∈ Rp×n.

Such perturbations are responsible for the
√
T term in the regret of LQR (Simchowitz &

Foster, 2020; Ziemann & Sandberg, 2022); systems (A,B) and (Ã, B̃) are indistinguishable

under the control law ut = K⋆xt since A + BK⋆ = Ã + B̃K⋆. Now, informally, to get an

exp(n)
√
T regret bound it is sufficient to satisfy two conditions: i) the system is sensitive to

inputs or noise, in the sense that any exploratory signal can incur extra cost, which grows

exponentially with n. ii) the difference Ã−A, B̃−B is small enough, i.e. polynomial in n,

so that identification of ∆ requires significant deviation from the optimal policy.

The n−1-th integrator is very sensitive to inputs or noises. As inputs uk,2 and noises wk

get integrated (n− 1)-times, this will result in accumulated values that grow exponentially
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as we move up the integrator chain. Hence, the first informal condition is satisfied. To

satisfy the second condition we let the perturbation ∆ have the following structure

∆ =

 0 0

∆1 0

 , (7.16)

where we only perturb the matrix of the first input uk,1. By using two subsystems and the

above construction, we make it harder to detect ∆. In particular, because of the structure

of the system ([K⋆]11 = 0) and the perturbation ∆, we have Ã = A − ∆K⋆ = A. Hence

∥
[
A B

]
−
[
Ã B̃

]
∥2 = ∥∆∥2 ≤ poly(n)∥∆∥2, i.e., the perturbed system does not

lie too far away from the nominal one. This last condition might be crucial. If ∥∆K⋆∥ ≥

exp(n)∥∆∥2, then it might be possible to distinguish between (A,B) and (Ã, B̃) without

deviating too much from the optimal policy. This may happen if we use only one subsystem,

since ∥K⋆,0∥2 might be large. By using two subsystems, we cancel the effect of K⋆,0 in ∆K⋆.

In the stabilization problem, we show that the lack of excitation during the system

identification stage might hurt sample complexity. Here, we show that if a system is too

sensitive to inputs and noises, i.e. some state subspaces are too easy to excite, this can lead

to large regret. Both lack of excitation and too much excitation of certain subspaces can

hurt learning performance. This was observed before in control (Skogestad et al., 1988).

7.5.1 Sketch of Lower Bound Proof

Let S0 = (A0, B0, In−1) ∈ C
µ
n−1,κ be a µ−robustly coupled system of state dimension n− 1,

input dimension p − 1 and controllability index κ ≤ n − 1. Let P0 be the solution of the

Riccati equation for Q0 = In−1, R0 = Ip−1, with K⋆,0 the corresponding optimal gain.

Define the steady-state covariance of the closed-loop system

Σ0,x = (A0 +B0K⋆,0)Σ0,x(A0 +B0K⋆,0)
′ + In−1. (7.17)
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Now, consider the composite system:

A =

 0 0

0 A0

 , B =

 1 0

0 B0

 , H = In, (7.18)

with Q = In, R = Ip. Let ∆ be structured as in (7.16), for some arbitrary ∆1 of unit

norm ∥∆1∥2 = 1. The Riccati matrix of the composite system is denoted by P and the

corresponding gain by K⋆. Consider the parameterization:

A(θ) = A− θ∆K⋆, B(θ) = B + θ∆, (7.19)

for any θ ∈ R. Let B(θ, ϵ) denote the open Euclidean ball of radius ϵ around θ. For every

ϵ > 0, define the local class of systems around S as CS(ϵ) ≜ {(A(θ), B(θ), In), θ ∈ B(0, ϵ)}.

Based on the above construction and Theorem 1 of Ziemann & Sandberg (2022), a general

information-theoretic regret lower bound, we prove the following lemma.

Lemma 7.1 (Two-Subsystems Lower Bound). Consider the parameterized family of linear

systems defined in (7.19), for n, p ≥ 2 where ∆ is structured as in (7.16). Let Q = In,

R = Ip. Let QT = P (θ), where P (θ) is the solution to the Riccati equation for (A(θ), B(θ)).

Then, for any policy π and any 0 < a < 1/4 the expected regret is lower bounded by

lim inf
T→∞

sup
Ŝ∈CS(T−a)

EŜ,π

RT (Ŝ)√
T

≥ 1

4
√
n

√
∆′

1P0 [Σ0,x − In−1]P0∆1.

Optimizing over ∆1, we obtain a lower bound on the order of ∥P0 [Σ0,x − In−1]P0∥2.

What remains to show is that for the (n−1)-th order integrator (second subsystem in (7.15))

the product ∥P0 [Σ0,x − In−1]P0∥2 is exponentially large with n.

Lemma 7.2 (System Theoretic Parameters can be Large). Consider the (n− 1)− th order

integrator (second subsystem in (7.15)). Let P0 be the Riccati matrix for Q0 = In−1, R0 = 1,
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with K⋆,0, Σ0,x the corresponding LQR control gain and steady-state covariance. Then

∥P0 [Σ0,x − In−1]P0∥2 ≥
n−1∑
j=1

j∑
i=0

(
j

i

)2

≥ 2n−1

Our lemma shows that control theoretic parameters can scale exponentially with the

dimension n. The (n − 1)−th order integrator is a system which is mildly unstable. In

Section 7.11.4, we show that stable systems can also suffer from the same issue.

7.5.2 Regret Upper Bounds

Similar to the stabilization problem, we show that under the assumption of robust coupling,

the regret cannot be worse than exp(κ)
√
T with high probability. As we prove in Lemma 7.3,

the solution P to the Riccati equation has norm ∥P∥2 that scales at most exponentially

with the index κ in the case of robustly-coupled systems. This result combined with the

regret upper bounds of Simchowitz & Foster (2020), give us the following result.

Theorem 7.4 (Exponential Upper Bounds). Consider a µ-robustly coupled system S =

(A,B,H) of dimension n, controllability index κ. Assume that we are given an initial

stabilizing gain K0. Let Q = In, R ⪰ Ip, and QT = 0. Assume that the noise is non-

singular HH ′ = In. Let δ ∈ (0, 1/T ). Using the Algorithm 1 of Simchowitz & Foster (2020)

with probability at least 1− δ:

RT (A,B) ≤ poly(n,
(M
µ

)κ
,Mκ, log 1/δ)

√
T + poly(n,

(M
µ

)κ
,Mκ, log 1/δ, P (K0)),

where P (K0) = (A+BK0)
′P (K0)(A+BK) +Q+K ′

0RK0.

The result follows immediately by our Lemma 7.3 and the upper bounds of Theorem 2

in Simchowitz & Foster (2020). Assuming that the plant sensitivity M and the coupling

coefficient µ are dimensionless, then if we have a mild degree of underactuation, i.e. κ =

O(log n), we get poly(n)-regret with high probability. Note that the above guarantees are

for high probability regret which is not always equivalent to expected regret (Dann et al.,
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2017). Our upper-bounds are almost global for all robustly coupled systems, in the sense

that the dominant
√
T -term is globally bounded. To provide truly global regret guarantees

it is sufficient to add an initial exploration phase to Algorithm 1 of Simchowitz & Foster

(2020), which first learns a stabilizing gain K0. For this stage we could use the results of

Section 7.4.1, and Section 7.10. We leave this for future work.

7.6 Conclusion

We prove that learning to control linear systems can be hard for non-trivial system classes.

The problem of stabilization might require sample complexity which scales exponentially

with the system dimension n. Similarly, online LQR might exhibit regret which scales

exponentially with n. This difficulty arises in the case of underactuated systems. Such

systems are structurally difficult to control; they can be very sensitive to inputs/noise or very

hard to excite. If the system is robustly coupled and has a mild degree of underactuation

(small controllability index), then we can guarantee that learning will be easy.

We stress that system theoretic quantities might not be dimensionless. On the contrary,

they might grow very large with the dimension and dominate any poly(n) terms. Hence,

going forward, an important direction of future work is to find policies with optimal de-

pendence on such system theoretic quantities. Although the optimal dependence is known

for the problem of system identification (Simchowitz et al., 2018; Jedra & Proutiere, 2019),

it is still not clear what is the optimal dependence in the case of control. For example,

an interesting open problem is to find the optimal dependence of the regret RT on the

Riccati equation solution P . For the problem of stabilization, it is open to find how sample

complexity optimally scales with the least singular value of the controllability Gramian.
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7.7 Preliminaries: System Theoretic Concepts

In this section, we review briefly some system theoretic concepts. A system (A,B) ∈

Rn×(n+p) is controllable if and only if the controllability matrix

Ck(A,B) =

[
B AB · · · Ak−1B

]

has full column rank for some k ≤ n. The minimum such index κ that the rank condition

is satisfied is called the controllability index, and it is always less or equal than the state

dimension n. A system (A,B) is called stabilizable if and only if there exists a matrix

K ∈ Rp×n such that A+BK is stable, i.e. has spectral radius ρ(A+BK). Any controllable

system is also stabilizable. A system (A′, B′) is called observable if and only if (A,B) is

controllable. Similarly (A′, B′) is detectable if and only if (A,B) is stabilizable.

Let A be stable (ρ(A) < 1) and consider the transfer matrix (zI − A)−1, z ∈ C in the

frequency domain. The H∞-norm is given by

∥(zI −A)−1∥H∞ = sup
|z|=1

∥(zI −A)−1∥2.

Using the identity (I − D)−1 = I + D + D2 . . . for ρ(D) < 1, we can upper bound the

H∞-norm by

∥(zI −A)−1∥H∞ ≤
∞∑
t=0

∥At∥2.

7.7.1 Properties of the Riccati Equation

Consider the infinite horizon LQR problem defined in (7.2). Let (A,B) be controllable and

assume that Q ≻ 0 is positive semi-definite and R ≻ 0 is positive definite. As we stated in

Section 7.2, the optimal policy K⋆xk has the following closed-form solution

K⋆ = −(B′PB +R)−1B′PA,
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where P is the unique positive definite solution to the Discrete Algebraic Riccati Equa-

tion

P = A′PA+Q−A′PB(B′PB +R)−1B′PA.

Moreover, A+BK⋆ is stable, i.e. ρ(A+BK⋆) < 1. The above solution is well-defined under

the conditions of (A,B) controllable, Q ≻ 0, R ≻ 0. Note that we can relax the conditions

to Q ⪰ 0 being positive semi-definite, (A,Q1/2) detectable, and (A,B) stabilizable, which

is a well-known result in control theory (Chan et al., 1984, Th. 3.1).

Consider now the finite-horizon LQR problem, under the same assumptions of (A,B)

controllable, Q ≻ 0, and R ≻ 0

J∗
T (S) ≜ min

π
ES,π

[
T−1∑
t=0

(x′tQxt + u′tRut) + x′TQTxT

]
. (7.20)

The optimal policy is a feedback law Ktxt, t ≤ T − 1, with time varying gains. The gains

satisfy the following closed-form expression

Kt = −(B′Pt+1B +R)−1B′Pt+1A,

where Pt satisfies the Riccati Difference Equation

Pt = A′Pt+1A+Q−A′Pt+1B(B′Pt+1B +R)−1B′Pt+1A, PT = QT .

It turns out that as we take the horizon to infinity T → ∞, then we get limT→∞ Pk = P

exponentially fast, for any fixed k, where P is the positive definite solution to the Algebraic

Riccati Equation. The convergence is true under the conditions of (A,B) controllable,

Q ≻ 0, R ≻ 0. Again we could relax the conditions to Q ⪰ 0 being positive semi-definite,

(A,Q1/2) detectable, and (A,B) stabilizable (Chan et al., 1984, Th. 4.1). Note that if we

select the terminal cost QT = P , then trivially Pt = P for all t ≤ T , and we recover the

same controller as in the infinite horizon case.

Finally, a nice property of the Riccati recursion is that the right-hand side is order-
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preserving with respect to the matrices P,Q. In particular, define the operator:

g(X,Y ) = A′XA+ Y −A′Y B(B′XB +R)−1B′Y A.

Then, if X1 ⪰ X2, we have that g(X1, Y ) ⪰ g(X2, Y ) (Anderson & Moore, 2005, Ch. 4.4).

Similarly, if Y1 ⪰ Y2 then g(X,Y1) ⪰ g(X,Y2).

7.8 Proofs: System Theoretic Bounds for Robustly Coupled

Systems

The first result lower bounds the least singular value of the controllability Gramian in terms

of the sensitivity M , the coupling coefficient µ, and the controllability index κ of the system.

Theorem 7.5 (Gramian lower bound (Tsiamis & Pappas, 2021)). Consider a system

(A,B,H) that satisfies Assumption 7.1, with κ its controllability index. Assume that (A,B)

is µ-robustly coupled. Then, the least singular value of the Gramian Γκ = Γκ(A,B) is lower

bounded by:

σ−1
min(Γκ) ≤ µ−2

(
3M

µ

)2κ

.

Proof. The result follows from Theorem 5 in Tsiamis & Pappas (2021). The theorem

statement requires a different condition, called robust controllability. However, the proof

still goes through if we have µ−robust coupling instead. Recall that Cκ = Cκ(A,B) is the

controllability matrix (7.9) of (A,B) at κ. Following the proof in (Tsiamis & Pappas, 2021),

we arrive at √
σmin(Γκ) ≤ ∥C†

κ∥2 ≤ ∥Ξκ−1∥2∥α∥2,

where

Ξ =


1 1 µ−1

M
µ

2+M
µ

M
µ

0 0 µ−1

 , α =


1
µ

M
µ2

1
µ

 .

The result follows from the crude bounds ∥Ξ∥2 ≤ 3M/µ, ∥α∥2 ≤
√
3M/µ−2 where we
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assumed that M > 1.

The following result, upper bounds the solution P to the LQR Riccati equation in terms

of the sensitivity M , the coupling coefficient µ, and the controllability index κ of the system.

Lemma 7.3 (Riccati Upper Bounds). Let the system (A,B) ∈ Rn×(n+p) be controllable

and µ−robustly coupled with controllability index κ. Let R ∈ Rp×p be positive definite and

Q ∈ Rn×n be positive semi-definite. Assume T > κ and consider the Riccati difference

equation:

Pk−1 = A′PkA+Q−A′PkB(B′PkB +R)−1B′PkA, PT = Q.

Then, the Riccati matrix evaluated at time 0 is upper-bounded by

∥P0∥2 ≤ poly
((M

µ

)κ
,Mκ, κ, ∥Q∥2, ∥R∥2

)
.

As a result, if Q ≻ 0, then the unique positive definite solution P of the algebraic Riccati

equation:

P = A′PA+Q−A′PB(B′PB +R)−1B′PA

satisfies the same bound

∥P∥2 ≤ poly
((M

µ

)κ
,Mκ, κ, ∥Q∥2, ∥R∥2

)
.

Proof. The optimal policy of the LQR problem does not depend on the noise. Even for

deterministic systems, the optimal policy still have the same form ut = K⋆xt. This property

is known as certainty equivalence (Bertsekas, 2017, Ch. 4). In fact, for deterministic

systems, the cost of regulation is given explicitly by x′0Px0. We leverage this idea to upper

bound the stabilizing solution of the Riccati equation P .

Step a) Noiseless system upper bound. Consider the noiseless version of system (7.1)

xk+1 = Axk +Buk, ∥x0∥2 = 1. (7.21)
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Let u0:t be the shorthand notation for

u0:t =


ut
...

u0

 .

Consider the deterministic LQR objective

min
u0:T−1

J(u0:T−1) ≜ x′TQxT +
N−1∑
k=0

x′kQxk + u′kRuk

s.t. dynamics (7.21).

The optimal cost of the problem is given by (Bertsekas, 2017, Ch. 4)

min
u0:T−1

J(u0:T−1) = x′0P0x0,

where P0 is the value of Pt at time t = 0. Let u0:T−1 be any input sequence. Immediately,

by optimality, we obtain an upper bound for the Riccati matrix P0:

x′0P0x0 ≤ J(u0:T−1). (7.22)

Hence, it is sufficient to find a suboptimal policy that incurs a cost which is at most expo-

nential with the controllability index κ.

Step b) Suboptimal Policy. It is sufficient to drive the state xκ to zero at time κ with

minimum energy u0:κ−1 and then keep xt+1 = 0, ut = 0, for t ≥ κ. Recall that Ck is the

controllability matrix at time k. By unrolling the state xκ:

xκ = Aκx0 + Cκu0:κ−1.
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To achieve xκ = 0, it is sufficient to apply the minimum norm control

u0:κ−1 = −C†
κA

κx0,

which leads to input penalties

T−1∑
k=0

u′kRuk ≤ ∥R∥2σ−1
min(Γκ)M

2κ,

where we used the fact that ∥x0∥2 = 1. For the state penalties, we can write in batch form

x1:κ ≜


xκ
...

x1

 =



B AB · · · Aκ−1B

0 B · · · Aκ−2B

...

0 0 · · · B


u0:κ−1 +



Aκ

Aκ−1

...

A


x0.

Exploiting the Toeplitz structure of the first matrix above and by Cauchy-Schwartz

T∑
t=0

x′tQxt ≤ ∥Q∥2(∥x1:κ∥22 + 1)

≤ 2∥Q∥2
(
(
κ−1∑
t=0

∥AtB∥2)2∥u0:κ−1∥22 +
κ∑

t=0

∥At∥2
)

≤ 2κ2∥Q∥2(M4κ∥R∥2σ−1
min(Γκ) +M2κ).

Putting everything together and since x0 is arbitrary, we finally obtain

∥P0∥2 ≤
∥R∥2

σmin(Γκ)
(M2κ + 2κ2∥Q∥2M4κ) + 2κ2∥Q∥2M2κ. (7.23)

The result for P0 now follows from Theorem 7.5.

Step c) Steady State Riccati. If the pair (A,Q1/2) is observable, then from standard

LQR theory-see Section 7.7.1, limT→∞ P0 = P and the bound for P follows directly.

Similar results have been reported before (Cohen et al., 2018; Chen & Hazan, 2021).
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However, instead of κ and (M/µ)κ, the least singular value σ−1
min(Γk) shows up in the bounds,

for some k ≥ κ.

Finally, based on Lemmas B.10, B.11 of Simchowitz & Foster (2020), we provide some

upper bounds on the H∞−norm of the closed loop response (zI −A+BK)−1, where K is

the control gain of the optimal LQR controller for some Q and R.

Lemma 7.4 (LQR Robustness Margins). Let the system (A,B) ∈ Rn×(n+p) be controllable

and µ−robustly coupled. Let R = Ip, Q = In. Let P be the stabilizing solution of the

algebraic Riccati equation:

P = A′PA+Q−A′PB(B′PB +R)−1B′PA

with K⋆ the respective control gain K⋆ = −(B′PB + R)−1B′PA. The spectral radius and

the H∞-norm of the closed loop response are upper bounded by

(1− ρ(A+BK⋆))
−1 ≤ poly

((M
µ

)κ
,Mκ, κ

)
(7.24)

∥(zI −A−BK⋆)
−1∥H∞ ≤ poly

((M
µ

)κ
,Mκ, κ

)
(7.25)

Proof. First, note that since Q = I, immediately (A,Q1/2) is observable and the stabilizing

solution P is well-defined. Note that the Riccati solution P also satisfies the Lyapunov

equation

P = (A+BK⋆)
′P (A+BK⋆) + I +K ′

⋆K⋆ ⪰ (A+BK⋆)
′P (A+BK⋆) + I ⪰ I.

As a result,

(A+BK⋆)
′(A+BK⋆)

i)

⪯ (A+BK⋆)
′P (A+BK⋆) = P − I

ii)

⪯ (1− ∥P∥−1
2 )P, (7.26)

where i) follows from P ⪰ I. To prove ii) observe that P − I = P 1/2(I − P−1)P 1/2 and
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P−1 ⪰ ∥P∥−1
2 I. Hence

P − I ⪰ P 1/2(I − ∥P∥−1
2 I)P 1/2 = (1− ∥P∥−1

2 )P.

Applying inequality (7.26) recursively

(A+BK⋆)
t′(A+BK⋆)

t = ∥(A+BK⋆)
t∥22 ≤

(
1− ∥P∥−1

2

)t
P.

From here, we immediately deduce that

ρ(A+BK⋆) ≤
√
1− ∥P∥−1

2 ,

which by Lemma 7.3 proves (7.24). For the H∞ norm bound

∥(zI −A−BK⋆)
−1∥H∞ ≤

∑
t≥0

∥(A+BK⋆)
t∥2 ≤ ∥P∥1/22

1

1−
√
1− ∥P∥−1

2

≤ ∥P∥1/22

1 +
√
1− ∥P∥−1

2

∥P∥−1
2

≤ 2∥P∥3/22 .

The proof of (7.25) now follows from Lemma 7.3.

7.9 Proofs: Lower Bounds for the problem of Stabilization

In this section, we prove Theorem 7.1 by using information theoretic methods. The main

idea is to find systems that are nearly indistinguishable from data but require completely

different stabilization schemes. We rely on Birgé’s inequality (Boucheron et al., 2013), which

we review below for convenience.

Definition 9 (KL divergence). Let P, Q be two probability measures on some space (Ω,A).

Let Q be absolutely continuous with respect to P, that is Q(A) = EP(Y 1A) for some integrable
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non-negative random variable with EP(Y ) = 1. The KL divergence D(Q||P) is given by

D(Q||P) ≜ EQ(log Y ).

Theorem 7.6 (Birgé’s Inequality (Boucheron et al., 2013)). Let P0, P1 be probability mea-

sures on (Ω, E) and let E0, E1 ∈ E be disjoint events. If 1 − δ ≜ mini=0,1 Pi(Ei) ≥ 1/2

then

(1− δ) log
1− δ

δ
+ δ log

δ

1− δ
≤ D(P1||P0).

The KL divergence between two Gaussian distributions with same variance is given

below.

Lemma 7.5 (Gaussian KL divergence). Let P = N (µ1, σ
2) and Q = N (µ2, σ

2) then

D(Q||P) = 1

2σ2
(µ1 − µ2)

2.

7.9.1 Proof of Theorem 7.1

It is sufficient to prove it for κ = n. The proof for κ < n is similar. Let α > 0 be such that

α+ µ < 1. Consider the systems:

S0 : xk+1 =



1 µ 0 · · · 0

0 α µ · · · 0

. . .
. . .

0 0 0 · · · µ

0 0 0 · · · α


xk +



0

0

...

0

µ


uk +



1

0

...

0

0


wk,
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S1 : xk+1 =



1 −µ 0 · · · 0

0 α µ · · · 0

. . .
. . .

0 0 0 · · · µ

0 0 0 · · · α


xk +



0

0

...

0

µ


uk +



1

0

...

0

0


wk.

By construction, the systems are µ−robustly coupled. Denote the state matrices by A0, A1

for S0, S1 respectively. Let ϕ1(z) = det(zI −A0 −BK̂N ), ϕ2(z) = det(zI −A1 −BK̂N ) be

the respective characteristic polynomials. By Jury’s criterion (Fadali & Visioli, 2013, Ch.

4.5), a necessary (but not sufficient) condition for stability is:

ϕ0(1) > 0, ϕ1(1) > 0.

An direct computation gives:

ϕ0(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −µ 0 · · · 0

0 1− α −µ · · · 0

. . .
. . .

0 0 0 · · · −µ

−K̂N,1 −K̂N,2 −K̂N,3 · · · 1− α− K̂N,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −K̂N,1µ

n−1,

ϕ1(1) = K̂N,1µ
n−1.

As a result, the events:

E0 =
{
ρ(A0 +BK̂N ) < 1

}
⊆
{
K̂N,1 < 0

}
, E1 =

{
ρ(A1 +BK̂N ) < 1

}
⊆
{
K̂N,1 > 0

}

are disjoint. By Theorem 7.6, a necessary condition for stabilizing both systems with

probability larger than 1− δ is:

D(P0||P1) ≥ (1− 2δ) log
1− δ

δ
≥ log

1

2.4δ
≥ log

1

3δ
. (7.27)
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Here Pi is a shorthand notation for PSi,π, for i = 1, 2.

Meanwhile, by the chain rule of KL divergence (see Exercise 4.4 in Boucheron et al.

(2013)):

D(P0||P1) = EP0

(
D(P0(AUX)||P1(AUX))

+

N∑
k=0

D(P0(xk|x0:k−1, u0:k−1,AUX)||P1(xk|x0:k−1, u0:k−1,AUX))

+
N−1∑
k=0

D(P0(uk|x0:k, u0:k−1,AUX)||P1(uk|x0:k, u0:k−1,AUX)
)
,

where x0:k is a shorthand notation for x0, . . . , xk (same for u0:k). By P(X|Y ) we denote

the conditional distribution of X given Y . Note that the inputs have the same conditional

distributions under both measures hence their KL divergence is zero. As a result

D(P0||P1) = EP0

N∑
k=0

D(P0(xk|x0:k−1, u0:k−1,AUX)||P1(xk|x0:k−1, u0:k−1,AUX))

1)
= EP0

N∑
k=0

D(P0(xk|xk−1, uk−1)||P1(xk|xk−1, uk−1)

2)
= EP0

N∑
k=0

D(P0(xk,1|xk−1,1, xk−1,2)||P1(xk,1|xk−1,1, xk−1,2)
)
,

where 1) follows from the Markov property of the linear system and 2) follows from an

application of the chain rule, the structure of the dynamics, and the fact that all xk,j have

the same distribution for j ≥ 2. Recall that the normal distribution is denoted by N (µ,Σ).

Now we can explicitly compute the KL divergence:

D(P0||P1) = EP0

N∑
k=1

D(N (αxk−1,1 + µxk−1,2, 1)||N (αxk−1,1 − µxk−1,2, 1))

i)
= EP0

N∑
k=1

2µ2x2k−1,2 = 2µ2
N∑
k=1

EP0x
2
k−1,2, (7.28)
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where i) follows by Lemma 7.5. By (7.27), (7.28), and Lemma 7.6, it is necessary to have

Nσ2
u ≥ 1

2

(
1

α+ µ

)2n−2(1− a− µ

µ

)2

log
1

3δ

Since we are free to choose α, it is sufficient to choose α = 0. ■

Lemma 7.6. Consider system S0 as defined above. Recall that P0 is a shorthand notation

for PS0,π. Then, under Assumption 7.2, we have

EP0x
2
k,2 ≤ σ2

u(α+ µ)2n−2

(
1

1− (a+ µ)

)2

Proof. Let e2 denote the canonical vector e2 =

[
0 1 0 · · · 0

]′
. Then

xk,2 =

k∑
t=1

e′2A
t−1Buk−t =

k∑
t=n−1

e′2A
t−1Buk−t,

where the second equality follows from the fact that e′2A
t−1B, for t ≤ n− 1. Moreover, we

can upper bound: ∣∣e′2At−1B
∣∣ ≤ (α+ µ)t−1,

which follows from the fact that the sub-matrix [A0]2:n,2:n of A0 if we delete the first row

and column is bi-diagonal and Toeplitz hence ∥[A0]2:n,2:n∥2 ≤ α+µ. Define ct ≜ (α+µ)t−1.

Then, we can upper bound |xk,2| by

|xk,2| ≤
k∑

t=n−1

ct |uk−t| .

By Cauchy-Schwartz and Assumption 7.2

ES0,πu
2
k ≤ σ2

u, ES0,π |ukut| ≤ σ2
u.
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White Noise
Experiments

System
Identification

Controller
Design

x0, . . . , xN
u0, . . . , uN−1

ÂN , B̂N

ϵA, ϵB

K̂N

Figure 7.1: The block diagram of the stabilization scheme. First, we generate white noise inputs
ut ∼ N (0, σ̄2

uI) to excite the system. Then we perform system identification based on least squares
to obtain estimates ÂN , B̂N of the true system matrices. Finally, we design a controller gain K̂N ,
based on the system estimates and upper bounds ϵA, ϵB on the estimation error.

Finally, combining the above results

ES0,πx
2
k,2 ≤ σ2

u(

k∑
t=n−1

ct)
2 ≤ σ2

u(α+ µ)2n−2

(
1

1− (a+ µ)

)2

,

which completes the proof.

7.10 Proofs: Upper Bounds for the problem of Stabilization

We employ a naive passive learning algorithm, where we employ a white-noise exploration

policy to excite the state. Our gain design proceeds in two parts. First, we perform system

identification based on least squares (Simchowitz et al., 2018). Second, we use robust control

to design the gain based on the identified model and bounds on the identification error of

A and B, similar to Dean et al. (2017).

7.10.1 Algorithm

The block diagram for the algorithm is shown in Fig. 7.1. To generate the input data

u0, . . . , uN−1, we employ white noise inputs uk ∼ N (0, σ̄2
uI), σ̄

2
u = σ2

u/p, where we normalize

with p in order to satisfy Assumption 7.2. For the system identification part, we use a least

squares algorithm

[
ÂN B̂N

]
= arg min

{F∈Rn×n,G∈Rn×p}

N−1∑
t=0

∥xt+1 − Fxt −Gut∥22, (7.29)

to obtain estimates of the matrices A ,B. Now, let ϵA, ϵB be large enough constants such

that ∥A − ÂN∥2 ≤ ϵA, ∥B − B̂N∥2 ≤ ϵB. To design the controller gain K̂N , it is sufficient
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to solve the following problem

min
K∈Rp×n

0

s.t.

∥∥∥∥∥∥∥
 √

2ϵA(zI − ÂN − B̂NK)−1

√
2ϵBK(zI − ÂN − B̂NK)−1


∥∥∥∥∥∥∥
H∞

< 1.

(7.30)

The idea behind the scheme is the following. Let K̂N be a gain that stabilizes the estimated

plant (ÂN , B̂N ). To make sure that it also stabilizes the nominal plant (A,B) we impose

some additional robustness conditions. In fact, as we show in Theorem 7.8, any feasible gain

of problem (7.30) will stabilize any plant (Â, B̂) that satisfies ∥Â−ÂN∥2 ≤ ϵA, ∥B̂−B̂N∥2 ≤

ϵB, including the nominal one. In this work, we do not study how to efficiently solve (7.30).

For efficient implementations one can refer to Dean et al. (2017). Note that the certainty

equivalent LQR design (Mania et al., 2019) or the SDP relaxation method (Cohen et al.,

2018; Chen & Hazan, 2021) could also work as stabilization schemes.

7.10.2 System Identification Analysis

Here we review a fundamental system identification result from Simchowitz et al. (2018).

The original proof can be easily adapted to the case of singular noise matrices H (Tsiamis

& Pappas, 2021).

Theorem 7.7 (Identification Sample Complexity). Consider a system S = (A,B,H)

such that Assumption 7.1 is satisfied. Let (A,B) be controllable with Γk = Γk(A,B)

the respective controllability Gramian and κ = κ(A,B) the respective controllability in-

dex. Then, under the least squares system identification algorithm (7.29) and white noise

inputs uk ∼ N (0, σ̄2
uIp), we obtain

PS,π(∥
[
A− ÂN B − B̂N

]
∥2 ≥ ϵ) ≤ δ
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if we have a large enough sample size

Nσ̄2
u ≥ poly(n, log 1/δ,M)

ϵ2σmin(Γκ)
logN.

Proof. The proof is almost identical to the one of Theorem 4 in Tsiamis & Pappas (2021).

The difference is that here we consider only the Gramian and index of (A,B) in the final

bound, while in Tsiamis & Pappas (2021) the Gramian and index of (A

[
H B

]
) appears.

We repeat the proof here to avoid notation ambiguity. Our goal is to apply Theorem 2.4

in (Simchowitz et al., 2018). Define the noise-controllability Gramian Γh
t = Γt(A,H) as

well as the combined controllability Gramian

Γc
t = Γt(A,

[
σ̄uB H

]
) = σ̄2

uΓt + Γh
t .

Define yk =

[
x′k u′k

]′
. It follows that for all j ≥ 0 and all unit vectors v ∈ R(n+p)×1, the

following small-ball condition is satisfied:

1

2κ

2κ∑
t=0

P(
∣∣v′yt+j

∣∣ ≥√v′Γsbv|F̄j) ≥
3

20
, (7.31)

where

Γsb =

 Γc
κ 0

0 σ̄2
uIp

 . (7.32)

Equation (7.31) follows from the same steps as in Proposition 3.1 in Simchowitz et al. (2018)

with the choice k = 2κ.

Next, we determine an upper bound Γ̄ for the gram matrix
∑N−1

t=0 yty
′
t. Using a Markov

inequality argument as in (Simchowitz et al., 2018, proof of Th 2.1), we obtain that

P(
N−1∑
t=0

yty
′
t ⪯ Γ̄) ≥ 1− δ,
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where

Γ̄ =
n+ p

δ
N

 Γc
N 0

0 σ̄2
uIp

 .

Now, we can apply Theorem 2.4 of Simchowitz et al. (2018). With probability at least

1− 3δ we have ∥
[
A− ÂN B − B̂N

]
∥2 ≤ ϵ if:

N ≥ poly(n, log 1/δ,M)

ϵ2σmin(Γc
κ)

log det(Γ̄Γ−1
sb ),

where we have simplified the expression by including terms in the polynomial term. Using

Lemma 1 in Tsiamis & Pappas (2021), we obtain

log det(Γ̄Γ−1
sb ) = poly(n,M, log 1/δ) logN.

Moreover, we use the lower bound Γc
k ⪰ σ̄2

uΓk, which holds for every k ≥ 0.

We note that we can easily obtain sharper bounds by considering the combined control-

lability Gramian Γk(A,

[
σ̄uB H

]
) for the identification stage. For the economy of the

presentation, we omit such an analysis here.

7.10.3 Sensitivity of Stabilization

Here we prove that when (7.30) is feasible, then K̂N stabilizes all plants (A,B) such that

∥A− ÂN∥2 ≤ ϵA, ∥B − B̂N∥2 ≤ ϵB. We also show that feasibility is guaranteed as long as

we can achieve small enough error bounds ϵA, ϵB.

Theorem 7.8. Let K̂N be a feasible solution to problem (7.30) for some ϵA, ϵB > 0. Then

for any system (A,B) such that ∥A− ÂN∥2 ≤ ϵA, ∥B − B̂N∥2 ≤ ϵB we have that

ρ(A+BK̂N ) < 1.
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Moreover, there exists an ϵ0 > 0 such that

ϵ0 = poly
((M

µ

)κ
,Mκ, κ

)

and Problem (7.30) is feasible if ϵA, ϵB ≤ ϵ0.

Proof. Let K̂N be a feasible solution to problem (7.30). Define Φx = (zI−ÂN −B̂NK̂N )−1,

which is well-defined and stable since ϵA > 0 and ∥Φx∥H∞ < 1/(
√
2ϵA). Define the system

difference

∆ ≜ (ÂN −A)Φx + (B̂N −B)K̂NΦx

It follows from simple algebra that:

zI −A−BK̂N = zI − ÂN − B̂NK̂N + (ÂN −A) + (B̂N −B)K̂N

= (I +∆)(zI − ÂN − B̂NK̂N ).

If (I +∆)−1 is stable then the closed loop response is stable and well-defined

(zI −A−BK̂N )−1 = (zI − ÂN − B̂NK̂N )−1(I +∆)−1.

But (I +∆)−1 being stable is equivalent to

∥(I +∆)−1∥H∞ < ∞.

A sufficient condition for this to occur is to require (Dean et al., 2017)

∥∆∥H∞ < 1.
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By Proposition 3.5 (select α = 1/2) of (Dean et al., 2017)

∥∆∥H∞ <

∥∥∥∥∥∥∥
 √

2ϵA(zI − ÂN − B̂NK)−1

√
2ϵBK(zI − ÂN − B̂NK)−1


∥∥∥∥∥∥∥
H∞

< 1.

This completes the proof of ρ(A+BK̂N ) < 1.

To prove feasibility consider the optimal LQR gain K⋆, for Q = In, R = Ip. Following

Lemma 4.2 in Dean et al. (2017), if the following sufficient condition holds

(ϵA + ϵB∥K⋆∥2)∥(zI −A−BK⋆)
−1∥H∞ ≤ 1/5,

then K⋆ is a feasible solution

∥∥∥∥∥∥∥
 √

2ϵA(zI − ÂN − B̂NK⋆)
−1

√
2ϵBK⋆(zI − ÂN − B̂NK⋆)

−1


∥∥∥∥∥∥∥
H∞

< 1.

Hence, we can choose

ϵ0 =
(
5(1 + ∥K⋆∥2)∥(zI −A−BK⋆)

−1∥H∞

)−1
. (7.33)

The fact that ϵ0 = poly
((

M
µ

)κ
,Mκ, κ

)
follows from Lemmas 7.3, 7.4.

7.10.4 Proof of Theorem 7.2

Let ut ∼ N (0, σ̄2
uI), with σ̄2

u = σ2
u/p. Consider the stabilization algorithm as described

in (7.29), (7.30). Consider the ϵ0 defined in (7.33). By Theorems 7.7, 7.8, if

Nσ2
u ≥≜

poly(n, log 1/δ,M)

ϵ20σmin(Γκ)︸ ︷︷ ︸
N

logN
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we have with probability at least 1−δ that ∥A− ÂN∥2, ∥B− B̂N∥2 ≤ ϵ0 and problem (7.30)

is feasible with ϵB = ϵA = ϵ0. By Theorems 7.5 7.8,

N = poly

((M
µ

)κ
,Mκ, n, log 1/δ

)
.

To complete the proof we use the fact that

N ≥ c logN if N ≥ 2c log 2c.

7.11 Proofs: Regret Lower Bounds

First let us state an application of the main result of Ziemann & Sandberg (2022). Consider

a system (A,B,H) ∈ Rn×(n+p+n), where (A,B) is controllable and H = In. Let P be the

respective Riccati matrix for Q = In, R = Ip, with K⋆ the respective optimal LQR gain.

Fix a matrix ∆ ∈ Rp×n and define the family of systems:

A(θ) = A− θB∆, B(θ) = B + θ∆, H(θ) = In, (7.34)

where θ ∈ B(0, ϵ), for some small ϵ. Assume that ϵ is small enough, such that the Riccati

equation has a stabilizing solution for every system in the above family. The respective

Riccati matrix is denoted by P (θ) and the LQR gain by K(θ). The derivative of K⋆(θ) with

respect to θ at point θ = 0 is given by the following formula.

Lemma 7.7 (Lemma 2.1 (Simchowitz & Foster, 2020)). If the system (A,B) is stabilizable,

then

d

dθ
K⋆(θ)|θ=0 = −(B′PB +R)−1∆′P (A+BK∗).

Finally, let Σx be the solution to the Lyapunov equation:

Σx = (A+BK⋆)Σx(A+BK⋆)
′ + In. (7.35)
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Theorem 7.9 (Application of Theorem 1 in Ziemann & Sandberg (2022)). Consider a

system S = (A,B,H) ∈ Rn×(n+p+n), where (A,B) is controllable and H = In. Let P be the

respective solution of the algebraic Riccati equation for Q = In, R = Ip, with K⋆ the respec-

tive optimal LQR gain. Recall the definition of Σx in (7.35). Define the family of systems

CS(ϵ) ≜ {(A(θ), B(θ), In), θ ∈ B(0, ϵ)} as defined in (7.34), for any ϵ > 0 sufficiently small

such that P (θ) and K⋆(θ) are well-defined. Let QT = P (θ). Then for any α ∈ (0, 1/4):

lim inf
T→∞

sup
Ŝ∈CS(T−a)

EŜ,π

RT (Ŝ)√
T

≥ 1

2
√
2

√
F

L
, (7.36)

where

F = tr

(
(B′PB +R)−1∆′P [Σx − In]P∆

)
L = n(∥∆K⋆∥22 + ∥∆∥22)∥(B′PB +R)−1∥2

Proof. Note that if ∆′P (A+BK⋆) = 0, then since Σx ⪰ In is invertible

∆′P (A+BK⋆) = 0 ⇔ ∆′P (A+BK⋆)Σx(A+BK⋆)
′P∆ = 0

⇔ ∆′P (Σx − In)P∆ = 0.

This implies that F = 0 and the regret lower bound becomes 0, in which case the claim of

the theorem is trivially true. Hence, we will assume that ∆′P (A+BK⋆) ̸= 0.

All systems in the family have the same closed-loop response under the control policy

u = K⋆x. In particular, for all θ ∈ B(0, ϵ):

d

dθ

[
A(θ) B(θ)

] In

K⋆

 =

[
−∆K⋆ ∆

] In

K⋆

 = 0.

Moreover, by Lemma 7.7

d

dθ
K⋆(θ)|θ=0 = (B′PB +R)−1∆′P (A+BK⋆) ̸= 0.
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By Proposition 3.4 in Ziemann & Sandberg (2022), the above two conditions imply that the

family CS(ϵ) is ϵ−uninformative (see Section 3 in Ziemann & Sandberg (2022) for definition).

Next, by Lemma 3.6 in Ziemann & Sandberg (2022), the family is also L−information

regret bounded (see Section 3 in Ziemann & Sandberg (2022) for the definition), where

L = tr(In)∥
[
−∆K⋆ ∆

]
∥22∥(B′PB +R)−1∥2

i)

≤ n(∥∆K⋆∥22 + ∥∆∥22)∥(B′PB +R)−1∥2.

Inequality i) follows from tr(In) = n and the norm property

∥
[
M1 M2

]
∥22 = ∥

[
M1 M2

] [
M1 M2

]′
∥2 = ∥M1M

′
1+M2M

′
2∥2 ≤ ∥M1∥22+∥M2∥22.

Applying Theorem 1 in Ziemann & Sandberg (2022), we get (7.36), for L defined as

above and

F = tr

([
Σx ⊗ (B′P (θ)B +R)

]
(
d

dθ
vecK⋆(θ)|θ=0)(

d

dθ
vecK⋆(θ)|θ=0)

′
)
,

where ⊗ is the Kronecker product and vec is the vectorization operator (mapping a matrix

into a column vector by stacking its columns). Using the identities:

vec(XY Z) = (Z ′ ⊗X)vec(Y ), tr(vec(X)vec(Y )′) = tr(XY ′),

we can rewrite F as

F = tr

(
(B′P (θ)B +R)

d

dθ
K(θ)|θ=0Σx

d

dθ
K ′(θ)|θ=0

)
.

By Lemma 7.7 and the property tr(XY ) = tr(Y X), we finally get

F = tr

(
(B′PB +R)−1∆′P (A+BK∗)Σx(A+BK∗)P∆

)
.

The result follows from (A+BK∗)Σx(A+BK∗)
′ = Σx − In.
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7.11.1 Proof of Lemma 7.1

The result follows by Theorem 7.9. We only need to compute and simplify F , L. Due to

the structure of system (7.18), we have

P =

 1 0

0 P0

 , K⋆ =

 0 0

0 K0,⋆

 .

Moreover, due to the structure of the perturbation ∆ in (7.16)

B′PB +R =

 2 0

0 B′
0P0B0 +R0

 , P∆(B′PB +R)−1∆′P =
1

2

 0 0

0 P0∆1∆
′
1P0

 .

Hence

F =
1

2
tr

( 0 0

0 P0∆1∆
′
1P0

 (Σx − In)

)
=

1

2
∆′

1P0(Σ0,x − In−1)P0∆1

Finally we have L ≤ n, since ∆K⋆ = 0, ∆1 has unit norm, and R = Ip. ■

7.11.2 Proof of Lemma 7.2

First note that P0 ⪰ Q0 = In−1. As a result, we have

∥P0(Σ0,x − In−1)P0∥2 ≥ ∥Σ0,x − In−1∥2.

It is sufficient to lower bound ∥Σ0,x − In−1∥2. Consider the recursion:

Σk = (A0 +B0K0,⋆)Σk−1(A0 +B0K0,⋆)
′ + In−1, Σ0 = 0.
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Then Σ0,x = limk→∞Σk ⪰ Σn−1 ⪰ In−1. The second inequality follows from monotonicity

of the Lyapunov operator:

g(X) = (A0 +B0K0,⋆)X(A0 +B0K0,⋆)
′ + In−1,

i.e. g(X) ⪰ g(Y ) if X ⪰ Y . What remains is to lower bound ∥Σn−1 − In−1∥2. Let

e1 =

[
1 0 · · · 0

]′
be the first canonical vector. Due to the structure of A0, B0

e′1(A0 +B0K0,⋆)
i = e′1(A0)

i, for i ≤ n− 1.

Hence

∥Σn−1 − In−1∥2 ≥ e′1(Σn−1 − In−1)e1

=
n−1∑
k=1

e′1A
k
0(A

′
0)

ke1.

After some algebra we can compute analytically

∥Σn−1 − In−1∥2 ≥
n−1∑
k=1

k∑
t=0

(
k

t

)2

=
n−1∑
k=1

(
2k

k

)
≥
(
2(n− 1)

n− 1

)
≥
(
2
n− 1

n− 1

)n−1

= 2n−1,

which completes the proof. ■

7.11.3 Proof of Theorem 7.3

It is sufficient to prove the result for the class Cµ
n,n−1. If n > κ + 1, then we can consider

the system:

Ã =

 0 0

0 A

 , B̃ =

 In−κ−1 0

0 B

 , H̃ =

 In−κ−1 0

0 H


where (A,B,H) ∈ C

µ
κ,κ−1 and repeat the same arguments.

The proof follows from Lemma 7.1 and Lemma 7.2. What remains to show that for
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every ϵ

CS(ϵ) ⊆ C
µ
n,n−1(ϵ).

This follows from the fact that ∆K⋆ = 0, hence A = A(θ) and ∥B−B(θ)∥ = θ∥∆∥2 = θ ≤ ϵ.

Thus,

∥
[
A−A(θ) B −B(θ)

]
∥2 ≤ ϵ.

Since CS(ϵ) ⊆ C
µ
n,n−1(ϵ), we get

lim inf
T→∞

sup
S∈Cµ

n,n−1(T
−a)

EŜ,π

RT (Ŝ)√
T

≥ lim inf
T→∞

sup
Ŝ∈CS(T−a)

EŜ,π

RT (Ŝ)√
T

■

7.11.4 Stable System Example

Here we show that the local minimax expected regret can be exponential in the dimension

even for stable systems. Using again the two subsystems trick, consider the following stable

system

S : xk+1 =



0 0 0 0 0

0 ρ 2 0 0

. . .

0 0 0 ρ 2

0 0 0 0 ρ


xk +



1 0

0 0

...

0 1


uk + wk, 0 < ρ < 1, (7.37)

with Q = In, R = I2. Following the notation of (7.18) let:

A0 =



ρ 2 0 0 0

0 ρ 2 0 0

. . .

0 0 0 ρ 2

0 0 0 0 ρ


, B0 =



0

0

...

0

1


, Q0 = In−1, R0 = 1, (7.38)

215



where A0 ∈ R(n−1)×(n−1) and B0 ∈ Rn−1. Note that A0 has spectral radius ρ < 1. Let

∆ =

 0 0

∆1 0

. Then, by Lemma 7.1, the local minimax expected regret for system S,

given the perturbation ∆1 is lower bounded by

lim inf
T→∞

sup
Ŝ∈CS(T−a)

EŜ,π

RT (Ŝ)√
T

≥ 1

4
√
n

√
∆′

1P0 [Σ0,x − In−1]P0∆1.

As we show in the following lemma, the quantity
√

∆′
1P0 [Σ0,x − In−1]P0∆1 is exponential

with n if we choose ∆1 appropriately. Although the system is stable, it is very sensitive

to inputs and noises. Any signal uk,2 that we apply gets amplified by 2 as we move up

the chain from state xk,n to state xk,2. As a result, any suboptimal policy will result in

excessive excitation of the state.

Lemma 7.8 (Stable systems can be hard to learn). Consider system (7.38) Let P0 be the

Riccati matrix for Q0 = In−1, R0 = 1, with K⋆,0, Σ0,x the corresponding LQR control gain

and steady-state covariance, respectively. Then

∥P0 [Σ0,x − In−1]P0∥2 ≥ 24n−8 + o(1),

where o(1) goes to zero as n → ∞.

Proof. Let ∆1 =

[
0 0 · · · 1 0

]′
. It is sufficient to prove that

∆′
1P0(Σ0,x − In−1)P0∆1

is exponential. Using the identity Σ0,x−In−1 = (A0+B0K⋆,0)Σ0,x(A0+B0K⋆,0)
′, Σ0,x ⪰ I,

we have:

∆′
1P0(Σ0,x − In−1)P0∆1 ≥ ∥∆′

1P0(A0 +B0K⋆,0)∥22.

By Lemma 7.10 and Lemma 7.9 it follows that

∥∆′
1P0(A0 +B0K⋆,0)∥22 ≥ 24n−8 + o(1).
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Lemma 7.9 (Riccati matrix can grow exponentially). For system (7.38) we have:

B′
0P0B0 +R0 ≥ 22n−4 + 1.

Proof. Consider the Riccati operator:

g(X,Y ) = A′
0XA0 + Y −A′

0XB0(B
′
0XB0 +R0)

−1B′
0XA0.

Based on the above notation, we have P0 = g(P0, Q0). The Riccati operator is mono-

tone (Anderson & Moore, 2005), i.e

X1 ⪰ X2 ⇒ g(X1, Y ) ⪰ g(X1, Y ).

It is also trivially monotone with respect to Y . Let X0 = 0, then the recursion Xt+1 =

g(Xt, Q0) converges to P0. By monotonicity

P0 ⪰ Xt, for all t ≥ 0

Let ei denote the i-th canonical vector in Rn−1. By monotonicity, we also have:

X1 = g(X0, Q0) ⪰ g(X0, e1e
′
1) = e1e

′
1︸︷︷︸

X̃1

Repeating the argument:

X2 = g(X1, Q0) ⪰ g(X̃1, Q0) ⪰ g(X̃1, e1e
′
1) = A′

0X̃1A0 + e1e
′
1︸ ︷︷ ︸

X̃2

= A′
0e1e

′
1A0 + e1e

′
1

= 22e2e
′
2 + ρ2e1e

′
1 + 2ρe1e

′
2 + 2ρe2e

′
1
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Similarly,

Xn−1 = g(Xn−2, Q0) ⪰ g(X̃n−2, e1e
′
1) = (A′

0)
n−2e1e

′
1A

n−2
0 + (A′

0)
n−1e1e

′
1A

n−1
0 + · · ·+ e1e

′
1,

where we use the fact that every X̃k is orthogonal to B0 for k ≤ n− 2. As a result:

[P0]n−1,n−1 ≥ [Xn]n−1,n−1 ≥ e′n−1(A
′
0)

n−2e1e
′
1A

n−2
0 en−1

= (e′1A
n−2
0 en−1)

2 = ([An−2
0 ]1,n−1)

2 (7.39)

What remains is to compute [An−2
0 ]1,n−1. Define by J ∈ R(n−1)×(n−1) the companion matrix:

J =



0 1 0 0 0

0 0 1 0 0

. . .

0 0 0 0 1

0 0 0 0 0


.

Since A0 = ρI + 2J and I commutes with J by the binomial expansion formula:

An−2
0 = 2n−2Jn−2 +

n−3∑
t=0

2t
(
n− 2

t

)
J t.

Since e′1J
n−1en−1 = 1, e′1J

ten−1 = 0, for t ≤ n− 2, we obtain:

([An−2
0 ]1,n−1)

2 = 22n−4. (7.40)

By (7.39) and (7.40) we finally get

B′
0P0B0 +R0 = [P0]n−1,n−1 + 1 ≥ 22n−4 + 1
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Lemma 7.10. We have:

∥∆′
1P0(A0 +B0K⋆,0)∥2 ≥ (0.5 + o(1))(B′

0P0B0 +R0),

where the o(1) is in the large n regime.

Proof. Let ei denote the i-th canonical vector in Rn−1. It is sufficient to show that

∣∣(B′
0P0B0 +R0)

−1∆′
1P0(A0 +B0K⋆,0)en−1

∣∣ ≥ 0.5 + o(1).

For simplicity we will denote:

α ≜ [P0]n−1,n−1, β ≜ [P0]n−2,n−2, γ ≜ [P0]n−1,n−2.

Due to the structure of A0, we have

A0en−1 = ρen−1 + 2en−2.

Using this, we obtain

K⋆,0en−1 = −(B′
0P0B0 + 1)−1B′

0P0A0en−1 = −(α+ 1)−1e′n−1P0(ρen−1 + 2en−2)

= −(α+ 1)−1(ρα+ 2γ). (7.41)

Combining the above results

(B′
0P0B0 +R)−1∆′

1P0(A0 +B0K⋆,0)en−1 = (B′
0P0B0 + 1)−1e′n−2P0(A0 +B0K⋆,0)en−1

= (α+ 1)−1

{
e′n−2P0(ρen−1 + 2en−2)− e′n−2P0en−1(α+ 1)−1(ρα+ 2γ)

}
= (α+ 1)−1

{
ργ + 2β − γ(α+ 1)−1(ρα+ 2γ)

}
= 2(α+ 1)−1

{
β − (α+ 1)−1γ2

}
− (α+ 1)−2ργ

i)
=

2

α+ 1

{
β − γ2

α+ 1

}
+ o(1),

219



where i) follows from Lemma 7.11. What remains to show is that

2

α+ 1

{
β − γ2

α+ 1

}
= 0.5 + o(1). (7.42)

Using the algebraic Riccati equation:

α = e′n−1A
′
0P0A0en−1 + 1− e′n−1A

′
0P0B0(α+ 1)−1B′

0P0A0en−1

= (ρen−1 + 2en−2)
′P0(ρen−1 + 2en−2) + 1

− (ρen−1 + 2en−2)
′P0en−1(α+ 1)−1e′n−1P0(ρen−1 + 2en−2)

= ρ2α+ 4β + 4ργ + 1− (ρα+ 2γ)2

α+ 1

= 4β +
ρ2α+ 4ργ + α+ 1− 4γ2

α+ 1
.

Dividing both sides with α+ 1:

α

1 + α
=

4

α+ 1

{
β − γ2

α+ 1

}
+

4ργ

(α+ 1)2
+

1 + ρ2α

(1 + α)2

Rearranging the terms gives:

2

α+ 1

{
β − γ2

α+ 1

}
− 0.5 = − 0.5

1 + α
− 2ργ

(α+ 1)2
− 1 + ρ2α

2(1 + α)2

By Lemma 7.11 the second term in the right-hand side is o(1). By Lemma 7.9, α = Ω(22n),

hence all remaining terms also go to zero, which completes the proof of (7.42).

Lemma 7.11. Recall the notation in the proof of Lemma 7.10

α ≜ [P0]n−1,n−1, γ ≜ [P0]n−1,n−2.

Then, we have: ∣∣∣∣ γ

(α+ 1)2

∣∣∣∣ = o(1)
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Proof. We use the relation:

P0 = (A0 +B0K⋆,0)
′P0(A0 +B0K⋆,0) +Q0 +K ′

⋆,0R0K⋆,0 ⪰ K ′
⋆,0R0K⋆,0.

Multiplying from the left and right by en−1 and by invoking (7.41) we obtain:

α ≥
(
ρα+ 2γ

α+ 1

)2

= (ξ + λ)2,

where for simplicity we define ξ = ρα
α+1 , λ = 2γ

α+1 . We can further lower bound the above

expression by:

α ≥ (ξ + λ)2 ≥ ξ2 + λ2 − 2ξ |λ| .

This is a quadratic inequality and holds if and only if:

ξ −√
α ≤ |λ| ≤ ξ +

√
α.

As a result:

2
|γ|

α+ 1
≤ ρ+

√
α+ 1

which leads to

|γ|
α+ 1

≤ 0.5
ρ+

√
α+ 1

α+ 1
= O(1/

√
α) = o(1)

since α = Ω(22n).
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Chapter 8

Conclusion and Open Problems

In this thesis, we studied the statistical complexity of learning linear systems for the tasks

of system identification, learning to predict, and learning to control. In the first part of this

thesis, we provided the first finite-sample analysis of stochastic system identification and the

first end-to-end guarantees for the offline learning of the Kalman filter. We also provided

the first logarithmic regret upper bounds for the problem of online Kalman filtering. In the

second part, we studied when systems are statistically easy or hard to learn. We proved

that control theoretic parameters, especially the controllability structure of the system,

can affect the statistical difficulty of learning dramatically. Our approach was based on

control theoretic tools as well as modern tools from statistical learning and high-dimensional

statistics. Going forward, there are multiple directions for future work.

Time-varying systems/Continuous adaptation In the online control literature, most

existing algorithms rely on the assumption that the unknown system is time-invariant. As

a result, adaptation essentially only happens initially. If a change occurs in the system,

then, the online control algorithms might not adapt fast enough. It is an interesting topic

to study the regret of online control in the case of time-varying systems. There has already

been some work on this topic Jadbabaie et al. (2021); Luo et al. (2022); Gradu et al. (2020).
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Nonlinear systems In this thesis, we focused on linear systems. In reality, most systems

are nonlinear. However, the statistical tools used in this thesis, might not be directly

applicable to nonlinear systems. Recently, there has been work on developing new tools for

nonlinear systems (Foster et al., 2020; Boffi et al., 2021; Mania et al., 2022; Ziemann et al.,

2022). It seems that the stability properties of the nonlinear system might be crucial to

provide generalization guarantees.

System Identification of Unstable Partially-Observed Systems It has been known

that identification of unstable systems from single trajectory data is possible in the case

of fully-observed systems under certain conditions (Faradonbeh et al., 2018a; Sarkar &

Rakhlin, 2018). It is an open problem if identification of unstable systems is possible in the

case of partially-observed systems. The main limitation is that the technique of unrolling

and truncating the Kalman filter might no longer work in the case of single trajectory data;

the initial state and the noise might have an exponentially increasing influence on the future

measurements.

Learning with Structure Most of the work so far has considered unstructured problems,

in the sense that A, B, C etc were assumed to be entirely unknown. In many real world

applications we might have partial knowledge of the model, e.g. we might know that

matrix A is sparse (Fattahi et al., 2019) or that A has a graph structure etc. It is an

open problem to study how structural knowledge would affect the statistical difficulty of

learning. For example, if we know the structure of matrices A, B, it might be possible to

avoid exponential sample complexity, in the case of the difficult learning instances studied

in Chapters 6, 7.

Learning under Constraints In this thesis, we considered unconstrained systems. In

reality, systems have physical limits and should satisfy safety specifications. Optimizing

performance, i.e. minimizing the LQR cost, might not be enough. It might be even more

important to satisfy constraints, e.g. in a Model Predictive Control (MPC) framework.
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The problem of adaptive MPC has been studied before (Bujarbaruah et al., 2019), however,

understanding its statistical complexity is still an open problem. The related problem of

constrained LQR control was studied before in both the offline (Dean et al., 2019) and the

adaptive setting (Li et al., 2021).

Application Oriented Bounds. The sample complexity/regret guarantees in this thesis

are mainly theoretical; they reveal how various system theoretic properties qualitatively

affect the difficulty of learning. Our guarantees are data-independent and they might be

loose due to overestimated universal constants. As a result, they might not be sharp enough

to be used in applications. A different line of work focuses on application oriented bounds,

e.g. data-dependent bounds, see for example Carè et al. (2018) or bootstrapping (Dean

et al., 2017). Such bounds might be more suitable for applications, but they might not

necessarily reveal how system properties affect learnability. It is still an open problem how

to successfully utilize such bounds in real-world applications.
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Abbasi-Yadkori, Y. and Szepesvári, C. Regret bounds for the adaptive control of linear
quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory,
pp. 1–26, 2011.
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