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ABSTRACT

BEYOND CLASSICAL STATISTICS:

OPTIMALITY IN TRANSFER LEARNING AND DISTRIBUTED LEARNING

Hongji Wei

T. Tony Cai

During modern statistical learning practice, statisticians are dealing with increasingly huge,

complicated and structured data sets. New opportunities can be found during the learning

process with better structured data sets as well as powerful data analytic resources. Also,

there are more and more challenges we need to address when dealing with large data sets,

due to limitation of computation, communication resources or privacy concerns. Under

decision-theoretical framework, statistical optimality should be reconsidered with new type

of data or new constraints. Under the framework of minimax theory, this thesis aims to

address the following four problems:

1. The first part of this thesis aims to develop an optimality theory for transfer learning

for nonparametric classification. An near optimal adaptive classifier is also established.

2. In the second part, we study distributed Gaussian mean estimation with known vari-

ance under communication constraints. The exact distributed minimax rate of con-

vergence is derived under three different communication protocols.

3. In the third part, we study distributed Gaussian mean estimation with unknown vari-

ance under communication constraints. The results show that the amount of additional

communication cost depends on the type of underlying communication protocol.

4. In the fourth part, we investigate the minimax optimality and communication cost of

adaptation for distributed nonparametric function estimation under communication

constraints.
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CHAPTER 1

Introduction

During modern statistical learning practice, statisticians are dealing with increasingly huge,

complicated and structured data sets. We are stepping into so-called the era of big data.

New opportunities can be found during the learning process with better structured data sets

as well as powerful data analytic resources. At the mean time, on the other hand, there

are more and more challenges we need to address when dealing with large data sets, due to

limitation of computation, communication resources or privacy concerns. Under decision-

theoretical framework, statistical optimality should be reconsidered with new type of data

or new constraints.

This thesis focuses on developing data-driven machine learning algorithms with theoretical

guarantees, either to seize more opportunities or to overcome challenges during the modern

statistical practice. This thesis consists of the following four chapters.

1.1. Transfer Learning for Nonparametric Classification

Human learners have the natural ability to use knowledge gained in one setting for learning in

a different but related setting. This ability to transfer knowledge from one task to another is

essential for effective learning. In the first chapter, we study transfer learning in the context

of nonparametric classification based on observations from different distributions under the

posterior drift model, which is a general framework and arises in many practical problems.

We first establish the minimax rate of convergence and construct a rate-optimal two-sample

weighted K-NN classifier. The results characterize precisely the contribution of the observa-

tions from the source distribution to the classification task under the target distribution. A

data-driven adaptive classifier is then proposed and is shown to simultaneously attain within

a logarithmic factor of the optimal rate over a large collection of parameter spaces. Simula-

tion studies and real data applications are carried out where the numerical results further

illustrate the theoretical analysis. Extensions to the case of multiple source distributions

1



are also considered.

This chapter is based on Cai and Wei (2021c), joint work with Tony Cai.

1.2. Distributed Gaussian Mean Estimation with Known Variance Under

Communication Constraints

In the conventional statistical decision theoretical framework, the focus is on the centralized

setting where all the data are collected together and directly available. The main goal is to

develop optimal (estimation, testing, detection, ...) procedures, where optimality is under-

stood with respect to the sample size and parameter space. Communication/computational

costs are not part of the consideration.

In the age of big data, communication/computational concerns associated with a statistical

procedure are becoming increasingly important in contemporary applications. One of the

difficulties for analyzing large datasets is that data are distributed, instead of in a single

centralized location.

In this chapter, we study distributed estimation of a Gaussian mean under communication

constraints in a decision theoretical framework. Minimax rates of convergence, which charac-

terize the tradeoff between the communication costs and statistical accuracy, are established

in both the univariate and multivariate settings. Communication-efficient and statistically

optimal procedures are developed. In the univariate case, the optimal rate depends only on

the total communication budget, so long as each local machine has at least one bit. How-

ever, in the multivariate case, the minimax rate depends on the specific allocations of the

communication budgets among the local machines.

Although optimal estimation of a Gaussian mean is relatively simple in the conventional

setting, it is quite involved under the communication constraints, both in terms of the

optimal procedure design and lower bound argument. The techniques developed in this

chapter can be of independent interest. An essential step is the decomposition of the minimax

estimation problem into two stages, localization and refinement. This critical decomposition

2



provides a framework for both the lower bound analysis and optimal procedure design.

This chapter is based on Cai and Wei (2020c), joint work with Tony Cai.

1.3. Distributed Gaussian Mean Estimation with Unknown Variance Un-

der Communication Constraints

In this chapter, we further extend the study in the previous chapter to an adaptive setting.

Distributed estimation of a Gaussian mean with unknown variance under communication

constraints is studied. Necessary and sufficient communication costs under different types

of distributed protocols are derived for any estimator that is adaptively rate-optimal over a

range of possible values for the variance. Communication-efficient and statistically optimal

procedures are developed.

The analysis reveals an interesting and important distinction among different types of dis-

tributed protocols: compared to the independent protocols, interactive protocols such as

the sequential and blackboard protocols require less communication costs for rate-optimal

adaptive Gaussian mean estimation. The lower bound techniques developed in the present

paper are novel and can be of independent interest.

This chapter is based on Cai and Wei (2021d), joint work with Tony Cai.

1.4. Distributed Nonparametric Function Estimation Under Communica-

tion Constraints

In this chapter, distributed minimax estimation and distributed adaptive estimation under

communication constraints for Gaussian sequence model and white noise model are studied.

The minimax rate of convergence for distributed estimation over a given Besov class, which

serves as a benchmark for the cost of adaptation, is established. We then quantify the

exact communication cost for adaptation and construct an optimally adaptive procedure for

distributed estimation over a range of Besov classes.

The results demonstrate significant differences between nonparametric function estimation

3



in the distributed setting and the conventional centralized setting. For global estimation,

adaptation in general cannot be achieved for free in the distributed setting. The new techni-

cal tools to obtain the exact characterization for the cost of adaptation can be of independent

interest.

This chapter is based on Cai and Wei (2021b), joint work with Tony Cai.
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CHAPTER 2

Transfer Learning for Nonparametric Classification

2.1. Introduction

A key feature of intelligence is the ability to learn from experience. Human learners appear

to have the talent to transfer their knowledge gained from one task to another similar

but different task. However, in statistical learning, most procedures are designed to solve

one single task, or to learn one single distribution based on observations from the same

setting. In a wide range of real-world applications, it is important to gain improvement

of learning in a new task through the transfer of knowledge from a related task that has

already been learned. Transfer learning aims to tackle such a problem. It has attracted

increasing attention in machine learning and has been used in many applications. Recent

examples include computer vision (Tzeng et al., 2017; Gong et al., 2012), speech recognition

(Huang et al., 2013), genre classification (Choi et al., 2017) and also many newly designed

algorithms such as Yao and Doretto (2010); Lee et al. (2007). More details about transfer

learning can be found in the survey papers (Pan and Yang, 2010; Weiss et al., 2016).

Besides significant successes in applications, much recent focus has also been on the theo-

retical properties of transfer learning. In many practical situations, there are labeled data

available from a distribution P , called the source distribution, while a relatively small quan-

tity of labeled or unlabeled data is drawn from a distribution Q, called the target distribution.

They are different but to some extent related distributions. The goal is to make statistical

inference under Q. A natural questions is: How much information can be transferred from

the source distribution P to the target distribution Q, provided a certain level of similarity

between the two distributions?

This is quite a general and challenging question. The problem is also known as domain

adaptation in the binary classification setting. In domain adaptation, data pairs (X,Y )

are drawn from P and Q defined on Rd × {0, 1}. Data from the source distribution P can

5



be informative about the target distribution Q if the two distributions are similar. Several

type of assumptions have been proposed and studied previously in the literature, such as

divergence bounds, covariate shift, and posterior drift. The first line of work in the literature

measures the similarity by the divergence between P and Q. Generalization bounds are

derived on unlabeled testing data from the target distribution Q after training by the data

from the source distribution P (Ben-David et al., 2007; Blitzer et al., 2008; Mansour et al.,

2009). These bounds are general and can be applied to any two distributions, but for

more structured source and target distributions those bounds are not suitable. Another

line of work imposes some structural assumptions on P and Q such as covariate shift and

posterior drift. Covariate shift assumes that the conditional distributions of Y given X are

the same under P and Q, i.e. PY |X = QY |X , but the marginal distributions PX and QX

can be different. Such a setting typically arises when the same study/survey is carried out

in different populations. For example, when constructing a classifier for a certain disease,

source data may be generated from clinical studies, but the goal is to classify people drawn

from the general public. The task becomes challenging due to the difference between the

two populations. Transfer learning under covariate shift has been studied in previous work

such as Shimodaira (2000); Sugiyama et al. (2008); Kpotufe and Martinet (2018).

In this chapter, we study transfer learning under the posterior drift model, where it is

assumed that PX ≈ QX but PY |X and QY |X can highly differ. To be more specific, suppose

there are two data generating distributions P and Q on Ω × {0, 1}, where Ω ⊂ [0, 1]d. We

observe nP independent and identically distributed (i.i.d.) samples (XP
1 , Y P

1 ), ..., (XP
nP

, Y P
nP

)

drawn from a source distribution P , and nQ i.i.d. samples (XQ
1 , Y Q

1 ), ..., (XQ
nQ , Y

Q
nQ) drawn

from a target distribution Q. The data points from the distributions P and Q are also

mutually independent. For each data point (X,Y ), the d-dimensional vector X is regarded

as covariates (features) of a certain object, while Y is a (noisy) binary label indicating to

which of the two classes this object belongs. The goal is to make classification under the

target distribution Q: Given the observed data, construct a classifier f̂ : Ω → {0, 1} which
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minimizes the classification risk under the target distribution Q:

R(f̂) ≜ P(X,Y )∼Q(Y ̸= f̂(X)).

Here P(X,Y )∼Q(·) means the probability under the distribution Q.

In binary classification, the regression functions are defined as

ηP (x) ≜ P (Y = 1|X = x) and ηQ(x) ≜ Q(Y = 1|X = x),

which can be used to represent the conditional distributions PY |X and QY |X . In classifica-

tion, Y can be regarded as an unknown parameter predicted by X, so from this perspective

we refer to PX and QX as the class “prior" probabilities and ηP (x) and ηQ(x) as the class

“posterior" probabilities associated with P and Q respectively (Scott, 2018). We say a “pos-

terior drift" happens when PX and QX have the same support with bounded densities, but

ηP (x) and ηQ(x) are highly different.

Posterior drift is a general framework and arises in many applications, where one collects

data from different populations. Here are three examples.

• Crowdsourcing. Crowdsourcing is a distributed model for large-scale problem-

solving and experimentation such as image classification, video annotation, and trans-

lation (Yuen et al., 2011; Karger et al., 2011; Zhang et al., 2014). The tasks are broad-

casted to multiple independent workers online in order to collect and aggregate their

solutions. In crowdsourcing, many noisy answers/labels are available from a large

amount of public workers, while sometimes, more accurate answers/labels may be col-

lected from experienced workers or experts. These expert answers/labels are of higher

quality but are relatively few due to the time or budget constraints. One can view

this difference in labeling accuracy as a posterior drift. It is desirable to construct a

statistical procedure that incorporates both data sets.
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• Concept drift. Concept drift is a common phenomenon when the underlying dis-

tribution of the data changes over time in a streaming environment (Tsymbal, 2004;

Gama et al., 2014). One kind of concept drift is called real concept drift where the

posterior class probabilities P (Y |X) changes over time. In this situation, posterior

drift exists if data are collected at different time. For example, the incidence rate of

a certain disease in certain groups may change over time due to the development of

treatments and preventive measures.

• Data corruption. Data corruption is ubiquitous in applications, where unexpected

error on data occurs during storage, transmission or processing (Menon et al., 2015;

van Rooyen and Williamson, 2018). In many settings, one receives data of variable

quality – perhaps some small amount of clean data, another amount of slightly cor-

rupted data, yet more that is significantly corrupted, and so on (Crammer et al., 2006).

Data of variable qualities can be viewed as posterior drift between those data gener-

ating distributions, thus better strategies are needed to tackle the problem within the

posterior drift framework.

Under the posterior drift model, the main difference between P and Q lies in the regression

functions ηP (x) and ηQ(x). So the relationship between ηP (x) and ηQ(x), which can be

captured by the link function ϕ defined below, is important in characterizing the difficulty

of the transfer learning problem. In this work, we propose a new concept called the rela-

tive signal exponent γ to describe the relationship between ηP (x) and ηQ(x). Our results

show that the relative signal exponent γ plays an important role in the minimax rate of

convergence for the excess risk under the posterior drift model.

For conceptual simplicity, we assume ηP (x) = ϕ(ηQ(x)) for some strictly increasing link

function ϕ(·) with ϕ(12) =
1
2 . Note that this is only a simplified version of our formal model

which will be given in Section 2. It is natural to assume ϕ is strictly increasing in the settings

where those X that are more likely to be labeled Y = 1 under Q are also more likely to

be labeled Y = 1 under P . The assumption ϕ(12) = 1
2 means that those X that are non-
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informative under Q are the same under P . Formally, for a given relative signal exponent

γ > 0 and a constant Cγ > 0, we denote by Γ(γ,Cγ) the collection of all distribution pairs

(P,Q) satisfying

(ϕ(x)− 1

2
)(x− 1

2
) ≥ 0 and |ϕ(x)− 1

2
| ≥ Cγ |x−

1

2
|γ . (2.1)

The relative signal exponent is a key parameter in capturing the usefulness of the data from

the source distribution P for the task of classification under the target distribution Q. The

smaller the relative signal exponent, the more information transferable from P to Q.

In this work we consider transfer learning under the posterior drift model in a nonparametric

classification setting. When Q satisfies the margin assumption with the parameter α, defined

in Section 2.2, and ηQ(x) belongs to the (β,Cβ)-Hölder function class, it is shown that, under

the regularity conditions, the minimax optimal rate of convergence is given by

inf
f̂

max
(P,Q)∈Π

EZEQ(f̂) ≍ (n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d , (2.2)

where nP and nQ are number of data drawn from P and Q respectively, d is the number of

features, and Π is the posterior drift regime where the distribution pair (P,Q) belongs to the

class Γ(γ,Cγ) with the relative signal exponent γ and satisfies some additional regularity

conditions. Here EQ(f̂) is the excess risk on Q which is defined based on the misclassification

error:

EQ(f̂) = RQ(f̂)−RQ(f
∗
Q) (2.3)

where

f∗
Q(x) =


0 if ηQ(x) ≤ 1

2

1 otherwise
(2.4)

is the Bayes classifier under Q. The expectation EZ in (2.2) is taken over the random
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realizations of all the observed data, namely the set Z, defined as

Z ≜ {(XP
1 , Y P

1 ), ..., (XP
nP

, Y P
nP

), (XQ
1 , Y Q

1 ), ..., (XQ
nQ

, Y Q
nQ

)}. (2.5)

Note that if one only had observations from the target distribution Q, the minimax rate

would be n
−β(1+α)

2β+d

Q . Therefore, the additional term n
2β+d
2γβ+d

P in the minimax rate (2.2) quan-

tifies an “effective sample size" for transfer learning from the source distribution P relative

to Q, and 2β+d
2γβ+d can be viewed as the optimal transfer rate. This result answers one of the

main questions in transfer learning: n
2β+d
2γβ+d

P is the total amount of information that can be

transferred from P to Q, and this quantity depends on the relative signal exponent γ which

characterizes the discrepancy between P and Q in posterior drift.

We construct a two-sample weighted K-nearest neighbors (K-NN) classifier and show that

it attains the optimal rate given in (2.2). However, this classifier depends on the parameters

α, β, and γ, which are typically unknown in practice. In this chapter, we also propose a

data-driven classifier f̂a that automatically adapts to the unknown model parameters α, β

and γ, with an additional log term on the excess risk bound:

sup
(P,Q)∈Π

EZEQ(f̂a) ≲
((

nP

log(nP + nQ)

) 2β+d
2γβ+d

+
nQ

log(nP + nQ)

)−β(1+α)
2β+d

.

This adaptive procedure is essentially different from either the non-adaptive procedure given

in this chapter, or any nonparametric classification procedures in the literature. The adap-

tive classifier is constructed based on the ideas inspired by Lepski’s method for nonparamet-

ric regression. The construction begins with a small number of the nearest neighbors, and

gradually increases the number of the neighbors used to make the decision. The algorithm

terminates once an empirical signal-to-noise ratio reaches a delicately designed threshold. It

is shown that the resulting data-driven classifier automatically adapts to a wide collection

of parameter spaces.
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In some applications, there are data available from multiple source distributions. Intuitively,

the samples from all source distributions are helpful to the classification task under the

target distribution. We also consider transfer learning in this setting under the posterior

drift model. Suppose there are multiple source distributions P1, . . . , Pm and one target

distribution Q, each pair of distributions (Pi, Q) has a relative signal exponent γi, i ∈

{1, . . . ,m}. The minimax optimal rate of convergence is established and the result quantifies

precisely the contributions from the data generated by the individual source distributions.

An adaptive procedure is constructed and shown to simultaneously attain the optimal rate

up to a logarithmic factor over a large class of parameter spaces.

The rest of the chapter is organized as follows. In Section 2.2, after some basic notations and

definitions are introduced, the model for transfer learning under the posterior drift model is

proposed in a nonparametric classification setting. In Section 2.3, we establish the minimax

optimal rate by constructing a minimax optimal procedure with guaranteed upper bound

and a matching lower bound. In section 2.4, a data-driven adaptive classifier is proposed

and is shown to adaptively attain the optimal rate of convergence, up to a logarithmic

factor. Section 2.6 investigates the numerical performance of the data driven procedure.

In section 2.7, a real data application is carried out to further illustrate the benefit of our

method. Section 2.5 considers transfer learning with multiple source distributions and a

brief discussion is given in Section 2.8. For reasons of space, we prove one main result in

Section 2.9 and provide the proofs of the other results and some technical lemmas in the

Supplementary Material (Cai and Wei, 2019).

2.2. Problem Formulation

We introduce in this section the posterior drift model. We begin with notation and basic

definitions.

2.2.1. Notation and definitions

For a distribution G, denote by G(·) and EG(·) respectively the probability and expectation

under G. Denote by PX and QX the marginal distribution of X under the joint distributions
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P and Q for (X,Y ) respectively. Let supp(·) denote the support of a probability distribution.

Throughout the chapter we write ∥ · ∥ to denote the Euclidean norm. We use I{·} to denote

the indicator function taking values in {0, 1}. We define a∨ b = max(a, b), a∧ b = min(a, b),

and ⌊a⌋ be the maximum integer that is not larger than a. We denote by B(x, r) a Euclidean

ball centered at x with radius r. We write λ(·) to denote Lebesgue measure of a set in a

Euclidean space. We denote by C or c some generic constants not depending on nP or nQ

that may vary from place to place.

2.2.2. Posterior drift in nonparametric classification

For two distributions P and Q for a random pair (X,Y ) taking values in [0, 1]d×{0, 1}, we

observe two independent random samples, (XP
1 , Y P

1 ), . . . , (XP
nP

, Y P
nP

)
i.i.d.∼ P and

(XQ
1 , Y Q

1 ), . . . , (XQ
nQ , Y

Q
nQ)

i.i.d.∼ Q. We shall use P -data and Q-data to refer to the data

sets drawn from the distributions P and Q respectively. We consider the transfer learning

problem when there is a posterior drift between P and Q. In the posterior drift model, the

covariates/features X are drawn from distributions having the same support with bounded

densities, but the response/label Y has different conditional distributions given X between

P and Q. The readers should notice that the model we introduced in Section 2.1 is a special

case within the model we will introduce in this section.

The regression functions have been defined informally in the introduction, now we give a

precise definition. Let

ηP (x) =


P (Y = 1|X = x) if x ∈ supp(PX)

1
2 otherwise

ηQ(x) =


Q(Y = 1|X = x) if x ∈ supp(QX)

1
2 otherwise

denote the corresponding regression functions of P and Q. Besides the previous definition

(2.4) of Bayes classifier under the target distribution Q, we can similarly define the Bayes
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classifier for the source distribution P as:

f∗
P (x) =


0 if ηP (x) ≤ 1

2

1 otherwise
.

Now assume (XP , Y P ) is a data pair drawn from the distribution P . From the definition,

given XP = x, Y P is more likely to be equal to 1 if f∗
P (x) = 1 whereas Y P is more likely

to be equal to 0 if f∗
P (x) = 0. It is similar for the distribution Q. Thus informally one can

regard f∗
P (x) (f∗

Q(x)) as the true label at the covariate value x under the distribution P (Q).

In transfer learning, although the observed data are drawn from two or more different

distributions, these distributions are usually related to each other so that all of them are

useful for learning the intrinsic true labels. For instance, in a crowdsourcing survey, although

accuracy varies among different workers, their answers should be no worse than random

guessing. It is reasonable to assume that the answer is correct with probability at least 1
2 .

This means we may reasonably assume that, given the same covariate x, the “true labels"

under the distributions P and Q are the same. That is

f∗(x) ≜ f∗
P (x) = f∗

Q(x) ∀x ∈ supp(PX),

which is equivalent to

(ηP (x)−
1

2
)(ηQ(x)−

1

2
) ≥ 0.

The definitions and assumptions introduced so far treat the P -data and Q-data symmetri-

cally and interchangeably. But in real applications, usually the two data sets are treated

differently. We call P the source distribution and Q the target distribution. The goal is to

transfer the knowledge gained from the P -data together with the information contained in

the Q-data for constructing an optimal classifier under the target distribution Q.

Intuitively it is clear that the amount of information that can be transferred from the P -data
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Figure 2.1: Illustration of the relative signal exponent γ. Left panel: feasible region when
γ = 0.5 and Cγ = 0.5. A pair of distributions (P,Q) has relative signal exponent γ = 0.5
with Cγ = 0.5 when (ηP (x), ηQ(x)) falls into the shaded (blue) region for all x in the support.
Right panel: feasible region with different choices of γ. Smaller γ implies more information
contains in PY |X .

for the inference under Q depends on the similarity between the distributions P and Q. In

this chapter, we quantify the similarity by the relative signal exponent of P with respect

to Q.

Definition 1 (Relative Signal Exponent). The class Γ(γ,Cγ) with relative signal exponent

γ ∈ (0,∞) and a constant Cγ ∈ (0,∞) is defined as the set of distribution pairs (P,Q), both

supported on Rd × {0, 1}, satisfying ∀x ∈ supp(PX) ∪ supp(QX),

(ηP (x)−
1

2
)(ηQ(x)−

1

2
) ≥ 0 (2.6)

|ηP (x)−
1

2
| ≥ Cγ |ηQ(x)−

1

2
|γ . (2.7)

Remark 1. The relative signal exponent γ indicates the signal strength of the P -data

relative to the Q-data. Note that |ηQ(x) − 1
2 | is always bounded by 1/2. So generally

speaking, the smaller γ is, the larger the difference between ηP (x) and 1
2 , which means

the P -data is more informative about f∗(x) and consequently more information can be

transferred from the P -data to the Q-data.
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One can see that the above definition of relative signal exponent implies when |ηQ(x) − 1
2 |

is large, then |ηP (x)− 1
2 | should be relatively large. This is intuitively true in a wide range

of real applications. Taking again the crowdsourcing surveys as an example. If one crowd

of workers can answer a question correctly with a larger probability, then for another crowd

of workers the accuracy of their answers is also usually larger because this question is likely

to be easier.

In addition to the relative signal exponent γ, we also need to define a smoothness parameter

of ηQ and characterize its behavior near 1/2:

Definition 2 (Smoothness). The (β,Cβ)−Hölder class of functions (0 < β ≤ 1), denoted

by H(β,Cβ), is defined as the set of functions g : Rd → R satisfying, for any x1, x2 ∈ Rd,

|g(x1)− g(x2)| ≤ Cβ∥x1 − x2∥β.

Definition 3 (Margin Assumption). The margin class M(α,Cα) with α ≥ 0, Cα > 0 is

defined as the set of distributions Q satisfying

QX(|ηQ(X)− 1

2
| < t) ≤ Cαt

α.

In this chapter we consider the nonparametric classification problem when ηQ(x) belongs to

a (β,Cβ)−Hölder class and Q belongs to a margin class M(α,Cα). When Q ∈ M(α,Cα),

we also say that Q satisfies the margin assumption with the parameter α.

Remark 2. In the main part of our discussion, we focus on the case with 0 < β ≤ 1, i.e.

η belongs to a Hölder function class with smoothness less than or equal to 1. Generally it

is possible to consider more general classes where the smoothness parameter can be larger

than 1. The discussion on the model and methods associated with the general smoothness

parameter β > 1 will be deferred to the discussion section.
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The margin assumption was first introduced in Tsybakov (2004); Audibert and Tsybakov

(2007) to characterize the convergence rate in nonparametric classification. The margin

assumption put a constraint on the mass around ηQ(x) ≈ 1
2 so that with large probability

ηQ(x) is either 1
2 or far from 1

2 . Generally, if an underlying distribution satisfies the margin

assumption, then a more accurate classification can be guaranteed.

Another definition is about density constraints on the marginal distributions PX and QX .

Definition 4 (Common Support and Strong Density Assumption). (PX , QX) is said to have

common support and satisfy strong density assumption with parameter µ = (µ−, µ+), cµ >

0, rµ > 0 if both PX and QX are absolutely continuous with respect to the Lebesgue measure

on Rd, and

Ω ≜ supp(PX) = supp(QX)

λ[Ω ∩B(x, r)] ≥ cµλ[B(x, r)] ∀0 < r ≤ rµ,∀x ∈ Ω

µ− <
dPX

dλ
(x) < µ+ ∀x ∈ Ω

µ− <
dQX

dλ
(x) < µ+ ∀x ∈ Ω.

Define S(µ, cµ, rµ) to be the set of the marginal densities pairs (PX , QX) that have common

support and satisfy the strong density assumption with parameter µ, cµ, rµ.

Remark 3. The strong density assumption was first introduced in Audibert and Tsybakov

(2007). In this chapter we focus on the scenario that the marginal densities of PX and QX

have regular support and are bounded from below and above on the support.

Moreover, note that when QX satisfies the strong density assumption, in the regime αβ > d,

there is no distribution Q such that the regression function ηQ crosses 1
2 in the interior of

the support QX (Audibert and Tsybakov, 2007). So this regime only contains the trivial

cases for classification. Therefore, we further assume αβ ≤ d in the following discussion.
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Given a classifier f̂ : Rd → {0, 1}, the excess risk on Q of the classifier f̂ , defined in equation

(2.3), has a dual representation (Gyorfi, 1978)

EQ(f̂) = 2E(X,Y )∼Q(|ηQ(X)− 1

2
|I{f̂(X )̸=f∗

Q(X)}). (2.8)

A major goal in transfer learning is to construct an empirical decision rule f̂ incorporating

both the P -data and Q-data, so that the excess risk on Q is minimized. It is interesting to

understand when the minimax rate in the transfer learning setting is faster than the optimal

rate where only the Q-data is used to construct the decision rule.

Putting the above definitions together, in this chapter we consider the posterior drift non-

parametric parameter space:

Π(α,Cα, β, Cβ, γ, Cγ , µ, cµ, rµ) = {(P,Q) : (P,Q) ∈ Γ(γ,Cγ), Q ∈M(α,Cα),

ηQ ∈ H(β,Cβ), (PX , QX) ∈ S(µ, cµ, rµ)}.

In the rest of this chapter, we will use the shorthand Π(α, β, γ, µ) or Π if there is no confusion.

The space Π(α, β, γ, µ) is also called the posterior drift regime with (α, β, γ, µ).

2.3. Minimax Rate of Convergence

In this section, we establish the minimax rate of convergence for the excess risk on Q for

transfer learning under the posterior drift model and propose an optimal procedure using

the two-sample weighted K-NN classifier.

The K-NN method has attracted much attention (Cover and Hart, 1967; Gyorfi, 1978;

Gadat et al., 2016) due to its massive practical success and appealing theoretical prop-

erties. In the conventional setting where one only has access to the Q-data and there is no

P -data, with a suitable choice of the neighborhood size k, the K-NN classifier can achieve

the minimax rate of convergence for the excess risk on Q (Gadat et al., 2016). The K-NN

classifier is generated in two steps:
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Step 1: For any given x to be classified, one can estimate ηQ(x) by taking the empirical mean

of the response variables (Y ) according to its k nearest covariates (X). Formally,

define XQ
(i)(x) be the i-th nearest covariates to x among XQ

1 , ..., XQ
nQ and Y Q

(i)(x) is its

corresponding response (label). The estimate η̂Q(x) is given by

η̂Q(x) =
1

k

k∑
i=1

Y Q
(i)(x).

Step 2: The class label for x is estimated by the plug-in rule:

f̂(x) = I{η̂Q(x)> 1
2
}.

In transfer learning, one also has access to the P -data in addition to the Q-data, the P -data

can be used to help the classification task under the target distribution Q and should be

taken into consideration. To accommodate the existing K-NN methods, we should take the

empirical mean of not only the k-nearest response variables from the Q-data, but also some

nearest response variables from the P -data. In addition, when taking the average, data from

the different distributions should have different weights because the signal strength varies

between the two distributions. To make the classification at x ∈ [0, 1]d, a new strategy called

the two-sample weighted K-NN classifier is summarized as follows:

Step 1: Define XP
(i)(x) to be the i-th nearest covariates to x among XP

1 , ..., XP
nP

and Y P
(i)(x) is

its corresponding response. XQ
(i)(x) and Y Q

(i)(x) can be defined likewise. Construct the

two-sample weighted K-NN estimator

η̂NN (x) =
wP
∑kP

i=1 Y
P
(i)(x) + wQ

∑kQ
i=1 Y

Q
(i)(x)

wPkP + wQkQ

where the number of neighbors kP and kQ and the weights wP and wQ will be specified

later.
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Step 2: The class label for x is estimated by the plug-in rule:

f̂NN (x) = I{η̂NN (x)> 1
2
}.

The final decision rule f̂NN (x), which is generated by both the P -data and Q-data, is called

the two-sample weighted K-NN classifier.

The performance of the two-sample weighted K-NN classifier f̂NN (x) clearly depends on

the choice of (kP , kQ, wP , wQ). The next theorem gives a set of choices of (kP , kQ, wP , wQ)

and a provable upper bound on the excess risk, which gives a guarantee for the performance

of the two-sample weighted K-NN classifier with these specific choices of (kP , kQ, wP , wQ).

Theorem 1 (Upper Bound). Let f̂NN be the two-sample weighted K-NN classifier with

wQ = (n
2β+d
2γβ+d

P + nQ)
− β

2β+d , wP = (n
2β+d
2γβ+d

P + nQ)
− γβ

2β+d , kQ = ⌊nQ(n
2β+d
2γβ+d

P + nQ)
− d

2β+d ⌋, and

kP = ⌊nP (n
2β+d
2γβ+d

P + nQ)
− d

2β+d ⌋. Then

sup
(P,Q)∈Π

EZEQ(f̂NN ) ≤ C(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d

for some constant C > 0 not depending on nP or nQ.

The following lower bound result shows that the two-sample weighted K-NN classifier f̂NN

given in Theorem 1 is in fact rate optimal.

Theorem 2 (Lower Bound). There exists a constant c > 0 not depending on nP or nQ such

that

inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) ≥ c(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

The proof of Theorem 1 will be given in Section 2.9, which is based on the general techniques

for proving K-NN methods, for instance, see Gadat et al. (2016); Samworth (2012). In the

literature of classical nonparametric classification problem, the focus was mainly on bias-

variance trade-off. Under posterior drift model, we further extend the general techniques
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Figure 2.2: An illustration of the two-sample weighted K-NN classifier. (XP , Y P ) are shown
by the blue points and (XQ, Y Q) are shown by the red points. For each point in the graph,
the coordinates represent its two-dimensional covariates X while the number marked inside
the point represents its label Y . To classify the black point (x) located in middle of the
graph, by calculation we get (say) kP = 2 and kQ = 4. Then we find kP nearest neighbors
from P -data and kQ nearest neighbors from Q-data. Finally, we calculate their weighted
mean to make the final classification.

to the two-sample setting, where the weights and the number of neighbors are carefully

selected to make the best combination of information. The proof of Theorem 2 is given

in the supplementary material (Cai and Wei, 2019), using the same general scheme as in

(Audibert and Tsybakov, 2007; Kpotufe and Martinet, 2018). Theorems 1 and 2 together

establish the minimax rate of convergence for transfer learning under the posterior drift

model,

inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) ≍ (n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d . (2.9)

We make a few remarks on the minimax rate of convergence.

• Based on the minimax rate given in (2.9), it is easy to see that, in terms of the

classification accuracy, the contribution from the P -data is substantial when n
2β+d
2γβ+d

P ≫

nQ, and the contribution is not significant otherwise.
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• Comparing the convergence rates (2.9) with (2.10), the minimax rate for transfer

learning under the posterior drift model is the same as if one had a sample of size

n
2β+d
2γβ+d

P + nQ from the distribution Q in the conventional setting. Therefore, one can

intuitively view n
2β+d
2γβ+d

P as the “effective sample size" of the P -data for the classification

task under Q. The exponent 2β+d
2γβ+d here can be regarded as the transfer rate. The

smaller the relative signal exponent γ is, the larger 2β+d
2γβ+d is, and more information is

transferred from the P -data. This transfer rate provides a quantitative answer to the

question posed in the introduction: How much information can be transferred from

the source distribution P to the target distribution Q? It is also interesting to note

that, when γ < 1, 2β+d
2γβ+d > 1, which implies that in this case an observation from P is

more valuable than an observation from Q for the classification problem.

• In the transfer learning literature, much attention has been on an interesting spe-

cial case where there is no data from the target distribution Q at all, i.e., nQ = 0

(Mansour et al., 2009; Blitzer et al., 2008). This case arises when a classifier has been

trained based on the data drawn from the source distribution P , and one wishes to

generalize the classifier to unlabeled testing data drawn from the target distribution

Q. Our results show that generalization is possible in the posterior drift framework

and the optimal rate of convergence is

inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) ≍ n
−β(1+α)

2γβ+d

P .

• It is worth noting that in the conventional setting with access to the Q-data only, the

minimax rate, which is given in Audibert and Tsybakov (2007), would be

inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) ≍ n
−β(1+α)

2β+d

Q , (2.10)

which is a special case of (2.9) with nP = 0. This rate can be achieved by the K-NN

classifier given above with the choice of k ≍ n
2β

2β+d

Q .
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2.4. Data-driven Adaptive Classifier

In the previous section, we have established the minimax optimal rate over the parameter

space Π(α, β, γ, µ) for transfer learning under the posterior drift model. This rate can

be achieved by the two-sample weighted K-NN classifier given in Theorem 1. A major

drawback of this classifier is that it requires the prior knowledge of β and γ, which is typically

unavailable in practice. An interesting and practically important question is whether it is

possible to construct a data-driven adaptive decision rules that can achieve the same rate

of convergence, while automatically adapt to a wide collection of the parameter spaces

Π(α, β, γ, µ).

In nonparametric regression, Lepski’s method (Lepski, 1991, 1992, 1993) is a well known ap-

proach for the construction of a data driven estimator that adapts to the unknown smooth-

ness parameter β by screening from a small bandwidth to larger bandwidths with delicately

designed stopping rules. This procedure can be used for nonparametric classification in the

conventional setting where only Q-data is available and only adaptation to one smoothness

parameter β is needed. For readers’ convenience we include this construction in Section

2.9. The transfer learning setting is more challenging: we need to adapt to bothparameters

β and γ. In this section, we modify Lepski’s method in our context and introduce a new

stopping rule and show that the resulting classifier adapts to all unknown parameters.

Now we develop a data-driven procedure to make classification at a specific point x ∈ [0, 1]d.

The construction combines all data points from the P -data and the Q-data together and

finds nearest neighbors among all the data. Denote by X(i)(x) the i-th nearest data point to

x in the combined set {XP
1 , ..., XP

nP
}∪{XQ

1 , ..., XQ
nQ}. Similar to Lepski’s method, we begin

with a small number of nearest neighbors, and gradually increase the number of neighbors

used to make the decision. One more nearest neighbor is added in each step. At the k-th

step, there are k nearest neighbors X(1)(x), ..., X(k)(x) among all the points in the combined

set {XP
1 , ..., XP

nP
}∪{XQ

1 , ..., XQ
nQ}. Suppose among these k nearest neighbors there are k

(k)
P

points from the P -data and k
(k)
Q points from the Q-data. Heuristically, given these k nearest
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neighbors, one can obtain a weighted K-NN estimate as

η̂(k)(x,wP , wQ) =
wP
∑k

(k)
P

i=1 Y
P
(i)(x) + wQ

∑k
(k)
Q

i=1 Y
Q
(i)(x)

wPk
(k)
P + wQk

(k)
Q

.

If β and γ are known, one can calculate the optimal choice of the weights wP and wQ for

a two-sample weighted K-NN classifier. To construct an adaptive procedure, we need to

find a data driven method for choosing the weights wP and wQ. Define the “variance" of

η̂(k)(x,wP , wQ) as

v(k)(wP , wQ) =
w2
Pk

(k)
P + w2

Qk
(k)
Q

(wPk
(k)
P + wQk

(k)
Q )2

.

For a given k, we call the maximum value of the ratio between (η̂(k)(x,wP , wQ) − 1
2)

2 and

the “variance" v(k)(wP , wQ) as the signal-to-noise ratio index r̂(k):

r̂(k) = max
wP ,wQ

(η̂(k)(x,wP , wQ)− 1
2)

2

v(k)(wP , wQ)
.

The algorithm is terminated when r̂(k) > (d+3) log(nP+nQ), and the corresponding wP and

wQ are chosen as the maximizers of (η̂(k)(x,wP ,wQ)− 1
2
)2

v(k)(wP ,wQ)
. If the algorithm doesn’t terminate

at any step, the optimal k can be alternatively chosen by the maximizer of r̂(k). That is, we

choose k = k∗ with

k∗ =


min{k : r̂(k) > (d+ 3) log(nP + nQ)} if maxk r̂

(k) > (d+ 3) log(nP + nQ)

argmaxk r̂
(k) otherwise

(2.11)

and choose (wP , wQ) = (w∗
P , w

∗
Q) with

(w∗
P , w

∗
Q) = argmax(wP ,wQ)

(η̂(k
∗)(x,wP , wQ)− 1

2)
2

v(k∗)(wP , wQ)
.
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Figure 2.3: An illustration of the adaptive procedure given in Algorithm 1. See figure 2.2 for
interpretation of the graph. Here we shorthand the threshold T = (d+ 3) log(nP + nQ). In
each step, we evaluate r(k) and compare it to the threshold R. If r(k) > T , then output f̂ (k)

generated in current step; if r(k) ≤ T , go to next step and add one more nearest neighbor.

The data driven adaptive classifier is then defined as

f̂a(x) = I{η̂(k∗)(x,w∗
P ,w∗

Q)≥ 1
2
}.

Remark 4. The choice of (d+3) log(nP +nQ) as the threshold in the stopping rule (2.11) is

important and requires some explanation. Roughly speaking, this is due to the fact that the

maximum fluctuation of η̂(k)(x,wP , wQ) is bounded by
√

(d+ 3) log(nP + nQ)v(k)(wP , wQ)

with high probability, which will be shown in Lemma 5 with a suitable change of pa-

rameter (stated in the supplementary material (Cai and Wei, 2019)). Thus, when r̂(k) >

(d + 3) log(nP + nQ), η̂(k)(x,wP , wQ) > 1
2 indicates Eη̂(k)(x,wP , wQ) > 1

2 , which suggests

f∗(x) = 1, and vice versa.

The procedure is summarized in Algorithm 1 where the above procedure is simplified by

using the actual closed form expression for r̂(k) and f̂a(x).
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We investigate the theoretical properties of this data-driven classifier f̂a in terms of both

global and local adaptivity. The theoretical analysis shows that the proposed classifier is,

both globally and locally, adaptive to the unknown smoothness and relative signal exponent.

2.4.1. Global adaptivity

Note that f̂a is a data-driven classifier. The following theorem gives an upper bound for the

excess risk under Q:

Theorem 3. Let n = nP + nQ. There exists a constant C > 0 not depending on nP or nQ

such that

sup
(P,Q)∈Π

EZEQ(f̂a) ≤ C

((
nP

log n

) 2β+d
2γβ+d

+
nQ

log n

)−β(1+α)
2β+d

. (2.12)

The proof of Theorem 3 is given in the supplementary material (Cai and Wei, 2019).

Comparing the rate of convergence in (2.12) for the adaptive classifier f̂a with the minimax

rate (2.9), the data driven classifier f̂a simultaneously achieves within a logarithmic factor

of the minimax optimal rate over a large collection of parameter spaces.

Remark 5. If only the Q-data is available and Lepski’s method is applied, then the following

upper bound on the excess risk under Q holds:

sup
(P,Q)∈Π

EZEQ(f̂L) ≤ C ·
(

nQ

log nQ

)−β(1+α)
2β+d

. (2.13)

One can verify that by setting nP = 0, our new adaptive procedure is exactly equivalent

to Lepski’s method (Algorithm 3), while the rates of convergence for the two methods also

coincide.

2.4.2. Local adaptivity

In practice, one might be focused on classifying a given observation x0 and thus especially

interested in the accuracy of a classifier at a specific point x0. Interestingly, the weights wP

and wQ, the number k of neighbors of the proposed classifier f̂a(x) are all locally selected and
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calculated based on samples in a neighborhood of x. It is of practical interest to investigate

the local adaptivity of the proposed classifier.

In order to study the local behavior of the classifier f̂a at a given point x0, we need to extent

the definitions for the posterior drift model to their local versions. First, we define the local

excess risk on Q at a point x0:

Definition 5. For any x0 ∈ Ω and a classifier f̂ : Ω → {0, 1}, define the classification risk

at x0 on distribution Q for f̂ as:

R(f̂ , x0) = P(X,Y )∼Q(Y ̸= f̂(x0)|X = x0).

Further, define the local excess risk at x0 on distribution Q for f̂ as

EQ(f̂ , x0) = R(f̂ , x0)−R(f∗
Q, x0).

Next, we give a formal definition for local smoothness β0 = β(x0) and local relative signal

exponent γ0 = γ(x):

Definition 6. A function g : Rd → R has local Hölder smoothness β0 (0 < β0 ≤ 1) at point

x0 ∈ Rd if there exists r > 0 and Cβ > 0 such that for any x′ ∈ B(x0, r),

|g(x′)− g(x0)| ≤ Cβ∥x′ − x0∥β.

Definition 7. A pair of distributions (P,Q), both supported on Ω× {0, 1}, are defined to

have local relative signal exponent γ0 at a point x0 ∈ Ω, if there exists r > 0 and Cγ > 0

such that for any x ∈ B(x0, r),

(ηP (x)−
1

2
)(ηQ(x)−

1

2
) ≥ 0
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|ηP (x)−
1

2
| ≥ Cγ |ηQ(x)−

1

2
|γ .

The definitions of local smoothness and local relative signal exponent are similar to their

global versions, except we only consider in a small neighborhood of x0. Based on the above

definitions, the local adaptivity of f̂a at x0 is characterized as follows:

Theorem 4. Suppose the distributions (P,Q) are both supported on Ω× {0, 1} and a point

x0 ∈ Ω. Suppose the following holds.

1. (P,Q) have local relative signal exponent γ0 at x0;

2. ηQ has local Hölder smoothness β0 at x0;

3. (PX , QX) ∈ S(µ, cµ, rµ), i.e. PX and QX have common support and satisfy the strong

density assumption.

Let n = nP + nQ. There exists a constant C > 0 such that

EZEQ(f̂a, x0) ≤ C

( nP

log n

) 2β0+d
2γ0β0+d

+
nQ

log n

− β0
2β0+d

(2.14)

The proof of Theorem 4 is provided in the supplementary material.

Remark 6. Under the same setting as in Theorem 4, when β0 and γ0 are known, the local

minimax rate of convergence is

inf
f̂

sup
(P,Q)

EZEQ(f̂a, x0) ≍ (n
2β0+d

2γ0β0+d

P + nQ)
− β0

2β0+d

where the supremum is taken over all distribution pairs (P,Q) satisfying conditions 1,2,3

stated in Theorem 4. This minimax rate can be achieved by the same construction as the

minimax classifier in Section 2.3 (using local parameters β0, γ0 instead of global parameters

β, γ). As a result, Theorem 4 shows that f̂a also achieves within a logarithmic factor of the
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local minimax optimal rate. In other words, f̂a adapts to local smoothness and local signal

relative exponent.

Remark 7. For simplicity, this chapter focuses on the posterior drift model, which is some-

what restrictive since the relation between P and Q is described by a signal parameter γ.

However, because f̂a is adaptive to the local signal relative exponent, it can make nearly op-

timal classification under heterogeneity where γ varies. In other words, f̂a works optimally

even when P is stronger than Q in some places and weaker than Q elsewhere.

Remark 8. Note that there is also a dual representation of EZEQ(f̂a, x0):

EZEQ(f̂a, x0) = 2|ηQ(x0)−
1

2
|PZ

(
f̂a(x0) ̸= f∗

Q(x0)
)

Theorem 4 can be interpreted as follows. For any point x0, the classifier f̂a performs well

(i.e. the accuracy of f̂a is bounded away from 1/2) when

|ηQ(x0)−
1

2
| ≥ C

( nP

log n

) 2β0+d
2γ0β0+d

+
nQ

log n

− β0
2β0+d

for some constant C > 0. Other than the sample sizes nP and nQ, the rate only depends

on the local smoothness β0 and local relative signal exponent γ0. Also, it is optimal up to

a logarithmic factor. The result thus shows that f̂a is adaptive to the local smoothness and

local relative signal exponent.

2.5. Multiple Source Distributions

We have so far focused on transfer learning with one source distribution P and one target

distribution Q. In practice, data may be generated from more than one source distribution.

In this section, we generalize our methods to treat transfer learning in the setting where

multiple source distributions are available.

We consider a model where there are several source distributions with different relative
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signal exponents with respect to the target distribution Q. Suppose there are nP1 , ..., nPm ,

and nQ i.i.d data points generated from the source distributions P1, ..., Pm, and the target

distribution Q respectively,

(XP1
1 , Y P1

1 ), ..., (XP1
nP1

, Y P1
nP1

)
i.i.d.∼ P1

...

(XPm
1 , Y Pm

1 ), ..., (XPm
nPm

, Y Pm
nPm

)
i.i.d.∼ Pm

(XQ
1 , Y Q

1 ), ..., (XQ
nQ

, Y Q
nQ

)
i.i.d.∼ Q

and all the samples are independent. The goal is to make classification under the target

distribution Q. Similar as before, it is intuitively clear that how useful the data from the

source distributions Pi, i ∈ [m], to the classification task under Q depends on the relationship

between each Pi and Q. The definition of the relative signal exponent needs to be extended to

accommodate the multiple source distributions. It is natural to consider the situation where

each source distribution Pi and the target distribution Q have a relative signal exponent.

This motivates the following definition of the vectorized relative signal exponent when there

are multiple source distributions.

Definition 8. Suppose the distributions P1, ..., Pm, and Q are supported on Rd × {0, 1}.

Define the class Γ(γ, Cγ) with the relative signal exponent γ = (γ1, ..., γm) ∈ Rm
+ and

constants Cγ = (C1, ..., Cm) ∈ Rm
+ , is the set of distribution tuples (P1, ..., Pm, Q) that

satisfy, for each i ∈ [m], (Pi, Q) belongs to the class Γ(γi, Ci) with the relative signal

exponent γi.

Similar as in Section 2.2, adding the regularity conditions on Q including the smoothness,

margin assumption and strong density assumption, we define the parameter space in the
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multiple source distributions setting as follows:

Π(α,Cα, β, Cβ,γ, Cγ , µ, cµ, rµ) = {(P1, ..., Pm, Q) : (P1, ..., Pm, Q) ∈ Γ(γ, Cγ),

Q ∈M(α,Cα), ηQ ∈ H(β,Cβ), (Pi,X , QX) ∈ S(µ, cµ, rµ) for all i ∈ [m]}.

We will simply denote Π(α,Cα, β, Cβ,γ, Cγ , µ, cµ, rµ) by Π or Π(α, β,γ, µ) if there is no

confusion.

In this section we establish the minimax optimal rate of convergence and propose an adaptive

classifier which simultaneously achieves the optimal rate of convergence within a logarithmic

factor over a wide collection of the parameter spaces. The proofs are similar to those for

Theorems 1, 2 and 3 in the one source distribution setting. For reasons of space, we omit

the proofs.

2.5.1. Minimax rate of convergence

We begin with the construction of a minimax rate optimal classifier f̂NN in the case of

multiple source distributions. The classifier is an extension of the two-sample weighted K-

NN classifier given in Section 2.3. It incorporates the information contained in the data

drawn from the source distributions Pi, i ∈ [m], as well as the data drawn from the target

distribution Q. The detailed steps are as follows.

Step 1: Compute the weights wP1 , ..., wPm , and wQ by

wPi = (nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− γiβ

2β+d , for all i ∈ [m],

wQ = (nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− β

2β+d .
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Compute the numbers of neighbors kP1 , ..., kPm , kQ by

kPi = ⌊nPi(nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− d

2β+d ⌋, for all i ∈ [m]

kQ = ⌊nQ(nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− d

2β+d ⌋.

Step 2: Define XPi

(j)(x) to be the j-th nearest data point to x among XPi
1 , ..., XPi

nPi
and Y Pi

(j)(x)

is its corresponding response (label). Likewise, let XQ
(j)(x) be the j-th data point to

x among XQ
1 , ..., XQ

nQ and Y Q
(j)(x) is its corresponding response (label). Define the

weighted K-NN estimator

η̂NN (x) =
wQ
∑kQ

j=1 Y
Q
(j)(x) +

∑m
i=1

(
wPi

∑kPi
j=1 Y

Pi

(j)(x)
)

wQkQ +
∑m

i=1wPikPi

.

This estimator takes weighted average of kPi nearest neighbors from the data points

drawn from Pi, each with weight wPi , and kQ nearest neighbors from the data points

drawn from Q, each with weight wQ.

Step 3: The final classifier is then defined as

f̂NN (x) = I{η̂NN (x)> 1
2
}.

We now analyze the theoretical properties of the classifier f̂NN . Theorem 5 gives an upper

bound for the excess risk EQ(f̂NN ), while Theorem 6 provides a matching lower bound on

the excess risk. These two theorems together establish the minimax rate of convergence and

show that f̂NN attains the optimal rate. In the following theorems, the expectation E is

taken over random realization of all data drawn from source and target distributions.

Theorem 5 (Upper Bound). There exists a constant C > 0 not depending on nP or nQ,
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such that

sup
(P1,...,Pm,Q)∈Π(α,β,γ,µ)

EEQ(f̂NN ) ≤ C(nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
−β(1+α)

2β+d .

Theorem 6 (Lower Bound). There exists a constant c > 0 not depending on nP or nQ,

such that

inf
f̂

sup
(P1,...,Pm,Q)∈Π(α,β,γ,µ)

EEQ(f̂) ≥ c(nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
−β(1+α)

2β+d .

Theorems 5 and 6 together yield the minimax optimal rate for transfer learning with multiple

source distributions:

inf
f̂

sup
(P1,...,Pm,Q)∈Π(α,β,γ,µ)

EEQ(f̂) ≍ (nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
−β(1+α)

2β+d . (2.15)

As discussed in Section 2.3, here n
2β+d

2γiβ+d

Pi
can be viewed as the effective sample size for data

drawn from the source distribution Pi when the information in this sample is transferred to

help the classification task under the target distribution Q. Even when there are multiple

source distributions, the transfer rate associated with Pi remains to be 2β+d
2γiβ+d , which is not

affected by the presence of the data drawn from the other source distributions.

2.5.2. Adaptive classifier

Again, the minimax classifier is not practical as it depends on the parameters γ and µ which

are typically unknown. It is desirable to construct a data driven classifier that does not rely

on the knowledge of the model parameters. A similar adaptive data-driven classifier can be

developed. The detailed steps are summarized in Algorithm 2.

It is clear from the construction that the classifier f̂a is a data-driven decision rule. Theorem

7 below provides a theoretical guarantee for the excess risk of f̂a under the target distribution

Q. In view of the optimal rate given in (2.15), Theorem 7 shows that f̂a is adaptively nearly

optimal over a wide range of parameter spaces.
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Theorem 7. Let n = nQ +
∑m

i=1 nPi . There exists a constant C > 0 such that for Π =

Π(α, β,γ, µ),

sup
(P1,...,Pm,Q)∈Π

EEQ(f̂a) ≤ C ·
(

nQ

log n
+

m∑
i=1

(
nPi

log n

) 2β+d
2γiβ+d

)−β(1+α)
2β+d

.
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Algorithm 1 The Data Driven Procedure
Input: x ∈ supp(QX)
for k = 1, ..., (nP + nQ − 1), (nP + nQ) do

Find k nearest covariates to x among all covariates in data {XP
1 , XP

2 , ..., XP
nP
} ∪

{XQ
1 , XQ

2 , ..., XQ
nQ}. Suppose among those k nearest neighbors X(1)(x), X(2)(x), ..., X(k)(x)

there are k
(k)
P covariates from P -data and k

(k)
Q covariates from Q-data.

Compute k
(k)
P nearest neighbor estimate in P -data (If k(k)P = 0, set η̂

(k)
P ← 1

2 )

η̂
(k)
P ← 1

k
(k)
P

k
(k)
P∑
i=1

Y P
(i)(x)

and k
(k)
Q nearest neighbor estimate in P -data (If k(k)Q = 0, set η̂

(k)
Q ← 1

2 )

η̂
(k)
Q ← 1

k
(k)
Q

k
(k)
Q∑
i=1

Y P
(i)(x)

Let r̂(k) be the signal-to-noise ratio index calculated by

r̂(k) ←


k
(k)
P

(
η̂
(k)
P − 1

2

)2
+ k

(k)
Q

(
η̂
(k)
Q − 1

2

)2
if sign(η̂

(k)
P − 1

2) = sign(η̂
(k)
Q − 1

2)

max

(
k
(k)
P

(
η̂
(k)
P − 1

2

)2
, k

(k)
Q

(
η̂
(k)
Q − 1

2

)2)
if sign(η̂

(k)
P − 1

2) ̸= sign(η̂
(k)
Q − 1

2)

Define the intermediate classifier by

f̂ (k)(x)← I
{
√

k
(k)
P

(
η
(k)
P − 1

2

)
+
√

k
(k)
Q

(
η
(k)
Q − 1

2

)
≥0}

if r̂(k)(x) > (d+ 3) log(nP + nQ) then
Stop and output f̂a(x)← f (k)(x)

Output f̂a(x)← f̂ (km)(x) where km = argmaxk r̂
(k)
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Algorithm 2 The Data Driven Classifier
Input: x ∈ supp(QX)
for k = 1, ..., (nQ +

∑m
i=1 nPi − 1), (nQ +

∑m
i=1 nPi) do

Find k nearest neighbors X(1)(x), ..., X(k)(x) to x among all the covariates {XQ
j :

j ∈ [nQ]} ∪
⋃m

i=1{XPi
j : j ∈ [nPi ]}. Suppose k

(k)
Pi

of them are from the distribution Pi,

i = 1, . . . ,m, and k
(k)
Q of them are from Q. That is, the k nearest neighbors are partitioned

into m+ 1 parts according to which distribution they are drawn from.
For each i ∈ [m], Compute the K-NN estimate for ηPi (If k(k)Pi

= 0, set η̂
(k)
Pi
← 1

2 )

η̂
(k)
Pi

(x)← 1

k
(k)
Pi

k
(k)
Pi∑

j=1

Y Pi

(j)(x)

and nearest neighbor estimate for ηQ (If k(k)Q = 0, set η̂
(k)
Q ← 1

2 )

η̂
(k)
Q ← 1

k
(k)
Q

k
(k)
Q∑
i=1

Y P
(i)(x).

Compute the positive signal-to-noise index

r̂
(k)
+ ← I{η(k)Q ≥ 1

2
}k

(k)
Q

(
η
(k)
Q −

1

2

)2

+
m∑
i=1

I{η(k)Pi
≥ 1

2
}k

(k)
Pi

(
η
(k)
Pi
− 1

2

)2

and negative signal-to-noise index

r̂
(k)
− ← I{η(k)Q < 1

2
}k

(k)
Q

(
η
(k)
Q −

1

2

)2

+

m∑
i=1

I{η(k)Pi
< 1

2
}k

(k)
Pi

(
η
(k)
Pi
− 1

2

)2

.

Let r̂(k) be the signal-to-noise ratio index calculated by

r̂(k) ← max
{
r̂
(k)
+ , r̂

(k)
−

}
.

Define the classifier
f̂ (k)(x)← I{r̂(k)+ ≥r̂

(k)
− }.

if r̂(k) > (d+ 3) log(nQ +
∑m

i=1 nPi) then
Stop and output f̂a(x)← f (k)(x).

Output f̂a(x)← f̂ (km)(x) where km = argmaxk r̂
(k).
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2.6. Numerical Studies

In this section, we carry out simulation studies to further illustrate the performance of the

adaptive transfer learning procedure. Numerical comparisons with the existing methods are

given. The simulation results are consistent with the theoretical predictions.

For all simulation experiments in this section, the data is generated under the posterior drift

model with d = 2. The distributions (P,Q) used to generate data is specified as following:

1. Marginal distributions: PX = QX are both uniform distribution on the square Ω =

[−1, 1]2.

2. Regression functions: ηQ and ηP are defined as

ηQ(x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})β

and

ηP (x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})γβ

where x = (x1, x2) ∈ [−1, 1]2, p, β and γ are parameters that may vary in different

simulation studies.

According to the above construction, both ηP and ηQ take the maximum values at (1, 0)

and the minimum values at (−1, 0), and equal to 0.5 when x1 = 0. it can be easily verified

that ηQ ∈ H(β,Cβ) with some Cβ > 0, (P,Q) ∈ Γ(γ, 1), Q satisfies the margin assumption

with α = 0.99/β, and PX and QX have the common support and bounded densities.

In the following experiments, we focus on evaluating the average excess risk at a random

test sample x drawn uniformly from the square Ω = [−1, 1]2, given nP data generated from

P and nQ data generated from Q.
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Figure 2.4: Left: Experiments on non-adaptive methods. We operate the naive K-NN
method on only Q-data (dashed line) and our two-sample weighted K-NN classifier on
different datasets. The datasets are generated with relative signal exponent γ = 0.7, 0.5, 0.35
respectively. Right: based on our theory (Theorem 1), the expected ratio of excess risk
between the two methods we operate in the experiment.

2.6.1. Minimax non-adaptive classifier

For this particular distribution pair (P,Q), theoretically, the minimax rate of convergence

for the excess risk can be achieved via the two-sample weighted K-NN classifier when we

are able to make use of model parameters β, γ. In the following simulation, we fix p = 0.03,

nQ = 1000 and β = 1. By comparing the proposed non-adaptive classifier with a naive

K-NN classifier on just the Q-data, we evaluate the improvement on the excess risk under

different values of γ and nP .

During the experiment, we generated datasets with choices of the relative signal exponent

γ ∈ {0.7, 0.5, 0.35} and number of P -data nP varying from 50 to 3200. The excess risk of the

two-sample weighted K-NN classifier and the naive K-NN method are illustrated in Figure

2.4a. Meanwhile, a planer plot is given in Figure 2.4b to illustrate the expected ratio of the

excess risk between the two methods based on our developed theory (Theorem 1). One can

clearly see how the transfer rates play a role in the experiments with different relative signal

exponent γ. The empirical performance and our theoretical prediction are matched to some

extent.
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Figure 2.5: Left: Experiments on adaptive methods. We operate the naive Lepski method
on only Q-data (dashed line) and our adaptive classifier on different datasets. The datasets
are generated with relative signal exponent γ = 0.7, 0.5, 0.35 respectively. Right: based on
our theory (Theorem 3), the expected ratio of excess risk between the two methods used in
the experiment.

2.6.2. Adaptive classifier

We also compare the proposed adaptive classifier with the existing methods to see whether

its numerical performance matches its theoretical guarantees. Lepski’s method is a good

competitor as it is also adaptive to the smoothness parameter β. Following a similar routine

as in the previous experiments, we compare the excess risk between our proposed classifier

and Lepski’s method applying only the Q-data to evaluate the improvement we may gain

empirically.

Fix p = 0.03 and β = 1, we generated nQ = 1000 data from the target distribution Q, and

nP ∈ {50, 100, 200, 400, 800, 1600, 3200} data from the source distribution P with different

choices of relative signal exponent γ ∈ {0.7, 0.5, 0.35}. Results of the numerical experiments

are shown in Figure 2.5a. A figure of the expected improvement on excess risk, calculated

according to Theorem 3, is also available in Figure 2.5b. In both figures, the curve looks

like a reversed "S" shape when γ is large, whereas a curve of exponential decrease appears

when γ is small. Therefore, it is justified that the simulation results are consistent with the

theoretical predictions.
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2.6.3. Multiple source distributions

Other than involving only a single source distribution during the previous numerical studies,

it is also worthwhile to see whether we can gain desired improvement as our theory predicts

when there are multiple source distributions. We only illustrate in this subsection the

performance of our adaptive classifier applying to multiple source distributions (Algorithm

2).

Different from the previous simulation studies, in this subsection we generate data from

three different source distributions P1, P2, P3 and one target distribution Q. In a similar

vein, the distributions (P1, P2, P3, Q) are specified as following:

1. Marginal distributions: we set P1,X = P2,X = P3,X = QX to be all uniformly dis-

tributed on the square area Ω = [−1, 1]2.

2. Regression functions: we set ηQ and ηP1 , ηP2 , ηP3 as

ηQ(x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})β

and

ηPi(x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})γiβ i = 1, 2, 3

where x = (x1, x2) ∈ [−1, 1]2, p, β and γ1, γ2, γ3 are parameters that will be specified

later.

In the simulation, we fix p = 0.03, β = 1 and γ1 = 0.35, γ2 = 0.5, γ3 = 0.7, and we

always set nP1 = nP2 = nP3 . We compare the average excess risk of the two classifiers:

our proposed adaptive classifier and the Lepski’s procedure with only Q−data involved. By

varying number of data drawing from source distributions, we can clearly see an improvement

when applying transfer learning methods.

The excess risk of the two methods during the experiments are illustrated in Figure 2.6a.

39



10 20 40 80 160 320 640
0

10

20

30

nPi

E
x
ce

ss
ri

sk
(×

10
4
)

Lepski(Q)
Our adaptive classifier

(a) Experimental results

10 20 40 80 160 320 640
0

20

40

60

80

100

120

nPi

E
x
p

ec
te

d
E

x
ce

ss
ri

sk
ra

ti
o

(%
)

Our adaptive classifier

(b) Theoretical prediction

Figure 2.6: Left: Experiments on transfer learning from multiple source distributions. We
apply the naive Lepski method on only Q-data (dashed line) and our adaptive classifier for
multiple source distributions. Right: based on our theory (Theorem 5), the expected ratio
of excess risk between the two methods we operate in the experiment.

Also, we calculate the expected ratio between the two methods according to the theory we

developed in Theorem 5. Again, the empirical performance and our theoretical prediction

are similar to some extent.

For reasons of space, additional simulation results on different choices of β are given in the

supplementary material (Cai and Wei, 2019).

2.7. Application to Crowdsourced Mapping Data

To illustrate the proposed adaptive classifier, we consider in this section an application

based on the crowdsourced mapping data (Johnson and Iizuka, 2016). Land use/land cover

maps derived from remotely-sensed imagery are important for geographic studies. This

dataset contains Landsat time-series satellite imagery information on given pixels and their

corresponding land cover class labels (farm, forest, water, etc.) obtained from multiple

sources. The goal is to make classification of land cover classes based on NDVI (normalized

difference vegetation index) values of those remotely-sensed imagery from the years 2014-

2015. In this chapter we focus on classification of two specific classes: farm and forest.

Within this dataset, there are two kinds of label sources, given the NVDI values of the im-

ages: 1) crowdsourced georeferenced polygons with land cover labels obtained from Open-

StreetMap; 2) accurately labeled data by experts. Although crowdsourced data are massive,
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Figure 2.7: (a) Illustration of the dataset. Each row represents one of a land cover class (farm
or forest) and corresponding NDVI values of a pixel from remotely-sensed imagery in 2014-
2015. (b) Accuracy of the three methods on the crowdsourced mapping data with different
numbers of crowdsourced data involved. Blue: The proposed adaptive classifier. Red:
Lepski’s method using combined data. Brown: Lepski’s method using only crowdsourced
data.

free and public, the labels contain various types of errors due to user mislabels or outdated

images. Whereas the expert labels are almost accurate, but they are usually too expensive

to obtain a large volume. The challenge is to accurately combine the information contained

in the two datasets to minimize the classification error.

As in Section 2.6.2, we apply three methods to make the classification: (1) our proposed

adaptive procedure; (2) Lepski’s method with all data involved where we do not distinguish

data from different sources; (3) Lepski’s method with only the crowdsourced data. We use

nP = 50 accurately labeled data, and change the number of involved crowdsourced data

from nQ = 25 to nQ = 800. We use other 166 accurately labeled data to evaluate the

classification accuracy of the three methods mentioned above.

Figure 2.7b shows the accuracy of the three methods with different numbers of crowdsourced

data involved. As more and more crowdsourced data are used, the amount of information

contained in the crowdsourced data gradually increases, and the relative contribution from

the accurately labeled data gradually decreases. The proposed adaptive classifier consis-

tently outperforms the naive Lepski’s method, especially when the number of the crowd-

sourced data is between 100 and 400, because in these cases the adaptive classifier can
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significantly increase the accuracy by better leveraging the information gained from both

distributions.

2.8. Discussion

We studied in this chapter transfer learning under the posterior drift model and established

the minimax rate of convergence. The optimal rate quantifies precisely the amount of

information in the P -data that can be transferred to help classification under the target

distribution Q. A delicately designed data-driven adaptive classifier was also constructed

and shown to be, both globally and locally, adaptive to the unknown smoothness and relative

signal exponent. It is simultaneously within a log factor of the optimal rate over a large

collection of parameter spaces.

The results and techniques developed in this chapter serve as a starting point for the theoret-

ical analysis of other transfer learning problems. For example, in addition to classification,

it is also of significant interest to characterize the relationship between the source distribu-

tion and the target distribution, so that the data from the source distribution P can help

in other statistical problems under the target distribution Q. Examples include regression,

hypothesis testing, and construction of confidence sets. We will investigate these transfer

learning problems in the future.

Within the posterior drift framework of this chapter, some of the technical assumptions can

be relaxed to a certain extent. For the smoothness parameter β, we focused on the case

0 < β ≤ 1. It is possible to consider more general classes where β can be larger than 1, with

strenthened relative signal exponent assumptions on the higher order derivatives of ηP (x)

and ηQ(x). When β > 2, the problem mighted be solved with a carefully designed weighted

K-NN classifier, as was introduced in Samworth (2012). Construction of such a weighted K-

NN method is involved and we leave it as future work. For the marginal distributions PX and

QX , other than the strong density assumption, there are also weaker regularity conditions

introduced in the literature. See, for example, Gadat et al. (2016); Kpotufe and Martinet

(2018). Similar results on the minimax rate of convergence can be established under these
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different regularity conditions. The minimax and adaptive procedures should also be suitably

modified.

Also, in complementary work, Kpotufe and Martinet (2018) studied K-NN classifiers for

transfer learning in the covariate shift framework where the marginal distributions PX and

QX are allowed to differ significantly. It is interesting to consider nonparametric classification

under both covariate shift and posterior drift. In such a setting, besides the relative signal

exponent γ, one also assumes (P,Q) have transfer-exponent τ ≥ 0 such that

∀x, r ∈ (0,∆X ], PX(B(x, r)) ≥ QX(B(x, r)) · Cτ

(
r

∆X

)τ

,

and QX is (Cd, d)-doubling, as is defined in Definitions 3 and 6 in Kpotufe and Martinet

(2018). The detailed analysis appears to be quite involved, we only make some conjectures

here based on our preliminary calculations and leave the rigorous proofs and further inves-

tigations for future work. Our calculations indicate that the optimal rate of convergence

for the excess risk on Q under both covariate shift (transfer-exponent τ) and posterior drift

(relative signal exponent γ) should be

inf
f̂

sup
(P,Q)

EZEQ(f̂) ≍
(
nP

2β+d
2γβ+τ+d + nQ

)−β(1+α)
2β+d

.

An additional transfer-exponent τ appears in the denominator of the transfer rate 2β+d
2γβ+τ+d .

The above optimal rate can be achieved by two-sample weighted K-NN classifier (proposed

in our work) with proper choices of wP , wQ, kP and kQ. In addition, our proposed classifier

f̂a should be nearly optimal adaptive classifier (up to a logrithmic term) in a sense that

sup
(P,Q)

EZEQ(f̂) ≲
((

nP

log n

) 2β+d
2γβ+τ+d

+
nQ

log n

)−β(1+α)
2β+d

where n = nP + nQ.
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2.9. Proofs

We prove Theorem 1 in this section and leave the proofs of other theorems and additional

technical lemmas in the supplementary material (Cai and Wei, 2019). For readers’ conve-

nience, we begin by stating Lepski’s method for nonparametric classification in the conven-

tional setting where there are only the Q-data.

2.9.1. Lepski’s method

Algorithm 3 is a version of Lepski’s method in nonparametric classification. We state the

algorithm here for reference.

Algorithm 3 Lepski’s method (Lepski and Spokoiny, 1997)

Input: n labeled samples (Xi, Yi) ∈ Rd × {0, 1}, i ∈ [n], and a point x ∈ Rd to be
classified.
Set η−0 ← −∞ and η+0 ← +∞.
for k = 1, ..., (nP + nQ − 1), (nP + nQ) do

Find k nearest neighbor estimates η̂k(x) =
1
k

∑k
i=1 Y(i), where Y(i) denote the label to

i-th nearest covariates to x.
Set η−k ← η−k−1 ∨ (η̂k(x)−

√
d+3
k log n).

Set η+k ← η+k−1 ∧ (η̂k(x) +
√

d+3
k log n).

if η−k > 1
2 or η+k < 1

2 then
Stop and output f̂L(x)← I{η̂k(x)≥ 1

2
}.

Output f̂L(x)← I{η̂n(x)≥ 1
2
}.

2.9.2. Proof of Theorem 1

First we define some new notations for convenience. In the proof, we use ζQ(x) = |ηQ(x)− 1
2 |

and ζP (x) = |ηP (x)− 1
2 | to denote the signal strength. Let Ȳ Q

(1:kQ)(x) :=
1
kQ

∑kQ
i=1 Y

Q
(i)(x) and

Ȳ P
(1:kP )(x) :=

1
kP

∑kP
i=1 Y

P
(i)(x) denote the average of kQ nearest neighbors in Q−data and kP

nearest neighbors in P−data respectively. We will sometime omit x in the notations such as

XQ
(i)(x), X

P
(i)(x) if there is no confusion in the context. We also use the shorthand XQ

1:nQ
to

denote the whole set of the Q−data covariates {XQ
1 , ..., XQ

nQ}. And similarly XP
1:nP

denotes

{XP
1 , ..., XP

nP
}. We define EY |X(·) = E(·|XQ

1:nQ
, XP

1:nP
) to denote the expectation conditional

on the covariates of all data, and E is the expectation taken over random realization of all
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data (the same as EZ we defined before). Also, in following proofs we always assume

(P,Q) ∈ Π(α, β, γ, µ) so we will not state this assumption again in the lemmas.

Before proving the theorem, we first state three useful lemmas. The first lemma 1 provides

a high probability uniform bound on the distance between any point and its k−th nearest

neighbor.

Lemma 1 (K-NN Distance Bound). There exists a constant CD > 0 such that, with prob-

ability at least 1− CD
nQ

kQ
exp(−kQ

6 ), for all x ∈ Ω,

∥XQ
(kQ)(x)− x∥ ≤ CD(

kQ
nQ

)
1
d . (2.16)

And with probability at least 1− CD
nP
kP

exp(−kP
6 ), for all x ∈ Ω,

∥XP
(kP )(x)− x∥ ≤ CD(

kP
nP

)
1
d . (2.17)

Let EQ denote the event that Inequality (2.16) holds for all x ∈ Ω and let EP denotes (2.17)

holds for all x ∈ Ω. It follows from Lemma 1 that

P(EQ) ≥ 1− CD
nQ

kQ
exp(−kQ

6
) and P(EP ) ≥ 1− CD

nP

kP
exp(−kP

6
).

Lemma 2 points out that when the signal is sufficiently strong, bias of Ȳ Q(x) and Ȳ P (x)

will not be too large to overwhelm the signal.

Lemma 2 (Bias Bound). There exist constants cb, Cb > 0 such that:

If a point x ∈ Ω satisfies ζQ(x) ≥ 2Cβ∥XQ
(kQ)(x)− x∥β, then we have

EY |X(Ȳ Q
(1:kQ)(x))−

1

2
≥ cbζQ(x) if f∗(x) = 1, (2.18)

EY |X(Ȳ Q
(1:kQ)(x))−

1

2
≤ −cbζQ(x) if f∗(x) = 0. (2.19)
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If a point x ∈ Ω satisfies ζQ(x) ≥ 2Cβ∥XP
(kP )(x)− x∥β, then we have

EY |X(Ȳ P
(1:kP )(x))−

1

2
≥ cbζQ(x)

γ if f∗(x) = 1, (2.20)

EY |X(Ȳ P
(1:kP )(x))−

1

2
≤ −cbζQ(x)γ if f∗(x) = 0. (2.21)

Hence, if a point x ∈ Ω satisfies ζQ(x) ≥ Cb(max{ kQnQ
, kP
nP
})β

d , then

• Under the event EQ, we have

EY |X(Ȳ Q
(1:kQ)(x))−

1

2
≥ cbζQ(x) if f∗(x) = 1, (2.22)

EY |X(Ȳ Q
(1:kQ)(x))−

1

2
≤ −cbζQ(x) if f∗(x) = 0. (2.23)

• Under the event EP , we have

EY |X(Ȳ P
(1:kP )(x))−

1

2
≥ cbζQ(x)

γ if f∗(x) = 1, (2.24)

EY |X(Ȳ P
(1:kP )(x))−

1

2
≤ −cbζQ(x)γ if f∗(x) = 0. (2.25)

Lemma 3 gives a bound on the probability of misclassification at certain covariates x.

Lemma 3 (Misclassification Bound). Let Cb and cb be the constants defined in Lemma 2.

If ζQ(x) ≥ Cb(max{ kQnQ
, kP
nP
})β

d , then

• Under the event EQ, we have

PY |X(f̂NN (x) ̸= f∗
Q(x)) ≤ exp

(
−2[(cbwQkQζQ(x)− wPkP ) ∨ 0]2

kPw2
P + kQw2

Q

)
.

• Under the event EP , we have

PY |X(f̂NN (x) ̸= f∗
Q(x)) ≤ exp

(
−2[(cbwPkP ζQ(x)

γ − wQkQ) ∨ 0]2

kPw2
P + kQw2

Q

)
.
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• Under the event EP ∩ EQ, we have

PY |X(f̂NN (x) ̸= f∗
Q(x)) ≤ exp

(
−2c2b

(wPkP ζQ(x)
γ + wQkQζQ(x))

2

kPw2
P + kQw2

Q

)
.

Given the three lemmas above, the remain proof generally follows that of Lemma 3.1 in

Audibert and Tsybakov (2007). Let δ = (n
2β+d
2γβ+d

P + nQ)
− β

2β+d . When wP , wQ, kP , kQ are

given as in Theorem 1, we have

wQ = δ, wP = δγ , kQ = ⌊nQδ
d
β ⌋, kP = ⌊nP δ

d
β ⌋. (2.26)

We will approximate kQ = nQδ
d
β and kP = nP δ

d
β in the following proof because one can

easily show such an approximation only result sin changing the constant factor in the upper

bound.

The following lemma gives a bound for the local misclassification risk when the parameters

in the weighted K-NN estimator are properly chosen.

Lemma 4. Using wP , wQ, kP , kQ defined in theorem 1 to construct a weighted K-NN es-

timator f̂NN . Then there exist constants c1, C1 > 0 such that, with probability at least

1− 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d , for all x we have

PY |X(f̂NN (x) ̸= f∗
Q(x)) ≤ C1 exp

(
−c1(

ζQ(x)

δ
)1∧γ

)
. (2.27)

Let E0 be the event that inequality (2.27) holds for all x. Lemma 4 implies

P(E0) ≥ 1− 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .
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Consider the disjoint sets Aj ⊂ Ω, j = 0, 1, 2, ... defined as

A0 := {x ∈ Ω : 0 < ζQ(x) ≤ δ},

Aj := {x ∈ Ω : 2j−1δ < ζQ(x) ≤ 2jδ} for j ≥ 1.

Note that by the margin assumption, for all j,

QX(Aj) ≤ QX(|ηQ −
1

2
| ≤ 2jδ) ≤ Cα2

αjδα.

Based on the partition A0, A1, ... and the dual representation of EQ(f̂) shown in (2.8), we

have a decomposition of EQ(f̂NN ):

EQ(f̂NN ) = 2EX∼QX
(|ηQ(X)− 1

2
|I{f̂NN (X )̸=f∗

Q(X)})

= 2

∞∑
j=0

EX∼QX
(ζQ(X)I{f̂NN (X )̸=f∗

Q(X)}I{X∈Aj}).

For j = 0, EX∼QX
(ζQ(X)I{f̂NN (X )̸=f∗

Q(X)}I{X∈A0}) ≤ δ ·QX(A0) ≤ Cαδ
α+1.

Under the event E0, 2j−1δ < ζ(x) ≤ 2jδ for x ∈ Aj and j > 1. Inequality (2.27) now yields

EY |XEX∼QX
(ζQ(X)I{f̂NN (X )̸=f∗

Q(X)}I{X∈Aj})

= EX∼QX
(ζQ(X)PY |X(f̂NN (X) ̸= f∗

Q(X))I{X∈Aj})

≤ 2jδ · C1 exp(−c1 · 2(j−1)·(1∧γ)) ·QX(Aj)

≤ CαC1[2
(1+α)j exp(−c1 · 2(j−1)·(1∧γ))]δα+1.
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Combining these summands together yields

EY |XEQ(f̂NN ) = 2
∞∑
j=0

EY |XEX∼QX
(ζQ(X)I{f̂NN (X) ̸=f∗

Q(X)}I{X∈Aj})

≤ 2Cα

1 + C1

∞∑
j=0

[2(1+α)j exp(−c1 · 2(k−1)·(1∧γ))]

 δ1+α

≤ Cδ1+α.

where the last step follows from the fact that
∑∞

j=0[2
(1+α)j exp(−c1 · 2(k−1)·(1∧γ))] converges

when γ > 0. Finally, it follows from Lemma 4 that

P(Ec
0) ≤ 2(n

2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

Applying the trivial bound EQ(f̂NN ) ≤ 1 when Ec
0 occurs, we have

EEQ(f̂NN ) = E(EY |XEQ(f̂NN ))

≤ E(EY |XEQ(f̂NN )|E0)P(E0) + E(EY |XEQ(f̂NN )|Ec
0)P(Ec

0)

≤ C(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d · 1 + 1 · 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d

= (C + 2)(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .
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CHAPTER 3

Distributed Gaussian Mean Estimation with Known Variance

Under Communication Constraints

3.1. Introduction

In the conventional statistical decision theoretical framework, the focus is on the centralized

setting where all the data are collected together and directly available. The main goal is to

develop optimal (estimation, testing, detection, ...) procedures, where optimality is under-

stood with respect to the sample size and parameter space. Communication/computational

costs are not part of the consideration.

In the age of big data, communication/computational concerns associated with a statistical

procedure are becoming increasingly important in contemporary applications. One of the

difficulties for analyzing large datasets is that data are distributed, instead of in a single

centralized location. This setting arises naturally in many statistical practices.

• Large datasets. When the datasets are too large to be stored on a single computer

or data center, it is necessary to divide the whole dataset into multiple computers or

data centers, each assigned a smaller subset of the full dataset. Such is the case for a

wide range of applications.

• Privacy and security. Privacy and security concerns can also cause the decentral-

ization of the datasets. For example, medical and financial institutions often collect

datasets that contain sensitive and valuable information. For privacy and security

reasons, the data cannot be released to a third party for a centralized analysis and

need to be stored in different and secure places while performing data analysis.

Distributed learning, which aims to learn from distributed datasets, has attracted much

recent attention. For example, Google AI proposed a machine learning setting called “Fed-

erated Learning" (McMahan and Ramage, 2017), which develops a high-quality centralized
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model while the training data remain distributed over a large number of clients. Figure 3.1a

provides a simple illustration of a distributed learning network. In addition to advances on

architecture design for distributed learning in practice, there is also an increasing amount

of literature on distributed learning theories, including Jordan et al. (2019), Battey et al.

(2018), Dobriban and Sheng (2018), and Fan et al. (2019) in statistics, computer science,

and information theory communities. Several distributed learning procedures with some

theoretical properties have been developed in recent works. However, they do not impose

any communication constraints on the proposed procedures thus fail to characterize the re-

lationship between the communication costs and statistical accuracy. Indeed, in a decision

theoretical framework, if no communication constraints are imposed, one can always output

the original data from the local machines to the central machine and treat the problem same

as in the conventional centralized setting.

For large-scale data analysis, communications between machines can be slow and expensive

and limitation on bandwidth and communication sometimes becomes the main bottleneck

on statistical efficiency. It is therefore necessary to take communication constraints into

consideration when constructing statistical procedures. When the communication budget

is limited, the algorithm must carefully “compress" the information contained in the data

as efficiently as possible, leading to a trade-off between communication costs and statistical

accuracy. The precisely quantification of this trade-off is an important and challenging

problem.

Estimation of a Gaussian mean occupies a central position in parametric statistical inference.

In this chapter we consider distributed Gaussian mean estimation under the communication

constraints in both the univariate and multivariate settings. Although optimal estimation

of a Gaussian mean is a relatively simple problem in the conventional setting, this problem

is quite involved under the communication constraints, both in terms of the construction of

the rate optimal distributed estimator and the lower bound argument. Optimal distributed

estimation of a Gaussian mean also serves as a starting point for investigating other more
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complicated statistical problems in distributed learning including distributed nonparametric

function estimation, distributed high-dimensional linear regression, and distributed large-

scale multiple testing.

3.1.1. Problem formulation

We begin by giving a formal definition of transcript, distributed estimator, and in-

dependent distributed protocol. Let P = {Pθ : θ ∈ Θ} be a parametric family of

distributions supported on space X , where θ ∈ Θ ⊆ Rd is the parameter of interest. Sup-

pose there are m local machines and a central machine, where each local machine contains

n i.i.d observations and the central machine produces the final estimator of θ under the

communication constraints between the local and central machines. More precisely, suppose

we observe i.i.d. random samples drawn from a distribution Pθ ∈ P:

Xi,j
i.i.d.∼ Pθ, i = 1, . . . ,m; j = 1, . . . , n

where the i-th local machine has access to Xi,1, Xi,2, ..., Xi,n only. We denote

X̃i = (Xi,1, Xi,2, ..., Xi,n) as the set of data on the i-th local machine.

For i = 1, ...,m, let bi ≥ 1 be a positive integer and the i-th local machine can only transmit bi

bits to the central machine. That is, the observation X̃i on the i-th local machine needs to be

processed to a binary string of length bi by a (possibly random) function Πi : X n → {0, 1}bi .

The resulting string Zi ≜ Πi(X̃i), which is called the transcript from the i-th machine, is

then transmitted to the central machine. Finally, a distributed estimator θ̂ is constructed

on the central machine based on the transcripts Z1, Z2, ..., Zm,

θ̂ = θ̂(Z1, Z2, ..., Zm).

The above scheme to obtain a distributed estimator θ̂ is called an independent distributed

protocol, or independent protocol.

In addition to the independent protocol, there are other more general and interactive dis-
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tributed protocols including the sequential protocol and blackboard protocol, which are

two popular communication protocols considered in the literature (Zhang et al., 2013a;

Barnes et al., 2019b). We shall first focus on the independent protocol, then introduce

the sequential and blackboard protocols and establish optimality results for these two types

of distributed protocols in Section 3.4.

The class of independent distributed protocols with communication budgets b1, b2, ..., bm is

defined as

Aind(b1, b2, ..., bm) = {(θ̂,Π1,Π2, ...,Πm) : Πi : X n → {0, 1}bi , i = 1, 2, ...,m,

θ̂ = θ̂(Π1(X̃1), ...,Πm(X̃m))}.

Data Servers Compressed
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Central Learner

1000...110

0110...001

1101
...000

(a) Distributed learning network

θ̂X̃1

X̃2

X̃3

X̃4

X̃5

...i.i.dX̃m

b1 bits

Z1

b
2
bitsZ

2

b 3
b
it
s

Z
3

b4
bit

s

Z4

b5 bits
Z
5

bm
bi
ts

Zm

(b) Independent distributed protocol

Figure 3.1: (a) Left panel: An illustration of a distributed learning network. Communi-
cation between the data servers and the central learner is necessary in order to learn from
distributed datasets. (b) Right panel: An illustration of independent distributed proto-
col. The i-th machine can only transmit a bi bits transcript to the central machine. The
transcript Zi only depends on observations X̃i.

We use b1:m as a shorthand for (b1, b2, ..., bm) and denote θ̂ ∈ Aind(b1:m) for (θ̂,Π1, ...,Πm) ∈

Aind(b1:m). We shall always assume bi ≥ 1 for all i = 1, 2, ...,m, i.e. each local machine can

transmit at least one bit to the central machine. Otherwise, if no communication is allowed

from any of the local machines, one can just exclude those local machines and treat the

problem as if there are fewer local machines available. Figure 3.1b gives a simple illustration
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for the distributed protocols.

As usual, the estimation accuracy of a distributed estimator θ̂ is measured by the mean

squared error (MSE), EPθ
∥θ̂ − θ∥22, where the expectation is taken over the randomness in

both the data and construction of the transcripts and estimator. As in the conventional

decision theoretical framework, a quantity of particular interest in distributed learning is

the minimax risk for the distributed protocols

inf
θ̂∈Aind(b1:m)

sup
Pθ∈P

EPθ
∥θ̂ − θ∥22,

which characterizes the difficulty of the distributed learning problem under the communica-

tion constraints b1:m. As mentioned earlier, in a rigorous decision theoretical formulation of

distributed learning, the communication constraints are essential. Without the constraints,

one can always output the original data from the local machines to the central machine and

the problem is then reduced to the usual centralized setting.

3.1.2. Distributed estimation of a univariate Gaussian mean

We first consider distributed estimation of a univariate Gaussian mean under the communi-

cation constraints b1:m, where Pθ = N(θ, σ2) with θ ∈ [0, 1] and the variance σ2 known. Set

σn = σ/
√
n. Note that by a sufficiency argument, one can estimate θ based on the sample

means Xi ≜ 1
n

∑n
j=1Xi,j on the local machines, and the problem is the same as if one only

observes Xi ∼ N(θ, σ2
n) on the i-th machine, for i = 1, . . . ,m.

Our analysis in Section 3.2 establishes the following minimax rate of convergence for dis-

tributed univariate Gaussian mean estimation under the communication constraints b1:m,

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]

E(θ̂ − θ)2 ≍



2−2B if B < log2
1
σn

+ 2

σ2
n

(B−log2
1
σn

)
if log2

1
σn

+ 2 ≤ B < log2
1
σn

+m

min
{

σ2
n
m , 1

}
if B ≥ log2

1
σn

+m

, (3.1)
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where B =
∑m

i=1 bi is the total communication budget, and a ≍ b denotes cb ≤ a ≤ Cb

for some constants c, C > 0. The same optimal rate of convergence holds for the class of

sequential protocols and blackboard protocols.

The above minimax rate characterizes the trade-off between the communication costs and

statistical accuracy for univariate Gaussian mean estimation. An illustration of the minimax

rate is shown in Figure 3.2.

0 log 1
σn

log 1
σn

+m

σ2
n
m

σ2
n

1

Localization

(Exponential)

Refinement

(Inverse-proportional)

Optimal

(Constant)

Total Budgets B

M
in
im

ax
R
at
e

Figure 3.2: The minimax rate of univariate Gaussian mean estimation under communication
constraints has 3 phases: localization, refinement and optimal-rate.

The minimax rate (3.1) is interesting in several aspects. First, the optimal rate of conver-

gence only depends on the total communication budget B =
∑m

i=1 bi, but not the specific

allocation of the communication budgets among the m local machines, as long as each ma-

chine has at least one bit. Second, the rate of convergence has three different phases:

1. Localization phase. When B < log2
1
σn

+ 2, as a function of B, the minimax risk

decreases fast at an exponential rate. In this phase, having more communication

budget is very beneficial in terms of improving the estimation accuracy.

2. Refinement phase. When log2
1
σn

+ 2 ≤ B < log2
1
σn

+ m, as a function of B, the

minimax risk decreases relatively slowly and is inverse-proportional to the total com-

munication budget B.
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3. Optimal-rate phase. When B ≥ log2
1
σn

+m, the minimax rate does not depend on B,

and is the same as in the centralized setting where all the data are combined (Bickel,

1981b).

An essential technique for solving this problem is the decomposition of the minimax es-

timation problem into two steps, localization and refinement. This critical decomposition

provides a framework for both the lower bound analysis and optimal procedure design. In

the lower bound analysis, the statistical error is decomposed into “localization error" and

“refinement error". It is shown that one of these two terms is inevitably large under the com-

munication constraints. In our optimal procedure called MODGAME, bits of the transcripts

are divided into three types: crude localization bits, finer localization bits, and refinement

bits. They compress the local data in a way that both the localization and refinement errors

can be optimally reduced. Further technical details and discussion are presented in Section

3.2. Furthermore, it will be shown that MODGAME is also robust against departures from

Gaussianity. See Section 3.5 for a detailed discussion.

3.1.3. Distributed estimation of a multivariate Gaussian mean

We then consider the multivariate case under the communication constraints b1:m, where

Pθ = Nd(θ, σ
2Id) with θ ∈ [0, 1]d and the noise level σ is known. As in the univariate case,

by a sufficiency argument, it is equivalent to consider distributed estimation where each

local machine only observes a local sample mean vector Xi ∼ Nd(θ, σ
2
nId), with σn = σ/

√
n.

The goal is to optimally estimate the mean vector θ under the squared error loss.

The construction and the analysis given in Section 3.3 show that the minimax rate of con-

vergence in this case is given by

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]d

E∥θ̂ − θ∥22 ≍


2−2B/dd if B/d < log2

1
σn

+ 2

dσ2
n

(B/d−log2
1

σn
)

if log2
1
σn

+ 2 ≤ B/d < log2
1
σn

+max{m′, 2}

dmin
{

σ2
n

m′ , 1
}

if B/d ≥ log2
1
σn

+max{m′, 2}
(3.2)

where B =
∑m

i=1 bi is the total communication budgets and m′ =
∑m

i=1min
{

bi
d , 1
}

is the
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“effective sample size". The same optimal rate of convergence holds true for the class of

sequential protocols or blackboard protocols.

The minimax rate in the multivariate case (3.2) is an extension of its univariate counterpart

(3.1), but it also has its distinct features, both in terms of the estimation procedure and

lower bound argument. Intuitively, the total communication budgets B are evenly divided

into d parts so that roughly B/d bits can be used to estimate each coordinate. Because there

are d coordinates, the risk is multiplied by d. The effective sample size m′ is a special and

interesting quantity in multivariate Gaussian mean estimation. This quantity suggests that

even when the total communication budgets are sufficient, the rate of convergence must be

larger than the benchmark dmin
{

σ2
n

m′ , 1
}

. There is a gap between the distributed optimal

rate and centralized optimal rate if m′ ≪ m. See Section 3.3 for further technical details

and discussion.

3.1.4. Related literature

The study on how the communication constraints compromise the estimation accuracy in

the distributed settings has a long history. Dating back to 1980’s, Zhang and Berger (1988)

proposed an asymptotically unbiased distributed estimator and calculated its variance. In

recent years, there has been emerging literature focusing on the theoretical properties of

distributed estimation under the communication constraints. Among them, distributed

Gaussian mean estimation has been intensively studied. We divide the discussion into two

parts – lower bound and upper bound.

Lower bound: Zhang et al. (2013a) introduced general technical tools to derive lower

bounds for several distributed estimation problems. Specifically, for d-dimensional Gaussian

mean estimation with independent protocols, the lower bound is of order σ2
nd

2

(
∑m

i=1 bi∧d) logm
.

Garg et al. (2014) studied distributed estimation of the mean of a high-dimensional Gaus-

sian distribution. A lower bound of order min{σ2
nd

2

B , d} is established for the mean squared

error of any independent protocol. Braverman et al. (2016) applied a strong data processing

inequality to obtain lower bounds for distributed estimation with blackboard protocols. A
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lower bound for sparse Gaussian mean estimation is derived. Han et al. (2018); Barnes et al.

(2019b) proposed non-information theoretic approaches to obtain lower bounds for dis-

tributed estimation. In the case of Gaussian mean estimation, it was shown in Barnes et al.

(2019b) that a lower bound of order σ2
nmax{d2B , d

m} holds for any independent, sequential

or blackboard protocols.

Upper bound: Garg et al. (2014) proposed a blackboard distributed protocol with the

communication cost O(md) which estimates the mean vector up to a squared loss of O(dσ
2
n

m ).

Braverman et al. (2016) introduced an independent distributed protocol for Gaussian mean

estimation. If log(md/σn) = o(m), the protocol achieves the mean squared error O(σ
2
nd

αm )

with the communication cost C = αdm.

In summary, the known minimax rate for distributed Gaussian mean estimation is σ2
nd

2

B

when log(md/σn) = o(m). However, when n is large such that log(σn)/m is bounded away

from zero, the optimal rate is still unknown.

In addition to the above closely related literature, Szabó and van Zanten (2018); Zhu and Lafferty

(2018) considered distributed nonparametric regression with Gaussian noise and derived an

optimal rate of convergence up to a logarithmic factor. The optimal rate is divided into three

phases, namely insufficient regime, intermediate regime, and sufficient regime. Current best

results for distributed nonparametric regression also suffer from a logarithmic gap, which in

our opinion is due to the incomplete understanding of distribution Gaussian mean estimation

with a small variance. Other related results can be found in the literature, see, for example,

Zhang et al. (2013b); Shamir (2014); Diakonikolas et al. (2017); Han et al. (2018); Lee et al.

(2017); Kipnis and Duchi (2019); Hadar and Shayevitz (2019); Szabó and van Zanten (2019,

2020).

3.1.5. Our contribution

Although the interplay between communication costs and statistical accuracy has drawn

increasing recent attention, to the best of our knowledge, this chapter is the first work to
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establish a sharp minimax rate for distributed Gaussian mean estimation that holds for all

values of the parameters d,m, σn and in all communication budget regimes for three commu-

nication protocols – independent, sequential, and blackboard. Two rate-optimal estimation

procedures – MODGAME for the univariate case and multi-MODGAME for the multivariate

case – are developed and are shown to be robust against departures from Gaussianity.

In particular, the unified minimax rate applies to the case σn < 1. In comparison, when

σn < 1, the previous results are not sharp even in the high communication budget regime

(i.e. refinement phase and optimal-rate phase). See Remarks 5 and 6 for detailed comparison

with previous results. This is an important case that arises in many statistical applications

including distributed nonparametric regression and sparse signal recovery. Establishing a

sharp and complete minimax rate is not only important for distributed Gaussian mean

estimation itself, but also fundamental for solving these related problems.

This chapter also develops a key technique – the decomposition of the minimax estimation

problem into two steps, localization and refinement. We provide a general framework and

techniques to study the optimal trade-off between the localization and refinement errors.

This is reflected in both the construction of the MODGAME procedure and in the lower

bound argument. In contrast, the previous literature focused exclusively on the refinement

error, and failed to consider the localization error. As a result, the existing results are

sharp only when the communication costs for localization are negligible. We believe the

technique for understanding the interplay between the localization and refinement errors is

of independent interest as it can be used to solve other distributed estimation problems.

3.1.6. Organization of the chapter

We finish this section with notation and definitions that will be used in the rest of the

chapter. Section 3.2 studies distributed estimation of a univariate Gaussian mean under

communication constraints with independent protocols and Section 3.3 considers the mul-

tivariate case. Section 3.4 introduces sequential and blackboard protocols and extends the

optimality results to these two types of communication protocols. Section 3.5 considers the
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robustness of the proposed procedures against departures from Gaussianity. The numerical

performance of the proposed distributed estimators is investigated in Section 3.6 and further

research directions are discussed in Section 3.7. For reasons of space, we prove the lower

bound for the univariate case in Section 3.8 and defer the proofs of the other main results

and the technical lemmas to the Supplementary Material (Cai and Wei, 2020a).

3.1.7. Notation and definitions

For any a ∈ R, let ⌊a⌋ denote the floor function (the largest integer not larger than a).

Unless otherwise stated, we shorthand log a as the base 2 logarithmic of a. For any a, b ∈ R,

let a ∧ b ≜ min{a, b} and a ∨ b ≜ max{a, b}. For any vector a, we will use a(k) to denote

the k-th coordinate of a, and denote by ∥a∥ ≜
√∑

k

(
a(k)

)2 its l2 norm. For any set S, let

Sk ≜ S×S× ...×S be the Cartesian product of k copies of S. Let I{·} denote the indicator

function taking values in {0, 1}.

For any discrete random variables X,Y supported on X ,Y, the entropy H(X), conditional

entropy H(X|Y ), and mutual information I(X;Y ) are defined as

H(X) ≜ −
∑
x∈X

P(X = x) logP(X = x),

H(X|Y ) ≜ −
∑

x∈X ,y∈Y
P(X = x, Y = y) logP(X = x|Y = y),

I(X;Y ) ≜
∑

x∈X ,y∈Y
P(X = x, Y = y) log

P(X = x|Y = y)

P(X = x)
.

3.2. Distributed Univariate Gaussian Mean Estimation

In this section we consider distributed estimation of a univariate Gaussian mean, where one

observes on m local machines i.i.d. random samples:

Xi
i.i.d.∼ N(θ, σ2

n), i = 1, . . . ,m,
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under the constraints that the i-th machine has access to Xi only and can transmit bi bits

only to the central machine. We denote by P1
σn

the Gaussian location family

P1
σn

=
{
N(θ, σ2

n) : θ ∈ [0, 1]
}
,

where θ ∈ [0, 1] is the mean parameter of interest and the variance σ2
n is known. For given

communication budgets b1:m with bi ≥ 1 for i = 1, . . . ,m, the goal is to optimally estimate

the mean θ under the squared error loss. A particularly interesting quantity is the mini-

max risk under the communication constraints, i.e., the minimax risk for the independent

distributed protocol Aind(b1:m):

R1(b1:m) = inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]

E(θ̂ − θ)2,

which characterizes the difficulty of the estimation problem with independent protocols

under the communication constraints. We first focus on the independent protocols. Same

results for sequential and blackboard protocols will be established in Section 3.4.

We first introduce an estimation procedure and provide an upper bound for its performance

and then establish a matching lower bound on the minimax risk. The upper and lower bounds

together establish the minimax rate of convergence and the optimality of the proposed

estimator.

3.2.1. Estimation procedure - MODGAME

We begin with the construction of an estimation procedure under the communication con-

straints and provide a theoretical analysis of the proposed procedure. The procedure, called

MODGAME (Minimax Optimal Distributed GAussian Mean Estimation), is a determin-

istic procedure that generates a distributed estimator θ̂D under the distributed protocol

Aind(b1:m). We divide the discussion into two cases: σn < 1 and σn ≥ 1.
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MODGAME procedure when σn < 1

When σn < 1, MODGAME consists of two steps: localization and refinement. Roughly

speaking, the first step utilizes log 1
σn

+o(B−log 1
σn

) bits, out of the total budget B =
∑m

i=1 bi

bits, for localization to roughly locate where θ is, up to O(σn) error. Building on the location

information, the remaining B − log 1
σn

bits are used for refinement to further increase the

accuracy of the estimator. Detailed theoretical analysis will show that the optimality of the

final estimator.

Before describing the MODGAME procedure in detail, we define several useful functions

that will be used to generate the transcripts. For any interval [L,R], let τ[L,R] : R→ [L,R]

be the truncation function defined by

τ[L,R](x) =


L if x ≤ L

x if L < x < R

R if x ≥ R

. (3.3)

For any integer k ≥ 0, denote gk : R→ {0, 1} be the k-th Gray function defined by

gk(x) ≜


0 if ⌊2kτ[0,1](x)⌋ mod 4 = 0 or 3

1 if ⌊2kτ[0,1](x)⌋ mod 4 = 1 or 2.

Similarly we denote by ḡk : R→ {0, 1} the k-th conjugate Gray function defined by

ḡk(x) ≜


0 if ⌊2kτ[0,1](x)⌋ mod 4 = 0 or 1

1 if ⌊2kτ[0,1](x)⌋ mod 4 = 2 or 3.

To unify the notation we set gk(x) ≡ ḡk(x) ≡ 0 if k < 0.

It is worth mentioning that these Gray functions mimic the behavior of the Gray codes (for
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reference see Savage (1997)). Fix K ≥ 1, if we treat (g1(x), g2(x), ..., gK(x)) as a string of

code for any source x ∈ [0, 1], then those x within the interval [2−K(s − 1), 2−Ks) where s

is a integer will match the same code. Moreover, the code for adjacent intervals only differs

by one bit, which is also a key feature for the Gray codes. This key feature guarantees the

robustness of the Gray codes. Such robustness makes the Gray functions very useful for

distributed estimation. An example for K = 3 is shown in Figure 3.3 to better illustrate the

behavior of the Gray functions.

Along with the figure, we also provide a simple example to show why the Gray codes

are robust to stochastic errors. Suppose X1, X2, and X3 are three i.i.d random variables

with mean 1/4 + ϵ and a small variance that is slightly larger than ϵ2. The goal is to

estimate their mean by one-bit measurement of each observation. By using the Gray codes,

(g1(X1), g2(X2), g3(X3)) is equal to (001) or (011) with large probability, whose decoded

interval (1/8, 1/4) or (1/4, 3/8) is close to 1/4. As a contrast, if one uses the binary codes,

the result will be unstable due to the stochastic error of X2. In the MODGAME procedure,

the Gray codes are used to help crudely “locate" the final estimator θ̂D to an interval of

length O(σn).

g1:
0 1

2 1

0 1

g2:
0 1

4
3
4 1

0 1 0

g3:
0 1

8
3
8

5
8

7
8 1

0 1 0 1 0

(g1, g2, g3):
0 1

8
1
4

3
8

1
2

5
8

3
4

7
8 1

000 001 011 010 110 111 101 100

Figure 3.3: An illustration of the Gray functions and Gray codes.

Define the refinement function h(x) : R → {0, 1} and the conjugate refinement function
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h̄(x) : R→ {0, 1} by

h(x) ≜ ⌊2(⌊log
1
σn

⌋−7)x⌋ mod 2 and h̄(x) ≜ ⌊2(⌊log
1
σn

⌋−7)x− 1

2
⌋ mod 2. (3.4)

For any function f , define the convolution function

Φf (x) ≜ EX∼N(x,σ2
n)
f(X) =

∫ ∞

−∞

1√
2πσn

e
− (y−x)2

2σ2
n f(y)dy.

The above refinement functions and convolution function are used to accurately estimate

the mean of the Gaussian observations. In the MODGAME procedure, the central machine

collects one-bit measurements of some observations, say h(X1), h(X2), ...h(Xu). By defini-

tion, the mean of those one-bit measurements is exactly Φh(θ). Note that Φh(x) is a periodic

wave-shape function, therefore after locating θ to a short interval of length O(σn) during the

preliminary steps, the central machine obtains a good estimate for θ by solving estimating

equation Φh(θ) = u−1
∑u

i=1 h(Xi). A similar communication strategy is also adopted in

Braverman et al. (2016).

For any K ≥ 1, let DecK(y1, y2, ..., yK) : {0, 1}K → 2[0,1] be the decoding function defined

by

DecK(y1, y2, ..., yK) ≜ {x ∈ [0, 1] : gk(x) = yk for k = 1, 2, ...,K}.

Last, we define the distance between a point x ∈ R and a set S ⊆ R as

d(x, S) ≜ min
y∈S
|x− y|.

We are now ready to introduce the MODGAME procedure in detail. Again, we divide into

three cases.

Case 1: B < log 1
σn

+2. In this case, the output is the values of the first B localization bits
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from local machines, where the k-th localization bit is defined as the value of the function

gk(·) evaluated on the local sample. The procedure can be described as follows.

Step 1: Generate transcripts on local machines. Define s0 = 0 and si =
∑i

j=1 bj for i =

1, . . . ,m. On the i-th machine, the transcript Zi is concatenated by the (si−1 +1)-th,

(si−1 + 2)-th, ..., (si−1 + bi)-th Gray functions evaluated at Xi. That is,

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi),

where Usi−1+k ≜ gsi−1+k(Xi) for k = 1, 2, ..., bi.

Step 2: Construct distributed estimator θ̂D. Now we collect the bits U1, U2, ..., UB from the

transcripts Z1, Z2, ..., Zm. Note that Uk is the k-th Gray function evaluate at a random

sample drawn from N(θ, σ2
n), one may reasonably "guess" that Uk ≈ gk(θ). By this

intuition, we set θ̂D to be the minimum number in the interval DecB(U1, U2, ..., UB),

i.e.

θ̂D = min{x : x ∈ DecB(U1, U2, ..., UB)}.

Case 2: log 1
σn

+ 2 ≤ B ≤ log 1
σn

+m. Let

u ≜ max

{
s ∈ N : ⌊log s⌋2 + 2s ≤ B − ⌊log 1

σn
⌋
}
, (3.5)

and define finer localization functions:

f1(x) ≜ g⌊log 1
σn

⌋−⌊log u⌋−2(x),

f2(x) ≜ ḡ⌊log 1
σn

⌋−⌊log u⌋−2(x),

fk(x) ≜ g⌊log 1
σn

⌋−⌊log u⌋−4+k(x) for k ≥ 3.

(3.6)

In this case the total communication budget is divided into 3 parts: crude localization bits

(roughly ⌊log 1
σn
⌋ bits), finer localization bits (⌊log u⌋2 bits), and refinement bits (2u bits).

65



The crude localization bits are the values of the functions g1(·), g2(·), ..., g⌊log 1
σn

⌋(·), each

evaluated on a local sample. We denote those resulting binary bits by U1, U2, ..., U⌊log 1
σn

⌋.

The finer localization bits are the values of the functions f1(·), f2(·), ..., f⌊log u⌋(·), each func-

tion is evaluated on ⌊log u⌋ different local samples. The function values of fk(·) are denoted

by Wk,1,Wk,2, ...,Wk,⌊log u⌋. The refinement bits are the values of the function h(·), evaluated

on u local samples; and the values of the function h̄(·), evaluated on u different local samples.

The resulting binary bits are denoted by V1, V2, ..., Vn and V̄1, V̄2, ..., V̄n respectively.

These three types of bits are assigned to local machines by the following way: (1) Among

all m machines, there are ⌊log u⌋2 local machines who will output transcript consisting of

1 finer localization bit and bi − 1 crude localization bits. (2) Among all m machines, there

are 2u local machines who will output transcript consist of 1 refinement bit and bi−1 crude

localization bits. (3) The remain m− (⌊log u⌋2+2u) machines will output transcript consist

of bi crude localization bits. The above assignment is feasible because

⌊log u⌋2 + 2u ≤ B − ⌊log 1

σn
⌋ ≤ m.

It is worth mentioning that every finer localization bits and every refinement bits are assigned

to different machines. Intuitively, this is because we need these bits to be independent so

that we can gain enough information for estimation. See Figure 3.4 for an overview of the

MODGAME procedure. The procedure can be summarized as follows:

Step 1: Generate transcripts on local machines. Define si =
∑i

j=1(bj − I{j≤⌊log u⌋2+2u}) and

s0 = 0. On the i-th machine:

• If (j − 1)⌊log u⌋+ 1 ≤ i ≤ j⌊log u⌋ for some integer 1 ≤ j ≤ ⌊log u⌋, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi−1,Wj,i−(j−1)⌊log u⌋);

(If bi = 1, just output Zi = Wj,i−(j−1)⌊log u⌋.)
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Figure 3.4: An illustration of MODGAME. The bits in the transcripts are transmitted to
the central machine and divided into three types: crude localization bits, finer localization
bits, and refinement bits. One then constructs on the central machine a crude interval I1, a
finer interval I2, and the final estimate θ̂D step by step.

• If ⌊log u⌋2 + 1 ≤ i ≤ ⌊log u⌋2 + u, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi−1, Vi−⌊log u⌋2);

(If bi = 1, just output Zi = Vi−⌊log u⌋2 .)

• If ⌊log u⌋2 + u+ 1 ≤ i ≤ ⌊log u⌋2 + 2u, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi−1, V̄i−(⌊log u⌋2+u));

(If bi = 1, just output Zi = V̄i−(⌊log u⌋2+u).)
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• If i ≥ ⌊log u⌋2 + 2u+ 1, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi).

where the above binary bits are calculated by

Usi−1+k ≜ gsi−1+k(Xi) for i = 1, 2, ...,m; k = 1, 2, ..., bi.

Wj,i−(j−1)⌊log u⌋ ≜ fj(Xi) for j = 1, 2, ..., ⌊log u⌋ − 1;

i = (j − 1)⌊log u⌋+ 1, (j − 1)⌊log u⌋+ 2, ..., j⌊log u⌋.

Vi−⌊log u⌋2 ≜ h(Xi) for i = ⌊log u⌋2 + 1, ⌊log u⌋2 + 2, ..., ⌊log u⌋2 + u.

V̄i−(⌊log u⌋2+u) ≜ h̄(Xi) for i = ⌊log u⌋2 + u+ 1, ..., ⌊log u⌋2 + 2u.

Step 2: Construct distributed estimator θ̂D. From transcripts Z1, Z2, ..., Zm, we can collect

(a) crude localization bits U1, U2, ..., U⌊log 1
σn

⌋;

(b) finer localization bits W1,1,W1,2, ...,W⌊log u⌋,⌊log u⌋;

(c) refinement bits V1, V2, ..., Vu and V̄1, V̄2, ..., V̄u.

Step 2.1: First, we use crude localization bits U1, U2, ...U⌊log 1
σn

⌋−⌊log u⌋−3 to roughly locate

θ. The “crude interval" I1 will be obtained in this step.

(a) If ⌊log 1
σn
⌋ − ⌊log u⌋ ≤ 3, just set I1 = I ′1 = [0, 1].

(b) If ⌊log 1
σn
⌋ − ⌊log u⌋ ≥ 4, let

I ′1 ≜ Dec⌊log 1
σn

⌋−⌊log u⌋−3(U1, U2, ..., U⌊log 1
σn

⌋−⌊log u⌋−3). (3.7)

Then we further stretch I ′1 to a larger interval I1 so that I1 will double the length

of I ′1:

I1 ≜
{
x : d(x, I ′1) ≤ 2−(⌊log 1

σn
⌋−⌊log u⌋−2)

}
. (3.8)
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Step 2.2: Then, we use finer localization bits to locate θ to a smaller interval of length

roughly O(σn). A "finer interval" I2 will be generated in this step. For any

1 ≤ k ≤ ⌊log u⌋, let

Wk = I{∑⌊log u⌋
j=1 Wk,j≥ 1

2
⌊log u⌋}

be the majority voting summary statistic for Wk,1,Wk,2, ...,Wk,⌊log u⌋.

(a) If ⌊log 1
σn
⌋ − ⌊log u⌋ ≤ 3, and ⌊log 1

σn
⌋ ≤ 4, let

I2 = I ′2 = [0, 1].

(b) If ⌊log 1
σn
⌋ − ⌊log u⌋ ≤ 3, and ⌊log 1

σn
⌋ ≥ 5, let

I ′2 ≜ Dec⌊log 1
σn

⌋−4(W⌊log u⌋−⌊log 1
σn

⌋+5,W⌊log u⌋−⌊log 1
σn

⌋+6, ...,W⌊log u⌋). (3.9)

Then we further stretch I ′2 to a larger interval I2 so that I2 will double the length

of I ′2:

I2 ≜
{
x : d(x, I ′2) ≤ 2−(⌊log 1

σn
⌋−3)

}
.

(c) If ⌊log 1
σn
⌋ − ⌊log u⌋ ≥ 4, let

I ′2 ≜ {x ∈ I1 : fk(x) = Wk for all k = 1, 2, ..., ⌊log u⌋} . (3.10)

Lemma 7 in the Supplementary Material Cai and Wei (2020a) shows I ′2 is an

interval. Then we further stretch I ′2 to a larger interval I2 so that I2 will double

the length of I ′2:

I2 ≜
{
x : d(x, I ′2) ≤ 2−(⌊log 1

σn
⌋−3)

}
.

Step 2.3: Finally, we use refinement bits V1, V2, ..., Vu and V̄1, V̄2, ..., V̄u to get an accurate
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estimate θ̂D. Lemma 8 in the Supplementary Material Cai and Wei (2020a) shows

that one of the following two conditions must hold:

I2 ⊆
[
(2j − 3

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

3

4
) · 2−(⌊log 1

σn
⌋−6)

]
for some j ∈ Z

or

I2 ⊆
[
(2j +

1

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

7

4
) · 2−(⌊log 1

σn
⌋−6)

]
for some j ∈ Z.

So we can divide the procedure into the following two cases.

(a) If I2 ⊆ [(2j − 3
4) · 2

−(⌊log 1
σn

⌋−6), (2j + 3
4) · 2

−(⌊log 1
σn

⌋−6)] for some j ∈ Z.

Then Φh(x) is a strictly monotone function on I2 (proved in Lemma 8 in the

Supplementary Material Cai and Wei (2020a)). Denote

LI ≜ inf
x∈I2

Φh(x) and RI ≜ sup
x∈I2

Φh(x).

By monotonicity, Φh is invertible on I2. Let Φ−1
h : [LI , RI ] → I2 be the inverse

of Φh, the distributed estimator θ̂D is given by

θ̂D = Φ−1
h

τ[LI ,RI ]

1

u

u∑
j=1

Vj

 (3.11)

where τ[LI ,RI ] is the truncation function defined in (3.3).

(b) Otherwise, we have I2 ⊆ [(2j+1
4)·2

−(⌊log 1
σn

⌋−6), (2j+7
4)·2

−(⌊log 1
σn

⌋−6)] for some

j ∈ Z. In this case Φh̄(x) is a strictly monotone function on I2 (proved in Lemma

8 in the Supplementary Material Cai and Wei (2020a)). Denote

L̄I ≜ inf
x∈I2

Φh̄(x) and R̄I ≜ sup
x∈I2

Φh̄(x).
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By monotonicity, Φh̄ is invertible on I2. Let Φ−1
h̄

: [L̄I , R̄I ] → I2 be the inverse

of Φh̄, the distributed estimator θ̂D is given by

θ̂D = Φ−1
h

τ[L̄I ,R̄I ]

1

u

u∑
j=1

V̄j

 (3.12)

where τ[L̄I ,R̄I ]
is the truncation function defined in (3.3).

Case 3: B > log 1
σn

+ m. We only need to use part of the total communication budget

B as if we deal with the case B = ⌊log 1
σn
⌋ + m. To be precise, we can always easily find

b′1, b
′
2, ..., b

′
m so that 1 ≤ b′i ≤ bi for i = 1, 2, ...,m and

m∑
i=1

b′i = ⌊log
1

σn
⌋+m.

Then we can implement the procedure introduced in Case 2 where we let the i-th machine

only output a transcript of length b′i.

MODGAME procedure when σn ≥ 1

When σn ≥ 1, each machine only need to output a one-bit measurement to achieve the

global optimal rate as if there are no communication constraints. Some related results are

available in Kipnis and Duchi (2019). The following procedure is based on the setting when

bi = 1 for all i = 1, ...,m. If bi > 1 for some i, then one can simply discard all remain bits

so that only one bit is sent by each machine.

Here is the MODGAME procedure when σn ≥ 1:

Step 1. The i-th machine outputs

Zi =


0 if Xi < 0

1 if Xi ≥ 0

.
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Step 2. The central machine collects Z1, Z2, ..., Zm and estimates θ by

θ̂D = τ[0,1]

(
σnΦ

−1

(
1

m

m∑
i=1

Zi

))

where τ is the truncation function defined in (3.3) and Φ is the cumulative distribution

function of a standard normal, Φ(x) ≜ 1√
2π

∫ x
−∞ et

2/2dt. Here Φ−1 is the inverse of Φ

and we extend it by defining Φ−1(0) = −∞ and Φ−1(1) =∞.

3.2.2. Theoretical properties of the MODGAME procedure

Section 3.2.1 gives a detailed construction of the MODGAME procedure, which clearly

satisfies the communication constraints by construction. The following result provides a

theoretical guarantee for the statistical performance of MODGAME.

Theorem 8. For given communication budgets b1:m with bi ≥ 1 for i = 1, . . . ,m, let B =∑m
i=1 bi and let θ̂D be the MODGAME estimate. Then there exists a constant C > 0 such

that

sup
θ∈[0,1]

E(θ̂D − θ)2 ≤



C · 2−2B if B < log 1
σn

+ 2

C · σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

C ·
(
σ2
n
m ∧ 1

)
if B ≥ log 1

σn
+m

. (3.13)

An interesting and somewhat surprising feature of the upper bound is that it depends on

the communication constraints b1:m only through the total budget B =
∑m

i=1 bi, not the

specific value of b1:m, so long as each machine can transmit at least one bit. The proof of

Theorem 8 is provided in the Supplementary Material (Cai and Wei, 2020a).

3.2.3. Lower bound analysis and discussions

Section 3.2.1 gives a detailed construction of the MODGAME procedure and Theorem 8

provides a theoretical guarantee for the estimator. We shall now prove that MODGAME

is indeed rate optimal among all estimators satisfying the communication constraints by
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showing that the upper bound in Equation (3.13) cannot be improved. More specifically,

the following lower bound provides a fundamental limit on the estimation accuracy under

the communication constraints.

Theorem 9. Suppose bi ≥ 1 for all i = 1, 2, ...,m. Let B =
∑m

i=1 bi. Then there exists a

constant c > 0 such that

R1(b1:m) ≥



c · 2−2B if B < log 1
σn

+ 2

c · σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

c ·
(
σ2
n
m ∧ 1

)
if B ≥ log 1

σn
+m.

The key novelty in the lower bound analysis is the decomposition of the statistical risk

into localization error and refinement error based on a delicate construction of the following

candidate set Gδ:

Gδ ≜
{
θu,v = σnu+ δv : u = 0, 1, 2, ...,

(
⌊ 1
σn
⌋ − 1

)
, v = 0, 1

}
,

where δ is a precision parameter that will be specified later. By assigning θ a uniform prior

on the candidate set Gδ, estimation of θ can be decomposed into estimation of u and v. One

can view estimation of u as the localization step and estimation of v as the refinement step.

The following lemma is a key technical tool.

Lemma 5. Let 0 < σn < 1 and let u be uniformly distributed on {0, 1, ..., ⌊ 1
σn
⌋ − 1} and v

be uniformly distributed on {0, 1}. Let u and v be independent and let θ = θu,v = σnu+ δv

where 0 < δ < σn
8 . Then for all θ̂ ∈ Aind(b1:m),

I(θ̂;u) +
σ2
n

64δ2
I(θ̂; v) ≤ B. (3.14)

Remark 1. The proof of Lemma 5 mainly relies on the strong data processing inequality
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(Lemma 14 in Cai and Wei (2020a)). The strong data processing inequality was originally

developed in information theory, for reference see Raginsky (2016). Zhang et al. (2013a) and

Braverman et al. (2016) applied this technical tool to obtain lower bounds for distributed

mean estimation. However, their lower bounds are not sharp when σn is very small, due to

the fact that the focus was on bounding the refinement error using the strong data processing

inequality, but failed to bound the localization error.

Lemma 5 suggests that under the communication constraints b1:m, there is an unavoidable

trade-off between the mutual information I(θ̂;u) and I(θ̂; v). So one of the above two

quantities must be “small". When I(θ̂;u) (or I(θ̂; v)) is smaller than a certain threshold, it

can be shown that the estimator θ̂ cannot accurately estimate u (or v), which means the

localization error (or the refinement error) is large. Given that one of localization error and

refinement error must be larger than a certain value, the desired lower bound follows. A

detailed proof of Theorem 9 is given in Section 3.8.

Minimax rate of convergence. Theorems 8 and 9 together yield a sharp minimax rate for

distributed univariate Gaussian mean estimation with independent protocols:

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]

E(θ̂ − θ)2 ≍



2−2B if B < log 1
σn

+ 2

σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

σ2
n
m ∧ 1 if B ≥ log 1

σn
+m

. (3.15)

The results also show that MODGAME is rate optimal.

The minimax rate only depends on the total communication budgets B =
∑m

i=1 bi. As long

as each transcript contains at least one bit, how these communication budgets are allocated

to local machines does not affect the minimax rate. This surprising phenomenon is due to

the symmetry among the local machines since samples on different machines are independent

and identically distributed.
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Remark 2. Figure 3.2 gives an illustration for the minimax rate (3.15), which is divided into

three phases: localization, refinement, and optimal-rate. The minimax risk decreases quickly

in the localization phase, when the communication constraints are extremely severe; then

it decreases slower in the refinement phase, when there are more communication budgets;

finally the minimax rate coincides with the centralized optimal rate (Bickel, 1981b) and stays

the same, when there are sufficient communication budgets. The value for each additional

bit decreases as more bits are allowed.

In the localization phase, the risk is reduced to as small as O(σ2
n), which can be achieved by

using the sample on only ONE machine and there is no need to “communicate" with multiple

machines. In the refinement phase, the risk is further reduced to O(σ2
n/m). However, one

must aggregate information from all machines in order to achieve this rate.

Remark 3. If the central machine itself also has an observation, or equivalently if one of

the local machines serves as the central machine, then the communication constraints can be

viewed as one of bi is equal to infinity. This setting is considered in some related literature,

for instance, see Jordan et al. (2019). Then according to Theorem 8, MODGAME always

achieves the centralized rate σ2
n
m ∧ 1, as long as at least one bit is allowed to communicate

with each local machine.

Remark 4. Our analysis on the minimax rate can be generalized to the lr loss for any

r ≥ 1, with suitable modifications on both the lower bound analysis and optimal procedure.

3.3. Distributed Multivariate Gaussian Mean Estimation

We turn in this section to distributed estimation of a multivariate Gaussian mean under the

communication constraints. Similar to the univariate case, suppose we observe on m local

machines i.i.d. random samples:

Xi
i.i.d.∼ Nd(θ, σ

2
nId), i = 1, . . . ,m,
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where the i-th machine has access to Xi only. Here we consider the multivariate Gaussian

location family

Pd
σn

=
{
Nd(θ, σ

2
nId) : θ ∈ [0, 1]d

}
,

where θ ∈ [0, 1]d is the mean vector of interest and the noise level σn is known. Under the

constraints on the communication budgets b1:m with bi ≥ 1 for i = 1, . . . ,m, the goal is to

optimally estimate the mean vector θ under the squared error loss. We are interested in the

minimax risk for the distributed protocol Aind(b1:m):

Rd(b1:m) = inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]d

E∥θ̂ − θ∥2.

Another goal is to develop a rate-optimal estimator that satisfies the communication con-

straints. The multivariate case is similar to the univariate setting, but it also has some

distinct features, both in terms of the estimation procedure and the lower bound argument.

3.3.1. Lower bound analysis

We first obtain the minimax lower bound which is instrumental in establishing the optimal

rate of convergence. The following lower bound on the minimax risk shows a fundamental

limit on the estimation accuracy when there are communication constraints. In view of

the upper bound to be given in Section 3.3.2 that is achieved by a generalization of the

MODGAME procedure, the lower bound is rate optimal.

Theorem 10. Suppose bi ≥ 1 for all i = 1, 2, ...,m. Let B =
∑m

i=1 bi and m′ = 1
d

∑m
i=1(bi∧

d), then there exists a constant c > 0 such that

Rd(b1:m) ≥



c · 2−2B/dd if B/d < log 1
σn

+ 2

c · dσ2
n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

c · d
(
σ2
n

m′ ∧ 1
)

if B/d ≥ log 1
σn

+ (m′ ∨ 2)

.

A detailed proof of Theorem 10 is given in the Supplementary Material (Cai and Wei, 2020a).
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Remark 5. In the earlier work including Garg et al. (2014); Barnes et al. (2019b), a lower

bound for distributed Gaussian mean estimation has been established as Ω(σ
2
nd

2

B ), where

B is the total communication cost. This lower bound is sharp for σn ≥ 1. However, when

σn < 1, by showing that the additional and exact log(1/σn) localization bits are necessary for

estimating a Gaussian mean, the lower bound can be improved to Ω(min{ σ2
nd

2

B−d log(1/σn)
, σ2

nd}).

The improvement is significant when log(1/σn)/m is bounded away from 0.

3.3.2. Optimal procedure

We now construct an estimator of the mean vector under the communication constraints.

Roughly speaking, the procedure, called multi-MODGAME, first divides the communication

budgets evenly into d parts and then each part of communication budgets will be used to

estimate one coordinate of θ. Our analysis shows that multi-MODGAME achieves the mini-

max optimal rate under the communication constraints. The construction of the distributed

estimator θ̂D is divided into three steps.

�

Local Machine 1

X
(1)
1 →

X
(2)
1 →

X
(3)
1 →

Z1

�

Local Machine 2

X
(1)
2 →

X
(2)
2 →

X
(3)
2 →

Z2

�

Local Machine 3

X
(1)
3 →

X
(2)
3 →

X
(3)
3 →

Z3

Central Machine → θ̂
(1)
D → θ̂

(2)
D → θ̂

(3)
D

Figure 3.5: An illustration for multi-MODGAME. Communication budgets are evenly
divided into three parts with each part used for estimating a coordinate of θ by the
MODGAME procedure.

Step 1: Assign communication budgets. In this step we will calculate b(k)i (i = 1, 2, ...,m; k =

1, 2, ..., d) so that

bi = b
(1)
i + b

(2)
i + ...+ b

(d)
i for all i = 1, 2, ...m.

where b
(k)
i is the number of bits within the transcript Zi which is associated with estimation
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of θ̂(k).

Without loss of generality we assume b1 ≤ b2 ≤ ... ≤ bm, which can always be achieved by

permuting the indices of the machines. Write 1, 2, 3, ..., d repeatedly to form a sequence:

Q ≜ 1, 2, 3, ..., d, 1, 2, 3, ..., d, 1, 2, 3, ...

The sequence Q is then divided into subsequences of lengths b1, b2, ..., bm. Let Q1 be the

subsequence of Q from index 1 to index b1; let Q2 be the next subsequence from index b1+1

to b1 + b2; ... let Qm be the subsequence from index
∑m−1

i=1 bi + 1 to
∑m

i=1 bi. For each

1 ≤ k ≤ d, let b(k)i be the number of occurrence of k within Qi. To be more precise, b(k)i can

be calculated by

b
(k)
i =

⌊∑i
j=1 bj − k

d

⌋
−
⌊∑i−1

j=1 bj − k

d

⌋
.

Step 2: Generate transcripts on local machines. On the i-th machine, the transcript Zi

is concatenated by short transcripts Z
(1)
i , Z

(2)
i , ..., Z

(d)
i , where the length of Z

(k)
i is b

(k)
i

for k = 1, 2, ..., d. Note that the k-th coordinate of the observations on each machine,

X
(k)
1 , X

(k)
2 , ..., X

(k)
m , can be viewed as i.i.d univariate Gaussian variables with mean θ(k) and

variance σ2
n. For 1 ≤ k ≤ d, the transcripts Z

(k)
1 , Z

(k)
2 , ..., Z

(k)
m can be generated the same

way as if we implement MODGAME to estimate θ(k) from observations X(k)
1 , X

(k)
2 , ..., X

(k)
m ,

within the communication budgets b
(k)
1 , b

(k)
2 , ..., b

(k)
m . Some machines may be assigned zero

communication budget, if that happens those machines are ignored and the procedure is

implemented as if there are fewer machines.

Step 3: Construct distributed estimator θ̂D. We have collected Z
(k)
i (i = 1, 2, ...,m; k =

1, 2, ..., d) from the m local machines. For 1 ≤ k ≤ d, as in MODGAME, one can use

Z
(k)
1 , Z

(k)
2 , ..., Z

(k)
m to obtain an estimate for θ̂(k):

θ̂
(k)
D = θ̂

(k)
D

(
Z

(k)
1 , Z

(k)
2 , ..., Z(k)

m

)
.
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The final multi-MODGAME estimator θ̂D of the mean vector θ is just the vector consisting

of the estimates for the d coordinates:

θ̂D ≜
(
θ̂
(1)
D , θ̂

(2)
D , ..., θ̂

(d)
D

)
.

The following result provides a theoretical guarantee for multi-MODGAME.

Theorem 11. Let B =
∑m

i=1 bi and m′ = 1
d

∑m
i=1(bi ∧ d). Then there exists a constant

C > 0 such that

sup
θ∈[0,1]d

E∥θ̂D − θ∥2 ≤



C · 2−2B/dd if B/d < log 1
σn

+ 2

C · dσ2
n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

C · d
(
σ2
n

m′ ∧ 1
)

if B/d ≥ log 1
σn

+ (m′ ∨ 2).

(3.16)

Remark 6. Compared to the state-of-art results in the literature including Braverman et al.

(2016), the multi-MODGAME procedure is more communication-efficient and more flexible

in communication budget allocation. To be specific, the algorithm proposed in

Braverman et al. (2016) achieves the mean squared error O(σ
2
nd

αm ) with the total communi-

cation cost of order αmd+ d log2(αmd/σn)). In comparison, to achieve the same statistical

performance, MODGAME only needs αmd+ d log(1/σn) bits. The difference could be sig-

nificant when σn ≪ 1.

Moreover, multi-MODGAME achieves the optimal statistical performance in the distributed

setting with any pre-specified communication budget allocation (b1, b2, ..., bm). That is, the

constraint is imposed on each individual local machine. In comparison, the protocol in

Braverman et al. (2016) assigns the total communication budget by the algorithm thus in a

way solves a simpler “total communication constrained" problem.

The lower and upper bounds given Theorems 10 and 11 together establish the minimax rate
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for distributed multivariate Gaussian mean estimation:

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]d

E∥θ̂ − θ∥2 ≍



2−2B/dd if B/d < log 1
σn

+ 2

dσ2
n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

d
(
σ2
n

m′ ∧ 1
)

if B/d ≥ log 1
σn

+ (m′ ∨ 2)

(3.17)

where B =
∑m

i=1 bi is the total communication budget and m′ = 1
d

∑m
i=1(bi ∧ d) is the

“effective sample size". In particular, the minimax rate (3.15) for the univariate case is an

special case for the above minimax rate (3.17) with d = 1.

Remark 7. Different from the univariate case, in the multivariate case the minimax rate

depends on not only the total communication budget B, but also the effective sample size m′.

How the communication budgets assigned to individual local machines affects the difficulty

of the estimation problem. If the communication budgets are tight on some machines, then

one may have m′ ≪ m, which means the centralized minimax rate cannot be achieved even

if the total communication budget B is sufficiently large.

Remark 8. This chapter focuses on the unit hypercube [0, 1]d as the parameter space. A

similar analysis can be applied to other “regular" shape constraints, such as a ball or a

simplex, and the minimax rate depends on the constraint.

3.4. Optimal Distributed Estimation with Sequential and Blackboard Pro-

tocols

Independent protocols are considered as a “non-interactive" communication strategy, where

each machine can only access its own samples. However, feedback could be helpful in the

learning process. There are other more general and interactive communication protocols

considered in the literature, including the sequential protocols and blackboard protocols

(Zhang et al., 2013a; Barnes et al., 2019b).

• Sequential protocols. The local machines sequentially send transcripts to the next
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local machine, and finally the central machine collects all the transcripts. The tran-

script Zi sent by the i-th local machine, which is at most bi bits, can depend on the

previous transcripts Z1, Z2, ..., Zi−1.

• Blackboard protocols. The local machines communicate via a publicly shown black-

board. When a local machine writes a message on the blackboard, all other local

machines can see the content. Finally, the central machine collects all the information

and outputs the final estimate. The total length of the messages written by the i-th

local machine is at most bi bits.

As for distributed estimation with the independent protocols, it is interesting to establish

the optimal rates of convergence for the sequential protocols and blackboard protocols. This

is also related to a question of both theoretical and practical interest: is feedback useful for

distributed Gaussian mean estimation?

Note that any independent protocol can be viewed as a sequential protocol (by ignoring

messages provided by the previous machines). Similarly, any sequential protocol can be

implemented as a blackboard protocol. Therefore, the upper bounds (3.13) for the proposed

MODGAME procedure and (3.16) for multi-MODGAME still hold over the class of sequen-

tial protocols and blackboard protocols. The question is: Can these bounds be improved by

using more sophisticated algorithms?

The answer is no. The following theorem provides a lower bound for d-dimensional dis-

tributed Gaussian mean estimation with blackboard protocols. We denote by Aseq(b1:m)

and ABB(b1:m) the class of sequential protocols and blackboard protocols respectively.

Theorem 12. Suppose bi ≥ 1 for all i = 1, 2, ...,m. Let B =
∑m

i=1 bi and m′ = 1
d

∑m
i=1(bi∧
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d), then there exists a constant c > 0 such that

inf
θ̂∈ABB(b1:m)

sup
θ∈[0,1]d

E∥θ̂− θ∥2 ≥



c · 2−2B/dd if B/d < log 1
σn

+ 2

c · dσ2
n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

c · d
(
σ2
n

m′ ∧ 1
)

if B/d ≥ log 1
σn

+ (m′ ∨ 2)

.

The proof of Theorem 12 is also based on the localization-refinement error decomposition. A

sketch of the proof is given in the Supplementary material Cai and Wei (2020a). Theorem

12 and the upper bound given in (3.16) together show that the optimal rate of conver-

gence is the same and MODGAME and multi-MODGAME are rate-optimal for the three

classes of communication protocols–independent, sequential, and blackboard. To some ex-

tent, the results imply that feedback is not necessary to achieve communication-efficiency

for distributed Gaussian mean estimation.

3.5. Robustness Against Departures from Gaussianity

We have so far focused exclusively on the Gaussian location families. Both the optimal

distributed procedures and lower bound arguments are established under the assumption of

Gaussian observations. We consider in this section robustness of the proposed MODGAME

and multi-MODGAME procedures against departures from Gaussianity.

Even if the i.i.d observations Xi,j , i = 1, 2, ..,m, j = 1, 2, ..., n are drawn from a non-Gaussian

distribution, after taking the sample mean on each local machine, according to the central

limit theorem, the distribution of these sample means is close to a Gaussian distribution

when n is large. Thus intuitively the proposed procedures should still work even when the

original observations are nongaussian.

For simplicity we focus on the one-dimensional estimation problem. The multivariate case

can be considered as a direct generalization to the univariate case. Let Pθ be a location

family where θ is the mean, and its variance is σ2. Denote P̄n
θ as the distribution of the

mean of n i.i.d copies drawn from Pθ. If on each local machine we can access to n i.i.d
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observations Xi,1, Xi,2, ..., Xi,n ∼ Pθ, then each machine can take the local sample mean

Xi ≜
∑n

j=1Xi,j ∼ P̄n
θ . Even though P̄n

θ is a non-Gaussian distribution, the MODGAME

procedure can take Xi as inputs to generate a final estimate.

Recall that MODGAME is divided into three steps: crude localization step, finer localization

step, and refinement step. During the first two steps, in order to obtain the desired statistical

guarantee for the “confidence interval" I2, we only need sub-Gaussian tail condition for Xi.

During the refinement step, the key is to use Φh or Φh̄ to generate estimates from the one-bit

measurements. If Xi is not drawn from a Gaussian distribution, there is additional bias that

could be controlled under certain conditions.

Let TV (·, ·) denote the total variation distance between two probability distributions. A ran-

dom variable X (or a distribution P where X ∼ P ) is called v-subgaussian if E exp(s(X −

EX)) ≤ exp(v
2s2

2 ), ∀s ∈ R. The following theorem shows that when the total variation

distance between the distribution P̄n
θ of the local sample mean and the Gaussian distribu-

tion N(θ, σ2
n) is sufficiently small, MODGAME has the same theoretical guarantee as in

the Gaussian case. This implies that MODGAME is robust against departures from the

Gaussian distribution.

Theorem 13. If P̄n
θ is a Dσn-subgaussian distribution and TV (P̄n

θ , N(θ, σ2
n)) ≤ D√

m
for

some D > 0. Then there exists a constant C > 0 such that

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C ·



2−2B if B < log 1
σn

+ 2

σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m(

σ2
n
m ∧ 1

)
if B ≥ log 1

σn
+m

. (3.18)

where θ̂ is the output of the MODGAME procedure and B =
∑m

i=1 bi is the total communi-

cation cost.

A sketch of the proof is given in the Supplementary Material Cai and Wei (2020a). Note

that Xi ∼ P̄n
θ is the mean of i.i.d observations in the ith local machine. The L1 Berry-Esseen
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bound (e.g. (Chen et al., 2010, Corollary 4.2)) suggests TV (P̄n
θ , N(θ, σ2

n)) ≤ E(|X1−θ|/σ)3
2
√
n

.

If X1 is a Dσ-subgaussian distribution, then E(|X1 − θ|/σ)3 is bounded by a constant

(depending on D). Hence the following corollary holds.

Corollary 14. If Pθ is a Dσ-subgaussian distribution, and m ≤ Dn for some D > 0. Then

there exist a constant C > 0 such that

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C ·



2−2B if B < log 1
σn

+ 2

σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m(

σ2
n
m ∧ 1

)
if B ≥ log 1

σn
+m

. (3.19)

where θ̂ is the output of the MODGAME procedure. B =
∑m

i=1 bi is the total communication

cost.

Corollary 14 shows that, if n/m is asymptotically bounded away from 0, then MODGMAE

achieves the same statistical performance as in the Gaussian case as long as the observations

are drawn from a subgaussian distribution.

3.6. Simulation Studies

It is clear by construction that MODGAME and multi-MODGAME satisfy the communi-

cation constraints and are easy to implement. We investigate in this section their numerical

performance through simulation studies. Comparisons with the existing methods are given

and the results are consistent with the theory. In this section, we implement a slightly mod-

ified version of MODGAME procedure, where each local machine output three refinement

bits instead of one. This slightly modified MODGAME procedure has better numerical

performance and also has the same theoretical guarantee as what is stated in Section 3.2.

We first consider MODGAME for estimating a univariate Gaussian mean. In this case, we

set d = 1 and b1 = b2 = ... = bm = b, i.e. the communication budgets for all machines

are equal, and compare the empirical MSEs of MODGAME, naive quantization (see e.g.
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Zhang et al. (2013a)), and sample mean. For naive quantization, each machine projects its

observation to [0, 1] and quantizes it to precision 2−b. The quantized observation is sent to

the central machine and the central machine uses their average as the final estimate. The

sample mean is the efficient estimate when there are no communication constraints, which

can be viewed as a benchmark for any distributed Gaussian mean estimation procedure.

First, we fix m = 100, σn = 2−8 and assign the communication budget for each machine

b from 1 to 7. The MSEs of the three estimators are shown in Figure 3.6a, which shows

that MODGAME makes better use of the communication resources in comparison to naive

quantization. It can be seen from the figure, MODGAME outperforms naive quantization

when the communication constraints are extremely severe. As the communication budgets

increases, naive quantization can nearly achieve the optimal MSE, meanwhile MODGAME

still performs very well.
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(a) Fixed m and σn
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Figure 3.6: Comparisons of the MSEs of MODGAME (red), naive quantization (blue) and
sample mean (black). MSEs are plotted on log-scale. In 3.6b and 3.6c, m and σn are plotted
on log-scale.

In the second setting, we fix σn = 2−8, b = 5 and vary the number of machines m from

10 to 40960. Figure 3.6b plots the MSEs of the three methods. The MSE of MODGAME

decreases as number of machine increases and outperforms naive quantization; the MSE of

naive quantization remains constant as the quantization error plays a dominant role in the

MSE.

Finally, we fix b = 5, m = 100 and vary the standard deviation σn from 2−1 to 2−13. Figure
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3.6c shows the MSEs of the three estimators. It can be seen that MODGAME is robust for

all choices of σn. The difference between the MSE of MODGAME and the optimal MSE for

non-distributed sample mean is small. For naive quantization, it is as good as the optimal

non-distributed sample mean when σn is large. However, as seen in the previous experiment,

when σn is small, the MSE of naive quantization is dominated by the quantization error and

is much larger than the MSE of MODGAME. In all three settings, it can be seen clearly

that the MSE of MODGAME decreases as the communication budgets increases. This

is consistent with the theoretical results established in Section 3.2 and demonstrates the

tradeoff between the communication costs and statistical accuracy.

Besides, to demonstrate that the performance of the MODGAME procedure only depends on

total communication budget B, we implement another simulation. We fix m = 6, σn = 2−12

and assign the total communication budgets B from 18 to 36. We compare the performance

of the MODGAME procedure with different communication allocation. That is, in one

simulation we assign bi = 3 bits to each local machine except one, and that one machine are

assigned B − 3(m − 1) bits. In another simulation we assign equal communication budget

bi = B/m to each machine. As a benchmark, we also implement non-distributed sample

mean estimator. Figure 3.7a shows the MSEs of the above three methods. It is shown

clearly that how communication budgets are assigned to local machines doesn’t affect the

performance of the MODGAME procedure, which is consistent with our theory.

We now turn to multi-MODGAME. Different values of the dimension d yield similar phe-

nomena. We use d = 50 here for illustration. When d is larger than the number of bits that

is allowed to communicate on each machine, naive quantization is not valid as it is unclear

how to quantize the d coordinates of the observed vector. As a comparison, it can be seen in

the following experiments that multi-MODGAME still performs well even if d is large and

the communication budgets are tight.

Same as before, we set b1 = b2 = ... = bm = b, i.e. the communication budgets for all

machines are equal. We set d = 50, σn = 2−8,m = 25 and assign the communication
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budgets b for each machine from 2 to 21. The MSEs of different methods are shown in

Figure 3.7b. A phase transition at b = 10 can be clearly seen. When b ≤ 10, the MSE

decreases quickly at an exponential rate. When b > 10, the decrease becomes relatively

slow. This phenomenon is consistent with the theoretical prediction that different phases

appear in the convergence rate for multi-MODGAME (Theorem 11).
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(b) Multi-MODGAME

Figure 3.7: Left panel: Comparisons of the MSEs of MODGAME with equal assignment
(red), MODGAME with unequal assignment (blue) and sample mean (black). Right panel:
Comparisons of the MSEs of multi-MODGAME (red) and sample mean (black). MSEs are
plotted on log-scale.
3.7. Discussion

We established in this chapter a sharp and complete minimax rate that holds for all values

of the parameters d,m, n, σ in all communication budget regimes under the independent,

sequential, and blackboard protocols. A key technique is the decomposition of the mini-

max estimation problem into two steps, localization and refinement, which appears in both

the lower bound analysis and optimal procedure design. The optimality results and tech-

niques developed can be useful for solving other problems such as distributed nonparametric

function estimation and distributed sparse signal recovery.

In spite of these optimality results, there are still several open problems on distributed

Gaussian mean estimation. For example, an interesting problem is the optimal estimation

of the mean θ when the variance σ2 is unknown. The lack of knowledge of σ2 requires

additional communication efforts for optimally estimating θ. When there are more than one

87



sample available on each local machine, a natural approach is to estimate σ2 on each local

machine and then use MODGAME to estimate θ. It would be interesting to investigate the

performance of such an estimator. Other than estimating the mean θ, distributed estimation

of the variance σ2 is also an interesting and important problem. When there are multiple

samples on each local machine, the local estimate of σ2 can be viewed as an observation

drawn from a scaled χ2 distribution. The problem then becomes a distributed χ2 estimation

problem and it might be solved by using a similar approach to the one used in this chapter.

We leave these for future work.

Optimal estimation of the mean of a multivariate Gaussian distribution with a general

(known) covariance matrix is another interesting problem. A naive approach is to ignore the

dependency and apply MODGAME to estimate the coordinates individually, this is arguably

not communication efficient in general. For instance, if the correlation between certain coor-

dinates is large, it may be possible to save a significant amount of communication budget by

utilizing the information from one coordinate to help estimate the other. Another approach

is to use multi-MODGAME after orthogonalization. More specifically, consider the Gaussian

location family with a general non-singular covariance matrix Σ. Let λmin > 0 be the small-

est eigenvalue of Σ. For X ∼ Nd(θ,Σ), λ
1/2
min(dΣ)

−1/2X ∼ Nd

(
λ
1/2
min(dΣ)

−1/2θ, λmin
d Id

)
. Note

that λ
1/2
min(dΣ)

−1/2θ ∈ [0, 1]d for any θ ∈ [0, 1]d, therefore one can apply multi-MODGAME

to estimate λ
1/2
min(dΣ)

−1/2θ, then transform it back to get an estimate for θ. However, this is

generally not rate-optimal. A systematic study is needed for this problem. Another related

and more challenging problem is optimal distributed estimation of the covariance matrix Σ.

This chapter arguably considered one of the simplest settings for optimal distributed esti-

mation under the communication constraints, but as can be seen in the chapter, both the

construction of the rate optimal estimators and the theoretical analysis are already quite in-

volved for such a seemingly simple problem. As we deepen our understanding on distributed

learning under the communication constraints, we hope to extent this line of work to inves-

tigate other statistical problems in distributed settings, including nonparametric function
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estimation, high-dimensional linear regression, and large-scale multiple testing. For Gaus-

sian mean estimation, as we showed in this chapter, the optimal rates of convergence under

the three different communication protocols – independent, sequential, and blackboard –

are the same. In some more complicated problems, feedback might be useful in improving

estimation accuracy and the optimal rates will thus be different under these three classes

of communication protocols. It is interesting to understand fully when and to what extend

feedback helps in terms of improving statistical accuracy.

3.8. Proofs

In this section we prove Theorem 9 for the univariate case. For reasons of space, Theo-

rems 8, 10, 11, 12, 13 and the technical lemmas are proved in the Supplementary Material

(Cai and Wei, 2020a).

We prove separately the three cases in Theorem 9: B < log 1
σn

+ 2, log 1
σn

+ 2 ≤ B <

log 1
σn

+m, and B ≥ log 1
σn

+m. We first focus on the most important case log 1
σn

+ 2 ≤

B < log 1
σn

+m. New technical tools are developed in the proof. The other two cases are

relatively easy.

Case 1: log 1
σn

+ 2 ≤ B < log 1
σn

+m. Note that bi ≥ 1 for all i = 1, 2, ...,m implies that

B =
∑m

i=1 bi ≥ m. Therefore in this case we must have σn < 1.

Let 0 < δ < 1
8σn be a parameter to be specified later. Define a grid of candidate values of θ

as

Gδ ≜
{
θu,v = σnu+ δv : u = 0, 1, 2, ...,

(
⌊ 1
σn
⌋ − 1

)
, v = 0, 1

}
. (3.20)

Let U(Gδ) be a uniform prior of θ on Gδ. Note that Gδ ⊂ [0, 1], so the minimax risk is lower

bounded by the Bayesian risk:

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ inf
θ̂∈A(b1:m)

Eθ∼U(Gδ)(θ̂ − θ)2. (3.21)

For any estimator θ̂ ∈ A(b1:m), the rounded estimator θ̂′ ≜ argminθ̃∈Gδ
|θ̃− θ̂| always satisfy
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(θ̂− θ)2 ≥ 1
4(θ̂

′ − θ)2 for all θ ∈ Gδ. Note that θ̂′ also belongs to the protocol class A(b1:m),

and only takes value in Gδ, this implies

inf
θ̂∈A(b1:m)

Eθ∼U(Gδ)(θ̂ − θ)2 ≥ 1

4
inf

θ̂∈A(b1:m)∩Gδ

Eθ∼U(Gδ)(θ̂ − θ)2, (3.22)

where A(b1:m) ∩Gδ is a shorthand for A(b1:m) ∩ {θ̂ : θ̂ only takes value in Gδ}.

Now we have θ̂, θ ∈ Gδ thus they can be reparametrized by θ̂ = θû,v̂ and θ = θu,v. It is easy

to verify the inequality

(θ̂û,v̂ − θu,v)
2 ≥ max

{
σ2
n

4
(û− u)2, δ2I{v̂ ̸=v}

}
.

Hence

inf
θ̂∈A(b1:m)∩Gδ

Eθ∼U(Gδ)(θ̂ − θ)2 ≥ inf
θû,v̂∈A(b1:m)∩Gδ

Eθu,v∼U(Gδ)max

{
σ2
n

4
(û− u)2, δ2I{v̂ ̸=v}

}
.

(3.23)

Putting together (3.21), (3.22), and (3.23), we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ 1

4
inf

θû,v̂∈A(b1:m)∩Gδ

Eθu,v∼U(Gδ)max

{
σ2
n

4
(û− u)2, δ2I{v̂ ̸=v}

}
≥ inf

θû,v̂∈A(b1:m)∩Gδ

max

{
σ2
n

16
Eθu,v∼U(Gδ)(û− u)2,

δ2

4
Pθu,v∼U(Gδ)(v̂ ̸= v)

}
.

(3.24)

Therefore, by assigning a prior θ ∼ U(Gδ), we have successfully decomposed the estimation

problem of θ into estimation problems of u and v. We can view estimation of u as “localiza-

tion" step and estimation of v as “refinement" step, so (3.24) essentially has decomposed the

statistical risk into localization error and refinement error. To lower bound the right hand

side of (3.24), we show that under communication constraints, one cannot simultaneously

estimate both u and v accurately, i.e. the localization and refinement errors cannot be both

too small. Lemma 5, which shows that for any distributed estimator θ̂, there is unavoidable

trade-off between the mutual information I(θ̂;u) and I(θ̂; v), is a key step.
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We set δ = σn√
256(B+1−log(⌊ 1

σn
⌋))

, and assign the uniform prior U(Gδ) to the parameter θ =

θu,v. One can easily verify δ < 1
8σn, and u, v are independent random variables where u is

uniform distributed on {0, 1, ..., ⌊ 1
σn
⌋−1}, and v is uniform distributed on {0, 1}. Therefore,

we can apply Lemma 5 to get inequality (3.14). From the inequality (3.14) we can further

get, for any θ̂ ∈ A(b1:m) ∩Gδ, one of the following two inequalities

I(θ̂;u) ≤ log(⌊ 1
σn
⌋)− 1 or I(θ̂; v) ≤ 64δ2

σ2
n

(
B + 1− log(⌊ 1

σn
⌋)
)

must hold. We show that either of the above bounds on the mutual information will result

in a large statistical risk.

Case 1.1: I(θ̂;u) ≤ log(⌊ 1
σn
⌋) − 1. Note that û is a function on θ̂, thus by data process-

ing inequality, I(û;u) ≤ I(θ̂;u) ≤ log(⌊ 1
σn
⌋) − 1. Note that u is uniform distributed on

{0, 1, ..., ⌊ 1
σn
⌋ − 1}, thus H(u) = log(⌊ 1

σn
⌋). We have

H(u|û) = H(u)− I(û;u) ≥ 1. (3.25)

The following lemma shows that large conditional entropy will result in large L2 distance

between two integer-valued random variables.

Lemma 6. Suppose A,D are two integer-valued random variables. If H(A|D) ≥ 1
2 , then

there exist a constant c2 > 0 such that

E(A−D)2 ≥ c2.

Given (3.25) and the fact that û, u are integer valued, Lemma 6 yields

Eθu,v∼U(Gδ)(û− u)2 ≥ c2. (3.26)
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Case 1.2: I(θ̂; v) ≤ δ2

c1σ2
n
(B+1− log(⌊ 1

σn
⌋)). By the strong data processing inequality, plug

in δ = σn√
256(B+1−log(⌊ 1

σn
⌋))

we have I(v̂; v) ≤ I(θ̂; v) ≤ 1
4 , so H(v|v̂) = H(v) − I(v̂; v) ≥ 3

4 .

It follows from Lemma 6 that

Pθu,v∼U(Gδ)(v̂ ̸= v) = Eθu,v∼U(Gδ)(v̂ − v)2 ≥ c2. (3.27)

Combine (3.26) for Case 1.1 and (3.27) for Case 1.2 together, we have for any θ̂ ∈ A(b1:m)∩

Gδ,

max

{
σ2
n

16
Eθu,v∼U(Gδ)(û− u)2,

δ2

4
Pθu,v∼U(Gδ)(v̂ ̸= v)

}
≥c2min

{
σ2
n

16
,
δ2

4

}
=

c2σ
2
n

1024(B + 1− log(⌊ 1
σn
⌋)) ≥

c2
2048

· σ2
n

(B − log 1
σn

)
.

(3.28)

The minimax lower bound follows by combining (3.24) and (3.28),

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ c2
2048

· σ2
n

(B − log 1
σn

)
.

Case 2: B < log 1
σn

+2. Let S = 2B+1 and KS ≜ { i
S : i = 0, 1, ..., S−1}. Denote by U(KS)

the uniform distribution on KS . For the same reason as in (3.21) and (3.22) we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ inf
θ̂∈A(b1:m)

Eθ∼U(KS)(θ̂ − θ)2 ≥ 1

4
inf

θ̂∈A(b1:m)∩KS

Eθ∼U(KS)(θ̂ − θ)2

=
1

4S2
inf

θ̂∈A(b1:m)∩KS

Eθ∼U(KS)(Sθ̂ − Sθ)2.

(3.29)

The parameter θ can be treated as a random variable drawn from U(KS). Note that by the

data processing inequality, for any θ̂ ∈ A(b1:m),

I(θ̂; θ) = I(θ̂(Z1, Z2, ..., Zm); θ) ≤ I(Z1, Z2, ..., Zm; θ) ≤
m∑
i=1

H(Zi) ≤ B.
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By θ ∼ U(KS) we have H(θ|θ̂) = H(θ)−I(θ̂; θ) ≥ logS−B ≥ 1. Note that when θ ∼ U(KS),

for any θ̂ ∈ A(b1:m) ∩KS , Sθ̂ and Sθ both take value in {0, 1, 2, ..., S − 1}. Also we have

H(Sθ|Sθ̂) = H(θ|θ̂) ≥ 1. Therefore, Lemma 6 yields that Eθ∼U(KS)(Sθ̂ − Sθ)2 ≥ c2. We

thus conclude that

1

4S2
inf

θ̂∈A(b1:m)∩KS

Eθ∼U(KS)(Sθ̂ − Sθ)2 ≥ c2

4 · 22(B+1)
=

c2
16
· 2−2B.

The desired lower bound follows by plugging into (3.29).

Case 3: B ≥ log 1
σn

+ m. The minimax risk for distributed protocols is always lower

bounded by the minimax risk with no communication constraints:

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ inf
θ̂

sup
θ∈[0,1]

(θ̂ − θ)2 ≍ σ2
n

m
∧ 1.

which is given in Bickel (1981b).
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CHAPTER 4

Distributed Gaussian Mean Estimation with Unknown Variance

Under Communication Constraints

4.1. Introduction

Distributed statistical analysis is becoming increasingly important and challenging, as dis-

tributed data sets naturally arise in a range of applications due to size constraints, security

concerns, or privacy considerations. For large-scale data analysis, communication costs can

be expensive and become the main bottleneck in the learning process. When communication

resources are limited, it is important to understand the interplay between the communication

constraints and statistical accuracy in order to construct optimal estimation and inference

procedures under the communication constraints.

Significant recent effort has been made to gain fundamental understanding of distributed

estimation. For example, Zhang et al. (2013a); Garg et al. (2014); Braverman et al. (2016);

Han et al. (2018); Barnes et al. (2019b) developed lower bound techniques for distributed

parametric estimation. Zhu and Lafferty (2018); Szabó and van Zanten (2018, 2020);

Cai and Wei (2020c, 2021b); Szabó et al. (2020) considered information-theoretical limits

under communication constraints for various distributed problems, such as Gaussian mean

estimation, linear regression, nonparametric regression and testing. Optimality results have

been established under different communication constraints. Besides theoretical analysis,

progress has also been made on developing practical methodologies for distributed estima-

tion. See, for example, Kleiner et al. (2014); Deisenroth and Ng (2015); Lee et al. (2017);

Diakonikolas et al. (2017); Jordan et al. (2019); Battey et al. (2018); Fan et al. (2019).

In this chapter we study distributed adaptive Gaussian mean estimation with unknown

variance in a decision-theoretical framework. This is a basic yet fundamental distributed

estimation problem. Gaussian mean estimation with known variance has been intensively

studied in the distributed setting. See, for example, Garg et al. (2014); Braverman et al.
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(2016); Barnes et al. (2019b); Cai and Wei (2020c). The optimality results in these papers

were established in the non-adaptive setting where the variance of Gaussian observations

is known a priori, and the estimation procedures and statistical lower bound arguments

critically depend on the knowledge of variance. In a wide range of statistical applications,

the variance of the observations is unknown and the procedures and results developed in the

aforementioned papers are no longer applicable. Adaptive Gaussian mean estimation with

unknown variance is technically challenging, and differs significantly from the non-adaptive

setting. Understanding distributed adaptive Gaussian mean estimation with unknown vari-

ance also provides insight into other related statistical problems including distributed density

estimation and distributed nonparametric regression with random design.

The primary goal of this chapter is to precisely characterize the minimal communication

costs for adaptive Gaussian mean estimation without prior knowledge of variance under

different types of distributed protocols, and construct communication-efficient estimators.

Our analysis shows that the case of unknown variance differs significantly from the case when

σ2 is known. In particular, in sharp contrast to the known variance case, the behaviors of

adaptive Gaussian mean estimation with unknown variance are very different under the

independent and interactive protocols.

4.1.1. Distributed estimation framework and distributed protocols

We begin by introducing a general framework for distributed estimation by giving a formal

definition of transcript, distributed estimator, and distributed protocols. Let P = {Pθ,ξ :

θ ∈ Θ, ξ ∈ Ξ} be a parametric family of distributions supported on space X , where θ ∈ Θ

is the parameter of interest and ξ ∈ Ξ are nuisance parameters. Suppose there are m

local machines and a central machine, where the local machines contain the observations

and each local machine has access only to data in that machine, and the central machine

produces the final estimator of θ under the communication constraints between the local and

central machines. More precisely, suppose we observe i.i.d. random samples drawn from a
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distribution Pθ,ξ ∈ P:

Xi
i.i.d.∼ Pθ,ξ, i = 1, . . . ,m,

where the i-th local machine has access to Xi only.

On each machine, because of limited communication budget, the observation Xi on the i-th

local machine needs to be processed to a uniquely decodable binary string Zi. The resulting

string Zi, which is called the transcript from the i-th machine, is transmitted to the central

machine. Finally, after all transcripts Z1, ..., Zm are generated, a distributed estimator θ̂

is constructed on the central machine based on the transcripts Z1, ..., Zm,

θ̂ = θ̂ (Z1, ..., Zm) .

The rules and constraints related to how transcripts can be constructed, which is called

distributed protocol, has a lot of different variety. we are primarily interested in three

different types of distributed protocols: independent protocol, sequential protocol, and black-

board protocols:

• Independent protocol. The local machines simultaneously generate transcripts and

then send them to the central machine. The i-th transcript only depends on the

observation Xi on the i-th machine, so it can be expressed by Zi = Πi(Xi) with some

(possibly random) function Πi. Let |Zi|l denote the length of transcript Zi. The class

of independent protocols with total communication cost B is defined as

Aind(B) = {θ̂ : θ̂ = θ̂(Z1, ..., Zm), Zi = Πi(Xi), i = 1, ...,m,

m∑
i=1

|Zi|l ≤ B}.

• Sequential protocol. The local machines sequentially send transcripts to the next lo-

cal machine, and finally the central machine collects all the transcripts. The transcript

Zi sent by the i-th local machine depends on local observation Xi and the previous

96



transcripts Z1, ..., Zi−1, which can be written as

Zi = Πi(Xi, Z1, ..., Zi−1)

where Πi is a (possibly random) function. The class of sequential protocols with total

communication cost B is defined as

Aseq(B) = {θ̂ : θ̂ = θ̂(Z1, ..., Zm), Zi = Πi(Xi, Z1, ..., Zi−1), i = 1, ...,m,
m∑
i=1

|Zi|l ≤ B}.

• Blackboard protocol. The local machines communicate via a publicly shown black-

board. When a local machine writes a message on the blackboard, all other local

machines can see the content. Finally, the central machine collects all the information

and outputs the final estimate. The total length of the messages written by all local

machines is at most B bits. Similarly, we denote the class of blackboard protocols

with total communication cost B as Abb(B), where the estimator is obtained by a

blackboard protocol with total communication cost
∑m

i=1 |Zi|l ≤ B. It is clear by def-

initions that the sequential protocols can be considered as a subset of the blackboard

protocols.

Independent protocols are considered as non-interactive whereas sequential and black-

board protocols are considered as interactive protocols. See Kushilevitz (1997); Barnes et al.

(2019a) for further discussion on these communication protocols.

4.1.2. Main results and our contribution

If a distributed Gaussian mean estimator achieves the same mean squared error as the

optimal centralized estimator (up to a constant factor) over a range of possible value of

the variance, we call it rate-optimal adaptive Gaussian mean estimator. This chapter first

establishes the lower bounds for the communication costs of rate-optimal adaptive Gaussian

mean estimators under the independent, sequential or blackboard protocols respectively. The

lower bounds serve as a benchmark for the communication-efficiency of any rate-optimal
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adaptive Gaussian mean estimator. We then develop estimation algorithms that use the

minimal communication cost to achieve the statistical optimal rate of convergence. With

the matching upper and lower bounds, we derive the necessary and sufficient communication

costs for rate-optimal adaptive Gaussian mean estimators under the independent, sequential

or blackboard protocols respectively.

The results exhibit interesting new phenomena. First, the behavior of adaptive Gaussian

mean estimation with unknown variance differs significantly from the distributed estimation

problem with known variance. Compared to the non-adaptive minimax rate in the case of

known variance established in Cai and Wei (2020c), there is a cost of adaptation in commu-

nication budget for Gaussian mean estimation under the independent protocols, whereas no

additional communication budget is needed for adaptation under the interactive protocols.

Moreover, it is somewhat surprising that the minimal communication cost for distributed

adaptive Gaussian mean estimation under the non-interactive and interactive protocols are

different. To the best of our knowledge, this is the first example in statistical distributed

estimation showing that interactions could help with estimation.

The technical tools developed in this chapter to prove the main theorems are novel and can

be of independent interest. Most of the existing lower bound techniques are universal for all

types of distributed protocols, and also lack the ability to study adaptation over nuisance

parameters. The proof of the lower bound under the independent protocols (Theorem 15) are

dedicated for adaptive estimation under the independent protocols with a non-information

theoretic approach.

4.1.3. Related Literature

As mentioned earlier, distributed Gaussian mean estimation has been intensively studied

in the setting of known variance. Zhang et al. (2013a); Garg et al. (2014) analyze the dis-

tributed estimation problems under the independent protocols. Braverman et al. (2016)

applied a strong data processing inequality to obtain lower bounds under the blackboard

protocols. Kipnis and Duchi (2017) considers distributed estimation with one-bit measure-
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ments under the independent and sequential protocols. Han et al. (2018); Barnes et al.

(2019b) proposed non-information theoretic approaches to obtain lower bounds for dis-

tributed estimation. Cai and Wei (2020c) established a sharp minimax rate of convergence

for distributed Gaussian mean estimation with known variance under the independent, se-

quential, and blackboard protocols. In particular, the results show that the optimal rates

are the same under the three protocols when σ2 is known.

The behavior of estimation problems under various types of distributed protocols has been

studied in two different settings. One common setting is that i.i.d. data are distributed over

different machines. For example, Braverman et al. (2016); Barnes et al. (2019b) developed

unified approach to establish lower bounds for distributed estimation in this setting under

independent, sequential, and blackboard protocols. More recently, Acharya et al. (2020)

proposed private-coin protocol and public-coin protocol and show that they have different

behavior in a distributed Gaussian signal detection problem. Another setting is that data

are drawn from different distributions on different local machines. Various two-sample esti-

mation and testing problems have been considered in this setting. Xiang and Kim (2013);

Liu (2021) showed that in independence testing problem and two-sample joint density es-

timation problem, interactions between local machines improve statistical accuracy and

communication-efficiency, compared to the classical one-shot communication approaches.

An emerging topic in distributed estimation is the interplay between communication con-

straints and adaptation. The focus so far has been mainly on adaptive nonparametric func-

tion estimation with unknown smoothness in the distributed setting. Szabó and van Zanten

(2020); Cai and Wei (2021b) showed that additional communication budget is required

in order to achieve adaptation in distributed nonparametric function estimation under

the independent protocols. This is in sharp contrast to the classical centralized setting

where global adaptation can be achieved for free over a wide range of smoothness classes

(Donoho and Johnstone, 1995; Johnstone, 2017).
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4.1.4. Organization of the chapter

We finish this section with notation and definitions. We first formulate the problem in

Section 4.2. Then we derive the minimal communication cost for rate-optimal adaptive

Gaussian mean estimation under the independent protocols in Section 4.3 and establish

the minimal communication cost for rate-optimal adaptive Gaussian mean estimation under

the sequential and blackboard protocols in Section 4.4. The numerical performance of the

proposed distributed estimators is investigated in Section 4.5. Further research directions

are discussed in Section 4.6 and the proofs of main theorems and lemmas are provided in

Section 4.7.

4.1.5. Notation and definitions

For any a ∈ R, let ⌊a⌋ denote the floor function (the largest integer not larger than a), and

⌈a⌉ denote the ceiling function (the smallest integer not smaller than a). Unless otherwise

stated, we shorthand log a as the logarithm to the base 2 of a. For any a, b ∈ R, let

a ∧ b ≜ min{a, b} and a ∨ b ≜ max{a, b}. We use a = O(b) or equivalently b = Ω(a) to

denote there exist a constant C > 0 such that a ≤ Cb, and we use a ≍ b to denote a = O(b)

while b = O(a). We use τ[a,b](x) to denote the truncation function, which is the projection

of x onto [a, b]. Define the density of a Gaussian distribution with mean 0 and standard

deviation σ as

ϕσ(x) =
1√
2πσ

e−
x2

2σ2 .

and the tail probability of a standard Gaussian distribution with mean 0 and standard

deviation 1 as

Φ(x) = P(N(0, 1) > x) =

∫ ∞

x

1√
2π

e−
y2

2 dy.

4.2. Problem Formulation

In this section, we formulate the statistical problem of distributed Gaussian mean estimation

with unknown variance σ2. Suppose there are m local machines, on the i-th machine there
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is an i.i.d. normal observation:

Xi
i.i.d.∼ N(θ, σ2).

The goal is to optimally estimate θ ∈ [0, 1] with unknown σ2 under a certain distributed

protocol with a total communication budget B. In other words, the distributed estimator

needs to be adaptive to the unknown variance σ2.

In the conventional centralized setting, the minimax risk of restricted Gaussian mean esti-

mation is given in Bickel (1981a):

inf
θ̂

sup
θ∈[0,1]

E(θ̂ − θ)2 =
σ2

m
− 4π2 σ

4

m2
+ o(σ2) ≍ σ2

m
∧ 1.

The above quantity serves as a benchmark for the Gaussian mean estimation problem. For

a given σ0 > 0, we call distributed estimator θ̂ a rate-optimal adaptive estimator if there

exists a constant C > 0, not depending on σ, σ0 or m, such that for any σ ≥ σ0, we have

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C

(
σ2

m
∧ 1

)
.

Such distributed estimators are consider as statistically optimal and adaptive as they achieve

the optimal rate of convergence in the centralized-setting over a wide range of σ. Let

Pσ0 = {Pθ,σ = N(θ, σ2) : θ ∈ [0, 1], σ ∈ [σ0,∞)} be the Gaussian location family with

unknown variance. The distributed estimation problem of θ is considered with the nuisance

parameter σ.

Setting a lower bound σ ≥ σ0 is necessary. This is due to the fact that no distributed

estimator with a finite total communication cost B is able to achieve the optimal rate of

convergence over all σ > 0. With total communication cost B, the mean squared error of

any distributed estimator is at least of order 2−2B due to discretization error, however, the

optimal rate of convergence for Gaussian mean estimation is of order σ2

m . As a result, when

σ is extremely small, any distributed estimator cannot attain optimal rate of convergence.
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Therefore, there is no distributed estimator with finite communication cost that can be rate-

optimal adaptive with all possible positive real number σ. A lower bound on σ is needed

here to make the problem well-formulated. With smaller lower bound σ0, the distributed

estimator needs more communication cost in order to be adaptive over the range σ ≥ σ0, and

the estimating procedure would be also different. In the real data application, people needs

to choose σ0 as a priori, depending on prior knowledge on the dataset or the communication

budget. See also Remark 13 for further discussion on σ0.

Throughout this chapter, we assume 0 < σ0 ≤ 1
2 . When σ0 >

1
2 , the solution to the problem

is essentially identical to the case σ0 =
1
2 . See Remark 11 for further explanation.

4.3. Optimal Adaptive Estimation under the independent protocols

We consider in this section adaptive distributed estimation under the independent proto-

cols. We begin by establishing a lower bound for the minimax relative efficiency under the

independent protocols with a given communication budget. A rate-optimal adaptive dis-

tributed estimator is then constructed. It is shown that the proposed estimator achieves the

minimum communication cost among all rate-optimal adaptive estimators, as is shown by

the matching lower bound.

4.3.1. Lower bound analysis

It is difficult to directly derive the minimal communication cost for rate-optimal adaptive

estimators. In our analysis, we first analyze the statistical performance of the estimators in

the class Aind(B). Then we argue that only when the communication budget B is larger

than a certain value, a distributed estimator in Aind(B) can possibly be a rate-optimal

adaptive estimator. This leads to a lower bound for the communication cost among the

rate-optimal adaptive estimators.

We use the relative efficiency as a measure for the statistical performance when we derive
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the lower bound. The relative efficiency for an estimator θ̂ is defined as

r(θ̂, θ, σ) =

(
σ2

m
∧ 1

)−1

E(θ̂ − θ)2

which indicates the gap between the mean squared error of the estimator θ̂ and the optimal

rate of convergence when data are drawn from N(θ, σ2).

We consider the minimax relative efficiency under the total communication constraint B:

Rind(σ0, B) = inf
θ̂∈Aind(B)

sup
θ∈[0,1],σ≥σ0

r(θ̂, θ, σ).

The quantity Rind(σ0, B) is a benchmark for the limit of estimation accuracy under the

independent protocols with the total communication constraint B, when σ2 is unknown.

The relative efficiency is closely related to rate-optimal adaptive estimators. According to

the definition, θ̂ is a rate-optimal adaptive estimator over σ ≥ σ0, if and only if the maximum

relative efficiency for the estimator θ̂ is bounded by some constant C, i.e.

sup
θ∈[0,1],σ≥σ0

(
σ2

m
∧ 1

)−1

E(θ̂ − θ)2 ≤ C.

Remark 9. As a contrast, the conventional distributed minimax risk

inf
θ̂∈Aind(B)

sup
θ∈[0,1],σ≥σ0

E(θ̂ − θ)2

is not a good proxy to study because the estimation problem becomes more difficult when

σ2 is large. When σ is sufficiently large, say, σ >
√
m this minimax mean squared risk is

bounded away from zero according to centralized minimax rate given in Bickel (1981a).

The following theorem provides a lower bound on the minimax relative efficiency for esti-

mators in Aind(B).
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Theorem 15. If B >
1
σ0
m , there exists a constant c > 0, not depending on σ0, σ, θ or m,

such that

Rind(σ0, B) ≥ c

√
m log 1

σ0

B
∧ 1.

The techniques used to prove Theorem 15 are novel and can be of independent interest.

Roughly speaking, our goal is to prove that there must exist σ ≥ σ0 and θ, δ such that the

central machine cannot tell whether the data are drawn from N(θ − δ, σ2) or N(θ + δ, σ2)

by only looking at these transcripts. To accomplish this goal, we give an upper bound on

the integrated squared Hellinger distances over different choices of θ and σ:

I =

m∑
i=1

J−1∑
j=0

∫ 1−λσj

λσj

H2
(
Zi|Xi ∼ N(θ − λσj , σ

2
j );Zi|Xi ∼ N(θ + λσj , σ

2
j )
)
dθ

where σ1, σ2, ..., σJ are carefully chosen different levels of σ, λ is a tuning constant factor.

H2(Zi|Xi ∼ N(θ−λσj , σ2
j );Zi|Xi ∼ N(θ+λσj , σ

2
j )) denotes the squared Hellinger distances

between distribution of Zi if Xi ∼ N(θ − λσj , σ
2
j ) and distribution of Zi if Xi ∼ N(θ +

λσj , σ
2
j ). If I is proved to be small, then there must exist some θ and σj such that

m∑
i=1

H2
(
Zi|Xi ∼ N(θ − λσj , σ

2
j );Zi|Xi ∼ N(θ + λσj , σ

2
j )
)

is small, and then we can conclude that the central machine does not have enough informa-

tion to distinguish whether the data are drawn from N(θ−λσj , σ
2
j ) or N(θ+λσj , σ

2
j ). This

will give a lower bound on the relative efficiency Rind(σ0, B). The above technique can be

summarized into the following lemma:

Lemma 7. Let J > 0 be an integer. Let λ > 0, 0 < σ0 < σ1 < ... < σJ−1 satisfy λσJ−1 <
1
6 .

If for any distributed estimator θ̂ ∈ Aind(B), we have

I =
m∑
i=1

J−1∑
j=0

∫ 1−λσj

λσj

H2
(
Zi|Xi ∼ N(θ − λσj , σ

2
j );Zi|Xi ∼ N(θ + λσj , σ

2
j )
)
dθ ≤ J

2
,
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then there exists a constant c > 0 such that

Rind(σ0, B) ≥ cλ2m.

Theorem 15 gives a lower bound on the relative efficiency for all distributed estimators

from Aind(B). Note that a rate-optimal adaptive estimator should have bounded relative

efficiency, the following Corollary 4.3.1 can be directly derived from Theorem 15.

Corollary 4.3.1. If an estimator θ̂ ∈ Aind(B) is a rate-optimal adaptive estimator, that is,

there exists a constant C > 0 such that

E(θ̂ − θ)2 ≤ C

(
σ2

m
∧ 1

)
for all σ ≥ σ0.

Then there exists a constant c > 0 (which only depends on C) such that

B ≥ cm log
1

σ0
.

The above corollary states that the minimum communication cost needed for a rate-optimal

adaptive estimator is of order m log 1
σ0

.

4.3.2. Optimal estimator under the independent protocols - θ̂q

We now construct a communication efficient rate-optimal adaptive estimator under the in-

dependent protocol. The optimal estimator θ̂q makes use of m log 3
σ0

total communication

budget to achieve the centralized optimal rate of convergence for all σ ≥ σ0.

The estimator θ̂q can be constructed by the following steps.

Step 1: Generating transcripts. Let d = 2⌊log2 σ0⌋. Let Sd denote the following grid of

interval d between −1− d and 2:

Sd = {−1− d,−1,−1 + d,−1 + 2d, ..., 2− d, 2}.
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Let Zi be the quantized version of Xi and then truncate in [−1, 2]. That is,

Zi =


−1− d if Xi ≤ −1

2 if Xi ≥ 2

max{z ∈ Sd : z ≤ Xi} if −1 < Xi < 2

In the third case when −1 < Xi < 2, Zi is the maximum number in Sd that is less than

or equal to Xi. Since Zi has only 3/d+ 2 possible values, it can be encoded using at most

log
(
3
d + 2

)
≤ log

(
6
σ0

+ 2
)

bits.

Step 2: Estimation. The central machine receives the transcripts Z1, ..., Zm from the local

machines. Let Z(1) ≤ ... ≤ Z(m) be the order statistics of Z1, ..., Zm. First, we calculate σ̂

by

σ̂ =


σ0 if Z(⌈0.84m⌉) − Z(⌊0.16m⌋) < σ0

Z(⌈0.84m⌉) − Z(⌊0.16m⌋) if σ0 ≤ Z(⌈0.84m⌉) − Z(⌊0.16m⌋) ≤ 1

1 if Z(⌈0.84m⌉) − Z(⌊0.16m⌋) > 1

Then, let σ̃ = min{2−k : 1 ≥ 2−k ≥ σ̂, k is an integer}, i.e. the minimum number that

is power of 2 and also larger than σ̂. Let L = max{kσ̃ : kσ̃ ≤ Z(⌊0.16m⌋), k is an integer},

i.e. the largest multiple of σ̃ that is less than or equal to Z(⌊0.16m⌋). Similarly we define

R = max{kσ̃ : kσ̃ ≥ Z(⌈0.84m⌉), k is an integer}, i.e. the smallest multiple of σ̃ that is larger

than or equal to Z(⌈0.84m⌉). Let p̂L = 1
m

∑m
i=1 I{Zi<L} be the proportion of transcripts that

is less than L, and p̂R = 1
m

∑m
i=1 I{Zi≥R} be the proportion of transcripts that is larger than

or equal to R,

Finally, recall that Φ(·) denotes the tail probability of a standard Gaussian variable, let

(θ̂q, σ̂q) be the solution to the equations:

Φ

(
θ̂q − L

σ̂q

)
= p̂L ∨

1

m
,
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Φ

(
R− θ̂q
σ̂q

)
= p̂R ∨

1

m
.

The above equation always has one unique solution where θ̂q ∈ [L,R], we take this θ̂q as the

final estimate.

It is easy to verify that the above estimator θ̂q ∈ Aind

(
m log

(
1
σ0

+ 5
))

. The next theorem

establishes an upper bound on its mean squared error, showing that the estimator is rate-

optimal adaptive over σ ≥ σ0.

Theorem 16. There exists a constant C > 0, not depending on σ0, σ, θ or m, such that

sup
θ∈[0,1],σ≥σ0

E(θ̂q − θ)2 ≤ C

(
σ2

m
∧ 1

)
.

Remark 10. The construction of the estimator θ̂q is involved. A more straightforward

and simpler estimator is the quantization-then-average estimator proposed in Zhang et al.

(2013a). However, it can be shown that the quantization-then-average estimator is not even

consistent when each local machine has only limited communication budget, because the

quantization bias (EZi − θ) is not exactly zero if one just rounds the observations to a

certain precision on the local machines. As a result, when the number of machines m→∞,

the estimation error will not converge to zero. Therefore, a more sophisticated procedure

such as θ̂q is necessary to achieve the optimal rate of convergence with the communication

constraint.

Remark 11. The above estimator θ̂q is designed under the assumption that 0 < σ0 ≤ 1
2 .

When σ0 >
1
2 , we can use the estimator for the case σ0 =

1
2 , which is rate-optimal adaptive

estimator over σ ≥ σ0. The total communication cost is of order m, which cannot be further

reduced because each machine needs to transmit at least one bit in order to involve its

observation into the estimation procedure. The choice of 1
2 is for convenience; it can be

changed to any positive number and all the results hold with minor modifications.
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Remark 12. Corollary 4.3.1 and Theorem 16 together show that the necessary and sufficient

communication cost for a rate-optimal adaptive estimator is of order m log 1
σ0

bits. The order

of communication cost of the estimator θ̂q cannot be further reduced. Compared to the

minimax rate of convergence for non-adaptive Gaussian mean estimation established in the

previous complementary work Cai and Wei (2020c), the communication cost for adaptive

Gaussian mean estimation is larger, so there is a cost of adaptation under the independent

protocols.

Remark 13. The construction of adaptive estimator θ̂q requires knowledge of the lower

bound σ0 for unknown σ, which seems unnatural. However, as Theorem 15 suggests, if one

lets σ0 → 0, the required communication cost for a distributed estimator to achieve the

optimal rate of convergence will go to infinity. Therefore, there is no rate-optimal adaptive

estimator for all σ > 0 without a lower bound on σ. A similar phenomenon also appears

in the construction of adaptive confidence ball in nonparametric regression. If one assumes

the smoothness β ≥ β0, then it is possible to be adaptive from β0 to 2β0. If one does not

assume any lower bound for the smoothness, then no adaptation is possible. See Theorem

4 and the discussion thereafter in Cai and Low (2006).

4.4. Optimal Adaptive Estimate under Interactive Protocols

In the previous section we show that an order of m log 1
σ0

bits are necessary and sufficient for

an adaptive estimator to achieve its optimal statistical performance under the independent

protocols with σ ≥ σ0. However, under the sequential protocols or blackboard protocols, it

may require less communication cost to achieve the same statistical performance, because

the local machines can “communicate" with each other to some extent. This leads to an

interesting question: do we still need m log 1
σ0

bits to achieve the optimal rate of convergence

over all σ ≥ σ0 under the sequential or blackboard protocols?

We consider in this section distributed estimation under two types of interactive protocols,

namely the sequential protocols and the blackboard protocols. We first construct a dis-

tributed estimator under the sequential protocols that is statistical optimal for all σ ≥ σ0.
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A matching lower bound is then established to show that the communication cost of the

proposed estimator cannot be further improved for all distributed estimators under the

blackboard protocols. Recall that the sequential protocols are a subset of the blackboard

protocols, we obtain the sufficient and necessary communication cost for the statistical opti-

mal estimators under the interactive protocols. The results show an interesting phenomenon.

Compared to the independent protocols, under the sequential protocols or the blackboard

protocols, it requires less communication cost for the rate-optimal adaptive estimation. So

feedback and information sharing are helpful in distributed Gaussian mean estimation with

unknown variance.

4.4.1. Optimal estimator under the sequential protocols

In the following procedure we assume m ≥ 12. The case of m ≤ 11 is relatively simple.

For example, when m ≤ 11, the problem can be solved by only looking at the first local

machine and outputs its best approximation up to σ0 precision. The estimation process can

be divided into three steps:

Step 1: Preliminary estimation of θ and σ. For the first 11 local machines, the i-th

machine (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) outputs

Zi = ⌊τ[−1,2](Xi + 1)/σ0⌋.

There are at most ⌊ 3
σ0
⌋ + 1 possible outputs for each local machine, so each transcript Zi

(i = 1, 2, ..., 11) can be encoded by no larger than log 3
σ0

+ 1 bits.

On the 12-th and later local machines, based on Z1, Z2, ..., Z11, each machine can calculate

a preliminary estimate of θ and σ by

θ̂11 = σ0Z11,

σ̂ = σ0max

1,

 1

10

10∑
i=1

(
Zi −

1

10

10∑
i=1

Zi

)2
1/2

 .
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Step 2: One-bit passing. Starting at the 12-th local machine, on the i-th local machine,

we output

Zi = sign(Xi − θ̂i−1),

and update the current state θ̂ by

θ̂i = θ̂i−1 + σ̂γiZi

where γi = i−2/3.

Step 3: Final estimation of θ. On the central machine, because we have access to

Z1, Z2, ..., Zm, thus we can calculate θ̂i accordingly for all i = 11, ...,m. The final estimator

of the mean θ is given by

θ̂sq =
1

m− 10

m∑
i=11

θ̂i.

Since each of first 11 local machines outputs at most log 3
σ0

+ 1 bits, and the later local

machines only output 1 bit per machine, it is easy to verify that the above proposed estimator

θ̂sq ∈ Asq(11 log
3
σ0

+m). The following theorem gives an upper bound on its mean squared

error for all σ ≥ σ0

Theorem 17. The estimator θ̂sq ∈ Asq(11 log
3
σ0

+m) and satisfies

E(θ̂sq − θ)2 ≤ C

(
σ2

m
∧ 1

)
,

where C is a universal constant not depending on σ0, σ, θ or m.

That is, the proposed sequential protocol estimator θ̂sq is rate-optimal for all σ ≥ σ0, whose

total communication cost is log 3
σ0

+m bits.

Remark 14. The one-bit passing step of the above estimator θ̂sq is established in light

of the previous work Kipnis and Duchi (2017), where the goal is to construct an estimator

using one-bit measurements from local machines. Their proposed estimator was shown to
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be asymptotically normal. However, the finite sample mean squared error of their estimator

was not guaranteed, as the finite sample performance is significantly influenced by the initial

position θ̂11 and the initial step size σ̂.

We introduce in this chapter the preliminary estimates θ̂11 and σ̂, which can be obtained at

a small amount of communication cost, as an approximation for the optimal initial position

and initial step size. This warm start initialization is the key to obtain finite sample bound in

Theorem 17. The hardcode number “11" in the procedure can be set to any larger constants,

but not smaller ones. Due to a technical reason we require the preliminary estimate σ̂ to

have bounded -5 order moment, i.e. Eσ̂−5 <∞.

Remark 15. The proof of Theorem 17 extends the techniques developed in the previous

seminal work Polyak (1990) on stochastic approximation. Polyak (1990) developed upper

bounds for stochastic approximation with averaging. The additional difficulty to prove

Theorem 17, compared to the previous work, is to control the uncertainty brought to the

estimator θ̂sq from the random initialization θ̂11 and σ̂. Much more careful calculation is

needed here.

4.4.2. Lower bound under interactive protocols

The above proposed estimator θ̂sq achieves the optimal rate of convergence for all σ ≥

σ0 with communication cost (11 log 3
σ0

+ m) bits. The next theorem is a direct corollary

derived from Theorem 5 in Cai and Wei (2020c). The lower bound argument shows that the

communication cost for θ̂sq cannot be improved.

Theorem 18. For any θ̂ ∈ Abb(B), if θ̂ is rate-optimal when σ = σ0, i.e. there is a constant

C > 0 such that

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C

(
σ2
0

m
∧ 1

)
.

Then there exists a constant c > 0 (depends on C) such that

B ≥ c

(
log

1

σ0
+m

)
.
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The above theorem establishes a lower bound on the communication cost for any distributed

estimator under the blackboard protocols that achieves optimal rate of convergence when

σ = σ0. The same lower bound also holds for any estimator that achieves the optimal rate

of convergence for σ ≥ σ0, as those estimators afeedbackre under more strict conditions.

Recall that the sequential protocols are a subset of the blackboard protocols. Therefore,

the lower bound in Corollary 18, together with the proposed adaptive estimator θ̂sq, shows

that order log 1
σ0

+m communication cost is necessary and sufficient for rate-optimal adap-

tive estimation under the interactive protocols, including the sequential and blackboard

protocols.

Remark 16. Recall that for any rate-optimal adaptive estimator under the independent

protocols, the minimal communication cost is of order m log 1
σ0

, which is larger than that for

a rate-optimal adaptive estimator under the interactive protocols. Feedback and informa-

tion sharing are necessary to improve communication-efficiency in adaptive Gaussian mean

estimation.

Remark 17. The lower bound on communication cost in Corollary 18 holds for the non-

adaptive case when σ = σ0 is known in advance. Since the adaptive estimator θ̂sq is con-

structed with no more communication cost than the non-adaptive case, there is no cost of

adaptation for Gaussian mean estimation under the two types of the interactive protocols.

In contrast, under the independent protocols, as more communication cost is needed to es-

tablish a rate-optimal adaptive estimator, there is a cost of adaptation for Gaussian mean

estimation.

Table 4.1: Optimal communication cost for different distributed protocols under adaptive
and non-adaptive settings. Adaptive setting: minimal communication cost for rate-optimal
adaptive estimator over σ ≥ σ0. Non-adaptive setting: minimal communication cost for
rate-optimal estimator with known σ = σ0.

Protocol adaptive estimator non-adaptive estimator
Independent O(m log 1

σ0
) O(m+ log 1

σ0
)

Sequential O(m+ log 1
σ0
) O(m+ log 1

σ0
)

Blackboard O(m+ log 1
σ0
) O(m+ log 1

σ0
)
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4.5. Numerical Results

The proposed adaptive estimators under independent protocol and under interactive proto-

cols are easy to implement. In this section, we conduct simulation studies to investigate the

numerical performance of these two estimators. The numerical results show that the pro-

posed estimators are practically useful, having high statistical accuracy while only requiring

a small amount of communication cost.

We consider in the simulation study a setting where σ0 = 2−12, i.e. we know a priori

σ ≥ σ0 = 2−12. Assume there are m = 100 machines, where each machine has ac-

cess to a univariate normal variable X ∼ N(θ, σ2), with θ = 0.3 and choices of σ ∈

{2−2, 2−4, 2−6, 2−8, 2−10, 2−12}. We compare the following three estimators: the classical

sample-mean estimator (under the centralized setting), the adaptive estimator under the in-

dependent protocol, and the adaptive estimator under the sequential protocol. The average

mean squared errors (MSEs) of the three different estimators over 100 simulation runs, and

the communication costs (in bits) of the two distributed estimators are given in Table 4.2.

Table 4.2: MSEs and the communication costs of the three methods. σ0 = 2−12, m = 100,
θ = 0.3. For the two distributed estimators, total communication costs (in bits) are given
in the parentheses.

σ Sample-mean Independent Protocol Sequential Protocol
2−2 6.17× 10−4 4.14× 10−3(1500) 2.12× 10−3(266)
2−4 4.04× 10−5 1.45× 10−4(1500) 1.28× 10−4(266)
2−6 2.14× 10−6 9.02× 10−6(1500) 8.31× 10−6(266)
2−8 1.46× 10−7 5.23× 10−7(1500) 4.85× 10−7(266)
2−10 8.59× 10−9 5.00× 10−8(1500) 2.66× 10−8(266)
2−12 5.68× 10−10 5.10× 10−9(1500) 2.47× 10−9(266)

The numerical results shown in Table 4.2 are interesting and consistent with the theoreti-

cal analysis given earlier. The adaptive estimator under the sequential protocol uniformly

outperforms the one under the independent protocol, in terms of both the MSE and commu-

nication cost. This shows the clear advantage of the sequential protocol over the independent

protocol. Comparing with the classical centralized sample-mean estimator, the MSEs of the

adaptive estimator under the sequential protocol and under the independent protocol are
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respectively within a factor of 4 and a factor of 10 times of the corresponding MSEs of the

sample mean. This is consistent with the theoretical results that the statistical accuracy of

both distributed estimators is within a constant factor of the centralized optimality. Indeed,

the simulation results show that the actual constant gaps are relatively small. In particular,

it is interesting to see that the adaptive estimator under the sequential protocol achieves such

a good performance with only 266 bits. Considering their low communication costs, we find

the proposed adaptive estimators could be practically useful in real distributed estimation

applications.

4.6. Discussion

We studied in this chapter the problem of distributed adaptive Gaussian mean estimation

with unknown σ. In the conventional centralized setting, Gaussian mean estimation with

unknown σ is arguably one of the most basic and fundamental problems in classical statistics.

As seen in this chapter, the theoretical analysis is rich and difficult in the distributed setting.

The insights gained from the analysis can be used to solve other related problems where the

variance is unknown. One such problem is nonparametric regression with random design.

As pointed out in Cai and Wei (2021b), despite being asymptotically equivalent in the cen-

tralized setting, the problem of distributed nonparametric regression with random design

is significantly different from that with fixed design. For example, when wavelet methods

are used, the empirical wavelet coefficients in this case have unknown variance due to the

unknown design distribution and the techniques developed in this chapter can potentially be

used to construct a wavelet estimator in that problem. More discussion on the connections

and differences among various distributed nonparametric function estimation problems can

be found in Cai and Wei (2021b).

In this chapter, the focus is on the optimal estimation of the mean θ. A closely related

problem is statistical inference for the mean including the construction of optimal confidence

intervals for θ. This involves optimal estimation of the variance σ2 in the same setting, which

is a challenging problem by itself. We leave the inference problem for future work.
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The results in this chapter reveal an interesting phenomenon: the communication costs re-

quired under different types of distributed protocols can be substantially different. This is

in sharp contrast to Gaussian mean estimation with known variance. It is interesting to

investigate further the differences among various types of distributed protocols for other

distributed statistical problems. It is technically challenging to develop a general optimality

theory under different types of communication constraints. More generally, it is of signifi-

cant interest to understand the interplay between communication cost, statistical accuracy,

adaptation, and different types of distributed protocols for a wide range of problems. This

is an important topic in data science that is wide open and merits further study.

4.7. Proofs

We prove the main results in this section. Throughout this section, L1
x denotes the L1

function space with respect to the x variable and I{} denotes the indicator function taking

values in {0, 1}. We use shorthand a ≲ b to denote there exists a universal constant C > 0

such that a ≤ Cb. With slight abuse of notation, we define ϕ be the standard Gaussian

density, ϕσ be the density of N(0, σ2), and ϕθ,σ be the density of N(θ, σ2).

4.7.1. Proof of Theorem 15

We first define several quantities. They play important roles to establish the proof.

Let P,Q be two distributions that are absolutely continuous with respect to a Lebesgue

measure on the measurable space Z. p, q are the density functions of P,Q respectively.

Define squared Hellinger distance H2(P,Q) as

H2(P,Q) ≜ 1

2

∫
Z
(
√
p−√q)2dx.

Define total variation distance TV (P,Q) as

TV (P,Q) ≜ 1

2

∫
Z
|p− q|dx.
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Let Z be a finite set, h : R → Z a random function, and f, g ∈ L1(R) are non-negative

functions. Define “generalized squared Hellinger distance" for Z be

H2(h; f, g) ≜ 1

2

∑
z∈Z

(√∫ ∞

−∞
f(x)P(h(x) = z)dx−

√∫ ∞

−∞
g(x)P(h(x) = z)dx

)2

.

Note that when f, g are densities, H2(h; f, g) is exactly the squared Hellinger distance be-

tween distribution of h(X) when X ∼ f , and distribution of h(X) when X ∼ g. This is why

we call this quantity generalized squared Hellinger distance.

Similarly, we define “generalized total variation distance" as

TV (h; f, g) ≜ 1

2

∑
z∈Z

∣∣∣∣∫ ∞

−∞
f(x)P(h(x) = z)dx−

∫ ∞

−∞
g(x)P(h(x) = z)dx

∣∣∣∣ .
Also when f, g are densities, TV (h; f, g) is exactly the total variation distance between

distribution of h(X) when X ∼ f , and distribution of h(X) when X ∼ g.

The following lemma provides two basic but useful inequalities for H2(h; f, g) and TV (h; f, g).

Lemma 8. For any random function h : R→ Z, the following two inequalities hold:

(a) Sub-additivity of H2(h; f, g): if f(x, s), g(x, s) ∈ L1
x(R) are non-negative functions for

each s ∈ (sl, sr), and
∫ sr
sl

f(x, s)ds,
∫ sr
sl

g(x, s)ds ∈ L1
x(R). Then we have

H2(h;

∫ sr

sl

f(·, s)ds,
∫ sr

sl

g(·, s)ds) ≤
∫ sr

sl

H2(h; f(·, s), g(·, s))ds. (4.1)

(b) Bound between TV (h; f, g) and H2(h; f, g): if f and g have the same support (i.e. {x :

f(x) > 0} = {x : g(x) > 0}) and there exist M ≥ 1 such that 1/M ≤ f(x)/g(x) ≤ M

for all x ∈ {x : g(x) > 0}. Then we have

H2(h; f, g) ≤
√
M − 1√
M + 1

TV (h; f, g). (4.2)
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Besides, we define ϕθ,σ as the density function of N(θ, σ2), i.e.

ϕθ,σ(x) =
1√
2πσ

e−
(x−θ)2

2σ2 .

Now we move back to the main proof. Let λ = cλ

(
log 3

σ0
mB

)1/4

where cλ is a positive

constant that will be specified later. Let J be the maximum integer such that 2−J ≥ σ0.

Let σj = 2jσ0, j = 1, 2, ..., J − 1.

We are interested in the following integrated squared Hellinger distances:

I ≜
m∑
i=1

J−1∑
j=0

∫ 1−λσj

λσj

H2(Πi;ϕ(θ−λσj),σj
, ϕ(θ+λσj),σj

)dθ. (4.3)

The following subsection is dedicated to show that under proper choice of the constant cλ,

we have I ≤ 1
2m.

Bound integrated integrated squared Hellinger distances I

We first “slice" ϕ(θ−λσj),σj
and ϕ(θ+λσj),σj

in (4.3) into pieces so that we can apply Lemma

8(a) to give an upper bound for I. Let

s∗ = sup
x∈R
|ϕ−λ,1(x)− ϕλ,1(x)|,

A(s) = {x : |ϕ−λ,1(x)− ϕλ,1(x)| ≥ s}, 0 < s < s∗,

xs = supA(s),

f(x, s) = I{x∈A(s)}
ϕ−λ,1(x)

|ϕ−λ,1(x)− ϕλ,1(x)|
, x ̸= 0, 0 < s < s∗,

g(x, s) = I{x∈A(s)}
ϕλ,1(x)

|ϕ−λ,1(x)− ϕλ,1(x)|
, x ̸= 0, 0 < s < s∗.
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When x = 0 we set f(0, s) = g(0, s) = ϕλ,1(0)/s
∗. It is easy to verify that

ϕ−λ,1(x) =

∫ s∗

0
f(x, s)ds and ϕλ,1(x) =

∫ s∗

0
g(x, s)ds.

The reason why we design the function f and g is for a good property: g(x, s) − f(x, s) =

I{x∈A(s)} sign(x), which is a compact supported piecewise function only taking values in

{−1, 0, 1}. By this way we “discretize" the problem and is able to adopt combinatoric

techniques (in Lemma 15).

Note that ϕ(θ−λσj),σj
(x) = 1

σj
ϕ−λ,1((x− θ)/σj) and ϕ(θ+λσj),σj

(x) = 1
σj
ϕλ,1((x− θ)/σj), so

we have

ϕ(θ−λσj),σj
(x) =

∫ s∗

0

1

σj
f((x− θ)/σj , s)ds,

ϕ(θ+λσj),σj
(x) =

∫ s∗

0

1

σj
g((x− θ)/σj , s)ds.

The above equations and Lemma 8(a) implies

I =
m∑
i=1

J−1∑
j=0

∫ 1−λσj

λσj

H2(Πi;ϕ(θ−λσj),σj
, ϕ(θ+λσj),σj

)dθ (4.4)

≤
m∑
i=1

J−1∑
j=0

∫ 1−λσj

λσj

dθ

∫ s∗

0
H2

(
Πi(x);

1

σj
f((x− θ)/σj , s),

1

σj
g((x− θ)/σj , s)

)
ds (4.5)

=
m∑
i=1

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

dθ

∫ s∗

0
H2 (Πi(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) ds. (4.6)

Note that f(x, s) and g(x, s) both are supported on A(s) and when x ∈ A(s),

f(x, s)/g(x, s) = ϕ−λ,1(x)/ϕλ,1(x) = e2λx ∈ [e−2λxs , e2λxs ].
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Apply Lemma 8(b), we have

H2 (Πi(x); f((x− θ)/σj , s), g((x− θ)/σj , s))

≤eλxs − 1

eλxs + 1
TV (Πi(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) .

Substitute into (4.4) and apply Fubini’s theorem, we get

I ≤
∫ s∗

0
ds

eλxs − 1

eλxs + 1

m∑
i=1

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV (Πi(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) dθ.

(4.7)

The following lemma bridges the partial total variation distances and communication costs,

which is crucial to our proof.

Lemma 9. If Π : R → {0, 1}b takes value in {0, 1}b, then there exist a constant C1 > 0

such that

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV (Π(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) dθ ≤ C1xs(1 + xs)
√

J(b ∧ J).

Another Lemma gives an upper bound on the integral by analysis.

Lemma 10. If λ ≤ 1/6 then there exists a constant C2 > 0 such that

∫ s∗

0

eλxs − 1

eλxs + 1
xs(1 + xs)ds ≤ C2λ

2.

Apply Lemma 9 and 10 on (4.7), we have

I ≤ C1C2

√
Jλ2

n∑
i=1

√
(bi ∧ J).
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Jensen’s inequality implies that
∑m

i=1

√
bi ≤ m

√
1/m

∑n
i=1 bi =

√
mB, therefore we have

I ≤ C1C2

√
mJBλ2.

Recall that λ = cλ

(
log 3

σ0
mB

)1/4

. Note that log 3
σ0
≤ 2J , so when cλ is a sufficiently small

constant such that 0 < cλ < 1√
8C1C2

, we have

I ≤ J

2
.

Recall the definition of I in (4.3):

I =

J−1∑
j=0

∫ 1−λσj

λσj

m∑
i=1

H2(Πi;ϕ(θ−λσj),σj
, ϕ(θ+λσj),σj

)dθ.

The above upper bound I ≤ J/2 holds for any distributed estimator θ̂. Note that we have

B >
1
σ0
m thus λσJ−1 < 1/6 if we set cλ < 1/6. Apply Lemma 7, we can conclude the desired

lower bound:

Rind(σ0, B) ≥ cλ2m ≥ c1c
2
λ

√
m log 3

σ0

B
.

4.7.2. Proof of Theorem 16

For simplicity of notations we define Z(−) = Z(⌊0.16m⌋) and Z(+) = Z(⌈0.84m⌉). Before we

proceed to the proof, we give a lemma showing large deviation bounds on Z(−) and Z(+).

These bounds can be directly derived using Gaussian tail bounds so we omit the proof.

Lemma 11. There exists universal constants C, c > 0 such that for any k ≥ 2, we have

P(Z(−) < θ − kσ) ≤ C exp(−ck2m),

P(Z(−) > θ − σ/2) ≤ C exp(−cm),
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P(Z(+) > θ + kσ) ≤ C exp(−ck2m),

P(Z(+) < θ + σ/2) ≤ C exp(−cm).

We first define several events:

E1 = {θ /∈ [Z(−), Z(+)]},

E2 = {θ ∈ [Z(−), Z(+)], σ̂ /∈ [min{1, 1
2
σ}, 4σ]},

E3 = (E1

⋃
E2)

c = {θ ∈ [Z(−), Z(+)],min{1, 1
2
σ} ≤ σ̂ ≤ 4σ}.

Note that we have

E(θ̂q − θ)2 =
3∑

k=1

E(θ̂q − θ)2I{Ek}.

Therefore, the proof can be divided into showing E(θ̂q−θ)2I{Ek} ≤ Ck
σ2

m with some universal

constant Ck respectively for k = 1, 2, 3.

1. Bound on E(θ̂q − θ)2I{E1}.

Under E1, we have either E11 = {Z(−) > θ} or E12 = {Z(+) < θ} happens.

Define E11,k = {Z(−) > θ, θ + kσ < Z(+) ≤ θ + (k + 1)σ}. Under E11,k, note that we have

Z(+)−Z(−) ≤ (k+1)σ, this implies σ̂ ≤ (k+1)σ, then σ̃ ≤ 2(k+1)σ, thus R ≤ θ+3(k+1)σ.

Note that the final estimate θ̂q must lie in the interval [L,R], So we have |θ̂q−θ| ≤ 3(k+1)σ

under event E11,k.

Apply Lemma 11, when k = 0, 1 we have P(E11,k) ≤ P(E11) ≤ C exp(−cm). When k ≥ 2 we

have P(E11,k) ≤ P(Z(+) > θ+kσ) ≤ C exp(−ck2m). Therefore, note that E11 =
⋃∞

k=0E11,k,
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we have

E(θ̂q − θ)2I{E11} ≤
∞∑
k=0

E(θ̂q − θ)2I{E11,k}

≤ (6σ)2 · 2C exp(−cm) +
∞∑
k=2

(3(k + 1)σ)2 · C exp(−ck2m)

≤ C ′σ
2

m
.

with some universal constant C ′ > 0.

By a symmetric argument we can also prove that E(θ̂q − θ)2I{E12} ≤ C ′ σ2

m . Therefore, we

conclude that

E(θ̂q − θ)2I{E1} ≤ E(θ̂q − θ)2I{E11} + E(θ̂q − θ)2I{E12} ≤ 2C ′σ
2

m
.

2. Bound on E(θ̂q − θ)2I{E2}.

Let E21 = {θ ∈ [Z(−), Z(+)], σ̂ < min{1, 12σ}} and E22,k = {θ ∈ [Z(−), Z(+)], kσ < σ̂ ≤

(k + 1)σ} (k ≥ 4).

Under E21 we have |θ̂ − θ| < 3
2σ, under E22,k we have |θ̂ − θ| < 3(k + 1)σ. Moreover, we

have the probability bounds

P(E21) ≤ P(Z(+) < θ + σ/2) ≤ C exp(−ck2m),

P(E22,k) ≤ P(Z(+) > θ +
k

2
σ) + P(Z(−) < θ − k

2
σ) ≤ 2C exp(−ck2m/4).
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Note that E2 = E21
⋃⋃∞

k=4E22,k, we have

E(θ̂q − θ)2I{E2} ≤ E(θ̂q − θ)2I{E21} +
∞∑
k=4

E(θ̂q − θ)2I{E22,k}

≤ (
3

2
σ)2 · C exp(−ck2m) +

∞∑
k=4

(3(k + 1)σ)2 · 2C exp(−ck2m/4)

≤ C ′′σ
2

m

with some universal constant C ′′ > 0.

3. Bound on E(θ̂q − θ)2I{E3}.

Under event E3, because we have min{1, 12σ} ≤ σ̂ ≤ 4σ, also note that σ̂ ≤ 1 almost surely,

so there are at most 5 possible values of σ̃, whose range is between min{1, 12σ} to min{1, 8σ}

(recall that σ̃ is chosen only from powers of 2).

For each possible value of σ̃, the length of the interval [L,R] is either σ̃ or 2σ̃. Recall we

have requirements that L,R are multiples of σ̃ and event E3 suggest θ ∈ [L,R], so there

are at most 5 possible values of (L,R) pairs for each possible value of σ̃. Putting together,

we can conclude that under event E3, the possible values of the pair (L,R) is at most 25.

We use (L1, R1), (L2, R2), ..., (L25, R25) to denote these 25 possible values of the (L,R) pair.

Thus we have the following decomposition:

E(θ̂q − θ)2I{E3} =
25∑
k=1

E(θ̂q − θ)2I{E3,(L,R)=(Lk,Rk)} ≤
25∑
k=1

E(θ̂q − θ)2I{(L,R)=(Lk,Rk)}. (4.8)

For each possible pair (Lk, Rk) (k = 1, 2, ..., 25), we have Rk − Lk ≤ 2σ̃ ≤ 16σ. Define the

function Fk : (−∞,∞)× (0,∞)→ (0, 1)× (0, 1) as

Fk(t, s) =

Φ
(
t−Lk

s

)
Φ
(
Rk−t

s

)
 .
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When (L,R) = (Lk, Rk), we have

E∥Fk(θ̂sq, σ̂sq)−Fk(θ, σ)∥2 = E(max{p̂L,
1

m
}− P(X1 < L))2 +E(max{p̂R,

1

m
}− P(X1 > R))2 ≤ 4

m

(4.9)

where the last inequality is due to mpL is binomial distributed with mean mP(X1 < L),

and mpR is binomial distributed with mean mP(X1 > R).

Note that Rk − θ ≤ Rk − Lk ≤ 16σ, therefore t−Lk
σ < 16 and Rk−t

σ < 16 for t ∈ [Lk, Rk].

Then it is easy to prove that there exists a constant c′ = |dΦ(x)
x |x=16| > 0 such that for any

t,∈ [Lk, Rk], ∣∣∣∣Φ( t− Lk

σ

)
− Φ

(
θ − Lk

σ

)∣∣∣∣ ≥ c′
|t− θ|

σ
;

∣∣∣∣Φ(Rk − t

σ

)
− Φ

(
Rk − θ

σ

)∣∣∣∣ ≥ c′
|t− θ|

σ
.

Besides, note that for any t ∈ [L,R] and s > 0, at least one of the following inequalities

holds: ∣∣∣∣Φ( t− Lk

s

)
− Φ

(
θ − Lk

σ

)∣∣∣∣ > ∣∣∣∣Φ( t− Lk

σ

)
− Φ

(
θ − Lk

σ

)∣∣∣∣ ;∣∣∣∣Φ(Rk − t

s

)
− Φ

(
Rk − θ

σ

)∣∣∣∣ ≥ ∣∣∣∣Φ(Rk − t

σ

)
− Φ

(
Rk − θ

σ

)∣∣∣∣ .
Combine the two observations above, we have

∥Fk(θ̂sq, σ̂sq)− Fk(θ, σ)∥2 ≥
(c′)2

σ2
(θ̂sq − θ)2.

Substitute above inequality into (4.9), when (L,R) = (Lk, Rk) we have

E(θ̂sq − θ)2 ≤ 4

(c′)2
σ2

m
.
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Substitute the above inequality into (4.8) we obtained the desired bound

E(θ̂q − θ)2I{E3} ≤
25∑
k=1

E(θ̂q − θ)2I{(L,R)=(Lk,Rk)} ≤
100

(c′)2
σ2

m
.

4.7.3. Proof of Theorem 17

The proof of Theorem 17 will be carried out by several stages. Throughout the proof, we

define δk = θ̂k−θ
σ , ϕ(x) = 1√

2π
e−x2/2 is standard Gaussian density. Φ(x) = P(X > x) where

X ∼ N(0, 1), and Λ(x) = 1− 2Φ(x). We also define µk = 1
k−10 .

We first give a lemma that will be useful in the proof.

Lemma 12. Let {Ak}∞k=0 be a positive sequence, and {bk}∞k=0, {dk}∞k=0 be two decreasing

positive sequences that satisfy

Ak ≤ (1− αbk)Ak−1 + βbkdk, k = 1, 2, ...

where α, β > 0. If there exists K > 0 such that

dk−1

dk
≤ 1 +

α

2
bk for all k ≥ K.

Then we have for all k ≥ 0,

Ak ≤
(
A0 + β

∑K
i=1 bidi

dK
+

2β

α

)
dk. (4.10)

Then we provide several claims and show the proof to each claim directly after their state-

ment.

Claim 1. There exists a constant C1 > 0 (doesn’t depend on θ, σ or σ̂) such that for all

k ≥ 11, we have

E[(θ̂k − θ)2|σ̂] ≤ C1

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γk. (4.11)

125



Proof of Claim 1. Define the Lyapunov function

L(x) =


x2 if − 2 < x < 2

4e|x|/2−1 if |x| ≥ 2

.

Note that x2 ≲ L(x), therefore to prove Claim 1, it suffices to show that

E

[
L

(
θ̂k − θ

σ

)∣∣∣∣σ̂
]
≲
(
(σ̂/σ)−2 + (σ̂/σ)2

)
γk. (4.12)

We have the following lemma.

Lemma 13. (a) If γkσ̂/σ ≥ 2, we have

E[L(δk)|σ̂] ≤ 11eγkσ̂/(2σ). (4.13)

(b) If γkσ̂/σ ≤ 2 and k ≥ 12, we have

E[L(δk)|σ̂] ≤ (1− 0.25γkσ̂/σ)E[L(δk−1)|σ̂] + (γkσ̂/σ)
2. (4.14)

Case 1: When γkσ̂/σ ≥ 2. Consider surrogate function

L̃(x) =


4 if 0 ≤ y ≤ 4

4e
√
x/2−1 if x ≥ 4

.

Note that L̃(δ2k) ≤ L(δk)+4 and L̃(x) is convex, apply Lemma 13(a) and Jensen’s inequality

we have

L̃(E[δ2k|σ̂]) ≤ E[L̃(δ2k)|σ̂] ≤ E[L(δk)|σ̂] + 4 ≤ 11eγkσ̂/(2σ) + 4
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which suggests that

E[δ2k|σ̂] ≲ (γkσ̂/σ)
2 ≤ (σ̂/σ)2γk.

Case 2: When γkσ̂/σ < 2. Let k0 be the largest k such that γkσ̂/σ ≥ 2 (if there is no

such k, set k0 = 0). Given Lemma 13(b), we can apply Lemma 12 with Ai = E[L(δk0+i)|σ̂],

bi = di = γk0+iσ̂/σ, α = 0.25, β = 1, and K = ⌈83(σ̂/σ)−3⌉ − k0. This is a valid K value

because

di−1/di = (1− 1/k)−2/3 ≤ 1 + 1/k ≤ 1 +
k−2/3σ̂

8σ
= 1 +

α

2
bk when i ≥ 83(σ̂/σ)−3

where k = k0 + i.

Also note that we have γk0 σ̂/σ ≤ 4 due to the definition of k0, thus A0 ≤ 11e2 according to

Lemma 13(a). And note that
∑K

i=1 bidi <
∑∞

i=1 bidi = (σ̂/σ)2
∑∞

i=1+k0
γ2i <∞. Therefore,

apply Lemma 12, we have

E[L(δk)|σ̂] ≲
(
11e2 + (σ̂/σ)2

∑∞
i=1+k0

γ2i
(σ̂/σ)3

+ 8

)
dk ≲ ((σ̂/σ)−3 + 1)σ̂/σγk.

Combine the two cases above, we prove the desired bound (4.11).

Claim 2. There exists a constant C2 > 0 (doesn’t depend on θ, σ or σ̂) such that for all

k ≥ 11, we have

E[(θ̂k − θ)4|σ̂] ≤ C2

(
(σ̂/σ)−4 + (σ̂/σ)4

)
σ4γ2k . (4.15)

Proof of Claim 2. The proof is very similar to Claim 1. We will omit some details in

the proof. Re-define the Lyapunov function

L(x) =


x4 if − 2 < x < 2

16e|x|/2−1 if |x| ≥ 2

.
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We have the following lemma.

Lemma 14. (a) If γkσ̂/σ ≥ 2, we have

E[L(δk)|σ̂] ≤ 44eγkσ̂/(2σ). (4.16)

(b) If γkσ̂/σ ≤ 2 and k ≥ 12, we have

E[L(δk)|σ̂] ≤ (1− 0.25γkσ̂/σ)E[L(δk−1)|σ̂, δk−1] + (6C1 + 1)((σ̂/σ)4 + 1)γ3k . (4.17)

Case 1: When γkσ̂/σ ≥ 2. Similarly we can conclude that

E[δ4k|σ̂] ≲ (γkσ̂/σ)
4 ≤ (σ̂/σ)4γ2k .

Case 2: When γkσ̂/σ < 2. Let i = k − k0 where k0 is defined as in the proof of Claim

1. Given Lemma 14(b), we can apply Lemma 12 with bi = γkσ̂/σ, di = γ2k , α = 0.25,

β = (6C1 + 1)((σ̂/σ)−1 + (σ̂/σ)3), and K = ⌈163(σ̂/σ)−3⌉ − k0, then we have

E[L(δk)|σ̂] ≲
(
44e2 + (σ̂/σ)4 + 1

(σ̂/σ)4
+ 8((σ̂/σ)−1 + (σ̂/σ)3)

)
γ2k ≲ ((σ̂/σ)−4 + (σ̂/σ)3)γ2k .

Combine the two cases above, and note that E[(θ̂k − θ)4 ≲ E[L(δk)|σ̂], we can conclude

(4.15).

Claim 3. Let θ̄k = 1
k

∑k
i=1 θ̂i. There exists a constant C3 > 0 (doesn’t depend on θ, σ or σ̂)

such that

E[(θ̄k − θ)2|σ̂] ≤ C3

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γk.
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Proof of Claim 3. Let µk = 1
k−10 , note that

θ̄k+1 − θ = (1− µk)(θ̄k − θ) + µk(θ̂k+1 − θ).

This implies

E[(θ̄k+1 − θ)2|σ̂]1/2 ≤ (1− µk)E[(θ̄k − θ)2|σ̂]1/2 + µkE[(θ̂i − θ)2|σ̂]1/2. (4.18)

From the above inequality we can show

E[(θ̄k − θ)2|σ̂]1/2 ≤ 3
(
C1

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γk

)1/2 (4.19)

holds for all k ≥ 1 by induction, which suggest Claim 3 holds with C3 = 9C1. The induction

is concluded by:

1. From Claim 1 we have

E[(θ̄11 − θ)2|σ̂]1/2 = E[(θ̂11 − θ)2|σ̂]1/2 ≤
(
C1

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γ11

)1/2
,

therefore (4.19) holds when k = 11.

2. If (4.19) holds for k, from (4.18) and Claim 1 we have

E[(θ̄k+1 − θ)2|σ̂]1/2 ≤
(
3(1− µk)

√
γk
γk+1

+ µk

)(
C1

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γk+1

)1/2
.

Note that
√

γk
γk+1

< (1−µk)
−1/3 and 3(1−µk)

2/3+µk ≤ 3 for all k. So we have (4.19)

holds for k + 1.

Claim 4. Let θ̄k = 1
k

∑k
i=1 θ̂i. There exists a constant C4 > 0 (doesn’t depend on θ, σ or σ̂)
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such that

E[(θ̄k − θ)(θ̂k − θ)|σ̂] ≤ C4

(
(σ̂/σ)−5 + (σ̂/σ)3

)
σ2µk. (4.20)

Proof of Claim 4. We have

E[(θ̄k+1 − θ)(θ̂k+1 − θ)|σ̂, θ̂k] = (1− µk)E[(θ̄k − θ)(θ̂k+1 − θ)|σ̂, θ̂k] + µkE[(θ̂k+1 − θ)2|σ̂, θ̂k].

Take expectation with respect to θ̂k we have

E[(θ̄k+1 − θ)(θ̂k+1 − θ)|σ̂]

=(1− µk)E[(θ̄k − θ)(θ̂k − θ − σ̂γkΛ(δk))|σ̂] + µkE[(θk+1 − θ)2|σ̂]

=(1− µk)(1− 2σ̂/σγkϕ(0))E[(θ̄k − θ)(θ̂k − θ)|σ̂] + (1− µk)σ̂γkE[(θ̄k − θ)(2ϕ(0)δk − Λ(δk))|σ̂]

+ µkE[(θ̂k+1 − θ)2|σ̂].

Note that 2ϕ(0)δk − Λ(δk) ≲ δ2k. Cauchy-Schwartz inequality suggests

E[(θ̄k − θ)(2ϕ(0)δk − Λ(δk))|σ̂]2 ≤ E[(θ̄k − θ)2|σ̂]E[((2ϕ(0)δk − Λ(δk))
2|σ̂]

≲ E[(θ̄k − θ)2|σ̂]E[δ4k|σ̂]

≲
(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γk ·

(
(σ̂/σ)−4 + (σ̂/σ)4

)
γ2k

≲
(
(σ̂/σ)−6 + (σ̂/σ)6

)
σ2γ3k .
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Thus we have

E[(θ̄k+1 − θ)(θ̂k+1 − θ)|σ̂]

≤(1− µk)(1− 2σ̂/σγkϕ(0))E[(θ̄k − θ)(θ̂k − θ)|σ̂]

+ C ′
4(1− µk)

(
(σ̂/σ)−3 + (σ̂/σ)3

)
σ̂σγ

5/2
k

+ µkC1

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γk

≤(1− 2σ̂/σγkϕ(0))E[(θ̄k − θ)(θ̂k − θ)|σ̂] + (C ′
4 + C1)

(
(σ̂/σ)−2 + (σ̂/σ)4

)
σ2µkγk.

with some constant C ′
4 > 0. The last inequality is due to the fact that γ

5/2
k ≤ µkγk.

Now we apply Lemma 12 with bk = σ̂/σγk, dk = µk, α = 2ϕ(0),

β = (C ′
4 + C1)

(
(σ̂/σ)−3 + (σ̂/σ)3

)
σ2, and K = (ϕ(0)σ̂/σ)−3. We have

E[(θ̄k − θ)(θ̂k − θ)|σ̂] ≲
(
σ2 +

(
(σ̂/σ)−2 + (σ̂/σ)4

)
σ2

(σ̂/σ)3
+
(
(σ̂/σ)−3 + (σ̂/σ)3

)
σ2

)
µk.

Then we can conclude (4.20).

Claim 5. There exists a constant C5 > 0 such that

E[(θ̄k − θ)2|σ̂] ≤ C5

(
(σ̂/σ)−5 + (σ̂/σ)3

)
σ2µk. (4.21)
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Proof of Claim 5. Note that we have

E[(θ̄k+1 − θ)2|σ̂]

=(1− µk)
2E[(θ̄k − θ)2|σ̂] + 2µk(1− µk)E[(θ̄k − θ)(θ̂k+1 − θ)|σ̂] + µ2

kE[(θ̂k+1 − θ)2|σ̂]

≤(1− 2µk + µ2
k)E[(θ̄k − θ)2|σ̂]

+ 2C4

(
(σ̂/σ)−5 + (σ̂/σ)3

)
σ2µ2

k

+ C3

(
(σ̂/σ)−2 + (σ̂/σ)2

)
σ2γkµ

2
k

≤(1− 2µk + µ2
k)E[(θ̄k − θ)2|σ̂] + (2C4 + C3)

(
(σ̂/σ)−5 + (σ̂/σ)3

)
σ2µ2

k

which implies there exists a constant C5 > 0 such that

E[(θ̄k+1 − θ)2|σ̂] ≤ C5

(
(σ̂/σ)−5 + (σ̂/σ)3

)
σ2µk.

Proof of the theorem. Now we are ready to prove the theorem. Take expectation on

(4.21) with respect to σ̂, we have

E[(θ̄k − θ)2] ≤ C5E[
(
(σ̂/σ)−5 + (σ̂/σ)3

)
]σ2µk.

Note that σ̂ is the empirical estimate of σ over 10 observations. Thus we have E((σ̂/σ)−5) <

∞ and E(σ̂/σ)3 <∞, therefore there exists a constant C6 > 0 such that

E[(θ̄k − θ)2] ≤ C6σ
2µk.

Substitute k = m into the above equation, also note that (θ̂sq − θ)2 ≤ (θ̄k − θ)2 and

(θ̂sq − θ)2 ≤ 1, we conclude the theorem.
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4.7.4. Proof of Lemma 7

Note that the length of each integral interval (λσj , 1 − λσj) is at least 2/3. Therefore, for

any distributed estimator θ̂, there exists 0 ≤ j∗ ≤ J − 1 and θ∗ ∈ [0, 1] such that

m∑
i=1

H2(Zi|Xi ∼ N(θ∗ − λσj∗ , σ
2
j∗), Zi|Xi ∼ N(θ∗ + λσj∗ , σ

2
j∗)) ≤

3

4

where Zi|Xi ∼ P denotes the distribution of Πi(Xi) when Xi ∼ P , H2 denotes the squared

Hellinger distances.

Note that Zi, i = 1, 2, ...,m are independent, by sub-additivity of squared Hellinger distances

for product measures, we have

H2((Zi)
m
i=1|Xi∼N(θ∗−λσj∗ ,σ

2
j∗ ), for i=1,2,...,m, (Zi)

m
i=1|Xi∼N(θ∗−λσj∗ ,σ

2
j∗ ), for i=1,2,...,m) ≤ 3

4

where (Zi)
m
i=1 is a shorthand for (Z1, Z2, ..., Zm)

Note that the distributed estimator θ̂ is a (possibly random) function of (Zi)
m
i=1. Given that

the squared Hellinger distance between the distribution of (Zi)
m
i=1 under N(θ∗ − λσj∗ , σ

2
j∗)

and N(θ∗−λσj∗ , σ2
j∗) are bounded by 3/4, which means we cannot “distinguish" whether the

data are drawn from N(θ∗− λσj∗ , σ
2
j∗) or N(θ∗− λσj∗ , σ

2
j∗) by looking at those transcripts,

we can apply Le Cam’s method to conclude a minimax lower bound: when σ = σj∗ , there

exists a constant c1 > 0 such that

sup
θ∈{θ∗−λσj∗ ,θ∗+λσj∗}

E(θ̂ − θ)2 ≥ c1λ
2σ∗2,

which is equivalent to

sup
θ∈{θ∗−λσj∗ ,θ∗+λσj∗}

(
σ∗2

m

)−1

E(θ̂ − θ)2 ≥ c1λ
2m.
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Thus we can conclude that

Rind(σ0, B) ≥ cλ2m.

4.7.5. Proof of Lemma 8

Proof of (4.1). For any z ∈ Z, define

Fz(s) =

∫ ∞

−∞
f(x, s)P(h(x) = z)dx,

Gz(s) =

∫ ∞

−∞
g(x, s)P(h(x) = z)dx.

By definition, we have

H2(h;

∫ sr

sl

f(·, s)ds,
∫ sr

sl

g(·, s)ds) = 1

2

∑
z∈Z

(√∫ sr

sl

Fz(s)ds−
√∫ sr

sl

Gz(s)ds

)2

=
1

2

∑
z∈Z

(∫ sr

sl

Fz(s)ds+

∫ sr

sl

Gz(s)ds− 2

√∫ sr

sl

Fz(s)ds

∫ sr

sl

Gz(s)ds

)
,

∫ sr

sl

H2(h;f(·, s), g(·, s))ds = 1

2

∑
z∈Z

∫ sr

sl

(√
Fz(s)−

√
Gz(s)

)2
ds

=
1

2

∑
z∈Z

(∫ sr

sl

Fz(s)ds+

∫ sr

sl

Gz(s)ds− 2

∫ sr

sl

√
Fz(s)Gz(s)ds

)
.

Therefore, from Cauchy-Schwartz inequality

√∫ sr

sl

Fz(s)ds

∫ sr

sl

Gz(s)ds ≥
∫ sr

sl

√
Fz(s)Gz(s)ds,

we can conclude (4.1).

Proof of (4.2). Define

Fz =

∫ ∞

−∞
f(x)P(h(x) = z)dx,
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Gz =

∫ ∞

−∞
g(x)P(h(x) = z)dx.

1/M ≤ f(x)/g(x) ≤ M for all x ∈ {x : g(x) > 0} implies that 1/M ≤ Fz/Gz ≤ M when

F (z) > 0 or G(z) > 0. This suggests that

∣∣∣∣√Fz −
√
Gz√

Fz +
√
Gz

∣∣∣∣ ≤
√
M − 1√
M + 1

.

By definition we have

H2(h; f, g) =
1

2

∑
z∈Z

(
√

Fz−
√

Gz)
2 =

1

2

∑
z∈Z

∣∣∣∣√Fz −
√
Gz√

Fz +
√
Gz

∣∣∣∣ |√Fz−
√
Gz| ≤

√
M − 1√
M + 1

TV (h; f, g).

4.7.6. Proof of Lemma 9

First, note that by definition we have

TV (Π(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) ≤ xsσj .

So we have

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV (Π(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) dθ ≤ xsJ.

Therefore, it only remains to prove

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV (Π(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) dθ ≤ C1xs(1 + xs)
√
Jb.

The next technical lemma is the key to prove Lemma 9.
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Lemma 15. Let {ak}, k = 1, 2, ..., 2J be a non-negative sequence such that

0 ≤ ak ≤ 1, k = 1, 2, ..., 2J .

Then there exists a constant C3 > 0 such that

J∑
j=1

2J−j∑
l=1

∣∣∣∣∣∣
(l−1)2j+2j−1∑
k=(l−1)2j+1

ak −
l·2j∑

k=(l−1)2j+2j−1+1

ak

∣∣∣∣∣∣ ≤ C32
J
√
J

∫ w

0

√
− log tdt

where w = 2−J
∑2J

k=1 ak is the mean of the sequence.

Let x′s = infx∈A(s) |x|. For any real number θ, z ∈ {0, 1}b and k ∈ [2J ], let ak(θ, z) =∫ θ+kxsσ0

θ+(k−1)xsσ0
P(Π(x) = z)dx and a′k(θ, z) =

∫ θ+kx′
sσ0

θ+(k−1)x′
sσ0

P(Π(x) = z)dx. Note that it is easy

to check A(s) = [−xs,−x′s] ∪ [x′s, xs], so we have

TV (Π(x); f((x− θ)/σj , s), g((x− θ)/σj , s))

=
1

2

∑
z∈{0,1}b

∣∣∣∣∣
∫ θ−σjx

′
s

θ−σjxs

P(Π(x) = z)dx−
∫ θ+σjxs

θ+σjx′
s

P(Π(x) = z)dx

∣∣∣∣∣
≤1

2

∑
z∈{0,1}b

∣∣∣∣∣
∫ θ

θ−σjxs

P(Π(x) = z)dx−
∫ θ+σjxs

θ
P(Π(x) = z)dx

∣∣∣∣∣
+

1

2

∑
z∈{0,1}b

∣∣∣∣∣
∫ θ

θ−σjx′
s

P(Π(x) = z)dx−
∫ θ+σjx

′
s

θ
P(Π(x) = z)dx

∣∣∣∣∣
=

1

2J−j

∑
z∈{0,1}b

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ − σjxs − 2j+1(r − 1)xsσ0, z)

−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ − σjxs − 2j+1(r − 1)xsσ0, z)

∣∣∣∣∣∣
+

1

2J−j

∑
z∈{0,1}b

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

a′k(θ − σjx
′
s − 2j+1(r − 1)x′sσ0, z)

−
2j+1r∑

k=2j+1(r−1)+2j+1

a′k(θ − σjx
′
s − 2j+1(r − 1)x′sσ0, z)

∣∣∣∣∣∣ .
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Substitute the above inequality and rewrite the integral variable, also recall that σj = 2jσ0,

we have

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV (Π(x); f((x− θ)/σj , s), g((x− θ)/σj , s)) dθ

≤ 1

2Jσ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1−λσj−σjxs−2j+1(r−1)xsσ0

λσj−σjxs−2j+1(r−1)xsσ0∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ, z)−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)

∣∣∣∣∣∣dθ
+

1

2Jσ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1−λσj−σjx
′
s−2j+1(r−1)x′

sσ0

λσj−σjx′
s−2j+1(r−1)x′

sσ0∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

a′k(θ, z)−
2j+1r∑

k=2j+1(r−1)+2j+1

a′k(θ, z)

∣∣∣∣∣∣dθ
≤ 1

2Jσ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1

−xs

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ, z)−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)

∣∣∣∣∣∣ dθ
+

1

2Jσ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1

−x′
s

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

a′k(θ, z)−
2j+1r∑

k=2j+1(r−1)+2j+1

a′k(θ, z)

∣∣∣∣∣∣dθ
=
xsσ0
2Jσ0

∫ 1

−xs

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ, z)

/
xsσ0 −

2j+1r∑
k=2j+1(r−1)+2j+1

ak(θ, z)

xsσ0

∣∣∣∣∣∣
+

x′sσ0
2Jσ0

∫ 1

−x′
s

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

a′k(θ, z)

x′sσ0
−

2j+1r∑
k=2j+1(r−1)+2j+1

a′k(θ, z)

x′sσ0

∣∣∣∣∣∣ .
(4.22)

Define w(θ, z) ≜ 2−J
∑2J

k=1 ak(θ, z)/(xsσ0) = 1
2Jxsσ0

∫ θ+2Jxsσ0

θ P(Π(x) = z). Note that

ak(θ, z)/(xsσ0) ∈ [0, 1], apply Lemma 15 gives

∑
z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ, z)/(xsσ0)−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)/(xsσ0)

∣∣∣∣∣∣
≤C32

J
√
J

∑
z∈{0,1}b

∫ w(θ,z)

0

√
− log tdt.
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Then note that
∫ w
0

√− log tdt is a concave function of w and
∑

z∈{0,1}b w(θ, z) = 1, we can

apply Jensen’s inequality to get

∑
z∈{0,1}b

∫ w(θ,z)

0

√
− log tdt ≤ 2b

∫ 2−b

0

√
− log tdt.

It is not difficult to prove that there exists a constant C1,1 such that

∫ 2−b

0

√
− log tdt ≤ C1,12

−b
√
b.

Combine the three inequalities above we can conclude

xsσ0
2Jσ0

∫ 1

−xs

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ, z)

xsσ0
−

2j+1r∑
k=2j+1(r−1)+2j+1

ak(θ, z)

xsσ0

∣∣∣∣∣∣
≤C3C1,1xs

∫ 1

−xs

√
Jbdθ = C3C1,1xs(1 + xs)

√
Jb.

By a similar argument we also have

x′sσ0
2Jσ0

∫ 1

−x′
s

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣∣
2j+1(r−1)+2j∑
k=2j+1(r−1)+1

ak(θ, z)

x′sσ0
−

2j+1r∑
k=2j+1(r−1)+2j+1

ak(θ, z

x′sσ0

∣∣∣∣∣∣
≤C3C1,1x

′
s(1 + x′s)

√
Jb.

Substitute the above two inequalities into (4.22) and note that x′s ≤ xs, we conclude Lemma

9.
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CHAPTER 5

Distributed Nonparametric Function Estimation Under

Communication Constraints

5.1. Introduction

Distributed statistical estimation and inference are becoming increasingly important as in

many applications data can be necessarily distributed at different locations due to the size

constraint or privacy and security concerns. Such a setting arises in a range of medical,

financial, and business applications. With distributed data, separate statistical analyses

need to be carried out at individual sites and then the results are transmitted to and ag-

gregated at a central location in order to make the final statistical decision. For large-scale

data analysis, communication costs can be expensive and become the main bottleneck in

statistical practice. It is important to understand the interplay between communication con-

straints and statistical accuracy, as well as how to design optimal estimation and inference

procedures under communication constraints.

There has been an increasing amount of recent literature on distributed estimation when

the communication budget is limited. For example, Zhang et al. (2013a); Garg et al. (2014);

Braverman et al. (2016); Han et al. (2018); Zhu and Lafferty (2018); Szabó and van Zanten

(2018); Barnes et al. (2019b); Cai and Wei (2020c); Szabó and van Zanten (2020) consid-

ered information-theoretical limits under communication constraints for various distributed

estimation problems, such as Gaussian mean estimation, linear regression and nonpara-

metric regression. Optimality results have been established under different communica-

tion constraints. Besides theoretical analysis, progress has also been made on developing

practical methodologies for distributed estimation. See, for example, Kleiner et al. (2014);

Deisenroth and Ng (2015); Lee et al. (2017); Diakonikolas et al. (2017); Jordan et al. (2019);

Battey et al. (2018); Fan et al. (2019). Further literature review is given in Section 5.1.4.

In this chapter we study distributed minimax and distributed adaptive nonparametric esti-
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mation under communication constraints in a decision theoretical framework. In the con-

ventional non-distributed settings, adaptation has been a central goal for nonparametric

function estimation. it is well-known that adaptive estimation can be achieved for free under

a range of global losses such as the integrated squared error over a wide collection of Besov

classes (Donoho and Johnstone, 1995; Johnstone, 2017). Indeed, it is possible to adaptively

achieve superefficiency for free (Cai, 2008). However, in the distributed settings, adaptation

becomes more difficult and involved due to the additional communication constraints. A

rate-optimal adaptive algorithm needs to perform well statistically while efficiently com-

pressing the information from the local machines to the central learner. Intuitively, the

difficulty arises from the fact that only limited amount of information can be transmitted

and information that is critical for estimation over one function class might not be essential

for estimation over another. In such a setting, it is easy to imagine that achieving adapta-

tion over a collection of function classes requires more communication budget than what is

needed for a given function class in the minimax setting.

The primary goal of this chapter is to precisely characterize the communication cost of adap-

tation for distributed nonparametric function estimation. We first establish the minimax

rate of convergence for distributed estimation over a given Besov class, which serves as a

benchmark for the cost of adaptation when the smoothness parameters are unknown. We

then quantify the exact cost of adaptation and construct an optimally adaptive procedure

for distributed nonparametric estimation over a range of Besov classes.

5.1.1. Distributed estimation framework

We begin by introducing a general framework for distributed estimation by giving a formal

definition of transcript, distributed estimator, and independent distributed protocol. Let

P = {Pθ : θ ∈ Θ} be a parametric family of distributions supported on space X , where

θ ∈ Θ is the parameter of interest. Suppose there are m local machines and a central

machine, where the local machines contain the observations and each local machine has

access only to data in that machine, and the central machine produces the final estimator
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of θ under the communication constraints between the local and central machines. More

precisely, suppose we observe i.i.d. random samples drawn from a distribution Pθ ∈ P:

Xi
i.i.d.∼ Pθ, i = 1, . . . ,m,

where the i-th local machine has access to Xi only.

On each machine, because of limited communication budget, the observation Xi on the

i-th local machine needs to be processed to a uniquely decodable string Zi by a (possibly

random) function Zi : X →
⋃∞

b=1{0, 1}b. The resulting string Zi = Zi(Xi), which is called

the transcript from the i-th machine, is then transmitted to the central machine. Here

we denote the length of transcript Zi as |Zi|l, which indicates the communication cost for

sending this transcript. Finally, a distributed estimator θ̂ is constructed on the central

machine based on the transcripts Z1, Z2, ..., Zm,

θ̂ = θ̂(Z1, Z2, ..., Zm).

The above scheme to obtain a distributed estimator θ̂ is called an independent distributed

protocol. Within an independent distributed protocol, the transcripts from each local

machine only depend on its local observations and no information is exchanged between the

local machines. There are also other types of distributed protocols with more interactive

communication schemes in the literature (Zhang et al., 2013a). In the present work we focus

on independent distributed protocol. Define L(θ̂) ≜
∑m

i=1 |Zi|l as the total communication

cost for distributed estimator θ̂. The class of distributed protocols with total communication

budgets B can be defined as

AT (B) = {(θ̂, Z1, Z2, ..., Zm) : L(θ̂) ≤ B}.

The above classes of distributed protocol imposes uniform hard upper bounds on the length
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of transcripts, that is, the (total) length of transcripts are constrained to be less than

a certain value given any possible observations. It is sometimes worthwhile to consider

transcripts with variable length in order to gain possible adaptation to the data. In such

settings, we introduce a class of distributed protocols with the expected total communication

budgets for the family P:

AE(B,Θ) = {(θ̂, Z1, Z2, ..., Zm) : sup
θ∈Θ

EPθ
L(θ̂) ≤ B} (5.1)

where the expected total communication cost is uniformly bounded by B under any data

generating distribution Pθ ∈ P.

As usual, the estimation accuracy of a distributed estimator θ̂ is measured by the mean

squared error (MSE), EPθ
∥θ̂ − θ∥22, where the expectation is taken over the randomness in

both the data and construction of the transcripts and estimator. As in the conventional

decision theoretical framework, a quantity of particular interest in distributed learning is

the minimax risk for the distributed protocols

inf
θ̂∈AE(B,Θ)

sup
Pθ∈P

EPθ
∥θ̂ − θ∥22,

which characterizes the difficulty of the distributed learning problem under the expected

total communication constraints AE(B,Θ). Similarly AE(B,Θ) can be replaced by other

class of distributed protocols to illustrate minimax risk under other kind of communica-

tion constraints. In a rigorous decision theoretical formulation of distributed learning, the

communication constraints are essential. Without the constraints, one can always output

the original data from the local machines to the central machine and the problem is then

reduced to the usual centralized setting.

5.1.2. Distributed estimation

We consider distributed minimax and adaptive estimation for the Gaussian sequence model

and white noise model. For the white noise model, the goal is to recover the unknown
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function based on the noisy observations collected on m machines, where on the i-th machine,

for 1 ≤ i ≤ m, one observes a Gaussian process,

dYi(t) = f(t)dt+
ϵ√
n
dWi(t) t ∈ [0, 1], i = 1, 2, ...,m. (5.2)

Here ϵ√
n

is the noise level and Wi(t), i = 1, 2, ...,m are independent standard Wiener process.

The i-th machine has access to Yi(t) only. The goal is to recover the unknown function f

based on the distributed observed processes Y1(t), Y2(t), ...., Ym(t).

In the conventional centralized setting, wavelet methods (Donoho and Johnstone, 1994;

Hall et al., 1999; Cai, 1999) have been shown to be a powerful tool for nonparametric func-

tion estimation as it decomposes a function into a structured wavelet series and a nonpara-

metric estimation problem is then transformed into a Gaussian sequence estimation problem.

Motivated by the equivalence between the white noise model and Gaussian sequence model,

we begin by focusing on the following distributed Gaussian sequence estimation problem.

Suppose there are m machines, on i-th machine we have i.i.d Gaussian observations

Xi,jk = θjk + σzi,jk, j = 0, 1, 2, ...; k = 1, 2, ..., 2j (5.3)

where zi,jk
i.i.d.∼ N(0, 1) for i = 1, 2, ...,m; j = 0, 1, ...; k = 1, 2, ..., 2j , the noise level σ known.

The i-th machine can only access to Xi ≜ (Xi,jk)j≥0,k=1,2,...,2j only. The goal is to estimate

θ ≜ (θi,jk)j≥0,k=1,2,...,2j under the mean-squared error

R(θ̂, θ) = ∥θ̂ − θ∥22 =
∞∑
j=0

2j∑
k=1

(θ̂jk − θjk)
2.

We consider estimation over a collection of Besov classes Bαp,q(M) with α, p, q,M > 0, where

Bαp,q(M) is defined as the set of sequences θ satisfying |θ|bαp,q ≤ M with the Besov sequence
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seminorm |θ|bαp,q given by

|θ|bαp,q ≜

 ∞∑
j=0

2js

 2j∑
k=1

|θjk|p
1/p


q

1/q

. (5.4)

Here s = α + 1/2 − 1/p > 0 and 1 ≤ p, q ≤ ∞, with the obvious replacement of the

corresponding ℓp or ℓq norms to ℓ∞ norms when p, q = ∞. The Besov sequence norm

|θ|bαp,q is equivalent to the Besov function norm on the original function f ; see, for example,

Meyer (1992). Therefore, the distributed Gaussian sequence model (5.3) is equivalent to the

white noise model (5.2). In the classical centralized setting, the Gaussian sequence model is

also known to be a good proxy to study estimation of a function under the nonparametric

regression model.

5.1.3. Main contributions

For estimation under the Gaussian sequence model (5.3) with communication constraints,

a distributed estimation procedure, called seq-MODGAME, is proposed, and its rate of

convergence under the communication constraints is derived. A matching lower bound is

established to show that the seq-MODGAME procedure is optimal. The upper and lower

bounds together yield the sharp optimal rate of convergence for estimation over a Besov

class Bαp,q(M):

RE(B,Bαp,q(M)) ≜ inf
θ̂∈AE(B,Bα

p,q(M))
sup

θ∈Bα
p,q(M)

∥θ̂ − θ∥22.

where AE(B,Bαp,q(M)) is the set of distributed protocols under the expected total com-

munication constraints defined in (5.1). The same optimal rate holds for the white noise

model. To the best of our knowledge, this is the first exact minimax rate of convergence

for the distributed nonparametric function estimation. In comparison, the existing results

have at least a logarithmic gap in the upper and lower bounds and are for more specialized

parameter spaces such as a Hölder or Sobolev class.

We then quantify the exact communication cost for adaptation and construct an optimally
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adaptive procedure for distributed estimation over a range of Besov classes. Our analysis

shows interesting phenomena. In the classical non-distributed setting, it is well known

that adaptation can be achieved for free in terms of global risk measures such as the

mean integrated squared error over a wide collection of Besov classes. See, for example,

Donoho and Johnstone (1995); Johnstone (2017). However, in the distributed setting, our

results show that there are unavoidable additional communication costs for any adaptive

procedure over a collection of Besov classes. Specifically, the results provide a sharp charac-

terization for the communication costs for adaptation, where it is shown that O(m3) total

additional bits are necessary and sufficient to achieve the adaptation over a wide collection

of Besov classes. In addition, a local thresholding procedure is constructed and is shown

to be the most communication-efficient among all adaptive distributed estimators. Our

newly proposed local thresholding procedure requires no prior knowledge on the range of

the smoothness parameters, and is able to automatically achieve statistical adaptation over

a wide collection of Besov classes Bαp,q(M) with p ≥ 2 at the guaranteed minimum com-

munication cost. The analysis on adaptive estimation makes significant improvement over

existing results. The new technical tools used to obtain the exact characterization for the

cost of adaptation can be of independent interest.

5.1.4. Related literature

Distributed nonparametric function estimation has been investigated in the recent literature.

Zhu and Lafferty (2018) studied distributed minimax rate of convergence for the white noise

model over the Sobolev classes with a logarithmic gap between the upper and lower bounds.

Szabó and van Zanten (2018) derived distributed minimax rate for nonparametric regression

under the integrated squared error and supnorm error losses over the Hölder classes and

Sobolev classes, also with a logarithmic gap between the upper and lower bounds. The

paper also showed that adaptation is possible within the range α ∈ [αmin, αmax) where αmin

depends on the given communication budget.
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Szabó and van Zanten (2020) considered a two-point adaptation problem for distributed

nonparametric estimation and showed that two-point adaptation is impossible when the

smoothness indices of the two function classes are both larger than a certain threshold. It also

proposed an adaptive distributed protocol that achieves statistical adaptation over a range of

Sobolev classes with the smoothness indices below a certain threshold, while at the same time

transmitting the minimal number of bits, up to a logarithmic gap. Szabó and van Zanten

(2020) provided a clear solution when two-point adaptation can be achieved without ad-

ditional communication cost. However, it is not clear whether adaptation is possible with

additional communication budgets under the same settings. In comparison, we provide a

more general lower bound for the communication cost for adaptive distributed estimators

over a collection of Besov classes and construct an estimator that is adaptive over a wider

range of parameter spaces at the guaranteed minimum communication cost.

5.1.5. Organization of the chapter

We finish this section with notation, definitions, and some assumptions that will be used

in the rest of the chapter. Section 5.2 establishes the optimal rate of convergence for dis-

tributed Gaussian sequence estimation and Section 5.3 characterizes the communication cost

of adaptation and introduces adaptive distributed procedures. The numerical performance

of the proposed distributed estimators is investigated in Section 5.4 and further research

directions are discussed in Section 5.5. For reasons of space, we only prove lower bounds for

communication cost of adaptive estimators in Section 5.6 and defer the proofs of other main

results and the technical lemmas to the supplementary material Cai and Wei (2020b).

5.1.6. Notation, definitions, and assumptions

For simplicity, in later sections we denote nj = 2j be the number of coefficients at the

j-th resolution level. For any positive integers n,N , let [n] ≜ {1, 2, ..., n} and n mod N be

the remainder of n divided by N . For any a ∈ R, let ⌊a⌋ denote the floor function (the

largest integer not larger than a). Unless otherwise stated, we shorthand log a as the base

2 logarithmic of a. For any a, b ∈ R, let a ∧ b ≜ min{a, b} and a ∨ b ≜ max{a, b}. We
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use a = O(b) or equivalently b = Ω(a) to denote there exist a constant C > 0 such that

a ≤ Cb, and we use a ≍ b to denote a = O(b) while b = O(a). For any vector a, denote by

∥a∥ ≜
√∑

k

(
a(k)

)2 its l2 norm. For any finite set S, let card(S) denote the cardinality of

S. Define the density of a Gaussian distribution with mean 0 and standard deviation σ as

ϕσ(x) =
1√
2πσ

e−
x2

2σ2 .

Throughout the chapter, we shall assume s = α+1/2−1/p > 0. This condition is necessary

for the estimation problem to be well-formulated. When s ≤ 0, the closure of the Besov

ball Bαp,q(M) is not compact and the compactness of the closure of the parameter space is

a necessary condition for consistent estimation under the homoskedastic Gaussian sequence

model. See Ibragimov and Khasminskii (1997) and Johnstone (2017, Theorem 5.7). More-

over, we assume M ≥ σ. Otherwise estimation over the Besov ball Bαp,q(M) is trivial as the

simple estimator θ̂ = 0 is optimal.

5.2. Minimax Optimal Rate of Convergence

In this section we study the minimax rate of convergence for estimating the mean of a

Gaussian sequence θ ∈ Bαp,q(M) under the expected total communication constraint:

inf
θ̂∈AE(B,Bα

p,q(M))
sup

θ∈Bα
p,q(M)

E∥θ̂ − θ∥2 (5.5)

where we assume the parameters α, p, q,M are known in an oracle setting.

If there is no communication constraint, or equivalently we are in a centralized setting,

Donoho and Johnstone (1998) pointed out the minimax rate of convergence over Besov

classes is

inf
θ̂

sup
θ∈Bα

p,q(M)
E∥θ̂ − θ∥2 ≍M

2
2α+1

(
σ2

m

) 2α
2α+1

.

However, when the communication constraints take effect, there will be a loss of statistical

accuracy thus the optimal rate of convergence (5.5) will further depend on the expected

147



total communication cost B.

We first introduce a distributed estimation procedure satisfying the communication-constraint

and provide an upper bound for its statistical performance. A matching lower bound on

its minimax risk is then established. The upper and lower bounds together unveil a sharp

minimax rate of convergence and the optimality of the proposed estimator.

5.2.1. Optimal procedure

We begin with the construction of an estimation procedure under the communication con-

straints and provide a theoretical analysis of the proposed procedure. The construction of

the following procedure, called seq-MODGAME, is inspired by the MODGAME procedure

proposed in Cai and Wei (2020c) for distributed Gaussian mean estimation. However, unlike

the simple Gaussian mean estimation problem considered in Cai and Wei (2020c), the mag-

nitude of each coordinate of θ is not known as a priori because within Besov space Bαp,q(M),

the constraint on the Besov norm (5.4) is imposed on the whole vector, but not individual

entries. Therefore, to estimate a mean vector θ ∈ Bαp,q(M) under Gaussian sequence model

(5.3), one needs a more sophisticated quantization strategy than the MODGAME procedure

proposed in Cai and Wei (2020c).

We first define several useful functions and quantities. Define localization encoding function

g : Z→ ⋃∞
k=1{0, 1}k by the following rule:

• g(0) = “0”.

• When x is a positive integer, let k be the length of its binary representation, and

define g(x) to be a string starting with “1", followed by k zeros and then followed by

the binary representation of x. For example, g(1) = “101” and g(8) = “100001000”.

• When x is a negative integer, let k be the length of the binary representation of

−x, and define g(x) to be a string starting with “11", followed by k − 1 zeros and

then followed by the binary representation of −x. For example, g(−1) = “111” and

g(−8) = “110001000”.
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The function g(x), as an encoding mechanism, has two main properties. First, it is a prefix

code, thus uniquely decodable (Blahut and Blahut, 1987). We denote g−1 as its inverse

function (decoding function). Second, the length of g(x) is guaranteed to be no larger than

2 log(|x|+1)+3, which means that its length is adaptive to the magnitude of x. We will see

that g(x) plays an important role in the construction of the transcripts with variable length

under the communication constraints.

As in the conventional centralized setting, we estimate the coordinates of the vector θ =

(θj,k) ∈ Bαp,q(M) from its noisy observation up to a certain resolution level jmax and truncate

all the components above jmax to zero. Note that when the communication budget is insuf-

ficient, the estimation accuracy in the distributed setting is not as good as in the centralized

setting. So we first decide the maximal resolution level jmax, and precision parameter δ

according to communication budget B and other model parameters. At those resolution

levels lower than jmax, we estimate each entry in an optimal way so that the stochastic error

is roughly O(δ). At those higher resolution levels, we just truncate all entries to zero. The

advanced communication strategy used in the procedure is the key to the optimality results.

We are now ready to introduce the seq-MODGAME procedure in detail. It is divided into

two cases: B <
(
M
σ

) 2
2α+1 and B ≥

(
M
σ

) 2
2α+1 .

Case 1: B <
(
Λ0M
σ

) 2
2α+1 .

Let δ be a precision parameter calculated by

δ ≜ Λ0MB−(α+1/2)

where Λ0 > 0 is a large tuning parameter. Let jmax be the maximal resolution level, defined

as

jmax ≜ max
{
j : M · 2−j(α+1/2) ≥ δ

}
.

In this case, only one local machine is needed to sent transcripts to the central machine.
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First step: Generate the transcripts on the first local machine. On the first local

machine (who can access to data X1), the output transcript Z1 is the collection of the “crude

localization" strings Z1,jk, 0 ≤ j ≤ jmax, k ∈ [nj ] where Z1,jk is defined as

Z1,jk = g(⌊X1,jk/δ⌋).

Second step: Generate the distributed estimator θ̂O on the central machine. The

central machine can receive Z1,jk, 0 ≤ j ≤ jmax, k ∈ [nj ] from the first local machine. The

final estimate θ̂O is given by

θ̂Ojk = g−1(Z1,jk) · δ if 0 ≤ j ≤ jmax, k ∈ [nj ]

θ̂Ojk = 0 if j > jmax, k ∈ [nj ]

Case 2: B ≥
(
Λ0M
σ

) 2
2α+1

Let u be a parameter and δ be the precision parameter. They are calculated by

u ≜
(
(Λ0M/σ)−

1
α+1 B

2α+1
2α+2

)
∧m, δ = σ/

√
u,

and let jmax be the maximal resolution level, defined as

jmax ≜ max
{
j : M · 2−j(α+1/2) ≥ δ

}
.

In this case, with the help of communication strategy introduced in Cai and Wei (2020c),

each entry of θ at lower resolution levels can be estimated in the most communication-

efficient way so that their estimation errors is roughly of order δ.

First step: Generate the transcripts on the local machines.
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1. On the first machine (which has access to data X1), the output transcript Z1 is the

collection of the “crude localization" strings Z1,jk, 0 ≤ j ≤ jmax, k ∈ [nj ] where Z1,jk

is defined as

Z1,jk = g(⌊X1,jk/σ⌋);

2. On the i−th machine where 2 ≤ i ≤ 1 + ⌊log2 u⌋, the output transcript Zi is the

collection of the “finer localization" strings Zi,jk, 0 ≤ j ≤ jmax, k ∈ [nj ] where Zi,jk is

defined as

Zi,jk = g(⌊Xi,jk/σ⌋ mod ⌊log u⌋);

3. On the i−th machine where 2 + ⌊log2 u⌋ ≤ i ≤ u the output transcript Zi is the

collection of the ‘refinement" strings Zi,jk, 0 ≤ j ≤ jmax, k ∈ [nj ] where Zi,jk is

defined as

Zi,jk = ⌊Xi,jk/σ⌋ mod 8.

4. On the i−th machine where u < i ≤ m, the local machine does not output anything.

Second step: Generate the distributed estimator θ̂ on the central machine. The

central machine receives the transcripts Z1, Z2, ..., Zu from the local machines. Note that

the code words in Z1, Z2, ..., Zu are all uniquely decodable, thus those transcripts can be

decomposed into short strings Zi,jk for i ∈ [u], j ∈ Ji, k ∈ [nj ].

The final estimator θ̂O is constructed as follows.

• For each 0 ≤ j ≤ jmax, k ∈ [nj ]:

1. Because g(x) is uniquely decodable, from Z1,jk = g(⌊Xi,jk/σ⌋) one can recover

the value of ⌊Xi,jk/σ⌋. Let Iajk be an left-closed-right-open interval of length u
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defined as

Iajk ≜


[
⌊Xi,jk/σ⌋ − ⌊log u⌋−1

2 , ⌊Xi,jk/σ⌋+ ⌊log u⌋+1
2

)
if ⌊log u⌋ is an odd number[

⌊Xi,jk/σ⌋ − ⌊log u⌋
2 , ⌊Xi,jk/σ⌋+ ⌊log u⌋

2

)
if ⌊log u⌋ is an even number

2. Denote zbik ≜ argmaxz′
∑⌊log2 u⌋+1

i=2 I{Zi,jk=z′} be the mode statistic among the

Zi,jk, 2 ≤ i ≤ ⌊log2 u⌋+ 1. Note that the length of Iajk is ⌊log u⌋, so there will be

exactly one integer xbjk ∈ Iajk that satisfies

xbjk mod ⌊log u⌋ = g−1(zbik).

Let Ibjk be an interval of length 3 defined by

Ibjk ≜ [xbjk − 1, xbjk + 1].

3. Let ph be the proportion of those refinement strings whose value is equal to

g(xbjk − 2 mod 8):

ph ≜ 1

u− 1− ⌊log2 u⌋

u∑
i=⌊log2 u⌋+2

I{Zi,jk=g(xb
jk−2 mod 8)}

Define a function

hjk(y) ≜
∞∑

l=−∞

∫ xb
jk−1+8l

xb
jk−2+8l

ϕ1(x− y)dx

It is easy to see that hjk(y) is a strictly decreasing function on Ibjk. Let h−1
jk (y)

be the inverse function of hjk(y) which maps hjk(I
b
jk) to Ibjk. The estimate is
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calculated by

θ̂Ojk =


(xbjk + 1)σ if ph ≤ hjk(x

b
jk + 1)

h−1
jk (p

h)σ if hjk(xbjk + 1) < ph < hjk(x
b
jk − 1)

(xbjk − 1)σ if ph ≥ hjk(x
b
jk − 1)

• For each j ≥ jmax + 1, k ∈ [nj ], set

θ̂Ojk = 0.

The following theorem provides the theoretical guarantee for the communication cost of θ̂O,

as well as an upper bound for its statistical performance.

Theorem 19. If Λ0 is set to be a sufficient large constant such that Λ0 > (24α+ 64)α+1/2,

then the estimator θ̂O ∈ AE(B,Bαp,q(M)) and there exists a constant C > 0 such that

sup
θ∈Bα

p,q(M)
E∥θ̂O− θ∥2 ≤ C ·


M2B−2α if B <

(
M
σ

) 2
2α+1

M
2

α+1

(
σ2

B

) α
α+1 if

(
M
σ

) 2
2α+1 ≤ B <

(
M
σ

) 2
2α+1 m

2α+2
2α+1

M
2

2α+1

(
σ2

m

) 2α
2α+1 if B ≥

(
M
σ

) 2
2α+1 m

2α+2
2α+1

(5.6)

for all 2 ≤ p ≤ ∞, 0 < q ≤ ∞, α > 0,M > 0

Remark 9. The proposed distributed estimator θ̂O satisfies expected total communication

constraint, which is weaker than other types of constraint considered in the literature. The

reason we work on this type of communication constraint is to illustrate the main idea

and omit unnecessary complication when presenting the estimator. With suitable modifica-

tion, the estimator can be made to satisfy other kinds of communication constraint, say, a

fixed/hard total communication constraint or an equally assigned communication constraint

on each single local machines.
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For example, the following proposition provides a quick look on how θ̂O satisfies fixed/hard

total communication constraint with high probability.

Proposition 5.2.1. With probability at least 1− exp(−B/18), we have

L(θ̂O) < 2B.

That is, the proposed estimator θ̂O satisfies the total communication constraint 2B with high

probability. Note that the additional factor on the communication constraint doesn’t affect

the rate of convergence given in Theorem 19, therefore the estimator is still rate-optimal.

5.2.2. Lower bound analysis

Section 5.2.1 gives a detailed construction of the seq-MODGAME procedure for distributed

Gaussian sequence estimation and provides a theoretical guarantee for the estimator in

Theorem 19. In this section we shall show that the estimator θ̂O is indeed rate optimal

among all estimators satisfying the total communication constraints by proving that the

upper bound in Equation (5.6) cannot be improved. The following theorem gives a lower

bound on the minimax risk under the expected total communication constraints.

Theorem 20. There exists a constant c > 0 such that

RE(B,Bαp,q(M)) ≥ c ·


M2B−2α if B <

(
M
σ

) 2
2α+1

M
2

α+1

(
σ2

B

) α
α+1 if

(
M
σ

) 2
2α+1 ≤ B <

(
M
σ

) 2
2α+1 m

2α+2
2α+1

M
2

2α+1

(
σ2

m

) 2α
2α+1 if B ≥

(
M
σ

) 2
2α+1 m

2α+2
2α+1

(5.7)

for all 0 < p ≤ ∞, 0 < q ≤ ∞, α > 0,M > 0

The lower bound given in Theorem 20 is proved by constructing simultaneous tests θjk = 0

vs θjk = δ for all j ≤ J , k = 1, 2, ..., 2j , with pre-specified choices of δ and J . Then by

strong data processing inequalities, we can prove that at least a proportion of entries cannot

be accurately estimated. The detailed proof is deferred to the supplementary material
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Cai and Wei (2020a).

Theorems 19 and 20 together establish the minimax rate for distributed Gaussian sequence

estimation:

RE(B,Bαp,q(M)) ≍


M2B−2α if B <

(
M
σ

) 2
2α+1

M
2

α+1

(
σ2

B

) α
α+1 if

(
M
σ

) 2
2α+1 ≤ B <

(
M
σ

) 2
2α+1 m

2α+2
2α+1

M
2

2α+1

(
σ2

m

) 2α
2α+1 if B ≥

(
M
σ

) 2
2α+1 m

2α+2
2α+1

. (5.8)

where 2 ≤ p ≤ ∞, q ≤ ∞, α > 0,M > 0. The results also show that the distributed estimator

θ̂O proposed in Section 5.2.1 is rate optimal under the total communication constraints.

The theorem also suggests that in order to achieve the centralized rate of convergence, which

is of order M
2

2α+1

(
σ2

m

) 2α
2α+1 , a communication cost of order

(
M
σ

) 2
2α+1 m

2α+2
2α+1 is sufficient and

necessary.

Remark 10. Similar as the optimal rate of convergence for distributed univariate Gaussian

mean estimation Cai and Wei (2020c), the minimax rate (5.8) can be divided into three

phases: localization (B <
(
M
σ

) 2
2α+1 ), refinement (

(
M
σ

) 2
2α+1 ≤ B <

(
M
σ

) 2
2α+1 m

2α+2
2α+1 ), and

optimal-rate (B ≥
(
M
σ

) 2
2α+1 m

2α+2
2α+1 ). The minimax rate decreases quickly in the localization

phase, when the communication constraints are extremely severe; then it decreases slower

in the refinement phase, when there are more communication budgets; finally the minimax

rate coincides with the centralized optimal rate (Donoho and Johnstone, 1998) and stays

the same, when there are sufficient communication budgets. The value for each additional

bit decreases as more bits are allowed.

Remark 11. As mentioned in the introduction, distributed minimax estimation was consid-

ered in Zhu and Lafferty (2018) for the Hölder classes and in Szabó and van Zanten (2020)

for the Sobolev classes. These two types of function classes are special cases of the Besov

classes with the Hölder class being Bα
∞,∞ and Sobolev class being Bα

2,∞. Furthermore, in

both Zhu and Lafferty (2018) and Szabó and van Zanten (2020), the existing upper bound
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and lower bound are sub-optimal (with a poly-logarithmic gap to the optimal rate of con-

vergence (5.8)). In contrast, the minimax rate given in (5.8) is sharp for a wide collection

of Besov spaces.

5.3. Adaptive Gaussian sequence estimation

The minimax rate of convergence established in Section 5.2 provides an important bench-

mark for the evaluation of the performance of distributed Gaussian sequence estimators.

However, the estimator θ̂O, in spite of its statistical optimality and communication efficiency,

requires explicit knowledge of the smoothness parameters which are typically unknown in

practice. The optimal seq-MODGAME procedure proposed in Section 5.2 highly depends

on the prior knowledge on the parameter space Bαp,q(M) so that local machines efficiently

transmit useful information when the communication budget is limited. It is evident from

the construction and theoretical analysis that the estimator θ̂O designed for one Besov class

Bα
p,q(M) with a given smoothness parameter α would perform poorly over another Besov

class Bα′
p,q(M) with a different smoothness parameter α′. Therefore, the estimator θ̂O is not

practical for real applications because the model parameters are typically unavailable.

This naturally leads to the important question of adaptive distributed estimation: Is it pos-

sible to construct a single distributed estimator, satisfying the communication constraints

and not depending on the smoothness parameters, that achieves the optimal rate of conver-

gence simultaneously over a wide collection of Besov classes Bα
p,q(M)? In the conventional

centralized setting, the answer is affirmative. That is, one can achieve adaptation for free for

estimating a Gaussian sequence over a collection of Besov classes Bα
p,q(M) under the mean

squared error.

Adaptive estimation in the centralized setting has been a major goal in the classical non-

parametric function estimation literature. In particular, wavelet thresholding is well known

to be a powerful technique to achieve adaptivity. For example, Donoho and Johnstone

(1995); Abramovich et al. (2006) proposed adaptive term-by-term thresholding methods and

Cai (1999); Cai and Zhou (2009) introduced data-driven block thresholding procedures to
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achieve optimal rate of convergence over a wide collection of Besov spaces. In contrast, little

has been understood on how to construct a communication-efficient adaptive estimator for

most distributed estimation problems, including but not limited to distributed Gaussian

sequence estimation. It is interesting and practically important to investigate the interplay

between communication constraints and adaptation for distributed estimation problems.

In this section we address the following questions: how to construct a data-driven distributed

estimation procedure that can achieve the centralized optimal rate with communication cost

as small as possible? Can adaptation be achieved for free? If not, what is the cost of

adaptation?

It was shown in Section 5.2 that, for distributed estimation over the Besov class Bαp,q(M),

one needs at least Ω

((
M
σ

) 2
2α+1 m

2α+2
2α+1

)
total bits to communicate in order to achieve the

centralized optimal rate O

(
M

2
2α+1

(
σ2

m

) 2α
2α+1

)
. It is tempting to consider the question:

Is there a distributed estimator with a total communication budget O

((
M
σ

) 2
2α+1 m

2α+2
2α+1

)
that adaptively achieves the centralized optimal rate over a wide collection of Besov classes

θ ∈ Bαp,q(M)?

To rigorously formulate this problem, let S̃ ⊂ (0,∞)×(0,∞)×(0,∞]×(0,∞] be a collection

of Besov parameter combinations (α,M, p, q), and C̃(·) is a function (0,∞) → (0,∞). Let

G(S̃, C̃) be the set of adaptive distributed estimators that achieve the centralized optimal

rate of convergence over Besov classes Bαp,q(M) for all (α,M, p, q) ∈ S̃. To be precise,

G(S̃, C̃) is the collection of distributed estimators θ̂ who satisfy the following property: for

any (α,M, p, q) ∈ S̃,

sup
θ∈Bα

p,q(M)
E∥θ̂ − θ∥2 ≤ C̃(α)M

2
2α+1

(
σ2

m

) 2α
2α+1

Estimators in G(S̃, C̃) are called statistically-optimal adaptive estimators over parameter set

S̃. We are interested in the minimum expected communication cost among all statistically-
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optimal adaptive estimators:

Q(S̃, C̃,Bαp,q(M)) ≜ inf
θ̂∈G(S̃,C̃)

sup
θ∈Bα

p,q(M)
EθL(θ̂)

The above quantity, which is called the minimax communication cost for statistically-optimal

adaptive estimators, serves as a benchmark for the communication-efficiency of estimators

in G(S̃, C̃). For any statistically-optimal adaptive estimators, its expected communication

cost is at least Q(S̃, C̃,Bαp,q(M)) when estimating a function in Bαp,q(M). The analysis of

the minimax communication cost Q(S̃, C̃,Bαp,q(M)) is divided into two steps: upper bound

and lower bound. We first propose in Section 5.3.1 an adaptive distributed estimator θ̂A

which can achieve the centralized optimal rate of convergence when 2 ≤ p ≤ ∞, and

provide a upper bound on the expected communication cost. We then derive in Section

5.3.2 a lower bound for the rate of convergence of Q(S̃0, C̃,Bαp,q(M)) where S̃0 is collection

of all Besov class parameters with p ≥ 2. The lower bound provides a fundamental limit

on the communication cost for a statistically-optimal adaptive estimator, while it matches

the upper bound for θ̂A on the expected communication cost. Therefore, the proposed

distributed estimator θ̂A is shown to be the most communication-efficient one among all

statistically-optimal adaptive estimators over a wide range of Besov classes.

5.3.1. Optimal adaptive procedure by local thresholding

In order to establish an upper bound on Q(S̃, C̃,Bαp,q(M)), we first construct a statistically-

optimal adaptive distributed procedure which simultaneously achieves the optimal rate of

convergence over a wide collection of Besov classes, while the rate of convergence for its

expected communication cost matches that of the minimax lower bound given in Section

5.3.2.

Wavelet thresholding methods have been shown to be a powerful tool for adaptive nonpara-

metric function estimation problems in the conventional centralized settings. Estimators

derived from data-driven thresholding rules can automatically adapt to a wide collection
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of Besov spaces. See Donoho and Johnstone (1995); Abramovich et al. (2006); Cai (1999);

Cai and Zhou (2009); Johnstone (2017) and the references therein. However, in the dis-

tributed settings, due to the communication constraints, it is typically impossible to es-

timate individual coordinates accurately by thresholding them all together on the central

machine. In such a setting, it is unclear how to optimally threshold on each local machine

and efficiently transmit the information to the central machine with minimal communication

cost such that a final aggregated estimator is statistically-optimal adaptive. Indeed, it is

unclear if this goal is even achievable.

Fortunately, the answer is affirmative. The following “local thresholding" procedure is pro-

posed for adaptive distributed Gaussian sequence estimation. We should emphasize that

here “local thresholding" referred to the fact that the thresholding step is carried out on

individual local machines, not on the central machine. The meaning is different from that

in the conventional wavelet estimation literature in the centralized setting. The general

strategy can be summarized as follows. On each local machine, we first select “significant

resolution levels" by certain thresholding rule. Only information about the significant res-

olution levels is transmitted to the central machine, where an estimation subroutine called

“ada-MODGAME" is applied to generate good estimates for individual coordinates based on

the transcripts collected from the local machines. These estimates will be further processed

to yield a final estimate θ̂A.

Now we are ready to introduce the local thresholding procedure in detail. Let g : Z →⋃∞
k=1{0, 1}k denote the localization encoding function defined in Section 5.2.1. The estima-

tion procedure is divided into two steps, with the subroutine ada-MODGAME in the second

step of the procedure.

First step: Generate the transcripts on the local machines by thresholding. For

1 ≤ i ≤ m, on the i-th machine:
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1. Define the set of “significant resolution levels" on the i-th machine by

Ji = {0, 1, 2, ..., (⌊2 logm⌋)}
⋃
{j ≥ ⌊2 logm⌋+ 1 :

nj∑
k=1

X2
i,jk ≥ njσ

2(1 +
Λ1

m
)},

where Λ1 > 0 is a prespecified parameter. Only those coordinates at the resolution

levels in the set Ji are processed as part of the transcript outputs from the i-th machine.

All the resolution levels that are not in Ji are considered to be “locally thresholded",

because the signal strength on those resolution levels is weak.

2. If i = 1, the output transcript Z1 is the collection of the “crude localization" strings

Z1,jk, j ∈ J1, k ∈ [nj ] where Z1,jk is defined as

Z1,jk = g(⌊X1,jk/σ⌋);

If 2 ≤ i ≤ 1+ ⌊log2m⌋, the output transcript Zi is the collection of the “finer localiza-

tion" strings Zi,jk, j ∈ Ji, k ∈ [nj ] where Zi,jk is defined as

Zi,jk = g(⌊Xi,jk/σ⌋ mod ⌊logm⌋);

If i ≥ 2+⌊log2m⌋ the output transcript Zi is the collection of the “refinement" strings

Zi,jk, j ∈ Ji, k ∈ [nj ] where Zi,jk is defined as

Zi,jk = ⌊Xi,jk/σ⌋ mod 8.

Second step: Generate the distributed estimator θ̂ on the central machine. The

central machine receives the transcripts Z1, Z2, ..., Zm from the local machines. Note that

the code words in Z1, Z2, ..., Zm are all uniquely decodable, thus the central machine is able

to recover short strings Zi,jk for i ∈ [m], j ∈ Ji, k ∈ [nj ]. Also, note that the total number

of short strings from the i-th machine is
∑

j∈Ji 2
j , so from the binary representation of the
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total number of short strings from the i-th machine, one can recover significant resolution

level Ji.

To warp up, from those transcripts that the central machine receives

• significant resolution levels on the local machines J1, J2, ..., Jm.

• short strings Zi,jk for i ∈ [m], j ∈ Ji, k ∈ [nj ].

Let Ĵ be defined as

Ĵ ≜ {j : j ∈ J1;

1+⌊log2 m⌋∑
i=2

I{j∈Ji} ≥
⌊log2m⌋

2
;

m∑
i=2+⌊log2 m⌋

I{j∈Ji} ≥
m− 1− ⌊log2m⌋

2
}

Intuitively, Ĵ is the set of resolution levels that are significant on most local machines.

The resolution levels within Ĵ will be estimated whereas those not in Ĵ will be zero out

(thresholded).

The final estimator θ̂A is constructed as follows: For j = 1, 2, ...,

• If j /∈ Ĵ , let

θ̂Ajk = 0 for all k ∈ [nj ].

• If j ≤ ⌊2 logm⌋, let Sj = [m] and

(θ̂∗j1, θ̂
∗
j2, ..., θ̂

∗
jnj

) = f̂ada(Sj , {Zi,jk : i ∈ Sj , k ∈ [nj ]})

be the output of the subroutine “ada-MODGAME". Then apply the thresholding rule

to get the final estimate

(θ̂Aj1, θ̂
A
j2, ..., θ̂

A
jnj

) =


(θ̂∗j1, θ̂

∗
j2, ..., θ̂

∗
jnj

) if
∑nj

k=1(θ̂
∗
jk)

2 ≥ Λ2
njσ

2

m

(0, 0, 0, ..., 0) otherwise
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where Λ1 > 0 is a prespecified parameter.

• If j ≥ ⌊2 logm⌋+ 1 and j ∈ Ĵ , define Sj = {i ∈ [m] : j ∈ Ji}, and let

(θ̂Aj1, θ̂
A
j2, ..., θ̂

A
jnj

) = f̂ada(Sj , {Zi,jk : i ∈ Sj , k ∈ [nj ]})

be the output of the subroutine “ada-MODGAME".

Subroutine: ada-MODGAME

Input: σ,m, j, nj , Sj , {Zi,jk : i ∈ Sj , k ∈ [nj ]}.

For each k ∈ [nj ], do following steps:

1. Because g(x) is uniquely decodable, from Z1,jk = g(⌊Xi,jk/σ⌋) one can recover the

value of ⌊Xi,jk/σ⌋. Let Iajk be a left-closed-right-open interval of length m defined as

Iajk ≜


[
⌊Xi,jk/σ⌋ − ⌊logm⌋−1

2 , ⌊Xi,jk/σ⌋+ ⌊logm⌋+1
2

)
if ⌊logm⌋ is an odd number[

⌊Xi,jk/σ⌋ − ⌊logm⌋
2 , ⌊Xi,jk/σ⌋+ ⌊logm⌋

2

)
if ⌊logm⌋ is an even number

.

2. Let Sb
j ≜ Sj ∩ {i : 2 ≤ i ≤ ⌊log2m⌋+ 1} be the set of machines that output the finer

localization strings. Let zbik ≜ argmaxz′
∑

i∈Sb
j
I{Zi,jk=z′} be the mode statistic among

Zi,jk, i ∈ Sb
j . Note that the length of Iajk is ⌊logm⌋, so there will be exactly one integer

xbjk ∈ Iajk satisfying

xbjk mod ⌊logm⌋ = g−1(zbik).

Let Ibjk be an interval of length 3 defined by

Ibjk ≜ [xbjk − 1, xbjk + 1].

3. Let Sh
j ≜ Sj ∩{i : i ≥ ⌊log2m⌋+2} be the set of machines that output the refinement
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strings. Let ph be the proportion of those refinement strings whose value is equal to

g(xbjk − 2 mod 8):

ph ≜ card(Sh
j )

−1
∑
i∈Sh

j

(I{Zi,jk=g(xb
jk−2 mod 8)}

Define a function

hjk(y) ≜
∞∑

l=−∞

∫ xb
jk−1+8l

xb
jk−2+8l

ϕ1(x− y)dx.

It is easy to see that hjk(y) is a strictly decreasing function on Ibjk. Let h−1
jk (y) be

the inverse function of hjk(y) which maps hjk(Ibjk) to Ibjk. Finally the estimate can be

calculated by

θ̂∗jk =


(xbjk + 1)σ if ph ≤ hjk(x

b
jk + 1)

h−1
jk (p

h)σ if hjk(xbjk + 1) < ph < hjk(x
b
jk − 1)

(xbjk − 1)σ if ph ≥ hjk(x
b
jk − 1)

.

Output: θ̂∗jk for k ∈ [nj ].

We have given above a detailed construction of the local thresholding estimator θ̂A. The fol-

lowing theorem provides a theoretical guarantee for the statistical performance and commu-

nication cost of the proposed procedure over the Besov classes Bαp,q(M) with α > 0,M ≥ σ,

1 < q ≤ ∞, and 2 ≤ p ≤ ∞.

Theorem 21 (Upper Bound for the Communication Cost). If Λ1 > 10 and Λ2 is chosen

sufficiently large, there exists a constant C > 0 such that, the local thresholding estimator

θ̂A is adaptively rate-optimal, i.e.

sup
θ∈Bα

p,q(M)
E∥θ̂A − θ∥2 ≤ CM

2
2α+1

(
σ2

m

) 2α
2α+1
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and we also have

sup
θ∈Bα

p,q(M)
EθL(θ̂

A) ≤ C

(
m3 +

(
M

σ

) 2
2α+1

m
2α+2
2α+1

)

for all α > 0,M ≥ σ, 1 < q ≤ ∞, and 2 ≤ p ≤ ∞.

Remark 12. The proof of Theorem 21 is involved due to the fact that, after thresholding

on the local machines, the conditional distribution of the observations given that their

resolution level is selected into the significant set Ji is no longer Gaussian. Lemma 7 (from

the supplementary material Cai and Wei (2020b)) is the key to the proof, which shows that

the ada-MODGAME subroutine is robust even if the additive noise is slightly different from

Gaussian distribution.

Remark 13. One of the merits of the local thresholding estimator θ̂A is its “communication-

adaptivity", which means the communication cost of the estimation procedure is also adap-

tive to the smoothness of the underlying function. Compared to the two-point adaptive

procedure proposed in the previous work Szabó and van Zanten (2020) which is able to

achieve adaptation with smoothness less than certain threshold, our newly proposed local

thresholding procedure requires no prior knowledge on the range of the smoothness param-

eters, and is able to achieve statistical adaptation over a wide collection of Besov classes.

The user can apply local thresholding procedure to obtain adaptation over the Besov classes

Bαp,q(M) as long as p ≥ 2 with guaranteed minimum communication cost.

5.3.2. Lower bound analysis

In this subsection, we are going to obtain a lower bound for the minimax communication

cost for statistically-optimal adaptive estimators, which is instrumental in establishing the

optimal rate of convergence. Before we establish a lower bound for the minimax commu-

nication cost Q(S̃, C̃,Bαp,q(M)), we first state the following theorem, which gives a lower

bound for the communication cost when the estimator achieves statistical-optimal rate of

convergence in two different Besov classes.
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Theorem 22 (Lower bound for communication cost for two-point adaptation). For any

distributed estimator θ̂, let Bα1
p1,q1(M1) and Bα2

p2,q2(M2) be two different Besov classes. If

there exists a constant C > 0 such that M1 ≤ Cσm2α1+
1
2 , and

sup
θ∈Bαl

pl,ql
(Ml)

E∥θ̂ − θ∥2 ≤ CM
2

2αl+1

l

(
σ2

m

) 2αl
2αl+1

for l = 1, 2. (5.9)

Then there exists a constant c > 0 (depending on C) such that

sup
θ∈Bα2

p2,q2
(M2)

EL(θ̂) ≥ c

((
M1

σ

) 2
2α1+1

m
2α1+2
2α1+1 +

(
M2

σ

) 2
2α2+1

m
2α2+2
2α2+1

)
.

Remark 14. If one sets σ =
√
m/n, M1 = M2 = 1 and α2 > α1 > logn

4 logm − 1
2 , the

above Theorem 22 recovers the result of Theorem 2.4 in Szabó and van Zanten (2020)

which shows that two-point adaptation is impossible without additional communication

cost when m4α+2 ≫ n. Comparing with the previous result, the result given in Theo-

rem 22 here is stronger because we prove the lower bound for the communication cost

supθ∈Bα2
p2,q2

(M2)
EL(θ̂) under the only assumption that θ̂ is adaptive. In particular, no upper

bound is imposed on supθ∈Bα1
p1,q1

(M1)
EθL(θ̂), which is in fact necessary to obtain Theorem

2.4 in Szabó and van Zanten (2020).

The above Theorem 22 only considers two-point adaptation between two specific Besov

classes. However, in real data application, we are more interested in developing estimators

that are able to adapt to a wide range of parameter spaces, such as our adaptive estimator θ̂A.

It is necessary to extend the above Theorem 22 to a general lower bound on Q(S̃, C̃,Bαp,q(M)).

We define S̃0 = {(α,M, p, q) : α > 0,M ≥ σ, 2 ≤ p ≤ ∞, 1 < q ≤ ∞} a wide collection

of Besov class parameters. The following lower bound on Q(S̃0, C̃,Bαp,q(M)) shows a funda-

mental limit on the communication cost of statistically-optimal estimators over Besov classes

Bαp,q(M) where (α, p, q,M) ∈ S̃0. In view of the upper bound to be given in Section 5.3.1

that is achieved by the adaptive distributed estimator θ̂A, the lower bound is rate optimal.
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Theorem 23 (Lower bound for the communication cost over Besov ball collection S̃0). For

any C̃ : (0,∞)→ (0,∞) and (α,M, p, q) ∈ S̃0, there exists a constant c > 0 such that

Q(S̃0, C̃,Bαp,q(M)) ≥ c

(
m3 +

(
M

σ

) 2
2α+1

m
2α+2
2α+1

)
. (5.10)

Remark 15. The lower bound in Theorem 23 shows that, if a distributed estimator adap-

tively achieves the optimal rate of convergence over the all Besov classes where p ≥ 2, the

minimum required expected communication cost for estimating functions in Bαp,q(M) is of

order m3 +
(
M
σ

) 2
2α+1 m

2α+2
2α+1 . The additional communication cost, which is of order m3 and

not depending on the values of α,M, p, q and σ, is required and necessary for constructing

an adaptive estimator. When m ≳ (Mσ )
2

4α+1 , the cost of adaptation is significant.

Remark 16. Although in Theorem 23 we provide a lower bound on Q(S̃, C̃,Bαp,q(M)) where

S̃ = S̃0, the same lower bound also holds when S̃ is other sufficiently large Besov ball

collections. With the help from Theorem 22, we are able to establish lower bounds for other

Besov ball collection S̃.

Remark 17. The techniques used to prove Theorems 22 and 23 can be of independent

interest. Roughly speaking, if the algorithm aims to perform well on both Bα1
p1,q1(M1) and

Bα2
p2,q2(M2) where α1 < α2, since we cannot tell whether each local sample is drawn from

Bα1
p1,q1(M1) or Bα2

p2,q2(M2) on the local machines, the algorithm needs to transmit more

bits than non-adaptive estimation for Bα2
p2,q2(M2), because it also needs to estimate well in

Bα1
p1,q1(M1). More specifically, we prove that the local machines cannot “distinguish" samples

that is drawn from a null model (θ = 0⃗) or drawn from a mixture of models with θ having

m2 non-zero elements. If the observations are truly drawn from the mixture, the minimum

communication cost required to achieve the statistical optimal rate of convergence is of order

m3. Thus one can further show that the minimax communication cost is at least Ω(m3)

even if θ = 0⃗. This is a key step in the argument for establishing Theorems 22 and 23.

A similar technique was also used in Szabó and van Zanten (2020). But a finer analysis
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is needed here, especially for the key Claim 3 where we first prove a conditional strong

data processing inequality and use it to establish a stronger result without unnecessary

assumptions.

Lemma 16 (Conditional strong data processing inequality). For t > 0 and k ∈ Z+, let θ

be a random vector uniformly distributed on the set {−tσ, tσ}k and let X ∼ N(θ, σ2Ik). Let

D ⊆ Rk be a k-dimensional region such that the event X ∈ D is independent with θ and let

Z be a random variable such that θ → X → Z forms a Markov chain. Then

I(Z; θ|X ∈ D)P(X ∈ D) ≤ 256t2(H(Z|X ∈ D)P(X ∈ D) +H({X ∈ D})),

where I(·; ·|·), H(·), and H(·|·) denote conditional mutual information, entropy, and condi-

tional entropy respectively.

The definitions of the conditional mutual information I(·; ·|·), entropy H(·), and conditional

entropy H(·|·) are given in Section 5.6.1. Note that the classical strong data processing

inequality for the Gaussian channels serves as a special case if we set D = Rk. The above

inequality is the key to the proof of Theorem 22. We omit the proof of Lemma 16 since it

is similar to the proof of Claim 3 in the proof of Theorem 22.

The upper and lower bounds given in Theorems 21 and 23 together establish the minimax

rate of communication cost for statistically-optimal adaptive estimators:

Q(S̃0, C̃,Bαp,q(M)) ≍ m3 +

(
M

σ

) 2
2α+1

m
2α+2
2α+1 (5.11)

where C̃ is large enough and recall that S̃0 = {(α,M, p, q) : α > 0,M > σ, 2 ≤ p ≤ ∞, 1 <

q ≤ ∞}. The minimax rate (5.11) also implies that θ̂A is the optimal adaptive distributed

estimator with respect to both statistical performance and communication cost.

1. The estimator θ̂A simultaneously achieves the centralized optimal rate over the Besov

classes Bαp,q(M) for all α > 0,M ≥ σ, 1 < q ≤ ∞, and 2 ≤ p ≤ ∞. There is no
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statistical cost of adaptation in terms of the rate of convergence.

2. Among all the statistically-optimal adaptive estimators, the expected communication

cost for θ̂A is rate-optimal over the Besov classes Bαp,q(M) for all α > 0,M ≥ σ,

1 < q ≤ ∞, and 2 ≤ p ≤ ∞.

Remark 18. Compared with the minimum communication cost
(
M
σ

) 2
2α+1 m

2α+2
2α+1 for achiev-

ing the optimal rate of convergence in the minimax setting in (5.8), an additional com-

munication cost of order m3 bits is needed to achieve the adaptation over a collection of

Besov classes. The term m3 can be viewed as the communication cost of adaptation. This

interplay between communication and statistical adaptation in the distributed setting is an

interesting phenomenon: It costs more bits to communicate in order to achieve adaptiv-

ity. In contrast, statistical adaptation can be achieved for free in the centralized setting

(Donoho and Johnstone, 1995; Johnstone, 2017).

5.4. Numerical Studies

The proposed seq-MODGAME estimator θ̂O and the adaptive local thresholding estimator

θ̂A are easily to implement. In this section, we conduct simulation studies to investigate the

numerical performance of these two estimators in various settings.

5.4.1. The seq-MODGAME estimator θ̂O

We first study the seq-MODGAME estimator θ̂O proposed in Section 5.2. We generate

i.i.d data according to the distributed Gaussian sequence model (5.3) on m = 100 different

virtual machines, where the mean vector θ is the wavelet coefficients of certain specified

underlying function. The underlying function f is chosen as

f(t) = sin(4πt) + 0.7 cos(18πt) t ∈ [0, 1]

and the noise level σ = 1/16.

We apply the optimal seq-MODGAME estimator θO to estimate wavelet coefficients of f
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given their noisy observations on virtual machines. Afterwards, we transform estimated

wavelet coefficients back to estimated smooth functions f̂O. The results are shown in Fig-

ure 5.1. As more and more bits are allowed to communicate, the mean squared error are

decreasing so that the estimate is becoming more and more accurate.
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Figure 5.1: Estimate given by the optimal seq-MODGAME estimator θ̂O under the
communication constraints. For different choices of total communication budgets B =
100, 2400, 16000, we illustrate an example of estimated function f̂O in each figure. The
mean squared error through 1000 trials are also given below each figure.

5.4.2. The local thresholding estimator θ̂A

Similar to the setting in Section 5.4.1, we generate i.i.d data according to the distributed

Gaussian sequence model (5.3) and set m = 100, σ = 1/16. However, in this simulation

study we work on three different choices for the underlying functions f = f1, f2 or f3:

f1(t) = 1.5 sin(4πt) t ∈ [0, 1];

f2(t) = sin(4πt) + 0.7 cos(18πt) t ∈ [0, 1];

f3(t) = 0.8 sin(4πt) + 0.5 cos(18πt) + 0.5 cos(44πt) t ∈ [0, 1].

The three functions given above are designed to have different smoothness. f1 is the

smoothest function among the three functions whereas f3 is the most “wiggly" one. We

expect to see a data-driven estimator can adapt to their smoothness automatically during

the estimation.

Similarly, given random distributed data generated by adding noise to the wavelet coefficients
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of f1, f2 and f3 respectively, we apply the local thresholding estimator θ̂A to estimate the

wavelet coefficients. The estimated smooth functions f̂A are obtained by reversed discrete

wavelet transform on the estimated wavelet coefficients. The results are shown in Figure

5.2. It can be clearly seen from simulation that, when the underlying function are relatively

smooth, the local thresholding estimator requires less communication cost while achieves

better statistical accuracy. The numerical results are consistent with the theory, which shows

the local thresholding estimator can adapt to the smoothness of the underlying function.
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(b) f2 : EL = 8083,MSE = 5.03
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Figure 5.2: Estimate given by the local thresholding estimator θ̂A. Under different choices
of ground truth functions f1, f2, f3, we illustrate an example of estimated function f̂A in
each figure. The expected communication cost and their mean squared error through 1000
trials are also given below each figure.

5.5. Discussion

In this chapter, both distributed minimax and distributed adaptive estimation under the

communication constraints were studied for the Gaussian sequence model and white noise

model. Optimal minimax rate of convergence is established and the cost of adaptation is

characterized. In addition, a data-driven adaptive distributed estimator with theoretical

guarantees is constructed. Several technical tools and the formulation for the study of the

interplay between adaptation and communication cost can be of independent interest.

Distributed nonparametric function estimation is still very much a new area with a range of

interesting open problems. One such problem is the construction of an adaptive distributed

procedure for Gaussian sequence estimation under a fixed communication constraint. It is

notable that the communication cost for the local thresholding procedure θ̂A is related to
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the smoothness of the underlying function. When the communication budget is tight, there

is not enough budget to implement the local thresholding procedure. Therefore, it will be

useful to have an estimator whose communication cost is controlled, while its estimation

accuracy is adaptive to the smoothness of underlying function.

In this chapter, we focused on estimation over the Besov classes with p ≥ 2. Another

direction is the study of distributed Gaussian sequence estimation over the Besov classes

with p < 2. Similar to the centralized setting, the case p < 2 is very different from the case

p ≥ 2 in the distributed setting. The techniques developed in this chapter are not sufficient

for the case p < 2 and we leave this case for future work.

Besides the white noise model considered in this chapter, it is also interesting to study

other related nonparametric function estimation problems, including nonparametric den-

sity estimation, nonparametric regression with fixed design, and nonparametric regression

with random design, which have all been well studied in the centralized setting. In par-

ticular, it is shown that these three models are asymptotic equivalent to the white noise

model (Nussbaum, 1996; Brown and Low, 1996; Brown et al., 2002, 2004) in the centralized

setting under mild regularity conditions when the smoothness parameter α > 1
2 . Practi-

cally, for example, by applying the root-unroot algorithm to the binned data (Brown et al.,

2010), the density estimation problem can essentially be turned into the problem of non-

parametric regression with fixed design. However, in the distributed settings, these four

problems may exhibit different asymptotic behaviors due to the communication constraints.

In the distributed setting, nonparametric density estimation, nonparametric regression with

fixed design, and nonparametric regression with random design merit careful and separate

investigations. We leave them for future work.

Broadly speaking, virtually any problem studied in the classical centralized setting has its

counterpart in the distributed setting. Examples include minimax and adaptive estimation

of linear and quadratic functionals as well as hypothesis testing under these nonparametric

function models. It is challenging to develop a general optimality theory and construct statis-
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tically optimal distributed procedures under the communication constraints, New technical

tools for both the lower bound and upper bound analyses are needed.

5.6. Proofs

We prove Theorems 22 and 23 in this section. For reasons of space, the proofs of the other

theorems, propositions and additional technical lemmas are given in the supplementary

material (Cai and Wei, 2020a).

5.6.1. Notation and definitions

For any finite S, denote U(A) be a uniform distribution on S. For any a, b, let a ≲ b denote

there exists a universal constant C > 0 such that a ≤ Cb, whereas a ≳ b denotes there

exists a universal constant c > 0 such that a ≥ cb. For any discrete random variables X,Y

supported on X ,Y, the entropy H(X), conditional entropy H(X|Y ), and mutual information

I(X;Y ) are defined as

H(X) ≜ −
∑
x∈X

P(X = x) logP(X = x),

H(X|Y ) ≜ −
∑

x∈X ,y∈Y
P(X = x, Y = y) logP(X = x|Y = y),

I(X;Y ) ≜
∑

x∈X ,y∈Y
P(X = x, Y = y) log

P(X = x|Y = y)

P(X = x)
.

5.6.2. Proof of Theorem 22

It follows from Theorem 20 that for any estimator θ̂ satisfying supθ∈Bα
p,q(M) EθL(θ̂) ≤ B, we

have

sup
θ∈Bα

p,q(M)
E∥θ̂ − θ∥2 ≥ cM

2
α+1

(
σ2

B

) α
α+1

for some constant c > 0. By the assumption,

sup
θ∈Bα2

p2,q2
(M2)

E∥θ̂ − θ∥2 ≤ CM
2

2α2+1

2

(
σ2

m

) 2α2
2α2+1

.
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So it follows that

sup
θ∈Bα2

p2,q2
(M2)

EθL(θ̂) ≳
(
M2

σ

) 2
2α2+1

m
2α2+2
2α2+1 .

To prove Theorem 22, it now suffices to show

sup
θ∈Bα2

p2,q2
(M2)

EθL(θ̂) ≳
(
M1

σ

) 2
2α1+1

m
2α1+2
2α1+1 .

The remain part of the proof aims to prove the above inequality.

Define the constant λ (only depends on C) and variable u as follows:

λ = max{10, 32
√
C},

u =

(
M1

σ

) 2
2α1+1

m
1

2α1+1 .

Define the set of sequences

Sm,u ≜
{
(τ1

λσ√
m
, τ2

λσ√
m
, ..., τu

λσ√
m
, 0, 0, ...) : τ1, τ2, ..., τu ∈ {−1,+1}

}
.

Since for any θ ∈ Sm,u and p1, q1 <∞ we have

|θ|bα1
p1,q1

=

 ∞∑
j=0

2j(α1+1/2−1/p1)

 2j∑
k=1

|θjk|p1
1/p1


q1

1/q1

≤

⌊log u⌋+1∑
j=0

2jq1(α1+1/2)

1/q

λσ√
m

≤
(

(2u)q1(α1+1/2)

1− 2−q1(α1+1/2)

)1/q1
λσ√
m

= λ

(
2q1(α1+1/2)

1− 2−q1(α1+1/2)

)1/q1

uα1+1/2 σ√
m
≤M1.
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When p1 = ∞ or q1 = ∞, the above inequality also holds by similar argument. Therefore

we have Sm,u ⊂ Bα1
p1,q1(M1).

Since we have assumed

sup
θ∈Bα1

p1,q1
(M1)

E∥θ̂ − θ∥2 ≤ CM
2

2α1+1

1

(
σ2

m

) 2α1
2α1+1

.

Note that the maximum risk is lower bounded by the Bayesian risk, assign to θ a uniform

prior θ ∼ U(Sm,u), then we have

Eθ∼U(Sm)∥θ̂ − θ∥2 ≤ CM
2

2α1+1

1

(
σ2

m

) 2α1
2α1+1

= Cu
σ2

m
.

In the following proof, we are going to provide several claims and prove each claim accord-

ingly. Let Q0 denote the probability law of X1 when θ = (0, 0, 0, ..., 0, ...). Let Qm denote

the probability law of X1 when θ ∼ U(Sm,u). Note that there are multiple distributions we

need to consider, we shorthand the probability, expectation, entropy and mutual informa-

tion when θ = (0, 0, 0, ..., 0, ...) as P0,E0, H0 and I0 respectively. Similarly we use shorthands

Pm,Em, Hm and Im to denote those quantities when θ ∼ U(Sm,u)

Claim 6. We have Im(θ̂, θ) ≥ 15
16u.

Proof of claim 6: Define θ̂∗ ≜ PSm,u(θ̂) be the nearest point in Sm,u to θ̂. Then we have

Em∥θ̂∗ − θ∥2 ≤ 4Em∥θ̂ − θ∥2 ≤ 4Cu
σ2

m
. (5.12)

Note that θ̂∗ ∈ Sm thus we can reparametrize θ̂∗ to

θ̂∗ = (τ̂1
λσ√
m
, τ̂2

λσ√
m
, ..., τ̂m2

λσ√
m
, 0, 0, ...) where τ̂1, τ̂2, ..., τ̂m2 ∈ {−1,+1}
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Then we can simplify (5.12) to

Em

m2∑
k=1

(τ̂k − τk)
2 ≤ 4Cλ−2u. (5.13)

Recall that λ = max{10, 32
√
C}. Substitute into (5.13) we have

Em

m2∑
k=1

(τ̂k − τk)
2 ≤ 1

256
u.

Apply Fano’s inequality, we can conclude

m2∑
k=1

Hm(τk|τ̂k) ≤
1

16
u.

The following lemma is instrumental to establish later results:

Lemma 17. If A is a random variable and Y1, Y2, ..., Yd are independent random variables,

then

I(A; (Y1, Y2, ..., Yd)) ≥
d∑

k=1

I(A;Yk).

Note that τ1, τ2, ..., τk are i.i.d Rademacher variables, apply Lemma 17 we have

Im(θ̂∗; θ) = Im(θ̂∗; (τ1, τ2, ..., τm2)) ≥
m2∑
k=1

Im(θ̂∗; τk) ≥
m2∑
k=1

Im(τ̂k; τk)

=
m2∑
k=1

Hm(τk)−Hm(τk|τ̂k) ≥
15

16
m2.

The second inequality above is due to data processing inequality applied to the fact τ̂k

only depends on θ̂∗. Finally the claim can be concluded by data processing inequality

Im(θ̂; θ) ≥ Im(θ̂∗; θ).
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Claim 7. Let δ > 0 be a parameter that will be specified later. For any δ > 0, there exist a

constant C3 > 0 (depending on C,α1 and δ) such that

Pm

(
dQm

dQ0
(X1) > C3

)
≤ δ, (5.14)

Im

(
X1; θ

∣∣∣∣dQm

dQ0
(X1) > C3

)
Pm

(
dQm

dQ0
(X1) > C3

)
≤ u

2m
. (5.15)

Proof of claim 7: We first prove (5.14) holds with large enough constant C3. Let X1,k

denote the k-th coordinate of X1. Note that

dQm

dQ0
(X1) =

u∏
k=1

e−
λ2

2m · e
−

λX1,k√
mσ + e

λX1,k√
mσ

2

 .

Using the basic inequality ln( e
t+e−t

2 ) ≤ t2

2 , we have

Pm

(
dQm

dQ0
(X1) > C3

)
= Pm

(
ln

dQm

dQ0
(X1) > lnC3

)

= Pm

 u∑
k=1

ln

e
−

λX1,k√
mσ + e

λX1,k√
mσ

2

− λ2

2m

 > lnC3


≤ Pm

(
u∑

k=1

λ2

2mσ2

(
X2

1,k − σ2
)
> lnC3

)

= Pm

(
u∑

k=1

λ2

2mσ2

(
X2

1,k − σ2 − λ2σ2

m

)
> lnC3 −

λ4u

2m2

)
.

Note that
∑u

k=1
λ2

2mσ2

(
X2

1,k − σ2 − λ2σ2

m

)
has mean 0 and variance at most (1+λ2)λ4u/m2.

Note that we have assumed M1 ≤ Cσm2α1+
1
2 , this implies u ≤ C

2
2α1+1m2. So by Cheby-

shev’s inequality, as long as

lnC3 ≥
C

2
2α1+1λ4

2
+

√
C

2
2α1+1 (1 + λ2)λ4/δ,
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we have

Pm

(
dQm

dQ0
(X1) > C3

)
≤ δ.

We now prove the second inequality (5.15). Note that when θ ∼ U(Sm,u), θ and event

{dQm

dQ0
(X1) > C3} are independent (due to symmetry of Sm,u). Define

θa = (
λσ√
m
,
λσ√
m
, ...,

λσ√
m
, 0, 0, ..., 0) ∈ Sm.

By symmetry, it is easy to show that

Im

(
X1; θ

∣∣∣∣dQm

dQ0
(X1) > C3

)
Pm

(
dQm

dQ0
(X1) > C3

)
=

∫
dQm
dQ0

(X1)>C3

p(x1|θ = θa) log
p(x1|θ = θa)

qm(x1)
dx1

where p(x1|θ = θa) denote the density of x1 when θ = θ0, and qm(x1) denote the density of

law Qm.

Further, note that we have following decomposition for p(x1|θ = θa) and qm(x1):

p(x1|θ = θa) =

u∏
i=1

1√
2πσ

e−
(x1,k− λσ√

m
)2

2σ2 ,

qm(x1|θ = θa) =
u∏

i=1

1

2
√
2πσ

(
e−

(x1,k− λσ√
m

)2

2σ2 + e−
(x1,k+ λσ√

m
)2

2σ2

)
.
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So we can get

∫
dQm
dQ0

(X1)>C3

p(x1|θ = θa) log
p(x1|θ = θa)

qm(x1)
dx1

=u

∫
1√
2πσ

e−
(y− λσ√

m
)2

2σ2 · log

 2

1 + exp(− 2λy√
mσ

)

Pm

(
dQm

dQ0
(X1) > C3

∣∣∣∣x1,1 = y

)
dy

≤u
∫
y∈[−2λ

√
mσ,2λ

√
mσ]

1√
2πσ

e−
(y− λσ√

m
)2

2σ2 · log

 2

1 + exp(− 2λy√
mσ

)


· Pm

(
dQm

dQ0
(X1) > C3

∣∣∣∣x1,1 = y

)
dy

+ u

∫
y/∈[−2λ

√
mσ,2λ

√
mσ]

1√
2πσ

e−
(y− λσ√

m
)2

2σ2 · log

 2

1 + exp(− 2λy√
mσ

)


· Pm

(
dQm

dQ0
(X1) > C3

∣∣∣∣x1,1 = y

)
dy.

(5.16)

Now we bound the first term of the right hand side in (5.16). It can be shown that when

C3 is a large enough constant, we could get

Pm

(
dQm

dQ0
(X1) > C3

∣∣∣∣x1,1 = 2λ
√
mσ

)
≤ ln 2

4λ2
,

(we omit the proof here because it is similar to the proof of (5.14).)

Thus it is easy to show

∫
y∈[−2λ

√
mσ,2λ

√
mσ]

1√
2πσ

e−
(y− λσ√

m
)2

2σ2 · log

 2

1 + exp(− 2λy√
mσ

)


· Pm

(
dQm

dQ0
(X1) > C3

∣∣∣∣x1,1 = y

)
dy

≤ ln 2

4λ2

∫
1√
2πσ

e−
(y− λσ√

m
)2

2σ2 · log

 2

1 + exp(− 2λy√
mσ

)

 dy

≤ ln 2

4λ2
· 1

ln 2

(
λ√
m

)2

=
1

4m
.

where the second inequality is due to the entropy bound given in Michalowicz et al. (2008).
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Next we are going to bound the second term of the right hand side in (5.16). Because λ ≥ 10,

it is easy to show

∫
y/∈[−2λ

√
mσ,2λ

√
mσ]

1√
2πσ

e−
(y− λσ√

m
)2

2σ2 · log

 2

1 + exp(− 2λy√
mσ

)


· Pm

(
dQm

dQ0
(X1) > C3

∣∣∣∣x1,1 = y

)
dy

≤ log 2 ·
∫
y/∈[−2λ

√
mσ,2λ

√
mσ]

1√
2πσ

e−
(y− λσ√

m
)2

2σ2 dy ≤ 2 exp

(
−
(2λ
√
m− λ√

m
)2

2

)
<

1

4m
.

Apply the above two bounds to (5.16) we can get

∫
dQm
dQ0

(X1)>C3

p(x1|θ = θa) log
p(x1|θ = θa)

qm(x1)
dx1 ≤

u

2m

when C3 is a large enough constant. This directly implies inequality (5.15).

Denote the set R = {x ∈ R∞ : dQm

dQ0
(x) ≤ C3} and random variable Wi = I{Xi∈R}.

Claim 8. For each i = 1, 2, ...,m, we have

Im(Zi; θ|Xi ∈ R)Pm(Xi ∈ R) ≤ 256λ2

m

(
Em(LiI{Xi∈R}) +Hm(Wi)

)
.

Proof of claim 8: Let Z̃i defined as

Z̃i ≜


Zi if X ∈ R

⋆ if X /∈ R

where ⋆ is a unique symbol which is different with any 0-1 string.

The following lemma is instrumental to establishing later results.

Lemma 18 (Multidimensional strong data processing inequality).

Suppose T = (T (1), T (2), ..., T (d)) be a collection of random variables where each entry is
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an i.i.d Bernoulli random variable with mean 1
2 . Let µ0 be a d-dimensional vector and

∆ > 0 be a positive real number. Let X be a d-dimensional Gaussian random variable where

X(1), X(2), ..., X(d) are independent with distribution

X(k) ∼ N(µ
(k)
0 + T (k)∆, σ2).

Let Z be a discrete random variable such that T → X → Z is a Markov chain, i.e. Z ⊥ T |X.

Then the following multidimensional strong data processing inequality holds:

I(T ;Z) ≤ 64

(
∆

σ

)2

I(X;Z). (5.17)

Lemma 18 has been proved in Cai and Wei (2020c). For sake of completeness, we provide

its proof in the present supplementary material.

Apply Lemma 18 on Markov chain θ → Xi → Z̃i where θ ∼ U(Sm), we have

Im(θ; Z̃i) ≤
256λ2

m
Im(Z̃i;Xi).

Note that Wi ⊥ θ when θ ∼ U(Sm,u), and Wi is determined given Z̃, we have

Im(θ; Z̃i) = Im(θ; (Z̃i,Wi)) = Im(θ; Z̃i|Wi) + Im(θ;Wi)

= Im(θ; Z̃i|Xi ∈ R)Pm(Xi ∈ R) + Im(θ; Z̃i|Xi /∈ R)Pm(Xi /∈ R) + Im(θ;Wi)

= Im(θ; Z̃i|Xi ∈ R)Pm(Xi ∈ R).
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For similar reasons, we have

Im(Z̃i;Xi) ≤ Hm(Z̃i) = Hm(Z̃i,Wi) = Hm(Z̃i|Wi) +Hm(Wi)

= Hm(Z̃i|Xi ∈ R)P(Xi ∈ R) +Hm(Z̃i|Xi /∈ R)P(Xi /∈ R) +Hm(Wi)

= Hm(Zi|Xi ∈ R)P(Xi ∈ R) +Hm(Wi)

≤ Em(Li|Xi ∈ R)P(Xi ∈ R) +Hm(Wi)

where the latter inequality is due to Shannon’s source coding theorem (Shannon, 1948).

Combining the above three formulas yields the desired inequality.

Proof of the main theorem:

Note that the region R is “symmetric" where x ∈ R is equivalent to |x| ∈ R (|x| is entry-

wise absolute value). So P(X ∈ R|θ) is invariant for all θ ∈ Sm, therefore Wi ⊥ θ when

θ ∼ U(Sm). Based on this, for each i = 1, 2, ...,m we have

Im(Zi; θ) ≤ Im((Zi,W ); θ) = Im(Zi; θ|W ) + Im(W ; θ)

= Im(Zi; θ|W )

= Im(Zi; θ|Xi ∈ R)Pm(Xi ∈ R) + Im(Zi; θ|Xi /∈ R)Pm(Xi /∈ R)

≤ Im(Zi; θ|Xi ∈ R)Pm(Xi ∈ R) + Im(Xi; θ|Xi /∈ R)Pm(Xi /∈ R)

≤ 256λ2

m

(
Em(LiI{Xi∈R}) +Hm(Wi)

)
+

u

2m

(5.18)

where the second inequality is due to data processing inequality and the last inequality is

derived from Claim 7 and Claim 8.

Taking summation over (5.18), we have

256λ2

m

(
mHm(W1) +

m∑
i=1

Em(LiI{Xi∈R})

)
+

u

2
≥

m∑
i=1

Im(Zi; θ) ≥ Im(θ̂; θ) ≥ 15

16
u (5.19)

where the last inequality is due to Claim 6.
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Note that for each i = 1, 2, ...,m, we have

Em(LiI{Xi∈R}) = E0(LiI{Xi∈R}
dQm

dQ0
(Xi)) ≤ C3E0(LiI{Xi∈R}) ≤ C3E0(Li).

Substitute the above inequality into (5.19) we can get

E0(L) =

m∑
i=1

E0(Li) ≥
1

C3

(
7

4096λ2
mu−mHm(W1)

)
.

Note that Hm(W1) ≤ −δ log δ− (1− δ) log(1− δ). We can always set δ to a sufficient small

constant so that Hm(W1) ≤ 7
2048λ2 . Note that u ≥ 1, then we can conclude that

E0(L) ≥
7

8192C3λ2
mu.

Finally, for any α, p,M > 0, given the fact that (0, 0, 0, ..., 0, ...) ∈ Bαp,q(M), we have

sup
θ∈Bα

p,q(M)
EθL ≥ E0(L) ≥

7

8192C3λ2
mu ≳

(
M1

σ

) 2
2α1+1

m
2α1+2
2α1+1 .

5.6.3. Proof of Theorem 23

This theorem can be viewed as an extension of Theorem 22. Note that there exists

(α0,M0, p0, q0) ∈ S̃0 such that

M0 = σm2α0+
1
2 . (5.20)

Note that for any θ̂ ∈ G(S̃, C(·)) and (α,M, p, q) ∈ S̃, we have

sup
θ∈Bα

p,q(M)
E∥θ̂ − θ∥2 ≤ C̃(α)M

2
2α+1

(
σ2

m

) 2α
2α+1

,
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sup
θ∈Bα0

p0,q0
(M)

E∥θ̂ − θ∥2 ≤ C̃(α0)M
2

2α0+1

0

(
σ2

m

) 2α0
2α0+1

.

Based on above two inequalities and (5.20), apply Theorem 22, then apply (5.20) again, we

can conclude

sup
θ∈Bα

p,q(M)
EL(θ̂) ≳

(
M0

σ

) 2
2α0+1

m
2α0+2
2α0+1 +

(
M

σ

) 2
2α+1

m
2α+2
2α+1 = m3 +

(
M

σ

) 2
2α+1

m
2α+2
2α+1 .
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APPENDIX

Supplementary Materials

Due to the limit of the space, we put additional proofs into supplementary materials. Please

refer the supplements of Chapter 2-5 to the following documents.

1. Supplement1 Transfer Learning.pdf. This document is a copy of Cai and Wei

(2019), serves as supplement to Chapter 2: Transfer Learning for Nonparametric Clas-

sification.

2. Supplement2 Distributed Gaussian.pdf. This document is a copy of Cai and Wei

(2020a), serves as supplement to Chapter 3: Distributed Gaussian Mean Estimation

with Known Variance under Communication Constraints.

3. Supplement3 Distributed Adaptive Gaussian.pdf. This document is a copy of

Cai and Wei (2021a), serves as supplement to Chapter 4: Distributed Gaussian Mean

Estimation with Unknown Variance under Communication Constraints.

4. Supplement4 Distributed Nonparametric.pdf. This document is a copy of

Cai and Wei (2020b), serves as supplement to Chapter 5: Distributed Nonparametric

Function Estimation under Communication Constraints.
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