
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Complex Systems Engineering: Designing Advanced Functions In Complex Systems Engineering: Designing Advanced Functions In

Dynamical And Mechanical Systems Dynamical And Mechanical Systems

Jinsu Kim
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Engineering Mechanics Commons, and the Neuroscience and Neurobiology Commons

Recommended Citation Recommended Citation
Kim, Jinsu, "Complex Systems Engineering: Designing Advanced Functions In Dynamical And Mechanical
Systems" (2022). Publicly Accessible Penn Dissertations. 5512.
https://repository.upenn.edu/edissertations/5512

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5512
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/280?utm_source=repository.upenn.edu%2Fedissertations%2F5512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F5512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5512?utm_source=repository.upenn.edu%2Fedissertations%2F5512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5512
mailto:repository@pobox.upenn.edu

Complex Systems Engineering: Designing Advanced Functions In Dynamical And Complex Systems Engineering: Designing Advanced Functions In Dynamical And
Mechanical Systems Mechanical Systems

Abstract Abstract
From computation in neural networks to allostery in proteins, numerous natural and artificial systems are
comprised of many interacting parts that give rise to advanced functions. To study such complex
systems, a diverse array of interdisciplinary tools have been developed that relate the interactions of
existing systems to their functions. However, engineering the interactions to perform designed functions
in novel systems remains a significant challenge due to the nonlinearities in the interactions and the vast
dimensionality of the design space. Here we develop design principles for complex dynamical and
mechanical systems at the lowest level of their microstate interactions. In dynamical neural systems, we
use methods from control theory and dynamical systems theory to mathematically map precise patterns
of neural connectivity to the control of neural states in human and non-human brains (Chapter 2) and to
the learning of computations on internal representations in artificial recurrent neural networks (Chapter
4). In mechanical systems, we use methods from algebraic geometry and dynamical systems to
mathematically map precise patterns of mechanical constraints to design shape changes as a minimal
model of protein allostery and cooperativity (Chapter 6) and to engineer mechanical metamaterials that
possess arbitrarily complex shape changes (Chapter 8). These intuitive maps allow us to navigate
previously unexplored design spaces in nonlinear and high-dimensional regimes, enabling us to reverse
engineer form from function in novel complex systems that have yet to exist.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Bioengineering

First Advisor First Advisor
Danielle S. Bassett

Keywords Keywords
complex systems, deep learning, distributed intelligence, dynamical systems, metamaterials, neural
networks

Subject Categories Subject Categories
Engineering Mechanics | Neuroscience and Neurobiology

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5512

https://repository.upenn.edu/edissertations/5512

COMPLEX SYSTEMS ENGINEERING:

DESIGNING ADVANCED FUNCTIONS IN DYNAMICAL AND MECHANICAL

SYSTEMS

Jinsu Kim

A DISSERTATION

in

Bioengineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2022

Supervisor of Dissertation

Dani S. Bassett, J. Peter Skirkanich Professor of Bioengineering

Graduate Group Chairperson

Yale E. Cohen, Professor of Otorhinolaryngology

Dissertation Committee

David Issadore, Associate Professor of Bioengineering

George J. Pappas, UPS Foundation Professor of Electrical and Systems Engineering

Erol Akcay, Associate Professor of Biology

COMPLEX SYSTEMS ENGINEERING:

DESIGNING ADVANCED FUNCTIONS IN DYNAMICAL AND MECHANICAL

SYSTEMS

c© COPYRIGHT

2022

Jinsu Kim

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 4.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

DEDICATION

To the original Complex Systems Engineer,

who speaks light from the darkness,

through and for whom all things were created.

iii

ACKNOWLEDGEMENT

To Mom, Dad, and Grace, I would not be here without you! You have always supported

my wellness and education in so many ways. Thank you for always reminding me about

what is truly important in life.

To Melody, thank you for being the best partner and friend. Life is short, and there is no

one I would rather spend it with. I am excited to experience many more beautiful things

with you.

To my previous teachers Steve Everett, Keith Gulledge, and Carl Henriksen, thank you for

instilling in me a love for systems, physics, and mathematical modeling. With every day, I

realize more that my research is simply a reflection of your passion for teaching.

To all of my labmates, thank you for being the best lab that I could have. From the many

hours of Super Smash Bros Ultimate and Mario Kart 8, to the day to day shennanigans,

you have made my time at UPenn truly valuable.

To John and Harang, thank you guys for being the best. You are good, kind, and amazing

friends that inspire me to better myself. Thank you, and stay in touch!

And finally, to Dani. Thank you for allowing me to pursue my crazy ideas to the fullest. It

is no exaggeration to say that this thesis would not have been possible without you, your

encouragement, and your support. But what the words and images in this document fail to

show are the countless interactions in which you have taught me to be a better citizen of

science. Thank you for being an example and an inspiration.

iv

ABSTRACT

COMPLEX SYSTEMS ENGINEERING:

DESIGNING ADVANCED FUNCTIONS IN DYNAMICAL AND MECHANICAL

SYSTEMS

Jinsu Kim

Dani S. Bassett

From computation in neural networks to allostery in proteins, numerous natural and artifi-

cial systems are comprised of many interacting parts that give rise to advanced functions. To

study such complex systems, a diverse array of interdisciplinary tools have been developed

that relate the interactions of existing systems to their functions. However, engineering

the interactions to perform designed functions in novel systems remains a significant chal-

lenge due to the nonlinearities in the interactions and the vast dimensionality of the design

space. Here we develop design principles for complex dynamical and mechanical systems

at the lowest level of their microstate interactions. In dynamical neural systems, we use

methods from control theory and dynamical systems theory to mathematically map precise

patterns of neural connectivity to the control of neural states in human and non-human

brains (Chapter 2) and to the learning of computations on internal representations in arti-

ficial recurrent neural networks (Chapter 4). In mechanical systems, we use methods from

algebraic geometry and dynamical systems to mathematically map precise patterns of me-

chanical constraints to design shape changes as a minimal model of protein allostery and

cooperativity (Chapter 6) and to engineer mechanical metamaterials that possess arbitrarily

complex shape changes (Chapter 8). These intuitive maps allow us to navigate previously

unexplored design spaces in nonlinear and high-dimensional regimes, enabling us to reverse

engineer form from function in novel complex systems that have yet to exist.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . v

LIST OF TABLES . xiii

LIST OF ILLUSTRATIONS . xvii

PREFACE . xviii

CHAPTER 1 : Introduction . 1

1.1 More is Different: Complexity in Many-Body Systems 1

1.2 The Many Forms and Languages of Complexity 2

1.3 Modeling the Microstates of Existing Systems 3

1.4 Why Complex Systems Design is Difficult 4

1.4.1 Nonlinearity Impedes Prediction and Design 4

1.4.2 The Design Space is a Really Large and Complex Network 6

1.5 The Emerging Paradigm of Complex Systems Engineering 8

CHAPTER 2 : Role of Graph Architecture in Controlling Dynamical Networks . . 11

2.1 Motivation . 11

2.2 Mathematical Framework . 12

2.3 Predicting Control Energy . 15

2.4 Determinant of the Driver-to-Non-Driver Network 17

2.5 Identifying Energetically Favorable Control Nodes 18

2.5.1 Topological Contributors to Control Energy. 19

2.5.2 Energetically Favorable Driver-Non-Driver sets. 20

2.6 Complex Brain Networks are Energetically Favorable 20

vi

2.7 Network Manipulation to Facilitate Control 22

2.8 Contribution and Future Directions . 23

2.9 Conclusion . 26

CHAPTER 3 : Appendix to Role of Graph Architecture in Controlling Dynamical

Networks . 27

3.1 Connectome Data . 27

3.2 Selection of Energetically Most & Least Favorable Non-Drivers 29

3.3 First-Order Energy Approximation . 30

3.4 Mathematical Framework: Second-Order Energy Approximation 43

3.5 Validity of the First-Order Approximation 48

3.6 Comparison of Results for Directed & Undirected Networks 48

3.7 Differences in Network Density do not Drive Differences in Results Between

Networks . 51

3.8 Dealing with Driver & Non-Driver Allocations that Yield Unreachable States 55

3.9 Matrix Scaling Retains System Properties 56

3.10 Retaining Goodness of Approximation for Scaled Matrices 57

3.11 Analysis & Data Acquisition Retains Significant Biological Consistency Be-

tween Networks . 59

3.12 Value of Mathematically Formalizing the Intuitive Concept of Differential

Connectivity . 61

3.13 Validity of the Second-Order Approximation 62

3.14 Determinant of the Second-Order Connectivity Matrix Scales the Control

Energy . 63

3.15 Most & Least Energetically Favorable Driver-Non-Driver Sets in Brain Con-

nectomes Using Second-Order Approximation 65

3.16 Brain Networks of Increasingly Complex Species Have More Energetically

Favorable Second-Order Organization of Connectivity Features 66

vii

3.17 Network Manipulation to Facilitate Control Using the Second-Order Approx-

imation . 66

3.18 Maximizing the Determinant Through Node Selection 67

3.19 Maximizing the Determinant Minimizes Average Control Energy for A21 with

Fixed Frobenius Norm . 68

CHAPTER 4 : Teaching Recurrent Neural Networks to Infer Global Structure . . . 71

4.1 Motivation . 71

4.2 Mathematical Framework . 73

4.3 Learning a Translation Operation by Example 75

4.4 Learning to Infer Bifurcation Structure by Example 77

4.5 Mechanism of how Operations are Learned 79

4.6 Bifurcation Normal Forms & Non-Dynamical Time Series 82

4.7 Simultaneous Learning of Multiple Operations 84

4.8 Discussion . 85

CHAPTER 5 : Appendix to Teaching Recurrent Neural Networks to Infer Global

Structure . 87

5.1 Reservoir Dynamics . 87

5.2 Form of Dynamical Equations . 89

5.3 Evaluation of the Jacobian . 92

5.4 Bias Term & Equilibrium Point Selection 93

5.5 Tracking the Reservoir Fixed Points . 93

5.6 Poincaré Sections & the Period Doubling Bifurcation Diagram 95

5.7 Simulation Parameters . 96

5.8 Simulation Method . 98

5.9 Training for tanh . 100

5.10 Training for Wilson-Cowan . 101

5.11 Truncation of the Block-Hessenberg Matrix 102

viii

5.12 Simulation of the Jansen Linkage . 105

5.13 Quantifying Prediction Accuracy of Lorenz Computations 106

5.14 Translations, Transformations, & Bifurcations with Wilson-Cowan Networks 108

5.15 Translation in Multiple Directions . 109

5.16 Different Types of Transformations . 110

CHAPTER 6 : Conformational Control of Mechanical Networks 112

6.1 Motivation . 112

6.2 Network Connectivity & Mathematical Framework 113

6.3 Conic Sections & Overlaps of Bipartite Networks 115

6.4 Network Design Through Judicious Constraint Placement 118

6.5 Multi-Mode Construction & States of Self-Stress 119

6.6 Combining Network Modes for Potential Applications 121

6.7 Design of Large Displacements & Bistable Networks 122

6.8 Discussion . 125

CHAPTER 7 : Appendix to Conformational Control of Mechanical Networks . . . 127

7.1 Defining a Projection from Solution Coordinates to Spatial Coordinates . . 127

7.1.1 Case 1: Number of Solution Coordinates: m = d 127

7.1.2 Case 2: Number of Solution Coordinates: m = d− 1 128

7.2 Characterizing the Set of All Solution Spaces 129

7.3 Expanding on the Judicious Constraint Process 132

7.4 Rigidity Matrix Dimensions, Spaces, & Degrees of Freedom 133

7.5 Implications of States of Self-Stress in Infinitesimal & Finite Motions 134

7.5.1 Self-Stress in the Infinitesimal Regime 135

7.5.2 Self-Stress in the Finite Regime . 135

7.6 Designing & Analyzing Finite Motions in Networks with Self-Stress 138

7.7 Combining Networks with Repeating Modules 140

7.7.1 Applying the Higher-Order Derivative Test for Finite Motion 141

ix

7.7.2 Combining Networks Through Judicious Constraint Placement . . . 143

7.8 Avoiding States of Self Stress in 3 Dimensions 145

7.9 Consideration of Non-Bipartite Edges in Modules 147

7.10 Network Combinations for Finite Motions 150

7.11 Tristable Networks Using Intersections of Finite Motion Solution Spaces . . 151

CHAPTER 8 : Nonlinear Dynamics & Chaos in Conformational Changes of Me-

chanical Metamaterials . 152

8.1 Motivation . 152

8.2 Mathematical Framework . 154

8.2.1 Constraint Counting . 154

8.2.2 Defining the Set of Motions . 155

8.2.3 Constraint Counting Revisited . 156

8.2.4 Instantiating & Simulating Networks 157

8.2.5 Motivating Statement & Outline . 159

8.3 A 4-Bar Linkage Example . 160

8.3.1 Combining Units Acts as a Map Iteration 160

8.3.2 Visualizing Map Iteration as a Cobweb Plot 162

8.4 Network Conformation is Known at Fixed Points 164

8.5 Folding Sequence is Determined by Stability 164

8.6 Designing Network Shape . 166

8.6.1 Motivating the Unit Design Procedure 167

8.6.2 The Unit Design Procedure . 168

8.6.3 Combining Designed Units With Map Iteration 172

8.6.4 Motivating the Network Design Procedure 173

8.6.5 Selecting Units That Yield Global Network Shape 174

8.7 Designing the Conformational Sequence Using Stability 176

8.7.1 Motivating Stability Design . 177

8.7.2 Searching the Parameter Space . 177

x

8.8 Superstability & the Mechanical AND Gate 179

8.8.1 Motivating Superstable Convergence 179

8.8.2 Utilizing Superstable Convergence 179

8.9 Period Doubling Route to Mechanical Chaos 181

8.9.1 Motivating Chaotic Divergence . 181

8.9.2 Designing Chaotic Divergence . 182

8.10 Period Three Implies Mechanical Chaos . 183

8.10.1 Motivating 3-cycle Units . 183

8.10.2 A 3-cycle Unit and Sharkovsii’s Theorem 183

8.11 Constructing Physical Networks . 185

8.12 Elasticity & Signal Propagation in the Mechanical AND gate 186

8.13 Discussion . 188

CHAPTER 9 : Appendix to Nonlinear Dynamics & Chaos in Conformational Changes

of Mechanical Metamaterials . 190

9.1 Single Module Design: Infinitesimal Motion 190

9.2 Single Module Design: Finite Displacement 191

9.3 Analytic Form of the Iterated Map . 192

9.4 Condition for a Conformational Motion to Act as a Map 194

9.5 Numerically Characterizing Chaos: Lyapunov Exponent 195

9.6 Maps of Physical Linkage & 3D-Printed Modules 196

9.7 Construction & Map of Origami Module . 197

9.8 Edge Lengths are Determined by Added Node Placement 198

9.9 Combining Units Only Merges Nodes Between Units 199

9.10 Edge Lengths of All Network Examples . 200

9.11 Elasticity in the Superstable Mechanical AND Gate 204

9.12 Elaboration of Unit Cell Topology . 206

9.13 Chaos Remains Generic to Small Changes in Bond Length 207

xi

CHAPTER 10 : Concluding Remarks . 209

10.1 Summary of Our Process for Extracting Design Principles 209

10.2 Key Concepts for Complex Systems Engineering 210

10.2.1 Preservation of the Microstate Interactions 210

10.2.2 Nullspaces of Design are Often Immune to Complexity 211

10.2.3 A New Twist on an Old Classic: Complex Systems Engineering Wel-

comes You! . 212

BIBLIOGRAPHY . 212

xii

LIST OF TABLES

TABLE 1 : Simulation parameters . 98

xiii

LIST OF ILLUSTRATIONS

FIGURE 1 : Network Control of the Drosophila, Mouse, & Human Connectomes. 13

FIGURE 2 : The Simplified Network Reasonably Predicts Control The Energy. 15

FIGURE 3 : Geometric Intuition & Control Energies of First-Order Networks. 17

FIGURE 4 : Topological Characteristics & Energetic Performance of Networks. 18

FIGURE 5 : Energetically Favorable Organization of Network Topology. 21

FIGURE 6 : Reducing Minimum Control Energy Through Edge Deletion. . . . 22

FIGURE 7 : Similar Accuracy of First-Order Energy Approximation. 49

FIGURE 8 : Similar Distributions of Control Energy & Topology. 50

FIGURE 9 : Similar Energetically Favorable Organization. 50

FIGURE 10 : The Order of the Correlation is Maintained between Species. . . . 51

FIGURE 11 : Similar Changes in Control Energy for Edge Deletions. 52

FIGURE 12 : Percent Error in Energy Improves for Increasing Densities. 52

FIGURE 13 : Non-Driver Selection Based on the Topology-Dependent Term Yields

Significantly Different Energetic Performance across Densities. . . 53

FIGURE 14 : Non-Monotonic Relationship between Spearman Rank Correlation

Coefficient & Network Density. 54

FIGURE 15 : Similar Distributions for Changes in Control Energy for Energeti-

cally Favorable Edge Deletions across Varying Densities. 54

FIGURE 16 : Higher Number of Human Connectomes Share Energetically Favor-

able Edges for Deletion than Randomly Selected Edges. 60

FIGURE 17 : Differential Connectivity Difficult to Identify with Increasing Net-

work Size. 61

FIGURE 18 : The Second-Order Energy Approximation Offers a Reasonable Pre-

diction for the Full Network’s Control Energy for Higher Non-

Driver Fractions. 63

xiv

FIGURE 19 : Geometric Example of Simplified, Second-Order Networks with

Corresponding Control Energies. 64

FIGURE 20 : Topological Characteristics & Energetic Performance of Networks

using the Second-Order Approximation. 65

FIGURE 21 : Energetically Favorable Organization of Second-Order Topological

Features in Networks. 66

FIGURE 22 : Modifying the Connectomes to Decrease Minimum Energy Using

both Driver to Non-Driver, as well as Non-Driver to Non-Driver

Connections. 67

FIGURE 23 : Decreasing Average Energy as a Function of Increasing Determi-

nant in Brain Networks. 68

FIGURE 24 : Representing Chaotic Attractors with Reservoirs. 73

FIGURE 25 : Learning & Extrapolating Translations & Transformations by Ex-

ample. 76

FIGURE 26 : Inferring & Extrapolating the Bifurcation of the Lorenz. 78

FIGURE 27 : Changing the Control Parameter Changes the Reservoir Dynamics

to Manipulate Representations. 80

FIGURE 28 : Inferring Bifurcation Normal Forms & Extrapolating Kinematic

Trajectories. 82

FIGURE 29 : Flight of the Lorenz. 84

FIGURE 30 : Predicted Change in Reservoir States Given a Change in Control

Parameter. 103

FIGURE 31 : Tanh & Wilson-Cowan Attractor Similarity. 107

FIGURE 32 : Translation of the Lorenz Representation Using Wilson-Cowan Os-

cillator Networks. 108

FIGURE 33 : Transformation of the Lorenz Representation Using Wilson-Cowan

Oscillator Networks. 108

xv

FIGURE 34 : Bifurcation of the Lorenz Representation Using Wilson-Cowan Os-

cillator Networks. 109

FIGURE 35 : Translation of the Lorenz Representation in all Three Spatial Di-

rections. 110

FIGURE 36 : Transformation of the Lorenz Representation Using Stretch & Shear

in Several Spatial Directions. 111

FIGURE 37 : Graphical Representations of Maxwell Frames. 113

FIGURE 38 : Solution Space of Unspecified Nodes is Determined by the Specified

Nodes. 116

FIGURE 39 : Construction & Control of Frames with Specified Outward Motion. 118

FIGURE 40 : Intersections of Solution Spaces for Multiple Non-Rigid Motions. . 120

FIGURE 41 : Combining Network Motions by Merging Nodes & Adding Edges. 121

FIGURE 42 : Designing Finite Motions & Bistable Networks with Cooperativity. 123

FIGURE 43 : Solution Space Intersections. 132

FIGURE 44 : Constructing a Network that is Pre-Stress Stable. 138

FIGURE 45 : Constructing a Network at the Intersection of Branching. 139

FIGURE 46 : Combination of Identical Modules with Nonlinear Symmetries Through

Node Merging. 140

FIGURE 47 : Construction of Large Network Motions Through the Judicious

Coupling Between Non-Intersecting Modules. 144

FIGURE 48 : Non-Planar Judicious Constraint of 5 Nodes in d = 3. 146

FIGURE 49 : Constraining Networks with Non-Bipartite Edges. 149

FIGURE 50 : Combining Networks with Finite Positions. 150

FIGURE 51 : Tristable Networks Using Solution Space Intersections. 151

FIGURE 52 : Constraints & Conformational Motions. 154

FIGURE 53 : Motivation for the Results. 159

FIGURE 54 : Conformational motion as a map. 160

xvi

FIGURE 55 : Combine Units by Merging Nodes. 161

FIGURE 56 : Shape & Folding Sequence of Iterated Maps. 162

FIGURE 57 : Properties of Unit Design. 166

FIGURE 58 : Designing Unit Geometry at Fixed Points. 168

FIGURE 59 : Representing the Combining of Designed Units as an Iterated Map. 170

FIGURE 60 : Designing Precise Network Geometry. 174

FIGURE 61 : Designing the Sequence of Conformational Change. 176

FIGURE 62 : Superstability & Extreme Localization Through Faster-Than-Exponential

Convergence. 179

FIGURE 63 : Mechanical Chaos. 181

FIGURE 64 : A 3-Cycle Unit. 184

FIGURE 65 : Physical Construction of Networks. 185

FIGURE 66 : Elastic Deformations in Superstable Networks. 187

FIGURE 67 : Decomposition of a Conformational Motion Into Valid Map Segments.194

FIGURE 68 : Trajectory Divergence at Chaos. 195

FIGURE 69 : Maps of Physical Networks. 196

FIGURE 70 : Origami Sheet Construction & Map. 197

FIGURE 71 : Edge Lengths are Determined by Added Node Placement. 198

FIGURE 72 : Combining Units Only Merges Nodes Between Units. 199

FIGURE 73 : Decomposition and Edge Lengths of the 4-Bar Linkage Example. 200

FIGURE 74 : Decomposition and Edge Lengths of the Designed Quadrifolium. . 201

FIGURE 75 : Decomposition and Edge Lengths of the Designed Superstable Net-

work. 202

FIGURE 76 : Decomposition and Edge Lengths of the Designed Chaotic Network. 203

FIGURE 77 : Evolution of an Elastic Mechanical AND Gate. 204

FIGURE 78 : Physical Construction of the Mechanical AND Gate. 205

FIGURE 79 : Robustness of Chaos to Random Parameter Perturbations. 208

xvii

PREFACE

A complex system is comprised of many interacting parts that produce incredible behav-

iors. From the information processing that arises from interacting neurons to the chemical

reactions catalyzed by interconnected amino acids in enzymes, nature testifies to the stag-

gering complexity that can emerge from simple interactions. In an attempt to understand

this emergence, an equally staggering set of methods and conceptual paradigms have been

developed that relate complex interactions to emergent behaviors in existing systems.

But what about systems that have yet to exist? How can we harness the seemingly infinite

potential of many-body interactions to engineer our own complex systems with designed

properties? The answers to these questions are hindered by a multitude of difficulties, chief

among which are the large number of parts and the complexity of their interactions and

organization. This dissertation is a catalog of my attempts to navigate these difficulties to

uncover design principles in two principle types of systems: those that evolve in time such as

neural networks (dynamical), and those that evolve in space such as proteins (mechanical).

Beyond the specific text and results of any one chapter, the main goal of this dissertation is

to impress upon the reader that complexity and emergence, in addition to being topics of

great scientific inquiry, can also be harnessed for the purposes of design and engineering.

xviii

CHAPTER 1 : Introduction

1.1. More is Different: Complexity in Many-Body Systems

Many systems that are coupled in time, or dynamical, undergo a qualitative change in be-

havior with increasing number of components. A single neuron—albeit quite complex in its

own right (Martini, 2007)—can be accurately modeled using differential equations (Hodgkin

and Huxley, 1952). The nematode Caenorhabditis elegans with 302 neurons is more complex

(White et al., 1986), enabling functions such as chemosensation (Bargmann, 2006), diges-

tion (Avery and You, 2018), and navigation (Qin and Wheeler, 2007). The human brain

comprising 80 billion neurons is yet more complex (Herculano-Houzel, 2009), enabling ad-

vanced functions such as the object representation (Tacchetti et al., 2018), accumulation of

evidence (Egúıluz et al., 2015), and working memory (Courtney et al., 1997).

Additionally, many systems that are coupled in space, or mechanical, also undergo a qual-

itative change in behavior with increasing numbers of components. A single amino acid—

albeit quite complex in its own right (Lehninger et al., 2005)—possesses a well-studied

repertoire of chemical properties (Creighton, 1993). Chaining several of these amino acids

into a polypeptide produces spatially complex secondary structures such as α-helices and β-

sheets. Bringing together multiple polypeptides forms complex quaternary structures such

as hemoglobin, which saturates and transports oxygen in the bloodstream (Lukin et al.,

2003; Lukin and Ho, 2004) by changing its geometry to bind oxygen.

In these and many other examples in nature, increasing the number of components gives

rise to qualitatively different and advanced functions which cannot be understood as an

extrapolation of a single part. Hence, understanding the laws that govern the behavior of

the parts and their interactions is only the first step in engineering complex systems. In

the words of P. W. Anderson, “The ability to reduce everything to simple fundamental laws

does not imply the ability to start from those laws and reconstruct the universe” (Anderson,

1972). Perhaps more succinctly put in the title of this specific work: “More is Different”.

1

1.2. The Many Forms and Languages of Complexity

To understand precisely how more is different, complexity has enjoyed a long and rich his-

tory of study across many disciplines and in many different forms. At the macroscopic

scale, one such form is self-organization: the creation of global order from local interac-

tions. Examples include the synchronization of oscillators (Acebrón et al., 2005) and the

concentration of energy density in ecological systems (Odum, 1988). At the mesoscopic

scale, another such form is pattern formation: the emergence of ordered structure from

local interactions. Examples range from periodic wave patterns in biological tissue during

morphogenesis (Gierer and Meinhardt, 1972) to the fractal and time-evolving structures

of cellular automata (Wolfram, 1984). At the microscopic scale, complexity is everywhere

from information processing in artificial neural networks (LeCun et al., 2015) to the intricate

pathways of gene regulatory networks (Karlebach and Shamir, 2008).

To study such a wide expanse of systems across many fields, the language used to describe

complexity is equally vast. In dynamical systems—the study of time-evolving equations—

complex patterns may be called attractors, the self-organization onto said attractors are de-

termined by dynamical equations, and qualitatively different behaviors can take the form of

bifurcations (Strogatz, 2018). In mechanics—the study of spatially constrained equations—

complex patterns are called configuration manifolds, the self-organization onto said man-

ifolds are determined by Hamiltonians, and qualitatively different behaviors can take the

form of kinematic singularities (Lurie, 2002). One may similarly choose to view complex-

ity through the lens of information theory and statistical mechanics (Jaynes, 1957), graph

theory (McCabe, 1976), and any number of other methods and paradigms of thought.

Through such monumental efforts, significant progress has been made in developing meth-

ods and paradigms of thought for understanding complex systems. While by no means

exhaustive, we focus on the two aforementioned cases of dynamical and mechanical systems

throughout this dissertation.

2

1.3. Modeling the Microstates of Existing Systems

Provided a system where all of the components and their interactions are given, there exists

a plethora of tools to determine its behavior. In a dynamical system whose behavior is de-

termined by a set of time-dependent equations, we can numerically simulate the evolution

of the system forward in time using a vast array of integration techniques (Cash and Karp,

1990) that incorporate real-world factors such as time delays (Kuang, 2012) and stochas-

ticity (Arnold, 1974). In a mechanical system whose behavior is determined by energetics

and spatially-constrained equations of motion, we can run molecular dynamics simulations

(Rapaport and Rapaport, 2004) and finite element analysis (Zienkiewicz et al., 1977) to

observe the system’s behavior. Hence, given full knowledge of a system’s microstates and

interactions, it is theoretically possible to simulate the behavior of the microstates.

Of course, these approaches are not without drawbacks, one of which is the significant diffi-

culty of capturing and simulating sufficient microscopic detail for accurate modeling (Randi

and Leifer, 2020). To mitigate this drawback, many coarse-grained models reduce the com-

plexity of a single component. An example in neural systems is the FitzHugh-Nagumo

model: a 2 variable simplification of the Hodgkin-Huxley model that produces action po-

tentials (FitzHugh, 1961). An example in mechanical systems is the Gaussian model: a

2-coordinate simplification of an amino acid using its position and orientation (Micheletti

et al., 2004). Another approach is to model the average state of populations such as the

Wilson-Cowen model for neurons (Wilson and Cowan, 1972) or the rigid cluster analysis

for proteins (Potestio et al., 2009). Other forms of coarse graining involve mathematical

dimensionality reduction by taking advantage of the interaction topology as in external eq-

uitable partitions (Schaub et al., 2016) or more data-driven methods such as dynamic mode

decomposition (Schmid, 2010).

Hence, with several caveats, a myriad of tools exist to study and simulate the microstates

of existing systems. Unfortunately, the ability to simulate these fundamental laws does not

imply the ability to use them for construction.

3

1.4. Why Complex Systems Design is Difficult

1.4.1. Nonlinearity Impedes Prediction and Design

Despite the existence of such sophisticated tools that describe the behavior of existing

systems, the inverse problem of designing novel behaviors in engineered systems remains

a significant challenge. At first glance, it would appear that the main barrier is the sheer

magnitude of the design space: given an already large number n of components, the space of

possible interactions is n2. However, what makes the problem truly difficult is our inability

to predict the behavior of systems at unobserved states and at unobserved patterns of

interactions. Said another way, it is generally not the case that given a few candidate

systems for which we know the behaviors, we can know the behavior of other systems that

exist in different states or have different patterns of interactions.

As an illustration, let us consider the behavior of a 1-state dynamical system given by

d

dt
x = −1 + x2, (1.1)

and consider three scenarios with slightly different initial states around x(0) = 1, under the

naive hope that nearby initial states might yield similar behaviors.

• If we begin our system at x(0) = 1, the rate of change of x will be 0 such that the

system will stay at x(t) = 1.

• If we begin our system at x(0) = 0.9, the rate of change of x will be negative, such

that the system eventually decays to x(t) = −1.

• If we begin our system at x(0) = 1.1, the rate of change of x will always be positive,

such that the system blows up to x(t)→∞!

Hence, even in this 1-state system, while it is simple to simulate its behavior at specific initial

conditions, it is far more difficult to predict the outcome of untested initial conditions.

4

This particular form of unpredictability goes by the name of nonlinear. By nonlinear, all

we mean is that the outputs do not scale with the inputs. In the previous 1-state dynamical

system in Eq. 1.1, we found that if the initial state is x(0) = 1, then the final state at

t → ∞ is also x∗ = 1. If the system is linear, then an initial state of x(0) = α · 1 should

yield a final state of x(t) = α · x∗. In such an ideal scenario, the design problem is simple:

if we desire a final state x(t) = αx∗, then we have only to start the system at x(0) = α · 1.

Unfortunately, very few natural systems are so ideally linear.

To circumvent this problem of nonlinearity, a wide range of tools has been developed.

Some methods use special mathematical tools called composition or Koopman operators to

represent a nonlinear dynamical system as a linear system with more, and often infinite,

state variables (Williams et al., 2015; Budǐsić et al., 2012; Brunton et al., 2016). Other

methods in nonlinear dynamics involve using geometrical analysis and analytical tools to

study the long-term behavior of low-dimensional nonlinear systems (Strogatz, 1994). There

also exist numerical tools to perform successive local approximations of the nonlinear system

as a linear one within a small neighborhood of the current state (Cornelius et al., 2013b),

or linearizations about a periodic trajectory (Hespanha, 2018). Still other methods take

successive analytical approximations using higher-order convolutions to write down a closed-

form expression of the state evolution through Volterra kernels (Brockett, 1976). The goal

is the same: overcome nonlinearity to write the output as a function of the input. However,

the existence of such a breadth of approaches should indicate to the reader that nonlinearity,

while a simply posed problem, does not yet have a general solution.

Hence, the first challenge when designing complex systems is to tame the nonlinearities to

attain predictive design power. In this dissertation, we will use whatever approaches yield

the greatest designability and the most conceptually tractable intuition. Often, the reader

will see methods at the heart of dynamical systems used as design principles for mechanical

networks, such as in Chapter 8. Other times, the reader will come across geometric intuitions

for designing dynamical networks, such as in Chapter 2.

5

1.4.2. The Design Space is a Really Large and Complex Network

The lack of predictability due to nonlinearity poses a very real problem. This is because

each component of a system—such as a neuron’s membrane potential or an amino acid’s

spatial coordinates—is a real, continuous number. In a system of n components, the state

space of the system is of order Rn, which requires exponentially more compute time to

sample densely with increasing n. Yet, the true design space is exponentially larger because

such systems have n2 possible interactions. Just as the synaptic strength between neurons

or the bond strength between amino acids is a continuous quantity, so too is the strength

of interaction between each pair of components. Hence, the design space of interactions

resides not in Rn, but rather in Rn×n.

As a result, many exact and fully nonlinear design principles that exist at the state space

level deal primarily with very small n. For many dynamical systems, we possess an analyti-

cal and geometrically intuitive understanding about how the interactions between dynamical

components affect their behavior up to n = 3 (Strogatz, 1994). However, this understanding

is by no means complete. For example, as per Hilbert’s 16th problem, the maximum num-

ber of limit cycles that can exist for a polynomial 2-dimensional dynamical system is still

unknown (Ilyashenko, 2002), and we are still discovering new 3-dimensional chaotic systems

(Li and Sprott, 2018). For mechanical systems, the study of kinematic synthesis gives exact

and analytical solutions for the behavior of mechanical linkages comprising a few rigid bars

connected by rotating joints (Hartenberg and Danavit, 1964). When designing the nonlin-

ear interactions between more components, we typically resort to numerical optimization

methods (Werbos, 1990; Baskar and Bandyopadhyay, 2019; Rocks et al., 2017b).

In addition to the sheer magnitude of the interaction space, it is also full of nonlinear

organization. One example is the importance of the topology of the interaction network.

Informally, the term topology refers to the precise pattern of interactions that are present

or absent, such as the structural connections in the brain (Alexander et al., 2007). Mathe-

matically, topology refers to a broad field of study regarding the preservation of structures

6

such as cavities under continuous deformation, and branches of the field such as algebraic

topology help to quantify higher-order dependencies in networks (Sizemore et al., 2018).

Naturally occurring patterns include modular (Valencia et al., 2009), hierarchical (Zhou

et al., 2006), and even fractal (Mandelbrot and Mandelbrot, 1982) organization.

Many approaches successfully quantify and characterize such complex organization. One

common approach in network science is to define features of connectivity that are naturally

observed, conceptually motivated, or mathematically derived, and compute their presence in

networks. Some connectivity features that are thought to be important for communication

between brain regions are the shortest path (Avena-Koenigsberger et al., 2018), the weighted

sum of paths of various lengths (Estrada and Hatano, 2008), and small-worldness (Watts

and Strogatz, 1998b). Other features focus on precise local structures such as motifs (Sporns

et al., 2004), hubs (Hwang et al., 2017), and coordination number (Silbert, 2010). Such an

approach has been fruitful for dynamical networks such as neural systems (Bassett and

Sporns, 2017) and mechanical systems such as packings of particles (Richard et al., 2020).

Hence, far from remaining restrained by the difficulties that arise from nonlinearity and

dimensionality, our growing fascination with the complex has given rise to an incredibly

diverse set of approaches. The aforementioned list of approaches is by no means exhaustive,

but is rather intended to serve as a demonstration of the potential that exists in complexity

to warrant such extensive study. In the words of Wilson J. Rugh (Rugh, 1981):

“When confronted with a nonlinear systems engineering problem, the first

approach usually is to linearize; in other words, to try to avoid the nonlinear

aspects of the problem. It is indeed a happy circumstance when a solution

can be obtained in this way. When it cannot, the tendency is to try to avoid

the situation altogether, presumably in the hope that the problem will go away.

Those engineers who forge ahead are often viewed as foolish, or worse. Nonlinear

systems engineering is regarded not just as a difficult and confusing endeavor;

it is widely viewed as dangerous to those who think about it for too long.”

7

1.5. The Emerging Paradigm of Complex Systems Engineering

In spite of the associated danger, the need to engineer complex systems has been too great

to ignore. One such need is in neural engineering for therapies to correct dysfunctions and

disorders such as drug resistant epilepsy (Kwan et al., 2010), which often requires alterna-

tive surgical interventions such as resection and electrical stimulation (Duncan et al., 2006).

Recent work has assisted in the identification of seizures (Bernabei et al., 2021), charac-

terized network properties throughout a seizure (Scheid et al., 2021), and even predicted

the surgical outcome of patients using simulated virtual resections (Kini et al., 2019). In

tandem, recent work has also applied methods from control theory to model the effect of

stimulation in neural systems (Stiso et al., 2019; Betzel et al., 2016b; Gu et al., 2017). Can

we bridge these two lines of work to determine an intuitive, first-principles theory for how

the complex patterns of neural connectivity determine the response to stimulation? In this

dissertation, Chapter 2—adapted from (Kim et al., 2018; Kim and Bassett, 2020)—is dedi-

cated to developing precisely this theory, where we can not only obtain a simple geometric

understanding of how specific patterns of connectivity determine stimulation response, but

easily use that understanding to virtually resect edges that improve the response.

Beyond biomedical and therapeutic need, the potential of engineering complex dynamical

systems has led to the development of a wide range of uses, among which deep learning is a

prominent example. Starting with early models of artificial neurons (McCulloch and Pitts,

1943), the field of deep learning has evolved to develop advanced methods for training large

networks (Rumelhart et al., 1986; Werbos, 1990; Sutton and Barto, 2018) to perform highly

sophisticated functions such as image generation (Gregor et al., 2015), language modeling

(Mikolov et al., 2010), and time series prediction (Sussillo and Abbott, 2009). What is

special about these examples is that they use recurrent neural networks (RNNs) which

possess an internal representation through internal states that evolve in time as a dynamical

system. This internal representation is precisely what enables the incredible computational

capability of RNNs (Schäfer and Zimmermann, 2006) such as the associative memory of

8

Hopfield networks (Hopfield, 1982), and precisely what makes the formal analysis and design

of their architecture challenging. To understand how RNNs form internal representations,

concepts in dynamical systems such as generalized synchronization (Rulkov et al., 1995a),

invertible generalized synchronization (Lu and Bassett, 2020), and Lyapunov exponents

(Balcerzak et al., 2018) provide a mathematical understanding of memory formation and

representation in RNNs. But can we further develop this understanding to map the precise

network of neural connections to the formation and manipulation of these representations?

The development of such a map is the focus of Chapter 4—adapted from (Kim et al., 2021)—

where we train RNNs to manipulate their own internal representations, and precisely map

the neural connectivity to these computations.

In parallel with complex dynamical systems is the development of design principles for com-

plex mechanical systems. The need for precise geometric shape change is seen prominently

in biological processes such as the substrate selectivity and cooperativity of proteins (Lukin

and Ho, 2004) and the long-range allosteric excitation and inhibition of enzymes (Lisi and

Loria, 2017). To design such geometric shape changes, many algorithmic approaches per-

form numerical optimizations on the network topology and interaction strength to obtain

a desired response (Rocks et al., 2017b; Leman et al., 2020). But can we develop simple

design principles for engineering general shape changes? The development of such princi-

ples is the main focus of Chapter 6—adapted from (Kim et al., 2019b)—where we define a

simple design framework for precise changes in network geometry, and use it to provide a

minimum model of protein allostery and cooperativity.

Beyond biomedical need, the potential of engineering complex mechanical system has led

to the development of a fundamentally novel class of materials called metamaterials. These

materials possess incredibly sophisticated responses ranging from extreme tunable stiffness

(Hwang and Bartlett, 2018) to the algorithmic generation of complex curvature (Choi et al.,

2019) with applications that range from designing locking mechanisms (Surjadi et al., 2019b)

to solar sails (Fu et al., 2016b). Such materials are often constructed by combining small

9

units into a large material where the material’s response is designed using the geometry of

the units and their coupling. To construct such a complex array of material responses, it

seems almost necessary to rely on numerical optimization or to study systematic variations

of a single unit (Jin et al., 2020) and measure the material’s response. But what if there were

a simple theory for coupling units that somehow gave rise to a rich and nonlinear class of

easily designable material responses? The development of such a theory is precisely the focus

of Chapter 8—adapted from (Kim et al., 2019a)—where we demonstrate a mathematical

equivalence between metamaterial design and dynamical systems. By writing the addition

of units as a dynamical map iteration, we bring the full brunt of dynamical systems theory to

develop a complete set of design principles for precisely engineering the geometry and folding

sequence of a network, to the point of designing units that can change shape chaotically

and even possess an infinite number of periodic configurations.

This dissertation is organized in two main parts. Chapters 2 and 4 focus on biologically and

artificially inspired design principles in dynamical neural networks, respectively, and Chap-

ters 6 and 8 focus on biologically and artificially inspired design principles in mechanical

networks, respectively.

Through these chapters, we wish to communicate that complexity—while often convenient

to simplify, coarse grain, numerically optimize, and average over—is worthy of a closer look.

10

CHAPTER 2 : Role of Graph Architecture in Controlling Dynamical Networks

2.1. Motivation

Network systems are composed of interconnected units that interact with each other on di-

verse temporal and spatial scales (Newman, 2010). The exact patterns of interconnections

between these units can take on many different forms that dictate how the system functions

(Newman, 2003). Indeed, specific features of network topology – such as small-worldness

(Watts and Strogatz, 1998a) and modularity (Simon, 1962) – can improve efficiency and

robustness. Yet, exact mechanisms driving the relationship between structure and function

remain elusive, hampering the analysis, modification, and control of interconnected complex

systems. The relationship between interconnection architecture and dynamics is particu-

larly important in biological systems such as the brain (Bassett and Sporns, 2016), where it

is thought to support optimal information processing at cellular (Bettencourt et al., 2007)

and regional (Bassett and Bullmore, 2016; Sporns and Betzel, 2016) levels. Understand-

ing structure-function relationships in this system could inform personalized therapeutics

(Barabasi et al., 2011) including more targeted treatments for drug-resistant epilepsy to

make the epileptic state energetically unfavorable to maintain (Ching et al., 2012; Khamb-

hati et al., 2016), especially due to the development of multi-site stimulation tools (Gonen

et al., 2017; Mohanty and Lakshminarayananan, 2015) that allow for exponentially increas-

ing stimulation configurations.

Existing paradigms seeking to explain how a complex network topology drives observable

dynamics have advantages and disadvantages. Efforts in nonlinear dynamics define basins

of attraction and perturbations driving a system between basins (Sprott and Xiong, 2015;

Cornelius et al., 2013a). Efforts in network science define graph metrics and report statisti-

cal correlations with observed functions such as attention (Shine et al., 2016) and learning

(Mantzaris et al., 2013; Bassett et al., 2014). Neither approach offers comprehensive ana-

lytical solutions explaining mechanisms of control. A promising paradigm that meets these

challenges is linear network control theory (Kalman, 1963; Lin, 1974), which assumes that

11

the state of a system at a given time is a function of the previous state, the structural

network linking system units, and injected control energy. From this paradigm, one can

identify (i) driver nodes (Liu et al., 2011; Ruths and Ruths, 2014) capable of influencing

the system along diverse trajectories, and (ii) optimal inputs that move the system from

one state to another with minimal cost. This latter formulation has proven useful in un-

derstanding the human brain where control points enable diverse cognitive strategies (Gu

et al., 2015, 2017), facilitate efficient intrinsic activation (Betzel et al., 2016a), and inform

optimal targets for brain stimulation (Muldoon et al., 2016).

While practical tools exist, basic intuitions about the network properties that enhance

control have remained elusive. Here, we address this challenge by formulating a linear

control problem on the bipartite subgraph linking driver nodes to non-driver nodes, which

provides excellent estimates of the control of the full network. Our results include analytical

derivations of expressions relating a network’s minimum control energy to its connectivity,

an intuitive geometric representation to visualize this relationship, and rules for modifying

edges to alter control energy in a predictable manner. While our mathematical contributions

are applicable to any complex network system whose dynamics can be approximated by a

linear model, we illustrate their utility in the context of networks estimated from the mouse

(Oh et al., 2014; Rubinov et al., 2015), Drosophila (Shih et al., 2015), and human brain

(Fig. 1d–f). Our results offer fundamental insights into the patterns of connections between

brain regions that directly impact their minimum control energy, providing a link between

the structure and function of neural systems and informing potential clinical interventions.

An extension of this framework to non-bipartite graphs with corresponding results can be

found in the appendix in Chapter 3.

2.2. Mathematical Framework

We consider a network represented by the directed graph G = (V, E), where V = {1, . . . , n}

and E ⊆ V × V are the sets of network vertices and edges, respectively. Let aij ∈ R be

12

b c

d e f

a

time

state

x1(t)

x2(t)

x3(t)

x1x2

x3

Network Control of the Mouse Brain

g h

Drosophila Connectome Mouse Connectome Human Connectome

Full Mouse Network Simpli�ied Mouse Network

Driver Node

Non-Driver Node

0.0 0.4

Weight

Figure 1: Network Control of the Drosophila, Mouse, & Human Connectomes.
(a) A representation of the mouse brain via the Allen Mouse Brain Atlas, with a superim-
posed simplified network. Each brain region is represented as a vertex, and the connections
between regions are represented as directed edges. (b) Example trajectories of state over
time for three brain regions, where the state represents the level of activity in each region.
(c) A state-space representation of activity on the mouse connectome over time, where each
point on the black line represents the brain state at a point in time. (d) Connectomes
represented as n× n adjacency matrices where each i, jth element of the adjacency matrix
represents the strength of the connection from node j to node i for Drosophila, (e) mouse,
and (f) human. (g) The mouse connectome represented as a graph with vertices as brain
regions, and edges colored by their weight, or the magnitude of the relevant element of
the adjacency matrix. (h) Simplified graph representation: a bipartite subgraph containing
edges linking driver vertices (red) to non-driver vertices (blue).

the weight associated with the edge (i, j) ∈ E , and let A = [aij] be the weighted adjacency

matrix of G. We associate a real value (state) with each node, collect the nodes’ states

13

into a vector (network state), and define the map x : R≥0 → Rn to describe the evolution

(dynamics) of the network state over time (Fig. 1a–c). We assume that a subset of N

nodes, called drivers, is independently manipulated by external controls and, without loss

of generality, we reorder the network nodes such that the N drivers come first. Thus, the

network dynamics read as

 ẋd

ẋnd

 =

A11 A12

A21 A22


 xd

xnd

+

IN
0

u, (2.1)

where xd and xnd are the state vectors of the driver and non-driver nodes, A11 ∈ RN×N ,

M = n −N , A12 ∈ RN×M , A21 ∈ RM×N , A22 ∈ RM×M , IN is the N -dimensional identity

matrix, and u : R≥0 → RN is the control input.

We will use the word controllable to refer to networks that are point-to-point controllable

at time T ∈ R≥0 if, for any pair of states x∗d and x∗nd, there exists a control input u for the

dynamics Eq. (2.1) such that xd(T) = x∗d and xnd(T) = x∗nd. For a detailed discussion and

rigorous conditions for the controllability of a system with linear dynamics, see (Kailath,

1980). We define the energy of u as

E(u) =
N∑
i=1

∫ T

0
ui(t)

2dt︸ ︷︷ ︸
Ei

,

where ui is the i-th component of u. The energy of ui can be thought of as a quadratic

cost that penalizes large control inputs.

In the context of the brain, we approximate the interactions between brain regions as

linear, time invariant dynamics, where a stronger structural connection between two regions

represents a stronger dynamic interaction (for empirical motivation, see (Gu et al., 2015;

Fernandez, 2008; Honey et al., 2009)). We specifically study the empirical inter-areal meso-

scale connectomes of the mouse (112 brain regions, example schematic in Fig. 1g,h) from

the Allen Brain Institute, the Drosophila (49 brain regions) (Shih et al., 2015), and a set of

14

human connectomes (116 brain regions) interconnected by white matter tracts (for empirical

details regarding connectivity estimates, see appendix in Chapter 3).

2.3. Predicting Control Energy

ba

xd1

xd2

xdN

⋮

xnd1

⋮

xnd2

xndM

xd1

xd2

xdN

⋮

xnd1

⋮

xnd2

xndM

e

c

d

f g

Full Toy Network Simplified Toy Network Full Drosophila Network Simplified Drosophila Network

Figure 2: The Simplified Network Reasonably Predicts The Control Energy. (a)
Graphical representation of a non-simplified network of N drivers (red) and M non-drivers
(blue), with directed connections between all nodes present. (b) Graphical representation of
a simplified first-order network only containing first-order connections from drivers → non-
drivers. (c) As an example, we show the adjacency matrix for the Drosophila connectome
segmented into driver→ driver A11, driver→ non-driver A21, non-driver→ driver A12, and
non-driver → non-driver A22 sections for a non-simplified network as per Eq. (2.1), with
randomly designated driver and non-driver nodes, and (d) the corresponding simplified
network as per Eq. (2.2). (e) Percent error contour plots of the total control energy for
simplified versus non-simplified networks as a function of the fraction of non-driver nodes
and matrix scale given by c = ‖λmax‖. For each combination of parameters, the median
error magnitude to drive the networks from initial states xd = 0, xnd = 0 to 1000 random
final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N along 1000 corresponding random selections of
non-drivers is shown. Each contour represents a 5% interval for the (e) Drosophila, (f)
mouse, and (g) human connectome.

We seek an accurate, tractable relationship between the energy required to drive a network

to a specific state and its connectivity. We begin with the original, non-simplified network

(Fig. 2a) involving edges between all nodes, and consider dynamics along the simplified net-

15

work (Fig. 2b) involving only edges from the driver to the non-driver nodes (for a conceptual

schematic of the full and simplified Drosophila connectome, see Fig. 2c–d). We then derive

an approximation of the minimum control energy (Lemma X.2 - X.4) by assuming that

xd(0) = 0, xnd(0) = 0 (Assumption 1), and A11 = 0, A12 = 0, and A22 = 0 (Assumption 2)

in Eq. (2.1), which reads as

E(u) = 12(x∗nd −
1

2
A21x

∗
d)T (A21A

T
21)−1(x∗nd −

1

2
A21x

∗
d) + x∗Td x

∗
d. (2.2)

We make Assumption 1 because we are interested in the change in brain state through

control, and consider initial conditions xd(0) = 0, xnd(0) = 0 to be a neutral baseline.

Because Eq. (2.2) only involves edges from driver to non-driver nodes, we call Eq. (2.2)

a first-order approximation to the minimum control energy of the non-simplified network

Eq. (2.1). Importantly, this approximation requires at least as many driver nodes as non-

driver nodes for A21A
T
21 to be invertible (i.e. N ≥ M). To assess the accuracy of our

expression, we look to classic results in the mathematical theory of systems and control

(Kailath, 1980), where the spectral properties of the reachability Gramian WR(0, T) =∫ T
0 eAtBBT eA

T tdt quantify the minimum amount of energy (Section XI A 2) to control the

non-simplified network Eq. (2.1).

In these brain networks, we observe that the first-order energy approximation is accurate

across a range of parameters, which are the magnitude of the adjacency matrix (given by the

magnitude of the largest eigenvalue, c = ‖λmax‖ after multiplying A by a constant scalar),

and the fraction d of nodes selected as non-driver nodes (Fig. 2e–g). The error remains

below approximately 5% for scaling c < 1.5 and non-driver fraction d < 0.4 (Fig. 2e–g). In

this paper, we will use these connectomes scaled such that c = ‖λmax‖ = 1, and non-driver

fraction d ≤ 0.4, to ensure generalizability of our findings to the non-simplified versions of

these same networks.

16

2.4. Determinant of the Driver-to-Non-Driver Network

a1 = {a11, a12, ..., a1N}

a11

a12
a1N

aMN

aM2

a21a22

aM1

a2N

a2 = {a21, a22, ..., a2N}
aM = {aM1, aM2, ..., aMN}

xd1

xd2

xdN

⋮

xnd1

⋮

xnd2

xndM

a

Driver Node

Non-Driver Node

h

-0.5 0 0.5 1 1.5 2 2.5 3
log

10
Control Energy

0

0.02

0.04

0.06

0.08

0.1

0.12

F
re

qu
en

cy

Graph 1
Graph 2
Graph 3

Graph 1
x

d1
x

d2
x

d3

x
nd1

x
nd2

b

Graph 2
x

d1
x

d2
x

d3

x
nd1

x
nd2

c

Graph 3
x

d1
x

d2
x

d3

x
nd1

x
nd2

d

Det: 1.000

w
d2

0

0.5w
d3

1
e

w
d1

Det: 0.300

w
d2

0

0.5w
d3

1
f

w
d1

Det: 0.067

w
d2

0

0.5w
d3

1
g

w
d1

Figure 3: Geometric Intuition & Control Energies of First-Order Networks. (a)
Graph representation of a simplified first-order network containing connections from N
driver nodes in red to M non-driver nodes in blue. The edges connecting all driver nodes to
the i-th non-driver corresponding to the i-th row of A21 are shown in different colors. (b)
Graph representation of a network with driver nodes in red, non-driver nodes in blue, weight
distribution into non-driver 1 in gray, and weight distribution into non-driver 2 in tan, for
dissimilarly distributed weights, (c) for somewhat similarly distributed weights, and (d) for
very similarly distributed weights. (e) Geometric representation of the parallelotope formed
by the 2 vectors of weight distributions into non-drivers 1 and 2, with the volume shaded
in beige for dissimilarly distributed weights, (f) for somewhat similarly distributed weights,
and (g) for very similarly distributed weights. (h) Base-10 log distribution of control energy
required to bring each graph to 10,000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N .

After deriving a closed-form approximation for the minimal energy to control a network, we

seek a physical interpretation of the mathematical features that predict the control energy.

We let Q = A21A
T
21, and write Eq. (2.2) as

E(u) = 12
vT1 adj(Q)v1

det(Q)
+ vT2 v2, (2.3)

where v1 = x∗nd −
1
2A21x

∗
d and v2 = x∗d, and adj(Q) is the adjugate matrix of Q. We

notice that the determinant of Q acts as a scaling factor for the total energy. This insight is

useful because of the geometric interpretation of a Gram matrix determinant. Specifically,

let ai ∈ R1×N be the i-th row of A21 (which we will call the weight vector), representing

weights from all N drivers to the i-th non-driver node (Fig. 3a). Then, the determinant of

the Gram matrix Q is equal to the squared volume of the parallelotope formed by all ai.

17

To gain an intuition for these results, we show a simple system with 3 drivers and 2 non-

drivers with varying network topologies in Fig. 3b–d, and their corresponding geometric

parallelotopes in Fig. 3e–g with weight-vector a1 in gray and a2 in tan. We also compute

the distribution of control energy required to drive each network from initial states xd = 0,

xnd = 0 to 10,000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N in Fig. 3h. As the non-

drivers xnd1, xnd2 become more similarly connected, the total area of the parallelotope (and

corresponding Gram determinant) decreases (Fig. 3e–g), and the control energy increases

(Fig. 3h). We note that this determinant relationship persists for any number of nodes

where N > M . We conclude that the similarity between weight-vectors generally scales

the control energy through det(Q), allowing us to analyze and modify the connectivity of a

network with respect to its control energy.

2.5. Identifying Energetically Favorable Control Nodes

a b c

Robustness to Fraction of Non-Driver Nodes

Drosophila Mouse Human

d e f

Product of Magnitude and Angle for All Non-Drivers

0.1 0.2 0.3 0.4
Fraction Non-Driver

5

10

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

8

L
og

10
E

ne
rg

y

Most
Least
Random

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

8

L
og

10
E

ne
rg

y

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

0 0.05 0.1 0.15

Least

Most

Figure 4: Topological Characteristics & Energetic Performance of Networks. (a)
Boxplot of each non-driver weight-vector’s magnitude and angle product (‖ak‖ sin(θk)) be-
tween the energetically most and least favorable networks in the Drosophila, (b) mouse,
and (c) human connectomes, for a non-driver fraction of 0.2 and p-values from a 2-sample
t-test. (d) Mean and standard deviations of the base-10 log of the minimum control energies
required to bring the system to 2000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N for
each of a range of non-driver fractions for the energetically most favorable, least favorable,
and random networks for the Drosophila, (e) mouse, and (f) human.

Here, we further explore the idea of “similarity” between connections ai, to quantify the

18

impact of each individual non-driver on the control energy.

2.5.1. Topological Contributors to Control Energy.

Our analysis is rooted in the intuition that the edge weights ai that maximize the parallelo-

tope volume, thereby facilitating network control, are large in magnitude and orthogonal to

each other. Let λi and ei be the eigenvalues and eigenvectors of the matrix Q in Eq. (2.3).

We derive in Lemma X.6 the equivalent, alternative control energy expression

E(u) = 12

(∑M
i=1wic

2
i∑M

i=1wi

)(
M∑
k=1

1

‖ak‖2 sin(θk)2

)
+ vT2 v2, (2.4)

where wi =
∏M
j 6=i λj , ci = eTi v1, and θk is the angle formed between ak and the parallelotope

formed by aj 6=k. We also derive in Lemma X.7 the average control energy to reach all random

final states drawn uniformly from -1 to 1, x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N , as

E[E(u)] =
1

3
N +M + 4

(
M∑
k=1

1

‖ak‖2 sin(θk)2

)
. (2.5)

For N drivers and M non-drivers, we can visualize the M weight vectors ak as forming a

parallelotope in an N -dimensional space. The variable θk then represents the angle formed

between ak and the paralellotope formed by the remaining M−1 vectors aj 6=k. An example

with N = 3,M = 2 is shown in Fig. 3e–g, where θ1 = θ2 is the angle between the tan and

gray vectors.

Here, we have segregated the control energy into a task-based
(∑M

i=1 wic
2
i∑M

i=1 wi

)
and topology-

based
(∑M

k=1
1

‖ak‖2 sin(θk)2

)
term (Eq. 2.4), where the average minimum control energy

depends linearly on the topology-based term (Eq. 2.5). This segregation allows us to ana-

lyze the topology separate from the specific control task, and shows that each non-driver

additively contributes to the total control energy minimally when ‖ai‖ and sin(θi) are large.

19

2.5.2. Energetically Favorable Driver-Non-Driver sets.

To support this discussion, we used expression Eq. (2.4) to find the selections of M non-

drivers that minimized and maximized this topology term (see appendix in Chapter 3),

which we define as the energetically most favorable and energetically least favorable selec-

tions, respectively. We show example distributions of each weight-vector’s magnitude ‖ak‖

times angle sin(θk) (Fig. 4a–c) between these selections in Drosophila, mouse, and human

for non-driver fraction 0.2. We observe that the energetically least favorable selections have

significantly weaker magnitudes and angles than the most favorable selections.

Next, we demonstrate the utility and robustness of these topological features for control by

computing the minimum control energy along the non-simplified networks using the driver

and non-driver designations from the simplified networks in Eq. (2.4) for a range of non-

driver fractions. For each non-driver fraction and species, we computed the control energy

to bring the energetically most and least favorable non-driver selections, and 2000 random

non-driver selections to a corresponding set of 2000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈

(−1, 1)N (Fig. 4j–l). Across all three species, the most favorable selections require around

0.5–1 order of magnitude less control energy than the random selections, and 2.5–4 orders of

magnitude less control energy than the least favorable selections. This difference indicates

an energetic advantage for some configurations of drivers and non-drivers over others.

2.6. Complex Brain Networks are Energetically Favorable

Given the relationship between a network’s connectivity and minimum control energy in

Eq. (2.4), we seek to understand if brain networks are organized along energetically fa-

vorable principles. Fundamentally, we ask how well a network’s specific set of connectiv-

ity features ‖ak‖ and sin(θk) combine to minimize the topology-dependent energy term∑M
k=1

1
‖ak‖2 sin(θk)2

. In networks that are not designed along these energetic principles, we

expect to see no particular relationship between ‖ak‖ and sin(θk). In networks that minimize

the topology dependent energy term, we expect a compensatory effect, where non-drivers

20

Average Vector Magnitude vs. sin(θ) for All Brain Regions
b ca

Driver

Non-Driver 1

Non-Driver 2

d

e

f
Similar Not Similar

Similar Not Similar

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

Human (= -0.73)

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

Mouse (= -0.36)

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8
si

n(
)

Drosophila (= -0.25)

0.1 0.2 0.3 0.4
Fraction of Non-Drivers

-1

-0.8

-0.6

-0.4

-0.2

0

Drosophila
Mouse
Human

g

0.6 0.8 1
Normalized Magnitude

0.4

0.6

0.8

1

si
n(

)

(= -1.00, p = 0.0167)h

Figure 5: Energetically Favorable Organization of Network Topology. (a) Aver-
age sin(θk) versus normalized ‖ak‖ for each brain region across 10,000 random non-driver
selections for a non-driver fraction of 0.2, along with best fit line (red) and correspond-
ing Spearman correlation coefficient in the Drosophila, (b) mouse, and (c) human. (d)
Spearman correlation coefficients in the Drosophila, mouse, and human over 2,000 random
non-driver selections for each of a range of non-driver fractions. (e) Example toy network
of 5 nodes with three strongly interconnected nodes at the top, and two strongly inter-
connected nodes at the bottom. (f) Representation of similarity in driver → non-driver
connections between Non-Driver 1 (light blue, member of three strongly connected nodes)
and all possible selections of Non-Driver 2 (blue). Across all 4 configurations, Non-Driver
1 has an average of 1.5 strong connections, and 2/4 similarly connected (small angle) con-
figurations. (g) Similarity in driver → non-driver connections between Non-Driver 1 (light
blue, member of two strongly connected nodes) and all selections of Non-Driver 2 (blue).
Across all 4 configurations, Non-Driver 1 has an average of 0.75 strong connections, and
1/4 similarly connected configurations. (h) Plot of average magnitude versus sin(θ) for the
toy network, with Spearman rank correlation coefficient.

with small angles have large magnitudes, and vice versa.

To explore the relationship between ‖ak‖ and sin(θk) in brain networks, we selected 10,000

random permutations of non-drivers in each of the Drosophila, mouse, and 10 human con-

nectomes, at non-driver fraction d. For each permutation, we calculated ‖ak‖ and sin(θk)

for every non-driver. Then, we averaged ‖ak‖ and sin(θk) for each non-driver across all

permutations, giving us an averaged magnitude ‖ak‖ and sin(θk) for each brain region in

each network. Finally, we plotted the averaged sin(θk) versus ‖ak‖ for all brain regions

21

in each network for d = 0.2 (Fig. 5a–c). We find little relationship between the averaged

‖ak‖ and sin(θk) in the Drosophila (Spearman ρ = −0.25, p = 0.0748), a moderate negative

relationship in the mouse (ρ = −0.36, p = 0.000125), and a strong negative relationship in

the human (ρ = −0.73, p ≈ 0). This ordering holds for a wide range of non-driver fractions

(Fig. 5d). We graphically demonstrate how this negative sin(θk) versus ‖ak‖ relation might

arise in networks, using a simple 5-node network with two communities of 3 and 2 strongly

interconnected sets of nodes (Fig. 5d-f), which has a strong negative relationship (Fig. 5h).

2.7. Network Manipulation to Facilitate Control

a b c d

0.1 0.2 0.3 0.4
Non-Driver Fraction

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 1 Removed

0.1 0.2 0.3 0.4
Non-Driver Fraction

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 2 Removed

0.1 0.2 0.3 0.4
Non-Driver Fraction

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 3 Removed

0.1 0.2 0.3 0.4
Non-Driver Fraction

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 4 Removed

Drosophila
Mouse
Human

Figure 6: Reducing Minimum Control Energy Through Edge Deletion. (a) Means
and standard errors of percent change in control energy before and after deleting edges
that maximally increase the determinant based on Eq. (2.6) over 2,000 control tasks, with
initial states xnd(0) = 0, xd(0) = 0, and random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N .
Non-drivers were randomly selected for a range of non-driver fractions in the Drosophila,
mouse, and human connectomes for 1 deletion, (b) 2 deletions, (c) 3 deletions, and (d) 4
deletions. Standard errors were computed as SE = s√

n
, where s is the sample standard

deviation over the 2,000 tasks, and n = 2, 000.

Here, we consider network modifications that lead to lower control energies. We focus on the

effects of edge deletion since it is often useful in the study of biological systems such as brain

(Alstott et al., 2009), metabolic (Aristidou et al., 1994), and gene regulatory (Sander and

Joung, 2014) networks. Specifically, we quantify the effect of modifying each edge weight

on the determinant in Lemma X.5 as

∂

∂A21
det(Q) = 2 det(Q)(Q−1A21), (2.6)

and compute the decrease in control energy as a result of deleting edges that maximally

22

increase the determinant.

First, for each species and each of a range of non-driver fractions, we randomly selected 2,000

permutations of non-drivers. For each permutation, we extracted the block matrix A21,

calculated 2 det(Q)(Q−1)A21, and found the element aij 6= 0 yielding the largest increase

in det(Q) based on Eq. (2.6). We then simulated an edge deletion by setting aij = 0, and

repeated the process to obtain networks of 1, 2, 3, and 4 deleted edges. Finally, we computed

the percent change in control energy required to bring the non-simplified network from initial

states xnd(0) = 0, xd(0) = 0, to final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N before and after

edge deletion (Fig. 6a–d).

As can be seen in Fig. 6a, the removal of one edge can sometimes lead to more than a 10%

average reduction in control energy, while the removal of four edges (Fig. 6d) can sometimes

lead to more than a 30% reduction. Across most non-driver fractions, the Drosophila

experienced greater energy reduction than the mouse, which also experienced greater energy

reduction than the human. This corresponds to the previous finding where, because brain

networks of these increasingly complex species are already energetically favorably wired,

they may not experience as much improvement after modification.

2.8. Contribution and Future Directions

The control of networked systems is a critical frontier in science, mathematics, and engi-

neering, as it requires a fundamental understanding of the mechanisms that drive network

dynamics and subsequently offers the knowledge necessary to intervene in real-world sys-

tems to better their outcomes (Motter, 2015). While some theoretical predictions exist

in nonlinear network systems (Cornelius et al., 2013a), the majority of recent advances

have been made in the context of linear control (Liu et al., 2011; Ruths and Ruths, 2014).

Nevertheless, basic intuitions regarding how edge weights impact control have remained

elusive. Although spectral analysis of a network’s controllability Gramian (Kailath, 1980)

yields theoretically useful information about the overall behavior of the network under con-

23

trol (Pasqualetti et al., 2014), it is not obvious how specific patterns of connectivity or

selections of driver and non-driver nodes contribute to this behavior. Understanding this

relationship is crucial when analyzing empirical biological networks such as the brain, where

nodes and edges often have known functions (Lanteaume et al., 2007) that may modulate

or influence one other.

A distinct advantage of our approach is the focus on a physically meaningful topological

understanding of the principles governing network control. We map control behavior to

network topology through a simplified network only involving connections from driver to

non-driver nodes. This simplification hard-codes the fact that energy can be transmitted

directly from drivers to non-drivers along walks of length unity, and is motivated by recent

work demonstrating that relatively sparse network representations of complex biological

systems (Park et al., 2015; Liu et al., 2016) can contain much of the information needed to

understand the system’s structure and dynamics (Clauset et al., 2008; Zhu and Xia, 2015).

Our results inform our understanding of how much first-order connections contribute to the

overall dynamics of our network control systems. Moreover, they inform the development

of analytical constraints on the accessible state space of a networked system, particularly

informing the set of states within which one might seek to push the brain using stimula-

tion paradigms common in the treatment of neurological disorders and psychiatric disease

(Chen et al., 2014; Chrysikou and Hamilton, 2011). While many initial studies have exam-

ined unconstrained state spaces (Gu et al., 2015; Betzel et al., 2016a; Muldoon et al., 2016),

understanding viable states and state trajectories is critical for the translation of these ideas

into the clinic (Bassett et al., 2017). Further, by formally quantifying the contribution of the

network connectivity to the control energy, we lay the groundwork for the optimization of

stimulation sites in neural systems, a problem that has received very little theoretical treat-

ment, and is considered one of the current critical challenges in neuroengineering (Johnson

et al., 2013).

Finally, we make strategic, task-agnostic edge deletions that maximally increase the de-

24

terminant and observe that, even in an overdetermined, unsimplified system (N > M), a

single edge deletion could produce a profound improvement in the general controllability

of a network. This sensitivity suggests that dynamical networks such as the brain can

produce fairly drastic changes in dynamical behavior given minute changes in physiological

topology, consistent with observations of critical dynamics in human and animal neurophys-

iology (Rubinov et al., 2011; Shew et al., 2015). Moreover, these results also suggest that

minor, targeted structural changes through concussive injury can lead to drastic changes in

overall brain function (Caeyenberghs et al., 2016; van der Horn et al., 2016), via altering

the controllability landscape of the brain (Gu et al., 2017). We further observed that these

topological modifications were task-agnostic edge deletions, signifying that even in a linear

regime, the presence of an unfavorable edge can have a profoundly negative impact on the

controllability of a network. We note that it is natural to perform a similar analysis that

takes into account the specific tasks v1,v2 by taking the derivative of the full energy term

Etotal with respect to A21, which would optimize the network topology for a specific task,

as studied in more detail in (Betzel et al., 2016a).

To achieve the most meaningful comparison between species, we only analyzed weighted

meso-scale whole brain networks. As such, we did not include binary neuronal connectomes

(e.g., C. elegans), and binary or partial connectomes (e.g., macaque). As more connectomes

become available, we hope to further explore the role of species complexity on network con-

trollability. Until then, we consider the comparison of energetically favorable connectivity

between species to be a preliminary excursion into a nuanced evolutionary phenomena. As

demonstrated in the significant percent change in energy after edge deletion, we empha-

size that uncertainty in network connectivity has the potential to yield substantial changes

in average control energy. Finally, we note that while methodological limitations prevent

us from resolving excitatory versus inhibitory connectivity, all results are directly appli-

cable to networks with signed elements. Further important theoretical considerations and

methodological limitations pertinent to our approach, linear model of dynamics, optimality

of control trajectories, and empirical data sets are discussed in the appendix in Chapter 3.

25

2.9. Conclusion

In closing, we note that the natural direction in which to take this work will be to use higher-

order approximations of this framework found in the appendix in Chapter 3 to gain intuition

for the role of complex network topologies (e.g. self-loops, cycles) in controlling networks.

Moreover, it would be interesting to apply this reduced framework to random graphs and

other well-known benchmarks – both from a mathematical perspective (Bollobas, 1985) and

also in the context of neural systems (Klimm et al., 2014; Sizemore et al., 2016) – to better

understand the phenotypes present in those graph ensembles. Third and finally, informing

the design of new networks with these tools may be particularly useful in neuromorphic

computing (Pfeil et al., 2013), material science (Giusti et al., 2016), and other contexts

where optimal control of physical systems is of paramount importance.

26

CHAPTER 3 : Appendix to Role of Graph Architecture in Controlling Dynamical

Networks

3.1. Connectome Data

Drosophila Connectome. The full reconstruction of the Drosophila connectome can be

found in the FlyCircuit 1.1 database (Chiang et al., 2011; Shih et al., 2015). This database

contains images of 12,995 neurons, as well as their projections, that are characteristic of the

Drosophila female. In this database, each neuron was labeled using green fluorescent protein

(GFP) and its location was estimated from 3-dimensional images that were co-registered to

a template using a rigid linear transform. To obtain a mesoscale representation of this fine-

scale data, neurons were assigned to one of 49 local populations, based on their morphology

and known functions. Following the original work from Shih and colleagues, we treated each

of these 49 populations as the nodes of the network, and we treated the directed, weighted

edges between populations as network edges (Shih et al., 2015).

Mouse Inter-Areal Connectome Data. In addition to tne Drosophila connectome, we also

analyzed the inter-areal connectome of the mouse. In particular, we use the exact network

studied in (Rubinov et al., 2015), which was reconstructed from original tract-tracing data

recently released by the Allen Brain Institute (Oh et al., 2014). The entire brain was

separated into 112 regions, which we treat as network nodes. Each pair of regions was then

linked by directed edges that encoded the presence or absence of inter-regional projections.

The weight of each edge was defined by the number of projections normalized by the volumes

of the two regions being connected.

Human Diffusion Imaging Data. Ten healthy adult human subjects (m) were imaged as

part of an ongoing data collection effort at the University of Pennsylvania; the subjects

provided informed consent in writing, in accordance with the Institutional Review Board of

the University of Pennsylvania. All scans were acquired on a Siemens Magnetom Prisma 3

Tesla scanner with a 64-channel head/neck array at the University of Pennsylvania. Each

27

data acquisition session included both a diffusion spectrum imaging (DSI) scan as well as a

high-resolution T1-weighted anatomical scan. The diffusion scan was 730-directional with

a maximum b-value of 5010s/mm2 and TE/TR = 102/4300 ms, which included 21 b = 0

images. Matrix size was 144×144 with a slice number of 87. Field of view was 260×260mm2

and slice thickness was 1.80mm. Acquisition time per DTI scan was 53:24min, using a multi-

band acceleration factor of 3. The anatomical scan was a high-resolution three-dimensional

T1-weighted sagittal whole-brain image using a magnetization prepared rapid acquisition

gradient-echo (MPRAGE) sequence. It was acquired with TR = 2500 ms; TE=2.18 ms;

flip angle = 7 degrees; 208 slices; 0.9mm thickness.

DWI is highly sensitive to subject movement (Yendiki et al., 2013), which can cause signif-

icant distortions in the reconstructed ODFs if not corrected. Motion correction is typically

applied by determining an affine or non-linear transform to align each DWI volume to a

reference derived from the high-signal b = 0 images. The high b-values used in DSI present

a problem for this approach, as the low signal in many of the volumes leads to poor reg-

istration. To address this issue, we interspersed b = 0 volumes in the scan sequence, one

for every 35 volumes. An initial average template was produced by averaging the b = 0

images together and then improved by registering the b = 0 images to the initial template

and re-averaging. Each b = 0 was finally re-registered to the improved template, and then

each volume in the DSI scan was then motion corrected by applying the transformation

calculated for the closest b = 0 volume. Motion correction also impacts the effective b-

matrix directions since the rotated images are no longer aligned with the scanner; therefore

the transforms applied to motion correct each volume were also used to rotate the corre-

sponding b-vectors (Leemans and Jones, 2009). The processing pipeline was implemented

using Nipype (Gorgolewski et al., 2011) with registration performed using the Advanced

Normalization Tools (ANTs) (Avants et al., 2011).

Using DSI-Studio (http://dsi-studio.labsolver.org), orientation density functions (ODFs)

within each voxel were reconstructed from the corrected scans using GQI (Yeh et al., 2010).

28

We then used the reconstructed ODFs to perform a whole-brain deterministic tractography

using the derived QA values in DSI-Studio (Yeh et al., 2013). We generated 1,000,000

streamlines per subject, with a maximum turning angle of 35 degrees (Bassett et al., 2011)

and a maximum length of 500mm (Cieslak and Grafton, 2014).

We constructed networks for each subject where nodes are atlas regions and edges are the

measured connection strength between region pairs (Hagmann et al., 2008). The nodes

of the network were derived from spatially-defined regions of a brain atlas. We chose the

anatomically-defined AAL atlas, originally developed in Statistical Parametric Mapping

(SPM) (Tzourio-Mazoyer et al., 2002), which divides each brain hemisphere into 45 regions,

and then includes cerebellar regions as well. We used a version in MNI-space that was then

warped into subject-specific space using ANTs. Edges of the network were constrained

to the set of streamlines that both started and terminated within a pair of regions. The

mean QA weighting across streamlines connecting the two regions was used as an estimate

of the strength of the connection in order to examine individual variability in structural

connectivity (Griffa et al., 2013).

3.2. Selection of Energetically Most & Least Favorable Non-Drivers

In result section C, we use the minimum energy expression Eq. 2.4 to select the N driver

and M non-driver nodes that maximized and minimized the topology-based term. Due to

the immense number of possible permutations (e.g. over 1024 ways to select 23 non-drivers

in the 116 node human connectome), we made use of a greedy algorithm.

For each connectome, we first computed the topology-based term for all possible selections

of M = 4 non-drivers (≈ 2 × 105 for Drosophila, ≈ 6 × 106 for mouse, and ≈ 7 × 106

for human), and found the selections that maximized and minimized the topology-based

term. Then, to reach M = 5 non-drivers, we selected the N remaining driver nodes one

at a time to be a non-driver node, and found the node that maximized (or minimized) the

topology-based term. We continued this greedy selection for M = 6, 7, · · · to reach the

29

desired non-driver fraction. To ensure that our selection was fully reachable (i.e. the Gram

matrix A21A
T
21 had full rank), we computed the rank of the Gram matrix A21A

T
21, and only

selected nodes among those that maintained full rank.

3.3. First-Order Energy Approximation

Here we reiterate our mathematical notation and assumptions in greater detail, and provide

lemmas for the main results. Consider a network represented by the directed graph G =

(V, E), where V = {1, . . . , n} and E ⊆ V × V are the sets of network vertices and edges,

respectively. Let aij ∈ R be the weight associated with the edge (i, j) ∈ E , and let A = [aij]

be the weighted adjacency matrix of G. We associate a real value (state) with each node,

collect the nodes’ states into a vector (network state), and define the map x : R≥0 → Rn

to describe the evolution (dynamics) of the network state over time. We let the network

dynamics be linear and time invariant, as described by the equation

ẋ = Ax. (3.1)

We are particularly interested in characterizing how the network structure G influences the

control properties of the dynamical system (3.1). We assume that a subset ofN nodes, called

drivers, is independently manipulated by external controls and, without loss of generality, we

reorder the network nodes such that the N drivers come first. Thus, the network dynamics

with controlled drivers read as ẋd

ẋnd

 =

A11 A12

A21 A22


 xd

xnd

+

IN
0

u, (3.2)

where xd and xnd are the state vectors of the driver and non-driver nodes, A11 ∈ RN×N ,

M = n −N , A12 ∈ RN×M , A21 ∈ RM×N , A22 ∈ RM×M , IN is the N -dimensional identity

matrix, and u : R≥0 → RN is the control input.

30

We will use the word controllable to refer to networks that are point-to-point controllable

at time T ∈ R≥0 if, for any pair of states x∗d and x∗nd, there exists a control input u for the

dynamics (2.1) such that xd(T) = x∗d and xnd(T) = x∗nd. We refer the interested reader to

(Kailath, 1980) for a detailed discussion and rigorous conditions for the controllability of a

system with linear dynamics. Finally, we define the energy of u as

E(u) =

N∑
i=1

∫ T

0
ui(t)

2dt︸ ︷︷ ︸
Ei

,

where ui is the i-th component of u. In what follows we characterize how the network

topology and weights determine the control energy needed for a given control task. We

restrict our analysis to a class of bipartite networks, as specified in the following assumptions.

We remark that our assumptions, although restrictive, allow us to thoroughly predict how

driver → non-driver connections facilitate or inhibit network control even in more complex

network models (see Section 3.5). We later relax some of the assumptions to extend our

approximation to networks that are neither bipartite nor feed-forward (see Section 3.4).

Assumption 1. The initial state of the network satisfies xd(0) = 0 and xnd(0) = 0. �

Assumption 2. The network G contains only edges from the drivers to the non-drivers,

that is, A11 = 0, A22 = 0, and A12 = 0. Thus, the dynamics (2.1) simplify to ẋd = u(t),

and ẋnd = A21xd. �

From assumptions 1 and 2 we readily observe that

xd(t) =

∫ t

0
u(τ) dτ, and

xnd(t) = A21

∫ t

0
xd(τ) dτ = A21

∫ t

0

∫ τ

0
u(τ1) dτ1 dτ.

(3.3)

We see that xnd provides an integral constraint to xd, and we represent the specific values

31

of the constraints as

∫ t

0
xd(τ)dτ = C, (3.4)

where C ∈ RN×1 is an N -dimensional vector of real-valued constants. Furthermore, the

set of controllable states can be characterized as follows. For a matrix M , let Im(M) and

Rank(M) denote the image and rank of M , respectively (Meyer, 2001).

Lemma 3.3.1. (Controllability) The network (2.1) is controllable if and only if the rank

Rank(A21) = M . Furthermore, the set of controllable states is Im


IN 0

0 A21


.

Proof. Notice that the controllability matrix of (2.1) is

C =

[
B AB

]
=

IN 0

0 A21

 ,
and recall that a state is controllable if and only if it belongs to the range space of the

controllability matrix.

Lemma 3.3.2. (Minimum Energy Control Input) The ith driver trajectory xdi(t) that

minimizes the control energy takes the form xdi(t) = ait
2 + bit

Proof. Recall from (2.1) and assumption 2 that ẋdi(t) = ui(t). We minimize the energy

Ei = min
ui

∫ T

0
ui(t)

2dt

= min
xdi

∫ T

0
ẋdi(t)

2dt,

32

where xdi(0) = 0, xdi(T) = x∗di . From (3.4), xdi is also subject to some integral constraint

∫ T

0
xdi(t)dt = Ci,

where Ci is the ith element of C. We see this naturally takes the form of the isoperimetric

problem in the calculus of variations, which finds

min
xdi

∫ b

a
F (t, xdi , ẋdi)dt,

where F (t, xdi , ẋdi) = ẋdi(t)
2, a = 0, and b = T = 1, constrained by

∫ b

a
G(t, xdi , ẋdi)dt = 0,

where G(t, xdi , ẋdi) = xdi(t) − Ci. The trajectory x∗di(t) which locally minimizes the cost

function must satisfy the necessary (Euler-Lagrange) and sufficient (Jacobi) conditions. The

Euler-Lagrange equation reads

d

dt

∂

∂ẋ
(F + λG) =

∂

∂x
(F + λG),

which, after substituting F and G, yields

ẍ∗di(t) =
λ

2
,

to give the only extremal solution satisfying assumption 1

x∗di(t) =
λ

2
t2 + bt,

where λ is the lagrange multiplier. Because (F +λG)xx = (F +λG)xẋ = 0, and the quantity

33

(F + λG)ẋẋ = 2, the Jacobi condition becomes

∫ 1

0
η̇2(F + λG)ẋẋdt = 2

∫ 1

0
η̇2dt ≥ 0,

which holds true for any arbitrary smooth function η, where η(0) = η(1) = 0. As x∗di(t) =

at2 + bt is the only extremal function, and is also minimum, xdi is the global minimum of

the constrained control energy.

Lemma 3.3.3. (Minimum Control Energy) The required control energy for the ith

driver is Ei = 12C2
i − 12Cixdi + 4xdi .

Proof. We recall that the energy required to drive xdi is

Ei = min
xdi

∫ T=1

0
ẋ2

di(t)dt

=

∫ 1

0
4ait

2 + 4aibit+ b2i dt

=
4

3
ai + 2aibi + b2i .

We solve for ai and bi via the final state and integral constraint to yields equations

xdi(T = 1) = ai + bi = x∗di∫ T=1

0
xdi(t)dt =

1

3
ai +

1

2
bi = Ci,

from which we get

ai = 3xdi − 6Ci

bi = 6Ci − 2xdi .

34

Substituting ai and bi into the equation for Ei, we get

Ei = 12C2
i − 12Cixdi + 4x2

di .

Lemma 3.3.4. (Total Control Energy) The total control energy is Etotal = 12vT1 Q
−1v1+

vT2 v2, where v1 = x∗nd −
1
2A21x

∗
d, v2 = x∗d, and Q = A21A

T
21

Proof. Here, we use the method of Lagrange multipliers to minimize the total energy f(C)

as a function of C given in (3.4), constrained by g(C) given by (3.3). We can write the

total energy as

f(C) = E(u) =
N∑
i=1

Ei

=

N∑
i=1

12C2
i − 12Cixdi + 4x2

di

= 12CTC − 12CTxd + 4xTdxd,

with M constraining equations, the set of which are given by

g(C) = x∗nd −A21

∫ T

0
xd(τ)dτ

= x∗nd −A21C

= 0,

where the kth constraint gk(C) is given by the kth row of g(C). The method of Lagrange

35

multipliers defines the Lagrangian given by

L(C, λ1, · · · , λM) = f(C) +
M∑
k=1

λkgk(C)

= f(C) + g(C)Tλ

= 12CTC − 12CTx∗d −CTAT21λ+ x∗ndλ+ 4x∗Td x
∗
d

= CT (12C − 12x∗d −AT21λ) + x∗ndλ+ 4x∗Td x
∗
d,

where λk is the kth Lagrange multiplier to compose λ ∈ RM×1, and sets the gradient of the

Lagrangian to 0

∇CL(C, λ1, · · · , λM) = 24C − 12xd −AT21λ

= 0,

which allows us to solve for C with respect to λ

C =
1

24
AT21λ+

1

2
x∗d.

By substituting C into the total energy equation and grouping terms, we get a preliminary

formulation of E(u) with respect to λ

E(u) =
12

242
λTA21A

T
21λ+

(
12

24
− 12

24

)
x∗Td AT21λ+ (3− 6 + 4)x∗Td x

∗
d

=
λTA21A

T
21λ

48
+ x∗Td x

∗
d.

To solve for λ, we substitute the expression for C into our constraint equations g(C) to

36

yield

g(C) = x∗nd −A21C

= x∗nd −
1

24
A21A

T
21λ−

1

2
A21x

∗
d

= 0,

and solve for λ

λ = 24(A21A
T
21)−1(x∗nd −

1

2
A21x

∗
d).

Substituting λ into E(u), we get

E(u) = 12(x∗nd −
1

2
A21x

∗
d)T (A21A

T
21)−1(A21A

T
21)(A21A

T
21)−1(x∗nd −

1

2
A21x

∗
d) + x∗Td x

∗
d

= 12(x∗nd −
1

2
A21x

∗
d)T (A21A

T
21)−1(x∗nd −

1

2
A21x

∗
d) + x∗Td x

∗
d.

Lemma 3.3.5. (Derivative of Gram Matrix) The determinant of the gram matrix

Q = A21A
T
21 with respect to the elements of A21 is ∂

∂A21
det(Q) = 2 det(Q)(Q−1A21)

Proof. For A21, we note the matrix determinant derivative identity

∂ det(A21BA21)

∂AT21

= det(A21BA
T
21)(B +BT)AT21(A21BA

T
21)−1.

If we set B = I, this simplifies to

∂ det(Q)

∂AT21

= 2 det(Q)AT21(Q)−1.

37

We note that

∂ det(Q)

∂A21
=

(
∂ det(Q)

∂AT21

)T
,

which ultimately yields

∂ det(Q)

∂A21
= 2 det(Q)(Q−1A21).

Lemma 3.3.6. (Gram Vector Decomposition) For system matrix A21 with linearly in-

dependent rows aj, and symmetric positive definite gram matrix Q = A21A
T
21 = PDP T

with eigenvalues λi and eigenvectors ei, the total control energy can be represented by

E(u) = 12
(∑M

i=1 wic
2
i∑M

i=1 wi

)∑M
k=1

1
‖ak‖2 sin(θk)2

+ vT2 v2, where wi =
∏M
j 6=i λj, ci = eTi v1, and

θi is the angle formed by ak and the sub-parallelotope formed by the remaining aj 6=k.

Proof. We recall that the total control energy is given by

Etotal = 12vT1 Q
−1v1 + vT2 v2

= 12vT1 PD
−1P Tv1 + vT2 v2

= 12(P Tv1)TD−1(P Tv1) + vT2 v2

= 12cTD−1c+ vT2 v2

= 12
M∑
i=1

c2
i

λi
+ vT2 v2

38

We multiply each k term to find a common denominator to yield

Etotal = 12

∑M
i=1 c

2
i

∏M
j 6=i λj∏M

j λj
+ vT2 v2

= 12

∑M
i=1 c

2
i

∏M
j 6=i λj

det(Q)
+ vT2 v2

= 12

(∑M
i=1 c

2
i

∏M
j 6=i λj∑M

i=1

∏M
j 6=i λj

)∑M
k=1

∏M
l 6=k λl

det(Q)
+ vT2 v2.

We note that the left term is just a weighted average, with weights wi =
∏M
j 6=i λj . We

also note that
∑M

i=1

∏M
l 6=i λl is the M th term of the characteristic polynomial of Q, which is

equivalent to
∑M

k=1 det(Qkk), where Qkk represents the (k, k) minor of Q. Hence, we write

Etotal = 12

(∑M
i=1 c

2
iwi∑M

i=1wi

)∑M
k=1 det(Qkk)

det(Q)
+ vT2 v2.

We make use of the geometric fact that the determinant of Q = A21A
T
21 is equal to the

squared volume of the parallelotope formed by the rows of A21. We also note that minor

Qkk is the gram matrix of A21 after removing ak, represented by Ak∗21. Therefore the ratio

of the determinants of Qkk and Q becomes the squared ratio of parallelotope volumes with

and without ak.

det(Qkk)

det(Q)
=
vol(Ak∗21)2

vol(A21)2
.

Finally, we realize that the contribution of ak to the parallelotope volume is by a multiple

of ‖ak‖ sin(θk), where θk is the angle formed by ak and the sub-parallelotope, given by

vol(A21) = vol(Ak∗21)‖ak‖ sin(θk) to yield

E(u) = 12

(∑M
i=1wic

2
i∑M

i=1wi

)
M∑
k=1

1

‖ak‖2 sin(θk)2
+ vT2 v2.

39

Lemma 3.3.7. (Average Minimum Control Energy) For final states x∗i drawn from

independent and identically distributed random variables Xi with mean µ = 0 and vari-

ance c, the average minimum control energy to reach all random states is E[E(u)] =

c
(
N + 3M + 12

(∑M
k=1

1
‖ak‖2 sin(θk)2

))
.

Proof. From Lemma 3.3.4, we have

E(u) = 12(x∗nd −
1

2
A21x

∗
d)T (A21A

T
21)−1(x∗nd −

1

2
A21x

∗
d) + x∗Td x

∗
d,

which is a quadratic form. Setting Q = A21A
T
21, we can reformulate the quadratic form into

matrix representation

E = x∗Td x
∗
d + 3x∗Td AT21Q

−1A21x
∗
d − 6x∗Td AT21Q

−1x∗nd − 6x∗Tnd 6Q−1A21x
∗
d + 12x∗TndQ

−1x∗nd

= x∗Td (I + 3AT21Q
−1A21)x∗d − 6x∗Td AT21Q

−1x∗nd − 6x∗Tnd 6Q−1A21x
∗
d + 12x∗TndQ

−1x∗nd

=

[
x∗Td x∗Tnd

]IN + 3AT21Q
−1A21 −6AT21Q

−1

−6Q−1A21 12Q−1


 x∗d
x∗nd


=

[
x∗Td x∗Tnd

]
W−1
R

 x∗d
x∗nd

 ,
where matrix WR is the Reachability Gramian. From multivariate statistics, it is known that

for symmetric matrix W−1
R , the expected value of a quadratic form (Mathai and Provost,

1992) is

E[E] = E[x∗TW−1
R x∗]

= Tr(W−1
R Σ) + µTW−1

R µ,

where Σ and µ are the covariance matrix and expected values of x∗. Because our states

x∗i ∈ Xi are drawn from independent and identically distributed random variables Xi ∼

iid U(−1, 1) with mean 0, µ = 0, the covariance cov(Xi, Xj) = 0 for i 6= j, and cov(Xi, Xi) =

40

var(Xi) = c, such that Σ = cI. The average minimum control energy simplifies to

E[E] = Tr(W−1
R cI)

= cTr(W−1
R)

= cTr(IN + 3AT21Q
−1A21) + cTr(12Q−1)

= cTr(IN) + cTr(3AT21Q
−1A21) + cTr(12Q−1)

= cN + 3cTr(AT21Q
−1A21) + 12cTr(Q−1).

To further simplify this expression, we use the singular value decomposition of A21 such

that A21 = UΣV T , where U is an M ×M unitary matrix, V is an N ×N unitary matrix,

and Σ is an M ×N rectangular diagonal matrix with elements Σii =
√
λi, where λi are the

eigenvalues of A21A
T
21. Then our average control energy simplifies to

E[E] = cN + 3cTr(AT21Q
−1A21) + 12cTr(Q−1)

= cN + 3cTr(V ΣTUT (UΣV TV ΣTUT)−1UΣV T) + 12cTr(Q−1)

= cN + 3cTr(V ΣTUT (UΣΣTUT)−1UΣV T) + 12cTr(Q−1)

= cN + 3cTr(V ΣTUTU(ΣΣT)−1UTUΣV T) + 12cTr(Q−1)

= cN + 3cTr(V ΣTD−1ΣV T) + 12cTr(Q−1),

where D is a diagonal matrix of eigenvalues of A21A
T
21. We realize that if Dii = λi, then

D−1
ii = 1

λi
, such that

ΣTD−1Σ =

√D
0

[D−1

] [
√
D 0

]

=

IM 0

0 0

 ,
where IM is the M ×M identity matrix. Finally, we can reduce the average control energy

41

to

E[E] = cN + 3cTr

V
IM 0

0 0

V T

+ 12cTr(Q−1)

= cN + 3cTr

(
M∑
i=1

viv
T
i

)
+ 12cTr(Q−1)

= cN + 3c

M∑
i=1

Tr(viv
T
i) + 12cTr(Q−1)

= cN + 3c
M∑
i=1

vTi vi + 12cTr(Q−1)

= cN + 3c

M∑
i=1

1 + 12cTr(Q−1)

= cN + 3cM + 12c

M∑
i=1

1

λi
.

Finally, we recall from Lemma 3.3.6 that

M∑
k=1

1

λk
=

∑M
k=1

∏M
l 6=k λl

det(Q)

=

∑M
k=1 det(Qkk)

det(Q)

=
M∑
k=1

1

‖ak‖2 sin(θk)2
,

which is the topology-based term, to yield

E[E(u)] = c

(
N + 3M + 12

(
M∑
k=1

1

‖ak‖2 sin(θk)2

))
.

We note that for our particular uniform distribution between −a and a, the variance is

c = 4a2 1

12
=

1

3
,

42

such that the average minimum control energy becomes

E[E(u)] =
1

3
N +M + 4

(
M∑
k=1

1

‖ak‖2 sin(θk)2

)
.

3.4. Mathematical Framework: Second-Order Energy Approximation

Here, we extend our approximation of the minimum control energy to begin incorporating

non-driver to non-driver connections as given by matrix A22. We begin with the same control

dynamics given in Eq. 3.2. In the first-order energy approximation, we only considered

connections from driver to non-driver nodes. Here, we extend this approximation to include

one additional layer of non-driver to non-driver nodes.

Assumption 3. The initial state of the network satisfies xd(0) = 0 and xnd(0) = 0. �

Assumption 4. The network G contains only edges from the drivers to the non-drivers, and

one layer of connections from non-drivers to the non-drivers. That is, A11 = 0, A12 = 0,

and Ak22 = 0 for k > 1. �

From assumptions 3 and 4, we notice an interesting phenomena with respect to the powers

of A, such that

A1 =

 0 0

A21 A22

 ,
A2 =

 0 0

A22A21 A22A22

→
 0 0

A22A21 0

 ,
A3 =

 0 0

A22A22A21 A22A22A22

→
0 0

0 0

 ,

43

such that all powers of A greater than 2 yield the zero matrix. We also readily observe that

xd(t) =

∫ t

0
u(τ) dτ, and

xnd(t) = A21

∫ t

0
xd(τ) dτ +A22

∫ t

0
xnd(τ)dτ

= A21

∫ t

0
xd(τ) dτ +A22A21

∫ t

0

∫ τ

0
xd(τ1) dτ1 dτ

= A21

∫ t

0

∫ τ

0
u(τ1) dτ1 dτ +A22A21

∫ t

0

∫ τ

0

∫ τ1

0
u(τ2) dτ2 dτ1 dτ.

(3.5)

Lemma 3.4.1. (Controllability, Second-Order) The network (2.1) is controllable if

and only if Rank

([
A21 A22A21

])
= M . Furthermore, the set of controllable states is

Im


IN 0 0

0 A21 A22A21


.

Proof. Notice that the controllability matrix of (2.1) is

C =

[
B AB A2B

]
=

IN 0 0

0 A21 A22A21

 ,
and recall that a state is controllable if and only if it belongs to the range space of the

controllability matrix.

Lemma 3.4.2. (Total Minimum Control Energy, Second-Order) The total control

energy is 12vT1 (KKT)−1v1 + vT2 v2, where v1 = x∗nd −
(

1
2A21 + 1

6A22A21

)
x∗d, v2 = x∗d, and

K =

[
A21 + 1

2A22A21
1

2
√

15
A22A21

]
. Further, the system is controllable iff Rank(K) = M .

Proof. Recall that the minimum control energy can be given by the Reachability Gramian

WR(0, T) =

∫ T

0
eAtBBT eA

T tdt,

44

where the energy required to reach final state x(T) = x∗ takes the form

E(u) = x∗TW−1
R x∗.

We write WR at time T = 1 using the node reordering given by Eq. 3.2, and expand the

matrix exponentials in conjunction with assumptions 3 and 4 to yield

WR(0, 1) =

∫ 1

0
eAtBBT eA

T tdt

=

 IN
1
2A

T
21 + 1

6A
T
21A

T
22

1
2A21 + 1

6A22A21
1
3Q+ 1

8(QAT22 +A22Q) + 1
20A22QA

T
22

 ,
from which we can derive the Schur complement

SD =
1

3
Q+

1

8
(QAT22 +A22Q) +

1

20
A22QA

T
22 − (

1

2
A21 +

1

6
A22A21)(

1

2
AT21 +

1

6
AT21A

T
22)

=
1

3
Q+

1

8
(QAT22 +A22Q) +

1

20
A22QA

T
22 −

1

4
Q− 1

12
(QAT22 +A22Q)− 1

36
A22QA

T
22

=
1

12
Q+

1

24
QAT22 +

1

24
A22Q+

1

45
A22QA

T
22

=
1

12
(Q+

1

2
QAT22 +

1

2
A22Q+

4

15
A22QA

T
22),

yielding the inverse of the Reachability Gramian

W−1
R =

I + (1
2A21 + 1

6A22A21)TS−1
D (1

2A21 + 1
6A22A21) −(1

2A21 + 1
6A22A21)TS−1

D

−S−1
D (1

2A21 + 1
6A22A21) S−1

D

 ,
with minimum control energy

E =

[
x∗Td x∗Tnd

]
W−1
R

 x∗d
x∗nd


= (x∗nd − (

1

2
A21 +

1

6
A22A21)x∗d)TS−1

D (x∗nd − (
1

2
A21 +

1

6
A22A21)x∗d) + x∗Td x

∗
d.

We can decompose the Schur complement into a Gram matrix such that SD = 1
12KK

T ,

45

where

K =

[
A21 + 1

2A22A21
1

2
√

15
A22A21

]
,

which gives us the first result.

Next, we observe that SD is a Gram matrix, and is therefore positive semi-definite. Hence,

the control energy to reach any final state x∗nd,x
∗
d is the sum of the bilinear product of

v1 with S−1
D , and x∗Td x

∗
d. If Rank(K) = M , then Rank(SD) = Rank(S−1

D) = M , and all

states can be reached with finite energy. However, if Rank(K) = k < M , then Rank(SD) =

Rank(S−1
D) = k < M , and there exists a M − k dimensional subspace of unreachable

states.

Lemma 3.4.3. (Gram Vector Decomposition, Second-Order) For the following ma-

trix K =

[
A21 + 1

2A22A21
1

2
√

15
A22A21

]
with linearly independent rows aj, and symmetric

positive definite gram matrix Q = KKT = PDP T with eigenvalues λi and eigenvectors ei,

the total control energy can be represented by E(u) = 12
(∑M

i=1 wic
2
i∑M

i=1 wi

)∑M
k=1

1
‖ak‖2 sin(θk)2

+

vT2 v2, where wi =
∏M
j 6=i λj, ci = eTi v1, and θi is the angle formed by ak and the sub-

parallelotope formed by the remaining aj 6=k. .

Proof. We recall that the total control energy is given by

Etotal = 12vT1 Q
−1v1 + vT2 v2

= 12vT1 PD
−1P Tv1 + vT2 v2

= 12(P Tv1)TD−1(P Tv1) + vT2 v2

= 12cTD−1c+ vT2 v2

= 12
M∑
i=1

c2
i

λi
+ vT2 v2

46

We multiply each k term to find a common denominator to yield

Etotal = 12

∑M
i=1 c

2
i

∏M
j 6=i λj∏M

j λj
+ vT2 v2

= 12

∑M
i=1 c

2
i

∏M
j 6=i λj

det(Q)
+ vT2 v2

= 12

(∑M
i=1 c

2
i

∏M
j 6=i λj∑M

i=1

∏M
j 6=i λj

)∑M
k=1

∏M
l 6=k λl

det(Q)
+ vT2 v2.

We note that the left term is just a weighted average, with weights wi =
∏M
j 6=i λj . We

also note that
∑M

i=1

∏M
l 6=i λl is the M th term of the characteristic polynomial of Q, which is

equivalent to
∑M

k=1 det(Qkk), where Qkk represents the (k, k) minor of Q. Hence, we write

Etotal = 12

(∑M
i=1 c

2
iwi∑M

i=1wi

)∑M
k=1 det(Qkk)

det(Q)
+ vT2 v2.

We make use of the geometric fact that the determinant of Q = KKT is equal to the

squared volume of the parallelotope formed by the rows of K. We also note that minor Qkk

is the gram matrix of K after removing ak, represented by Kk∗. Therefore the ratio of the

determinants of Qkk and Q becomes the squared ratio of parallelotope volumes with and

without ak.

det(Qkk)

det(Q)
=
vol(Kk∗)2

vol(K)2
.

Finally, we realize that the contribution of ak to the parallelotope volume is by a multiple

of ‖ak‖ sin(θk), where θk is the angle formed by ak and the sub-parallelotope, given by

vol(A21) = vol(Ak∗21)‖ak‖ sin(θk) to yield

E(u) = 12

(∑M
i=1wic

2
i∑M

i=1wi

)
M∑
k=1

1

‖ak‖2 sin(θk)2
+ vT2 v2.

47

3.5. Validity of the First-Order Approximation

Until now, we have derived several useful closed-form expressions from the first-order min-

imum energy approximation by making the simplifying assumptions 1, 2. We explore how

well this energy approximation holds when we relax the topological assumption 2. As a

generalized, analytic closed-form energy solution for non-simplified networks is typically

intractable or not informative, we compare the first-order energy approximation to a nu-

merical computation of the unsimplified control energy. From linear control theory, we

know that for an LTI system ẋ = Ax + Bu obeying the dynamics in (2.1), we can define

the Reachability Gramian:

WR(0, T) =

∫ T

0
eAtBBT eA

T tdt.

The minimum control energy takes the form

ENS(u) =

N∑
i=1

∫ T

0
ui(t)

2dt

= (W−1
R x∗)TWR(W−1

R x∗)

= x∗TW−1
R x∗,

from which we calculate the percent error between the minimum energy of the simplified

versus unsimplified network.

3.6. Comparison of Results for Directed & Undirected Networks

While invasive tract-tracing methods allow for the resolution of directionality in the Drosophila

and mouse connectomes, the non-invasive diffusion spectrum imaging methods used for the

human connectomes are unable to resolve directionality. To ensure that the main results be-

tween the Drosophila, mouse, and human networks are not due to directed versus undirected

matrices, we compare the directed and undirected mouse and Drosophila connectomes to

48

the undirected human connectome. For the undirected mouse and Drosophila connectomes,

we will model each directed edge as two edges in opposite directions. Specifically, for di-

rected network A, we model undirected network Â = A + AT , and normalize Â by the

magnitude of its largest eigenvalue.

a b c d

Figure 7: Similar Accuracy of First-Order Energy Approximation. (a) Percent error
contour plots of the total control energy for the simplified versus non-simplified networks as
a function of the fraction of non-driver nodes and the matrix scale (given by the magnitude
of the largest eigenvalue c = ‖λmax‖), in the directed Drosophila, (b) undirected Drosophila,
(c) directed mouse, and (d) undirected mouse networks.

First, we compare the accuracy of the first-order energy approximation between the directed

and undirected versions of the Drosophila and mouse connectomes (Fig. 7a–d) using the

same methodology in result A. As can be seen, there is little difference in the accuracy of

the first-order approximation between the directed and undirected versions of either the

Drosophila or mouse connectomes. We note that the intuition provided in result B does

not use any of the three networks, and will therefore not be included in this analysis.

Next, we reproduce result C comparing the energetic performance and connectivity for

the energetically most and least favorable non-driver selections between the directed and

undirected Drosophila and mouse connectomes (Fig. 8a–h). As can be seen, there is little

difference in the energetic performance of the energetically most and least favorable non-

driver selections between the directed and undirected versions of the Drosophila and mouse

connectomes (Fig. 8a–d). There also remains a statistically significant difference in the non-

driver weight-vector’s magnitude and angle product (‖ak‖ sin(θk)) between the energetically

most and least favorable non-driver selections of the directed and undirected versions of the

Drosophila and mouse connectomes (Fig. 8e–h).

49

a b c d

e f g h

Best
Worst
Random

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

8

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

8

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

5

10

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

5

10

L
og

10
E

ne
rg

y

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

Drosophila (Directed) Drosophila (Undirected) Mouse (Directed) Mouse (Undirected)

Figure 8: Similar Distributions of Control Energy & Topology. (a) Means and
standard deviations of the base-10 log of the total control energies across various non-
driver fractions to reach 2000 random final states in the energetically most favorable, least
favorable, and random non-driver selections for the directed Drosophila, (b) undirected
Drosophila, (c) directed mouse, and (d) undirected mouse networks. (e) Boxplots of the
distribution of each non-driver weight-vector’s magnitude and angle product ‖ak‖ sin(θk)
between the energetically most and least favorable networks for the directed Drosophila, (f)
undirected Drosophila, (g) directed mouse, and (h) undirected mouse connectomes. Above
each boxplot is the p-value of the 2-sample t-test between the most and least favorable
networks.

a b

c d

Drosophila Drosophila (Symmetric)

Mouse Mouse (Symmetric)

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

(= -0.24, p = 0.0919)

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

(= -0.33, p = 0.0194)

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

(= -0.36, p = 0.0001)

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

(= -0.14, p = 0.1447)

e

0 0.5 1
Normalized Magnitude

0.3

0.4

0.5

0.6

0.7

0.8

si
n(

)

(= -0.73, p = 0.0000)
Human (Symmetric)

Figure 9: Similar Energetically Favorable Organization. (a) Plots of the average
magnitude versus sin(θ) for each brain region across 10,000 random non-driver selections
at a non-driver fraction of 0.2 for the directed Drosophila, (b) undirected Drosophila, (c)
directed mouse, (d) undirected mouse, and (e) undirected human connectomes. Above each
plot is the Spearman rank correlation coefficient (ρ) and p-value.

Next, we reproduce result D for the directed and undirected versions of the Drosophila

and mouse connectomes, and compare them to the undirected human connectome. We

50

see that there is little qualitative difference in the relationship between average non-driver

magnitude and angle for the directed versus undirected versions of the Drosophila (Fig. 9a,b)

and mouse (Fig. 9c,d) connectomes. Quantitatively, we notice neither the directed nor

undirected Drosophila and mouse connectome is as energetically favorably organized (as

given by the Spearman rank correlation coefficient) as the human (Fig. 9e). This relation

holds true across a wide range of non-driver fractions (Fig. 10a,b).

0 0.1 0.2 0.3 0.4
Fraction of Non-Drivers

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Mouse Directed
Drosophila Directed
Human Undirected

0 0.1 0.2 0.3 0.4
Fraction of Non-Drivers

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Mouse Undirected
Drosophila Undirected
Human Undirected

Spearman Rank Coefficient for Range of Non-Driver Fraction
a b

Figure 10: The Order of the Correlation is Maintained between Species. (a) Plot
of Spearman rank correlation coefficient ρ for 10,000 random non-driver selections across a
range of non-driver fractions for the directed Drosophila, directed mouse, and undirected
human connectomes. (b) Spearman rank coefficients for the undirected mouse, undirected
Drosophila, and undirected human connectomes.

Finally, we reproduce result E (at a non-driver fraction of 0.2) to compare the percent

reduction in energy after an energetically favorable edge deletion between directed and

undirected versions of the mouse and Drosophila connectomes. As can be seen, there is

qualitatively little difference in the distribution of percent change in energy between the

directed and undirected versions of the mouse and Drosophila connectomes.

3.7. Differences in Network Density do not Drive Differences in Results

Between Networks

Here, we elucidate the role of network density on our results to ensure that any inherent

differences in average connectivity due to differing data acquisition techniques are not re-

sponsible for any of our results. To assess the role of network density, we study 5 random

100 node networks of densities 0.2, 0.4, 0.6, 0.8, and 1.0, whose elements are randomly

51

e f g hEnergy Percent Change, 1 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

0.4

F
re

qu
en

cy

Energy Percent Change, 2 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

0.4

F
re

qu
en

cy

Energy Percent Change, 3 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

F
re

qu
en

cy

Energy Percent Change, 4 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

F
re

qu
en

cy

Drosophila
Mouse
Human

a b c dEnergy Percent Change, 1 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

Drosophila
Mouse
Human

Energy Percent Change, 2 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

0.4

F
re

qu
en

cy

Energy Percent Change, 3 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

F
re

qu
en

cy

Energy Percent Change, 4 Removed

-100 -50 0
Percent Change

0

0.1

0.2

0.3

F
re

qu
en

cy

Directed (Not Symmetric)

Undirected (Symmetric)

Figure 11: Similar Changes in Control Energy for Edge Deletions. (a) Distribution
of percent change in control energy over 10,000 random selections of non-driver nodes to
reach 10,000 random final states at non-driver fraction of 0.2 for the directed Drosophila
and mouse networks after 1 edge removed, (b) 2 edges removed, (c) 3 edges removed, and
(d) 4 edges removed. (e) Same distributions of percent change in control energy in the
undirected Drosophila and mouse networks after 1 edge removed, (f) 2 edges removed, (g)
3 edges removed, and (h) 4 edges removed.

selected from a uniform distribution between 0 and 1, and then normalize each network by

dividing by the magnitude of its largest eigenvalue. In the connectomes used in this paper,

the Drosophila has density 0.81, the mouse 0.52, and the human 0.26.

a b c d e

Figure 12: Percent Error in Energy Improves for Increasing Densities. (a) Per-
cent error contour plots of the total control energy for the simplified versus non-simplified
networks as a function of the fraction of non-driver nodes and the matrix scale (given by
the magnitude of the largest eigenvalue c = ‖λmax‖) for network densities of 0.2, (b) 0.4,
(c) 0.6, (d) 0.8, and (e) 1.0.

First, we study the role of network density on the goodness of the first-order approximation

by reproducing the contour plots in result A for these 5 random networks (Fig. 12a–e).

As can be seen, the first-order approximation seems to be more accurate with increasing

52

network density. However, in all cases, the approximation works well (< 5%) within our

parameters of interest (matrix scale c = ‖λmax‖ = 1, non-driver fraction d ≤ 0.4).

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

L
og

10
E

ne
rg

ya b c d e

f g h i j

Density = 0.2 Density = 0.4 Density = 0.6 Density = 0.8 Density = 1.0

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4
Fraction Non-Driver

2

4

6

L
og

10
E

ne
rg

y

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

0 0.1 0.2 0.3

Least

Most

Figure 13: Non-Driver Selection Based on the Topology-Dependent Term Yields
Significantly Different Energetic Performance across Densities. (a) Means and
standard deviations of the base-10 log of the total control energies across various non-
driver fractions to reach 2000 random final states in the energetically most favorable, least
favorable, and random selections of non-drivers for network density 0.2, (b) 0.4, (c) 0.6, (d)
0.8, and (e) 1.0. (f) Boxplots of the distribution of each non-driver weight-vector’s topology
term ‖ak‖ sin(θk) between the energetically most and least favorable non-driver selections
at network density 0.2, (g) 0.4, (h) 0.6, (i) 0.8, and (j) 1.0, with corresponding p-values
from a 2-sample t-test.

Next, we reproduce result C for these 5 random networks, and see that across all densities,

the energetic performance is best for the energetically most favorable non-driver selections,

and worst for the energetically least favorable non-driver selections (Fig. 13a–e). We also see

that the non-driver weight-vector’s topology term ‖ak‖ sin(θk) is statistically significantly

smaller for the energetically least favorable network versus that of the energetically most

favorable network across all densities (Fig. 13f–j).

Next we reproduce result D at a non-driver fraction of 0.2, and find that while increasing

network density does significantly change the distribution of magnitudes and angles of the

non-driver weight-vectors, the relationship between network density and the monotonically

decreasing relationship between magnitudes and angles (as given by the Spearman rank cor-

relation coefficient) is not clear (Fig. 14a–e). Hence, we generated at 100 instantiations of

random networks at each density, and computed the Spearman rank correlation coefficient

between the average magnitudes and angles for each instantiation (for 500 total rank coeffi-

cients, 100 coefficients for each density). We show boxplots of the distribution of Spearman

rank as a function of network density (Fig. 14f), and see that the Spearman rank is less

53

0.4 0.6 0.8 1
Normalized Magnitude

0.4

0.5

0.6

0.7

0.8

0.9

si
n(

)

(= -0.65, p = 0.0000)

0.4 0.6 0.8 1
Normalized Magnitude

0.4

0.5

0.6

0.7

0.8

0.9

si
n(

)

(= -0.59, p = 0.0000)

0.4 0.6 0.8 1
Normalized Magnitude

0.4

0.5

0.6

0.7

0.8

0.9

si
n(

)

(= -0.76, p = 0.0000)

0.4 0.6 0.8 1
Normalized Magnitude

0.4

0.5

0.6

0.7

0.8

0.9

si
n(

)

(= -0.65, p = 0.0000)

0.4 0.6 0.8 1
Normalized Magnitude

0.4

0.5

0.6

0.7

0.8

0.9

si
n(

)

(= -0.52, p = 0.0000)

a b c

d e

Density: 0.2 Density: 0.4 Density: 0.6

Density: 0.8 Density: 1.0

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
Spearman Rank Coefficient

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
D

en
si

ty

f

Figure 14: Non-Monotonic Relationship between Spearman Rank Correlation
Coefficient & Network Density. (a) Plots of the average magnitude versus sin(θ) for
each node across 10,000 random non-driver selections at a non-driver fraction of 0.2 at
random network densities of 0.2, (b) 0.4, (c) 0.6, (d) 0.8, and (e) 1.0. (f) Distribution
of Spearman rank correlation coefficients across 100 instantiations of random networks for
each density between 0.2–1.0.

negative for very low (0.2) and very high (1.0) densities. According to this relationship, the

human connectome (density = 0.26) should have the least negative Spearman rank, but in

reality has the most negative Spearman rank. Hence we see that network density does not

drive the negative relationship between magnitude and angle seen in our connectomes.

Energy Percent Change, 2 Removed

-8 -6 -4 -2 0 2
Percent Change

0

0.2

0.4

0.6

F
re

qu
en

cy

Energy Percent Change, 3 Removed

-8 -6 -4 -2 0 2
Percent Change

0

0.2

0.4

0.6

F
re

qu
en

cy

Energy Percent Change, 4 Removed

-8 -6 -4 -2 0 2
Percent Change

0

0.2

0.4

0.6

F
re

qu
en

cy

a b c dEnergy Percent Change, 1 Removed

-8 -6 -4 -2 0 2
Percent Change

0

0.2

0.4

0.6

F
re

qu
en

cy

=0.2
=0.4
=0.6
=0.8
=1.0

Density

Figure 15: Similar Distributions for Changes in Control Energy for Energetically
Favorable Edge Deletions across Varying Densities. (a) Distribution of percent
change in control energy over 10,000 random selections of non-driver nodes to reach 10,000
random final states at non-driver fraction of 0.2 at each network density between 0.2–1.0
for 1 edge deleted, (b) 2 edges deleted, (c) 3 edges deleted, and (d) 4 edges deleted.

Finally, we reproduce result E across these random networks by computing the percent

change in energy after deleting the edge that maximally increases the Gram determinant,

and find that there is negligible difference in percent energy change across the 5 densities

54

(Fig. 15a–d).

In summary, we show that there is nothing inherent about the densities of the connectomes

used in the paper that would yield the relationships in energetically favorable connectivity

we observe between the Drosophila, mouse, and human connectomes.

3.8. Dealing with Driver & Non-Driver Allocations that Yield Unreachable

States

In our simplified network topologies involving only connections from driver to non-driver

nodes, there may be a situation where a non-driver node is not connected to any driver

nodes, such that the system is not fully reachable. Here, we study the reachability of our

networked systems, and elaborate on how we handled unreachable cases.

From classical linear control theory, we guarantee that a network is reachable such that we

can control the states from 0 to any point in the state space if the reachability Gramian

WR has full rank. That is, for A,B ∈ Rn×n, x,u ∈ Rn×1 which obeys dynamics

ẋ = Ax+Bu,

we have guaranteed reachability when

rank(WR) = rank

(∫ T

0
eAtBBT eA

T t

)
= n.

In our simplified networks involving N driver nodes, M non-driver nodes, and only driver

→ non-driver connections, we have guaranteed reachability when

rank(A21A
T
21) = M.

In our analysis for result A, we select 1000 random permutations of drivers and non-drivers

for a set of 30 matrix scaling coefficients and around 12 non-driver fractions, for a total of

55

1000× 30× 12 = 360, 000 trials per species. Among these trials, we encountered around 10

cases where the simplified network was not fully reachable, and 0 cases where the full network

was not fully reachable. Due to the very few instances of not-fully-reachable selections, these

specific selections were not included in the computations of percent error.

In our analysis for result B, the mathematical and geometric representations require that

rank(A21A
T
21) = M . If A21 does not have full rank, then the representation as shown in

result B does not apply, which is a limitation of the analysis.

In our analysis for result C, we ensure that the energetically most and least favorable

selections of drivers and non-drivers is fully reachable through the requirement that nodes

are selected as non-drivers only if rank(A21A
T
21) = M . Further elaboration of this selection

process can be found in the online methods under Selection of Energetically Most and

Least Favorable Non-Drivers. In the selection of random networks for result C, we again

encountered a negligible number of driver and non-driver selections which were not fully

reachable, and omitted them from the analysis.

In our analysis for result D, we compute 10,000 random non-driver selections per non-driver

fraction, where only a negligible fraction (< 0.1%) of selections were not fully reachable.

Hence, we omitted these selections from computing the average magnitudes and angles of

our connectomes.

In our analysis for result E, we have the same situation as the previous results, where

very few (< 0.1%) driver and non-driver designations were not fully reachable. Hence, we

omitted these selections from consideration to guarantee that the percent changes in control

energy are computed only on reachable networks.

3.9. Matrix Scaling Retains System Properties

Throughout the results, we use matrices that are normalized by the magnitude of their

largest eigenvalue. Here, we demonstrate that this normalization does not change the

56

global stability or instability of our system, nor does it change the qualitative dynamics

of individual eigenmodes. Because we study continuous linear time-invariant systems that

obey

ẋ = Ax,

our systems are unstable if any eigenvalue of A has positive real component. We note that

the number of eigenvalues with positive versus negative real components are 18 to 31 in

the Drosophila, 38 to 74 in the mouse, and 49 to 67 in the human, such that all of our

connectomes are unstable. We also know that if λi and ei are the i-th eigenvalue and

eigenvector of A, then cλi and ei are the i-th eigenvalue and eigenvector of cA. Hence, as

long as we scale our matrix by a positive constant c > 0, the sign of the real component of

our eigenvalues does not change, and the stability of each eigenmode does not change.

Next, we note that if the i-th eigenvalue of A has an imaginary component such that the

time-evolution of that particular eigenmode is oscillatory, then scaling the system by a pos-

itive real constant c > 0 does not remove the imaginary component, preserving oscillations.

Conversely, if the i-th eigenvalue of A has no imaginary component, then scaling the system

by a positive real constant cannot add oscillations. Hence, scaling the system by a positive

real constant also preserves the qualitative behavior of individual eigenmodes.

3.10. Retaining Goodness of Approximation for Scaled Matrices

Throughout the results, we normalize each of our system matrices by the largest eigenvalue

to normalize the most unstable dynamic response, as well as to remain at a scale for which

the first-order energy approximation is close to the non-simplified control energy. Here,

we provide a compromise between matrix scale and duration of the control window to

attain scale invariance in goodness of approximation. Specifically, given the linear control

dynamics outlined in Eq. 2.1, we can utilize classic results in linear control theory to define

the Reachability Gramian WR such that the minimum energy required to drive our system

57

to final state x∗ is

ENS(A, T) = x∗TWR(A, T)−1x∗

= x∗T
(∫ T

0
eAtBBT eA

T tdt

)−1

x∗.

Suppose we wish to consider scaled system matrix cA, where c is a positive real number. If

we also scale the control time window to T
c , then the minimum energy to bring system cA

to final state x∗ in time T
c becomes

ENS

(
cA,

T

c

)
= x∗T

(∫ T
c

0
ecAtBBT ecA

T tdt

)−1

x∗

= x∗T

(∫ T
c

0
eA(ct)BBT eA

T (ct)dt

)−1

x∗

= x∗T
(∫ T

0
eAτBBT eA

T τ 1

c
dτ

)−1

x∗

= x∗T c

(∫ T

0
eAτBBT eA

T τdτ

)−1

x∗

= cx∗TWR(A, T)−1x∗

= cENS(A, T).

Hence we see that scaling matrix A by c and driving the system to final states in T
c time

costs c times more energy. This linear scaling by c is useful when we recognize that the

first-order energy approximation considered in the paper is the same as the energy detailed

here (and thereby obeys the same linear scaling by c), where Â =

 0 0

A21 0

, such that

ES

(
cÂ,

T

c

)
= cES(Â, T).

58

Let us call the unscaled percent error in control energy between the simplified versus non-

simplified networks

e(A, T) =
ES(A, T)− ENS(A, T)

ENS(A, T)
.

Then, the percent error after scaling both systems to cA and cÂ becomes

e

(
cA,

T

c

)
=
ES

(
cA, Tc

)
− ENS

(
cA, Tc

)
ENS

(
cA, Tc

)
=
cES(A, T)− cENS(A, T)

cENS(A, T)

= e(A, T),

such that the percent error of the control energy is scale invariant. Hence, if we wish to con-

sider larger matrix cA where c > 1, but wish to retain the same goodness of approximation,

we simply have to reduce the control time window to T
c .

3.11. Analysis & Data Acquisition Retains Significant Biological Consis-

tency Between Networks

Given the large decreases in energy after removal of the energetically most favorable edge

deletion(s), we consider the importance of connectome data integrity on our results. Due

to the simplicity of our dynamical model and control paradigm, we desire to know if our

methods and results are able to capture a significant degree of biologically meaningful

information despite imperfect connectome data.

In particular, we study result E regarding the selection of the energetically most favorable

edge deletion across the 10 human connectomes. Specifically, if our methods are unable to

extract biologically significant structural features, then we expect that there will be little

relationship between the deleted edges across our 10 human connectomes. However, if our

analyses are able to extract these features such that important biological similarities are

59

retained, then we expect the energetically most favorable edge deletion to be shared between

human connectomes.

Number of Shared Removed Edges, 1 Removed

0 2 4 6 8
Number Connectomes

0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y

Targeted
Random

Figure 16: Higher Number of Human Connectomes Share Energetically Favor-
able Edges for Deletion than Randomly Selected Edges. Distribution of the number
of connectomes that share the same edge between targeted selection of the energetically
most favorable edge deletion, and random edge selection, across 10,000 random selections
of drivers and non-drivers at a non-driver fraction of 0.2.

Using this motivation, we selected the same 10,000 random permutations of drivers and non-

drivers (at non-driver fraction 0.2) across our 10 human connectomes. For each selection,

we found the energetically most favorable driver → non-driver edge deletion across all

10 connectomes, and computed the maximum number of connectomes (1–10) that shared

the same deleted edge. For the same 10,000 random permutations, we selected a random

driver → non-driver edge for each connectome, and computed the maximum number of

connectomes that shared a randomly selected edge. A histogram of the maximum number

of connectomes sharing either the energetically most favorable edge deletion or the random

edge deletion is shown across the 10,000 driver and non-driver selections (Fig. 16).

As can be seen, there is a significantly higher number of connectomes that share the en-

ergetically most favorable edge deletion than the randomly selected edge. Hence, we show

that our analysis can detect some biologically consistent feature in these 10 similar human

connectomes better than chance.

60

3.12. Value of Mathematically Formalizing the Intuitive Concept of Dif-

ferential Connectivity

One of the main goals of these results was to produce an intuitive analytic and geometric

representation of complex network structure with respect to control energy. This repre-

sentation had an equally intuitive implication for improving controllability: differentially

connected networks require less energy to bring the system to distinct outputs. One rea-

son why it is valuable to quantify this notion of “differential connectivity” is because the

networks we study are often immense in size.

Graph 1

x
d1

x
d2

x
d3

x
nd1

x
nd2

a

Graph 2

x
d1

x
d2

x
d3

x
nd1

x
nd2

b

Graph 3

x
d1

x
d2

x
d3

x
nd1

x
nd2

c

Det: 1.000d

1 2 3
Driver

1

2

N
on

-D
ri

ve
r

0

0.5

1

Det: 0.300e

1 2 3
Driver

1

2

N
on

-D
ri

ve
r

0

0.5

1

Det: 0.067f

1 2 3
Driver

1

2

N
on

-D
ri

ve
r

0

0.5

1

Graph 4

x
d1

x
d2

x
d3

x

d4

x
d5

x
nd1

x
nd2x
nd3

x
nd4

g

Graph 5

x
d1

x
d2

x
d3

x
d4

x
d5

x
nd1

x
nd2

x
nd3

x
nd4

h

Graph 6

x
d1

x
d2

x
d3

x
d4

x
d5

x
nd1

x
nd2

x
nd3

x
nd4

i

Det: 0.024j

2 4
Driver

2

4N
on

-D
ri

ve
r

0

0.5

Det: 0.001k

2 4
Driver

2

4N
on

-D
ri

ve
r

0

0.5

Det: 0.000l

2 4
Driver

2

4N
on

-D
ri

ve
r

0

0.5

Figure 17: Differential Connectivity Difficult to Identify with Increasing Network
Size. (a) Graph representation of a 5 node network with 3 drivers (red) and 2 non-drivers
(blue) that is very differentially connected, (b) somewhat differentially connected, and
(c) not differentially connected. (d) Image of connectivity matrix A21 with corresponding
determinant of A21A

T
21 for Graph 1, (e) Graph 2, and (f) Graph 3. (g) Graph representation

of a 9 node network with 5 drivers (red) and 4 non-drivers (blue) that is very differentially
connected, (h) somewhat differentially connected, and (i) not differentially connected. (j)
Image of connectivity matrix A21 with corresponding determinant of A21A

T
21 for Graph 4,

(k) Graph 5, and (l) Graph 6.

Using a simple 5 node toy network (3 drivers, 2 non-drivers), we can tell fairly easily by

inspection of the graph representation (Fig. 17a–c) or the corresponding matrix represen-

tation A21 (Fig. 17d–f) how differentially connected the non-driver nodes are. However,

61

even when expanding to a 9 node toy network (5 drivers, 4 non-drivers), it is very diffi-

cult to tell by inspection of the graph representation (Fig. 17g–i) or corresponding matrix

representation (Fig. 17j–l) which of graphs 4–6 are more differentially connected. Hence,

the mathematical formalization allows us to generalize the simple and intuitive concept of

differential connectivity to understand large and complex network topologies.

Another reason why it is advantageous to mathematically formalize this concept of differ-

ential connectivity is because this formalization allows us to generalize this concept to more

complex network topologies. Specifically, we derive all of the same results and intuitions of

the paper, but also taking into account non-driver to non-driver connections encoded in ma-

trix A22 beginning in section 3.13. In particular, this framework of understanding network

connectivity as differentially connected vectors extends to include higher order network con-

nectivity (e.g. self-loops, cycles), such that we can begin fully understanding and modifying

complex network topology using a simple and intuitive framework. We present a motivating

example of the utility of this framework in modifying a simple 3 node network (1 driver, 2

non-drivers) involving higher-order network topology to improve control (Fig. 19a–k).

3.13. Validity of the Second-Order Approximation

Using the derivation of the second-order approximation of the control energy, we perform

the same analysis in result A across a larger fraction of non-driver nodes in the Drosophila,

mouse, and human connectomes (Fig. 18).

As can be seen, the second-order energy approximation remains very accurate for scaling

coefficient c ≤ 1 to 60% non-driver fraction. For the duration of the supplementary results,

we will use scaling coefficient c = ‖λmax‖ = 1 and keep the non-driver fraction d ≤ 0.6.

62

a b c

Figure 18: The Second-Order Energy Approximation Offers a Reasonable Pre-
diction for the Full Network’s Control Energy for Higher Non-Driver Frac-
tions. (a) Percent error contour plots of the total control energy for simplified versus
non-simplified networks as a function of the fraction of non-driver nodes and matrix scale
given by c = ‖λmax‖. For each combination of parameters, the median error magnitude
to drive the networks from initial states xd = 0, xnd = 0 to 1000 random final states
x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N along 1000 corresponding random selections of non-drivers
is shown. Each contour represents a 5% interval for the (a) Drosophila, (b) mouse, and (c)
human connectome.

3.14. Determinant of the Second-Order Connectivity Matrix Scales the

Control Energy

In the main text, we demonstrated that the rows of A21 represented the vector of connections

ak from all of the driver nodes to the k-th non-driver node. In the second-order formulation,

we take the rows ak of matrix K to be the geometric vectors that form a parallelotope whose

squared volume is still equal to the Gram determinant det(KKT). However, as the rows

of K are not as simple as in the previous result, we leave the full and formal intuition for

the relationship between the rows of K and network connectivity for future work. Here, we

provide the general case of a simple three node toy network example with one driver and

two non-drivers (Fig. 19a). We study three specific instances of this three node network

(Graphs 1, 2, and 3), where the edges contributing to the vector formed by the first row of

K are highlighted in gray (Fig. 19b–d), the edges contributing to the vector formed by the

second row of K are highlighted in tan (Fig. 19e–g), and the geometric parallelogram (and

corresponding Gram determinant) formed by these two vectors are shown for each graph

(Fig. 19h–j).

63

a
Driver Node

Non-Driver Node

Graph 1

x
d1

x
nd1

x
nd2

b

Graph 2

x
d1

x
nd1

x
nd2

c

Graph 3

x
d1

x
nd1

x
nd2

d

Graph 1

x
d1

x
nd1

x
nd2

e

Graph 2

x
d1

x
nd1

x
nd2

f

Graph 3

x
d1

x
nd1

x
nd2

g

w
1

w
2

Det: 0.300h

w
1

w
2

Det: 0.056i

w
1

w
2

Det: 0.007j

k

-1 0 1 2 3 4 5
log

10
Control Energy

0

0.02

0.04

0.06

0.08

0.1

0.12

F
re

qu
en

cy

Graph 1
Graph 2
Graph 3

2

3

1

Figure 19: Geometric Example of Simplified, Second-Order Networks with Cor-
responding Control Energies. (a) Graph representation of a simple three node network,
with one driver (node 1, red) and two non-drivers (nodes 2 and 3, blue). The terms of the
corresponding matrix K are written with respect to the contributing edges in the network.
(b) Graph representation of a three node network (one driver, two non-drivers) with the
edges contributing to the first row of K in gray for dissimilarly distributed weights, (c) some-
what similarly distributed weights, and (d) very similarly distributed weights. (e) Graph
representation of the same three node network with edges contributing to the second row
of K in tan for dissimilarly distributed weights, (f) somewhat similarly distributed weights,
and (g) very similarly distributed weights. (h) Geometric representation of the parallelo-
tope formed by the two rows of K representing the paths from the driver node to non-driver
nodes 1 and 2, with the volume shaded in beige and the value of det(KKT) above each plot
for dissimilarly distributed weights, (i) somewhat similarly distributed weights, and (j) very
similarly distributed weights. (k) Distribution of the base-10 log control energy to bring the
three corresponding graphs into 10,000 random final states x∗nd ∈ (−1, 1)M x∗d ∈ (−1, 1)N .

We note that the only difference between these graphs is that we slightly increase the

strength of connection from non-driver xnd1 to non-driver xnd2, which corresponds to a

decrease in the parallelogram area. This slight change yields an order of magnitude increase

in the control energy distribution to bring our system to 10,000 random final states between

Graphs 1 and 2, and another order of magnitude energy increase between Graphs 2 and 3

(Fig. 19k).

64

3.15. Most & Least Energetically Favorable Driver-Non-Driver Sets in

Brain Connectomes Using Second-Order Approximation

Next, we examine the selections of drivers and non-drivers to generate the energetically

most and least favorable networks using the second-order approximation. We show in

Lemma 3.4.3 that the decomposition of the control energy retains the same form as in the

main result C

E(u) = 12

(∑M
i=1wic

2
i∑M

i=1wi

)
M∑
k=1

1

‖ak‖2 sin(θk)2
+ vT2 v2,

where vector ak is the k-th row of matrix K =

[
A21 + 1

2A22A21
1

2
√

15
A22A21

]
.

a b c

d e f

Drosophila Mouse Human

0.1 0.2 0.3 0.4 0.5 0.6
Fraction Non-Driver

2
4
6
8

10
12

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4 0.5 0.6
Fraction Non-Driver

5

10

15

L
og

10
E

ne
rg

y

0.1 0.2 0.3 0.4 0.5 0.6
Fraction Non-Driver

5

10
L

og
10

E
ne

rg
y

0 0.05 0.1 0.15

Least

Most

0 0.02 0.04 0.06 0.08 0.1

Least

Most

0 0.01 0.02 0.03

Least

Most

Figure 20: Topological Characteristics & Energetic Performance of Networks
using the Second-Order Approximation. (a) Boxplots of the magnitude and angle
product ‖ak‖ sin(θk) for each second-order non-driver weight-vector ak (that is, the k-th
row of K) for a non-driver fraction of 0.5 for the Drosophila, (b) mouse, and (c) human.
(d) Means and standard deviations of the base-10 log of the total control energies to reach
2000 random final states along the energetically most favorable, least favorable, and random
networks for the Drosophila, (e) mouse, and (f) human.

As can be seen in Fig. 20a–c, we retain a statistically significant difference in the topology

term ‖ak‖ sin(θk) for the Drosophila, mouse, and human at a non-driver fraction of 0.5.

We also see that there remains a significant difference between the control energy required

to control the most and least energetically favorable networks across a wide range of non-

drivers for the Drosophila, mouse, and human (Fig. 20d–f).

65

3.16. Brain Networks of Increasingly Complex Species Have More Ener-

getically Favorable Second-Order Organization of Connectivity Fea-

tures

Using the second-order approximation, we examine the average magnitude versus sin(θ) for

each node in the Drosophila, mouse, and human networks across 10,000 random non-driver

selections at a non-driver fraction of 0.5. The vectors ak of the second-order approximation

come from the rows of matrix K =

[
A21 + 1

2A22A21
1

2
√

15
A22A21

]
(Fig. 21a–c). As can

be seen, the monotonically decreasing relationship between species (as measured by the

Spearman rank correlation coefficient ρ) is least negative for the Drosophila, second least

negative for the mouse, and most negative for the human.

a b cDrosophila Mouse Human

0 0.5 1
Normalized Magnitude

0

0.1

0.2

0.3

si
n(

)

(= -0.37, p = 0.0092)

0 0.5 1
Normalized Magnitude

0

0.1

0.2

0.3

si
n(

)

(= -0.67, p = 0.0000)

0 0.5 1
Normalized Magnitude

0

0.1

0.2

0.3
si

n(
)

(= -0.76, p = 0.0000)

0.1 0.2 0.3 0.4 0.5 0.6
Fraction of Non-Drivers

-1

-0.8

-0.6

-0.4

Drosophila
Mouse
Human

d

Figure 21: Energetically Favorable Organization of Second-Order Topological
Features in Networks. (a) Average sin(θk) versus normalized magnitude ‖ak‖ (where ak
represents the k-th row of matrix K) for each brain region across 10,000 random non-driver
selections for a non-driver fraction of 0.5, along with the best-fit line (red) and corresponding
Spearman correlation coefficient in the Drosophila, (b) mouse, and (c) human.

3.17. Network Manipulation to Facilitate Control Using the Second-Order

Approximation

Here, we use the second-order approximation to find edge deletions in our networks that

maximally increase the Gram determinant det(KKT), and we compare the energies required

to control our network before and after 1–4 edge deletions (Fig. 22a–d).

As can be seen, the ordering of decreasing percent change in energy after edge deletion

(Drosophila → mouse → human) persists across a wide range of non-driver fractions and

number of edge deletions. However, there is an anomalous change for the human connectome

66

a b c d

0.2 0.4 0.6
Non-Driver Fraction

-50

-40

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 1 Removed

Drosophila
Mouse
Human

0.2 0.4 0.6
Non-Driver Fraction

-50

-40

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 2 Removed

0.2 0.4 0.6
Non-Driver Fraction

-50

-40

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 3 Removed

0.2 0.4 0.6
Non-Driver Fraction

-50

-40

-30

-20

-10

0

P
er

ce
nt

 C
ha

ng
e

Energy Percent Change, 4 Removed

Figure 22: Modifying the Connectomes to Decrease Minimum Energy Using
both Driver to Non-Driver, as well as Non-Driver to Non-Driver Connections.
(a) Means and standard errors of the percent change in energy after deleting edges that
maximally increase the Gram determinant det(KKT) to reach 2,000 random final states
after 1 edge deletion, (b) 2 edge deletions, (c) 3 edge deletions, and (d) 4 edge deletions
across a range of non-driver fractions. Standard errors were computed as SE = s√

n
, where

s is the sample standard deviation over the 2,000 tasks, and n = 2, 000.

at a non-driver fraction of 0.5, where the percent change in energy becomes dramatically

more negative. We also see some other interesting characteristics around 0.5. For non-

driver fractions below 0.5, the percent change in energy tends to become more negative

with increasing non-driver fraction. However, above 0.5, the percent change in energy

becomes less negative with increasing non-driver fraction. We hypothesize there is some

regime switch between a primary dependence on first-order connections below 0.5 non-

driver fraction, and a primary dependence on second-order connections above 0.5 non-driver

fraction.

3.18. Maximizing the Determinant Through Node Selection

In result B of the main text, we represented the connectivity of driver to non-driver con-

nections A21 as vectors, and posed the problem of reducing control energy as an exercise

in increasing det(A21A
T
21). Similarly in result E, we simulated edge deletions that increase

this determinant to reduce the energy to control the Drosophila, mouse, and human con-

nectomes. Here, we explore this relationship between control energy and determinant more

thoroughly.

For each species, we select 4000 random permutations of driver and non-driver nodes at a

non-driver fraction of 0.2. For each permutation, we extract driver to non-driver connections

67

A21, and compute det(A21A
T
21) and the average control energy to bring the non-simplified

network to 5,000 random final states x∗d ∈ (−1, 1)N ,x∗nd ∈ (−1, 1)M (Fig. 23).

a b c

10-30 10-20

Determinant

104

105

106

E
ne
rg
y

10-60 10-50

Determinant

105

106

107

E
ne
rg
y

10-50 10-45

Determinant

104

105

E
ne
rg
y

Figure 23: Decreasing Average Energy as a Function of Increasing Determinant
in Brain Networks. (a) Average control energy required to drive the simplified system of
20% non-drivers involving only driver→ non-driver connections to 5,000 random final states
x∗d ∈ (−1, 1)N ,x∗nd ∈ (−1, 1)M as a function of det(A21A

T
21) for 4,000 possible permutations

in the Drosophila, (b) mouse, and (c) human connectomes. For clarification, each plot has
4,000 points, where each point represents the determinant and average energy of one of
4,000 configurations of drivers and non-drivers.

As can be seen, there is a strong negative relationship where increasing the Gram determi-

nant decreases the average control energy. It is not guaranteed that the selection of drivers

and non-drivers that yields the largest determinant will necessarily cost the lowest energy to

control. However, in general there is a very strong negative trend between the determinant

and average control energy.

3.19. Maximizing the Determinant Minimizes Average Control Energy for

A21 with Fixed Frobenius Norm

In result B, we demonstrate that increasing the determinant of a toy system of 3 drivers

and 2 non-drivers decreases the average energy required to control that system. Here, we

prove that for all M×N matrices A21 where N > M with fixed Frobenius norm, the matrix

A21 which maximizes det(A21A
T
21) actually does minimize the average control energy. To

begin, we consider matrix A21 ∈ RM×N where N > M bounded by the Frobenius norm

‖A21‖2F =
M∑
i=1

N∑
j=1

a2
ij =

M∑
i=1

‖ai‖2 = Tr(A21A
T
21) =

M∑
i=1

λi = C.

68

This norm provides the double benefit of explicitly bounding the elements of A21 as well as

the eigenvalues of the Gram matrix of interest. To maximize the determinant det(A21A
T
21) =

λ1λ2 · · ·λM , we seek

max
λ1,λ2,··· ,λM

det(A21A
T
21) = λ1λ2 · · ·λM

subject to:
M∑
i=1

λi = C,

which has known solution λ1 = λ2 = · · · = λM = C
M . We note that A21 can always be

selected such that the eigenvalues of A21A
T
21 are λ1 = λ2 = · · · = λM = C

M by making the

rows of A21 orthogonal with squared magnitude ‖ak‖2 = C
M . Then A21A

T
21 simply becomes

a diagonal matrix with entries aka
T
k = ‖ak‖2 = C

M , and the eigenvalues of a diagonal matrix

are just the diagonal entries such that λi = ‖ai‖2 = C
M .

Now we turn our attention to minimizing the average control energy. From Lemma 3.3.7,

we have that for final states x∗i drawn from independent and identically distributed random

variables Xi with mean µ = 0 and variance c, the average minimum control energy can be

written as

E[E(u)] = c

(
N + 3M + 12

(
M∑
k=1

1

‖ak‖2 sin(θk)2

))

= c

(
N + 3M + 12

M∑
k=1

1

λk

)
.

To minimize the average control energy, we must find

min
λ1,λ2,··· ,λM

Tr(Q−1) =

M∑
i=1

1

λi

subject to:

M∑
i=1

λi = C,

from which, using the method of Lagrange multipliers, we can formulate the Lagrange

69

function

L(λ1, λ2, · · · , λM , λ) =
M∑
i=1

1

λi
− λ

(
M∑
i=1

λi − C

)

= λ−1
1 + λ−1

2 + · · ·+ λ−1
M − λ(λ1 + λ2 + · · ·+ λM − C),

whose gradient

∇λ1,λ2,··· ,λM ,λL =

{
−λ−2

1 − λ, −λ
−2
2 − λ, · · · , −λ

−2
M − λ, λ1 + λ2 + · · ·+ λM − C

}
,

we set to zero

−λ−2
1 − λ = 0, −λ−2

2 − λ = 0, · · · , −λ−2
M − λ = 0, λ1 + λ2 + · · ·+ λM − C = 0.

Solving for λ, we get

λ1 = λ2 = · · · = λM =

√
− 1

λ
,

such that

λ1 + λ2 + · · ·+ λM − C = M

√
− 1

λ
− C = 0

λ = −M
2

C2
.

Plugging the Lagrange multiplier back in to solve for λi, we get solution λ1 = λ2 = · · · =

λM = C
M . Hence, we prove that for A21 ∈ RM×N with fixed Frobenius norm, maximizing

det(A21A
T
21) yields the same solution as minimizing the average control energy.

70

CHAPTER 4 : Teaching Recurrent Neural Networks to Infer Global Structure

4.1. Motivation

Computers analyze massive quantities of data with speed and precision. At both the hard-

ware and software levels, this performance depends on fixed and precisely engineered pro-

tocols for representing and executing basic operations on binary data (von Neumann, 1993;

Alglave et al., 2008). In contrast, neurobiological systems are characterized by flexibility

and adaptability. At the biophysical level, neurons undergo dynamic changes in their com-

position and patterns of connectivity (Zhang et al., 2011; Faulkner et al., 2008; Dunn and

Wong, 2012; Craik and Bialystok, 2006). At the cognitive level, they abstract spatiotempo-

rally complex sensory information to recognize objects, localize spatial position, and even

control new virtual limbs through experience (Tacchetti et al., 2018; Moser et al., 2008; Ifft

et al., 2013). Hence, neural systems appear to work on fundamentally different computing

principles that are learned, rather than engineered.

To uncover these principles, artificial neural networks have been used to study the represen-

tation and manipulation of information. While feed-forward networks can classify input data

(Sainath et al., 2015), biological organisms contain recurrent connections that are necessary

to continuously sustain short-term memory of internal representations (Jarrell et al., 2012),

allowing for more complex functions such as tracking time, distance, and emotional context

(Lee and Tashev, 2015; Wang et al., 2018; Weber et al., 2017; Burak and Fiete, 2009; Yoon

et al., 2013). Further, recurrent neural systems actually manipulate internal representations

as observed in meta-learning and adaptive networks (Kumar et al., 2020; Schweighofer and

Doya, 2003; Santiago, 2004; Feldkamp et al., 1997) to simulate the outcome of dynamic

processes such as kinematic motion and navigation (Hegarty, 2004; Kubricht et al., 2017;

Pfeiffer and Foster, 2013), and to decide between different actions (Gold and Shadlen, 2007).

How do recurrent neural systems learn to represent and manipulate complex information?

One promising line of work involves representing static memories as patterns of neural ac-

71

tivity, or attractors, to which a network evolves over time (Strogatz, 1994). These attractors

can exist in isolation (e.g. an image of a face) or as a continuum (e.g. smooth translations

of a face) using Hopfield or continuous attractor neural networks (CANNs), respectively

(Yang et al., 2017; Wu et al., 2016). Other studies engineer neural connectivity as in the

Neural Engineering Framework or the differentiable neural computer to encode, modify, and

decode internal representations or to solve complex puzzles (Eliasmith and Anderson, 2003;

Bekolay et al., 2014; Graves et al., 2016). For understanding neurobiological systems, these

memory networks are limited by requiring specifically engineered patterns of connectivity,

or cannot manipulate time-varying memories necessary to plan and produce speech and

music (Carroll, 2004; Fee and Scharff, 2010; Donnay et al., 2014). Hence, we seek a single

neural system that learns to both represent and manipulate temporally complex information

by perceiving and replicating examples.

In this work, we use the reservoir computing framework (Qiao et al., 2017) to obtain such

a system (the reservoir), where the complex information is a chaotic attractor that is not

static, but evolves in a deterministic yet unpredictable manner through time (Lorenz, 1963).

Prior work has demonstrated an RNN’s ability to represent and switch between isolated

attractors by imitating examples (Jaeger, 2010; Sussillo and Abbott, 2009), and to inter-

polate and extrapolate underlying generative dynamical processes in time-series prediction

tasks using fixed-weight neural networks (FWNN) (Feldkamp et al., 1997; Tyukin et al.,

2008; Santiago, 2004; Klos et al., 2020). Here, we demonstrate that reservoirs can further

learn to interpolate and extrapolate translations, linear transformations, and even bifurca-

tions on their representations of chaotic attractor manifolds simply by imitating examples.

Further, reservoirs can infer the bifurcation structure of dynamical normal forms and pe-

riod doubling routes to chaos, as well as accurately extrapolate non-dynamical, kinematic

trajectories. Finally, we put forth a mechanism of how these computations are learned,

providing insights into the set of possible computations, and offering principles by which to

design networks.

72

4.2. Mathematical Framework

a Lorenz time series b drive reservoir c train W d close feedback loop e predict output

f training input: shifted Lorenz time series g drive reservoir h training output: shifted Lorenz time series

t t

t t

x1

x2

x3

x^1

x^2

x^3

x1’

x2’

x3’ x
x’

x^1

x^2

x^3

B W

x1

x2

x3

c

Figure 24: Representing Chaotic Attractors with Reservoirs. (a) Time series of a
chaotic Lorenz attractor that (b) drives the recurrent neural network reservoir. (c) Weighted
sums of the reservoir states are trained to reproduce the original time series. (d) By using
these weighted sums of reservoir states to drive the reservoir instead of the inputs, (e) the
reservoir autonomously evolves along a trajectory that projects to a Lorenz-shaped chaotic
manifold. (f) Time series of shifted copies of the Lorenz input along x1 and control inputs
that (g) drive the reservoir. (h) Weighted sums of the reservoir states are used to mimic
the shifted Lorenz inputs.

Neural systems represent and manipulate periodic stimuli through example, such as baby

songbirds modifying their song to imitate adult songbirds (Fee and Scharff, 2010). However,

they also perform more advanced and original manipulations on aperiodic stimuli with

higher-order structure, such as musicians improvising on jazz melodies (Donnay et al., 2014).

To model such complex stimuli, we use chaotic attractors that evolve deterministically yet

unpredictably along a global structure: a fractional-dimensional manifold. Specifically, we

consider the Lorenz attractor defined as

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3,

(4.1)

and use the parameters σ = 10, β = 8/3, ρ = 28 from the original study (Lorenz, 1963).

73

Next, we model the neural system as a recurrent neural network driven by our inputs

1

γ
ṙ = −r + g (Ar +Bx+ d) , (4.2)

where r is a real-valued vector of N reservoir neuron states, A is an N × N matrix of

connections between neurons, B is an N ×M matrix of connections from the M inputs to

the neurons, d is an N × 1 bias vector, g is a scalar activation function applied entry-wise

to its input arguments (hence mapping vectors to vectors), and γ is a time constant. We

use g = tanh in the main text, and replicate many results using Wilson-Cowan oscillators

in the Appendix in Chapter 5.

Several prior studies use echo state (Jaeger, 2010) and FORCE learning (Sussillo and Ab-

bott, 2009) which allow reservoirs to predict a chaotic time series by modifying the inter-

neuron connections. This modification can be accomplished by using the chaotic time series

x(t) to drive the reservoir, thereby generating the reservoir time series r(t) (Fig. 24a,b).

Here, x(t) and r(t) are M ×T and N ×T matrices, respectively, from numerically evolving

the differential equations over T time steps. By solving for a simple M ×N readout matrix

W that uses linear combinations of reservoir states to approximate the input by minimizing

the matrix 2-norm (see the Appendix in Chapter 5)

W = arg min
W
‖Wr(t)− x(t)‖2, (4.3)

the output x̂(t) = Wr(t) mimics the input x(t) (Fig. 24c). Finally, we close the feedback

loop by substituting the output as the input to create the autonomous reservoir (Fig. 24d)

1

γ
ṙ′ = −r′ + g

(
(A+BW)r′ + d

)
, (4.4)

whose evolution projects to a Lorenz-shaped attractor as x′(t) = Wr′(t) (Fig. 24e). Hence,

reservoirs sustain internal representations of complex temporal information by learning to

autonomously evolve along a chaotic attractor from example inputs.

74

To study how reservoirs might perform computations by manipulating these representations,

we use a modified framework (Sussillo and Abbott, 2009) to include a vector of control

parameters c that map to the reservoir neurons through matrix C to yield

1

γ
ṙ = −r + g (Ar +Bx+ Cc+ d) . (4.5)

We drive the reservoir with the original x0(t) and modified xc(t) versions of the input at

varying values of c to generate the corresponding reservoir time series r0(t), rc(t). By con-

catenating the time series along the time dimension for the inputs x(t) = [x0(t),x1(t), · · ·]

and the reservoir states r(t) = [r0(t), r1(t), · · ·], we train a readout matrix according to

Eq. 4.3 (Fig. 24f–h). In what follows, we demonstrate that the feedback reservoir not only

autonomously evolves about the input trajectory as a stable memory, but also learns to

interpolate and extrapolate the modification of this memory far outside of the training

range.

4.3. Learning a Translation Operation by Example

Reservoirs learn complex information through simple imitation: approximating the driving

inputs using the reservoir states is enough to autonomously represent and evolve about a

chaotic manifold. Here we show that this simple scheme is also enough to learn to translate

and transform the representation.

We begin with a Lorenz time series x0(t), and create shifted copies

xc(t) = x0(t) + Pc. (4.6)

For the purposes of demonstration, we consider a translation in the x1 direction such that

P = [1; 0; 0] is a column vector, and c = 0, 1, 2, 3 is a scalar. We use these four time series to

drive our reservoir according to Eq. 4.5, thereby generating four reservoir time series rc(t).

We concatenate these series into r(t) and x(t), and compute output weights according to

75

a close feedback loop b translate representation

side view top view
c training d prediction e training f prediction

c
-40 40

training
prediction

x1’

x2’

x3’

c

x1

x2

x3

x1

x2

x3

Figure 25: Learning & Extrapolating Translations & Transformations by Exam-
ple. (a) Schematic of a feedback reservoir where the outputs Wr(t) replace the inputs x(t)
to create a closed feedback loop, where c remains a changeable parameter. (b) When the
reservoir is trained on four Lorenz time series translated in the x1 dimension (purple), the
feedback reservoir evolves autonomously about a Lorenz-shaped manifold, and translates
this representation along x1 over the course of one simulation by smoothly and continu-
ously changing c as a real number over a range much larger than the training range. (c,e)
When the reservoir is trained on four linearly transformed (squeeze in the x1 direction,
purple) time series, (d,f) the feedback reservoir similarly interpolates and extrapolates the
transformation of its representation.

Eq. 4.3, such that our output x̂ = Wr(t) approximates our input x(t) (Fig. 24f–h). Finally,

we substitute the output as the input to yield the feedback system (Fig. 25a)

1

γ
ṙ′ = −r′ + g(Rr′ + Cc+ d), (4.7)

where R = A + BW . As we evolve this autonomous reservoir while varying c to extreme

values −40 ≤ c ≤ 40 both inside and outside of the training values, it has learned to evolve

about a Lorenz-shaped manifold that is translated based on the value of c (Fig. 25b, see

the Appendix in Chapter 5 for more examples and Wilson-Cowan implementation).

We use the same scheme to teach reservoirs linear transformations. We begin with the

76

Lorenz time series x0(t) and create linearly transformed copies of the time series such that

xc(t) = (I + cP)x0(t), (4.8)

for c = 0, 1, 2, 3, where P is a matrix encoding a transformation (Fig. 25c,e). Specifically,

we perform a squeeze along x1 by setting [P]11 = −0.012 and the remaining elements to 0.

Exactly as before, we drive the reservoir according to Eq. 4.5, concatenate our input and

reservoir time series into x(t) and r(t) to train the output weights W according to Eq. 4.3,

and feed the outputs back as inputs to yield the feedback system Eq. 4.7. This reservoir

autonomously evolves about a Lorenz-shaped manifold that stretches based on the param-

eter −40 ≤ c ≤ 40 far outside of the parameters used in the training regime c = 0, 1, 2, 3

(Fig. 25d,f: see the Appendix in Chapter 5 for more examples and Wilson-Cowan imple-

mentation). Hence, by training the network on translated and linearly transformed copies

of the input, the reservoir has learned translation and linear transformation operations on

the attractor.

4.4. Learning to Infer Bifurcation Structure by Example

Next, we demonstrate that a reservoir can infer, without actually ever having observed,

a much more dramatic change: a bifurcation. The first bifurcation occurs in the typical

parameter regime (Eq. 4.1 for ρ ≈ 28, σ = 10, β = 8/3). Here, the Lorenz system contains

two fixed points, x∗aρ and x∗bρ , that undergo a subcritical Hopf bifurcation when ρ = ρ∗ ≈

24.7 (Strogatz, 1994). When ρ < ρ∗, these two fixed points are stable. When ρ > ρ∗, the

fixed points become unstable, yielding the characteristic wing-shaped flow.

To infer the bifurcation, we drive the reservoir with four training trajectories: xa23(t) and

xb23(t) that evolve stably towards the fixed points for ρ = 23 while c = 0, and xa24(t)

and xb24(t) that evolve stably towards the fixed points for ρ = 24 while c = 1 (Fig. 26a).

Importantly, we stress that the inputs include the transient spiral trajectory towards the

fixed point. By training the output weights and evolving the feedback reservoir while

77

a training b prediction: c: 0 → 5 c prediction: c: 5 → 0 d prediction: c: 0 → 5

e training on 1-cycle f 2-cycle (not trained) g true and predicted period doubling bifurcation diagram

true

predicted

20-cycle 21 22

22

23 24

100.3
100.2
100.1
100.0

99.8
ρ

c

0

5

x1

x2

x3

x1

x2

x3

ρ

100.3 100 99.7 99.5
0 3 6 8

ρ:
c:

z

96.5

95.5

99.57 99.53
7.3 7.7

ρ = 23
ρ = 24

Figure 26: Inferring & Extrapolating the Bifurcation of the Lorenz. (a) Two
training trajectories for each of the stable Lorenz fixed points at the wings, for ρ = 23
with c = 0 (blue) and for ρ = 24 with c = 1 (light blue). (b) The predicted trajectory of
the feedback reservoir moves towards a stable fixed point for c = 0, and bifurcates into a
Lorenz-shaped manifold as c is increased to 5. (c) As c is decreased back to 0, the predicted
trajectory eventually falls into a stable fixed point. (d) As c is increased back to 5, the
fixed point loses stability. (e) Four training 1-cycle trajectories for each wing (left wing:
dark, right wing: light) of the Lorenz at ρ = 100.3, 100.2, 100.1, and 100. (f) Example of a
Lorenz bifurcation into a 2-cycle at ρ = 99.8 that is not used in training. (g) True (black)
and predicted (blue to green) Poincaré sections of the true Lorenz and predicted reservoir
time series along the plane x = 0 for ẋ > 0.

changing c from 0 to 5, the trajectory bifurcates into a Lorenz-shaped attractor (Fig. 26b).

By subsequently changing c back to 0, the reservoir displays transient chaos whereby it

temporarily evolves about a Lorenz-shaped attractor, but eventually falls into a stable fixed

point (Fig. 26c). Finally, by changing c back to 5, the fixed points again become unstable

(Fig. 26d).

In addition to inferring the Lorenz system’s bifurcation and chaotic manifold geometry,

reservoirs can accurately infer more detailed features of the Lorenz system’s period doubling

route to chaos in the parameter regime ρ ≈ 100, σ = 10, β = 8/3. For ρ ' 99.98, the

Lorenz evolves about a stable 1-cycle (Fig. 26e). Between 99.95 ' ρ ' 99.63, the Lorenz

bifurcates into a stable 2-cycle (Fig. 26f). As we continue to decrease ρ, the number of

78

cycles doubles until the flow becomes chaotic. We capture the period doubling phenomenon

using a Poincaré section along the plane x = 0 for ẋ > 0 (see the Appendix in Chapter

5 for details, and Ref. (Langer and Parlitz, 2004) for the general modeling of parameter

dependencies from time series.).

In this demonstration, we drive the reservoir with eight 1-cycle trajectories comprising four

values of ρ at both wings (Fig. 26e), and perform feedback. As we increase c, the reservoir

undergoes a series of period doubling bifurcations that almost exactly trace the true Lorenz

system as measured by their Poincaré sections (Fig. 26g). Hence, we teach reservoirs to

quantitatively infer highly nonlinear, latent, and unobserved bifurcations.

4.5. Mechanism of how Operations are Learned

Now that we have taught reservoirs to manipulate chaotic manifolds, we seek to understand

the mechanism by explicitly relating the change in the control input, dc, to the change

in reservoir trajectory, dr′(t). We consider the time series r′(t) = r′c=0(t) generated by

evolving the autonomous reservoir according to Eq. 4.7 at c = 0. Next, we take the total

differential of Eq. 4.7 evaluated at r′(t) and c = 0 to yield

(I −KA)dr′ +
1

γ
dṙ′ = K(BWdr′ + Cdc), (4.9)

where K = diag(dgr′=r′(t),c=0), and aim to write dr′(t) as a function of dc.

When learning translations, the output weights are trained such that Wrc(t) ≈ xc(t) =

x(t) + Pc. For sufficiently nearby training examples (small P, c), we also implicitly ap-

proximate the differential relation Wdr(t) ≈ Pdc. Additionally, if the feedback reservoir

stabilizes these examples, then Wdr′(t) ≈ Pdc. Substituting this relation into Eq. 4.9 yields

(I −KA)dr′ +
1

γ
dṙ′ ≈ K(BP + C)dc. (4.10)

If we fix dc, we have 2N variables, dr′ and dṙ′, but only N equations. By taking the time

79

a feedback reservoir
reservoir state

b reservoir trained on translated input

c reservoir trained on transformed input d reservoir trained on pre-bifurcated stable fixed points

x1

x2

x3r1

r2

r3

r4

real(λmax)
training

output state

r1

r2

r3

r4

time

time

im
ag

(λ
m

ax
)

0

0

0

3

c

r’c=0

r^’c=Δc

Wr’c=0

Wr^’c=Δc

Figure 27: Changing the Control Parameter Changes the Reservoir Dynamics to
Manipulate Representations. (a) Schematic of a reservoir with feedback connections
after the output weights W have been trained. (b) Reservoir time series generated by
evolving the autonomous reservoir with the original Lorenz input with c = 0 (dark gold).
We also show the predicted time series from solving Eq. 4.12 after training on translated
examples and computing ∆cdr

′

dc , where ∆c = 20 (light gold). The output projections of the
two time series are shown in blue and green, respectively. (c) The original and predicted
reservoir states and their output projections for ∆c = −40 after training on transformed
Lorenz inputs by solving Eq. 4.13. (d) Plot of the real and imaginary components of the
two most unstable eigenvalues of the autonomous reservoir trained on two stable Lorenz
trajectories (Fig. 26a). The reservoir is linearized about its equilibrium point r∗c as we
change c∗.

derivative of the differential relation, we generate another N variables and N equations.

Continuing to take time derivatives yields the following system of equations



H0 H−1 0 · · ·

H1 H0 H−1 · · ·

H2 2H1 H0 · · ·
...

...
...

. . .





dr′

dṙ′

dr̈′

...


≈



K

K̇

K̈

...


(BP + C)dc, (4.11)

where H−1 = 1
γ I, H0 = I −KA, and Hi = −K(i)A is the i-th time-derivative of KA. This

matrix is a block-Hessenberg matrix, with an analytic solution (S lowik, 2018) for the first

term dr′. We truncate this solution (see the Appendix in Chapter 5) to explicitly relate dr′

80

to dc as follows:

dr′ ≈ −
[
γH2

0 −H1

]−1 [
−γH0 I

]K
K̇

 (BP + C)dc. (4.12)

As a demonstration, we pick a finite ∆c = 20, and plot the original and predicted change

in the reservoir states, and their outputs in spatial coordinates (Fig. 27b). Hence, using

only the feedback dynamics Eq. 4.7 and sufficiently nearby training examples, changing c

causes changes in the reservoir states from Eq. 4.12 that map to a translation.

The same approach can be used for linear transformations, where the output weights are

trained such that Wrc(t) ≈ xc(t) = (I+cP)x(t). For sufficiently nearby training examples,

we implicitly approximate the differential relation Wdr(t) ≈ Px(t)dc ≈ PWr(t)dc, which

if properly stabilized, yields Wdr′(t) ≈ PWr′(t). Performing the same time derivatives and

solution truncation as in the translation, we get the following relation between dc and dr′:

dr′ ≈ −
[
γH2

0 −H1

]−1 [
−γH0 I

] K(BPWr′ + C)

K̇(BPWr′ + C) +KBPW ṙ′

 dc. (4.13)

As another demonstration, we set ∆c = −40, and plot the original and predicted change in

the reservoir states, and their outputs (Fig. 27c).

Finally, to understand how the reservoir is able to infer a bifurcation, we demonstrate that

it learns a smooth translation of eigenvalues. Specifically, at ρ∗, the fixed points at the

wings of the Lorenz system undergo a Hopf bifurcation, whereby the real component of

complex conjugate eigenvalues goes from negative to positive. To track the eigenvalues of

the autonomous reservoir, we linearize Eq. 4.7 about the equilibrium point r∗c, c
∗ (see the

Appendix in Chapter 5). Then, using the output weights trained only on stable Lorenz

trajectories (at c = 0, ρ = 23 and c = 1, ρ = 24; Fig. 26a,b), we track the autonomous

reservoir’s two most unstable eigenvalues (largest real component) at the fixed point as

we vary the control parameter from c = 0 to c = 3. We find that these eigenvalues are

81

complex conjugates whose real components go from negative to positive (Fig. 27d). Hence,

we demonstrate that not only can reservoirs learn smooth translations and transformations

by mapping dc to dr′, but they can also perform bifurcations by learning smooth changes

in their eigenvalues.

4.6. Bifurcation Normal Forms & Non-Dynamical Time Series

a training time series b bifurcation diagram c training time series d bifurcation diagram

e Jansen linkage f predicting the trajectory after changing edge length

.3

-.3

x

a
-0.01
-0.007
-0.004
-0.001

.3

-.3

-.1 0a

real stable
real unstable
predicted

training

re
se

rv
oi

r e
ig

en
va

lu
e.1

-.1

1

-1

xx

tt

a
-0.1
-0.07
-0.04
-0.01

1

-1

x

-1 1a

training

free node
pinned node
fixed edge length

training trajectory

edge length = 40.5
edge length = 40.55
edge length = 40.6
edge length = 40.65

true: length = 39.25
true: length = 41.75
predicted: c = -25
predicted: c = 25

Figure 28: Inferring Bifurcation Normal Forms & Extrapolating Kinematic Tra-
jectories. (a) Training time series of the saddle-node normal form, where c = 0 for
a = −0.01, c = 1 for a = −0.007, c = 2 for a = −0.004, and c = 3 for a = −0.001.
(b) Bifurcation diagram of both the saddle-node normal form as we vary a, and the pro-
jection of reservoir fixed points Wr∗c colored by the largest real eigenvalue of the reservoir
Jacobian at r∗c as we vary c. (c) Training time series of the supercritical pitchfork normal
form, where c = 0 for a = −0.1, c = 1 for a = −0.07, c = 2 for a = −0.04, and c = 3 for
a = −0.01, along with the (d) corresponding real and predicted bifurcation diagram. (e)
Jansen linkage that is pinned at the black nodes, leaving one degree of freedom whereby
the bottom joint traces a cyclic trajectory. (f) Training (light blue to purple) and testing
(dotted lines) trajectories of the true Jansen linkage by varying the dashed link, and the
predicted reservoir trajectories (blue, green).

To demonstrate the generalizability of these principles, we teach reservoirs to infer the

bifurcation diagrams of other dynamical normal forms, and to extrapolate non-dynamical

82

time series data. We begin with a saddle-node bifurcation with dynamical normal form

ẋ = a+ x2, (4.14)

where a is the bifurcation parameter. When a < 0, the system has a stable fixed point at

−
√
−a and an unstable fixed point at

√
−a. When a > 0, the system has no fixed points.

We first generate two time series at each of four values of a < 0: one above the stable fixed

point, and one below (Fig. 28a). We then drive the reservoir with these inputs while varying

c, train the output weights, and track the feedback reservoir’s fixed points and largest real

eigenvalue component as we change the control parameter c (see the Appendix in Chapter

5). We observe that the feedback reservoir’s fixed points almost exactly trace both the

position and stability of the real saddle-node normal form as we vary a (Fig. 28b).

Next, we consider the supercritical pitchfork bifurcation with normal form

ẋ = ax− x3. (4.15)

When a < 0, Eq. 4.15 has one stable fixed point at x = 0. When a > 0, Eq. 4.15 has two

stable fixed points at ±
√
a, and one unstable fixed point at x = 0. We again generate two

time series at each of four values of a < 0: one where x(t) > 0, and another where x(t) < 0

(Fig. 28c). We then drive the reservoir while varying c, train the output weights, and again

observe that the feedback reservoir’s fixed points almost exactly trace both the position and

stability of the pitchfork normal form’s fixed points (Eq. 4.15, Fig. 28d). We emphasize

that in both normal forms, the reservoir was able to infer the location and stability of all

fixed points after only observing a few trajectories to one of the stable fixed points.

Finally, we test whether the reservoir’s ability to extrapolate generalizes to non-dynamical

time series. Specifically, we consider the kinematic trajectory of a modified version of the

Jansen linkage (Nansai et al., 2013), whose bottom joint traces out a cyclical walking path

with 1 degree of freedom (Fig. 28e). As the length of the links change, the geometry

83

of the traced trajectory also changes in a complex manner. Additionally, the evolution

of the original and changed trajectories cannot be written as a dynamical system of the

form ẋ = f(x). We first generate four training trajectories by changing the length of the

dashed link by ∆l = 0.05 while varying c by ∆c = 1 (Fig. 28e,f), and perform training and

feedback. Then, we use the feedback reservoir to generate predicted trajectories at c = −25

and c = 25, and observe that they very closely follow the true trajectories when the link

length changes by −25∆l and 25∆l (Fig. 28f).

4.7. Simultaneous Learning of Multiple Operations

c1

c2

x1’

x2’

x3’

40

-40 40c1

c2

Figure 29: Flight of the Lorenz. A reservoir trained on translated inputs along the x1

and x3 directions evolves autonomously along a Lorenz-shaped chaotic manifold. We can
change the x1 and x3 position of its representation by changing control parameters c1 and
c2, respectively.

To close, here we demonstrate that reservoirs can easily learn multiple computations by

changing multiple control inputs. We train a translation in the x1 direction with control

parameter c1, and a translation in the x3 direction with control parameter c2. As before, we

begin with a Lorenz time series x0,0(t) generated from Eq. 4.1, and created shifted copies

xc1,c2(t) = x0,0(t) + c1a1 + c2a2, (4.16)

where a1 = [1; 0; 0] corresponds to an x1 shift, and a2 = [0; 0; 1] corresponds to an x3 shift.

84

We generate 10 shifted inputs, with one unshifted attractor (c1 = 0, c2 = 0), three shifts in

the x1 direction (c1 = 1, 2, 3, c2 = 0), three shifts in the x3 direction (c1 = 0, c2 = 1, 2, 3),

and three shifts in both directions (c1 = 1, 2, 3, c2 = 1, 2, 3). We use these shifted copies

along with their corresponding control inputs to drive our reservoir and produce 10 reservoir

time series rc1,c2(t). Then, we concatenate these 10 time series into x(t) and r(t) to train

output weights W according to Eq. 4.3, and perform the feedback according to Eq. 4.7

where c = [c1; c2] is a vector. By changing parameters c1 and c2, the reservoir evolves

about a Lorenz-shaped manifold that is shifted in the x1 and x3 directions (Fig. 29).

4.8. Discussion

In this paper, we teach an RNN to interpolate, extrapolate, and infer global bifurcation

structures and manipulations after observing only a few local exemplars. Our approach

contributes to prior work on artificial neural networks in three significant ways (Seung,

1998; Wu et al., 2016; Jaeger, 2010; Sussillo and Abbott, 2009; Klos et al., 2020). First, we

provide a means by which a neural system performs accurate and extreme interpolations

and extrapolations of modifications to its own representation far outside of its training

regime. Second, we provide an analytic mechanism by which this meta-learning occurs,

thereby providing design principles for effective teaching (e.g. small c, closely spaced exem-

plars). Finally, we demonstrate that neural systems can infer global and highly nonlinear

bifurcation structure using only local, pre-bifurcated example trajectories in many systems.

Importantly, we use a randomly generated network that does not need to be artificially

engineered to preserve invariance or manipulate information (Wu et al., 2016).

One of the main limitations of this work is the lack of a clear mechanism of how the

network connectivity ultimately stabilizes the chaotic manifold. Much progress has been

made in tackling this limitation, both by exercising theoretical concepts of generalized

synchronization (Rulkov et al., 1995b), and by developing tools for controlling chaos (Ott

et al., 1990). However, there is insufficient knowledge to guarantee that a set of training

85

and reservoir parameters will always successfully teach the desired computation. Similarly,

we are unable to specify exactly how far to space the training examples for the feedback

reservoir to successfully learn the linear relationships between the differential of the reservoir

states and the control parameter.

A particularly promising area for future work is related to the generalizability of the learn-

ing mechanism across activation functions, as demonstrated by the replication of our results

in the more nonlinear Wilson-Cowan network model (Wilson and Cowan, 1972). Under-

standing the role of various types and degrees of nonlinearity in learning computations may

provide insights for the intervention and design of biological and artificial neural systems,

respectively. Additionally, these results provide a basis for exploring more complex com-

putations, such as inferring bifurcations in experimental data, and testing the reservoir’s

“imagination” in reconstructing more complex chaotic manifolds using incomplete data.

Finally, and perhaps most astonishing is the reservoir’s ability to accurately reconstruct the

global nonlinear geometry of both the bifurcated Lorenz manifold and various bifurcation

diagrams, as well as the complex changes in kinematic trajectories after only observing a

narrow range of pre-bifurcated or kinematic examples. The accurate reconstruction implies

that the reservoir is actually inferring higher-order nonlinear structure. This work there-

fore provides a starting point for exploring exactly how higher-order structure is learned by

neural systems.

86

CHAPTER 5 : Appendix to Teaching Recurrent Neural Networks to Infer Global

Structure

In this appendix, we describe additional details about the methods and simulations used in

the main text. We begin with a more thorough overview of reservoir dynamics and their

derivation, followed by specific details of the numerical simulations.

5.1. Reservoir Dynamics

The reservoir computing framework is a general scheme by which a nonlinear dynamical

system (the reservoir) is driven by some input, and a simple linear readout of the reservoir

states is trained. The reservoir consists of N neural units, where each unit i has a real-

valued level of activity over time, ri(t). We collect this activity into an N -dimensional

column vector

r(t) =



r1(t)

r2(t)

...

rN (t)


, (5.1)

that we refer to as the reservoir state. These reservoir states are driven by some input time

series of M inputs x1(t), x2(t), · · · , xM (t), that we collect into the input vector

x(t) =



x1(t)

x2(t)

...

xM (t)


. (5.2)

87

In our framework, we add a set of K control inputs c1, · · · , cK that we collect into the

control vector

c =



c1

c2

...

cK


. (5.3)

For continuous time systems (t ∈ R≥0), a typical equation for the time-evolution of a

reservoir consists of a nonlinear (usually sigmoidal) transformation g on a linear sum of all

inputs and states written as

1

γ
ṙ(t) = −r(t) + g(Ar(t) +Bx(t) + Cc+ d), (5.4)

where ṙ(t) represents the time derivative, A is a real-valued matrix of dimension N ×N , B

is a real-valued matrix of dimension N ×M , C is a real-valued matrix of dimension N ×K,

and d is a constant bias vector of dimension N × 1. We can write the dynamics for each

reservoir state, ri(t), as

1

γ
ṙi(t) = −ri(t) + gi

(
N∑
n=1

Ainrn(t) +
M∑
m=1

Bimxm(t) +
K∑
k=1

Cikck + di

)
. (5.5)

If we write Ai∗, Bi∗, and Ci∗ as the i-th row of matrices A,B, and C, respectively, we can

write this equation more concisely as

1

γ
ṙi(t) = −ri(t) + gi (Ai∗r(t) +Bi∗x(t) + Ci∗c+ di) . (5.6)

We begin by observing that the reservoir states are evolved according to some predetermined

input x(t) and control input c to generate the reservoir state time series r(t). Next, linear

combinations of the reservoir state are taken to approximate the input x(t) by minimizing

88

the matrix 2-norm of the difference in the numerical time series (see Sec. 5.9)

‖Wr(t)− x(t)‖2, (5.7)

where W is the real valued matrix of dimension M ×N that is trained. After training, we

perform feedback by replacing the inputs x(t) with the trained outputs Wr(t) to yield the

feedback dynamics

1

γ
ṙ′(t) = −r′(t) + g(Ar′(t) +BWr′(t) + Cc+ d), (5.8)

and by factoring the term R = A+BW , we obtain

1

γ
ṙ′(t) = −r′(t) + g(Rr′(t) + Cc+ d). (5.9)

This feedback equation is written element-wise as

1

γ
ṙ′i(t) = −r′i(t) + gi

(
N∑
n=1

Rinr
′
n(t) +

K∑
k=1

Cikck + di

)
. (5.10)

We note that R is an N ×N matrix.

5.2. Form of Dynamical Equations

In this work, we implement two different neural models: the hyperbolic tangent and the

Wilson-Cowan. For convenience, we write all inputs into neuron i as

zi(r,x, c) =
N∑
n=1

Ainrn(t) +

M∑
m=1

Bimxm(t) +

K∑
k=1

Cikck + di. (5.11)

Then, the dynamical equations of each hyperbolic tangent unit can be written as

1

γ
ṙi(t) = −ri(t) + tanh (zi(r,x, c)) , (5.12)

89

and the equations of all units can be concisely written as

1

γ
ṙ = −r + tanh(z), (5.13)

where z is the vector of collected inputs.

Alternatively, the Wilson-Cowan (WC) oscillator dynamics are slightly more complex, con-

sisting of an N/2-dimensional vector of activity for the excitatory populations, E, and

an equivalently sized N/2-dimensional vector of activity for the inhibitory populations, I.

Let AEE , AEI , AIE , and AII be non-negative N/2 × N/2 matrices defining weights from

E → E, E → I, I → E, and I → I, respectively. Further, let the input matrices BE and

BI project from the inputs x(t) into the excitatory and inhibitory populations, respectively,

and CE and CI project from the control inputs c to the excitatory and inhibitory popu-

lations, respectively. For convenience we collect all inputs into the excitatory population

as

zE = AEEE −AIEI +BEx+ CEc+ dE , (5.14)

and all inputs into the inhibitory population as

zI = AEIE −AIII +BIx+ CIc+ dI , (5.15)

where dE and dI are the bias terms for the excitatory and inhibitory populations, respec-

tively. Then, the WC dynamics become

1

γ
Ė = −E + (1− rrE)φ(zE), (5.16)

and

1

γ
İ = −I + (1− rrI)φ(zI), (5.17)

where rr are derived from the time coarse-grained refractory periods, and φ is a sigmoidal

90

activation function of the form

φ(z) =
1

1 + e−z
, (5.18)

where the exponentiation and division is performed element-wise.

In these equations, the diagonal entries of AEE , AIE , AEI , and AII represent the connections

between the excitatory and inhibitory populations of one canonical WC oscillator, while the

non-diagonal entries represent the connections between oscillators. In this work, we assume

that inputs reach both excitatory and inhibitory populations (i.e. BE , BI , CE , CI can be

dense), that excitatory populations can project to both the excitatory and inhibitor popu-

lations of all oscillators (i.e. AEE and AEI can be dense), and that inhibitory population of

any oscillator can only project to itself and the excitatory population of its own oscillator

(i.e. AIE and AII are diagonal). If we compile the four connectivity and input matrices

into one matrix and adjust the signs as

A =

AEE −AIE

AEI −AII

 , B =

BE
BI

 , C =

CE
Ci

 , (5.19)

and if we additionally order the excitatory and inhibitory populations as

r =

E
I

 , (5.20)

where the i-th entry of E and I corresponds to excitatory and inhibitory populations of

oscillator i, then we can write the WC dynamics as

1

γ
ṙ = −r + (1− rer)φ(Ar +Bx+ Cc+ d), (5.21)

to yield a compact equational form.

91

5.3. Evaluation of the Jacobian

Whether to track fixed points or to evaluate linearized dynamics, we frequently evaluate

the Jacobian of our reservoir system about some equilibrium point. Here we explain this

process in more detail. We begin with the general reservoir dynamics

1

γ
ṙ = −r + g(Ar +Bx+ Cc+ d), (5.22)

and consider some equilibrium point r∗,x∗, c∗, where

0 = −r∗ + g(Ar∗ +Bx∗ + Cc∗ + d). (5.23)

Next, we take the gradient of our general reservoir dynamics, and evaluate the Taylor series

expansion to first order about the equilibrium point, such that

1

γ
ṙ ≈ −(r − r∗) + diag(dgr=r∗,x=x∗,c=c∗)[A(r − r∗) +B(x− x∗) + C(c− c∗)], (5.24)

where dgr=r∗,x=x∗,c=c∗ is the differential of the activation function g. For example, if the

activation function is

g(r∗,x∗, c∗) = tanh(Ar∗ +Bx∗ + Cc∗ + d), (5.25)

then the differential is

dgr=r∗,x=x∗,c=c∗ = (1− tanh2(Ar∗ +Bx∗ + Cc∗ + d)), (5.26)

where 1 is a vector of 1s.

The process remains the same for the feedback dynamics

1

γ
ṙ = −r + g(Rr + Cc+ d), (5.27)

92

where R = A+BW after feedback. We consider some equilibrium point r∗, c∗ where

0 = −r∗ + g(Rr∗ + Cc∗ + d), (5.28)

and evaluate the Taylor series expansion to first order

1

γ
ṙ = −(r − r∗) + diag(dgr=r∗,c=c∗)[R(r − r∗ + C(c− c∗))]. (5.29)

5.4. Bias Term & Equilibrium Point Selection

To ensure that our non-driven reservoir begins with stable dynamics, we initialize our reser-

voir parameters by first selecting a distribution of reservoir equilibrium points, and then

selecting the bias term to achieve that equilibrium point. Specifically, we wish to ensure

that at zero input (i.e. x∗ = 0 and c∗ = 0), the non-driven reservoir dynamics exist at

some stable fixed point r∗. To achieve this goal, we consider the reservoir equations at the

desired fixed point,

1

γ
ṙ = 0 = −r∗ + g(Ar∗ + d), (5.30)

and simply solve for d as

d = g−1(r∗)−Ar∗. (5.31)

For example, if g is tanh, then, the bias term becomes

d = tanh−1(r∗)−Ar∗. (5.32)

5.5. Tracking the Reservoir Fixed Points

Throughout the text, we track the fixed points of the feedback reservoir as we change the

control parameter c, such as when we generate the bifurcation diagrams. This process

consists of two steps. First, we have to identify the feedback reservoir’s fixed points at some

value of c. Second, we have to track that fixed point as we change c.

93

For the first part of identifying the feedback reservoir’s fixed points, consider the simple

case where we drive the reservoir with a constant input x∗ at c = c∗, thereby generating

a constant reservoir output r∗. By virtue of the reservoir output not changing, we know

that the values x = x∗, c = c∗, and r = r∗ serve as an equilibrium solution to the reservoir

dynamics such that

0 = −r∗ + g(Ar∗ +Bx∗ + Cc∗ + d). (5.33)

If training is successful such that Wr∗ ≈ x∗, then r∗ becomes a fixed point of the feedback

dynamics

0 ≈ −r∗ + g((A+BW)r∗ + Cc∗ + d). (5.34)

However, in all of the bifurcation diagram inference examples, we only trained on trajectories

that evolved stably towards one of fixed points (e.g. stable branch a of the saddle-node

normal form, thereby generating reservoir output r∗a) to generate W . Hence, we have no

simulation data about where the other reservoir state r∗b might be when driven by the

unstable branch b. The solution to this problem is simple: after we perform training and

generate W , we open the feedback loop and drive the reservoir with the unstable fixed point

(e.g. unstable branch b of the saddle-node normal form). Crucially, we note that we do

not perform any training on these unstable trajectories. We only use them to generate a

guess, r̂∗b , of what the unobserved reservoir fixed point might be. If the feedback reservoir

has no fixed point near r̂∗b , then the next step may not converge and yield a large error (see

below), or may converge to a distant fixed point.

Now that we can generate guesses for where the reservoir fixed points are, we use a root-

finding method (specifically, the Newton-Raphson method) to converge to the true feedback

reservoir fixed point. Essentially, the fixed-point equation of the feedback reservoir,

h(r) = −r + g((A+BW)r + Cc∗ + d)], (5.35)

is a set of nonlinear equations whose roots are the fixed points. Hence, we use our fixed point

94

guesses, r̂∗i , as the initial condition of the optimization, and iterate the Newton-Raphson

method to converge to the true fixed point r∗i . Given a point r̂∗i that is close to the true

fixed point, the update rule is

r̂∗i (n+ 1) = r̂∗i (n)− Jh(r̂∗i (n))−1h(r̂∗i (n)), (5.36)

where Jh(r̂∗i (n)) is the Jacobian of h evaluated at r̂∗i (n). To evaluate the goodness of the

optimization, we use the quadratic product of the fixed point equation as a measure of error

err(r∗) = h(r̂∗i (n))>h(r̂∗i (n)). (5.37)

We note that in all of our examples, the error was less than 10−20.

Finally, to achieve the second part of tracking the fixed points as we change the control

parameter c, we note that the estimated guess of the feedback reservoir fixed points, r̂∗i , as

well as the true post-optimization fixed points, r∗i , are generated at a specific value of c∗.

Once the optimization is complete, we incrementally change c∗, use the previous feedback

reservoir fixed point r∗i as the initial condition for the new optimization, and rerun the

Newton-Raphson method at the new value of c∗.

5.6. Poincaré Sections & the Period Doubling Bifurcation Diagram

In the main text, we construct the period doubling bifurcation diagram of the Lorenz system

at ρ ≈ 100 using a Poincaré section, which keeps track of the Lorenz trajectory as it passes

through the section. The Lorenz system evolves in Euclidean space R3. For the purposes of

this manuscript, the Poincaré section is a 2-dimensional plane that transversely intersects

the trajectory of the Lorenz system. Specifically, we choose the plane x = 0. By keeping

track of when the trajectory passes through x = 0, we obtain a simple and quantitative

summary of the complex flow.

When ρ = 100, the Lorenz system evolves about a 1-cycle, such that for each period, the

95

trajectory passes from x > 0 to x < 0 once, and from x < 0 to x > 0 once. To distinguish

between the two, we focus on the latter intersection where the trajectory passes from x < 0

to x > 0. Another way to state these conditions is to say that we track the point xi

where the Lorenz trajectory passes through x = 0 when ẋ > 0. For this one cycle, every

intersection is at the same point. However, when ρ = 99.8, the trajectory becomes a 2-cycle,

and every other intersection is at the same point. As the bifurcation continues to generate

2k-cycles, every 2k intersection is at the same point.

To generate the period doubling bifurcation diagram, we run the true Lorenz system or

reservoir prediction at some value of ρ or c, respectively, until the transient period is over

and the trajectories have fallen onto the appropriate 2k cycle. Then, we track the points of

intersection of the trajectory with x = 0, ẋ > 0, and plot the z-coordinate of these points

of intersection as a function of either ρ or c.

5.7. Simulation Parameters

All simulations were performed using either the tanh equations

1

γ
ṙ = −r + tanh(Ar + αBx+ βCc+ d), (5.38)

or the Wilson-Cowan (WC) model

1

γ
ṙ = −r +

1− rrr
1 + e−(Ar+αBx+βCc+d)

. (5.39)

• The elements of B and C were chosen densely, uniformly, and randomly between −1

and 1.

• For the tanh equations, the adjacency matrix A was chosen to be 10% dense, with

elements chosen randomly and uniformly between −1 and 1. Then, A was divided by

its largest real-component eigenvalue, and multiplied by 0.95.

96

• For the WC equations, the diagonals of AIE and AII were chosen randomly and

uniformly between 0 and 1, and off-diagonal entries set to 0. The matrices AEE

and AEI were chosen to be 10% dense with elements chosen randomly and uniformly

between 0 and 1, followed by a replacement of all diagonal entries (both zero and

non-zero) with random uniform elements between 0 and 1. Once these four matrices

were assembled into A, it was divided by its largest real-component eigenvalue, and

multiplied by 0.95.

• rr was chosen to be 0.2.

• The fixed points of the tanh reservoir were initialized as randomly and uniformly

distributed between [−1,−0.8]∪ [0.8, 1], and the appropriate bias d was chosen. This

selection ensures the fixed points are distributed 10% of the whole range above the

minimum (−1) and maximum (1) output of tanh.

• The fixed points of the WC reservoir were initialized as randomly and uniformly

distributed between [0, 0.1] ∪ [11
15 ,

12.5
15], and the appropriate bias was chosen. This

selection ensures the fixed points are distributed 10% of the whole range above the

minimum (0) and maximum (12.5/15) output of the WC with rr = 0.2.

• Each simulation has an associated time step, ∆t, throwaway simulation time per

example to forget the transient period, Twaste, and the training simulation time per

example, Ttrain.

• Each simulation also has an associated time constant, γ, and number of reservoir

neurons, N .

97

Simulation type ∆t Twaste Ttrain N γ α β

Introduction tanh 0.001 20 200 450 100 0.008 0.004

Translate: Lorenz tanh 0.001 20 200 450 100 0.008 0.004

Transform: Lorenz tanh 0.001 20 200 450 100 0.008 0.004

Bifurcate: Lorenz: ρ ≈ 28 tanh 0.001 20 200 450 100 0.008 0.004

Bifurcate: Lorenz: ρ ≈ 100 tanh 0.0002 10 50 300 100 0.002 0.002

Bifurcate: saddle-node tanh 0.001 20 200 50 10 0.5 0.001

Bifurcate: pitchfork tanh 0.001 20 200 50 10 0.5 0.001

Jansen linkage tanh 0.001 50 50 900 1 0.7 0.013

Flight of the Lorenz tanh 0.001 20 200 450 100 0.004 0.002

Appendix: translate Lorenz WC 0.001 20 200 600 40 0.005 0.001

Appendix: transform Lorenz WC 0.001 20 200 600 40 0.005 0.001

Appendix: bifurcate Lorenz WC 0.001 20 200 600 40 0.005 0.001

Appendix: translate multiple tanh 0.001 20 200 450 100 0.008 0.004

Appendix: transform multiple tanh 0.001 20 200 450 100 0.008 0.004

Table 1: Simulation parameters

5.8. Simulation Method

To simulate both the input and reservoir dynamics, we used a 4-th order Runge-Kutta

numerical integration. For the dynamics of the Lorenz attractor,

ẋ = f(x),

the Runge-Kutta computes the following values

kx1 = ∆t · f (x(t))

kx2 = ∆t · f
(
x(t) +

kx1

2

)
kx3 = ∆t · f

(
x(t) +

kx2

2

)
kx4 = ∆t · f (x(t) + kx3) ,

(5.40)

and evolves the state forward using

x(t+ ∆t) = x(t) +
1

6
(kx1 + 2kx2 + 2kx3 + kx4). (5.41)

98

The simulation of the reservoir dynamics requires more careful analysis, because it is a

system driven by external inputs. For the general reservoir dynamics

1

γ
ṙ = f(r,x, c) = −r + g(Ar +Bx+ Cc+ d), (5.42)

the algorithm to update the reservoir states is given by

kr1 = ∆t · f (r(t),x(t), c(t))

kr2 = ∆t · f
(
r(t) +

kr1
2
,x(t) +

kx1

2
, c(t) +

kc1
2

)
kr3 = ∆t · f

(
r(t) +

kr2
2
,x(t) +

kx2

2
, c(t) +

kc2
2

)
kr4 = ∆t · f (r(t) + kr3,x(t) + kx3, c(t) + kc3) ,

(5.43)

and the reservoir state evolves forward according to

r(t+ ∆t) = r(t) +
1

6
(kr1 + 2kr2 + 2kr3 + kr4). (5.44)

Hence, when we simulate the Lorenz state x(t), we also save the corresponding values

kx1, · · · , kx3 to use in the reservoir update algorithm. Finally, we note that in our sim-

ulations, we slowly vary the control input c(t) over time, requiring us to determine the

trajectory of c(t) beforehand. However, we require the differential equation that generated

c(t) to solve for the final parameters kc1, · · · , kc4. We assume the differential equations that

generate c are constant, such that between time t and t+ ∆t, the rate of change of c(t) is

given by

ċ(t) = f(c(t)) =
c(t+ ∆t)− c(t)

∆t
. (5.45)

99

Such dynamics yield the parameters

kc1 = ∆t · f (c(t)) = c(t+ ∆t)− c(t)

kc2 = ∆t · f
(
c(t) +

kc1
2

)
= ∆t · f

(
c(t+ ∆t) + c(t)

2

)
= c(t+ ∆t)− c(t)

kc3 = ∆t · f
(
c(t) +

kc2
2

)
= ∆t · f

(
c(t+ ∆t) + c(t)

2

)
= c(t+ ∆t)− c(t).

(5.46)

The same integration is used with feedback where 1
γ ṙ = f(r, c) = −r + g(Rr + Cc+ d).

5.9. Training for tanh

Using the dynamical equations and RK4 integration scheme, we first generated the training

inputs x(t). As examples, we consider the single direction translation and transformation

examples described in the main text using four Lorenz attractor inputs. The first was the

original Lorenz time series x(t), and the remaining three were translations or rotations of the

original. Each of these four time series were simulated for T = Twaste + Ttrain = 20 + 200 =

220 time. At a time step of ∆t = 0.001, each time series x(t) contained T
∆t = 220, 000

simulation time points, stored in data matrix X0 for the original attractor. Because we

also kept the 4 outputs of the RK4 numerical integration scheme, the data matrix X0 had

dimensions variables × time steps × RK4 = 3 × 220, 000 × 4. With three additional time

series for translation or rotation, X1, X2, X3, we concatenated the four time series along the

second dimension into the full matrix X with dimension 3× 880, 000× 4.

Using this Lorenz data matrix X, and a corresponding control input data matrix, we drove

the reservoir to generate r(t), contained in a reservoir data matrix D that was of size

N × 880, 000. For every T
∆t = 220, 000 time steps, we threw away the first Twaste

∆t = 20, 000

time points, as this simulation allowed both the Lorenz and reservoir systems to forget their

initial conditions. The remaining Ttrain
∆t = 200, 000 time points of each attractor were kept

for training. This process yields a Lorenz training matrix Xtrain of dimension 3×800, 000 (as

we throw away the RK4 simulation parameters after driving the reservoir), and a reservoir

100

training matrix Dtrain of dimension N × 800, 000.

Finally, we seek a training matrix W of dimension 3×N that minimizes the matrix 2-norm

‖WDtrain −Xtrain‖2. (5.47)

Specifically, we use MATLAB’s command lsqminnorm, that not only minimizes this norm,

but in the event that multiple solutions exist, also minimizes the norm of W .

5.10. Training for Wilson-Cowan

When training the Wilson-Cowan system, we made a slight modification to preserve some

of the biophysically motivated aspects of the connectivity. Recall that while the excitatory

populations were allowed to connect to both excitatory and inhibitory populations of any

oscillator, the inhibitory populations were only allowed to connect to the excitatory and

inhibitory population of their own oscillator. Hence, if we perform feedback using all N

populations (comprising N/2 oscillators), then the inhibitory populations would gain many

more connections that were previously not allowed.

Hence, when we perform training and feedback for the WC reservoir, we only use the activity

of the excitatory populations to reconstruct the input. Put another way, if the reservoir

state is organized such that the excitatory populations E are ordered before the inhibitory

populations I where

r(t) =

E
I

 , (5.48)

then the matrix W is only trained on the first N/2 states of r. Hence, W , which has

dimensions M × N , contains non-zero entries for the first N/2 columns, and zero entries

for the second N/2 columns. Then, when we perform feedback such that R = A+BW , we

preserve the original structure whereby inhibitory populations only connect to populations

of their own oscillator.

101

5.11. Truncation of the Block-Hessenberg Matrix

To understand the mechanism of learning translations and transformations, we had taken

the differential of the reservoir feedback dynamics,

(I −KA)dr′ +
1

γ
dṙ′ = K(BWdr′ + Cdc). (5.49)

If we take time derivatives of the left-hand side of this equation, we obtain



(I −KA) 1
γ I 0 0 0 · · ·

↓ ↘ ↘

−K̇A (I −KA) 1
γ I 0 0 · · ·

↓ ↘ ↓ ↘ ↘

−K̈A −2K̇A (I −KA) 1
γ I 0 · · ·

↓ ↘ ↓ ↘ ↓ ↘ ↘

−
...
KA −3K̈A −3K̇A (I −KA) 1

γ I · · ·
...

...
...

...
...

. . .





dr′

dṙ′

dr̈′

d
...
r ′

...



,

(5.50)

where the element in the i-th row and j-th column has a coefficient

pi,j =

i− 1

j − 1

 for j ≤ i, (5.51)

102

according to Pascal’s triangle. For the translation examples, we can write the continued

time derivatives of the differential relation as



H0 H−1 0 0 · · ·

H1 H0 H−1 0 · · ·

H2 2H1 H0 H−1 · · ·

H3 3H2 3H1 H0 · · ·
...

...
...

...
. . .


︸ ︷︷ ︸

J



dr′

dṙ′

dr̈′

d
...
r ′

...


≈



K

K̇

K̈

...
K
...


(BP + C)dc, (5.52)

where H−1 = 1
γ I, H0 = I −KA, and Hi = −K(i)A is the i-th time-derivative of KA. This

matrix is a block matrix (each element H is a matrix), and is specifically a block-Hessenberg

matrix (zero above the first block-super diagonal).

a 0th order approximation b 1st order approximation c 2nd order approximation d 3rd order approximation

time

x1
x2

x3

r1

r2

r3

r4

Figure 30: Predicted Change in Reservoir States Given a Change in Control
Parameter. Reservoir time series generated by driving the reservoir with the original
Lorenz input with c = 0 (dark gold), and the predicted time series from solving for dr′ after
training on translated examples and changing the control parameter ∆c = 20 (light gold),
along with their output projections (blue and green, respectively). These approximations
were taken by computing the inverse Eq. 5.55 for (a) k = 0, (b) k = 1, (c) k = 2, and (d)
k = 3.

The goal is to solve for dr′ with respect to dc. If we truncate J to a finite-dimensional

103

matrix such that

J '

J11 J12

J21 J22

 , (5.53)

where

J11 =



H0

H1

...

Hk−1


, J12 =



H−1, 0, · · · , 0

H0, H−1, · · · , 0

...
...

. . .
...

pk,2Hk−2, pk,3Hk−3, · · · , H−1


,

J21 =

[
pk+1,1Hk

]
, J22 =

[
pk+1,2Hk−1 pk+1,3Hk−2 · · · H0

]
,

(5.54)

Then, the closed form solution for the first N rows of J−1 (the first block) can be written

as

[J−1](1:N,:) ' −(J22J
−1
12 J11 − J21)−1

[
−J22J

−1
12 I

]
. (5.55)

However, in reality, J is not a finite matrix, but an infinite dimensional matrix. An im-

portant fact to verify, then, is whether there exists a sufficiently large value of k to yield

an accurate inversion. While proving that this inverse converges is outside the scope of

this work, we numerically demonstrate in what follows that after k = 1, successive terms

do not perceivably change the results. Specifically, we solve for dr′ with respect to dc for

k = 0, 1, 2, 3.

As a reference for translation, at k = 0, the approximation becomes

dr′ ≈ H−1
0 K(BP + C)dc, (5.56)

and at k = 1, we obtain the approximation used in the main text. The 0-th order approx-

imation at k = 0 yields no change (Fig. 30a), where the predicted reservoir states (light

gold) are identical to the original states (dark gold). The first order approximation at k = 1

(Fig. 30b) yields a change in the reservoir states that outputs to the expected translation

104

in spatial coordinates. Taking more terms in the approximation (k = 2, Fig 30c; and k = 3,

Fig. 30d) yields no perceivable change in either the reservoir states or their outputs.

5.12. Simulation of the Jansen Linkage

Because the Jansen linkage is a kinematic system, it requires several modifications to sim-

ulate its motion. We begin by considering two nodes i and j that are connected by a link

k of fixed squared length l = l2k, and located at xi and xj , respectively. The link fixes the

distance between the two nodes, such that

(xi − xj)>(xi − xj) = l. (5.57)

The allowed infinitesimal motions are given by taking the total derivative of the constraint

(xi − xj)>(dxi − dxj) = 0. (5.58)

Now we consider all N nodes of the linkage and compile their positions into a vector,

x = [x1;x2; ...;xN], and similarly consider all E links and compile the distance constraints

into a vector l(x). By taking the gradient of l(x) with respect to x at a specific position

x∗, we obtain all allowed infinitesimal motions of the linkage

∇xl|x=x∗ = R(x∗)dx, (5.59)

where R(x) is called the rigidity matrix, and has dimensions E × 2N .

To simulate the motion, we must first ensure that there is no change in link lengths. Hence,

the nodes must move in a way that obeys

R(x∗)dx = 0. (5.60)

We notice that because x∗ is already a fixed constant, R(x∗) is also a matrix of constants.

105

Therefore, the equation is linear in the variables dx, and all motions reside in the nullspace

dx ∈ N (R(x∗)). (5.61)

The Jansen linkage does not contain any kinematic singularities, where the row-rank of

R(x∗) loses rank. Hence, the dimension of the nullspace is given simply by 2N − E = 4.

Among these four directions are three rigid body motions: the x-translation, y-translation,

and rotation. In our simulations, we quotient out the rigid body motions, and evolve

forward the node positions along the direction of the remaining motion using a step size of

0.05. To ensure numerical accuracy, we evolve forward these kinematics using a 4-th order

Runge-Kutta approximation.

5.13. Quantifying Prediction Accuracy of Lorenz Computations

In the text, we visually confirm that the reservoir was able to translate, transform, and

bifurcate the Lorenz example. To quantify how close the predicted manipulation is to the

target manipulation, we numerically compute the shortest Euclidean distance between every

point in the predicted time series and the true Lorenz. We begin by simulating a Lorenz

time series for Twaste = 20 at ∆t = 0.001 as an transient period that we throw away, then

simulate the Lorenz for T = 40, 000, or 40 million time points, as the reference attractor

point set, which we collect into a 3× T
∆t matrix Y .

Next, we take the predicted reservoir output, and undo the target manipulation. Specifically,

in the translation, changing c by 1 should translate the reservoir’s representation by P =

[1; 0; 0] along the x1 direction, according to

xc(t) = x0(t) + Pc. (5.62)

Hence, we simulate the reservoir at c = −40 and c = 40, thereby generating reservoir time

series r−40(t) and r40(t), which project to x̂−40(t) = Wr−40(t), and x̂40(t) = Wr40(t).

106

Then, we perform the inverse manipulation as x̂−40(t) + 40P and x̂40(t)− 40P .

Similarly, for the transformation, we multiply the time series by I + cP , where

xc(t) = (I + Pc)x0(t), P =


−0.012 0 0

0 0 0

0 0 0

 . (5.63)

Hence, we simulate the reservoir at c = −40 and c = 40, thereby generating the reser-

voir time series and projections. Then, we perform the inverse manipulation as (I −

40P)−1x̂−40(t) and (I + 40P)−1x̂40(t). For the bifurcation, because the manifold was not

expected to be manipulated, no inverse is performed.

a tanh translate b tanh transform c tanh bifurcate 1 d tanh bifurcate 2

e Wilson-Cowan translate f Wilson-Cowan transform g Wilson-Cowan bifurcate 1 h Wilson-Cowan bifurcate 2

fre
qu

en
cy

log10(distance)

-3 -2 -1 0

0.4

0.3

0.2

error
step size

0.1

0
-3 -2 -1 0

0.4

0.3

0.2

0.1

0
-3 -2 -1 0

0.4

0.3

0.2

0.1

0
-3 -2 -1 0

0.4

0.3

0.2

0.1

0

fre
qu

en
cy

-3 -2 -1 0

0.4

0.3

0.2

0.1

0
-3 -2 -1 0

0.4

0.3

0.2

0.1

0
-3 -2 -1 0

0.4

0.3

0.2

0.1

0
-3 -2 -1 0

0.4

0.3

0.2

0.1

0

log10(distance) log10(distance) log10(distance)

Figure 31: Tanh & Wilson-Cowan Attractor Similarity. The distributions of the
shortest Euclidean distance between all predicted attractor points (after performing the
inverse manipulation) and the reference Lorenz attractor set (blue), as well as of the Eu-
clidean distance of one simulation step for (a) the tanh reservoir undergoing translation in
the x1 direction, (b) the tanh reservoir undergoing a squeeze in the x1 direction, (c) the
tanh reservoir undergoing bifurcation after training on 4 values of ρ = 21, 22, 23, and 24 at
one wing, and (d) the tanh reservoir undergoing bifurcation after training on 2 values of
ρ = 23 and 24 at both wings. (e–h) The same distributions for the respective manipula-
tions for the Wilson-Cowan oscilltaor networks. Each histogram contains the distribution
of distances for 50 random instantiations of reservoir and Lorenz parameters.

107

Finally, we take each of the inverse manipulation time series, and compute the shortest

Euclidean distance of each time point to the reference attractor point set Y . We perform

this comparison across 50 random instantiations of reservoir and Lorenz parameters for each

manipulation (i.e. translation, transformation, bifurcation) and reservoir type (i.e. tanh,

Wilson-Cowan). Then, we plot the distribution of distances for all tanh and Wilson-Cowan

examples (Fig. 31).

5.14. Translations, Transformations, & Bifurcations with Wilson-Cowan

Networks

-40 40c

Figure 32: Translation of the Lorenz Representation Using Wilson-Cowan Oscil-
lator Networks. Output of the feedback reservoir after being trained on 4 time series of
a Lorenz attractor translated in the x1 direction at c = 0, · · · , 3. By varying c from −40 to
40, the representation shifts in the x1 direction.

x3

x1
x2

side view top view

a training b prediction c training d prediction

x3
x1

x2 40

-40

c

Figure 33: Transformation of the Lorenz Representation Using Wilson-Cowan
Oscillator Networks. (a,c) Training examples and (b,d) predicted output of the feedback
reservoir after being trained on 4 time series of a Lorenz attractor squeezed in the x1

direction at c = 0, · · · , 3. By varying c from −40 to 40, the representation squeezes in the
x1 direction.

Here, we replicate the results of the main text for the translation (Fig. 32), transformation

(Fig. 33), and bifurcation inference (Fig. 34) of the Lorenz system at ρ ≈ 28 using the

108

a training b prediction: c: 0 → 5 c prediction: c: 5 → 0 d prediction: c: 0 → 5

x3

x1

x2

ρ = 23
ρ = 24

c

0

5

Figure 34: Bifurcation of the Lorenz Representation Using Wilson-Cowan Oscil-
lator Networks. (a) Training examples of a pre-bifurcated Lorenz attractor, where the
Wilson-Cowan reservoir was trained at c = 0 for ρ = 23, and c = 1 for ρ = 24. (b) Output
of the feedback reservoir. By varying c from 0 to 5, the representation correctly bifurcates
into the Lorenz-shaped manifold. (b) By varying c back to 0, the reservoir representation
displays transient chaos. (c) By varying c back to 5, the fixed points bifurcate again to
become unstable.

Wilson-Cowan oscillator.

5.15. Translation in Multiple Directions

In the main text, we demonstrated that a reservoir can translate its representation of a

Lorenz attractor along the x1 direction. Specifically, we took an untranslated Lorenz time

series x0(t), and generated three additional training examples xc(t) for c = 1, 2, 3 such that

xc(t) = x0(t) + c


1

0

0

 . (5.64)

We then drove the reservoir using these four training examples and an additional control

parameter c that we also varied from c = 0, · · · , 4. Afterwards, we performed the feedback,

and translated the reservoir’s representation by varying the external control parameter c

from −40 to 40. We reproduce this translated representation here (Fig. 35a). We show the

same output of the feedback reservoir trained on four examples translated in the x2 direction

(xc(t) = x0(t) + c[0; 1; 0]) and in the x3 direction (xc(t) = x0(t) + c[0; 0; 1]) (Fig. 35b,c).

Hence, we demonstrate that the reservoir can learn these translations in arbitrary directions.

109

x3

x1
x2

a translate x1 b translate x2 c translate x3

c
-40 40

Figure 35: Translation of the Lorenz Representation in all Three Spatial Direc-
tions. (a) Output of the feedback reservoir after being trained on 4 time series of a Lorenz
attractor translated in the x1 direction at c = 0, · · · , 4. By varying c from −40 to 40, the
representation shifts in the x1 direction. (b) The same scheme is employed for translations
in the x2 direction, and (c) in the x3 direction.

5.16. Different Types of Transformations

In the main text, we demonstrated that a reservoir trained on the original Lorenz attractor

x0(t) and on three transformed examples xc(t) = (I + cP)x0(t) for c = 1, 2, 3, was able to

continuously interpolate and extrapolate the transformation on its internal representation,

even for control inputs between −40 and 40. Here, we consider a stretch in the x3 direction,

a shear in the x1 direction, and a shear in the x1 and x2 directions. Specifically, we use the

110

three matrices

Pstretch,x3 =


0 0 0

0 0 0

0 0 0.012

 ,

Pshear,x1 =


0 0 0

0.012 0 0

0 0 0

 ,

Pshear,x1,x2 =


0 −0.012 0

0.012 0 0

0 0 0

 ,

(5.65)

to train our reservoir for c = 0, · · · , 4. For each transformation, we drive the reservoir with

the input Lorenz attractors xc(t) and an additional control input c for c = 0, · · · , 4. We

then train the reservoir by applying the feedback method used in the main text. Finally, we

drive the autonomous feedback reservoir by varying the control parameter from c = −40 to

c = 40 for these three transformations (Fig. 36).

a stretch x3

x1

x2

x3

b shear x2 c shear x1 and x2

x1
x2

side view top view side view top view

c
-40 40

Figure 36: Transformation of the Lorenz Representation Using Stretch & Shear
in Several Spatial Directions. (a) Output of the feedback reservoir after being trained
on 4 time series of a Lorenz attractor stretched in the x3 direction at c = 0, · · · , 4. By
varying c from −40 to 40, the representation stretches in the x3 direction. (b) The same
scheme is employed for a shear in the x2 direction, and (c) for a shear in the x1 and x2

directions.

111

CHAPTER 6 : Conformational Control of Mechanical Networks

6.1. Motivation

Many physical systems can be thought of as networks in which contacts, bonds, linkages,

or hinges connect physical elements to one another. From the study of force chains in

granular materials (Papadopoulos et al., 2018) to the study of fiber networks in polymer

physics (Picu, 2011), it has become clear that both regular and irregular patterns of con-

nectivity between physical elements constrain the bulk properties of the material, including

its response to stress and shear (Vermeulen et al., 2017), its ability to transmit acoustic

signals (Bassett et al., 2012), and its capacity for thermal and electrical transport (Shi

et al., 2014). These networks are also integral to the ever-evolving exploration of everyday

machines in robotics (Detweiler et al., 2007) and biology (Patek et al., 2007b). Perhaps

one of the simplest and most powerful conceptual advances in understanding such systems

was the development of structural rigidity theory (Crapo, 1979b), built on a seminal early

paper on constraint counting from J.C. Maxwell (Maxwell, 1864a), in which one predicts

the flexibility of ensembles formed by rigid bodies connected by flexible linkages (Grimm

and Dorner, 1975). Frames – consisting of rigid elements (sites) and the connections be-

tween them (bonds) – are said to be rigid when the distance between two points can only

be altered by changing the length of at least one connection.

Notably, even in rigid frames, mechanical networks can undergo conformational changes

that drastically alter their function, such as exotic shape transformations in metamaterials

(Bertoldi et al., 2017a), and allosteric regulation of enzymes where substrate binding in

one region changes the structure and function of a distal active site (Guo and Zhou, 2016).

Characterizing and subsequently controlling such changes is of critical import to a theoret-

ical understanding of these systems, which in turn will support their novel design and use.

Yet, such characterization and control is challenged by the fact that perturbation to a few

regions in the network can lead to complex, wide-scale changes in the material’s form that

has to-date eluded formal treatment. Some have sought to address this challenge by design-

112

ing networks through kinematic synthesis, tracing arbitrary trajectories with a trace point

using only a few actuators (Kempe, 1875). Others have used computational heuristics such

as tuning-by-pruning to predict mechanical responses in multiple nodes (Goodrich et al.,

2015). Given that such heuristics exist, it is now natural and timely to build a simple theory

for how a mechanical network’s topology constrains its control, and how novel topologies

can be constructed to produce specified control functions. Here we develop and exercise

such a simple theory by building on prior work on the deformation of general and bipartite

frames (Bolker and Roth, 1980).

6.2. Network Connectivity & Mathematical Framework

Figure 37: Graphical Representations of Maxwell Frames. (a) An example of a rigid
frame in d = 2 dimensions with N = 6 nodes and E = 9 edges, marked with the length of
the edge connecting node 1 to node 2, and the length of the edge connecting node 2 to node
3. (b) Two nodes connected by one edge, with the position vectors from an arbitrary origin
specified in purple, and allowed motion vectors in green, with (c) a graphical representation
of the orthogonality of position and motion vectors satisfying Eq. 6.1. (d) Graph of a rigid
three-node system with the three rigid body translation and rotation motions in green.
(e) Graph of a non-rigid five-node system with the fourth non-rigid body motion shown
with green arrows, and parameterized by the continuous variable θ. (f) Graph of four red
specified nodes with desired motion ẋS shown with green arrows, potential edges in gray
dashed lines, and unspecified nodes in blue.

113

Consider a set of nodes V = {1, · · · , N} in d-dimensional space, where any node i has

position specified by column vector xi(t) ∈ Rd at some time t ≥ 0. Further, consider a set

of E edges E ⊆ V × V, where each edge k connecting node pair (i, j) has a squared length

proportional to gk = 1
2(xi − xj)T (xi − xj) (Fig. 37a). To enforce rigid edges, we require

that the length remains constant in time (Fig. 37b) by setting the time derivative equal to

0,

ġk = (xi − xj)T (ẋi − ẋj) = 0, (6.1)

where the infinitesimal motion ẋi − ẋj is perpendicular to the edge xi − xj . (Fig. 37c).

For convenience, we collect all node positions into column vector x = [x1; · · · ;xN] ∈ RdN ,

and all edge lengths into column vector g(x) = [g1; · · · ; gE] ∈ RE . Because the motions are

linear with respect to the positions, we can write the constraints Eq. 6.1 in matrix form

ġ(x, ẋ) = R(x)ẋ = 0, (6.2)

where the k-th row of the rigidity matrix R = R(x) has all zero entries except (xi − xj)T

that multiplies ẋi, and (xj − xi)T that multiplies ẋj . Because Eq. 6.2 is linear in the

motions, the motions satisfying the equation reside in the nullspace of the rigidity matrix

ẋ ∈ N (R).

Among these motions are d(d+ 1)/2 finitely movable rigid body translations and rotations

that preserve distances between all nodes. In addition, we define a conformational motion

to be a non-rigid body motion that satisfies the instantaneous distance constraints Eq. 6.2.

Provided that there are no states of self stress (Guest, 2006) such that R has full row rank,

these conformational motions are finitely deformable (see Methods), and the number of

finite conformational motions D is given (Asimow and Roth, 1978) by the number of state

114

variables subtracted by the number of constraints and rigid body motions

D = d ·N − E − d(d+ 1)

2
.

As a simple example, consider a triangle (Fig. 37d) in d = 2 dimensions with N = 3

nodes and E = 3 edges, such that D = 0. The only motions are rigid body x-translation,

y-translation, and rotation, and the frame’s configuration is fully determined by fixing 3

non-redundant x or y coordinates. Next we consider a more complex network ofN = 5 nodes

and E = 6 edges such that D = 1 (Fig. 37e). This conformational motion is parameterized

by θ, which requires the setting of an additional fourth coordinate.

In pursuing the understanding and control of mechanical materials, we are often interested

in both the positions and motions xS , ẋS ∈ Rdn in a subset of n nodes (which we call the

specified nodes) VS ⊂ V, but not those xU , ẋU ∈ Rdm, of the remaining m nodes (which we

call the unspecified nodes) VU ⊂ V. Considering a subset of specified nodes is common in

the study of several materials, such as those that have a negative Poisson ratio (Fig. 37f).

In what follows, we demonstrate how these principles can be used to design networks that

finitely generate these desired motions by controlling only a few nodes.

6.3. Conic Sections & Overlaps of Bipartite Networks

We begin by considering bipartite frames with only edges between all specified and unspec-

ified nodes such that E = VS×VU (Fig. 38a). We then fix the positions and motions xS , ẋS

of the specified nodes as constants, and solve for all xUj , ẋUj of the unspecified node j

that satisfy the edge constraints Eq. 6.2. In doing so, we retain the specified motions in

the conformational motion. As examples in d = 2, we show one position (blue node) and

motion (blue arrow) of an unspecified node that satisfies edge constraints connected to two

(Fig. 38b) and three (Fig. 38c) specified nodes (red nodes). We will refer to the solution

space M⊆ Rd as the set of all unspecified node positions xUj ∈M that satisfy constraints

115

Figure 38: Solution Space of Unspecified Nodes is Determined by the Specified
Nodes. (a) Example of a bipartite network with specified nodes shown in red, unspecified
nodes shown in blue, and allowed edges shown in gray. (b) The position (xUj , location
of blue node) and motion (ẋUj , blue arrow) of an unspecified node j connected to two
specified nodes (red), and (c) three specified nodes (also red), with motion ẋS shown with
green arrows. In both cases, the blue node and the blue arrow represent one position xUj
and one motion ẋUj satisfying Eq. 6.1. (d) One dimensional solution spaces M of all
possible positions (blue curve) and motion (blue arrows) of an unspecified node (in blue)
connected to all specified nodes (in red) with specified motions (hollow green arrows) for
d = 2, and (e) for d = 3. (f) Two dimensional solution spaces M in d = 2, and (g) in
d = 3. (h) Solution spaces where the specified node positions and motions are redundant
to yield a larger than expected solution space for d = 2, and (i) for d = 3.

(Eq. 6.2).

We begin solving for solution space M by writing the n edge constraints from Eq. 6.2


(xS1 − xUj)T (ẋS1 − ẋUj)

...

(xSn − xUj)T (ẋSn − ẋUj)

 = 0,

116

and we rewrite them by treating the unspecified node positions and motions as variables v


ẋTS1 xTS1 −1

...
...

...

ẋTSn xTSn −1


︸ ︷︷ ︸

M


xUj

ẋUj

c


︸ ︷︷ ︸

v

=


xTS1ẋS1

...

xTSnẋSn


︸ ︷︷ ︸

b

, (6.3)

where c = xTUjẋUj (see Methods). By temporarily omitting this nonlinearity in c, the

system is linear in the variables v according to Mv = b, with all solutions to v as

v = Wα+ v∗. (6.4)

Here, W is a matrix with k columns as linearly independent vectors in the null space N (M),

and vector v∗ is a particular solution provided that one exists in the column space b ∈ C(M).

Finally, we reincorporate the nonlinearity c = xTUjẋUj (see Methods) to yield a quadratic

boundary condition on α

[
αT 1

] A B

BT C


α

1

 = 0. (6.5)

Due to the constraint Eq. 6.5, the solution space has dimension dim(M) = k−1, which are

points for k = 1, conic sections for k = 2, and quadric surfaces for k = 3.

For the general case where the specified node positions and motions are independent (M

has full row rank), the solution space has dimension dim(M) = 2d−n, equal to the number

of variables subtracted by the number of constraints. For example, we obtain dim(M) = 1

in d = 2 with n = 3 specified nodes (Fig. 38d), and also in d = 3 with n = 5 specified nodes

(Fig. 38e). By removing a specified node, we remove an edge constraint and increase the

solution space dimension to 2 (Fig. 38f,g).

We can also increase the solution space dimension by creating redundancies in the specified

117

node positions and motions such that the rows of M are linearly dependent. For example, in

Fig. 38h, the fourth row m4 of M corresponding to the motions and positions of the bottom

left node can be written as linear combinations of the first three rows m1 = [1, 1, 1, 1,−1]

(top right), m2 = [−1, 1,−1, 1,−1] (top left), and m3 = [1,−1, 1,−1,−1] (bottom right),

such thatm4 = m2+m3−m1 in d = 2, and similarly in d = 3 (Fig. 38i). In summary, these

curves and surfaces characterize the only positions xUj of an unspecified node connected

to all specified nodes that retain the specified conformational motions. We extend these

principles to incorporate connections between unspecified nodes in the Appendix in Chapter

7.

6.4. Network Design Through Judicious Constraint Placement

Figure 39: Construction & Control of Frames with Specified Outward Motion.
(a) Schematic in d = 2 of four specified nodes with desired outward motion (hollow green
arrows) and the corresponding solution space of unspecified node positions (blue curve)
satisfying Eq. 6.4. (b) Example bipartite frames with D = 1 finite conformational motion
(solid green arrows), constructed from placing 2 unspecified nodes, 8 edges, and (c) 4
unspecified nodes, 12 edges. (d) Schematic in d = 3 of eight specified nodes with desired
outward motion (hollow green arrows), with a spherical unspecified node solution space
(blue surface). (e) Bipartite frame with D = 1 finite conformational motion, constructed
by placing 5 unspecified nodes, 32 edges, and (f) 6 unspecified nodes, 35 edges.

118

Here we detail how to judiciously constrain a system of n specified nodes until the desired

motion ẋS is the only finite conformational motion. By adding one unspecified node along

M connected to all specified nodes, we add d state variables and n constraints while re-

taining ẋS as a conformational motion. Similarly, adding m unspecified nodes along M

with E independent edges constrains our system to have D conformational motions given

by Eq. 6.6

D = d(n+m)− E − d(d+ 1)

2
. (6.6)

We define our process of judicious constraint placement as follows. First, we specify the

position xS and motion ẋS of n > d specified nodes such that they do not all lie on a line

in d = 2 or on a plane in d = 3, and we compute the solution space M. Next, we place

unspecified nodes xUj ∈M and edges such that (i) we have D = 1 conformational degree of

freedom, (ii) there are no states of self stress, and (iii) there are no rigid subgraphs. These

conditions ensure that ẋS is in the only finitely deformable conformational motion (see the

Appendix in Chapter 7).

As an example in d = 2, we specify an outward motion in an n = 4 node system (Fig. 39a)

with a 1-dimensional solution space. By adding m = 2 nodes with E = 8 edges (Fig. 39b),

and m = 4 nodes with E = 12 edges (Fig. 39c) along M, we achieve ẋS as the only finite

conformational motion with D = 1. We demonstrate the same result in d = 3 for n = 8

specified nodes (Fig. 39d–f). By judiciously adding unspecified nodes and edges along our

solution space, we retain the desired motion ẋS as the sole finite conformational motion.

6.5. Multi-Mode Construction & States of Self-Stress

Using this constraint principle, we create networks with two distinct finite conformational

motions. Each specified motion ẋS , ẋ
′
S generates a solution space M,M′ according to

Eq. 6.4. By placing our unspecified nodes at their intersection xUj ∈M∩M′, we constrain

119

Figure 40: Intersections of Solution Spaces for Multiple Non-Rigid Motions. (a)
Schematic of two sets of desired motions, ẋS (hollow light green arrows), and ẋ′S (hollow
dark green arrows) with corresponding solution spaces as light blue and dark blue curves,
respectively, for n = 3 specified nodes in d = 2 and (b) for n = 4 specified nodes in
d = 3. (c) The constructed network with the two finite non-rigid body conformational
motions shown with solid light and dark green arrows with 1 unspecified node in d = 2,
and (d) with 4 unspecified nodes in d = 3. (e) The constructed network that should have
D = 1 conformational motions by constraint counting, but is actually rigid due to pre-stress
stability in d = 2, and (f) in d = 3.

the system while allowing both motions. As examples in d = 2 for n = 3 specified nodes

(Fig. 40a), and in d = 3 for n = 4 specified nodes (Fig. 40b), we illustrate the solution spaces

of two stipulated motions, and place unspecified nodes at their intersection to yield D = 2

conformational motions (Fig. 40cd). Importantly, because D = 2, we can conform the

network along any linear combination of ẋS , ẋ
′
S , that requires specifying one extra degree

of freedom.

This method can further be used to characterize network geometries that induce self stress.

By constraining our network until D = 1 (Eq. 6.6), we expect only one conformational

motion in N (R). However, by placing unspecified nodes along the intersection of solution

spaces, we allow both desired motions ẋS , ẋ
′
S to remain as conformational motions in N (R).

120

This increase in the nullspace reduces the rank of R and forces a state of self-stress, allowing

us to create networks that are rigid with fewer bonds than required for rigidity, or with

branched finite motions (Fig. 40ef, see the Appendix in Chapter 7). Hence, we can generate

and avoid networks with self-stress by studying the placement of unspecified nodes at the

intersection of solution spaces (see the Appendix in Chapter 7).

6.6. Combining Network Modes for Potential Applications

Figure 41: Combining Network Motions by Merging Nodes & Adding Edges. (a)
Two independent outward moving modules in d = 2 from Fig. 39b, each with a D = 1
conformational motion, where the pairs of nodes circled in cyan are to be merged. (b)
The merged network with D = 1, with the one conformational degree of freedom shown
in green arrows. (c) A large network of many coupled modules in the expanded and (d)
contracted state, with bars to show the contraction distance from the expanded state.
(e) Two independent modules in d = 3, each with 7 degrees of freedom where the one
conformational motion is shown in green arrows, with the nodes to be merged circled in
cyan, and the edge to be added shown as a cyan line. (f) The combined network with one
conformational motion in the expanded state, and (g) in the contracted state.

Here, we discuss approaches to combine smaller frames for designing metamaterials and

allosteric networks. The key is to couple multiple bipartite modules, each with a D = 1

conformational motion, in a way that leaves the entire system with D = 1.

The natural way to couple networks is to combine nodes. Consider the previously designed

121

module in d = 2 with D = 1 as an outward motion (Fig. 39b). A system with two of

these modules (Fig. 41a) has two independent bodies, each with 3 rigid body motions and a

D = 1 conformational motion. By merging two pairs of nodes between modules, we remove

two nodes corresponding to four state variables (3 rigid body + 1 conformational), bringing

our system to D = 1 while combining our motions (Fig. 41b). This strategy requires that

the coupled nodes in each module do not move as a rigid unit. For modules such as these

that preserve specific symmetries (see the Appendix in Chapter 7), we can create network

lattices with properties such as a negative Poisson ratio (Fig. 41c,d).

We can further remove degrees of freedom by adding extra bonds between module nodes,

which becomes necessary in d = 3 as we must remove 7 state variables (6 rigid body and

1 conformational), but coupling two pairs of nodes only removes 6 state variables. For

example, consider two modules (Fig. 41e) in d = 3, each with D = 1. We remove 6

degrees of freedom by coupling the two overlapping nodes, and the last degree of freedom

by adding an extra bond between the modules (Fig. 41f), to yield a coupled network with

D = 1 that compounds our motions (Fig. 41g) (see the Appendix in Chapter 7). This long-

range coupled conformational regulation of separately synthesized subunits is a hallmark

of allostery in enzymes (Changeux and Edelstein, 1998) such as ATCase (Allewell, 1989;

Macol et al., 2001b; Cockrell et al., 2013).

6.7. Design of Large Displacements & Bistable Networks

Finally, we extend these principles to design networks that achieve large displacements. We

first fix some desired initial xS(0) = x0
S and final xS(T) = x∗S specified node positions

as constants, and we treat the initial xU (0) = x0
U and final xU (T) = x∗U positions of

unspecified nodes as variables. Next, we stipulate that the edge lengths at the initial and

final positions are equal (x0
Si−x0

Uj)
T (x0

Si−x0
Uj) = (x∗Si−x∗Uj)T (x∗Si−x∗Uj) with equilibrium

length l∗ij , and rewrite these constraints such that they are linear with respect to variables

122

Figure 42: Designing Finite Motions & Bistable Networks with Cooperativity.
(a) A schematic of the initial (M0, dark blue) and final (MT , light blue) solution spaces
in d = 2 for the finite outward motion of four specified nodes with desired initial (solid
circle) and final (empty circle) positions. (b) Construction of a network with the D = 1
conformational motion with simulated trajectory. (c) The initial (dark blue) and final (light
blue) solution space for four specified nodes with finite motion in hollow green arrows. (d)
The top view of the initial and final conformations of a bistable network with D = 0 motions,
where the transition is forced from the nodes marked with green arrows by overcoming (e)
an energy barrier. (f) A side view of the same network forced from a different set of nodes
marked by green arrows by overcoming (g) a different energy barrier. (h) Coupling two of
these bistable modules (left, right) through an intermediary network (center) with a D = 1
outward conformational motion by coupling the nodes circled in light blue. (i) An example
of cooperativity with transitions from the initial state to intermediary state x(T1), and then
to the final state x(T2) by forcing the nodes in green arrows, where (j) the first transition
requires more energy than the second transition.

x0
Uj ,x

∗
Uj to yield,


2x0T

S1 −2x∗TS1 −1

...
...

...

2x0T
Sk −2x∗TSk −1


︸ ︷︷ ︸

M


x0
Uj

x∗Uj

c


︸ ︷︷ ︸

v

=


x0T
S1x

0
S1 − x∗TS1x

∗
S1

...

x0T
Skx

0
Sk − x∗TSkx∗Sk


︸ ︷︷ ︸

b

, (6.7)

123

with nonlinearity c = x0T
Ujx

0
Uj−x∗TUjx∗Uj . We then derive the same solution v = Wα+v∗ as

in Eq. 6.4 with quadratic constraint as in Eq. 6.5 with minor modifications (see Methods).

Here, we denoteM0 andMT as all initial and final positions of unspecified nodes satisfying

Eq. 6.7. As an example in d = 2, we illustrate M0 in dark blue, MT in light blue, and

simulate a network withD = 1 for a large outward motion in four specified nodes (Fig. 42ab).

We can construct bistable networks by first constraining these networks until D = 0, and

then replacing the rigid edges with linear springs such that the network potential energy is

E(t) =
1

2

∑
(i,j)∈E

kij(lij(t)− l∗ij)2.

By construction, the initial and final conformations have E(0) = E(T) = 0, while the D = 0

condition requires an intermediary energy barrier. We illustrate the solution spacesM0,MT

for four specified nodes (Fig. 42c), and constrain our network by placing nodes along M0

until D = 0. Interestingly, certain networks display asymmetries, such that reaching the

final state by forcing one pair of nodes (Fig. 42d) requires overcoming an energy barrier

(Fig. 42e) that is different then forcing another pair of nodes (Fig. 42fg).

While these bistable networks already capture more biophysical quantities in protein al-

lostery such as finite conformations and energy barriers, we can further design cooperativity

into our networks. Cooperativity is a ubiquitous phenomena in proteins where the binding

of a substrate facilitates the subsequent binding of more substrate, and is famously ob-

served in the hemoglobin heterotetramer. We begin with two of our bistable networks, and

we couple them to an intermediary network with a D = 1 outward conformational motion

by overlapping nodes (Fig. 42h). We first displace the nodes of one module to transition

the network conformation from rest x(0) to an intermediary bound state x(T1) (Fig. 42i)

by overcoming an energy barrier (Fig. 42j). Then, we displace the nodes of the second

module to reach the double bound state x(T2), requiring substantially less energy. Because

the network is symmetric, the order of node displacement does not matter.

124

6.8. Discussion

Deciphering principles of control in mechanical systems is of fundamental importance to

understanding and optimizing the function of allosteric and cooperative enzymes, auxet-

ics, multistable networks, and tunable metamaterials. Taken together, our work provides

fundamental analytic and geometric principles for the construction, characterization, and

control of motions and large finite displacements in 2-D and 3-D mechanical frames.

Important prior work in material design has focused on the use of algorithms to tune

the infinitesimal responses of mechanical networks and packings (Goodrich et al., 2015;

Rocks et al., 2017a). In contrast, our approach provides an analytic characterization of

all networks that achieve desired responses in 2 and 3 dimensions for both small and large

displacements. Hence, our characterization is complete and invariant to any algorithm,

cost function, or initial condition of network topology and geometry. We fully extend these

benefits to networks with critical geometries, and design networks with fundamentally finite

and sequential properties such as cooperativity.

Important prior theoretical contributions provide valuable conditions for motions of bipar-

tite frames (Whiteley, 1984), or consider the properties and modification of predetermined

structures, such as bistabilities of the Miura-ori tessellation (Silverberg et al., 2014a), and

topological soft modes at dislocations in Kagome and square lattices (Paulose et al., 2015).

Prior work has also sought to systematically enumerate lattices that yield auxetic behav-

ior (Körner and Liebold-Ribeiro, 2015). Importantly, these works require a pre-existing

structure, and do not address arbitrary and heterogeneous desired motions. Our approach

characterizes the full space of network solutions to achieve these arbitrary motions, and

avoids complications associated with local minima and initial network configurations.

Having gained the tools to generate desired motions in complex networks, we begin think-

ing about applications in physics, biology, medicine, and engineering. One such application

may be a bottom-up approach to designing cooperativity and allostery in proteins (Lukin

125

and Ho, 2004) using known protein structural motifs and simulations to design macroscopic

conformational changes. Another application is the design of materials with two indepen-

dently controllable modes of deformation that behave auxetically or non-auxetically under

different perturbations (Lee et al., 2012). These tools could also characterize solution spaces

of networks with a desired motion, and use these spaces to search for existing materials with

these motions (Dagdelen et al., 2017). Finally, we can design networks to generate precise

and complex distributions of spatial forces using few actuators for complex tasks such as

grasping in 3 dimensions (Yu Zheng and Wen-Han Qian, 2005). In any application, we can

develop a battery of modules that can be coupled to yield even more complex responses,

simplifying the network design process into a module-coupling problem.

Importantly, when designing networks with large finite displacements, the choice of un-

specified node positions may not allow for a zero energy transition from specified initial to

final states. While both states are guaranteed to themselves require 0 energy, and placing

unspecified nodes to have D = 1 conformational motions guarantees a finite 0 energy dis-

placement from these states, these 0 energy trajectories may not connect to each other. This

phenomena arises as a bifurcation in the kernel of the energy function, and is a fascinating

direction of future research.

126

CHAPTER 7 : Appendix to Conformational Control of Mechanical Networks

7.1. Defining a Projection from Solution Coordinates to Spatial Coordi-

nates

Our solution space for unspecified node positions and motions is given by linear combina-

tions v = Wα + v∗ constrained by

[
αT 1

]
Q

α
1

 = 0. However, when solving for the

intersection of solutions for the design of multiple motions ẋS1, ẋS2, we have multiple ma-

trices M1,M2, where the variables α1,α2 are not necessarily represented in the same spatial

coordinates. To meaningfully solve for these intersections, we must first transform our so-

lution coordinates into a common space in d dimensions (e.g., x, y, z). A crucial component

of this transformation is the dimension of the coordinate space, given by dim(N (M)) = m.

7.1.1. Case 1: Number of Solution Coordinates: m = d

If m = d, then we have at least d solution coordinates in α. To convert to spatially common

coordinates, we seek a transformation matrix P such that

β
1

 = P

α
1

. We desire that

the d entries of β correspond to spatial coordinates (e.g., x, y, z for d = 3). Recall that

v =


xUj

ẋUj

c

 =

[
W v∗

]α
1

 ,

such that linear combinations of the first to d rows correspond to the spatial coordinates

we seek as the first d entries of β. Specifically, we can write

B =

[
Im×m 0m×1 0m×2d−m

]
,

127

as a matrix that isolates the first to m = d rows via multiplication to yield

β
1

 =

BW Bṽ∗

01×m 1


α

1

 = P

α
1


With this transformation, we can create a transformed quadratic form

[
αT 1

]
Q

α
1

 =

[
βT 1

]
P−TQP−1

β
1

 =

[
βT 1

]
Q̃

β
1

 = 0,

where the first d entries of the solution β will be in spatial coordinates.

7.1.2. Case 2: Number of Solution Coordinates: m = d− 1

If the number of original coordinates ism = d−1, then we have one fewer solution dimensions

than spatial dimensions, and a direct linear transformation matrix P is insufficient. We

move forward by treating the coordinate of the particular solution v∗ as a part of the

homogeneous solution in N (M) such that

v =


xUj

ẋUj

c

 =

[
W v∗

]α
α̂

 ,

where α̂ should equal 1. Then similar to before, we select the spatial coordinates of our

solution using matrix

B =

[
Id×d 0d×1 0d×d

]
,

to get the transformation

β
β̂

 = B

[
W v∗

]α
α̂

 = P

α
α̂

 .
128

However, because α̂ must be 1, we have the extra constraint that for p ∈ Rd×1 where

p = [0; · · · ; 0; 1],

pT

α
α̂

 = α̂ = pTP−1

β
β̂

 = 1.

Hence, our transformation leads to the same form as the previous case

[
αT 1

]
Q

α
1

 =

[
βT 1

]
P−TQP−1

β
1

 =

[
βT 1

]
Q̃

β
1

 = 0,

with the added condition that

pTP−1

β
β̂

 = 1.

Intuitively, what we have done is artificially extend our solution space to d coordinates such

that our quadratic constraint defines a d − 1 dimensional manifold, and we realize that

the true solution space lies at the intersection of this manifold and the d − 1 dimensional

hyperplane defined by pTP−1

β
β̂

 = 1. This way, we can change the coordinates of our

original quadratic forms to d spatial coordinates, and we find the intersection of these

quadratics and mathematically well defined hyperplanes.

7.2. Characterizing the Set of All Solution Spaces

In the text, we explore several specific examples of placing our unspecified nodes at the

intersection of two solution spaces xUj ∈M1 ∩M2, and the resulting multi-mode motions

and states of self-stress. The two solution spacesM1,M2 arose as a result of two indepen-

dent desired conformational motions ẋS1, ẋS2 from particular specified node positions xS .

Here, we will characterize the set of solution spaces in a systematic way. Specifically, given

our choice of specified node positions xS , we solve for all possible solution spaces Mi that

129

could be generated by any ẋSi.

We begin by placing the solution space coordinates α into common spatial coordinates

β = x as demonstrated in the previous section. As our intent is to study the intersection of

these spaces that only happen meaningfully and non-trivially in dim(M) = d−1 dimensions

as shown in the main text, we will restrict our discussion to these cases. Then

[
αT 1

]
Q

α
1

 =

[
βT 1

]
Q̃

β
1

 =

[
xT 1

]
Q̃

x
1

 = 0,

where x correspond to the standard coordinate basis elements in Rd.

Next, we note a useful property of these quadratic systems. If Q̃1 and Q̃2 are matrices that

satisfy the quadratic constraint for some point x such that

[
xT 1

]
Q̃1

x
1

 =

[
xT 1

]
Q̃2

x
1

 = 0,

then any linear combination Q̃ = a1Q̃1 + a2Q̃2 also satisfies the constraint at those points

[
xT 1

]
Q̃

x
1

 =

[
xT 1

]
(a1Q̃1 + a2Q̃2)

x
1


= a1

[
xT 1

]
Q̃1

x
1

+ a2

[
xT 1

]
Q̃2

x
1


= 0.

130

Finally, we consider all conformational motions in our system of equations


ẋTS1 xTS1 −1

...
...

...

ẋTSn xTSn −1


︸ ︷︷ ︸

M


xUj

ẋUj

c


︸ ︷︷ ︸

v

=


xTS1ẋS1

...

xTSnẋSn


︸ ︷︷ ︸

b

.

Here, we are interested in conformational motions, and thus we remove rigid body trans-

lations and rotations that generate trivial solution spaces. Importantly, we note that if M

has full row rank, then there always exists a particular solution to the system of equations.

However, with redundancies, M loses rank, and the motions ẋS must be selected so as to

retain a particular solution such that b ∈ C(M). Then, each of these p independent motions

satisfying the above equation generates a quadratic matrix Q̃i, and a corresponding solution

space Mi. Hence, the set of all possible solution spaces given by positions xS is

[
xT 1

]
Q̃

x
1

 =

[
xT 1

](p∑
i=1

aiQ̃i

)x
1

 = 0.

LetM1 be the solution space corresponding to the desired specified motion ẋS and quadratic

matrix Q̃1. Then for any nontrivial linear combination of matrices Q̃∗ =
∑p

i=2 aiQi gener-

ating solution spaceM∗, placing unspecified nodes at the intersection xUj ∈M1∩M∗ will

serve to generate multiple motions or states of self stress.

As an example, we consider the d = 3 example in the text, with outward motion ẋS and

another motion ẋ∗S , that generate quadratic matrices Q̃, Q̃∗ (Fig. 43a). We can generate

another quadratic matrix by taking linear combinations of the first two, that yields differ-

ent curve geometries (Fig. 43b–c). Importantly, we see that the intersection between the

original curve generated by Q̃ and any linear combination with Q̃∗ remains constant. We

demonstrate this consistency with another independent motion ẋ∗∗S .

131

Figure 43: Solution Space Intersections. (a) Solution spaces of an outward motion (dark
green arrows and blue curve), and another motion (light green arrows and blue curve) for
four specified nodes. (b–c) Solution space of a modified outward motion (light green arrows
and blue curve) by taking a linear combination of the two motions from panel (a). Note
how the intersection of the two curves remains constant. (d–f) A second example of this
same process for another independent specified motion.

7.3. Expanding on the Judicious Constraint Process

Here we elaborate on the implications of the judicious constraint process components, and

we expand on how they might be achieved in a more systematic way.

First, we stipulate that we have n > d specified nodes that do not all lie on a line in d = 2

or on a plane in d = 3. The n > d condition is required because n = d = 2 nodes always lie

on a line, and n = d = 3 nodes always lie on a plane. Also, if n = d, then each unspecified

node adds d state variables and d constraints, thereby making it impossible to reduce the

number of degrees of freedom. The requirement that the nodes do not lie on a line or plane

ensures that our nullspace vectors in N (M) contribute independently to determining the

unspecified node positions (see the section on Dimensionality & Redundancies).

132

Next, we place unspecified nodes along our solution space xUj ∈ M while avoiding states

of self-stress. If the solution space dimension is 1 less than the embedding dimension

dim(M) = d − 1, then this avoidance can be done in a principled way. First, we find the

solution space M1 corresponding to the desired specified motion ẋS . Next, we generate

the remaining solution spacesM2, · · · ,Mp by generating the remaining p− 1 independent

conformational motions by any means (e.g., by randomly generating motions). Finally,

because the intersection of these dim(M) = d−1 manifolds has dimension dim(M1∩Mi) =

d−2, we place each unspecified node i so as to avoid intersection with a different undesired

solution space such that xUi /∈M1∩Mi+1. Because the solution space intersectionM1∩Mi

generated by quadratic matrices Q̃1, Q̃i is the solution to all nontrivial linear combinations

of the quadratic matrices, avoiding overlap with each remaining solution spaceM2, · · · ,Mp

ensures avoiding overlap with any combination of them.

If the solution space dimension is 2 less than the embedding dimension (only feasible for

dim(M) = 1 in d = 3 dimensions), the situation is more nuanced. This solution space will

be a conic section that is the intersection of a quadric surface and a plane (see the section

on Defining a Projection to Spatial Coordinates). If 3 unspecified nodes are placed along

a plane, then any additional node on that plane can be written as a linear combination of

the original 3, yielding redundant constraints and self-stress. To avoid this situation, we

can place up to 3 unspecified nodes along M, and we can constrain the remaining system

by considering subsets of specified nodes that yield solution spaces of dimension 2 (see the

section on Avoiding Self-Stress in 3 Dimensions).

Finally, we require that there are no rigid subgraphs, for which there are many efficient

algorithms to use after the addition of each unspecified node.

7.4. Rigidity Matrix Dimensions, Spaces, & Degrees of Freedom

The dimensions of the rigidity matrix are given by R ∈ RE×dN , with E rows (number of

edges) by dN columns (number of state variables). If our edge constraints are independent,

133

which is equivalent to saying that the rows of R are linearly independent, then the total

number of degrees of freedom in our system is given by NDOF = dN − E. Recall that any

rigid body contains d(d+ 1)/2 rigid body motions as degrees of freedom. Then the number

of degrees of freedom must be at least NDOF ≥ d(d+ 1)/2. Importantly, for the edges to be

independent, we must have at least d(d+ 1)/2 more state variables than edges, such that

dN ≥ E + d(d+ 1)/2,

causing R to have more columns than rows, and causing the rank of R to become rank(R) =

E.

As a result, if the edges are independent such that the rows of R are linearly independent,

then rank(R) = E, and the dimension of the nullspace N (R) is given by the difference

between the number of state variables and constraints, or dim(N (R)) = dN − E. If the

rows of R are not linearly independent, then the rigidity matrix loses rank rank(R) < E,

and the nullspace increases dimension such that dim(N (R)) > dN − E. We note that the

nullspace dimension can never be less than dN − E as long as dN − E > 0.

7.5. Implications of States of Self-Stress in Infinitesimal & Finite Motions

Here, we explore in more detail states of self-stress by studying the rigidity matrix in higher-

order rigidity conditions, and the set of all solution spaces. Intuitively, self-stress occurs

when a set of edge constraints are redundant, such that the constraint conditions overlap. A

trivial example is to place two edges between the same pair of nodes corresponding to two

identical rows in R. The more complex scenario we face is when multiple edges between

different node pairs conspire to make one row of R a linear combination of the other rows.

In either case, the rigidity matrix loses rank, and the nullspace dimension is larger than

expected by constraint counting dim(N (R)) > dN − E.

Self-stress is most commonly encountered in overdetermined systems with more edges than

134

needed for rigidity such that the system bears internal forces. The unique scenario we

face is self-stress in underdetermined systems with fewer edges than needed for rigidity.

To explore these special cases, we recall that given specified node positions xS , the set

of all solution spaces M1, · · · ,Mp are given by linear combinations of quadratic matrices

Q̃ = a1Q̃1 + · · · + apQ̃p from all independent specified conformational motions satisfying

the constraint equations. Here, we reiterate the implication of self-stress in the infinitesimal

regime, followed by an exploration of motions that extend to the finite regime.

7.5.1. Self-Stress in the Infinitesimal Regime

Suppose we begin with a set of specified nodes with positions xS and desired motion ẋS ,

and we place unspecified nodes xU and corresponding edges along solution space M satis-

fying linear constraints Eq. 6.1 such that dN − E = d(d + 1)/2 + 1. As a result, we know

that the desired motion ẋS is contained in a nullspace vector ẋ ∈ N (R) by design, and

we expect dim(N (R)) = d(d + 1)/2 + 1. The method fails when there is a set of redun-

dant edges such that rank(R) < E, and the nullspace dimension is greater than expected

when dim(N (R)) > dN − E, such that there is at least one other independent vector in

the nullspace ẋ∗ ∈ N (R). This vector ẋ∗ corresponds to a second unintentional infinites-

imal specified node motion ẋ∗S that generates its own solution space M∗, and any linear

combination of ẋ, ẋ∗ are in the nullspace b1ẋ+ b2ẋ
∗ ∈ N (R).

7.5.2. Self-Stress in the Finite Regime

Recall that the rigidity matrix R = R(x) is the evaluation of the first-order time derivative

of the nonlinear edge constraints ġ(x, ẋ) = 0 at a particular node position x (see the

section on Finite versus Infinitesimal Motions). If our node and edges generate self-stress

at x, then the rigidity matrix loses rank, such that we have more conformational motions

in the nullspace, ẋ, ẋ∗ ∈ N (R) than expected. Further, because we can write any nth

135

derivative of the positional constraints as

R(x)x(n) = f(x, · · · ,x(n−1)),

if the rigidity matrix does not have full rank, then there may not exist a solution of x(n) to

satisfy the derivative condition. For a particular set of x, · · · ,x(n−1), if this scenario ever

occurs, then that set of positions, motions, and further derivatives are not finite.

Here we outline and demonstrate the utility of a second order derivative test. Specifically,

given positions x and motions ẋ that satisfy the first-order constraint ġ(x, ẋ) = R(x)ẋ = 0,

we must find a second derivative ẍ such that

R(x)ẍ = −R(ẋ)ẋ.

We can test if the right-hand side is in the columnspace of the rigidity matrix R(ẋ)ẋ ∈

C(R(x)) by first computing vectors in the left nullspace of the rigidity matrixw ∈ N (RT (x)),

and projecting them onto the right-hand side. If the right-hand side exists in the columnspace

of R(x), then wTR(ẋ)ẋ = 0 for all w.

Our situation of self-stress adds some complexity to this requirement, because we must not

only test any one motion in the nullspace ẋ ∈ N (R), but all linear combinations of motions

because in our states of self-stress, there are guaranteed to be at least the desired specified

motion ẋS , and the unintentional motion ẋ∗S . In the general case, let Ẋ = [ẋ1, · · · , ẋk] be a

matrix whose columns are the linearly independent conformational motions in the nullspace

N (R), and let ẋ = Ẋγ be a linear combination of these motions. Then for each vector in

the left nullspace w ∈ N (RT), we must satisfy

wTR(ẋ)ẋ = wTR(γ1ẋ
1 + · · ·+ γkẋ

k)(γ1ẋ
1 + · · ·+ γkẋ

k) = 0.

BecauseR(ẋ) only contains first-order elements of its arguments, it is linear in its arguments,

136

thereby giving us the property R(γ1ẋ
1 + γ2ẋ

2) = γ1R(ẋ1) + γ2R(ẋ2). Then we write

wTR(ẋ)ẋ = wT
(
γ1R(ẋ1) + · · ·+ γkR(ẋk)

)
Ẋγ

= γ1w
TR(ẋ1)Ẋγ + · · ·+ γkw

TR(ẋk)Ẋγ

=

[
γ1 · · · γk

]
wTR(ẋ1)Ẋγ

...

wTR(ẋk)Ẋγ



= γT


wTR(ẋ1)Ẋ

...

wTR(ẋk)Ẋ

γ

= γT


wTR(ẋ1)ẋ1 · · · wTR(ẋ1)ẋk

...
. . .

...

wTR(ẋk)ẋ1 · · · wTR(ẋk)ẋk


︸ ︷︷ ︸

S

γ

= 0.

Here, we require some linear combination γ such that γTSγ = 0 for all w ∈ N (R(x)). We

also note that due to the property R(v)u = R(u)v, matrix S is symmetric and therefore

has real eigenvalues. Hence, if S is positive (or negative) definite such that it only contains

positive (or negative) eigenvalues, then a solution cannot exist, and the system has no finite

deformable motions. This type of network is called pre-stress stable. Examples of the design

of these networks in d = 2 and d = 3 are shown in the main text.

The alternative is that a solution to this constraint exists, and that the solution takes the

form of some k− 1 dimensional quadratic solution. Because S is symmetric, we can always

find an orthonormal diagonalization S = PDP T with P as a square matrix with column

eigenvectors, and D a diagonal matrix with corresponding eigenvalues. Then with a variable

137

basis change δ = P Tγ, we rewrite the condition as

wTR(ẋ)ẋ = δTDδ =
k∑
i=1

λiδ
2
i = 0,

and because γ = Pδ, we substitute to get ẋ = Ẋγ = ẊPδ as valid motions to second-order.

7.6. Designing & Analyzing Finite Motions in Networks with Self-Stress

Here we apply the ideas of second-order rigidity testing to some examples. We begin with

the examples in the main text to demonstrate pre-stress stability, followed by an example

of a network that sits at the branching point of two finitely deformable motions.

Figure 44: Constructing a Network that is Pre-Stress Stable. (a–d) A schematic of
two stipulated motions (light and dark green arrows) corresponding to two solution spaces
(light and dark blue curves) for all subsets of 3 specified nodes (red) for a 4 specified
node network, with a connected unspecified node (blue) at their intersection. (e) The full
network with D = 1 expected conformational motions, but 0 finitely deformable ones due
to pre-stress stability.

In this example, we have four specified nodes with a radially outward motion shown in

dark-green arrows, and a second motion shown in bright-green arrows. We then select all

138

sets of 3 specified nodes, compute the solution spaces for each of these sets, and place an

unspecified node connected to these 3 specified nodes at their intersection (Fig. 44a–d).

This construction yields the final network (Fig. 44e) with 16 state variables and 12 edges

for an expected conformational motion. However, because the unspecified nodes sit at the

intersection of solution spaces of two motions, we have self-stress. The eigenvalues of matrix

S for this system are all positive, and thereby γTSγ 6= 0.

Figure 45: Constructing a Network at the Intersection of Branching. (a–d) A
schematic of two stipulated motions (light and dark green arrows) corresponding to two
solution spaces (light and dark blue curves) for all subsets of 3 specified nodes (red) for a 4
specified node network, with a connected unspecified node (blue) at their intersection. (e)
Full network with two possible finitely deformable trajectories shown in red and blue lines.
The motions that serve as solutions to the second-order equations are shown in bright and
dark green arrows.

Next, we change the stipulated motion of the light-green arrows, and we place unspecified

nodes at the intersection of solution spaces for all subsets of 3 specified nodes (Fig. 45a–d),

yielding the final network Fig. 45e. In this case, there are two possible branched trajectories

that serve as valid finite motions, but linear combinations of them are not allowed. Here,

the eigenvalues of S are positive and negative, and the solutions ẋ = Ẋγ to the condition

γTSγ = 0 are shown in bright and dark green arrows, while the finite simulated trajectories

that preserve edge lengths are shown in red and blue lines.

139

7.7. Combining Networks with Repeating Modules

In the main text, we demonstrate the couping of modules that preserve symmetries in

motions to create larger networks. Here, we will outline how this combining is achieved,

and we will discuss conditions for when these combined motions extend to the finite regime.

a b c

d e f

ti
m
e

Figure 46: Combination of Identical Modules with Nonlinear Symmetries
Through Node Merging. (a) A single module in 2 dimensions with 4 specified nodes
(red), 2 unspecified nodes (blue), with one non-rigid body degree of freedom (green arrows).
(b) Three replicates of the same module placed side-by-side, with the nodes to be merged
grouped in the gray curves. (c) Nonlinear motion of the combined network after merging
grouped nodes, where the only non-rigid body motion is traced from blue to yellow for each
node. (d) Two of these composite networks, aligned side-by-side with nodes to be merged
grouped in the gray curves. (e) Full composite network with 4 horizontal and 4 vertical
replicate modules with one non-rigid body degree of freedom in the expanded form, and (f)
in the contracted forms.

To begin, we consider a simple module (Fig. 46a) in 2 dimensions with 4 specified nodes, 2

unspecified nodes, and 1 non-rigid body degree of freedom shown in green arrows. Notice

that this module has two symmetries: one along the horizontal axis, and one along the

vertical axis. We can replicate this module along one of these directions (Fig. 46b), and

we couple their specified nodes according to the gray curves. Note that this system of 3

140

modules has 4 × 3 = 12 degrees of freedom, and by grouping the two specified nodes into

one node, we remove 4 nodes and 4 × 2 = 8 state variables to yield 12 − 8 = 4 degrees of

freedom. We show this composite network (Fig. 46c), with the one non-rigid body degree

of freedom shown in the full non-linear trajectory with curves for each node parameterized

by a time variable from blue to yellow.

We can then replicate this composite network (Fig. 46d), and we notice that for the full

non-linear conformational response, the grouped red specified node motions overlap. What

we mean here is that as this time parameter is varied from 0 to 1, the x-coordinates of

each grouped pair of nodes are equivalent, and the y-coordinates of each grouped pair of

nodes is only offset by a single constant c(t) across all groups, which is simply a rigid body

translation. Alternatively, we can say that if we were to combine the node pairs in each

group, we only require the addition of rigid body motions to one composite’s nonlinear

trajectory to exactly follow the other composite’s trajectory in the grouped nodes. As an

example, we replicate the single module in Fig. 46a four times horizontally, and four times

vertically, to create a networked sheet with one non-rigid body degree of freedom that we

show in the expanded form (Fig. 46e), and in the contracted form (Fig. 46f). Hence, through

the simple replicating and merging of simple modules that preserve certain symmetries, we

can create materials that replicate the behavior of one module on a larger scale.

7.7.1. Applying the Higher-Order Derivative Test for Finite Motion

To complement this analysis, we consider network combination from the perspective of

rigidity matrix spaces and higher-order derivative tests to avoid having to perform a point-

by-point match of simulated finite trajectories. To begin, we consider the combination of

modules in this node-wise fashion, and we note that each module is designed to have only

one conformational motion (Fig. 46a). By coupling the modules in node pairs (Fig. 46b), we

generate a larger network with one combined conformational motion (Fig. 46c). In general,

the preservation of instantaneous conformational motions in node coupling is the first re-

141

quirement for finite motion. Importantly, because each module only has one conformational

motion, if many modules are coupled together such that a motion in one module excites a

motion in another, then the combined network has at most one conformational motion.

Next we consider extensions to the finite case. Given a combined network with positions x

and infinitesimal conformational motion ẋ ∈ N (R(x)), we test second-order rigidity

R(x)ẍ = −R(ẋ)ẋ,

by finding all vectors in the left nullspace V = N (R(x)T), and by checking whether there

exists a second positional derivative ẍ that satisfies the above condition by searching for

nontrivial projections onto the left nullspace. If V TR(ẋ)ẋ = 0, then a solution ẍ exists.

Otherwise, the motion ẋ does not extend finitely, and our system is pre-stress stable. Of

course, to guarantee motion, we must check all infinite derivatives. However, this condition

has the considerable value of identifying networks that are second-order rigid.

Finally, we note that this test is unnecessary when adding one module at a time to one

cluster. In the case of d = 2, the coupling is very simple, where two nodes of one module

merge with two nodes of another. Each module has 4 degrees of freedom (3 rigid body and

1 conformational), and merging two nodes removes four of these degrees of freedom such

that the total system is left with 3 rigid body, 1 conformational motion. Similarly, in d = 3,

the merging of 2 nodes and adding of one edge removes 7 degrees of freedom (6 rigid body

and 1 conformational). This process removes the appropriate number of degrees of freedom

without generating self-stress, and can be performed with no reservation, and the resulting

network will always have 1 finite conformational motion.

We must be careful when performing couplings between two modules at more than 2 nodes

(Fig. 46d), as combining more than 2 nodes removes more than 4 state variables, and

we must ensure that the states of self-stress generated by this process are orthogonal to

142

higher-order motion derivatives. That is, to satisfy

R(x)x(n) = f(x, · · · ,x(n−1)),

we require that the self stress of the system V = N (R(x)T) be orthogonal such that

V Tf(x, · · · ,x(n−1)) = 0.

7.7.2. Combining Networks Through Judicious Constraint Placement

Consider a set of |VS | = n specified nodes embedded in d dimensions with coordinates

xS ∈ Rdn, and with desired displacements ẋS ∈ Rdn. In general, the solution space of

an unspecified node j with 2d variables (position xUj and motion ẋUj) constrained by

connections to k specified nodes has dimension 2d − k. For n > 2d, we generally cannot

place unspecified nodes connected to all n specified nodes in a manner that preserves desired

motions ẋS .

Instead, we can partition the n nodes into p non-overlapping primary modules Pi ⊆ VS

where |Pi| ≤ 2d nodes and Pi∩Pj = ∅, and we judiciously constrain each module individually

through the judicious placement of unspecified nodes to have d(d + 1)/2 + 1 degrees of

freedom. Then, we can couple these modules by constraining a second set of coupling

modules Ck ⊂ {Pi ∪ Pj} such that |Ck| ≤ 2d, while ensuring the entire network has the

necessary number of degrees of freedom to achieve the desired motion.

As an example in d = 2, we partition a set of 6 specified nodes with desired motions

(Fig. 47a) into two primary modules P1, P2 and two coupling modules C1, C2 (Fig. 47b)

where |P1| = |P2| = |C1| = |C2| = 3. We judiciously constrain the primary modules

to have 4 degrees of freedom, and we also judiciously constrain coupling modules C1, C2

(Fig. 47c) until the final network has 4 degrees of freedom, with our desired motion as the

one non-rigid body motion (Fig. 47d). As another example in d = 3, we partition a set of

143

a

b c

d

f

h

g

e

Desired Motions Constrain Final NetworkPartition

Primary

Coupling

Primary

Coupling

Figure 47: Construction of Large Network Motions Through the Judicious Cou-
pling Between Non-Intersecting Modules. (a) Example in d = 2 of six specified node
positions (red) and motions (hollow green arrows) with no solution for the placement of
an unspecified node. (b) Partitioning of specified nodes into two primary modules (P1, P2,
purple curve), coupled by two coupling modules (C1, C2, light blue curve). (c) Construction
of primary modules P1, P2 through judicious constraint placement such that both primary
modules have four degrees of freedom, with the non-rigid motion in solid green arrows,
followed by the judicious constraining of the coupled modules C1, C2 by placing unspecified
nodes (blue circles) on the solution space (blue curve) to bring D of the total system (d)
down to D=1, with the only non-rigid body motion shown in solid green arrows. (e) Exam-
ple in d = 3 of six specified nodes with no unspecified solution space, (f) partitioned into
two primary modules (P1, P2, purple curve) and one coupling module (C1, light blue curve).
(g) Judicious constraint construction of primary module P1 to seven degrees of freedom by
placing four unspecified nodes along the unspecified solution space, and judicious constraint
placement of the coupling module C1 with a two dimensional solution space (blue surface)
to yield (h) the constructed network with the true and only non-rigid body motion (solid
green arrows).

6 specified nodes (Fig. 47e) into two primary modules P ′1, P
′
2 and one coupling module C ′1

(Fig. 47f), where |P ′1| = 5, |P ′2| = 1, and |C1| = 4. We first judiciously constrain P ′1 along

the unspecified solution space until it has D = 1; then we constrain the coupling module C ′1

144

(Fig. 47g) until the final network (Fig. 47h) has D = 1, with the desired motion as the only

non-rigid body degree of freedom. We see that by judiciously constraining these primary

and coupling modules, we can design arbitrary motions in large networks. If the modules

preserve some symmetries in their motions, this coupling can be performed much more

efficiently through the combining of nodes to create materials that replicate the module

motion on a larger scale. We note that this procedure is simply extended to the design of

networks with multiple motions ẋS1, ẋS2 by constraining the primary modules and the full

network to have d(d+ 1)/2 + 2 degrees of freedom.

7.8. Avoiding States of Self Stress in 3 Dimensions

One crucial condition to guarantee finitely deformable motions is to avoid states of self

stress during the judicious constraint process. A peculiar situation arises when designing

networks with 5 specified node positions and motions |VS | = 5 in d = 3. In general, for

5 specified nodes with independent motions, we have dim(Ã) = 2, with a one dimensional

solution space that is the intersection of a quadric surface (defined by the first four nodes)

and a plane (defined by the last node). Hence, all unspecified nodes in VU must be placed

coplanar to each other, which creates a bipartite network that provably has at least two

infinitesimal motions. These motions mean that if we judiciously constrain our 5 specified

nodes to try to achieve a total D = 1 conformational motion, we end up with 6 rigid body

motions, 2 infinitesimal motions, and 1 state of self stress.

For example, consider one of the modules in the main text in d = 3 concerning network

combination. The desired positions and motions of the specified nodes are

x1 =


2

0

1

 ,x2 =


1

0

2

 ,x3 =


3

0

3

 ,x4 =


3.5

−1

2.5

 ,x5 =


3.5

1

2.5

 ,

145

b ca d

Figure 48: Non-Planar Judicious Constraint of 5 Nodes in d = 3. (a) Planar 1-
dimensional solution space (blue curves) for the position and motion of an unspecified node
connected to 5 independent specified nodes. (b) 2-dimensional solution quadric surface
(blue) for one subset of four of the five specified nodes, and (c) for a different subset. (d)
Final constrained network with 7 degrees of freedom and no states of self stress, with the
finitely deformable conformational motion in green arrows.

ẋ1 =


−0.8

0

0.8

 , ẋ2 =


0.8

0

−0.8

 , ẋ3 =


−0.8

0

0

 , ẋ4 =


0

−0.8

0

 , ẋ5 =


0

0.8

0

 .

The motions were scaled to 0.8 for purely aesthetic reasons so that the figure arrows would

not overlap. Here, we solve for and visually demonstrate that the 1-dimensional solution

space lies along a plane (Fig. 48a), such that even if we added m = 4, E = 20 to theoretically

ND = 3(5 + 4)− 20 = 7, the generated state of self stress would not guarantee our desired

motion as the sole finitely deformable motion.

In response, we can add three coplanar unspecified nodes connected to all five specified nodes

along the 1 dimensional solution space (Fig 48a) to yield ND = 3(5 + 3) − 15 = 9. Then

we can remove the final two degrees of freedom by judiciously constraining two separate

subsets of 4 specified nodes (Fig. 48bc) along the quadric surface of solutions that are not

coplanar to the initial 3 unspecified nodes, to get our final network ND = 7, with the one

desired finitely deformable conformation degree of freedom (Fig. 48d).

146

7.9. Consideration of Non-Bipartite Edges in Modules

Here we discuss the placement of non-bipartite edges in our module design. First, we

consider edge k between specified nodes (i, j), that must satisfy

ġk = (xSi − xSj)T (ẋSi − ẋSj) = 0,

and we realize that an edge can only exist if the net motion is perpendicular to the bond

between them. Because the specified node positions and motions are set as desired, the

availability of these edges is determined by the required positions and motions.

Next we consider the placement of an edge k between unspecified nodes (i, j). Recall

that we write solutions to unspecified node positions and motions as v = Wα + v∗, with

homogeneous coordinates that must satisfy

[
αTi 1

] A B

BT C


αi

1

 =

[
αTj 1

] A B

BT C


αj

1

 = 0,

where α1,α2 are the coordinates for unspecified nodes 1 and 2, respectively. We can rewrite

these conditions as

αTi Aαi = −2BTαi − C

αTj Aαj = −2BTαj − C.

Now we incorporate the constraint placed by the edge

ġk = (xUi − xUj)T (ẋUi − ẋUj) = 0,

and we realize that because vi = Wαi + v∗ and vj = Wαj + v∗ have the first d entries as

the unspecified node positions, and the second d entries as the unspecified node motions,

147

we can write the vector

vd = vi − vj =


xUi

ẋUi

ci

−

xUj

ẋUj

cj

 =


xUi − xUj

ẋUi − ẋUj

ci − cj

 = W (αi −αj).

Then we can use the same matrix O used in the derivation of the quadratic constraint

O =
1

2


0d×d Id×d 0d×1

Id×d 0d×d 0d×1

01×d 01×d 01×1

 ,

and write our edge constraint as

ġk = (xUi − xUj)T (ẋUi − ẋUj)

= vTd Ovd

= (αi −αj)TW TOW (αi −αj)

= (αi −αj)TA(αi −αj)

= αTi Aαi +αTj Aαj − 2αTi Aαj

= −2BTαi − C − 2BTαj − C − 2αTi Aαj

= −2

[
αTi 1

] A B

BT C


αj

1


= 0,

such that our selection of αi,αj must satisfy

[
αTi 1

]
Q

αi
1

 =

[
αTj 1

]
Q

αj
1

 =

[
αTi 1

]
Q

αj
1

 = 0.

148

To gain an intuition for the implications of this constraint, suppose we fix one unspecified

node such that α∗i is fixed to satisfy

[
α∗Ti 1

]
Q

α∗i
1

 = 0. Then we can rewrite the edge

constraint as

ġ = α∗Ti Aα∗i +αTj Aαj − 2α∗Ti Aαj

=

[
αTj 1

] A −Aα∗i

−α∗Ti A α∗Ti Aα∗i


︸ ︷︷ ︸

Q∗

αj
1



= 0.

Hence, we see that if we fix the first unspecified node with α∗, then the second unspec-

ified node must lie at the intersection of two quadratic constraints:

[
α∗Tj 1

]
Q

α∗j
1

 =

[
α∗Tj 1

]
Q∗

α∗j
1

 = 0.

Figure 49: Constraining Networks with Non-Bipartite Edges. (a) Illustration of
solution space (dark blue curve) of 4 specified nodes (red nodes) with stipulated motions
(hollow green arrows), and an unspecified node (blue) on the solution space. (b) The
second solution space (light blue curve) satisfying the second conic equation involving Q∗.
(c) A non-bipartite network with no states of self-stress and a D = 1 finitely deformable
desired conformational motion (solid green arrows) by placing two unspecified nodes at the
intersection of curves.

As an example, we consider d = 3 dimensions for n = 4 specified nodes, and we place one

149

unspecified node xU1 ∈ M in the solution space (Fig. 49a). Next, we use this unspecified

node position to compute the second quadratic matrix Q∗ and the corresponding solution

space (Fig. 49b), and place nodes xU2,xU3 ∈M∩M∗ connected to all specified nodes and

unspecified node 1. We see that our final network has N = 7 nodes with dN = 21 state

variables, and E = 14 edges for a total of NDOF = 7 degrees of freedom, and a D = 1

conformational motion that is achieved with no states of self stress (Fig. 49c).

7.10. Network Combinations for Finite Motions

Figure 50: Combining Networks with Finite Positions. (a) Illustration of solution
spaces for the initial (dark blue) and final (light blue) unspecified node positions that retain
edge lengths at the initial (red, filled) and final (red, hollow) specified node positions. (b)
Simulated trajectory of a network with D = 1 conformational motions reaching the final
position. (c) Initial and (d) expanded networks of combined modules that exactly reach
the combined final positions.

The ability to design networks with specified finite initial and final positions serves even

greater utility when considering combining network motions. Similar to the infinitesimal

case, we can design modules that preserve symmetries in their finite trajectories, and also

reach a desired final position (Fig. 50a–b). Combining these modules into a larger network

will then begin at the combined initial positions (Fig. 50c), and exactly reach their combined

final positions (Fig. 50d).

150

7.11. Tristable Networks Using Intersections of Finite Motion Solution

Spaces

We demonstrate in the main text that we can generate bistable networks by first stipulating

some finite initial xS(0) = x0
S and final xS(T) = x∗S positions, computing a solution space

M, and placing unspecified nodes until we have D = 0 conformational motions. In this

case, the initial and final positions retain edge lengths such that the energy is zero at both.

However, because there are no conformational motions, the bonds must bend with some

energy cost to transition between them.

Here we start with some initial position x0
S , and we stipulate two finite final positions,

x∗S ,x
′
S , generating two solution spaces M∗,M′ (Fig. 51ab). By placing unspecified nodes

at their intersection xUj ∈ M∗ ∩M′ such that D = 0, we now have three finite positions

that have the same edge lengths, and therefore have 0 energy (Fig. 51cd).

Figure 51: Tristable Networks Using Solution Space Intersections. (a) Illustration
of solution spaces for the initial (dark blue) and final (light blue) unspecified node positions
that retain edge lengths at the initial (red, filled) and final (red, hollow) specified node
positions for the first stipulated final position x∗S , and (b) for the second stipulated final
position x′S . (c) Simulated minimum energy trajectories by setting boundary conditions on
the bottom two specified nodes to smoothly transition from initial to final state x∗S (d) and
final state x′S . Here, the color of the trajectory represents the potential energy stored in
the springs at that point. Note how the initial and both final positions have 0 energy.

151

CHAPTER 8 : Nonlinear Dynamics & Chaos in Conformational Changes of

Mechanical Metamaterials

8.1. Motivation

From cell membrane channels (Li et al., 2015) to medical stents (Mori and Saito, 2005),

mechanical systems play crucial roles in the citepp (Patek et al., 2007a; Macol et al., 2001a;

Burrows and Sutton, 2013) and engineered (Fu et al., 2016a; Zigoneanu et al., 2014; Surjadi

et al., 2019a) world. What makes these systems useful is their ability to change their

geometry in a coordinated way to amplify motion or to dramatically change size. Despite

their differences, each of these systems can be represented as a mechanical network, where

the rigid edges encode constraints due to physical limbs or forces, and the nodes represent

joints or constituent elements. A simple and powerful framework for understanding the

relationship between network structure and coordinated motion is structural rigidity theory

(Crapo, 1979a), originating from early and seminal work by J. C. Maxwell (Maxwell, 1864b;

Calladine, 1978; Jacobs and Thorpe, 1995). Here, the difference between the numbers of

node coordinates and edges yields the number of coordinated motions.

However, the successful design of coordinated motions depends not only on their existence,

but also on the time-evolving network geometry for their duration. The specific geometry

is determined by the edge constraints, just as a robot’s limbs constrain its configuration.

Several works provide design principles relating edge placement to node motions in small

networks (Hartenberg and Danavit, 1964; Kim et al., 2019b; McCarthy and Soh, 2010;

Connelly and Schlenker, 2010; Stern et al., 2020), and to detailed single-node trajectories

or local perturbations in large networks (Rocks et al., 2019; Flechsig, 2017). Other studies

explore lattices in the study of topological mechanics in networks (Kane and Lubensky, 2014;

Mao and Lubensky, 2018; Sato and Tanaka, 2018; Rocklin et al., 2017) and in origami

(Liu et al., 2018; Chen et al., 2016; Melancon et al., 2021), along with sequential and

branched motions (Rafsanjani et al., 2019; Coulais et al., 2017; Lubbers and van Hecke,

2019; Stern et al., 2018; Pellegrino, 2001), and they examine design considerations such

152

as flexible deformation (Bertoldi et al., 2017b), connection topology (Kolken and Zadpoor,

2017; Kolken et al., 2018), and environmental responsivity (Jackson et al., 2018).

Many of these studies take advantage of the simple yet powerful idea to decompose networks

into properties of unit cells and their interactions, and to study lattices of — and defects

in — identical unit cells. In this work, we build upon this idea to design complex unit

cell properties that yield exotic and chaotic behaviors in lattices of identical cells. We

further extend these ideas to program arbitrary shape changes and folding sequences in

networks by designing and combining non-identical cells. Excitingly, many techniques are

being developed to physically construct complex networks (Overvelde et al., 2016; Cui et al.,

2019; Zhao et al., 2018). As the interest in these systems has grown across many disciplines,

it is now timely to develop a general framework for designing specific geometric trajectories

in large networks.

Here, we develop such a framework by designing specific properties of shape change in unit

cells and their interactions. The manuscript is organized as follows. In Section 8.2, we

review mathematical and numerical foundations that we use to study shape changes. In

Section 8.3, we formalize principles of how the shape change of a network unit comprising

few elements determines the shape change of larger networks comprising many such units.

In Section 8.6, we reverse-engineer this process to design units that, when combined, yield

targeted global shape change. In Section 8.7, we explore the design space of these units to

further design the folding sequence of the network chains. Using these principles, we finally

design exotic and nonlinear functions such as a mechanical AND gate in Section 8.8 and

chaotic conformational change in Section 8.9, and we construct physical networks in Section

8.11.

153

Figure 52: Constraints & Conformational Motions. (a) Schematic of a node and an
edge embedded in 2 dimensions, where a node adds two motions (one in each dimension),
and an edge removes the one motion that changes its length. (b) A network of 4 nodes
and 4 edges yields a total of 4 motions, (c) 3 of which are rigid body motions, and (d) 1 of
which is a conformational motion.

8.2. Mathematical Framework

8.2.1. Constraint Counting

Coordinated motions arise from the arrangement of physical forces between constituent

elements such as tension and compression transmitted through a rigid robot limb, which

we model as distance constraints (edges) between point particles (nodes). In 2-dimensional

space, each node i has two coordinates, xi and yi, thereby allowing two motions. Each edge

k of length dk between nodes i and j must keep a constant length

(xi − xj)2 + (yi − yj)2 = d2
k, (8.1)

thereby removing one motion (Fig. 52a). Hence, the number of motions in a network without

redundant constraints (see Section II C) is given by

M = 2N − E, (8.2)

154

where N , E, and M are the numbers of nodes, edges, and motions, respectively. As such,

a network of 4 nodes and 4 edges contains 8 − 4 = 4 motions (Fig. 52b). Three motions

preserve the distance between all nodes through translations and rotation, and are called

rigid body motions (Fig. 52c). The fourth motion changes the lengths l1 and l2 between

unconnected nodes, and is called a conformational motion (Fig. 52d)

Throughout, we will use the italicized variable d to refer to the distance between nodes

connected by an edge, the unitalicized symbol d to refer to the differential operator, and

the variable l to refer to the distance between nodes that are not connected by an edge.

8.2.2. Defining the Set of Motions

While we can visually intuit the motions of networks comprising few nodes as in Figure. 52d,

we seek a quantitative framework to define such motions for much larger networks. We

outline a common framework from rigidity theory (Mao and Lubensky, 2018) that relates

changes in node coordinates to changes in edge lengths. Then the set of allowed node

motions are those that cause 0 change in edge length.

For a set of N nodes V = {1, · · · , N} connected by E edges E ⊆ V×V, any edge k connecting

nodes i and j has length dk according to Eq. 8.1. To relate changes in node coordinates to

changes in edge lengths, we take the derivative of Eq. 8.1 and divide by 2dk to yield

(xi − xj)
dk

(dxi − dxj) +
(yi − yj)

dk
(dyi − dyj) = ddk. (8.3)

We now obtain the desired relationship between node motions, dx and dy, to changes in

edge length, ddk.

Next, we notice that if we know the node positions x and y as constants, then the equation

is linear in the node motion variables: dx and dy. Due to this linearity, if we write x as the

2N dimensional vector of node positions, dx as the 2N dimensional vector of node motions,

and dd as the E dimensional vector of changes in edge length, then we can concisely write

155

Eq. 8.3 for all edges as

fCdx = dd. (8.4)

Here, C = C(x) is the compatibility matrix of size E × 2N comprised predominantly of

zeros (Mao and Lubensky, 2018). For every k-th row in C, the only non-zero entries are

(xi − xj)/dk multiplying dxi, (xj − xi)/dk multiplying dxj , (yi − yj)/dk multiplying dyi,

and (yj − yi)/dk multiplying dyj . Hence, every row of Eq. 8.4 is precisely Eq. 8.3 for the

edge corresponding to that row, and the compatibility matrix maps node motions to bond

extensions across the entire network.

Finally, because the edges are rigid, we set dd = 0 such that all infinitesimal node motions

that cause 0 change in edge length must satisfy

Cdx = 0. (8.5)

As a result, the set of all infinitesimal motions that yield zero change in edge length is given

by the nullspace N (C). In our simple 4-node network, the three rigid body motions in

Fig. 52c and the one conformational motion in Fig. 52d are all contained in the nullspace

of C. Collectively, these motions are referred to as zero-modes.

8.2.3. Constraint Counting Revisited

Through the compatibility matrix, we make a more nuanced statement about the number

of coordinated motions through the Calladine Index Theorem (Mao and Lubensky, 2018).

The compatibility matrix maps node motions to bond extensions in Eq. 8.4. Additionally,

the equilibrium matrix, Q = C>, maps bond tensions t to node forces f such that

Qt = f . (8.6)

156

Here, the nullspace of Q then represents vectors of bond tensions that cancel out to yield 0

net force at the nodes, and are referred to as states of self-stress (SSS) (Mao and Lubensky,

2018). These SSS often arise from over-constraining the network through the addition of

redundant bonds, but can also arise from geometric singularities through kinematic bifur-

cations (Kim et al., 2019b).

The Calladine Index Theorem relates the columnspaces and nullspaces of C and Q. From

the rank-nullity theorem, we know that a system with S states of self-stress has the relation

rank(Q) + S = E, (8.7)

and that a system embedded in 2 dimensions with M zero-modes has the relation

rank(C) +M = 2N. (8.8)

Because rank(Q) = rank(C), we substitute to obtain

M = 2N − E + S. (8.9)

Hence, the number of motions is almost the same as for constraint counting in Eq. 8.2, while

accounting for SSS (see Ref. (Mao and Lubensky, 2018) for additional details). Unless stated

otherwise, our systems have S = 0.

8.2.4. Instantiating & Simulating Networks

Now that we have defined the space of allowed node motions, how do we evolve our net-

works along their conformational motion? Our approach involves four steps, where the

ultimate goal is to remove the rigid body motions from the set of all motions to isolate the

conformational motion.

First, at simulation step k = 0, we instantiate our network by choosing the node coordinates

157

xi[0] and yi[0] for i = 1, · · · , N , and defining the edge placements between node pairs.

Importantly, we note that choosing the node coordinates and edge placements determines

the length dk of each edge k. Hence, we are able to fully construct the compatibility matrix

C from the node coordinates and edge placements alone.

Second, at simulation step k starting at k = 0, we collect all of the node positions into a 2N

dimensional vector x[k], construct our compatibility matrix C[k] = C(x[k]), and compute

the set of allowed node motions through the nullspace N (C[k]). We collect the basis set

that spans the nullspace as a 2N ×M matrix, P [k].

Third, we define the basis set of rigid body motions R[k] = [xx,xy,xrot[k]] and quotient

them out of our set of allowed motions to yield the conformational motion. Numerically,

we can implement this quotient by taking the nullspace of the projection of R[k] onto P [k]

as N (R[k]>P [k]), collecting the basis vectors that span this nullspace into a M ×M − 3

matrix Q, and projecting the nullspace back into the coordinate space as

dx[k] = P [k]Q. (8.10)

Unless stated otherwise, dx[k] will always be a vector, because our systems will always

have M = 4 motions, such that removing the 3 rigid body motions will leave behind

1 conformational motion. We normalize the conformational motion such that dx̂[k] =

dx[k]/‖x[k]‖2.

Finally, we evolve the network forward by numerically integrating the differential in Eq. 8.10.

Specifically, at each time step k, we evolve the node positions forward from x[k] to x[k+ 1]

using a 10-th order Runge-Kutta scheme that relies on the evaluation of steps 2 and 3 at each

substep ((Feagin, 2007)). The reason for such a high order integration scheme will become

clear in the results, as high accuracy of numerical integration is necessary for simulating

networks with chaotic behaviors.

158

8.2.5. Motivating Statement & Outline

Figure 53: Motivation for the Results. (a) A set of 338 nodes and 672 edges that,
through our results, can be designed to (b) have precise shape changes and (c) folding
sequences. (d) A network that has been designed to behave as a mechanical AND gate.

Conformational motions endow networks with functions that depend on targeted changes

in shape. The design of a specific shape change is determined by the node positions and

edge placements, and is made difficult by the nonlinearity of the constraints, even in net-

works of few nodes (Eq. 8.1). Given the vast design space in systems of many nodes and

edges (Fig. 53a), what are the organizational principles that enable us to design precise

shape changes (Fig. 53b), folding sequences (Fig. 53c), and exotic and nonlinear behavior

(Fig. 53d)?

159

Figure 54: Conformational motion as a map. Plot of the lengths lk and lk+1 between
unconnected nodes in the example unit (Fig. 52) as it changes shape.

8.3. A 4-Bar Linkage Example

To understand the principles that govern shape change in networks of many elements, we

first develop intuition for shape change in units comprising a few elements. Specifically, we

study the shape change of the 4-bar linkage previously shown in Figure 52. We observe

that the length between unconnected nodes, namely length lk between nodes 1 and 2, and

lk+1 between nodes 3 and 4, change throughout the motion (Fig. 54). If we plot these two

lengths along the motion, we obtain a curve that maps length lk to length lk+1 as a function

lk+1 = f(lk). (8.11)

The equation of this specific unit’s map is f(lk) =
√

5− l2k/4 −
√

1− l2k/4, and is derived

via the edge constraints given in Eq. 8.1.

8.3.1. Combining Units Acts as a Map Iteration

This map immediately motivates a simple and powerful way to construct a network of many

nodes whose shape change is fully known. Specifically, if we could somehow combine these

units such that the lengths of subsequent units are functions of the lengths of previous

160

Figure 55: Combine Units by Merging Nodes. A unit k + 1 is combined to unit k by
merging nodes. First the length lk+1 between nodes 1 and 2 of unit k+ 1 is set equal to the
length f(lk) between nodes 3 and 4 of unit k. Then, node 2 of unit k+ 1 is merged to node
4 of unit k by overlapping and gluing the nodes such that they become the same node, and
node 1 of unit k + 1 is merged to node 3 of unit k in the same manner.

units, then we could write the conformation of all units as a function of the first, such that

lk+1 = fk(l1). Through this relation, we could simply and explicitly parameterize the shape

of the entire network through a single parameter.

To achieve this relationship, consider two 4-bar linkage units, 1 and 2. Unit 1 has length

l1 between nodes 1 and 2, and length f(l1) between nodes 3 and 4. Unit 2 has length l2

between nodes 1 and 2, and length f(l2) between nodes 3 and 4 (Fig. 55). If we set l2 of

unit 2 equal to f(l1) of unit 1, then we can combine units 1 and 2 by merging nodes, by

which we mean overlapping and gluing node 3 of unit 1 and node 1 of unit 2 such that they

become the same node, and by overlapping and gluing node 4 of unit 1 and node 2 of unit

2 in the same way. Thus, the lengths of unit 2 are determined by those of unit 1, such that

f(l2) = f(f(l1)) (Fig. 55, top).

Afterwards, we add another unit — unit 3 — whose nodes 1 and 2 define length l3, and

whose nodes 3 and 4 define length f(l3). By setting l3 of unit 3 equal to length f(l2) of unit

2, we can combine units 2 and 3 by merging node 3 of unit 2 with node 1 of unit 3 such

that they become the same node, and by merging node 4 of unit 2 with node 2 of unit 3

161

in the same way. Thus, the shape of unit 3 is also determined by that of unit 1, such that

f(l3) = f(f(l2)) = f(f(f(l1))) (Fig. 55, middle).

We can continue this process as often as we like, such that unit k combines to unit k + 1

by first setting length lk+1 of unit k + 1 equal to f(lk) of unit k, and then merging node 3

of unit k with node 1 of unit k + 1, and node 4 of unit k with node 2 of unit k + 1 (see the

Appendix in Chapter 9). In this way, the shape of unit k + 1 is determined by that of unit

1, such that

lk+1 = fk(l1), (8.12)

as we show in the bottom of Figure 55. This equation is referred to as an iterated map in

nonlinear dynamics.

8.3.2. Visualizing Map Iteration as a Cobweb Plot

Figure 56: Shape & Folding Sequence of Iterated Maps. (a) A plot of the curve
lk+1 = f(lk) for the 4-bar linkage example, with three cobweb plots drawn at initial lengths
of l1 = 2, 1.95, and

√
2. (b) At an initial length of l1 = 2, all subsequent units k also have

the identical shape lk = 2 because f(2) = 2. (c) At an initial length of
√

2 < l1 = 1.95 < 2,
the subsequent units are no longer identical, and converge towards the stable fixed point at
l◦ =

√
2. (d) At an initial length of l1 =

√
2, all subsequent units k also have the identical

shape lk =
√

2.

162

To develop an intuition for the relationship between the map iteration and the network

chain’s geometry, we can visually represent the map iteration as a cobweb plot (Zhou et al.,

2017), which consists of horizontal and vertical lines in the plot of lk+1 = f(lk). Such

visualizations will show us the properties of the map (Eq. 8.12) that are useful to design.

To draw a cobweb plot, we start by drawing the map between lengths lk+1 = f(lk) (Fig. 56a).

A cobweb plot begins at the initial length l1 along the horizontal axis, and we draw a vertical

line up to the function f until it reaches the ordered pair (l1, f(l1)). In our example, one

of the cobweb plots begins at l1 = 1.95, and has a vertical line drawn to the ordered pair

(1.95, f(1.95)). Next, a horizontal line is drawn to the line lk+1 = lk to reach the ordered

pair (f(l1), f(l1)) to prepare the coordinates for the next function evaluation. This process

of drawing a vertical line to ordered pair (lk, f(lk)), followed by a horizontal line to the

diagonal lk = lk+1, is repeated for as many units as are in the network chain.

As a result, each ordered pair (lk, f(lk)) represents the conformation of unit k, and the entire

cobweb plot represents the conformation of the entire network chain at a particular initial

length l1. In Figure 56a, we show three cobweb plots corresponding to three network chains,

where l1 of unit 1 begins at l1 = 2, l1 = 1.95, and l1 =
√

2 (Fig. 56a), with the corresponding

network conformations shown in Figure 56b, c, and d, respectively. Importantly, we note

that these three networks are identical in terms of bond lengths and connectivity. They only

differ in the initial length l1. Additionally, we note that the network can continuously deform

its geometry from Figure 56b to Figure 56d along one conformational motion, without

changing bond lengths or connection topology.

We highlight two key observations from these cobweb plots. The first is that there are some

points where all units are identical, namely l =
√

2 and l = 2 (Fig. 56b,d). This property is

in some sense ideal, because we can know simply and precisely the conformation of every

unit in the network. The second observation is that if the initial length is in between these

points such that
√

2 < l1 < 2, then the units seem to converge to
√

2 (Fig. 56c). This

property clues us in to how we can design the folding sequence of the network.

163

8.4. Network Conformation is Known at Fixed Points

While it is true that the conformation of every unit k is determined by Equation 8.12, the

continued analytical or numerical evaluation of the map f to determine length lk+1 = fk(l1)

is quite cumbersome. However, there are special lengths l∗ known as fixed points that map

back to themselves such that

l∗ = f(l∗), (8.13)

where the conformation of every unit is easily known. This is because if f(l∗) = l∗, then

fk(l∗) = l∗, and every unit is in the same conformation.

In our 4-bar linkage example, these fixed points are significant because every unit takes on

an identical, repeating conformation, which we will refer to as a periodic state. We show

the network in the l• = 2 periodic state in Figure 56b, and in the l◦ =
√

2 periodic state in

Figure 56d. In between these two states is an intermediary conformation when
√

2 < l1 < 2,

as shown in Figure 56c. Here, the network is still constructed from the same 4-bar linkage

unit with the same bond lengths and connection topology as the previous and subsequent

units. We refer to this construction as one having a periodic structure. However, because

the length of any unit k does not repeat across the network, it does not have a periodic

state.

The motivation and significance for studying these fixed points is that at the fixed points,

the conformation of every unit is simply and completely known. Hence, in Section 8.6,

we will fulfill our first aim, to design precise shape changes in networks of many elements

(Fig. 53b), by designing units that adopt precise geometries at a common fixed point.

8.5. Folding Sequence is Determined by Stability

In addition to the conformation of the network chain, the iterated map can also tell us

about the change in conformation, or the folding sequence, of the network. This change is

164

simply understood by taking the derivative of Equation 8.11 to yield the slope

sk =
dlk+1

dlk
= f ′(lk). (8.14)

Intuitively, for any unit k, the slope simply tells us whether a perturbation in length lk yields

a larger or smaller perturbation in length lk+1. If the slope |sk| < 1, then the magnitude

of perturbation decreases, and the map at the point lk is said to be stable. If the slope

|sk| > 1, then the magnitude of perturbation increases, and the map at lk is said to be

unstable. If |sk| = 1, the magnitude of perturbation remains the same, and the map is said

to be marginally stable. When considering this same change in the iterated map equation

for the entire network chain, we obtain

s =
dlk+1

dl1
=

k+1∏
i=1

sk, (8.15)

which tells us whether a perturbation in l1 will be larger or smaller than a perturbation in

lk+1.

If |s| > 1, the perturbation in lk+1 will be larger than that at l1, and the network will begin

changing conformation at the lk+1 end. In our specific example, the fixed point l• = 2 is

unstable, because the slope of the map has magnitude greater than 1. Hence, in Equation

8.15, we observe that |dlk+1| > dl1, and expect the network at the fixed point l• = 2 in

Figure 56b to begin folding from the lk+1 end, which is true (Fig. 56c).

If |s| < 1, the perturbation in lk+1 will be smaller than that in l1, and the network will

begin changing conformation at the l1 end. In our specific example, the fixed point l◦ =
√

2

is stable, because the slope of the map has magnitude less than 1. Hence, in Equation 8.15,

we observe that |dlk+1| < dl1, and expect the network at the fixed point l◦ =
√

2 in Figure

56d to begin folding from the l1 end, which is true (Fig. 56c).

The motivation and significance of studying the stability is that the folding sequence of the

network is determined by the stability of the unit maps. Hence, in Section 8.7, we will fulfill

165

our second aim, to design folding sequences (Fig. 53c), by designing units that are stable

or unstable at a particular geometry.

8.6. Designing Network Shape

Figure 57: Properties of Unit Design. Drawing of a unit with three nodes, 1, 2, and
3, with length lk between nodes 1 and 2, length lk+1 between nodes 2 and 3, and length
ck between nodes 1 and 3. We seek to design units (a) that start and end at fixed points
where lk = lk+1 = l• and lk = lk+1 = l◦ are valid conformations, (b) whose start and end
geometry can be programmed to start at c• and end at c◦, and (c) can transition from the
start to the end shape with one conformational motion.

Using the fact that we know the conformation of all units when at a fixed point, we seek

to achieve our first aim to design the shape of the network chain when the units are at

the fixed points (Fig. 53b). Recalling our previous 4-bar linkage example, we immediately

encounter a problem: identical units have identical geometries at fixed points, such that

the network chain forms a straight line (Fig. 56b,d). Thus, we are motivated to design our

own, non-identical units that share fixed points but differ in their precise geometry.

166

8.6.1. Motivating the Unit Design Procedure

To achieve desired shape changes in the network chain, we require that the composite units

satisfy three key properties. We will approach these properties in a constructive manner,

beginning with a unit comprising a set of 3 nodes — 1, 2, and 3 —, and defining length lk

between nodes 1 and 2, length lk+1 between nodes 2 and 3, and length ck between nodes

1 and 3 (Fig. 57). We begin with three nodes because that is the smallest number of

nodes whereby we can define three independent lengths, lk, lk+1, and ck, to achieve three

desired properties of unit design that yield desired shape changes. We describe these three

properties one at a time.

The first property is that, among this set of nodes, there exist two conformations (node

coordinate positions) where the lengths between unconnected nodes, lk and lk+1, are equal.

We refer to the length at the first such conformation as the start fixed point, l•, and

the length at the second such conformation as the end fixed point, l◦ (Fig. 57a). This

property ensures that, even if we construct and combine non-identical units, they will all

share identical start and end fixed points. This sharing means that if one unit is in a

conformation where a length is at a fixed point such that lk = lk+1 = l• or lk = lk+1 = l◦,

then all units, despite being nonidentical, also exist in a conformation where their lengths

are at l• or l◦, respectively. Importantly, we note that because fixed points require the

lengths lk and lk+1 to be identical such that lk = lk+1, the three nodes will form an isosceles

triangle at the start coordinates (with isosceles side l•) and end coordinates (with isosceles

side l◦).

The second property differentiates our designed unit from the example 4-bar linkage unit,

such that we want a design parameter that changes the shape of the unit, and thereby the

network, at the fixed points. Hence, the second property is that we have a parameter c

through which we can design the shape of the unit at the start fixed point as c• and at the

end fixed point as c◦ (Fig. 57b).

167

The third and final property is that the unit achieves properties 1 and 2 through one

conformational motion. This property allows us to write the lengths between unconnected

nodes of a unit as a map (Eq. 8.11), thereby allowing us to write the lengths across the

entire network as an iteration of this map, precisely as in Figure 55. Because adding edges

between nodes 1, 2, and 3 would interfere with desired properties 1 and 2, we will constrain

our unit to have 1 conformational motion by adding additional nodes 4 and 5 that are

fully connected to nodes 1, 2, and 3 (Fig. 57c). The resulting network will have 5 nodes

corresponding to 10 state variables, and 6 edges corresponding to 6 constraints, leaving us

with 10 − 6 = 4 total motions, and thereby 3 rigid body motions and 1 conformational

motion.

8.6.2. The Unit Design Procedure

Figure 58: Designing Unit Geometry at Fixed Points. (a) Node coordinates that
start at a fixed point l• and end at another fixed point l◦, where the length c is larger at
the end than at the start such that c◦ > c•. (b) The maroon curve is the solution space. By
placing extra nodes 4 and 5 on the solution space and fully connecting them to nodes 1, 2,
and 3 with rigid bonds, (c) there exists an end position of nodes 4 and 5 that keeps all bond
lengths the same. (d) Another unit with the same start fixed point l• and end fixed point
l◦, but the length c is chosen to be smaller at the end than at the start such that c◦ < c•.
(e) By placing extra nodes 4 and 5 on the solution space and connecting them to nodes 1,
2, and 3 with rigid edges, (f) there exists an end position that retains all bond lengths. (g)
Plots of the conformational motion of both units as they change shape from the start fixed
point to the end fixed point.

168

Now that we have motivated the desired properties of our unit, we will achieve these prop-

erties using a method from prior work (Kim et al., 2019b). We notice that our base unit

forms a triangle with nodes 1, 2, and 3 as the vertices, and that properties 1 and 2 specify

the lengths of the triangle edges at the start and end conformations (Fig. 57). By specifying

the lengths of all triangle edges, we also specify all node coordinates up to isometric trans-

formations (i.e. translation, rotation, mirror images). Hence, in our unit, designing a unit

whose lengths between node pairs are fixed at the start and end conformation is equivalent

to designing a unit whose node coordinates are fixed at the start and end conformation.

Hence, we begin our unit design procedure by defining (x•i , y
•
i) as the start coordinate of

node i, and by defining (x◦i , y
◦
i) as the end coordinate of node i (Fig. 58a). First, we

use trigonometry to convert the start edge lengths, l•, l•, c•, into start node coordinates,

(x•1, y
•
1), (x•2, y

•
2), (x•3, y

•
3), and the end edge lengths, l◦, l◦, c◦, into end node coordinates,

(x◦1, y
◦
1), (x◦2, y

◦
2), (x◦3, y

◦
3). In this particular example, we choose l• =

√
3 to be the length

of the start fixed point, and l◦ = 1.7 ·
√

3 to be the length of the end fixed point. We also

choose c• =
√

3 to be the start shape parameter, and vary the end shape parameter, c◦,

across units to change the units’ shape. These specific lengths were chosen for the purpose

of demonstration, and that the method does not require these particular lengths.

Now that we have chosen the coordinates for nodes i ∈ {1, 2, 3} at the start configuration,

(x•i , y
•
i), and end configuration, (x◦i , y

◦
i), that satisfy properties 1 and 2, we must decide on

the position of the two extra nodes j ∈ {4, 5} while ensuring that the edges have the same

lengths at the start and end configurations. Otherwise, the edges cannot be rigid. This

condition is enforced by first setting the squared length of the edges at the start coordinates

equal to the squared length of the edges at the end coordinates as

(x•i − x•j)2 + (y•i − y•j)2 = (x◦i − x◦j)2 + (y◦i − y◦j)2, (8.16)

where (x•i , y
•
i) and (x◦i , y

◦
i) are fixed constants (Fig. 59a,d), and then solving for the start

and end positions of the extra nodes, (x•j , y
•
j) and (x◦j , y

◦
j). The solutions of (x•j , y

•
j) and

169

(x◦j , y
◦
j) for Eq. 8.16 then define the start and end positions of the added node j that do not

change the length of any edges, allowing them to be rigid (see the Appendix in Chapter 9

for details on solving the equations and on how the node placement fixes the rod lengths).

Figure 59: Representing the Combining of Designed Units as an Iterated Map.
(a) Combining units by merging nodes. A unit k + 1 is combined to unit k by merging
nodes. First, the length lk+1 between nodes 1 and 2 of unit k+1 is set equal to length f(lk)
between nodes 2 and 3 of unit k. Then, node 2 of unit k+1 is overlapped and glued together
with node 3 of unit k to become a single node, and node 1 of unit k + 1 is overlapped and
glued together with node 2 of unit k. (b) A cobweb plot of the curve lk+1 = f(lk) for the
designed unit, with three cobweb plots drawn at initial lengths of l1 ≈ 1.73, 2.93, and 2.94,
with a drawing of the network corresponding to each cobweb plot.

The solutions to Eq. 8.16 have a very particular structure. At the start position, it feels

intuitive that we should be able to place our extra node j at any location (x•j , y
•
j), and

connect it with edges of length dk that are equal to the distances between nodes i and j.

However, when we then move nodes i ∈ {1, 2, 3} to their desired end position (x◦i , y
◦
i), we

find that there are typically no end positions for the extra node (x◦j , y
◦
j) that keep the edge

lengths the same at dk. Intuitively, this lack of solution arises from the fact that while

there are 3 added edges from nodes i ∈ {1, 2, 3} to node j (and thereby 3 constraints to

satisfy from Eq. 8.16), there are only 4 variables for the extra node positions (x•j , y
•
j , x
◦
j , y
◦
j).

Hence, there is typically only a one-dimensional solution for the extra node positions, which

is defined by a conic section due to the constraints being quadratic(Kim et al., 2019b). We

170

call the set of start positions (x•j , y
•
j) satisfying Eq. 8.16 the solution space (Fig. 58b,e).

By placing our two nodes j ∈ {4, 5} on the solution space (Fig. 58b), our unit reaches the

desired final position (Fig. 58c), and does so along 1 conformational motion (Fig. 58g).

This procedure can now be used to design non-identical units with the same fixed points l•

and l◦, but a different end geometry given by the shape parameter c◦. In contrast to the

first unit that we designed where the end shape parameter was larger than the start shape

parameter (c◦ > c•, Fig. 58a-c), we can design a second unit where the end shape parameter

is smaller than the start shape parameter (c◦ < c•, Fig. 58d-f). Because the two examples

have different end positions, solving Eq. 8.16 yields different solution spaces (Fig. 58b versus

Fig. 58d). By adding nodes j ∈ {4, 5} on the solution space for the first unit (Fig. 58b),

the unit has the same bond lengths between the first start and end positions (Fig. 58c). If

we place extra nodes j ∈ {4, 5} on the solution space for the second unit (Fig. 58d), then

the unit has the same bond lengths between the second start and end positions (Fig. 58f).

This method is not specific to only the two examples show in Figure. 58. For any start

(x•i , y
•
i) and end (x◦i , y

◦
i) positions, we can solve Eq. 8.16 for the solution space, place extra

nodes j ∈ {4, 5} along the solution space, connect all nodes j to all nodes i, and guarantee

that the bond lengths at the start and end positions are equal. The solution space has two

important implications. First, if we were to place the extra nodes j outside of the solution

space, then we are guaranteed that our nodes will not go from the start positions (x•i , y
•
i)

to the end positions (x◦i , y
◦
i). This is because Eq. 8.16 defines all placements of node j that

preserve edge length. By placing node j outside of the solution space, we are guaranteed to

fail at finding an end position of node j that maintains edge length. The second implication

is that different desired start and end positions for nodes i define different solution spaces.

Between examples 1 and 2, the different end positions (x◦i , y
◦
i) generated different solution

spaces (Fig. 58b versus Fig. 58e). This is because the constant parameters of Eq. 8.16

changed, thereby changing the form of the solution space. Varying c◦ generates a range of

solution spaces from which we construct our units.

171

8.6.3. Combining Designed Units With Map Iteration

Now that we have designed units that move from a desired start fixed point l• to a desired

end fixed point l◦ (property 1) and from a desired start shape c• to a desired end shape c◦

(property 2) along one conformational motion (property 3), we need to test whether we can

construct network chains as in Figure 56. To do so, we take our first designed unit from

Figure 58b, and combine many such units in a manner similar to our 4-bar linkage example,

whereby we write the conformation of the k-th unit as repeated functions of the starting

length l1.

As in the 4-bar linkage example in Section 8.3.1, we will combine units by merging nodes.

We begin with our designed unit 1, with length l1 between nodes 1 and 2, and length f(l1)

between nodes 2 and 3 (Fig. 59a). We then take a second unit with length l2 between nodes

1 and 2, and length f(l2) between nodes 2 and 3, and set l2 = f(l1). Finally, we combine

units 1 and 2 by merging node 2 of unit 1 with node 1 of unit 2, and by merging node 3 of

unit 1 with node 2 of unit 2. In Figure 59a, the nodes to be merged are marked with dashed

gray lines. By “merge,” we again mean that we move unit 2 over to unit 1 and overlap the

nodes to be merged (e.g., node 2 of unit 1 has the same spatial coordinates as node 1 of

unit 2), and glue them together such that the overlapped nodes become the same node. In

this manner, we can write the conformation of unit 2 as given by f(l2) as a function of l1

through f(l2) = f(f(l1)).

To continue the process of combining units, we add another unit, unit 3, with length l3

between nodes 1 and 2, and length f(l3) between nodes 2 and 3. As before, we set length

l3 of unit 3 equal to length f(l2) of unit 2, and combine units 2 and 3 by merging node 2

of unit 2 with node 1 of unit 3, and node 3 of unit 2 with node 2 of unit 3 (Fig. 59a). In

this manner, we can write the conformation of unit 3 as given by f(l3) as a function of l1

through f(l3) = f(f(l2)) = f(f(f(l1))).

To continue the process of combining units more generally, we add unit k + 1 with length

172

lk+1 between nodes 1 and 2, and length f(lk+1) between nodes 2 and 3. As before, we set

length lk+1 of unit k + 1 equal to length f(lk) of unit k, and combine units k and k + 1 by

merging node 2 of unit k with node 1 of unit k + 1, and by merging node 3 of unit k with

node 2 of unit k+ 1 (Fig. 59a, see the Appendix in Chapter 9 for extra details on how units

are combined). In this manner, we can write the conformation of unit k + 1 as given by

f(lk+1) as a function of l1 through the iterated map f(lk+1) = fk(l1) (Eq. 8.12).

Hence, all of the intuitions that we derived regarding the 4-bar linkage units in Section 8.3

translate directly to our own designed units. Specifically, the intuitions that units can be

combined such that the shape of unit k+ 1 can be written as the iterated map lk+1 = f(lk)

in Section 8.3.1, that the network’s conformational change can be visualized according to a

cobweb plot in Section 8.3.2, that units have identical states at fixed points in Section 8.4,

and that the network’s folding sequence is determined by the stability of the units in Sec-

tion 8.5, all translate directly to our designed units (Fig. 59).

8.6.4. Motivating the Network Design Procedure

Now that we can design general shape changes in units, how can we select the specific

units that will yield networks with desired global shape? For example, how do we design

non-identical units that combine to form a network chain that folds into a complex shape

such as a quadrifolium (Fig. 60a)? To reverse-engineer this process, we can reverse the

order of this question to ask: how can we decompose a desired global shape into a network

comprising specific unit shapes?

To answer this question, first recall from Section 8.4 that at a fixed point, all unit geometries

are known because the lengths lk and f(lk) are equal to either the start fixed point l• or

the end fixed point l◦. Second, recall from Section 8.6.2 that we can choose the start and

end values of the shape parameter, c• and c◦ respectively, at the start and end fixed points

(Fig. 58). By choosing units whose shape parameters at the end fixed point follow along a

trace (Fig. 60a), we can design the global shape of the network chain.

173

Figure 60: Designing Precise Network Geometry. (a) To design a network chain that
forms a desired curve, we tessellate the curve with isosceles triangles, where each triangle
represents a unit. The gold edges represent lk and lk+1, while the purple edges represent c.
(b) The units are then constructed by placing extra nodes along the solution space defined
by the start and end positions (Section 8.6.2). Then the units are combined into a chain by
merging nodes (Section 8.6.3). (c) The resulting network consists of non-identical units that
have different bond lengths, and thereby the network has non-periodic structure. However,
because all units were designed to share the same start fixed point l• and end fixed point l◦,
the network starts at a periodic state at lk = l•, and undergoes one conformational motion
to form the desired curve at the second periodic state lk = l◦.

8.6.5. Selecting Units That Yield Global Network Shape

Hence, we seek for the end node positions of all units to trace our desired shape at the end

fixed point, which we accomplish by tessellating the end global shape with the end node

174

positions, (x◦i , y
◦
i) while enforcing that these positions are at the end fixed point l◦. To

demonstrate this process, we will construct a network that folds into a quadrifolium as the

desired final shape (Fig. 60a, black). The specific equation of the trace is given by

r = a sin(2θ), 0 ≤ θ < 2π, (8.17)

where r and θ represent the radial and angular coordinate of the curve, and we use a = 16.2

in our example.

To convert this curve into a network, we tessellate the curve with node coordinates (x◦i , y
◦
i)

(Fig. 60a). In this figure, each triangle corresponds to the final shape of one unit, where the

corners are the final node positions (x◦i , y
◦
i), the isosceles sides are lk = lk+1 = l◦ (gold), and

the non-isosceles side is the shape variable c◦ (purple). The reason why each unit forms an

isosceles triangle with isosceles edges between nodes 1 and 2, and between nodes 2 and 3, is

because at a fixed point, the length lk between nodes 1 and 2, and the length lk+1 between

nodes 2 and 3, are equal to the fixed point length lk = lk+1 = l◦. The reason why the units

are merged along the isosceles edge is because the units combine by merging nodes that

define lk and lk+1, which at the fixed point, is the isosceles edge.

Now that we have the desired end coordinates for nodes 1, 2, and 3 of each unit, we construct

each unit according to Section 8.6.2 by placing two nodes j ∈ {4, 5} satisfying Eq. 8.16,

and combine units precisely according to Section 8.6.3 by merging the nodes corresponding

to the shared corners between neighboring triangles to form a network (Fig. 60b). At the

start fixed point lk = l•, the network begins as a line because all lengths c = l•. At the

end fixed point lk = l◦, the shape variables reach their programmed length c = c◦, thereby

forming the quadrifolium (Fig. 60c).

In sum, we successfully achieve our first goal, to understand the organizational principles

that enable us to design precise shape changes (Fig. 53b) by designing units with one confor-

mational motion that transition between two fixed points with tunable shape (Section 8.6.2),

175

and by choosing and combining non-identical units whose end shapes trace out the desired

shape (Section 8.6.5).

8.7. Designing the Conformational Sequence Using Stability

Figure 61: Designing the Sequence of Conformational Change. (a) Schematic of
the addition of two nodes along the solution space, parameterized by angles θ4 and θ5. (b)
At the start position, connecting the added nodes to the initial nodes with edges yields
one conformational motion, characterized by a slope of dl2/dl1. (c) Phase diagram of the
slope magnitude at all placements of added nodes. The solid blue line marks the transition
between stable and unstable. The red dashed line marks where the slope = 0. (d) Units
with |slope| = 1, and (e) with |slope| = 0.

Now that we have the principles for constructing complex shape changes, we move on to

our second aim to design a network’s folding sequence by designing the stability of the maps

of its component units (Fig. 53c). Recall from Section 8.3 that the folding sequence of a

network depends on the stability of the maps of the component units. If all units are in a

conformation that is stable (i.e. |dlk+1/dlk| < 1), then a perturbation at l1 decays across

units, and the network begins folding at the l1 end (Fig. 56d). Alternatively, if all units

are in a conformation that is unstable, then a perturbation at l1 grows across units, and

the network begins folding at the lk+1 end (Fig. 56b). How can we tune the stability of our

units’ maps to design the folding sequence?

176

8.7.1. Motivating Stability Design

To design a unit’s stability, we must first keep in mind that there already exist constraints

from designing a unit’s shape in Section 8.6. In Section 8.6.2, we already designed our unit

comprising three nodes, i ∈ {1, 2, 3}, to successfully transition from desired start positions

(x•i , y
•
i) to the desired end positions (x◦i , y

◦
i) along one conformational motion (Fig. 57). To

do this, we added two additional nodes, j ∈ {4, 5}, and fully connected them to the first

three nodes for a total of 6 edges E = {1, 2, 3} × {4, 5} to yield 1 conformational motion

(Fig. 57c).

We found that these additional nodes could not be placed arbitrarily in space. Once we

fix the start positions of the added nodes, (x•j , y
•
j), we also fix the edge lengths, and most

choices of edge lengths cannot remain constant at the start and end positions according

to Equation 8.16. Instead, in Section 8.6.2, we found that the start positions of each

of the added nodes must lie on a 1-dimensional conic section, the solution space, for the

subsequently fixed edge lengths to remain rigid at the start and end positions (Fig. 58).

An immediate question that arises is precisely where on the solution space should nodes

j ∈ {4, 5} be placed? If each node j can be placed anywhere along the 1-dimensional

solution space, then for the two added nodes, we are left with a 2-dimensional parameter

space (1-dimensional solution space per node) along which we can add nodes j ∈ {4, 5}. In

addition to the unit shape, can we use these two dimensions to design the stability of the

unit at these shapes?

8.7.2. Searching the Parameter Space

The positions of the added nodes determine the stability of a unit, which in turn determines

the sequence of the full network’s shape change. To design a unit’s stability, we establish

general principles of node placement through the detailed study of one unit whose initial

and final node positions generate a circular solution space, along which we add node 4 at θ4

and node 5 at θ5 (Fig. 61a). At each position 0 ≤ θ4, θ5 < 2π, we connect the added nodes

177

j ∈ {4, 5} to all of the original nodes i ∈ {1, 2, 3} and compute the slope of length changes

as a function of the node positions (Fig. 61b,c).

We observe consistent patterns of node positions for units that are maximally stable (super-

stable (Lee, 2009)) where |dl2/dl1| = 0. Similar to a stable configuration where a perturba-

tion in length l1 decays as it propagates to length l2, a superstable configuration means that

a perturbation in length l1 yields no response to linear order in length l2. Hence, a network

comprising units in superstable configurations will fully localize their shape change at the

l1 end to linear order. We observe that superstable units entail that both added nodes are

co-linear with the node i = 1 that exclusively defines l1, or that at least one added node is

colinear with both nodes i = 2, 3 defining l2 (Fig. 61e). The former condition guarantees

that the sole motion of node 1 (perpendicular to the co-linearity) is a conformational mo-

tion, such that |dl1| ≥ 0 while |dl2| = 0. The latter condition guarantees that the motion

of nodes 2 and 3 is perpendicular to the direction of their length, such that |dl2| = 0 while

|dl1| ≥ 0. Hence, we ensure stable units in the quadrifolium by placing nodes near the first

co-linear condition (Fig. 60).

We also observe consistent patterns of node positions for units at the transition between

stable and unstable (marginally stable) where |dl2/dl1| = 1 (Fig. 61d). Marginally stable

units encompass all symmetric node positions θ4 = −θ5, whereby the positions of the added

nodes are mirrored across the vertical axis. Additionally, marginally stable units consist of

more complex asymmetric node positions (Fig. 61d).

In sum, we successfully achieve our goal of designing not only the shape (Fig. 53b), but

also the folding sequence (Fig. 53c) of a network chain, by designing the stability of its

component units. We find that stable units can be designed through the co-linear placement

of added nodes 4 and 5 (Fig. 61e), while marginally stable units can be designed through the

symmetric placement of added nodes (Fig. 61d). Importantly, these principles generalize to

solution spaces that are not circles, and we used these principles to choose the stability of

the units in Figure 58, and in the quadrifolium Figure 60.

178

8.8. Superstability & the Mechanical AND Gate

Figure 62: Superstability & Extreme Localization Through Faster-Than-
Exponential Convergence. (a) Conformational motion of a unit from the superstable
fixed point l• to the unstable fixed point l◦. (b) Copies of this unit combine to form a
network chain that (c) converges to l• at a faster-than-exponential rate. (d) Two of these
network chains, a and b, combine to form a mechanical AND gate, where the inputs la
and lb are the l1 ends of each network. From i, the gate has two independently deformable
conformational motions to form any linear combination of iia and iib. The signal can only
continue to lo when both inputs are open at la = lb = 3.

8.8.1. Motivating Superstable Convergence

Now that we have achieved the design of network shape and folding sequence (Fig. 53b,c),

we move on to the discovery of exotic and nonlinear behavior (Fig. 53d). We have already

encountered one such inherently nonlinear phenomenon through superstable unit conforma-

tions (Fig. 61e), where a change in length l1 yields no change in length l2 to linear order.

This means that a network comprising units at a superstable fixed point will converge to

that fixed point at a faster than linear rate. What implications does superstability have for

our ability to design networks with nonlinear behavior?

8.8.2. Utilizing Superstable Convergence

Networks at a superstable fixed point demonstrate a qualitatively more extreme localization

of shape change than those at merely stable fixed points. To formalize this concept, we take

179

the second-order Taylor series expansion of a unit’s map, lk+1 = f(lk), about a fixed point

l∗ with slope s = f ′(l∗) and half of the curvature t = f ′′(l∗)/2 to yield

∆lk+1 ≈ s∆lk + t∆l2k. (8.18)

A network at a stable fixed point (e.g., s = 0.1) converges linearly because the quadratic

term ∆l2k � ∆lk becomes negligibly small, such that an infinitesimal perturbation dl1 cannot

be registered to numerical precision (10−16) after unit k = 16. In contrast, a network at a

superstable fixed point (s = 0, Fig. 62a,b) converges quadratically because the linear term

vanishes, such that an infinitesimal perturbation dl1 cannot be registered in unit k = 2.

Even a finite displacement ∆l1 = 0.1 propagates to ∆lk+1 that is smaller than 10−16 after

unit k = 4, 10−32 after unit k = 5, and 10−64 after unit k = 6 (Fig. 62c). As a reference,

the ratio of diameters between a classical electron and the observable universe is around

10−42.

This severe localization of shape change renders the lk+1 end effectively rigid, thereby allow-

ing us to design networks with unexpected and nonlinear functions. Here, we demonstrate

a mechanical instantiation of an AND gate, which is a binary operator with one Boolean

output that depends on two independent Boolean inputs. The Boolean states are the unit’s

two fixed points, l• =
√

3 and l◦ = 3 (Fig. 62a), and each of the gate’s inputs is the length

l1 of a network (Fig. 62b). We combine the two networks by merging the indicated nodes

at and near length l11 to form our mechanical AND gate (Fig. 62d,d-i, see the Appendix in

Chapter 9 for a physical network).

By constraint counting from Eq. 8.2, the AND gate should have 1 finitely deformable

conformational motion, even if it exists at a kinematic bifurcation allowing for 2 infinitesimal

motions (Mao and Lubensky, 2018). However, due to the quadratic convergence to the fixed

point l•, the AND gate begins at a geometry that effectively has 2 independent and finite

motions (Fig. 62d-iia,d-iib), and ends at a geometry that only has one such motion at l11

(Fig. 62d-iii). Hence, the AND gate can finitely access all four combinations of Boolean

180

inputs, while only one allows for the propagation of the mechanical signal.

8.9. Period Doubling Route to Mechanical Chaos

Figure 63: Mechanical Chaos. (a) Schematic of the stability design process at the
fixed point l1 = l2 = 1, with the designed instantaneous node motions in black and
colored arrows, the corresponding solution spaces in colored lines, and the positions of
the added nodes for each unit in colored nodes. (b) Slope plots of the conformational
motion for each unit. (c) At a slope of s0 = −1 (left), the fixed point l∗ = 1 is
marginally stable. As the slope passes s1, the fixed point becomes unstable, and a
new stable 2-cycle is born (triangle). As the slope continues past sn, each 2n cycle
becomes unstable and gives birth to a stable 2n+1 cycle, until (d) the unit becomes
chaotic with no stable cycles. (e) The ratio of slopes at the bifurcations converges to the
Feigenbaum constant. The slope values in this example are (s0, s1, s2, s3, s4, s5, s6, s7) ≈
(−1,−1.522545,−1.574527,−1.582104,−1.583487,−1.583777,−1.583838,−1.583851).

8.9.1. Motivating Chaotic Divergence

At the opposite extreme, networks comprising units that lose their stability undergo diver-

gent shape changes that are unpredictable and chaotic. Until now, every unstable fixed

point has been accompanied by a stable one, to which each subsequent unit k+1 eventually

converged. If there were no accompanying stable fixed point, to where would the units

converge?

181

8.9.2. Designing Chaotic Divergence

To answer this question, we design the slope of a unit at a fixed point by drawing on

prior work (Kim et al., 2019b) to constrain the motion of unconnected nodes i ∈ {1, 2, 3}.

We define l1 and l2 to be the length between node pairs {1, 2} and {2, 3}, respectively,

and place the nodes at (xi, yi) such that the lengths equal a fixed point l1 = l2 = 1

(Fig. 63a). We then choose the instantaneous node motions (dxi, dyi) to achieve a desired

slope s = dl2/dl1, where we fix dl1 = 1 as constant, and vary dl2. To achieve (dxi, dyi) as

the sole conformational motion, we connect all nodes i to an added node j, and solve for the

positions (xj , yj) and motions (dxj , dyj) that keep all edge lengths constant by satisfying

the derivative of Eq. 8.1

(xi − xj)(dxi − dxj) + (yi − yj)(dyi − dyj) = 0. (8.19)

We call these node positions (xj , yj) the solution space, along which we add two nodes

j ∈ {4, 5} to yield a network with 1 conformational motion that achieves the designed slope

at the fixed point (Fig. 63b, see the Appendix in Chapter 9 for the design algorithm, the

analytical form of the iterated map, and the conditions for a unit conformational motion to

act as a map, and Ref. (Kim et al., 2019b) for additional details).

For a unit designed with a stable fixed point (|s| < 1), subsequent units converge to the

fixed point and assume the same shape (Fig. 63b). As we design units with more negative

slopes s < −1, the fixed point undergoes a bifurcation and becomes unstable, giving birth

to a stable 2-cycle where every 2nd unit in the network repeats (Fig. 63, triangle). As

we design units with increasingly negative slopes, the 2-cycle becomes unstable at slope

s = s1, giving birth to a stable 4-cycle (Fig. 63, square), which then becomes unstable at

s = s2 and gives birth to a stable 8-cycle (Fig. 63, circle). Continuing this process, each

2n-cycle loses stability at sn, and gives birth to a stable 2n+1-cycle, until the network loses

all stable cycles and becomes chaotic (Fig. 63d). This process is known as a period-doubling

182

bifurcation, and is characterized by the Feigenbaum constant (Strogatz, 2018)

δ∞ = lim
n→∞

sn−1 − sn−2

sn − sn−1
≈ 4.669, (8.20)

to which our units converge (Fig. 63e). Additionally, the chaotic evolution of our units is

captured by the Lyapunov exponent that quantifies the rate of divergence of subsequent

units from infinitesimally nearby initial units, and is given by

λ(l1) = lim
n→∞

1

n

n∑
k=1

ln |f ′(lk)|. (8.21)

We estimate the exponent by averaging across long trajectories from many initial condi-

tions to be 0.246 (see the Appendix in Chapter 9 for the calculation of the exponent),

demonstrating positive divergence: a hallmark of chaos.

8.10. Period Three Implies Mechanical Chaos

8.10.1. Motivating 3-cycle Units

In the previous section, as we changed the edge lengths of a unit to lose stability at a fixed

point, the unit underwent a period-doubling route to chaos. While the presence of many-

period cycles may be useful for designing metamaterial lattices, each choice of edge length

only corresponded to a specific 2n-cycle. Can a single super-unit with fixed edge lengths

yield arbitrarily many cycles?

8.10.2. A 3-cycle Unit and Sharkovsii’s Theorem

To obtain such a super-unit, all we require is for the unit’s map to display a 3-cycle. This

requirement is a direct result of Sharkovsii’s theorem, which states that for any real interval

I ⊂ R, if a map f : I → I has a point of period 3, then it contains a point of period k

where k is a positive integer (Sharkovsii, 1995). This deceptively simple statement leads to

powerful consequences, as a unit whose map contains a 3-cycle not only implies chaos (Li

183

Figure 64: A 3-Cycle Unit. (a) Cobweb plot of a unit containing a 3-cycle. (b) Examples
of 2-cycle, 3-cycle, and 6-cycle conformations that can be found in this unit.

and Yorke, 2004), but also implies that it can change its shape to yield any integer-period

cycle.

We discover such a 3-cycle unit (Fig. 64a), and also demonstrate the presence of other

positive-integer cycles such as 2-cycles and 6-cycles (Fig. 64b). Importantly, unlike the unit

in the period-doubling route to chaos, this unit contains cycles of all positive integer periods

with one single set of edge weights.

184

Figure 65: Physical Construction of Networks. (a) Photo of a super-stable unit con-
structed from laser-cut acrylic bars held together by Chicago screws at the joints, transi-
tioning between two fixed points l• and l◦. (b) Photos of a combined network collapsing
from l• to l◦. (c) A 4-bar linkage with two fixed points l• and l◦, (d) combined hexagonally
into (e) an initially wide spiral helix with a channel l•, collapsing sequentially to a narrow
closed helix. (f) Photo of a creased square sheet of paper modeled as a linkage with 1
conformational motion moving between two fixed points l• and l◦ (purple: mountain fold,
orange: valley fold). (g) Two creased sheets combined by merging the nodes defining l2 and
l′2, along with a third node in each module marked in bright red. (h) A combined network
of 12 sheets that sequentially collapses from the l◦ to the l• lattice. (i) A 3D-printed planar
module with two fixed points l•, l◦. Each module is composed of triangles connected by a
thin layer of material, that (j) form a chain where (k) fixing the cyan hinge and pulling the
red hinge yields a sequential transition from l• to l◦. (l) Photos of the quadrifolium and
(m) chaotic networks made from cardstock bars held together by metal pins.

8.11. Constructing Physical Networks

Here, we implement this theory for designing the geometry of both the sequence and macro-

scopic structure of mechanical networks by constructing physical networks. We construct a

super-stable and sequentially collapsible network by laser cutting the edges from 1/8-inch

185

thick acrylic, and connecting their joints using Chicago screws (Fig. 65a,b). Additionally,

many deployable applications (Puig et al., 2010) require a compact initial geometry and

a precise, rigid final geometry. Using wooden sticks that are joined by a staple prong at

the joints, we show a 4-bar linkage with two fixed points l• and l◦, where the l• point is

super-stable (Fig. 65d). These modules combine in a chain (Fig. 65e) that yields a wide

spiral with an open channel at l•, and collapses to a narrow spiral with no channel at l◦

(Fig. 65f, see the Appendix in Chapter 9 for the maps lk+1 = f(lk)).

To demonstrate the generalizability of our framework to 3-dimensional space, we model a

creased square of paper as a linkage, where each crease is a rigid edge, and the intersection

of creases is a node (Fig. 65f). We define l1 and l2 to be the distances between opposing

corners in this sheet that collapses from the unfolded l• to the folded l◦ crystalline states.

We combine these modules by merging the nodes defining l2 and l′2 (Fig. 65g) to obtain an

origami structure that collapses sequentially to a flat geometry.

These principles also extend to planar networks comprised of polygons (e.g., triangles)

connected at vertices through a thin layer of flexible material (Fig. 65g). We designed a

module with two fixed points l• and l◦, where the initial point l• is super-stable. We can

chain these modules as before to yield the same iterated map lk+1 = f(lk) (Fig. 65h), such

that we obtain a sequential transition from l• to l◦ by pulling on the network (Fig. 65i).

Importantly, because this network is printed as shown, there is no required assembly (see

the Appendix in Chapter 9 for the bond lengths of network and for considerations of elastic

bond lengths).

8.12. Elasticity & Signal Propagation in the Mechanical AND gate

Until now, we have assumed that the bonds were rigid, or that any elastic deformations

would decay to an equilibrium configuration of zero extension. However, real systems can

sustain deformations from resistance to motion such as friction, which may alter the designed

behavior of these networks. Here we provide two experiments to quantify the effect of bond

186

Figure 66: Elastic Deformations in Superstable Networks. (a) A plot of the maxi-
mum percent strain of the elastic bonds in networks comprising k superstable units. The
initial length l1 = 3 is fixed to be open, the final length lk+1 =

√
3 is fixed to be closed,

and the minimum energy configuration is computed for k = {1, 2, · · · , 8}. (b) The nodes
defining length lk+1 between two elastic network chains are merged to form an AND gate
with input lengths la and lb, and output length lo. For k = {1, 2, 3, 4}, the input lengths are
fixed at various values between

√
3 ≤ la, lb ≤ 3, and are plotted against the output length

lo and the maximum percent strain at the minimum energy configuration.

deformations.

the first experiment, we quantify the propagation of the input signal through a chain of

superstable units with elastic bonds. We take the superstable unit shown in the bottom-left

of Figure 66a, and replace the rigid bonds with elastic bonds of unit stiffness. Then, we force

the input l1 open to 3, force the output l2 to
√

3, and compute the maximum bond strain

at the equilibrium configuration. We repeat this procedure for longer chains comprising a

range from 2 to 8 units, and plot the max strain (Fig. 66a). There is an appreciable strain

up to around 5-6 units. Hence, enough of the input signal propagates to the output to

appreciably deform the bonds. If the output were not fixed at
√

3, then the bonds must

deform appreciably for the input signal to fully decay.

187

Importantly, this first result holds true for any scalar multiple of bond stiffness. Specifically,

the bonds are modeled as linear springs with potential energy given by

V =
1

2

∑
(i,j)∈E

kij(l
∗
ij−ij)2, (8.22)

where E is the set of all bonds, kij is the stiffness of the bond connecting node i to node

j, l∗ij is the equilibrium length of said bond, and lij is the current length of said bond.

Because potential energy is linear in bond stiffness, the location of the minimum potential

configuration and the percent bond strain do not change with scalar multiples of kij .

In the second experiment, we construct AND gates by combining chains of elastic super-

stable units (Fig. 66b, top), and measure both the energetics and geometry of these AND

gates. To directly quantify these effects, we construct AND gates by combining chains of 1

unit, 2 units, 3 units, and 4 units (Fig. 66b). We systematically fix the distance between

the input nodes, la and lb, across a range from
√

3 to 3, and evolve the node coordinates

to minimize the potential energy with all kij = 1. Then, we plot the distance between the

output nodes, lo, along with the maximum percent strain (Fig. 66b).

We find that an AND gate comprising 1 units has the greatest signal propagation with a

large percent strain, but also has non-ideal geometric behavior. Specifically, the output fails

to remain fully closed when only one of the two inputs are open (Fig. 66b). However, as

we increase the number of units in a chain up to 4, we observe that the geometric changes

much more closely resemble an ideal AND gate, where the output only opens appreciably

when both la = lb = 3 are open.

8.13. Discussion

Ever-arising mechanical challenges (Sofla et al., 2010; Puig et al., 2010) drive the develop-

ment of innovative designs (Overvelde et al., 2017; Wei et al., 2014; Cheung and Gershenfeld,

2013; Pellegrino, 2001), which in turn spark novel applications (Yang et al., 2015; Cummer

188

et al., 2016). In this work, we presented a simple theory for the principled design of a rich

and complex set of folding sequences and large-scale geometries through the properties of

a single module. Due to the practical and ubiquitous nature of linkages, these ideas are

well-positioned to provide simple solutions to complex problems in robotic grasping (Yu

Zheng and Wen-Han Qian, 2005), deployable mechanisms (Puig et al., 2010), morphing

mechanical structures (Sofla et al., 2010), and tunable metamaterials (Liu and Semperlotti,

2018). By writing the large, non-linear geometric conformation of a network as the iteration

of one module, we retain the richness of network motion while dramatically reducing design

complexity.

Here, we studied the fundamental behaviors of this richness that directly arise from iterated

maps. Immediate extensions include designing modules with complex maps (more than 2

fixed points, negative slopes at fixed points, critical slowing, bifurcations (Strogatz, 2018)),

and developing principles for combining modules with different maps. The theory can also

extend beyond iterated maps, where linkages follow a circular path that is not formally

a function (d2 is not uniquely determined by d1). For ease of manufacturing, previous

work on planar networks (Coulais et al., 2017) motivates the development of a module

design framework specific to these systems. Finally, given the design framework for bistable

linkages with elastic bonds (Kim et al., 2019b), a promising future direction lies in the design

of sensors, adaptive response, and superelasticity seen in shape memory systems (Lendlein

et al., 2005; Wei et al., 1998), depoyable structures as seen in origami metamaterials and

antenna (Silverberg et al., 2014b; Puig et al., 2010), and mechanical computation (Chen

et al., 2021). Hence, this simple theory provides a versatile and unifying framework for

designing large sequential conformational changes in mechanical networks.

189

CHAPTER 9 : Appendix to Nonlinear Dynamics & Chaos in Conformational

Changes of Mechanical Metamaterials

9.1. Single Module Design: Infinitesimal Motion

In the main text, we design infinitesimal motions. Here we outline the design procedure.

We consider three nodes i ∈ {1, 2, 3} whose start positions, xi =

xi
yi

, and infinitesimal

motions, dxi =

dxi

dyi

, are fixed as constants. We consider additional nodes whose start

positions xj and infinitesimal motions dxj are variables. The only edges are located between

nodes i ∈ {1, 2, 3} and nodes j ∈ {4, 5} such that E = {1, 2, 3} × {4, 5}.

For either variable node j, we write the linearized constraints as

0 =


(x1 − xj)>(dx1 − dxj)

(x2 − xj)>(dx2 − dxj)

(x3 − xj)>(dx3 − dxj)

 .

Because the fixed nodes’ positions and motions are constant, we expand each equation to

pull out the variable node j’s position and motion

0 =


x>1 dx1

x>2 dx2

x>3 dx3

−

x>1

x>2

x>3

dxj −


dx>1

dx>2

dx>3

xj + x>j dxj


1

1

1

 ,

and notice that there is only 1 nonlinear term in this system, namely c = x>j dxj . If we

temporarily omit this nonlinearity, and substitute c as a free variable, we can write the

190

linearized constraint equations as a linear system of equations b = Av


x>1 dx1

x>2 dx2

x>3 dx3


︸ ︷︷ ︸

b

=


dx>1 x>1 −1

dx>2 x>2 −1

dx>3 x>3 −1


︸ ︷︷ ︸

A


xj

dxj

c


︸ ︷︷ ︸

v

. (9.1)

Then, the variable node positions and motions arise as the particular solution vP = A+b

(where A+ is the pseudo-inverse) and homogeneous solution vH ∈ N (A) to Eq. 9.1 where

v = vP + vH ,

that satisfy the one nonlinear constraint c = x>j dxj . If a variable node that is connected

to all fixed nodes is placed along this solution space, then the fixed nodes’ positions xi and

motions dxi satisfy the edge constraints.

9.2. Single Module Design: Finite Displacement

In the main text, we also design finite motions. Here we outline the design framework. We

consider three nodes i ∈ {1, 2, 3}, whose start positions, x•i =

x•i
y•i

, and end positions,

x◦i =

x◦i
y◦i

, are fixed as constants. We consider additional nodes j ∈ {4, 5} whose start

positions x•j and end positions x◦j are variables. The only edges are located between nodes

i and nodes j, such that the edges of the entire unit are given by E = {1, 2, 3}× {4, 5}. For

both initial and final positions to be reachable by the same unit with rigid edges, we must

ensure that the edge lengths are equal at both positions. Hence, for either of the nodes

191

j ∈ {4, 5}, we satisfy the constraint that the edge lengths at both positions are equal:


(x•1 − x•j)>(x•1 − x•j)

(x•2 − x•j)>(x•2 − x•j)

(x•3 − x•j)>(x•3 − x•j)

 =


(x◦1 − x◦j)>(x◦1 − x◦j)

(x◦2 − x◦j)>(x◦2 − x◦j)

(x◦3 − x◦j)>(x◦3 − x◦j)

 .

We expand these terms to yield


x•>1 x•1

x•>2 x•2

x•>3 x•3

− 2


x•>1

x•>2

x•>3

x•j + x•>j x
•
j


1

1

1

 =


x◦>1 x◦1

x◦>2 x◦2

x◦>3 x◦3

− 2


x◦>1

x◦>2

x◦>3

x◦j + x◦>j x
◦
j


1

1

1

 ,

and rearrange to isolate the constants x•i ,x
◦
i from the variables x•j ,x

◦
j to yield another

linear equation, with a similarly substituted nonlinear free variable c = x•>j x
•
j − x◦>j x◦j


x•>1 x•1 − x◦>1 x◦1

x•>2 x•2 − x◦>2 x◦2

x•>3 x•3 − x◦>3 x◦3


︸ ︷︷ ︸

b

=


2x•>1 −2x◦1 −1

2x•>2 −2x◦2 −1

2x•>3 −2x◦3 −1


︸ ︷︷ ︸

A


x•j

x◦j

c


︸ ︷︷ ︸

v

. (9.2)

Again, we see that b and A only contain fixed node initial and final positions that are

constants, such that the equation is linear in our variable node start and end positions, v.

Our solution space is again given by a particular and homogeneous solution v = vP + vH

that satisfies one quadratic constraint c = x•>j x
•
j − x◦>j x◦j . By placing unspecified nodes

and edges on this space such that M = 4, we have 1 conformational motion where the

desired start x• and end x◦ positions have the same edge lengths. Because the additional

constraint c is a quadratic constraint, our solution space takes the form of a conic section.

9.3. Analytic Form of the Iterated Map

In the main text, we use the analytical form of the iterated map. Whereas numerical

integration yields points along the 1-dimensional map f of conformational motions over

192

time given by l1(t) and l2(t), an analytical form of the map is desired for numerically

sensitive applications such as computing the Lyapunov exponent of a map. Specifically,

we would like the equational form of our map f between the lengths across unconnected

nodes for l2 = f(l1). We solve for this equational form in our system of 5 nodes (3 fixed,

2 variable) and 6 edges. Without loss of generality, we number the fixed nodes such that

l1 is the distance between nodes 1 and 2, and l2 is the distance between nodes 2 and 3,

and we number the variable nodes as 4 and 5. Further, we can always find a set of rigid

body motions to place node 2 at the coordinates (x2, y2) = (0, 0), and place node 1 at the

coordinates (x1, y1) = (l1, 0). We denote the length of an edge between nodes i and j as lij .

We begin by writing the variable node positions as a function of (x1, y1) and (x2, y2) through

the distance constraints from the edge lengths. Specifically, nodes j = 4, 5 satisfy

l21j = (xj − x1)2 + (yj − y1)2 = x2
j + y2

j − 2l1xj + l21,

l22j = (xj − x2)2 + (yj − y2)2 = x2
j + y2

j ,

and subtracting the two equations, we can solve for xj , and resubstitute to solve for yj

xj =
l21 + l22j − l21j

2l1
yj = ±

√√√√l22j −

(
l21 + l22j − l21j

2l1

)2

.

From the known initial position of the nodes, x0, we can determine whether yj is positive

or negative. Then, we can write the position of node 3 as satisfying constraints

l234 = (x3 − x4)2 + (y3 − y4)2

l235 = (x3 − x5)2 + (y3 − y5)2,

which are the equations for two circles: one centered at (x4, y4) with radius l34 and another

centered at (x5, y5) with radius l35. The intersection of these circles yields x3 and y3, and is

solved symbolically as a function of l1. The initial position of node 3 is used to determine

193

which of the generally two points of intersection are used. Because l2 is the distance between

nodes 2 and 3, and node 2 is located at (0, 0), the distance l2 is simply the length of the

position of node 3, finally yielding the map l2 = f(l1) =
√
x2

3(l1) + y2
3(l1).

9.4. Condition for a Conformational Motion to Act as a Map

Figure 67: Decomposition of a Conformational Motion Into Valid Map Segments.
(a) A plot of distances l1 versus l2 between unconnected red nodes in a module along
the full conformational motion, with example network geometries at select points. (b)
Decomposition of the curve (l1, l2) into four segments that uniquely map distance l1 to
distance l2.

Throughout the main text, we consider the implications of viewing module combinations

as iterated maps. For this perspective to hold true, we must write l2 as a proper function

of l1, where each value of l1 uniquely determines a value of l2. This property generally

does not hold true along the full trajectory of a single module. For example, consider

the following module (Fig. 67a), with 1 conformational motion, and distances l1 and l2

between unconnected red nodes. As the node coordinates change along this conformational

motion, we can plot the distance pair (l1, l2) as a continuous 1-dimensional curve that is

some function of l1 and l2, shown in black. Immediately, we notice that for many values of

l1, there are multiple possible values of l2 on the curve. For the iterated map perspective to

hold true, we must select a continuous segment of this curve where l2 is uniquely determined

194

by l1. For this particular module, we can select 4 such segments f1 (light blue), f2 (blue),

f3 (dark blue), f4 (black) as 4 valid maps from l1 to l2 (Fig. 67b). We ensure that the

combined networks of the main text are valid functions.

9.5. Numerically Characterizing Chaos: Lyapunov Exponent

0.238

0.246

0.253

Figure 68: Trajectory Divergence at Chaos. (a) Map lk+1 = f(lk) of the chaotic
module, starting at 50 evenly spaced lengths from 0.4224 / l1 / 0.4324, whose trajectories
diverge. The map’s domain and range are bounded by a range of lengths ρ. (b) We sample
1000 evenly spaced points along r at 0.4155 / l1 / 1.4842 as initial lengths. Then we iterate
our map 10000 times to settle the lengths onto the attractor, and compute the Lyapunov
exponent for a subsequent 50000 iterations.

In the main text, we show a chaotic network whose map between distances l2 = f(l1)

is a general tent map demonstrating chaotic behavior. We quantify this behavior using

the Lyapunov exponent that measures the sensitivity of the trajectory to minute changes

in initial conditions. We iterate the map n times for an initial distance l1 and a small

perturbation l′1 = l1+δ1, such that ln+1 = fn(l1), and l′n+1 = fn(l′1). Then, we measure how

far the trajectories have diverged as δn+1 = l′n+1 − ln+1. The Lyapunov exponent captures

the exponential rate, λ, at which this divergence occurs according to |δn+1| = |δ1|enλ. For

the trajectory of distances l1, l2, · · · at the limit of n→∞, this exponent is defined as the

195

average log of the slope at each distance

λ = lim
n→∞

(
1

n

n∑
i=1

ln |f ′(li)|

)
.

Across 1000 evenly spaced l1 across the full map range, we find a tight distribution of

positive exponents averaged around λ ≈ 0.246 > 0, which is a hallmark of chaotic systems.

9.6. Maps of Physical Linkage & 3D-Printed Modules

Figure 69: Maps of Physical Networks. (a) Map l2 = f(l1) of the 4-bar linkage used as
a deployable example, with a super-unstable fixed-point l• and a stable fixed-point l◦. (b)
Map l2 = f(l1) of the planar network, with a super-stable fixed-point l• and a super-unstable
fixed-point l◦.

In the main text, we construct physical networks using our linkage design framework. In

addition, we show a 4-bar linkage and a 3D printed planar network. Here we show the

maps l2 = f(l1) for these additional networks. For the 4-bar linkage, we begin in an initial

fixed-point collapsed state l• that is super-unstable (slope = ∞), where an infinitesimal

change in l2 produces no change in l1. Further along the motion, we get a stable fixed point

l◦ (Fig. 69a). As for the planar network, we can model each triangular face as a triangular

linkage, and plot the map of l2 = f(l1) along the conformational motion. This module is

super-stable at the initial fixed point l•, and is additionally super-unstable at the final fixed

196

point l◦.

9.7. Construction & Map of Origami Module

Mountain
Valley

Figure 70: Origami Sheet Construction & Map. (a) Construction of creases in square
origami sheet, with labeled dimensions and with mountain and valley folds. We label l1
and l2 as the distance between the corresponding corners. (b) Map l2 = f(l1) of this
origami sheet that has two fixed points: l• corresponds to the flat sheet configuration, and
l◦ corresponds to a folded configuration. The flat sheet configuration sits at a kinematic
bifurcation, where another trajectory exists in which the network simply folds along the
main diagonal crease.

In the main text, we demonstrate the use of our framework in an origami unit. Here we

detail the construction of the unit shown in the main text, and numerically plot its map.

We begin with a square of paper with side length L, and crease it once along the diagonal.

We label l1 and l2 as the distances between the opposite marked corners of this square,

and also label the mountain and valley creases (Fig. 70 a). We then show the map of l1

versus l2 along the 1 conformational motion, with the corresponding network geometries

shown above sampled points along the map (Fig. 70b). At the flat sheet configuration, the

network exists at a kinematic bifurcation, such that other possible trajectories exist, such

as the network folding along the main diagonal crease with both mountain or valley folds.

197

9.8. Edge Lengths are Determined by Added Node Placement

Throughout the main text, our unit design process involves first placing the added nodes 4

and 5 on the solution space, and second connecting the added nodes to nodes 1, 2, and 3 at

their start positions. This ordering means that the lengths of the rigid edges are determined

by our placement of the added nodes 4 and 5 on the solution space. In every designed unit,

there are only 6 edges, between node pairs: (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), and (3, 5). As

an example, consider the unit design of three nodes, 1, 2, and 3, where we desire for their

end positions to move radially outward from their start positions (Fig. 71a).

In one scenario, we first choose to add nodes 4 and 5 somewhere on the solution space, and

then connect them to nodes 1, 2, and 3 with edges of the appropriate length (Fig. 71b). In

another scenario, we first choose to add nodes 4 and 5 at a different location on the solution

space, and then connect them to nodes 1, 2, and 3 with edges of different appropriate lengths

(Fig. 71c). We observe this phenomenon again in yet another choice of placements for nodes

4 and 5 on the solution space (Fig. 71d).

Figure 71: Edge Lengths are Determined by Added Node Placement. (a) Three
nodes, 1, 2, and 3, whose end positions are to be designed to move radially outwards, with
the solution space shown in blue. (b) The unit design process involves first adding nodes
4 and 5 (in blue) on the solution space, and then connecting them with edges of labeled
lengths to nodes 1, 2, and 3. (c,d) Placing the added nodes at different locations on the
solution space yields different edge lengths.

Hence, the lengths of the rigid edges are not chosen first. Rather, the locations of the added

nodes, 4 and 5, are chosen first to be on the solution space. Then, they are connected

to nodes 1, 2, and 3 with rigid edges of the appropriate length. Specifically, they are

198

connected to nodes 1, 2, and 3 by edges that have length equal to the distance between the

start positions of nodes 1, 2, and 3, and the positions of added nodes 4 and 5.

9.9. Combining Units Only Merges Nodes Between Units

In the main text, we describe how we combine units by merging the nodes between the

units. Here we will describe this procedure in more depth. Consider the two units shown

in Figure 72a, unit k and unit k + 1, where each unit has three non-added nodes, 1, 2, and

3 (in gray), and two added nodes, 4 and 5 (in blue). As per the methods in the main text,

for unit k, we define lengths lk and lk+1 as the lengths between unconnected node pairs

(1, 2) and (2, 3), respectively. Similarly for unit k + 1, we define lengths lk+1 and lk+2 as

the lengths between unconnected node pairs (1, 2) and (2, 3), respectively. We first take the

mirror image of unit k + 1 by flipping it along the horizontal axis (Fig. 72b), as this is the

orientation of units k and k + 1 before they are combined throughout the main text.

Figure 72: Combining Units Only Merges Nodes Detween Units. (a) Two units,
k and k + 1, that each have nodes 1 − 5. Unit k has lengths lk and lk+1, and unit k + 1
has lengths lk+1 and lk+2. (b) Unit k + 1 is flipped along the horizontal axis to orient it
according to our main text examples, and the nodes marked by the dotted lines are merged
to form (c) the combined network.

We combine unit k to unit k + 1 by merging nodes, and describe the process in three

different ways. Visually, in Figure 72b, the nodes connected by the dotted lines are merged,

which can be visualized as bringing the units closer together until the nodes connected by

the dotted line overlap, and are then glued together to form Figure 72c. Equationally, we

notice that length lk+1 is used to define two lengths: the length between node pair (2, 3)

199

in unit k, and the length between node pair (1, 2) in unit k + 1. The nodes defining the

common length lk+1 are brought together and merged. Verbally, we merge unit k to unit

k + 1 by merging node 2 of unit k to node 1 of unit k + 1, and by merging node 3 of unit

k to node 2 of unit k + 1. No other modifications are made when combining units, and no

edges are added.

9.10. Edge Lengths of All Network Examples

Throughout the main text, we perform many constructions from units to network chains.

To drive additional intuition, we show a deconstruction from network chains to units, and

write down the edge lengths of units. Importantly, here we will use a node numbering

scheme that is different from that used in the main text. In the main text, we numbered

the nodes of each unit, and merged the nodes together. Here, we will number the nodes of

the network, and preserve this numbering throughout the deconstruction.

Figure 73: Decomposition and Edge Lengths of the 4-Bar Linkage Example.
Top: the 4-bar linkage network from the main text with unique node labels. Bottom:
decomposition of the network into the composite 4-bar linkage units, with labeled edge
lengths and preserved node labels. For example, node 5 connects to nodes 3, 4, and 7 via
edges of length 1.00, and node 8 via an edge of length 2.24.

200

Figure 74: Decomposition and Edge Lengths of the Designed Quadrifolium. Top:
the quadrifolium network from the main text. Middle: a zoomed-in view of a subset of
the network with uniquely labeled nodes. Bottom: decomposition of the network into the
composite designed units, with labeled edge lengths and preserved node labels. For example,
node 4 connects to node 117 via an edge of length 3.17, to node 118 via an edge of length
1.58, to node 119 via an edge of length 3.05, to node 120 via an edge of length 0.98, to node
121 via an edge of length 0.68, and to node 122 via an edge of length 2.02.

201

Figure 75: Decomposition and Edge Lengths of the Designed Superstable Net-
work. Top: the superstable network from the main text with uniquely labeled nodes.
Bottom: decomposition of the network into the composite designed units, with labeled
edge lengths and preserved node labels. For example, node 4 connects to node 15 via an
edge of length 2.65, to node 16 via an edge of length 2.00, to node 17 via an edge of length
1.00, to node 18 via an edge of length 2.65, to node 19 via an edge of length 2.00, and to
node 20 via an edge of length 1.00.

202

Figure 76: Decomposition and Edge Lengths of the Designed Chaotic Network.
Top: the chaotic network from the main text with uniquely labeled nodes. Bottom: decom-
position of the network into the composite designed units, with labeled edge lengths and
preserved node labels. For example, node 4 connects to node 27 via an edge of length 1.00,
to node 28 via an edge of length 0.54, to node 29 via an edge of length 1.41, to node 30 via
an edge of length 0.95, to node 31 via an edge of length 1.00, and to node 32 via an edge
of length 0.95.

203

9.11. Elasticity in the Superstable Mechanical AND Gate

Figure 77: Evolution of an Elastic Mechanical AND Gate. (a) Potential energy over
time of a mechanical AND gate where the rigid rods are replaced with elastic rods, with an
initial velocity of the left-most gray node going to the left. After the initial velocity t = 0,
there is no more energy that is input into the system, and no other external forces that
act on the network, such that the total energy remains constant over time. (b) The same
simulation is run for the same network, except the initial velocity is now on the top-most
gray node, moving to the top-left.

In the main text, we construct a mechanical AND gate using units at a superstable fixed

point that converge to the fixed point quadratically. In our exposition, we often refer to

very small quantities such as 10−64, which brings up the potential for the sensitivity of the

AND gate to factors such as elasticity. To study the effect of elasticity, we examine the

behavior of the mechanical AND gate after replacing the rigid bonds with elastic springs

characterized by unit spring constant and node mass.

In the first initial condition, the velocity of the left-most gray node is set to move to the

left, and the system’s Hamiltonian is evolved over time with no external forces (Fig. 77a) As

204

can be seen, the bottom arm is allowed to extend independently of the top arm, but hits an

energy barrier once the motion reaches the intersection of the arms (Fig. 77a, yellow). The

motion is no longer allowed to propagate beyond this point. In the second initial condition,

the velocity of the top-most gray node is set to move to the top-left, and the system’s

Hamiltonian is evolved over time again with no external forces (Fig. 77b). As before, the

top arm is allowed to extend independently, but hits an energy barrier once the motion

reaches the intersection (yellow), and is no longer allowed to propagate. Hence, the elastic

network demonstrates the same qualitative behavior as the rigid network, whereby both

arms are allowed to move independently, but the signal is unable to propagate until both

arms have fully extended.

Figure 78: Physical Construction of the Mechanical AND Gate.

To further demonstrate the ability of the theory to be physically implemented, we physically

construct the mechanical AND gate out of wooden sticks to reproduce Figure 11 of the main

text.

205

9.12. Elaboration of Unit Cell Topology

Throughout the main text and supplement, we provide one perspective on the creation of

unit cells. Specifically, we take an additive perspective whereby we begin with a designed

5-node unit, and combine multiple 5-node units together by merging node pairs. Here, we

put forth another perspective that was very kindly written by a reviewer which considers a

pre-constructed lattice of already-combined units.

Consider a particle in the two-dimensional plane attached to a particle at v1 by a rod of

length a and to a particle at v2 by a rod of length b. This particle is thus constrained to

lie at one of two points, which may be expressed as

v±m = v1 + f‖(a, b, |v2 − v1|)v̂‖ ± f⊥(a, b, |v2 − v1|)v̂⊥. (9.3)

Here, f‖, f⊥ may be given explicitly in terms of simple algebraic functions. v̂‖ is a unit

vector pointing from the first to the second particle and v̂⊥ is this vector rotated by a

quarter turn in the counter-clockwise direction.

A unit cell applies this procedure three times, such that particles initially at positions rk1, r
k
2

define the unit cell. rk3 is connected to the first two particles by rods of length a1, b1,

while rk4 is connected to the first two particles by rods of length a2, b2. Finally, rk5 is

connected to the third and fourth particles by rods of length a3, b3. The rod lengths are

as given in the figure in the Supplemental section 9.10. In each cell, the mapping used is

either ±,=,+, or ±,=,−, with the choice alternating between subsequent cells. The length

associated with a cell is defined as lk ≡ |rk2 − rk1|. The second and the fifth particles in

the cell form the first two in the next cell: rk+1
1 = rk2, r

k+1
2 = rk5. Note that creating each

new cell places three additional particles in the two-dimensional plane with six additional

rod constraints, generating an isostatic structure that maps lengths via some complicated

functional relationship lk+1 = f(lk).

206

9.13. Chaos Remains Generic to Small Changes in Bond Length

In the main text, we demonstrate several examples of chaotic networks through either a

period-doubling route to chaos or through a unit displaying a 3-cycle. Here, we test the

robustness of chaos to noise. Specifically, we begin with a network that is known to produce

chaos (Fig. 79, left), and test the preservation of chaos under perturbations.

First, we take the network in Fig. 79, with the displayed node coordinates. Specifically,

node 1 is positioned at (−0.93,−0.90), node 2 is positioned at (0, 0), node 3 is positioned at

(0.93,−0.90), node 4 is positioned at (0,−0.94), and node 5 is positioned at (−0.62,−0.88).

The following pairs of nodes are connected by rigid bonds: E = {(1, 4), (2, 4), (3, 4), (1, 5),

(2, 5), (3, 5)}. The length of the bond between node i and node j is fixed to be the distance

between node i and node j. The length lk is defined as the distance between the unconnected

node pair (1, 2), and the length lk+1 is defined as the distance between the unconnected

node pair (2, 3). This network has one conformational motion, and plotting the distance

lk+1 against the distance lk along this conformational motion yields the blue curve (Fig. 79,

left). This curve yields a map f that maps lk+1 = f(lk). The Lyapunov exponent of this

map is computed by first choosing l1 = 1.25 as an initial condition, then iterating the map

10,000 times without keeping track of the slope of the map to remove any dependencies

on the initial condition, and finally by computing the Lyapunov exponent on a subsequent

10,000 iterations. The Lyapunov exponent we obtained was approximately 0.4874, which is

greater than 0, such that the map is chaotic.

To test whether chaos is a generic property, we first removed the bonds, then perturbed

the x- and y-coordinates of each node by adding a random number drawn from a uniform

distribution of width w to the x-coordinate, and a separate, independent random number

drawn from the same distribution to the y-coordinate. Then, we reconnected the same

node pairs—(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)—using rigid bonds whose lengths were

now fixed to be the distances between the perturbed node coordinates, which yielded a

perturbed network whose conformational motion produced a perturbed map lk+1 = fp(lk).

207

1.1 1.2 1.3
1.1

1.2

1.3

-1 -0.5 0 0.5
0

20

40

60

80

100

0.00001
0.0001
0.001
0.01

Figure 79: Robustness of Chaos to Random Parameter Perturbations. (left) Cob-
web plot of a mechanical unit that demonstrates a 3-cycle, thereby implying chaos. The
precise network used with the precise coordinates of the joints are displayed. (right) Distri-
bution of Lyapuonv exponents for random perturbations to the node coordinates of varying
magnitudes.

For each width w ∈ {0.00001, 0.0001, 0.001, 0.01}, we generated 100 such perturbed units

corresponding to 100 such perturbed maps, which yielded 100 corresponding Lyapunov

exponents (Fig. 79, right). For perturbations w ∈ {0.00001, 0.0001, 0.001}, the property of

chaos is robustly preserved, as is evidenced by the positive Lyapunov exponents. When

the perturbation is w = 0.01, the property of chaos begins to fluctuate, but is still present

in the majority of cases. Hence, chaos—as measured by a positive Lyapunov exponent—is

preserved under a small yet finite fraction of randomly chosen bond lengths.

208

CHAPTER 10 : Concluding Remarks

10.1. Summary of Our Process for Extracting Design Principles

In the preceding chapters, we develop several principles for engineering the microstate in-

teractions to design advanced functions. In these concluding remarks, we summarize the

overall approach used to extract these principles.

First, we define the equations that govern the evolution of the microstates, x, as a function

of the interactions, A. In dynamical systems, this equation takes the general form ẋ =

f(A,x, c) where c generally represents extra inputs and parameters. In mechanical systems,

this equation takes the general form x = f(A,x, c).

Next, we write the evolution of the microstates in an accessible algebraic form. In Chapter 2,

this form involves approximating the dynamics as a linear system in Eq. 2.1 and performing

an expansion of the control energy expression with respect to the connectivity matrix in

Eq. 2.2. In Chapter 4, this form involves taking a differential expansion of the dynamics

about a trajectory in Eq. 4.9. In Chapter 6, this form involves decomposing a mechanical

network unit into a bipartite graph for which one part acts as independent variables for

the design problem in Eq. 6.3. In Chapter 8, this form involves turning the nonlinear and

high-dimensional design space in Eq. 8.10 into an iteration of a low-dimensional nonlinear

problem in Eq. 8.12.

Finally, we use mathematical insights to use these algebraic forms for design. In Chapter 2,

we find a substitution to write the control energy as an algebraic function of the connectivity

matrix in Eq. 2.5. In Chapter 4, we find an approximation for writing the terms of the

expansion as a function of control parameters in Eq. 4.12 and Eq. 4.13. In Chapter 6,

we find a change of variables to isolate the nonlinearity into a single quadratic term in

Eq. 6.4, enabling a simple and geometrically intuitive design framework. In Chapter 8, we

use techniques in nonlinear dynamics to precisely design a rich set of highly complex shape

changes in Eq. 8.13, 8.15, and 8.18.

209

10.2. Key Concepts for Complex Systems Engineering

10.2.1. Preservation of the Microstate Interactions

Through this process, one crucial component is to preserve as clear and direct of a relation-

ship between the designed function and the interaction matrix A as possible. The reason

for this preservation is two-fold.

First, our ability to engineer a complex system is often most straightforward at the lowest

level of the interaction weights. In general, it is conceptually and practically more straight-

forward to modify the individual interactions than to change the eigenspectra of a matrix.

For example, the surgical ressection and ablation of neural tissue is performed at the level of

nodes and edges, not at the level of eigenvalues. As a corollary, complex systems themselves

often rely on local information at the level of interactions such as Hebbian plasticity and

neighboring electrostatic interactions.

Second, there are often deep insights into complexity that are lost when moving beyond

the element-by-element representation of the interactions. For example, in Chapter 2, a

convenient stopping point for the derivation is Eq. 2.3, where the energetics can be writ-

ten as a function of the matrix determinant. From this point, it is tempting to close by

relating the determinant to the eigenvalues of a matrix. However, through careful mathe-

matical relations, we can rewrite the energetics as a function of the connectivity weights in

Eq. 2.5, which simultaneously yields a more visceral geometric intuition of network topology

for control, and enables further insights into mesoscopic network organization that yields

energetically favorable connectivities.

Of course, this is not to say that the only way to engineer complex systems is by preserving

relationships between the function and the microstate interactions. We are simply provid-

ing a comment that premature abstraction, feature extraction, or coarse graining of the

individual interactions may conceal interesting and important aspects of complexity design.

210

10.2.2. Nullspaces of Design are Often Immune to Complexity

Another crucial component is the utilization of nullspaces as design tools. One property of

complex systems that makes them difficult to design is nonlinearity, where we do not know

how the system will behave if we perturb it in a certain direction. Nullspaces offer a simple

solution to this problem by mapping certain directions of perturbation to zero, such that

we know precisely how the system will behave along all dimensions of a nullspace. In the

design of mechanical systems, it is a serendipitous occasion that conformational motions lie

in the nullspace of constraints.

For example, in Chapter 6, we make use of nullspaces in two instances: one explicit, and one

implicit. In the explicit instance, we solve for the set of node motions that yields zero bond

extension through the nullspace of our constraints in Eq. 6.4 and 6.7. Here, the nullspace

tells us where we can place additional constraints in our network that do not preclude the

designed motion. All other constraint placements do preclude the designed motion, and

do so in a complex, nonlinear, and high-dimensional manner. However, we can ignore all

such complexities, because a constraint placed anywhere in the nullspace will preserve the

designed motion. In the implicit instance, we decompose our system into a bipartite network

with the first part as the nodes to design, and the second part acting as variables in the

design problem. By removing the bonds that connect the nodes of the second part to each

other, we decouple the design problem such that the variables remain independent from

each other.

This independence hints at another reason why nullspaces are often immune to complexity,

which is that elements in nullspaces are independent of each other. Because nullspaces

inherently map to zero, any scalar multiple or linear combination of elements in the nullspace

also maps to zero. The reader may be familiar with nullspaces in the context of solutions to

systems of linear equations or partial differential equations. Here, we are simply providing

a comment that such a convenient tool can also be used to define nullspaces of design.

211

10.2.3. A New Twist on an Old Classic: Complex Systems Engineering Welcomes You!

We conclude on a final note about the importance of creativity and open-mindedness in

complex systems engineering. To re-iterate the words of P. W. Anderson:

“The ability to reduce everything to simple fundamental laws does not imply

the ability to start from those laws and reconstruct the universe.”

Implied in these words is that construction requires us to think creatively, flexibly, and in

qualitatively different ways. While it is understood that the study of complex systems is

an inherently interdisciplinary endeavor, we wish to emphasize two additional points.

The first point is one of simplicity. In an era of increasingly accelerated computing, ad-

vanced optimization algorithms, large-scale simulations, and massive databases, complexity

abounds in the simplest of systems, and can be fruitfully studied and designed using simple

tools. Most of the methods in this dissertation are limited to a typical undergraduate cur-

riculum involving linear and elementary algebra, calculus, mechanics, and dynamics. By no

means are we saying that more advanced and sophisticated approaches are unimportant. In-

stead, we make the simple statement that there exist many fascinating and impactful design

principles that hide in even the simplest of models. We need only to shift our perspective.

The second point accompanies the first, and is one of age. The ebb and flow of scientific

trends mean that research topics gain and lose popularity through the years. However, the

passage of time does not necessarily diminish the utility of a method, even in modern day

and cutting edge research topics. Whether from a dusty textbook in a school library or

from a recent paper in a top-tier journal, the important engineering problems of today and

tomorrow do not inherently discriminate by age or popularity.

In conclusion, a fresh perspective, a unique background, and an unconventional education

are necessary to make progress. So to those who wish to engineer complex systems, welcome!

212

BIBLIOGRAPHY

J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler. The kuramoto
model: A simple paradigm for synchronization phenomena. Reviews of modern physics,
77(1):137, 2005.

A. L. Alexander, J. E. Lee, M. Lazar, and A. S. Field. Diffusion tensor imaging of the brain.
Neurotherapeutics, 4(3):316–329, 2007.

J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Z. Nardelli. The
semantics of power and ARM multiprocessor machine code. In Proceedings of the 4th
workshop on Declarative aspects of multicore programming - DAMP ’09, page 13, New
York, New York, USA, 2008. ACM Press. ISBN 9781605584171. doi: 10.1145/1481839.
1481842.

N. M. Allewell. Escherichia Coli Aspartate Transcarbamoylase: Structure, Energetics, and
Catalytic and Regulatory Mechanisms. Annual Review of Biophysics and Biophysical
Chemistry, 18(1):71–92, jun 1989. ISSN 0883-9182. doi: 10.1146/annurev.bb.18.060189.
000443.

J. Alstott, M. Breakspear, P. Hagmann, L. Cammoun, and O. Sporns. Modeling the impact
of lesions in the human brain. PLoS Computational Biology, 5(6), 2009. ISSN 1553734X.
doi: 10.1371/journal.pcbi.1000408.

P. W. Anderson. More is different. Science, 177(4047):393–396, 1972.

A. A. Aristidou, K.-Y. San, and G. N. Bennett. Modification of central metabolic pathway in
escherichia coli to reduce acetate accumulation by heterologous expression of the bacillus
subtilis acetolactate synthase gene. Biotechnology and Bioengineering, 44(8):944–951,
1994. ISSN 10970290. doi: 10.1002/bit.260440810.

L. Arnold. Stochastic differential equations. New York, 1974.

L. Asimow and B. Roth. The Rigidity of Graphs. Transactions of the American Mathemat-
ical Society, 245:279–289, nov 1978. ISSN 00029947. doi: 10.2307/1998867.

B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee. A repro-
ducible evaluation of ANTs similarity metric performance in brain image registration.
NeuroImage, 2011.

A. Avena-Koenigsberger, B. Misic, and O. Sporns. Communication dynamics in complex
brain networks. Nature Reviews Neuroscience, 19(1):17–33, 2018.

L. Avery and Y.-J. You. C. elegans feeding. WormBook: The Online Review of C. elegans
Biology [Internet], 2018.

M. Balcerzak, D. Pikunov, and A. Dabrowski. The fastest, simplified method of lyapunov

213

exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dy-
namics, 94(4):3053–3065, 2018.

A. L. Barabasi, N. Gulbahce, and J. Loscalzo. Network medicine: a network-based approach
to human disease. Nat Rev Genet, 12(1):56–68, 2011.

C. I. Bargmann. Chemosensation in c. elegans. WormBook: The online review of C. elegans
biology [Internet], 2006.

A. Baskar and S. Bandyopadhyay. An algorithm to compute the finite roots of large systems
of polynomial equations arising in kinematic synthesis. Mechanism and Machine Theory,
133:493–513, 2019.

D. S. Bassett and E. Bullmore. Small-world brain networks revisited. Neuroscientist, In
Press, 2016.

D. S. Bassett and O. Sporns. Network neuroscience. Nature Neuroscience, In Press, 2016.

D. S. Bassett and O. Sporns. Network neuroscience. Nature neuroscience, 20(3):353–364,
2017.

D. S. Bassett, J. A. Brown, V. Deshpande, J. M. Carlson, and S. T. Grafton. Conserved and
variable architecture of human white matter connectivity. Neuroimage, 54(2):1262–1279,
2011.

D. S. Bassett, E. T. Owens, K. E. Daniels, and M. A. Porter. Influence of network topology
on sound propagation in granular materials. Phys Rev E, 86(4 Pt 1):041306, 2012.

D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, and S. T. Grafton. Cross-linked
structure of network evolution. Chaos, 24(1):013112, 2014.

D. S. Bassett, A. N. Khambhati, and S. T. Grafton. Emerging frontiers of neuroengineering:
A network science of brain connectivity. Annual Reviews in Biomedical Engineering,
Under Consideration, 2017.

T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo,
A. Voelker, and C. Eliasmith. Nengo: a python tool for building large-scale functional
brain models. Frontiers in neuroinformatics, 7:48, 2014.

J. M. Bernabei, O. Owoputi, S. D. Small, N. T. Nyema, E. Dumenyo, J. Kim, S. N.
Baldassano, C. Painter, E. C. Conrad, T. M. Ganguly, et al. A full-stack application for
detecting seizures and reducing data during continuous electroencephalogram monitoring.
Critical Care Explorations, 3(7), 2021.

K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke. Flexible mechanical meta-
materials. Nature Reviews Materials, 2:17066, oct 2017a. ISSN 2058-8437. doi:
10.1038/natrevmats.2017.66.

214

K. Bertoldi, V. Vitelli, J. Christensen, and M. Van Hecke. Flexible mechanical metamate-
rials. Nature Reviews Materials, 2(11):1–11, 2017b.

L. M. Bettencourt, G. J. Stephens, M. I. Ham, and G. W. Gross. Functional structure of
cortical neuronal networks grown in vitro. Phys Rev E Stat Nonlin Soft Matter Phys, 75
(2 Pt 1):021915, 2007.

R. F. Betzel, S. Gu, J. D. Medaglia, F. Pasqualetti, and D. S. Bassett. Optimally controlling
the human connectome: the role of network topology. Scientific Reports, 6(1):30770, nov
2016a. ISSN 2045-2322. doi: 10.1038/srep30770.

R. F. Betzel, S. Gu, J. D. Medaglia, F. Pasqualetti, and D. S. Bassett. Optimally controlling
the human connectome: the role of network topology. Scientific reports, 6(1):1–14, 2016b.

E. Bolker and B. Roth. When is a bipartite graph a rigid framework? Pacific Journal of
Mathematics, 90(1):27–44, sep 1980. ISSN 0030-8730. doi: 10.2140/pjm.1980.90.27.

B. Bollobas. Random Graphs. Academic Press, 1985.

R. W. Brockett. Volterra series and geometric control theory. Automatica, 12(2):167–176,
1976.

S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz. Koopman invariant subspaces
and finite linear representations of nonlinear dynamical systems for control. PloS one, 11
(2):e0150171, 2016.

M. Budǐsić, R. Mohr, and I. Mezić. Applied koopmanism. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 22(4):047510, 2012.

Y. Burak and I. R. Fiete. Accurate Path Integration in Continuous Attractor Network
Models of Grid Cells. PLoS Computational Biology, 5(2):e1000291, feb 2009. ISSN 1553-
7358. doi: 10.1371/journal.pcbi.1000291.

M. Burrows and G. Sutton. Interacting gears synchronize propulsive leg movements in a
jumping insect. Science, 341(6151):1254–1256, sep 2013. ISSN 0036-8075. doi: 10.1126/
science.1240284.

K. Caeyenberghs, H. Verhelst, A. Clemente, and P. H. Wilson. Mapping the functional
connectome in traumatic brain injury: What can graph metrics tell us? Neuroimage,
S1053-8119(16):30694–30692, 2016.

C. R. Calladine. Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules
for the construction of stiff frames. International Journal of Solids and Structures, 14(2):
161–172, 1978. ISSN 00207683. doi: 10.1016/0020-7683(78)90052-5.

J. M. Carroll. Letter knowledge precipitates phoneme segmentation, but not phoneme
invariance. Journal of Research in Reading, 27(3):212–225, aug 2004. ISSN 0141-0423.
doi: 10.1111/j.1467-9817.2004.00228.x.

215

J. R. Cash and A. H. Karp. A variable order runge-kutta method for initial value problems
with rapidly varying right-hand sides. ACM Transactions on Mathematical Software
(TOMS), 16(3):201–222, 1990.

J.-P. Changeux and S. J. Edelstein. Allosteric Receptors after 30 Years. Neuron, 21(5):
959–980, nov 1998. ISSN 08966273. doi: 10.1016/S0896-6273(00)80616-9.

B. G.-g. Chen, B. Liu, A. A. Evans, J. Paulose, I. Cohen, V. Vitelli, and C. D. Santangelo.
Topological mechanics of origami and kirigami. Physical Review Letters, 116(13):135501,
mar 2016. ISSN 0031-9007. doi: 10.1103/PhysRevLett.116.135501.

H. I. Chen, M. Attiah, G. Baltuch, D. H. Smith, R. H. Hamilton, and T. H. Lucas. Harness-
ing plasticity for the treatment of neurosurgical disorders: an overview. World Neurosurg,
82(5):648–659, 2014.

T. Chen, M. Pauly, and P. M. Reis. A reprogrammable mechanical metamaterial with stable
memory. Nature, 589(7842):386–390, 2021.

K. C. Cheung and N. Gershenfeld. Reversibly assembled cellular composite materials.
Science, 341(6151):1219–1221, sep 2013. ISSN 0036-8075. doi: 10.1126/science.1240889.

A. S. Chiang, C. Y. Lin, C. C. Chuang, H. M. Chang, C. H. Hsieh, C. W. Yeh, C. T. Shih,
J. J. Wu, G. T. Wang, Y. C. Chen, C. C. Wu, G. Y. Chen, Y. T. Ching, P. C. Lee, C. Y.
Lin, H. H. Lin, C. C. Wu, H. W. Hsu, Y. A. Huang, J. Y. Chen, H. J. Chiang, C. F. Lu,
R. F. Ni, C. Y. Yeh, and J. K. Hwang. Three-dimensional reconstruction of brain-wide
wiring networks in Drosophila at single-cell resolution. Current Biology, 21(1):1–11, 2011.

S. Ching, E. N. Brown, and M. A. Kramer. Distributed control in a mean-field cortical
network model: implications for seizure suppression. Phys Rev E Stat Nonlin Soft Matter
Phys, 86(2 Pt 1):021920, 2012.

G. P. Choi, L. H. Dudte, and L. Mahadevan. Programming shape using kirigami tessella-
tions. Nature materials, 18(9):999–1004, 2019.

E. G. Chrysikou and R. H. Hamilton. Noninvasive brain stimulation in the treatment of
aphasia: exploring interhemispheric relationships and their implications for neuroreha-
bilitation. Restor Neurol Neurosci, 29(6):375–394, 2011.

M. Cieslak and S. T. Grafton. Local termination pattern analysis: a tool for comparing
white matter morphology. Brain Imaging Behav, 8(2):292–299, 2014.

A. Clauset, C. Moore, and M. E. Newman. Hierarchical structure and the prediction of
missing links in networks. Nature, 453(7191):98–101, 2008.

G. M. Cockrell, Y. Zheng, W. Guo, A. W. Peterson, J. K. Truong, and E. R. Kantrowitz.
New Paradigm for Allosteric Regulation of Escherichia coli Aspartate Transcarbamoylase.
Biochemistry, 52(45):8036–8047, nov 2013. ISSN 0006-2960. doi: 10.1021/bi401205n.

216

R. Connelly and J.-M. Schlenker. On the infinitesimal rigidity of weakly convex polyhedra.
European Journal of Combinatorics, 31(4):1080–1090, 2010.

S. P. Cornelius, W. L. Kath, and A. E. Motter. Realistic control of network dynamics.
Nature communications, 4:1942, 2013a. ISSN 2041-1723. doi: 10.1038/ncomms2939.

S. P. Cornelius, W. L. Kath, and A. E. Motter. Realistic control of network dynamics.
Nature communications, 4(1):1–9, 2013b.

C. Coulais, D. Sounas, and A. Alù. Static non-reciprocity in mechanical metamaterials.
Nature, 542(7642):461–464, feb 2017. ISSN 0028-0836. doi: 10.1038/nature21044.

S. M. Courtney, L. G. Ungerleider, K. Keil, and J. V. Haxby. Transient and sustained
activity in a distributed neural system for human working memory. Nature, 386(6625):
608–611, 1997.

F. I. Craik and E. Bialystok. Cognition through the lifespan: mechanisms of change. Trends
in Cognitive Sciences, 10(3):131–138, mar 2006. ISSN 13646613. doi: 10.1016/j.tics.2006.
01.007.

H. Crapo. Structural rigidity. Structural Topology, 1:26–45, apr 1979a. ISSN 8750-7587.

H. Crapo. Structural rigidity. Structural Topology, 73(1):26–45, 1979b.

T. E. Creighton. Proteins: structures and molecular properties. Macmillan, 1993.

H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M. G. Kang, S. Priya, and X. Zheng.
Three-dimensional printing of piezoelectric materials with designed anisotropy and di-
rectional response. Nature Materials, 18(3):234–241, mar 2019. ISSN 1476-1122. doi:
10.1038/s41563-018-0268-1.

S. A. Cummer, J. Christensen, and A. Alù. Controlling sound with acoustic meta-
materials. Nature Reviews Materials, 1(3):16001, mar 2016. ISSN 2058-8437. doi:
10.1038/natrevmats.2016.1.

J. Dagdelen, J. Montoya, M. de Jong, and K. Persson. Computational prediction of new
auxetic materials. Nature Communications, 8(1):323, dec 2017. ISSN 2041-1723. doi:
10.1038/s41467-017-00399-6.

C. Detweiler, M. Vona, Y. Yoon, Seung-Kook Yun, and D. Rus. Self-assembling mobile
linkages. IEEE Robotics & Automation Magazine, 14(4):45–55, dec 2007. ISSN 1070-
9932. doi: 10.1109/M-RA.2007.908971.

G. F. Donnay, S. K. Rankin, M. Lopez-Gonzalez, P. Jiradejvong, and C. J. Limb. Neural
Substrates of Interactive Musical Improvisation: An fMRI Study of ‘Trading Fours’ in
Jazz. PLoS ONE, 9(2):e88665, feb 2014. ISSN 1932-6203. doi: 10.1371/journal.pone.
0088665.

217

J. S. Duncan, J. W. Sander, S. M. Sisodiya, and M. C. Walker. Adult epilepsy. The Lancet,
367(9516):1087–1100, 2006.

F. A. Dunn and R. O. L. Wong. Diverse Strategies Engaged in Establishing Stereotypic
Wiring Patterns among Neurons Sharing a Common Input at the Visual System’s First
Synapse. Journal of Neuroscience, 32(30):10306–10317, jul 2012. ISSN 0270-6474. doi:
10.1523/JNEUROSCI.1581-12.2012.

V. M. Egúıluz, N. Masuda, and J. Fernández-Gracia. Bayesian decision making in human
collectives with binary choices. PLoS One, 10(4):e0121332, 2015.

C. Eliasmith and C. H. Anderson. Neural engineering: Computation, representation, and
dynamics in neurobiological systems. MIT press, 2003.

E. Estrada and N. Hatano. Communicability in complex networks. Phys Rev E Stat Nonlin
Soft Matter Phys, 77(3 Pt 2):036111, 2008.

R. L. Faulkner, M.-H. Jang, X.-B. Liu, X. Duan, K. A. Sailor, J. Y. Kim, S. Ge, E. G. Jones,
G.-l. Ming, H. Song, and H.-J. Cheng. Development of hippocampal mossy fiber synaptic
outputs by new neurons in the adult brain. Proceedings of the National Academy of
Sciences, 105(37):14157–14162, sep 2008. ISSN 0027-8424. doi: 10.1073/pnas.0806658105.

T. Feagin. A tenth-order runge-kutta method with error estimate. In Proceedings of the
IAENG Conference on Scientific Computing, 2007.

M. S. Fee and C. Scharff. The Songbird as a Model for the Generation and Learning of
Complex Sequential Behaviors. ILAR Journal, 51(4):362–377, jan 2010. ISSN 1084-2020.
doi: 10.1093/ilar.51.4.362.

L. A. Feldkamp, G. Puskorius, and P. Moore. Adaptive behavior from fixed weight networks.
Information Sciences, 98(1):217 – 235, 1997. ISSN 0020-0255. doi: https://doi.org/10.
1016/S0020-0255(96)00216-2.

G. R. Fernandez. On how network architecture determines the dominant patterns of spon-
taneous neural activity. PLoS One, 3(5):e2148, 2008.

R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical journal, 1(6):445–466, 1961.

H. Flechsig. Design of elastic networks with evolutionary optimized long-range communi-
cation as mechanical models of allosteric proteins. Biophysical Journal, 113(3):558–571,
aug 2017. ISSN 00063495. doi: 10.1016/j.bpj.2017.06.043.

B. Fu, E. Sperber, and F. Eke. Solar sail technology—A state of the art review. Progress
in Aerospace Sciences, 86:1–19, oct 2016a. ISSN 03760421. doi: 10.1016/j.paerosci.2016.
07.001.

218

B. Fu, E. Sperber, and F. Eke. Solar sail technology—a state of the art review. Progress in
Aerospace Sciences, 86:1–19, 2016b.

A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12(1):
30–39, 1972.

C. Giusti, L. Papadopoulos, E. T. Owens, K. E. Daniels, and D. S. Bassett. Topological
and geometric measurements of force-chain structure. Physical Review E, 94(3):032909,
sep 2016. ISSN 2470-0045. doi: 10.1103/PhysRevE.94.032909.

J. I. Gold and M. N. Shadlen. The Neural Basis of Decision Making. Annual Review of
Neuroscience, 30(1):535–574, jul 2007. ISSN 0147-006X. doi: 10.1146/annurev.neuro.29.
051605.113038.

T. Gonen, T. Gazit, A. Korn, A. Kirschner, D. Perry, T. Hendler, and Z. Ram. Intra-
operative multi-site stimulation: Expanding methodology for cortical brain mapping of
language functions. PLOS ONE, 12(7):e0180740, jul 2017. ISSN 1932-6203. doi: 10.
1371/journal.pone.0180740.

C. P. Goodrich, A. J. Liu, and S. R. Nagel. The Principle of Independent Bond-Level Re-
sponse: Tuning by Pruning to Exploit Disorder for Global Behavior. Physical Review Let-
ters, 114(22):225501, jun 2015. ISSN 0031-9007. doi: 10.1103/PhysRevLett.114.225501.

K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L. Waskom, and
S. S. Ghosh. Nipype: a flexible, lightweight and extensible neuroimaging data processing
framework in python. Frontiers in neuroinformatics, 2011.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann,
Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu,
and D. Hassabis. Hybrid computing using a neural network with dynamic external mem-
ory. Nature, 538(7626):471–476, oct 2016. ISSN 0028-0836. doi: 10.1038/nature20101.

K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra. Draw: A recurrent neural
network for image generation. In International Conference on Machine Learning, pages
1462–1471. PMLR, 2015.

A. Griffa, P. S. Baumann, J.-P. Thiran, and P. Hagmann. Structural connectomics in brain
diseases. NeuroImage, 80:515–526, Oct. 2013.

H. Grimm and B. Dorner. On the mechanism of the α-β phase transformation of quartz.
Journal of Physics and Chemistry of Solids, 36(5):407–413, may 1975. ISSN 00223697.
doi: 10.1016/0022-3697(75)90066-9.

S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu, A. E. Kahn, J. D. Medaglia,
J. M. Vettel, M. B. Miller, S. T. Grafton, and D. S. Bassett. Controllability of structural

219

brain networks. Nature Communications, 6:8414, 2015. ISSN 2041-1723. doi: 10.1038/
ncomms9414.

S. Gu, R. F. Betzel, M. G. Mattar, M. Cieslak, P. R. Delio, S. T. Grafton, F. Pasqualetti,
and D. S. Bassett. Optimal trajectories of brain state transitions. Neuroimage, In Press,
2017.

S. Guest. The stiffness of prestressed frameworks: A unifying approach. International
Journal of Solids and Structures, 43(3-4):842–854, feb 2006. ISSN 00207683. doi: 10.
1016/j.ijsolstr.2005.03.008.

J. Guo and H. X. Zhou. Protein allostery and conformational dynamics. Chem Rev, 116
(11):6503–6515, 2016.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and
O. Sporns. Mapping the structural core of human cerebral cortex. PLoS biology, 6
(7):e159, July 2008.

R. Hartenberg and J. Danavit. Kinematic synthesis of linkages. New York: McGraw-Hill,
1964.

M. Hegarty. Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8
(6):280–285, jun 2004. ISSN 13646613. doi: 10.1016/j.tics.2004.04.001.

S. Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate brain.
Frontiers in human neuroscience, 3:31, 2009.

J. P. Hespanha. Linear systems theory. Princeton university press, 2018.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):
500–544, 1952.

C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann.
Predicting human resting-state functional connectivity from structural connectivity. Proc
Natl Acad Sci U S A, 106(6):2035–2040, 2009.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

D.-G. Hwang and M. D. Bartlett. Tunable mechanical metamaterials through hybrid
kirigami structures. Scientific reports, 8(1):1–8, 2018.

K. Hwang, M. A. Bertolero, W. B. Liu, and M. D’Esposito. The human thalamus is an
integrative hub for functional brain networks. Journal of Neuroscience, 37(23):5594–5607,
2017.

220

P. J. Ifft, S. Shokur, Z. Li, M. A. Lebedev, and M. A. L. Nicolelis. A Brain-Machine Interface
Enables Bimanual Arm Movements in Monkeys. Science Translational Medicine, 5(210):
210ra154–210ra154, nov 2013. ISSN 1946-6234. doi: 10.1126/scitranslmed.3006159.

Y. Ilyashenko. Centennial history of hilbert’s 16th problem. Bulletin of the American
Mathematical Society, 39(3):301–354, 2002.

J. A. Jackson, M. C. Messner, N. A. Dudukovic, W. L. Smith, L. Bekker, B. Moran, A. M.
Golobic, A. J. Pascall, E. B. Duoss, K. J. Loh, and C. M. Spadaccini. Field responsive
mechanical metamaterials. Science advances, 4(12):eaau6419, 2018.

D. J. Jacobs and M. F. Thorpe. Generic rigidity percolation: The pebble game. Physical
Review Letters, 75(22):4051–4054, nov 1995. ISSN 0031-9007. doi: 10.1103/PhysRevLett.
75.4051.

H. Jaeger. The “ echo state ” approach to analysing and training recurrent neural networks
– with an Erratum note. GMD Report, 1(148):1–47, dec 2010.

T. A. Jarrell, Y. Wang, A. E. Bloniarz, C. A. Brittin, M. Xu, J. N. Thomson, D. G.
Albertson, D. H. Hall, and S. W. Emmons. The Connectome of a Decision-Making
Neural Network. Science, 337(6093):437–444, jul 2012. ISSN 0036-8075. doi: 10.1126/
science.1221762.

E. T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620,
1957.

L. Jin, A. E. Forte, B. Deng, A. Rafsanjani, and K. Bertoldi. Kirigami-inspired inflatables
with programmable shapes. Advanced Materials, 32(33):2001863, 2020.

M. D. Johnson, H. H. Lim, T. Netoff, A. T. Connolly, N. Johnson, A. Roy, A. Holt, K. O.
Lim, J. R. Carey, J. L. Vitek, and B. He. Neuromodulation for brain disorders: challenges
and opportunities. IEEE Trans Biomed Eng, 60(3):610–624, 2013.

T. Kailath. Linear Systems. Prentice-Hall, 1980.

R. E. Kalman. Mathematical description of linear dynamical systems. J. SIAM Control
Ser. A, 1(1963):152–192, 1963.

C. L. Kane and T. C. Lubensky. Topological boundary modes in isostatic lattices. Nature
Physics, 10(1):39–45, jan 2014. ISSN 1745-2473. doi: 10.1038/nphys2835.

G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature
reviews Molecular cell biology, 9(10):770–780, 2008.

A. B. Kempe. On a General Method of describing Plane Curves of the n th degree by
Linkwork. Proceedings of the London Mathematical Society, s1-7(1):213–216, nov 1875.
ISSN 00246115. doi: 10.1112/plms/s1-7.1.213.

221

A. N. Khambhati, K. Davis, T. Lucas, B. Litt, and D. S. Bassett. Virtual cortical resection
reveals push-pull network control preceding seizure evolution. Neuron, In Press, 2016.

J. Z. Kim and D. S. Bassett. Linear dynamics and control of brain networks. In Neural
Engineering, pages 497–518. Springer, 2020.

J. Z. Kim, J. M. Soffer, A. E. Kahn, J. M. Vettel, F. Pasqualetti, and D. S. Bassett. Role of
graph architecture in controlling dynamical networks with applications to neural systems.
Nature physics, 14(1):91–98, 2018.

J. Z. Kim, Z. Lu, and D. S. Bassett. Design of large sequential conformational change in
mechanical networks. arXiv preprint arXiv:1906.08400 (Accepted, PRX), 2019a.

J. Z. Kim, Z. Lu, S. H. Strogatz, and D. S. Bassett. Conformational control of mechanical
networks. Nature Physics, 15(7):714–720, 2019b.

J. Z. Kim, Z. Lu, E. Nozari, G. J. Pappas, and D. S. Bassett. Teaching recurrent neu-
ral networks to infer global temporal structure from local examples. Nature Machine
Intelligence, 3(4):316–323, 2021.

L. G. Kini, J. M. Bernabei, F. Mikhail, P. Hadar, P. Shah, A. N. Khambhati, K. Oechsel,
R. Archer, J. Boccanfuso, E. Conrad, et al. Virtual resection predicts surgical outcome
for drug-resistant epilepsy. Brain, 142(12):3892–3905, 2019.

F. Klimm, D. S. Bassett, J. M. Carlson, and P. J. Mucha. Resolving structural variability
in network models and the brain. PLoS Comput Biol, 10(3):e1003491, 2014.

C. Klos, Y. F. K. Kossio, S. Goedeke, A. Gilra, and R.-M. Memmesheimer. Dynamical
learning of dynamics. Physical Review Letters, 125(8):088103, 2020.

H. M. Kolken and A. A. Zadpoor. Auxetic mechanical metamaterials. RSC advances, 7(9):
5111–5129, 2017.

H. M. Kolken, S. Janbaz, S. M. Leeflang, K. Lietaert, H. H. Weinans, and A. A. Zadpoor.
Rationally designed meta-implants: a combination of auxetic and conventional meta-
biomaterials. Materials Horizons, 5(1):28–35, 2018.

C. Körner and Y. Liebold-Ribeiro. A systematic approach to identify cellular auxetic ma-
terials. Smart Materials and Structures, 24(2):025013, feb 2015. ISSN 0964-1726. doi:
10.1088/0964-1726/24/2/025013.

Y. Kuang. Delay differential equations. University of California Press, 2012.

J. R. Kubricht, K. J. Holyoak, and H. Lu. Intuitive Physics: Current Research and Con-
troversies. Trends in Cognitive Sciences, 21(10):749–759, oct 2017. ISSN 13646613. doi:
10.1016/j.tics.2017.06.002.

222

S. Kumar, I. Dasgupta, J. D. Cohen, N. D. Daw, and T. L. Griffiths. Meta-learning of
compositional task distributions in humans and machines, 2020.

P. Kwan, A. Arzimanoglou, A. T. Berg, M. J. Brodie, W. Allen Hauser, G. Mathern, S. L.
Moshé, E. Perucca, S. Wiebe, and J. French. Definition of drug resistant epilepsy: con-
sensus proposal by the ad hoc task force of the ilae commission on therapeutic strategies,
2010.

G. Langer and U. Parlitz. Modeling parameter dependence from time series. Physical
Review E, 70(5):056217, 2004.

L. Lanteaume, S. Khalfa, J. Régis, P. Marquis, P. Chauvel, and F. Bartolomei. Emotion
induction after direct intracerebral stimulations of human amygdala. Cerebral Cortex,
17:1307–1313, 2007.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

J. Lee and I. Tashev. High-level feature representation using recurrent neural network for
speech emotion recognition. In Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, volume 2015-Janua, pages 1537–
1540, 2015.

J.-H. Lee, J. P. Singer, and E. L. Thomas. Micro-/Nanostructured Mechanical Metamate-
rials. Advanced Materials, 24(36):4782–4810, sep 2012.

M. H. Lee. Analytical study of the superstable 3-cycle in the logistic map. Journal of
Mathematical Physics, 50(12):122702, 2009. doi: 10.1063/1.3266875.

A. Leemans and D. K. Jones. The B-matrix must be rotated when correcting for subject
motion in DTI data. Magnetic resonance in medicine, 61(6):1336–1349, June 2009.

A. L. Lehninger, D. L. Nelson, M. M. Cox, M. M. Cox, et al. Lehninger principles of
biochemistry. Macmillan, 2005.

J. K. Leman, B. D. Weitzner, S. M. Lewis, J. Adolf-Bryfogle, N. Alam, R. F. Alford,
M. Aprahamian, D. Baker, K. A. Barlow, P. Barth, et al. Macromolecular modeling and
design in rosetta: recent methods and frameworks. Nature methods, 17(7):665–680, 2020.

A. Lendlein, H. Jiang, O. Jünger, and R. Langer. Light-induced shape-memory polymers.
Nature, 434(7035):879–882, 2005.

C. Li and J. C. Sprott. An infinite 3-d quasiperiodic lattice of chaotic attractors. Physics
Letters A, 382(8):581–587, 2018.

J. Li, J. Guo, X. Ou, M. Zhang, Y. Li, and Z. Liu. Mechanical coupling of the multiple
structural elements of the large-conductance mechanosensitive channel during expansion.
Proceedings of the National Academy of Sciences, 112(34):10726–10731, aug 2015. ISSN
0027-8424. doi: 10.1073/pnas.1503202112.

223

T.-Y. Li and J. A. Yorke. Period three implies chaos. In The theory of chaotic attractors,
pages 77–84. Springer, 2004.

C. T. Lin. Structural controllability. IEEE Trans. Auto. Control, AC-19:201–208, 1974.

G. P. Lisi and J. P. Loria. Allostery in enzyme catalysis. Current opinion in structural
biology, 47:123–130, 2017.

B. Liu, J. L. Silverberg, A. A. Evans, C. D. Santangelo, R. J. Lang, T. C. Hull, and I. Cohen.
Topological kinematics of origami metamaterials. Nature Physics, 14(8):811–815, aug
2018. ISSN 1745-2473. doi: 10.1038/s41567-018-0150-8.

T.-W. Liu and F. Semperlotti. Tunable acoustic Valley–Hall edge states in reconfigurable
phononic elastic waveguides. Physical Review Applied, 9(1):014001, jan 2018. ISSN 2331-
7019. doi: 10.1103/PhysRevApplied.9.014001.

Y. Y. Liu, J. J. Slotine, and A. L. Barabasi. Controllability of complex networks. Nature,
473(7346):167–173, 2011.

Z. Liu, S. Lin, N. Deng, D. P. McGovern, and S. Piantadosi. Sparse inverse covariance
estimation with l0 penalty for network construction with omics data. J Comput Biol, 23
(3):192–202, 2016.

E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20
(2):130–141, mar 1963. ISSN 0022-4928.

Z. Lu and D. S. Bassett. Invertible generalized synchronization: A putative mechanism for
implicit learning in neural systems. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 30(6):063133, 2020.

L. A. Lubbers and M. van Hecke. Excess floppy modes and multibranched mechanisms in
metamaterials with symmetries. Physical Review E, 100(2):021001, 2019.

J. A. Lukin and C. Ho. The Structure-Function Relationship of Hemoglobin in Solution
at Atomic Resolution. Chemical Reviews, 104(3):1219–1230, mar 2004. ISSN 0009-2665.
doi: 10.1021/cr940325w.

J. A. Lukin, G. Kontaxis, V. Simplaceanu, Y. Yuan, A. Bax, and C. Ho. Quaternary
structure of hemoglobin in solution. Proceedings of the National Academy of Sciences,
100(2):517–520, 2003.

A. I. Lurie. Analytical mechanics. Springer Science & Business Media, 2002.

C. P. Macol, H. Tsuruta, B. Stec, and E. R. Kantrowitz. Direct structural evidence for a
concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. Nature
Structural Biology, 8(5):423–6, may 2001a. ISSN 1072-8368. doi: 10.1038/87582.

224

C. P. Macol, H. Tsuruta, B. Stec, and E. R. Kantrowitz. Direct structural evidence for
a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. Nature
structural biology, 8(5):423–426, may 2001b. ISSN 1072-8368. doi: 10.1038/87582.

B. B. Mandelbrot and B. B. Mandelbrot. The fractal geometry of nature, volume 1. WH
freeman New York, 1982.

A. V. Mantzaris, D. S. Bassett, N. F. Wymbs, E. Estrada, M. A. Porter, P. J. Mucha,
S. T. Grafton, and D. J. Higham. Dynamic network centrality summarizes learning in
the human brain. Journal of Complex Networks, 1(1):83–92, 2013.

X. Mao and T. C. Lubensky. Maxwell lattices and topological mechanics. Annual Review
of Condensed Matter Physics, 9(1):413–433, mar 2018. ISSN 1947-5454. doi: 10.1146/
annurev-conmatphys-033117-054235.

F. Martini. Anatomy and physiology’2007 ed. 2007 edition. Rex Bookstore, Inc, 2007.

A. M. Mathai and S. B. Provost. Quadratic Forms in Random Variables. CRC Press, 1
edition, 1992. ISBN 978-0824786915.

J. C. Maxwell. On the calculation of the equilibrium and stiffness of frames. Philo-
sophical Magazine Series 4, 27(182):294–299, 1864a. ISSN 1941-5982. doi: 10.1080/
14786446408643668.

J. C. Maxwell. On the calculation of the equilibrium and stiffness of frames. Philo-
sophical Magazine Series 4, 27(182):294–299, 1864b. ISSN 1941-5982. doi: 10.1080/
14786446408643668.

T. J. McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):
308–320, 1976.

J. M. McCarthy and G. S. Soh. Geometric design of linkages, volume 11. Springer Science
& Business Media, 2010.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

D. Melancon, B. Gorissen, C. J. Garćıa-Mora, C. Hoberman, and K. Bertoldi. Multistable
inflatable origami structures at the metre scale. Nature, 592(7855):545–550, 2021.

C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001. ISBN 0898714540.

C. Micheletti, P. Carloni, and A. Maritan. Accurate and efficient description of protein
vibrational dynamics: comparing molecular dynamics and gaussian models. Proteins:
Structure, Function, and Bioinformatics, 55(3):635–645, 2004.

T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent neural

225

network based language model. In Interspeech, volume 2, pages 1045–1048. Makuhari,
2010.

S. K. Mohanty and V. Lakshminarayananan. Optical techniques in optogenetics. Journal
of Modern Optics, 62(12):949–970, jul 2015. ISSN 0950-0340. doi: 10.1080/09500340.
2015.1010620.

K. Mori and T. Saito. Effects of stent structure on stent flexibility measurements. Annals
of Biomedical Engineering, 33(6):733–742, jun 2005. ISSN 0090-6964. doi: 10.1007/
s10439-005-2807-6.

E. I. Moser, E. Kropff, and M.-B. Moser. Place Cells, Grid Cells, and the Brain’s Spatial
Representation System. Annual Review of Neuroscience, 31(1):69–89, jul 2008. ISSN
0147-006X. doi: 10.1146/annurev.neuro.31.061307.090723.

A. E. Motter. Networkcontrology. Chaos, 25(9):097621, 2015.

S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S.
Bassett. Stimulation-based control of dynamic brain networks. PLoS Comp Biol, In
Press, 2016.

S. Nansai, M. R. Elara, and M. Iwase. Dynamic analysis and modeling of jansen mechanism.
Procedia Engineering, 64:1562 – 1571, 2013. ISSN 1877-7058. doi: https://doi.org/
10.1016/j.proeng.2013.09.238. International Conference on Design and Manufacturing
(IConDM2013).

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:
167–256, 2003.

M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.

H. T. Odum. Self-organization, transformity, and information. Science, 242(4882):1132–
1139, 1988.

S. W. Oh, J. A. Harris, L. Ng, B. Winslow, N. Cain, S. Mihalas, Q. Wang, C. Lau, L. Kuan,
A. M. Henry, M. T. Mortrud, B. Ouellette, T. N. Nguyen, S. A. Sorensen, C. R. Slaugh-
terbeck, W. Wakeman, Y. Li, D. Feng, A. Ho, E. Nicholas, K. E. Hirokawa, P. Bohn,
K. M. Joines, H. Peng, M. J. Hawrylycz, J. W. Phillips, J. G. Hohmann, P. Wohnoutka,
C. R. Gerfen, C. Koch, A. Bernard, C. Dang, A. R. Jones, and H. Zeng. A mesoscale
connectome of the mouse brain. Nature, 508(7495):207–214, 2014.

E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Physical Review Letters, 64(11):
1196–1199, mar 1990. ISSN 0031-9007. doi: 10.1103/PhysRevLett.64.1196.

J. T. Overvelde, T. A. de Jong, Y. Shevchenko, S. A. Becerra, G. M. Whitesides, J. C.
Weaver, C. Hoberman, and K. Bertoldi. A three-dimensional actuated origami-inspired
transformable metamaterial with multiple degrees of freedom. Nature Communications,
7(1):10929, dec 2016. ISSN 2041-1723. doi: 10.1038/ncomms10929.

226

J. T. B. Overvelde, J. C. Weaver, C. Hoberman, and K. Bertoldi. Rational design of re-
configurable prismatic architected materials. Nature, 541(7637):347–352, jan 2017. ISSN
0028-0836. doi: 10.1038/nature20824.

L. Papadopoulos, M. A. Porter, K. E. Daniels, and D. S. Bassett. Network analysis of
particles and grains. Journal of Complex Networks, 6(4):485–565, 2018.

H. Park, A. Niida, S. Miyano, and S. Imoto. Sparse overlapping group lasso for integrative
multi-omics analysis. J Comput Biol, 22(2):73–84, 2015.

F. Pasqualetti, S. Zampieri, and F. Bullo. Controllability metrics, limitations and algorithms
for complex networks. IEEE Transactions on Control of Network Systems, 1(1):40–52,
2014.

S. N. Patek, B. N. Nowroozi, J. E. Baio, R. L. Caldwell, and A. P. Summers. Linkage
mechanics and power amplification of the Mantis Shrimp’s strike. Journal of Experimental
Biology, 210(20):3677–3688, oct 2007a. ISSN 0022-0949. doi: 10.1242/jeb.006486.

S. N. Patek, B. N. Nowroozi, J. E. Baio, R. L. Caldwell, and A. P. Summers. Linkage
mechanics and power amplification of the mantis shrimp’s strike. Journal of Experimental
Biology, 210(20):3677–3688, oct 2007b. ISSN 0022-0949. doi: 10.1242/jeb.006486.

J. Paulose, B. G.-g. Chen, and V. Vitelli. Topological modes bound to dislocations in
mechanical metamaterials. Nature Physics, 11(2):153–156, jan 2015. ISSN 1745-2473.
doi: 10.1038/nphys3185.

S. Pellegrino. Deployable Structures, volume 412. Springer-Verlag Wien, 1 edition, 2001.
ISBN 978-3-7091-2584-7. doi: 10.1007/978-3-7091-2584-7.

B. E. Pfeiffer and D. J. Foster. Hippocampal place-cell sequences depict future paths to
remembered goals. Nature, 497(7447):74–79, may 2013. ISSN 0028-0836. doi: 10.1038/
nature12112.

T. Pfeil, A. Grubl, S. Jeltsch, E. Muller, P. Muller, M. A. Petrovici, M. Schmuker, D. Brud-
erle, J. Schemmel, and K. Meier. Six networks on a universal neuromorphic computing
substrate. Front Neurosci, 7:11, 2013.

R. C. Picu. Mechanics of random fiber networks - a review. Soft Matter, 7:6768–6785, 2011.

R. Potestio, F. Pontiggia, and C. Micheletti. Coarse-grained description of protein internal
dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophysical
journal, 96(12):4993–5002, 2009.

L. Puig, A. Barton, and N. Rando. A review on large deployable structures for astrophysics
missions. Acta Astronautica, 67(1-2):12–26, jul 2010. ISSN 00945765. doi: 10.1016/j.
actaastro.2010.02.021.

227

J. Qiao, F. Li, H. Han, and W. Li. Growing Echo-State Network With Multiple Subreser-
voirs. IEEE Transactions on Neural Networks and Learning Systems, 28(2):391–404, feb
2017. ISSN 2162-237X. doi: 10.1109/TNNLS.2016.2514275.

J. Qin and A. R. Wheeler. Maze exploration and learning in c. elegans. Lab on a Chip, 7
(2):186–192, 2007.

A. Rafsanjani, L. Jin, B. Deng, and K. Bertoldi. Propagation of pop ups in kirigami shells.
Proceedings of the National Academy of Sciences, 116(17):8200–8205, apr 2019. ISSN
0027-8424. doi: 10.1073/pnas.1817763116.

F. Randi and A. M. Leifer. Measuring and modeling whole-brain neural dynamics in
caenorhabditis elegans. Current Opinion in Neurobiology, 65:167–175, 2020.

D. C. Rapaport and D. C. R. Rapaport. The art of molecular dynamics simulation. Cam-
bridge university press, 2004.

D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. Ridout, B. Xu, G. Zhang,
P. Morse, J.-L. Barrat, et al. Predicting plasticity in disordered solids from structural
indicators. Physical Review Materials, 4(11):113609, 2020.

D. Z. Rocklin, S. Zhou, K. Sun, and X. Mao. Transformable topological mechanical meta-
materials. Nature communications, 8(1):1–9, 2017.

J. W. Rocks, N. Pashine, I. Bischofberger, C. P. Goodrich, A. J. Liu, and S. R. Nagel.
Designing allostery-inspired response in mechanical networks. Proceedings of the National
Academy of Sciences, 114(10):2520–2525, mar 2017a. ISSN 0027-8424. doi: 10.1073/pnas.
1612139114.

J. W. Rocks, N. Pashine, I. Bischofberger, C. P. Goodrich, A. J. Liu, and S. R. Nagel.
Designing allostery-inspired response in mechanical networks. Proceedings of the National
Academy of Sciences, 114(10):2520–2525, 2017b.

J. W. Rocks, H. Ronellenfitsch, A. J. Liu, S. R. Nagel, and E. Katifori. Limits of multi-
functionality in tunable networks. Proceedings of the National Academy of Sciences, 116
(7):2506–2511, 2019.

M. Rubinov, O. Sporns, J. P. Thivierge, and M. Breakspear. Neurobiologically realistic
determinants of self-organized criticality in networks of spiking neurons. PLoS Comput
Biol, 7(6):e1002038, 2011.

M. Rubinov, R. J. Ypma, C. Watson, and E. T. Bullmore. Wiring cost and topological
participation of the mouse brain connectome. Proc Natl Acad Sci U S A, 112(32):10032–
10037, 2015.

W. J. Rugh. Nonlinear system theory. Johns Hopkins University Press Baltimore, MD,
1981.

228

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel. Generalized synchro-
nization of chaos in directionally coupled chaotic systems. Physical Review E, 51(2):980,
1995a.

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel. Generalized
synchronization of chaos in directionally coupled chaotic systems. Physical Review E,
51(2):980–994, feb 1995b. ISSN 1063-651X. doi: 10.1103/PhysRevE.51.980.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

J. Ruths and D. Ruths. Control profiles of complex networks. Science, 343(6177):1373–1376,
2014.

T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.-r. Mohamed, G. Dahl, and B. Ram-
abhadran. Deep Convolutional Neural Networks for Large-scale Speech Tasks. Neural
Networks, 64:39–48, apr 2015. ISSN 08936080. doi: 10.1016/j.neunet.2014.08.005.

J. D. Sander and J. K. Joung. CRISPR-Cas systems for editing, regulating and targeting
genomes. Nature biotechnology, 32(4):347–55, 2014. ISSN 1546-1696. doi: 10.1038/nbt.
2842.

R. A. Santiago. Context discerning multifunction networks: Reformulating fixed weight
neural networks. In 2004 IEEE International Joint Conference on Neural Networks (IEEE
Cat. No. 04CH37541), volume 1, pages 189–194. IEEE, 2004.

K. Sato and R. Tanaka. Solitons in one-dimensional mechanical linkage. Physical Review
E, 98(1):013001, jul 2018. ISSN 2470-0045. doi: 10.1103/PhysRevE.98.013001.

A. M. Schäfer and H. G. Zimmermann. Recurrent neural networks are universal approxima-
tors. In International Conference on Artificial Neural Networks, pages 632–640. Springer,
2006.

M. T. Schaub, N. O’Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte, and M. Barahona.
Graph partitions and cluster synchronization in networks of oscillators. Chaos: An In-
terdisciplinary Journal of Nonlinear Science, 26(9):094821, 2016.

B. H. Scheid, A. Ashourvan, J. Stiso, K. A. Davis, F. Mikhail, F. Pasqualetti, B. Litt,
and D. S. Bassett. Time-evolving controllability of effective connectivity networks during
seizure progression. Proceedings of the National Academy of Sciences, 118(5), 2021.

P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal
of fluid mechanics, 656:5–28, 2010.

N. Schweighofer and K. Doya. Meta-learning in reinforcement learning. Neural Networks,
16(1):5–9, 2003.

229

H. S. Seung. Learning continuous attractors in recurrent networks. In Advances in Neural
Information Processing Systems, pages 654–660. MIT Press, 1998.

A. N. Sharkovsii. Coexistence of cycles of a continuous map of the line into itself. In-
ternational Journal of Bifurcation and Chaos, 05(05):1263–1273, 1995. doi: 10.1142/
S0218127495000934.

W. L. Shew, W. P. Clawson, J. Pobst, Y. Karimipanah, N. C. Wright, and R. Wessel.
Adaptation to sensory input tunes visual cortex to criticality. Nature Physics, 11:659–
663, 2015.

F. Shi, S. Wang, M. G. Forest, and P. J. Mucha. Network-based assessments of percolation-
induced current distributions in sheared rod macromolecular dispersions. Multiscale Mod-
eling and Simulation, 12:249–264, 2014.

C. T. Shih, O. Sporns, S. L. Yuan, T. S. Su, Y. J. Lin, C. C. Chuang, T. Y. Wang, C. C.
Lo, R. J. Greenspan, and A. S. Chiang. Connectomics-based analysis of information flow
in the Drosophila brain. Current Biology, 25(10):1249–1258, 2015.

J. M. Shine, O. Koyejo, and R. A. Poldrack. Temporal metastates are associated with
differential patterns of time-resolved connectivity, network topology, and attention. Proc
Natl Acad Sci U S A, 113(35):9888–9891, 2016.

L. E. Silbert. Jamming of frictional spheres and random loose packing. Soft Matter, 6(13):
2918–2924, 2010.

J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santan-
gelo, and I. Cohen. Using origami design principles to fold reprogrammable mechan-
ical metamaterials. Science, 345(6197):647–650, aug 2014a. ISSN 0036-8075. doi:
10.1126/science.1252876.

J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, and
I. Cohen. Using origami design principles to fold reprogrammable mechanical metamate-
rials. science, 345(6197):647–650, 2014b.

H. Simon. The architecture of complexity. Proceedings of the American Philosophical
Society, 10(6):467–482, 1962.

A. Sizemore, C. Giusti, and D. S. Bassett. Classification of weighted networks through
mesoscale homological features. Journal of Complex Networks, Published online August
4, 2016, 2016.

A. E. Sizemore, C. Giusti, A. Kahn, J. M. Vettel, R. F. Betzel, and D. S. Bassett. Cliques
and cavities in the human connectome. Journal of computational neuroscience, 44(1):
115–145, 2018.

R. S lowik. Inverses and Determinants of Toeplitz-Hessenberg Matrices. Taiwanese Journal
of Mathematics, 22(4):901–908, jun 2018. ISSN 1027-5487. doi: 10.11650/tjm/180103.

230

A. Sofla, S. Meguid, K. Tan, and W. Yeo. Shape morphing of aircraft wing: Status and
challenges. Materials & Design, 31(3):1284–1292, mar 2010. ISSN 02613069. doi: 10.
1016/j.matdes.2009.09.011.

O. Sporns and R. F. Betzel. Modular brain networks. Annu Rev Psychol, 67:613–640, 2016.

O. Sporns, R. Kötter, and K. J. Friston. Motifs in brain networks. PLoS biology, 2(11):
e369, 2004.

J. C. Sprott and A. Xiong. Classifying and quantifying basins of attraction. Chaos, 25(8),
2015. ISSN 10541500. doi: 10.1063/1.4927643.

M. Stern, V. Jayaram, and A. Murugan. Shaping the topology of folding pathways in
mechanical systems. Nature Communications, 9(1):4303, dec 2018. ISSN 2041-1723. doi:
10.1038/s41467-018-06720-1.

M. Stern, C. Arinze, L. Perez, S. E. Palmer, and A. Murugan. Supervised learning through
physical changes in a mechanical system. Proceedings of the National Academy of Sci-
ences, 117(26):14843–14850, 2020.

J. Stiso, A. N. Khambhati, T. Menara, A. E. Kahn, J. M. Stein, S. R. Das, R. Gorniak,
J. Tracy, B. Litt, K. A. Davis, et al. White matter network architecture guides direct
electrical stimulation through optimal state transitions. Cell reports, 28(10):2554–2566,
2019.

S. H. Strogatz. Nonlinear Dynamics and Chaos. Perseus Books, 1 edition, 1994. ISBN
0738204536.

S. H. Strogatz. Nonlinear dynamics and chaos. CRC Press, may 2018. ISBN 9780429492563.
doi: 10.1201/9780429492563.

J. U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N. X. Fang, and Y. Lu. Mechanical metamate-
rials and their engineering applications. Advanced Engineering Materials, 21(3):1800864,
mar 2019a. ISSN 1438-1656. doi: 10.1002/adem.201800864.

J. U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N. X. Fang, and Y. Lu. Mechanical metamate-
rials and their engineering applications. Advanced Engineering Materials, 21(3):1800864,
2019b.

D. Sussillo and L. Abbott. Generating Coherent Patterns of Activity from Chaotic Neural
Networks. Neuron, 63(4):544–557, aug 2009. ISSN 08966273. doi: 10.1016/j.neuron.2009.
07.018.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

A. Tacchetti, L. Isik, and T. A. Poggio. Invariant Recognition Shapes Neural Representa-
tions of Visual Input. Annual Review of Vision Science, 4(1):403–422, sep 2018. ISSN
2374-4642. doi: 10.1146/annurev-vision-091517-034103.

231

I. Y. Tyukin, D. Prokhorov, and C. Van Leeuwen. Adaptive classification of temporal signals
in fixed-weight recurrent neural networks: An existence proof. Neural Computation, 20
(10):2564–2596, 2008.

N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix,
B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage,
15(1):273–289, Jan. 2002.

M. Valencia, M. Pastor, M. Fernández-Seara, J. Artieda, J. Martinerie, and M. Chavez.
Complex modular structure of large-scale brain networks. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 19(2):023119, 2009.

H. J. van der Horn, J. G. Kok, M. E. de Koning, M. E. Scheenen, A. Leemans, J. M.
Spikman, and J. van der Naalt. Altered wiring of the human structural connectome in
adults with mild traumatic brain injury. J Neurotrauma, page Epub ahead of print, 2016.

M. F. J. Vermeulen, A. Bose, C. Storm, and W. G. Ellenbroek. Geometry and the onset of
rigidity in a disordered network. Phys. Rev. E, 96(5):053003, 2017.

J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History of
Computing, 15(4):27–75, 1993. ISSN 1058-6180. doi: 10.1109/85.238389.

J. Wang, D. Narain, E. A. Hosseini, and M. Jazayeri. Flexible timing by temporal scaling of
cortical responses. Nature Neuroscience, 21(1):102–110, jan 2018. ISSN 1097-6256. doi:
10.1038/s41593-017-0028-6.

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393
(6684):440–2, 1998a. ISSN 0028-0836. doi: 10.1038/30918.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998b.

M. Weber, P. D. Maia, and J. N. Kutz. Estimating Memory Deterioration Rates Following
Neurodegeneration and Traumatic Brain Injuries in a Hopfield Network Model. Frontiers
in Neuroscience, 11(NOV), nov 2017. ISSN 1662-453X. doi: 10.3389/fnins.2017.00623.

G. Wei, Y. Chen, and J. S. Dai. Synthesis, mobility, and multifurcation of deployable
polyhedral mechanisms with radially reciprocating motion. Journal of Mechanical Design,
136(9):091003, jun 2014. ISSN 1050-0472. doi: 10.1115/1.4027638.

Z. Wei, R. Sandstroröm, and S. Miyazaki. Shape-memory materials and hybrid composites
for smart systems: Part i shape-memory materials. Journal of materials science, 33(15):
3743–3762, 1998.

P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

232

J. G. White, E. Southgate, J. N. Thomson, S. Brenner, et al. The structure of the nervous
system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 314
(1165):1–340, 1986.

W. Whiteley. Infinitesimal motions of a bipartite framework. Pacific Journal of Mathemat-
ics, 110(1):233–255, jan 1984. ISSN 0030-8730. doi: 10.2140/pjm.1984.110.233.

M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data–driven approximation of
the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear
Science, 25(6):1307–1346, 2015.

H. R. Wilson and J. D. Cowan. Excitatory and Inhibitory Interactions in Localized Pop-
ulations of Model Neurons. Biophysical Journal, 12(1):1–24, jan 1972. ISSN 00063495.
doi: 10.1016/S0006-3495(72)86068-5.

S. Wolfram. Cellular automata as models of complexity. Nature, 311(5985):419–424, 1984.

S. Wu, K. Y. M. Wong, C. C. A. Fung, Y. Mi, and W. Zhang. Continuous Attractor Neu-
ral Networks: Candidate of a Canonical Model for Neural Information Representation.
F1000Research, 5:156, feb 2016. ISSN 2046-1402. doi: 10.12688/f1000research.7387.1.

J. Yang, L. Wang, Y. Wang, and T. Guo. A novel memristive Hopfield neural network
with application in associative memory. Neurocomputing, 227:142–148, mar 2017. ISSN
09252312. doi: 10.1016/j.neucom.2016.07.065.

Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang. Topological acoustics.
Physical Review Letters, 114(11):114301, mar 2015. ISSN 0031-9007. doi: 10.1103/
PhysRevLett.114.114301.

F.-C. Yeh, V. J. Wedeen, and W.-Y. I. Tseng. Generalized q-sampling imaging. IEEE
transactions on medical imaging, 2010.

F.-C. Yeh, T. D. Verstynen, Y. Wang, J. C. Fernández-Miranda, and W.-Y. I. Tseng.
Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS one, 8
(11):e80713, 2013.

A. Yendiki, K. Koldewyn, S. Kakunoori, N. Kanwisher, and B. Fischl. Spurious group
differences due to head motion in a diffusion MRI study. NeuroImage, 88C:79–90, Nov.
2013.

K. Yoon, M. A. Buice, C. Barry, R. Hayman, N. Burgess, and I. R. Fiete. Specific evidence
of low-dimensional continuous attractor dynamics in grid cells. Nature Neuroscience, 16
(8):1077–1084, aug 2013. ISSN 1097-6256. doi: 10.1038/nn.3450.

Yu Zheng and Wen-Han Qian. Dynamic force distribution in multifingered grasping by
decomposition and positive combination. IEEE Transactions on Robotics, 21(4):718–726,
aug 2005. ISSN 1552-3098. doi: 10.1109/TRO.2005.847609.

233

Z. Zhang, Y.-Y. Jiao, and Q.-Q. Sun. Developmental maturation of excitation and inhibition
balance in principal neurons across four layers of somatosensory cortex. Neuroscience,
174:10–25, feb 2011. ISSN 03064522. doi: 10.1016/j.neuroscience.2010.11.045.

Z. Zhao, X. Kuang, J. Wu, Q. Zhang, G. H. Paulino, H. J. Qi, and D. Fang. 3D printing
of complex origami assemblages for reconfigurable structures. Soft Matter, 14(39):8051–
8059, 2018. ISSN 1744-683X. doi: 10.1039/C8SM01341A.

C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths. Hierarchical organization
unveiled by functional connectivity in complex brain networks. Physical review letters,
97(23):238103, 2006.

Y. Zhou, B. G.-g. Chen, N. Upadhyaya, and V. Vitelli. Kink-antikink asymmetry and
impurity interactions in topological mechanical chains. Phys. Rev. E, 95:022202, Feb
2017. doi: 10.1103/PhysRevE.95.022202.

B. Zhu and Y. Xia. An information-theoretic model for link prediction in complex networks.
Sci Rep, 5:13707, 2015.

O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Zhu. The finite element method,
volume 3. McGraw-hill London, 1977.

L. Zigoneanu, B.-I. Popa, and S. A. Cummer. Three-dimensional broadband omnidirectional
acoustic ground cloak. Nature Materials, 13(4):352–355, apr 2014. ISSN 1476-1122. doi:
10.1038/nmat3901.

234

	Complex Systems Engineering: Designing Advanced Functions In Dynamical And Mechanical Systems
	Recommended Citation

	Complex Systems Engineering: Designing Advanced Functions In Dynamical And Mechanical Systems
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	tmp.1664985243.pdf.A_yMJ

