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ABSTRACT

REMOVING STRONG DATA ASSUMPTIONS IN CAUSAL INFERENCE VIA

LARGE-SCALE OPTIMIZATION

Siyu Heng

Dylan S. Small

Many traditional and newly-developed causal inference approaches require im-

posing strong data assumptions, and if those assumptions were violated in prac-

tice, these approaches may be inapplicable, suffer from low statistical power, or

lead to misleading causal conclusions. In this dissertation, we present three pa-

pers to show how large-scale optimization can sometimes aid in removing strong

assumptions about the data generating process or the data collection procedure

that are required by some existing causal inference approaches.

The first and second papers show how large-scale optimization can sometimes

help remove strong assumptions about the data generating process. In the first pa-

per, a new adaptive approach is proposed to combine two test statistics in matched

observational studies. The proposed adaptive approach asymptotically uniformly

dominates both of the two component test statistics in sensitivity analyses, re-

gardless of the underlying data distribution. In the second paper, a model-free

and finite-population-exact framework is proposed to analyze randomized experi-

ments subject to outcome misclassification. This new framework is based on large-

scale integer programming and can help researchers analyze a randomized exper-

iment subject to outcome misclassification in a more comprehensive way without

imposing any additional assumptions on a randomized experiment.
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The third paper illustrates how large-scale optimization can help remove strong

assumptions about the data collection procedure. Specifically, to study the effect of

reducing malaria burden on the low birth weight rate in sub-Saharan Africa, a pair-

of-pairs approach to a difference-in-differences study is proposed, which is built on

optimal matching (a large-scale network flow problem) and cardinality matching

(a large-scale integer programming problem). Unlike the traditional difference-in-

differences studies, this pair-of-pairs approach does not require either panel data

or repeated cross-sectional data to be collected before the analysis stage.
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1. Introduction

Causal inference seeks to study the causal effects of various human interventions

and has deeply influenced decision-making in public health, biomedical research,

economics, and social sciences. However, many traditional and newly-developed

causal inference methods rely on strong assumptions about the data generating

process and/or the data collection procedure, and if those assumptions do not

hold, they may either be inapplicable or suffer from low power. Recent advances

in efficient computation of large-scale optimization can aid in conducting valid

and powerful causal inferences without imposing strong data assumptions. In this

dissertation, we present three papers (corresponding to Chapter 2-4 respectively)

to illustrate how large-scale optimization can sometimes help remove strong data

assumptions in causal inference with experimental or observational data.

In Chapter 2 (the first paper), we illustrate how large-scale optimization can some-

times help remove strong assumptions about the data generating process in obser-

vational studies subject to unmeasured confounding. When studying the effect of

a treatment on bad, aberrant outcomes, a traditional approach is to define a cutoff

of a continuous score that is considered aberrant and use the Mantel-Haenszel test

on the binary outcome of below the cutoff (or above the cutoff if the higher a re-

sponse, the worse the outcome is). To make use of information about the severity

of aberration (i.e., the amount a continuous score is below the cutoff) and improve

power, Rosenbaum and Silber (2008, JASA) developed a new aberrant rank test.

However, through proving a novel design sensitivity formula and related simu-

lations, we show that although the aberrant rank test is indeed much more pow-

1



erful in a sensitivity analysis (i.e., more robust to unmeasured confounding) than

the Mantel-Haenszel test for many data generating processes, there are also some

cases in which the Mantel-Haenszel test is instead much more powerful. That is,

how we choose between these two tests requires strong assumptions on the data

generating process. To overcome this, we leverage large-scale optimization to de-

velop a new, general adaptive approach, the two-stage programming method, and

use it to adaptively combine the aberrant rank test and the Mantel-Haenszel test.

We show our approach asymptotically dominates both tests and performs well in

simulation studies, regardless of the unknown data generating process. We apply

our approach to a study of the effect of teenage pregnancy on child stunting. This

paper is joint work with Hyunseung Kang, Dylan Small, and Colin Fogarty, and

was published in 2021 in Volume 83, Issue 3 of Journal of the Royal Statistical Society:

Series B (Statistical Methodology).

In Chapter 3 (the second paper), we show how large-scale optimization can some-

times help remove strong assumptions about the data generating process in ran-

domized experiments (trials) subject to outcome misclassification. Randomized

experiments are the gold standard for making causal inferences as randomiza-

tion can remove the need for assuming any data-generating (super-population)

models. However, outcome misclassification (e.g., measurement error or response

bias in binary outcomes) often exists in datasets and even a few misclassified out-

comes may distort a causal conclusion drawn from a randomized experiment. All

existing approaches to outcome misclassification rely on some data-generating

model and therefore may not be applicable to randomized experiments without

additional strong assumptions. We propose a model-free and finite-population-

exact framework for randomized experiments subject to outcome misclassification,
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which does not require adding any additional assumptions to a randomized ex-

periment. A central quantity in our framework is “warning accuracy," defined as

the threshold such that the causal conclusion drawn from the measured outcomes

may differ from that based on the true outcomes if the accuracy of the measured

outcomes did not surpass that threshold. We discuss how learning the warning ac-

curacy and related concepts can strengthen the design, analysis, and validation of

a randomized experiment. We show that the warning accuracy can be computed

efficiently (even for large-scale randomized experiments) by adaptively reformu-

lating an integer program with respect to some intrinsic characteristic of various

randomization designs. Our framework is applicable to both Fisher’s sharp null

hypothesis and Neyman’s weak null hypothesis, covers a wide range of random-

ization designs, and can also be applied to matched/stratified observational stud-

ies adopting randomization-based inference. We apply our approach to analyze a

large randomized clinical trial – the Prostate Cancer Prevention Trial. This paper is

joint work with Pamela Shaw, of which a preliminary version was posted on arxiv

(https://arxiv.org/abs/2201.03111).

In Chapter 4 (the third paper), through an applied work, we show how large-scale

optimization can sometimes help remove strong assumptions on the data collec-

tion procedure for conducting causal inference with the difference-in-difference

approach. Traditional difference-in-differences studies require either longitudinal

data or repeated cross-sectional data. However, many large survey data sets sam-

ple different set of clusters at each time point, including the Demographic and

Health Surveys (DHS), making traditional difference-in-differences inapplicable.

To study the effect of a reduction in malaria prevalence on the low birth weight

rate in sub-Saharan Africa using DHS data, we propose a novel study design–a
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pair-of-pairs approach to a difference-in-differences study–to conduct a difference-

in-differences study with neither longitudinal data nor repeated cross-sectional

data. The proposed pair-of-pairs approach involves a two-step matching pro-

cedure, in which the first-step matching handles time and location heterogene-

ity through optimal matching (a large-scale discrete optimization problem) and

the second-step matching involves cardinality matching (a large-scale integer pro-

gramming problem). Using the proposed pair-of-pairs approach, we find that re-

ducing malaria burden can potentially substantially reduce the low birth weight

rate in sub-Saharan Africa, especially for first pregnancies. This paper is joint work

with Wendy O’Meara, Ryan Simmons, and Dylan Small, which was published in

2021 in eLife (DOI: 10.7554/eLife.65133).
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2. Increasing Power for Observational

Studies of Aberrant Response: An

Adaptive Approach

This chapter is adapted from “Heng, S., Kang, H., Small, D. S., and Fogarty, C. B.

(2021). Increasing power for observational studies of aberrant response: an adap-

tive approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

83(3), 482-504."

2.1 Introduction

2.1.1 Examples of settings where interest is in the effect of treat-

ment on aberrant response not average response

When evaluating the relative merits of competing treatment regimens, it can some-

times be more appropriate to focus on the effect of the treatment on poor outcomes

(aberrant responses) rather than average outcomes. For example, malnutrition in

children can cause both short- and long-term negative health outcomes and has

been a long-standing global concern. According to the 2018 Global Nutrition Re-

port, undernutrition contributes to around 45% of deaths among children under

five. In studies on the effect of an exposure on child malnutrition, the most com-

monly used measurements of malnutrition are (1) stunting, (2) wasting, and (3)

underweight. Stunting is defined as a child having a height less than or equal to
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2 standard deviations below the mean height for the child’s age (i.e., height-for-

age z-score ≤ −2), where the mean and standard deviation come from a reference

population such as the World Health Organization (WHO) Multicenter Growth

Reference Study (WHO, 2006). Similarly, wasting and underweight are defined as

weight-for-age z-score ≤ −2 and weight-for-height z-score ≤ −2 respectively; see

WHO (1986), Harris et al. (2001) and Bloss et al. (2004). When studying causal de-

terminants of malnutrition, say stunting, researchers typically focus on the pattern

of stunting instead of the average treatment effect on the height of children. This

is because being slightly below the average height will not cause any serious prob-

lems, but stunted growth can lead to adverse consequences for the child including

poor cognition and educational performance, low adult wages and lost produc-

tivity (WHO, 2017). The standard approach in studies of causal determinants of

malnutrition is to consider stunting, wasting or underweight as binary outcomes,

and to test the null that the treatment (potential causal determinant) does not affect

that binary outcome for each individual through either Fisher’s exact test for un-

stratified data or the Mantel-Haenszel test with stratified data (e.g., Brown et al.,

1982; Walker et al., 1991; Bloss et al., 2004; Garrett and Ruel, 2005; Phuka et al.,

2008; Null et al., 2018).

Numerous causal problems share a similar structure with that of the causal deter-

minants of malnutrition, where we care about whether a certain treatment would

change the pattern of some aberrant response (e.g., stunted growth) rather than the

average treatment effect over the whole population; see Appendix G in the sup-

plementary materials for more examples. Rosenbaum and Silber (2008) referred

to this as the aberrant effects of treatment problem. When studying aberrant ef-

fects, researchers typically choose a widely-used cut-off to define a dichotomous
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outcome (e.g., stunted or not; wasted or not) from a continuous response (e.g.,

height-for-age z-score; weight-for-age z-score), and then perform Fisher’s exact

test or the Mantel-Haenszel test. These traditional methods are both simple and

convenient, but discard potentially useful information on the severity of aberrant

response (e.g., exact height-for-age z-scores of children with stunted growth) and

thus may fail to detect existing aberrant effects of the treatment.

2.1.1.1 A matched observational study on the effect of teenage pregnancy on

stunting

Prior work has suggested that teen mothers are more likely to bear stunted chil-

dren and some studies have tried to investigate whether teenage pregnancy has a

causal effect on child stunting (e.g., Van de Poel et al., 2007; Darteh et al., 2014).

We examine this causal question using data from the Kenya 2003 Demographic

and Health Surveys (DHS). Using Kenya’s definition of adulthood, we define

children with mother’s age ≤ 18 years as treated individuals, and children with

mother’s age ≥ 19 years as controls. We use their height-for-age z-scores as the

outcomes, where the z-score is with respect to the WHO Multicenter Reference

Growth Study (WHO, 2006). Recall that according to the WHO, low child height-

for-age, or “stunting," is defined as height-for-age z-score ≤ −2. We conduct a

matched observational study where we match each treated individual with con-

trols on seven covariates: mother’s highest education level; geographic district;

household wealth index in quantiles; household’s main source of drinking water;

household’s toilet facilities; sex; and children’s age in years. Matching is a trans-

parent and easily understandable way of adjusting for observed covariates and has

been widely applied in observational studies (Rosenbaum, 2002b; Hansen, 2004;

Stuart, 2010; Zubizarreta, 2012; Pimentel et al., 2015). We discarded 1466 records
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with missing or unspecified height-for-age z-scores, source of drinking water or

toilet facilities, leaving 4483 records. Among these 4483 children, there are 150

treated individuals and we matched each to three controls, 450 controls in total.

We used optimal matching using rank-based Mahalanobis distance with a propen-

sity score caliper (Hansen and Klopfer, 2006). To evaluate the balance on baseline

covariates before and after matching, we use standardized differences which are

defined as a weighted difference in means divided by the pooled standard devi-

ation between the treated and control groups before matching; see Chapter 9 of

Rosenbaum (2010). The standardized differences of the seven covariates are all

near zero after matching, indicating good balance; see Appendix I for details.

2.1.2 Our Contributions

Previous work on inference for aberrant effects of treatment has considered ran-

domized trials where there is no unmeasured confounding by design (Rosenbaum

and Silber, 2008). In an observational study, we typically worry about unmeasured

confounding and would like to have an approach that has good power to detect

an effect that is insensitive to a moderate amount of unmeasured confounding

(Rosenbaum, 2004, 2010). In this paper, we develop an adaptive approach for in-

ference about aberrant treatment effects from matched observational studies that

asymptotically uniformly dominates the traditional approach of performing the

Mantel-Haenszel test based on a dichotomous outcome of aberrant/not aberrant.

Our new approach is developed in two parts. In the first part, we introduce the

aberrant null hypothesis of no treatment effect for matched studies which is es-

pecially suitable for studying aberrant treatment effects, and then introduce the

aberrant rank test for matched studies along with its sensitivity analysis and study
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its asymptotic power. The aberrant rank test takes the form of the sum of aberrant

ranks among all the treated units, with the Wilcoxon rank sum test as a special case.

It is more powerful than the Mantel-Haenszel test for testing the aberrant null of

no treatment effect in many settings because it considers not only the incidence of

aberrant response, but also the severity of aberration. We formally demonstrate

this through proving a novel design sensitivity formula. Design sensitivity mea-

sures the limiting robustness of a test to hidden bias in an observational study as

the sample size increases: larger design sensitivity corresponds to greater asymp-

totic robustness to hidden bias (Rosenbaum, 2004, 2010). Our new design sensitiv-

ity formula allows us to asymptotically compare the performances of the aberrant

rank test and the Mantel-Haenszel test for testing the aberrant null under various

settings. We also validate that our asymptotic findings provide good guidance for

realistic sample sizes in simulation studies. We illustrate that whether we should

use the aberrant rank test or the Mantel-Haenszel test depends on the unknown

data generating process, and making the wrong choice can substantially harm the

performance of a sensitivity analysis. The proof of the design sensitivity formula

involves a new technique that uses empirical processes to analyze the asymptotics

of matched observational studies as the number of matched strata grows and can

be of independent interest.

In the second part, we develop a novel, general adaptive approach called “the

two-stage programming method" to combine two tests in observational studies

such that the design sensitivity of the resulting adaptive test is always greater than

or equal to maximum of the design sensitivities of the two component tests per-

formed in isolation, regardless of the underlying data generating distribution. We

refer to this newly discovered phenomenon as “super-adaptivity." Thus, applying
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our new adaptive approach to combine the aberrant rank test and the Mantel-

Haenszel test uniformly dominates the traditional approach based solely upon the

Mantel-Haenszel test in terms of the design sensitivity. We evaluate our adap-

tive test via simulations and show that under various settings its power is close to

the maximal power of its components (i.e., the aberrant rank test and the Mantel-

Haenszel test) for realistic sample sizes, and therefore avoids potentially drastic

reductions in power stemming from making the wrong choice between the two

component tests.

The first adaptive approach for sensitivity analysis was introduced in Rosenbaum

(2012). It has been applied to or modified for various settings (e.g., Zubizarreta

et al., 2014; Rosenbaum and Small, 2017; Ertefaie et al., 2018; Zhao et al., 2018;

Shauly-Aharonov, 2020). Our new adaptive approach goes beyond this tradi-

tional adaptive approach in two aspects. First, the traditional adaptive approach

only works if all of the component test statistics are stochastically dominated by a

known distribution in a matched observational study. While commonly used tests

statistics for binary outcomes or general outcomes in pair-matched studies have

this property, most commonly used test statistics for general outcomes in matched

studies that allow for multiple controls or full matching do not have this stochastic

dominance property, including the aberrant rank test, the Wilcoxon rank sum test,

the Hodges-Lehmann aligned rank test and the Huber-Maritz m-tests (Gastwirth

et al., 2000; Rosenbaum, 2002b, 2007). In contrast, our new adaptive approach cov-

ers most of the existing testing scenarios in matched studies as it works for any

sum statistics and various matching techniques, including pair matching, match-

ing with multiple controls and full matching. Second, our new adaptive approach

uniformly dominates the traditional approach in terms of design sensitivity, which
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is an immediate consequence of the super-adaptivity property.

2.2 Notation and Reviews

2.2.1 Matching-based randomization inference and sensitivity

analysis

Suppose there are I strata i = 1, . . . , I. Each stratum contains m (m ≥ 2) individ-

uals (e.g., children) where one individual received treatment and the other m − 1

individuals received control. Let Zij = 1 if individual j in stratum i received treat-

ment (e.g., mother’s age ≤ 18 years), otherwise let Zij = 0 (e.g., mother’s age ≥ 19

years). Denote the collection of treatment assignments as Z = (Z11, . . . , ZIm)
T. Let

Z be the set of all possible values of Z where Z ∈ Z if and only if ∑m
j=1 Zij = 1 for

all i. Let |S| denote the number of elements of a finite set S, then we have |Z| = mI .

Let xij and uij denote the observed covariates and an unobserved covariate respec-

tively for each individual j in stratum i. Typically, each stratum i is formed by

matching on the observed covariates such that xij = xij′ or xij ≈ xij′ . However,

matching cannot directly adjust for the unobserved covariate, so uij ̸= uij′ is possi-

ble. Under the potential outcomes framework, if individual j in stratum i received

treatment (Zij = 1), we observe the potential response rTij; otherwise (Zij = 0), we

observe rCij. That is, the observed response (e.g., the observed height-for-age z-

score) for individual ij is Rij = ZijrTij + (1 − Zij)rCij (Neyman, 1923; Rubin, 1974).

Write F = {(rTij, rCij, xij, uij), i = 1, . . . , I, j = 1, . . . , m}. Denote the collection of

responses as R = (R11, . . . , RIm)
T. Fisher’s sharp null hypothesis of no treatment

effect asserts that H0 : rTij = rCij, ∀ i, j.

In a randomized experiment, where we can assume random treatment assignment
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in each stratum, i.e., P(Z = z | F ,Z) = 1/|Z| = m−I for all z ∈ Z , the signifi-

cance level of a test statistic T being greater than or equal to the observed value t

under the null hypothesis can be calculated via randomization inference:

P(T ≥ t | F ,Z) = ∑
z∈Z

1{T(z, R) ≥ t} · P(Z = z | F ,Z)

=
|{z ∈ Z : T(z, R) ≥ t}|

|Z| , (2.1)

where 1(A) = 1 if A is true, and 1(A) = 0 otherwise. For large I, (2.1) can be

approximated via asymptotic normality of the null distribution of T (Rosenbaum,

2002b).

In an observational study, however, it is unrealistic to assume that the treatment is

randomly assigned in each stratum even if we have matched on all the observed

covariates, due to the possible presence of unobserved covariates (unmeasured

confounders). A sensitivity analysis tries to determine how departures from ran-

dom assignment of treatment would affect inferences on treatment effects. Let

πij = P(Zij = 1 | F ) denote the probability that, in the population before match-

ing, individual ij will receive treatment. We follow the widely-used Rosenbaum

sensitivity analysis framework (Rosenbaum, 2002b) which considers a logit model

linking πij to xij and normalized uij:

log

(
πij

1 − πij

)
= θ(xij) + γuij, where uij ∈ [0, 1], (2.2)

where θ(xij) is an arbitrary unknown function of xij and γ ≥ 0 is a sensitivity

parameter. The assumption uij ∈ [0, 1] is no more restrictive than assuming a

bounded support of uij and is only imposed to make γ more interpretable (Rosen-
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baum, 2002b). Under (2.2), if we imagine that each (rTij, rCij) is drawn from some

super-population model (only for interpretation, not necessary for randomization

inference) and is confounded by the set of covariates (xij, uij), then the strong ig-

norability assumption (Rosenbaum and Rubin, 1983a) would hold were (xij, uij)

to all be measured (but in fact uij is not measured), i.e., we have (rTij, rCij) |= Zij |

xij, uij and 0 < P(Zij = 1 | xij, uij) < 1 for all i, j. Here uij can also represent an

aggregate measurement of all potential, perhaps more than one, unmeasured con-

founders uij1, uij2, . . . . For example, if log{πij/(1−πij)} = θ(xij)+ g(uij1, uij2, . . . )

for some function g with bounded support [0, ξ], then (2.2) holds with setting

uij = ξ−1g(uij1, uij2, . . . ) and γ = ξ.

Under model (2.2), it is straightforward to show that for any two individuals ij

and ij′ within the same stratum, the ratio of their odds of receiving the treatment

is bounded by the sensitivity parameter Γ = exp(γ) ≥ 1:

1
Γ
≤

πij(1 − πij′)

πij′(1 − πij)
≤ Γ, for all i, j, j′ with xij = xij′ .

Note that Γ = 1 is equivalent to random assignment. The more Γ departs from 1,

the more the treatment assignment potentially departs from random assignment.

It is then easy to show that model (2.2) implies the following biased treatment

assignment probability after matching, assuming xij = xij′ :

P(Z = z | F ,Z) =
I

∏
i=1

exp(γ ∑m
j=1 zijuij)

∑m
j=1 exp(γuij)

, z ∈ Z , 0 ≤ uij ≤ 1.

Then researchers usually look at the worst-case p-value, which is defined as

the largest p-value given the sensitivity parameter Γ over all possible arrange-

ments of unmeasured confounders uij. For example, for a one-sided test, the
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worst-case p-value reported by a test statistic T given its observed value t with

the sensitivity parameter Γ = exp(γ) is max0≤uij≤1 P(T ≥ t | F ,Z) =

max0≤uij≤1 ∑z∈Z 1{T(z, R) ≥ t} · P(Z = z | F ,Z). In practice, researchers gradu-

ally increase Γ, compute the worst-case p-value for each Γ, and report the sensitivity

value, which is defined as the largest Γ such that the corresponding worst-case p-

value exceeds some prespecified level α and informs the magnitude of hidden bias

required to alter the causal conclusion drawn from the primary analysis assuming

no unmeasured confounding (Zhao, 2018). For other models of sensitivity analy-

sis, see Shepherd et al. (2006), McCandless et al. (2007), Mitra and Heitjan (2007),

Hosman et al. (2010), Keele and Quinn (2017), VanderWeele and Peng (2007), and

Zhao (2018).

2.2.2 Power of a sensitivity analysis and design sensitivity

The power of a test is the probability that the test will successfully reject the null

hypothesis and is calculated under some alternative. In parallel, the power of

a sensitivity analysis is the probability that the test will correctly reject the null,

for any possible arrangements of unmeasured confounders given some Γ ≥ 1,

under some alternative. To be more specific, for a fixed Γ, the power of an α level

sensitivity analysis using a test statistic T is calculated as the probability that the

worst-case p-value corresponding to T falls below α when conducting a sensitivity

analysis at Γ. When calculating the power, we need to specify a data generating

process for the alternative. Following previous work, we consider power under the

alternative, specifically, a “favorable situation" where there is a treatment effect of

a specified magnitude and no hidden bias (Rosenbaum, 2004, 2010). Even though

there is no hidden bias in this favorable situation, we would typically not know

that for sure in an observational study and would prefer a test statistic with a
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higher power of sensitivity analysis for plausible values of Γ ≥ 1 (i.e., with high

degree of insensitivity to hidden bias). This strategy of calculating the power is

more appropriate than those assuming alternatives of both a treatment effect and

a bias in treatment assignment. For example, suppose that we instead use the

alternative of a small treatment effect and a large bias in treatment assignment,

then a test statistic that has a high chance of rejecting the null hypothesis of no

treatment effect (i.e., high statistical power) with small or moderate Γ may not

be favorable because we cannot tell if its high statistical power results from its

detection of the actual treatment effect or the underestimation of the magnitude of

hidden bias. This ambiguity will not occur when calculating the power under the

favorable situation in which the researchers always seek to reject the null under

plausible Γ. Therefore, calculating the power of a sensitivity analysis under the

favorable situation provides a logically consistent way to compare competing test

statistics in observational studies. See Hansen et al. (2014) and Rosenbaum (2017)

(Chapter 10) for detailed discussion on this.

Typically, under some regularity assumptions (varying with different matching

structures and tests) on the data generating process of responses R, there is a num-

ber Γ̃ called the design sensitivity, such that as the sample size I → ∞, the power

of a sensitivity analysis goes to 1 if the analysis is performed with Γ < Γ̃, and the

power goes to 0 if performed with Γ > Γ̃. That is, Γ̃ refers to the sharp transi-

tion of consistency of a test in a sensitivity analysis (Rosenbaum, 2004). The de-

sign sensitivity gives us a powerful and elegant tool to asymptotically compare

two test statistics or two study designs under each data distribution model - the

test or the study design with a larger Γ̃ is asymptotically more robust to unmea-

sured confounders. Besides its mathematical elegance, the design sensitivity has
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been shown to be a powerful tool in practical studies (Stuart and Hanna, 2013;

Zubizarreta et al., 2013).

2.3 The Traditional Approach: the Mantel-Haenszel

Test

In settings such as those described in Section 2.1.1, there is a subset A ⊂ R such

that any Rij ∈ A is considered as an aberrant response, and researchers care

about whether the treatment would change the pattern of aberrant response in-

stead of the average treatment effect. In these settings, a typical approach is to

define a dichotomous outcome R̃ij = 1(Rij ∈ A) indicating whether individ-

ual ij had an aberrant outcome or not. For example, in Section 2.1.1.1 where

we focus on whether child ij showed stunted growth (i.e., Rij ≤ −2), we can let

A = (−∞,−2] and the dichotomous observed outcome indicating stunted growth

R̃ij = 1(Rij ≤ −2) is binary. Let r̃Tij = 1(rTij ∈ A) and r̃Cij = 1(rCij ∈ A), we have

R̃ij = 1(Rij ∈ A) = Zij1(rTij ∈ A) + (1 − Zij)1(rCij ∈ A) = Zijr̃Tij + (1 − Zij)r̃Cij.

Then researchers focus on a categorized Fisher’s sharp null of no treatment effect

H̃0 : r̃Tij = r̃Cij, ∀ i, j, that is, whether individual ij would show aberrant response

or not will not be affected by whether he or she received the treatment or not. Note

that H̃0 does not imply any information about the severity of aberration. It is clear

that if H0 holds true, so does H̃0, and if H̃0 is false, so is H0.

The traditional approach then performs the Mantel-Haenszel test (Mantel and

Haenszel, 1959), which can be regarded as an analogue of Fisher’s exact test when

there are two or more stratum, I ≥ 2. Formally, the Mantel-Haenszel test uti-

lizes the statistic TM-H = ∑I
i=1 ∑m

j=1 Zij1(Rij ∈ A) = ∑I
i=1 ∑m

j=1 ZijR̃ij, which is the
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number of aberrant responses among treated individuals. For matched pairs, the

Mantel-Haenszel test reduces to McNemar’s test (Cox and Snell, 2018). In a ran-

domized experiment, we can use (2.1) to conduct randomization inference. In an

observational study, we can use the related result in Rosenbaum (2002b) (Chapter

4) to conduct sensitivity analyses: under matching with m − 1 controls, for any t,

the one-sided worst-case p-value max0≤uij≤1 P(T ≥ t | F ,Z) = P(T+ ≥ t | F ,Z)

where T+ is the sum of I independent Bernoulli random variables B1, . . . , BI ,

with Bi taking value one with probability p+i = {Γ ∑m
j=1 1(Rij ∈ A)}/{(Γ −

1)∑m
j=1 1(Rij ∈ A) + m} and value zero with probability 1 − p+i . Therefore, we

have as I → ∞, for each fixed t,

max
0≤uij≤1

P(T ≥ t | F ,Z) = P(T+ ≥ t | F ,Z) ≃ 1 − Φ

(
t − ∑I

i=1 p+i√
∑I

i=1 p+i (1 − p+i )

)
,

(2.3)

where Φ is the distribution function of standard normal distribution and ‘≃’ de-

notes that two sequences are asymptotically equal. We can then use (2.3) to report

worst-case p-values for various sensitivity parameters Γ. The design sensitivity of

the Mantel-Haenszel test has also been derived in Rosenbaum and Small (2017).

The Mantel-Haenszel test is simple and convenient but can lose power from ignor-

ing information about the magnitude of aberration.
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2.4 An Aberrant Rank Approach and Its Comparison

with the Traditional Approach

2.4.1 The aberrant null and the aberrant rank test

Although H0 and H̃0 are widely used null hypotheses in randomized experiments

and observational studies, they do not best capture the hypotheses of interest in

studying the causal determinants of aberrant response when severity of aberration

matters. To better capture the hypothesis of interest, Rosenbaum and Silber (2008)

introduced the aberrant null hypothesis of no effect of treatment on individuals

who would have an aberrant response under either the treatment or control. For-

mally, as in Section 2.3, let A be a subset of R that defines an aberrant response.

Then the null hypothesis of no aberrant effect states that

HA
0 : rTij = rCij, ∀ i, j, if either rTij ∈ A or rCij ∈ A.

It is easy to see that HA
0 is a weaker hypothesis than Fisher’s sharp null H0, in

the sense that H0 implies HA
0 , but the converse is not true. And we can also see

that HA
0 is a stronger hypothesis than the categorized Fisher’s sharp null H̃0, in

the sense that HA
0 implies H̃0, but the converse is not true. That is, HA

0 is a null

hypothesis that lies between H0 and H̃0.

Let us consider studying a potential causal determinant of stunting to illustrate

why HA
0 is a more appropriate null hypothesis to test when the pattern of aber-

ration is our main focus. Note that all the alternatives can be classified into the

following four cases: (i) Case 1: rTij ∈ A, rCij /∈ A, i.e., treatment will cause stunt-

ing for child ij; (ii) Case 2: rTij /∈ A, rCij ∈ A, i.e., treatment will prevent stunting
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for child ij; (iii) Case 3: rTij ∈ A, rCij ∈ A, and rTij ̸= rCij, i.e., treatment will not

prevent stunting for child ij, but it will affect the severity of stunting; (iv) Case 4:

rTij /∈ A, rCij /∈ A, and rTij ̸= rCij, i.e., child ij will not show stunted growth no

matter whether he or she received treatment or not. Thus, HA
0 is against Cases 1-3,

while H0 is against all the four cases and H̃0 is against only Cases 1 and 2. Our goal

is to decide whether the treatment affects stunted growth. It is clear that in Cases

1 and 2, the treatment affects stunted growth (causing stunting in Case 1, prevent-

ing stunting in Case 2). Case 3 also indicates the treatment affects stunted growth,

since although the treatment will not prevent a child from being stunted, it will

affect the severity of stunting, i.e., it will aggravate or alleviate the child’s stunting

growth which could have a huge impact on the child. In Case 4, the treatment

does not affect stunted growth since the child will be healthy and non-stunted no

matter whether he or she is exposed to the treatment or control. Consideration

of these four cases shows that HA
0 is a more appropriate null hypothesis than H0

and H̃0 because it contains in the alternative the three cases where treatment af-

fects stunted growth but keeps in the null the fourth case where treatment does

not affect stunted growth.

In this paper, our argument focuses on A with the form of A = [c,+∞) (or equiv-

alently, (c,+∞)) for some c ∈ R. In these settings, there is a threshold value c indi-

cating aberration, which is common in practical research. The argument works in

parallel with A = (−∞, c] and A = (−∞, c). For example, according to the WHO,

stunting is defined as height-for-age z-score ≤ −2, and in this case A = (−∞, c]

with c = −2.

Rosenbaum and Silber (2008) introduced the aberrant rank test for randomized

experiments with unmatched data, and Small et al. (2013) considered the aberrant
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rank in case-referent studies. In this paper, we derive a new aberrant rank test for

matched observational cohort studies. We define q(v | R) = ∑I
i′=1 ∑m

j′=1 1(v ≥

Ri′ j′ ≥ c) and refer to q(Rij | R) as the aberrant rank of individual ij. There are

some features worth mentioning. First, the aberrant rank q(Rij | R) depends on all

the responses, including those that are not in the same stratum as Rij. Second, if

individual ij did not show aberrant response, q(Rij | R) is zero, and if he or she did

show aberrant response, q(Rij | R) takes the rank of Rij among all the responses of

individuals with aberrant response. Third, q(v | R) is monotonic in v.

Next, we define the aberrant rank test for a stratified (e.g., matched) study as

Tabe =
I

∑
i=1

m

∑
j=1

Zij q(Rij | R), (2.4)

which is the sum of all the aberrant ranks over all treated individuals. When

c = −∞, Tabe reduces to the Wilcoxon rank sum test. Under the null hypothe-

sis of no aberrant effects HA
0 , q(Rij | R) is fixed. In a randomized experiment,

we can use (2.1) along with its asymptotic approximation to report p-values. In a

sensitivity analysis, unlike the Mantel-Haenszel test, in general we cannot find

a known distribution to bound the distribution of Tabe. However, under pair

matching or matching with multiple controls, utilizing the asymptotic separa-

bility algorithm in Gastwirth et al. (2000), for any given t, we can approximate

the one-sided worst-case p-value max0≤uij≤1 P(Tabe ≥ t | F ,Z) under HA
0 . Let

b ∈ {1, . . . , m − 1} =: [m − 1], and µib and νib be the null expected value and vari-

ance of ∑m
j=1 Zij q(Rij | R) under ui1 = · · · = uib = 0 and ui,b+1 = · · · = uim = 1

with different values of b respectively: for i = 1, . . . , I and b = 1, . . . , m − 1, we
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have

µib =
∑b

j=1 q(Ri(j) | R) + Γ ∑m
j=b+1 q(Ri(j) | R)

b + Γ(m − b)
,

νib =
∑b

j=1 q2(Ri(j) | R) + Γ ∑m
j=b+1 q2(Ri(j) | R)

b + Γ(m − b)
− µ

2
ib,

where we rearrange Ri1, . . . , Rim as Ri(1) ≤ · · · ≤ Ri(m). Let µi = maxb∈[m−1] µib,

Bi = {b : µib = µi, b ∈ [m − 1]} and νi = maxb∈Bi νib. Then the one-sided worst-

case p-value can be approximated via

max
0≤uij≤1

P(Tabe ≥ t | F ,Z) ≃ 1 − Φ

(
t − ∑I

i=1 µi√
∑I

i=1 νi

)
as I → ∞.

Letting ξα = ∑I
i=1 µi + Φ−1(1 − α)

√
∑I

i=1 νi, ΨΓ,I = P(Tabe ≥ ξα | Z) is the power

of a one-sided α-level sensitivity analysis conducted with Γ of the aberrant rank

test Tabe. Typically, ΨΓ,I is computed with respect to draws from a data generating

process in the favorable situation in which there is no hidden bias and there is a

treatment effect.

Recall that the aberrant null HA
0 is a more appropriate null hypothesis to test than

both H̃0 and H0 when there exists a designated cut-off for what constitutes an aber-

rant outcome but more severely aberrant outcomes are worse than less severely

aberrant outcomes. Note that both the aberrant rank test and the Mantel-Haenszel

test are valid for testing the aberrant null in the sense that they both have pivotal

distributions if the aberrant null holds. When testing the aberrant null, among

these two candidate tests, intuitively the aberrant rank test should be more ap-

pealing and natural to choose since its null distribution also incorporates the fact

that the severity of aberration is fixed under the aberrant null, while the null distri-

bution of the Mantel-Haenszel test under the aberrant null is the same as that un-
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der the weaker null H̃0 which only looks at the dichotomized outcome indicating

aberration/non-aberration. However, as we will show in Sections 2.4.2 and 2.4.3,

when testing the aberrant null in observational studies, although the aberrant rank

test is indeed more powerful than the Mantel-Haenszel test in many cases, there

also exist settings under which the Mantel-Haenszel test is instead more power-

ful. This motivates us to develop a new adaptive testing procedure in Section 2.5.2

and use it to combine the aberrant rank test and the Mantel-Haenszel test to guar-

antee that the resulting adaptive approach for testing the aberrant null uniformly

dominates the Mantel-Haenszel test in large samples and performs well in finite

samples.

2.4.2 Design sensitivity formula of the aberrant rank test

There is an extensive literature on deriving design sensitivity formulas for various

test statistics in matched observational studies. These design sensitivity formulas

provide powerful tools for asymptotically evaluating the performances of various

tests in a sensitivity analysis. However, all previous approaches either require the

use of pair matching (Rosenbaum, 2010, 2011; Hansen et al., 2014; Rosenbaum and

Small, 2017; Howard and Pimentel, 2019; Fogarty et al., 2021), or require a partic-

ular structure for the test statistic to which many rank statistics do not conform

(Rosenbaum, 2013, 2014). There are no design sensitivity formulas for popular test

statistics, such as the Wilcoxon rank sum test and the Hodges-Lehmann aligned

rank test, and the aberrant rank test discussed above; more generally, currently

methods cannot handle test statistics where there are matched strata with multi-

ple controls and ranking is done across matched strata as this induces dependence

between matched strata that are typically assumed to be independent in many sen-

sitivity analyses. In this section, we derive a novel design sensitivity formula for
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the aberrant rank test, of which the Wilcoxon rank sum test is a special case. Our

proof technique involves applying empirical processes to matched data. To the

best of our knowledge, this is the first application of such machinery to the sen-

sitivity analysis of matched observational studies and can potentially be used to

study many other rank tests in the matched setting.

We need a few regularity and causal assumptions of responses R under the alterna-

tive for deriving the design sensitivity. Without loss of generality, in Section 2.4.2

we suppose that in each stratum i, unit j = 1 received treatment and j = 2, . . . , m

received control. If not, we just need to simply reassign index j = 1 to the treated

in each stratum.

Assumption 1 (i.i.d. strata). The responses from each stratum i - (Ri1, . . . , Rim) are i.i.d.

realizations from a continuous multivariate distribution F(x1, . . . , xm).

Assumption 1 implies existence of a super-population model for the potential out-

comes, which is common in deriving design sensitivity values (Rosenbaum, 2004,

2010). We remark that this assumption as well as others below are only used to

derive the design sensitivity formula; they are not required for the validity of the

aberrant rank test defined in Section 2.4.1 or the adaptive approach introduced in

Section 2.5.2.

Suppose that F(x1, . . . , xm) has marginal cumulative distributions

F1(x1), . . . , Fm(xm) and densities f1(x1), . . . , fm(xm). Let F(1), . . . , F(m) be the

associated marginal distribution with densities f(1), . . . , f(m) of Ri(1) ≤ · · · ≤ Ri(m),

the ordered responses within stratum i. The next two assumptions place regularity

conditions on the marginal distributions of f j and its ordered counterpart f(j).

Assumption 2 (Connectedness of the support). For j = 1, . . . , m, let sj = sup{t :

23



P(Rij ≥ t) > 0} (sj can be ∞). Then sj > c and f j(t) > 0 for any t ∈ [c, sj).

Assumption 3 (‘Positive’ and ‘non-extreme’ treatment effect). Let s = maxj sj. Then

for any t ∈ [c, s), we have P(Ri1 ≥ t) ≥ 1
m ∑m

j=1 P(Rij ≥ t), and there exists an open

interval I ⊂ [c, s) such that strict inequality holds for any t ∈ I . Moreover, P(Ri(m) >

Ri1 ≥ t) > 0 for some t ≥ c.

In words, Assumption 2 states that aberrant responses can be observed with non-

zero probability, and the support of the distribution function of each individ-

ual’s aberrant response is a connected set. Assumption 3 states that the aberrant

response of the treated is stochastically larger than the average of the distribu-

tion function of all the responses within the same stratum, i.e., P(Ri1 ≥ t) ≥
1
m ∑m

j=1 P(Rij ≥ t). The remaining part of Assumption 3 is only intended to pre-

vent design sensitivities from equaling 1 or going to ∞; see the proof of Theorem 1

in the Appendix A for details.

We give some examples to show that Assumptions 1-3 hold for many widely con-

sidered treatment effect models. In Examples 1-3 listed below, we assume that

(Ri1, . . . , Rim) are i.i.d. continuous random vectors, and we assume that for each i,

Ri2, . . . , Rim are identically distributed with the support equalling R, and correla-

tion of Rij1 and Rij2 is neither 1 or −1 for any two distinct j1, j2 ∈ {1, . . . , m}. ‘∼’

means two distributions are equal. We consider the following three examples: (i)

Example 1 (Additive treatment effects): Ri1 ∼ Ri2 + β for some β > 0 with c ∈ R;

(ii) Example 2(Multiplicative treatment effects): Ri1 ∼ δ · Ri2 for some δ > 1 with

c > 0; (iii) Example 3 (Lehmann’s alternative): F1 = p · Fq
2 + (1 − p) · F2 for some

0 < p < 1 and q > 1 with c ∈ R, where Ri1 ∼ F1 and Ri2 ∼ F2. Lehmann’s alterna-

tive is often used to model some uncommon but dramatic responses to treatment;

see Rosenbaum (2010) (Chapter 16) for some real data examples.
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Proposition 1. Assumptions 1-3 hold for Examples 1-3.

Theorem 1 (Design sensitivity of the aberrant rank test). Define G(v) =

1
m ∑m

j=1 max{Fj(v)− Fj(c), 0} and [m − 1] = {1, . . . , m − 1}. Under Assumptions 1-3,

E

{
max

b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

}
= E{G(Ri1)} (2.5)

has a unique solution for Γ ∈ (1,+∞), call it Γ̃. Then Γ̃ is the design sensitivity of the

aberrant rank test as in (2.4). That is, as I → ∞, the power ΨΓ,I of a one-sided α-level

sensitivity analysis satisfies ΨΓ,I → 1 if Γ < Γ̃, and ΨΓ,I → 0 if Γ > Γ̃.

Proofs of all propositions and theorems in this paper are provided in Appendix A

in the supplementary materials. Theorem 1 confirms that the design sensitivity of

the aberrant rank test depends only on the underlying data generating distribution

F and is independent of the level α and the sample size I. Setting c = −∞ gives

the design sensitivity formula of the Wilcoxon rank sum test.

2.4.3 Asymptotic comparison via the design sensitivity

Theorem 1 allows us to numerically calculate the design sensitivity of the aber-

rant rank test in each situation, and compare it with that of the Mantel-Haenszel

test. Since the design sensitivity only depends on the data generating process

and is independent of the level α and the sample size I, it gives us an intrin-

sic and elegant measurement of how robust a test is to hidden bias, and en-

ables us to asymptotically compare two tests for observational studies. For con-

venience, as in Theorem 1, in Section 2.4.3 we still assume that for each i, with-

out loss of generality, j = 1 receives treatment and others receive control, and

(Ri1, . . . , Rim)
T = (rTi1, rCi2, . . . , rCim)

T is an i.i.d. realization from a multivariate

25



continuous distribution. To make our calculation easier and clearer, we further as-

sume that: First, rTij = g(rCij) for some deterministic function g. That is, given g,

rTij is only determined by rCij and is independent of other individuals’ outcomes

given rCij; Second, each rCij is realized from the same distribution F; Third, within

the same stratum, Ri1, . . . , Rim are independent of each other. In Appendix B, we

also examine the cases when Ri1, . . . , Rim are correlated. Note that these three as-

sumptions merely serve to simplify the simulations and are not necessary for The-

orem 1.

We consider the following four models: (i) Model 1 (additive treatment effects,

normal distribution): rTij = rCij + β, F is the standard normal distribution; (ii)

Model 2 (additive treatment effects, Laplace distribution): rTij = rCij + β, F is the

Laplace distribution with mean zero and variance one; (iii) Model 3 (multiplica-

tive treatment effects, normal distribution): rTij = δ · rCij, F is the standard normal

distribution; (iv) Model 4 (multiplicative treatment effects, Laplace distribution):

rTij = δ · rCij, F is the Laplace distribution with mean zero and variance one. For

all four models, we set the aberrant response threshold to be c = 1, that is, any

response Rij > 1 is considered to be an aberrant response. Table 2.1 reports the

design sensitivities of the Mantel-Haenszel test and the aberrant rank test under

Models 1-4 with m = 4 (i.e., matching with three controls) and various β and δ.

Calculation is based on Monte-Carlo simulations. Specifically, under each data

generating model, we can calculate the left-hand side (LHS) of (2.5) for each fixed

Γ and the right-hand side (RHS) of (2.5) using Monte-Carlo simulations. According

to Lemma 9 in Appendix A, the RHS of (2.5) is a strictly monotonically increasing

function of Γ, therefore we can use the bisection method to find the solution of

equation (2.5). According to Theorem 1, that solution is exactly the design sensi-

26



tivity of the aberrant rank test given each data generating model.

Two clear patterns emerge in Table 2.1. First, the choice of the test statistic has a

huge influence on the design sensitivities. For example, under Model 3 with δ = 2,

the design sensitivity of the aberrant rank test is nearly twice as big as that of the

Mantel-Haenszel test. Second, whether or not the aberrant rank test outperforms

the Mantel-Haenszel test depends upon the unknown data generating distribution

of F . As seen from Table 2.1, under Models 1, 3 and 4, the aberrant rank test

should be asymptotically less sensitive to unmeasured confounders with larger

design sensitivities; instead under Model 2, the Mantel-Haenszel test should be

more favorable in a sensitivity analysis with larger Γ̃. These theoretical insights

are validated in a simulation study in Section 2.6.

Table 2.1: Design sensitivities of the Mantel-Haenszel test and the aberrant rank
test under Models 1-4 and matching with three controls with various parameters.
The larger of the two design sensitivities of the two tests is in bold in each case.

Model 1: additive, normal Model 2: additive, Laplace

Test statistic β = 0.50 β = 0.75 β = 1.00 β = 0.50 β = 0.75 β = 1.00

M-H test 2.36 3.56 5.30 2.36 3.91 7.21

Aberrant rank 2.63 4.20 6.50 2.28 3.59 5.93

Model 3: multiplicative, normal Model 4: multiplicative, Laplace

Test statistic δ = 1.50 δ = 1.75 δ = 2.00 δ = 1.50 δ = 1.75 δ = 2.00

M-H test 1.80 2.11 2.37 1.75 2.07 2.37

Aberrant rank 2.50 3.28 4.07 2.15 2.75 3.36

We give some intuition as to why the aberrant rank test should sometimes be

preferred over the Mantel-Haenszel test and other times the Mantel-Haenszel
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should be preferred. Suppose that rCij
iid∼ f0(x) and rTij

iid∼ f1(x) where f0 and

f1 are two densities. Roughly speaking, the more f1(x)/ f0(x) departs from 1,

the easier it is to distinguish the treated and control given the outcome value

x. For Model 1 with β > 0, f1(x)/ f0(x) = exp(βx − β2/2). For Model 2

with β > 0 and x > β, f1(x)/ f0(x) = exp(
√

2β). For Model 3 with δ > 1

and x > 0, f1(x)/ f0(x) = δ−1 exp((1 − δ−2)x2/2). For Model 4 with δ > 1,

f1(x)/ f0(x) = δ−1 exp(
√

2(1 − δ−1)x). Thus, for Models 1, 3 and 4 with β > 0 and

δ > 1, suppose that c is large enough, specially c ≥ max{ β
2 ,
√

2 log δ
1−1/δ2 , log δ√

2(1−1/δ)
},

then f1(x)/ f0(x) ≥ 1 and f1(x)/ f0(x) is increasing for all x ≥ c. That is, in these

three models, it is easier to detect the true treatment effect at the tail (i.e., larger out-

come value x) and the aberrant rank test should outperform the Mantel-Haenszel

test by assigning larger weights to more aberrant responses (i.e., larger outcome

values) via aberrant ranks. For Model 2 with c ≥ β, f1(x)/ f0(x) is a constant

for x ≥ c. In this case, the Mantel-Haenszel test should be more powerful than

the aberrant rank test since it does not distinguish different magnitudes of sever-

ity, while the aberrant rank test loses power by unnecessarily assigning unequal

weights based upon the degree of aberration.

2.5 A New, General Adaptive Approach to Combine

Two Test Statistics in Observational Studies

2.5.1 Motivation and previous methods

From the perspectives of design sensitivity and power of sensitivity analysis, nei-

ther the Mantel-Haenszel test nor the aberrant rank test uniformly dominates the

other. Instead, which test is to be preferred depends upon the data generating
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process. Unfortunately we typically do not know which one is better for a given

setting since we do not typically know the true data generating process. This type

of problem is common in observational studies, where we typically have several

available tests that we can use, but there is no single choice that can dominate all

other choices in all possible situations (Rosenbaum, 2012). To overcome this type of

problem in observational studies, various methods have been proposed. Among

these, for example, Heller et al. (2009) and Zhang et al. (2011) used a sample split-

ting method in which a fraction of the data, the planning sample, is used to select

a test and the remaining part of the data, the analysis sample, to carry out a test.

The sample splitting method throws out the planning sample for carrying out the

test which reduces power for small or moderate sample sizes.

Rosenbaum (2012) proposed a data-driven, adaptive approach to combine two test

statistics in matched observational studies. It does not require dropping samples

for design, and is designed to achieve the larger of the two design sensitivities of

the component tests with a smaller cost for multiplicity adjustment compared with

the Bonferroni adjustment. However, this adaptive approach can only be applied

to test statistics that are uniformly bounded by a known distribution, which typ-

ically requires either the matching to be by pairs or the outcomes to be binary,

neither of which would hold for many commonly used tests; see Appendix H

and Rosenbaum (2012) for details. For example, the existing approach cannot be

used for the aberrant rank test, the Wilcoxon rank sum test, the Hodges-Lehmann

aligned rank test or the Huber-Maritz m-tests (Gastwirth et al., 2000; Rosenbaum,

2002b, 2007).
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2.5.2 A new, general adaptive test via two-stage programming

Instead of focusing on matching with m − 1 (m ≥ 2) controls as we did in previ-

ous sections, in this section we consider a more general matching regime allowing

matching with different number of controls across the strata. Suppose that there

are I matched strata with ni individuals in the i-th stratum, N = ∑I
i=1 ni individu-

als in total. ni = 2 with Zi1 + Zi2 = 1 for all i refers to pair matching. ni = m ≥ 3

with ∑m
j=1 Zij = 1 for all i refers to matching with multiple controls. In full match-

ing, ni can take different values with different i, and ∑ni
j=1 Zij ∈ {1, ni − 1} for all

i (i.e., either one treated individual and one or more controls, or one control and

one or more treated individuals, within each stratum). As in previous sections, we

still let Z = (Z11, . . . , ZInI )
T be the binary vector of treatment assignments, and

Z ∈ Z if and only if ∑ni
j=1 Zij = 1 for each i. The constraint ∑ni

j=1 Zij = 1 for all

i is no more restrictive than assuming ∑ni
j=1 Zij ∈ {1, ni − 1} for all i and is only

imposed to make our derivations in this section clearer. See Appendix E for the

detailed description of how the procedure derived in this section can be directly

extended to allow for ∑ni
j=1 Zij ∈ {1, ni − 1} for all i. We still let F be the set of all

fixed quantities of rTij, rCij, xij and uij.

Motivated by the demand of performing adaptive inference in much more general

settings than the traditional adaptive approach, we develop here a new adaptive

approach that can combine any two sum test statistics which refer to any test statis-

tics with the form T = ZTq = ∑I
i=1 ∑ni

j=1 Zij qij where each qij is an arbitrary func-

tion of the response vector R = (R11, . . . , RInI )
T that does not vary with Z ∈ Z un-

der the null hypothesis, and can work under various matching strategies due to the

flexibility of the value of each ni. We would like the power of the adaptive test to

be asymptotically no less than the higher of the two powers of the component tests
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in sensitivity analysis. The idea is that when the sample size is large, to achieve the

higher of the two powers of the component tests is almost equivalent to achieving

the larger of the two design sensitivities of the component tests. Consider applying

the Bonferroni adjustment to the component tests Tk = ZTqk = ∑I
i=1 ∑ni

j=1 Zijqijk

with qk = (q11k, . . . , qInIk)
T where each qijk is a function of the response vector R

and k ∈ {1, 2}. Let pij = P(Zij = 1 | F ,Z) = exp(γuij)/ ∑ni
j′=1 exp(γuij′). For a

one-sided test with level α and given Γ,

the Bonferroni adjustment rejects the null if max
k∈{1,2}

min
u∈U

tk − µk,u

σk,u
≥ Φ−1(1− α/2),

(2.6)

where tk is the observed value of Tk, and µk,u = EΓ,u(ZTqk | F ,Z) =

∑I
i=1 ∑ni

j=1 pijqijk and σ2
k,u = VarΓ,u(ZTqk | F ,Z) = ∑I

i=1 ∑ni
j=1 pijq2

ijk −

∑I
i=1(∑

ni
j=1 pijqijk)

2 are the expectations and variances of Tk under the null hypoth-

esis, with a specified Γ and given all unobserved covariates u = (u11, . . . , uInI )
T ∈

[0, 1]N =: U . The term α/2 in the RHS of (2.6) comes from the Bonferroni ad-

justment with two component tests. Under a normal approximation, the standard

deviate of tk follows a standard normal distribution, thus (2.6) is a valid testing

procedure with level α and given Γ in a sensitivity analysis. Note that the design

sensitivity of a test only depends on the data generating distribution and is inde-

pendent of level α. Using an argument parallel to the proof of Proposition 2 in

Rosenbaum (2012), it is straightforward to show that applying (2.6) with the two

component tests can achieve the larger of the two design sensitivities, where we

reject the null as long as one of the two tests rejects the null with significant level

α/2. However, simply applying (2.6) may lose power due to two significant defi-

ciencies. First, it does not use the fact that the confounder has to impact the treat-

ment assignment in the same way between the two component tests on the same
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outcome variable. Second, it does not incorporate the information of the correla-

tion between the two component tests. We implement a two-stage programming

procedure to overcome these two deficiencies.

In the first stage, we utilize bounds on the correlation between T1 and T2 to re-

place Φ−1(1 − α/2) with a smaller rejection threshold under the given Γ and

level α < 1/2. Under some mild regularity conditions (see Appendix C for

details), (T1, T2) is asymptotically bivariate normal in the sense that for large I,

the distribution function of
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)
can be approximated by that of

(X1, X2) ∼ N


 0

0

 ,

 1 ρu

ρu 1


, where ρu = E

(
T1−µ1,u

σ1,u
· T2−µ2,u

σ2,u

∣∣∣F ,Z
)

can

be expressed as

ρu =
∑I

i=1 ∑ni
j=1 pijqij1qij2 − ∑I

i=1(∑
ni
j=1 pijqij1)(∑

ni
j=1 pijqij2)√

∑I
i=1 ∑ni

j=1 pijq2
ij1 − ∑I

i=1(∑
ni
j=1 pijqij1)2

√
∑I

i=1 ∑ni
j=1 pijq2

ij2 − ∑I
i=1(∑

ni
j=1 pijqij2)2

. (2.7)

Let Qρu,α be the quantile such that P(X1 ≤ Qρu,α, X2 ≤ Qρu,α) = 1 − α. Note that

we would like to derive a valid testing procedure given any u with the given Γ and

α, we should look at the worst-case rejection threshold maxu∈U Qρu,α. Invoking

Slepian’s lemma (Slepian, 1962), to find maxu∈U Qρu,α, it suffices to find minu∈U ρu.

Through setting wij = exp(γuij), we further transform solving minu∈U ρu into

solving

minimize
wij

ρu (∗)

subject to 1 ≤ wij ≤ Γ, ∀i, j

where ρu is as in (2.7) with pij = wij/ ∑ni
j′=1 wij′ . (∗) is a large-scale nonlinear

optimization problem with box constraints which can be solved approximately in

a reasonable amount of time by the well-known L-BFGS-B algorithm, which is a

32



limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm allowing

box constraints (Byrd et al., 1995). Denote the optimal value of (∗) with sensitiv-

ity parameter Γ as ρ∗Γ. Then the corresponding worst-case quantile maxu∈U Qρu,α

equals Qρ∗Γ,α by Slepian’s lemma. It is well known that Qρ∗Γ,α < Φ−1(1 − α/2) as

long as ρ∗Γ > −1. Thus, for two positively correlated test statistics T1 and T2, es-

pecially when the correlation is much greater than zero (which is the case when

combining the Mantel-Haenszel test and the aberrant rank test), Qρ∗Γ,α is a much

less conservative rejection threshold than Φ−1(1 − α/2).

In the second stage, we apply the minimax procedure developed in Fogarty and

Small (2016) to replace the test statistic max
k∈{1,2}

min
u∈U

(tk − µk,u)/σk,u in (2.6) with a

larger one. Note that the following max-min inequality always holds

min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
≥ max

k∈{1,2}
min
u∈U

tk − µk,u

σk,u
, (2.8)

and strict inequality is possible. (2.8) implies that instead of performing the

two sensitivity analyses to solve minu∈U (tk − µk,u)/σk,u for k ∈ {1, 2} sepa-

rately, we should conduct a simultaneous sensitivity analysis to directly check

if minu∈U maxk∈{1,2}(tk − µk,u)/σk,u ≥ Qρ∗Γ,α - if the inequality holds, we reject

the null; otherwise, we fail to reject. Adapting the one-sided minimax proce-

dure described in Part B of the Appendices of Fogarty and Small (2016) with our

new rejection threshold Qρ∗Γ,α, this procedure can be implemented through setting

si = 1/ ∑ni
j′=1 exp(γuij′) and solving the following quadratically constrained lin-

ear program with M being a sufficiently large constant (see Appendix D for the

33



detailed derivation):

minimize
y,pij,si,bk

y (∗∗)

subject to y ≥ (tk − µk,u)
2 − Q2

ρ∗Γ,ασ2
k,u − Mbk ∀k ∈ {0, 1}

ni

∑
j=1

pij = 1 ∀i

si ≤ pij ≤ Γsi ∀i, j

pij ≥ 0 ∀i, j

bk ∈ {0, 1} ∀k ∈ {0, 1}

− Mbk ≤ tk − µk,u ≤ M(1 − bk), ∀k ∈ {0, 1}

and checking whether the optimal value y∗Γ ≥ 0. If it is, we reject the null; oth-

erwise, we fail to reject. The ‘M’ constraint here precludes a directional error, as

without it one might reject the null if evidence pointed in the opposite direction

of the alternative. A quadratically constrained linear program can be efficiently

solved with many available solvers. Contrary to implementing (∗), from which the

gains in power is relatively large when the correlation between T1 and T2 is strong,

implementing (∗∗) (the minimax procedure) typically can have marked improve-

ment of power when the correlation between T1 and T2 is weak; see Section 8 in

Fogarty and Small (2016). That is, by implementing our two-step programming (∗)

and (∗∗), we can always expect gains in power no matter the correlation between

the two component tests are strong or weak.

To conclude, in our new adaptive test implemented via Algorithm 1 listed below,

we reject the null if min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
≥ Qρ∗Γ,α. (2.9)
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Algorithm 1: Two-stage programming for implementing (2.9) as an adaptive

test
Input: Sensitivity parameter Γ; level α of the one-sided test; treatment

assignment indicators Z = (Z11, . . . , ZInI )
T; the two score vectors

q1 = (q111, . . . , qInI1)
T and q2 = (q112, . . . , qInI2)

T associated with

T1 = ∑I
i=1 ∑ni

j=1 Zijqij1 and T2 = ∑I
i=1 ∑ni

j=1 Zijqij2 respectively ;

Step 1: Solve (∗) to get the worst-case correlation ρ∗Γ along with the

corresponding worst-case quantile Qρ∗Γ,α ;

Step 2: Solve (∗∗) with Qρ∗Γ,α obtained from Step 1, and get the corresponding

optimal value y∗Γ ;

Output: If y∗Γ ≥ 0, we reject the null; otherwise, we fail to reject.

When Γ = 1, the testing procedure (2.9) implemented via Algorithm 1 reduces

to the usual testing procedure with the maximum statistic max{T1, T2} with cor-

recting for Cor(T1, T2). An R package SuperAdap for implementing the two-stage

programming method described in Algorithm 1 is posted at https://github.com/

siyuheng/SuperAdap. Proposition 2 says that the sensitivity analysis with the

adaptive testing procedure described in Algorithm 1 has the correct level α asymp-

totically.

Proposition 2. For any unknown true u0 ∈ U and true Γ0 ≤ Γ, we have

lim
I→∞

PΓ0,u0

(
min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
≥ Qρ∗Γ,α

∣∣∣F ,Z
)
≤ α.

A nice feature of the traditional adaptive test (Rosenbaum, 2012) is that its design

sensitivity is the larger of the two component tests. The Bonferroni adjustment

and sample splitting method also have this design sensitivity but sometimes lose

35

https://github.com/siyuheng/SuperAdap
https://github.com/siyuheng/SuperAdap


power in finite samples to the adaptive test. In Theorem 2, we prove that the design

sensitivity of our new adaptive approach is always greater than or equal to both

two design sensitivities of the component tests, and surprisingly, strict inequality is

possible. We refer to this new phenomenon as “super-adaptivity."

Theorem 2 (Super-adaptivity). Let Γ̃1 and Γ̃2 be the two design sensitivities of the two

tests T1 and T2, and let Γ̃1:2 be the design sensitivity of the adaptive testing procedure

(2.9) implemented by Algorithm 1 with T1 and T2 as the two component tests. We have

Γ̃1:2 ≥ max{Γ̃1, Γ̃2}, and strict inequality is possible.

Theorem 2 shows that in terms of the design sensitivity, our new adaptive test

dominates all the existing methods, including the traditional adaptive test, the

Bonferroni adjustment and sample splitting. Recall that the design sensitivity is

a threshold of the consistency of a test in a sensitivity analysis with respect to

sensitivity parameter Γ. When Γ̃1:2 = max{Γ̃1, Γ̃2}, roughly speaking, the new

adaptive test is consistent as long as one of the two component tests was con-

sistent, which can also be obtained by the traditional adaptive approach. When

Γ̃1:2 > max{Γ̃1, Γ̃2}, the new adaptive test can still be consistent even if neither of

the two component tests was consistent, which cannot be achieved from using the

traditional adaptive approach.

Typically, substantial gains in design sensitivity (i.e., gaps between Γ̃1:2 and

max{Γ̃1, Γ̃2}) resulting from Algorithm 1 are more likely to be observed with two

negatively correlated, independent or weakly positively correlated component

statistics than with two strongly positively correlated component statistics (see Ta-

ble 2.5 in Appendix A). When combining two statistics T1 and T2 on one response

vector R in an adaptive test, we often expect T1 and T2 to be highly positively cor-

related, in which case gains in design sensitivity may be hard to see without large
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samples. But Theorem 2 is still worth highlighting since it is the first time that an

adaptive test can result in a design sensitivity strictly larger than max{Γ̃1, Γ̃2}, and

it can inspire further studies on designing new adaptive tests with larger design

sensitivities.

Note that the design sensitivity only measures limiting insensitivity to hidden bias.

In terms of the finite sample power, we need to pay the price for correcting for

the two component tests in the adaptive test. That is, Theorem 2 does not imply

that the power of the adaptive test in a sensitivity analysis is always greater than

or equal to the maximal power of the two component tests for any sample size.

Instead, Theorem 2 implies that as long as the sample size is sufficiently large,

applying Algorithm 1 to perform an adaptive inference is as good or better than

knowing which of the two component tests should be better and using only that

test, and is typically much better than incorrectly choosing the worse one among

the two component tests, regardless of what the unknown data generating pro-

cess is and what the two component tests are. Having theoretically derived this

favorable asymptotic property of the adaptive test in Theorem 2, we turn to exam-

ining its performance with realistic sample sizes via simulations in Section 2.6 and

Tables 2.4 and 2.5 in Appendix A.

2.6 Simulation Studies

We examine the finite sample power of sensitivity analyses to check the validity of

the theoretical intuitions gained from calculating design sensitivities and compare

the performances of (i) the Mantel-Haenszel test, (ii) the aberrant rank test, and

(iii) our new adaptive test applying Algorithm 1 with the Mantel-Haenszel test

and the aberrant rank test as components. That is, we use simulations to estimate
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the probability that the worst-case p-value given by a test statistic in a sensitivity

analysis with sensitivity parameter Γ will be less than α = 0.05 under the favorable

situation when there is an actual treatment effect and no hidden bias. Table 2.2

summarizes the simulated power of the three tests under Models 1 - 4 discussed in

Section 2.4.3, where we match with three controls and number of matched strata

I = 100 or I = 1000. In Table 2.2, we set β = 1 for Models 1 and 2 and set δ = 2

for Models 3 and 4. For reference, we also give the design sensitivity of each test

statistic in the first row of each block. We summarize the simulated size of the

above three tests in Table 2.7 in Appendix F.

Table 2.2: Simulated power of the Mantel-Haenszel test, the aberrant rank test and
the adaptive test. We set α = 0.05, c = 1 and m = 4. We set β = 1 for Models 1 and
2 and δ = 2 for Models 3 and 4. Each number is based on 2,000 replications. The
largest of the three simulated powers in each case is in bold.

Model 1
I = 100 Matched Strata I = 1000 Matched Strata

M-H test Aberrant Adaptive M-H test Aberrant Adaptive

Γ̃ 5.30 6.50 ≥ 6.50 5.30 6.50 ≥ 6.50

Γ = 3.0 0.71 0.87 0.83 1.00 1.00 1.00

Γ = 3.5 0.46 0.70 0.63 1.00 1.00 1.00

Γ = 4.0 0.28 0.52 0.43 0.96 1.00 1.00

Γ = 4.5 0.14 0.32 0.25 0.61 0.99 0.99

Γ = 5.0 0.08 0.21 0.14 0.17 0.89 0.82

Γ = 5.5 0.04 0.12 0.09 0.02 0.57 0.47

Γ = 6.0 0.01 0.06 0.04 0.00 0.20 0.14

Model 2
I = 100 Matched Strata I = 1000 Matched Strata

M-H test Aberrant Adaptive M-H test Aberrant Adaptive

Γ̃ 7.21 5.93 ≥ 7.21 7.21 5.93 ≥ 7.21
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Γ = 3.0 0.95 0.78 0.92 1.00 1.00 1.00

Γ = 3.5 0.84 0.58 0.77 1.00 1.00 1.00

Γ = 4.0 0.70 0.38 0.60 1.00 1.00 1.00

Γ = 4.5 0.51 0.22 0.44 1.00 0.91 1.00

Γ = 5.0 0.37 0.13 0.26 1.00 0.58 0.99

Γ = 5.5 0.22 0.07 0.16 0.93 0.20 0.88

Γ = 6.0 0.15 0.04 0.10 0.64 0.03 0.58

Model 3
I = 100 Matched Strata I = 1000 Matched Strata

M-H test Aberrant Adaptive M-H test Aberrant Adaptive

Γ̃ 2.37 4.07 ≥ 4.07 2.37 4.07 ≥ 4.07

Γ = 1.0 0.94 1.00 0.99 1.00 1.00 1.00

Γ = 1.5 0.52 0.94 0.93 1.00 1.00 1.00

Γ = 2.0 0.15 0.74 0.71 0.63 1.00 1.00

Γ = 2.5 0.04 0.47 0.39 0.01 1.00 1.00

Γ = 3.0 0.01 0.24 0.17 0.00 0.94 0.89

Model 4
I = 100 Matched Strata I = 1000 Matched Strata

M-H test Aberrant Adaptive M-H test Aberrant Adaptive

Γ̃ 2.37 3.36 ≥ 3.36 2.37 3.36 ≥ 3.36

Γ = 1.0 0.89 0.97 0.95 1.00 1.00 1.00

Γ = 1.5 0.46 0.78 0.72 1.00 1.00 1.00

Γ = 2.0 0.14 0.47 0.39 0.55 1.00 1.00

Γ = 2.5 0.03 0.22 0.17 0.02 0.88 0.83

Γ = 3.0 0.01 0.08 0.05 0.00 0.29 0.24
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In Table 2.2, in general, the power increases as the number of matched strata I

increases, and the power decreases as the bias magnitude Γ increases, which agrees

with empirical knowledge. The simulated power also verifies the validity of our

design sensitivity formula. That is, as I → ∞, the power of the test in a sensitivity

analysis goes to 1 for Γ < Γ̃, and the power goes to 0 for Γ > Γ̃. For example,

see the row Γ = 5.5 for Model 1 in Table 2.2, as I increases from 100 to 1000, the

power of the aberrant rank test with Γ̃ = 6.5 > 5.5 is closer to 1, but the power

of the Mantel-Haenszel test with Γ̃ = 5.3 < 5.5 is closer to 0. From Table 2.2, we

can also observe that in Models 1, 3 and 4, the aberrant rank test is more powerful

than the Mantel-Haenszel test; instead, in Model 2 the Mantel-Haenszel test has

higher power than the aberrant rank test, and the gap between the two powers

of these two tests could be extremely large, especially with large sample size and

sensitivity parameter Γ considerably greater than 1. For example, see Models 1 and

2 with Γ = 5.5 and I = 1000, and Models 3 and 4 with Γ = 2.5 and I = 1000. This

confirms the two key insights obtained from calculation of design sensitivities:

power of a sensitivity analysis can differ a lot with different choices between the

two tests and the optimal choice between the two tests could be different under

different data generating processes.

We now examine the asymptotic property of the adaptive test. Let Γ̃1, and Γ̃2

denote the design sensitivities of the Mantel-Haenszel test and the aberrant rank

test respectively. As long as the given Γ < max{Γ̃1, Γ̃2}, the power of the adaptive

test in a sensitivity analysis goes to 1 as sample size I → ∞, even if one of the

powers of the two component tests goes to zero if min{Γ̃1, Γ̃2} < Γ < max{Γ̃1, Γ̃2}.

For example, see the rows Γ = 6.0 of Models 1 and 2 and the rows Γ = 3.0 of

Models 3 and 4 in Table 2.2.
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We then examine the finite sample performance of the adaptive test. As discussed

in Section 2.5.2, although the adaptive test uniformly dominates the two compo-

nent tests in terms of the design sensitivity, in practice we need to pay the price for

correcting for the two component tests and the finite sample power of the adaptive

test may sit in between those of the two component tests, which is the case in Ta-

ble 2.2. If this is the case, the simulation results in Table 2.2 confirm that the price

paid for correcting for the two component tests is very much worth it in the sense

that if the power of the Mantel-Haenszel test and that of the aberrant rank test dif-

fer a lot, then the power of the adaptive test is typically much closer to the higher

one of the powers of the two component tests than to the lower one in each case.

This favorable finite sample property of the adaptive test holds both for relatively

large sample sizes (e.g., see the cases Γ = 5, I = 1000 in Models 1 and 2) and rel-

atively small sample sizes (e.g., see the cases Γ = 1.5, I = 100 in Models 3 and 4).

To conclude, the new adaptive test is like a high quality insurance policy: we will

lose a little money (the low cost of the insurance) if we bought one but an accident

never occurs (i.e., if we were lucky enough to always choose the better one among

the two component tests), but we will lose much more if an accident indeed occurs

(i.e., if we unfortunately choose the worse one among the two component tests)

but we never bought one.

2.7 Adaptive Inference of the Effect of Mother’s Age

on Child Stunted Growth

For the study of the effect of mother’s age on child stunting discussed in Sec-

tion 2.1.1.1, we summarize the worst-case p-values of a sensitivity analysis re-

ported by three different test statistics: the Mantel-Haenszel test, the aberrant rank
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test and the adaptive test applying Algorithm 1 putting together these two tests

with various sensitivity parameters Γ ranging from 1.00 to 1.45; see Appendix G

for more details. From Table 2.3, we find that the Mantel-Haenszel test fails to

detect a possible treatment effect (i.e., worst-case p-value > 0.05) with sensitiv-

ity parameter Γ = 1.17 under level 0.05. However, the aberrant rank test can

detect a possible treatment effect (i.e., worst-case p-value < 0.05) up to a much

larger sensitivity parameter Γ = 1.43. Thus, we can see that when studying causal

determinants of aberrant response, the aberrant rank test might be preferred to

the Mantel-Haenszel test since it might be less sensitive. However, we did not

know this in advance of looking at the data, and choosing the test that is less sen-

sitive on the data will inflate Type I errors in a sensitivity analysis. To use the

data in choosing the best test while controlling the Type I error rate, we apply the

adaptive approach developed in Section 2.5.2 to combine the aberrant rank test

with the Mantel-Haenszel test to guarantee a powerful test in sensitivity analyses.

From Table 2.3, we can find that if we combine these two tests with the new adap-

tive approach, we can successfully detect the possible actual treatment effect with

Γ = 1.36, which is close to the results obtained by using the more favorable one

between the two component tests - the aberrant rank test, and substantially bet-

ter than the least favorable of the two tests. Therefore, both the aberrant rank test

and the adaptive test enable us to detect a significant treatment effect even with a

nontrivial magnitude of hidden bias. Meanwhile, for this particular data set, the

Mantel-Haenszel test would possibly give an exaggerated report of sensitivity to

bias. This agrees with all our theoretical insights and simulations results.
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Table 2.3: One-sided worst-case p-values under various Γ. The p-values ≈ 0.05 are
in bold. We also report the approximate sensitivity value of each test with level
0.05.

One-sided worst-case p-values under various Γ

Mantel-Haenszel Aberrant rank Adaptive test

Γ = 1.00 0.010 0.001 0.001

Γ = 1.05 0.017 0.001 0.003

Γ = 1.10 0.028 0.003 0.005

Γ = 1.15 0.043 0.005 0.008

Γ = 1.17 0.051 0.006 0.010

Γ = 1.20 0.064 0.008 0.014

Γ = 1.25 0.089 0.013 0.022

Γ = 1.30 0.121 0.020 0.032

Γ = 1.35 0.157 0.029 0.047

Γ = 1.36 0.165 0.031 0.050

Γ = 1.40 0.198 0.040 0.064

Γ = 1.43 0.225 0.049 0.077

Γ = 1.45 0.244 0.055 0.086

Sensitivity value 1.17 1.43 1.36

2.8 Discussion

We have developed an adaptive aberrant rank approach to conducting inference

about the effect of a treatment on aberrant (bad) outcomes from matched observa-

tional studies when there is an established cutoff for what constitutes an aberrant

outcome but more aberrant outcomes are worse than less aberrant ones. We have
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shown that our new approach asymptotically dominates the traditional approach

(performing the Mantel-Haenszel test with the dichotomous outcome indicating

aberration/non-aberration) and performs well in simulation studies. To establish

the new approach, we have developed an empirical process approach to studying

design sensitivity and developed a general adaptive testing procedure. These de-

velopments can be applied to other types of general matched observational studies

beyond the aberrant outcome setting we have studied.

There are limitations to this work. For example, we have not discussed how to en-

able adjustment for measured variables that were not used for matching. This side

information, along with the matched observed covariates, can potentially be used

to perform covariance adjustment in randomization inference (Rosenbaum, 2002a).

However, existing model-based covariance adjustment approaches, e.g., covari-

ance adjustment with robust linear regression considered in Rosenbaum (2002a),

may not be directly applicable in our setting since the aberrant rank considers some

truncated outcome (zero if not aberrant and multi-valued if aberrant). It might be

fruitful for future research to explore how to incorporate both matched and un-

matched measured variables to perform some covariance adjustment to further

develop the aberrant rank approach.

2.9 Appendices

Appendix A: Proofs and Related Simulations
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Proof of Proposition 1

Proof. The validity of Assumptions 1 and 2 for each example follows immediately

from the general assumptions on (Ri1, . . . , Rim), so we just need to check the va-

lidity of Assumption 3. For Example 1 with β > 0 and c ∈ R, P(Ri1 ≥ t) =

P(Ri2 ≥ t − β) > P(Ri2 ≥ t) for all t ≥ c. For Example 2 with δ > 1 and c > 0,

P(Ri1 ≥ t) = P(Ri2 ≥ t
δ ) > P(Ri2 ≥ t) for all t ≥ c. For Example 3 with 0 < p < 1,

q > 1 and c ∈ R, P(Ri1 ≥ t) = 1 − F1(t) = 1 − p · Fq
2 (t) − (1 − p) · F2(t) >

1 − F2(t) = P(Ri2 ≥ t) for all t ≥ c. Thus, in Examples 1-3, P(Ri1 ≥ t) >

1
m · {P(Ri1 ≥ t) + (m − 1) · P(Ri2 ≥ t)} = 1

m ∑m
j=1 P(Rij ≥ t) holds true for any

t ≥ c. From the general assumptions on (Ri1, . . . , Rim), P(Ri(m) > Ri1 ≥ t) for

some t ≥ c is trivially true. Thus, Assumption 3 also holds for Examples 1-3.

Proof of Theorem 1

Lemma 1. Let G(v) = 1
m ∑m

j=1 max{Fj(v)− Fj(c), 0}. Under Assumption 1, we have

as I → ∞,

sup
v

∣∣∣q(v | R)

mI
− G(v)

∣∣∣ a.s.−→ 0.

Proof. We have the following expression

sup
v

∣∣∣q(v | R)

mI
− G(v)

∣∣∣
= sup

v

∣∣∣ 1
m

m

∑
j′=1

[1
I

I

∑
i′=1

1(v ≥ Ri′ j′ > c)− max{Fj′(v)− Fj′(c), 0}
]∣∣∣

≤ sup
v

1
m

m

∑
j′=1

∣∣∣1
I

I

∑
i′=1

1(v ≥ Ri′ j′ > c)− max{Fj′(v)− Fj′(c), 0}
∣∣∣

≤ 1
m

m

∑
j′=1

sup
v

∣∣∣1
I

I

∑
i′=1

1(v ≥ Ri′ j′ > c)− max{Fj′(v)− Fj′(c), 0}
∣∣∣.
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First, for each j′, we have

E{1(v ≥ Ri′ j′ > c)} = P(v ≥ Ri′ j′ > c) = max{Fj′(v)− Fj′(c), 0}.

Second, for each j′ in the above sum, the bracketing number of 1(v ≥ Ri′ j′ > c) is

bounded by Example 19.6 in Van der Vaart (2000) where we replace t0 = −∞ with

t0 = c. Combining these two facts together, for each j′, each supv term goes to zero

a.s. and we have the desired result.

Lemma 2. Under Assumption 1, we have as I → ∞,

q(Rij | R)

mI
a.s.−→ G(Rij) and

q(Ri(j) | R)

mI
a.s.−→ G(Ri(j)).

Proof. The conclusion follows immediately from Lemma 1 and the fact that

| q(Rij|R)
mI − G(Rij)| ≤ supv

∣∣∣ q(v|R)
mI − G(v)

∣∣∣ and | q(Ri(j)|R)

mI − G(Ri(j))| ≤ supv

∣∣∣ q(v|R)
mI −

G(v)
∣∣∣.

Lemma 3. Under Assumption 1, we have as I → ∞,

1
I

I

∑
i=1

q(Ri1 | R)

mI
a.s.−→ E{G(Ri1)}.

Proof. Note that

1
I

I

∑
i=1

q(Ri1 | R)

mI
=

1
I

I

∑
i=1

G(Ri1) +
1
I

I

∑
i=1

{q(Ri1 | R)

mI
− G(Ri1)

}
. (2.10)

Since G(Ri1), i = 1, 2, . . . are bounded and iid, by the law of large numbers, the first

term in the RHS of (2.10) converges to E{G(Ri1)} a.s.. By Lemma 1 and Lemma 2,

the second term in the RHS of (2.10) converges to 0 a.s.. So the desired result
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follows.

Lemma 4. Under Assumption 1, we have as I → ∞,

1
I

I

∑
i=1

µi

mI
a.s.−→ E

{
max

b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

}
.

Proof. Note that

∣∣∣∣∣ µi
mI

− max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

∣∣∣∣∣
=

∣∣∣∣∣ max
b∈[m−1]

∑b
j=1

q(Ri(j)|R)

mI + Γ ∑m
j=b+1

q(Ri(j)|R)

mI

b + Γ(m − b)

− max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

∣∣∣∣∣
≤ max

b∈[m−1]

∣∣∣∣∣∑
b
j=1

q(Ri(j)|R)

mI + Γ ∑m
j=b+1

q(Ri(j)|R)

mI

b + Γ(m − b)
−

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

∣∣∣∣∣
≤ max

b∈[m−1]

∑b
j=1 |

q(Ri(j)|R)

mI − G(Ri(j))|+ Γ ∑m
j=b+1 |

q(Ri(j)|R)

mI − G(Ri(j))|
b + Γ(m − b)

,

together with Lemma 2, we have as I → ∞,

µi
mI

a.s.−→ max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)
. (2.11)

Note that

1
I

I

∑
i=1

µi

mI
=

1
I

I

∑
i=1

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

+
1
I

I

∑
i=1

{ µi
mI

− max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

}
. (2.12)
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For the first term in the RHS of (2.12), note that

maxb∈[m−1]
∑b

j=1 G(Ri(j))+Γ ∑m
j=b+1 G(Ri(j))

b+Γ(m−b) , i = 1, 2, . . . are bounded iid random

variables, by the strong law of large numbers, we have as I → ∞,

1
I

I

∑
i=1

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

a.s.−→ E
{

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

}
.

The second term in the RHS of (2.12) converges to zero almost surely by (2.11). So

the desired conclusion follows.

For simplicity, from now on, let

φ(Γ) = E
{

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)

}
.

Lemma 5. φ(Γ) is continuous on [1,+∞).

Proof. For any Γ1, Γ2 ∈ [1,+∞),

|φ(Γ1)− φ(Γ2)|

≤ E

∣∣∣ max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ1 ∑m

j=b+1 G(Ri(j))

b + Γ1(m − b)

− max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ2 ∑m

j=b+1 G(Ri(j))

b + Γ2(m − b)

∣∣∣
≤ E

{
max

b∈[m−1]

∣∣∣∑b
j=1 G(Ri(j)) + Γ1 ∑m

j=b+1 G(Ri(j))

b + Γ1(m − b)

−
∑b

j=1 G(Ri(j)) + Γ2 ∑m
j=b+1 G(Ri(j))

b + Γ2(m − b)

∣∣∣}
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= E
{

max
b∈[m−1]

∣∣∣[∑m
j=b+1 G(Ri(j))

m − b

+
{ b

∑
j=1

G(Ri(j))−
b · ∑m

j=b+1 G(Ri(j))

m − b

}
· 1

b + Γ1(m − b)

]
−
[∑m

j=b+1 G(Ri(j))

m − b

+
{ b

∑
j=1

G(Ri(j))−
b · ∑m

j=b+1 G(Ri(j))

m − b

}
· 1

b + Γ2(m − b)

]∣∣∣}
= E

{
max

b∈[m−1]

∣∣∣( b
b + Γ1(m − b)

− b
b + Γ2(m − b)

)
×
(∑b

j=1 G(Ri(j))

b
−

∑m
j=b+1 G(Ri(j))

m − b

)∣∣∣}
≤ 2 max

b∈[m−1]

∣∣∣ b
b + Γ1(m − b)

− b
b + Γ2(m − b)

∣∣∣, (since G(Ri(j)) ≤ 1)

then continuity of φ(Γ) follows from the fact that gb(Γ) = b
b+Γ(m−b) is continuous

on [1,+∞) for each b ∈ [m − 1].

Lemma 6. Let X and Y be two random variables. Set sX = sup{t : P(X ≥ t) > 0},

sY = sup{t : P(Y ≥ t) > 0}. Suppose that function h : R → R is contin-

uously differentiable on (c,+∞), h(c) = 0, h′(t) > 0 for t ∈ (c, sX ∨ sY), and

E|h(X)1X≥c| < ∞, E|h(Y)1Y≥c| < ∞. If for any t ∈ (c, sX ∨ sY), P(X ≥ t) ≤

P(Y ≥ t), we have E{h(X)1X≥c} ≤ E{h(Y)1Y≥c}, and if there exists an open in-

terval I ⊂ (c, sX ∨ sY) such that P(X ≥ t) < P(Y ≥ t) for any t ∈ I , we have

E{h(X)1X≥c} < E{h(Y)1Y≥c}.

Proof. We have

E{h(X)1X≥c} =
∫

Ω

∫ X

c
h′(t)1X≥c dt dP (since h(c) = 0)

=
∫

Ω

∫ +∞

c
h′(t)1X≥t dt dP
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=
∫ +∞

c

∫
Ω

h′(t)1X≥t dP dt (by Fubini’s theorem)

=
∫ +∞

c
h′(t)P(X ≥ t)dt

=
∫ sX

c
h′(t)P(X ≥ t)dt.

Similarly, we have

E{h(Y)1Y≥c} =
∫ sY

c
h′(t)P(Y ≥ t)dt.

Note that if for any t ∈ (c, sX ∨ sY), P(X ≥ t) ≤ P(Y ≥ t), then sX ≤ sY. So

the desired conclusion follows immediately from the above two equalities and the

assumption that h′(t) > 0 for t ∈ (c, sX ∨ sY).

Lemma 7. Under Assumptions 1-3, we have

1
m

m

∑
j=1

E{G(Rij)} < E{G(Ri1)} < E{G(Ri(m))}.

Proof. The second inequality follows immediately from applying Lemma 6 with

h(t) = G(t) = 1
m ∑m

j=1 max{Fj(t) − Fj(c), 0}, X = Ri1 and Y = Ri(m). For the

first inequality, let sj = sup{t : P(Rij ≥ t) > 0}. Assumption 3 implies that

s1 = s = maxj sj. Follow a similar calculation as in Lemma 6, by Assumption 3 we

have

1
m

m

∑
j=1

E{G(Rij)} =
1
m

m

∑
j=1

∫ sj

c
G′(t)P(Rij ≥ t)dt

≤ 1
m

m

∑
j=1

∫ s

c
G′(t)P(Rij ≥ t)dt
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=
∫ s

c
G′(t) · 1

m

m

∑
j=1

P(Rij ≥ t)dt

<
∫ s

c
G′(t)P(Ri1 ≥ t)dt

= E{G(Ri1)}.

Lemma 8. Under Assumptions 1-3, we have

lim
Γ→1+

φ(Γ) < E{G(Ri1)}, lim
Γ→+∞

φ(Γ) > E{G(Ri1)}.

Proof. For any Γ ≥ 1, since G(Ri(j)) ≤ 1, we have

0 ≤ max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ ∑m

j=b+1 G(Ri(j))

b + Γ(m − b)
≤ 1.

By continuity of φ (Lemma 5) and bounded convergence theorem,

lim
Γ→1+

φ(Γ) = lim
n→∞

φ
(n + 1

n
)

= E
{

lim
n→∞

max
b∈[m−1]

∑b
j=1 G(Ri(j)) +

n+1
n ∑m

j=b+1 G(Ri(j))

b + n+1
n (m − b)

}
=

∑m
j=1 E{G(Ri(j))}

m

=
∑m

j=1 E{G(Rij)}
m

< E{G(Ri1)}, (by Lemma 7)

lim
Γ→+∞

φ(Γ) = lim
n→∞

φ(n)
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= E
{

lim
n→∞

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + n ∑m

j=b+1 G(Ri(j))

b + n(m − b)

}
= E

{
max

b∈[m−1]

∑m
j=b+1 G(Ri(j))

m − b

}
≥ E{G(Ri(m))}

> E{G(Ri1)}. (by Lemma 7)

Lemma 9. Under Assumptions 1 and 2, φ(Γ) is a strictly monotonically increasing func-

tion of Γ on [1,+∞).

Proof. For any b ∈ [m − 1], and for any 1 ≤ Γ1 < Γ2 < +∞, since

∑b
j=1 G(Ri(j))

b
−

∑m
j=b+1 G(Ri(j))

m − b
≤ 0,

we have

∑b
j=1 G(Ri(j)) + Γ2 ∑m

j=b+1 G(Ri(j))

b + Γ2(m − b)
−

∑b
j=1 G(Ri(j)) + Γ1 ∑m

j=b+1 G(Ri(j))

b + Γ1(m − b)

=
∑m

j=b+1 G(Ri(j))

m − b
+
{ b

∑
j=1

G(Ri(j))−
b · ∑m

j=b+1 G(Ri(j))

m − b

}
· 1

b + Γ2(m − b)

−
∑m

j=b+1 G(Ri(j))

m − b
−
{ b

∑
j=1

G(Ri(j))−
b · ∑m

j=b+1 G(Ri(j))

m − b

}
· 1

b + Γ1(m − b)

= b
{∑b

j=1 G(Ri(j))

b
−

·∑m
j=b+1 G(Ri(j))

m − b

}{ 1
b + Γ2(m − b)

− 1
b + Γ1(m − b)

}
≥ 0,
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where equality holds if and only if

∑b
j=1 G(Ri(j))

b
−

∑m
j=b+1 G(Ri(j))

m − b
= 0.

Thus, we have

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ2 ∑m

j=b+1 G(Ri(j))

b + Γ2(m − b)

≥ max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ1 ∑m

j=b+1 G(Ri(j))

b + Γ1(m − b)
.

That is, to show that φ(Γ2) > φ(Γ1), it suffices to show that

P
{

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ2 ∑m

j=b+1 G(Ri(j))

b + Γ2(m − b)

> max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ1 ∑m

j=b+1 G(Ri(j))

b + Γ1(m − b)

}
> 0.

We have

P
{

max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ2 ∑m

j=b+1 G(Ri(j))

b + Γ2(m − b)

> max
b∈[m−1]

∑b
j=1 G(Ri(j)) + Γ1 ∑m

j=b+1 G(Ri(j))

b + Γ1(m − b)

}
≥ P

[ m−1⋂
b=1

{∑b
j=1 G(Ri(j)) + Γ2 ∑m

j=b+1 G(Ri(j))

b + Γ2(m − b)

>
∑b

j=1 G(Ri(j)) + Γ1 ∑m
j=b+1 G(Ri(j))

b + Γ1(m − b)

}]
= P

[ m−1⋂
b=1

{∑b
j=1 G(Ri(j))

b
−

∑m
j=b+1 G(Ri(j))

m − b
< 0

}]
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≥ P(Ri(m) > Ri(m−1) > · · · > Ri(1) ≥ c)

= P(Ri(1) ≥ c) (by Assumption 1)

> 0, (by Assumption 2)

so the conclusion follows.

Theorem 1. By Lemma 5, Lemma 8 and Lemma 9, it is clear that equation φ(Γ) =

E{G(Ri1)} has a unique solution Γ̃ on [1,+∞). Note that,

ΨI,Γ = P(Tabe ≥ ξα | Z)

= P

{
∑I

i=1 q(Ri1 | R)− ∑I
i=1 µi√

∑I
i=1 νi

≥ Φ−1(1 − α)

}

= P

{√
I
(1

I ∑I
i=1

q(Ri1|R)
mI − 1

I ∑I
i=1

µi
mI
)√

1
I ∑I

i=1
νi

(mI)2

≥ Φ−1(1 − α)

}
. (2.13)

Since q(Ri(j) | R) ≤ mI, we have

1
I

I

∑
i=1

νi

(mI)2 =
1
I

I

∑
i=1

maxb∈Bi νib

(mI)2

≤ 1
I

I

∑
i=1

max
b∈Bi

∑b
j=1

q2(Ri(j)|R)

(mI)2 + Γ ∑m
j=b+1

q2(Ri(j)|R)

(mI)2

b + Γ(m − b)
≤ 1.

For Γ < Γ̃, by Lemma 9 we have φ(Γ̃) > φ(Γ). Thus, by Lemma 3 and Lemma 4,

as I → ∞,

√
I
{1

I ∑I
i=1

q(Ri1|R)
mI − 1

I ∑I
i=1

µi
mI
}√

1
I ∑I

i=1
νi

(mI)2

≃
√

I
{

E(G(Ri1))− φ(Γ)
}√

1
I ∑I

i=1
νi

(mI)2
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=

√
I
{

φ(Γ̃)− φ(Γ)
}√

1
I ∑I

i=1
νi

(mI)2

≥
√

I
{

φ(Γ̃)− φ(Γ)
}

→ +∞.

Similarly, we have for Γ > Γ̃,

√
I
{1

I ∑I
i=1

q(Ri1|R)
mI − 1

I ∑I
i=1

µi
mI
}√

1
I ∑I

i=1
νi

(mI)2

→ −∞,

so the conclusion follows from (2.13).

Proof of Proposition 2

Proof. Suppose that u0 ∈ U is the unknown true vector of unmeasured con-

founders and Γ0 ≤ Γ is the unknown true magnitude of hidden bias. Recall that ρ∗Γ

and y∗Γ are the optimal values of (∗) and (∗∗) with sensitivity parameter Γ respec-

tively. Since the constraint regions of (∗) and (∗∗) enlarge as Γ increases, we have

y∗Γ0
≥ y∗Γ and ρ∗Γ0

≥ ρ∗Γ. By Slepian’s lemma, ρ∗Γ0
≥ ρ∗Γ implies Qρ∗Γ0

,α ≤ Qρ∗Γ,α. Thus

we have

PΓ0,u0

(
min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
≥ Qρ∗Γ,α

∣∣∣F ,Z
)

= PΓ0,u0

(
y∗Γ ≥ Qρ∗Γ,α | F ,Z

)
≤ PΓ0,u0

(
y∗Γ0

≥ Qρ∗Γ0
,α | F ,Z

)
= PΓ0,u0

(
min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
≥ max

u∈U
Qρu,α

∣∣∣F ,Z , Γ = Γ0

)
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≤ PΓ0,u0

(
min
u∈U

{
max

k∈{1,2}

tk − µk,u

σk,u
− Qρu,α

}
≥ 0

∣∣∣F ,Z , Γ = Γ0

)
≤ PΓ0,u0

(
max

k∈{1,2}

tk − µk,u0

σk,u0

≥ Qρu0 ,α

∣∣∣F ,Z , Γ = Γ0

)
→ α, as I → ∞

so the desired conclusion follows.

Proof of Theorem 2

Proof. Recall that using the Bonferroni adjustment to combine T1 and T2 takes the

design sensitivity max{Γ̃1, Γ̃2}; see Rosenbaum (2012). Since inequality (2.8) al-

ways holds, the test statistic used in testing procedure (2.9) implemented by Al-

gorithm 1 uniformly dominates the one used by the Bonferroni adjustment, which

implies Γ̃1:2 ≥ max{Γ̃1, Γ̃2}.

We then construct an example to show that Γ̃1:2 > max{Γ̃1, Γ̃2} is possible. That

is, we show that the minimax procedure (developed in Fogarty and Small (2016))

implemented in the Step 2 of Algorithm 1 can result in improved design sensitiv-

ity by enforcing that unmeasured confounder must have the same impact on the

probabilities of assignment to treatment for all scores in each component test on

the same outcome variable.

Suppose we have I matched pairs and potential responses rTij, rCij ∈ S = {a +

b
√

2 : a ∈ Z, b ∈ Z}, i = 1, . . . , I, j = 1, 2. For x ∈ S, we define two func-

tions f1(x) = a and f2(x) = b where x = a + b
√

2 for some a, b ∈ Z. Note that

both f1 and f2 are well-defined since for a1, b1, a2, b2 ∈ Z, we have a1 + b1
√

2 =

a2 + b2
√

2 if and only if a1 = a2 and b1 = b2. Consider two test statistics T1 =

56



I−1 ∑I
i=1 D(1)

i and T2 = I−1 ∑I
i=1 D(2)

i where D(1)
i = (Zi1 − Zi2)( f1(Ri1)− f1(Ri2))

and D(2)
i = (Zi1 − Zi2)( f2(Ri1)− f2(Ri2)) are treated-minus-control paired differ-

ence of f1(Rij) and f2(Rij) respectively. Note that rTij = f1(rTij) + f2(rTij)
√

2 and

rCij = f1(rCij) + f2(rCij)
√

2. Suppose that for all i = 1, . . . , I, j = 1, 2, the vector

( f1(rTij), f1(rCij), f2(rTij), f2(rCij)) are i.i.d. realizations from the distribution:

( f1(rTij), f1(rCij), f2(rTij), f2(rCij)) =


(3, 0,−1, 0) with probability 1/2

(−1, 0, 3, 0) with probability 1/2.

Therefore, the vector of treated-minus-control paired differences Di = (D(1)
i , D(2)

i )

are identically distributed as:

(D(1)
i , D(2)

i ) =


(3,−1) with probability 1/2

(−1, 3) with probability 1/2.
(2.14)

For k = 1, 2, let Γ̃k denote the design sensitivity for Tk under Fisher’s sharp null

of no treatment effect H0 : rTij = rCij, i = 1, . . . , I, j = 1, 2, and let Γ̃1:2 denote the

design sensitivity for testing H0 with T1 and T2 as the two component test statistics

through the minimax procedure.

We at first show that Γ̃1 = Γ̃2 = 3. The design sensitivity is the value of Γ̃ such that

the worst-case expectation µΓ,k of Tk (i.e., the expectation of the limiting bound-

ing distribution of Tk) with the magnitude of hidden bias Γ = Γ̃ equals the true

expectation µk of Tk (i.e., the actual expectation of the limiting distribution of Tk)

based on how the paired differences D(k)
i are generated, k ∈ {1, 2}; see Rosen-

baum (2004). In this case, according to (2.14), it is clear that µ1 = µ2 = 1. To find

the worst-case expectation of Tk at a given Γ, it is clear that under Fisher’s sharp
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null H0, any paired difference D(k)
i where a 3 was observed should be assigned

probability Γ/(1 + Γ) for the treated unit in the pair having the higher value of fk.

Similarly, when a −1 is observed the probability that the treated unit had the lower

value of fk should be set to 1/(1 + Γ). For any Γ, the worst-case expectation µΓ,k of

Tk is then:

µΓ,k =
1
2
· 3 ·

( Γ
1 + Γ

− 1
1 + Γ

)
+

1
2
· (−1) ·

( 1
1 + Γ

− Γ
1 + Γ

)
=

2Γ − 2
1 + Γ

.

To obtain Γ̃k, we just need to solve the equation µΓ̃k,1 = µk with Γ̃k, which, from

the above arguments, can be written as: (2Γ̃k − 2)/(1 + Γ̃k) = 1. Thus, Γ̃k = 3 for

k = 1, 2.

We then show that Γ̃1:2 = +∞. Note that asymptotically the minimax procedure

fails to reject H0 if the maximum over the unmeasured confounders of the min-

imum over the outcomes of the expectations of T1 and T2 under Fisher’s sharp

null H0 exceeds the true expectation of the test statistic (in our example, 1 for both

T1 and T2). Hence, the design sensitivity is the value of Γ such that the worst-

case expectations under Fisher’s sharp null for both test statistics exceed their true

expectations. Asymptotically, of the I matched pairs I/2 will have the observed

paired difference of (3,−1) for their two score functions ( f1, f2) and I/2 will have

an observed paired difference of (−1, 3). Separating the observed pairs into two

sets according to their paired difference, let pi be the probability that the treated

individual receives the treatment in pair i in the (3,−1) group, and let qi be the

probability that the treated individual receives the treatment in pair i of the (−1, 3)

58



group. For any given Γ, consider the following optimization problem:

maximize
y,pi,qi

y (∗ ∗ ∗)

subject to y ≤ 1
I

I/2

∑
i=1

{3 · (2pi − 1) + (−1) · (2qi − 1)}

y ≤ 1
I

I/2

∑
i=1

{(−1) · (2pi − 1) + 3 · (2qi − 1)}

1
1 + Γ

≤ pi ≤
Γ

1 + Γ
i = 1, . . . , I/2

1
1 + Γ

≤ qi ≤
Γ

1 + Γ
. i = 1, . . . , I/2

Let x = (y, p1, q1, . . . , pI/2, qI/2), the above problem can be rewritten in canonical

form:

maximize
y,pi,qi

f (x) = y (∗ ∗ ∗)

subject to g1(x) = y − 1
I

I/2

∑
i=1

(6pi − 2qi) + 1 ≤ 0

g2(x) = y − 1
I

I/2

∑
i=1

(−2pi + 6qi) + 1 ≤ 0

spi(x) = pi −
Γ

1 + Γ
≤ 0 i = 1, . . . , I/2

sqi(x) = qi −
Γ

1 + Γ
≤ 0 i = 1, . . . , I/2

tpi(x) = −pi +
1

1 + Γ
≤ 0 i = 1, . . . , I/2

tqi(x) = −qi +
1

1 + Γ
≤ 0. i = 1, . . . , I/2

The above problem along with its canonical form considers the maximum over the

unmeasured confounders of the minimum over the outcomes of the expectations

of T1 and T2 under Fisher’s sharp null H0. The design sensitivity would be the
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value Γ = Γ̃ such that the optimal value y∗ exceeds the true expectation 1. We

claim that the optimal solution is p∗i = q∗i = Γ/(1 + Γ) for each i = 1, . . . , I/2,

yielding y∗ = (Γ − 1)/(1 + Γ). To show this, we proceed by showing that this

solution satisfies the Karush–Kuhn–Tucker (KKT) conditions. Since both the ob-

jective functions and the constraints are affine, the KKT conditions are sufficient

for proving optimality of a solution.

Associate KKT multipliers λ1, λ2, αpi, αqi, βpi, βqi with the above constraints. Let

λ1 = λ2 = 1/2, αpi = αqi = 2/I, βpi = βqi = 0 for all i. We just need to check the

following four parts of KKT conditions hold:

(1) Stationarity: partial of the objective function equals sum of partials of con-

straints times their KKT multipliers for each variable.

y 1 = λ1 + λ2 = 1/2 + 1/2

pi 0 = −λ1 ·
1
I
· 6 − λ2 ·

1
I
· (−2) + αpi − βpi = −1

2
· 1

I
· 6 − 1

2
· 1

I
· (−2) +

2
I
− 0

qi 0 = −λ1 ·
1
I
· (−2)− λ2 ·

1
I
· 6 + αqi − βqi = −1

2
· 1

I
· (−2)− 1

2
· 1

I
· 6 +

2
I
− 0.

(2) Primal feasibility: constraints must be satisfied. Let x∗ =

(y∗, p∗1 , q∗1 , . . . , p∗I/2, q∗I/2) = (Γ−1
1+Γ , Γ

1+Γ , Γ
1+Γ , . . . , Γ

1+Γ , Γ
1+Γ ),

g1(x∗) = g2(x∗) =
Γ − 1
1 + Γ

− 1
I
· I

2
· 4Γ

1 + Γ
+ 1 = 0,

and it is clear that spi(x∗), sqi(x∗), tpi(x∗), tqi(x∗) ≤ 0 are satisfied.

(3) Dual feasibility: KKT multipliers must be non-negative. This clearly holds

based on our choices: λ1 = λ2 = 1/2, αpi = αqi = 2/I, βpi = βqi = 0 for each

i.
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(4) Complementary slackness: for each constraint, either the constraint is binding

or the KKT multiplier is zero. This clearly holds since the only constraints which

are not binding at the solution are tpi(x∗) and tqi(x∗). For these, βpi = βqi = 0.

Hence, the KKT conditions (1) − (4) are satisfied, which by KKT sufficiency im-

plies optimality of the proposed solution y∗ = (Γ − 1)/(1 + Γ) < 1 for any

1 ≤ Γ < +∞. Hence, Γ̃1:2 = +∞ since for any finite Γ, the optimal value y∗

cannot exceed 1. Thus, the proof is complete.

We study the simulated power to illustrate the example with Γ̃1:2 > max{Γ̃1, Γ̃2}

constructed in the proof of Theorem 2. We consider the test statistics T1 and T2

defined in the proof of Theorem 2. In this example constructed in the proof, we

have Γ̃1 = Γ̃2 = 3 and Γ̃1:2 = +∞. In Table 2.4, we report the simulated power

of (i) using T1 to test Fisher’s sharp null of no treatment effect H0, (ii) using T2 to

test H0, and (iii) using the minimax procedure to combine T1 and T2 to test H0,

with level α = 0.05, Γ = 2, 2.5, 2.9, 3.1, 4, 6 and sample size I = 50, 100, 300. The

(one-sided) minimax procedure uses the critical value Φ−1(1 − α/2) as in Fogarty

and Small (2016) in simulations. All the numbers are based on 10,000 replications.
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Table 2.4: Simulated power of T1, T2 and the minimax procedure combining T1 and
T2.

T1 T2 Minimax

Γ I = 50 I = 100 I = 300 I = 50 I = 100 I = 300 I = 50 I = 100 I = 300

2.0 0.24 0.47 0.92 0.25 0.45 0.93 1.00 1.00 1.00

2.5 0.06 0.09 0.29 0.06 0.09 0.30 1.00 1.00 1.00

2.9 0.02 0.02 0.03 0.01 0.02 0.03 0.48 1.00 1.00

3.1 0.01 0.01 0.01 0.01 0.01 0.01 0.33 1.00 1.00

4.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 1.00

6.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 1.00

From Table 2.4, we can see that as sample size I → ∞, the simulated power of all

the three tests increases to 1 for Γ < 3. For Γ > 3, the simulated power of T1 and

T2 is nearly zero, while the simulated power of using the minimax procedure to

combine T1 and T2 in a sensitivity analysis still increases to 1 as I increases. This

holds true even for Γ much larger than 3, which confirms that Γ̃1 = Γ̃2 = 3 and

Γ̃1:2 = +∞.

In the proof of Theorem 2, to find a case in which applying the minimax procedure

results in the substantial gains in design sensitivity, we constructed an example

with a perfect negative correlation between the two treated-minus-control paired

differences of the two score functions f1 and f2 of the two tests T1 and T2. In our

example, the worst-case unmeasured confounder vector u for one test is actually

the best-case u for the other test, and it is this conflict that yields the infinite design

sensitivity. It is not necessary that the two test statistics be perfectly negatively

correlated to attain an improved design sensitivity, and our procedure applied to

independently distributed test statistics would also yield a design sensitivity that
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is larger than the max of the component design sensitivities. As the correlation gets

closer to 1, in each pair the worst-case u for one test statistic is close to or exactly the

worst-case u for the other test statistic with higher and higher probability, which

means that the gap of the max-min inequality (2.8) gets smaller. Recall that the

gains in design sensitivity are resulted from the gap of the max-min inequality

(2.8), we therefore expect the magnitude of the gains in design sensitivity gets

larger as the correlation between the two test statistics gets closer to −1, and gets

smaller as the correlation gets closer to 1. This also explains why the gains in

design sensitivity from applying our new adaptive testing procedure to combine

the aberrant rank test and the Mantel-Haenszel test are small and hard to observe

since these two component tests are highly positively correlated.

We study the simulated power to illustrate how the power of using the minimax

procedure to combine T1 and T2 varies with the correlation between the two test

statistics. In particular, we consider the following three settings of the joint distri-

bution of two paired treated-minus-control differences (D(1)
i , D(2)

i ):

• Setting 1 (perfectly positively correlated): P(D(1)
i = 3, D(2)

i = 3) = P(D(1)
i =

−1, D(2)
i = −1) = 1/2

• Setting 2 (independent): P(D(1)
i = 3, D(2)

i = 3) = P(D(1)
i = 3, D(2)

i = −1) =

P(D(1)
i = −1, D(2)

i = 3) = P(D(1)
i = −1, D(2)

i = −1) = 1/4

• Setting 3 (perfectly negatively correlated): P(D(1)
i = 3, D(2)

i = −1) =

P(D(1)
i = −1, D(2)

i = 3) = 1/2.

Settings 1-3 have the same marginal distribution P(D(1)
i = 3) = P(D(2)

i = 3) =

P(D(1)
i = −1) = P(D(2)

i = −1) = 1/2. That is, the power of using T1 and T2

to test H0 is the same in each setting and has been reported in Table 2.4 if we still
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set α = 0.05, Γ = 2, 2.5, 2.9, 3.1, 4, 6 and sample size I = 50, 100, 300. Note that

Setting 3 is exactly the example constructed in the proof. We set the critical value

= Φ−1(1 − α/2) in each setting. All the numbers are based on 10,000 replications.

Table 2.5: Simulated power of the minimax procedure with the various correlations
of the two component test statistics.

Setting 1 Setting 2 Setting 3

Γ I = 50 I = 100 I = 300 I = 50 I = 100 I = 300 I = 50 I = 100 I = 300

2.0 0.10 0.31 0.87 0.38 0.86 1.00 1.00 1.00 1.00

2.5 0.01 0.05 0.17 0.11 0.46 0.99 1.00 1.00 1.00

2.9 0.00 0.00 0.01 0.03 0.19 0.85 0.48 1.00 1.00

3.1 0.00 0.00 0.00 0.02 0.11 0.67 0.33 1.00 1.00

4.0 0.00 0.00 0.00 0.00 0.00 0.05 0.01 1.00 1.00

6.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 1.00

From Table 2.5, we can see that the power of using the minimax procedure to com-

bine T1 and T2 increases as the correlation of the two test statistics decreases, which

agrees with the theoretical insight that the magnitude of the gains in design sen-

sitivity gets larger as the correlation between the two test statistics gets closer to

−1. Also, Table 2.5 suggests that substantial gains in the design sensitivities can

be expected in both Setting 2 (independent case) and Setting 3 (negatively corre-

lated case). Especially, for Setting 2 (independent case), the power still increases

as the sample size increases when Γ = 4, suggesting that the design sensitivity of

the adaptive test (resulted from the minimax procedure) should be at least greater

than or equal to 4 and is therefore evidently greater than the individual design

sensitivity (=3). Therefore, substantial gains in design sensitivity resulted from

the adaptive test can be evident with two negatively correlated, independent or
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weakly positively correlated component test statistics.

Appendix B: Asymptotic Comparison With Correlation Within

Strata

In Section 2.4.3, to make the simulations easier and clearer, we assume that

Ri1, . . . , Rim are independent of each other within each stratum i. In practice,

matching may introduce correlation within strata, so here we examine whether

the pattern of asymptotic comparisons in Section 2.4.3 via the design sensitivity

still holds with correlated outcomes within strata or not.

As in Section 2.4.2 and Section 2.4.3, without loss of generality, in Appendix B

we still assume that j = 1 receives treatment and others receive control for each

i, and (Ri1, . . . , Rim)
T = (rTi1, rCi2, . . . , rCim)

T is an i.i.d. realization from a mul-

tivariate continuous distribution. Following Section 2.4.3, we still assume that

rTij = g(rCij) for some deterministic function g. Instead of assuming rCi1, . . . , rCim

are independent of each other within each stratum i as in Section 2.4.3, here we al-

low rCi1, . . . , rCim to be correlated with each other. Parallel with Models 1-4 in Sec-

tion 2.4.3, we consider the following four models with correlated outcomes within

strata:

• Model 5 (additive treatment effects, multivariate normal distribution with

correlation): rTij = rCij + β, and (rCi1, . . . , rCim) follows a multivariate normal

distribution with the mean vector being (0, . . . , 0) and the covariance matrix

being Σm×m where Σii = 1 for i = 1, . . . , m and Σij = 0.5 for any i ̸= j.

• Model 6 (additive treatment effects, multivariate Laplace distribution with

correlation): rTij = rCij + β, and (rCi1, . . . , rCim) follows a multivariate

Laplace distribution with the mean vector being (0, . . . , 0) and the covari-
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ance matrix being Σm×m where Σii = 1 for i = 1, . . . , m and Σij = 0.5 for any

i ̸= j.

• Model 7 (multiplicative treatment effects, multivariate normal distribution

with correlation): rTij = δ · rCij, and (rCi1, . . . , rCim) follows a multivariate

normal distribution with the mean vector being (0, . . . , 0) and the covariance

matrix being Σm×m where Σii = 1 for i = 1, . . . , m and Σij = 0.5 for any i ̸= j.

• Model 8 (multiplicative treatment effects, multivariate Laplace distribution

with correlation): rTij = δ · rCij, and (rCi1, . . . , rCim) follows a multivariate

Laplace distribution with the mean vector being (0, . . . , 0) and the covariance

matrix being Σm×m where Σii = 1 for i = 1, . . . , m and Σij = 0.5 for any i ̸= j.

For Models 5-8, we still set the aberrant response threshold to be c = 1. Table 2.6

reports the design sensitivities of the Mantel-Haenszel test and the aberrant rank

test under Models 5-8 with m = 4 (i.e., matching with three controls) and various

β and δ. As described in Section 2.4.3, calculation of the design sensitivity can be

done via Monte-Carlo simulations.
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Table 2.6: Design sensitivities of the Mantel-Haenszel test and the aberrant rank
test under Models 5-8 and matching with three controls with various parameters.
The larger of the two design sensitivities of the two tests is in bold in each case.

Model 5: additive, multivariate normal

Test statistic β = 0.50 β = 0.75 β = 1.00

Mantel-Haenszel 3.47 6.45 11.99

Aberrant rank 3.98 7.70 14.74

Model 6: additive, multivariate Laplace

Test statistic β = 0.50 β = 0.75 β = 1.00

Mantel-Haenszel 3.83 8.12 17.51

Aberrant rank 3.69 7.31 14.47

Model 7: multiplicative, multivariate normal

Test statistic δ = 1.50 δ = 1.75 δ = 2.00

Mantel-Haenszel 2.30 2.91 3.46

Aberrant rank 3.62 5.38 7.26

Model 8: multiplicative, multivariate Laplace

Test statistic δ = 1.50 δ = 1.75 δ = 2.00

Mantel-Haenszel 2.39 3.13 3.82

Aberrant rank 3.35 4.94 6.66

The pattern of Table 2.6 agrees with that of Table 2.1. First, the choice of the test

statistic still has a huge influence on the design sensitivities in the presence of

correlation within strata; see Models 7 and 8 in Table 2.6. Second, with corre-

lated outcomes within strata, whether or not the aberrant rank test outperforms

the Mantel-Haenszel test still depends on the unknown data generating process.

From Table 2.6, we can see that under Models 5, 7 and 8, the aberrant rank test out-
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performs the Mantel-Haenszel test in terms of design sensitivities. While under

Model 6, the design sensitivities of the Mantel Haenszel test are larger than those

of the aberrant rank test. Note that Models 5-8 are parallel with Models 1-4: both

the marginal distributions of rTij and rCij are correspondingly equal for Models

1-4 versus Models 5-8. Therefore, the insights in Section 2.4.3 on when the aber-

rant rank test should be preferred over the Mantel-Haenszel test and other times

the Mantel-Haenszel test should be preferred can still shed light on the simulation

results in Table 2.6.

Appendix C: More Details on the Regularity Assumptions

We give a sufficient condition under which (T1, T2) considered in Section 2.5.2

is asymptotically bivariate normal in the sense that in large sample size, the

distribution function of
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)
can be approximated by that of

N


 0

0

 ,

 1 ρu

ρu 1


, where ρu = E

(
T1−µ1,u

σ1,u
· T2−µ2,u

σ2,u

∣∣∣F ,Z
)

.

Let T̃k,i = (∑ni
j=1 Zijqijk −∑ni

j=1 pijqijk)/σk,u for i = 1, . . . , I and k ∈ {1, 2}. Therefore,

we have T1−µ1,u
σ1,u

= ∑I
i=1 T̃1,i and T2−µ2,u

σ2,u
= ∑I

i=1 T̃2,i. Let Tjoint,i = (T̃1,i, T̃2,i)
T for

i = 1, . . . , I. Proposition 3 gives a sufficient condition under which the desired

asymptotic bivariate normality holds.

Proposition 3. We let Σu =

 1 ρu

ρu 1

. Suppose that the following three assumptions

hold: (i) Treatment assignments are independent across matched strata; (ii) As I → ∞, Σu

has a positive definite limit Σ̃; (iii) For any fixed nonzero vector λ = (λ1, λ2)
T, there exists
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some δ > 0, such that Lyapunov’s condition

lim
I→∞

1
(λTΣuλ)1+δ/2

I

∑
i=1

E
{
|λTTjoint,i|2+δ

}
= 0

is satisfied. Then we have as I → ∞, (T1, T2) is asymptotically bivariate normal in the

sense that

Σ−1/2
u

(T1 − µ1,u

σ1,u
,

T2 − µ2,u

σ2,u

)T L−→ N (0, I2×2).

Proof. We first show that Σ̃−1/2
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T L−→ N (0, I2×2). Through an ap-

plication of the Cramér-Wold device (Billingsley, 1995) (Theorem 29.4), to ensure

that Σ̃−1/2
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T L−→ N (0, I2×2), we just need to ensure that for any

nonzero vector λ̃ = (λ̃1, λ̃2)
T, the following standardized deviate is asymptoti-

cally normal:

λ̃TΣ̃−1/2
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T

√
λ̃Tλ̃

L−→ N (0, 1). (2.15)

When treatment assignments are independent across matched strata (condition

(i)), for each I = 1, 2, . . . , the sequence

AI = {λ̃TΣ̃−1/2Tjoint,1, . . . , λ̃TΣ̃−1/2Tjoint,I}

is a sequence of independent random variables, and the collection {A1, A2, . . . , }

is a triangular array of random variables. Set λT = λ̃TΣ̃−1/2 in condition (iii)

and apply Lyapunov central limit theorem (Billingsley, 1995) (Theorem 27.3) to

{A1, A2, . . . , }, we have

λ̃TΣ̃−1/2
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T

√
λ̃TΣ̃−1/2ΣuΣ̃−1/2λ̃

L−→ N (0, 1).
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Then (2.15) follows immediately from

λ̃TΣ̃−1/2
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T

√
λ̃Tλ̃

=
λ̃TΣ̃−1/2

(
T1−µ1,u

σ1,u
, T2−µ2,u

σ2,u

)T

√
λ̃TΣ̃−1/2ΣuΣ̃−1/2λ̃

√
λ̃TΣ̃−1/2ΣuΣ̃−1/2λ̃√

λ̃Tλ̃

L−→ N (0, 1) (by condition (ii) and Slutsky’s theorem).

So we have shown that Σ̃−1/2
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T L−→ N (0, I2×2). Then note that

Σ−1/2
u

(T1 − µ1,u

σ1,u
,

T2 − µ2,u

σ2,u

)T

= Σ−1/2
u Σ̃1/2Σ̃−1/2

(T1 − µ1,u

σ1,u
,

T2 − µ2,u

σ2,u

)T

L−→ I2×2 · N (0, I2×2)

∼ N (0, I2×2).

That is, the distribution function of
(

T1−µ1,u
σ1,u

, T2−µ2,u
σ2,u

)T
can be approximated by

that of N (0, Σu). So we are done.

Appendix D: More Details on the Two-Stage Programming

Method

In this section, we give a detailed derivation of the second stage of the two-stage

programming method. Suppose that the prespecified level α < 1/2. Once getting

the rejection threshold Qρ∗Γ,α through solving (∗), we apply the method developed

in Fogarty and Small (2016) to formulate the problem of checking if the inequality

min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
≥ Qρ∗Γ,α, (Qρ∗Γ,α > 0 when α < 1/2) (2.16)
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would hold at a given Γ into checking if the optimal value of (∗∗) is greater than

or equal to zero or not.

For each fixed Γ, to check if (2.16) holds or not, we just need to check if

min
u∈U

max
k∈{1,2}

(
tk − µk,u − Qρ∗Γ,ασk,u

)
≥ 0,

which can be transformed into solving the following optimization problem and

checking if its optimal value ≥ 0 or not by introducing an auxiliary variable y:

minimize
y,uij

y

subject to y ≥ tk − µk,u − Qρ∗Γ,ασk,u ∀k ∈ {0, 1}

0 ≤ uij ≤ 1. ∀i, j

Note that the above constraints force y to be larger than tk − µk,u − Qρ∗Γ,ασk,u

for both k = 1 and k = 2, and drive us to search for the feasible value of

u = (u11, . . . , uInI ) ∈ U that allows for y to be as small as possible. This is a routine

way of solving minimax problems (Charalambous and Conn, 1978). Therefore, the

above optimization problem indeed seeks to find minu∈U maxk∈{1,2}(tk − µk,u −

Qρ∗Γ,ασk,u).

Recall that wij = exp(γuij) and pij = wij/ ∑ni
j′=1 wij′ . Then the above optimization

problem can be written as

minimize
y,wij

y

subject to y ≥ tk − µk,u − Qρ∗Γ,ασk,u ∀k ∈ {0, 1}

1 ≤ wij ≤ Γ, ∀i, j
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where µk,u = ∑I
i=1 ∑ni

j=1 pijqijk = ∑I
i=1 ∑ni

j=1
wij

∑
ni
j′=1

wij′
· qijk and

σk,u =

√√√√ I

∑
i=1

ni

∑
j=1

pijq2
ijk −

I

∑
i=1

( ni

∑
j=1

pijqijk
)2

=

√√√√ I

∑
i=1

ni

∑
j=1

wij

∑ni
j′=1 wij′

· q2
ijk −

I

∑
i=1

( ni

∑
j=1

wij

∑ni
j′=1 wij′

· qijk
)2.

There are two terms that make the constraints of the above optimization problem

complicated: the square root term σk,u and the linear-fractional term wij/ ∑ni
j′=1 wij′ .

We first consider how to get rid of the square root term σk,u. Recall that we are

just concerned about if the optimal value of the above optimization problem ≥ 0

or not. We introduce a prespecified sufficiently large constant ‘M’ and two axillary

variables b1 and b2, and then instead consider the following adjusted optimization

problem:

minimize
y,wij,bk

y

subject to y ≥ (tk − µk,u)
2 − Q2

ρ∗Γ,ασ2
k,u − Mbk ∀k ∈ {0, 1}

1 ≤ wij ≤ Γ ∀i, j

bk ∈ {0, 1} ∀k ∈ {0, 1}

− Mbk ≤ tk − µk,u ≤ M(1 − bk). ∀k ∈ {0, 1}

Note that when M is sufficiently large, for all k ∈ {0, 1} and 1 ≤ wij ≤ Γ, we have

−Mbk ≤ tk − µk,u ≤ M(1 − bk) for either bk = 0 or bk = 1. When bk = 0, we have

the constraints 0 ≤ tk − µk,u ≤ M and y ≥ (tk − µk,u)
2 −Q2

ρ∗Γ,ασ2
k,u. When M is suffi-

ciently large, for any u ∈ [0, 1]N (or equivalently, for any (w11, . . . , wInI ) ∈ [1, Γ]N)

such that 0 ≤ tk − µk,u ≤ M, we have (tk − µk,u)
2 − Q2

ρ∗Γ,ασ2
k,u ≥ 0 if and only if
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tk −µk,u −Qρ∗Γ,ασk,u ≥ 0. When bk = 1, we have the constraints −M ≤ tk −µk,u ≤ 0

and y ≥ (tk − µk,u)
2 − Q2

ρ∗Γ,ασ2
k,u − M. When M is sufficiently large, for any

u1, u2 ∈ [0, 1]N, we have (tk − µk,u2)
2 − Q2

ρ∗Γ,ασ2
k,u2

> (tk − µk,u1)
2 − Q2

ρ∗Γ,ασ2
k,u1

− M

and (tk − µk,u1)
2 − Q2

ρ∗Γ,ασ2
k,u1

− M < 0. Therefore, the above ‘M’ constraint im-

poses a directional error to ensure that we will not falsely reject the null if evi-

dence pointed in the opposite direction of the alternative, i.e., the cases in which

min
u∈U

max
k∈{1,2}

(tk − µk,u)
2/σ2

k,u ≥ Q2
ρ∗Γ,α while min

u∈U
max

k∈{1,2}
(tk − µk,u)/σk,u < Qρ∗Γ,α.

We then consider how to get rid of the linear-fractional term wij/ ∑ni
j′=1 wij′ . A

routine way of transforming a linear-fractional term into linear terms is through

applying the Charnes-Cooper transformation (Charnes and Cooper, 1962):

pij =
wij

∑ni
j′=1 wij′

=
exp(γuij)

∑ni
j′=1 exp(γuij′)

, si =
1

∑ni
j′=1 wij′

=
1

∑ni
j′=1 exp(γuij′)

.

Then the above optimization problem can be transformed into the following

quadratically constrained linear program as stated in section 2.5.2:

minimize
y,pij,si,bk

y (∗∗)

subject to y ≥ (tk − µk,u)
2 − Q2

ρ∗Γ,ασ2
k,u − Mbk ∀k ∈ {0, 1}

ni

∑
j=1

pij = 1 ∀i

si ≤ pij ≤ Γsi ∀i, j

pij ≥ 0 ∀i, j

bk ∈ {0, 1} ∀k ∈ {0, 1}

− Mbk ≤ tk − µk,u ≤ M(1 − bk). ∀k ∈ {0, 1}

Therefore, to judge if (2.16) holds or not, we just need to check whether the optimal
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value y∗Γ of (∗∗) satisfies y∗Γ ≥ 0. If it is, we reject the null; otherwise, we fail to

reject.

Appendix E: Adaptive Approach in Full Matching Case

In this section, we discuss how the adaptive approach developed in the main

text can be easily adjusted to allow for full matching case, i.e., the constraint that

∑ni
j=1 Zij ∈ {1, ni − 1} for all i = 1, . . . , I (i.e., either one treated individual and

one or more controls, or one control and one or more treated individuals, within

each stratum). Let I = I1 + I2. We rearrange the index i of each stratum such that

∑ni
j=1 Zij = 1 for i = 1, . . . , I1 and ∑ni

j=1 Zij = ni − 1 for i = I1 + 1, . . . , I1 + I2. Let Z̃

be the collection of the treatment assignment indicators Z = (Z11, . . . , ZInI ) such

that Z ∈ Z̃ if and only if ∑ni
j=1 Zij = 1 for all i = 1, . . . , I1 and ∑ni

j=1 Zij = ni − 1 for

all i = I1 + 1, . . . , I1 + I2. Let pij = P(Zij = 1 | F , Z̃), p̃ij = P(Zij = 0 | F , Z̃) =

1 − pij and Tk,i = ∑ni
j=1 Zijqijk for i = 1, . . . , I, j = 1, . . . , ni, k = 1, 2. Therefore, we

have T1 = ∑I
i=1 T1,i and T2 = ∑I

i=1 T2,i. In this case, we have

 pij = exp(γuij)/ ∑ni
j′=1 exp(γuij′) for i = 1, . . . , I1, j = 1, . . . , ni,

p̃ij = exp(−γuij)/ ∑ni
j′=1 exp(−γuij′) for i = I1 + 1, . . . , I1 + I2, j = 1, . . . , ni.

74



Then we have

µ̃k,u = EΓ,u(Tk | F , Z̃) =
I1

∑
i=1

ni

∑
j=1

pijqijk +
I1+I2

∑
i=I1+1

ni

∑
j=1

qijk −
I1+I2

∑
i=I1+1

ni

∑
j=1

p̃ijqijk,

σ̃2
k,u = VarΓ,u(Tk | F , Z̃) =

I1

∑
i=1

ni

∑
j=1

pijq2
ijk −

I1

∑
i=1

(
ni

∑
j=1

pijqijk)
2

+
I1+I2

∑
i=I1+1

ni

∑
j=1

p̃ijq2
ijk −

I1+I2

∑
i=I1+1

(
ni

∑
j=1

p̃ijqijk)
2,

CovΓ,u(T1, T2 | F , Z̃) =
I1

∑
i=1

ni

∑
j=1

pijqij1qij2 −
I1

∑
i=1

(
ni

∑
j=1

pijqij1)(
ni

∑
j=1

pijqij2)

+
I1+I2

∑
i=I1+1

ni

∑
j=1

p̃ijqij1qij2 −
I1+I2

∑
i=I1+1

(
ni

∑
j=1

p̃ijqij1)(
ni

∑
j=1

p̃ijqij2),

ρ̃u = E
(T1 − µ̃1,u

σ̃1,u
· T2 − µ̃2,u

σ̃2,u

∣∣∣F , Z̃
)
=

CovΓ,u(T1, T2 | F , Z̃)

σ̃1,uσ̃2,u
. (2.17)

Similar to the main text, we let wij = exp(γuij). We further let w̃ij = exp(−γuij) =

w−1
ij . In the first stage, to find the worst-case correlation minu∈U ρ̃u, we just need

to solve the following optimization problem which just slightly adjusts the box

constraints of the optimization problem (∗):

minimize
wij,w̃ij

ρ̃u (⋄)

subject to 1 ≤ wij ≤ Γ i = 1, . . . , I1, j = 1, . . . , ni

Γ−1 ≤ w̃ij ≤ 1, i = I1 + 1, . . . , I1 + I2, j = 1, . . . , ni

where ρu is as defined in (2.17) with

 pij = wij/ ∑ni
j′=1 wij for i = 1, . . . , I1, j = 1, . . . , ni,

p̃ij = w̃ij/ ∑ni
j′=1 w̃ij for i = I1 + 1, . . . , I1 + I2, j = 1, . . . , ni.
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Similar to (∗) in the main text, the optimization problem (⋄) can be solved approx-

imately in a reasonable amount of time by the L-BFGS-B algorithm (Byrd et al.,

1995; Zhu et al., 1997). Denote the optimal value of (⋄) with sensitivity parameter

Γ as ρ⋄Γ. Then the corresponding worst-case quantile maxu∈U Qρ̃u,α equals Qρ⋄Γ,α by

Slepian’s lemma.

As discussed in the main text, to determine if we should reject the null with

level α and a given Γ in a sensitivity analysis, we then need to check if

minu∈U maxk∈{1,2}(tk − µ̃k,u)/σ̃k,u ≥ Qρ⋄Γ,α at that given Γ. Adapting a similar ar-

gument to that in Appendix D, this procedure can be implemented through setting

 si = 1/ ∑ni
j′=1 exp(γuij′) for i = 1, . . . , I1

s̃i = 1/ ∑ni
j′=1 exp(−γuij′) for i = I1 + 1, . . . , I1 + I2.

and solving the following quadratically constrained linear program with M being
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a sufficiently large constant:

minimize
y,pij,p̃ij,si,s̃i,bk

y (⋄⋄)

subject to y ≥ (tk − µ̃k,u)
2 − Q2

ρ⋄Γ,ασ̃2
k,u − Mbk ∀k ∈ {0, 1}

ni

∑
j=1

pij = 1 ∀i = 1, . . . , I1,

ni

∑
j=1

p̃ij = 1 ∀i = I1 + 1, . . . , I1 + I2,

si ≤ pij ≤ Γsi ∀i = 1, . . . , I1, j = 1, . . . , ni,

Γ−1s̃i ≤ p̃ij ≤ s̃i ∀i = I1 + 1, . . . , I1 + I2, j = 1, . . . , ni,

pij ≥ 0 ∀i = 1, . . . , I1, j = 1, . . . , ni,

p̃ij ≥ 0 ∀i = I1 + 1, . . . , I1 + I2, j = 1, . . . , ni,

bk ∈ {0, 1} ∀k ∈ {0, 1}

− Mbk ≤ tk − µ̃k,u ≤ M(1 − bk), ∀k ∈ {0, 1}

and checking whether the optimal value y⋄Γ ≥ 0.
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Algorithm 2: Two-stage programming procedure in full matching case
Step 0: Re-order the matched strata such that with I = I1 + I2, we have

∑ni
j=1 Zij = 1 for i = 1, . . . , I1 and ∑ni

j=1 Zij = ni − 1 for i = I1 + 1, . . . , I1 + I2 ;

Input: Sensitivity parameter Γ; level α of the one-sided test; treatment

assignment indicator vector Z = (Z11, . . . , ZInI )
T; the score vector

q1 = (q111, . . . , qInI1)
T associated with T1 = ∑I

i=1 ∑ni
j=1 Zijqij1; the score vector

q2 = (q112, . . . , qInI2)
T associated with T2 = ∑I

i=1 ∑ni
j=1 Zijqij2;

Step 1: Solve (⋄) to get the worst-case correlation ρ⋄Γ along with the

corresponding worst-case quantile Qρ⋄Γ,α ;

Step 2: Solve (⋄⋄) with Qρ⋄Γ,α obtained from Step 1, and get the corresponding

optimal value y⋄Γ ;

Output: If y⋄Γ ≥ 0, we reject the null; otherwise, we fail to reject.

Appendix F: Simulated Size of a Sensitivity Analysis

We study the simulated size of the Mantel-Haenszel test, the aberrant rank test

and the adaptive test implementing Algorithm 1 with the above two tests as the

component tests under the aberrant null for various Γ. Specifically, we set β = 0

in Models 1 and 2 or δ = 1 in Models 3 and 4. We set α = 0.05, c = 1 and

m = 4 (matching with three controls), and as in Models 1-4, we consider two cases:

either F is a standard normal distribution or a standard Laplace distribution. Both

I = 100 and I = 1000 matched strata are considered. Each simulated size of the

Mantel-Haenszel test and the aberrant rank test is based on 20,000 replications

and each simulated size of the adaptive test is based on 2,000 replications. The

simulation results are presented in Table 2.7.
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Table 2.7: Simulated size of the Mantel-Haenszel test, the aberrant rank test and
the adaptive test implementing Algorithm 1 with the above two tests as the com-
ponent tests under the aberrant null. We set α = 0.05, c = 1 and m = 4 (matching
with three controls).

Normal
I = 100 Matched Strata I = 1000 Matched Strata

M-H Aberrant Adaptive M-H Aberrant Adaptive

Γ = 1.00 0.051 0.054 0.045 0.051 0.053 0.042

Γ = 1.05 0.037 0.040 0.044 0.018 0.021 0.020

Γ = 1.10 0.027 0.031 0.035 0.005 0.007 0.003

Laplace
I = 100 Matched Strata I = 1000 Matched Strata

M-H Aberrant Adaptive M-H Aberrant Adaptive

Γ = 1.00 0.053 0.055 0.044 0.049 0.053 0.042

Γ = 1.05 0.039 0.043 0.041 0.020 0.021 0.024

Γ = 1.10 0.029 0.032 0.028 0.007 0.009 0.009

We here provide some insights into the simulation results presented in Table 2.7.

Following the previous literature (e.g., Imbens and Rosenbaum, 2005; Heng et al.,

2020), the simulated size of each test in each scenario is calculated under the situ-

ation when, parallel with the favorable situation, there is no treatment effect and

no hidden bias. When Γ = 1, we can see that all three tests can approximately pre-

serve a 0.05 type I error rate control with realistic sample sizes. When Γ > 1, each

simulated size of a sensitivity analysis with that prespecified sensitivity parameter

Γ is less than 0.05 for all three tests, and decreases as the prespecified sensitivity

parameter Γ increases. This pattern agrees with that of the power of a sensitivity

analysis as shown in Table 2.2. This is because it is more and more improbable that

a sensitivity analysis conducted at a larger and larger Γ will reject, either correctly
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or falsely, the null hypothesis of no treatment effect if, in fact, the treatment as-

signment is random. This is a general pattern that is not only shared by the above

three tests, but also most of the plausible non-parametric tests used in matched

observational studies (e.g., Heng et al., 2020) (Section 3.5). Note that for all three

tests, the simulated size drops substantially as Γ increases when the sample size

is relatively large (I = 1000). This is also expected since when the sample size is

large, the standard error of a test statistic should be relatively small compared to

the magnitude of bias and in this case the size of a test is driven more by the bias.

Another way to understand this pattern is from the design sensitivity. Recall that

when there is an actual treatment effect, the chance of rejecting the null hypothesis

of no treatment effect (i.e., the power of a test) in a sensitivity analysis conducted

with Γ > Γ̃ goes to zero as the sample size I goes to infinity, where the design sen-

sitivity Γ̃ approaches 1 as the actual treatment effect approaches zero. Therefore, if

there is in fact no treatment effect, the chance of rejecting the null hypothesis (i.e.,

the size of a test) in a sensitivity analysis with any Γ > 1 goes to zero as the sample

size increases.

Appendix G: More Details on Sections 2.1 and 2.7

In Section 2.1.1, we have mentioned that: “Numerous causal problems share a

similar structure with that of the causal determinants of malnutrition, where we

care about whether a certain treatment would change the pattern of some aberrant

response (e.g., stunted growth) rather than the average treatment effect over the

whole population." We here provide two more examples of such type of causal

problems.

• According to WHO (2008b), anemia in adult men can be defined as blood

hemoglobin (Hb) concentrations < 130 g / l, and related studies typically fo-
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cus on the prevalence and severity of anemia, instead of the change of aver-

age blood Hb concentrations among the whole population; see Adamu et al.

(2017).

• A commonly used definition for low birth weight is infant’s weight at birth

being less than or equal to 2500 g; see Kramer (1987). Related studies are

typically concerned about the low birth weight rate and the severity of low

birth weight among the study population, instead of the change of average

birth weight among that study population; see Paneth (1995) and Schieve

et al. (2002).

In Section 2.1.1.1, we examine the causal problem of the potential effect of teenage

pregnancy on stunting with children’s level data from the Kenya 2003 Demo-

graphic and Health Surveys (DHS), which is available at Integrated Public Use

Microdata Series (IPUMS). We here provide some motivating examples from the

previous literature. According to Darteh et al. (2014), a causal effect of teenage

pregnancy on stunting could arise “as a result of the fact that young mothers re-

quire adequate nutrition to fully grow into adults; thus, they struggle with their

children over the little food the mother eats." Van de Poel et al. (2007) argued

that “Children of younger mothers could be more prone to malnutrition because

of physiological immaturity and social and psychological stress that come with

child bearing at young age." We also summarize the total number of stunting cases

among the treated individuals and controls in the matched data in Table 2.8.
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Table 2.8: The total number of stunting cases among the treated individuals and
controls in the matched data.

Stunted Non-stunted Total Percentage

Treated 55 95 150 36.7%

Control 125 325 450 27.8%

Total 180 420 600 30.0%

In Section 2.7, we report the worst-case p-values of the Mantel-Haenszel test, the

aberrant rank test and the adaptive test. The worst-case p-values of the Mantel-

Haenszel test and the aberrant rank test are obtained from the results of the asymp-

totic approximation of the worst-case p-value in Section 2.3 and Section 2.4.1. Es-

pecially, for the aberrant rank test, we apply the asymptotic separability algorithm

proposed in Gastwirth et al. (2000) to find an approximate worst-case p-value un-

der some mild conditions on the response vector and the treatment assignment

probabilities. See Proposition 1 in Gastwirth et al. (2000) for more details about the

mild conditions under which the asymptotic separability algorithm is applicable.

Note that the adaptive testing procedure (2.9) is a procedure that directly deter-

mines if we should reject the null hypothesis or not and does not directly involve

the worst-case p-value in the traditional sense. Instead, the worst-case p-value re-

ported by the adaptive test in Table 2.3 is the value of the prespecified α such that

the adaptive testing procedure (2.9) barely rejects the null hypothesis under level

α. That is, we report the value α∗ such that the following equality holds:

min
u∈U

max
k∈{1,2}

tk − µk,u

σk,u
= Qρ∗Γ,α∗ .

It is clear that the adaptive test rejects the null hypothesis in a level-0.05 sensitivity
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analysis conducted with sensitivity parameter Γ if and only if α∗ ≤ 0.05. Like

the worst-case p-value in a sensitivity analysis in the traditional sense, the value

of α∗ implies how strong the evidence against the null hypothesis obtained from

the adaptive test is: a smaller α∗ corresponds to a smaller chance that the null

hypothesis holds in a sensitivity analysis.

Appendix H: More Details on Rosenbaum’s Adaptive Approach

As mentioned in the main text, Rosenbaum (2012) designed an adaptive approach

to combine two different test statistics in matched observational studies. The ap-

proach is data-driven and does not require dropping samples for design prior to

statistical inference, and is designed to achieve the larger of the two design sensi-

tivities of the two component tests. This traditional adaptive approach is designed

for combining different tests within a large class of test statistics for pair matched

samples, including any test statistics of the form T = ∑I
i=1 1(Yi > 0) hi, where

Yi = (Zi1 − Zi2)(Ri1 − Ri2) is the treated-minus-control difference in response for

matched pair i and hi is a function of |Y1|, . . . , |YI |, in which case we can find an

uniform upper bound test statistic TΓ under each sensitivity parameter Γ such that

P(T ≥ t | F ,Z) ≤ P(TΓ ≥ t | F ,Z) for any t. To combine two different test

statistics, this traditional adaptive approach corrects for the correlation between

the two test statistics by using the observation that the two upper bound statistics

are asymptotically jointly normal under some regularity conditions; see Section 2

in Rosenbaum (2012) for details. Rosenbaum (2012) found that the cost for this

correction is small compared with, for example, the Bonferroni adjustment since

the two tests are typically highly correlated. However, as mentioned in the main

text, Rosenbaum’s adaptive approach can only be applied to test statistics that are

uniformly bounded by a known distribution, which typically requires either the
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matching mechanism to be pair matching or the outcomes of interest to be binary,

neither of which would hold for many widely used test statistics including the

aberrant rank test, the Wilcoxon rank sum test, the Hodges-Lehmann aligned rank

test or the Huber-Maritz m-tests (Gastwirth et al., 2000; Rosenbaum, 2002b, 2007).

Appendix I: More Details on the Real Data Example

Here we give more details on the outcome of interest and the categorization of

the observed covariates considered in the real data example described in Sec-

tion 2.1.1.1 and Section 2.7. Height-for-age z-scores (the outcome variable) are

expressed in units equal to one standard deviation of the reference population’s

distribution. As mentioned in Section 2.1.1.1, we match each treated individual

with controls on the following seven observed covariates: mother’s highest edu-

cation level; geographic district; household wealth index in quantiles; household’s

main source of drinking water; household’s toilet facilities; sex; and children’s age

in years. Mother’s education is categorized as no education, primary, secondary

and higher. Geographic district is coded as eight dummy variables with respect to

eight districts in Kenya: Central, Coast, Eastern, Nairobi, Northeastern, Nyanza,

Riftvalley and Western. We use a similar method to Fink et al. (2011) to code qual-

ity of source of drinking water and toilet facilities. As mentioned in the main text,

to form the 150 matched sets, we applied optimal matching using rank-based Ma-

halanobis distance with a propensity score caliper (Hansen and Klopfer, 2006). Fig-

ure 2.1 shows the balance on the seven baseline covariates before and after match-

ing evaluated by the standardized differences, defined as a weighted difference in

means divided by the pooled standard deviation between the treated and control

groups before matching (see Chapter 9 of Rosenbaum (2002b) for details). From

Figure 2.1, we can see that the absolute standardized differences become much
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Figure 2.1: Covariate imbalances before and after matching with three controls.
The plot reports the absolute standardized differences before and after matching
of each covariate. The two dotted vertical lines are 0.1 and 0.2 cut-offs.

smaller through matching and are all close to zero after matching.

Appendix J: More Discussions on the Aberrant Null

In this part, we give more discussions on the aberrant null and the aberrant rank

test introduced in Section 2.4.1, especially, on how the individuals with normal

(i.e., not aberrant) observed responses (including those with normal unobserved

potential responses and those with aberrant unobserved potential responses) play

a role in testing the aberrant null.

Unlike some traditional null hypotheses such as Fisher’s sharp null, the aberrant
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null only asserts that there is no treatment effect among individuals with aberrant

potential responses either under treated or under control instead of among all indi-

viduals. However, this does not mean that the individuals with normal observed

responses do not offer any information and should be discarded before testing. On

the contrary, all individuals, no matter if their observed responses are normal or

aberrant, can contribute information about the aberrant null, but in different ways.

Under the aberrant null, for individuals with aberrant observed responses, their

unobserved potential responses are the same as their observed responses and this

hypothetical information is clearly significant for testing the aberrant null. For in-

dividuals with normal observed responses, although assuming the aberrant null

is not sufficient for imputing the exact values of their unobserved potential re-

sponses, assuming the aberrant null at least implies that their unobserved potential

responses are still normal no matter what. This information is useful and should

be leveraged when testing the aberrant null. Conversely ignoring this informa-

tion and discarding individuals with normal observed responses can potentially

reduce the statistical power.

To better illustrate this last point about potential loss of statistical power if we

discarded normal observed responses, consider testing the aberrant null HA
0 with

A = [c,+∞) for some threshold c

H≥c
0 : rTij = rCij, ∀ i, j, if either rTij ≥ c or rCij ≥ c,

with the aberrant rank test

Tabe =
I

∑
i=1

m

∑
j=1

Zij q(Rij | R),
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where q(Rij | R) = ∑I
i′=1 ∑m

j′=1 1(Rij ≥ Ri′ j′ ≥ c) is the aberrant rank. As men-

tioned in Section 2.4.1, the aberrant rank of each individual is fixed under the aber-

rant null, and the aberrant ranks of individuals with normal observed responses

all equal zero. Note that assigning aberrant rank zero to individuals with normal

observed responses does not mean that we discarded these individuals in the test,

as aberrant rank zero contains the important hypothetical information that, under

the aberrant null, their potential responses under treated and under control are all

normal. Also, we would reject the aberrant null if treated individuals significantly

tend to have larger aberrant ranks than control individuals. More specifically, if

there are two individuals A and B in the data, individual A has a larger aberrant

rank than individual B if either one of the conditions hold:

• Case 1: both individuals A and B have aberrant observed responses, but in-

dividual A’s observed response is more aberrant than that of individual B.

• Case 2: the observed response of individual A is aberrant but that of individ-

ual B is normal.

If we discarded all the normal observed responses in testing the aberrant null, we

do not have the chance of leveraging the information from Case 2 listed above,

which can potentially reduce the statistical power of our test. Therefore, all in-

dividuals should matter and should be involved when testing the aberrant null,

regardless of if their observed responses were aberrant or not. For related discus-

sions on the aberrant null and the aberrant rank test in completely randomized

experiments, see Rosenbaum and Silber (2008).
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3. A Model-Free and Finite-

Population-Exact Framework for

Randomized Experiments Subject

to Outcome Misclassification via

Integer Programming

This chapter is based on “Heng, S. and Shaw, P. A. (2021). A model-free and finite-

population-exact framework for randomized experiments subject to outcome mis-

classification via integer programming. arXiv:2201.03111."

3.1 Introduction

3.1.1 Outcome misclassification–a major source of bias in ran-

domized experiments

For inferring causal effects of a treatment, conducting a randomized experiment

(trial) is the gold standard. In a randomized experiment, treatments are randomly

assigned according to some randomization design (i.e., assignment mechanism),

and downstream statistical inference can be conducted based only on randomiza-

tion (i.e., randomization-based inference) without imposing any super-population

models on the subjects (e.g., assuming that subjects are i.i.d. realizations from
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some data-generating models). See Rosenbaum (2002b, 2010), Imbens and Rubin

(2015), and Athey and Imbens (2017) for detailed discussion. Although random-

ization can protect a causal conclusion from potential bias caused by confounders

(measured or unmeasured) or model misspecification, it cannot remove potential

bias resulting from measurement error in the outcome (Arnold and Ercumen, 2016;

Chapter 9; Hernán and Robins, 2020), referred to as outcome misclassification when

the outcome is binary (Carroll et al., 2006; Buonaccorsi, 2010; Yi, 2017).

Outcome misclassification commonly exists in randomized experiments. For ex-

ample, common binary outcomes in randomized clinical trials are cancer diagno-

sis (cancerous versus non-cancerous), blood test results (normal versus abnormal),

antibody test results (positive versus negative), among many others. These binary

clinical outcomes can be misclassified (misdiagnosed) due to one or several of the

following factors: 1) technical limitations of the diagnosis equipment and meth-

ods (Wittram et al., 2004), 2) physician-side factors such as misinterpretations of

the clinical data or patient’s symptoms (Walsh-Kelly et al., 1995), and 3) patient-

side factors such as patients’ abnormal activities before the diagnosis and anxiety

during the diagnosis (Ogedegbe et al., 2008). Another major type of outcome mis-

classification is reporting bias in self-reported binary outcomes, especially those

concerning sensitive topics such as mental illness (Knäuper and Wittchen, 1994),

sexuality variables (Catania et al., 1986), or unhappiness with a service or product

(Wood et al., 2008).

In general, there are at least two ways that outcome misclassification, in partic-

ular systematic outcome misclassification (i.e., differential outcome misclassifica-

tion by treatment status), can severely distort a causal conclusion drawn from a

randomized experiment (trial). Firstly, in randomized trials without or with inade-
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quate blinding, systematically larger effects on subjective outcomes (either subject-

reported or investigator-assessed) often exist due to differential outcome misclassi-

fication from knowledge of treatment status, as found by a large systematic review

of clinical trials (Wood et al., 2008). Such exaggerated reporting of health improve-

ments documented in previous non-blinded or imperfectly blinded trials can be

due to either placebo effects (i.e., treated subjects tend to perceive or overstate

health improvements due to psychological factors) or courtesy bias (i.e., treated

subjects tend to not fully state their unhappiness with the treatment as an attempt

to be polite toward the investigators). However, perfect blinding is not practical in

a wide range of randomized trials, and therefore bias due to outcome misclassifi-

cation may be inevitable for many such studies (Arnold and Ercumen, 2016). Sec-

ondly, in some studies, the treatment can improve or interfere with the detection of

the outcome. For example, some clinical trials have found that the treatments they

investigated can change the volume of the study organ or the pattern of the study

tumor, therefore diseases may be easier or harder to be detected among treated

subjects than control subjects in such cases (Lucia et al., 2007; Redman et al., 2008).

Therefore, even if blinding was effectively carried out in a randomized experiment

(trial), potential bias due to systematic (differential) outcome misclassification may

still exist.

3.1.1.1 Example: a puzzle from the Prostate Cancer Prevention Trial (PCPT)

Prostate cancer is one of the most common cancers in men. According to Siegel

et al. (2020), prostate cancer is estimated to account for 21% of the new cancer cases

diagnosed in men in the United States in 2020. Since the development of prostate

cancer is a long-term process, many studies have focused on the prevention of

prostate cancer. Among these studies, the Prostate Cancer Prevention Trial (PCPT)
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(Thompson et al., 2003) is especially influential because it is “the first study to

show that a drug can reduce a man’s chances of developing prostate cancer" (NIH,

2013). In the PCPT, within each of the 221 study sites, men 55 years of age or

older with no evidence of prostate cancer are randomly assigned to finasteride (5

mg per day) (i.e., the treatment) or placebo (i.e., control). The primary outcome is

whether the participant is diagnosed with prostate cancer during the seven-year

follow-up period. Of the 9060 participants included in the final analysis, 803 of

the 4368 in the finasteride group and 1147 of the 4692 in the placebo group were

diagnosed with prostate cancer; see Table 1 in Thompson et al. (2003). Applying

the Mantel-Haenszel test (randomization-based inference) to the 221 strata (study

sites), the two-sided p-value under Fisher’s sharp null of no treatment effect is

4.66× 10−13. According to the two-sided 0.05 significance level prespecified by the

PCPT (Thompson et al., 2003), a treatment effect of finasteride on the prevention

of prostate cancer was detected.

The analysis reported by the PCPT also identified a controversial and seemingly

contradictive phenomenon: taking finasteride may increase the risk of high-grade

prostate cancer (i.e., tumor with Gleason score ≥ 7). Specifically, of the 9037 men

(out of the total 9060 men in the final analysis) with available Gleason score, 280

of the 4358 in the finasteride group and 237 of the 4679 in the placebo group were

diagnosed with high-grade prostate cancer. Applying the Mantel-Haenszel test,

the two-sided p-value under Fisher’s sharp null is 6.79 × 10−3, which is also sta-

tistically significant at the prespecified two-sided 0.05 level.

Can finasteride prevent prostate cancer but also promote high-grade prostate can-

cer? This seeming contradiction puzzled many researchers when the results were

first published (Thompson et al., 2003). Several follow-up studies have pointed out
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that this puzzling result could potentially be due to bias caused by misclassifica-

tion of the prostate cancer status or severity (e.g., Lucia et al., 2007; Redman et al.,

2008; Shepherd et al., 2008). So a natural question is: can we develop a model-

free causal inference framework to help explain this puzzle from the perspective

of outcome misclassification?

3.1.2 Our contributions

Although outcome misclassification commonly exists in randomized experiments,

such as randomized clinical trials, and has the potential to severely distort a down-

stream causal conclusion, it is commonly ignored in practice. To the best of our

knowledge, there is no established unified framework for randomized experi-

ments subject to outcome misclassification without imposing any additional as-

sumptions to a randomized experiment. Although there is extensive previous

literature on addressing outcome misclassification in statistical inference, all of

these previous approaches require assuming that subjects are realizations (typi-

cally i.i.d. realizations) from some super-population model (parametric, semipara-

metric, or nonparametric). For existing work, see Quade et al. (1980), Magder and

Hughes (1997), Lyles et al. (2005), Carroll et al. (2006), Küchenhoff et al. (2006),

Shepherd et al. (2008), Buonaccorsi (2010), Gilbert et al. (2016), Yi (2017), Shu

and Yi (2019), Beesley and Mukherjee (2020), among many others. These model-

based approaches have been successfully applied in various settings and greatly

contributed to practical research. However, directly applying or adjusting these

model-based approaches to randomized experiments may introduce unnecessary

bias to a model-free randomization-based inference. On the one hand, for an ap-

proach based on some parametric or semiparametric model, the statistical infer-

ence may be biased due to model misspecification (Magder and Hughes, 1997).
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On the other hand, even if an approach adopts a flexible nonparametric model,

there may still exist potential bias due to the existence of unmeasured features that

are involved in the outcome misclassification mechanism. For example, whether a

patient’s disease is correctly diagnosed or not highly depends on a doctor’s exper-

tise and experience on such disease, which may be difficult to measure or quantify

(Weiss and Shanteau, 2003). Bias may also come from the violation of the i.i.d.

assumption. Laboratories routinely calibrate their measuring instruments using

the values of previously measured outcomes (Buonaccorsi, 2010). In such cases,

whether some subject’s outcome is correctly classified or not may depend on other

subjects’ outcomes, making the i.i.d. assumption unrealistic. Therefore, a model-

free approach is needed for many randomized experiments.

In this paper, we develop a model-free and finite-population-exact framework for

randomized experiments subject to outcome misclassification via integer program-

ming. Our framework provides a unified approach to help address the following

four common questions concerning the design, analysis, and validation of a ran-

domized experiment:

• Design Stage: Q1–Given the planned randomization design, the planned

sample size, and some assumed effect size, how accurate is accurate enough

for the outcome measurement if we would like to ensure that the causal con-

clusion (e.g., rejecting a causal null hypothesis or not) based on the measured

outcomes agrees with that based on the true outcomes?

• Analysis Stage: After forming a causal conclusion based on measured out-

comes, two central questions are: Q2–How sensitive is this conclusion to

outcome misclassification? Q3–Is this conclusion more sensitive to false pos-

itives vs. false negatives among the treated vs. control subjects?
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• Validation Stage: Q4–For a validation substudy on outcome misclassifica-

tion, how to choose which subjects to include to make the validation sub-

study more efficient?

A central concept of our framework is called warning accuracy, which is defined

as the finite-population-exact threshold such that the causal conclusion based on

the measured outcomes may differ from that based on the true outcomes if the ac-

curacy of the measured outcomes did not surpass that threshold. We show how

warning accuracy, the related sensitive sets and sensitivity weights, and its dual con-

cept design accuracy can help investigate Q1–4 without adding any additional as-

sumptions to a randomized experiment. To handle the computational challenge

encountered in computing warning accuracy for large-scale randomized exper-

iments, called the “curse of symmetry," we propose a computation strategy to

adaptively reformulate a corresponding integer programming problem with re-

spect to the randomization design. Our computation strategy leverages some in-

trinsic characteristics of various randomization designs and recent advances in

erasing symmetry in integer programming (Fogarty et al., 2016, 2017), which can

be of independent interest. Our framework covers both Fisher’s sharp null and

Neyman’s weak null and works for a wide range of randomization designs. Our

framework can also be applied to matched or stratified observational studies that

adopt randomization-based inference. We illustrate our new framework through

studying the well-known puzzle in the PCPT introduced in Section 3.1.1.1.

Model-based approaches in the previous literature on outcome misclassification

can still be very useful (especially when we want to study questions beyond the

scope of Q1-Q4) as long as the models and assumptions were appropriately im-

posed, and researchers can still do further model-based approaches after adopting
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our framework. The central spirit of our framework is: Before imposing any addi-

tional assumptions to a randomized experiment (meanwhile taking the risk of assumption

violations or model misspecification) to conduct a model-assisted analysis for outcome mis-

classification, what useful information concerning outcome misclassification are we already

be able to learn from the data?

3.2 Review

3.2.1 Randomization-based inference with a binary outcome

Suppose that there are I ≥ 1 strata (or blocks, or study centers), and there are

ni subjects in stratum i, i = 1, . . . , I, with N = ∑I
i=1 ni subjects in total. Let Zij

be the treatment indicator of subject j in stratum i: Zij = 1 if subject j in stratum i

received treatment and Zij = 0 otherwise. Suppose that in stratum i a fixed number

mi of subjects are designed to receive the treatment, and ni − mi subjects receive

control, i.e., ∑ni
j=1 Zij = mi where mi ∈ {1, . . . , ni − 1}. Let Z = (Z11, . . . , ZInI )

and Z = {Z ∈ {0, 1}N : ∑ni
j=1 Zij = mi, i = 1, . . . , I} denote all possible treatment

assignments. In a randomized experiment, the treatment assignments are random

within each stratum, i.e.,

P(Z = z | Z) =
I

∏
i=1

(
ni

mi

)−1

, ∀z ∈ Z . (3.1)

In an observational study, the randomization assumption (3.1) is often assumed af-

ter adjusting for confounders using matching or stratification (Rosenbaum, 2002b).

The above set-up covers a wide range of randomized experiments and observa-

tional studies. When I = 1, the study is called a completely randomized experi-

ment. For I ≥ 2, the study is a general stratified/blocked randomized experiment
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or observational study. When ni = 2 for all i, the study is a paired randomized

experiment or pair-matched observational study. When mi = 1 and ni = n ≥ 3

for all i, the study is a randomized experiment or observational study with mul-

tiple controls. When mi = 1 for all i while ni may vary with i, the study is

a randomized experiment or observational study with variable controls. When

min{mi, ni − mi} = 1 for all i, the study is a finely stratified experiment (Fogarty,

2018) or an observational study with full matching (Rosenbaum, 1991; Hansen,

2004). See Imbens and Rubin (2015) and Rosenbaum (2002b, 2010) for detailed

introductions and definitions of various types of randomized experiments and ob-

servational studies.

Let Yij ∈ {0, 1} be the true outcome of subject j in stratum i and Y = (Y11, . . . , YInI ).

Following the potential outcomes framework (Neyman, 1923; Rubin, 1974), let

Yij(1) and Yij(0) be the potential (true) outcome under treated and that under con-

trol of subject j in stratum i respectively, therefore Yij = Yij(1)Zij + Yij(0)(1 − Zij).

In randomization-based inference for randomized experiments or observational

studies, potential outcomes are fixed values and the only probability distribution

that enters statistical inference is the randomization assumption (3.1) (Rosenbaum,

2002b; Imbens and Rubin, 2015; Athey and Imbens, 2017). Fisher’s sharp null

hypothesis of no treatment effect (Fisher, 1935) asserts that Hsharp
0 : Yij(1) =

Yij(0), ∀i, j. The commonly used test statistics for testing Hsharp
0 in randomization-

based inference with binary outcome are Fisher’s exact test (when I = 1) and

the Mantel-Haenszel test (when I ≥ 1), which is defined as TM-H(Z, Y) =

∑I
i=1 ∑ni

j=1 ZijYij (Mantel and Haenszel, 1959). The Mantel-Haenszel test reduces

to Fisher’s exact test when I = 1 and reduces to McNemar’s test when ni = 2 for

all i (Cox and Snell, 2018). People commonly use the following finite-population
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central limit theorem (Hájek, 1960; Rosenbaum, 2002b; Li and Ding, 2017) to

test Hsharp
0 : TM-H−E(TM-H)√

Var(TM-H)

L−→ N(0, 1), where E(TM-H) = ∑I
i=1(

mi
ni

∑ni
j=1 Yij) and

Var(TM-H) = ∑I
i=1

mi(∑
ni
j=1 Yij)(ni−∑

ni
j=1 Yij)(ni−mi)

n2
i (ni−1)

. In a two-sided level-α testing pro-

cedure, people reject Hsharp
0 if and only if {TM-H−E(TM-H)}2

Var(TM-H)
> χ2

1,1−α, where χ2
1,1−α is

1 − α quantile of chi-squared distribution with one degree of freedom.

Another extensively considered null hypothesis is Neyman’s weak null hypoth-

esis of no average treatment effect Hweak
0 : 1

N ∑I
i=1 ∑ni

j=1(Yij(1) − Yij(0)) = 0

(Neyman, 1923), which can be rewritten as Hweak
0 : ∑I

i=1
ni
N τi = 0, where τi =

1
ni

∑ni
j=1 Yij(1)− 1

ni
∑ni

j=1 Yij(0). A commonly used test statistic for testing Hweak
0 is

the Neyman estimator (i.e., the difference-in-means estimator) (Neyman, 1923):

TNeyman(Z, Y) = ∑I
i=1

ni
N τ̂i, where τ̂i =

1
mi

∑ni
j=1 ZijYij − 1

ni−mi
∑ni

j=1(1 − Zij)Yij. Un-

der Hweak
0 , we have E(TNeyman) = 0 and Var(TNeyman) = ∑I

i=1(
ni
N )2Var(τ̂i), where

Var(τ̂i) =
S2

T,i
mi

+
S2

C,i
ni−mi

− S2
i

ni
, with S2

T,i =
1

ni−1 ∑ni
j=1

(
Yij(1)− 1

ni
∑ni

j=1 Yij(1)
)2, S2

C,i =

1
ni−1 ∑ni

j=1

(
Yij(0)− 1

ni
∑ni

j=1 Yij(0)
)2, and S2

i = 1
ni−1 ∑ni

j=1

(
Yij(1)−Yij(0)− τi

)2. Peo-

ple commonly use the following finite-population central limit theorem (Hájek,

1960; Imbens and Rubin, 2015; Li and Ding, 2017) to test Hweak
0 :

TNeyman√
Var(TNeyman)

L−→

N(0, 1). Since S2
i involves τi which cannot be identified from the observed data,

people commonly adopt the following conservative estimator V̂ar(TNeyman) for

Var(TNeyman) (Neyman, 1923): V̂ar(TNeyman) = ∑I
i=1(

ni
N )2 · ( Ŝ2

T,i
mi

+
Ŝ2

C,i
ni−mi

), where

Ŝ2
T,i = 1

mi−1 ∑ni
j=1 Zij(Y∗

ij −
1

mi
∑ni

j=1 ZijY∗
ij)

2 and Ŝ2
C,i = 1

ni−mi−1 ∑ni
j=1(1 − Zij){Y∗

ij −
1

ni−mi
∑ni

j=1(1 − Zij)Y∗
ij}2. For example, in a two-sided level-α testing procedure,

people reject Hweak
0 if and only if

T2
Neyman

V̂ar(TNeyman)
> χ2

1,1−α. See Imbens and Rubin

(2015) for more details.
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3.2.2 Some basic concepts about outcome misclassification

As discussed in Section 3.1.1, in practice the measured outcomes Y∗ =

(Y∗
11, . . . , Y∗

InI
) may be subject to misclassification (i.e., Y∗ ̸= Y), and a causal con-

clusion based on Y∗ may differ from that based on the true outcomes Y. In outcome

misclassification and binary classification literature, the measured outcome Y∗
ij is

said to be a true positive if (Y∗
ij , Yij) = (1, 1), a false positive if (Y∗

ij , Yij) = (1, 0), a true

negative if (Y∗
ij , Yij) = (0, 0), or a false negative if (Y∗

ij , Yij) = (0, 1). Let TP, FP, TN

and FN denote the total number of subjects that lie in the above four categories

respectively. One of the most fundamental and widely used measures of the pre-

cision of Y∗ is accuracy, which is defined as the proportion of correct classification

among Y∗ under the true outcomes Y (denoted as A(Y∗ | Y)):

A(Y∗ | Y) =
TP + TN

TP + FP + TN + FN
=

∑I
i=1 ∑ni

j=1 1(Y∗
ij = Yij)

N
. (3.2)

Note that accuracy A(Y∗ | Y) is a model-free and finite-population-exact concept

and is therefore especially compatible with randomization-based inference frame-

work which does not require assuming any super-population models on the study

subjects.

3.3 A Model-Free and Finite-Population-Exact Frame-

work

In this section, we introduce several model-free and finite-population-exact quan-

tities to help address the four common questions Q1–4 listed in Section 3.1.2. In

Section 3.3.1, we give the motivations, definitions, and explanations of those quan-
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tities. In Section 3.3.2, we conclude how to use those quantities to address Q1–4.

3.3.1 Warning accuracy, sensitivity weights, and design accuracy

After obtaining a causal conclusion (i.e., rejecting causal null hypothesis or not)

based on the measured outcomes, a natural question is: how many misclassified

outcomes are needed at least to overturn that causal conclusion? We call such num-

ber as minimal alteration number. Or equivalently, what is the threshold such that

the causal conclusion based on the measured outcomes may differ from that based

on the true outcomes if the accuracy of the measured outcomes did not surpass

that threshold? We call this threshold the warning accuracy, for which a rigorous

definition is given below.

Definition 1 (Warning Accuracy). Let Dα(Z, Y∗) and Dα(Z, Y) denote the level-α hy-

pothesis testing result (rejecting the null hypothesis or not) based on the measured out-

comes Y∗ and that based on the true outcomes Y respectively, and A(Y∗ | Y) the accuracy

of Y∗ under Y. The warning accuracy given level α, the treatment indicators Z, and the

measured outcomes Y∗, is defined as

WA = max
Y:Dα(Z,Y∗) ̸=Dα(Z,Y)

A(Y∗ | Y). (3.3)

Then the corresponding minimal alteration number is (1 −WA)× N.

We here give some remarks on the warning accuracy WA defined in Definition 1.

First, it immediately follows from Definition 1 that if the (unknown) actual out-

come accuracy A(Y∗ | Y) > WA, we have Dα(Z, Y∗) = Dα(Z, Y) while if

A(Y∗ | Y) ≤ WA, it may happen that Dα(Z, Y∗) ̸= Dα(Z, Y). Therefore, other

things being equal, a smaller warning accuracy WA indicates less sensitivity to
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outcome misclassification. Second, the warning accuracy is model-free and finite-

population-exact as it does not require assuming that subjects are realizations from

some super-population model.

We now use two simple examples to illustrate why reporting the warning accuracy,

as a complement of the p-value based on measured outcomes, can greatly benefit

a randomized experiment (or an observational study using randomization-based

inference) subject to outcome misclassification.

Example 1. Consider a complete randomized experiment with one treated subject and

1000 controls. Without loss of generality, suppose that the treatment indicators Z =

(1, 0, . . . , 0). Assume that the corresponding measured outcomes Y∗ = (1, 0, . . . , 0). Then

the p-value under Fisher’s sharp null based on Y∗ is 1/1001<0.001, which would be con-

sidered as very strong evidence of treatment effect for many scientific journals. However,

if the true outcomes Y = (0, 0, . . . , 0), the true p-value will be one (no evidence), even if

Y∗ and Y only differ by one case of misclassification. In this case, the warning accuracy

is 1000/1001, implying high sensitivity to outcome misclassification, even if the p-value

based on Y∗ is very statistically significant.

Example 2. We consider the following two stratified randomized experiments with equal

total sample size (=17) and the same prespecified level of 0.05 (one-sided). It is easy to check

that study 1 has a smaller one-sided p-value (under Fisher’s sharp null) but larger warning

accuracy while study 2 has a larger one-sided p-value but smaller warning accuracy.
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Study 1 Stratum 1 Stratum 2 Stratum 3 p-value WA

Z (1 0 1) (0 0 1 0 0 0) (0 0 0 1 0 0 0 0)
1/144 16/17

Y∗ (1 0 1) (0 0 1 0 0 0) (0 0 0 1 0 0 0 0)

Study 2 Stratum 1 Stratum 2 Stratum 3 p-value WA

Z (1 0 0 0 0 0 0) (1 1 0 1 0) (0 0 1 1 0)
1/100 15/17

Y∗ (0 0 0 0 0 0 0) (1 1 0 1 0) (0 0 1 1 0)

In summary, Example 1 shows that even a causal conclusion with a very small

p-value can be very sensitive to outcome misclassification (exhibits high warning

accuracy). Example 2 implies that a causal conclusion with a smaller p-value is

not necessarily less sensitive to outcome misclassification than that with a larger

p-value. Therefore, when outcome misclassification is a concern, reporting the

warning accuracy can provide useful information about sensitivity to outcome

misclassification. Such information cannot be covered by p-value based on mea-

sured outcomes and does not require any additional assumptions.

Reporting warning accuracy alone has two limitations. First, warning accuracy is

a worst-case scenario sensitivity analysis for outcome misclassification. While the

worst-case scenario is universally valid, prior information or expert knowledge

may be able to shed light as to whether the warning accuracy is overly conserva-

tive. Second, warning accuracy itself does not provide any information about if

a causal conclusion is in general more sensitive to a false positive versus a false

negative in the treated versus the control group. We propose another concept

called sensitivity weights to overcome these two limitations, which is built on the

definition of warning accuracy and the following concept called a sensitive set. A

sensitive set refers to a minimal (in terms of cardinality) set of subjects such that if
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the outcomes of those subjects were misclassified, the causal conclusion based on

the measured outcomes will be overturned. Therefore, it is a collection of subjects

whose outcomes being misclassified or not are particularly influential to the causal

conclusion. A formal definition of a sensitive set is given below.

Definition 2 (Sensitive Set). Under the setting of Definition 1, let

Ỹ = (Ỹ11, . . . , ỸInI ) ∈ argmax
Y:Dα(Z,Y∗) ̸=Dα(Z,Y)

A(Y∗ | Y)

be an optimal solution to the optimization problem (3.3) associated with the definition of

warning accuracy. Then S = {ij : Ỹij ̸= Y∗
ij} is called a sensitive set.

In practice, there may exist more than one sensitive set as the solution to the opti-

mization problem involved in Definition 1 may not be unique. Therefore, a sensi-

tive set itself may not be an intrinsic quantify. However, as we will show in Sec-

tion 3.4, for the most widely used tests such as the Mantel-Haenszel test and the

Neyman estimator, these different sensitive sets can, in general, be transformed to

each other by some composition of within-strata and/or between-strata permuta-

tions, and share the same quantities called sensitivity wights–the key to answer Q3

and Q4.

Definition 3 (Sensitivity Weights). Under the setting of Definition 1, let S be a sensitive

set. Then there is a set of sensitivity weights defined as the following 2 × 2 table:

Sensitivity Weights False Positives False Negatives

Treated WFP
T WFN

T

Control WFP
C WFN

C

where WFP
T , WFN

T , WFP
C , and WFN

C denote the sensitivity weight of false positives in the
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treated group, that of false negatives in the treated group, that of false positives in the

control group, and that of false negatives in the control group respectively, defined as

WFP
T =

|{ij : Zij = 1, Y∗
ij = 1, Ỹij = 0}|

|S| , WFN
T =

|{ij : Zij = 1, Y∗
ij = 0, Ỹij = 1}|

|S| ,

WFP
C =

|{ij : Zij = 0, Y∗
ij = 1, Ỹij = 0}|

|S| , WFN
C =

|{ij : Zij = 0, Y∗
ij = 0, Ỹij = 1}|

|S| .

The rationale of sensitivity weights is straightforward: since the causal conclusion

is particularly sensitive to potential cases of outcome misclassification among the

subjects in a sensitive set, then the proportion of each of the four types of out-

come misclassification (i.e., false positives/negatives in the treated/control group)

within a sensitive set offers a sensible quantification about if the causal conclusion

is in particular sensitive to certain type of outcome misclassification. For exam-

ple, in Example 1, it is clear that the sensitivity weight of a false positive in the

treated group is the dominant term according to Definition 3, suggesting that the

causal conclusion is especially sensitive to a false positive in the treated group and

therefore should be given priority when conducting a validation study.

Not only can our framework benefit the analysis and validation of a randomized

experiment or an observational study based on randomization-based inference,

but also it can provide a benchmark for outcome measurement accuracy at the de-

sign stage of such studies. Specifically, by introducing a dual concept of warning

accuracy called design accuracy, under each assumed effect size, we can calculate

the expected threshold such that the causal conclusion based on the measured out-

comes is guaranteed to agree with that based on the true outcomes as long as the

outcome measurement accuracy surpasses that threshold. We call such procedure

in a design stage the accuracy calculation.
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Definition 4 (Design Accuracy). Let Y ∼ (p0, p1) denote that Yij | Zij = 0 ∼

Bern(p0) and Yij | Zij = 1 ∼ Bern(p1). The design accuracy given level α, the treat-

ment indicators Z, and the assumed effect size (p0, p1), is defined as

DA = EY∼(p0,p1)

{
max

Y∗ :Dα(Z,Y∗) ̸=Dα(Z,Y)
A(Y∗ | Y)

}
.

As indicated in Definition 4, design accuracy can be seen as a dual concept of

warning accuracy. For warning accuracy, measured outcomes are given and we

use an optimization solver to manipulate the unknown true outcomes to conduct

a worst-case scenario sensitivity analysis. In contrast, for design accuracy, we gen-

erate each set of true outcomes according to some assumed effect size and ma-

nipulate measured outcomes for each generated set of true outcomes to conduct a

worst-case scenario accuracy calculation. Ideally, we would like outcome measure-

ment to be as accurate as possible. However, there is typically a trade-off between

budget and outcome accuracy – the more accurate the outcome measurement, the

more budget and resources we may need to achieve that accuracy (Lubovsky et al.,

2005). Design accuracy provides a sensible benchmark for outcome accuracy with-

out modeling the outcome misclassification mechanism.

3.3.2 Strengthening a randomized experiment with warning ac-

curacy, sensitivity weights, and design accuracy

Putting the concepts developed in Section 3.3.1 together, we show how to use

warning accuracy, sensitivity weights, and design accuracy to strengthen the de-

sign, analysis, and validation of a randomized experiment subject to outcome mis-

classification.
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Design Stage: To address Q1, design accuracy can serve as a worst-case sce-

nario benchmark for outcome accuracy. Specifically, after fixing the sample size

and randomization design, researchers can specify various effect sizes (p0, p1)

and generate 1000 simulated sets of true outcomes Y according to Yij | Zij =

0 ∼ Bern(p0) and Yij | Zij = 1 ∼ Bern(p1). Then researchers compute

the 1000 corresponding optimal values of the following optimization problem:

maxY∗ :Dα(Z,Y∗) ̸=Dα(Z,Y) A(Y∗ | Y), and take their average as the approximate de-

sign accuracy defined in Definition 4.

Analysis Stage: To address Q2, after reporting the p-value based on the measured

outcomes, researchers can then report the warning accuracy under the prespecified

level. A low warning accuracy implies a causal conclusion’s high insensitivity (ro-

bustness) to outcome misclassification. If the warning accuracy is relatively high

instead, researchers should report the sensitivity weights and check if the domi-

nant term among the four types of outcome misclassification (false positives/neg-

atives in the treated/control group) agrees with that based on prior information

and/or expert knowledge or not (we will illustrate such procedure in detail in Sec-

tion 3.5). If this is the case, the causal conclusion drawn from the measured out-

comes may be misleading even if the unknown actual outcome accuracy equals or

is close to that high warning accuracy. Otherwise, we would expect the actual ac-

curacy needed to overturn the causal conclusion based on the measured outcomes

to be lower, or even much lower, than that high warning accuracy. To address Q3,

we report the four sensitivity weights and observe if there is any dominant term

among the four sensitivity weights. Such a term would be a strong sign that the

causal conclusion based on the measured outcomes is particularly sensitive to that

type of outcome misclassification.
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Validation Stage: If the warning accuracy is relatively high and the dominant term

among the four sensitivity weights is expected in practice, then researchers may

want to select a subset of study subjects for outcome validation. When choosing

a validation subset, it makes sense to give priorities to (i) the type of outcome

misclassification with the dominant sensitivity weight and (ii) the subjects that

belong to a sensitive set. This offers a sensible answer to Q4.

3.4 Computing Warning Accuracy and Related Quan-

tities

3.4.1 The original problem formulation and the “curse of symme-

try"

When the sample size N is large, it is typically infeasible to calculate warning

accuracy by hand as in Section 3.3.1. A general strategy for tackling a compu-

tationally extensive problem involving integers, such as calculating warning ac-

curacy (3.3), is to appropriately formulate the problem into an integer program

and apply a state-of-the-art optimization solver. We first consider testing Hsharp
0

with the routinely used Mantel-Haenszel test, which reduces to Fisher’s exact test

when I = 1. If Hsharp
0 was rejected by the Mantel Haenszel test at level α, i.e.,

if [TM-H(Z,Y∗)−E{TM-H(Z,Y∗)}]2
Var{TM-H(Z,Y∗)} > χ2

1,1−α, by Definition 1, the warning accuracy is the

optimal value of the following integer quadratically constrained linear program:

maximize
Y∈{0,1}N

1
N

I

∑
i=1

ni

∑
j=1

Y∗
ijYij +

1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij)(1 − Yij) (P0)

subject to [TM-H(Z, Y)− E{TM-H(Z, Y)}]2 − χ2
1,1−α · Var{TM-H(Z, Y)} ≤ 0.
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The objective function of (P0) comes from Definition 1 and a simple observation

that ∑I
i=1 ∑ni

j=1 1(Y∗
ij = Yij) = ∑I

i=1 ∑ni
j=1 Y∗

ijYij + ∑I
i=1 ∑ni

j=1(1 − Y∗
ij)(1 − Yij), which

is a linear function in Y given Y∗. The inequality constraint of (P0) comes from the

fact that Dα(Z, Y) ̸= Dα(Z, Y∗) = “Reject” if and only if [TM-H(Z,Y)−E{TM-H(Z,Y)}]2
Var{TM-H(Z,Y)} ≤

χ2
1,1−α, which can be rewritten as a quadratic constraint in Y as in (P0). Instead if

Hsharp
0 fails to be rejected by the Mantel-Haenszel test based on Y∗, to compute the

warning accuracy, we just need to solve a simple variant of (P0) with replacing the

“≤ 0" with the “≥ 0" in the constraint. Typically, a sensitivity analysis (e.g., calcu-

lating warning accuracy) makes more sense if a null hypothesis was rejected (i.e.,

some treatment effect was detected) by a primary analysis (Rosenbaum, 2002b), so

in the rest of this paper we focus on solving (P0). For calculating the warning accu-

racy under Neyman’s weak null, we just need to replace the inequality constraint

in (P0) with {TNeyman(Z, Y)}2 − χ2
1,1−α · V̂ar{TNeyman(Z, Y)} ≤ 0 (or ≥ 0), which is

still a quadratic constraint in Y. See Appendix A.3 for more details.

The original problem formulation (P0) seems straightforward and natural. How-

ever, this seemingly reasonable integer program formulation can easily make the

computation infeasible because of the so-called “curse of symmetry" (Margot,

2010), as will be explained further below. For clarity of the notation, without loss

of generality, in Section 3.4.1 we temporarily re-organize subjects within the same

stratum such that for each stratum i, we have Zij1 ≤ Zij2 and Y∗
ij1

≤ Y∗
ij2

as long

as j1 ≤ j2. Following the typical notation in group theory (Scott, 2012), we let

(ij, ij′) denote the permutation of the index set I = {11, 12, . . . , InI} such that in-

dex ij exchanges with index ij′ while all other indexes remain the same. Define

the following permutation group Gwithin over I : Gwithin = {All possible compo-

sitions of any (ij, ij′) s.t. Y∗
ij = Y∗

ij′ and Zij = Zij′}. Let gY denote that the permu-
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tation g acts on the indexes in Y : gY = g(Y11, . . . , YInI ) = (Yg(11), . . . , Yg(InI)).

It is clear that for any g ∈ Gwithin, we have A(Y∗ | gY) = A(Y∗ | Y) and

Dα(Z, gY) = Dα(Z, Y), i.e., the integer program (P0) is invariant under any per-

mutation g ∈ Gwithin. We call this property within-strata symmetry. Then for

each stratum i, let Λi = (Λ00
i , Λ01

i , Λ10
i , Λ11

i ) = (∑ni
j=1(1 − Zij)(1 − Y∗

ij), ∑ni
j=1(1 −

Zij)Y∗
ij , ∑ni

j=1 Zij(1 − Y∗
ij), ∑ni

j=1 ZijY∗
ij) denote the measured 2 × 2 table of stratum i.

Let S denote the number of unique 2 × 2 tables among {Λi, i = 1, . . . , I}, and let

Ps denote the number of strata with the measured 2 × 2 tables equalling the s-th

unique table Λ[s] = (Λ00
[s], Λ01

[s], Λ10
[s], Λ11

[s]), s = 1, . . . , S, therefore ∑S
s=1 Ps = I. For

two strata i and i′ with ni = ni′ , we let (i, i′) = (i1, i′1) . . . (ini, i′ni′) denote the per-

mutation of I such that stratum i’s indexes element-wisely exchange with stratum

i′’s indexes while all other indexes remain the same. Define the following permu-

tation group Gbetween = {All possible compositions of any(i, i′) s.t. Λi = Λi′} over

I . It is clear that for any g ∈ Gbetween, we also have A(Y∗ | gY) = A(Y∗ | Y)

and Dα(Z, gY) = Dα(Z, Y), i.e., the integer program (P0) is invariant under any

permutation g ∈ Gbetween. We call such property as between-strata symmetry. To

illustrate, we classify all the study subjects into four types based on the treatment

indicator Z and measured outcome Y∗ as in Table 3.1 (a). Then an illustration of

the two types of symmetry, within-strata symmetry and between-strata symmetry,

is given in Table 3.1 (b).
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Table 3.1: Illustration of the two types of symmetry: between-strata symmetry
(e.g., stratum 1 and stratum 2) and within-strata symmetry (e.g., subject 1 and
subject 2 in stratum 3).

Y∗ = 1 Y∗ = 0

Z = 1

Z = 0

(a) Four types of study subjects

Subject 1 Subject 2 Subject 3

Stratum 1

Stratum 2

Stratum 3

(b) Two types of symmetry

Putting the above discussions together, define the permutation group G = {All

possible compositions of elements from Gwithin and Gbetween}. For any g ∈ G, the

integer program (P0) is invariant under permutation g. Note that

|G| = |Gbetween| × |Gwithin| =
S

∏
s=1

Ps! ×
I

∏
i=1

Λ00
i !Λ01

i !Λ10
i !Λ11

i !,

which is an extremely large number if N is large, indicating an extremely high

degree of symmetry of program (P0) and resulting in computational infeasibility

of solving (P0) due to the so-called “curse of symmetry," which refers to a general

fact that an integer program is typically computationally infeasible if its variables

can be permuted in many ways (e.g., |G| is large) without changing the structure

of the problem (Margot, 2010).

In addition to the computational challenge, another implication of the above argu-

ments is that, as mentioned in Section 3.3.1, a sensitive set (i.e., an optimal solution

to the integer program (P0)) itself is not an intrinsic concept because for a given

sensitive set, its transformation under some between-strata permutations (as in

Gbetween) and/or within-strata permutations (as in Gwithin) is still a sensitive set.

109



However, a simple but important observation is that these different sensitive sets

have the same sensitivity weights. As mentioned in Section 3.3.1, this motivates

us to introduce an intrinsic concept associated with a sensitive set – sensitivity

weights, which is invariant under any permutations in Gbetween and Gwithin and

therefore provides an intrinsic quantification of a causal conclusion’s relative sen-

sitivity to the four different types of outcome misclassification.

3.4.2 Two types of randomization designs and an adaptive refor-

mulation strategy

In Section 3.4.2, we propose a general strategy to solve the “curse of symmetry" en-

countered when calculating the warning accuracy according to the original prob-

lem formulation (P0). The core idea of our strategy is to reformulate the integer

program (P0) with respect to an intrinsic characteristic of various randomization

designs–whether within-strata symmetry dominates between-strata symmetry for

that randomization design or vice visa. Specifically, we classify many commonly

used randomization designs into the following two types:

• Type I randomization designs: those in which within-strata symmetry dom-

inates between-strata symmetry (i.e., |Gwithin| ≫ |Gbetween|). This class

of randomization designs include some commonly used randomization de-

signs (including randomized experiments and observational studies adopt-

ing randomization-based inference) such as completely randomized experi-

ments (for which |Gbetween| = 1) and stratified/blocked randomized experi-

ments or observational studies with most strata/blocks being large.

• Type II randomization designs: those in which between-strata symmetry
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dominates within-strata symmetry (i.e., |Gbetween| ≫ |Gwithin|). This class

of randomization designs include some widely used randomization designs

such as paired randomized experiments or pair-matched observational stud-

ies (for which |Gwithin| = 1), randomized experiments or observational stud-

ies with multiple controls, randomized experiments or observational studies

with variable controls, finely stratified experiments or observational studies

with full matching, and stratified/blocked randomized experiments or ob-

servational studies with most strata/blocks being small.

3.4.2.1 Type I: within-strata symmetry dominates between-strata symmetry

We first show how to reformulate the integer program (P0) for type I random-

ization designs. By independence of treatment assignments between strata, the

definition of A(Y | Y∗) and that of the Mantel-Haenszel test, the accuracy (the

objective function of (P0)) can be determined by the I 2 × 2 tables {∑ni
j=1 1(Y∗

ij =

b, Yij = c) : b, c ∈ {0, 1}} (i = 1, . . . , I) and the constraint’s feasibility (i.e., the

Mantel-Haenszel test fails to reject Hsharp
0 based on Y) can be determined by the

I 2 × 2 tables {∑ni
j=1 1(Zij = a, Yij = c) : b, c ∈ {0, 1}} (i = 1, . . . , I). Therefore,

the integer program (P0) can be determined by the I 2 × 2 × 2 tables {∑ni
j=1 1(Zij =

a, Y∗
ij = b, Yij = c) : a, b, c ∈ {0, 1}} (i = 1, . . . , I). Because Z and Y∗ have been

observed, for each stratum i, the i-th 2 × 2 × 2 table only has the following four

degrees of freedom: Υ00
i = ∑ni

j=1 1(Zij = 0, Y∗
ij = 0, Yij = 1), Υ01

i = ∑ni
j=1 1(Zij =

0, Y∗
ij = 1, Yij = 1), Υ10

i = ∑ni
j=1 1(Zij = 1, Y∗

ij = 0, Yij = 1), and Υ11
i = ∑ni

j=1 1(Zij =

1, Y∗
ij = 1, Yij = 1). Let Υ = (Υ00

1 , Υ01
1 , Υ10

1 , Υ11
1 , . . . , Υ00

I , Υ01
I , Υ10

I , Υ11
I ) ∈ Z4I and

Ῠi = Υ00
i + Υ01

i + Υ10
i + Υ11

i , then (P0) can be reformulated as the following integer
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quadratic program (P1):

max
Υ∈Z4I

1
N

I

∑
i=1

(Υ01
i + Υ11

i − Υ00
i − Υ10

i ) +
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij) (P1)

s.t.
{ I

∑
i=1

(Υ10
i + Υ11

i )−
I

∑
i=1

mi

ni
Ῠi

}2
− χ2

1,1−α ·
I

∑
i=1

miῨi(ni − Ῠi)(ni − mi)

n2
i (ni − 1)

≤ 0,

0 ≤ Υ00
i ≤

ni

∑
j=1

(1 − Zij)(1 − Y∗
ij), ∀i

0 ≤ Υ01
i ≤

ni

∑
j=1

(1 − Zij)Y∗
ij , ∀i

0 ≤ Υ10
i ≤

ni

∑
j=1

Zij(1 − Y∗
ij), ∀i

0 ≤ Υ11
i ≤

ni

∑
j=1

ZijY∗
ij . ∀i

Note that in (P1), in addition to rewriting the objective function and constraint of

(P0) in terms of new variables Υ, we also add the bounding constraints for Υ. It

is clear that there is no within-strata symmetry anymore in (P1), which was pre-

viously a major source of symmetry in the original formulation (P0) for type I

randomization designs. The above argument also works for the case of testing

Neyman’s weak null Hweak
0 with type I randomization designs; see Appendix B.3

for details. In Appendix C, we showed how to calculate sensitivity weights and a

collection of sensitive sets after solving (P1).

3.4.2.2 Type II: between-strata symmetry dominates within-strata symmetry

Our strategy of reformulating the integer program (P0) for type II randomization

designs is inspired by both the observations discussed in Section 3.4.2.1 and an

idea from Fogarty et al. (2016). Specifically, in Fogarty et al. (2016), to erase sym-
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metry in finding the worst-case variance estimator for the average treatment effect

with binary outcomes in an observational study with full matching, instead of ma-

nipulating the potential outcomes based on the treatment indicators and observed

outcomes, the authors proposed to list all possible 2 × 2 × 2 tables (in terms of

treatment indicators, observed outcomes, and potential outcomes) based on ob-

served data and manipulate the number of each possible 2 × 2 × 2 table that enter

into randomization inference. Although in this paper we are studying a totally

different problem, we can combine this general philosophy and the arguments in

Section 3.4.2.1 to reformulate the integer program (P0) for type II randomization

designs.

A high-level summary of the idea is: for type II randomization designs, there are

many “words" (strata), but not many “vocabularies" (all possible 2 × 2 × 2 tables

in terms of binary treatment indicators, binary measured outcomes, and binary

true outcomes, given the observed data). Therefore, instead of directly manip-

ulating the potential 2 × 2 × 2 table for each stratum as in (P1), we first create

a “dictionary" that lists all possible unique 2 × 2 × 2 tables based on measured

2 × 2 tables (in terms of treatment indicators and measured outcomes), and then

manipulate the total number of strata that take certain 2 × 2 × 2 table. We call

this strategy as the “dictionary method." Specifically, for the s-th unique 2 × 2

table Λ[s] = (Λ00
[s], Λ01

[s], Λ10
[s], Λ11

[s]), s = 1, . . . , S, let ñs and m̃s denote its number

of total study subjects and its number of treated subjects. Moreover, for the s-th

unique 2 × 2 table Λ[s], there are Ñs = (Λ00
[s] + 1)(Λ01

[s] + 1)(Λ10
[s] + 1)(Λ11

[s] + 1) pos-

sible unique 2 × 2 × 2 tables {∑ñs
j=1 1(Zij = a, Y∗

ij = b, Yij = c) : a, b, c ∈ {0, 1}}

(s = 1, . . . , S). Let dsp be the number of the p-th unique 2 × 2 × 2 table ∆sp

for the s-th unique table Λ[s], s = 1, . . . , S and p = 1, . . . , Ñs. Since Z and Y∗
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are given, each 2 × 2 × 2 table ∆sp can be uniquely determined by four numbers

∆00
sp = ∑ñs

j=1 1(Zij = 0, Y∗
ij = 0, Yij = 1), ∆01

sp = ∑ñs
j=1 1(Zij = 0, Y∗

ij = 1, Yij = 1),

∆10
sp = ∑ñs

j=1 1(Zij = 1, Y∗
ij = 0, Yij = 1), and ∆11

sp = ∑ñs
j=1 1(Zij = 1, Y∗

ij = 1, Yij = 1).

Let ∆̆sp = ∆00
sp +∆01

sp +∆10
sp +∆11

sp, then we can reformulate the integer program (P0)

as the following integer quadratic program (P2):

max
dsp∈Z

1
N

S

∑
s=1

Ñs

∑
p=1

dsp(∆01
sp + ∆11

sp − ∆00
sp − ∆10

sp) +
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij) (P2)

s.t.
{ S

∑
s=1

Ñs

∑
p=1

dsp(∆10
sp + ∆11

sp)−
S

∑
s=1

Ñs

∑
p=1

dsp

( m̃s

ñs
· ∆̆sp

)}2

− χ2
1,1−α ·

S

∑
s=1

Ñs

∑
p=1

dsp
m̃s∆̆sp(ñs − ∆̆sp)(ñs − m̃s)

ñ2
s (ñs − 1)

≤ 0,

Ñs

∑
p=1

dsp = Ps, ∀s

dsp ≥ 0. ∀s, p

Note that in (P2), (∆00
sp, ∆01

sp, ∆10
sp, ∆11

sp) are fixed numbers (i.e., “vocabularies" listed

in a “dictionary") and the decision variables are dsp, i.e., the total number of strata

that take the unique 2 × 2 × 2 table (∆00
sp, ∆01

sp, ∆10
sp, ∆11

sp). It is clear that there is nei-

ther within-strata symmetry nor between-strata symmetry in (P2) and therefore

surpasses the formulation (P1) in terms of erasing symmetry. However, the dimen-

sion of the decision variables in (P2) is ∑S
s=1 Ñs = ∑S

s=1(Λ
00
[s] + 1)(Λ01

[s] + 1)(Λ10
[s] +

1)(Λ11
[s] + 1), which is typically very high for type I randomization designs, but is

typically not high for type II randomization. Therefore, for type II randomization

designs, it is appropriate to reformulate (P0) as (P2). While for type I random-

ization designs for which within-strata symmetry is the main concern, it is more

appropriate to reformulate (P0) as (P1).
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The above argument also works for the case of testing Hweak
0 with type II random-

ization designs; see Appendix B.4 for details. A method of calculating sensitivity

weights and a collection of sensitive sets after solving (P2) is given in Appendix C.

3.4.3 Simulation studies

We conduct simulations to study the computational efficiency of the adaptive re-

formulation strategy proposed in Section 3.4.2. We also gain some insights on how

warning accuracy and sensitivity weights vary with the effect size of measured

outcomes and sample size. Note that the data generating processes described be-

low are only intended for automatically generating data sets for simulations as our

framework works for any given data sets and does not require assuming any data

generating models. We investigate both type I and type II randomization designs

through considering the following two simulation scenarios:

• Simulation Scenario 1 (for Type I randomization designs): We consider a

stratified randomized experiment (or a stratified observational study adopt-

ing randomization-based inference) with I = 40 or 200 strata. We let U (A)

denote uniform distribution over the set A. In each independent simulation

run, for each i = 1, . . . , I we randomly draw mi from U ({10, 11, . . . , 40}) and

then randomly draw ni − mi from U ({10, 11, . . . , 40}). The expected total

number of study subjects E(N) = {E(mi) + E(ni − mi)} · I = 50I = 2000 or

10, 000.

• Simulation Scenario 2 (for Type II randomization designs): We consider a

finely stratified randomized experiment (or a matched observational study

with full matching) with I = 400 or 2000 strata. In each independent sim-

ulation run, for each i = 1, . . . , I we randomly generate mi and ni − mi
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based on the following procedure: we first set min{mi, ni − mi} = 1

and draw max{mi, ni − mi} from U ({1, 2, . . . , 7}) and then randomly assign

min{mi, ni − mi} and max{mi, ni − mi} to mi and ni − mi. Then we have

E(N) = {E(mi) + E(ni − mi)} · I = 5I = 2000 or 10, 000.

For both Simulation Scenarios 1 and 2, in each independent simulation run we gen-

erate Z and Y∗ according to the following procedure: 1) Given the generated ni and

mi, the treatments are randomly assigned within each stratum, i.e., the random-

ization assumption (3.1) holds. 2) We then independently generate a measured

outcome Y∗
ij for each study subject ij according to: Y∗

ij ∼ Bernoulli(p1) if Zij = 1

and Y∗
ij ∼ Bernoulli(p0) if Zij = 0. We here consider testing Fisher’s sharp null

Hsharp
0 . The parallel simulation studies for Neyman’s weak null Hweak

0 are reported

in Appendix D in the supplementary materials. After conducting 1000 indepen-

dent simulation runs for each of the different prespecified sets of (E(N), p0, p1)

(18 sets in total) under Simulation Scenarios 1 and 2, we report the correspond-

ing average computation time, average warning accuracy and average sensitivity

weights in Table 3.2. Here are some further details about the specific procedure

of obtaining the results in Table 3.2: (i) As mentioned in Section 3.4.1, conduct-

ing a sensitivity analysis or a validation study typically makes more sense when a

treatment effect was detected in a primary analysis (Rosenbaum, 2002b) based on

measured outcomes Y∗. Therefore, we exclude few simulation runs (i.e., generated

data sets) in which the null hypothesis failed to be rejected based on the generated

measured outcomes (107 out of 36,000 runs). (ii) For the remaining 35,893 simu-

lation runs, since the worst-case complexity of integer programming is NP-hard,

to avoid our simulation study failing to be finished in a tolerable amount of time,

we force a simulation run to stop if it exceeds 100 seconds, report the total num-
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ber of such cases, and exclude such cases when calculating the average computa-

tion time, warning accuracy, and sensitivity weights. However, such potentially

computationally infeasible cases (computation time exceeds 100 seconds) are very

rare (5 out of 35,893 runs) and our framework is computationally efficient in most

cases. (iii) The computation was done by the optimization solver Gurobi (version

9.1) (Gurobi Optimization, LLC, 2022) and a laptop computer with a 1.6 GHz Dual-

Core Intel Core i5 processor and 4 GB 1600 MHz DDR3 memory. See Table 3.2 for

the detailed simulation results.

Table 3.2: The average computation time (in seconds), warning accuracy WA and
sensitivity weights (WFP

T , WFN
T , WFP

C , WFN
C ) of different sets of (E(N), p0, p1) for

Simulation Scenarios 1 and 2 (for type I and type II randomization designs respec-
tively).

Type I Randomization Designs (Simulation Scenario 1)

p0 = 0.3
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.4 0.15 s 0.98 0.33 0.00 0.00 0.67 3.67 s 0.97 0.35 0.00 0.00 0.65

p1 = 0.6 0.17 s 0.91 0.46 0.00 0.00 0.54 3.73 s 0.90 0.46 0.00 0.00 0.54

p1 = 0.8 0.18 s 0.83 0.54 0.00 0.00 0.46 3.79 s 0.82 0.54 0.00 0.00 0.46

p0 = 0.6
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.7 0.15 s 0.98 0.68 0.00 0.00 0.32 3.66 s 0.97 0.66 0.00 0.00 0.34

p1 = 0.8 0.16 s 0.95 0.72 0.00 0.00 0.28 3.73 s 0.94 0.69 0.00 0.00 0.31

p1 = 0.9 0.17 s 0.91 0.75 0.00 0.00 0.25 3.71 s 0.90 0.72 0.00 0.00 0.28

p0 = 0.9
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.2 0.21 s 0.74 0.00 0.46 0.54 0.00 4.15 s 0.74 0.00 0.47 0.53 0.00

p1 = 0.4 0.19 s 0.83 0.00 0.37 0.63 0.00 3.79 s 0.82 0.00 0.38 0.62 0.00

p1 = 0.6 0.17 s 0.91 0.00 0.25 0.75 0.00 3.70 s 0.90 0.00 0.28 0.72 0.00

Type II Randomization Designs (Simulation Scenario 2)

p0 = 0.3
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.4 2.75 s 0.99 0.13 0.00 0.00 0.87 6.33 s 0.99 0.27 0.00 0.00 0.73

117



p1 = 0.6 2.68 s 0.96 0.44 0.00 0.00 0.56 8.00 s 0.95 0.44 0.00 0.00 0.56

p1 = 0.8 1.95 s 0.92 0.54 0.00 0.00 0.46 8.68 s 0.91 0.54 0.00 0.00 0.46

p0 = 0.6
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.7 2.80 s 0.99 0.85 0.00 0.00 0.15 6.43 s 0.99 0.73 0.00 0.00 0.27

p1 = 0.8 2.22 s 0.97 0.76 0.00 0.00 0.24 6.19 s 0.97 0.72 0.00 0.00 0.28

p1 = 0.9 1.45 s 0.96 0.75 0.00 0.00 0.25 5.40 s 0.95 0.75 0.00 0.00 0.25

p0 = 0.9
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.2 1.09 s 0.88 0.00 0.47 0.53 0.00 6.86 s 0.87 0.00 0.47 0.53 0.00

p1 = 0.4 1.45 s 0.92 0.00 0.38 0.62 0.00 7.33 s 0.91 0.00 0.39 0.61 0.00

p1 = 0.6 1.44 s 0.96 0.00 0.25 0.75 0.00 5.41 s 0.95 0.00 0.26 0.74 0.00

From the simulation results shown in Table 3.2, we can find that: 1) In most simu-

lation runs, our computation strategy for calculating warning accuracy and sensi-

tivity weights is very efficient with the average computation time being a few sec-

onds, even for large data sets (e.g., E(N) = 10, 000). 2) Other things being equal,

warning accuracy decreases as measured effect size (i.e., difference in p0 and p1)

increases, which agrees with the fact that detection of a treatment effect is less sen-

sitive to outcome misclassification if the measured effect size is larger. 3) Specific

values of sensitivity weights should depend on the specific randomization design,

sample size, and (p0, p1), but we can still observe some general patterns from the

simulations. First, when a positive treatment effect was detected (i.e., p1 > p0

and Hsharp
0 was rejected), only WFP

T and WFN
C can be non-zero (in other words,

WFN
T and WFP

C must be zero). This agrees with the simple fact that there are only

two types of outcome misclassification that can overturn a detected positive treat-

ment effect: false positives among the treated group and false negatives among
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the control group. Similarly, when a negative treatment effect was detected (i.e.,

p1 < p0 and Hsharp
0 was rejected), only WFN

T and WFP
C can be non-zero (in other

words, WFP
T and WFN

C must be zero). Second, among the two non-zero sensitivity

weights, which one dominates the other depends on the specific randomization

design and (p0, p1). For example, for both Simulation Scenarios 1 and 2, when

p0 = 0.3 and p1 = 0.4, WFN
C dominates WFP

T , while when p0 = 0.6 and p1 = 0.9,

WFP
T dominates WFN

C instead. In some cases, the two non-zero sensitivity weights

are comparable; see p0 = 0.9 and p1 = 0.2 for Simulation Scenarios 1 and 2.

3.5 Real Data Application: Understanding the Puzzle

in the PCPT

We now apply our newly developed framework to understand the puzzle in the

PCPT described in Section 3.1.1.1. Following Thompson et al. (2003), the prespec-

ified alpha level is 0.05. We apply the efficient computation strategy developed in

Section 3.4 to calculate warning accuracy (equivalently, minimal alteration num-

ber) and sensitivity weights for the two binary outcomes of interest in the PCPT:

prostate cancer indicator (cancer versus no cancer) and high-grade prostate cancer

indicator (high-grade prostate cancer versus no cancer or low-grade cancer) at 7

years. The results are reported in Table 3.3 below.
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Table 3.3: The p-values, warning accuracy and sensitivity weights for the two bi-
nary outcomes of interest in the PCPT under Fisher’s sharp null hypothesis of no
treatment effect and alpha level 0.05.

Outcome Prostate Cancer High-Grade Prostate Cancer

(Sample Size N) (N = 9060) (N = 9037)

Relative Risk 0.75 (Protective Factor) 1.27 (Risk Factor)

p-value 4.66 × 10−13 6.79 × 10−3

Reject H0 or Not Yes Yes

Causal Conclusion Prevents Prostate Cancer Promotes High-Grade Cancer

Warning Accuracy 98.37% 99.88%

Minimal Alteration # 147 11

Sensitivity Weights False Positives False Negatives False Positives False Negatives

Finasteride 0 132/147 2/11 0

Placebo 15/147 0 0 9/11

We now give an interpretation of the results in Table 3.3. First, according to the

reported values of warning accuracy and minimal alteration number, in a worst-

case scenario sensitivity analysis, the causal conclusion concerning the prevention

effect of Finasteride on prostate cancer is less sensitive to outcome misclassification

than the causal conclusion concerning the promotion effect on high-grade prostate

cancer (the two values of warning accuracy differ by 1.5%). A 1.5% difference in

warning accuracy is nontrivial as the sample size is large (over 9000 study subjects)

and it corresponds to a difference of 136 in the minimal alteration number. In other

words, to alter the causal conclusion concerning the prevention effect, it requires

147/11 ≈ 13.4 times more cases of outcome misclassification than that required by

the causal conclusion concerning the promotion effect.

Second, we leverage the reported sensitivity weights and related prior information
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and expert knowledge to further investigate sensitivity to outcome misclassifica-

tion for each of the two causal conclusions. From the reported sensitivity weights

in Table 3.3, we learn that for both of the causal conclusions, the major concern is

false negatives: the dominant term among the sensitivity weights for the preven-

tion effect is false negatives among the Finasteride (treated) group and that for the

promotion effect is false negatives among the placebo (control) group. For each

of the two causal conclusions, is it plausible that the dominant term among the

sensitivity weights is the dominant term among the four actual numbers of out-

come misclassification cases? We now use related prior information and expert

knowledge to shed light on this issue for the two outcomes of interest. We define

the following notation: NT–number of treated subjects; NC–number of control sub-

jects; pT,1 (or pT,0)–proportion of positive (or negative) true outcomes among the

treated subjects; pC,1 (or pC,0)–proportion of positive (or negative) true outcomes

among the control subjects; πT,1|0 (or πT,0|1)–proportion of false positives (or false

negatives) among the treated subjects with true outcomes being negative (or pos-

itive); πC,1|0 (or πC,0|1)–proportion of false positives (or false negatives) among

the control subjects with true outcomes being negative (or positive). Then the total

number of each of the four types of outcome misclassification (false positives/neg-

atives among the treated/control group) can be decomposed into the product of

these three terms, as shown in Table 3.4.

Table 3.4: Decomposition of the total number of outcome misclassification cases
for each of the four types of outcome misclassification.

Misclassification Cases False Positives False Negatives

Finasteride (Treated) NT · pT,0 · πT,1|0 NT · pT,1 · πT,0|1

Placebo (Control) NC · pC,0 · πC,1|0 NC · pC,1 · πC,0|1
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For PCPT, we have the following related prior information or expert knowledge:

(i) We have NT ≈ NC by design. (ii) Even if there are misclassified outcomes, it may

still be sensible to get some sense of the values of (pT,0, pT,1, pC,0, pC,1) using mea-

sured outcomes. Based on measured outcomes, for the prostate cancer (all grades)

outcome, pT,0 ≈ 82%, pT,1 ≈ 18%, pC,0 ≈ 76%, pC,1 ≈ 24%. For the high-grade

prostate cancer outcome, pT,0 ≈ 94%, pT,1 ≈ 6%, pC,0 ≈ 95%, pC,1 ≈ 5%. Here

“≈" means a very rough estimation based on measured outcomes. (iii) Finasteride

substantially improves detection of prostate cancer (all-grades). According to NIH

(2013): “Finasteride has several effects on the prostate that allow better detection

of prostate cancers. The drug shrinks the prostate, reducing its size and volume

and increasing the chance that a biopsy will find existing cancers." Meanwhile,

Finasteride also greatly improves accuracy in prostate cancer grading at biopsy

(Redman et al., 2008). Therefore, we expect πC,0|1 ≫ πT,0|1 for both outcomes.

Therefore, according to (i), (ii), and (iii), we expect that: 1) For the prostate cancer

outcome, false negatives among the treated (Finasteride) group (i.e., the dominant

term among the four sensitivity weights) should not be the actual dominant term

among the four types of outcome misclassification, as at least we expect that the

number of false negatives among the treated should not dominate the number of

false negatives among controls. Consequently, we expect that for the prostate can-

cer outcome, the actual accuracy needed to overturn the causal conclusion about

the prevention effect should be lower than the warning accuracy of 98.37%. 2)

For the high-grade prostate cancer outcome, false negatives among the control

(placebo) group (i.e., the dominant term among the four sensitivity weights) could

be the actual dominant term among the four types of outcome misclassification,

as we at least expect that the number of false negatives among controls should
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dominate the number of false negatives among the treated. Although whether the

number of false negatives among controls dominates the number of false positives

among the treated/control group needs further investigation and information, un-

like the prostate cancer outcome (prevention effect), for the high-grade prostate

cancer outcome we currently do not have evidence that the actual accuracy needed

to overturn the causal conclusion about the promotion effect should be lower than

the reported warning accuracy of 99.88%.

Putting all the arguments together, based on the experimental data, the informa-

tion provided using our new approach, and related expert knowledge, we have ev-

idence that the causal conclusion that Finasteride prevents prostate cancer is more

reliable and the causal conclusion that Finasteride promotes high-grade prostate

cancer is less convincing and may be due to systematic (differential) outcome mis-

classification. Our finding supports some previous arguments proposed by do-

main scientists and biostatisticians (e.g., Lucia et al., 2007; Redman et al., 2008;

Shepherd et al., 2008).

3.6 Summary

In this paper, we proposed a model-free and finite-population-exact framework

for answering some widely concerned questions in a randomized experiment sub-

ject to outcome misclassification, covering the design stage, analysis stage, and

validation stage. The strength of our framework is that it does not require any

additional assumptions and meanwhile can provide some useful information to

help researchers analyze a randomized experiment in a more comprehensive way.

Our problem formulation strategy (i.e., adaptive integer program formulation with

respect to the randomization design) for handling the “curse of symmetry" en-
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countered in our framework could shed light on other computationally intensive

problems in causal inference with binary outcomes.

As emphasized in Section 3.1.2, model-based approaches to outcome misclassifi-

cation are very useful and necessary when researchers plan to use additional side

information and domain knowledge to investigate the questions beyond those cov-

ered in our framework (i.e., Q1-Q4 summarized in Section 3.1.2). The motivation

of our framework is: what useful information concerning outcome misclassifica-

tion can we learn from the experimental data before making any modeling or dis-

tributional assumptions? Such information, although may not be able to address

all the issues concerning outcome misclassification, is immune to any assumption

violations and model misspecification and is always trustworthy.

3.7 Appendices

Appendix A: Review and Some Preliminary Results

A.1: General form of an integer quadratically constrained linear

program

In integer programming literature, the general standard form of an integer

quadratically constrained linear program (Lee and Leyffer, 2011; Burer and Sax-
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ena, 2012; Conforti et al., 2014) is as below:

maximize
x

qTx + c (linear objective function)

subject to xTQkx + qT
k x ≤ bk, ∀k (quadratic constraints)

Ax ≤ b, (linear constraints)

l ≤ x ≤ u, (box constraints)

Some or all elements of x are integers. (integrality constraints)

A.2: Some preliminary calculations concerning computing warn-

ing accuracy with testing Fisher’s sharp null

In this section, we give some preliminary results for writing the integer programs

(P0), (P1) and (P2) as the standard form given in Appendix A.1. Specifically, we

would like to rewrite every quadratic term appearing in some quadratic constraint

in each integer program considered in this paper as the standard form xTQx+qTx,

which is required by optimization solvers such as Gurobi (Gurobi Optimization,

LLC, 2022). For the quadratic constraint in the integer program (P0), we have

[TM-H(Z, Y)− E{TM-H(Z, Y)}]2 − χ2
1,1−α · Var{TM-H(Z, Y)}

=
{ I

∑
i=1

ni

∑
j=1

ZijYij −
I

∑
i=1

(mi

ni

ni

∑
j=1

Yij

)}2

− χ2
1,1−α ·

I

∑
i=1

mi(∑
ni
j=1 Yij)(ni − ∑ni

j=1 Yij)(ni − mi)

n2
i (ni − 1)

=
I

∑
i=1

ni

∑
j=1

{(
Zij −

mi

ni

)2
+ χ2

1,1−α ·
mi(ni − mi)

n2
i (ni − 1)

}
Y2

ij

+
I

∑
i=1

∑
j ̸=j′

{(
Zij −
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)(
Zij′ −
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)
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1,1−α ·
mi(ni − mi)

n2
i (ni − 1)

}
YijYij′
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+ ∑
i ̸=i′

ni

∑
j=1

ni′

∑
j′=1

(
Zij −

mi

ni

)(
Zi′ j′ −

mi′

ni′

)
YijYi′ j′

−
I

∑
i=1

ni

∑
j=1
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n2
i (ni − 1)

Yij.

The above equation can be rewritten as

[TM-H(Z, Y)− E{TM-H(Z, Y)}]2 − χ2
1,1−α · Var{TM-H(Z, Y)}

=
{ I

∑
i=1

ni

∑
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ZijYij −
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∑
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which enters into the quadratic constraint for the integer program (P1), of which a

standard form is given in Appendix B.1. The above equation can also be written as

[TM-H(Z, Y)− E{TM-H(Z, Y)}]2 − χ2
1,1−α · Var{TM-H(Z, Y)}

=
{ S

∑
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,

which enters into the quadratic constraint for the integer program (P2), of which a

standard form is given in Appendix B.2.
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A.3: Some preliminary calculations concerning computing warn-

ing accuracy with Neyman’s weak null

By Definition 1, if Neyman’s weak null hypothesis Hweak
0 was rejected based on

measured outcomes (i.e., {TNeyman(Z, Y∗)}2 − χ2
1,1−α · V̂ar{TNeyman(Z, Y∗)} > 0),

the warning accuracy WA for testing Hweak
0 with the Neyman estimator is the

optimal value of the following integer quadratically constrained linear program:

maximize
Y∈{0,1}N

1
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∑
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∑
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subject to {TNeyman(Z, Y)}2 − χ2
1,1−α · V̂ar{TNeyman(Z, Y)} ≤ 0.

If Hweak
0 fails to be rejected based on measured outcomes (i.e., {TNeyman(Z, Y∗)}2 −

χ2
1,1−α · V̂ar{TNeyman(Z, Y∗)} ≤ 0), we just need to replace the “≤ 0" with the “≥ 0"

in the quadratic constraint in (P0′). As mentioned in the main text, in this paper

we will focus on (P0′). For the quadratic constraint in the integer program (P0′),

we have
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The above equation can be rewritten as
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which enters into the quadratic constraint for the integer program (P3), of which a

standard form is given in Appendix B.3. The above equation can also be written as

{TNeyman(Z, Y)}2 − χ2
1,1−α · V̂ar{TNeyman(Z, Y)}
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− χ2
1,1−α ·

S

∑
s=1

ÑS

∑
p=1

dsp

( ñs

N

)2{ ∆10
sp + ∆11

sp

m̃s(m̃s − 1)
−

(∆10
sp + ∆11

sp)
2

m̃2
s (m̃s − 1)

+
∆00

sp + ∆01
sp

(ñs − m̃s)(ñs − m̃s − 1)
−

(∆00
sp + ∆01

sp)
2

(ñs − m̃s)2(ñs − m̃s − 1)

}
,

which enters into the quadratic constraint for the integer program (P4), of which a

standard form is given in Appendix B.4.
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Appendix B: Detailed Formulations of the Related Inte-

ger Programs for Computing Warning Accuracy in Var-

ious Cases

B.1: Warning accuracy with Fisher’s sharp null (type I randomiza-

tion designs)

We write the following integer quadratically constrained linear program

max
Υ∈Z4I

1
N

I

∑
i=1

(Υ01
i + Υ11

i − Υ00
i − Υ10

i ) +
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij) (P1)

s.t.
{ I

∑
i=1

(Υ10
i + Υ11

i )−
I

∑
i=1

mi

ni
Ῠi

}2
− χ2

1,1−α ·
I

∑
i=1

miῨi(ni − Ῠi)(ni − mi)

n2
i (ni − 1)

≤ 0,

0 ≤ Υ00
i ≤

ni

∑
j=1

(1 − Zij)(1 − Y∗
ij), ∀i

0 ≤ Υ01
i ≤

ni

∑
j=1

(1 − Zij)Y∗
ij , ∀i

0 ≤ Υ10
i ≤

ni

∑
j=1

Zij(1 − Y∗
ij), ∀i

0 ≤ Υ11
i ≤

ni

∑
j=1

ZijY∗
ij , ∀i

in a standard form

max
x

qTx + c

s.t. xTQ1x + qT
1 x ≤ 0,

l ≤ x ≤ u,

All elements of x are integers.

132



Specially, we have

• decision variables: x = Υ = (Υ00
1 , Υ01

1 , Υ10
1 , Υ11

1 , . . . , Υ00
I , Υ01

I , Υ10
I , Υ11

I ).

• objective function: qTx + c where

q =
(
− 1

N
,

1
N

,− 1
N

,
1
N

, . . . ,− 1
N

,
1
N

,− 1
N

,
1
N

)
and c =

1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij).

• quadratic constraint: xTQ1x + q1
Tx ≤ 0 where Q1 = (Q1,s,t)4I×4I is a 4I × 4I

matrix. Suppose that s = 4(i − 1) + k and t = 4(i′ − 1) + k′ for some integers

i, i′ ∈ {1, . . . , I} and k, k′ ∈ {1, 2, 3, 4}. Then we have:

1. If (s, t) satisfies one of the following conditions: 1) i = i′ and k = k′ = 1;

2) i = i′ and k = k′ = 2; 3) i = i′ and k = 1, k′ = 2; 4) i = i′ and

k = 2, k′ = 1, we have

Q1,s,t =
m2

i
n2

i
+ χ2

1,1−α ·
mi(ni − mi)

n2
i (ni − 1)

.

2. If (s, t) satisfies one of the following conditions: 1) i = i′ and k = k′ = 3;

2) i = i′ and k = k′ = 4; 3) i = i′ and k = 3, k′ = 4; 4) i = i′ and

k = 4, k′ = 3, we have

Q1,s,t =
(

1 − mi

ni

)2
+ χ2

1,1−α ·
mi(ni − mi)

n2
i (ni − 1)

.

3. If (s, t) satisfies one of the following conditions: 1) i = i′ and k = 1, k′ =

3; 2) i = i′ and k = 3, k′ = 1; 3) i = i′ and k = 1, k′ = 4; 4) i = i′ and

k = 4, k′ = 1; 5) i = i′ and k = 2, k′ = 3; 6) i = i′ and k = 3, k′ = 2; 7)
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i = i′ and k = 2, k′ = 4; 8) i = i′ and k = 4, k′ = 2; we have

Q1,s,t = −mi

ni

(
1 − mi

ni

)
+ χ2

1,1−α ·
mi(ni − mi)

n2
i (ni − 1)

.

4. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = k′ = 1;

2) i ̸= i′ and k = 1, k′ = 2; 3) i ̸= i′ and k = 2, k′ = 1; 4) i ̸= i′ and

k = k′ = 2, we have

Q1,s,t =
mi

ni

mi′

ni′
.

5. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = 1, k′ =

3; 2) i ̸= i′ and k = 1, k′ = 4; 3) i ̸= i′ and k = 2, k′ = 3; 4) i ̸= i′ and

k = 2, k′ = 4, we have

Q1,s,t = −mi

ni

(
1 − mi′

ni′

)
.

6. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = 3, k′ =

1; 2) i ̸= i′ and k = 3, k′ = 2; 3) i ̸= i′ and k = 4, k′ = 1; 4) i ̸= i′ and

k = 4, k′ = 2, we have

Q1,s,t = −
(

1 − mi

ni

)mi′

ni′
.

7. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = 3, k′ =

3; 2) i ̸= i′ and k = 3, k′ = 4; 3) i ̸= i′ and k = 4, k′ = 3; 4) i ̸= i′ and

k = 4, k′ = 4, we have

Q1,s,t =
(

1 − mi

ni

)(
1 − mi′

ni′

)
.
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We have q1 = (q1,1, . . . , q1,4I) is a 4I-dimensional vector where

q1,s = −χ2
1,1−α ·

mini(ni − mi)

n2
i (ni − 1)

, for s = 1, . . . , 4I.

• box constraints: l ≤ Υ ≤ u, where l = 0 and M =

(M00
1 , M01

1 , M10
1 , M11

1 , . . . , M00
I , M01

I , M10
I , M11

I ) is a 4I-dimensional vector

with M00
i = ∑ni

j=1(1 − Zij)(1 − Y∗
ij), M01

i = ∑ni
j=1(1 − Zij)Y∗

ij , M10
i =

∑ni
j=1 Zij(1 − Y∗

ij), and M11
i = ∑ni

j=1 ZijY∗
ij .

• integrality constraints: all 4I elements of x are integers.

B.2: Warning accuracy with Fisher’s sharp null (type II randomiza-

tion designs)

We write the following integer quadratically constrained linear program

max
dsp∈Z

1
N

S

∑
s=1

Ñs

∑
p=1

dsp(∆01
sp + ∆11

sp − ∆00
sp − ∆10

sp) +
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij) (P2)

s.t.
{ S

∑
s=1

Ñs

∑
p=1

dsp(∆10
sp + ∆11

sp)−
S

∑
s=1

Ñs

∑
p=1

dsp

( m̃s

ñs
· ∆̆sp

)}2

− χ2
1,1−α ·

S

∑
s=1

Ñs

∑
p=1

dsp
m̃s∆̆sp(ñs − ∆̆sp)(ñs − m̃s)

ñ2
s (ñs − 1)

≤ 0,

Ñs

∑
p=1

dsp = Ps, ∀s

dsp ≥ 0, ∀s, p
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in a standard form

max
x

qTx + c

s.t. xTQ1x + qT
1 x ≤ 0,

qT
2sx = Ps, ∀s

x ≥ 0,

All elements of x are integers.

We have:

• decision variables: x = d = (d11, . . . , dSÑS
);

• objective function: qTx + c where

q =
(∆01

11 + ∆11
11 − ∆00

11 − ∆10
11

N
, . . . ,

∆01
SÑS

+ ∆11
SÑS

− ∆00
SÑS

− ∆10
SÑS

N

)
,

and c = 1
N ∑I

i=1 ∑ni
j=1(1 − Y∗

ij).

• quadratic constraint: xTQ1x + q1
Tx ≤ 0 where Q1 = (Q1,r,t)Ñ×Ñ is a Ñ × Ñ

matrix (Ñ = ∑S
s=1 Ñs). Suppose that r corresponds to the p-th unique 2 ×

2 × 2 table for the s-th unique 2 × 2 table Λ[s], and t corresponds to the p′-th

unique 2 × 2 × 2 table for the s′-th unique 2 × 2 table Λ[s′]. Then we have:

Q1,r,t =
{

∆10
sp + ∆11

sp −
m̃s

ñs
(∆00

sp + ∆01
sp + ∆10

sp + ∆11
sp)
}

×
{

∆10
s′p′ + ∆11

s′p′ −
m̃s′

ñs′
(∆00

s′p′ + ∆01
s′p′ + ∆10

s′p′ + ∆11
s′p′)

}
.
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We have q1 = (q11, . . . , qSÑS
) is a Ñ-dimensional vector where

q1,s,p = −χ2
1,1−α ·

m̃s∆̆sp(ñs − ∆̆sp)(ñs − m̃s)

ñ2
s (ñs − 1)

.

• linear constraints: qT
2sx = Ps, where q2s is the zero-one indicator vector for

all the Ñs possible unique 2 × 2 × 2 tables of Λ[s].

• box constraints: dsp ≥ 0 for all s and p.

• integrality constraints: all Ñ elements of x are integers.

137



B.3: Warning accuracy with Neyman’s weak null (type I random-

ization designs)

Following a similar argument as in Section 3.4.2.1, we can reformulate the integer

program (P0′) as the following integer quadratically constrained linear program

max
Υ∈Z4I

1
N

I

∑
i=1

(Υ01
i + Υ11

i − Υ00
i − Υ10

i ) +
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij) (P3)

s.t.
[ I

∑
i=1

{ ni

Nmi
(Υ10

i + Υ11
i )− ni

N(ni − mi)
(Υ00

i + Υ01
i )
}]2

− χ2
1,1−α ·

I

∑
i=1

(ni

N

)2{ Υ10
i + Υ11

i
mi(mi − 1)

−
(Υ10

i + Υ11
i )2

m2
i (mi − 1)

+
Υ00

i + Υ01
i

(ni − mi)(ni − mi − 1)
−

(Υ00
i + Υ01

i )2

(ni − mi)2(ni − mi − 1)

}
≤ 0,

0 ≤ Υ00
i ≤

ni

∑
j=1

(1 − Zij)(1 − Y∗
ij), ∀i

0 ≤ Υ01
i ≤

ni

∑
j=1

(1 − Zij)Y∗
ij , ∀i

0 ≤ Υ10
i ≤

ni

∑
j=1

Zij(1 − Y∗
ij), ∀i

0 ≤ Υ11
i ≤

ni

∑
j=1

ZijY∗
ij , ∀i

which can be written as the following standard form

max
x

qTx + c

s.t. xTQ1x + qT
1 x ≤ 0,

l ≤ x ≤ u,

All elements of x are integers.
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Specifically, we have:

• decision variables: x = Υ = (Υ00
1 , Υ01

1 , Υ10
1 , Υ11

1 , . . . , Υ00
I , Υ01

I , Υ10
I , Υ11

I );

• objective function: qTx + c where

q =
(
− 1

N
,

1
N

,− 1
N

,
1
N

, . . . ,− 1
N

,
1
N

,− 1
N

,
1
N

)
and c =

1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij).

• quadratic constraint: xTQ1x + q1
Tx ≤ 0 where Q1 = (Q1,s,t)4I×4I is a 4I × 4I

matrix. Suppose that s = 4(i − 1) + k and t = 4(i′ − 1) + k′ for some integers

i, i′ ∈ {1, . . . , I} and k, k′ ∈ {1, 2, 3, 4}. Then we have:

1. If (s, t) satisfies one of the following conditions: 1) i = i′ and k = k′ = 1;

2) i = i′ and k = k′ = 2; 3) i = i′ and k = 1, k′ = 2; 4) i = i′ and

k = 2, k′ = 1, we have

Q1,s,t =
n2

i
N2(ni − mi)2 + χ2

1,1−α ·
n2

i
N2(ni − mi)2(ni − mi − 1)

.

2. If (s, t) satisfies one of the following conditions: 1) i = i′ and k = k′ = 3;

2) i = i′ and k = k′ = 4; 3) i = i′ and k = 3, k′ = 4; 4) i = i′ and

k = 4, k′ = 3, we have

Q1,s,t =
n2

i
N2m2

i
+ χ2

1,1−α ·
n2

i
N2m2

i (mi − 1)
.

3. If (s, t) satisfies one of the following conditions: 1) i = i′ and k = 1, k′ =

3; 2) i = i′ and k = 3, k′ = 1; 3) i = i′ and k = 1, k′ = 4; 4) i = i′ and

k = 4, k′ = 1; 5) i = i′ and k = 2, k′ = 3; 6) i = i′ and k = 3, k′ = 2; 7)
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i = i′ and k = 2, k′ = 4; 8) i = i′ and k = 4, k′ = 2; we have

Q1,s,t = −
n2

i
N2mi(ni − mi)

.

4. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = k′ = 1;

2) i ̸= i′ and k = 1, k′ = 2; 3) i ̸= i′ and k = 2, k′ = 1; 4) i ̸= i′ and

k = k′ = 2, we have

Q1,s,t =
nini′

N2(ni − mi)(ni′ − mi′)
.

5. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = 1, k′ =

3; 2) i ̸= i′ and k = 1, k′ = 4; 3) i ̸= i′ and k = 2, k′ = 3; 4) i ̸= i′ and

k = 2, k′ = 4, we have

Q1,s,t = − nini′

N2(ni − mi)mi′
.

6. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = 3, k′ =

1; 2) i ̸= i′ and k = 3, k′ = 2; 3) i ̸= i′ and k = 4, k′ = 1; 4) i ̸= i′ and

k = 4, k′ = 2, we have

Q1,s,t = − nini′

N2mi(ni′ − mi′)
.

7. If (s, t) satisfies one of the following conditions: 1) i ̸= i′ and k = 3, k′ =

3; 2) i ̸= i′ and k = 3, k′ = 4; 3) i ̸= i′ and k = 4, k′ = 3; 4) i ̸= i′ and
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k = 4, k′ = 4, we have

Q1,s,t =
nini′

N2mimi′
.

We have q1 = (q1,1, . . . , q1,4I) is a 4I-dimensional vector where

q1,s = −
χ2

1,1−α · n2
i

N2(ni − mi)(ni − mi − 1)
for k = 1, 2,

and

q1,s = −
χ2

1,1−α · n2
i

N2mi(mi − 1)
for k = 3, 4.

• box constraints: l ≤ Υ ≤ u, where l = 0 and M =

(M00
1 , M01

1 , M10
1 , M11

1 , . . . , M00
I , M01

I , M10
I , M11

I ) is a 4I-dimensional vector

with M00
i = ∑ni

j=1(1 − Zij)(1 − Y∗
ij), M01

i = ∑ni
j=1(1 − Zij)Y∗

ij , M10
i =

∑ni
j=1 Zij(1 − Y∗

ij), and M11
i = ∑ni

j=1 ZijY∗
ij .

• integrality constraints: all 4I elements of x are integers.
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B.4: Warning accuracy with Neyman’s weak null (type II random-

ization designs)

Following a similar argument as in Section 3.4.2.1, we can reformulate the integer

program (P0′) as the following integer quadratically constrained linear program

max
dsp∈Z

1
N

S

∑
s=1

Ñs

∑
p=1

dsp(∆01
sp + ∆11

sp − ∆00
sp − ∆10

sp) +
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij) (P4)

s.t.
[ S

∑
s=1

Ñs

∑
p=1

dsp

{ ñs

Nm̃s
(∆10

sp + ∆11
sp)−

ñs

N(ñs − m̃s)
(∆00

sp + ∆01
sp)
}]2

− χ2
1,1−α ·

S

∑
s=1

ÑS

∑
p=1

dsp

( ñs

N

)2{ ∆10
sp + ∆11

sp

m̃s(m̃s − 1)
−

(∆10
sp + ∆11

sp)
2

m̃2
s (m̃s − 1)

+
∆00

sp + ∆01
sp

(ñs − m̃s)(ñs − m̃s − 1)
−

(∆00
sp + ∆01

sp)
2

(ñs − m̃s)2(ñs − m̃s − 1)

}
≤ 0,

Ñs

∑
p=1

dsp = Ps, ∀s

dsp ≥ 0, ∀s, p

which can be written as the following standard form

max
x

qTx + c

s.t. xTQ1x + qT
1 x ≤ 0,

qT
2sx = Ps, ∀s

x ≥ 0,

All elements of x are integers.

Specifically, we have:

• decision variables: x = d = (d11, . . . , dSÑS
);
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• objective function: qTx + c where

q =
(∆01

11 + ∆11
11 − ∆00

11 − ∆10
11

N
, . . . ,

∆01
SÑS

+ ∆11
SÑS

− ∆00
SÑS

− ∆10
SÑS

N

)
,

and

c =
1
N

I

∑
i=1

ni

∑
j=1

(1 − Y∗
ij).

• quadratic constraint: xTQ1x + q1
Tx ≤ 0 where Q1 = (Q1,r,t)Ñ×Ñ is a Ñ × Ñ

matrix (Ñ = ∑S
s=1 Ñs). Suppose that r corresponds to the p-th unique 2 ×

2 × 2 table for the s-th unique 2 × 2 table Λ[s], and t corresponds to the p′-th

unique 2 × 2 × 2 table for the s′-th unique 2 × 2 table Λ[s′]. Then we have

Q1,r,t =
{ ñs

Nm̃s
(∆10

sp + ∆11
sp)−

ñs

N(ñs − m̃s)
(∆00

sp + ∆01
sp)
}

×
{ ñs′

Nm̃s′
(∆10

s′p′ + ∆11
s′p′)−

ñs′

N(ñs′ − m̃s′)
(∆00

s′p′ + ∆01
s′p′)

}
,

and q1 = (q11, . . . , qSÑS
) is a Ñ-dimensional vector where

q1,s,p = −χ2
1,1−α ·

( ñs

N

)2{ ∆10
sp + ∆11

sp

m̃s(m̃s − 1)
−

(∆10
sp + ∆11

sp)
2

m̃2
s (m̃s − 1)

+
∆00

sp + ∆01
sp

(ñs − m̃s)(ñs − m̃s − 1)
−

(∆00
sp + ∆01

sp)
2

(ñs − m̃s)2(ñs − m̃s − 1)

}
.

• linear constraints: qT
2sx = Ps, where q2s is the zero-one indicator vector for

all the Ñs possible unique 2 × 2 × 2 tables of Λ[s].

• box constraints: dsp ≥ 0 for all s and p.

• integrality constraints: all Ñ elements of x are integers.
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Appendix C: More Details About the Calculations of

Sensitivity Weights and Sensitive Sets

We here only consider Fisher’s sharp null hypothesis (i.e., integer pro-

grams (P1) and (P2)) as the same method can be applied for Neyman’s

weak null hypothesis also. For type I randomization designs, let Υ̃ =

(Υ̃00
1 , Υ̃01

1 , Υ̃10
1 , Υ̃11

1 , . . . , Υ̃00
I , Υ̃01

I , Υ̃10
I , Υ̃11

I ) be an optimal solution to (P1). According

to Definition 3, we have

WFP
T =

|{ij : Zij = 1, Y∗
ij = 1, Ỹij = 0}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑I

i=1(Λ
11
i − Υ̃11

i )

∑I
i=1(Υ̃

00
i + Λ01

i − Υ̃01
i + Υ̃10

i + Λ11
i − Υ̃11

i )
,

WFN
T =

|{ij : Zij = 1, Y∗
ij = 0, Ỹij = 1}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑I

i=1 Υ̃10
i

∑I
i=1(Υ̃

00
i + Λ01

i − Υ̃01
i + Υ̃10

i + Λ11
i − Υ̃11

i )
,

WFP
C =

|{ij : Zij = 0, Y∗
ij = 1, Ỹij = 0}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑I

i=1(Λ
01
i − Υ̃01

i )

∑I
i=1(Υ̃

00
i + Λ01

i − Υ̃01
i + Υ̃10

i + Λ11
i − Υ̃11

i )
,

WFN
C =

|{ij : Zij = 0, Y∗
ij = 0, Ỹij = 1}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑I

i=1 Υ̃00
i

∑I
i=1(Υ̃

00
i + Λ01

i − Υ̃01
i + Υ̃10

i + Λ11
i − Υ̃11

i )
.

Note that after reformulating (P0) as (P1) or (P2), it is more natural to directly

calculate a union of various sensitive sets. Specifically, let S be a sensitive set

given from (P0), G the permutation group over I defined in Section 3.4.1 and gS =

{g(ij) : Ỹij ̸= Y∗
ij} for g ∈ G, then we have

⋃
g∈G

gS =
I⋃

i=1

{
A00

i ∪ A01
i ∪ A10

i ∪ A11
i
}

,

where A00
i = {ij : Zij = 0, Y∗

ij = 0, Υ̃00
i ̸= 0, j = 1, . . . , ni}, A01

i = {ij : Zij = 0, Y∗
ij =

1, Υ̃01
i ̸= Λ01

i , j = 1, . . . , ni}, A10
i = {ij : Zij = 1, Y∗

ij = 0, Υ̃10
i ̸= 0, j = 1, . . . , ni}, and
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A11
i = {ij : Zij = 1, Y∗

ij = 1, Υ̃11
i ̸= Λ11

i , j = 1, . . . , ni}.

For type II randomization designs, let d̃ = (d̃11, . . . , d̃SÑS
) be an optimal solution

to (P2). According to Definition 3, we have

WFP
T =

|{ij : Zij = 1, Y∗
ij = 1, Ỹij = 0}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑S

s=1 ∑Ñs
p=1 d̃sp(Λ11

[s] − ∆11
sp)

∑S
s=1 ∑Ñs

p=1 d̃sp(∆00
sp + ∆10

sp + Λ01
[s] − ∆01

sp + Λ11
[s] − ∆11

sp)
,

WFN
T =

|{ij : Zij = 1, Y∗
ij = 0, Ỹij = 1}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑S

s=1 ∑Ñs
p=1 d̃sp∆10

sp

∑S
s=1 ∑Ñs

p=1 d̃sp(∆00
sp + ∆10

sp + Λ01
[s] − ∆01

sp + Λ11
[s] − ∆11

sp)
,

WFP
C =

|{ij : Zij = 0, Y∗
ij = 1, Ỹij = 0}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑S

s=1 ∑Ñs
p=1 d̃sp(Λ01

[s] − ∆01
sp)

∑S
s=1 ∑Ñs

p=1 d̃sp(∆00
sp + ∆10

sp + Λ01
[s] − ∆01

sp + Λ11
[s] − ∆11

sp)
,

WFN
C =

|{ij : Zij = 0, Y∗
ij = 0, Ỹij = 1}|

|{ij : Y∗
ij ̸= Ỹij}|

=
∑S

s=1 ∑Ñs
p=1 d̃sp∆00

sp

∑S
s=1 ∑Ñs

p=1 d̃sp(∆00
sp + ∆10

sp + Λ01
[s] − ∆01

sp + Λ11
[s] − ∆11

sp)
.

Meanwhile, we can get a collection of sensitive sets

⋃
g∈G

gS =
S⋃

s=1

Ñs⋃
p=1

{
B00

sp ∪ B01
sp ∪ B10

sp ∪ B11
sp
}

,

where B00
sp = {ij : Zij = 0, Y∗

ij = 0, Λi = Λ[s], d̃sp ̸= 0, ∆00
sp ̸= 0}, B01

sp = {ij :

Zij = 0, Y∗
ij = 1, Λi = Λ[s], d̃sp ̸= 0, ∆01

sp ̸= Λ01
[s]}, B10

sp = {ij : Zij = 1, Y∗
ij = 0, Λi =

Λ[s], d̃sp ̸= 0, ∆10
sp ̸= 0}, and B11

sp = {ij : Zij = 1, Y∗
ij = 1, Λi = Λ[s], d̃sp ̸= 0, ∆11

sp ̸=

Λ11
[s]}.

145



Appendix D: Simulation Studies for Computing Warn-

ing Accuracy and Sensitivity Weights with Neyman’s

Weak Null

In the main text, we conducted simulation studies on the computational efficiency

of the adaptive reformulation strategy for calculating warning accuracy and sen-

sitivity weights proposed in Section 3.4.2 with Fisher’s sharp null. We also ob-

tained some insights on how warning accuracy and sensitivity weights vary with

the effect size of measured outcomes and sample size. In this section, we conduct

parallel simulation studies with Neyman’s weak null. We investigate both type I

and type II randomization designs through considering Simulation Scenario 1 pro-

posed in Section 3.4.3 and Simulation Scenario 2 described as below. As empha-

sized in the main text, all the data generating processes described in the simulation

studies in this paper are only for automatically generating data sets for simulations

as our framework works for any given data sets and does not depend on any data

generating models.

• Simulation Scenario 3 (for Type II randomization designs): We consider

a stratified randomized experiment or a stratified observational study (with

most strata being small) with I = 400 or 2000 strata. We let U (A) denote the

uniform distribution over the set A. In each independent simulation run, for

each i = 1, . . . , I we randomly draw mi from U ({2, 3}) and then randomly

draw ni − mi from U ({2, 3}). Then we have E(N) = {E(mi) + E(ni − mi)} ·

I = 5I = 2000 or 10, 000.

In each independent simulation run, after generating mi and ni − mi for each stra-
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tum i, we follow the same procedure as described in Section 3.4.3 to generate the

treatment indicators Z and the measured outcomes Y∗ based on the prespecified

measured effect size (p0, p1). We here consider testing Neyman’s weak null Hweak
0 .

After conducting 1000 independent simulation runs for each of the 18 different

prespecified sets of (E(N), p0, p1) under Simulation Scenarios 1 and 3, we give

the simulations results of the corresponding average computation time, average

warning accuracy and average sensitivity weights in Table 3.5. We here report

some related details about the specific procedure of obtaining the results in Ta-

ble 3.5: (i) As mentioned in the main text, conducting a sensitivity analysis or a

validation study is typically more meaningful when we detected a treatment effect

in a primary analysis (Rosenbaum, 2002b, 2010) based on measured outcomes Y∗.

Therefore, we here exclude few simulation runs (i.e., generated data sets) in which

Neyman’s weak null failed to be rejected based on Y∗ (20 out of 36,000 runs). (ii)

For the remaining 35,980 simulation runs, to prevent our simulation studies from

failing to be finished in a tolerable amount of time, we force a simulation run to

stop if it runs more than 100 seconds, report the total number of such cases, and

exclude such cases when calculating the average computation time, warning ac-

curacy, and sensitivity weights. However, such potentially computationally in-

feasible cases (computation time more than 100 seconds) are very rare (17 out of

35,980 runs) and in most cases, our framework is computationally efficient with

Neyman’s weak null. (iii) As in Section 3.4.3, all the computation tasks in this

section were also done by the optimization solver Gurobi (version 9.1) (Gurobi Op-

timization, LLC, 2022) and a laptop computer with a 1.6 GHz Dual-Core Intel Core

i5 processor and 4 GB 1600 MHz DDR3 memory. From Table 3.5, we can see that

the general patterns observed and the insights obtained from Fisher’s sharp null

case considered in Table 3.2 (see detailed descriptions in Section 3.4.3) also hold for
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Neyman’s weak null case.

Table 3.5: Simulations with Neyman’s weak null. We report the average
computation time (in seconds), warning accuracy WA and sensitivity weights
(WFP

T , WFN
T , WFP

C , WFN
C ) of different sets of (E(N), p0, p1) for Simulation Scenarios

1 and 3 (for type I and type II randomization designs respectively).
Type I Randomization Designs (Simulation Scenario 1)

p0 = 0.3
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.4 0.20 s 0.98 0.32 0.00 0.00 0.68 5.62 s 0.98 0.35 0.00 0.00 0.65

p1 = 0.6 0.26 s 0.92 0.46 0.00 0.00 0.54 6.35 s 0.91 0.46 0.00 0.00 0.54

p1 = 0.8 0.35 s 0.83 0.54 0.00 0.00 0.46 7.59 s 0.83 0.54 0.00 0.00 0.46

p0 = 0.6
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.7 0.20 s 0.98 0.66 0.00 0.00 0.34 5.65 s 0.98 0.65 0.00 0.00 0.35

p1 = 0.8 0.25 s 0.95 0.70 0.00 0.00 0.30 6.09 s 0.94 0.69 0.00 0.00 0.31

p1 = 0.9 0.29 s 0.91 0.74 0.00 0.00 0.26 7.15 s 0.91 0.71 0.00 0.00 0.29

p0 = 0.9
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.2 0.45 s 0.75 0.00 0.46 0.54 0.00 7.83 s 0.74 0.00 0.46 0.54 0.00

p1 = 0.4 0.36 s 0.83 0.00 0.37 0.63 0.00 8.73 s 0.83 0.00 0.39 0.61 0.00

p1 = 0.6 0.29 s 0.91 0.00 0.26 0.74 0.00 7.34 s 0.91 0.00 0.29 0.71 0.00

Type II Randomization Designs (Simulation Scenario 3)

p0 = 0.3
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.4 0.63 s 0.98 0.25 0.00 0.00 0.75 5.12 s 0.97 0.24 0.00 0.00 0.76

p1 = 0.6 0.63 s 0.90 0.45 0.00 0.00 0.55 5.11 s 0.89 0.46 0.00 0.00 0.54

p1 = 0.8 0.52 s 0.81 0.53 0.00 0.00 0.47 4.94 s 0.80 0.53 0.00 0.00 0.47

p0 = 0.6
E(N) = 2000 E(N) = 10, 000

Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.7 0.62 s 0.98 0.74 0.00 0.00 0.26 5.14 s 0.97 0.75 0.00 0.00 0.25

p1 = 0.8 0.55 s 0.94 0.68 0.00 0.00 0.32 4.95 s 0.93 0.67 0.00 0.00 0.33

p1 = 0.9 0.43 s 0.89 0.71 0.00 0.00 0.29 4.82 s 0.89 0.70 0.00 0.00 0.30

p0 = 0.9
E(N) = 2000 E(N) = 10, 000
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Time WA WFP
T WFN

T WFP
C WFN

C Time WA WFP
T WFN

T WFP
C WFN

C

p1 = 0.2 0.56 s 0.71 0.00 0.46 0.54 0.00 5.03 s 0.70 0.00 0.45 0.55 0.00

p1 = 0.4 0.44 s 0.81 0.00 0.40 0.60 0.00 4.84 s 0.80 0.00 0.39 0.61 0.00

p1 = 0.6 0.48 s 0.89 0.00 0.29 0.71 0.00 4.85 s 0.89 0.00 0.29 0.71 0.00
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4. Relationship Between Changing

Malaria Burden and Low Birth

Weight in Sub-Saharan Africa: A

Difference-in-Differences Study via

A Pair-of-Pairs Approach

This chapter is adapted from “Heng, S., O’Meara, W. P., Simmons, R. A., and

Small, D. S. (2021). Relationship between changing malaria burden and low birth

weight in sub-Saharan Africa: a difference-in-differences study via a pair-of-pairs

approach. eLife, 10:e65133."

4.1 Introduction

In 2018, according to the World Malaria Report 2019 published by the WHO, an es-

timated 228 million malaria cases occurred worldwide, with an estimated 405,000

deaths from malaria globally (WHO, 2019). Dellicour et al. (2010) estimated that

around 85 million pregnancies occurred in 2007 in areas with stable Plasmodium

falciparum (one of the most prevalent malaria parasites) transmission and therefore

were at risk of malaria. Pregnant women are particularly susceptible to malaria,

even if they have developed immunity from childhood infections, in part because

parasitized cells in the placenta express unique variant surface antigens (Rogerson
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et al., 2007). Women who are infected during pregnancy may or may not expe-

rience symptoms, but the presence of parasites has grave consequences for both

mother and unborn baby. Parasites exacerbate maternal anemia and they also se-

quester in the placenta, leading to intrauterine growth restriction, low birth weight

(i.e., birth weight < 2,500 grams), preterm delivery and even stillbirth and neona-

tal death. Preventing malaria during pregnancy with drugs or insecticide treated

nets has a significant impact on pregnancy outcomes (Eisele et al., 2012; Kayentao

et al., 2013; Radeva-Petrova et al., 2014).

Observational and interventional studies of malaria in pregnant women are com-

plicated by the difficulty of enrolling women early in their pregnancy. However,

in one study, early exposure to Plasmodium falciparum (before 120 days gestation),

prior to initiating malaria prevention measures, was associated with a reduction in

birth weight of more than 200 grams and reduced average gestational age of nearly

one week (Schmiegelow et al., 2017). For other representative studies on the neg-

ative influence of malaria infection during early pregnancy on birth outcomes, see

Menendez et al. (2000), Ross and Smith (2006), Huynh et al. (2011), Valea et al.

(2012), Walker et al. (2014), and Huynh et al. (2015). These results suggest the

impact of malaria infection on stillbirths, perinatal, and neonatal mortality may be

substantial and needs more careful examination (Fowkes et al., 2020; Gething et al.,

2020).

In the last few decades, malaria burden has declined in many parts of the world.

Although the magnitude of the decline is difficult to estimate precisely, some re-

ports suggest that the global cases of malaria declined by an estimated 41% be-

tween 2000 and 2015 (WHO, 2016) and the clinical cases of Plasmodium falciparum

malaria declined by 40% in Africa between 2000 and 2015 (Bhatt et al., 2015). How-
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ever, estimates of changing morbidity and mortality do not account for the effects

of malaria in pregnancy. In the context of global reductions in malaria transmis-

sion, we expect fewer pregnancies are being exposed to infection and/or exposed

less frequently. This should result in a significant reduction in preterm delivery,

low birth weight and stillbirths. However, declining transmission will also lead

to reductions in maternal immunity to malaria. Maternal immunity is important

in mitigating the effects of malaria infection during pregnancy as is evidenced by

the reduced impact of malaria exposure on the second, third and subsequent preg-

nancies. Thus we anticipate a complex relationship between declining exposure

and pregnancy outcomes that depends on both current transmission and historical

transmission and community-level immunity (Mayor et al., 2015).

Understanding the potential causal effect of a reduction in malaria burden on the

low birth weight rate is crucial as low birth weight is strongly associated with poor

cognitive and physical development of children (McCormick et al., 1992; Avchen

et al., 2001; Guyatt and Snow, 2004). Although we know from previous interven-

tional studies that preventing malaria in pregnancy is associated with higher birth

weight (Eisele et al., 2012; Radeva-Petrova et al., 2014), we do not know whether

natural changes in malaria transmission intensity are similarly associated with im-

proved birth outcomes. To address this question, we make use of the fact that

while the overall prevalence of malaria has declined in sub-Saharan Africa, the

decline has been uneven, with some malaria-endemic areas experiencing sharp

drops and others experiencing little change. We use this heterogeneity to assess

whether reductions in malaria prevalence reduce the proportion of infants born

with low birth weight in sub-Saharan African countries. Our approach conducts

a difference-in-differences study (Card and Krueger, 2000; Angrist and Pischke,
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2008; St.Clair and Cook, 2015) by leveraging recent developments in matching,

a nonparametric statistical analysis approach that can make studies more robust

to bias that can arise from statistical model misspecification (Rubin, 1973, 1979;

Hansen, 2004; Ho et al., 2007).

4.2 Materials and Methods

4.2.1 Overview

In this analysis, we combine two rich data sources: 1) rasters of annual malaria

prevalence means (Bhatt et al., 2015) and 2) the Demographic and Health Surveys

(DHS) (ICF, 2019), and we marry two powerful statistical analysis methods of ad-

justing for covariates – difference-in-differences (Card and Krueger, 2000; Abadie,

2005; Athey and Imbens, 2006; Angrist and Pischke, 2008; Dimick and Ryan, 2014;

St.Clair and Cook, 2015) and matching (Rubin, 1973, 2006; Rosenbaum, 2002b,

2010; Hansen, 2004; Stuart, 2010; Zubizarreta, 2012; Pimentel et al., 2015). We match

geographically proximal DHS clusters that were collected in different time periods

(early vs. late) and then identify pairs of early/late clusters that have either main-

tained high malaria transmission intensity or experienced substantial declines in

malaria transmission intensity. We then match pairs of clusters that differ in their

malaria transmission intensity (maintained high vs. declined) but are similar in

other key characteristics. Once these quadruples (pairs of pairs) have been formed,

our analysis moves to the individual births within these clusters. We use multiple

imputation to categorize missing children’s birth weight records as either low birth

weight or not, relying on the size of the child at birth reported subjectively by the

mother and other demographic characteristics of the mother. Finally, we estimate
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the effect of declined malaria transmission intensity on the low birth weight rate

by looking at the coefficient of the malaria prevalence indicator (low vs. high) con-

tributing to the low birth weight rate in a mixed-effects linear probability model

adjusted for covariates that are potential confounding variables, the group indica-

tor (individual being within a cluster with declined vs. maintained high malaria

transmission intensity), and the time indicator (late vs. early).

4.2.2 Data resources

The data we use in this work comes from the following three sources:

(1) Rasters of annual malaria prevalence: These image data, constructed by the

Malaria Atlas Project (MAP) (Hay and Snow, 2006; MAP, 2020), estimate for sub-

Saharan Africa the spatial distribution of the Plasmodium falciparum parasite rate

(i.e., the proportion of the population that carries asexual blood-stage parasites) in

children from 2 to 10 years old (Pf PR2−10) for each year between 2000 and 2015

(Bhatt et al., 2015). Pf PR2−10 has been widely used for measuring malaria trans-

mission intensity (Metselaar and Van Thiel, 1959; Smith et al., 2007; Bhatt et al.,

2015; WHO, 2019) and we use it in this work. The value in each pixel indicates the

estimated annual Pf PR2−10 (ranging from 0 to 1) with a resolution of 5km by 5km.

(2) Demographic and Health Surveys (DHS): The DHS are nationally-

representative household surveys mainly conducted in low- and middle- income

countries that contain data with numerous health and sociodemographic indica-

tors (Corsi et al., 2012; ICF, 2019). We used the Integrated Public Use Microdata

Series’ recoding of the DHS variables (IPUMS-DHS) which makes the DHS vari-

ables consistent across different years and surveys (Boyle et al., 2019).
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(3) Cluster Global Positioning System (GPS) data set: This data set contains the

geographical information (longitude, latitude and the indicator of urban or rural)

of each cluster in the DHS data. In order to maintain respondent confidentiality,

the DHS program randomly displaces the GPS latitude/longitude positions for

all surveys, while ensuring that the positional error of the clusters is at most 10

kilometers (at most 5 kilometers for over 99% of clusters) and all the positions stay

within the country and DHS survey region (DHS, 2019).

4.2.3 Data selection procedure

In this article, we set the study period to be the years 2000–2015, and correspond-

ingly, all the results and conclusions obtained in this article are limited to the

years 2000–2015. We set the year 2000 as the starting point of the study period

for two reasons. First, the year 2000 is the earliest year in which the estimated

annual Pf PR2−10 is published by MAP (MAP, 2020). Second, according to Bhatt

et al. (2015), “the year 2000 marked a turning point in multilateral commitment to

malaria control in sub-Saharan Africa, catalysed by the Roll Back Malaria initiative

and the wider development agenda around the United Nations Millennium Devel-

opment Goals." We set the year 2015 as the ending point based on two considera-

tions. First, when we designed our study in the year 2017, the year 2015 was the

latest year in which the estimated annual Pf PR2−10 was available to us. We became

aware after starting our outcome analysis that MAP has published some post-2015

estimated annual Pf PR2−10 data since then, but, following Rubin (2007)’s advice

to design observational studies before seeing and analyzing the outcome data, we

felt it was best to stick with the design of our original study for this report and con-

sider the additional data in a later report. Second, the year 2015 was set as a target

year by a series of international goals on malaria control. For example, the United
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Nations Millennium Development Goals set a goal to “halt by 2015 and begin to

reverse the incidence of malaria” and “the more ambitious target defined later by

the World Health Organization (WHO) of reducing case incidence by 75% relative

to 2000 levels." (WHO, 2008a; Bhatt et al., 2015). It is worth emphasizing that al-

though we set the years 2000–2015 as the study period and did not investigate any

post-2015 MAP data because of the above considerations, those published or up-

coming post-2015 MAP data should be considered or leveraged for future related

research or follow-up studies.

After selecting 2000–2015 as our study period, we take the middle point years 2007

and 2008 as the cut-off and define the years 2000–2007 as the “early years" and the

years 2008–2015 as the “late years." We include all the sub-Saharan countries that

satisfy the following two criteria: (1) The rasters of estimated annual Pf PR2−10 be-

tween 2000 and 2015 created by the Malaria Atlas Project include that country. (2)

For that country, IPUMS-DHS contains at least one standard DHS between 2000–

2007 (“early year") and at least one standard DHS between 2008–2015 (“late year"),

and both surveys include the cluster GPS coordinates. If there is more than one

early (late) years for which the above data are all available, we chose the earliest

early year (latest late year). This choice was made to maximize the time interval

for the decrease of malaria prevalence, if any, to have an effect on the birth weight

of infants. For those countries that have at least one standard DHS with available

cluster GPS data in the late year (2008–2015), but no available standard DHS or

GPS data in the early year (2000–2007), we still include them if they have a stan-

dard DHS along with its GPS data for the year 1999 (with a possible overlap into

1998). In this case, we assign MAP annual Pf PR2−10 estimates from 2000 to the

1999 DHS data. This allows us to include two more countries, Cote d’Ivoire and
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Tanzania. The 19 sub-Saharan African countries that meet the above eligibility

criteria are listed in Table 4.1.

Table 4.1: The 19 selected sub-Saharan African countries along with their chosen
early/late years of malaria prevalence (i.e., estimated parasite rate Pf PR2−10) and
IPUMS-DHS early/late years. Note that some span over two successive years.

Malaria Prevalence IPUMS-DHS

Country Early Year Late Year Early Year Late Year

Benin 2001 2012 2001 2011–12

Burkina Faso 2003 2010 2003 2010

Cameron 2004 2011 2004 2011

Congo Democratic Republic 2007 2013 2007 2013–14

Cote d’Ivoire 2000 2012 1998–99 2011–12

Ethiopia 2000 2010 2000 2010–11

Ghana 2003 2014 2003 2014

Guinea 2005 2012 2005 2012

Kenya 2003 2014 2003 2014

Malawi 2000 2010 2000 2010

Mali 2001 2012 2001 2012–13

Namibia 2000 2013 2000 2013

Nigeria 2003 2013 2003 2013

Rwanda 2005 2014 2005 2014–15

Senegal 2005 2010 2005 2010–11

Tanzania 2000 2015 1999 2015–16

Uganda 2000 2011 2000–01 2011

Zambia 2007 2013 2007 2013–14

Zimbabwe 2005 2015 2005–06 2015

From Table 4.1, we can see that among the 19 countries, only two countries (Congo
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Democratic Republic and Zambia) happen to take the margin year 2007 as the early

year and no countries take the margin year 2008 as the late year. This implies that

our study is relatively insensitive to our way of defining the early years (2000–

2007) and the late years (2008–2015) as most of the selected early years and late

years in Table 4.1 do not fall near the margin years 2007 and 2008.

4.2.4 Statistical Analysis

4.2.4.1 Motivation and overview of our approach: difference-in-differences via

pair-of-pairs

Our approach to estimating the causal effect of reduced malaria burden on the

low birth weight rate is to use a difference-in-differences approach (Card and

Krueger, 2000; Abadie, 2005; Athey and Imbens, 2006; Angrist and Pischke, 2008;

Dimick and Ryan, 2014; St.Clair and Cook, 2015) combined with matching (Ru-

bin, 1973, 2006; Rosenbaum, 2002b, 2010; Hansen, 2004; Stuart, 2010; Zubizarreta,

2012; Pimentel et al., 2015). In a difference-in-differences approach, units are mea-

sured in both an early (before treatment) and late (after treatment) period. Ideally,

we would like to observe how the low birth weight rate changes with respect to

malaria prevalence within each DHS cluster, so that the DHS clusters themselves

could be the units in a difference-in-differences approach. However, this is not

feasible because within each country over time the DHS samples different loca-

tions (clusters) as the representative data of that country. We use optimal match-

ing (Rosenbaum, 1989, 2010; Hansen and Klopfer, 2006) to pair two DHS clusters,

one in the early year and one in the late year as closely as possible, mimicking

a single DHS cluster measured twice in two different time periods. After this

first-step matching, we define the treated units as the high-low pairs of clusters,
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meaning that the early year cluster has high malaria prevalence (i.e., Pf PR2−10 >

0.4) while the late year cluster has low malaria prevalence (i.e., Pf PR2−10 < 0.2),

and define the control units as the high-high pairs of clusters, meaning that both

the early year and late year clusters have high malaria prevalence (i.e., Pf PR2−10

> 0.4) and the absolute difference between their two values of Pf PR2−10 (one

for the early year and one for the late year) is less than 0.1. The difference-in-

differences approach (Card and Krueger, 2000; Angrist and Pischke, 2008; Dimick

and Ryan, 2014; St.Clair and Cook, 2015) compares the changes in the low birth

weight rate over time for treated units (i.e., high-low pairs of clusters) compared

to control units (i.e., high-high pairs of clusters) adjusted for observed covariates.

The difference-in-differences approach removes bias from three potential sources

(Volpp et al., 2007):

• A difference between treated units and control units that is stable over time

cannot be mistaken for an effect of reduced malaria burden because each

treated or control unit is compared with itself before and after the time at

which reduced malaria burden takes place in the treated units.

• Changes over time in sub-Saharan Africa that affect all treated or control

units similarly cannot be mistaken for an effect of reduced malaria burden

because changes in low birth weight over time are compared between the

treated units and control units.

• Changes in the characteristics (i.e., observed covariates) of the populations

(e.g., age of mother at birth) in treated or control units over time cannot be

mistaken for an effect of reduced malaria burden as long as those character-

istics are measured and adjusted for.
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The traditional difference-in-differences approach requires a parallel trend as-

sumption, which states that the path of the outcome (e.g., the low birth weight

rate) for the treated unit is parallel to that for the control unit (Card and Krueger,

2000; Angrist and Pischke, 2008; Dimick and Ryan, 2014; St.Clair and Cook, 2015).

One way the parallel trend assumption can be violated is if there are events in the

late period whose effect on the outcome differs depending on the level of observed

covariates and those observed covariates are unbalanced between the treated and

control units across time (Shadish et al., 2002). For example, suppose that there

are advances in prenatal care in the late year that tend to be available more in ur-

ban areas, then the parallel trends assumption could be violated if there are more

treated units (i.e., high-low pairs of clusters) in urban areas than control units (i.e.,

high-high pairs of clusters). To make the parallel trend assumption more likely

to hold, instead of conducting a difference-in-differences study simply among all

the treated and control units, we use a second-step matching to pair treated units

with control units on the observed covariates trajectories (from the early year to

the late year) to make the treated units and control units similar in the observed

covariates trajectories as they would be under randomization (Rosenbaum, 2002b,

2010; Stuart, 2010), and discard those treated or control units that cannot be paired

with similar observed covariates trajectories. For example, by matching on the ur-

ban/rural indicator trajectories between the treated and control units, we adjust

for the potential source of bias resulting from the possibility that there may be

advances in prenatal care in the late year that are available more in urban areas.

Another perspective on how our second-step matching helps to improve a

difference-in-differences study is through the survey location sampling variabil-

ity (Fakhouri et al., 2020). Recall that when constructing representative samples,

160



the DHS are sampled at different locations (i.e., clusters) across time (ICF, 2019;

Boyle et al., 2019). Therefore, if we simply implemented a difference-in-differences

approach over all the high-low and high-high pairs of survey clusters and did not

use matching to adjust for observed covariates, this survey location sampling vari-

ability may generate imbalances (i.e., different trajectories) of observed covariates

across the treated and control groups, and therefore may bias the difference-in-

differences estimator (Heckman et al., 1997). Imbalances of observed covariates

caused by the survey location sampling variability may occur in the following

three cases: 1) The survey location sampling variability is affecting the treated

and control groups in the opposite direction. Specifically, there is some observed

covariate for which the difference between the high-low pairs of sampled clusters

tends to be larger (or smaller) than the country’s overall difference between the

high malaria prevalence regions in the early years and the low malaria prevalence

regions in the late years and conversely, the difference in that observed covariate

between the high-high pairs of sampled clusters tends to be smaller (or larger)

than the country’s overall difference between the high malaria prevalence regions

in the early years and the high malaria prevalence regions in the late years. 2) The

survey location sampling variability is affecting the treated and control groups in

the same direction but to different extents. 3) The survey location sampling vari-

ability only happened in the treated or control group. Specifically, there is some

observed covariate for which the difference between the high-low (or high-high)

pairs of sampled clusters tends to differ from the country’s overall difference be-

tween the high malaria prevalence regions in the early years and the low (or high)

malaria prevalence regions in the late years, but this is not the case for the high-

high (or high-low) pairs of sampled clusters. Using matching as a nonparametric

data preprocessing step in a difference-in-differences study can remove this type of
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bias because the observed covariates trajectories are forced to be common among

the matched treated and control groups (St.Clair and Cook, 2015; Basu and Small,

2020).

An additional important aspect of our approach is that we use multiple imputa-

tion to address missingness in the birth weight records. The fraction of missing-

ness in birth weight in the IPUMS-DHS data set is non-negligible and previous

studies have noted that failing to carefully and appropriately address the missing

data issue with the birth weight records can significantly bias the estimates of the

low birth weight rate derived from surveys in developing countries (Boerma et al.,

1996; Robles and Goldman, 1999). We address the missing data issue by using mul-

tiple imputation with carefully selected covariates. Multiple imputation constructs

several plausible imputed data sets and appropriately combines results obtained

from each of them to obtain valid inferences under an assumption that the data is

missing at random conditional on measured covariates (Rubin, 1987). Our work-

flow is summarized in Figure 4.1, in which we indicate both the data granularity

(country-level, cluster-level, and individual-level) and the corresponding steps of

our statistical methodology (including the data selection procedure described in

the previous section and the Steps 1–4 of the statistical analysis listed below).

4.2.4.2 Step 1: Proximity prioritized in the matching of high-high and high-low

clusters

The DHS collects data from different clusters within the same country in differ-

ent survey years. To construct pairs of early year and late year clusters which

are geographically close such that each pair of clusters can mimic a single cluster

measured twice in two different time periods to serve as the unit of a difference-in-
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Figure 4.1: Work flow diagram of the study.
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differences study, we use optimal matching (Rosenbaum, 1989, 2010; Hansen and

Klopfer, 2006) to pair clusters within the same country, one from the early year

and one from the late year, based on the geographic proximity of their locations.

Specifically, we minimize the total rank-based Mahalanobis distance based on the

latitude and longitude of the cluster with a propensity score caliper to pair clus-

ters so that the total distance between the paired early year cluster and late year

cluster is as small as possible (Rosenbaum, 1989, 2010; Hansen and Klopfer, 2006).

The number of clusters to pair for each country is set to be the minimum of the

number of clusters in the early year and the number of clusters in the late year of

that country.

4.2.4.3 Step 2: Matching on sociodemographic similarity is emphasized in sec-

ond matching

We first divide malaria prevalence into three levels with respect to the esti-

mated Plasmodium falciparum parasite rates Pf PR2−10 (ranging from 0 to 1): high

(Pf PR2−10 > 0.4), medium (Pf PR2−10 lies in [0.2, 0.4]), and low (Pf PR2−10 < 0.2).

For clusters in the year 1999, we use the Pf PR2−10 in the nearest year in which it

is available, i.e., the year 2000. We select the pairs of the early year and late year

clusters as formed in Step 1 described above that belong to either one of the fol-

lowing two categories: (1) High-high pairs: both of the estimated parasite rates

of the early year and late year clusters within that pair are high (> 0.4), and the

absolute difference between the two rates is less than 0.1. (2) High-low pairs: the

estimated parasite rate of the early year cluster within that pair is high (> 0.4),

while the estimated parasite rate of the late year cluster within that pair is low

(< 0.2). 950 out of 6,812 pairs of clusters met one of these two criteria with 540

being high-high pairs and 410 high-low pairs. We removed one high-low pair in
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which the late year cluster had an estimated parasite rate value (i.e., Pf PR2−10) of

zero for every year between 2000 and 2015; this cluster was in a high altitude area

with temperature unsuitable for malaria transmission and thus was not compa-

rable in malaria transmission intensity to its paired early year cluster with high

malaria transmission intensity. Since we would like to study the effect of reduced

malaria burden on the low birth weight rate of infants, we consider high-low pairs

of clusters as treated units and high-high pairs of clusters as control units, and con-

duct a matched study by matching each high-low pair with a high-high pair that

is similar with respect to covariates that might be correlated with either the treat-

ment (changes in malaria prevalence) or the outcome (low birth weight). We allow

matches across different countries. The covariates we match on are cluster aver-

ages of the following individual-level covariates, where we code the individual-

level covariates as quantitative variables with higher values suggesting higher so-

ciodemographic status:

• Household electricity: 0 – dwelling has no electricity; 1 – otherwise.

• Household main material of floor: 1 – natural or earth-based; 2 – rudimen-

tary; 3 – finished.

• Household toilet facility: 0 – no facility; 1 – with toilet.

• Urban or rural: 0 – rural; 1 – urban.

• Mother’s education level: 0 – no education; 1 – primary; 2 – secondary or

higher.

• Indicator of whether the woman is currently using a modern method of con-

traception: 0 – no; 1 – yes.
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The above six sociodemographic covariates were chosen by looking over the vari-

ables in the Demographic and Health Surveys (DHS) and choosing those which

we thought met the following criteria: 1) The above six covariates are potentially

strongly correlated with both the risk of malaria (Baragatti et al., 2009; Krefis et al.,

2010; Ayele et al., 2013; Roberts and Matthews, 2016; Sulyok et al., 2017) and birth

outcomes (Sahn and Stifel, 2003; Gemperli et al., 2004; Chen et al., 2009; Grace

et al., 2015; Padhi et al., 2015), and therefore may be important confounding vari-

ables that need to be adjusted for via statistical matching (Rosenbaum and Silber,

2009; Rosenbaum, 2010; Stuart, 2010). 2) The records of the above six covariates are

mostly available for all the countries and the survey years in our study samples.

Specifically, for the above six covariates, the percentages of missing data (miss-

ingness can arise either because the question was not asked or the individual was

asked the question but did not respond) among the total individual records from

IPUMS-DHS among the 6,812 pairs of clusters remaining after Step 1 are all less

than 0.3%.

For each cluster, we define the corresponding six cluster-level covariates by taking

the average value for each of the six covariates among the individual records from

IPUMS-DHS which are in that cluster, leaving out all missing data. This method

of building up cluster-level data from individual-level records from DHS has been

commonly used (Kennedy et al., 2011; Larsen et al., 2017). We form quadruples

(pairs of pairs) by pairing one high-low pair of clusters (a "treated" unit) with one

high-high pair of clusters (a "control" unit), such that all the six cluster-level ob-

served covariates are balanced between both the early and late year clusters for

the paired high-low and high-high pairs. We use optimal cardinality matching to

form these quadruples (Zubizarreta et al., 2014; Visconti and Zubizarreta, 2018).
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Figure 4.2: Formed quadruples (pairs of pairs) of matched high-low and high-high
pairs of clusters. In Step 1, pairs of clusters from the early and late time periods are
matched on geographic proximity and categorized as ‘high-high’ (comparison, or
control) or ‘high-low’ (treated). In Step 2, pairs of high-high clusters are matched
with pairs of high-low clusters based on cluster-level sociodemographic character-
istics. The difference-in-differences estimate of the coefficient of changing malaria
burden on the low birth weight rate is based on comparing (D−C) to (B−A).

Optimal cardinality matching is a flexible matching algorithm which forms the

largest number of pairs of treated and control units with the constraint that the ab-

solute standardized differences (absolute value of difference in means in standard

deviation units; see Rosenbaum, 2010) are less than a threshold; we use a thresh-

old of 0.1, which is commonly used to classify a match as adequate (Neuman et al.,

2014; Silber et al., 2016). After implementing the optimal cardinality matching, 219

matched quadruples (pairs of high-low and high-high pairs of clusters) remain.

See Figure 4.2 for illustration of the process of forming matched quadruples (pairs

of pairs).
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4.2.4.4 Step 3: Low birth weight indicator with multiple imputation to address

missingness

We then conduct statistical analysis at the individual child level. Among all the

19,310 children’s records from the quadruples formed above, we exclude multiple

births (i.e., twins, triplets etc), leaving 18,499 records. The outcome variable is the

indicator of low birth weight, which is defined as child’s birth weight less than

2,500 grams. However, 48% of the birth weight records of children among these

18,499 records are missing. To handle this, we perform multiple imputation, under

the assumption of missing at random (Heitjan and Basu, 1996), with 500 replica-

tions. An important predictor that is available for imputing the missing low birth

weight indicator is the mother’s subjective reported size of the child. The mother’s

reported size of the child is relatively complete in the IPUMS-DHS data set and has

been shown to be a powerful tool to handle the missing data problem with birth

weight (Blanc and Wardlaw, 2005). We exclude the small number of records with

missing mother’s subjective reported size of the child, leaving 18,112 records, 47%

of which (8,509 records) have missing low birth weight indicator. Among the 9,603

records with observed birth weight, 825 (8.6%) had low birth weight. We first use

the bayesglm function (part of the arm package in R) to fit a Bayesian logistic regres-

sion for the outcome of the low birth weight indicator among those children for

whom low birth weight is not missing. To make it more plausible that the missing

at random assumption holds, the following covariates are included as predictors

in this regression because they might affect both missingness and the low birth

weight rate:

• The size of the child at birth reported subjectively by the mother: 1 – very

small or smaller than average; 2 – average; 3 – larger than average or very
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large.

• Mother’s age in years.

• Child’s birth order number: 1 – the first child born to a mother; 2 – the second,

third or fourth child born to a mother; 3 – otherwise.

• Household wealth index: 1 – poorest; 2 – poorer; 3 – middle; 4 – richer; 5 –

richest.

• Urban or rural: 0 – rural; 1 – urban.

• Mother’s education level: 0 – no education; 1 – primary; 2 – secondary or

higher.

• Child’s sex: 0 – female; 1 – male.

• Mother’s current marital or union status: 0 – never married or formerly in

union; 1 – married or living together.

• Indicator of whether the child’s mother received any antenatal care while the

child was in utero: 0 – no or missing; 1 – yes.

We also include quadratic terms for mother’s age in years and child’s birth order

in the regression since according to Selvin and Janerich (1971), the influences of

mother’s age and child’s birth order on the birth weight do not follow a linear pat-

tern. Note that among the remaining 18,112 records, there are no missing data for

all of the above covariates. The prior distributions for the regression coefficients

follow the default priors of the bayesglm function, i.e., independent Cauchy distri-

butions with center 0 and scale set to 10 for the regression intercept term, 2.5 for

binary predictors, and 2.5/(2×sd) for other numerical predictors, where sd is the
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standard deviation of the predictor in the data used for fitting the regression (i.e.,

the 9,603 records with observed birth weight). This default weakly informative

prior has been shown to outperform Gaussian and Laplacian priors in a wide va-

riety of settings (Gelman et al., 2008). After fitting this Bayesian logistic regression

model, we get the posterior distribution of the regression coefficient associated

with each predictor; see Table 4.2. From Table 4.2, we can see that in the impu-

tation model, mother’s age, child’s birth order, mother’s education level, and the

mother’s reported birth size are significant predictors, which agrees with the pre-

vious literature (e.g., Fraser et al., 1995; Strobino et al., 1995; Richards et al., 2001;

de Bernabé et al., 2004).

Table 4.2: Summary of the Bayesian logistic regression model fitted over records
with observed birth weight which is used to predict missing low birth weight in-
dicators.

Predictor Posterior mean Posterior std z-score p-value

(Intercept) 1.916 0.628 3.051 0.002∗∗

Mother’s age (linear term) −0.207 0.045 −4.562 < 0.001∗∗∗

Mother’s age (quadratic term) 0.003 0.001 3.987 < 0.001∗∗∗

Wealth index 0.060 0.037 1.591 0.112

Child’s birth order (linear term) −0.989 0.338 −2.925 0.003∗∗

Child’s birth order (quadratic term) 0.211 0.086 2.447 0.014∗

0 - rural; 1 - urban 0.126 0.103 1.214 0.225

Mother’s education level −0.226 0.062 −3.633 < 0.001∗∗∗

Child is boy −0.068 0.083 −0.815 0.415

Mother is married or living together −0.173 0.117 −1.482 0.138

Indicator of antenatal care −0.046 0.093 −0.493 0.622

Indicator of low birth size 2.410 0.090 26.776 < 0.001∗∗∗

Indicator of large birth size −1.387 0.129 −10.786 < 0.001∗∗∗
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We then conduct the following procedure in each run of multiple imputation. For

each individual with missing birth weight, we first draw from the posterior distri-

bution of the regression coefficients in Table 4.2, we then use these regression coef-

ficients and the individual’s covariates (as predictors) to find the probability of the

individual having low birth weight and then we use this probability to randomly

draw a low birth weight indicator for the individual. We conduct this procedure

500 times, getting 500 independent data sets with imputed low birth weight indi-

cators.

4.2.4.5 Step 4: Estimation of causal effect of reduced malaria burden on the low

birth weight rate

For each of the 500 imputed data sets, we then fit a mixed-effects linear proba-

bility model where there is a random effect (random intercept) for each cluster to

account for the potential correlations between the outcomes among the individual

records within the same cluster (Gałecki and Burzykowski, 2013). We include in

the model the covariates which might be related to both whether an individual is

in a high-low vs. high-high pair of clusters and the low birth weight rate. Specif-

ically we include the predictors from the Bayesian logistic regression for multiple

imputation as covariate regressors in the mixed-effects linear probability model

(listed in Table 4.2), except for the mother’s reported birth size. We do not include

reported birth size because it is not a pretreatment variable and is a proxy for the

outcome (Rosenbaum, 1984). In addition to the above covariates, we include in

the model the following three indicators: (1) Low malaria prevalence indicator:

indicates whether the individual is from a cluster with a low malaria prevalence

(Pf PR2−10 < 0.2). (2) Time indicator: 0 – if the individual is from a early year clus-

ter; 1 – if the individual is from a late year cluster. (3) Group indicator: 0 – if the

171



individual is from a cluster in a high-high pair of clusters; 1 – if the individual is

from a cluster in a high-low pair of clusters. Through adjusting for the time varying

covariates via matching and including the above three indicators in the regression,

our study uses a difference-in-differences approach for a matched observational

study (Wing et al., 2018). Note that even though we do not explicitly incorporate

matching into the final model (i.e., the mixed-effects linear probability model (4.1)),

matching still reduces the bias due to potential statistical model misspecification

in our analysis by being a nonparametric data preprocessing step which makes the

distributions of the observed covariates of the selected treated and control units

identical or similar, lessening the dependence of the results on the model used to

adjust for the observed covariates (Hansen, 2004; Ho et al., 2007). Let 1(A) be the

indicator function of event A such that 1(A) = 1 if A is true and 1(A) = 0 oth-

erwise. To conclude, we consider the following mixed-effects linear probability

model for the individual j in cluster i:

P(Yij = 1 | i, Xij) = k0 + k1 · 1(i is a low malaria prevalence cluster)

+ k2 · 1(i is a late year cluster)

+ k3 · 1(i is from a high-low pair of clusters) + βTXij, (4.1)

with two error terms αi ∼ N (0, σ0) and ϵij ∼ N (0, σ1).

In Model (4.1), Yij is the observed outcome (i.e., the low birth weight indicator)

and Xij the covariate regressors (including the quadratic terms of mother’s age

and child’s birth order) of the individual j in cluster i, and αi is the random effect

for cluster i. See Table 4.3 for an interpretation of the coefficients of the three in-

dicators and the intercept term (i.e., the k0, k1, k2, k3) within each matched quadru-

ple. The estimated causal effect of reduced malaria burden (low vs. high malaria
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prevalence) on the low birth weight rate is the mean value of the 500 estimated

coefficients on the low malaria prevalence indicator obtained (i.e., the k1) from 500

runs of the mixed-effects linear regression described above. See Appendix 4.5.5

for more details on the statistical inference procedure with multiple imputation,

which are also referred to as Rubin’s rules (Carpenter and Kenward, 2012).

Table 4.3: An interpretation of the coefficients of the intercept term and the three in-
dicators defined in model (4.1) (i.e., the k0, k1, k2, k3) within each matched quadru-
ple. The coefficient of the low malaria prevalence indicator (i.e., the k1) incorpo-
rates the information of the magnitude of the effect of changing malaria burden
(from high to low) on the low birth weight rate.

Cluster Prevalence Time Pair Coefficients
Within-pair Between-pair

contrast contrast

1 High Early High-low k0 + k3
k1 + k2

k1

2 Low Late High-low k0 + k1 + k2 + k3

3 High Early High-high k0
k2

4 High Late High-high k0 + k2

It is worth clarifying that although we take a Bayesian approach when imputing

(i.e., predicting) the missing low birth weight indicators in Step 3 (i.e., imputation

model) and then take a frequentist approach when conducting the 500 separate

outcome analyses with the 500 imputed data sets in Step 4 (i.e., substantive model),

these two different statistical perspectives (i.e., Bayesian and frequentist) do not

conflict with each other when we apply Rubin’s rules to combine these 500 sepa-

rate outcome analyses as the single estimator and inference reported in Table 4.6.

This is because the frequentist validity of applying Rubin’s rules to combine sepa-

rate outcome analyses with multiple imputed data sets only explicitly depends on

the asymptotic normal approximation assumption for each coefficient estimator in

Model (4.1) (see Appendix 4.5.5 for more details), and does not directly depend
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on how the multiple imputed data sets are generated (e.g., either using a Bayesian

imputation model as in Step 3 or using a frequentist imputation model instead).

Using a Bayesian imputation model followed by a frequentist substantive model

is one of the most common strategies when applying Rubin’s rules to conduct sta-

tistical inference with multiple imputation; see Rubin (1996), Chapter 3 of Rubin

(1987), and Chapter 2 of Carpenter and Kenward (2012). For representative works

on justifying the advantages of using a Bayesian imputation model in multiple-

imputation inferences, see Meng (1994) and Chapter 2 of Carpenter and Kenward

(2012).

4.2.4.6 Secondary analyses

We also conducted the following four secondary analyses (SA1) – (SA4) which

examine the causal hypothesis that reduced malaria transmission intensity cause

reductions in the low birth weight rate in various ways.

• (SA1) In the first secondary analysis, we fit the mixed-effects linear probabil-

ity model with multiple imputation only on the children whose age at the cor-

responding survey is no older than one year old (7,156 out of 18,112 records)

to mitigate the potential bias resulting from the births that did not occur in

exactly the same year as the year of the corresponding malaria prevalence

measurement.

• (SA2) In the second secondary analysis, we fit the mixed-effects linear prob-

ability model with multiple imputation over first born children only (3,890

out of 18,112 records) to check if the potential effect of reduced malaria bur-

den on the low birth weight rate is especially substantial/weak for first born

children or not.
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• (SA3) In the third secondary analysis, we make the difference between high

malaria prevalence and low prevalence more extreme. Specifically, we rede-

fine the malaria prevalence levels (ranging from 0 to 1) as: high (Pf PR2−10 >

0.45), medium (Pf PR2−10 lies in [0.15, 0.45]), and low (Pf PR2−10 < 0.15). We

then conduct the same statistical analysis procedure as in the primary analy-

sis to check if a moderately greater reduction in malaria burden would lead

to more of a decrease in the low birth weight rate or not.

• (SA4) In the fourth secondary analysis, we conduct the same procedure as

in (SA3), but making the high-medium-low malaria prevalence cut-offs even

more extreme: high (Pf PR2−10 > 0.5), medium (Pf PR2−10 lies in [0.1, 0.5]),

and low (Pf PR2−10 < 0.1) to check if a substantially more dramatic reduction

in malaria burden would cause a more dramatic decrease in the low birth

weight rate or not.

4.2.4.7 Sensitivity analyses

As discussed in the “Motivation and overview of our approach" section, using

matching as a data preprocessing step in a difference-in-differences study can re-

duce the potential bias that may result from a violation of the parallel trend as-

sumption arising from failing to adjust for observed covariates and the survey

location sampling variability when using the survey data to conduct a difference-

in-differences study. However, neither matching nor difference-in-differences can

directly adjust for unobserved covariates (i.e., unmeasured confounders or events).

The estimated treatment effect (i.e., the estimated coefficient of the low malaria

prevalence indicator contributing to the low birth weight rate) from our primary

analysis can be biased by failing to adjust for any potential unobserved covariates.
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How potential unobserved covariates may bias the estimated effect in a difference-

in-differences study has been understood from various alternative perspectives in

the previous literature. These alternative perspectives are intrinsically connected

and we briefly list three of them here (for more detailed descriptions, see Ap-

pendix 4.5.7):

• Perspective 1: The potential violation of the unconfoundedness assumption

(Rosenbaum and Rubin, 1983b; Heckman and Robb, 1985; Heckman et al.,

1997).

• Perspective 2: The potential violation of the parallel trend assumption in a

difference-in-differences study (Card and Krueger, 2000; Angrist and Pis-

chke, 2008; Hasegawa et al., 2019; Basu and Small, 2020).

• Perspective 3: The difference-in-differences estimator may be biased if there

is an event that is more (or less) likely to occur as the intervention happens

and the occurrence probability of this event cannot be fully captured by ob-

served covariates (Shadish, 2010; West and Thoemmes, 2010).

To assess the robustness of the results of our primary analysis to potential hidden

bias, we adapt an omitted variable sensitivity analysis approach (Rosenbaum and

Rubin, 1983a; Imbens, 2003; Ichino et al., 2008; Zhang and Small, 2020). Specifi-

cally, our sensitivity analysis model (i.e., Model (4.3) in Appendix 4.5.7) extends

Model (4.1) by including a hypothetical unobserved covariate U that is correlated

with both the low malaria prevalence indicator and the low birth weight indicator.

Specifically, let Uij denote the value of U of individual j in cluster i, we consider
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the following data generating process for Uij:

P(Uij = 1) = 50%+p1% · 1(i is a low malaria prevalence cluster)

+ p2% · 1(the observed or the imputed Yij = 1), (4.2)

where p1 and p2 are prespecified sensitivity parameters of which the unit is a per-

centage point. Our sensitivity analyses investigate how the estimated treatment

effect varies over a range of prespecified values for (p1, p2). See Appendix 4.5.7 for

the details of the design of the sensitivity analyses and on how our proposed sen-

sitivity analysis model helps to address the concerns about the hidden bias from

Perspectives 1–3 listed above.

4.3 Results

In this section, we report and interpret the results of matching, primary anal-

ysis, secondary analyses, and sensitivity analyses relating changes in malaria

burden to changes in the birth weight rate between 2000–2015 in sub-Saharan

Africa. The R (R Core Team, 2020) code for producing all the main results

and tables of this article is posted on GitHub (https://github.com/siyuheng/

Malaria-and-Low-Birth-Weight).

4.3.1 Matching

We first evaluate the performance of the first-step matching where we focus on the

geographical closeness of paired early year and late year clusters from the follow-

ing three perspectives: (1) the geographic proximity of the early year and the late

year clusters within each pair, which is evaluated through the mean distance of
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two paired clusters, the within-pair longitude’s correlation and latitude’s correla-

tion between the paired early year and late year clusters, and the mean values of

the longitudes and the latitudes of the paired early year and late year clusters; (2)

the closeness of the mean annual malaria prevalence (Pf PR2−10) of the early year

and late year clusters at the early year (i.e., the early malaria prevalence year in Ta-

ble 4.1); (3) the closeness of the mean annual malaria prevalence of the early year

and the late year clusters at the late year (i.e., the late malaria prevalence year in Ta-

ble 4.1). We report the results in Table 4.4, which indicate that the first step of our

matching produced pairs of clusters which are close geographically and in their

malaria prevalence at a given time. Of note, the mean Haversine distance of the

early year clusters and late year clusters is 24.1 km among the 219 high-low pairs

of clusters, and 28.7 km among the 219 high-high pairs of clusters. The within-pair

longitudes’ and latitudes’ correlations between the paired early year and late year

clusters among the high-low and high-high pairs are all nearly one.
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Table 4.4: The mean Haversine distance of the early year clusters and late year
clusters is 24.1 km among the 219 high-low pairs of clusters, and 28.7 km among
the 219 high-high pairs of clusters. The within-pair longitudes’ and latitudes’ cor-
relations between the paired early year and late year clusters among the high-low
and high-high pairs all nearly equal one. The mean values of the longitudes, the
latitudes, the annual malaria prevalence (i.e., Pf PR2−10) measured at the early year,

denoted as Pf PREarly
2−10 , and at the late year, denoted as Pf PRLate

2−10, of the paired early
year clusters (clusters sampled at the early year) and late year clusters (clusters
sampled at the late year) among the 219 high-low and 219 high-high pairs of clus-
ters used for the statistical inference respectively. Note that an early year cluster
has a late year Pf PR2−10 and a late year cluster has an early year Pf PR2−10 since
the MAP data contain Pf PR2−10 for each location and for each year between 2000
and 2015.

High-low pairs High-high pairs

Mean within-pair Haversine distance 24.1 km 28.7 km

Within-pair correlation of longitude 0.9999 0.9996

Within-pair correlation of latitude 0.9998 0.9997

Longitude Latitude Pf PREarly
2−10 Pf PRLate

2−10

Early clusters among high-low pairs 16.92 −1.15 0.52 0.17

Late clusters among high-low pairs 16.88 −1.15 0.48 0.12

Early clusters among high-high pairs 19.15 0.43 0.51 0.47

Late clusters among high-high pairs 19.13 0.46 0.53 0.49

We then evaluate the performance of the second-step matching, where we focus

on the closeness of the sociodemographic status of paired high-low and high-high

pairs of clusters, by examining the balance of each covariate among high-low and

high-high pairs of early year and late year clusters before and after matching. Re-

call that for each cluster, we calculate the six cluster-level covariates (i.e., urban

or rural, toilet facility, floor facility, electricity, mother’s education level, contra-

ception indicator) by averaging over all available individual-level records in that

cluster. In each high-low or high-high pair of clusters, there are 12 associated co-
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variates, 6 for the early year cluster in that pair and 6 for the late year cluster in that

pair. Table 4.5 reports the mean of each covariate among high-low pairs of clusters

and high-high pairs of clusters before and after matching, along with the absolute

standardized differences before and after matching. From Table 4.5, we can see that

before matching, the high-high pairs are quite different from the high-low pairs, all

absolute standardized differences are greater than 0.2. The high-low pairs tend to

be sociodemographically better off than the high-high pairs (higher prevalence of

improved toilet facilities and floor material facilities, higher prevalence of domes-

tic electricity, higher levels of mother’s education, higher rate of contraceptive use,

and more urban households). To reduce the bias from these observed covariates,

we leverage optimal cardinality matching, as described above, to pair a high-low

pair of clusters with a high-high pair and throw away the pairs of clusters for

which the associated covariates cannot be balanced well. After matching, we can

see that all 12 covariates are balanced well – all absolute standardized differences

after matching are less than 0.1.
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Table 4.5: Balance of each covariate before matching (BM) and after matching
(AM). We report the mean of each covariate (including early and late years) for
high-low and high-high pairs of clusters, before and after matching. We also re-
port each absolute standardized difference (Std.dif) before and after matching.

Before matching After matching Std.dif

High-low High-high High-low High-high BM AM

(410 pairs) (540 pairs) (219 pairs) (219 pairs)

Urban/rural (early) 0.44 0.20 0.26 0.26 0.53 0.00

Urban/rural (late) 0.60 0.21 0.37 0.32 0.85 0.09

Toilet facility (early) 0.88 0.60 0.82 0.79 0.86 0.10

Toilet facility (late) 0.94 0.69 0.90 0.88 0.90 0.10

Floor material (early) 1.90 1.68 1.60 1.67 0.31 0.10

Floor material (late) 2.22 1.79 1.92 1.87 0.59 0.07

Electricity (early) 0.36 0.12 0.17 0.16 0.70 0.02

Electricity (late) 0.54 0.18 0.33 0.30 0.99 0.10

Mother’s education (early) 1.00 0.36 0.69 0.64 1.36 0.10

Mother’s education (late) 1.23 0.42 0.87 0.83 1.78 0.10

Contraception (early) 0.16 0.12 0.15 0.17 0.27 0.10

Contraception (late) 0.22 0.18 0.24 0.26 0.23 0.10

4.3.2 Effect of reduced malaria burden on the low birth weight

rate

Table 4.9 of Appendix 4.5.1 summarizes the low malaria prevalence indicators, the

time indicators, the group indicators, the covariates, and the birth weights of the

18,112 births in the matched clusters. Table 4.6 reports the estimated causal ef-

fect of reduced malaria burden (low vs. high malaria prevalence) on the rate of

births with low birth weight, which is represented as the coefficient on the malaria
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prevalence indicator (diagnostics for the multiple imputation that was used in gen-

erating the estimates in Table 4.6 are shown in Table 4.10 of Appendix 4.5.5). We

estimate that a decline in malaria prevalence from Pf PR2−10 > 0.40 to less than

0.20 reduces the rate of low birth weight by 1.48 percentage points (95% confi-

dence interval: 3.70 percentage points reduction, 0.74 percentage points increase).

A reduction in the low birth weight rate of 1.48 percentage points is substantial; re-

call that among the study individuals with nonmissing birth weight, the low birth

weight rate was 8.6%, so a 1.48 percentage points reduction corresponds to a 17%

reduction in the low birth weight rate. The results in Table 4.6 also show that there

is strong evidence that mother’s age, child’s birth order, mother’s education level

and child’s sex are also associated with the low birth weight rate. For example,

mothers with higher education level are less likely to deliver a child with low birth

weight, and boys are less likely to have low birth weight than girls, which agrees

with the previous literature (e.g., Brooke et al., 1989; de Bernabé et al., 2004; Zeka

et al., 2008).

Our estimated reduction in the low birth weight rate of 1.48 percentage points

from reducing malaria prevalence from high to low is similar to that from a naive

difference-in-differences estimator that ignores covariates and missingness of birth

weight records. The observed low birth weight rates among the records with ob-

served birth weight within the early year clusters in high-low pairs is 9.33%, in the

late year clusters in high-low pairs is 7.52%, in the early year clusters in high-high

pairs is 9.18%, and in the late year clusters in high-high pairs is 9.06%. Therefore,

the naive difference-in-differences estimator for the effect of reduced malaria bur-

den without adjusting for covariates and missingness of birth weight records is

(7.52% − 9.33%) − (9.06% − 9.18%) = − 1.69% (i.e., 1.69 percentage points reduc-
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tion on the low birth weight rate).

Table 4.6: Inference with multiple imputation and mixed-effects linear probability
model (4.1). The unit of estimates and CIs is a percentage point.

Regressor Estimate 95% CI p-value

0 - high prevalence; 1 - low prevalence −1.48 [−3.70, 0.74] 0.191

0 - early year; 1 - late year −0.06 [−1.82, 1.69] 0.943

0 - high-high pairs; 1 - high-low pairs 0.21 [−1.40, 1.82] 0.797

Mother’s age (linear term) −1.86 [−2.48,−1.23] < 0.001∗∗∗

Mother’s age (quadratic term) 0.03 [0.02, 0.04] < 0.001∗∗∗

Child’s birth order (linear term) −13.91 [−18.49,−9.32] < 0.001∗∗∗

Child’s birth order (quadratic term) 2.91 [1.82, 4.00] < 0.001∗∗∗

Wealth index 0.09 [−0.38, 0.56] 0.709

0 - rural; 1 - urban 0.82 [−0.63, 2.27] 0.269

Mother’s education level −2.02 [−2.82,−1.22] < 0.001∗∗∗

Child is boy −1.75 [−2.75,−0.74] < 0.001∗∗∗

Mother is married or living together −1.43 [−3.04, 0.19] 0.083

Antenatal care indicator −0.96 [−2.06, 0.13] 0.085

Among all the high-low pairs of clusters in our sample, there has been a decrease

in the low birth weight rate from the early years to the late years of 1.81 percent-

age points (from 9.33% to 7.52%) for records with observed birth weight and an

estimated decrease of 2.04 percentage points (from 10.48% to 8.44%) when multi-

ple imputation is used to impute missing birth weight records. We now explore

how much of this decrease can be attributed to reduced malaria burden over time.

The estimated effect in Table 4.6 of the time indicator (late year vs. early year) is a

0.06 percentage points reduction, which is much less than that of the low malaria
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prevalence indicator. Moreover, the estimated change in the low birth weight rate

over time among high-low pairs that comes from changes in the covariates over

time is a 0.52 percentage points reduction. This is calculated by looking at the dif-

ference between β̂Txearly and β̂Txlate, where β̂T is the estimated coefficients of the

covariate regressors listed in Table 4.6, and xearly and xlate are the average values in

high-low pairs of the covariate regressors of the individuals within the early year

clusters and those within the late year clusters respectively. These results suggest

that after adjusting for the observed covariates listed in Table 4.6 and missingness

of birth weight records, the observed decrease in the low birth weight rate over

time in high-low pairs comes mainly from reduced malaria burden over time in-

stead of changes over time in the low birth weight rate that affect both high-low

and high-high pairs of clusters. To illustrate this point and further verify the poten-

tially substantial effect of reduced malaria burden on the low birth weight rate, we

also plot the estimated low birth weight rate of each cluster among the high-high

pairs and high-low pairs in our study sample in Figure 4.3. From Figure 4.3, we can

see that although in general, for both high-high pairs and high-low pairs, the birth

weight rates of the late year clusters are lower than those of the early year clusters,

it is clear that the reductions in low birth weight rate from early year to late year

among the high-low pairs are considerably greater than those among high-high

pairs, suggesting that reducing community-level malaria burden can potentially

substantially reduce the low birth weight rate.
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Figure 4.3: The estimated low birth weight rate of each cluster within the 219 high-
high pairs and the 219 high-low pairs. The estimated low birth weight rate for
each cluster are obtained from averaging over all the 500 imputed data sets of the
18,112 individual records. We draw a line to connect two paired clusters (one early
year cluster and one late year cluster). Box plots for the low birth weight rates are
also shown. Two of the four outliers of the late year clusters among the high-low
pairs (i.e., the top four late year clusters in terms of low birth weight rate among
the high-low pairs) may result from their extremely small within-cluster sample
sizes (no more than 3 individual records for both two clusters).
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4.3.3 Results of secondary analyses

The results of our secondary analyses support the interpretation of our primary

analysis:

• (SA1) In the first secondary analysis, when only conducting statistical analy-

sis among children whose age at the survey year is no older than 1 year, the

point estimate of the coefficient of the low malaria prevalence indicator (1 if

Pf PR2−10 < 0.2) is −1.31 percentage points (95% CI: [−4.70, 2.08]), which in

186



general agrees with the result of our primary analysis and implies that our

causal conclusion drawn from the primary analysis is relatively robust to the

potential hidden bias caused by the births that occurred in different years

from the years of the malaria prevalence measurement.

• (SA2) In the second secondary analysis, performing our statistical analysis

among first born children only, the estimated coefficient of the low malaria

prevalence indicator is −3.73 percentage points (95% CI: [−9.11, 1.64]). This

implies that the effect of reduced malaria burden on the low birth weight rate

may be especially substantial among first born children.

• (SA3) In the third secondary analysis, after slightly enlarging the difference

between high malaria prevalence and low prevalence and repeating the two-

stage matching procedure described above, there remain 100 high-high pairs

of clusters and 100 high-low pairs, with 8,611 individual records remaining in

the final model. In (SA3), the point estimate of the coefficient of low malaria

prevalence indicator is −1.48 percentage points (95% CI: [−4.44, 1.48]). In

this case, slightly enlarging the gap between the cutoffs for high/low malaria

prevalence did not result in an obvious additional reduction in the low birth

weight rate. A possible reason is that the new cut-offs are just slightly differ-

ent from the previous ones and the changes may still lie within the margin

of error of measuring the Pf PR2−10 or there may not be enough power. In

thinking about the results of (SA3), it is useful to also consider the results

from (SA4).

• (SA4) In the fourth secondary analysis, after making the high prevalence and

low prevalence cut-offs quite extreme and repeating the two-stage matching

procedure, there remain 35 high-high pairs of clusters and 35 high-low pairs,
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with 3,135 individual records remaining in the final model. In (SA4), the

point estimate of the coefficient of low malaria prevalence indicator is −3.04

percentage points (95% CI: [−8.50, 2.41]). This implies that a more dramatic

reduction in malaria burden can potentially lead to a more dramatic decrease

in the low birth weight rate and supports the above hypothesis that the fact

that slightly enlarging the gap between the high/low malaria prevalence cut-

offs in (SA3) did not result in an evident additional reduction in the low birth

weight rate may be due to the potential measurement error of the Pf PR2−10

or lack of power.

4.3.4 Results of the sensitivity analyses

Recall that in the “Sensitivity analyses" section and Appendix 4.5.7, our sensitivity

analyses consider a hypothetical unobserved covariate U that is correlated with

both the low malaria prevalence indicator and the low birth weight indicator. For

various values of the sensitivity parameters (p1, p2), we report the corresponding

point estimates and 95% CIs of the estimated treatment effect (i.e., the coefficient of

the low malaria prevalence indicator contributing to the low birth weight rate) in

Table 4.11 of Appendix 4.5.7. The results from Table 4.11 of Appendix 4.5.7 show

that the estimated treatment effect ranges from 1.13 percentage points reduction to

1.83 percentage points reduction (on the low birth weight rate) if both p1 and p2

are between −10 and 10. Recall that p1 (or p2) equals 10 (or −10) means that the

probability of the U taking value 1 increases (or decreases) by 10 percentage points

if the individual’s low malaria prevalence indicator (or the low birth weight rate

indicator) equals 1. That is, allowing both the magnitude of p1 and the magnitude

of p2 can be up to 10 means that we allow the existence of a nontrivial magnitude

of unmeasured confounding in our sensitivity analyses. Therefore, the estimated
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treatment effect ranging from 1.13 percentage points reduction to 1.83 percentage

points reduction when both p1 and p2 are between −10 and 10 means that the

magnitude of the estimated treatment effect is still evident (no less than 1.13 per-

centage points) even if the magnitude of unmeasured confounding is nontrivial

(both |p1| and |p2| can be up to 10). See Appendix 4.5.7 for the detailed results and

interpretations of the sensitivity analyses.

To conclude, although the confidence intervals of the coefficient of the low malaria

prevalence indicator on the low birth weight rate presented in the “Results" sec-

tion cannot exclude a possibility of no effect at level 95% based on our proposed

study sample selection procedure and statistical approach, the results and the cor-

responding interpretations of the primary analysis, the secondary analyses, and

the sensitivity analyses have contributed to the weight of the evidence that re-

duced malaria burden has an important influence on the low birth weight rate in

sub-Saharan Africa at the population level.

4.4 Discussion

We have developed a pair-of-pairs matching approach to conduct a difference-in-

differences study to examine the causal effect of a reduction in malaria prevalence

on the low birth weight rate in sub-Saharan Africa during the years 2000–2015.

Although we cannot rule out no effect at a 95% confidence level, the magnitude

of the estimated effect of a reduction from high malaria prevalence to low malaria

prevalence on the low birth weight rate (1.48 percentage points) is even greater

than the estimated effect of a factor thought to be important, antenatal care during

pregnancy (0.96 percentage points). In a secondary analysis, we find that reduction

in malaria burden from high to low is estimated to be especially crucial for reduc-
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ing the low birth weight rate of first born children, reducing it by 3.73 percentage

points (95% CI: 9.11 percentage points reduction, 1.64 percentage points increase).

This agrees with previous studies which demonstrate that the effects of malaria on

birth outcomes are most pronounced in the first pregnancy (e.g., McGregor et al.,

1983).

Previous studies have shown that individual malaria prevention during pregnancy

reduces the chances of the woman’s baby having low birth weight (Kayentao

et al., 2013). In this paper, we examine the community-level effect of reductions

in malaria on pregnancy outcomes as opposed to the individual-level effect of

malaria prevention interventions during pregnancy. Our results support extrapo-

lation of studies of antenatal malaria interventions on birth weight to populations

experiencing declining malaria burden. Furthermore, we conclude that reports

of declining malaria mortality underestimate the contribution of reduced malaria

exposure during pregnancy on pregnancy outcomes and neonatal survival. Al-

though some studies have documented higher rates of adverse pregnancy out-

comes in malaria-infected women with declining antimalarial immunity, such as

may be seen in communities with declining malaria exposure (Mayor et al., 2015),

our study demonstrates that overall reduction in exposure to infection, including

during pregnancy, outweighs these individual changes in risk once infected.

Strengths of our study include that we use state-of-the-art causal inference meth-

ods on a large representative data set. We develop a novel pair-of-pairs matching

approach to conduct a difference-in-differences study to estimate the real world ef-

fectiveness of public health interventions by combining DHS data with other data

sources. There are two major difficulties when using the DHS data to conduct a

difference-in-differences study. The first major difficulty is that within each coun-
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try the DHS samples different locations (clusters) over different survey years. Our

first-step matching handles this difficulty through using optimal matching to pair

the early year DHS clusters and the late year DHS clusters within the same coun-

try based on the geographic proximity of their locations. Then each formed pair of

clusters can mimic a single cluster measured twice in two different survey years,

which serves as the foundation of a difference-in-differences study. The second

major difficulty is that although an advantage of the DHS data is that they contain

many potentially important cluster-level and individual-level covariates, it may

be difficult to come up with a statistical model that is both efficient and robust to

adjust for these covariates. A traditional approach to estimating the real world

effectiveness of an intervention in such settings is to run a regression of an out-

come of interest on a measure of adherence to the treatment (zero if in the period

before the intervention was available and ranging from 0 to 1 after the interven-

tion was available), covariates (individual-level and cluster-level covariates) and a

random effect for the cluster (Goetgeluk and Vansteelandt, 2008). This regression

approach relies heavily on correct specification of the model by which the covari-

ates affect the outcome (e.g., linear, quadratic, cubic), therefore the result can be

severely biased by model misspecification (Rubin, 1973, 1979; Hansen, 2004; Ho

et al., 2007). We instead use a second-step matching to first optimally select and

match the treated units (i.e., high-low pairs of clusters) and control units (i.e., high-

high pairs of clusters) to ensure that they have balanced distributions of covariates

across time and then run the regression with the dummy variables for the matched

sets. Such a nonparametric data preprocessing step before running a regression can

potentially reduce bias due to model misspecification (Rubin, 1973, 1979; Hansen,

2004; Ho et al., 2007).
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Our merged study data set makes use of two aspects of the richness of the rele-

vant data resources. First, from the perspective of sample size and length of time

span, the data set includes over 18,000 births in 19 countries in sub-Saharan Africa

and describes changes in the low birth weight rate over a 15 year period. Some of

the studied regions had substantial changes in malaria parasite prevalence during

this time period, whereas others did not, which provides us ample heterogeneity

necessary for conducting a difference-in-differences study. Second, from the per-

spective of the comprehensiveness of information, our merged data set includes

various types of information: from cluster-level to individual-level records; from

geographic to sociodemographic characteristics; from surveyed data to predicted

data.

Some potential limitations of our study should be considered. First, we discretized

the mean malaria prevalence (i.e., Pf PR2−10 from 0 to 1) into high (Pf PR2−10 > 0.4),

medium (Pf PR2−10 lies in [0.2, 0.4]), and low (Pf PR2−10 < 0.2), which means that

the magnitude of the estimated causal effect depends on how we define these cut-

offs. Our primary analysis suggests that reducing the malaria burden from high to

low may substantially help control the low birth weight rate, and our secondary

analyses suggest that a more dramatic reduction in malaria prevalence can lead to

a more dramatic drop in the low birth weight rate. More research needs to be done

on the minimum magnitude of the reduction in malaria prevalence that is needed

to cause a substantial drop in the low birth weight rate. Second, we assigned the

malaria prevalence (i.e., Pf PR2−10) data to children’s records based on the DHS

survey years which may not be exactly the same years as children’s actual birth

years. For example, a child whose age is three years at the corresponding DHS

survey year should have been born three years earlier before that DHS survey
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year, in which case we might have assigned the wrong Pf PR2−10 to that child’s

gestational period. We examined this issue via SA1 and the result suggested that

this did not induce much bias to the results of our primary analysis.

The novel design-based causal inference approach developed in this work, a pair-

of-pairs matching approach to conduct a difference-in-differences study (i.e., the

two-step matching procedure to form matched pairs of pairs as a nonparametric

data preprocessing step in a difference-in-differences study), is potentially use-

ful for researchers who would like to reduce the estimation bias due to potential

model misspecification in the traditional difference-in-differences approach. More-

over, the general statistical methodology developed in this work can be applied

beyond the malaria settings to handle the heterogeneity of survey time points and

locations in data sets such as the Demographic and Health Surveys (DHS).

In summary, the contribution of malaria to stillbirth and neonatal mortality, for

which low birth weight is a proxy, are currently not accounted for in global esti-

mates of malaria mortality. Using a large representative data set and innovative

statistical evidence, we found point estimates that suggested that reductions in

malaria burden at the community level substantially reduce the low birth weight

rate. To our knowledge, this is the first study of its kind to evaluate the causal ef-

fects of malaria control on birth outcomes using a causal inference framework. Al-

though our confidence intervals do include a possibility of no effect, the evidence

from our primary analysis and secondary analyses is strong enough to merit fur-

ther study and motivate further investments in mitigating the intolerable burden

of malaria.
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4.5 Appendices

4.5.1 More details on the data selection procedure

We give more details on how we select the study countries (among all sub-Saharan

African countries) and their corresponding late year and early year for each of the

three data sets: malaria prevalence data (MAP data), IPUMS-DHS data, and DHS

cluster GPS data. We define “early year" as 2000–2007 and “late year" as 2008–

2015. We first select countries that have both IPUMS-DHS data and DHS GPS

data for at least one year between 2000–2007 and one year between 2008–2015. If

there are more than one early (late) years available, we choose the earliest early

year and latest late year. Note that some DHS can span over two years. In this

case, we stick to the way how IPUMS-DHS codes the year of that DHS data set.

For example, both Malawi and Tanzania have a standard DHS with GPS data that

spans over 2015–2016. We call them Malawi 2015-2016 DHS and Tanzania 2015–

2016 DHS respectively. In IPUMS-DHS, the year for Malawi 2015–2016 DHS is

coded as 2016, and that for Tanzania 2015-2016 DHS is coded as 2015. Therefore,

for Malawi, we use Malawi 2010 DHS as the study sample for the late year and

exclude Malawi 2015–2016 DHS. While for Tanzania, we use Tanzania 2015 DHS

for the late year. As we have mentioned in the main text, if a country has at least

one year between 2008–2015 with available IPUMS-DHS data of which the GPS

data is also available, but no available IPUMS-DHS data or the corresponding GPS

data between 2000–2007, we still include that country if it has IPUMS-DHS data

along with the corresponding GPS data for the year 1999 (possibly with overlap

into 1998). This selection procedure results in 19 study countries in total. Note

that for the DHS that span over two successive years, sometimes IPUMS-DHS and

the GPS data code their years in different ways. In these cases, when attaching
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the malaria prevalence data to each cluster, we stick to the year which is used by

the GPS data; see Table 4.7 of Appendix 4.5.1. For example, for Benin 2011–2012

DHS, IPUMS-DHS codes its year as 2011 while the GPS data codes its year as 2012.

In these cases, we use the malaria prevalence data for 2012 for the clusters within

Benin 2011–2012; see the row “Benin (BJ)" in Table 4.7 of Appendix 4.5.1.

Table 4.7: The early and late years coded in the IPUMS-DHS and GPS data sets.

GPS Data Malaria Prevalence IPUMS-DHS

Country Early Late Early Late Early Late

Benin (BJ) 2001 2012 2001 2012 2001 2011

Burkina Faso (BF) 2003 2010 2003 2010 2003 2010

Cameron (CM) 2004 2011 2004 2011 2004 2011

Congo Democratic Republic (CD) 2007 2013 2007 2013 2007 2013

Cote d’Ivoire (CI) 1998 2012 2000 2012 1998 2011

Ethiopia (ET) 2000 2010 2000 2010 2000 2011

Ghana (GH) 2003 2014 2003 2014 2003 2014

Guinea (GN) 2005 2012 2005 2012 2005 2012

Kenya (KE) 2003 2014 2003 2014 2003 2014

Malawi (MW) 2000 2010 2000 2010 2000 2010

Mali (ML) 2001 2012 2001 2012 2001 2012

Namibia (NM) 2000 2013 2000 2013 2000 2013

Nigeria (NG) 2003 2013 2003 2013 2003 2013

Rwanda (RW) 2005 2014 2005 2014 2005 2014

Senegal (SN) 2005 2010 2005 2010 2005 2010

Tanzania (TZ) 1999 2015 2000 2015 1999 2015

Uganda (UG) 2000 2011 2000 2011 2001 2011

Zambia (ZM) 2007 2013 2007 2013 2007 2013

Zimbabwe (ZW) 2005 2015 2005 2015 2005 2015
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4.5.2 Country summary

Table 4.8: The numbers of the high-high pairs of clusters and high-low pairs of
clusters contributed by each of the 19 selected sub-Saharan African countries after
the matching in Step 1 and Step 2. We also summarize the total number of pairs of
clusters after Step 1 matching in the first column.

Step 1 matching Step 2 matching

Country Total pairs High-high High-low High-high High-low

Benin 247 29 6 4 6

Burkina Faso 400 150 0 19 0

Cameron 466 17 163 16 51

Congo Democratic Republic 300 11 55 11 24

Cote d’Ivoire 140 19 2 7 2

Ethiopia 539 0 0 0 0

Ghana 412 24 18 18 8

Guinea 295 47 12 10 12

Kenya 400 2 10 2 8

Malawi 560 96 15 81 15

Mali 402 101 21 17 19

Namibia 260 0 0 0 0

Nigeria 362 24 11 16 1

Rwanda 462 0 0 0 0

Senegal 376 0 0 0 0

Tanzania 176 0 68 0 57

Uganda 298 19 29 17 16

Zambia 319 1 0 1 0

Zimbabwe 398 0 0 0 0

Total 6812 540 410 219 219
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4.5.3 Some remarks on the IPUMS-DHS data used in this article

There are different units of analysis for data browsing in IPUMS-DHS (Boyle et al.,

2019). In “Step 2: Matching on sociodemographic similarity is emphasized in sec-

ond matching," for the covariates “Household electricity," “Household main ma-

terial of floor," and “Household toilet facility," the IPUMS-DHS data we used is at

the household members level (each record is a household member). For the covari-

ates “Mother’s education level" and “Indicator of whether the woman is currently

using a modern method of contraception," the IPUMS-DHS data we used is at the

birth level (each record is a birth reported by a woman of childbearing age). The

covariate “Urban or rural" obtained from the DHS GPS data is at the DHS clusters

level. In “Step 3: Low birth weight indicator with multiple imputation to address

missingness" and “Step 4: Estimation of causal effect of reduced malaria burden

on the low birth weight rate," the IPUMS-DHS data we used is at the child level

(each record is a child under age 5).

4.5.4 More details on the final study population

Table 4.9: Summary of the low malaria prevalence indicators, the time indicators,
the group indicators, the covariates, and the birth weight records among the 18,112
study individual records.

Variables Percentages of some categories

Low malaria prevalence indicator High prevalence (70.6%);

Low prevalence (29.4%)

Time indicator Early year (50.3%)

Late year (49.7%)

Group indicator High-high pairs (40.9%)
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High-low pairs (59.1%)

Mother’s age in years ≤ 19 (7.1%)

20 – 29 (52.5%)

30 – 39 (31.4%)

≥ 40 (8.9%)

Wealth index Poorest (20.2%)

Poorer (23.3%)

Middle (22.8%)

Richer (20.4%)

Richest (13.3%)

Child’s birth order 1 (21.5%)

2 – 4 (46.0%)

4+ (32.6%)

Urban or rural Rural (77.1%)

Urban (22.9%)

Mother’s education level No education (36.6%)

Primary (47.2%)

Secondary or higher (16.2%)

Child’s sex Female (49.3%)

Male (50.7%)

Mother’s marital status Never married or formerly in union (11.6%)

Married or living together (88.4%)

Indicator of antenatal care Yes (61.9%)

No or missing (38.1%)

Self-reported birth size Very small or smaller than average (13.0%)
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Average (45.5%)

Larger than average or very large (41.5%)

Low birth weight indicator Yes (4.6%)

No (48.5%)

Missing (47.0%)

4.5.5 Statistical inference with multiple imputation applying Ru-

bin’s rules

We apply Rubin’s rules (Rubin, 1987; Schafer, 1999; Carpenter and Kenward, 2012)

to combine all the imputed data sets to obtain the point estimate, the p-value, and

the 95% confidence interval for each coefficient in the mixed-effects linear proba-

bility model (4.1) summarized in Table 4.6 of the main text. Suppose that there are

M imputed data sets (M = 500 in our study). Suppose that for the m-th imputed

data set, m = 1, . . . , 500, the estimate for the coefficient of the i-th regressor γi (in-

cluding the intercept term), i = 1, . . . , 14, is γ̂m,i, and let Vi be its squared standard

error and V̂m,i be the estimated squared standard error from the m-th imputed data

set. Suppose that the following normal approximations hold

(γ̂m,i − γi)/
√

V̂m,i ∼ N (0, 1), i = 1, . . . , 14, m = 1, . . . , 500.

According to Rubin’s rules (Rubin, 1987; Schafer, 1999; Carpenter and Kenward,

2012), we estimate γi with γi = M−1 ∑M
m=1 γ̂m,i. Consider the corresponding

between-imputation variance Bi = (M − 1)−1 ∑M
m=1(γ̂m,i − γi)

2 and the within-
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imputation variance Vi = M−1 ∑M
m=1 V̂m,i. Then the estimated total variance is

Ti = (1 + M−1)Bi + Vi, i = 1, . . . , 14.

Then we can get the corresponding two-sided p-values and 95% confidence inter-

vals based on a Student’s t-approximation

(γi − γi)/
√

Ti ∼ tvi , i = 1, . . . , 14,

with degrees of freedom

vi = (m − 1)
[
1 +

Vi

(1 + M−1)Bi

]2
.
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4.5.6 Multiple imputation diagnostics

Table 4.10: Diagnostics for multiple imputation with the mixed-effects linear
probability model. We report the between-imputation variance (”Between var"),
the within-imputation variance (“Within var"), and the variance ratio: (between-
imputation variance)/(within-imputation variance), denoted as ”Var ratio".

Regressor Between var Within var Var ratio

0 - high prevalence; 1 - low prevalence 3.21 × 10−5 9.62 × 10−5 0.334

0 - early year; 1 - late year 2.20 × 10−5 5.81 × 10−5 0.379

0 - high-high pairs; 1 - high-low pairs 1.92 × 10−5 4.83 × 10−5 0.398

Mother’s age (linear term) 3.32 × 10−6 6.85 × 10−6 0.486

Mother’s age (quadratic term) 8.28 × 10−10 1.68 × 10−9 0.493

Child’s birth order (linear term) 1.60 × 10−4 3.87 × 10−4 0.413

Child’s birth order (quadratic term) 8.55 × 10−6 2.24 × 10−5 0.382

Wealth index 1.74 × 10−6 4.05 × 10−6 0.430

0 -rural; 1 - urban 1.27 × 10−5 4.21 × 10−5 0.303

Mother’s education level 4.56 × 10−6 1.20 × 10−5 0.380

Child is boy 7.12 × 10−6 1.91 × 10−5 0.373

Mother is married or living together 1.83 × 10−5 4.96 × 10−5 0.370

Antenatal care indicator 9.63 × 10−6 2.16 × 10−5 0.447

Note that in our multiple imputation procedure, the variance ratios are all less than

0.5, indicating that for each regressor the variance due to missing data (between-

imputation variance) is much less than the average estimated squared standard

error over the 500 imputed data sets. More replications of imputation (larger m)

will more sufficiently reduce the variation due to missingness and therefore lead to

more reliable estimation (Rubin, 1987; Schafer, 1999). We take a sufficiently large
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number of replications m = 500 to ensure that the variance due to missingness has

been sufficiently controlled.

4.5.7 Design of the sensitivity analyses

In Section “Sensitivity analyses" of the main text, we very briefly described three

perspectives on how potential unobserved covariates that cannot be adjusted by

matching may bias the estimated effect in a difference-in-differences study. Here

we give more detailed descriptions of them with connections to our study for ref-

erence:

• Perspective 1: The potential violation of the unconfoundedness assumption

(Rosenbaum and Rubin, 1983b; Heckman and Robb, 1985). Roughly speak-

ing, the unconfoundedness assumption states that, after adjusting for ob-

served covariates (measured confounders), there are no differential trends

over time of any characteristics, other than the intervention itself, between

the treated group and the control group, that may be correlated with their

outcomes. This assumption may be violated if there is selection bias on un-

observed covariates across time (Heckman and Robb, 1985; Heckman et al.,

1997) such that there are differences in these observed covariates of the

treated group and the control group which impact their trends in the out-

come (Ashenfelter and Card, 1984; Doyle et al., 2018). For example, in our

study, the unconfoundedness assumption can be violated if the sharp drops

in malaria prevalence experienced by some areas could be explained by the

changes of some unobserved characteristics over time that could also predict

the low birth weight rate.

• Perspective 2: The potential violation of the parallel trend assumption in a
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difference-in-differences study (Card and Krueger, 2000; Angrist and Pis-

chke, 2008; Hasegawa et al., 2019; Basu and Small, 2020). Recall that the par-

allel trend assumption behind a difference-in-differences study states that, in

the absence of the treatment (i.e., intervention), after adjusting for relevant

covariates, the outcome trajectory of the treated group would follow a par-

allel trend with that of the control group. Therefore, to make the parallel

trend assumption more likely to hold, ideally each observed or unobserved

covariate should be well balanced (i.e., follow a common trajectory) between

the treated group and the control group, before and after the intervention.

Matching can balance observed covariates by ensuring each covariate follows

a common trajectory in the treated and control groups. However, matching

cannot directly adjust for unobserved covariates and their trajectories among

the treated and control groups may differ and correspondingly the parallel

trend assumption may not hold.

• Perspective 3: A difference-in-differences study may be biased if there is an

event that is more (or less) likely to occur as the treatment (i.e., intervention)

happens in the treated group, but, unlike the case discussed in Section “Moti-

vation and overview of our approach" of the main text, the occurrence prob-

ability of this event cannot be fully captured by observed covariates. In this

case, if this event can affect the outcome, its contribution to the outcome will

be more (or less) substantial within the treated group after the treatment (i.e.,

intervention) than that within the control group (Shadish, 2010; West and

Thoemmes, 2010). For example, areas experiencing sharp drops in malaria

prevalence might also be more likely to experience other events (e.g., sharp

drops in the prevalence of other infectious diseases) that can contribute to
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decreasing the low birth weight rate.

We use an omitted variable sensitivity analysis approach (Rosenbaum and Rubin,

1983a; Imbens, 2003; Ichino et al., 2008; Zhang and Small, 2020) to evaluate the

sensitivity of the results of our primary analysis to potential hidden bias caused by

unobserved covariates. Specifically, we propose the following sensitivity analysis

model (4.3) which extends Model (4.1) by considering a hypothetical unobserved

covariate (unmeasured confounding variable or event) U that is correlated with

both the low malaria prevalence indicator and the low birth weight indicator. Let

Uij denote the exact value of U for individual j in cluster i, we consider:

P(Yij = 1 | i, Xij, Uij) = k0 + k1 · 1(i is a low malaria prevalence cluster)

+ k2 · 1(i is a late year cluster)

+ k3 · 1(i is from a high-low pair of clusters)

+ βTXij + λ · Uij, (4.3)

with two error terms αi ∼ N (0, σ0) and ϵij ∼ N (0, σ1), and Uij follows a Bernoulli

distribution (taking value 0 or 1) with

P(Uij = 1) = 50%+p1% · 1(i is a low malaria prevalence cluster)

+ p2% · 1(the observed or the imputed Yij = 1). (4.4)

In Model (4.3) along with the corresponding data generating model (4.4) of the

unobserved covariate U, the (p1, p2) are sensitivity parameters of which the unit

is a percentage point. Prespecifying a positive (or negative) p1 corresponds to a

positive (or negative) correlation between the unobserved covariate U and the low

malaria prevalence indicator, and prespecifying a positive (or negative) p2 corre-
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sponds to a positive (or negative) correlation between the unobserved covariate U

and the low birth weight indicator. It is clear that a larger magnitude of p1 (or p2)

corresponds to a larger magnitude of correlation between U and the low malaria

prevalence indicator (or the low birth weight indicator). We now discuss how the

proposed sensitivity analysis model helps to address concerns about the potential

hidden bias from Perspectives 1–3 listed above:

• For Perspective 1: The proposed sensitivity analysis model covers Perspec-

tive 1 by considering a hypothetical unobserved covariate U such that it is

correlated with both the low malaria prevalence indicator (i.e., the indica-

tor for units who have experienced sharp drops in malaria prevalence) (by

prespecifying various p1) and the low birth weight indicator (by prespeci-

fying various p2). With the unobserved covariate U, the unconfoundedness

assumption may be violated as matching can only adjust for observed co-

variates but cannot directly adjust for unobserved covariates.

• For Perspective 2: The proposed sensitivity analysis model also covers Per-

spective 2 by including the unobserved covariate U in the final outcome

model. This is because by setting a non-zero p1, the distributions of U be-

tween high-low and high-high pairs of clusters will be imbalanced (i.e., will

not follow a common trajectory). Meanwhile, by setting a non-zero p2 (corre-

sponds to a non-zero λ in Model (4.3)), the imbalances of U across the treated

and controls will make the outcome trend of the high-low pairs of clusters

(i.e., the treated group) in the absence of the treatment deviate from a paral-

lel trend with that of the high-high pairs (i.e., the control group).

• For Perspective 3: When setting p1 ̸= 0, the hypothetical unobserved covari-

ate U in our sensitivity analysis model can also be regarded as some event
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of which the occurrence probability varies across the treated group and the

control group and is not directly associated with observed covariates. Mean-

while, by setting some p2 ̸= 0, the contribution of that event to the low birth

weight rate differs across the treated group and the control group as that

event occurs more (or less) frequently in the treated group. Therefore, our

sensitivity analyses also cover Perspective 3 of the potential hidden bias.

After setting up the sensitivity analysis model (4.3), the detailed sensitivity anal-

ysis procedure is as follows. For each pair of prespecified sensitivity parameters

(p1, p2) and for each imputed data set (500 in total) obtained from Step 3 (the mul-

tiple imputation stage), we generate the value of Uij for each individual j in cluster

i according to Model (4.4) and calculate the corresponding point estimate and es-

timated standard error of the coefficient of the low malaria prevalence indicator

under Model (4.3). Similarly to the primary analysis, for each pair of prespecified

(p1, p2), the corresponding estimated causal effect of reduced malaria burden on

the low birth weight rate is the mean value of the 500 estimated coefficients on the

low malaria prevalence indicator obtained from 500 runs of Model (4.3). The cor-

responding p-value and 95% CIs can also be obtained via applying Rubin’s rules

with treating the imputed U as an usual regressor in Model (4.3). We conduct the

above procedure for various (p1, p2) and examine how the results differ from those

in the primary analysis.

4.5.8 Detailed results of the sensitivity analyses

When reporting the sensitivity analyses for the coefficient of the low malaria preva-

lence indicator under the sensitivity analysis model (4.3) with various prespecified

values of the sensitivity parameters (p1, p2), we divide the results into the follow-
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ing four cases:

• Case 1: p1 > 0, p2 > 0. That is, the hypothetical unobserved covariate U is

positively correlated with both the low malaria prevalence indicator (i.e., the

indicator for units who have experienced sharp drops in malaria prevalence)

and the low birth weight indicator (i.e., the outcome variable).

• Case 2: p1 > 0, p2 < 0. That is, the hypothetical unobserved covariate U

is positively correlated with the low malaria prevalence indicator while it is

negatively correlated with the low birth weight indicator.

• Case 3: p1 < 0, p2 > 0. That is, the hypothetical unobserved covariate U

is negatively correlated with the low malaria prevalence indicator while it is

positively correlated with the low birth weight indicator.

• Case 4: p1 < 0, p2 < 0. That is, the hypothetical unobserved covariate U is

negatively correlated with both the low malaria prevalence indicator and the

low birth weight indicator.

We report the results of the sensitivity analyses in Table 4.11 of Appendix 4.5.7.

Specifically, for each (p1, p2), we report the point estimate, the 95% CI, and the p-

value (under null effect) of the low malaria prevalence indicator under Model (4.3)

in which the hypothetical unobserved covariate Uij is generated from Model (4.4)

within each imputed data set.

We list the interpretations of the results in Table 4.11 of Appendix 4.5.7 case by

case:

• Cases 1 and 4: In these two cases, the magnitude of the estimated treat-

ment effect obtained from the primary analysis assuming no observed co-
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variates (1.48 percentage points reduction, listed in Table 4.6 of the main text)

is smaller than that obtained from the sensitivity analyses in which the unob-

served covariate U is taken into account. This implies that if the unobserved

covariate more (or less) frequently appears in the treated group and predicts

the outcome in the opposite (or same) direction as the treatment does, the

primary analysis tends to underestimate the actual treatment effect. This

pattern agrees with the previous literature on sensitivity analyses (Gastwirth

et al., 1998; Rosenbaum and Silber, 2009). However, as shown in Table 4.11 of

Appendix 4.5.7, the magnitude of this potential estimation bias is estimated

to be no greater than |−1.83−(−1.48)| = 0.35 percentage points as long as

p1, p2 ∈ (0, 10] percentage points or p1, p2 ∈ [−10, 0) percentage points.

• Cases 2 and 3: In these two cases, the magnitude of the estimated treatment

effect obtained from the primary analysis is smaller than that obtained from

the sensitivity analyses with U taken into account. This implies that if the

unobserved covariate more (or less) frequently appears in the treated group

and predicts the outcome in the same (or opposite) direction as the treatment

does, the primary analysis tends to overestimate the actual treatment effect.

This pattern also agrees with the previous literature on sensitivity analyses

(Gastwirth et al., 1998; Rosenbaum and Silber, 2009). However, as shown in

Table 4.11 of Appendix 4.5.7, the magnitude of this potential estimation bias

is estimated to be no greater than |−1.13−(−1.48)| = 0.35 percentage points

as long as |p1| ≤ 10 percentage points and |p2| ≤ 10 percentage points.
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Table 4.11: The results of the sensitivity analyses for the coefficient of the low
malaria prevalence indicator under various sensitivity parameters (p1, p2) divided
into the four cases: Case 1: p1 > 0, p2 > 0; Case 2: p1 > 0, p2 < 0; Case 3:
p1 < 0, p2 > 0; Case 4: p1 < 0, p2 < 0. The unit of estimates and CIs is a percent-
age point.

Case 1
p2 = 5.0 p2 = 10.0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 = 2.5 −1.52 [−3.74, 0.70] 0.179 −1.56 [−3.77, 0.66] 0.168

p1 = 5.0 −1.57 [−3.79, 0.66] 0.167 −1.65 [−3.86, 0.57] 0.145

p1 = 7.5 −1.61 [−3.83, 0.61] 0.156 −1.73 [−3.95, 0.48] 0.125

p1 = 10.0 −1.65 [−3.88, 0.57] 0.145 −1.82 [−4.04, 0.40] 0.107

Case 2
p2 = −5.0 p2 = −10.0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 = 2.5 −1.44 [−3.66, 0.78] 0.204 −1.39 [−3.62, 0.83] 0.219

p1 = 5.0 −1.40 [−3.62, 0.83] 0.218 −1.31 [−3.53, 0.92] 0.249

p1 = 7.5 −1.35 [−3.58, 0.87] 0.234 −1.22 [−3.44, 1.00] 0.282

p1 = 10.0 −1.31 [−3.53, 0.92] 0.250 −1.13 [−3.36, 1.09] 0.318

Case 3
p2 = 5.0 p2 = 10.0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 = −2.5 −1.44 [−3.66, 0.78] 0.204 −1.39 [−3.61, 0.83] 0.219

p1 = −5.0 −1.39 [−3.61, 0.83] 0.219 −1.30 [−3.52, 0.91] 0.249

p1 = −7.5 −1.35 [−3.57, 0.87] 0.234 −1.22 [−3.43, 1.00] 0.282

p1 = −10.0 −1.31 [−3.53, 0.92] 0.250 −1.13 [−3.35, 1.09] 0.319

Case 4
p2 = −5.0 p2 = −10.0

Estimate 95% CI p-value Estimate 95% CI p-value

p1 = −2.5 −1.52 [−3.75, 0.70] 0.179 −1.56 [−3.79, 0.66] 0.168

p1 = −5.0 −1.57 [−3.79, 0.66] 0.167 −1.65 [−3.87, 0.57] 0.146

p1 = −7.5 −1.61 [−3.84, 0.61] 0.156 −1.74 [−3.96, 0.49] 0.126

p1 = −10.0 −1.66 [−3.88, 0.57] 0.145 −1.83 [−4.05, 0.40] 0.108

209



Bibliography
Abadie, A. (2005). Semiparametric difference-in-differences estimators. The Review

of Economic Studies, 72(1):1–19.

Adamu, A. L., Crampin, A., Kayuni, N., Amberbir, A., Koole, O., Phiri, A.,
Nyirenda, M., and Fine, P. (2017). Prevalence and risk factors for anemia severity
and type in malawian men and women: urban and rural differences. Population
Health Metrics, 15(1):1–15.

Angrist, J. D. and Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s
Companion. Princeton University Press.

Arnold, B. F. and Ercumen, A. (2016). Negative control outcomes: a tool to detect
bias in randomized trials. JAMA, 316(24):2597–2598.

Ashenfelter, O. C. and Card, D. (1984). Using the longitudinal structure of earnings
to estimate the effect of training programs.

Athey, S. and Imbens, G. W. (2006). Identification and inference in nonlinear
difference-in-differences models. Econometrica, 74(2):431–497.

Athey, S. and Imbens, G. W. (2017). The econometrics of randomized experiments.
In Handbook of Economic Field Experiments, volume 1, pages 73–140. Elsevier.

Avchen, R. N., Scott, K. G., and Mason, C. A. (2001). Birth weight and school-
age disabilities: a population-based study. American Journal of Epidemiology,
154(10):895–901.

Ayele, D. G., Zewotir, T. T., and Mwambi, H. G. (2013). The risk factor indicators of
malaria in ethiopia. International Journal of Medicine and Medical Sciences, 5(7):335–
347.

Baragatti, M., Fournet, F., Henry, M.-C., Assi, S., Ouedraogo, H., Rogier, C., and
Salem, G. (2009). Social and environmental malaria risk factors in urban areas of
ouagadougou, burkina faso. Malaria Journal, 8(1):1–14.

Basu, P. and Small, D. S. (2020). Constructing a more closely matched control group
in a difference-in-differences analysis: its effect on history interacting with group
bias. Observational Studies, 6:103–130.

Beesley, L. J. and Mukherjee, B. (2020). Statistical inference for association stud-

210



ies using electronic health records: handling both selection bias and outcome
misclassification. Biometrics, 78(1):214–226.

Bhatt, S., Weiss, D., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle,
K., Moyes, C., Henry, A., Eckhoff, P., Wenger, E., Briët, O., Penny, M., Smith, T.,
Bennett, A., Yukich, J., Eisele, T., Griffin, J., Fergus, C., Lynch, M., Lindgren, F.,
Cohen, J., Murray, C., Smith, D., Hay, S., Cibulskis, R., and Gething, P. (2015).
The effect of malaria control on plasmodium falciparum in africa between 2000
and 2015. Nature, 526(7572):207.

Billingsley, P. (1995). Measure and Probability. A Wiley-Interscience Publication,
John Wiley & Sons.

Blanc, A. K. and Wardlaw, T. (2005). Monitoring low birth weight: an evaluation
of international estimates and an updated estimation procedure. Bulletin of the
World Health Organization, 83:178–185d.

Bloss, E., Wainaina, F., and Bailey, R. C. (2004). Prevalence and predictors of un-
derweight, stunting, and wasting among children aged 5 and under in western
kenya. Journal of Tropical Pediatrics, 50(5):260–270.

Boerma, J. T., Weinstein, K., Rutstein, S. O., and Sommerfelt, A. E. (1996). Data
on birth weight in developing countries: can surveys help? Bulletin of the World
Health Organization, 74(2):209.

Boyle, E. H., King, M., and Sobek, M. (2019). Minnesota Population Center and ICF
International.

Brooke, O. G., Anderson, H. R., Bland, J. M., Peacock, J. L., and Stewart, C. M.
(1989). Effects on birth weight of smoking, alcohol, caffeine, socioeconomic fac-
tors, and psychosocial stress. BMJ, 298(6676):795–801.

Brown, K. H., Black, R. E., Becker, S., et al. (1982). Seasonal changes in nutritional
status and the prevalence of malnutrition in a longitudinal study of young chil-
dren in rural bangladesh. Am J Clin Nutr, 36(2):303–13.

Buonaccorsi, J. P. (2010). Measurement Error: Models, Methods, and Applications.
Chapman and Hall/CRC.

Burer, S. and Saxena, A. (2012). The MILP road to MIQCP. In Mixed Integer Non-
linear Programming, pages 373–405. Springer.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algo-

211



rithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208.

Card, D. and Krueger, A. B. (2000). Minimum wages and employment: a case
study of the fast-food industry in new jersey and pennsylvania: reply. American
Economic Review, 90(5):1397–1420.

Carpenter, J. and Kenward, M. (2012). Multiple imputation and its application. John
Wiley & Sons.

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measure-
ment Error in Nonlinear Models: A Modern Perspective. Chapman and Hall/CRC.

Catania, J. A., McDermott, L. J., and Pollack, L. M. (1986). Questionnaire response
bias and face-to-face interview sample bias in sexuality research.

Charalambous, C. and Conn, A. (1978). An efficient method to solve the minimax
problem directly. SIAM Journal on Numerical Analysis, 15(1):162–187.

Chen, X.-K., Wen, S. W., Sun, L.-M., Yang, Q., Walker, M. C., and Krewski, D. (2009).
Recent oral contraceptive use and adverse birth outcomes. European Journal of
Obstetrics & Gynecology and Reproductive Biology, 144(1):40–43.

Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer Programming, volume
271. Springer.

Corsi, D. J., Neuman, M., Finlay, J. E., and Subramanian, S. (2012). Demographic
and health surveys: a profile. International Journal of Epidemiology, 41(6):1602–
1613.

Cox, D. R. and Snell, E. J. (2018). Analysis of Binary Data. Routledge.

Darteh, E. K. M., Acquah, E., and Kumi-Kyereme, A. (2014). Correlates of stunting
among children in ghana. BMC Public Health, 14(1):1–7.

de Bernabé, J. V., Soriano, T., Albaladejo, R., Juarranz, M., Calle, M. E., Martínez,
D., and Domínguez-Rojas, V. (2004). Risk factors for low birth weight: a review.
European Journal of Obstetrics & Gynecology and Reproductive Biology, 116(1):3–15.

Dellicour, S., Tatem, A. J., Guerra, C. A., Snow, R. W., and ter Kuile, F. O. (2010).
Quantifying the number of pregnancies at risk of malaria in 2007: a demographic
study. PLoS Medicine, 7(1):e1000221.

DHS (2019). Methodology - collecting geographic data. Demographic and Health
Surveys (DHS).

212



Dimick, J. B. and Ryan, A. M. (2014). Methods for evaluating changes in health
care policy: the difference-in-differences approach. JAMA, 312(22):2401–2402.

Doyle, O., Hegarty, M., and Owens, C. (2018). Population-based system of parent-
ing support to reduce the prevalence of child social, emotional, and behavioural
problems: difference-in-differences study. Prevention Science, 19(6):772–781.

Eisele, T. P., Larsen, D. A., Anglewicz, P. A., Keating, J., Yukich, J., Bennett,
A., Hutchinson, P., and Steketee, R. W. (2012). Malaria prevention in preg-
nancy, birthweight, and neonatal mortality: a meta-analysis of 32 national cross-
sectional datasets in africa. The Lancet Infectious Diseases, 12(12):942–949.

Ertefaie, A., Small, D. S., and Rosenbaum, P. R. (2018). Quantitative evaluation
of the trade-off of strengthened instruments and sample size in observational
studies. Journal of the American Statistical Association, 113(523):1122–1134.

Fakhouri, T. H., Martin, C. B., Chen, T.-C., Akinbami, L. J., Ogden, C. L., Paulose-
Ram, R., Riddles, M. K., Van de Kerckhove, W., Roth, S. B., Clark, J., Mohadjer,
L. K., and Fay, R. E. (2020). An investigation of nonresponse bias and survey
location variability in the 2017-2018 national health and nutrition examination
survey. Vital and Health statistics. Series 2, Data Evaluation and Methods Research,
(185):1–36.

Fink, G., Günther, I., and Hill, K. (2011). The effect of water and sanitation on child
health: evidence from the demographic and health surveys 1986–2007. Interna-
tional Journal of Epidemiology, 40(5):1196–1204.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh and London: Oliver and
Boyd.

Fogarty, C. B. (2018). On mitigating the analytical limitations of finely stratified ex-
periments. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
80(5):1035–1056.

Fogarty, C. B., Lee, K., Kelz, R. R., and Keele, L. J. (2021). Biased encourage-
ments and heterogeneous effects in an instrumental variable study of emer-
gency general surgical outcomes. Journal of the American Statistical Association,
116(536):1625–1636.

Fogarty, C. B., Mikkelsen, M. E., Gaieski, D. F., and Small, D. S. (2016). Discrete
optimization for interpretable study populations and randomization inference
in an observational study of severe sepsis mortality. Journal of the American Sta-
tistical Association, 111(514):447–458.

213



Fogarty, C. B., Shi, P., Mikkelsen, M. E., and Small, D. S. (2017). Randomization
inference and sensitivity analysis for composite null hypotheses with binary
outcomes in matched observational studies. Journal of the American Statistical
Association, 112(517):321–331.

Fogarty, C. B. and Small, D. S. (2016). Sensitivity analysis for multiple compar-
isons in matched observational studies through quadratically constrained linear
programming. Journal of the American Statistical Association, 111(516):1820–1830.

Fowkes, F. J., Davidson, E., Moore, K. A., McGready, R., and Simpson, J. A.
(2020). The invisible burden of malaria-attributable stillbirths. The Lancet,
395(10220):268.

Fraser, A. M., Brockert, J. E., and Ward, R. H. (1995). Association of young mater-
nal age with adverse reproductive outcomes. New England Journal of Medicine,
332(17):1113–1118.

Gałecki, A. and Burzykowski, T. (2013). Linear mixed-effects model. In Linear
Mixed-Effects Models Using R, pages 245–273. Springer.

Garrett, J. L. and Ruel, M. T. (2005). Stunted child–overweight mother pairs: preva-
lence and association with economic development and urbanization. Food and
nutrition bulletin, 26(2):209–221.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (1998). Dual and simultane-
ous sensitivity analysis for matched pairs. Biometrika, 85(4):907–920.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). Asymptotic separabil-
ity in sensitivity analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 62(3):545–555.

Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y.-S. (2008). A weakly informative
default prior distribution for logistic and other regression models. The Annals of
Applied Statistics, 2(4):1360–1383.

Gemperli, A., Vounatsou, P., Kleinschmidt, I., Bagayoko, M., Lengeler, C., and
Smith, T. (2004). Spatial patterns of infant mortality in mali: the effect of malaria
endemicity. American Journal of Epidemiology, 159(1):64–72.

Gething, P., Hay, S., and Weiss, D. (2020). The invisible burden of malaria-
attributable stillbirths–authors’ reply. The Lancet, 395(10220):268–269.

Gilbert, R., Martin, R. M., Donovan, J., Lane, J. A., Hamdy, F., Neal, D. E., and Met-

214



calfe, C. (2016). Misclassification of outcome in case–control studies: methods
for sensitivity analysis. Statistical Methods in Medical Research, 25(5):2377–2393.

Goetgeluk, S. and Vansteelandt, S. (2008). Conditional generalized estimat-
ing equations for the analysis of clustered and longitudinal data. Biometrics,
64(3):772–780.

Grace, K., Davenport, F., Hanson, H., Funk, C., and Shukla, S. (2015). Linking
climate change and health outcomes: Examining the relationship between tem-
perature, precipitation and birth weight in africa. Global Environmental Change,
35:125–137.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.

Guyatt, H. L. and Snow, R. W. (2004). Impact of malaria during pregnancy on low
birth weight in sub-saharan africa. Clinical Microbiology Reviews, 17(4):760–769.

Hájek, J. (1960). Limiting distributions in simple random sampling from a finite
population. Publications of the Mathematical Institute of the Hungarian Academy of
Sciences, 5:361–374.

Hansen, B. B. (2004). Full matching in an observational study of coaching for the
sat. Journal of the American Statistical Association, 99(467):609–618.

Hansen, B. B. and Klopfer, S. O. (2006). Optimal full matching and related designs
via network flows. Journal of Computational and Graphical Statistics, 15(3):609–627.

Hansen, B. B., Rosenbaum, P. R., and Small, D. S. (2014). Clustered treatment as-
signments and sensitivity to unmeasured biases in observational studies. Journal
of the American Statistical Association, 109(505):133–144.

Harris, N. S., Crawford, P. B., Yangzom, Y., Pinzo, L., Gyaltsen, P., and Hudes, M.
(2001). Nutritional and health status of tibetan children living at high altitudes.
New England Journal of Medicine, 344(5):341–347.

Hasegawa, R. B., Webster, D. W., and Small, D. S. (2019). Evaluating missouri’s
handgun purchaser law: a bracketing method for addressing concerns about
history interacting with group. Epidemiology, 30(3):371–379.

Hay, S. I. and Snow, R. W. (2006). The malaria atlas project: developing global
maps of malaria risk. PLoS Medicine, 3(12):e473.

Heckman, J. J., Ichimura, H., and Todd, P. E. (1997). Matching as an econometric
evaluation estimator: Evidence from evaluating a job training programme. The
Review of Economic Studies, 64(4):605–654.

215



Heckman, J. J. and Robb, R. J. (1985). Alternative methods for evaluating the im-
pact of interventions: An overview. Journal of Econometrics, 30(1-2):239–267.

Heitjan, D. F. and Basu, S. (1996). Distinguishing “missing at random” and “miss-
ing completely at random”. The American Statistician, 50(3):207–213.

Heller, R., Rosenbaum, P. R., and Small, D. S. (2009). Split samples and design
sensitivity in observational studies. Journal of the American Statistical Association,
104(487):1090–1101.

Heng, S., Small, D. S., and Rosenbaum, P. R. (2020). Finding the strength in a weak
instrument in a study of cognitive outcomes produced by catholic high schools.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(3):935–958.

Hernán, M. A. and Robins, J. M. (2020). Causal Inference: What If.

Ho, D. E., Imai, K., King, G., and Stuart, E. A. (2007). Matching as nonparametric
preprocessing for reducing model dependence in parametric causal inference.
Political Analysis, 15(3):199–236.

Hosman, C. A., Hansen, B. B., and Holland, P. W. (2010). The sensitivity of linear
regression coefficients’ confidence limits to the omission of a confounder. The
Annals of Applied Statistics, 4(2):849–870.

Howard, S. R. and Pimentel, S. D. (2019). The uniform general signed rank test and
its design sensitivity. arXiv preprint arXiv:1904.08895.

Huynh, B.-T., Cottrell, G., Cot, M., and Briand, V. (2015). Burden of malaria in early
pregnancy: a neglected problem? Clinical Infectious Diseases, 60(4):598–604.

Huynh, B.-T., Fievet, N., Gbaguidi, G., Dechavanne, S., Borgella, S., Guézo-Mévo,
B., Massougbodji, A., Ndam, N. T., Deloron, P., and Cot, M. (2011). Influence
of the timing of malaria infection during pregnancy on birth weight and on ma-
ternal anemia in benin. The American Journal of Tropical Medicine and Hygiene,
85(2):214–220.

ICF (2019). 2004-2017. demographic and health surveys (various) [datasets].
funded by usaid. rockville, maryland: Icf [distributor]. Technical report.

Ichino, A., Mealli, F., and Nannicini, T. (2008). From temporary help jobs to per-
manent employment: what can we learn from matching estimators and their
sensitivity? Journal of Applied Econometrics, 23(3):305–327.

Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evalua-
tion. American Economic Review, 93(2):126–132.

216



Imbens, G. W. and Rosenbaum, P. R. (2005). Robust, accurate confidence intervals
with a weak instrument: quarter of birth and education. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 168(1):109–126.

Imbens, G. W. and Rubin, D. B. (2015). Causal Inference in Statistics, Social, and
Biomedical Sciences. Cambridge University Press.

Kayentao, K., Garner, P., van Eijk, A. M., Naidoo, I., Roper, C., Mulokozi, A.,
MacArthur, J. R., Luntamo, M., Ashorn, P., Doumbo, O. K., and ter Kuile, F. O.
(2013). Intermittent preventive therapy for malaria during pregnancy using 2 vs
3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in
africa: systematic review and meta-analysis. JAMA, 309(6):594–604.

Keele, L. and Quinn, K. M. (2017). Bayesian sensitivity analysis for causal effects
from 2 × 2 tables in the presence of unmeasured confounding with application
to presidential campaign visits. The Annals of Applied Statistics, 11(4):1974–1997.

Kennedy, E., Gray, N., Azzopardi, P., and Creati, M. (2011). Adolescent fertility and
family planning in east asia and the pacific: a review of dhs reports. Reproductive
Health, 8(1):11.

Knäuper, B. and Wittchen, H.-U. (1994). Diagnosing major depression in the el-
derly: evidence for response bias in standardized diagnostic interviews? Journal
of Psychiatric Research, 28(2):147–164.

Kramer, M. S. (1987). Determinants of low birth weight: methodological assess-
ment and meta-analysis. Bulletin of the World Health Organization, 65(5):663.

Krefis, A. C., Schwarz, N. G., Nkrumah, B., Acquah, S., Loag, W., Sarpong, N.,
Adu-Sarkodie, Y., Ranft, U., and May, J. (2010). Principal component analysis
of socioeconomic factors and their association with malaria in children from the
ashanti region, ghana. Malaria Journal, 9(1):1–7.

Küchenhoff, H., Mwalili, S. M., and Lesaffre, E. (2006). A general method for deal-
ing with misclassification in regression: the misclassification simex. Biometrics,
62(1):85–96.

Larsen, D. A., Grisham, T., Slawsky, E., and Narine, L. (2017). An individual-
level meta-analysis assessing the impact of community-level sanitation access
on child stunting, anemia, and diarrhea: Evidence from dhs and mics surveys.
PLoS Neglected Tropical Diseases, 11(6):e0005591.

Lee, J. and Leyffer, S. (2011). Mixed Integer Nonlinear Programming, volume 154.
Springer Science & Business Media.

217



Li, X. and Ding, P. (2017). General forms of finite population central limit theorems
with applications to causal inference. Journal of the American Statistical Associa-
tion, 112(520):1759–1769.

Lubovsky, O., Liebergall, M., Mattan, Y., Weil, Y., and Mosheiff, R. (2005). Early
diagnosis of occult hip fractures: Mri versus ct scan. Injury, 36(6):788–792.

Lucia, M. S., Epstein, J. I., Goodman, P. J., Darke, A. K., Reuter, V. E., Civantos, F.,
Tangen, C. M., Parnes, H. L., Lippman, S. M., La Rosa, F. G., et al. (2007). Fi-
nasteride and high-grade prostate cancer in the prostate cancer prevention trial.
Journal of the National Cancer Institute, 99(18):1375–1383.

Lyles, R. H., Williamson, J. M., Lin, H.-M., and Heilig, C. M. (2005). Extending
mcnemar’s test: Estimation and inference when paired binary outcome data are
misclassified. Biometrics, 61(1):287–294.

Magder, L. S. and Hughes, J. P. (1997). Logistic regression when the outcome is
measured with uncertainty. American Journal of Epidemiology, 146(2):195–203.

Mantel, N. and Haenszel, W. (1959). Statistical aspects of the analysis of data from
retrospective studies of disease. 22(4):719–748.

MAP (2020). Malaria atlas project. The MAP Group.

Margot, F. (2010). Symmetry in integer linear programming. In 50 Years of Integer
Programming 1958-2008, pages 647–686. Springer.

Mayor, A., Bardají, A., Macete, E., Nhampossa, T., Fonseca, A. M., González, R.,
Maculuve, S., Cisteró, P., Rupérez, M., Campo, J., Vala, A., Sigaúque, B., Jiménez,
A., Machevo, S., de la Fuente, L., Nhama, A., Luis, L., Aponte, J. J., Acácio, S.,
Nhacolo, A., Chitnis, C., Dobaño, C., Sevene, E., Alonso, P. L., and Menéndez,
C. (2015). Changing trends in p. falciparum burden, immunity, and disease in
pregnancy. New England Journal of Medicine, 373(17):1607–1617.

McCandless, L. C., Gustafson, P., and Levy, A. (2007). Bayesian sensitivity analy-
sis for unmeasured confounding in observational studies. Statistics in Medicine,
26(11):2331–2347.

McCormick, M. C., Brooks-Gunn, J., Workman-Daniels, K., Turner, J., and Peck-
ham, G. J. (1992). The health and developmental status of very low—birth-
weight children at school age. JAMA, 267(16):2204–2208.

McGregor, I. A., Wilson, M., and Billewicz, W. (1983). Malaria infection of the pla-
centa in the gambia, west africa; its incidence and relationship to stillbirth, birth-

218



weight and placental weight. Transactions of the Royal Society of Tropical Medicine
and Hygiene, 77(2):232–244.

Menendez, C., Ordi, J., Ismail, M., Ventura, P., Aponte, J., Kahigwa, E., Font, F., and
Alonso, P. (2000). The impact of placental malaria on gestational age and birth
weight. The Journal of Infectious Diseases, 181(5):1740–1745.

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of
input. Statistical Science, pages 538–558.

Metselaar, D. and Van Thiel, P. (1959). Classification of malaria. Tropical and Geo-
graphical Medicine, 11(2):157–61.

Mitra, N. and Heitjan, D. F. (2007). Sensitivity of the hazard ratio to nonig-
norable treatment assignment in an observational study. Statistics in Medicine,
26(6):1398–1414.

Neuman, M. D., Rosenbaum, P. R., Ludwig, J. M., Zubizarreta, J. R., and Silber,
J. H. (2014). Anesthesia technique, mortality, and length of stay after hip fracture
surgery. JAMA, 311(24):2508–2517.

Neyman, J. S. (1923). On the application of probability theory to agricultural
experiments. essay on principles. section 9. (translated and edited by D. M.
Dabrowska and T. P. Speed). Statistical Science, (1990) 5:465–480.

NIH (2013). Prostate Cancer Prevention Trial (PCPT): Questions and Answers. National
Cancer Institute at the National Institutes of Health.

Null, C., Stewart, C. P., Pickering, A. J., Dentz, H. N., Arnold, B. F., Arnold, C. D.,
Benjamin-Chung, J., Clasen, T., Dewey, K. G., Fernald, L. C., et al. (2018). Effects
of water quality, sanitation, handwashing, and nutritional interventions on di-
arrhoea and child growth in rural kenya: a cluster-randomised controlled trial.
The Lancet Global Health, 6(3):e316–e329.

Ogedegbe, G., Pickering, T. G., Clemow, L., Chaplin, W., Spruill, T. M., Albanese,
G. M., Eguchi, K., Burg, M., and Gerin, W. (2008). The misdiagnosis of hyperten-
sion: the role of patient anxiety. Archives of Internal Medicine, 168(22):2459–2465.

Padhi, B. K., Baker, K. K., Dutta, A., Cumming, O., Freeman, M. C., Satpathy, R.,
Das, B. S., and Panigrahi, P. (2015). Risk of adverse pregnancy outcomes among
women practicing poor sanitation in rural india: a population-based prospective
cohort study. PLoS Medicine, 12(7):e1001851.

219



Paneth, N. S. (1995). The problem of low birth weight. The Future of Children, pages
19–34.

Phuka, J. C., Maleta, K., Thakwalakwa, C., Cheung, Y. B., Briend, A., Manary, M. J.,
and Ashorn, P. (2008). Complementary feeding with fortified spread and in-
cidence of severe stunting in 6-to 18-month-old rural malawians. Archives of
Pediatrics & Adolescent Medicine, 162(7):619–626.

Pimentel, S. D., Kelz, R. R., Silber, J. H., and Rosenbaum, P. R. (2015). Large, sparse
optimal matching with refined covariate balance in an observational study of the
health outcomes produced by new surgeons. Journal of the American Statistical
Association, 110(510):515–527.

Quade, D., Lachenbruch, P. A., Whaley, F. S., McCLISH, D. K., and Haley, R. W.
(1980). Effects of misclassifications on statistical inferences in epidemiology.
American Journal of Epidemiology, 111(5):503–515.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Radeva-Petrova, D., Kayentao, K., ter Kuile, F. O., Sinclair, D., and Garner, P. (2014).
Drugs for preventing malaria in pregnant women in endemic areas: any drug
regimen versus placebo or no treatment. Cochrane Database of Systematic Reviews,
(10).

Redman, M. W., Tangen, C. M., Goodman, P. J., Lucia, M. S., Coltman, C. A., and
Thompson, I. M. (2008). Finasteride does not increase the risk of high-grade
prostate cancer: a bias-adjusted modeling approach. Cancer Prevention Research,
1(3):174–181.

Richards, M., Hardy, R., Kuh, D., and Wadsworth, M. E. (2001). Birth weight and
cognitive function in the british 1946 birth cohort: longitudinal population based
study. BMJ, 322(7280):199–203.

Roberts, D. and Matthews, G. (2016). Risk factors of malaria in children under the
age of five years old in uganda. Malaria Journal, 15(1):1–11.

Robles, A. and Goldman, N. (1999). Can accurate data on birthweight be obtained
from health interview surveys? International Journal of Epidemiology, 28(5):925–
931.

Rogerson, S. J., Mwapasa, V., and Meshnick, S. R. (2007). Malaria in pregnancy:
linking immunity and pathogenesis to prevention. In Defining and Defeating the
Intolerable Burden of Malaria III: Progress and Perspectives: Supplement to Volume

220



77 (6) of American Journal of Tropical Medicine and Hygiene. American Society of
Tropical Medicine and Hygiene.

Rosenbaum, P. R. (1984). The consequences of adjustment for a concomitant vari-
able that has been affected by the treatment. Journal of the Royal Statistical Society:
Series A (General), 147(5):656–666.

Rosenbaum, P. R. (1989). Optimal matching for observational studies. Journal of the
American Statistical Association, 84(408):1024–1032.

Rosenbaum, P. R. (1991). A characterization of optimal designs for observational
studies. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):597–
610.

Rosenbaum, P. R. (2002a). Covariance adjustment in randomized experiments and
observational studies. Statistical Science, 17(3):286–327.

Rosenbaum, P. R. (2002b). Observational Studies. Springer.

Rosenbaum, P. R. (2004). Design sensitivity in observational studies. Biometrika,
91(1):153–164.

Rosenbaum, P. R. (2007). Sensitivity analysis for m-estimates, tests, and confidence
intervals in matched observational studies. Biometrics, 63(2):456–464.

Rosenbaum, P. R. (2010). Design of Observational Studies, volume 10. Springer.

Rosenbaum, P. R. (2011). A new u-statistic with superior design sensitivity in
matched observational studies. Biometrics, 67(3):1017–1027.

Rosenbaum, P. R. (2012). Testing one hypothesis twice in observational studies.
Biometrika, 99(4):763–774.

Rosenbaum, P. R. (2013). Impact of multiple matched controls on design sensitivity
in observational studies. Biometrics, 69(1):118–127.

Rosenbaum, P. R. (2014). Weighted m-statistics with superior design sensitivity
in matched observational studies with multiple controls. Journal of the American
Statistical Association, 109(507):1145–1158.

Rosenbaum, P. R. (2017). Observation and Experiment: An Introduction to Causal In-
ference. Harvard University Press.

Rosenbaum, P. R. and Rubin, D. B. (1983a). Assessing sensitivity to an unobserved

221



binary covariate in an observational study with binary outcome. Journal of the
Royal Statistical Society: Series B (Methodological), 45(2):212–218.

Rosenbaum, P. R. and Rubin, D. B. (1983b). The central role of the propensity score
in observational studies for causal effects. Biometrika, 70(1):41–55.

Rosenbaum, P. R. and Silber, J. H. (2008). Aberrant effects of treatment. Journal of
the American Statistical Association, 103(481):240–247.

Rosenbaum, P. R. and Silber, J. H. (2009). Amplification of sensitivity analysis
in matched observational studies. Journal of the American Statistical Association,
104(488):1398–1405.

Rosenbaum, P. R. and Small, D. S. (2017). An adaptive mantel–haenszel test for
sensitivity analysis in observational studies. Biometrics, 73(2):422–430.

Ross, A. and Smith, T. (2006). The effect of malaria transmission intensity on neona-
tal mortality in endemic areas. The American Journal of Tropical Medicine and Hy-
giene, 75(2_suppl):74–81.

Rubin, D. B. (1973). The use of matched sampling and regression adjustment to
remove bias in observational studies. Biometrics, pages 185–203.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66(5):688.

Rubin, D. B. (1979). Using multivariate matched sampling and regression adjust-
ment to control bias in observational studies. Journal of the American Statistical
Association, 74(366a):318–328.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley &
Sons.

Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American
statistical Association, 91(434):473–489.

Rubin, D. B. (2006). Matched Sampling for Causal Effects. Cambridge University
Press.

Rubin, D. B. (2007). The design versus the analysis of observational studies
for causal effects: parallels with the design of randomized trials. Statistics in
Medicine, 26(1):20–36.

Sahn, D. E. and Stifel, D. C. (2003). Urban–rural inequality in living standards in
africa. Journal of African Economies, 12(4):564–597.

222



Schafer, J. L. (1999). Multiple imputation: a primer. Statistical Methods in Medical
Research, 8(1):3–15.

Schieve, L. A., Meikle, S. F., Ferre, C., Peterson, H. B., Jeng, G., and Wilcox, L. S.
(2002). Low and very low birth weight in infants conceived with use of assisted
reproductive technology. New England Journal of Medicine, 346(10):731–737.

Schmiegelow, C., Matondo, S., Minja, D. T., Resende, M., Pehrson, C., Nielsen,
B. B., Olomi, R., Nielsen, M. A., Deloron, P., Salanti, A., Lusingu, J., and
Theander, T. G. (2017). Plasmodium falciparum infection early in pregnancy
has profound consequences for fetal growth. The Journal of Infectious Diseases,
216(12):1601–1610.

Scott, W. R. (2012). Group Theory. Courier Corporation.

Selvin, S. and Janerich, D. T. (1971). Four factors influencing birth weight. British
Journal of Preventive & Social Medicine, 25(1):12.

Shadish, W. R. (2010). Campbell and rubin: A primer and comparison of their
approaches to causal inference in field settings. Psychological Methods, 15(1):3.

Shadish, W. R., Cook, T. D., and Campbell, D. T. (2002). Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin.

Shauly-Aharonov, M. (2020). An exact test with high power and robustness to
unmeasured confounding effects. Statistics in Medicine, 39(8):1041–1053.

Shepherd, B. E., Gilbert, P. B., Jemiai, Y., and Rotnitzky, A. (2006). Sensitivity anal-
yses comparing outcomes only existing in a subset selected post-randomization,
conditional on covariates, with application to hiv vaccine trials. Biometrics,
62(2):332–342.

Shepherd, B. E., Redman, M. W., and Ankerst, D. P. (2008). Does finasteride af-
fect the severity of prostate cancer? a causal sensitivity analysis. Journal of the
American Statistical Association, 103(484):1392–1404.

Shu, D. and Yi, G. Y. (2019). Weighted causal inference methods with mismeasured
covariates and misclassified outcomes. Statistics in Medicine, 38(10):1835–1854.

Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., An-
derson, J. C., Cercek, A., Smith, R. A., and Jemal, A. (2020). Colorectal cancer
statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3):145–164.

Silber, J. H., Rosenbaum, P. R., Ross, R. N., Ludwig, J. M., Wang, W., Niknam, B. A.,
Hill, A. S., Even-Shoshan, O., Kelz, R. R., and Fleisher, L. A. (2016). Indirect

223



standardization matching: assessing specific advantage and risk synergy. Health
Services Research, 51(6):2330–2357.

Slepian, D. (1962). The one-sided barrier problem for gaussian noise. Bell System
Technical Journal, 41(2):463–501.

Small, D. S., Cheng, J., Halloran, M. E., and Rosenbaum, P. R. (2013). Case
definition and design sensitivity. Journal of the American Statistical Association,
108(504):1457–1468.

Smith, D. L., Guerra, C. A., Snow, R. W., and Hay, S. I. (2007). Standardizing
estimates of the plasmodium falciparum parasite rate. Malaria Journal, 6(1):1–10.

St.Clair, T. and Cook, T. D. (2015). Difference-in-differences methods in public
finance. National Tax Journal, 68(2):319–338.

Strobino, D. M., Ensminger, M. E., Kim, Y. J., and Nanda, J. (1995). Mechanisms
for maternal age differences in birth weight. American Journal of Epidemiology,
142(5):504–514.

Stuart, E. A. (2010). Matching methods for causal inference: A review and a look
forward. Statistical Science, 25(1):1.

Stuart, E. A. and Hanna, D. B. (2013). Commentary: Should epidemiologists be
more sensitive to design sensitivity? Epidemiology, 24(1):88–89.

Sulyok, M., Rückle, T., Roth, A., Mürbeth, R. E., Chalon, S., Kerr, N., Samec, S. S.,
Gobeau, N., Calle, C. L., Ibáñez, J., Sulyok, Z., Held, J., Gebru, T., Granados, P.,
Brückner, S., Nguetse, C., Mengue, J., Lalremruata, A., Sim, B. K. L., Hoffman,
S. L., Möhrle, J. J., Kremsner, P. G., and Mordmüller, B. (2017). Dsm265 for plas-
modium falciparum chemoprophylaxis: a randomised, double blinded, phase
1 trial with controlled human malaria infection. The Lancet Infectious Diseases,
17(6):636–644.

Thompson, I. M., Goodman, P. J., Tangen, C. M., Lucia, M. S., Miller, G. J., Ford,
L. G., Lieber, M. M., Cespedes, R. D., Atkins, J. N., Lippman, S. M., et al. (2003).
The influence of finasteride on the development of prostate cancer. New England
Journal of Medicine, 349(3):215–224.

Valea, I., Tinto, H., Drabo, M. K., Huybregts, L., Sorgho, H., Ouedraogo, J.-B.,
Guiguemde, R. T., Van Geertruyden, J. P., Kolsteren, P., D’Alessandro, U., and
for the FSP/MISAME study Group (2012). An analysis of timing and frequency
of malaria infection during pregnancy in relation to the risk of low birth weight,
anaemia and perinatal mortality in burkina faso. Malaria Journal, 11(1):71.

224



Van de Poel, E., Hosseinpoor, A. R., Jehu-Appiah, C., Vega, J., and Speybroeck, N.
(2007). Malnutrition and the disproportional burden on the poor: the case of
ghana. International Journal for Equity in Health, 6(1):1–12.

Van der Vaart, A. W. (2000). Asymptotic Statistics, volume 3. Cambridge University
Press.

VanderWeele, T. J. and Peng, D. (2007). Sensitivity analysis in observational re-
search: introducing the e-value. Annals of Internal Medicine, 6(1):1–12.

Visconti, G. and Zubizarreta, J. R. (2018). Handling limited overlap in observa-
tional studies with cardinality matching. Observational Studies, 4:217–249.

Volpp, K. G., Rosen, A. K., Rosenbaum, P. R., Romano, P. S., Even-Shoshan, O.,
Canamucio, A., Bellini, L., Behringer, T., and Silber, J. H. (2007). Mortality among
patients in va hospitals in the first 2 years following acgme resident duty hour
reform. JAMA, 298(9):984–992.

Walker, P. G., ter Kuile, F. O., Garske, T., Menendez, C., and Ghani, A. C. (2014).
Estimated risk of placental infection and low birthweight attributable to plas-
modium falciparum malaria in africa in 2010: a modelling study. The Lancet
Global Health, 2(8):e460–e467.

Walker, S. P., Powell, C. A., Grantham-McGregor, S. M., Himes, J. H., and Chang,
S. M. (1991). Nutritional supplementation, psychosocial stimulation, and growth
of stunted children: the jamaican study. The American Journal of Clinical Nutrition,
54(4):642–648.

Walsh-Kelly, C. M., Melzer-Lange, M. D., Hennes, H. M., Lye, P., Hegenbarth, M.,
Sty, J., and Starshak, R. (1995). Clinical impact of radiograph misinterpretation
in a pediatric ed and the effect of physician training level. The American Journal
of Emergency Medicine, 13(3):262–264.

Weiss, D. J. and Shanteau, J. (2003). Empirical assessment of expertise. Human
Factors, 45(1):104–116.

West, S. G. and Thoemmes, F. (2010). Campbell’s and rubin’s perspectives on
causal inference. Psychological Methods, 15(1):18.

WHO (1986). Use and interpretation of anthropometric indicators of nutritional
status. Bulletin of the World health organization, 64(6):929.

WHO (2006). Who child growth standards: length/height-for-age, weight-for-

225



age, weight-for-length, weight-for-height and body mass index-for-age: meth-
ods and development.

WHO (2008a). Global malaria action plan 1 (2000–2015). Roll Back Malaria Partner-
ship/World Health Organization.

WHO (2008b). Worldwide Prevalence of Anaemia 1993-2005: WHO Global Database on
Anaemia.

WHO (2016). World malaria report 2016. Technical Report Licence: CC BY-NC-SA
3.0 IGO, Geneva: World Health Organization.

WHO (2017). Stunting in a nutshell.

WHO (2019). World malaria report 2019. Technical Report Licence: CC BY-NC-SA
3.0 IGO, Geneva: World Health Organization.

Wing, C., Simon, K., and Bello-Gomez, R. A. (2018). Designing difference in differ-
ence studies: best practices for public health policy research. Annual Review of
Public Health, 39.

Wittram, C., Maher, M. M., Yoo, A. J., Kalra, M. K., Shepard, J.-A. O., and McLoud,
T. C. (2004). Ct angiography of pulmonary embolism: diagnostic criteria and
causes of misdiagnosis. Radiographics, 24(5):1219–1238.

Wood, L., Egger, M., Gluud, L. L., Schulz, K. F., Jüni, P., Altman, D. G., Gluud, C.,
Martin, R. M., Wood, A. J., and Sterne, J. A. (2008). Empirical evidence of bias
in treatment effect estimates in controlled trials with different interventions and
outcomes: meta-epidemiological study. BMJ, 336(7644):601–605.

Yi, G. Y. (2017). Statistical Analysis with Measurement Error or Misclassification: Strat-
egy, Method and Application. Springer.

Zeka, A., Melly, S. J., and Schwartz, J. (2008). The effects of socioeconomic status
and indices of physical environment on reduced birth weight and preterm births
in eastern massachusetts. Environmental Health, 7(1):60.

Zhang, B. and Small, D. S. (2020). A calibrated sensitivity analysis for matched
observational studies with application to the effect of second-hand smoke expo-
sure on blood lead levels in children. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 69(5):1285–1305.

Zhang, K., Small, D. S., Lorch, S., Srinivas, S., and Rosenbaum, P. R. (2011). Using
split samples and evidence factors in an observational study of neonatal out-
comes. Journal of the American Statistical Association, 106(494):511–524.

226



Zhao, Q. (2018). On sensitivity value of pair-matched observational studies. Journal
of the American Statistical Association.

Zhao, Q., Small, D. S., and Rosenbaum, P. R. (2018). Cross-screening in obser-
vational studies that test many hypotheses. Journal of the American Statistical
Association, 113(523):1070–1084.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-bfgs-b: For-
tran subroutines for large-scale bound-constrained optimization. ACM Transac-
tions on Mathematical Software (TOMS), 23(4):550–560.

Zubizarreta, J. R. (2012). Using mixed integer programming for matching in an ob-
servational study of kidney failure after surgery. Journal of the American Statistical
Association, 107(500):1360–1371.

Zubizarreta, J. R., Cerda, M., and Rosenbaum, P. R. (2013). Effect of the 2010
chilean earthquake on posttraumatic stress reducing sensitivity to unmeasured
bias through study design. Epidemiology (Cambridge, Mass.), 24(1):79.

Zubizarreta, J. R., Paredes, R. D., and Rosenbaum, P. R. (2014). Matching for bal-
ance, pairing for heterogeneity in an observational study of the effectiveness of
for-profit and not-for-profit high schools in chile. The Annals of Applied Statistics,
8(1):204–231.

227


	Removing Strong Data Assumptions In Causal Inference Via Large-Scale Optimization
	Recommended Citation

	Removing Strong Data Assumptions In Causal Inference Via Large-Scale Optimization
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories

	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Increasing Power for Observational Studies of Aberrant Response: An Adaptive Approach
	Introduction
	Notation and Reviews
	The Traditional Approach: the Mantel-Haenszel Test
	An Aberrant Rank Approach and Its Comparison with the Traditional Approach
	A New, General Adaptive Approach to Combine Two Test Statistics in Observational Studies
	Simulation Studies
	Adaptive Inference of the Effect of Mother's Age on Child Stunted Growth
	Discussion
	Appendices

	A Model-Free and Finite-Population-Exact Framework for Randomized Experiments Subject to Outcome Misclassification via Integer Programming
	Introduction
	Review
	A Model-Free and Finite-Population-Exact Framework
	Computing Warning Accuracy and Related Quantities
	Real Data Application: Understanding the Puzzle in the PCPT
	Summary
	Appendices

	Relationship Between Changing Malaria Burden and Low Birth Weight in Sub-Saharan Africa: A Difference-in-Differences Study via A Pair-of-Pairs Approach
	Introduction
	Materials and Methods
	Results
	Discussion
	Appendices

	BIBLIOGRAPHY

