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ABSTRACT

RELATIONSHIPS BETWEEN STRUCTURE MEMORY AND FLOW IN
SHEARED AMORPHOUS MATERIALS

Kevin Lawrence Galloway
Paulo Arratia

Amorphous solids, those composed of haphazardly arranged constituents, are found
everywhere from our windows as silicate glass, in the ground and foundations as mud
and concrete, and our grocery stores as granular piles of oranges. Even though they
can be found over a huge range of length scales, it remains a challenge to system-
atically design their mechanical properties using knowledge of their microstructure.
In this thesis, I investigate the link between the microstructure and the mechani-
cal properties of a-thermal solids. First, I probe the particle trajectories for chaotic
signatures that relate to bulk rheology. Particles are confirmed to exhibit chaotic,
Brownian like motion during cyclic shear, even though the particles are large enough
that thermal motion is negligible. I also find that, the average area traced by return-
ing particles is proportional to the amplitude of strain, which could be useful for in
situ measurements in industrial, granular, mixing applications. Next, I examine the
interconnection between particle dynamics and the arrangements of the constituents.
I calculate the characteristic time for particles to shift past each other, called relax-
ation time, and the configurational entropy of the system in excess of a reference
ideal gas. I show that the relaxation time at any given instant is related to the ex-
cess entropy a quarter shear cycle later, which implies that the dynamics of particles
shape the eventual structure. This means it is possible to take a snapshot of particle
positions and infer its mechanical past. Finally, I focus on the interplay between
particle positions and bulk yield by using concepts from kinetics, thermodynamics,
statistical mechanics, and shear transformation zone theory. I establish a relationship
between excess entropy and energy dissipation and uncover a novel definition for the
yield transition based on memory signatures within the microstructure. Using these
observations, I derive a phenomenological model that links the microstructure to bulk
rheology that is physically informed and whose parameters are all quantitatively mea-
surable. This dissertation elucidates how the statistics of particle configurations and
dynamics give rise to the macroscopic transition from elasticity to plasticity during
yield of amorphous, a-thermal solids.
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Poincarè sections for three strain amplitudes. An additional attractor
develops with increasing strain amplitude. Strain is increased from be-
low yield (top), to near yield (middle), to above yield (bottom). Below
yield, most particles return to their original position as expected from
Fig. 2.2. Above yield, many particles do not return; their paths back to
the origin are cut short, ending at periodic, chaotic points centered on
the x-axis. These points grow outward with strain amplitudes above
yield (∼3%). This can be seen in detail for all strain amplitudes in a
video within the Supplemental Information. . . . . . . . . . . . . . . . 32

2.4 Above yield trajectories (γ0 =6.8%). Trajectories are black with a red
plus, (+), at the beginning of the cycle. For reference, local displace-
ment is offset above in blue (–). a-b) Trajectories dominated by me-
chanical noise. c) A low area example of a trajectory with arc length
equal to the expected displacement (LN = 0). d) A high area example
of a trajectory with LN = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Inverse normalized arc-lengths (1/LN) and enclosed area (color bar)
compared with the mean particle position between the needle and the
wall. Irreversible particles are shown in black. a) Below yield the sys-
tem is dominated by reversibly elastic, and irreversibly plastic particle
trajectories. All trajectories have 1/LN < 1.0, indicating that trajec-
tories are long relative to the displacement field. This means they are
dominated by mechanical noise. b) Near yield, plastically reversible
particles emerge near the needle. Overall the 1/LN shifts nearer to one
(especially the plastically reversible particles) indicating a transition
to low mechanical noise relative to affine displacements. c) Particles in
the middle of the channel are exclusively plastically irreversible. Plas-
tically reversible particles reach 1/LN ∼ 1.0 indicating that these tra-
jectories are completely dominated by background displacement, while
simultaneously enclosing high area. It is worth noting that not a single
particle is observed to have a 1/LN >> 1.0. . . . . . . . . . . . . . . . . 34

xi



2.6 A direct view of the efficiency space described. Normalized arc-length,
LN , is plotted against Enclosed area, Ae. Above yield clusters emerge
that correspond to the reversibly plastic, in addition to the reversibly
elastic cluster. Colored clouds of points demonstrate the HDBSCAN
clustering algorithm employed for our data. Here, the strain amplitude
is 6.8% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 a) Cartoon representation of different particle trajectories correspond-
ing to those shown in Fig. 2.4. b&c) Chord diagram representations
of particle’s inter-cycle transitions between apparent clusters within
Fig. 2.5a&c. Widths of cords at either end represent the log of the
numbers of particles transitioning from that state. Color of each cord
corresponds to the state that has more particles transitioning. b) Be-
low yield for both the half cycles and whole cycles there is no presence
of the reversible plastic cluster. c) Above yield, half cycles exhibit a re-
versibly plastic cluster, whereas the whole cycles do not. The reversibly
and irreversibly plastic states do not exchange particles. . . . . . . . . 38

2.8 Trends in average enclosed area and normalized arc-length as a func-
tion of strain amplitude. a) With increasing strain amplitude, average
enclosed area, ⟨Ae⟩ grows rapidly. With strain amplitude, average nor-
malized arc-length, ⟨LN⟩, drops monotonically toward an asymptote
at unity. b) Taking the square root of the ratio, ⟨Ae⟩/⟨LN⟩ we find
a linear collapse between three colloidal systems of various amounts
of disorder. Moreover, this collapse passes through unity at the yield
point (γ0 ∼ 0.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 a) Horizontal and vertical axis are a Poincarè section well above yield.
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4.1 Overview of structure, dynamics, and response. We characterize

the disordered solid bulk response to cyclic stress from evolving configu-

rations of individual constituent particles. (a) Image of ∼40,000 particles.

Part of the raw image is shown (left). The scale bar is 200µm. Detected

particle positions are also shown (right). For illustration, color indicates

D2
min,C , which quantifies the degree to which a particle has followed a non-

affine returning trajectory (blue), or a non-affine escaping trajectory (red).

The particles in this image are experiencing yield (γ0 ∼ 15.7%). (b) Quan-

tification of the fractions of particles escaping and returning averaged over

all stress cycles versus total strain amplitude. Error bars are standard de-

viation. Returning events rapidly increase near the yield point (γ0 ∼ 3.0%).

(c) The number of particles, Z(r) within a radius, r of a reference parti-

cle. The radius is expressed in units of a, the average distance between

neighboring particles. Vertical dashed lines indicate the limit of the first

shell of neighboring particles. Inset: radial distribution function, g(r). (d)

The measured strain of the material versus the imposed stress throughout

a cycle. Both stress and strain are averaged stroboscopically over 25 cycles.

The different ellipses correspond to separate runs at different imposed stress

amplitudes. Here, the area enclosed is a result of the lag between stress and

strain, which in turn quantifies the energy dissipated from the material. . 66
4.2 Memory within microstructure. Microstructural anisotropy reveals
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Chapter 1

Introduction

1.1 Introduction and motivation

How does matter manage to flow or deform? We are taught early on that there

are two distinct types of matter that all sub-types fall neatly into: fluids and solids.

Fluids are materials that continuously (and noticeably) deform under an applied shear

stress [151, 122]. Life requires fluids; humans live within the atmosphere, consume

aqueous solutions, and are composed of a fascinating array of fluids [89]. In addition,

a myriad of industrial processes require fluids; e.g. generation of electricity from

heated steam [58] and the formation of many industrial products like concrete and

steel [208]. Conversely, solids have been with humans from the dawn of time; we

often, but not always, live on solid ground [101]. In addition, tools are made from

solids such as stone, iron, bronze, and more recently steel and silicone [208]. Indeed,

the built environment is composed of solids: factories, furniture, electronic devices,

and much of the rest of the things we interact with every day. Solids are the opposite

of fluids; they will come to rest under an applied shear. When the shear is removed

elasticity returns the solid to the prior state [189].

While this solid-fluid juxtaposition is often useful, the fact is everything flows [17];

many materials flow so very slowly that it goes unnoticed in everyday life [56, 68].

The rate of flow depends on the amount of shear stress the material is subjected to.
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figs_00/01.png

Figure 1.1: Elasticity of many materials relative to their density. Glass has a high
elasticity but yields at low strains. Adapted from [7]

Above an accumulated stress threshold, flow becomes dominant, and elasticity falls

by the wayside. This transition between solid-like and fluid-like behavior is called

yield. Yield can occur vanishingly fast, like water flowing down a waterfall, or over

extraordinarily long-time frames, such as a hill flattening over centuries[56, 68]. Many

engineering applications reside between these time scales: the settling of concrete

foundations [184], the creeping of plastic materials in everyday devices like cars [136],

and the slow warping of load bearing wood within our houses [102, 160]. The length

of time over which yield occurs depends on how quickly stress accumulates and how

much the material can resist that stress. Known as plasticity, yield can also occur

locally within a material, leaving other portions unscathed. Strength and ductility are

both important mechanical properties related to yield. Many materials for instance

display immense strength, but yield at low strain. Other materials have very little

strength, but can deform elastically over vast strains before plasticity sets in. As
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Figure 1.2: Demonstration of the difference between crystalline and amorphous ma-
terials. a) Particles within a crystal align in repeating patterns. Particles within a
polycrystal align with their neighbors within grains. Grains have boundaries. Par-
ticles within amorphous packings do not align. b) An example of grains and grain
boundaries within a metallic alloy. Micrograph created by Edward Pleshakov and
generously published on wikimedia [49]. c) An example of an amorphous microstruc-
ture formed in a metallic alloy [225].

shown in Figure 1.1, scientists and engineers have characterized the properties of

material classes.

An enormously fruitful pursuit has been the search for ways to tune the bulk
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mechanical response of materials by modifying the underlying micro-structure. Crys-

talline materials, such as steel, ice, diamond, and silicon are a well-known example

[192] that is also useful for introducing some of the ideas investigated in this the-

sis. Within crystals the constituent particles form repeating structures. In practice,

these structures tend not to be perfect. Defects arise that allow for the tuning of the

material properties; some defects resist yield and ductility, while others accommo-

date yield and brittleness. Dislocations, which constitute an abrupt, linear mismatch

within a crystal, accommodate local plasticity and yield on the bulk scale. During

yield, dislocations physically travel through the material. Most other defects tend to

disturb the movement of dislocations and make the material stronger. Boundaries

between crystalline grains (fig. 1.2a&b), where the patterns change orientation, tend

to also impede the transition of dislocations, and make for stronger, yet more brittle

materials [192].

One of the major engineering advances of the 20th century was to use knowledge

of microstructural defects to systematically design the properties of steel [192]. As

liquid steel cools, crystals nucleate throughout. Eventually as they grow, they contact

and form boundaries. Generally, the lower the cooling temperature, the more grains

appear, so that a steel cooled fast will have many small grains and be much stronger,

but more brittle. A steel cooled slowly will have many large grains and be more duc-

tile. The prevalence of grain boundaries impedes the translation of dislocations and

causes brittleness and high strength. By controlling the grain boundaries, strength

and ductility can be traded with each other for particular applications. Crystalline

solids offer an example of the power of understanding the link between microstruc-

ture and bulk mechanical properties. Knowledge about the microstructure of still

other classes of materials, aside from crystals, has also been harnessed for great me-

chanical effect. Plastic [136] is an example. Another example is fibrous materials

[102, 160]. There are however materials whose microstructures remain mysterious,

such as amorphous solids.

Amorphous (also called disordered) solids are everywhere; they are found in the
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Figure 1.3: a-d) Example images of amorphous packings ranging in size from tens
of nanometers to centimeters. a) Chalk placed between containment walls and acted
upon by gravity. Image taken by the author. b) An image of sand grains placed in the
public domain on wikimedia [48]. c) An image of an interfacial colloidal suspension
[107]. d) A packing of silica nanoparticles coated with alumina [50]. e) A compendium
of amorphous materials and their yield stress plotted against Young’s modulus [50].
Approximately, a 3% yield strain is shown to hold across many orders of magnitude.

ground beneath our feet as mud [101]; appear in our roads in the form of concrete

[97]; are present at the beach as sand dunes [12]; they compose the pills in our

medicine cabinets [41]; finally, they even are in our foods [153, 28], such as chocolate

[25]. Amorphous solids are not only ubiquitous, but also comprise an incredibly vast

swath of mass: the total weight of concrete alone is greater than half the total weight

of all known life [64]. Amorphous solids are found over a huge range of length scales,

from the atomic to the granular world [50] (Fig. 1.3). Over at least the last fifty

years, vigorous research has been dedicated to trying to systematically design the

bulk response of amorphous solids based on microstructure. In contrast to crystals,

amorphous solids exhibit no repeating pattern (fig. 1.2a&c) within the microstructure.

The lack of crystalline grains means that amorphous solids tend to be stronger than
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their crystalline counterparts, but they fail at lower deformations. Also, they fail

suddenly and without warning [50]. As a result, if amorphous solids could be designed

systematically, they could be used in applications involving high loads.

There are at least two types of amorphous solid. Disorder can be achieved when

the constituents have a wide range of sizes, making a crystalline pattern impossible

or very unlikely. This variety of disorder is often found in granular materials, such

as sand [74] and other naturally occurring particulates. A second type of disorder

occurs when an amorphous material is very rapidly or haphazardly formed. This

disorder can occur when dumping marbles of the same size into a container. To

use the steel example from above, it can also occur when cooling a liquid extremely

rapidly, such that there is simply no time for crystals to nucleate to appreciable

sizes. Martensitic steel, formed from molten steel in just minutes, is strong but

brittle and nearly amorphous, composed of vanishingly small crystals [192]. Fully

amorphous steel alloys have been achieved recently [129]. Silicate glass is a similar

example [53]. These examples are achieved by fast, random-like formation that leads

to systems with no discernible, geometric patterns. Moreover, each particle finds

itself constrained by its neighbors, so that they cannot slip past each other as easily

as crystalline particles do. Amorphous materials tend to be very strong and very

brittle because there is no mechanism for dislocations. Strength is advantageous, but

in most applications amorphous materials cannot be utilized because brittle failure

is catastrophic. If there was a well understood way to design the microstructure of

amorphous materials, strength could be traded for ductility as is done with crystalline

solids.

Without identifiable analogues of dislocations and defects, it is very difficult to de-

sign disordered solids [50]. Scientists have classified many potential local microstruc-

tural signatures for yield [185]. There are two categories that each method falls under.

First, are those that classify based only on where particles are relative to each other

as a means of teasing out which particles are more mobile (Shear Transformation

Zone theory)[66, 67]. Second, are those that seek out correlations in particle mo-

6



tions to identify particles that are strongly influenced by each other (Mode Coupling

Theory)[100, 34, 139]. In this way, both implicitly stem from the idea that local

interactions are key to the emergence of plasticity, instead of merely a configurational

pattern. Both Shear Transformation Zone and Mode Coupling Theory have had suc-

cess in identifying locations within a material where local plasticity occurs [185], but

so far it remains a challenge to identify a-priori, with a snapshot, where those local

events may take place. Designing disordered materials remains difficult.

Here I review recent work on the relationships between a material’s constituents,

their interactions, their configurations, and bulk mechanical response. I discuss re-

cent experiments, simulations, and theory that illuminate the connection between

microstructure and macroscopic response. Finally, I identify challenges that remain

and present my thesis. Herein, I investigate statistical methods for linking system

wide particulate configurations and kinematics to the bulk mechanical response of

sheared a-thermal materials.

1.2 Background

1.2.1 Suspension rheology and interfacial colloids

Rheology and oscillation

Rheology, the study of complex mechanical behavior, has been investigated for at

least 100 years [22]. Materials with a complex microstructure, such as mud [101],

suspensions[122], polymer melts [136], and foods [28] often exhibit complex mechani-

cal behavior. As a result, apparatuses have been developed to systematically measure

the response of materials to deformations. There is an extraordinarily large set of

possible material responses and a huge number of types of complex materials (see

Figure 1.4). The degree of viscosity and elasticity, as well as shear thinning and shear

thickening (non-linearity of viscosity) can be measured in detail using a rheometer

(Fig. 1.5a) so that materials can be selected for applications. Here I specifically in-
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Figure 1.4: The hitchhiker’s guide to complex fluids by Gareth McKinley [145]. The
subclass of amorphous solids resides in the lower left sector.

troduce how elasticity and viscosity are measured in experiments using a rheometer

(Fig. 1.5b). I then outline the history, from invention to refinement, of the type of

rheometer used in this thesis.

Both the stress within a deformed elastic solid or viscous fluid follows linear equa-

tions, known as constitutive relations [122]. Hooke’s law for elasticity is τ = Eγ,
where τ is the stress (typically τ indicates shear but σ indicates compression or ex-

tension), E is the elastic property intrinsic to a particular solid, and γ is the strain

of the system. Conversely, Newton’s law of Viscosity is τ = µγ̇, where µ is the vis-

cous property intrinsic to a particular fluid and γ̇ is the strain rate. Notice that the

primary difference is the derivative of strain. A further intricacy is that some viscous

materials have viscosity, µ, that changes with shear rate, such that µ = µ(γ̇). There

are several types of these non-Newtonian materials. For example, shear thickening
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Figure 1.5: a) An example schematic of a cone and plate rheometer. The fluid resides
between the cone and plate. The cone rotates, deforming the fluid. Either the strain
is imposed and the torque is measured, or visa-versa. G′′ and G′ are calculated via
the methods outlined in the text. Reproduced from [136]. b-c) Example G′′ and G′

as a function of frequency ω. Reproduced from [136].

fluids have a viscosity that increases with strain rate [136]. A generalized version of

these equations exists that describes both a material’s elasticity and viscosity as real

and imaginary components respectively, when a material is subjected to sinusoidal

deformation:

τ = G∗γ, (1.1)

where G∗ is the complex (shear) modulus and σ and γ are the sinusoidal stress and

strain respectively. When a sinusoidal stress, τ = τ0sin(ωt), is imposed the resulting

strain lags as γ = γ0sin(ωt+δ), where δ is the lag time. A material that is fully elastic

has a lag of zero radians, whereas a fully viscous material has a lag of π/2 radians. A

material with both elasticity and viscosity has a δ in between zero and π/2 radians.

This can be described using the complex plain as:

τ0e
iωt = G∗(ω, γ0)γ0eiωt−iδ(ω,γ0), (1.2)

where G∗ = G′ + iG′′. Equation 1.2 simplifies to

G∗(ω, γ0) =
τ0
γ0
eiδ(ω,γ0). (1.3)

The angle within this space describes the proportion of viscosity relative to elasticity
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as: tan(δ) = G′′/G′. Equation 1.3 allows for the full characterization of complex fluids

and amorphous solids by measuring the changes in G′′ and G′ with frequency ω and

the imposed stress amplitude τ0.

Many “squishy” materials have been characterized using equation 1.3 [136, 122].

However, until recently, it was very difficult to image the microstructure of a ma-

terial undergoing shear. Today, it remains challenging to image three-dimensional

microstructure during relatively high shear rates. 3D scans are generated by rapidly

acquiring many 2D slices, each separated by small distances, and composed into a

stack. For high shear rates it simply is not possible to create a complete stack before

the particles move appreciably between the beginning of the imaging process and

the end. Because of this challenge, 2D colloidal suspensions at interfaces between

fluids are phenomenal systems to study; only one image is required to characterize

the microstructure of a 2D suspension.

Rheology of an interface

Interfacial colloidal systems are studied as a model for atomic systems [36]. Direct

applications are also useful because the intricate chemistry of colloid-laden interfaces

and clean interfaces arises in many applications such as cellular biology, food, and

oil recovery [222]. A dedicated rheometer that measures the mechanical properties of

interfaces was developed at the University of Pennsylvania [202]. Further refinement

followed [222, 35, 182, 105, 70, 214] (Fig. 1.6). In these interfacial stress rheometers

(ISR), a magnetic needle is placed at the interface between oil and water or air

and water. Two boundary walls pin the interface at either side of the needle. The

needle is driven axially by a known external magnetic field, created by a pair of

Helmholtz coils. The displacement of the needle is measured via the microscope.

With measured displacement and imposed force it is possible to calculate G∗ for the

interface. Instrument corrections are also required, based on the restoring force of the

background magnetic field and the inertia of the needle. A descriptive force balance
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Figure 1.6: An example schematic of an interfacial stress rheometer. A magnetic
rod sits between two walls at a water-air interface. The rod is pushed axially by
an oscillating magnetic field generated by two Helmholtz Coils. The displacement of
the needle is measured from below with a microscope. The rheological properties are
calculated from the known imposed force, and the measured displacement using the
methods described in the text. Reproduced from [35].

is used:

mẍ = AI − d∗ẋ − dẋ − kx, (1.4)

where m is the needle mass, x is the needle displacement, A is the conversion constant

between the imposed force on the needle and the current through the Helmholtz coils,
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I is the current through the coils, d∗ is the drag on the needle from the interface,

d is the drag on the needle from the bulk fluids above and below, and k is a spring

constant like factor due to the magnetic field. In measuring the properties of the

interface, it is crucial that the bulk fluid drag is negligible compared to the interface

drag. The Boussinesq number, Bo, quantifies this ratio as, Bo = ∣µ∗∣a/µ, where µ∗ is
the interface viscosity, a is the needle’s radius, and µ is the viscosity of the bulk fluid.

For accurate measurements, Bo needs to be above 100.

Equation 1.4 is an non-homogenious, second-order, differential equation that can

be solved for the ratio of the displacement and imposed force amplitudes as well as

the phase lag between them:

x0
F0

= 1√
(k −mω2)2 + (ωd∗)2

(1.5)

and

δinterface(ω) = tan−1
⎛
⎝
−ωd∗
k −mω2

⎞
⎠
. (1.6)

With the addition of colloids to the interface, the colloid’s response can be gained by

subtracting the interface’s response at the same frequency from the observed response

of the entire interfacial suspension as:

G∗(ω) = w

2L

F0

x0
e−iδ
⎞
⎠
colloid

= w

2L

F0

x0
e−iδ
⎞
⎠
measured

− w

2L

F0

x0
e−iδ
⎞
⎠
interface

, (1.7)

where w is the distance between the needle and the wall and L is the length of

the needle. Using equation 1.7 it is possible to describe the response of a colloidal

monolayer.

The custom Interfacial Stress Rheometer

In recent years Keim and Arratia [105, 106, 107] developed an interfacial stress

rheometer that can simultaneously measure the rheology as discussed above while

imaging the precise positions of ∼ 50,000 particles spanning the entire space be-
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tween the needle and the wall. Trajectories are generated with extremely high spatial

(±0.5µm) and time accuracy (40frm/sec). The experiments conducted by Nathan

Keim and the system developed by Keim and Arratia were used throughout this thesis

so a short overview of the colloidal suspension studied is provided here.

The bi-disperse interfacial monolayer studied in this thesis is composed of an

equal parts by number mixture of 4.1 and 5.6 µm-diameter sulfate coated latex

(polystyrene) particles (Invitrogen; nominal diameters 4 and 6 µm) adsorbed at the

interface between deionized water and decane [11, 161, 142]. The mono-disperse

interfacial material is composed of 5.6 µm-diameter sulfate latex particles. Area

fraction is set by the number of particles dispersed into the experimental cell (a 6

cm-diameter glass dish); positive osmotic surface pressure keeps the area fraction uni-

form. The number densities of the systems are approximately 16,500 particles/mm2

(bi-disperse) and 14,300 particles/mm2 (mono-disperse). Average center-to-center

distances between particles are 7.4µm (bi-disperse) and 7.7µm (mono-disperse).

When placed at an oil-water interface hydrophobic particles experience Pieranski

[172] dipole–dipole repulsion through the phase of lower dielectric constant [172, 23,

95, 71, 210, 123, 11, 157, 10, 142, 161, 163]. This dipole-dipole interaction is caused

by individual particles inducing asymmetric counter-ion distributions in either phase.

We note that the particles studied here are small enough that they do not cause

gravity-driven capillary deformation over long enough ranges to interact with each

other over the distances in our experiments [117, 157]. Additionally, mesostructures,

a sign of inter-particle attraction, have not been observed in our experiments.

Previous studies have examined the specific strength of the dipole-dipole interac-

tion in a system very similar to ours; i.e., using the same preparation protocol and a

system composed of sulfate coated latex particles (Invitrogen) at decane-oil interfaces

[162]. The dipole-dipole form is:

U(r)
kBT

= a2
1

r3
(1.8)

where U is the potential, kB is Boltzmann’s constant, T is the thermal temperature,
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a2 is the scaling constant, and r is the center-to-center distance between particles.

By separate methods using optical tweezers and Monte Carlo simulations, Ref. 162

reported ⟨a2⟩ = 5.1 ± 2.4 × 10−13m3 (mean around a gamma distribution). Ref. 142

reported a three-phase contact angle of ϕ = 90 ± 20○. Additionally, pendant drop

experiments [183, 209] have previously determined that the surface tension of the

decane-water interface is γOW ∼ 50mN/m.

The interfacial stress rheometer and other experimental systems [36] allow for

the observation of the microstructure during deformation of amorphous colloidal sys-

tems. There is also a host of molecular dynamics simulations aimed at examining

the microstructure throughout deformation. Several approaches have surfaced from

simulations and experiments that explore signatures of yield within the microstruc-

ture. The next two sections introduce excess entropy, which characterizes the state

of an entire material’s microstructure, and shear transformation zone theory, which

quantifies local plasticity.

1.2.2 Models and insights linking microstructure to bulk be-

havior

Meta-stability of amorphous solids

Stability is a topic at the heart of material science. Are chemical reactions constant?

Is a system in mechanical equilibrium? Does a process transfer heat? Each of these

questions inform how the material world progresses over time and whether or not

it does so reversibly [178, 177, 39, 37, 146, 40, 116]. According to the second law

of thermodynamics, the most stable state (chemically, mechanically, and thermally)

is the one that has the most possible constituent configurations; in other words, the

stable state is the one in which nothing changes because it is by far the most probable

[146, 37]. A stable state is also the one that has the lowest and most evenly dispersed

energy [37].

For solids, the fundamental questions are how mechanically stable the constituents
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Figure 1.7: An example of the greater free volume available to crystalline grains
versus an amorphous packing. An illustration of how crystals have a higher entropy
and a higher maximum density. Reproduced from [122].

are and how stability relates to the number of configurations available [122]? Consider

figure 1.7. On the right is a crystal in a box. An amorphous configuration is in the

box on the left. Both boxes have the same area and yet the crystalline particles have

room to diffuse via Brownian motion whereas the amorphous particles are constrained

by contacts. Because the crystalline particles can move without making contact, the

crystal has the maximum number of available configurations. This observation has

two consequences: crystals represent the equilibrium state [122, 98] and available

volume relates to the entropy in systems where particles only interact by making

contact [63]. Interestingly, this implies that, given enough time, thermally driven

amorphous systems (left) will evolve towards a crystalline state (right). With the

addition of particle interactions other than contact, such as those caused by charged

particle surfaces, particles are further constrained by their neighbors. The crystal

remains the equilibrium state, but the available configurations are lower than the

case without forces [122]. In systems with inter-particle interactions, forces are a

measure of entropy instead of volume [218, 219, 20, 21].

In the amorphous state, each particle is constrained by its neighbors (figure 1.7b)

[220, 126, 18]. The constraints impede the ability of the system to transform into a
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Figure 1.8: a-c) Examples of the chaotic motions that non-Brownian particles within
an amorphous packing exhibit when undergoing shear deformation. a) Simulations
of a-thermal cyclically sheared amorphous packings. Reproduced from [180] b) Ex-
periments of non-Brownian colloidal particles at an interface undergoing cyclic shear.
Reproduced from [106].

crystal. The constraint phenomenon is known as caging [122, 220] and the overall

system is called jammed [126]. Because caging is so strong relative to thermal en-

ergy, many jammed systems, such as glass, require an astronomical length of time

to crystallize. Never-the-less, this crystallization is a candidate for the slow yielding

or creeping described above; crystallization corresponds to greater available volume

[122], which allows the material to slowly deform because there are weaker supporting

particle contacts. On earth, the deformation that comes with slow yield is biased in

the direction of our gravitational field, leading to the creeping of hill slopes [56, 68].

Such systems that evolve so slowly are described as being stuck in meta-stable states;

not truly stable, but effectively so.

A statistical approach: the analogy between thermal and a-thermal amor-

phous solids

In any system composed of particles larger than about 1µm, the contribution of

thermal motions is negligible for all practical purposes. For instance, the arrangement

of candies within a jar is likely amorphous. It is extremely likely the candy will be

eaten or melt before they can rearrange into a crystal. On the other hand, a jar
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figs_00/09.pdf

Figure 1.9: a) The load-density-jamming phase-state diagram for amorphous ma-
terials. Along the temperature-density plane, glass exists at high density and low
temperature. Once temperature is raised or density falls a glass will melt. Crystal-
lization of glasses will occur at various rates. Along the load-density plane a similar
phenomenon is observed: a packing will become un-jammed with increasing load
or decreasing density. Reproduced from [126]. b) Over many tens of thousands of
cyclic shear cycles the density of an amorphous solid composed of non-Brownian hard
spheres will plateau to the value of random close packing. However, after hundreds of
thousands of further cycles, the density will begin to increase again. c) As the density
increases past the random close pack, crystals are observed forming homogeneously
within the amorphous solid. Reproduced from [186]

of honey can crystallize before someone gets around to eating it. Thermal motion

does not cause the candy to vibrate, so it does not crystallize. The honey molecules

do vibrate so crystallization occurs. In sheared, a-thermal systems, particles exhibit

erratic motions similar to the vibration that occurs in thermal systems [152, 193,

181, 180, 132, 207, 106, 196]; as load is applied, particles jostle each other, creating

chaotic motions (Fig. 1.8). These chaotic motions occur because particles in an

amorphous material cannot perfectly follow continuum deformation fields without

bumping into their neighbors; conversely crystals can follow continuum deformations.

Above a certain load threshold ’melting’ begins because particles can shift positions,

just as above a temperature threshold a solid turns to liquid (Fig. 1.9a). In recent,
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painstaking experiments, it has been shown that below the load threshold, an a-

thermal amorphous solid will slowly crystallize from homogeneous nucleation sites

over hundreds of thousands of shear cycles [186] (Fig. 1.9b&c) during cyclic shear.

Amazingly, mechanically driving a jammed system appears analogous to thermally

exciting a glass; both speed up the transition from meta-stable states to equilibrium

states.

The similarities between the behavior of thermal and sheared systems reveals

that a common framework may govern both [126]. Typically, the macroscopic be-

havior of thermal systems at equilibrium are described by thermodynamics, which

relies on energy conservation as its backbone [39, 116]. Equilibrium thermodynam-

ics can be derived using statistical mechanics [146]. As the name implies, statistical

mechanics is based not on the deterministic and time reversible laws that govern

individual particles, but instead on the distributions of properties of many (at least

trillions) of particles [146, 178, 121]. This trick enables statistical mechanics to explain

time irreversible macroscopic phenomena, so long as they happen very slowly (quasi-

statically) and transition between two equilibrium states [178, 116]. The chaotic,

n-body nature[13, 211] of the microscopic world contributes to the time evolution of

the macroscopic world [178]. Though the similarities can be striking, it is not imme-

diately clear how to redevelop statistical mechanics for meta-stable amorphous solids;

especially those that are a-thermal, which signals an apparent lack of energy [20, 21].

There is, however, the advantage that amorphous systems evolve quasi-statically. Co-

incidentally, crystals can be described by deterministic, continuum equations precisely

because their particle motions are very well correlated; they do not display chaotic

motions during deformation, so entire grains represent a predictable 1-body system.

There have been attempts at modelling macroscopic properties of a-thermal amor-

phous materials based on deterministic approaches [185, 167, 51, 194, 50, 195, 213, 15];

in other words, looking at specific local particle configurations and trying to make

predictions about whether a plastic event will occur or not. These methods have very

strong success over small time windows [15, 51]; they identify if an event is occurring
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and the types of kinetics that bring about plasticity. These local structural signatures

can be very helpful in identifying which sorts of systems are developing plastic events

[185]. But these models could be improved by incorporating statistics so that they

can capture time evolution [178].

The first step toward a statistical description is shear transformation zone theory

(STZ theory) introduced by Falk and Langer [67] and later developed and expanded

[67, 29, 30, 31, 32, 207, 132, 167]. STZ theory tries to link the probability of a

local plastic event occurring to the volume available to the nearby particles [67].

The key contribution was the introduction of a variable, D2
min., that classifies how

well a particle neighborhood manages to follow the prescribed deformation; in other

words, D2
min. measures affinity of local deformations [66]. It is calculated as the sum

of the differences between best fit affine deformations and the measured non-affine

deformations:

D2
min. =

1

N

N

∑
i

(r′i −Ari − b)2, (1.9)

where N is the number of particles in the local neighborhood, r′ is the final position

vector of particle i, r is the initial position vector of particle i, A is the best fit affine

transformation tensor between the initial and final positions of all of the particles, and

b is the best fit translation vector of all of the particles. If a particle neighborhood

has a high value of D2
min. it is exhibiting chaotic motions and cannot be described by

deterministic approaches alone. If D2
min. is low, the neighborhood is deforming in a

smooth, deterministic way [66]. Keim and Arratia [105, 106, 107] found that non-affine

particle motions appear precisely as the material yields rheologically. Non-affinity

appears to correspond with the amount of plastic dissipation [106]. Even though STZ

theory is built on the probability of local plasticity occurring, as measured by D2
min.,

it can be unwieldy, incorporating many variables [29, 30, 31, 32, 207, 132] that are

not readily measurable or definable [32] in experiments or even simulations. Finding

ways to measure these or similar quantities and perhaps simplifying the modelling

could make STZ theory much more versatile.

Another more recent step towards a probabilistic description of a-thermal amor-
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phous solids borrows from glassy physics. In thermal systems, the mobility of particles

is linked to the entropy of a system in excess of its equivalent ideal gas. Excess en-

tropy is useful because it only requires knowledge of particle configurations. Excess

entropy is a thermodynamically derived quantity that does not consider vibrations

caused by thermal motions [179, 148, 187, 223, 16]. In thermal materials, it has been

shown in simulations and experiments that excess entropy scales with particle mo-

bility [62, 188, 133, 61, 133]. Because of excess entropy’s a-thermal nature and its

known link to thermodynamics, the research groups of both Bonnecaze and Tanaka

have recently used excess entropy to describe simulations of a-thermal, amorphous

solids. It was shown by Ingebrigtsen and Tanaka [96] that particle mobility is also

linked to excess entropy in a-thermal systems. Bonnecaze et al. [27, 113] showed that

there is a link between excess entropy and mechanics. Given these links, a natural

question is whether excess entropy can be incorporated into STZ theory to describe

amorphous solids.

Excess entropy incorporates many of the concepts discussed above (probability,

caging, energy distribution, inter-particle forces, crystallinity, available volume) via

its functional definition [16]:

s2 = −πρ∫
∞

0
{g(r)ln[g(r)] − [g(r) − 1]}rdr, (1.10)

where ρ, is the density of particles throughout the entire system and g is the radial

density of particles as a function of distance from a reference particle, r. Repre-

sentative examples of g(r), the probability of particles being separated by a certain

distance, r, are given for crystals and amorphous solids in figure 1.10. As peaks

become narrower, excess entropy increases; there are more ways to arrange all of

the particles to make narrower peaks, than wide ones. Often above 90% of excess

entropy’s final value comes from r between zero and the distance to the trough in

g(r) between the first neighbors and second neighbors. Because of this, excess en-

tropy can be considered to characterize the caging from first nearest neighbors. g(r)
also reflects another definition of entropy: the spatial dispersion of energy. A low
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figs_00/10.pdf

Figure 1.10: Example packings and their corresponding radial distribution functions.
a) Within the radial distribution function, a crystal has narrow peaks at positions
determined by the pattern. b) An amorphous material has much more position vari-
ation around first neighbors and second neighbors. Gasses have very high variance in
positions and display no layering of particles. Adapted from [40].

entropy implies the energy is not well distributed throughout a system. Conversely

a high entropy implies an even distribution. Wider peaks correspond to some cages

having stored drastically different amounts of energy in their neighbor interactions

(i.e., low excess entropy, reflecting a system similar to an ideal gas). By comparison,

crystals have only a few characteristic distances between particles, so all cages have

very similar energy (i.e., a high excess entropy, indicating a system that is different

to an ideal gas). Similarly, excess entropy captures volume and force distributions.

For all of these reasons, excess entropy appears to perform the same function as ther-

mal entropy, but is applicable to a-thermal solids, from perfect crystals to completely

amorphous.
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1.3 Thesis Overview

The objective of the proposed thesis is to show how the microscale within a-thermal

amorphous solids gives rise to macroscale mechanical properties. Along these lines,

I have three interrelated goals that apply to disordered systems undergoing yield.

These are:

1) Connect bulk mechanical yield to particle scale kinematics.

2) Reveal the global interplay between particle kinematics and configurations.

3) Use statistical changes in particle configurations to predict and characterize

bulk yield.

In pursuit of these goals, I have investigated numerous physically motivated met-

rics that probe the behavior of individual particles, groups of particles, and all of the

particles within the system. I analyze several model, 2D, disordered systems that

range from large crystalline grains to almost no discernible crystalline grains. To a

large degree my work has contributed to the understanding of the three goals listed

above. Each chapter addresses one of the above goals, which build conceptually off

each other. Moreover, each chapter is published [76, 77, 75].

In Chapter 2, I investigate dynamical signatures of constituent particles in semi-

amorphous 2D colloidal packings of a-thermal particles. I find that at low oscillatory

strain amplitudes the trajectories are erratic. With increasing strain amplitudes,

particles trace out areas though out a cycle; they move in the shear direction and then

return along a different path. These limit cycles indicate energy dissipation. I show

that for particles that return to their original positions at the end of a shear cycle, the

area enclosed is a key metric that reflects the total energy dissipated. Moreover, the

arc-length of each trajectory is limited to the length predicted by the strain field –

even during chaotic motions. A dimensionless equation is uncovered that relates the

strain amplitude with the average enclosed area divided by the average normalized

arc-length. These enclosed areas represent signatures of plastic energy dissipation

during yield. This chapter reveals that the statistics of chaotic the dynamics relates

to the mechanical response.

22



Chapter 3 explores experimentally the relationship between particle mobility and

excess entropy. I determine that above yield, the escape time of particles leaving their

cages scales systematically with the value of excess entropy at later times in the shear

cycle. This result indicates two conclusions. First, causality is established. Imposed

stress leads to a resulting strain as we already know from rheology. The imposed

strain results in a spike in particles shifting past their neighbors. These shifting

motions, precipitate specific structures within the microstructure as characterized by

excess entropy. Second, the average amount of mobility of the particles at any given

time directly relates to the resulting structures. This implies that it may be difficult

to use a-priori particle positions to predict long-time particle dynamics because it

appears to be the case.

Chapter 4 provides a phenomenological model of a link between a material’s rel-

ative elasticity and plasticity for a given oscillatory deformation. I derive from first

principles an energy balance that applies to non-Brownian, amorphous suspensions.

This derivation uses a grand canonical ensemble over each cage in a system to describe

yield as a transition between pressure and chemical work. With the energy balance

in hand, it is possible to recover the amount of elasticity relative to plasticity for any

given strain amplitude by using observations of the microstructure. Each variable in

this model is measured and the relationships hold experimentally. A statistical link

between bulk yield and the microstructure is reported.

Chapter 5 includes a summary of this dissertation and provides outlook for future

works and perspective on the results.
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Chapter 2

A statistical connection between

the dynamics of individual

particles and the onset of yield

2.1 Introduction

Much of our natural and built environment is made of amorphous materials, such as

foods, foams, and glasses [122, 42]. The properties of disorder may be exploited to

create materials with desirable properties, e.g. yield stress or shear thinning fluids.

When amorphous solids fail, however, catastrophic fluidization may occur: witness

the collapse of solid soil into fast-flowing mudslides [101, 5]. Therefore, predicting

and controlling failure within these materials is of fundamental importance. Bulk

rheology of amorphous solids is an emergent property arising from micro-scale grain-

grain and fluid-grain interactions [82, 220]. There has been major progress in unifying

the rheology and yielding of ideal granular materials and suspensions [33, 85]. Yet

such descriptions are mostly phenomenological; moreover, small variations in particle

size, shape, surface properties, or inter-particle forces may cause dramatic changes in

bulk properties. Often, constituent particles may be jammed together, preventing all

undriven motion either by confinement or by outside forces such as gravity. These
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factors complicate the unifying description of such materials by creating structure

based effects, which commonly cause history dependent responses [220, 122, 101].

A key insight has been that as energy is injected via shear into a disordered

material, bulk deformations are achieved via contributions from local rearrangements

[66, 139]. These rearrangements within the microstructure are thought of as particles

shifting to lower energy configurations, thereby dissipating some of the injected energy

[67]. The energy not dissipated is recovered as elastic energy. The yield transition is

quantified as a shift from mainly elastic to dissipative response with increasing strain

[122]. For a wide range of disordered materials, a universal strain of ∼ 3% has been

found to mark the yield transition [50].

A convenient way of repeatedly probing a system’s elasticity (storage modulus)

and dissipation (loss modulus) is to subject the material to oscillatory stress. This

method gives statistically robust measurements over as many cycles as desired. Under

oscillatory stress, three types of particle dynamics have been observed. First are

those that return to their initial position by the same path they went in (elastic and

reversible). Second are those that return via a secondary path (plastic but reversible).

Third are particles that do not return at all (plastic and irreversible) [173, 132, 207,

181, 176]. It is thought that reversible particles enter a new minima in the energy

landscape, but are returned once strain reverses; i.e. the energy landscape is restored.

However, irreversible particles do not return, because of permanent modification to

the energy landscape by small perturbations in the positions of neighbors [152, 180].

It has been observed that reversible, plastic trajectories emerge at the same strain

amplitude as the bulk material’s rheological yield [105, 106]. Therefore, understanding

reversible, plastic trajectories may shed new light on the yield transition in amorphous

materials.

Strikingly, reversible, plastic trajectories are similar to a classic limit cycle descrip-

tion of dissipation from non-linear analysis [106, 211]. Past research has explored this

idea, showing via simulations that the area traced is related to energy dissipated

[196, 181]. An intuitive implication is that reversibly plastic trajectories within the
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same system may share similar properties, reflecting changes to an energy landscape

by stress. It may be possible that reversibly plastic particle trajectories are stable

from one cycle to the next, corresponding to specific meta-stable states within the

energy landscape [104, 181, 180, 169]. More broadly, particle dynamics (reversible vs

irreversible, elastic vs plastic) near and above yielding are still not well understood.

In particular, there are still many outstanding questions regarding how particles

transition from the elastic to plastic regime. These include: Are irreversible particle

trajectories born out of reversible plastic trajectories (limit cycles)? Or are reversibly

plastic particles stable as a function of strain, space, or time? And is there a relation-

ship between the properties of these reversible plastic trajectories and the material’s

macroscopic rheology? Answering these questions will help elucidate microscopic

factors that bring about bulk material yield and inform models.

In this manuscript, we experimentally investigate the Lagrangian dynamics of par-

ticle trajectories in a two-dimensional dense colloidal suspension that is undergoing

cyclic shear. Samples are deformed using a custom built interfacial stress rheometer

that permits characterization of the sample microstructure while simultaneously mea-

suring its bulk flow respnse (i.e. rheology). Contrary to intuition, we find that there

is no chaotic progression in time (in other words, they do not evolve from elastic to

reversibly plastic to irreversibly plastic). Instead, particles develop specific trajecto-

ries based on their position within the shear channel, and the strain amplitude. For

example, above yield, particles in the center of the channel are much more likely to

have irreversible trajectories. Also, both plastically and elastically reversible particle

trajectories transition to irreversible trajectories in later cycles (and vice versa); they

sometimes change states. However, plastically and elastically reversible trajectories

do not transition between each other. These observations are used to deduce the

presence of a melting front, whose depth increases with strain amplitude. Based on

a quantification of this depth we present an empirically determined strain amplitude

scaling that quantifies plastic dissipation.
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2.2 Methods

We study the yield transition using an interfacial stress rheometer as shown in

Fig. 2.1a. In short, a steel rod (230µm in diameter, 28.1mm in length), referred to as

a needle, is placed at a water/decane interface. The interface is pinned on either side

of the needle by glass walls (18mm long, 3.175mm spacing), ensuring the interface

is planar. A monolayer of particles is also adsorbed at the interface (Fig. 2.1b). To

shear the monolayer, the needle is driven sinusoidally by a uniform magnetic field,

which is imposed by a pair of Helmholtz coils [202].

Rheological information is calculated by measuring the displacement of the needle

using an inverted microscope and comparing to the imposed force. The effect of the

interface on the needle is characterized by fitting fluid imparted drag and magnetic

field imparted spring forces to the solution of a forced spring-mass-damper second

order differential equation across measured needle displacement and proscribed force

on the needle. The interface’s effect is subtracted directly from the total observed

response of a monolayer and interface, giving the storage and loss moduli, notated G′

and G′′ respectively [35, 182].

To ensure rheological measurements are accurate, drag from the bulk fluid must

be negligible compared to the drag from the interface. This ratio is calculated directly

by the Boussinesq number, Bq = ∣η∗∣d/ηL. η∗ is the observed complex viscosity, d is

the needle diameter, and ηL is the liquid viscosity of the oil and the water, which is

∼ 103 Pa s. Here the Boussinesq number is ∼ 102 [35, 182], so that in plane stresses

are dominant.

Three systems of mono-layers, composed of non-Brownian particles are presented

here. Table. 2.1 provides a summary of their differences. All three systems have crys-

taline grains with large amorphous swaths at the boundaries. However, the degree

of crystalinity differs greatly between the three. For more information on disorder

in these systems see [105, 106, 107]. All are composed of mixtures of non-Brownian,

sulfate latex spheres of nominal diameters 4.1µm and 5.6µm (Invitrogen). Sulfate

charge groups coat the surface, creating an overall dipole-dipole repulsion force be-
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figs_01/1.pdf

Figure 2.1: Schematic of the system and background of data. a) Diagram of the
interfacial stress rheometer including oil/water contact line pinned at the two glass
walls and the axially displacing needle. b) A top view schematic with a description of
coordinates and the idealized displacement field, δ(y, t). Also shown is an image of the
particle micro-structure representing about 1/24th of a total image. The vertical edge
is 250µm long. Crystallized grain clusters may be observed, surrounded by expansive
amorphous boundaries. c) Storage, G’, and loss modulus, G”, as a function of strain
amplitude γ0, both showing inflection at the classic yield point of ∼3% (- - -). d)
Characterization of the fraction of particles displaying irreversible and reversible non-
affine events. The total number of reversible and irreversible events diverge at the
yield point.

tween particles [163]. These inter-particle forces are strong enough to create a stable

material at the relatively low area fractions studied here, ∼ 31− 43%. We refer to the

monolayer as “jammed” in the sense that without shear, the individual particles do

not undergo measurable changes in position — let alone rearrangements. In addition

to being jammed, this material is also soft, meaning that it can be deformed readily.

An example image of monolayer A is shown in (Fig. 2.1b). Packings typically have
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Table 2.1: A summary of the properties of the systems presented here, including
dispersity, particle size ratios, sizes of particles, area fractions, Φ.

Dispersity Ratio Diameters Φ

Bi-disperse 50-50% 4.1, 5.6µm ∼ 31%
Mono-disperse N/A 5.6µm ∼ 35%
Bi-disperse 60-40% 4.1, 5.6µm ∼ 43%

small grains of a few particles with amorphous boundaries. Images span the space

between a wall and the needle (∼ 1000µm) and include ∼40,000 particles. During each

experiment imaging is carried out at 100-600 frames per cycle for up to 30 cycles. Fea-

tures are identified and linked together using Trackpy [3]. The resultant trajectories

are analyzed in several ways discussed below. The analysis presented in this paper is

of the Bi-disperse monolayer with 50-50% distribution, to serve as a demonstration.

Final results, however, are shown for all three systems. Information about analysis

of the other monoayers are available upon request.

Here, frequency is held constant at 0.1Hz during all experiments with monolayer

A. Strain amplitude, γ0, is defined as needle displacement amplitude, δ0, divided

by the distance between the wall and the needle. γ0 is varied between 0.7% and

17%. This range fully traverses the yield transition, which is known generally to

be near 3% strain amplitude for many amorphous or glassy materials [50]. Yielding

is often designated based on an inversion of G′ and G′′. As seen in Fig. 2.1c the

inversion occurs near 3% strain amplitude, consistent with previous findings. Further

information about this system can be found in [106].

As a touchstone to previous work reported in the literature D2,min calculations

are presented. D2,min can be thought of as a quantification of a local deformation’s

non-linearity; i.e., it is the mean squared deviation of particle positions from a best-

fit affine transformation over a time interval. We normalize this value by the square

of the typical particle separation, a, and the number of neighbors considered (those

within the two nearest neighbor shells, 2.5a). A non-affine event is characterized as a

particle having a D2,min above 0.015, a value used in simulations of amorphous solids.

This threshold has been found previously to correspond to a disturbance in particle
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Figure 2.2: Probability density function comparisons of particle displacement after
a) half cycles and b) whole cycles over a range of strain amplitude. a) Particles fall
within a small displacement below yield, slowly transition to a bi-modal distribution
near yield, and finally nearly all particles escape above yield. A threshold (- - -)
is included, found previously in simulation studies, 0.1a = 1.15µm. Inset: visual
representation of when half cycles and whole cycles are taken relative to strain, γ0.
b) A separate transition is present, well above yield. Inset- the average displacement
of particles that are to the right relative to strain amplitude over half and whole
cycles.

location of about 0.1a [66].

In this paper, we measure D2,min over two time intervals: half cycles and whole

cycles as shown in the inset of Fig. 2.2a. Whole cycle events are termed ’irreversibly

plastic’ because they indicate particles that have not returned to the positions they

held at the beginning of the cycle. Half cycle events are also thought to detect

irreversible plasticity, however they also detect a second type of event: ’reversible

plasticity’. These events are characterized by particles that do not return to their

original position after a half cycle, but do in fact return after an entire cycle. These
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particles typically trace limit-cycle trajectories as mentioned above. For further in-

formation on reversible and irreversible plasticity in this system and similar systems

please see [105, 106]. Here we report the number of D2,min events averaged across

steady-state cycles as a fraction of all particles observed, FD2,min
(Fig. 2.1d).

To build a physical understanding of the types of non-affine events (reversible or

irreversible) that are occurring, we measure several characteristics of each trajectory.

One characteristic is the displacement of a particle over a half cycle and a whole cycle

(see the inset of Fig. 2.2a for the time intervals used). From this information it is

possible to determine weather any given particle has returned to its original position

or not, using a threshold of 0.1a as found in previous D2,min analysis [66]. To be

explicit, any particle that returns to within a tenth of the inter-particle spacing, a,

has returned and a particle that does not return to within 0.1a has escaped.

In addition, we calculate the area enclosed by trajectories of the particles that did

not escape (the area of those that have escaped is defined as zero). This calculation

is not as straight forward as it may initially seem; trajectories often intersect tens

of times in a single half cycle. However, standard area calculation algorithms detect

self intersections as a negative area and will not produce absolute area. Therefore,

we have implemented a highly optimized algorithm that detects intersections and

redefines sub-polygons that together make up the original area. Each sub-polygon’s

area is then calculated and summed. In addition to area, we calculate total arc-length.

Clusters are present within the enclosed area and arc-length phase space. To

determine the relative numbers of particles transitioning from any given cluster to

another, an algorithm must first be used to identify boundaries between clusters. The

algorithm used in this paper is known as HDBSCAN (Hierarchical Density-Based

Spatial Clustering of Applications with Noise) [38, 144]. This clustering routine is

strong at detecting clusters based on variations of density as well as distance within

the chosen phase-space, and it is easily implemented in Python.
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Figure 2.3: Characterization of half cycle displacement vectors by x-y displacement
Poincarè sections for three strain amplitudes. An additional attractor develops with
increasing strain amplitude. Strain is increased from below yield (top), to near yield
(middle), to above yield (bottom). Below yield, most particles return to their original
position as expected from Fig. 2.2. Above yield, many particles do not return; their
paths back to the origin are cut short, ending at periodic, chaotic points centered
on the x-axis. These points grow outward with strain amplitudes above yield (∼3%).
This can be seen in detail for all strain amplitudes in a video within the Supplemental
Information.

2.3 Results

We are interested in comparing the Lagrangian dynamics of each individual particle

within the system; how these variables may change with position in the shearing

channel, between successive cycles, and with strain amplitude. To gain this insight,

we first investigate whether strain amplitude may be interpreted as a bifurcation

variable affecting the propensity of particles to escape from their nearest neighbors.

Fig. 2.1d, shows that the number of total non-affine events bifurcate at the yield point.

To investigate further, Fig. 2.2a gives a normalized histogram of the displacement

distance over half a cycle. Crucially, particles from the near yield case (3.2%) show a

bi-modal distributions about the noted threshold. Particles to the left have returned
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Figure 2.4: Above yield trajectories (γ0 =6.8%). Trajectories are black with a red
plus, (+), at the beginning of the cycle. For reference, local displacement is offset
above in blue (–). a-b) Trajectories dominated by mechanical noise. c) A low area
example of a trajectory with arc length equal to the expected displacement (LN = 0).
d) A high area example of a trajectory with LN = 1.0.

to their original positions, whereas those on the right have escaped their original

particle positions. As strain amplitude is increased past yield, particles transition

from below the threshold to above it. In the case of whole cycles (Fig. 2.2b), particles

remain below the threshold, except when the system is well above yield. These trends

(inset of Fig. 2.2b) are qualitatively similar to those of D2,min shown in Fig. 2.1d.

Notably, half of the particles are seen to escape over half cycles at the yield point.

Also, nearly all of the particles are seen to escape over whole cycles at the strain

amplitude of equal elasticity and plasticity (∼ 17%) seen in figure Fig. 2.1c.

A natural way to glean more information is to consider the components of the dis-

placement vectors in each coordinate direction. To do this we plot Poincarè sections

of spatial displacement (every half cycle) in Fig. 2.3. Plots of the remaining strain

amplitudes are included in the supplemental information. Here we again find confir-

mation that there is a deviation of attractors above and below yield. It is seen that

the attractor at the origin diminishes with strain amplitude, but is still present. The

attractor representing escapes is visualized as a cloud of points and grows outward
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Figure 2.5: Inverse normalized arc-lengths (1/LN) and enclosed area (color bar) com-
pared with the mean particle position between the needle and the wall. Irreversible
particles are shown in black. a) Below yield the system is dominated by reversibly
elastic, and irreversibly plastic particle trajectories. All trajectories have 1/LN < 1.0,
indicating that trajectories are long relative to the displacement field. This means
they are dominated by mechanical noise. b) Near yield, plastically reversible parti-
cles emerge near the needle. Overall the 1/LN shifts nearer to one (especially the
plastically reversible particles) indicating a transition to low mechanical noise rela-
tive to affine displacements. c) Particles in the middle of the channel are exclusively
plastically irreversible. Plastically reversible particles reach 1/LN ∼ 1.0 indicating
that these trajectories are completely dominated by background displacement, while
simultaneously enclosing high area. It is worth noting that not a single particle is
observed to have a 1/LN >> 1.0.

with the increase of strain amplitude.

We have observed no evidence of structure within either attractor, therefore we

believe these to be fully chaotic. Interestingly, the attractor that emerges at yield has

two periodic points (see the supplemental material for supporting information about

periodicity). Remarkably, the periodic points are directly centered on the ∆y = 0

axis. The whole cycle analysis shows two periodic points growing outward along the

horizontal axis as well, with the caveat that they do not move outward as far as those

shown in the half cycle cases (which is expected from Fig. 2.2b).

These results paint a picture of typical trajectories and their changes with strain

amplitude. Particles predominantly move in the direction of needle displacement as

expected. Moreover, particles that do not return are of a specific type: they are on
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track to return, but their trajectories get cut short by the end of the cycle. I.e. by

the end of each half cycle of strain they have not returned yet. Crucially, this implies

that distance travelled by a particle is linked with the type of trajectory it creates

(Fig. 2.4).

These findings inspire the inspection of a different phase space that can be thought

of as a version of efficiency of dissipation. We recall that enclosed area is thought

to correspond to energy dissipation. Therefore, it is natural to think of arc-length

of an enclosed area as a way of measuring the efficiency of that energy dissipation.

In other words, we measure how far a particle needs to travel to dissipate a certain

amount of energy to its surroundings. However, particles will exhibit very different

arc-lengths depending on how close they are to the wall; if a particle is very close

to the wall it will hardly move at all. This leads us to normalize each trajectory’s

arc-length by the displacement that would be expected given its average y position,

assuming a linear strain profile from the needle to the wall as shown in Fig. 2.1b.

From geometry of similar triangles, this length is 2γ0δ(x, t). We define normalized

arc-length as LN = Larc

2δ0⟨Y ⟩
.

The efficiency spectrum introduced above is shown (indirectly) in Fig. 2.5. This

set of plots show the mean particle position between the instrument needle and wall,

Y (τ), as a function of 1/LN , where τ is cycle number. We choose the inverse of LN

for reasons apparent below. We show data for three strain amplitudes ranging from

below yield (Fig. 5a, 1.6%) to well above yield (Fig. 5c, 6.8%). For the case below

yield (Fig. 2.5a), particles trace out a wide range of 1/LN relative to the expected

displacement (based on needle displacement). However, each particle has an 1/LN

that is below one. This indicates that the arc lengths are long compared to the

expected linear displacement field. These relatively long particle displacements are a

result of erratic (i.e. non-smooth) particle paths. These erratic motions are due to

small perturbations to the material’s underlying energy landscape caused by small

displacements of neighboring particles. This effect is commonly known as mechanical

noise [173]. An example of such a trajectory is shown in Fig. 4(b). Interestingly,
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figs_01/6.pdf

Figure 2.6: A direct view of the efficiency space described. Normalized arc-length,
LN , is plotted against Enclosed area, Ae. Above yield clusters emerge that correspond
to the reversibly plastic, in addition to the reversibly elastic cluster. Colored clouds
of points demonstrate the HDBSCAN clustering algorithm employed for our data.
Here, the strain amplitude is 6.8%

the lowest values of 1/LN are near the wall, implying that the effect of mechanical

noise is much higher there than near the needle where displacements are largest. The

enclosed area of trajectories is small relative to higher strain amplitude cases, which

means that particles are predominantly elastically reversible in this case.

Near yielding (Fig. 2.5b), we observe the appearance of trajectories that are re-

versible and plastic (green points), predominantly near the needle. 1/LN shifts closer

to one near the needle (and even the center of the channel), reflecting a decrease

in the importance of mechanical noise relative to the low-strain case. This effect

corresponds to the emergence of much higher enclosed areas, constituting plastic
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reversibility. Finally, well above yield (Fig. 2.5c), 1/LN reaches one at the needle

meaning that mechanical noise is nearly negligible (for the case of particle motion)

and trajectories are mostly smooth (see Fig. 4c,d). Additionally, these reversibly

plastic trajectories reach enclosed areas that are almost an order of magnitude larger

than in lower strain amplitudes. Crucially, the particles in the center of the channel

become nearly completely irreversibly plastic.

These results seem to imply that yielding is characterized by particles that dissi-

pate energy with a minimized arc-length. In contrast, particles below yield dissipate

very little energy while exhibiting large arc-lengths (high mechanical noise; see trajec-

tories in Fig. 2.4a-b). Randomized particle motions due to mechanical noise dominate

the particle system below yield. As strain is increased, this motion becomes smaller

relative to the overall strain-driven displacement. Once above yield, the effect of me-

chanical noise is negligible relative to the local displacement, resulting in arc-lengths

that are smaller relative to the local affine displacement field. Crucially, arc-lengths

smaller than the linear displacement are not observed (Fig. 2.4c). Once this limit is

reached, enclosed areas grow and the system begins to dissipate energy (Fig. 2.4d).

A direct view of the efficiency space described above is shown in Fig. 2.6, where

LN is plotted against Ae. Here separate clusters are immediately apparent. Above

yield, a large Ae cluster emerges, which corresponds to the reversibly plastic state

described above. Because irreversible particles do not enclose an area, they are off of

the logarithmic horizontal axis.

The presence of attractors and states brings up the question of how particles

may be transitioning from one half cycle to the next. We perform a cluster analysis

to answer this question. The efficiency spectrum of enclosed area and normalized

arc-length provides a convenient way to determine clusters of elastically reversible,

plastically reversible, and irreversibly plastic trajectories. Once these clusters are

determined, questions of how many particles transition between states from one cycle

to the next can be answered quantitatively.

The colored clouds of points shown in Fig. 2.6 reflect the detection of clusters by
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figs_01/7.pdf

Figure 2.7: a) Cartoon representation of different particle trajectories corresponding
to those shown in Fig. 2.4. b&c) Chord diagram representations of particle’s inter-
cycle transitions between apparent clusters within Fig. 2.5a&c. Widths of cords at
either end represent the log of the numbers of particles transitioning from that state.
Color of each cord corresponds to the state that has more particles transitioning.
b) Below yield for both the half cycles and whole cycles there is no presence of the
reversible plastic cluster. c) Above yield, half cycles exhibit a reversibly plastic cluster,
whereas the whole cycles do not. The reversibly and irreversibly plastic states do not
exchange particles.

the HDBSCAN algorithm. One observation is that the algorithm does not designate

quite all of the particles around the borders of the designated clusters; it leaves out

0.30% of the total points. This is due to large differences in the density of points

within the designated clusters and the outer fringes; there are narrow, ’loose and

fuzzy’ edges. A second note is that there is a cluster labeled as ’measurement noise’.

These points correspond to particles within a few particle diameters of the wall.

Trajectories are highly noisy for these particles because there is optical disturbance

from the wall. This cluster comprises 0.32% of the overall points. These points are

discarded.

38



figs_01/8.pdf

Figure 2.8: Trends in average enclosed area and normalized arc-length as a function
of strain amplitude. a) With increasing strain amplitude, average enclosed area, ⟨Ae⟩
grows rapidly. With strain amplitude, average normalized arc-length, ⟨LN⟩, drops
monotonically toward an asymptote at unity. b) Taking the square root of the ratio,
⟨Ae⟩/⟨LN⟩ we find a linear collapse between three colloidal systems of various amounts
of disorder. Moreover, this collapse passes through unity at the yield point (γ0 ∼ 0.3).

To display our results quantitatively, we have elected to use two chord diagrams

(Fig. 2.7b,c). These plots give a quick but quantitative assessment of the numbers

of transitions from one state to the next. Thickness of chords indicate the logarithm

(base 10) of the number of particles transitioning out of one state into another; e.g.

a chord that is wide on one end and narrow on the other indicates more particles

leaving the wide state than from the narrow state. This functions almost like an

arrow, where the widths indicate the logarithm of the number transitioning.

As a summary of each state found, we have included a table of cartoon depictions

of the observed particle paths ( Fig. 2.7a) We note here that even though reversibly
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plastic trajectories are not observed over whole cycles, the trends indicate that they

may occur at higher strain amplitudes than are presented here. The first observation

to draw from Figure 2.7 is that particles readily transition between the elastic and

plastically reversible states both over half and whole cycles. A second observation is

that both elastically reversible and plastically reversible particle trajectories do not

transition between each other, implying that they are separate populations. This is

a break from intuition, which would have that particles transition from elastically

reversible to reversibly plastic and then to plastically irreversible.

Two findings have been made: reversibly plastic and elastic states exist indepen-

dently of each other in time, and the particles fall into these states based on where

they are within a melting front between the needle and the wall. The depth of this

melting front, as characterized by the normalized arc-length, increases with strain

amplitude. Crucially, we have seen that the enclosed area increases rapidly above

the yield point and that the normalized arc-length decreases monotonically towards

unity. In Fig. 2.8a we present both of these quantities averaged in time and space,

relative to strain amplitude. Remarkably, taking the ratio of these two quantities

reveals a parabolic relationship with strain amplitude, as shown in Fig. 2.8b. This

functionality suggests a relationship of the type

γ0
γcr
= 1

2C
( ⟨Ae(τ)⟩
⟨LN(τ)⟩

)
0.5

(2.1)

where γcr = 3.0% is the critical strain amplitude indicating yield. The two is included

to account for the fact that there is material being sheared on either side of the

needle. Eq. 2.1 is a dimensionless scaling, quantifying plastic loss as a function of

strain amplitude. That is, this equation uses Lagrangian particle dynamics to describe

the yield transition.

Enclosed area of limit cycles is related to dissipated energy, which has been mea-

sured previously to increase rapidly beyond the yield point [105, 106]. Therefore these

results lead us to conclude that the ratio, ⟨Ae(τ)⟩/⟨LN(τ)⟩ (having units of µm2) is
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a direct Lagrangian measure of dissipation within the entire system. (LN appearing

here in the denominator is the reason we above plot against 1/LN in Fig. 2.5)

To explain the origin of the coefficient C we must consider the subtlety of plasticity.

As particles rearrange, they must squeeze past each other. This relaxation process

results in local forces acting between particles. These forces on the bulk scale give

rise to fluctuating normal forces on the needle and walls. This is known as Reynolds

dilatancy [128]. The walls are fixed in space, whereas the needle is constrained only

by contact with the particles on either side of it. These normal force fluctuations

cause the needle to displace at low frequencies as material on both sides of the needle

relax. However, this length-scale must adhere to a value that depends on the particle

interaction strength and the sizes of particles themselves. In these experiments, we

observe this value to be C = 1.04 ± 0.15µm[95%].

2.4 Discussion and Conclusions

In this paper we investigated the Lagrangian dynamics of constitutive particles within

a 2D soft jammed material spanning strain amplitudes from below yield to above.

Our first finding is that the average displacement distance of particles from the be-

ginning of a cycle to the end increases monotonically with strain amplitude in a

qualitatively similar way to the number of non-affine events (both reversible and

irreversible)(Fig. 2.1d and Fig. 2.2b inset). Moreover, these displacements are pre-

dominantly in the direction of shear, which is linked to particles falling short of

returning to their original positions (Fig. 2.3). This in turn implies particle motions

have slowed, dissipating energy; thus there is importance to measuring area and arc-

length as proxies for energy dissipation and a material’s ability to dissipate energy

(efficiency) respectively.

As has been noted previously, [173] particles below yield are found to display

erratic motions about a mean path (reversibly elastic). The mean path is the expected

local displacement due to a linear strain field. These erratic motions are caused
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by mechanical noise from perturbations of the energy landscape (Fig. 2.4a&b and

Fig. 2.5). However, above yield particles near the shearing surface are found to instead

have smooth trajectories with limit cycle trajectories (reversibly plastic)(Fig. 2.4c&d

and Fig. 2.5). Moreover, any particle that does not maintain these limit cycles, will

not return to its initial position (irreversibly plastic). These non-returning particles

are found everywhere throughout the channel below and near yield. However, well

above yield, they are the only variety of trajectory found in the center of the channel.

More broadly, these may be signs of what is happening within the energy land-

scape; as particles transition from rough to smooth trajectories at the yield point, the

energy landscape is transitioning from a fixed state with small perturbations, to being

actively changed, but in ways that reverse as strain inverts. Irreversible particle tra-

jectories represent local, permanent changes to the landscape and become dominant

well beyond yield. The magnitudes of these changes has been shown in our system

(Fig. 2.2b inset) and in simulations [104] to suddenly transition in strain amplitude,

similar to a first order state transition. Strain is a temperature-like variable. Other

indications that the yield transition is generally of the first order have been observed

recently in simulations and theory [159] and experiments [55, 91].

We find that a quantification of this yield surface is the ratio of the average en-

closed area (increasing with strain amplitude) and the average normalized arc length,

LN , (falling with strain amplitude). Area serves as a quantification of the energy dis-

sipated by a limit cycle [211, 196, 181]. We posit that the inverse of LN is a measure

of how efficiently a particle is dissipating energy relative to a given strain amplitude.

Using both of these concepts, we present a non-dimensional quantification of plastic

dissipation based entirely on the Lagrangian dynamics of the constituent particles

(Eq. 2.1 and Fig. 2.8).

More generally, this quantification works because it captures variations in particle

response between the stationary and shear surfaces. While enclosed area of trajec-

tories is not an applicable concept outside of oscillatory systems, 1/LN is applicable

and should be measured in other systems. In this paper, we describe a spatial tran-
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sition in 1/LN that is associated with the yield transition, and the location of this

transition penetrates farther from the shearing interface the more strain is increased.

This is reminiscent of a melting front, and consistent with dynamics observed in dry

and immersed granular systems [115, 103, 93, 92]. In particular, steadily-sheared

granular systems exhibit: a decreasing shear rate away from the shearing interface;

a fluidized layer at the shearing interface where particles move ballistically; and a

transition associated with a critically-low shear rate to caged dynamics characteristic

of glassy materials [68, 92]. The thickness of the fluidized layer has been found to

be proportional to the applied shear rate [93], and the melting front has been identi-

fied as a yield surface marking the transition to (athermal) granular creep. Seeking

similarities in the melting-front dynamics of these systems and our experiments is

an exciting next step, which will help to reveal whether the creep-flow transition in

granular systems is a similar state transition to what we observe here.

We have presented echoes within a colloidal system under oscillatory stress of

phenomena observed in granular systems under steady shear. This introduces evi-

dence that may help answer a tantalizing question: how is the particulate behavior

of amorphous systems of greatly variable length scales, various interaction forces and

complicated shapes related to each other? And how is that related to the bulk re-

sponse? Some observations have been made previously: yield strain within amorphous

materials as a whole is ∼ 3% [50]; in granular systems, dimensionless strain rates are

related directly to the volume fraction [33, 101]. The results presented here indicate

that particle displacement relative to the expected strain may be a useful tool in

understanding the response of amorphous materials more generally. This parameter

is accessible and should be investigated further in a myriad of systems.

2.5 Appendix

Within the main body of the text, two attractors were shown in Fig. 2.3 and discussed.

The point at the center of all Poincarè sections is an attractor corresponding to
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particle returning to their original positions. Two additional points develop with

increasing strain amplitude, constituting a bifurcation. In the main body it was

stated that these points are periodic within the same attractor. In Fig. 2.9a we supply

evidence. By numbering sequentially, T , each half cycle of every particle’s trajectory

we display where each particle is during even and odd numbered half cycles. In the

Poincarè section in Fig. 2.9a we show that a binned average of the remainder of T

corresponds to each point. Particles on the right overwhelmingly are of odd half

figs_01/9.pdf

Figure 2.9: a) Horizontal and vertical axis are a Poincarè section well above yield.
Color represents a binned average of the remainder of half cycle count divided by two,
shifted so that even numbers of half cycles are blue and odd half cycles are red. The
left half of the attractor is composed of even half cycles and the right is made up of
odd half cycles. Therefore particles must be oscillating between both points. b) The
range in the the displacement of the needle in the direction normal to shear plotted
against cycle, τ , for all strain amplitudes. The average difference between the highest
and lowest displacement is about one here. C = 1.04 ± 0.15µm[95%] is shown as a
dashed gray line (-).
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cycles, whereas particles on the left are overwhelmingly even half cycles. This means

that particles are switching from the right to the left points periodically throughout

a cycle. Therefore, the attractor is made up of two periodic points.

Within the main body of the text, it is mentioned that the characteristic displace-

ment length, C, of the shearing tool perpendicular to shear is ∼ 1.0µm. In Fig. 2.9b we

plot the y-position of the needle minus the minimum position versus time (in units of

cycles). The highest peak for any given strain amplitude corresponds to an estimate

of C. The average of these peak heights across all three samples is C = 1.04± 0.15µm
over a 95% confidence interval.
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Chapter 3

The system wide link between

particle arrangements and their

dynamical responses

3.1 Introduction

For many amorphous solids, i.e., solids without long-range order, a threshold stress

exists beyond which the material starts to deform plastically (yield) and flow like

a liquid. These yield stress materials, which range from foams and colloids to ce-

ment and metallic glasses, have constituents and dynamics that vary widely across

length and time scales [14, 26, 154]. Nevertheless, they are unified by two features:

the cross-over transition from solid- to liquid-like behavior and a nonlinear viscosity

response to external stress (shear thinning) [200]. Ultimately, to understand these

nonlinear mechanical processes, we need a detailed picture about how shear couples to

microscopic structure and relaxation. If successful, this understanding could lead to

improved processing of amorphous metals via stress-induced control of microstructure

[65, 212].

To this end, useful models have been developed to characterize the structural ori-

gin of plasticity in amorphous solids. Shear transformation zone models, for example,
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posit the existence of mechanically weak regions in amorphous solids analogous to

crystalline defects, and then they focus (largely) on the kinetics associated with lo-

calized plastic events [66]. The softer regions are believed to facilitate or accelerate

rearrangements nearby. This general phenomenology of dynamic heterogeneity is ob-

served in experiments [193] and computer simulations [66], and is supported by first-

principle Mode-Coupling and Random First-Order Transition theories [83, 114, 130].

Nevertheless, identification of mechanically weak regions from static sample structure,

e.g., before plastic events occur, remains a challenge.

In a different vein, thermodynamic predictors based on excess entropy (Sex) have

shown promise for explaining nonlinear mechanical phenomena in complex fluids [187,

62, 119, 1, 61, 96]. Excess entropy concepts developed from studies of liquids rather

than solids and enable comparison of macroscopic system-averaged structural and

dynamical quantities. Sex is a structural order parameter defined as the difference

between system thermodynamic entropy and that of an equivalent ideal gas [16]. For

typical liquids, Sex derives mainly from pair correlations of its constituents [62] and is

readily evaluated by experiment [1, 133]. Excess entropy accurately predicts transport

coefficients of simple and complex fluids in equilibrium using their static structure

[191, 94, 190, 147, 118, 1, 120, 175, 133, 224, 156, 135, 125]. Recently, in computer

simulations, Sex has been applied to supercooled liquids under steady-state shear; the

shear-dependent relaxation time of the supercooled liquids was found to scale with

Sex [96], thereby revealing a simple structural connection to shear-thinning induced

relaxation. This intriguing discovery has not been tested experimentally. Moreover,

the concept of excess entropy scaling has not been applied to understand plastic flow

in amorphous solids, nor in materials driven into more general non-stationary states.

In this contribution, we investigate the connection between shear rate, relaxation

time and excess entropy of plastically deformed matter in non-stationary states. We

use a custom-made interfacial stress rheometer [202, 182, 105, 106] to apply oscillatory

shear at different strain amplitudes to an oil-water interface (Fig. 3.1a, see Materials

and Methods for details). A series of disordered, two-dimensional colloidal solids are

47



Table 3.1: Summary of colloidal monolayers. σ: particle diameter, ϕ: packing frac-
tion, d: mean interparticle separation, Γmax: strain amplitude

Sample σ (µm) ϕ d (µm) Γmax

A (bi-disperse) 4.1,5.6 43% 7.4 5-16%
B (monodisperse) 5.6 32% 7.7 8-16%
C (bi-disperse) 1.0,1.2 32% 9.8 5-8%

prepared at the oil-water interface (Fig. 3.1b). Their translational and orientational

correlation functions do not exhibit long-range order (see the Supporting Information

(SI)). The disordered samples are driven by the applied oscillatory shear, and con-

currently, the trajectories of individual particles in the samples are captured by video

optical microscopy and standard tracking software.

3.2 Results and Discussion

From particle position data during oscillatory shear, we compute strain rate, the

relaxation rate/time associated with plastic flow, and the sample excess entropy. The

relaxation time exhibits a power-law scaling with shear rate, a characteristic of shear-

thinning behavior. Furthermore, phase-shifts between the oscillatory signals revealed

a constant lag time between plastic shear rate and plastically induced relaxation rate,

and a different lag time (proportional to the instantaneous relaxation time) between

relaxation rate and excess entropy. These delay-intervals (phase-shifts) uncover novel

connections between shear rate, plastic flow induced relaxation, and structure of the

samples in non-stationary states. Surprisingly, we find that relaxation time/rate and

excess entropy data measured at different strain amplitudes collapse onto a single

master exponential scaling curve which depends only on sample type. In total, the

work introduces an analysis framework based on excess entropy scaling to understand

plastic flow in both stationary and non-stationary states, and the findings suggest that

information about the relaxation history of an amorphous material can be deduced

from its current static structure.

Briefly, the solid-like monolayers consist of colloidal spheres with different diame-
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figs_02/Figure1-eps-converted-to.pdf

Figure 3.1: (a) Schematic of the interfacial stress rheometer. A sinusoidal magnetic
force is imparted to the interface-bound magnetic needle, which in turn introduces
oscillatory shear stress at the oil-water interface. The parallel and perpendicular
directions with respect to the needle motion are defined as the x- and y-axis, re-
spectively. (b) Micrograph of bi-disperse colloidal particles at the oil-water interface
from sample A. (c) Sixfold bond orientation order, ψ6, measured from particles in
(b). Colors help to indicate the lattice director (orientation) as a guide for the eye to
help discern ordered and disordered domains. Dots with large size indicates ∣ψ6∣ > 0.9,
and small dot size indicates ∣ψ6∣ < 0.9. The scale bars in (b) and (c) are 100µm. (d)
A pair correlation function, g(x, y), measured from particle positions in (b) exhibits
strong anisotropy due to ordered domains.

ters (σ), surface charge densities, and packing fractions (ϕ) (see Table. 3.1 and Mate-

rials and Methods). In combination, these factors determine interparticle separation

(d), sample structure (see Fig. 3.1c,d and SI), shear moduli, and plasticity

[105, 106]. Rheology measurements of the samples exhibit elastic behavior at small

strain amplitudes and yielding behavior when the strain exceeds about 3% (see SI).

Herein, we focus exclusively on strain amplitudes above yield point (e.g., larger than

5%, see Table. 3.1).

We first use the particle trajectory data to measure and compare shear rates

and shear-induced relaxation times. The shear strain, Γ(t), at time t quantifies the

sample’s affine deformation, which follows the oscillations of the needle motion. We

compute Γ(t) by taking average of the measured y-dependent local strain, γ(y, t)
(see Materials and Methods). Figure 3.2a shows that Γ̇(t) follows the driving sinu-

soidal function set by the external force, and that it exhibits measurable fluctuations

about the sinusoidal function too. Note, fluctuations of Γ(t) about the driving stress

have been seen in plastically deformed bidisperse polycrystals in computer simula-
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tions [87, 204]; these fluctuations were attributed to intermittent yielding along grain

boundaries and become weaker when the sample has smaller crystalline domains.

We use nonaffine particle motions to evaluate sample relaxation behavior [231, 96].

At time t, the self-part of the intermediate scattering function is,

Fs(t, τ) =
1

N
⟨
N

∑
j=1

exp[2πi
d
∣∆r⃗ ′j(τ)∣]⟩. (3.1)

Here N is the number of particles and ∆r⃗ ′j the nonaffine displacement of the j-th

particle, that is, the residual after the affine displacement has been subtracted from

the total particle displacement, ∆r⃗j. (See Materials and Methods and SI for how to

compute ∆r⃗ ′j from ∆r⃗j.) The brackets, ⟨⋯⟩, represent a time average over the period

[t − δt/2, t + δt/2] (δt = 2.5s is one quarter of the shear cycle). The duration of the

measurement is thus δt. Ideally, Fs(τ) should decay to below 1/e at τ = δt to extract

the relaxation time. However, we will soon show this is not necessary.

Figure 3.2b shows examples of Fs(t, τ) at two times where the Γ̇ values are dif-

ferent; these Fs(t, τ)’s decay at different rates, indicating shear-dependent relaxation

behavior. Fs(t, τ) is well fit by the function,

Fs(t, τ) = Aexp[−(τ/τα)β], (3.2)

where τα is the α-relaxation time measured in the time-interval centered on t, and

A ≃ 1 is a constant prefactor (see SI). Since we can fit Fs(τ) data before it decays to

1/e to obtain τα, we can estimate τα from measurements with duration (δt) shorter

than τα (see SI for details). Interestingly, we find β > 1 (compressed exponential)

throughout the shear cycle in all samples. This finding confirms the expectation that

particle configurations, when driven by external forces, relax/reorganize faster than

would occur if driven by exponential diffusive motions alone. A few studies have also

reported β > 1 phenomena [46, 141, 137, 143, 6, 80]; in these cases, ballistic motions

of constituents were found to accompany the accumulation and release of internal

stress [215]. In our experiments the nonaffine mean-square-displacements (MSD’s),
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⟨∆r′2(τ)⟩, exhibit super-diffusive behavior, that is, ⟨∆r′2(τ)⟩ ∼ τ p with p > 1 (see SI);

by analogy to prior work, we believe the measured compressed exponential decay of

Fs(t, τ) is caused by super-diffusive particle motions. Note, we also investigated other

alternative explanations for the compressed exponential decay of Fs(τ) (see SI).

Using the Γ̇(t) and τα(t) data, we next investigate how shear influences relaxation

in the non-stationary regime. Figure 3.2c compares ∣Γ̇(t)∣ and τ−1α (t) measured from

sample A (Γmax = 16%) as a function of t; here, the absolute shear rate is used

because we expect the shear direction to have little influence on relaxation rate. This

comparison clearly demonstrates that the relaxation rate lags the shear rate by a

time interval, ∆t ≃ 0.8s (see Materials and Methods and SI). This lag time hints at a

causal relation between shear and shear-induced relaxation processes. Moreover, the

amplitude of τ−1α (t) follows ∣Γ̇(t)∣.
For a more quantitative comparison, we examine our data in the context of the

non-Newtonian relationship between shear rate and relaxation time that has been

found in steady-state [206, 19]:

τα ∼ (1 + Γ̇/Γ̇0)µ. (3.3)

Here, Γ̇0 is the shear rate associated with onset of non-Newtonian viscous response

behavior, and µ < 0 is a power law exponent characterizing shear-thinning behavior.

In oscillatory measurements, Eq. 3.3 has been established between the mean (or

maximal) viscosity and shear rate during multiple shear cycles [45]. To our knowledge,

this relation has not been used to describe the connection between the instantaneous

viscosity (or relaxation time) and shear rate in non-stationary samples. Despite the

phase-shift between shear rate and shear-induced relaxation rate, we might expect our

data to follow Eq. 3.3 with Γ̇ being replaced by its weighted time average, ⟨∣Γ̇∣⟩δt, over
the time-interval [t−δt/2, t+δt/2] (that is, the same window wherein τα(t) is evaluated,
seeMaterials and Methods and SI about calculation of ⟨∣Γ̇∣⟩δt). To test this hypothesis,
we plot τα(t+∆t) versus ⟨∣Γ̇(t)∣⟩δt measured from sample A in Fig. 3.2d. Remarkably,

the data from the sample A sheared at three different strain amplitudes collapse onto
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figs_02/Figure2-eps-converted-to.pdf

Figure 3.2: Dynamics in sample A (a) Instantaneous shear rate, Γ̇(t), versus time,
t. The solid line is the sinusoidal fit, Γ̇(t) = 0.096sin(ωt). (b) The self-part of
the intermediate scattering function, Fs(τ), measured at the two times indicated
by same-color circles (green, blue) in (a). The dashed and solid lines are fits using
Eq. 3.2, with τα = 0.5 and 2.3 sec and β = 1.3 and 1.5 at t = 16.3 and 18.8 sec,
respectively. (c) Relaxation rate, τ−1α (t), versus time, t (red circles). The magnitude
of shear rate, ∣Γ̇(t)∣, is also plotted (blue triangles) for phase-shift comparison. (d),
The measured relaxation time, τα(t+∆t), versus time-averaged shear rate, ⟨∣Γ̇(t)∣⟩δt,
from three experiments with different Γmax values. The solid line is the best fit using
τα ∼ (1 + ⟨∣Γ̇∣⟩δt/0.0017)−1.4.

a single master curve; the best fit using Eq. 3.3 gives Γ̇0 = (1.7 ± 0.5) × 10−3 s−1 and

µ = −1.4 ± 0.3. Interestingly, the fitted Γ̇0 in our sample is of the same order of

magnitude as the onset shear rates of non-linear viscous response in molecular glasses

[206]. The fitted µ is similar to those measured in dense suspensions of soft colloidal

particles [122]. This finding suggests an interesting new way to characterize shear-

thinning behavior in a non-stationary (e.g., oscillatory) measurement. Note, also,

while in principle the lag time, ∆t, between shear-rate and relaxation time may be a

complex function of shear rate, in our samples it suffices to use a constant lag time.

Next, we compute excess entropy from particle position data and explore whether

excess entropy scaling laws can be applied in systems experiencing non-stationary
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(oscillatory) shear. If the scaling relation still holds, then by implication, sample static

structure can provide information about relaxation induced by plastic deformation.

Previously, viscosity, diffusion coefficients, and relaxation times have been found to

obey a simple excess entropy scaling law, τα ∼ f(Sex), for a wide variety of materials

[191, 94, 190, 147, 118, 120, 175, 224, 156, 135, 125] spanning different particle type,

size, density, interaction, temperature, material phase, and even shear rate [118, 96].

Importantly, Sex is well approximated by the two-body contribution, S2, which is

readily determined from scattering or imaging experiments [1, 133, 224].

To this end, we compute the time-dependent sample pair correlation function,

g(r), using particle positions at time t. Note, we employ particle coordinates in

a single video frame at time t for determination of g(r); these particles are the

same as used above in computing Γ̇(t) and τα(t). Examples of g(r) at two times,

t = 16.7 and 19.2 s, are shown in Fig. 3.3a. These g(r)’s exhibit quasi-long-range order
extending out to 10 shells of neighbors; the extended correlations are indicative of

presence of many small crystalline domains (see Fig. 3.1c and SI). By comparison, g(r)
from sheared glass-forming liquids typically exhibits only 3 well-defined peaks (e.g.,

see Refs. [231, 96]). The correlation lengths obtained from the spatial correlations

of translational and orientational order also confirmed that the samples are more

ordered than traditional glasses but less ordered than crystals/polycrystals (see SI).

The peaks of g(r) evolve subtly throughout imposed shear cycles (Fig. 3.3a insets);

these changes are indicative of shear-induced restructuring. The comparatively high

peaks in g(r) at t = 19.2 s compared to t = 16.7 s suggests a more ordered structure in

the former case. The differences in peak height at different times are rather small and

are in accord with measurements in sheared molecular glasses [231, 119, 96]. From

the time-dependent g(r) data, we compute S2 versus t,

S2 = −πρ∫
∞

0
{g(r) ln[g(r)] − [g(r) − 1]}rdr. (3.4)

Here, ρ is sample particle number density. Equation 3.4 converges quickly after r

reaches 5d (see SI); thus we choose the cut-off length, rcut = 10d, as the integration
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Figure 3.3: (a) Measured g(r) from data taken at t = 16.7 and 19.2 s. The insets
show the enlarged plots of the first (left inset), and the second and third peaks (right
inset) of g(r), respectively. (b) S2(t) versus t. τα(t) is also plotted for comparison.
The black and green arrows indicate t = 16.7 and 19.2 s, respectively. (c) τα(t − td) is
plotted versus time delay, td(t) ≃ 0.3τα(t).

limit for computing S2. We confirmed that with the same cut-off length Eq. 3.4

converges for the other two samples as well (see SI).A larger −S2 value at t = 19.2 s

confirms a more ordered structure, consistent with g(r) data in Fig. 3.3a. Note that

larger −S2 are also accompanied by larger bond orientation order [216], suggesting

the orientational order is coupled to translational order by shear (see SI).

Figure 3.3b presents S2(t) and τα(t) as a function of t during the shear cycles. No-

tice that longer relaxation times, τα, are accompanied by larger −S2 or, equivalently,

more ordered sample structures. Taken together with the Γ̇(t) findings (Fig. 3.2c),

we conclude that faster shear rates lead to shorter shear-induced relaxation times and

more disordered resultant particle arrangements.

Further inspection of Fig. 3.3b reveals that the peaks of −S2(t) clearly lag behind

those in τα(t); by comparison, the lags between valleys are less apparent. A possible

explanation is that S2(t) lags behind τα(t) at all phase positions; this hypothesis is

further supported by the hysteresis loops generated by the two functions (see SI).

Based on this intriguing observation, we hypothesize that: i) the relaxation time

measured at t is related to the sample structure (S2) at a later time, t + td, and ii)

the time delay, td(t), is a function of τα(t). We assume td(t) ≃ hτα(t), where h is a

constant throughout the shear cycles. To test this hypothesis we re-plot τα(t − td)
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Figure 3.4: Delayed relaxation time, τα(t − td), as a function of the excess en-
tropy, −S2(t), measured from sample A with 3 different Γmax. Inset shows same
data measured from sample B and C. The three data sets are fit using Eq. 3.5 with
c = 3.9±0.2(solid line), 1.0±0.1(dash−dotline), and 1.4±0.1(dashedline) for sample
A, B, and C, respectively.

in Fig. 3.3c. The relation td(t) ≃ 0.3τα(t) best aligns the peaks and the valleys

of τα(t − td) and −S2(t) (see Materials and Methods and SI). Note, the choice of a

linear function of τα to approximate td is empirical; td could have a more complex

dependence on τα, Γ̇, and their time-derivatives. This empirical finding that td ∼ τα
suggests a picture wherein new structures driven by shear-induced relaxation evolve

to their final form after a waiting time that is itself dependent on the relaxation

process/timescale. Moreover, the introduction of this form for td enables comparison

of τα versus S2 across different times and conditions.

To this end, we investigate the scaling connection between τα and S2 obtained at

the different shear rates. Figure 3.4 shows τα(t − td) as a function of S2(t) for all
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three samples listed in Table. 3.1 . For sample A, data from three strain amplitudes,

Γmax = 16, 8, and 5%, collapse onto a single master curve. Therefore, we confirm τα(t−
td) is a simple monotonic function of S2(t), in non-stationary oscillatory conditions.

Moreover, the collapsed data from sample A are well fit by Rosenfeld’s equilibrium

excess entropy scaling law,

τα(t − td) ∼ e−cS2(t)/kB , (3.5)

where c = 3.9 ± 0.2 is a constant prefactor [187].

Previous studies of the excess entropy scaling connect sample dynamics to static

structure; in other words, a measurement of static structure and the scaling law can

be used to predict sample dynamics. Our finding, although similar in form, has a

somewhat different implication: the static structure is a consequence, rather than the

cause, of the relaxation process. Slower particle rearrangement processes (τα) produce

more ordered particle arrangements (S2) that require longer waiting times (td) to

observe. Furthermore, since the time delay, td, is explicitly encoded in Eq. 3.5, we can

use information about the “current” sample static structure to learn about plastic flow

and relaxation processes that occurred in the sample at earlier times. The structures

“remember” sample dynamical history [111]. In the future, application of this concept

could provide insight about manufacturing and processing of amorphous materials

wherein micro-structures are altered by thermomechanical processing [65, 212]. Note

also, the “asynchronous” dynamics-structure connection observed in our oscillatory

experiments is fully compatible with steady-state experiments. When Γ̇ approaches a

constant value, both τα(t) and td(t) lose their dependence on t, and the new scaling

framework evolves into a previous relationship found for glass-formers in uniform

shear flows [96]. Thus, we expect to see this transition from a non-steady-state to a

quasi-steady-state by gradually increasing the oscillatory period in future studies.

To further examine the influence of material structure and other properties on the

excess entropy scaling, we plot τα(t − td) versus S2(t) for samples B and C (Fig. 3.4

inset). Sample B is a monodisperse colloidal suspension (see Table. 3.1) and thus

has larger crystalline domains (see SI) compared to those in sample A. In this case,
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the combination of initial sample packing condition and shear-induced restructuring

gives rise to much larger ∣S2∣ values, well above 4.5kB, a value that corresponds to the

liquid-to-crystal transition observed in two-dimensional colloidal samples [226]. By

comparison, sample C is a bidisperse mixture of much smaller particles (see Table. 3.1)

and thus has more thermal particle motion; its ∣S2∣ values are between those of sample

A and B. The short-time Fs(τ) for sample C is very close but never equal to unity,

unlike those measured in sample A and B (see SI). We believe this difference is

caused by thermal motion at short times in sample C. Despite these differences in

material properties, in all three samples, both τα and ∣S2∣ decrease with increasing

shear rate (as in sample A). All experimental data thus demonstrate that excess

entropy scaling with relaxation time exists independent of shear rate. The best fits to

Eq. 3.5 yield c = 1.0±0.1 and 1.4±0.1, for samples B and C, respectively. In previous

experiments with colloidal samples, the range of the dynamics is typically one decade

by utilizing multiple packing fractions. Our experiment achieves a similar dynamic

range by changing shear rate alone. The excess entropy scaling form has been found

to depend on factors including interfacial boundary conditions and the functional

shape of the sample’s pair potentials [133, 96, 135]. For our amorphous samples with

small crystalline domains separated by regions of disorder, to fully understand the

difference in the prefactor c will require further investigation.

Finally, we also examine use of Sθ
2 computed from directional g(r, θ); here, θ is

the direction relative to shear. Unfortunately, the noise in g(r, θ) at long distances

prevents Eq. 3.4 from converging within the finite cut-off distance (see SI). In steady-

state measurements, this sampling noise can be suppressed by time averaging. In

non-steady state samples, however, time-averaging necessarily involves integration

over a broader range of shear rates which complicates evaluation of sample static

structure. In the future, this issue could be ameliorated by using a much larger sam-

ple size. Our observation that τα scales with S2 indicates a major difference in the

microscopic relaxation mechanism between amorphous solids with small crystalline

domains separated by regions of disorder and the more disordered glassy samples.
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In the latter, τα has been found to scale better with the extensional excess entropy,

Sθ
2 , which is derived from g(r, θ = π/4) [119, 96]. The deformation along the exten-

sional direction (θ = π/4) has been argued to create more accessible configurations

(that is, smaller ∣S2∣ values) that facilitate faster relaxation rates [96]. In sheared

amorphous samples with small crystalline domains separated by regions of disorder,

by contrast, particle rearrangements likely occur through cooperative sliding motions

along grain boundaries, whose orientations depend on sample’s initial condition and

become randomized when sample size is much larger than grain size. Therefore, we

expect particle rearrangements to be less sensitive to shear in our polycrystal-like

solids [87, 204, 215].

3.3 Conclusion

In summary, we have developed a framework to understand plastic flow induced dy-

namics in deformed amorphous colloids with different degrees of polycrystallinity. The

framework extends the concept of excess entropy scaling from equilibrium to nonequi-

librium non-stationary states. Ours is the first experiment to demonstrate excess

entropy scaling in nonequilibrium materials. Experimental data comprising a wide

range of shear rates, relaxation times, particle pair correlations, and excess entropy

reveal that transient shear-induced relaxation times scale as a simple exponential

function of excess entropy. Collectively, these results demonstrate, in non-stationary

states, that increasing (reducing) strain rates lead to faster (slower) relaxation, which

in turn results in more disordered (ordered) micro-structures. The work also reveals a

power-law connection between bulk shear rate and bulk viscous relaxation time that

characterizes sample shear-thinning behavior; using the observation of excess entropy

scaling, we thus deduce that shear-thinning is controlled by microscopic structure.

Notably we find that new parameters, specifically lag times between shear rates, re-

laxation times and excess entropy, are crucial for proper application of the excess

entropy concept in non-stationary conditions. In the future, it should be interesting
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to compare microscopic relaxation channels and shear-induced structural anisotropy

in polycrystals versus more traditional glasses. Also, in addition to uniform and os-

cillatory shear, it would be desirable to test excess entropy scaling in more general

strain protocols in both 2D and 3D systems.

3.4 Methods

3.4.1 Interfacial stress rheometer

The experiments use a custom-made interfacial stress rheometer [105, 182]. Briefly, a

pair of vertical glass walls pin a water/decane interface as shown in Fig. 3.1a. A metal

needle is located between and is parallel to the glass walls; it is held by capillary forces

at the interface. Water height is adjusted so that the interface is flat between the two

walls and needle. A pair of Helmholtz coils imposes a sinusoidal magnetic force on the

needle that translates it axially. The out-of-plane Lorentz forces (approximately 10−16

N) are negligibly small compared with interfacial trapping forces (approximately 10−2

N). The moving needle and the two fixed boundaries thus create a flat two-dimensional

(2D) shearing channel. A microscope (Infinity, K2) and high-resolution camera (IO

Industries, Flare 4M180) are employed to measure the motions of the needle and

interface-bound colloidal particles [105, 202].

3.4.2 Sample preparation

The colloidal suspensions are composed of sulfate latex particles (Invitrogen) with

different diameters. The particles are injected onto the interface using a pipette,

and regions of approximately 80x200 particles are studied. Due to the small parti-

cle sizes (< 10µm), capillary interactions are small and unimportant [172, 117]. A

long-range dipole-dipole repulsion between particles [163] causes the spheres to as-

semble into a disordered, jammed, 2D structure with large amorphous areas filling

the regions between randomly oriented microcrystal domains (see Fig. 3.1b-c and
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SI). Characteristics of the three investigated particle systems such as particle type,

packing fraction, mean interparticle separation, d (derived from sample pair corre-

lation functions), and strain amplitude are summarized in Table. 3.1. The camera

records the needle displacement and all particle motions; trajectories are extracted

from the images using standard particle tracking software [2]. The experiments thus

measure the particle positions, strain-rate, relaxation time, and excess entropy ver-

sus time during the shear cycle. We shear the samples at a fixed low frequency of

0.1 Hz to reduce/remove hydrodynamic effects. Additionally, we have calculated the

Boussinesq number, Bq = ∣η∗∣/Dη, wherein η∗ is the complex interfacial viscosity, D

the needle diameter, and η the mean viscosity of the oil and water [35, 222]. Bq quan-

tifies the ratio between the in-plane and out-of-plane stresses induced by the needle.

We find that Bq = 147.5 and 101.5 for sample A and B, respectively, corroborating

the expectation that hydrodynamic flows in the water and oil phases are negligible.

The relaxation processes are due to plastic events that occur when the samples are

stressed beyond yield.

3.4.3 Affine and nonaffine particle motions

To compute the y-dependent mean particle displacement, ∆x(y), along the shear

(x) direction, we first compute [yj(t),∆xj(t)] from all particles at time t; ∆x(y)
is then obtained from the fit of [yj(t),∆xj(t)] (see SI). The local strain is thus

γ(y, t) = ∂∆x(y, t)/∂y. To account for the slightly nonlinear flow profile (see Fig. S1 in

SI), ∆x(y, t) and γ(y, t) are fit by a polynomial of y up to the third and second order,

respectively. To characterize the overall affine deformation, we define Γ(t) as the spa-
tial average (over y) of γ(y, t). The nonaffine particle displacement, ∆r⃗ ′j ≡ {∆x′j,∆y′j}
between times t and t + τ is obtained by subtracting the affine contribution from the

total horizontal displacement, ∆x′j(τ) = xj(t + τ) − xj(t) −∆x(yj, τ). Since the net

flow in y direction is zero, ∆y′j(τ) = yj(t + τ) − yj(t).
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3.4.4 Calculation of ⟨∣Γ̇∣⟩δt

To determine ⟨∣Γ̇∣⟩δt, we define a triangle kernel function centered at t, Λ(t, s) ≡
max(δt/2 − ∣s − t∣,0), and we compute the convolution of Γ and Λ: ⟨∣Γ̇∣⟩δt = (∣Γ̇∣ ∗
Λ)(t) ≡ ∫

∞

−∞
∣ ˙Γ(t − t′)∣Λ(t′)dt′. (Note, Λ is normalized before the convolution.) This

parameter-free approach places maximal weight on the shear rate value at t, and zero

weight on those shear rates outside of [t − δt/2, t + δt/2]. We also tested convolution

with a Gaussian kernel function, and the results were very similar (see SI).

3.4.5 Evaluation of ∆t and td

To determine ∆t, we compute the (unnormalized) correlation function, C1(∆t) ≡
⟨(⟨∣Γ̇(t)∣⟩δt − ⟨⟨∣Γ̇(t)∣⟩δt⟩)(τ−1α (t +∆t) − ⟨τ−1α (t +∆t)⟩)⟩; here, ∆t is the trial lag time

and ⟨⋯⟩ represents time average. The value of ∆t wherein C1(∆t) reaches its max-

imal value is set to be the true lag time between ⟨∣Γ̇(t)∣⟩δt and τ−1α (t) (see SI). To

determine td, we similarly compute the (unnormalized) correlation function, C2(h) ≡
⟨∣S2(t)∣τα(t−hτα)⟩ as a function of h. Similar to the procedure above, C2(h) is max-

imized when hτα (or equivalently, td) is closest to the true time lag between ∣S2(t)∣
and τα(t) (see SI).
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Chapter 4

The relation between system

composition and its stress response

throughout yield

4.1 Introduction

Disordered solids are ubiquitous. They are found, for example, in our foods as pastes

and gels [153], and amidst our homes in the form of concrete [97] and mud [101,

155]. Frustratingly, these materials can experience sudden mechanical failure, such

as the collapse of soil during rapid mudslides. Indeed, when sufficiently stressed, all

disordered materials exhibit a swift decrease in ability to support load. In the vicinity

of this “yield” transition, the solid material shifts from a state wherein energy is stored

via internal elastic forces, to a state in which energy is dissipated via irreversible

plastic rearrangements [122, 85, 42, 36, 171]. Microscopic spatiotemporal features are

associated with this yield transition and affect macroscopic material responses such

as ductile versus brittle behavior. In contrast to the case for crystalline materials, it

remains a challenge to predict and control yield in disordered solids based on their

constituents and interactions [85, 47]. To build such microstructural models, we need

to identify key microscopic metrics [185] relevant to plasticity in disordered materials.
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Recently, excess entropy has been explored for this purpose [77, 96, 27].

In equilibrium systems, the Rosenfeld scaling [62, 188, 61, 135] has shown that

interparticle structure, measured by excess entropy, is connected to viscosity and

particle mobility; Isomorph Theory provides a framework for this connection [61,

60, 79, 199]. There have also been great strides in using entropy-based methods to

describe the glass transition within a thermodynamic context. One such example is

Random First-Order Transition theory [229, 140, 59] (RFOT), which accounts for

the system’s entropy in excess of a crystalline state. In equilibrium, it is known that

contributions to the sample excess entropy are largest from local structures with low

configurational entropy and thus decreased particle mobility [124, 86]. Recently in

far-from-equilibrium systems, excess entropy scaling has been shown to facilitate a

relationship between microscopic structure and dynamics in simulations [96, 27] and

in experiments [77], but no relationship to nonlinear rheology is provided. Thus,

excess entropy offers an untapped signature for plasticity and a potential tool for

modeling the mechanical response of disordered solids.

The study of rheology and particle dynamics in disordered systems has a ven-

erable history [8]. As a result of this research, theories have proliferated [185] in

recent decades. Two of the most successful are Mode Coupling Theory, wherein the

interplay of dynamical modes causes the emergence of rearrangements [205, 72], and

Shear Transformation Zone theory, which posits that local configurations determine

where rearrangements occur [8, 67, 66, 207]. More recently, structural signatures for

rearrangement have been revealed by machine learning approaches [50, 51, 15, 134],

by study of low-frequency excitations [43, 232, 44, 201, 113, 230], and via local yield

stress [167, 166] and near-neighbor cage dynamics [138]. Despite their usefulness,

difficulties remain in applying these theories to experiments because of the need for

fitting parameters [32, 205] and the use of empirical relations[138] that are difficult to

measure. Moreover, while these theories account for history-dependence, an explicit

phenomenological link between microstructure and history-dependent rheology has

yet to be uncovered.
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Generally, disordered materials contain memories, i.e., microscopic signatures re-

lated to how the material has been processed [109, 111, 149, 165, 69, 197, 150, 108].

Memory of a previous shearing direction, for example, can be encoded into a mate-

rial’s response. Once a material is sheared sufficiently in a given direction, continued

shear requires more force than in the opposite direction because of a restoring force.

In contrast, the Bauschinger effect is a memory at zero strain of previous plastic de-

formation; the yield stress is higher if sheared in the same direction as the original

plastic deformation [73, 66, 111, 166]. Both types of directional memory are related

to orientation of shear transformation zones [32, 67] and have been described by shear

transformation zone theory [66]. In jammed systems, recent experiments and simu-

lations have studied directional memories at low strain amplitudes, both below and

near the yield transition; far above yield, memories are erased [110, 105, 217]. These

observations, in turn, raise important new questions: How is microstructure related

to directional memories? Is plastic flow synonymous with erasure? How do these

phenomena manifest during yield, e.g., in storage and loss moduli?

In this contribution, we utilize excess entropy to quantify material memory and

construct a microstructural model for disordered-material response and energy dis-

sipation. Experiments and simulations show that three non-dimensional parameters

govern the connections between microstructure and bulk rheology: packing density,

a normalized (non-dimensional) form of the imposed stress, and an excess entropy

(microstructure-related) ratio that quantifies the material’s ability to retain informa-

tion about its initial state. Our results confirm that memory is stored elastically

and lost plastically, and show how yield and the ductile/brittle response emerge from

knowledge about particle configurations at the microscopic scale.

4.2 Results

The experiments investigate disordered solids. The solids are colloidal monolayers of

athermal, spherical particles (∼ 40,000) adsorbed at an oil-water interface (Fig. 4.1a).
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The charged particle surfaces generate a dipole-dipole repulsion between particles.

This repulsion is strong enough to jam the entire material, arresting particle motions.

To probe the effects of disorder, we study both mono-disperse and bi-disperse spherical

particle systems with diameters of 5.6 µm and 4.1 µm-5.6 µm, respectively. In the

bi-disperse system, crystalline domains tend to be much smaller (See Supplementary

Materials). We impose many cycles of sinusoidal stress on these samples using a

custom-made interfacial stress rheometer [105]that permits measurement of the bulk

response of the colloidal monolayer while simultaneously recording trajectories of

individual particles (see Methods). Cyclic stress is quasi-static, insofar as the time

scale for a completion of a rearrangement (∼0.5s) is much shorter than the shortest

driving period (5s) or largest inverse strain rate (20s).

We investigate particle rearrangements by identifying non-affine deformations

within each particle’s neighborhood [66, 105]. The degree of non-affinity is quan-

tified by the mean-squared displacement after subtracting the best fit affine trans-

formation, D2
min (see references [66, 105] for more information). Within cyclically

sheared disordered materials, two types of non-affine events occur (Fig. 4.1a): those

wherein particles return to their original position at the end of a strain cycle but

along different paths, and those wherein particles escape their nearest neighbors and

do not return [106, 132, 152, 181, 76]. It is possible to concurrently measure the

degree of returning and escaping non-affine behavior for each particle [105]. For

visualization, we estimate which type of non-affine event is dominant by defining

D2
min,C ≡ ±

√
(D2

min,R)2 + (D2
min,E)2, where the subscripts refer to returning (R) and

escaping (E) events. The sign for each particle is assigned according to which is

greater. Negative corresponds to D2
min,R, whereas positive corresponds to D2

min,E.

Both types of events dissipate energy [132, 152, 106, 181, 180, 76]. Returning non-

affine events are known to emerge near the yield point when elasticity begins to

diminish and plasticity starts to increase [105, 36]; escaping events arise well beyond

yield [105] (Fig. 4.1b). The fraction of particles undergoing non-affine events is fd.

By following the rearrangements, we develop understanding about trajectory dynam-
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figs_03/1.png

Figure 4.1: Overview of structure, dynamics, and response. We characterize
the disordered solid bulk response to cyclic stress from evolving configurations of individual
constituent particles. (a) Image of ∼40,000 particles. Part of the raw image is shown
(left). The scale bar is 200µm. Detected particle positions are also shown (right). For
illustration, color indicates D2

min,C , which quantifies the degree to which a particle has
followed a non-affine returning trajectory (blue), or a non-affine escaping trajectory (red).
The particles in this image are experiencing yield (γ0 ∼ 15.7%). (b) Quantification of the
fractions of particles escaping and returning averaged over all stress cycles versus total strain
amplitude. Error bars are standard deviation. Returning events rapidly increase near the
yield point (γ0 ∼ 3.0%). (c) The number of particles, Z(r) within a radius, r of a reference
particle. The radius is expressed in units of a, the average distance between neighboring
particles. Vertical dashed lines indicate the limit of the first shell of neighboring particles.
Inset: radial distribution function, g(r). (d) The measured strain of the material versus
the imposed stress throughout a cycle. Both stress and strain are averaged stroboscopically
over 25 cycles. The different ellipses correspond to separate runs at different imposed stress
amplitudes. Here, the area enclosed is a result of the lag between stress and strain, which
in turn quantifies the energy dissipated from the material.

ics within the microstructure, and we take steps towards our ultimate goal to relate

microstructure to rheology.

To quantify structure, we characterize the inter-particle forces and particle con-

figurations using the radial distribution function, g(r). Since the material is jammed,

the motion of each particle is arrested by its neighbors [220, 126, 18, 127, 52, 88].

This caging, and escape thereof, provides another lens for the non-affine motions

mentioned above; when enough particles pass each other via small changes in the

structure of their surrounding cage, the material yields [66]. For quantitative anal-
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ysis, we compute a microstructural measure of internal force, F ∗, which is the sum

of the magnitudes of inter-particle forces acting on the average particle. Specifically:

F ∗ = 2πρ ∫
rN
0 (−∂u

∂r )g(r)rdr; here ρ is the number density of particles, rN is an up-

per cutoff distance below which nearest neighbor particles are found, u is the pair

potential function between any two particles, ∂u
∂r is the force acting between any two

particles, and g(r) is the sample radial distribution function as a function of sepa-

ration r (Fig. 4.1c; Methods). To determine rN , we use the coordination number as

a function of radial distance, Z(r) (Fig. 4.1c). Z(r) is derived from g(r) and has

been studied [220] and recently used [138] to characterize particle interactions and

their effect on bulk materials. In our systems, neighbor shells are well defined by

broad peaks in g(r) separated by troughs (Fig. 4.1c-inset). The extent of the nearest

neighbor shell is defined as the radius at which Z(r) begins to increase rapidly for a

second time (Fig. 4.1c-main).

We quantify disorder using excess entropy [188], the difference between the sys-

tem’s entropy and that of its ideal gas analogue (identical pressure, temperature,

etc.). The two-body approximation of excess entropy, s2, is calculated from g(r)
using a formula given in the methods section (Eq. 4.4). We calculate s2 at discrete

time points to characterize its variation within each shear cycle (more below). Since

our systems are jammed, we interpret the below-yield system s2 as ‘frozen in’ excess

entropy [140, 229] .

We seek to relate these microstructural parameters to bulk rheological properties.

Recall that as the yield transition is approached from below, the strain will begin

to lag behind the oscillatory imposed stress by a phase angle, δ. If δ = 0[rad], then
the material is fully elastic. If δ = π/2[rad], then the material is fully viscous. In

between, the material exhibits both elasticity and plasticity; the phase angle lag

quantifies dissipation (Fig. 4.1d) and encodes the ratio of the loss (plasticity) and

storage (elasticity) moduli, G′′/G′ = tan(δ). We will show how G′′/G′ is related to

the microstructural and dynamical quantities described above (s2, F ∗, fd).

Next, we examine structural disorder, and its variation as a function of ap-
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figs_03/2.png

Figure 4.2: Memory within microstructure. Microstructural anisotropy reveals
signatures of memory. Below yield, anisotropic orientation remains unchanged regardless of
shear direction. Orientation quantifies stored memory. Above yield, anisotropic orientation
reverses freely to match the direction of shear, indicating a loss of memory. (a) Radial
distribution function, g(x,y,t) at a time corresponding to one quarter of the way through
a shearing cycle. We fit an ellipse to the first neighbor ring. This ellipse stretches and
reorients over time indicating changes in structural anisotropy of the sample. Two elliptic
fits are shown at two times, t=1.25 (—) and 1.75 [cycles] (- - -). (b) Orientation of the
sample microstructure over time as a function of strain amplitude. With increasing strain
amplitude, the microstructure reorients to match the stretching axis. It first reorients
completely at the yield point (3.2%). (c) Elongation quantified by the ratio of ellipse major
and minor axis lengths (m/n) over time. Below yield, elongation oscillates directly with the
strain; above yield, elongation oscillates with twice the frequency of strain perturbation. In
b & c data are averaged strobscopically over 25 cycles.

plied shear. The angle-dependent radial distribution function, g(x, y), quantifies

microstructural order [122, 54] (Fig. 4.2a). Crucially, a nearest-neighbor ring is ob-

servable in disordered systems composed of interacting particles [221, 164]. In our

experiments this ring deforms throughout shear (Fig. 4.2a and supplementary video),

in agreement with previous observations [164, 45, 201, 57, 138, 54]. Throughout shear,

the central ring is ellipsoidal. We can readily track the orientation and elongation of

the ellipse throughout the shear cycle (Fig. 4.2b&c); ellipse orientation and elongation

provide a measure of the sample anisotropy. Far above yield, as the material is sheared

in one direction and then the other, the microstructural anisotropy switches between

two principal strain axes (oriented at π/4[rad] and −π/4[rad], counter-clockwise from
horizontal in Fig. 4.2a); in this situation, microstructural anisotropy is responsive to

the direction of imposed shear (Fig. 4.2b). Below yield, however, the microstructural
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Figure 4.3: Entropy and material
memories. Variation of entropy provides
means for predicting system response to a
given strain amplitude. (a) Excess entropy,
with the mean value subtracted, follows a si-
nusoidal response. Below yield, its oscilla-
tion frequency is the shear cycle frequency.
At yield, the excess entropy signal has com-
ponents at both the driving frequency and
twice the driving frequency: the material is
beginning to forget its initial state. Above
yield, the entropy response oscillates almost
exclusively at twice the shear cycle frequency.
Black dots indicate experimental data. Red
lines are fits to equation 4.1 with T as the only
fitting parameter. The experimental data are
averaged stroboscopically over 25 cycles. (b)
Amplitudes associated with the first and sec-
ond harmonics are present within the s2 sig-
nals. Note, that the second and first harmonic
amplitudes cross each other at the yield point,
γ0 = 3%, designated by the vertical dashed
line (- - -).

anisotropy remains in its original orientation; shearing is not sufficient to overcome

initial ‘frozen in’ material structure. This phenomenon is apparent from changes in

ring elongation (Fig. 4.2c) during the shear cycle. Note that above yield the mi-

crostructure elongates twice every shear cycle, at frequency 2ω, but below yield, the

microstructure elongates only once per cycle at ω.

Microstructural anisotropy reveals a memory of the last direction the material was

sheared above yield (Fig. 4.2). To remove internal stresses, each of our experiments

is pre-sheared well above yield (γ0 ∼ 50%); nevertheless, this protocol imprints an

anisotropy into the sample set by the last shear direction. Previously it was shown

that this type of material memory is imprinted into g(x, y) [164, 110, 168]. Here,

we find that this memory imprint is associated with the principal directions of shear

(Fig. 4.2). Once a memory is stored, the memory is retained as long as the material is

sheared elastically. Precisely when the material yields, all memory is lost, and the mi-
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crostructure freely switches between both orientations. Taken together, these results

indicate that materials store and express memories in the elastic regime but lose them

in the plastic regime. Furthermore, recently we showed that orientational memory is

stored most strongly within crystalline domains wherein particle rearrangements are

most intensely suppressed [217].

We now use excess entropy to characterize and relate observations about imprinted

memory to the system microstructure. Above yield, we find that structural response

is independent of the direction of shear (Fig. 4.3a, γ0 = 6.8%); when the material is

sheared in either direction, the excess entropy increases and decreases as the shear

is reversed. Ostensibly, the material cannot sustain a memory above yield, because

it is continually forced out of meta-stable states within the energy landscape. Near

yield, however, the direction of shear has an effect on structural response (Fig. 4.3a,

γ0 = 2.2%). Notice, s2 does not increase as the material is sheared over the second half

of a sinusoidal shear cycle. Finally, below yield, the direction of shear is important;

shear in one direction produces an increase in excess entropy, and shear in the other

direction produces a decrease (Fig. 4.3a, γ0 = 0.7%).

As seen in figure 4.3b, the s2 signals are sinusoidal. The first harmonic (ω) decays

and the second harmonic (2ω) grows with increasing strain amplitude. The first

harmonic is dominant below yield, and the second is dominant above yield. Therefore,

the amplitude of the first harmonic of s2 provides quantification of a stored memory,

and the amplitude of the second harmonic characterizes the degree to which memory

of the initial state is lost. Notice, these first and second harmonic amplitudes cross

each other near the yield point.

To build a relationship between excess entropy and bulk rheology, we next inves-

tigate the connection of s2 to the other dynamical metrics. For this comparison, we

compute the ratio of the second to first harmonic amplitude, which we denote as Hs2 .

We can relate Hs2 to several quantities in our system (Fig. 4.4). For example, Hs2

scales with the product of F0/F ∗ and fd (Fig. 4.4a), where F0 is the amplitude of the

prescribed shear force. This relationship between dimensionless parameters suggests
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figs_03/4.png

Figure 4.4: Imposed force, microstructural excess entropy, and rheology.
a) The imposed force amplitude, F0, normalized by the elastic force capacity, F ∗, is plot-
ted versus the excess entropy harmonic ratio, Hs2 (in both mono-disperse and bi-disperse
experiments). A fit of the data suggests a parabolic relationship (p-value:3.14x10−13, and
r2:0.989), corroborating equation 4.2. Inset: log-log. b) The increase in the ratio of loss and
storage moduli, (G′′/G′) versus strain amplitude in both the mono-disperse and bi-disperse
experiments (same legend for mono-disperse and bi-disperse experiments as panel a). Yield
is signaled by the rapid increase in parameter values at about 0.03 strain amplitude. In-
set: data from simulations employing Hertzian and Lennard-Jones interaction potentials.
In both cases, markers are measured values and lines are predictions of equation 4.3. c)
Left and right hand sides of equation 4.3. Notably, all parameters are measured. The solid
diagonal line (—, slope of 1.0) represents equation 4.3. The slope of the best fit to the data
is 0.981, p-value:4.43x10−26, and r2:0.944.

that when the imposed force on the system grows larger than F ∗, the microstructure

begins to permanently change, losing stored memory. Rapid variation of fd also sig-

nifies the transition. These findings build on recent work that links excess entropy

and non-affine particle dynamics [77, 96]. Note that the scaling in the present case

is quadratic because fd varies nearly linearly with the imposed force, F0 (see Supple-

mental Materials). Finally, we find that the product of H2
s2 and F

∗/F0 scales linearly

with G′′/G′ (Fig. 4.4c). The scaling factor for this linear relationship is 2ϕ/π2; here

ϕ = πNa2/A quantifies the particle spatial density, a is the average nearest neighbor

distance derived from the first peak of g(r) (Fig. 4.1c: inset), and A is the total area
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of the observed sample or simulation.

The yield phenomenology shown in Fig. 4.4c depends on four dimensionless pa-

rameters: F0/F ∗, Hs2 , G
′′/G′, and the packing density ϕ. The ratio F0/F ∗ charac-

terizes the shear stress exerted on the material relative to the internal stress that

the material contains; when F0/F ∗ ≥ 1 plasticity is non-negligible. The microstruc-

tural quantity Hs2 provides a metric for whether a material’s response is dominated

(or not) by memory as it experiences oscillatory strain; this microstructural prop-

erty can be interpreted as the degree of plastic response. Finally, a familiar ratio

quantifies the bulk rheological response of the material: (G′′/G′). All experimental

(and simulation) data are collapsed using these dimensionless parameters, and a di-

rect relationship between rheology, dynamics, and microstructure is experimentally

established in the disordered solid.

Numerical simulations complement the experiments. The simulations enable us to

vary features of the disordered system that are difficult to control experimentally. In

particular, we can test ideas regarding variation of inter-particle potential. Moreover,

unlike the experimental system, which involves a fluid-fluid interface that gives rise

to viscous drag on the particles, the simulations offer the possibility to study the

validity of our new concepts in disordered materials without viscous drag. Thus,

we have conducted shear simulations without viscous drag and with two different

inter-particle interaction potentials: Lennard-Jones, a model for atomic glass, and

Hertzian, a model for granular systems (see Methods).

The simulations and experiments exhibit remarkably similar behaviors. Across

both the experiments and simulations, a direct and common functional relationship

between excess entropy and rheology is revealed (Fig. 4.4c). This relationship does

not depend on the details of particle interactions, nor the amount of disorder. Further,

since simulations do not involve a background fluid, the importance of hydrodynamic

effects is ruled out. The findings above measure how strongly a material can retain a

memory when it is sheared. We can probe the limits of our findings by progressively

making it harder for the simulations to form memories. One way to explore this
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issue is to introduce varying amounts of Brownian motion into the Lennard-Jones

simulations. At low temperatures, particles are fully arrested by interactions with

their neighbors; all mobility is due to shear, and memory is formed reliably. However,

if temperature is so high that the particles rearrange due to Brownian motion, in

addition to shear stress, then memory is not formed reliably. Thus, high temperatures

that increase thermal mobility produce larger error bars in Fig. 4.4c. Similarly, in our

Hertzian simulation, if the packing fractions are low enough so that particles are not

constrained by their neighbors, then memory is not formed reliably, and quantitative

relationships are observed to become noisier. The wide applicability of these ideas

suggests the existence of a deeper theoretical formulation. Thus, in the remainder of

this paper we outline how our results may be derived phenomenologically (for the full

derivation see the Supplemental Materials).

Inspired by the equilibrium successes of RFOT and related thermodynamic theo-

ries [229, 140, 59], we perform a simple energy balance to elucidate the relationship

between s2 and the material properties (G′,G′′) . We start with the harmonic be-

havior in s2. In this situation, internal energy change is balanced via reversible heat

transfer, T∆S2, work, F ∗∆X/2, and dissipation, fdF∆X (note the change in internal

energy is zero):

T∆S2(t) = F ∗∆X(t)/2 + fdF (t)∆X(t). (4.1)

Here ∆X(t) is the displacement of the system boundary with respect to the equi-

librium position X(0) = 0, F (t) is the imposed shear force, and T is a parameter

(generally different from the thermal temperature) that converts differences in en-

tropy to differences in energy [20, 158, 27, 112]. Note, equation 4.1 represents the

average response of a cage (i.e., a particle and its nearest neighbors) to the applied

shear deformation. This equation would not apply in a system dominated by thermal

motion, because we do not account for changes in entropy due to thermal fluctuations.

The term F ∗∆X/2 is the work done by the surroundings on the cage (on average);

this term is connected to the potential energy between particles. With a single fitting

parameter, T , the changes in harmonic behavior in excess entropy are reproduced
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from below to above yield (Fig. 4.3a).

The harmonic transition, associated with the excess entropy found in experiments

and simulations, is captured by the first and second terms on the right-hand-side of

equation 4.1. H2
s2 is the ratio of those two terms:

H2
s2 = fd

F0

F ∗
. (4.2)

This relation describes the harmonics data remarkably well (Fig. 4.4a). We next build

on equation 4.2 by incorporating a finding of shear transformation zone theory, namely

that elastic energy builds up in the microstructure until it is plastically released via

non-affine rearrangement events [67, 66]. Quantitatively, this concept is represented

as: G′′ ∝ NfdG′, where N is the number of total particles observed; when substituted

into Eq. 4.2 we obtain:
G′′

G′
= 2ϕ

π2

F ∗

F0

H2
s2 . (4.3)

Note, that each parameter in this expression is measured and is generally accessible

in many systems. Across strain amplitudes, remarkable agreement is found between

G′′/G′ measured in experiments and simulations, and the predictions by Eq. 4.3 (see

Fig. 4.4b&c).

4.3 Conclusion

Our results demonstrate that the yield transition of jammed systems has a config-

urational origin rooted in the persistence of material memory. We investigated the

responses of several jammed systems undergoing cyclic shear deformation, incorpo-

rating aspects of STZ theory, excess entropy, and harmonic analysis into a single

framework. The analysis reveals two new dimensionless parameters and three re-

lations, derived phenomenologically, which connect particle configurations to bulk

rheology. Importantly, the microstructural information needed, i.e., the radial distri-

bution function, is available in myriad of scattering/microscopy experiments spanning
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length scales and particle types [122, 227]; thus, this analysis is accessible to exper-

imentalists. In the future, it should be interesting to search for similar relations for

other loading conditions, such as compression or steady shear, and to explore a wider

array of particulate systems in which the particles are not simple spheres. More

specifically, it may also be possible to relate local excess entropy to plastic events

by exploring a local version of Eq. 4.1 and F ∗∆X/2. Finally, it may be possible to

generalize the work presented here to higher strain amplitudes by considering how

energy is dissipated once, fd reaches unity.

We have developed a framework to understand bulk properties of jammed materi-

als under shear based on microstructural information. The findings hold potential to

predict behavior of a broad range of dynamically arrested disordered materials includ-

ing foams, gels, packings of nano- and micro-scale particles, and atomic/molecular

glassy matter. Our findings, perhaps, also shed light on some deeper questions: in

particular, the nature of entropy and the potential to use entropy ideas in far-from-

equilibrium media. While entropy formulations for non-thermal systems have found

utility in modeling disparate phenomena [203, 170, 99], its physical interpretation

often remains mysterious. Disordered particulate packings appear to be particularly

useful for clarifying this phenomenology, since their material structure can be inter-

rogated with relatively simple methods.

4.4 Methods

4.4.1 Experiments

Using a custom built interfacial stress rheometer (ISR, SI Fig. 4.5), we simultaneously

measure storage and loss moduli and track particle positions in 2D dense suspensions

of athermal, repulsive particles. The ISR measures rheology by imposing force on a

magnetic needle adsorbed at an interface between oil and water[202]. A stationary

wall is opposite the needle, so that shear is imposed over a distance visible by a

microscope. The displacement of the rod is measured precisely with the microscope.
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ID Type Force type Dispersity Diameters ϕ Φ[%]
A Experiments Dipole-dipole Bi-disperse 4.1, 5.6µm 14.02 ∼31
B Experiments Dipole-dipole Mono-disperse 5.6µm 13.99 ∼35
C Simulations Lennard-Jones Bi-disperse N/A 5.03 N/A
D Simulations Lennard-Jones Bi-disperse N/A 5.00 N/A
E Simulations Hertzian Bi-disperse 0.84, 1.16 9.62 100
F Simulations Hertzian Bi-disperse 0.84, 1.16 9.68 110
G Simulations Hertzian Bi-disperse 0.84, 1.16 10.12 120
H Simulations Hertzian Bi-disperse 0.84, 1.16 10.73 160
I Simulations w/ P.S. Hertzian Bi-disperse 0.84, 1.16 11.22 160

Table 4.1: A summary of the properties of the systems presented, including variety
of inter-particle force, particle dispersity, particle sizes, spatial density of particles,
ϕ, and simple area fractions of particles, Φ. We note, particles are point particles in
simulations, C; hence, diameters are not defined in system C.

With displacement (strain) and imposed force (stress), the storage and loss moduli

are calculated [35, 182]. Additionally, the microscope is used to image the particles

(∼ 40,000, from wall to needle) adsorbed at the interface. The particles include

charges on their surfaces, so they exert dipole-dipole repulsive forces on each other

[11, 142, 163]. At the particle densities in these experiments, these forces result in

particle jamming, which we define as full kinematic restraint on each particle by its

neighbors. In all data reported here the systems are in a sinusoidal, steady state. In

the experiments, steady state occurs after five shear cycles. Twenty-five steady state

cycles are used for calculations. For more information about these experiments and

the calculations of D2
min see Refs.[105, 106, 107].

An accessible quantity in our experiments is the two-body approximation of excess

entropy, the difference between the system’s entropy and the entropy of an ideal gas in

an equivalent state (s2 ∼ ssys. − sI.G.). Conveniently, this quantity is calculated from

the radial distribution function, which is available in a wide range of experiments

[122]. The previously derived [16] formula for excess entropy is:

s2 = −πρ∫
∞

0
{g(r)ln[g(r)] − [g(r) − 1]}rdr (4.4)

where ρ is the particle number density. We implement equation 4.4 for each image in
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our experiments individually to collectively construct an entropy time signal, s2(t).
For specifics of our excess entropy calculations, see Ref. [77].

The network force, F ∗ introduced in the paper is calculated based on inter-particle

forces within the average neighborhood of particles. To make this measurement we

estimate the average number of nearest neighbors around a particle as:

Z(Rc) = 2πρ∫
Rc

0
g(r)rdr (4.5)

where Rc values are shown as the horizontal axis in Fig. 4.1c. We estimate experimen-

tal inter-particle forces based on potentials measured in experiments and molecular

dynamics simulations reported in Ref. [163]. An account of our estimate is included

in the Supplemental Materials.

4.4.2 Simulations

The data points for samples C were obtained using LAMMPS[174]. At each strain am-

plitude, 10 two-dimensional ensembles of 10,000 bi-disperse Lennard-Jones particles

[228, 167] were subjected to sinusoidal shear under periodic boundary conditions at

constant confining volume. The period of shearing was 100× that of the LJ time-scale

of the particles. Prior to shearing, the samples were dynamically equilibrated at 1% of

the glass-transition temperature[167]. During strain-controlled shearing LAMMPS’

Nosé-Hoover thermostat was used to maintain the samples at approximately 1% of

the glass-transition temperature. After 40 cycles of shearing, the shear stress was

output for another 40 cycles for later use in the calculations of the dynamic moduli.

We find that similar calculations at 9% of the glass-transition temperature begin to

introduce noise to our final relation.

For simulation samples D and E, we use HOOMD-blue [78, 4] to impose cyclic

strain on 10 particle configurations for each of six strain amplitudes (1,2,3,4,5,6%)

at constant confining volume. Ensembles are composed of jammed states of 50:50

bidisperse mixtures of 10,000 Hertzian particles. Ensembles are initialized from a
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randomly uniform probability distribution at a packing fraction below jamming, and

subsequently quenched under FIRE minimization [24] whilst increasing the packing

fraction until the desired pressure is reached. We then run a triangle wave shear

protocol, imposing a small strain step of 10−4% and minimizing under FIRE after

each step, until a total of 40 cycles have been completed. We calculate dynamic

moduli based on the dominant frequencies of the resulting triangle waves.

4.5 Appendix

4.5.1 Discussion of systems

Here we make a few comments on the breadth of properties covered by our systems

(as summarized in table 1. First, we note that the systems studied span a large range

of disorder, ranging from crystalline regions of several hundred particles (Fig. 4.6a)

to merely a few (Fig. 4.6d). Second we note that, Lennard-Jones potentials are

attractive at long distances. So our results hold for systems where some of the particles

experience attraction, as long as the system is jammed. Finally, our systems span a

wide range of length scales. Lennard-Jones systems are atomic scale. Dipole-dipole

systems are colloidal scale. Hertzian systems are granular scale. One further difference

among our systems is that our experiments include an intermediary fluid and an

interface, whereas our simulations do not. This serves to explore the role of specific

energy dissipation (viscous drag in the experiments) versus unspecific dissipation (the

simulations).

4.5.2 Scaling of imposed force and non-affine events

In the main text we identify that the entropic ratio Hs2 varies as a quadratic in

figure 4.4a. Our model, (main body equation 4.2), makes no prediction about the

form of the scaling unless we know how force amplitude, F0, and the fraction of

particles undergoing dissipative events, fd, scale with each other. These values scale
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figs_03/si1.png

Figure 4.5: Interfacial Stress Rheometer Sketch of interfacial stress rheometer (ISR).
Dense colloidal monolayer sits on water-oil interface that is bounded by two upright parallel
glass walls. A thin magnetic needle cyclically shears the monolayer using Helmholtz coils.
Accurate rheometry is obtained by tracking needle position as a function of forcing; particle
tracking is used to characterize material microstructure.

linearly with each other in our experiments (Fig. 4.7), which results in a quadratic

scaling. This is an approximation, as at very high strain amplitudes it is expected

that the fraction of non-affine events will plateau at unity. But within the linear

rheological regime studied here, this limit is not reached.

4.5.3 Experimental potentials

In this section we describe our method of estimating the mean inter-particle potential

of our experimental systems A and B. Sulfate latex spheres of Dl = 5.6µm and Ds =
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Figure 4.6: Disorder increasing left to right Crystalline regions visualized via sixfold
bond orientation order, Ψ6, measured from particle positions. Size of crystals decreases
from left to right, indicating an increase in disorder. Colors help to indicate the lattice
director (orientation) as a guide for the eye to help discern ordered and disordered domains.
Dots with large size indicate ∣Ψ6∣ > 0.9, and small dot size indicates ∣Ψ6∣ < 0.9. (Scale
bars: 100µm). a) Mono-disperse, dipole-dipole, experimental system B. b) Bi-disperse,
dipole-dipole, experimental system A. c) Bi-disperse, Hertzian, simulation system D. d)
Bi-disperse, Lennard-Jones, simulation system C.

4.1µm are adsorbed at an interface of decane and water. The sulfate latex groups

cover the surfaces of the particles, providing a charge. The charges and the presence

of the interface cause the particles to experience dipole-dipole repulsion with each

other. The dipole-dipole form is:

u(r)
kBT

= a2
1

r3
(4.6)

where u is the potential, kB is Boltzmann’s constant, T is the thermal temperature,

a2 is the scaling constant, and r is the center to center distance of the particles. In our

bi-disperse system, the average separation between small particles is rss = 7.53µm.

Separation between large particles is rll = 8.74µm.

This system is often used to study interfacial colloids; Park et al. [163] published

a study that precisely measures the form of the interparticle potential quantitatively

using Monte Carlo methods and optical tweezers. We used particles from the same

manufacturer (Invitrogen Corporation, Carlsbad, CA) as Park et al. and followed the

same particle cleaning procedure. They report that for particles of size DP = 3.1µm,

the mean value of ⟨a2,P ⟩ = 5.1 ± 2.4 × 10−13m3, where P subscripts indicate Park et
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Figure 4.7: Imposed force scales with dissipative events. Within the linear
rheology regime studied, the fraction of particles undergoing non-affine, disspative events
scales linearly with the imposed force on the system. The dashed lines (- - -) are added to
guide the eye.

al.’s values.

Within our bi-disperse system, the osmotic pressure is the same between large-

large and small-small particles. Here the osmotic pressure is −d2u(r)
dr2 . This allows us

to write:
⟨a2,s⟩
r5ss

= ⟨a2,l⟩
r5ll
= ⟨a2,p⟩

r5pp
(4.7)

These equations are not linearly independent, so we extrapolate from our diameter-

separation information ([Ds, rss] and [Dl, rll]) to determine rpp using DP . We find

rpp = 6.72µm, ⟨a2,s⟩ = 9.0 × 10−13m3, and ⟨a2,l⟩ = 1.8 × 10−12m3.

For the main body of the text we use the average weighted by particle numbers

of ⟨a2,s⟩ and ⟨a2,l⟩ for the entire suspension as ⟨a2⟩. Forces are calculated as Fel.(r) =
−du

dr =
3⟨a2⟩kBT

r4 .
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Figure 4.8: Novel system and ensemble definitions. A schematic of the central
concepts used in the derivation: particle cages as microstates, chemical potential,
and cage pressure. a) Each set of particles and their nearest neighbors, known as
cages, are observable microstates of a system consistent with statistical mechanics of
small systems [90]. In this way, ensembles are composed of copies of nearest neighbor
cages, each subjected to the same shear state. b) A demonstration of the concept of
chemical potential within this cage-microstate definition. The energy stored in a cage
via particle interactions changes as a particle is squeezed in or out of a cage. See the
accompanying Supplementary Video. c) The total energy, ei, within cage i can be
measured systematically as the total energy stored by the central particle, i, with its
neighbor particles, j. Similarly the cage pressure can be calculated as the total force
stored between a central particle, i, and its neighbors, j.

4.5.4 Phenomenological derivation

In the first subsection we expand this equation to include the particulars of oscilla-

tory shear. The second section lays out the details for quantifying bulk mechanical

properties, such as yield.

Statistical mechanics derivation

Equation 4.1 appears similar to the fundamental thermodynamic relation (graphically

in figure 4.3a):

T∆S2(t) = F ∗∆X(t)/2 + fdF (t)∆X(t) (4.8)

82



where t is time, T is a scaling parameter (generally different from the thermal tem-

perature) that converts differences in entropy to differences in energy, S2 is the excess

entropy, F ∗ is the sum of the magnitudes of inter-particle forces acting on the aver-

age particle, X is the system boundary position, fD is the fraction of particles in the

system that are actively dissipating energy, and F is the imposed force at the system

boundary. Here ∆ indicates a difference between the starting state and the state at

time t.

We consider a microstate to be a single particle and its nearest neighbors, called

a cage. Ensembles are taken across all of the cages within a material (Fig. 4.8a). For

large systems with thousands of particles, this may solve the problem of accessibility

mentioned earlier; an a-thermal system may explore all possible microstates slowly in

time, but in space there are many realizations. Notice also that in this definition of

microstates, energy and particles are free to transfer in and out of the system.

Using nearest neighbor cages as microstates also potentially solves the energy dis-

sipation challenge. In many a-thermal materials, dissipation is achieved by particles

shifting in irregular, or irreversible ways; while undergoing high deformations, some

particles rearrange entirely (Fig. 4.8b). Rearrangements result in a change in the

number of particles, dn, within the cage and a change in energy within the system.

Chemical potential, µ, the ratio of energy change to the change in the number of

particles, is a concept that naively fits with this phenomena. Hence, it appears that

by defining microstates as cages of nearest neighbor particles, some of the challenges

of applying statistical mechanics to a-thermal systems are alleviated.

Equivalents of the other macroscopic thermodynamic variables are also required to

describe a-thermal materials using energy conservation. We define cage energy to be

the total energy stored between the central particle and its neighbors: ei = Σjei,j for

cage i, and particle j. Entropy is also defined as the entropy of a cage; for a-thermal

materials excess entropy, s2 has recently been shown to be a useful entropic measure

of a cage’s response to deformation [201, 27, 112, 77]. The conjugate pair, pressure

and volume are also required. Empirically, based on the work above, the analogue
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to pressure is the total force acting on the central particle within a cage, Fi = ΣjFi,j.

The equivalent of volume is the strain state of the cage, x. With these variables in

hand it is now possible to describe a cage and move forward with ensembles specific

to the situation; i.e. nxe, nxT , µxT ect.

The choice of ensemble depends on the type of deformation that the system un-

dergoes; compression and shear will each require a different ensemble. Equation 4.8

applies to shear of colloidal systems. In a separate paper which is in preparation, we

explore the same phenomena within a compressed granular material. In this paper

we will focus on the sheared system, but a similar methodology can be shown to work

for the compression system as well.

In determining the correct ensemble we must identify the member of each conju-

gate pair that is free to fluctuate; conversely, we must also determine which is held

constant. In systems that have particle rearrangement, the particles are free to shift

in and out of a cage, so n varies and µ is constant. In sheared systems, each cage

is a part of the greater system, so strain is the same for each cage. However, strain

changes from one instant to the next, so x varies in time. Pressure does not change

in sheared systems, so Fi varies between cages, but the average is constant in time.

A way to see this on the microscale is by considering that during shear there is no

volumetric dilation [81], which means particles do not get closer or further from each

other during shear. Hence the total force inside a cage, Fi, which is related to par-

ticle separations, cannot change with shear. Entropy varies with shear because it is

a function of not only the mean separation of particles, but also their distributions.

So entropy varies and temperature is constant. Therefore, a sheared system’s state

at any given instant in time can be described by the grand canonical ensemble, µxT .

Each successive instant in time corresponds to a new shear state. Because there

are many simultaneously observed cages, an ensemble average is accessible in each

instant. With this framework in place, it is possible to employ statistical mechanics

[146] (conservation, combinatorics, and the method of undetermined multipliers) to
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determine the partition function:

Ξ(µ,x, T ) = ∑
n
∑
i

e−en,i(x)/kBT eµn/kBT (4.9)

and the probability of finding a cage with specified particle number n and energy

level e:

Pi(n;µ,x, T ) =
e−ei(n,x)/kBT eµn/kBT

Ξ(µ,x, T ) (4.10)

where kB is Boltzmann’s constant.

Next recall that the average energy across all cages will be the sum over probability

of a state multiplied the energy level of that state:

ē = ∑
n,i

Pi(n)en,i (4.11)

Taking a differential of ē reveals a statement of the first law of thermodynamics,

applicable to the ensemble of cages:

dē = ∑
n,i

en,idPi(n) +∑
n,i

Pi(n)den,i (4.12)

where the first term represents heat transfer and the second term represents work.

It has been shown [146] that ∑n,i en,idPi(n) = Tds and ∑n,iPi(n)den,i = −F̄ dx + µdn̄,
which results in:

dē = Tds − F̄ dx + µdn̄ (4.13)

which is a version of the first law applicable to individual particle cages.

Similar to the statistical mechanics of small systems [90], it is next possible to

regain system wide information by summing over the N observed cages:

∑dē = ⟨dē⟩N = dE (4.14)

∑Tds̄ = T ⟨ds̄⟩N = TdS (4.15)
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∑ F̄ dx = ⟨F̄ ⟩dxN = F ∗dX/2 (4.16)

∑
j

∑µjdn̄ = ∑
j

µj∑dn̄ = AdNe (4.17)

where we note that equation 4.16 holds as long as F̄ and dx are de-correlated. In the

shear case, dx varies linearly and F̄ fluctuate randomly as expected from a pressure

like term, so this is a valid assumption. Additionally, equation 4.17 accounts for

chemical potentials, µj, being different depending on the particle species involved

(poly-dispersity, charge distribution, ect.) We utilize the chemical affinity, A, and the

total number of particles that escape, dNe to further simplify, which is common in

chemical physics [116].

Summing over equation 4.13 and combining with equations 4.14 through 4.17

results in a system wide statement of the first law:

dE = TdS − F ∗dX/2 +AdNe (4.18)

Comparing equation 4.18 to equation 4.8 it is seen that in the sheared a-thermal

system, dE = 0, so E is constant. This is true for the same reason that F ∗ is constant:

on average across the system, particles do not get closer or further apart during shear

because there is no volumetric dilation [81]. Hence no additional energy is stored

by the inter-particle potentials. It is also seen that A = −FX/N ; this observation

fits with the understanding that the chemical potential (or affinity) is the Gibbs free

energy per particle of the material [116]. The Gibbs free energy in this case is the

maximum reversible work that could possibly be done by a system, which in this

case is the driving force, F , multiplied by the system displacement, X. With that we

conclude the derivation of equation 4.8, shown in figure 4.2.

We would like to point out the special case of the particles that trace limit cycles,

but still return to their original positions, without escaping. In the statistical me-

chanics context outline here, we interpret these as particles that do not quite escape;

however, they dissipate energy irreversibly due to the limit cycle behavior. We can

include those in the AdNe term by considering they are functionally similar: they too
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have an energy, in this case dissipated, per particle and a number of particles that

are active. This allows us to replace AdNe with AdND where dND is the change in

number of particles emanating energy from the system, either by particles escaping

or by dissipation.

Specifics of oscillatory shear

The idea of applying the thermodynamic definition of temperature to describe sheared

athermal systems has been explored in previous research [158, 198, 27]. Specifically

we use[27]: T = ∂E
∂S2

, where E is the energy of an average cage. Briefly, as discussed

in the main text, equation 4.1 quantifies energy flows through the system (i.e., the

average cage); T∆S is reversible heat transfer, F ∗∆X/2 is work done on the system

(on the average cage), and fdF∆x is dissipated energy due to non-affine deformation.

The net change in the internal energy of the cage is zero for shear deformations. Our

experiments and simulations indicate that:

T∆S = F ∗∆X/2 + fdF∆X. (4.19)

Here T is a temperature-like fit constant. S is the entropy of the average cage. F ∗

is a property of the material that quantifies the average force experienced by a typi-

cal particle due to its neighbors. It is calculated as: F ∗ = ρ ∫ ∫ (−∂u/∂r)g(x, y)dxdy,
where ρ is the number density of particles, u is the inter-particle potential, and g(x, y)
is the radial distribution function. Here fd is the fraction of particles undergoing dis-

sipative events, which we detect via non-affine rearrangements. Non-affine events are

detected via D2
min. See Refs [105, 106, 107] for details on this calculation. Specifically,

fd = Nd/N , where Nd is the number of particles experiencing non-affine events and N

is the number of total particles observed. The prescribed shear force and resultant

displacement of the shearing surface are F and X respectively. We define the ∆ op-

eration as the difference between entropy at time t and the average entropy over an

entire cycle of shear: ∆S = S(t) − S(t). Similarly for X.
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We next summarize the specifics of our systems: most notably oscillatory shear

and excess entropy. To apply equation 4.19 to the oscillatory shear cases considered

in this paper, substitute in the time signals for shear surface displacement (X(t) =
X0sin(ωt+δ)) and force (F (t) = F0sin(ωt)) on the right-hand-side. On the left-hand-

side, multiply by NkB/NkB:

NkBT∆(
S

NkB
) = F

∗X0

2
sin(ωt + δ) + Nd

N
F0sin(ωt)X0sin(ωt + δ) (4.20)

where ω is the frequency of the imposed force and δ is the resulting time lag between

the imposed force and the resulting displacement. δ is an important physical param-

eter in rheology; it helps us to distinguish between solids, fluids, and everything in

between. A fully elastic material has a δ = 0[rad]; stress and strain are in phase as is

seen from Hooke’s law. A fully viscous material has a δ = π/2[rad]; stress and strain

are fully out of phase as is seen from Newton’s law of viscosity [122].

In our experiments, changes in pressure are negligible. Hence, changes in absolute

entropy are approximately the same as those for excess entropy (ds2 ∼ ds − dsI.G. ∼
dstotal); the ideal gas entropy is not expected to change. Notice, entropy has changed

to lower case ’s’ to represent quantities that are normalized by N and in units of kB,

which is convention. Additionally, we implement the product-to-sum trigonometric

identity (sin(u)sin(v) = (1/2)[cos(u − v) − cos(u + v)]). Reorganizing gives:

∆s2 =
F ∗X0

2NkBT
sin(ωt + δ) + NdF0X0

2N2kBT
{cos(δ) − cos(2ωt + δ)}. (4.21)

Equation 4.21 describes the evolution of a cage within our jammed system as it

undergoes oscillatory shear. Notice that equation 4.21 is unitless. It is now apparent

that the second term on the right-hand side (with Nd) has the second harmonic of

the forcing frequency 2ω; this relation reproduces the frequency shift of the entropy

signals in our simulations and experiments (main body Fig. 4.3a). The appearance

of the second harmonic in the entropy signal captures the transition to plasticity.
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Connection to rheology

We investigate the yield transition further by taking the ratio of the first and sec-

ond harmonics within frequency domain of s2, (H2
s2 ≡

FFTs2(2ω)

FFTs2(ω)
), which follows from

equation 4.1 as:

H2
s2 =

Nd

N

F0

F ∗
. (4.22)

Equation 4.22 is visualized in figure 4.4a of the main text. This scaling is quadratic

because Nd and F0 scale linearly with each other (Fig. 4.7). The square of Hs2 in

equation 4.22, is included so that linear relationships are retained throughout.

From here we revisit an idea posited by Falk and Langer (Ref.[66]): relaxation

events are due to a local buildups of elastic energy that suddenly release (i.e. G′′ ∝
NdG′). Recently quantified for above yield cases in Ref.[106] and here expanded to

below yield, G′′ = 2a2

πANdG′, where a is the first peak distance of g(r) and A is the area

of observation. Substituting this equation into equation 4.22 for Nd gives:

G′′

G′
= 2Na2

πA

F ∗

F0

H2
s2 =

2ϕ

π2

F ∗

F0

H2
s2 (4.23)

which allows us to relate the bulk material response directly to measurable microstruc-

tural properties without the use of fitting parameters. Equation 4.23 is visualized in

Fig. 4.4b&c. ϕ quantifies particle density as ϕ = πNa2/A, which implicitly takes a

as an effective particle diameter. This relation reveals that the yielding transition of

jammed materials is specified by four dimensionless groups based on imposed force,

particle density, a memory based dimensionless entropy, and the bulk response.

Additional thermodynamic relationships

With equation 4.1 derived using a statistical mechanics framework, it is possible

to test other statistical definitions as well. Within the entropy representation, the

definitions of intensive variables can be investigated as long as other parameters are

held constant according to the definitions. Two of the definitions are: temperature,

1/T = ∂S/∂E)X,ND
and chemical affinity, A/T = ∂S2/∂ND)X,E, where the subscripts
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must be held constant. Recall that here A is the chemical affinity. Because E is

constant within a sheared system, the definition of T is inaccessible. Similarly, the

definition of A is inaccessible because X varies in time for all experiments. However,

the third definition, cage pressure, F ∗, is measurable in sheared experiments:

F ∗

T
= ∂S2

∂X

⎞
⎠
ND,E

(4.24)

The data appears to follow equation 4.24, which provides further support of the

statistical model (Fig. 4.9a).

The Maxwell relation for the double derivative of energy, E, with respect to en-

tropy, S2, and number of rearranging particles, ND, can also be investigated:

∂A

∂S2

⎞
⎠
X,ND

= ∂T

∂ND

⎞
⎠
X,S2

(4.25)

The data appears to follow equation 4.25, which provides further support of the

figs_03/si5.png

Figure 4.9: Additional thermodynamic relations. Demonstration of available
thermodynamic definitions and Maxwell relations. a) Definition of cage pressure,
F ∗. b) The Maxwell relation for the double derivative of energy, E, with respect
to entropy, S2, and number of rearranging particles, ND. Dashed lines (- - -) are
equation 4.24. Solid lines ( — ) are fits for demonstration.
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statistical model (Fig. 4.9b).

The above relations (Eqn. 4.24-4.25) follow from the statistical mechanics frame-

work given in sec. 4.5.4. Here we also present the beginnings of an empiric equation

of state between temperature, T , and mobility as measured by fd. We find

T ∝ fd (4.26)

over several orders of magnitude T and fd are proportional (Fig. 4.10). This implies a

kinetic relationship between temperature, T , and the propensity for particles to leave

their cages, measured by fd, which provides further support of applying thermody-

namics and statistical mechanics to disordered materials.

The thermo-statistical basis of memory

The final thermo-statistical connection provided by this thesis is between memory,

equilibrium, and shear. Landauer’s principle quantifies the minimum amount of en-

figs_03/si6.png

Figure 4.10: Hints of kinetics. Demonstration of an empiric, equation of state-like
proportionality, which captures the kinetic relationship between temperature, T , and
the fraction of particles that leave a cage, fd.
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ergy required to erase a single bit of information based on the temperature of the heat

bath that the system resides within. Starting from Boltzmann’s entropy formula:

Smemory = kBln(W ), (4.27)

where W is the number of possible states. A bit represents two possible states, so

W = 2. In addition, taking Smemory = Eerasure/T gives the Landauer equation:

Eerasure = kbT ln(2). (4.28)

In the context of sheared amorphous materials, each cage lies within a bath of

many surrounding cages. Above we described how a caged material stores a single

bit of information within the orientation of its microstructure (W = 2 in orientation

memory as well). We also explored how cages exists within a bath of its neigh-

bor cages and the system resides at a single configurational temperature, T . Using

equation 4.28 it is possible to calculate the minimum energy required to erase the

orientation memory relative to the energy within the system. given that the memory

figs_03/si7.png

Figure 4.11: Memory erasure measured by thermodynamical information.
Using Landauer’s principle is is possible to calculate the minimum energy required
to erase a stored memory. In this plot we compare the minimum energy of erasure
to the cage strain energy, Estrain/Serasure, relative to the strain amplitude that the
system undergoes. A peak above one near the yield point quantifies memory erasure
and mirrors how close to equilibrium the system is in the cage ensemble approach.
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is expressed throughout the entire system via average cage, we measure the energy

injected across the entire system. Rheologically, the energy injected is the strain en-

ergy: Estrain = 0.5πa2γ0τ0. Here a is the nearest neighbor distance of g(r), γ0 is the

strain amplitude, and τ0 is the shear stress amplitude.

Figure 4.11 shows the trends of the energy injected relative to the energy required

to erase a memory as a function of strain amplitude. For both experimental systems,

the energy injected at the lowest strain amplitude is below the minimum required

for erasure. Around yield (γ0 = 1.5 − 3.5%) the energy ratio spikes above one, which

is exactly when they are being erased. This is also the regime in which limit cycle

trajectories emerge, indicating non-reversible energy dissipation. Finally the energy

ratio falls back towards one above γ0 > 2.0, indicating that memories are still being

forgotten, but very efficiently. This is the regime in which limit cycles disappear and

particle begin to escape their cages according to the chemical term in equation 4.18.

This reinforces the picture that the system transitions from an elastic equilibrium,

dominated by cage pressure, F ∗, to a plastic equilibrium, dominated by chemical

changes, fd. Between these two equilibrium regimes is an out of equilibrium transi-

tion. Memory, measured by Estrain/Eerasure, reflects this transition and the degree of

equilibrium.
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Chapter 5

Summary & Perspectives

5.1 Summary

Understanding how amorphous solids yield is of fundamental importance in tuning

the mechanical response of a myriad of materials that are already in use and in

creating new ones. From concrete in our foundations to the silicate glass in our

windows, amorphous solids have a huge significance. However, yield of amorphous

solids is often accompanied by rapid failure, so they currently cannot be used in

high-risk applications, such as support structures. Understanding ways to tune yield

based on the microstructure would allow engineers to use amorphous solids in more

applications. Perhaps even more importantly, the production of amorphous solids

requires much less energy than their crystalline metallic counterparts, such as steel.

Moreover, their production does not intrinsically require carbon as an input as steel

does [208]. Therefore, a greener future may be possible if amorphous solids can replace

some crystalline steel.

In this thesis I have investigated the microstructural mechanisms that accompany

yield of amorphous solids. Three fundamental questions were probed: how are the

dynamics of particles linked to the bulk mechanical response, how are the dynamics of

particles linked to the particle configurations, and how is the bulk mechanical response

tied to the particle configurations? These questions are examined using data collected

94



by a custom interfacial stress rheometer that allows for both the simultaneous imaging

and measurement of particle positions.

In Chapter 2, I investigate dynamical signatures of constituent particles in semi-

amorphous 2D colloidal packings of a-thermal particles. I find that at low oscillatory

strain amplitudes the trajectories are erratic. With increasing strain amplitudes,

particles trace out areas though out a cycle; they move in the shear direction and then

return along a different path. These limit cycles indicate energy dissipation. I show

that for particles that return to their original positions at the end of a shear cycle, the

area enclosed is a key metric that reflects the total energy dissipated. Moreover, the

arc-length of each trajectory is limited to the length predicted by the strain field –

even during chaotic motions. A dimensionless equation is uncovered that relates the

strain amplitude with the average enclosed area divided by the average normalized

arc-length. These enclosed areas represent signatures of plastic energy dissipation

during yield. This chapter reveals that the statistics of chaotic the dynamics relates

to the mechanical response.

Chapter 3 explores experimentally the relationship between particle mobility and

excess entropy. I determine that above yield, the escape time of particles leaving their

cages scales systematically with the value of excess entropy at later times in the shear

cycle. This result indicates two conclusions. First, causality is established. Imposed

stress leads to a resulting strain as we already know from rheology. The imposed

strain results in a spike in particles shifting past their neighbors. These shifting

motions, precipitate specific structures within the microstructure as characterized by

excess entropy. Second, the average amount of mobility of the particles at any given

time directly relates to the resulting structures. This implies that it may be difficult

to use a-priori particle positions to predict long-time particle dynamics because it

appears to be the case.

Chapter 4 provides a phenomenological model of a link between a material’s rel-

ative elasticity and plasticity for a given oscillatory deformation. I derive from first

principles an energy balance that applies to non-Brownian, amorphous suspensions.
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This derivation uses a grand canonical ensemble over each cage in a system to describe

yield as a transition between pressure and chemical work. With the energy balance

in hand, it is possible to recover the amount of elasticity relative to plasticity for any

given strain amplitude by using observations of the microstructure. Each variable in

this model is measured and the relationships hold experimentally. A statistical link

between bulk yield and the microstructure is reported.

These results highlight the value of the analogy between thermal and loaded a-

thermal solids and that concepts borrowed from thermodynamics may be applicable.

In particular, the chaotic motions and entropy of particle configurations are inextri-

cably linked the bulk rheological response of amorphous solids.

5.2 Future recommendations

Here, I introduce project ideas that could continue the investigation of yield of amor-

phous solids.

Testing in 3D systems with many more constituent particles

A confocal rheometer is a classic cone and plate rheometer, but with a confocal mi-

croscope included for rapid imaging. The five channel confocal microscope is capable

of constructing 3D images of particle systems by stacking 2D slices. The main chal-

lenge is in minimizing the amount of vibrations passed from the rheometer’s motor

to the piezoelectric device that runs the microscope’s scanning. While this has been

achieved a couple times before, it represents a not insignificant engineering challenge

on its own. Past solutions have focused on integrating the two systems using a large

visco-elastic, polymer component to damp any vibrations. Once this design process

is completed, the system can be used to address a myriad of physics and biology

subjects.

The yield transition is a prime example of an area that can be illuminated by

the confocal rheometer. The obvious contribution would be to investigate the role

of all relations mentioned throughout the thesis, but expanding to three dimensions.
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While certain aspects of research may be slightly limited (the confocal’s frame rate is

not expected to quite match that of the Flare, the camera used with the interfacial

stress rheometer), other aspects will be expanded greatly. For instance, the number

of particles imaged within each system will be ∼ 1,000,000. In addition, it is possible

to precisely tune attraction within 3D colloids by using depletion forces [9, 84]. With

this experimental apparatus in place it will be possible to verify that all the results

presented in this thesis exist in 3D as well as 2D model systems. Moreover, the role

inter-particle attraction plays in colloidal systems can be expanded to rheology by

exploring particle dynamics.

Aggregation dynamics as a way of probing attractive interactions

A separate experimental system to the interfacial stress rheometer introduced, allows

us to explore particle dynamics across wide ranges in applied strain (both steady and

oscillatory), particle packing fraction, and strength of inter-particle forces. Playfully

this apparatus is called the inertial flow cell because of its ability to probe particulate

fluid flows dominated by inertia instead of viscosity. During my time at the University

of Pennsylvania I have had a hand in designing this system and have assembled and

verified its functionality. Particles are suspended at an interface by capillary forces,

but are free to move within the interfacial plain. The fluid (typically water with

dissolved NaCl) is driven via Lorentz forces. These forces are generated by including

an array of magnets below the cell and passing a current through the fluid. The

movements of the fluid impart drag forces on the particles. Light (point source)

shines through the bottom of the cell at a 45 degree angle; this angle imparts a

gradient in light intensity across the cell, which would inhibit tracking of all particles.

Polystyrene particles (diameters: 0.4-1.0mm), act as small, individual lenses, focusing

light upward to the camera lens. To mitigate the gradient in light intensity reaching

the camera sensor, I have mounted the camera at 15 degrees from vertical and set

the focal plain on the particles at the center of the cell. The particles on either side

of the center of the cell are therefore slightly out of focus; those below the focal plain

have decreased intensity and those above have an increase. Particle trajectories are
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assembled via standard feature finding and linking mechanisms.

With this system it is possible to adjust the area fraction of particles being studied

by simply adjusting the number of particles added. The Reynolds and Stokes numbers

can be tuned by changing the concentration of NaCl added and by altering the amount

of current running through the cell. Our particles are naturally hydrophobic which

in combination with gravity forcing the particles downward, results in a deformed

interface. It is energetically favorable for two particles with overlapping capillaries

to further minimize the areas of the interface by coming closer together. (Gibbs

free energy, G is the surface tension, γ multiplied by surface area, A.) Attraction

results from this energetic scenario. The intensity of this attraction can be tuned by

changing the surface tension. Additionally, repulsion can be introduced by charging

the surfaces of the particles. These three axes of variation allow for the exploration

of a huge phase space, which isn’t typically available in experiments.

In the context of the yield transition, illuminating experiments with this system

would explore the influence of inter-particle attraction on particle dynamics in par-

ticulate suspensions undergoing shear. Do the relations outlined above and found

using the interfacial stress hheometer and simulations apply when particles are in-

stead attracted to each other? Do they occur when particles interact with friction?

A second area of geologic interest, would be to investigate how yield emerges as the

dilute limit is surpassed. It is possible that the coordinated motions within the above

yield behavior are in some ways similar to birth/death dynamics of aggregates in the

dilute limit. This brings to mind the question, are there more generalized forms of

the dynamical relationships shown above?

5.3 Perspectives

Around 55BCE, Lucretius wrote in a ferverish excitement of the implications of the

void within matter in De Natura Rerum (The Nature of Things)[131]:

Here I must run ahead, warn you what some wrongly declare,
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Lest you be detoured from the truth. For certain people swear

That waters yield to scaly fishes nosing through and make

Liquid channels open up, since fish leave in their wake

Room for the yielding waves to flow together, so however

Full the universe, things can change places with each other.

I’ll have you know this line of reasoning can have no base.

For where can scaly fishes swim if water won’t give place?

And where can water flow back into if the fish can’t budge?

So matter is either deprived of movement, or else we must judge

Void is enmeshed in things, and is where movement gets its start.

Periodically since ancient times people have hypothesized that the deformation of

matter occurs by particles shifting within surrounding void spaces. Until relatively

recently, it remained outside our abilities to confirm these hypothesis with observa-

tions or sophisticated mathematical deduction. In modern times we have confirmed

that indeed elements exist within empty space and that allows for deformations. The

natures of materials [192] are determined by the degree of randomized motion that

those particles exhibit, the strength of their interactions, and their configurations.

We saw in the introduction that materials with particles arranged into patterns

can deform smoothly in a unified manner. However, materials with constituents

arranged in a random way frustrate deformation. If the strength of the interactions is

low compared to the underlying thermal motions, then a material will likely be liquid

and not support load.
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ation in sheared granular matter. Phys. Rev. Lett., 120:055701, Feb 2018.

[187] Yaakov Rosenfeld. Relation between the transport coefficients and the internal

entropy of simple systems. Phys. Rev. A, 15:2545–2549, Jun 1977.

119



[188] Yaakov Rosenfeld. A quasi-universal scaling law for atomic transport in simple

fluids. J. Phys. Condens. Matter, 11(28):5415–5427, jan 1999.

[189] Jenn Stroud Rossmann, Clive L. Dym, and Lori Bassman. Introduction to

Engineering Mechanics: A Continuum Approach. CRC Press, 2015.

[190] A. Samanta, Sk. M. Ali, and S. K. Ghosh. Universal scaling laws of diffusion

in a binary fluid mixture. Phys. Rev. Lett., 87:245901, Nov 2001.

[191] Alok Samanta, Sk. Musharaf Ali, and Swapan K. Ghosh. New universal scaling

laws of diffusion and kolmogorov-sinai entropy in simple liquids. Phys. Rev.

Lett., 92:145901, Apr 2004.

[192] Jim Schaffer. Nature of Engineering Material. Lafayette College, 2010.

[193] Peter Schall, David A. Weitz, and Frans Spaepen. Structural rearrangements

that govern flow in colloidal glasses. Science, 318(5858):1895–1899, 2007.

[194] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J. Liu. A

structural approach to relaxation in glassy liquids. Nature Physics, 12:469–471,

2016.

[195] Samuel S. Schoenholz, Ekin D. Cubuk, Efthimios Kaxiras, and Andrea J. Liu.

Relationship between local structure and relaxation in out-of-equilibrium glassy

systems. PNAS, 114(2):263–267, 2017.

[196] Carl F. Schreck, Robert S. Hoy, Mark D. Shattuck, and Corey S. O’Hern.

Particle-scale reversibility in athermal particulate media below jamming. Phys.

Rev. E, 88:052205, Nov 2013.

[197] Eric M. Schwen, Meera Ramaswamy, Chieh-Min Cheng, Linda Jan, and Itai

Cohen. Embedding orthogonal memories in a colloidal gel through oscillatory

shear. Soft Matter, 16:3746–3752, 2020.

120



[198] F. Sciortino, W. Kob, and P. Tartaglia. Inherent structure entropy of super-

cooled liquids. Phys. Rev. Lett., 83:3214–3217, Oct 1999.

[199] Leila Separdar, Nicholas P. Bailey, Thomas B. Schrøder, Saeid Davatolhagh,

and Jeppe C. Dyre. Isomorph invariance of couette shear flows simulated by

the sllod equations of motion. The Journal of Chemical Physics, 138(15):154505,

2013.

[200] Jyoti R. Seth, Lavanya Mohan, Clémentine Locatelli-Champagne, Michel

Cloitre, and Roger T. Bonnecaze. A micromechanical model to predict the

flow of soft particle glasses. Nature Materials, 10(11):838–843, 2011.

[201] Jyoti R. Seth, Lavanya Mohan, Clémentine Locatelli-Champagne, Michel

Cloitre, and Roger T. Bonnecaze. A micromechanical model to predict the

flow of soft particle glasses. Nat. Mater., 10:838–843, 2011.

[202] G.T. Shahin. The stress deformation interfacial rheometer. Ph.D. thesis, Uni-

versity of Pennsylvania, 1986.

[203] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, 1948.

[204] Hayato Shiba and Akira Onuki. Plastic deformations in crystal, polycrystal,

and glass in binary mixtures under shear: Collective yielding. Phys. Rev. E,

81:051501, May 2010.

[205] Miriam Siebenbürger, Matthias Fuchs, Henning Winter, and Matthias Ballauff.

Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal sus-

pensions: Comparison with mode-coupling theory. J. Rheol., 53(3):707–726,

2009.

[206] Joseph H. Simmons, Robert K. Mohr, and C. J. Montrose. Non-newtonian

viscous flow in glass. Journal of Applied Physics, 53(6):4075–4080, 1982.

121



[207] Steven Slotterback, Mitch Mailman, Krisztian Ronaszegi, Martin van Hecke,

Michelle Girvan, and Wolfgang Losert. Onset of irreversibility in cyclic shear

of granular packings. Phys. Rev. E, 85:021309, Feb 2012.

[208] Vaclav Smil. Energy and Civilization a History. MIT Press, 2017.

[209] Edward J. Stancik and Gerald G. Fuller. Connect the drops: Using solids as

adhesives for liquids. Langmuir, 20(12):4805–4808, 2004. PMID: 15984234.

[210] Edward J. Stancik, Grant T. Gavranovic, Martin J. O. Widenbrant, Alex T.

Laschitsch, Jan Vermant, and Gerald G. Fuller. Structure and dynamics of

particle monolayers at a liquid–liquid interface subjected to shear flow. Faraday

Discuss., 123:145–156, 2003.

[211] S.H. Strogatz. Nonlinear dynamics and chaos. Perseus Books, 1994.

[212] Yonghao Sun, Amadeu Concustell, and A. Lindsay Greer. Thermomechanical

processing of metallic glasses: extending the range of the glassy state. Nature

Reviews Materials, 1(9):16039, 2016.

[213] Daniel M. Sussman, Samuel S. Schoenholz, Ekin D. Cubuk, and Andrea J.

Liu. Disconnecting structure and dynamics in glassy thin films. PNAS,

114(40):10601–10605, 2017.

[214] J. Tajuelo, J. M. Pastor, and M. A. Rubio. A magnetic rod interfacial shear

rheometer driven by a mobile magnetic trap. Journal of Rheology, 60(6):1095–

1113, 2016.

[215] Elisa Tamborini, Luca Cipelletti, and Laurence Ramos. Plasticity of a colloidal

polycrystal under cyclic shear. Phys. Rev. Lett., 113:078301, Aug 2014.

[216] Hajime Tanaka, Takeshi Kawasaki, Hiroshi Shintani, and Keiji Watanabe.

Critical-like behaviour of glass-forming liquids. Nature Materials, 9(4):324–331,

2010.

122



[217] Erin G. Teich, K.L. Galloway, Paulo E. Arratia, and Danielle S. Bassett. Crys-

talline shielding mitigates structural rearrangement and localizes memory in

jammed systems under oscillatory shear. Science Advances, 7(20), 2021.

[218] Brian P. Tighe, Adrianne R. T. van Eerd, and Thijs J. H. Vlugt. Entropy

maximization in the force network ensemble for granular solids. Phys. Rev.

Lett., 100:238001, Jun 2008.

[219] Brian P Tighe and Thijs J H Vlugt. Stress fluctuations in granular force net-

works. J. Stat., 2011(04):P04002, apr 2011.

[220] M van Hecke. Jamming of soft particles: geometry, mechanics, scaling and

isostaticity. J. Phys. Condens., 22(3):033101, dec 2009.

[221] J Vermant and M J Solomon. Flow-induced structure in colloidal suspensions.

J. Phys. Condens., 17(4):R187–R216, jan 2005.

[222] Tom Verwijlen, Paula Moldenaers, Howard A. Stone, and Jan Vermant. Study

of the flow field in the magnetic rod interfacial stress rheometer. Langmuir,

27(15):9345–9358, 2011.

[223] Duane C. Wallace. On the role of density fluctuations in the entropy of a fluid.

The Journal of Chemical Physics, 87(4):2282–2284, 1987.

[224] C.-H. Wang, S.-H. Yu, and P. Chen. Universal scaling laws of diffusion in

two-dimensional granular liquids. Phys. Rev. E, 91:060201, Jun 2015.

[225] J. G. Wang, Y. C. Hu, P. F. Guan, K. K. Song, L. Wang, G. Wang, Y. Pan,

B. Sarac, and J. Eckert. Hardening of shear band in metallic glass. Scientific

Reports, 7:7076, 2017.

[226] Ziren Wang, Ahmed M. Alsayed, Arjun G. Yodh, and Yilong Han. Two-

dimensional freezing criteria for crystallizing colloidal monolayers. The Journal

of Chemical Physics, 132(15):154501, 2010.

123



[227] John D. Weeks, David Chandler, and Hans C. Andersen. Role of repulsive

forces in determining the equilibrium structure of simple liquids. The Journal

of Chemical Physics, 54(12):5237–5247, 1971.

[228] Michael Widom, Katherine J Strandburg, and Robert H Swendsen. Quasicrystal

equilibrium state. Phys. Rev. Lett., 58(7):706, 1987.

[229] Xiaoyu Xia and Peter G. Wolynes. Fragilities of liquids predicted from the

random first order transition theory of glasses. PNAS, 97(7):2990–2994, 2000.

[230] Ning Xu, Matthieu Wyart, Andrea J. Liu, and Sidney R. Nagel. Excess vibra-

tional modes and the boson peak in model glasses. Phys. Rev. Lett., 98:175502,

Apr 2007.

[231] Ryoichi Yamamoto and Akira Onuki. Dynamics of highly supercooled liquids:

Heterogeneity, rheology, and diffusion. Phys. Rev. E, 58:3515–3529, Sep 1998.

[232] Peter J. Yunker, Ke Chen, Zexin Zhang, and A. G. Yodh. Phonon spectra,

nearest neighbors, and mechanical stability of disordered colloidal clusters with

attractive interactions. Phys. Rev. Lett., 106:225503, Jun 2011.

124


	Relationships Between Structure, Dynamics, And Flow In Sheared Amorphous Materials
	Recommended Citation

	Relationships Between Structure, Dynamics, And Flow In Sheared Amorphous Materials
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Subject Categories

	tmp.1664985243.pdf.abp9f

