
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Beyond Statistical Fairness Beyond Statistical Fairness

Christopher Sangyeon Jung
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jung, Christopher Sangyeon, "Beyond Statistical Fairness" (2022). Publicly Accessible Penn Dissertations.
5497.
https://repository.upenn.edu/edissertations/5497

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5497
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F5497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5497?utm_source=repository.upenn.edu%2Fedissertations%2F5497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5497
mailto:repository@pobox.upenn.edu

Beyond Statistical Fairness Beyond Statistical Fairness

Abstract Abstract
In recent years, a great deal of fairness notions has been proposed. Yet, most of them take a reductionist
approach by indirectly viewing fairness as equalizing some error statistic across pre-defined groups. This
thesis aims to explore some ideas as to how to go beyond such statistical fairness frameworks.

First, we consider settings in which the right notion of fairness may not be captured by simple
mathematical definitions but might be more complex and nuanced and thus require elicitation from
individual or collective stakeholders. By asking stakeholders to make pairwise comparisons to learn
which pair of individuals should be treated similarly, we show how to approximately learn the most
accurate classifier or converge to such one subject to the elicited fairness constraints. We consider an
offline setting where the pairwise comparisons must be made prior to training a model and an online
setting where one can continually provide fairness feedback to the deployed model in each round. We
also report preliminary findings of a behavioral study of our framework using human-subject fairness
constraints elicited on the COMPAS criminal recidivism dataset.

Second, unlike most of the statistical fairness framework that promises fairness for pre-defined and often
coarse groups, we provide fairness guarantees for finer subgroups, such as all possible intersections of
the pre-defined groups, in the context of uncertainty estimation in both offline and online setting. Our
framework gives uncertainty guarantees that are more locally sensible than the ones given by conformal
prediction techniques; our uncertainty estimates are valid even when averaged over any subgroup, but
uncertainty estimates in conformal predictions are usually only valid when averaged over the entire
population.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Aaron Roth

Second Advisor Second Advisor
Michael Kearns

Subject Categories Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5497

https://repository.upenn.edu/edissertations/5497

BEYOND STATISTICAL FAIRNESS

Christopher Sangyeon Jung

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

2022

Co-Supervisor of Dissertation

Michael Kearns, Professor and National Center Chair, Computer and Information Science

Co-Supervisor of Dissertation

Aaron Roth, Henry Salvatori Professor of Computer & Cognitive Science, Computer and
Information Science

Graduate Group Chairperson

Mayur Naik, Professor, Computer and Information Science,

Dissertation Committee
Edgar Dobriban, Assistant Professor, Statistics and Data Science
Sampath Kannan, Henry Salvatori Professor, Computer and Information Science
Rakesh Vohra, George A. Weiss and Lydia Bravo Weiss University Professor, Computer
and Information Science
Steven Wu, Assistant Professor, School of Computer Science at Carnegie Mellon University

To my grandfather, 유 창 상

ii

ACKNOWLEDGEMENTS

First of all, I want to thank my advisors, Aaron Roth and Michael Kearns. It wouldn’t be

an exaggeration to say that any brilliance you may find in this thesis is a mere reflection of

their brilliance. It has been an honor to see firsthand how they formulate research questions

that just feel right and offer answers that bring thought-provoking insights to the problems

at hand; their art of research that brings order and simplicity to chaos and complexity is

awe-inspiring. I feel genuinely so fortunate to have had the chance to learn from them, and

I am deeply grateful for their guidance and encouragement over the years. I could not have

had better advisors.

I also have other mentors that I must thank. I thank Sampath Kannan for acting as my third

unofficial advisor, especially in the beginning of my graduate school years. Sampath brought

me to the fairness program at the Simons institute twice where I was able to get my foot in

the door of the algorithmic fairness community and make new friends and collaborators. I

thank Rakesh Vohra who always willingly made time to discuss projects that I was working

on and provided helpful feedback and encouragement: through those discussions, he helped

me develop clearer and simpler intuition for my research projects. I thank Rajiv Gandhi for

first introducing me to the world of theoretical computer science through PACT (Program

in Algorithmic and Combinatorial Thinking) and instilling in me the simple joy of learning.

I thank James Davis and David Williamson for working patiently with me when I was just

a naive undergraduate student at Cornell. I thank Eva Tardos for encouraging me to go to

graduate school. I thank Edgar Doriban for serving on my thesis committee even on such a

short notice.

I’m also indebted to my collaborators and friends that I made during graduate school:

Matthew Joseph, Hadi Elzayn, Shahin Jabbari, Saeed Sharifi-Malvajerdi, Seth Neel, Zachary

iii

Schutzman, Marcella Hastings, Emily Diana, Yahav Bechavod, Neil Lutz, Steven Wu,

Changhwa Lee, Mallesh Pai, Katrina Ligett, Logan Stapleton, Chris Waites, Moshe Shen-

feld, Varun Gupta, Juba Ziani, Pranjal Awasthi, and Jamie Morgenstern. I have genuinely

enjoyed spending time together and have learned so much from them.

I also need to thank my close friends outside of graduate school: Charles Kim, Kevin Jiseup

and Jen Kim, David Sang Jun and Sarah Kim, Cornell and Faye Bang, Chanwook and Steph

Park, Jon and Jeniffer Kim, Kevin and Heejung Lee, Joseph An, Harold Shin and Christie

Kim, Joon Jang, Sam Lee, Andrew Qian and Esther Yoon, Eric and Joslyn Cheung, and

Harry Kim. They kept me sane and reminded me countless times that there’s more to this

life through their rich friendship with me.

I thank Risen Christ Fellowship and Metro Church for faithfully preaching the gospel to

me and helping me remember my hope lies not in my own works but in the finished work

of Jesus Christ.

Finally, I thank my family. I thank my 엄마 and 아빠 for unconditionally loving me and

firmly believing in me. Thank you for always just being there for me. As I am getting older,

I am learning more and more how much you have given up for me and how deeply you love

me. I also thank my younger brothers, 상은 and 상민. Honestly, you guys were more like

my older brothers to me: I’m sure that I have learned important things in life more from

you than you guys have from me.

I am grateful that God has blessed me with all these wonderful people in my life — I won’t

be who I am without them. God has revealed much of His love to me through these people.

But more importantly, I am grateful that God has faithfully reminded me of His love in the

person of Jesus Christ in the past few years — that He became human to die for my sin so

that I may become His righteousness. It was this love that kept me during what felt like a

never-ending journey. I can confidently say that this love is far more meaningful and goes

much deeper than anything this thesis has to offer.

iv

ABSTRACT

BEYOND STATISTICAL FAIRNESS

Christopher Jung

Michael Kearns

Aaron Roth

In recent years, a great deal of fairness notions has been proposed. Yet, most of them take a

reductionist approach by indirectly viewing fairness as equalizing some error statistic across

pre-defined groups. This thesis aims to explore some ideas as to how to go beyond such

statistical fairness frameworks.

First, we consider settings in which the right notion of fairness may not be captured by

simple mathematical definitions but might be more complex and nuanced and thus require

elicitation from individual or collective stakeholders. By asking stakeholders to make pair-

wise comparisons to learn which pair of individuals should be treated similarly, we show how

to approximately learn the most accurate classifier or converge to such one subject to the

elicited fairness constraints. We consider an offline setting where the pairwise comparisons

must be made prior to training a model and an online setting where one can continually

provide fairness feedback to the deployed model in each round. We also report preliminary

findings of a behavioral study of our framework using human-subject fairness constraints

elicited on the COMPAS criminal recidivism dataset.

Second, unlike most of the statistical fairness framework that promises fairness for pre-

defined and often coarse groups, we provide fairness guarantees for finer subgroups, such as

all possible intersections of the pre-defined groups, in the context of uncertainty estimation

in both offline and online setting. Our framework gives uncertainty guarantees that are more

locally sensible than the ones given by conformal prediction techniques; our uncertainty

estimates are valid even when averaged over any subgroup, but uncertainty estimates in

conformal predictions are usually only valid when averaged over the entire population.

v

Table of Contents

Acknowledgements . iii

Abstract . v

List of Illustrations . ix

Chapter 1 : Introduction . 1

I Fairness In the Hands of the People 6

Chapter 2 : Individual Fairness via Auditing: Mahalanobis Fairness Metric 7

2.1 Introduction . 7

2.2 Related Work . 11

2.3 Preliminaries . 13

2.4 Warmup: The Known Objective Case . 19

2.5 The Full Algorithm . 31

2.6 Discussion . 39

Chapter 3 : Individual Fairness via Auditing: No Assumption on the Fairness Metric 40

3.1 Introduction . 40

3.2 Preliminaries . 42

3.3 Related Work . 48

3.4 Lagrangian Regret . 49

3.5 Achieving No Regret Simultaneously . 52

3.6 Discussion . 70

Chapter 4 : Fairness Elicitation . 71

4.1 Introduction . 71

vi

4.2 Related Work . 76

4.3 Preliminaries . 77

4.4 Empirical Risk Minimization . 81

4.5 Generalization . 94

4.6 A Behavioral Study . 95

Appendices . 101

4.A Missing Details from Section 4.4 . 101

4.B Missing Details from Section 4.5 . 105

II Uncertainty Estimation for Subgroups 116

Chapter 5 : Uncertainty Estimation for Subgroups: Offline 117

5.1 Introduction . 117

5.2 Related Work . 125

5.3 Preliminaries . 128

5.4 Achieving Mean Conditioned Moment Multicalibration 133

5.5 Implementation with Finite Sample and Runtime Guarantees 143

5.6 Marginal Prediction Intervals . 155

Appendices . 160

5.A Details and Proofs from Section 5.4.1 . 160

5.B Details and Proofs from Section 5.4.2 . 162

5.C Details and Proofs from Section 5.5 . 164

5.D A Submodular Set-Cover Formulation . 180

Chapter 6 : Uncertainty Estimation for Subgroups: Online 184

6.1 Introduction . 184

6.2 Related Work . 192

6.3 Preliminaries . 195

vii

6.4 Online Mean Multicalibration . 204

6.5 Online Moment Multicalibration . 220

6.6 Online Multivalid Marginal Coverage . 241

Appendices . 259

6.A Unboundedly Many Groups, Bounded Group Membership 259

6.B Mean Conditioned Moment Multicalibrators Can Randomize Over Small

Support . 265

6.C Proofs from Section 6.4 . 267

6.D Proofs from Section 6.5 . 270

6.E Proofs from Section 6.6 . 279

Bibliography . 286

viii

List of Illustrations

FIGURE 1 : A visual interpretation of the surgery performed on p in the proof

of Lemma 3 to obtain P ′. Note that the surgery manages to shrink

the distance between pa and pb without increasing the distance

between any other pair of points. 27

FIGURE 2 : Comparison between Online Fair Batch Classification and Online

Batch Classification: each is summarized by the interaction between

the learner and the environment: (∆F × Zfair-batch)
T and (∆F ×

Zbatch)
T where Zfair-batch = X k×Yk×([k]2∪{null}) and Zbatch =

X k × Yk. 48

FIGURE 3 : Screenshot of sample subjective fairness elicitation question posed

to human subjects. 96

FIGURE 4 : (a) Sample algorithm trajectory for a particular subject at vari-

ous γ. (b) Sample subjective fairness Pareto curves for a sample

of subjects. (c) Scatterplot of number of constraints specified and

number of opposing constraints vs. error at γ = 0.3. (d) Scatterplot

of number of constraints where the true labels are different vs. er-

ror at γ = 0.3. (e) Correlation between false positive rate difference

and γ for racial groups. 98

FIGURE 6.5.1 :A Linear Program for Computing a Minimax Equilibrium Strategy

for the Learner at Round t. 236

FIGURE 6.6.1 :A Linear Program for Computing a Minimax Equilibrium Strategy

for the Learner at Round t. 251

ix

Chapter 1

Introduction

As the amount of data being collected has increased exponentially and the speed at which

we can sift through such data has sped up dramatically in the past few decades, machine

learning now pervades almost every facet of our lives, including consequential decision mak-

ing processes such as hiring, lending, criminal sentencing, policing, and so on. And as a

result of machine learning’s growing role in these high-stakes settings, people have started

to worry about its potential unfair behaviors — rightfully so. This worry about unfairness

in machine learning algorithms is no longer hypothetical, as it has been in fact documented

in several real world scenarios that machine learning algorithms even without any explicit

nefarious intentions encoded in them can display some unfair behaviors.

So far, most of these complaints about machine learning algorithms’ unfair behaviors have

been against their discrepancy in some statistical error between groups defined by protected

attributes, such as race and gender. Let us take COMPAS, a recidivism risk assessment tool

used in many jurisdictions in the U.S., as an example, as it has received one of the first and

well known complaints regarding machine learning algorithm’s potentially unfair behavior:

Angwin et al. [4] argued that COMPAS may be unfair as it has non-trivial differences in

its false positive and negative rates between white and black defendants [63].

In an effort to combat against these documented and potential statistical discrepancies,

researchers have proposed various fairness notions and how to impose such technical defi-

nitions of fairness [2, 3, 16, 19, 41, 50, 56, 59, 73, 92, 99]. However, maybe because many

of these notions have been born possibly as an reaction to statistical discrepancies, most of

them have the form of equalizing simple error statistics across groups. As a starting point

of this thesis, we observe the following:

1. The above process cannot result in notions of fairness that do not have any simple,

1

analytic description. Moreover, this process overlooks a more precursory problem:

namely, who gets to define what is fair? There are many statistical measures that one

can choose, but they cannot be equalized all simultaneously [13, 63]. So in the statis-

tical fairness framework, one is tied to having to decide only a select few compatible

statistical measures and across which groups the measure should be equalized. Yet

there haven’t been many guidelines in terms of how to reason about this process of

choosing which statistical measure, which group, and more importantly who makes

this decision.

2. Statistical measures by definition are only meaningful when averaged over a group of

points, and the groups for which fairness guarantees are made are often quite coarse

— e.g. most of the time, the intersections across multiple sensitive attributes are

not considered [59]. Hence, there is usually no fairness guarantee for such finer and

intersecting subgroups, let alone individuals.

We divide the thesis into two parts to address the points raised above.

Fairness in the Hands of the People: In the first part, we argue that researchers may

not be able to propose a concise technical definition, e.g. statistical parity, to capture the

nuances of fairness in any given context. Instead, many philosophers hold that stakeholders

who are affected by moral decisions and domain experts who understand the context in which

moral decisions are made will have the best judgment about which decisions are fair in that

context [64, 95]; this is also aligned with recent work on virtual democracy which propose

and enact participatory methods to automate moral decision-making [15, 54, 67, 75]. One

non-statistical fairness notion that can possibly take people’s conceptions of fairness into

account is individual fairness originally proposed by Dwork et al. [19]. Individual fairness

asks that similar people should be treated similarly, and one’s conception of fairness can

be distilled into the fairness metric that defines this similarity between two individuals.

Furthermore, unlike statistical fairness guarantees that are aggregate in nature, individual

fairness gives guarantees at the individual level.

2

Despite its stronger fairness semantic and ability to encode one’s conceptions of fairness,

an entity (e.g. a group of stakeholders and/or a single domain expert) whose conception

of fairness we want to instill into the algorithm or want to study may have a hard time

enunciating the quantitative fairness metric exactly and/or form a consistent fairness metric.

Nevertheless, we hold that one can easily identify specific scenarios where fairness and/or

unfairness occurs. Therefore, in this part of the thesis, we investigate how to incorporate

individual conceptions of fairness into a system that only receives access to examples where

these conceptions are violated and/or met. We broadly consider two settings.

In Chapter 2 and Chapter 3, we consider an online setting where a batch of k individuals

shows up in each round for whom we need to make predictions. There is an auditor who

has some unknown fairness metric that determines which individuals are similar. But the

auditor cannont directly enunciate this fairness metric, so the auditor contintually engages

with the deploy model and complains in each round whenever any pair of similar individuals

is not treated similarly. In Chapter 2, we consider when the underlying reward associated

with each individual is linear with respect to some unknown vector in expectation, and

the unknown fairness metric of the auditor is Mahalanobis. We show how to achieve no-

regret with respect to all policies that are fair with respect to the auditor’s fairness metric

and also guarantee the the number of rounds that the auditor complains about unfair

treatments to be sublinear. In Chapter 3, we consider a slightly different setting and loosen

some assumptions. We make no structural assumption about the auditor’s fairness metric

and how the label of each agent is determined. By considering a new loss that combines

the classification and fairness loss together, we reduce the problem of achieving no-regret

with respect to fair policies and sublinear fairness loss to the standard online classification

problem with no fairness constraints.

In Chapter 4, we consider an offline setting where we are endowed with a labeled dataset

that consists of agents’ features and their labels. Here we aim to elicit stakeholders and

experts’ conceptions of fairness by asking them to compare pairs of individuals in specific

3

scenarios prior to training and deploying a predictor. To each subject from whom we want

to elicit fairness, we present randomly drawn pairs of individuals from the dataset and

ask whether each pair of individuals should be treated similarly or not. Given the original

dataset and elicited pairs of individuals who should be treated similarly according to the

subjects, we provide a provably convergent and oracle-efficient algorithm that minimizes

the empirical risk over the dataset and satisfies the elicited fairness constraints. Then, by

making some modifications to the standard generalization argument via VC-dimension, we

show that fairness loss, which measures how well we respect the fairness constraints of

the subjects, generalizes. Finally, we report preliminary findings of a behavioral study of

our framework using human-subject fairness constraints elicited on the COMPAS criminal

recidivism dataset.

Uncertainty Estimation for Subgroups: In the statistical fairness framework, the

groups for which the fairness guarantees are made are usually pre-defined according to

some sensitive attributes and hence very coarse — e.g. whites and non-whites, males and

females, and so on. However, as noted by Kearns et al. [59], such process may be susceptible

to inadvertent “fairness gerrymandering” in which the classifier may be still unfair to one

or more subgroups defined by the intersections of the original groups (e.g. non-white fe-

males). With regards to this, Hébert-Johnson et al. [43] show how to guarantee calibration,

a fairness criterion that many have considered [9, 79], against all groups that are computa-

tionally identifiable — for instance, all the intersecting subgroups across sensitive attributes

as described above, which may be exponential in the number of sensitive attributes.

In the second half of the thesis, we consider how we can extend the idea of “multicalibra-

tion” introduced by Hébert-Johnson et al. [43] in an offline and online setting. In chapter

5, we study an offline setting where we show how to multicalibrate not only means as origi-

nally done in Hébert-Johnson et al. [43] but also higher moments, such as variance, allowing

us to compute uncertainty estimates via Chebyshev’s inequality that are calibrated for all

subgroups. The uncertainty estimates that we compute provide have more locally sensible

4

guarantees than conformal prediction techniques. More specifically, our uncertainty esti-

mate for each point is valid averaged over randomness of any subgroup that the point may

belong to, but conformal prediction techniques’ uncertainty estimates almost always aver-

age over the randomness over the entire population. In Chapter 6, we show how to compute

multicalibrated predictions for means, higher moments, and prediction intervals in an on-

line setting where there is essentially no assumption made regarding the data generation

process, thereby removing the exchangeability assumption that is common in the conformal

prediction literature.

5

“It is an axiom in my mind that our liberty can never

be safe but in the hands of the people themselves.”

Thomas Jefferson

I

Fairness

In the Hands of the People

Chapter 2

Individual Fairness via Auditing:

Mahalanobis Fairness Metric

2.1. Introduction

Most of the work in algorithmic fairness literature has taken the statistical fairness approach

which first fixes a small collection of high-level groups defined by protected attributes (e.g.,

race or gender) and then asks for approximate parity of some statistic of the predictor,

such as positive classification rate or false positive rate, across these groups (see e.g., [13,

39, 41, 56, 63, 99]). While such notions of group fairness are easy to operationalize, they

are aggregate in nature without fairness guarantees for finer subgroups or individuals [19,

43, 59] with no clear guidance on how to choose which statistic and across which groups

to equalize the statistic. On the other hand, individual fairness definitions ask for some

constraint that binds on the individual level, rather than only over averages of people. Often,

these constraints have the semantics that “similar people should be treated similarly [19].

Moreover, one’s individual notion of fairness can be distilled into this specific fairness metric

that determines who is considered similar for the given context.

Individual fairness definitions indeed have substantially stronger semantics and demands

than group definitions of fairness, as Dwork et al. [19] lay out a compendium of ways in which

group fairness definitions are unsatisfying. However, the statistical group fairness approach

is more prevalent in large part because notions of individual fairness require making stronger

assumptions on the setting under consideration. In particular, the definition from Dwork

et al. [19] requires that “task-specific fairness metric” is readily available to the algorithmic

designer.

Learning problems over individuals are also often implicitly accompanied by some notion of

7

merit , embedded in the objective function of the learning problem. For example, in a lending

setting we might posit that each loan applicant is either “creditworthy” and will repay a loan,

or is not creditworthy and will default — which is what we are trying to predict. Joseph et al.

[50] take the approach that this measure of merit — already present in the model, although

initially unknown to the learner — can be taken to be the similarity metric in the definition

of Dwork et al. [19], requiring informally that creditworthy individuals have at least the

same probability of being accepted for loans as defaulting individuals. The implicit and

coarse fairness metric here assigns distance zero between pairs of creditworthy individuals

and pairs of defaulting individuals, and some non-zero distance between a creditworthy and

a defaulting individual. This resolves the problem of how one should discover the “fairness

metric” but results in a notion of fairness that is necessarily aligned with the notion of

“merit” (creditworthiness) that we are trying to predict.

However, there are many settings in which the notion of merit we wish to predict may be

different or even at odds with the notion of fairness people have in their mind. For example,

notions of fairness aimed at rectifying societal inequities that result from historical discrim-

ination can aim to favor the disadvantaged population (say, in college admissions), even if

the performance of the admitted members of that population can be expected to be lower

than that of the advantaged population. Similarly, we may have a fairness notion in mind

that try to incorporate only those attributes that individuals can change in principle (and

thus excluding ones like race, age and gender) and that further express what are and are not

meaningful differences between individuals, outside the context of any particular prediction

problem. These kinds of fairness desiderata can still be expressed as an instantiation of the

definition from Dwork et al. [19], but with a task-specific fairness metric separate from the

notion of merit we are trying to predict.

In this chapter, we revisit the individual fairness definition from Dwork et al. [19]. This defi-

nition requires that pairs of individuals who are close in the fairness metric must be treated

“similarly” (e.g. in an allocation problem such as lending, served with similar probability).

8

We investigate the extent to which it is possible to satisfy this fairness constraint while

simultaneously solving an online learning problem. Most importantly, one main conceptual

problem with metric-based definitions, that we seek to address, is that it may be difficult

for anyone to actually precisely express a quantitative metric over individuals — but they

nevertheless might “know unfairness when they see it.” We therefore assume an auditor that

knows intuitively what it means to be fair but cannot explicitly enunciate the fairness met-

ric. And instead of exactly writing down the fairness metric exactly, the auditor can point

out pairs of similar individuals who have not received similar predictions, if there exists any

such pairs. Then, the goal is to obtain low regret in the online learning problem — measured

with respect to the best fair policy — while also limiting the total number of rounds where

there is any significant fairness violation (i.e. the amount by which the difference in the

treatments is more than the distance between two individuals is non-trivial).

2.1.1. Overview of Model and Results

Here we study a setting where we make a structural assumption about the data generation

process and the fairness metric. In Chapter 3, we consider a slightly different online learning

setting but without these structural assumptions.

Here we study the standard linear contextual bandit setting. In rounds t = 1, . . . , T , a

learner observes arbitrary and possibly adversarially selected d-dimensional contexts, each

corresponding to one of k actions. The reward for each action is (in expectation) an unknown

linear function of the contexts. The learner seeks to minimize its regret.

The learner also wishes to satisfy fairness constraints, defined with respect to an unknown

distance function defined over contexts. The constraint requires that the difference between

the probabilities that any two actions are taken is bounded by the distance between their

contexts. The learner has no initial knowledge of the distance function. Instead, after the

learner makes its decisions according to some probability distribution πt at round t, it

receives feedback specifying for which pairs of contexts the fairness constraint were violated.

Also, the learner sees the reward of the action that is chosen in that round but not the reward

9

of other actions.

Our goal in designing a learner is to simultaneously guarantee near-optimal regret in the

contextual bandit problem (with respect to the best fair policy), while violating the fair-

ness constraints as infrequently as possible. Our main result is a computationally efficient

algorithm that guarantees this for a large class of distance functions known as Mahalanobis

distances (these can be expressed as d(x1, x2) = ||Ax1 −Ax2||2 for some matrix A).

Theorem (Informal): There is a computationally efficient learning algorithm in our setting

that guarantees that for any Mahalanobis distance, any time horizon T :

1. (Learning) With high probability, L obtains regret Õ
(
k2d2 log (T) + d

√
T
)

to the

best fair policy (See Theorem 4 for a precise statement.)

2. (Fairness) For any ϵ, the number of rounds where the unknown fairness constraints

are violated by more than ϵ is at most O
(
k2d2 log(d/ϵ)

)
with probability 1. (Theorem

5.)

We note that the quoted regret bound requires setting ϵ = O(1/T), and so this implies a

number of fairness violations of magnitude more than 1/T that is bounded by a function

growing logarithmically in T . Other tradeoffs between regret and fairness violations are

possible.

These two goals of obtaining low regret and violating the unknown constraint a small

number of times are seemingly in tension. A standard technique for obtaining a mistake

bound with respect to fairness violations would be to play a “halving algorithm”, which

would always act as if the unknown metric is at the center of the current version space (the

set of metrics consistent with the feedback observed thus far) — so that mistakes necessarily

remove a non-trivial fraction of the version space, making progress. On the other hand, a

standard technique for obtaining a diminishing regret bound is to play “optimistically” –

i.e. to act as if the unknown metric is the point in the version space that would allow for

10

the largest possible reward. But “optimistic” points are necessarily at the boundary of the

version space, and when they are falsified, the corresponding mistakes do not necessarily

reduce the version space by a constant fraction.

We prove our theorem in two steps. First, in Section 2.4, we consider the simpler problem

in which the linear objective of the contextual bandit problem is known, and the distance

function is all that is unknown. In this simpler case, we show how to obtain a bound on

the number of fairness violations using a linear-programming based reduction to a recent

algorithm which has a mistake bound for learning a linear function with a particularly

weak form of feedback [71]. A complication is that our algorithm does not receive all of the

feedback that the algorithm of Lobel et al. [71] expects. We need to use the structure of our

linear program to argue that this is ok. Then, in Section 2.5, we give our algorithm for the

complete problem, using large portions of the machinery we develop in Section 2.4.

We note that in a non-adversarial setting, in which contexts are drawn from a distribu-

tion, the algorithm of Lobel et al. [71] could be more simply applied along with standard

techniques for contextual bandit learning to give an explore-then-exploit style algorithm.

This algorithm would obtain bounded (but suboptimal) regret and the number of fairness

violations that grows as a root of T . The principal advantages of our approach are that we

are able to give the number of fairness violations that has only logarithmic dependence on

T , while tolerating contexts that are chosen adversarially, all while obtaining an optimal

Õ(
√
T) regret bound to the best fair policy.

2.2. Related Work

There are a couple of papers that tackle orthogonal issues in metric-fair learning. Rothblum

and Yona [81] consider the problem of generalization when performing learning subject

to a known metric constraint. They show that it is possible to prove relaxed PAC-style

generalization bounds without any assumptions on the metric, and that for worst-case

metrics, learning subject to a metric constraint can be computationally hard, even when

the unconstrained learning problem is easy. In contrast, our work focuses on online learning

11

with an unknown metric constraint. Gupta and Kamble [37] also studies online learning

subject to individual fairness but with a known metric. They formulate a one-sided fairness

constraint across time, called fairness in hindsight and provide an algorithm with regret

O(TM/(M+1)) for some distribution-dependent constant M .

Kim et al. [60] considers a group-fairness like relaxation of metric-fairness, asking that on

average, individuals in pre-specified groups are classified with probabilities proportional to

the average distance between individuals in those groups. They show how to learn such

classifiers in the offline setting, given access to an oracle which can evaluate the distance

between two individuals according to the metric (allowing for unbiased noise). The similarity

to our work is that we also consider access to the fairness metric via an oracle, but our oracle

is substantially weaker and does not provide numeric valued output. Similarly, Ilvento [45]

studies the problem of metric learning by asking human arbiters distance queries. Unlike

Ilvento [45], our algorithm does not explicitly learn the underlying similarity measure and

does not require asking auditors numeric queries.

There are also several papers in the algorithmic fairness literature that are thematically

related to ours, in that they both aim to bridge the gap between group notions of fairness

(which can be semantically unsatisfying) and individual notions of fairness (which require

very strong assumptions). Zemel et al. [100] attempt to automatically learn a representation

for the data in a batch learning problem (and hence, implicitly, a similarity metric) that

causes a classifier to label an equal proportion of two protected groups as positive. They

provide a heuristic approach and an experimental evaluation.

Two papers (Kearns et al. [59] and Hébert-Johnson et al. [43]) take the approach of asking for

a group notion of fairness but over exponentially many implicitly defined protected groups,

thus mitigating what Kearns et al. [59] call the “fairness gerrymandering” problem, which

is one of the principal weaknesses of group fairness definitions. Both papers give polynomial

time reductions which yield efficient algorithms whenever a corresponding agnostic learning

problem is solvable. In contrast, we take a different approach: we attempt to directly satisfy

12

the original definition of individual fairness from Dwork et al. [19], but with substantially

less information about the underlying similarity metric.

Starting with Joseph et al. [50], several papers have studied notions of fairness in classic and

contextual bandit problems. Joseph et al. [50] study a notion of “meritocratic” fairness in

the contextual bandit setting, and prove upper and lower bounds on the regret achievable

by algorithms that must be “fair” at every round. This can be viewed as a variant of the

Dwork et al. [19] notion of fairness, in which the expected reward of each action is used to

define the “fairness metric”. The algorithm does not originally know this metric, but must

discover it through experimentation. Joseph et al. [49] extend the work of Joseph et al. [50]

to the setting in which the algorithm is faced with a continuum of options at each time step,

and give improved bounds for the linear contextual bandit case. Jabbari et al. [46] extend

this line of work to the reinforcement learning setting in which the actions of the algorithm

can impact its environment. Finally, Liu et al. [70] consider a notion of fairness based on

calibration in the simple stochastic bandit setting.

There is a large literature that focuses on learning Mahalanobis distances — see Kulis et al.

[65] for a survey. In this chapter, we particularly rely heavily on Lobel et al. [71] which

we describe in further detail later. In this literature, the closest paper to our work focuses

on online learning of Mahalanobis distances (Jain et al. [47]). However, this result is in a

very different setting from the one we consider here. In Jain et al. [47], the algorithm is

repeatedly given pairs of points, and needs to predict their distance. It then learns their

true distance, and aims to minimize its squared loss. In contrast, our main objective of the

learning algorithm is orthogonal to the metric learning problem — i.e. to minimize regret

in the linear contextual bandit problem, but while simultaneously learning and obeying a

fairness constraint, and only from weak feedback noting violations of fairness.

2.3. Preliminaries

We study algorithms that operate in the linear contextual bandits setting. A linear contex-

tual bandit problem is parameterized by an unknown vector of linear coefficients θ ∈ Rd,

13

with ||θ||2 ≤ 1. Algorithms in this setting operate in rounds t = 1, . . . , T . In each round t,

an algorithm L observes k contexts xt1, . . . , x
t
k ∈ Rd, scaled such that ||xti||2 ≤ 1. We write

xt = (xt1, . . . , x
t
k) to denote the entire set of contexts observed at round t. After observing

the contexts, the algorithm chooses an action it. After choosing an action, the algorithm

obtains some stochastic reward rtit such that rtit is subgaussian1 and E[rtit] = ⟨x
t
it , θ⟩. The

algorithm does not observe the reward for the actions not chosen. When the action it is

clear from context, and write rt instead of rtit .

Remark 1. For simplicity, we consider algorithms that select only a single action at every

round. However, this assumption is not necessary. In the appendix of the original paper

[35], we show how our results extend to the case in which the algorithm can choose any

number of actions at each round. This assumption is sometimes more natural: for example,

in a lending scenario, a bank may wish to make loans to as many individuals as will be

profitable, without a budget constraint.

In this chapter, we will be discussing algorithms L that are necessarily randomized. To for-

malize this, we denote a history including everything observed by the algorithm up through

but not including round t as

ht = ((x1, i1, r1), . . . , (xt−1, it−1, rt−1)).

The space of such histories is denoted by Ht = (Rd×k × [k] × R)t−1. An algorithm L is

defined by a sequence of functions f1, . . . , fT each mapping histories and observed contexts

to probability distributions over actions:

f t : Ht ×Rd×k → ∆[k].

We write πt to denote the probability distribution over actions that L plays at round t:

πt = f t(ht, xt). We view πt as a vector over [0, 1]k, and so πti denotes the probability that

1A random variable X with µ = E[X] is sub-gaussian, if for all t ∈ R, E[et(X−µ)] ≤ e
t2

2 .

14

L plays action i at round t. We denote the expected reward of the algorithm at day t as

E[rt] = Ei∼πt [rti]. It will sometimes also be useful to refer to the vector of expected rewards

across all actions on day t. We denote it as

r̄t = (⟨xt1, θ⟩, . . . , ⟨xtk, θ⟩).

Note that this vector is of course unknown to the algorithm.

2.3.1. Fairness Constraints and Feedback

We study algorithms that are constrained to behave fairly in some manner. We adapt the

definition of fairness from Dwork et al. [19] that asserts, informally, that “similar individuals

should be treated similarly”. We imagine that the decisions that our contextual bandit al-

gorithm L makes correspond to individuals, and that the contexts xti correspond to features

pertaining to individuals. We adopt the following (specialization of) the fairness definition

from Dwork et al. [19], which is parameterized by a distance function d : Rd ×Rd → R.

Definition 1 (Dwork et al. [19]). Algorithm L is Lipschitz-fair on round t with respect to

distance function d if for all pairs of individuals i, j:

|πti − πtj | ≤ d(xti, xtj).

For brevity, we will often just say that the algorithm is fair at round t, with the understanding

that we are always talking about this one particular kind of fairness.

Remark 2. Note that this definition requires a fairness constraint that binds between in-

dividuals at a single round t, but not between rounds t. This is for several reasons. First,

at a philosophical level, we want our algorithms to be able to improve with time, without

being bound by choices they made long ago before they had any information about the fair-

ness metric. At a (related) technical level, it is easy to construct lower bound instances that

certify that it is impossible to simultaneously guarantee that an algorithm has diminish-

ing regret to the best fair policy, while violating fairness constraints (now defined as binding

15

across rounds) a sublinear number of times. See Gupta and Kamble [37] for more discussion

regarding this issue.

One of the main difficulties in working with Lipschitz fairness (as discussed in [19]) is that

the distance function d plays a central role, but it is not clear how it should be specified. In

this paper, we concern ourselves with learning d from feedback. In particular, algorithms L

will have access to an auditor.

Informally, the auditor will take as input:

1. the set of choices available to L at each round t,

2. the probability distribution πt that L uses to make its choices at round t,

and returns the set of all pairs of individuals for which L violates the fairness constraint.

Definition 2 (Auditor). Given a distance function d, a fairness oracle Od is a function

Od : R
d×k ×∆[k]→ 2[k]×[k] defined such that:

Od(x
t, πt) = {(i, j) : |πti − πtj | > d(xti, x

t
j)}

Formally, algorithms L in our setting will operate in the following environment:

1. An adversary fixes a linear reward function θ ∈ Rd with ||θ|| ≤ 1 and a distance

function d. L is given access to the fairness oracle Od.

2. In rounds t = 1 to T :

(a) The adversary chooses contexts xt ∈ Rd×k with ||xti|| ≤ 1 and gives them to L.

(b) L chooses a probability distribution πt over actions and chooses action it ∼ πt.

(c) L receives reward rtit and observes feedback Od(π
t) from the fairness oracle.

16

Because of the power of the adversary in this setting, we cannot expect algorithms that can

avoid arbitrarily small violations of the fairness constraint. Instead, we will aim to limit

significant violations.

Definition 3. Algorithm L is ϵ-unfair on pair (i, j) at round t with respect to distance

function d if

|πti − πtj | > d(xti, x
t
j) + ϵ.

Given a sequence of contexts and a history ht (which fixes the distribution on actions at day

t), we write

Unfair(L, ϵ, ht) =

k−1∑
i=1

k∑
j=i+1

1(|πti − πtj | > d(xti, x
t
j) + ϵ)

to denote the number of pairs on which L is ϵ-unfair at round t.

Given a distance function d and a history hT+1, the ϵ-fairness loss of an algorithm L is the

total number of pairs on which it is ϵ-unfair:

FairnessLoss(L, hT+1, ϵ) =

T∑
t=1

Unfair(L, ϵ, ht)

For a shorthand, we’ll write FairnessLoss(L, T, ϵ).

We will aim to design algorithms L that guarantee that their fairness loss is bounded with

probability 1 in the worst case over the instance: i.e. in the worst case over both θ and

x1, . . . , xT , and in the worst case over the distance function d (within some allowable class

of distance functions – see Section 2.3.3).

2.3.2. Regret to the Best Fair Policy

In addition to minimizing fairness loss, we wish to design algorithms that exhibit diminishing

regret to the best fair policy. We first define a linear program that we will make use of

throughout the paper. Given a vector a ∈ Rd and a vector c ∈ Rk2 , we denote by LP (a, c)

the following linear program:

17

maximize
π={p1,...,pk}

k∑
i=1

piai

subject to |pi − pj | ≤ ci,j , ∀(i, j)
k∑
i=1

pi ≤ 1

We write π(a, c) ∈ ∆[k] to denote an optimal solution to LP (a, c). Given a set of contexts xt,

recall that r̄t is the vector representing the expected reward corresponding to each context

(according to the true, unknown linear reward function θ). Similarly, we write d̄t to denote

the vector representing the set of distances between each pair of contexts i, j (according to

the true, unknown distance function d): d̄ti,j = d(xti, x
t
j).

Observe that π(r̄t, d̄t) corresponds to the distribution over actions that maximizes expected

reward at round t, subject to satisfying the fairness constraints — i.e. the distribution that

an optimal player, with advance knowledge of θ would play, if he were not allowed to violate

the fairness constraints at all. This is the benchmark with respect to which we define regret:

Definition 4. Given an algorithm L (f1, . . . , fT), a distance function d, a linear parameter

vector θ, and a history hT+1 (which includes a set of contexts x1, . . . , xT), its regret is defined

to be:

Regret(L, θ, d, hT+1) =
T∑
t=1

E
i∼π(r̄t,d̄t)

[r̄ti]−
T∑
t=1

E
i∼f t(ht,xt)

[r̄ti]

For shorthand, we’ll write Regret(L, T).

Our goal will be to design algorithms for which we can bound regret with high probability

over the randomness of hT+1 2 in the worst case over θ, d, and (x1, . . . , xT).

2We assume that hT+1 is generated by algorithm A, meaning randomness only comes from the stochastic
reward and the way in which each arm is selected according to the probability distribution calculated by the
algorithm. We don’t assume any distributional assumption over x1, . . . , xT

18

2.3.3. Mahalanobis Distance

In this part of the chapter, we will restrict our attention to a special family of distance

functions which are parameterized by a matrix A:

Definition 5 (Mahalanobis distances). A function d : Rd × Rd → R is a Mahalanobis

distance function if there exists a matrix A such that for all x1, x2 ∈ Rd:

d(x1, x2) = ||Ax1 −Ax2||2

where || · ||2 denotes Euclidean distance. Note that if A is not full rank, then this does not

define a metric — but we will allow this case (and be able to handle it in our algorithmic

results).

Mahalanobis distances will be convenient for us to work with, because squared Mahalanobis

distances can be expressed as follows:

d(x1, x2)
2 = ||Ax1 −Ax2||22

= ⟨A(x1 − x2), A(x1 − x2)⟩

= (x1 − x2)⊤A⊤A(x1 − x2)

=
d∑

i,j=1

Gi,j(x1 − x2)i(x1 − x2)j

where G = A⊤A. Observe that when x1 and x2 are fixed, this is a linear function in the

entries of the matrix G. We will use this property to reason about learning G, and thereby

learning d.

2.4. Warmup: The Known Objective Case

In this section, we consider an easier case of the problem in which the linear objective

function θ is known to the algorithm, and the distance function d is all that is unknown.

In this case, we show via a reduction to an online learning algorithm of Lobel et al. [71],

how to simultaneously obtain a logarithmic regret bound and a logarithmic (in T) number

19

of fairness violations. The analysis we do here will be useful when we solve the full version

of our problem (in which θ is unknown) in Section 2.5.

2.4.1. Outline of the Solution

Recall that since we know θ, at every round t after seeing the contexts, we know the vector

of expected rewards r̄t that we would obtain for selecting each action. Our algorithm will

play at each round t the distribution π(r̄t, d̂t) that results from solving the linear program

LP (r̄t, d̂t), where d̂t is a “guess” for the pairwise distances between each context d̄t. (Recall

that the optimal distribution to play at each round is π(r̄t, d̄t).)

The main engine of our reduction is an efficient online learning algorithm for linear functions

recently given by Lobel et al. [71] which is further described in Section 2.4.2. Their algorithm,

which we refer to as DistanceEstimator, works in the following setting. There is an

unknown vector of linear parameters α ∈ Rm. In rounds t, the algorithm observes a vector

of features ut ∈ Rm and produces a prediction gt ∈ R for the value ⟨α, ut⟩. After it makes

its prediction, the algorithm learns whether its guess was too large or not, but does not learn

anything else about the value of ⟨α, ut⟩. The guarantee of the algorithm is that the number

of rounds in which its prediction is off by more than ϵ is bounded by O(m log(m/ϵ))3.

Our strategy will be to instantiate
(
k
2

)
copies of this distance estimator — one for each pair of

actions — to produce guesses (d̂ti,j)
2 intended to approximate the squared pairwise distances

d(xti, x
t
j)

2. From this, we derive estimates d̂ti,j of the pairwise distances d(xti, x
t
j). Note that

this is a linear estimation problem for any Mahalanobis distance, because by our observation

in Section 2.3.3, a squared Mahalanobis distance can be written as a linear function of the

m = d2 unknown entries of the matrix G = A⊤A which defines the Mahalanobis distance.

The complication is that the DistanceEstimator algorithms expect feedback at every

round, which we cannot always provide. This is because the auditor Od provides feedback

about the distribution π(r̄t, d̂t) used by the algorithm, not directly about the guesses d̂t.

3If the algorithm also learned whether or not its guess was in error by more than ϵ at each round,
variants of the classical halving algorithm could obtain this guarantee. But the algorithm does not receive
this feedback, which is why the more sophisticated algorithm of Lobel et al. [71] is needed.

20

These are not the same, because not all of the constraints in the linear program LP (r̄t, d̂t)

are necessarily tight — it may be that |π(r̄t, d̂t)i − π(r̄t, d̂t)j | < d̂ti,j . For any copy of

DistanceEstimator that does not receive feedback, we can simply “roll back” its state and

continue to the next round. But we need to argue that we make progress — that whenever

we are ϵ-unfair, or whenever we experience large per-round regret, then there is at least one

copy of DistanceEstimator that we can give feedback to such that the corresponding copy

of DistanceEstimator has made a large prediction error, and we can thus charge either

our fairness loss or our regret to the mistake bound of that copy of DistanceEstimator.

As we show, there are three relevant cases.

1. In any round in which we are ϵ-unfair for some pair of contexts xti and xtj , then it

must be that d̂ti,j ≥ d(xti, x
t
j) + ϵ, and so we can always update the (i, j)th copy of

DistanceEstimator and charge our fairness loss to its mistake bound. We formalize

this in Lemma 1.

2. For any pair of arms (i, j) such that we have not violated the fairness constraint and

the (i, j)th constraint in the linear program is tight, we can provide feedback to the

(i, j)th copy of DistanceEstimator (its guess was not too large). There are two

cases. Although the algorithm never knows which case it is in, we handle each case

separately in the analysis.

(a) For every constraint (i, j) in LP (r̄t, d̂t) that is tight in the optimal solution,

|d̂ti,j−d(xti, xtj)| ≤ ϵ. In this case, we show that our algorithm does not incur very

much per round regret. We formalize this in Lemma 4.

(b) Otherwise, there is a tight constraint (i, j) such that |d̂ti,j − d(xti, xtj)| > ϵ. In this

case, we may incur high per-round regret — but we can charge such rounds to

the mistake bound of the (i, j)th copy of DistanceEstimator using Lemma 1.

21

2.4.2. The Distance Estimator

First, we fix some notation for the DistanceEstimator algorithm. We write

DistanceEstimator(ϵ) to instantiate a copy ofDistanceEstimator with a mistake bound

for ϵ-misestimations. The mistake bound we state for DistanceEstimator is predicated on

the assumption that the norm of the unknown linear parameter vector α ∈ Rm is bounded by

||α|| ≤ B1, and the norms of the arriving vectors ut ∈ Rm are bounded by ||ut|| ≤ B2. Given

an instantiation of DistanceEstimator and a new vector ut for which we would like a pre-

diction, we write: gt = DistanceEstimator.guess(ut) for its guess of the value of ⟨α, ut⟩.

We use the following notation to refer to the feedback we provide to DistanceEstimator:

If gt > ⟨α, ut⟩ and we provide feedback, we write DistanceEstimator.feedback(⊤). Oth-

erwise, if gt ≤ ⟨α, ut⟩ and we give feedback, we write DistanceEstimator.feedback(⊥).

In some rounds, we may be unable to provide the feedback that DistanceEstimator is

expecting: in these rounds, we simply “roll-back” its internal state. We can do this because

the mistake bound for DistanceEstimator holds for every sequence of arriving vectors ut.

If we give feedback to DistanceEstimator in a given round t, we write vt = 1 and vt = 0

otherwise.

Definition 6. Given an accuracy parameter ϵ, a linear parameter vector α, a sequence of

vectors u1, . . . , uT , a sequence of guesses g1, . . . , gT and a sequence of feedback indicators,

v1, . . . , vT , the number of valid ϵ-mistakes made by DistanceEstimator is:

Mistakes(ϵ) =
T∑
t=1

1(vt = 1 ∧ |gt − ⟨ut, α⟩| > ϵ)

In other words, it is the number of ϵ-mistakes made by DistanceEstimator in rounds for

which we provided the algorithm feedback.

We now state a version of the main theorem from Lobel et al. [71], adapted to our setting4:

4In [71], the algorithm receives feedback in every round, and the scale parameters B1 and B2 are nor-
malized to be 1. But the version we state is an immediate consequence.

22

Lemma 1 (Lobel et al. [71]). For any ϵ > 0 and any sequence of vectors u1, . . . , uT ,

DistanceEstimator(ϵ) makes a bounded number of valid ϵ-mistakes.

Mistakes(ϵ) = O

(
m log

(
m ·B1 ·B2

ϵ

))

2.4.3. The Algorithm

Algorithm 1: Lknown−θ

for i, j = 1, . . . , k do
DistanceEstimatori,j = DistanceEstimator(ϵ2)

end
for t = 1, . . . , T do

receive the contexts xt = (xt1, . . . , x
t
k)

for i, j = 1, . . . , k do
uti,j = flatten((xti − xtj)(xti − xtj)⊤)
gti,j = DistanceEstimatorij .guess(u

t
i,j)

d̂ti,j =
√
gti,j

end

πt = π(r̄t, d̂t)
Pull an arm it according to πt and receive a reward rtit
S = Od(x

t, πt)
R = {(i, j)|(i, j) /∈ S ∧ |pti − ptj | = d̂tij}
for (i, j) ∈ S do

DistanceEstimatorij .feedback(⊥)
vtij = 1

end
for (i, j) ∈ R do

DistanceEstimatorij .feedback(⊤)
vtij = 1

end

end

For each pair of arms i, j ∈ [k], our algorithm instantiates a copy ofDistanceEstimator(ϵ2),

which we denote by DistanceEstimatori,j : we also subscript all variables relevant to

DistanceEstimatori,j with i, j (e.g. u
t
i,j). The underlying linear parameter vector we want

to learn α = flatten(G) ∈ Rd2 , where flatten : Rm×n → Rm·n maps a m × n matrix to a

vector of size mn by concatenating its rows into a vector. Similarly, given a pair of contexts

xti, x
t
j , we will define u

t
i,j = flatten((xti−xtj)(xti−xtj)⊤). DistanceEstimatori,j .guess(u

t
i,j)

23

will output guess gti,j for the value ⟨α, uti,j⟩ = (d̄ti,j)
2, as

⟨flatten(G), f latten((xti − xtj)(xti − xtj)⊤)⟩ =
d∑

a,b=1

Ga,b(x
t
i − xtj)a(xti − xtj)b = (d̄ti,j)

2

We take d̂ti,j =
√
gti,j as our estimate for the distance between xti and x

t
j .

The algorithm then chooses an arm to pull according to the distribution π(r̄t, d̂t), where

r̄ti = ⟨θ, xi⟩. The auditor Od returns all pairs of arms that violate the fairness constraints.

For these pairs (i, j) we provide feedback to DistanceEstimatori,j : the guess was too

large. For the remaining pairs of arms (i, j), there are two cases. If the (i, j)th constraint

in LP (r̄t, d̂t) was not tight, then we provide no feedback (vti,j = 0). Otherwise, we provide

feedback: the guess was not too large. The pseudocode appears as Algorithm 1.

First we derive the valid mistake bound that the DistanceEstimatori,j algorithms incur

in our parameterization.

Lemma 2. For pair (i, j), the total number of valid ϵ2 mistakes made by DistanceEstimatori,j

is bounded as:

Mistakes(ϵ2) = O

(
d2 log

(
d · ||A⊤A||F

ϵ

))
where the distance function is defined as d(xi, xj) = ||Axi − Axj ||2 and || · ||F denotes the

Frobenius norm.

Proof. This follows directly from Lemma 1, and the observations that in our setting,m = d2,

B1 = ||α|| = ||A⊤A||F , and

B2 ≤ max
t
||uti,j ||2 ≤ max

t
||xti − xtj ||2 ≤ 4.

We next observe that since we only instantiate k2 copies of DistanceEstimator in total,

24

Lemma 2 immediately implies the following bound on the total number of rounds in which

any distance estimator that receives feedback provides us with a distance estimate that

differs by more than ϵ from the correct value:

Corollary 1. The number of rounds where there exists a pair (i, j) such that feedback is

provided (vti,j = 1) and its estimate is off by more than ϵ is bounded:

∣∣∣{t : ∃(i, j) : vtij = 1 ∧ |d̂ti,j − d̄ti,j | > ϵ}
∣∣∣ ≤ O(k2d2 log(d · ||A⊤A||F

ϵ

))

Proof. This follows from summing the k2 valid ϵ2 mistake bounds for each copy of

DistanceEstimatori,j , and noting that an ϵ mistake in predicting the value of d̄ti,j implies

an ϵ2 mistake in predicting the value of (d̄ti,j)
2.

We now have the pieces to bound the ϵ-unfairness loss of our algorithm:

Theorem 1. For any sequence of contexts and any Mahalanobis distance d(x1, x2) =

||Ax1 −Ax2||2:

FairnessLoss(Lknown−θ, T, ϵ) ≤ O
(
k2d2 log

(
d · ||ATA||F

ϵ

))

Proof.

FairnessLoss(Lknown−θ, T, ϵ) =

T∑
t=1

Unfair(Lknown−θ, ϵ)

≤
T∑
t=1

∑
i,j

1(|πti − πtj | > d̄tij + ϵ)

=
∑
i,j

T∑
t=1

1({vtij = 1 ∧ d̂tij > dtij + ϵ})

≤
∑
i,j

T∑
t=1

1({vtij = 1 ∧ |d̂tij − dtij | > ϵ})

= O

(
k2d2 log

(
d · ||A⊤A||F

ϵ

))
Corollary 1

25

We now turn our attention to bounding the regret of the algorithm. Recall from the overview

in Section 2.4.1, that our plan will be to divide rounds into two types. In rounds of the first

type, our distance estimates corresponding to every tight constraint in the linear program

have only small error. We cannot bound the number of such rounds, but we can bound

the regret incurred in any such rounds. In rounds of the second type, we have at least one

significant error in the distance estimate corresponding to a tight constraint. We might

incur significant regret in such rounds, but we can bound the number of such rounds.

The following lemma bounds the decrease in expected per-round reward that results from

under-estimating a single distance constraint in our linear programming formulation.

Lemma 3. Fix any vector of distance estimates d and any vector of rewards r. Fix a

constant ϵ and any pair of coordinates (a, b) ∈ [k] × [k]. Let d′ be the vector such that

d′ab = dab − ϵ and d′ij = dij for (i, j) ̸= (a, b), then ⟨r, π(r, d)⟩ − ⟨r, π(r, d′)⟩ ≤ ϵ
∑k

i=1 ri

Proof. The plan of the proof is to start with π(r, d) and perform surgery on it to arrive at a

new probability distribution p′ ∈ ∆k that satisfies the constraints of LP (r, d′) and obtains

objective value at least ⟨r, p′⟩ ≥ ⟨r, π(r, d)⟩−ϵ
∑k

i=1 ri. Because p
′ is feasible, it lower bounds

the objective value of the optimal solution π(r, d′), which yields the theorem.

To reduce notational clutter, for the rest of the argument we write p to denote π(r, d).

Without loss of generality, we assume that pa ≥ pb. If pa − pb ≤ dab − ϵ, then pi is still a

feasible solution to LP (r, d′), and we are done. Thus, for the rest of the argument, we can

assume that pa − pb > dab − ϵ. We write ∆ = (pa − pb)− (dab − ϵ) > 0

26

sorted

p

p′

probability

pa

pa −∆

Figure 1: A visual interpretation of the surgery performed on p in the proof of Lemma 3 to
obtain P ′. Note that the surgery manages to shrink the distance between pa and pb without
increasing the distance between any other pair of points.

We now define our modified distribution p′:

p′i =


pi −∆ pa ≤ pi

pa −∆ pa −∆ ≤ pi < pa

pi otherwise

We’ll partition the coordinates of pi into which of the three cases they fall into in our

definition of p′ above. S1 = {i|pa ≤ pi}, S2 = {i|pa − ϵ ≤ pi < pa}, and S3 = {i|i <

pb + (dab − ϵ)}. It remains to verify that p′ is a feasible solution to LP (r, d′), and that it

obtains the claimed objective value.

Feasibility: First, observe that
∑

i p
′
i ≤ 1. This follows because p′ is coordinate-wise

smaller than p, and by assumption, p was feasible. Thus,
∑

i p
′
i ≤

∑
i pi ≤ 1.

Next, observe that by construction, p′i ≥ 0 for all i. To see this, first observe that pa −∆ =

pb + (dab − ϵ) ≥ 0 where the last inequality follows because dab ≥ ϵ. We then consider the

three cases:

1. For i ∈ S1, p′i = pi −∆ ≥ pa −∆ ≥ 0 because pi ≥ pa.

27

2. For i ∈ S2, p′i = pa −∆ ≥ 0.

3. For i ∈ S3, p′i = pi ≥ 0.

Finally, we verify that for all (i, j), |p′i− p′j | ≤ d′ij . First, observe that p′a− p′b = (pb+(dab−

ϵ)) − p′b = dab − ϵ = d′ab, and so the inequality is satisfied for index pair (a, b). For all the

other pairs (i, j) ̸= (a, b), we have d′ij = dij , so it is enough to show that |p′i−p′j | ≤ dij . Note

that for all x, y ∈ {1, 2, 3} with x < y, if i ∈ Sx and j ∈ Sy, we have that x ≤ y. Therefore,

it is sufficient to verify the following six cases:

1. i ∈ S1, j ∈ S1: |p′i − p′j | = (pi −∆)− (pj −∆) = pi − pj ≤ dij

2. i ∈ S1, j ∈ S2: |p′i − p′j | = (pi −∆)− (pa −∆) = pi − pa < pi − pj ≤ dij

3. i ∈ S1, j ∈ S3: |p′i − p′j | = (pi −∆)− pj = (pi − pj)−∆ ≤ (pi − pj) ≤ dij

4. i ∈ S2, j ∈ S2: |p′i − p′j | = (pa −∆)− (pa −∆) = 0 ≤ dij

5. i ∈ S2, j ∈ S3: |p′i − p′j | = (pa −∆)− pj ≤ pi − pj ≤ dij

6. i ∈ S3, j ∈ S3: |p′i − p′j | = pi − pj ≤ dij

Thus, we have shown that p′ is a feasible solution to LP (r, d′).

Objective Value: Note that for each index i, pi − p′i ≤ ∆ ≤ ϵ. Therefore we have:

⟨r, π(r, d)⟩ − ⟨r, π(r, d′)⟩ ≤ ⟨r, π(r, d)⟩ − ⟨r, p′⟩

= ⟨r, p− p′⟩

≤ ϵ
k∑
i=1

ri

which completes the proof.

We now prove the main technical lemma of this section. It states that in any round in which

the error of our distance estimates for tight constraints is small (even if we have high error

28

in the distance estimates for slack constraints), then we will have low per-round regret.

Lemma 4. At round t, if for all pairs of indices (i, j), we have either:

1. |d̂ti,j − d̄ti,j | ≤ ϵ or

2. vti,j = 0 (corresponding to an LP constraint that is not tight)

then:

⟨rt, π(rt, d̄t)⟩ − ⟨rt, π(rt, d̂t)⟩ ≤ ϵk3

for any vector rt with ||rt||∞ ≤ 1.

Proof. First, define d̃t to be the coordinate-wise maximum of d̂t and d̄t: i.e. the vector such

that for every pair of coordinates i, j, d̃ij = max(d̄ij , d̂ij). To simplify notation, we will write

p̂ = π(rt, d̂t), p̄ = π(rt, d̄t), and p̃ = π(rt, d̃t).

We make three relevant observations:

1. First, because LP (rt, d̃t) is a relaxation of LP (rt, d̄t), it has only larger objective

value. In other words, we have that ⟨rt, p̃⟩ ≥ ⟨rt, p̄⟩. Thus, it suffices to prove that

⟨rt, p̂⟩ ≥ ⟨rt, p̃⟩ − ϵk3.

2. Second, for all pairs i, j, |d̂ti,j − d̃ti,j | ≤ |d̂ti,j − d̄ti,j |. Thus, if we had |d̂ti,j − d̄ti,j | ≤ ϵ, we

also have |d̂ti,j − d̃ti,j | ≤ ϵ.

3. Finally, by construction, for every pair (i, j), we have d̃ij ≥ d̂ij

Let S1 be the set of indices (i, j) such that |d̂ti,j − d̃ti,j | ≤ ϵ, and let S2 be the set of indices

(i, j) ̸∈ S1 such that vti,j = 0. Note that by assumption, these partition the space, and that

by construction, for every (i, j) ∈ S2, the corresponding constraint in LP (rt, d̂t) is not tight:

i.e. |p̂i − p̂j | < d̂ti,j . Let d
∗ be the vector such that for all (i, j) ∈ S1, d∗ij = d̂ij , and for all

(i, j) ∈ S2, d∗ij = d̃ij . Observe that LP (rt, d∗) corresponds to a relaxation of LP (rt, d̂) in

29

which only constraints that were already slack were relaxed. As a result, p̂ is also an optimal

solution to LP (rt, d∗). Note also that by construction, we now have that for every pair (i, j):

|d̃ij − d∗ij | ≤ ϵ

Our argument will proceed by describing a sequence of n+1 = k2 +1 vectors p0, p1, . . . , pn

such that p0 = p̃, pn is a feasible solution to LP (rt, d∗), and for all adjacent pairs pℓ, pℓ+1,

we have: ⟨rt, pℓ+1⟩ ≥ ⟨rt, pℓ⟩ − ϵk. Telescoping these inequalities yields:

⟨rt, p̂⟩ ≥ ⟨rt, pn⟩ ≥ ⟨rt, p̃⟩ − k3ϵ

which will complete the proof.

To finish the argument, fix an arbitrary ordering on the indices (i, j) ∈ [k]× [k], which we

denote by (i1, j1), . . . , (in, jn). Define the distance vector dℓ such that:

dℓia,ja =

 d̃ia,ja , If a > ℓ;

d∗ia,ja , If a ≤ ℓ.

Note that the sequence of distance vectors d1, . . . , dn “walks between” d̃ and d∗ one coordi-

nate at a time. Now let pℓ = π(rt, dℓ). By construction, we have that every pair (dℓ, dℓ+1)

differ in only a single coordinate, and that the difference has magnitude at most ϵ. Therefore,

we can apply Lemma 3 to conclude that:

⟨rt, pℓ+1⟩ ≥ ⟨rt, pℓ⟩ − ϵ
k∑
i=1

rti ≥ ⟨rt, pℓ⟩ − ϵk

as desired.

Finally, we have all the pieces we need to prove a regret bound for Lknown−θ.

30

Theorem 2. For any time horizon T :

Regret(Lknown−θ, T) ≤ O
(
k2d2 log

(
d · ||A⊤A||F

ϵ

)
+ k3ϵT

)

Setting ϵ = O(1/(k3T)) yields a regret bound of O(d2 log(||A⊤A||F · dkT)).

Proof. We partition the rounds t into two types. Let S1 denote the rounds such that there

is at least one pair of indices (i, j) such that one instance DistanceEstimatorij produced

an estimate that had error more than ϵ, and it was provided feedback. We let S2 denote the

remaining rounds, for which for every pair of indices (i, j), either DistanceEstimatorij

produced an estimate that had error at most ϵ, or DistanceEstimatorij was not given

feedback.

S1 = {t : ∃(i, j) : |d̂tij − d̄tij | > ϵ and vtij = 1} S2 = {t : ∀(i, j) : |d̂tij − d̄tij | ≤ ϵ or vtij = 0}

Observe that S1 and S2 partition the set of all rounds. Next, observe that Corollary 1 tells

us that:

|S1| ≤ O
(
k2d2 log

(
d · ||A⊤A||F

ϵ

))
and Lemma 4 tells us that for every round t ∈ S2, the per-round regret is at most ϵk3.

Together with the facts that |S2| ≤ T and that the per-round regret for any t ∈ S1 is at

most 1, we obtain:

Regret(Lknown−θ, T) ≤ O
(
k2d2 log

(
d · ||A⊤A||F

ϵ

)
+ k3ϵT

)

2.5. The Full Algorithm

In this section, we present our final algorithm, which has no knowledge of either the distance

function d or the linear objective θ. The resulting algorithm shares many similarities with

31

the algorithm we developed in Section 2.4, and so much of the analysis can be reused.

2.5.1. Outline of the Solution

At a high level, our plan will be to combine the techniques we developed in Section 2.4 with a

standard “optimism in the face of uncertainty” strategy for learning the parameter vector θ.

Our algorithm will maintain a ridge-regression estimate θ̃ together with confidence regions

derived by Abbasi-Yadkori et al. [1]. After it observes the contexts xti at round t, it uses these

to derive upper confidence bounds on the expected rewards, corresponding to each context

— represented as a vector r̂t. The algorithm continues to maintain distance estimates d̂t

using the DistanceEstimator subroutines, identically to how they were used in Section

2.4. At ever round, the algorithm then chooses its action according to the distribution

πt = π(r̂t, d̂t).

The regret analysis of the algorithm follows by decomposing the per-round regret into

two pieces. The first can be bounded by the sum of the expected widths of the confidence

intervals corresponding to each context xti that might be chosen at each round t, where the

expectation is over the randomness of the algorithm’s distribution πt. A theorem of Abbasi-

Yadkori et al. [1] bounds the sum of the widths of the confidence intervals corresponding

to arms actually chosen by the algorithm (Lemma 6). Using a martingale concentration

inequality, we are able to relate these two quantities (Lemma 7). We show that the second

piece of the regret bound can be manipulated into a form that can be bounded using Lemmas

1 and 4 from Section 2.4 (Theorem 4).

2.5.2. Confidence Intervals from Abbasi-Yadkori et al. [1]

We would like to be able to construct confidence intervals at each round t around each arm’s

expected reward such that for each arm i, with probability 1−δ, r̄ti ∈ [r̃ti+w
t
i , r̃

t
i+w

t
i], where

r̃ti is our ridge-regression estimate of r̄ti and w
t
i is the confidence interval width around the

estimate. Our algorithm will make use of such confidence intervals for the ridge regression

estimator derived and analyzed in [1], which we recount here.

Let Ṽ t = Xt⊤Xt+λI be a regularized design matrix, where Xt = [x1i1 , . . . , x
t−1
it−1

] represents

32

all the contexts whose rewards we have observed up to but not including time t. Let Y t =

[r1i1 , . . . , r
t−1
it−1

] be the corresponding vector of observed rewards. θ̃ = (V t)−1Xt⊤Y t is the

(ridge regression) regularized least squares estimator we use at time t. We write r̃ti = ⟨θ̃, xti⟩

for the reward point prediction that this estimator makes at time t for arm i.

We can construct the following confidence intervals around r̃t:

Lemma 5 (Abbasi-Yadkori et al. [1]). With probability 1− δ,

|r̄ti − r̃ti | = |⟨xti, (θ − θ̃)⟩| ≤ ∥xti∥(V̄ t)−1

(√
2d log

(
1 + t/λ

δ

)
+
√
λ

)

for all i ∈ [k] where ||x||A =
√
x⊤Ax

Therefore, the confidence interval widths we use in our algorithm will be

wti = min

(
∥xti∥(V̄ t)−1

(√
2d log

(
1 + t/λ

δ

)
+
√
λ

)
, 1

)

(expected rewards are bounded by 1 in our setting, and so the minimum maintains the

validity of the confidence intervals). The upper confidence bounds we use to compute our

distribution over arms will be r̂ti = r̃ti + wti . We will write wt = [wt1, . . . , w
t
k] to denote the

vector of confidence interval widths at round t.

Little can be said about the widths of these confidence intervals in isolation. However, the

following theorem bounds the sum (over time) of the widths of the confidence intervals

around the contexts actually selected.

Lemma 6 (Abbasi-Yadkori et al. [1]).

T∑
t=1

wtit ≤
√
2d log

(
1 +

T

dλ

)(√
2dT log(

1 + T/λ

δ
) +
√
Tλ
)

33

2.5.3. The Algorithm

The pseudocode for the full algorithm is given in Algorithm 2.

In our proof of Theorem 4, we will connect the regret of Lfull to the sum of the expected

widths of the confidence intervals pulled at each round. In contrast, what is bounded by

Lemma 6 is the sum of the realized widths. Using the Azuma Hoeffding inequality, we can

relate these two quantities.

Theorem 3 (Azuma-Hoeffding inequality ([44])). Suppose {Xk : k = 0, 1, 2, 3, . . .} is a

martingale and

|Xk −Xk−1| < ck.

Then, for all positive integers N and all positive reals t,

Pr(XN −X0 ≥ t) ≤ exp(
t2

2
∑N

k=1 c
2
k

)

Lemma 7.

Pr

(
T∑
t=1

Ei∼πt [wti]−
T∑
t=1

wtit ≥
√
2T log

1

δ

)
≤ δ

Proof. Once x1, . . . , xt−1, r1it , . . . , r
t−1
it−1 and xt are fixed, πt is fixed. In other words, for the

filtration F t = σ(x1, . . . , xt−1, r1it , . . . , r
t−1
it−1 , x

t), wtit is F t measurable. Now, define

Dt =
t∑

s=1

Ei∼πs [wsi]−
t∑

s=1

wsis

with respect to F t. One can think of Dt as the accumulated difference between the con-

fidence width of the arm that was actually pulled and the expected confidence width. It’s

easy to see that {Dt} is a martingale, as E[D1] = 0, and E[Dt+1|F t] = Dt.

Also, Dt−Dt−1 = wtit −Ei∼πt [wti] ≤ 1, since the confidence interval widths are bounded by

1.

34

Algorithm 2: Lfull

for i, j = 1, . . . , k do
DistanceEstimatorij = DistanceEstimator(ϵ2)

end
for t = 1, . . . , T do

receive the contexts xt = (xt1, . . . , x
t
k)

Xt = [x1, . . . , xt−1]
Y t = [rt, . . . , rt−1]

Ṽ t = Xt⊤Xt + λI
θ̃ = (V t)−1Xt⊤Y t

for i = 1, . . . , k do

r̃ti = ⟨θ̃, xti⟩

wti = min

(
∥xti∥(V̄ t)−1

(√
2d log(1+t/λδ) +

√
λ
)
, 1

)
r̂ti = r̃ti + wti

end
for i, j = 1, . . . , k do

uti,j = flatten((xti − xtj)(xti − xtj)T))
gti,j = DistanceEstimatori,j .guess(u

t
i,j)

d̂tij =
√
gti,j

end

πt = π(r̂t, d̂t)
Pull an arm it according to πt and receive a reward rtit
S = Od(x

t, πt)
R = {(i, j)|(i, j) /∈ S ∧ |πti − πtj | = d̂ti,j}
for (i, j) ∈ S do

DistanceEstimatori,j .feedback(⊥)
vti,j = 1

end
for (i, j) ∈ R do

DistanceEstimatori,j .feedback(⊤)
vti,j = 1

end

end

35

Applying the Azuma-Hoeffding inequality gives us the following:

Pr(

T∑
t=1

Ei∼πt [wti]−
T∑
t=1

wtit ≥ ϵ) = Pr(DT ≥ ϵ) ≤ exp(
−ϵ2

2T
)

Now, setting ϵ =
√

2T ln 1
δ yields:

Pr(

T∑
t=1

Ei∼πt [wti]−
T∑
t=1

wtit ≥
√
2T log

1

δ
) ≤ δ

Theorem 4. For any time horizon T , with probability 1− δ:

Regret(Lfull, T) ≤ O
(
k2d2 log

(
d · ||A⊤A||F

ϵ

)
+ k3ϵT + d

√
T log

(
T

δ

))

If ϵ = 1/k3T , this is a regret bound of O
(
k2d2 log

(
kdT · ||A⊤A||F

)
+ d
√
T log(Tδ)

)

36

Proof. We can compute:

Regret(Lfull, T) =
T∑
t=1

E
i∼π(r̄t,d̄t)

[r̄ti]−
T∑
t=1

E
i∼π(r̂t,d̂t)

[r̄ti]

=

T∑
t=1

⟨r̄t, π(r̄t, d̄t)⟩ − ⟨r̄t, π(r̂t, d̂t)⟩

=

T∑
t=1

⟨r̄t, π(r̄t, d̄t)⟩ − ⟨r̄t, π(r̂t, d̄t)⟩+ ⟨r̄t, π(r̂t, d̄t)⟩ − ⟨r̄t, π(r̂t, d̂t)⟩

≤
T∑
t=1

⟨r̂t, π(r̂t, d̄t)⟩ − ⟨r̄t, π(r̂t, d̄t)⟩+ ⟨r̄t, π(r̂t, d̄t)⟩ − ⟨r̄t, π(r̂t, d̂t)⟩

≤
T∑
t=1

⟨2wt, π(r̂t, d̄t)⟩+ ⟨r̄t, π(r̂t, d̄t)⟩ − ⟨r̄t, π(r̂t, d̂t)⟩

Here, the first inequality follows from the fact that r̂t is coordinate-wise larger than r̄t

with probability 1-δ, and that π(r̂t, d̄t) is the optimal solution to LP (r̂t, d̄t). The second

inequality follows from r̄ ∈ [r̃ − w, r̃ + w] = [r̂ − 2w, r̂].

Just as in the proof of Theorem 2, we now partition time into two sets:

S1 = {t : ∃(i, j) : |d̂tij − d̄tij | > ϵ and vtij = 1} S2 = {t : ∀(i, j) : |d̂tij − d̄tij | ≤ ϵ or vtij = 0}

Recall that corollary 1 bounds |S1| ≤ O
(
k2d2 log

(
d·||A⊤A||F

ϵ

))
. Since the per-step regret of

our algorithm can be at most 1, this means that rounds t ∈ S1 can contribute in total at

most C
.
= O

(
k2d2 log

(
d·||A⊤A||F

ϵ

))
regret. Thus, for the rest of our analysis, we can focus

on rounds t ∈ S2.

Fix any round t ∈ S2. From Lemma 4 we have:.

⟨r̂, π(r̂, d̄)⟩ − ⟨r̂, π(r̂, d̂)⟩ ≤ k3ϵ

37

Further manipulations give:

(
⟨r̂, π(r̂, d̄)⟩ − ⟨r̄, π(r̂, d̄)⟩

)
−
(
⟨r̂, π(r̂, d̂)⟩ − ⟨r̄, π(r̂, d̂)⟩

)
≤ k3ϵ− ⟨r̄, π(r̂, d̄)⟩+ ⟨r̄, π(r̂, d̂)⟩

⇔⟨2w, π(r̂, d̄)⟩ − ⟨2w, π(r̂, d̂)⟩ ≤ k3ϵ− ⟨r̄, π(r̂, d̄)⟩+ ⟨r̄, π(r̂, d̂)⟩

⇔⟨2w, π(r̂, d̄)⟩ ≤ ⟨2w, π(r̂, d̂)⟩+ k3ϵ− ⟨r̄, π(r̂, d̄)⟩+ ⟨r̄, π(r̂, d̂)⟩

Now, substituting the above expressions back into our expression for regret:

Regret(Lfull, T)

≤ C +
∑
t∈S2

⟨2wt, π(r̂t, d̄t)⟩+ ⟨r̄t, π(r̂t, d̄t)⟩ − ⟨r̄ti , π(r̂t, d̂t)⟩

≤ C +
∑
t∈S2

⟨2wt, π(r̂t, d̂t)⟩+ k3ϵ− ⟨r̄t, π(r̂t, d̄t)⟩

+ ⟨r̄t, π(r̂t, d̂t)⟩+ ⟨r̄t, π(r̂t, d̄t)⟩ − ⟨r̄ti , π(r̂t, d̂t)⟩

≤ C +
∑
t∈S2

⟨2wt, π(r̂t, d̂t)⟩+ k3ϵ

≤ C + 2
∑
t∈S2

E
i∈π(r̂t,d̂t)

[wti] + k3ϵ

≤ C + k3ϵT + 2

(√
2d log

(
1 +

T

dλ

)(√
2dT log(

1 + T/λ

δ
) +
√
Tλ
)
+

√
2T log

1

δ

)

= O

(
k2d2 log

(
d · ||A⊤A||F

ϵ

))
+ k3ϵT +O

(
d
√
T log

(
T

δ

))

The last inequality holds with probability 1− δ and uses Lemmas 6 and 7, and sets λ = 1.

Finally, the bound on the fairness loss is identical to the bound we proved in Theorem 1

(because our algorithm for constructing distance estimates d̂ is unchanged). We have:

Theorem 5. For any sequence of contexts and any Mahalanobis distance d(x1, x2) =

38

||Ax1 −Ax2||2:

FairnessLoss(Lfull, T, ϵ) ≤ O
(
k2d2 log

(
d · ||A⊤A||F

ϵ

))

2.6. Discussion

We have initiated the study of fair sequential decision making in settings where the notions

of payoff and fairness are separate and may be in tension with each other, and have shown

that in a stylized setting, optimal fair decisions can be efficiently learned even without direct

knowledge of the fairness metric. A number of extensions of our framework and results would

be interesting to examine. At a high level, the interesting question is: how much can we

further relax the information about the fairness metric available to the algorithm and the

structure of the fairness metric itself?

For instance,

1. what if the fairness feedback is only partial, identifying some but not all fairness

violations?

2. What if the fairness metric doesn’t have a nice parametric form?

3. What if the feedback is not guaranteed to be exactly consistent with any metric?

In the next chapter, we in fact answer the above questions affirmatively in that we show how

to approximately satisfy individual fairness even when the available information about the

fairness metric is limited and there isn’t much structure to the fairness metric as describe

above.

39

Chapter 3

Individual Fairness via Auditing:

No Assumption on the Fairness Metric

3.1. Introduction

In the previous chapter, we have provided an online learning algorithm that can eventually

learn a Mahalanobis metric based on identified fairness violations, while achieving no-regret

against the optimal fair policy. While the framework allows one to bypass the fact that it

might be difficult for humans to enunciate a precise quantitative similarity measure between

individuals, it still faces some limitations. In particular, people may not be able to distill

their conception of fairness into a Mahalanobis metric function, let alone any metric (e.g.

it may not satisfy the triangle inequality).

To tackle these issues, we study metric-free online learning algorithms for individual fairness

that rely on a weaker form of interactive human feedback and minimal assumptions on the

fairness metric across individuals. Similar to what we have shown in Chapter 2, we do not

assume a pre-specified metric but instead assume access to an auditor who observes the

learner’s decisions over a group of individuals that show up in each round and attempts

to identify a fairness violation—a pair of individuals in the group that should have been

treated more similarly by the learner. Since the auditor only needs to identify such unfairly

treated pairs, there is no need for them to enunciate a quantitative measure — to specify

the distance between the identified pairs. But more importantly, we do not impose any

parametric assumption on the underlying fairness measure, nor do we assume that it is

actually a metric since we do not require that fairness measure to satisfy the triangle

inequality. Furthermore, we do not require the auditor to identify all pairs where there was

a fairness violation but rather one arbitrary pair with violation if there exists one.

40

Under this model, we provide a general reduction framework that can take any online

classification algorithm (without fairness constraint) as a black-box and obtain a learning

algorithm that can bound the sum of the regret with respect to classification loss and the

total number of rounds with fairness violations. In fact, by setting some trade-off parame-

ter that balances the fairness loss and misclassification loss, we provide an oracle-efficient

algorithm that can in fact guarantee that both of them will be sublinear simultaneously.

Essentially, we resolve main questions left open from Chapter 2. First, we assume a weaker

auditor who only identifies a single fairness violation (as opposed to all of the fairness

violations in their setting). Second, we remove the strong parametric assumption on the

Mahalanobis metric and work with a broad class of functions that need not be metric.

3.1.1. Overview of Model and Results

In each round t = 1, . . . , T , a batch of k individuals arrives along with their contexts and

binary labels as opposed to rewards. Unlike before, we make no assumption regarding how

this batch of contexts and labels are determined — they can arrive in an adaptive and

adversarial fashion. At every round, the learner gets to deploy some policy π that outputs

a soft-prediction π(x) ∈ [0, 1] for each context x. For each context and its label (x, y), there

is an associated misclassification loss for predicting π(x).

Similarly as before, we wish to make these soft predictions for k individuals such that for

any two individuals, the difference between their soft-predictions is at most the distance of

their distance. Although the learner has no knowledge of this distance initially, the learner

has access to an auditor who upon seeing these predictions made for k individuals will spot

a pair of individuals where the difference in the predictions is more than than distance.

However, we make no structural assumption about the distance function that the auditor

is working off of and also have the auditor to output only one such pair even if there exists

many such pairs. Similarly as before, our goal is to design an algorithm such that the

cumulative misclassification regret is competitive with respect to any fair policy and the

total number of rounds on which the auditor finds a pair with fairness violation.

41

To do so, we design a hybrid loss that combines the misclassification loss and the fairness

violation into account and show that playing no-regret with respect to this new hybrid loss

is sufficient to have the sum of the misclassification regret and fairness loss will be sublinear.

Then, we provide a reduction-based algorithm that can take any no-regret online classifica-

tion learner as a black-box and guarantee the sum of the regret and the fairness loss (i.e. the

number of rounds with any fairness violation) will be sublinear by re-expressing the hybrid

loss solely as misclassification loss on some artificially created batch of contexts and labels.

Our reduction-based algorithm can take any no-regret online (batch) classification learner

as a black-box and achieve sublinear cumulative fairness loss and sublinear regret on mis-

classification loss compared to the most accurate policy that is fair on every round. In

particular, our framework can leverage the generic exponential weights method [5, 11, 32]

and also oracle-efficient methods, including variants of Follow-the-Perturbed-Leader (FTPL)

(e.g., [89, 90]), that further reduces online learning to standard supervised learning or op-

timization problems. We instantiate our framework using two online learning algorithms

(exponential weights and context-ftpl), both of which obtain a O(
√
T) regret. By set-

ting the parameter that balances the misclassification loss and the fairness violation in the

hybrid loss just right so that without any additional argument, we show how the overall

misclassification regret with respect to fair policies and fairness loss can be bounded to be

sublinear simultaneously.

With some modifications to the batch-to-online conversion techniques, it can be shown

that fairness loss and misclassification loss also generalizes to the averaged policy; for more

interested readers, see Bechavod et al. [8], which this chapter is based off of.

3.2. Preliminaries

Here we try to stay close to the notations used in Chapter 2 but use some slightly different

notations in some cases. We define the instance space to be X and its label space to be Y.

Throughout this chapter, we will restrict our attention to binary labels, that is Y = {0, 1}.

We write F : X → Y to denote the hypothesis class and assume that F contains a constant

42

hypothesis — i.e. there exists f such that f(x) = 0 (and/or 1) for all x ∈ X . Also, we

allow a convex combination of hypotheses for the purpose of randomizing the prediction

and denote the simplex of hypotheses by ∆F . For consistency, we say f ∈ F , which maps

to Y = {0, 1}, is a hypothesis and π ∈ ∆F , which is a mixture of some hypotheses and

hence maps to [0, 1], a policy. For each prediction ŷ ∈ Y and its true label y ∈ Y, there is an

associated misclassification loss, ℓ(ŷ, y) = 1[ŷ ̸= y]. For simplicity, we overload the notation

and write

ℓ(π(x), y) = (1− π(x)) · y + π(x) · (1− y) = E
f∼π

[ℓ(f(x), y)].

Note that the loss is linear in π. Given π1 and π2 and some mixing probability p, define

π3(x) = pπ1(x) + (1− p)(π2(x)). Then, it is immediate that

ℓ(π3(x), y) = pℓ(π1(x), y) + (1− p)ℓ(π2(x), y).

3.2.1. Online Batch Classification

Here, we describe the vanilla online batch classification setting, as we will try to reduce the

problem we are interested into this setting. In each round t = 1, . . . , T , a learner deploys

some policy πt ∈ ∆F . Upon seeing the deployed policy πt, the environment chooses a

batch of k individuals, (xti, y
t
i)
k
i=1. Because the environment can adversarially and adaptively

choose this batch of individuals, we can think of this as the environment strategically

choosing ztbatch = (xt, yt) where we write xt = (xti)
k
i=1 and yt = (yti)

k
i=1 for simplicity.

Note that the strategy space for the environment is

Ztbatch = X k × Yk.

The history in each round then will consist of everything observed by the learner up through

but not including round t:

ht = ((π1, z1), . . . , (πt−1, zt−1)).

43

The space of such histories is denoted by Htbatch = (∆F × Zbatch)
t−1. A learner A :

H∗
batch → ∆F is then defined to be a mapping from history to a policy:

πt = A(ht−1).

Given some loss that be calculated in each round t, the learner cannot hope to upper-bound

the overall loss by itself over all the rounds t = 1, . . . , T will be small due to the adversarial

nature of the environment. Therefore, the learner can only hope to minimize its regret with

respect to some fixed policy it could have used.

Definition 7. Fix the adversary’s strategy space Z. With respect to some baseline Q ⊆ ∆F

and some loss L : ∆F × Z → R, we say learner A’s regret with respect to adaptively and

adversarially chosen sequence of (zt)Tt=1 is

T∑
t=1

L
(
πt, zt

)
− min
π∗∈Q

T∑
t=1

L
(
π∗, zt

)
.

In this vanilla online batch classification setting, the only loss that we care about is the

misclassification loss:

Definition 8 (Misclassification Loss). The (batch) misclassification loss Err is

Err(π, zt) =
k∑
i=1

ℓ(π(xti), y
t
i).

In other words, the goal in this setting is to come up with an learner A such that against

any adaptively and adversarially chosen (zt)Tt=1, we can achieve

T∑
t=1

Err
(
πt, zt

)
− min
π∗∈Q

T∑
t=1

Err
(
π∗, zt

)
= o(T).

Often, when learner A can guarantee that the regret is sublienar as above, it is said to be a

44

no-regret learner. Examples of such no-regret learners include exponential weights [5, 11, 32]

and Follow-the-Perturbed-Leader strategies [89, 90].

3.2.2. Online Fair Batch Classification

As opposed to only trying to minimize its misclassification regret, we also want to make

sure that the deployed policies (πt)Tt=1 satisfy individual fairness constraints (i.e. each policy

πt treats similar individuals similarly according to some fairness metric d : X ×X → R) as

in Chapter 2.

Definition 9 (α-fairness). Assume α > 0. A policy π ∈ ∆F is said to be α-fair on pair

(x, x′), if

|π(x)− π(x′)| ≤ d(x, x′) + α.

We say policy π’s α-fairness violation on pair (x, x′) is

Violationα(π, (x, x
′)) = max(0, |π(x)− π(x′)| − d(x, x′)− α).

In order to find such fair policies, we once again rely on an auditor who can give feedback

by pointing out when a pair of two similar individuals are not treated similarly according

to metric d. However, in this chapter, we make no parametric assumption on the metric

d nor do we require it to be a proper metric (i.e. it doesn’t need to satisfy the triangle

inequality). The only requirement on d is that it is always non-negative. In addition to

removing the parametric assumption on the metric d, we further relax the assumption on

how the auditor operates: the auditor only need output one arbitrary pair where fairness

violation has occurred as opposed to reporting all violations as in Chapter 2.

Definition 10 (Auditor). An auditor Od,α, which can have its own internal state, takes

in a reference set S ⊆ X and a policy π. Then, it outputs ρ which is either null or a pair

of indices from the provided reference set to denote that there is some positive α-fairness

45

violation for that pair. For some x = (x1, . . . xk),

Od,α(x, π) =


ρ = (ρ1, ρ2) if ∃ρ1, ρ2 ∈ [k].π(xρ1)− π(xρ2) > d(xρ1 , xρ2) + α

null otherwise

If there exists multiple pairs with some α-violation, the auditor can choose one arbitrarily.

We will elide d and write Oα, as we will only focus on the case where d is fixed.

Remark 3. We emphasize that the assumptions on the auditor here are much more relaxed

than those of Chapter 2, which require that the auditor outputs whether the policy is 0-fair

(i.e. with no slack) on all pairs exactly. Furthermore, the auditor in Chapter 2 can only

handle Mahalanobis distances. In our setting, because of the internal state of the auditor,

the auditor does not have to be a fixed function but rather can be adaptively changing in each

round. Our argument actually never relies on the fact the distance function d stays the same

throughout rounds, meaning all our results extend to the case where the distance function

governing the fairness constraints is changing every round. For simplicity, we focus on the

case where d is fixed.

The order in which the learner, the environment, and the auditor interact is as follows. In

each round t = 1, . . . , T , a learner deploys a policy πt ∈ ∆F . Then, a batch of k individuals

(xt, yt) = ((xti)i∈[k], (y
t
i)i∈[k]) arrives. The auditor upon inspecting (πt, xt) provides a fairness

feedback ρt ∈ [k]2 ∪ {null} which may be a pair of indices for which the deployed policy

πt is treating unfairly or null if there doesn’t exist any such pair. Because the auditor

can essentially choose the pair arbitrarily among all such pairs, we can actually fold the

auditor into the environment. That is – the environment choose ztfair-batch = (xt, yt, ρt)

simultaneously, meaning the strategy space of the environment here is

Zfair-batch = (X k × Yk × ([k]2 ∪ {null})).

46

Similarly as in the vanilla online batch classification setting, the history is now described as

ht = ((π1, z1), . . . , (πt−1, zt−1)).

where zt ∈ Zfair-batch and the space of such histories is then Htfair-batch = (∆F ×

Zfair-batch)
t−1. A learner A is still defined to be a mapping from history to a policy:

πt = A(ht−1).

In addition to the misclassification loss Err, the learner also has to worry about is the

fairness loss.

Definition 11 (Fairness Loss). The α-fairness loss Unfairα is

Unfairα(π, z
t) =


1

[
Violationα(π, (x

t
ρt1
, xt

ρt2
)) > 0

]
if ρt = (ρt1, ρ

t
2)

0 otherwise

In other words, the learner will incur misclassification loss Err(πt, zt)5 and fairness loss

Unfair(πt, zt) in each round t. Note that unlike the fairness loss defined in Chapter 2

which counts the total number of pairs with fairness violations, the fairness loss is either 0

or 1 depending on the existence of such pair in this setting. We try to compare this online

batch classification setting with fairness constraints to the vanilla online batch classification

setting in Figure 2.

Finally, the baseline Qα that we compete against will be all policies that are α-fair on xt

for all t ∈ [T]:

Qα = {π ∈ ∆F : π is α-fair on xt for all t ∈ [T]}.

Given some fixed trade-off slack ϵ ∈ (0, α) an auditor Oα, our goal is to provide a learner

5We overload the notation for Err and write Err(π, ((x, y), ρ)) = Err(π, (x, y)).

47

Algorithm 1 Online Fair Batch Classification
fair-batch

for t = 1, . . . , T do
Learner deploys πt

Environment chooses (xt, yt)
Environment chooses the pair ρt

zt = ((xt, yt), ρt)
Learner incurs misclassfication loss
Err(πt, zt)
Learner incurs fairness loss Unfair(πt, zt)

end

Algorithm 2 Online Batch Classifica-
tion batch

for t = 1, . . . , T do
Learner deploys πt

Environment chooses zt = (xt, yt)
Learner incurs misclassification loss
Err(πt, zt)

end

Figure 2: Comparison between Online Fair Batch Classification and Online Batch Classi-
fication: each is summarized by the interaction between the learner and the environment:
(∆F × Zfair-batch)

T and (∆F × Zbatch)
T where Zfair-batch = X k × Yk × ([k]2 ∪ {null})

and Zbatch = X k × Yk.

A such that for any adversarially and adaptively chosen ((xt, yt))Tt=1, regret with respect to

misclassification and fairness loss is sublinear against Qα−ϵ:

T∑
t=1

Err
(
πt, zt

)
− min
π∗∈Qα−ϵ

T∑
t=1

Err
(
π∗, zt

)
= o(T)

T∑
t=1

Unfairα(π
t, zt)− min

π∗∈Qα−ϵ

T∑
t=1

Unfairα(π
∗, zt) =

T∑
t=1

Unfairα(π
t, zt) = o(T)

where zt = (xt, yt, Oα(x
t, πt)). Because π∗ ∈ Qα−ϵ must be α-fair, guaranteeing sublinear

fairness regret is equivalent to guaranteeing the overall fairness loss is sublinear.

3.3. Related Work

We refer the readers to the related work section of Chapter 2 (Section 2.2) in terms of

related work in the algorithmic fairness literature to the work presented in this chapter:

this chapter is essentially a generalization of the setting consider in Chapter 2.

Our technique of combining the loss and the constraint violation into a Lagrangian loss

is very related to the technique used in the online convex optimization with long term

constraints [10, 48, 72, 97, 98]. Similarly as in our setting, they are interested in choosing

some point xt in each round and incur some loss f t(xt) where f t is chosen by the adversary.

48

Given some collection of constraints {gi}mi=1, the goal is to simultaneously ensure the total

violation of the constraints
∑t

t=1

∑m
i=1 gi(x

t) is sublinear and to achieve sublinear regret

against any fixed point x∗ in hindsight that satisfies all the constraints —
∑m

i=1 gi(x
∗) ≤ 0.

However, in most of these settings, the constraints are initially known to the learner, and the

algorithm requires a projection into the feasible region. This is different than our setting

where we have no idea what the space of fair policies look like, as the auditor cannot

enunciate what the fairness metric is. The only exception among the works cited above is

the work of Cao and Liu [10] and Mahdavi et al. [72]. They consider a bandit feedback setting

where the constraints are not known initially and only the max violation of the constraints

with respect to the chosen point is revealed in each round — i.e. maxi∈[m] gi(x
t). Our

setting is still different in that we do not receive the amount of violation in each round but

only the point’s feasibility (i.e. 1(maxi∈[m] gi(x
t) ≤ 0)) and one of the violated constraints

chosen arbitrarily. Furthermore, in their setting, the the point chosen in each round xt is

a d-dimesnional vector (i.e. xt ∈ Rd), whereas we imagine the policy chosen in each round

comes from the simplex of some hypothesis class ∆F , which is often much larger than Rd.

In that sense, our use of the Follow-The-Perturbed-Leader approach to make the overall

algorithm oracle-efficient is novel.

3.4. Lagrangian Regret

Because we wish to achieve no-regret with respect to both the misclassification and fairness

loss, it is natural to consider a hybrid loss that combines them together. In fact, we define

a round-based Lagrangian loss and show that the regret with respect to our Lagrangian

loss also serves as an upperbound for the misclassification and the fairness complaint regret

multipled by some parameter that balances the misclassification and fairness loss in the

Lagrangian loss.

Then, we show how to achieve no regret with respect to the Lagrangian loss by reducing

the problem to an online batch classification where there is no fairness constraint. For

concreteness, we show how to leverage exponential weights in order to achieve sublinear

misclassification regret and fairness loss.

49

3.4.1. Lagrangian Formulation

Here we present a hybrid loss that we call Lagrangian loss that combines the misclassification

loss and the fairness violation in round t.

Definition 12 (Lagrangian Loss). C-Lagrangian loss of π is

LC
(
π,
(
(xt, yt), ρt

))
=

k∑
i=1

ℓ
(
π
(
xti
)
, yti
)
+


C
(
π(xtρ1)− π(x

t
ρ2)
)

ρt = (ρ1, ρ2)

0 ρt = null

Given an auditor Oα that can detect any α-fairness violation, we can simulate the online

fair batch classification setting with an auditor Oα by setting the pair ρtOα
= Oα(x

t, πt).

Now, we show that the Lagrangian regret serves as an upper bound for the sum of the

α-fairness loss (with some multiplicative factor that depends on C and ϵ) and the misclas-

sification loss regret with respect to Qα−ϵ.

Theorem 6. Given an auditor Oα, fix any sequence ((xt, yt))Tt=1, (πt)Tt=1, and ρtOα
=

Oα(x
t, πt) for each t ∈ [T]. Then, the following holds for any ϵ ∈ (0, α] and π∗ ∈ Qα−ϵ

simultaneously:

Cϵ
T∑
t=1

Unfairα(π
t, zt) +

(
T∑
t=1

Err(πt, zt)−
T∑
t=1

Err(π∗, zt)

)

≤
T∑
t=1

LC(πt, zt)−
T∑
t=1

LC(π∗, zt)

where zt = ((xt, yt), ρtOα
) for each t ∈ [T].

Proof. Fix ϵ ∈ [0, α]. Fix any (α− ϵ)-fair policy π∗ ∈ Qα−ϵ. Note that for any round t where

50

ρtOα
̸= null, we have

π∗(xtρt1
)− π∗(xtρt2) ≤ d(x

t
ρt1
, xtρt2

) + α− ϵ ⇒ −
(
π∗(xtρt1

)− π∗(xtρt2)− d(x
t
ρt1
, xtρt2

)− α
)
≥ ϵ

πt(xtρt1
)− πt(xtρt2) > d(xtρt1

, xtρt2
) + α ⇒ πt(xtρt1

)− πt(xtρt2)− d(x
t
ρt1
, xtρt2

)− α > 0

because π∗ is (α− ϵ)-fair on this pair and πt wasn’t α-fair on (xt
ρt1
, xt

ρt2
).

Then we can show

T∑
t=1

LC(πt, zt)− LC(π∗, zt)

=
T∑
t=1

k∑
i=1

ℓ
(
πt
(
xti
)
, yti
)
− ℓ

(
π∗
(
xti
)
, yti
)
+

∑
t∈[T]:ρtOα

̸=null

C
(
πt(xtρt1

)− πt(xtρt2)
)

− C
(
π∗(xtρt1

)− π∗(xtρt2)
)

=
T∑
t=1

k∑
i=1

ℓ
(
πt
(
xti
)
, yti
)
− ℓ

(
π∗
(
xti
)
, yti
)

+
∑

t∈[T]:ρtOα
̸=null

C
(
πt(xtρt1

)− πt(xtρt2)− d(x
t
ρt1
, xtρt2

)− α
)

− C
(
π∗(xtρt1

)− π∗(xtρt2)− d(x
t
ρt1
, xtρt2

)− α
)

≥
T∑
t=1

k∑
i=1

ℓ
(
πt
(
xti
)
, yti
)
− ℓ

(
π∗
(
xti
)
, yti
)
+

∑
t∈[T]:ρtOα

̸=null

Cϵ

=

T∑
t=1

k∑
i=1

ℓ
(
πt
(
xti
)
, yti
)
− ℓ

(
π∗
(
xti
)
, yti
)
+ Cϵ

T∑
t=1

Unfairα(π
t, ((xt, yt), ρtOα

))

By considering the above theorem statement with ϵ = 0, we can always bound the misclas-

51

sification regret with the Lagrangian regret:

max
π∗∈Qα

(
T∑
t=1

Err(πt, zt)−
T∑
t=1

Err(π∗, zt)

)
≤ max

π∗∈Qα

T∑
t=1

LC(πt, zt)−
T∑
t=1

LC(π∗, zt)

≤ max
f∗∈F

T∑
t=1

LC(πt, zt)−
T∑
t=1

LC(π∗, zt)

However, note that we cannot always hope to bound the fairness loss with the Lagrangian

regret because the misclassification regret may be negative. It alludes to the fact that it is

not sufficient to simply come up with a way to bound the Lagrangian regret to be sublinear

in T . In fact, we have to tune C accordingly to what kind of Lagrangian regret guarantee we

can get: we want to want to set C high enough so that we give more emphasis to the fairness

loss, but also we cannot set it too high because C controls the bound of the Lagrangian

loss and the regret guarantees usually has a linear dependence on the bound of the loss. In

the next section, we will show exactly how to set C so that we can achieve no regret with

respect to fairness and misclassification loss simultaneously.

3.5. Achieving No Regret Simultaneously

In Section 3.5.1, we show an efficient reduction from the setting of online batch classification

with fairness constraints to that of online batch classification without any constraints. This

reduction to the online batch classification without the fairness constraints is not necessary,

as the Lagrangian loss is already linear in the first argument, π. However, we go through

this reduction, as it’s more obvious that no-regret algorithms can be directly used for this

setting without fairness constraints.

Then, combining our reduction to the online batch classification without fairness constraints,

exponential weights approach, and C that is appropriately set with respect to the regret

guarantee of exponential weights, we show how to bound the misclassification regret and

fairness loss with O(T
3
4) in Section 3.5.2.

Finally, in Section 3.5.3, we show how we can use the Follow-The-Perturbed-Leader ap-

52

proach, specifically that of Syrgkanis et al. [90], can be used to make the algorithm run in

an oracle-efficient manner.

3.5.1. Reduction to Online Batch Classification without Fairness Constraints

Here we show how to reduce the online batch fair classification problem to the online batch

classification problem in an efficient manner. Once we can do this reduction, then we can any

online batch algorithmAbatch((π
τ , (x′τ , y′τ))tτ=1) as a black box in order to achieve sublinear

Lagrangian regret. At a high level, our reduction involves just carefully transforming our

online fair batch classification history up to t, (πτ , ((xτ , yτ), ρτO))
t
τ=1 ∈ (∆F × Zfair-batch)

t

into some fake online batch classification history (πτ , (x′τ , y′τ))tτ=1 ∈ (∆F × Zbatch)
t and

then feeding the artificially created history to a no-regret learner Abatch for the online batch

classification setting.

Without loss of generality, we assume that C is an integer; if it’s not, then take the ceiling.

Now, we describe how the transformation of the history works. For each round t, whenever

ρt = (ρt1, ρ
t
2), we add C copies of each of (xt

ρt1
, 0) and (xt

ρt2
, 1) to the original pairs to form x′t

and y′t. Just to keep the batch size the same across each round, even if ρt = null, we add

C copies of each of (v, 0) and (v, 1) where v is some arbitrary instance in X . We describe

this process in more detail in Algorithm 3.

This reduction essentially preserves the regret, which we formally state in Lemma 8.

Lemma 8. For any sequence of (πt)Tt=1, ((x
t, yt))Tt=1, (ρ

t)Tt=1, and π
∗ ∈ ∆F , we have

T∑
t=1

LC(πt, zt)−
T∑
t=1

LC(π∗, zt) =
T∑
t=1

Err(πt, (x′
t
, y′

t
))−

T∑
t=1

Err(π∗, (x′
t
, y′

t
))

where zt = ((xt, yt), ρt) and (x′t, y′t) = RC((x
t, yt), ρt).

Proof. It is sufficient to show that in each round t ∈ [T],

LC,α(πt, zt)− LC,α(π∗, zt) =
k+2C∑
i=1

ℓ(πt(xti), y
t
i)−

k+2C∑
i=1

ℓ(π∗(xti), y
t
i)

53

Algorithm 3 Reduction from Online Fair Batch Classification to Online Batch Classifica-
tion, RC((x

t, yt), ρt)

Parameters: C
Input: (xt, yt), ρt

if ρt = (ρt1, ρ
t
2) then

for i = 1, . . . , C do
xtk+i = xt

ρt1
and ytk+i = 0;

xtk+C+i = xt
ρt2

and ytk+C+i = 1;

end

end
else

for i = 1, . . . , C do
xtk+i = v and ytk+i = 0;
xtk+C+i = v and ytk+C+i = 1;

end

end

x′t = (xti)
k+2C
i=1 and y′t = (yti)

k+2C
i=1

Output: (x′t, y′t)

First, assume ρt = (ρt1, ρ
t
2).

LC(πt, zt)− LC(π∗, zt)

=

(
k∑
i=1

ℓ(πt(xti), y
t
i) + C(πt(xtρt1

)− πt(xtρt2))

)
−

(
k∑
i=1

ℓ(π∗(xti), y
t
i) + C(π∗(xtρt1

)− π∗(xtρt2))

)

=

(
k∑
i=1

ℓ(πt(xti), y
t
i) +

(
C∑
i=1

ℓ(πt(xtρt1
), 0) +

C∑
i=1

ℓ(πt(xtρt2
), 1)− C

))

−

(
k∑
i=1

ℓ(π∗(xti), y
t
i) +

(
C∑
i=1

ℓ(π∗(xtρt1
), 0) +

C∑
i=1

ℓ(π∗(xtρt2
), 1)− C

))

=

k+2C∑
i=1

ℓ(πt(x′ti), y
′t
i)−

k+2C∑
i=1

ℓ(π∗(x′
t
i), y

′t
i),

The second equality follows from the fact that for any π and x,

ℓ(π(x), 0) = π(x) and ℓ(π(x), 1) = 1− π(x).

54

If ρt = null, then the same argument applies as above; the only difference is that all the

πt(v) cancel with each other because the number of copies with label 0 is exactly the same

as that of label 1.

3.5.2. Exponential Weights

It is well known that for linear loss, exponential weights with appropriately tuned learning

rate γ can achieve no regret [5, 11, 32]. Let us first describe the setting of the exponential

weights so that we can how that setting contains the online batch classification that we are

interested in.

For each round t = 1, . . . , T

1. The learner chooses a distribution pt = (pt1, . . . , p
t
N) over N experts

2. The adversary, with the full knowledge of pt, chooses mt = (mt
1, . . . ,m

t
N) where m

t
i ∈

[−B,B] for each i ∈ [N].

3. The learner suffers pt ·mt.

We emphasize that because adversary gets to choose mt with the full knowledge of pt, mt

can be chosen as a function of pt.

Exponential weights is defined as pt = 1
N for t = 1 and for any t ≥ 2

p̂t+1
i = (1− γmt

i)p
t
i

and

pt+1 =
p̂t+1
i∑

i∈[N] p̂
t+1
i

.

Then, we have the following guarantee on the regret of exponential weights:

Theorem 7 (Arora et al. [5]). Exponential weights with learning rate γ has the following

55

guarantee: for any sequence of (mt)Tt=1 and any i ∈ [N],

T∑
t=1

pt ·mt ≤
∑
t=1

mt
i +B

(
γT +

ln(|F|)
γ

)
.

In other words, with learning rate γ =

√
ln(N)
T , the regret is 2B

√
ln(N)T .

We can easily reduce the online classification setting to that of exponential weights method.

Each πt that we deploy can be represented as a probability distribution pt = (ptf)f∈F over

each f ∈ F : for any x ∈ X ,

πt(x) =
∑
f∈F

ptff(x).

If we usemt
f = Err(f, (x′t, y′t)) for every f ∈ F . Then, we have for any (x′t, y′t) ∈ (X k+2C×

Yk+2C),

Err(πt(x), x′
t
, y′

t
) =

∑
f∈F

ptfErr(f, (x′
t
, y′

t
)) = pt ·mt.

Putting everything together, we have

1. The learner deploys πt where the associated probability distribution over F is pt =

(ptf)f∈F .

2. The adversary, with the knowledge of pt, comes up with some (x′t, y′t) which de-

termines mt = (mt
f)f∈F where mt

f = Err(f, (x′t, y′t)). Remember that (x′t, y′t) =

RC(x
t, yt, Oα(x

t, πt)) is a function of πt.

3. Learner suffers

pt ·mt = Err(πt(x), x′
t
, y′

t
).

56

Note thatmt
f ∈ [−(k+2C), k+2C] for any f ∈ F . Although (x′t, y′t) is formed as a function

of πt, the exponential weights approach still allows the adversary to formmt as a function of

pt or equivalently πt. Therefore, we can use the regret guarantee of the exponential weights

and appropriately set C to achieve sublinear fairness loss and misclassification regret.

Theorem 8. If C = max(T
1
4 , k), exponential weights guarantees the following: for any

adaptively and adversarially chosen ((xt, yt))Tt=1, we have,

T∑
t=1

Unfairα(π
t, zt) ≤ 6

α

√
ln(|F|)T +

k

α
T

3
4

T∑
t=1

Err(πt, zt)− min
π∗∈Qα

T∑
t=1

Err(π∗, zt) ≤ 6
√
ln(|F|)T

3
4

where zt = ((xt, yt), ρtOα
) and ρtOα

= O(xt, πt). In other words, misclassification regret and

fairness loss is both bounded by O(T
3
4).

Proof. First, we apply the regret guarantee of exponential weights. Theorem 7 gives us that

T∑
t=1

Err(πt, (x′
t
, y′

t
))− min

f∗∈F

T∑
t=1

Err(f∗, (x′
t
, y′

t
)) ≤ 2(k + 2C)

√
ln(|F|)T .

because Err(πt, (x′t, y′t)) ∈ [−(k+2C), k+2C]. Note that (x′t, y′t) = RC(x
t, yt, Oα(x

t, πt))

is a function of πt, but as we emphasized before, the regret guarantee still holds.

Combining our previous lemmas and theorems, we have for any ((xt, yt))Tt=1 and hence

57

zt = (xt, yt, Oα(x
t, πt)) for t ∈ [T], we have

Cϵ
T∑
t=1

Unfairα(π
t, zt) +

(
T∑
t=1

Err(πt, zt)− min
π∗∈Qα−ϵ

T∑
t=1

Err(π∗, zt)

)

≤
T∑
t=1

LC,α(πt, zt)− min
π∗∈Qα−ϵ

T∑
t=1

LC,α(π∗, zt)

≤
T∑
t=1

LC,α(πt, zt)− min
π∗∈∆F

T∑
t=1

LC,α(π∗, zt)

=
T∑
t=1

Err(πt, (x′
t
, y′

t
))− min

π∗∈∆F

T∑
t=1

Err(π∗, (x′
t
, y′

t
))

=
T∑
t=1

Err(πt, (x′
t
, y′

t
))− min

f∗∈F

T∑
t=1

Err(f∗, (x′
t
, y′

t
))

≤ 2(k + 2C)
√
ln(|F|)T .

The second line follows from Theorem 6, the third from the fact that Qα−ϵ ⊆ ∆F , the

fourth from Lemma 8, and the last line follows from the linearity of
∑T

t=1Err(·, (x′t, y′t)).

The above inequality holds simultaneously for all ϵ ∈ [0, α].

For the fairness loss, consider ϵ = α, and fix any π∗ ∈ Qα−ϵ. We then have

T∑
t=1

Err(πt, (xt, yt))−
T∑
t=1

Err(π∗, (xt, yt)) + Cα

T∑
t=1

Unfairα(π
t, zt) ≤ 2(k + 2C)

√
ln(|F|)T

⇒ Cα

T∑
t=1

Unfairα(π
t, zt) ≤ 2(k + 2C)

√
ln(|F|)T + kT

⇒ Cα

T∑
t=1

Unfairα(π
t, zt) ≤ 6C

√
ln(|F|)T + kT

⇒
T∑
t=1

Unfairα(π
t, zt) ≤ 6

α

√
ln(|F|)T +

kT

αC

⇒
T∑
t=1

Unfairα(π
t, zt) ≤ 6

α

√
ln(|F|)T +

k

α
T

3
4

58

where the first implication follows from the fact that

T∑
t=1

k∑
i=1

ℓ
(
πt
(
xti
)
, yti
)
− ℓ

(
π∗
(
xti
)
, yti
)
≥ −kT.

As for the misclassification regret, consider ϵ = 0.

T∑
t=1

Err(πt, zt)− min
π∗∈Qα

T∑
t=1

Err(π∗, zt)

≤
T∑
t=1

LC(πt, zt)− min
π∗∈∆F

LC(π∗, zt)

≤ 2(k + 2C)
√

ln(|F|)T ≤ 6
√
ln(|F|)T

3
4 .

We remark that C is set to be at least max(k, T
1
4) so as to bound both the misclassification

regret and the fairness loss with O(T
3
4), but other trade-off between the two is still possible.

3.5.3. Follow-The-Perturbed-Leader

Running exponential weights as in Section 3.5.2 in general cannot be done in an efficient

manner, as such methods need to calculate the loss for each hypothesis f ∈ F or for each

possible labeling in the case F has bounded VC-dimension. Here we intend to come up with

an algorithm that is oracle-efficient.

Specifically, we show how the algorithm proposed by Syrgkanis et al. [90] can be used

as an Abatch to achieve sublinear regret in the online batch classification setting in an

oracle efficient manner. However, we remark that our approach of leveraging context-ftpl

requires us to relax how adaptive the environment can be in terms of choosing (xt, yt).

Previously, we allowed the environment to choose (xt, yt) with the full knowledge of the

deployed policy πt. Here, we make an assumption that (xt, yt) can be formed as a function

of ht = ((π1, z1), . . . , (πt−1, zt−1)) but not πt.

59

Let us now consider the setting that Syrgkanis et al. [90] study. They consider an adversar-

ial contextual learning setting where in each round t, the learner randomly deploys some

hypothesis6 ψt ∈ Ψ where Ψ : Ξ→ {0, 1}k, and the environment chooses (ξt, wt) ∈ Ξ×Rk,

where k indicates the number of possible actions that can be taken for the context ξt whose

associated loss vector is wk. The only knowledge at round t not available to the environment

is the randomness that the learner uses to choose ψt, but the environment may know the

actual distribution over ψt that the learner has in round t just not the realization of it. And

at the end of the round, the learner suffers some loss L(ψt, (ξt, wt)).

They show that in the small separator setting, they can achieve sublinear regret given that

they can compute a separator set prior to learning. We first give the definition of a separator

set and then state their regret guarantee.

Definition 13. A set S = (ξ1, . . . , ξn) is called a seperator set for Ψ : Ξ → {0, 1}k if for

any different ψ and ψ′ in Ψ, there exists ξ ∈ S such that ψ(ξ) ̸= ψ′(ξ).

Theorem 9 (Syrgkanis et al. [90]). For any adversarially and adaptively chosen sequence

of (ξt, wt)Tt=1, context-ftpl initialized with a separator set S and parameter ω deploys

(ψt)Tt=1 with the following regret: for any ψ∗ ∈ Ψ,

T∑
t=1

E
ψt∼Dt

[
L(ψt, (ξt, wt))

]
−

T∑
t=1

L(ψ∗, (ξt, wt))

≤ 4ωkn

T∑
t=1

E
ψt∼Dt

[
∥∥L(·, (·, wt))∥∥2∗] + 10

ω

√
nk log(|Ψ|),

where n = |S|, ∥L(·, (·, w))∥∗ = maxψ,ξ |L(ψ, (ξ, w))| and Dt is the implicit distribution over

ψt that context-ftpl has in each round t.

Our online batch classification setting can be easily reduced to their setting by simply

considering the batch of instances by setting ξt = xt = (xt1, . . . , x
t
k), meaning we set Ξ = X k

6They refer to this as a policy, but we say hypothesis just to be consistent with our terminology where
a function that maps to {0, 1} is called hypothesis and policy is reserved for a mixture of hypotheses that
maps to [0, 1].

60

and form the associated loss vector as wti =
1−2yti
2k for each i ∈ [k]. And we view each

hypothesis as ψf (x
t) = (f(xt1), . . . , f(x

t
k)). In other words, we can define the hypothesis

class induced by F as

ΨF ,k =
{
∀f ∈ F : (xi)

k
i=1 7→ (f(xi))

k
i=1

}
.

Note that |F| = |ΨF ,k|. And we can use the following linear loss

Lbatch,k

(
ψf , (ξ

t, wt)
)
=
〈
ψf (ξ

t), wt
〉
.

Note that by construction, the difference in Lbatch,k over (ξt, wt) between ψf and ψf ′

preserves the difference in misclassification loss over (xt, yt) between f and f ′:

Lemma 9. Write k′ = k + 2C.

2k′
(
Lbatch,k′

(
ψf , (ξ

t, wt)
)
− Lbatch,k′

(
ψf ′ , (ξ

t, wt)
))

=

k′∑
i=1

ℓ(f(xi), yi)−
k′∑
i=1

ℓ(f ′(x′
t
i), y

′t
i)

Proof.

2k′
(
Lbatch,k′

(
ψf , (ξ

t, wt)
)
− Lbatch,k′

(
ψf , (ξ

t, wt)
))

=
〈
(f(x′

t
i))

k
i=1, 1− 2y′

t
〉
−
〈
(f ′(x′i))

k
i=1, 1− 2y′

t
〉

=

(
k′∑
i=1

(1− f(x′ti)) · y′
t
i + f(x′

t
i) · (1− y′

t
i)

)
−

(
k′∑
i=1

(1− f ′(x′i)) · y′ti + π(x′
t
i) · (1− yti)

)

=
k′∑
i=1

ℓ(f(x′
t
i), y

′t
i)−

k′∑
i=1

ℓ(f ′(x′
t
i), y

′t
i)

61

Syrgkanis et al. [90] assume an optimization oracle with respect to L

ML({(ξj , yj)}Pj=1) = argmin
ψ∈Ψ

P∑
j=1

L(ψ, (ξj , wj))

which in our case corresponds to the following oracle:

MLbatch,k
({(ξj , wj)}Dj=1) = ψf where f = argmin

f∈F

D∑
j=1

k∑
i=1

f(xji)w
j
i .

Note that this is equivalent to a weighted empirical risk minimization oracle:

argmin
f∈F

D∑
j=1

k∑
i=1

f(xji)w
j
i

= argmin
f∈F

D∑
j=1

k∑
i=1

f(xji)p
j
i

(
1− 2yji

2k

)

= argmin
f∈F

D∑
j=1

k∑
i=1

pji ℓ(f, (x
j
i , y

j
i))

where yji = −sign(w
j
i) and p

j
i =

wt
i

yti
for each j ∈ [D], i ∈ [k]. We remark that not all wj that

we feed to the oracle will be of the form {± 1
2k} and p

j
i = 1 because context-ftpl requires

calling the oracle not just on the set of ξt, wt that we create from xt and yt — for stability

reasons, it also adds in contexts from the separator set and associate each of those contexts

with a random vector where each coordinate is drawn from the Laplace distribution.

Furthermore, we can turn any separator set S ⊆ X for F into an equal size separator set

S′ ⊆ Ξ for Ψ. In fact, the construction is as follows:

S′ = {∀x ∈ S : ξx = (x, v, . . . , v)},

where v is some arbitrary instance in X .

Lemma 10. If S is the separator set for F , then S′ is a separator set for ΨF .

62

Proof. Fix any f and f ′ where f ̸= f ′. Note that by definition of S, there exists x ∈ S such

that f(x) ̸= f ′(x). As a result, ψf (ξx) ̸= ψf ′(ξx) as (f(x), q, . . . , q) ̸= (f(x′), q, . . . , q).

Because the loss we use is linear, we take a slightly different view on the interaction between

the learner and the environment. Instead of the learner sampling a hypothesis ψtf and having

the no-regret guarantee in expectation over the randomness of sampling the hypothesis, we

imagine the learner playing the actual distribution over ψtf it has at round t. We note this

distribution over ψtf as Dt and write the loss experienced by deploying a policy Dt as

Lbatch,k′(D
t, (ξt, wt)) = E

ψt
f∼Dt

[⟨ψtf (ξ), wt⟩] = ⟨ E
ψt
f∼Dt

[ψtf (ξ)], w
t⟩ = E

ψt
f∼Dt

[Lbatch,k′(ψ
t
f , (ξ

t, wt)].

However, context-ftpl never explicitly keeps track of the distribution Dt but only allows

a way to sample from this distribution. Therefore, we form an empirical distribution D̃t

by calling into context-ftpl E many times to approximate Dt — i.e. we write D̃t to

denote the uniform distribution over {ψt
f t1
, . . . , ψt

f t1
} where ψt

f tj
is the result of our jth call

to context-ftpl in round t. We describe the overall reduction to context-ftpl more

formally in Algorithm 4.

63

Algorithm 4 Reduction to context-ftpl

Input: Separating set S

Create S′ = {∀x ∈ S : ξx = (x, v, . . . , v)} where v ∈ X is chosen arbitrarily.

Initialize context-ftpl with S′ and ω.

for t = 1, . . . , T do

πt is deployed.

Environment, without the knowledge of πt, chooses (xt, yt).

Auditor chooses ρtOα
= Oα(x

t, πt).

// Incur misclassification and fairness loss

Incur misclassification loss
∑k

k=1 ℓ(π
t(xt), yt)

Incur fairness loss Unfair(πt, ρtOα
).

// Reduction to online batch classification setting and to

context-ftpl’s setting

(x′t, y′t) = RC((x
t, yt), ρtOα

).

ξt = x′t and wti =
1−2y′ti
2(k+2C) for each i ∈ [k + 2C].

Update history ht+1 = {(ξτ , wτ)}tτ=1.

for j ∈ [E] do

ψt+1,j
f = context-ftpl(ht+1).

Set f t+1
j = f from ψt+1,j

f .

end

πt+1 be a uniform distribution over {f t+1
1 , . . . , f t+1

E }.

end

Unlike before, we have the environment choose (xt, yt) without the knowledge of πt. This

is so that the randomness used to form πt by running context-ftpl multiple times is not

revealed to the environment. If the randomness is revealed, it’s possible that the auditor

can take advantage of the direction in which the empirical distribution that we deploy is off

from the distribution maintained by context-ftpl — more specifically, we would have to

take a union bound over all possible xt and yt that the environment can choose after the

64

environment knows how πt has been chosen, which we can’t do because there are infinitely

many possible (x, y).

Instead, we could argue about the concentration of the policy πt itself to its expected value

instead of over the loss first and use the concentration over the distribution of hypotheses

to argue for the concentration of the loss. However, the loss needs to average over each

hypothesis or each possible labeling in the case of bounded VC-dimension, so our estimation

error in the distribution over each hypothesis will add up over each f ∈ F , resulting in linear

dependence on |F|, or over each possible labeling induced by F incurring estimation error

linear in O(kV) where V is the VC-dimension of F .

Hence, by hiding the randomness used to sample the empirical distribution from the en-

vironment (i.e. (xt, yt) has to be chosen without access to D̃t), the only thing in the loss

Lbatch,k+2C that is adaptive to the deployed policy is the auditor. However, the auditor

only has k2 + 1 options (i.e. choose a pair out of k2 pair or output null), so we can easily

union bound over these options.

Lemma 11. With probability 1−δ over the randomness of D̃t (i.e. sampling f tj for j ∈ [E]),

we have

∣∣∣Lbatch,k+2C(D̃
t, (ξt, wt))− Lbatch,k+2C(D

t, (ξt, wt))
∣∣∣ ≤

√
ln(2T (k

2+1)
δ)

2E

for every round t ∈ [T] where ψt = context-ftpl((ξτ , wτ)t−1
τ=1) is distributed according Dt.

D̃t is the uniform distribution over {ψt,jf }j∈[E]. (ξ
t, wt) is determined according to (xt, yt)

and ρtOα
= O(xt, πt) where πt is the corresponding policy for D̃t that is deployed in round t

as shown in Algorithm 4.

65

Proof. Fix the round t ∈ [T]. Note that

Lbatch,k+2C(D̃
t, (ξt, wt))− Lbatch,k+2C(D

t, (ξt, wt))

=

〈
E

ψt
f∼D̃t

[ψtf (ξ
t)], wt

〉
−

〈
E

ψt
f∼Dt

[ψtf (ξ
t)], wt

〉

=
1

|E|
∑
j∈[E]

k+2C∑
i=1

f tj (x
′t
i)w

t
i − E

ψt
f∼Dt

[
k+2C∑
i=1

k+2C∑
i=1

f(x′
t
i)w

t
i

]

=

〈
E

ψt
f∼D̃t

[ψtf (ξ
t)], wt

〉
−

〈
E

ψt
f∼Dt

[ψtf (ξ
t)], wt

〉

=
1

E

∑
j∈[E]

k∑
i=1

f tj (x
t
i)w

t
i + C

(
f tj (x

′t
k+1)w

t
k+1 + f tj (x

′t
k+C+1)w

t
k+C+1

)

− E
ψf∼Dt

[
k∑
i=1

k∑
i=1

f(xti)w
t
i + C

(
f(xtρt1

)wtk+1 + f(xtρt2
)wtk+C+1

)]
.

Note that just by the construction of ξt and x′t, y′t, we know that there are only k2 + 1

possible options for (x′tk+1, x
′
k+C+1). More specifically, if ρtOα

̸= null, then x′tk+1 = xt
ρt1

and

x′k+C+1 = xt
ρt2

where ρt1 ∈ [k] and ρt2 ∈ [k]. If ρtOα
= null, then (x′tk+1, x

′
k+C+1) = (v, v)

always. Furthermore, by construction, we have wtk+1 = −1
2(k+2C) and wtk+C+1 = 1

2(k+2C)

always. Write

Vj =
k∑
i=1

f tj (x
t
i)w

t
i + C

(
f tj (x

t
ρt1
)wtk+1 + f tj (x

t
ρt2
)wtk+C+1

)
V = E

ψt
f∼Dt

[
k∑
i=1

k∑
i=1

f(xti)w
t
i + C

(
f(xtρt1

)wtk+1 + f(xtρt2
)wtk+C+1

)]
.

Note that E[Vj] = V for each j ∈ [E]. Also, note that by construction,

f(xti)w
t
i ∈
[
− 1

2(k + 2C)
,

1

2(k + 2C)

]
,

meaning Vj ∈ [−1
2 ,

1
2]. Therefore, union bounding over all possible ρt ∈ [k]2 ∪ {null} with

66

Chernoff bound, we have

Pr
(f tj)j∈[E]

∣∣∣∣∣∣ 1E
∑
j∈[E]

Vj − V

∣∣∣∣∣∣ ≥
√

ln(2(k
2+1)
δ)

2E

 ≤ δ.

Union bounding over all round t ∈ [T], we have with probability 1− δ,

∣∣∣Lbatch,k+2C(D̃
t, (ξt, wt))− Lbatch,k+2C(D

t, (ξt, wt))
∣∣∣ ≤

√
ln(2T (k

2+1)
δ)

2E
.

Now, we can combine all the arguments we have developed so far in order to prove that

Algorithm 4 achieves sublinear fairness loss and misclassification regret:

Theorem 10. Set C = max(k, T
2
9), E = T, and ω = n

−1
4 k′

−3
4 T

−1
2 log(|F|)

1
2 where n is

the size of the separator set S. Algorithm 4 can guarantee that with probability 1 − δ, the

following holds true:

T∑
t=1

Unfairα(π
t, zt) ≤ 1

α
O

(
n

3
4 log(|F|)

1
2T

5
9 +

√
T ln

(
Tk

δ

)
+ kT

7
9

)
T∑
t=1

Err(πt, zt)− min
π∗∈Qα

T∑
t=1

Err(π∗, zt) ≤ O

(
n

3
4 log(|F|)

1
2T

7
9 +

√
ln

(
Tk

δ

)
T

13
18

)

where zt = ((xt, yt), ρtOα
) and ρtOα

= Oα(x
t, πt). In other words, the misclassification regret

and fairness loss is both bounded by O(T
7
9) with high probability.

67

Proof.

T∑
t=1

LC,α(πt, zt)− min
π∗∈Qα−ϵ

T∑
t=1

LC,α(π∗, zt)

≤
T∑
t=1

LC,α(πt, zt)− min
π∗∈∆F

T∑
t=1

LC,α(π∗, zt)

=
T∑
t=1

k+2C∑
i=1

ℓ(πt(x′
t
), y′

t
i)− min

π∗∈∆F

T∑
t=1

k+2C∑
i=1

ℓ(π∗(x′
t
), y′

t
i) Lemma 8

=
T∑
t=1

k+2C∑
i=1

ℓ(πt(x′
t
), y′

t
i)− min

f∗∈F

T∑
t=1

k+2C∑
i=1

ℓ(f∗(x′
t
), y′

t
i) Optimal solution over linear ob-

jective must happen at the sup-

port

Then, applying Lemma 9 yields with probability 1− δ,

= (k + 2C)

(
T∑
t=1

Lbatch,k+2C(D̃
t, (ξt, wt))− min

ψ∗∈Ψbatch,k+2C

T∑
t=1

Lbatch,k+2C(ψ
∗, (ξt, wt))

)

≤ (k + 2C)

(
T∑
t=1

Lbatch,k+2C(D
t, (ξt, wt))− min

ψ∗∈Ψbatch,k+2C

T∑
t=1

Lbatch,k+2C(ψ
∗, (ξt, wt))

)

+ T

√
ln(2T (k

2+1)
δ)

2E

)

Notice that |Lbatch,k+2C(ψ, (ξ, w
t))| ∈ [−1

2 ,
1
2] for any ψ, x and t ∈ [T] because by construc-

tion wti ∈ {± 1
2(k+2C)}. In other words, we have Eψ∼Dt

[
||Lbatch,k+2C(ψ, (·, wt))||2∗

]
≤ 1

4 .

Theorem 9 gives us that a sequence of distribution (Dt)Tt=1 achieves the following, where

Dt is equivalent to the distribution of context-ftpl(((ξτ , wτ))t−1
τ=1):

T∑
t=1

Lbatch,k+2C(D
t, (ξt, wt))− min

ψ∗∈Ψbatch,k+2C

T∑
t=1

Lbatch,k+2C(ψ
∗, (ξt, wt))

≤ ωk′nT +
10

ω

√
nk′ ln(|ΨF ,k+2C |).

68

Therefore, writing k′ = k + 2C, we have with probability 1− δ,

T∑
t=1

LC,α(πt, zt)− min
π∗∈Qα−ϵ

T∑
t=1

LC,α(π∗, zt)

≤ k′
 T∑
t=1

E
ψt

[
Lbatch,k′(ψ

t, (ξt, wt))
]
−

T∑
t=1

Lbatch,k′(ψ
∗, (ξt, wt)) +

√
T
ln(2T (k

2+1)
δ)

2


≤ k′

ωk′nT +
10

ω

√
nk′ ln(|ΨF ,k+2C |) +

√
T
ln(2T (k

2+1)
δ)

2

 .

Setting ω = n
−1
4 k′

−3
4 T

−1
2 log(|F|)

1
2 , we then have

T∑
t=1

LC,α(πt, zt)− min
π∗∈Qα−ϵ

T∑
t=1

LC,α(π∗, zt)

≤ O

((
n

3
4k′

5
4 log(|F|)

1
2 + k′

√
ln

(
Tk

δ

))
T

1
2

)

With the same argument as in the proof of Theorem 8, we get that for ϵ = α

Cα

T∑
t=1

Unfairα(π
t, zt) ≤ O

((
n

3
4k′

5
4 log(|F|)

1
2 + k′

√
ln

(
Tk

δ

))
T

1
2

)
+ kT

⇒ Cα
T∑
t=1

Unfairα(π
t, zt) ≤ O

((
n

3
4C

5
4 log(|F|)

1
2 + C

√
ln

(
Tk

δ

))
T

1
2

)
+ kT

⇒
T∑
t=1

Unfairα(π
t, zt) ≤ 1

α
O

((
n

3
4C

1
4 log(|F|)

1
2 +

√
ln

(
Tk

δ

))
T

1
2

)
+
kT

C

⇒
T∑
t=1

Unfairα(π
t, zt) ≤ 1

α
O

(
n

3
4 log(|F|)

1
2T

5
9 +

√
T ln

(
Tk

δ

)
+ kT

7
9

)
.

69

As for the misclassification regret, we have with ϵ = 0

T∑
t=1

Err(πt, zt)− min
π∗∈Qα

T∑
t=1

Err(π∗, zt)

≤ O

((
n

3
4k′

5
4 log(|F|)

1
2 + k′

√
ln

(
Tk

δ

))
T

1
2

)

≤ O

(
n

3
4 log(|F|)

1
2T

7
9 +

√
ln

(
Tk

δ

)
T

13
18

)

We only focus on their small separator set setting, although their transductive setting (i.e.

the contexts (xt)
T
t=1 are known in advance) and other bandit settings should naturally follow

as well.

3.6. Discussion

In this chapter, we have removed several binding restrictions in the context of learning with

individual fairness present in Chapter 2. Relieving the metric assumption as well as the

assumption regarding full access to the similarity measure and only requiring the auditor to

detect a single violation at every round can be helpful in making individual fairness more

achievable and easier to implement in practice.

There are still interesting future directions. It would be interesting to explore the interaction

with different models of feedback (one natural variant being one-sided feedback). We suspect

that Syrgkanis et al. [90]’s way of handling the bandit feedback can be easily ported over to

handle the bandit nature in our setting. Second, thinking about a model where the auditor

only has access to binary decisions may be helpful in further closing the gap to practical use.

Third, as most of the literature on individual fairness (including this work) is decoupling

the similarity measure from the distribution over the target variable, it would be desirable

to try to explore and quantify the compatibility of the two in specific instances.

70

Chapter 4

Fairness Elicitation

4.1. Introduction

In Chapter 2 and 3, we have shown how to elicit notions of fairness from stakeholders and

domain experts in an online setting. Because there are multiple rounds, the auditor is able

to peak into the deployed model at every round and determine whether there exists any

particular pair that is not being fairly according to some fairness metric.

However, in practice, it is quite expensive to re-deploy a model over many rounds and have

the auditor audit those models each time. In that regard, we study an offline setting where

we want to elicit notions of fairness from stakeholders and domain experts prior to deploying

and deploying a model.

Similarly as before, we aim to elicit stakeholders conceptions of fairness by asking them to

compare pairs of individuals in specific scenarios. Specifically, we ask whether it’s fair that

one particular individual should receive an outcome that is as desirable or better than the

other.

When pointing out fairness or unfairness, this kind of pairwise ranking is natural. For

example, after Serena Williams was penalized for a verbal interaction with an umpire in

the 2018 U.S. Open Finals, tennis player James Blake tweeted, “I have said worse and not

gotten penalized. And I’ve also been given a ‘soft warning’ by the ump where they tell

you knock it off or I will have to give you a violation. [The umpire] should have at least

given [Williams] that courtesy” [96]. Here, Blake thinks that: 1) Williams should have been

judged as or less severely than he would have been in a similar situation; and 2) the umpire’s

decision was unfair, because Williams was judged more severely.

Thus, we ask a set of stakeholders about a fixed set of pairs of individuals subject to a

71

classification problem. For each pair of individuals (A,B), we ask the stakeholder to choose

from amongst a set of four options:

1. Fair outcomes must classify A and B the same way (i.e. they must either both get a

favorable classification or both get an unfavorable classification).

2. Fair outcomes must give A an outcome that is equal to or preferable to the outcome

of B.

3. Fair outcomes must give B an outcome that is equal to or preferable to the outcome

of A

4. Fair outcomes may treat A and B differently without any constraints.

These constraints, a data distribution, and a hypothesis class define a learning problem:

minimize classification error subject to the constraint that the rate of violation of the elicited

pairwise constraints is held below some fixed threshold. Crucially and intentionally we elicit

relative pairwise orderings of outcomes (e.g. A and B should be treated equally), but do not

elicit preferences for absolute outcomes (e.g. A should receive a positive outcome). This is

because fairness — in contrast to justice — is often conceptualized as a measure of equality

of outcomes, rather than correctness of outcomes7. In particular, it remains the job of the

learning algorithm to optimize for correctness subject to elicited fairness constraints.

We remark that the premise (and the foundation for the enormous success) of machine

learning is that accurate decision making rules in complex scenarios cannot be defined with

simple analytic rules and instead are best derived directly from data. Our work can be viewed

similarly, as deriving fairness constraints from data elicited from experts and stakeholders.

In this chapter, we solve the computational, statistical, and conceptual issues necessary to

do this, and demonstrate the effectiveness of our approach via a small behavioral study.

7Sidney Morgenbesser, following the Columbia University campus protests in the 1960s, reportedly said
that the police had treated him unjustly, but not unfairly. He said that he was treated unjustly because the
police hit him without provocation — but not unfairly, because the police were doing the same to everyone
else as well.

72

4.1.1. Results

Our Model We model individuals as having features in X and binary labels, drawn from

some distribution P. A committee of stakeholders8 u ∈ U has preferences about whether

one individual should be judged better than another individual. We imagine presenting each

stakeholder with a set of pairs of individuals and asking them to choose one of four options

for each pair, e.g. given the features of Serena Williams and Jacob Blake:

1. No constraint;

2. Williams should be treated as well as Blake or better;

3. Blake should be treated as well as Williams or better; or

4. Williams and Blake should be treated similarly.

Here, when we refer to how an individual should be treated, we mean the probability that an

individual is given a positive label by the classifier. This may be a bit of a relaxation of these

judgments, since they are not about actualized classifications, but rather the probabilities of

positive classification. For example, we may not consider it a violation of fairness preference

(2) if Williams is judged worse than Blake in a specific scenario; yet, if an ump is more

likely to judge Williams worse than Blake in general, then this would violate this fairness

preference.

We represent these preferences abstractly as a set of ordered pairs Cu ⊆ X × X for each

stakeholder u. If (x, x′) ∈ Cu, this means that stakeholder u believes that individual x′ must

be treated as well as individual x or better, i.e. ideally the classifier h classifies such that

h(x′) ≥ h(x). This captures all possible responses above. For example, for Serena Williams

(s) and Jacob Blake (b), if stakeholder u responds:

1. No constraint ⇔ (s, b) ̸∈ Cu nor (b, s) ̸∈ Cu;
8Though we develop our formalism as a committee of stakeholders, note that it permits the special case

of a single subjective stakeholder, which we make use of in our behavioral study.

73

2. Williams as well as Blake ⇔ (b, s) ∈ Cu;

3. Blake as well as Williams ⇔ (s, b) ∈ Cu; or

4. Treated similarly ⇔ (s, b) ∈ Cu and (b, s) ∈ Cu (since if h(b) ≥ h(s) and h(s) ≥ h(b),

then h(s) = h(b)).

We impose no structure on how stakeholders form their views nor on the relationship be-

tween the views of different stakeholders — i.e. the sets {Cu}u∈U are allowed to be arbitrary

(for example, they need not satisfy a triangle inequality), and need not be mutually consis-

tent. We write C = ∪uCu.

We then formulate an optimization problem constrained by these pairwise fairness con-

straints. Since it is intractable to require that all constraints in C be satisfied exactly, we

formulate two different “knobs” with which we can quantitatively relax our fairness con-

straints.

For γ > 0 (our first knob), we say that the classification of an ordered pair of individuals

(x, x′) ∈ C satisfies γ-fairness if the probability of positive classification for x′ plus γ is

no smaller than the probability of positive classification for x, i.e. E[h(x′)] + γ ≥ E[h(x)].

In this expression, the expectation is taken only over the randomness of the classifier h.

Equivalently, a γ-fairness violation corresponds to the classification of an ordered pair of

individuals (x, x′) ∈ C if the difference between these probabilities of positive classification

is greater than γ, i.e. E[h(x)− h(x′)] > γ. Thus, γ acts as a buffer on how likely it is that

x′ be classified worse than x before a fairness violation occurs. For example, if Blake (b)

receives a good label (i.e. no penalty) 80% of the time and Williams (s) 50% of the time,

then for γ = 0.1 this constitutes a γ-fairness violation for the ordered pair (b, s) ∈ C, since

E[h(b)− h(s)] = 0.3 ≥ 0.1 = γ.

74

We might ask that for no pair of individuals do we have a γ-fairness violation:

max
(x,x′)∈C

E[h(x)− h(x′)] ≤ γ.

On the other hand, we could ask for the weaker constraint that over a random draw

of a pair of individuals, the expected fairness violation is at most η (our second knob):

E(x,x′)∼P2 [(h(x)− h(x′)) · 1[(x, x′) ∈ C]] ≤ η. We can also combine both relaxations to ask

that the in expectation over random pairs, the “excess” fairness violation, on top of an

allowed budget of γ, is at most η. For example, as above, if Blake receives a good label 80%

of the time and Williams 50%, for γ = 0.1, the umpire classifier would pick up 0.2 excess

fairness violation for (b, s) ∈ C. We weight these excess fairness violations by the propor-

tion of stakeholders who agree with the corresponding fairness constraint and mandate their

sum be less than η. Subject to these constraints, we would like to find the distribution over

classifiers that minimizes classification error: given a setting of the parameters γ and η, this

defines a benchmark with which we would like to compete.

Our Theoretical Results Even absent fairness constraints, learning to minimize 0/1

loss (even over linear classifiers) is computationally hard in the worst case (see e.g. [23, 24]).

Despite this, learning seems to be empirically tractable in the real world. To capture the

additional hardness of learning subject to fairness constraints, we follow several recent

papers [2, 59] in aiming to develop oracle efficient learning algorithms. Oracle efficient

algorithms are assumed to have access to an oracle (realized in experiments using a heuristic

— see the next section) that can solve weighted classification problems. Given access to

such an oracle, oracle efficient algorithms must run in polynomial time. We show that

our fairness constrained learning problem is computationally no harder than unconstrained

learning by giving such an oracle efficient algorithm (or reduction), and show moreover that

its guarantees generalize from in-sample to out-of-sample in the usual way — with respect

to both accuracy and the frequency and magnitude of fairness violations. Our algorithm is

simple and amenable to implementation, and we use it in our experimental results.

75

Our Experimental Results We implement our algorithm and run a set of experiments

on the COMPAS recidivism prediction dataset, using fairness constraints elicited from 43

human subjects. We establish that our algorithm converges quickly (even when implemented

with fast learning heuristics, rather than “oracles”). We also explore the Pareto curves

trading off error and fairness violations for different human subjects, and find empirically

that there is a great deal of variability across subjects in terms of their conception of fairness,

and in terms of the degree to which their expressed preferences are in conflict with accurate

prediction. We find that most of the difficulty in balancing accuracy with the elicited fairness

constraints can be attributed to a small fraction of the constraints.

4.2. Related Work

Our work is related to existing notions of individual fairness like Dwork et al. [19], Joseph

et al. [50] that conceptualize fairness as a set of constraints binding on pairs of individuals, as

we have studied in Chapter 2 and 3. In particular the notion of individual fairness proposed

in Dwork et al. [19] and studied in previous chapters is closely related but distinct from the

fairness notions we elicit in this chapter. In particular, in this chapter

1. We allow for constraints that require that individual A be treated better than or

equal to individual B, whereas metric fairness constraints are symmetric, and only

allow constraints of the form that A and B be treated similarly. In this sense, the

fairness notion here may be more general.

2. We elicit binary judgements between pairs of individuals, whereas metric fairness is

defined as a Lipschitz constraint on a real valued metric. In this sense, the new notion

in this chapter is more restrictive, although it may be easier to elicit.

The most technically related piece of work is Rothblum and Yona [81], who prove similar

generalization guarantees to ours for a relaxation of metric fairness: our definition is slightly

more general, and our generalization guarantee somewhat tighter, but technically the results

are closely related. Our conceptual focus and main results are quite different, however:

for general learning problems, they prove worst-case hardness results, whereas we derive

76

practical algorithms in the oracle-efficient model, and empirically evaluate them on real user

data. Lahoti et al. [66] make a similar observation about guaranteeing fairness with respect

to an unknown metric, although their aim is the orthogonal goal of fair representation

learning.

Dwork et al. [19] first proposed the notion of individual metric-fairness that we take inspi-

ration from, imagining fairness as a Lipschitz constraint on a randomized algorithm, with

respect to some “task-specific metric”. Since the original proposal, the question of where

the metric should come from has been one of the primary obstacles to its adoption, and

the focus of subsequent work. Zemel et al. [100] attempt to automatically learn a repre-

sentation for the data (and hence, implicitly, a similarity metric) that causes a classifier

to label an equal proportion of two protected groups as positive. Kim et al. [60] consider

a group-fairness like relaxation of individual metric-fairness, asking that on average, indi-

viduals in pre-specified groups are classified with probabilities proportional to the average

distance between individuals in those groups. They show how to learn such classifiers given

access to an oracle which can evaluate the distance between two individuals according to

the metric. Compared to our work, they assume the existence of a fairness metric which

can be accessed using a quantitative oracle, and they use this metric to define a statistical

rather than individual notion of fairness.

Ilvento [45] studies the problem of metric learning with the goal of using only a small

number of numeric valued queries, which are hard for human beings to answer, relying

more on comparison queries. In contrast with Ilvento [45], we do not attempt to learn a

metric and instead directly learn a classifier consistent with the elicited pairwise fairness

constraints.

4.3. Preliminaries

Let S denote a set of labeled examples {zi = (xi, yi)}ni=1, where xi ∈ X is a feature vector

and yi ∈ Y is a label. We will also write SX = {xi}ni=1 and SY = {yi}ni=1. Throughout

this chapter, we will restrict attention to binary labels, so let Y = {0, 1}. Let P denote

77

the unknown distribution over X × Y. Let H denote a hypothesis class containing binary

classifiers h : X → Y. We assume thatH contains a constant classifier (which will imply that

the “fairness constrained” ERM problem that we define is always feasible). We’ll denote

classification error of hypothesis h by err(h,P) := Pr(x,y)∼P(h(x) ̸= y) and its empirical

classification error by err(h, S) := 1
n

∑n
i=1 1(h(xi) ̸= yi).

We assume there is a set of one or more stakeholders U , such that each stakeholder u ∈ U

is identified with a set of ordered pairs (x, x′) of individuals Cu ⊆ X 2: for each (x, x′) ∈ Cu,

stakeholder u thinks that x′ should be treated as well as x or better, i.e. ideally that for the

learned classifier h, the classification h(x′) ≥ h(x) (we will ask that this hold in expectation

if the classifier is randomized, and will relax it in various ways). For each ordered pair

(x, x′), let wx,x′ be the fraction of stakeholders who would like individual x to be treated as

well as x′: that is, wx,x′ =
|{u|(x,x′)∈Cu}|

|U| . Note that if (x, x′) ∈ Cu and (x′, x) ∈ Cu, then the

stakeholder wants x and x′ to be treated similarly in that ideally h(x) = h(x′).

In practice, we will not have direct access to the sets of ordered pairs Cu corresponding to

the stakeholders u, but we may ask them whether particular ordered pairs are in this set

(see Section 4.6 for details about how we actually query human subjects). We model this

by imagining that we present each stakeholder with a random set of pairs A ⊆ [n]2, and for

each ordered pair (xi, xj), ask if xj should not be treated worse than xi; we learn the set

of ordered pairs in A ∩ Cu for each u. Define the empirical constraint set Ĉu = {(xi, xj) ∈

Cu}∀(i,j)∈A and ŵxixj =
|{u|(x,x′)∈Ĉu}|

|U| , if (i, j) ∈ A and 0 otherwise. We write that Ĉ = ∪uĈu.

For brevity, we will sometimes write wij instead of wxi,xj . Note that ŵij = wij for every

(i, j) ∈ A.

Our goal will be to find the distribution over classifiers from H that minimizes classification

error, while satisfying the stakeholders’ fairness preferences, captured by the constraints C.

To do so, we’ll try to find D, a probability distribution over H, that minimizes the training

error and satisfies the stakeholders’ empirical fairness constraints, Ĉ. For convenience, we

denote the expected classification error of D as err(D,P) := Eh∼D[err(h,P)] and likewise

78

its expected empirical classification error as err(D,S) := Eh∼D[err(h, S)]. We say that any

distribution D over classifiers satisfies (γ, η)-approximate subjective fairness if it is a feasible

solution to the following constrained empirical risk minimization problem:

min
D∈∆H,αij≥0

err(D,S) (4.1)

such that ∀(i, j) ∈ [n]2 : E
h∼D

[h(xi)− h(xj)] ≤ αij + γ (4.2)∑
(i,j)∈[n]2

ŵijαij
|A|

≤ η. (4.3)

This “Fair ERM” problem, whose feasible region we denote by Ω(S, ŵ, γ, η), has decision

variables D and {αij}, representing the distribution over classifiers and the “fairness vi-

olation” terms for each pair of training points, respectively. The parameters γ and η are

constants which represent the two different “knobs” we have at our disposal to quantita-

tively relax the fairness constraint, in an ℓ∞ and ℓ1 sense, respectively.

The parameter γ defines, for any ordered pair (xi, xj), the maximum difference between the

probabilities that xi and xj receive positive labels without constituting a fairness violation.

The parameter αij captures the “excess fairness violation” beyond γ for (xi, xj). The pa-

rameter η upper bounds the sum of these allotted excess fairness violation terms αij , each

weighted by the proportion of judges who perceive they ought to be treated similarly ŵij

and normalized with the total number of pairs presented |A|. Thus, η bounds the expected

degree of dissatisfaction of the panel of stakeholders U , over the random choice of an ordered

pair (xi, xj) ∈ A and the randomness of their classification. We iterate over all (i, j) ∈ [n]2

(not just those in Ĉ) because ŵij = 0 if no judge prefers xi should be classified as well as

xj .

To better understand γ and η, we consider them in isolation. First, suppose we set γ = 0.

Then, any difference in probabilities of positive classification between pairs is deemed a

fairness violation. So, if we choose (D, {αij}) such that the sum of weighted differences in

79

positive classification probabilities exceeds η, i.e.

∑
(i,j)∈[n]2

ŵij Eh∼D[h(xi)− h(xj)]
|A|

> η,

then this is an infeasible solution. For example, 50% of stakeholders think that Serena

Williams (s) should be treated as well as James Blake (b), 70% of stakeholders think

Williams should be treated as well as John McEnroe (m), and no other constraints (|A| = 6);

if Williams receives a good label 50% of the time, Blake 80%, McEnroe 90%, and η = 0.07,

this is an η-fairness violation, since

(ŵbs E[h(b)− h(s)] + ŵms E[h(m)− h(s)]) /|A|

= (0.5(0.8− 0.5) + 0.7(0.9− 0.5)) /6 ≈ 0.071 > 0.07 = η.

Second, suppose that η = 0. Then, for any (xi, xj) ∈ C (for which ŵij > 0), if the expected

difference in labels exceeds γ, i.e. Eh∼D[h(xi)−h(xj)] > γ, then this is an infeasible solution.

4.3.1. Fairness Loss

Our goal is to develop an algorithm that will minimize its empirical error err(D,S), while

satisfying the empirical fairness constraints Ĉ. The standard VC dimension argument states

that empirical classification error will concentrate around the true classification error: we

hope to show the same kind of generalization for fairness as well. To do so, we first define

fairness loss with respect to our elicited fairness preferences here.

For some fixed randomized hypothesis D ∈ ∆H and w, define γ-fairness loss between an

ordered pair as

ΠD,w,γ
((
x, x′

))
= wx,x′ max

(
0, E
h∼D

[
h(x)− h(x′)

]
− γ
)

80

For a set of pairs M ⊂ X × X , the γ-fairness loss of M is defined to be:

ΠD,w,γ(M) =
1

|M |
∑

(x,x′)∈M

ΠD,w,γ
((
x, x′

))

This is the expected degree to which the difference in classification probability for a ran-

domly selected pair exceeds the allowable budget γ, weighted by the fraction of stake-

holders who think that x′ should be treated as well as x. By construction, the empirical

fairness loss is bounded by η (i.e. ΠD,w,γ(M) ≤
∑

ij
ŵijαij

|A| ≤ η), and we show in Section

4.5, the empirical fairness should concentrate around the true fairness loss ΠD,w,γ(P) :=

Ex,x′∼P2 [ΠD,w,γ(x, x
′)].

4.3.2. Cost-sensitive Classification

In our algorithm, we will make use of a cost-sensitive classification (CSC) oracle. An

instance of CSC problem can be described by a set of costs {(xi, c0i , c1i)}ni=1 and a hy-

pothesis class, H. Costs c0i and c1i correspond to the cost of labeling xi as 0 and 1 re-

spectively. Invoking a CSC oracle on {(xi, c0i , c1i)}ni=1 returns a hypothesis h∗ such that

h∗ ∈ argminh∈H
∑n

i=1

(
h(xi)c

1
i + (1− h(xi)) c0i

)
. We say that an algorithm is oracle-efficient

if it runs in polynomial time assuming access to a CSC oracle.

4.4. Empirical Risk Minimization

In this section, we give an oracle-efficient algorithm 5 for approximately solving our (in-

sample) constrained empirical risk minimization problem. Details are deferred to Appendix 4.A.

We prove the following theorem:

Theorem 11. Fix parameters ν, Cτ , Cλ that serve to trade off running time with approx-

imation error. There is an efficient algorithm that makes T =

(
2Cλ

√
log(n)+Cτ

ν

)2

CSC

oracle calls and outputs a solution (D̂, α̂) with the following guarantee. The objective value

is approximately optimal:

err(D̂, S) ≤ min
(D,α)∈Ω(S,ŵ,γ,η)

err(D,S) + 2ν.

81

And the constraints are approximately satisfied: Eh∼D̂[h(xi)−h(xj)] ≤ α̂ij+γ+
1+2ν
Cλ

, ∀(i, j) ∈

[n]2 and 1
|A|
∑

(i,j)∈[n]2 ŵijα̂ij ≤ η +
1+2ν
Cτ

.

4.4.1. Outline of the Solution

We frame the problem of solving our constrained ERM problem (equations (4.1) through

(4.3)) as finding an approximate equilibrium of a zero-sum game between a primal player

and a dual player, trying to minimize and maximize respectively the Lagrangian of the

constrained optimization problem.

The Lagrangian for our optimization problem is

L(D,α, λ, τ) = err(D,S) +
∑

(i,j)∈[n]2
λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

+ τ

 1

|A|
∑

(i,j)∈[n]2
wijαij − η



For the constraint in equation (4.2), corresponding to the γ-fairness violation for each

ordered pair of individuals (xi, xj), we introduce a dual variable λij . For the constraint (4.3),

which corresponds to the η-fairness violation over all pairs of individuals, we introduce a

dual variable of τ . For brevity, we define vectors λ ∈ Λ and α which are made up of

all the multipliers λij and the excess fairness violation allotments αij , respectively. The

primary player’s action space is (D,α) ∈ (∆H, [0, 1]n2
), and the dual player’s action space

is (λ, τ) ∈ (Rn2
,R).

Solving our constrained ERM problem is equivalent to finding a minmax equilibrium of L:

argmin
(D,α)∈Ω(S,ŵ,γ,η)

err(D,S) = argmin
D∈∆H,α∈[0,1]n2

max
λ∈Rn2 ,τ∈R

L(D,α, λ, τ)

82

Because L is linear in terms of its parameters, Sion’s minimax theorem [88] gives us

min
D∈∆H,α∈[0,1]n2

max
λ∈Rn2 ,τ∈R

L(D,α, λ, τ) = max
λ∈Rn2 ,τ∈R

min
D∈∆H,α∈[0,1]n2

L(D,α, λ, τ).

By a classic result of Freund and Schapire [31], one can compute an approximate equilib-

rium by simulating “no-regret” dynamics between the primal and dual player. “No-regret”

meaning that the average regret –or difference between our algorithm’s plays and the single

best play in hindsight– is bounded above by a term that converges to zero with increasing

rounds.

In our case, we define a zero-sum game wherein the primary player’s plays from action space

(D,α) ∈ (∆H, [0, 1]n2
), and the dual player’s plays from action space (λ, τ) ∈ (Rn2

≥0,R≥0).

In any given round t, the dual player plays first and the primal second. The primal player

can simply best respond to the dual player (see Algorithm 5).

However, since the dual player plays first, they cannot simply best respond to the primal

player’s action. The dual player has to anticipate the primal player’s best response in order

to figure out what to play. Ideally, the dual player would enumerate every possible primal

play and calculate the best dual response. However, this is intractable. So, the dual player

updates dual variables {λ, τ} according to no-regret learning algorithms (exponentiated

gradient descent [62] and online gradient descent [102], respectively).

The time-averaged play of both players converges to an approximate equilibrium of the

zero-sum game, where the approximation is controlled by the regret of the dual player. This

approximate equilibrium corresponds to an approximate saddle point for the Lagrangian L,

which is equivalent to an approximate solution to the Fair ERM problem.

We organize the rest of this section as follows. First, for simplicity, we show how the primal

player updates {D,α} (even though the dual player plays first). Second, we show how the

dual player updates {λ, τ}. Finally, we prove that these updates are no-regret and relate

83

the regret of the dual player to the approximation of the solution to the Fair ERM problem.

4.4.2. The Primal Player’s Best Response

In each round t, given the actions chosen by the dual player (λt, τ t), the primal player needs

to best respond by choosing (Dt, αt) such that (Dt, αt) ∈ argmin
D∈∆H,α∈[0,1]n2 L(D,α, λt, τ t).

In Lemma 12, we separate the optimization problem into two: one optimization over hy-

pothesis D and one over violation factor α. In Lemma 14, the primal player updates the

hypothesis D by leveraging a CSC oracle. Given λt, we can set the costs as follows

c0i =
1

n
Eh∼D [1(yi ̸= 0)] c1i =

1

n
Eh∼D [1 (yi ̸= 1)] + (λtij − λtji).

Then, Dt = ht = CSC
(
{(xi, c0i , c1i)}ni=1

)
(we note that the best response is always a deter-

ministic classifier ht).

As for αt, we show in Lemma 13 that the primal player sets αtij = 1 if τ t
wij

|A| − λ
t
ij ≤ 0 and

0 otherwise. We provide the pseudo-code in Algorithm 5.

Algorithm 5 Best Response, BESTρ(λ, τ), for the primal player

Input: training examples S = {xi, yi}ni=1, λ ∈ Λ, τ ∈ T , CSC oracle CSC
for i = 1, . . . , n do

if yi = 0 then
Set c0i = 0
Set c1i =

1
n +

∑
j ̸=i λij − λji

end
else

Set c0i =
1
n

Set c1i =
∑

j ̸=i λij − λji

end

end
D = CSC(S, c)
for (i, j) ∈ [n]2 do

αij =

{
1 : τ

wij

|A| − λij ≤ 0

0 : τ
wij

|A| − λij > 0.

end
Output: D,α

84

Lemma 12. For fixed λ, τ , the best response optimization for the primal player is separable,

i.e.

argmin
D,α

L(D,α, λ, τ) = argmin
D

Lρ1λ,τ (D)× argmin
α
Lρ2λ,τ (α),

where

Lρ1λ,τ (D) = err(h,D) +
∑

(i,j)∈[n]2
λij E

h∼D
[h(xi)− h(xj)]

and

Lρ2λ,τ (α) =
∑

(i,j)∈[n]2
λij (−αij) + τ

 1

|A|
∑

(i,j)∈[n]2
wijαij


Lemma 13. For fixed λ and τ , the output α from BESTρ(λ, τ) minimizes Lρ2λ,τ

Proof. The optimization

argmin
α
Lρ2λ,τ = argmin

α

∑
(i,j)∈[n]2

λij (−αij) + τ

 1

|A|
∑

(i,j)∈[n]2
wijαij


= argmin

α

∑
(i,j)∈[n]2

−λijαij +
∑

(i,j)∈[n]2
τ
wij
|A|

αij

= argmin
α

∑
(i,j)∈[n]2

αij

(
τ
wij
|A|
− λij

)
.

Note that for any pair (i, j) ∈ [n]2, the term αij ∈ [0, 1]. Thus, when the constant τ
wij

|A|−λij ≤

0, we assign αij as the maximum bound, 1, in order to minimize Lρ2 . Otherwise, when

τ
wij

|A| − λij > 0, we assign αij as the minimum bound, 0.

Lemma 14. For fixed λ and τ , the output D from BESTρ(λ, τ) minimizes Lρ1λ,τ

85

Proof.

argmin
D

Lρ1λ,τ

= argmin
D

err(D,S) +
∑

(i,j)∈[n]2
λij E

h∼D
[h(xi)− h(xj)]

= argmin
D

1

n

n∑
i=1

Eh∼D [1(h(xi) ̸= yi)] +
∑

(i,j)∈[n]2
λij E

h∼D
[h(xi)− h(xj)]

= argmin
D

n∑
i=1

 1

n
Eh∼D [1(h(xi) ̸= yi)] +

∑
j ̸=i

λijh(xi)−
∑
j ̸=i

λjih(xi)


= argmin

D

n∑
i=1

 1

n
Eh∼D [1(h(xi) ̸= yi)] +

∑
j ̸=i

h(xi) (λij − λji)

 .

For each i ∈ [n], we assign the cost

c
h(xi)
i =

1

n
Eh∼D [1(h(xi) ̸= yi)] + h(xi) (λij − λji) .

Note that the cost depends on whether yi = 0 or 1. For example, take yi = 1 and h(xi) = 0.

The cost

c
h(xi)
i = c0i =

1

n
Eh∼D [1(h(xi) ̸= yi)] +

∑
j ̸=i

h(xi) (λij − λji)

=
1

n
· 1 +

∑
j ̸=i

0 · (λij − λji) =
1

n

4.4.3. The Dual Player’s No-regret Updates

In order to reason about convergence we need to restrict the dual player’s action space to lie

within a bounded ℓ1 ball, defined by the parameters Cτ and Cλ that appear in our theorem

86

— and serve to trade off running time with approximation quality:

Λ =
{
λ ∈ Rn

2

+ : ∥λ∥1 ≤ Cλ
}
, T = {τ ∈ R+ : ∥τ∥1 ≤ Cτ} .

The dual player will use exponentiated gradient descent [62] to update λ and online gradient

descent [102] to update τ , where the reward function will be defined as:

rλ(λ
t) =

∑
(i,j)∈[n]2

λtij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

and

rλ(τ
t) = τ t

 1

|A|
∑

(i,j)∈[n]2
wijαij − η

 .

We provide the pseudo-code in Algorithm 6 but defer some of the proofs to Appendix 4.A.

Algorithm 6 No-Regret Dynamics

Input: training examples {xi, yi}ni=1, bounds Cλ and Cτ , time horizon T , step sizes µλ and
{µtτ}t=1

T

Set θ01 = 0 ∈ Rn2

Set τ0 = 0
for t = 1, 2, . . . , T do

Set λtij = Cλ
exp θt−1

ij

1+
∑

i′,j′∈[n]2 exp θt−1
i′j′

for all pairs (i, j) ∈ [n]2

Set τ t = proj[0,Cτ]

(
τ t−1 + µtτ

(
1
|A|
∑

i,j wijα
t−1
ij − η

))
Dt, αt ← BESTρ(λ

t, τ t)
for (i, j) ∈ [n]2 do

θtij = θt−1
ij + µt−1

λ

(
Eh∼Dt [h(xi)− h(xj)]− αtij − γ

)
end

end

Output: 1
T

∑T
t=1D

t

Lemma 15. For fixed D and α, the best response optimization for the dual player is sepa-

rable, i.e.

argmax
λ∈Λ,τ∈T

L(D,α, λ, τ) = argmax
λ∈Λ

Lψ1

D,α(λ)× argmax
τ∈T

Lψ2

D,α(τ),

87

where

Lψ1

D,α(λ) =
∑

(i,j)∈[n]2
λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

and

Lψ2

D,α(τ) = τ

 1

|A|
∑

(i,j)∈[n]2
wijαij − η

 .

Lemma 16. Running online gradient descent for τ t, i.e.

τ t = proj[0,Cτ]

(
τ t−1 + µt−1 · ∇Lψ2

Dt,αt

(
τ t−1

))
,

with step size µt = Cτ√
T

yields the following regret

max
τ∈T

T∑
t=1

Lψ2

Dt,αt(τ)−
T∑
t=1

Lψ2

Dt,αt

(
τ t
)
≤ Cτ

√
T .

Proof. First, note that ∇Lψ2

Dt,αt

(
τ t−1

)
= 1

W

∑
ij wijα

t−1
ij − η and

τ t = proj[0,Cτ]

τ t−1 + µtτ

 1

W

∑
ij

wijα
t−1
ij − η

 .

From [102], we find that the regret of this online gradient descent (translated into our

notations) is bounded as follows:

max
τ∈T

T∑
t=1

Lψ2

Dt,αt(τ)−
T∑
t=1

Lψ2

Dt,αt

(
τ t
)
≤ C2

τ

2µTτ
+

∣∣∣∣∣∣∇Lψ2

D,α

∣∣∣∣∣∣2
2

T∑
t=1

µtτ , (4.4)

where the bound on our target τ term is Cτ , the gradient of our cost function at round t is

∇Lψ2

Dt,αt

(
τ t−1

)
, and the bound

∣∣∣∣∣∣∇Lψ2

D,α

∣∣∣∣∣∣ = supτ∈T , t∈[T]

∣∣∣∣∣∣∇Lψ2

Dt,αt

(
τ t−1

)∣∣∣∣∣∣ . To prove the

above lemma, we first need to show that this bound
∣∣∣∣∣∣∇Lψ2

D,α

∣∣∣∣∣∣ ≤ 1.

Since wij , αij , η ∈ [0, 1] for all pairs (i, j), the Lagrangian 1
|A|
∑

ij wijαij−η =
∑

ij wijαij

|A| −η ≤

88

1. For all t, the gradient

∣∣∣∇Lψ2

Dt,αt

(
τ t−1

)∣∣∣ = ∑
ij wijα

t−1
ij

|A|
− η ≤ 1.

Thus, ∣∣∣∇Lψ2

D,α

∣∣∣ ≤ 1.

Note that if we define µtτ = Cτ√
T
, then the summation of the step sizes is equal to

T∑
t=1

µtτ = Cτ
√
T

Substituting these two results into inequality (4.4), we get that the regret

max
τ∈T

T∑
t=1

Lψ2

Dt,αt(τ)−
T∑
t=1

Lψ2

Dt,αt

(
τ t
)
≤ C2

τ

2
(
Cτ /

√
T
) +

1

2
Cτ
√
T = Cτ

√
T

Lemma 17. Running exponentiated gradient descent for λt yields the following regret:

max
λ∈Λ

T∑
t=1

Lψ1

Dt,αt(λ)−
T∑
t=1

Lψ1

Dt,αt

(
λt
)
≤ 2Cλ

√
T log n.

Proof. In each round, the dual player gets to charge either some (i, j) constraint or no

constraint at all. In other words, he is presented with n2 +1 options. Therefore, to account

for the option of not charging any constraint, we define vector λ′ = (λ, 0), where the last

coordinate, which will always be 0, corresponds to the option of not charging any constraint.

Next, we define the reward vector ζt for λ′t as

ζt =

((
E

h∼Dt
[h(xi)− h(xj)]− αtij − γ

)
i,j∈[n]2

, 0

)
.

89

Hence, the reward function is

r(λ′t) = ζt · λ′t = Lψ1

Dt,αt

(
λt
)
.

The gradient of the reward function is

∇r(λ′t) =
((
∇r(λt)

)
i,j∈[n2]

, 0
)
=
(
ζt, 0

)

Note that the L-∞ norm of the gradient is bounded by 1, i.e.

∣∣∣∣∇r(λ′t)∣∣∣∣∞ ≤ 1

because for any t, each respective component of the gradient, E
h∼Dt

[h(xi)− h(xj)]−αtij −γ,

is bounded by 1.

Here, by the regret bound of [62], we obtain the following regret bound:

max
λ∈Λ

T∑
t=1

Lψ1

Dt,αt(λ)−
T∑
t=1

Lψ1

Dt,αt(λ
t)

≤ log n

µ
+ µ

∣∣∣∣λ′∣∣∣∣2
1

∣∣∣∣∇r(λ′)∣∣∣∣2∞ T

≤ log n

µ
+ µC2

λT.

If we take µ = 1
Cλ

√
logn
T , the regret is bounded as follows:

max
λ∈Λ

T∑
t=1

Lψ1

Dt,αt(λ)−
T∑
t=1

Lψ1

Dt,αt(λ
t) ≤ 2Cλ

√
T log n. (4.5)

90

Remark 4. If the primal learner’s approximate best response satisfies

T∑
t=1

L
(
Dt, αt, λt, τ t

)
− min
D∈∆(H),α∈[0,1]n2

T∑
t=1

L
(
D,α, λt, τ t

)
≤ ξρT

along with dual player’s regret of ξρT , then
(
D̄, ᾱ, λ̄, τ̄

)
is an (ξρ + ξψ)-approximate solution

Theorem 12. Let
(
D̂, α̂, λ̂, τ̂

)
be a v-approximate solution to the Lagrangian problem.

More specifically,

L
(
D̂, α̂, λ̂, τ̂

)
≤ min

D∈∆(H),α∈[0,1]n2
L
(
D,α, λ̂, τ̂

)
+ v,

and

L(D̂, α̂, λ̂, τ̂) ≥ max
λ∈Λ,τ∈T

L
(
D̂, α̂, λ, τ

)
− v.

Then, err
(
D̂, S

)
≤ OPT + 2v. And as for the constraints, we have

E
h∼D̂

[h(xi)− h(xj)] ≤ α̂ij + γ +
1 + 2v

Cλ
,∀(i, j) ∈ [n]2

1

|A|
∑

(i,j)∈[n]2
ŵijα̂ij ≤ η +

1 + 2v

Cτ
.

Proof. Let (D∗, α∗) = argmin(D,α)∈Ω(S,ŵ,γ,η) err(D,S), the optimal solution to the Fair

ERM. Also, define

penaltyS,w (D,α, λ, τ)

:=
∑
(i,j)

λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)
+ τ

 1

|A|
∑
(i,j)

ŵijαij − η

 .

Note that for any D and α, maxλ∈Λ,τ∈T penaltyS,ŵ(D,α, λ, τ) ≥ 0 because one can always

91

set λ = 0 and τ = 0.

max
λ∈Λ,τ∈T

L
(
D̂, α̂, λ, τ

)
≤ L

(
D̂, α̂, λ̂, τ̂

)
+ v

≤ min
D∈∆(H),α∈[0,1]n2

L
(
D,αλ̂, τ̂

)
+ 2v

≤ L
(
D∗, α∗, λ̂, τ̂

)
+ 2v

= err (D∗, S) + penaltyS,ŵ

(
D∗, α∗, λ̂, τ̂

)
+ 2v

≤ err (D∗, S) + 2v

The first inequality and the third inequality are from the definition of v-approximate saddle

point, and the second to last equality comes from the fact that (D∗, a∗) is a feasible solution.

Now, we consider two cases when(D̂, α̂) is a feasible solution and when it’s not.

1.
(
D̂, α̂

)
∈ Ω (S, ŵ, γ, η)

In this case, maxλ∈Λ,τ∈T penaltyS,ŵ

(
D̂, α̂, λ, τ

)
= 0 because by the definition of being

a feasible solution, we have Eh∼D [h(xi)− h(xj)] ≤ αij + γ,∀(i, j) ∈ [n]2 and

1
|A|
∑

(i,j)∈[n]2 ŵijαij ≤ η. Hence, maxλ∈Λ,τ∈T L
(
D̂, α̂, λ, τ

)
= err

(
D̂, S

)
. Therefore,

we have err
(
D̂, S

)
≤ err (D∗, S) + 2v.

2.
(
D̂, α̂

)
/∈ Ω (S, ŵ, γ, η)

max
λ∈Λ,τ∈T

L
(
D̂, α̂, λ, τ

)
= err

(
D̂, S

)
+ max
λ∈Λ,τ∈T

penaltyS,ŵ

(
D̂, α̂, λ, τ

)
.

Therefore, err
(
D̂, S

)
≤ err (D∗, S) + 2v because

max
λ∈Λ,τ∈T

penaltyS,ŵ

(
D̂, α̂, λ, τ

)
≥ 0.

Now, we show that even when (D̂, α̂) is not a feasible solution, the constraints are

92

violated only by so much. Note that

max
λ∈Λ,τ∈T

L(D̂, α̂, λ, τ)

= err(D̂, S) + max
λ∈Λ,τ∈T

penaltyS,ŵ(D̂, α̂, λ, τ) ≤ err(D∗, S) + 2v

Therefore,

max
λ∈Λ,τ∈T

penaltyS,ŵ(D̂, α̂, λ̂, τ̂) ≤ err(D∗, S)− err(D̂, S) + 2v

max
λ∈Λ,τ∈T

penaltyS,ŵ(D̂, α̂, λ̂, τ̂) ≤ 1 + 2v

Let λ∗, τ∗ = BESTψ

(
D̂, α̂

)
, which minimizes the function as shown in Lemma 18

and 19. Now, consider

∑
(i,j)

λ∗ij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)
+ τ∗

 1

|A|
∑
(i,j)

ŵijαij − η

 ≤ 1 + 2v

Say (i∗, j∗) = argmax(i,j)∈[n2] E
h∼D

[h(xi)− h(xj)]− αij − γ. Remember that if

E
h∼D

[h(xi∗)− h(xj∗)]− αi∗j∗ − γ > 0,

then λ∗i∗j∗ = Cτ and 0 for the other coordinates and else, it’s just a zero vector. Also,

τ = Cτ if
∑

(i,j) ŵijαij − η > 0 and 0 otherwise. Thus,

∑
(i,j)

λ∗ij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)
≥ 0

τ∗

 1

|A|
∑
(i,j)

ŵijαij − η

 ≥ 0

93

Therefore, we have

max
i,j∈[n]2

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)
≤ 1 + 2v

Cλ
,

and

1

|A|
∑

(i,j)∈[n]2
ŵijα̂ij ≤ η +

1 + 2v

Cτ

Now, the proof of Theorem 11 is simply plugging in the best response guarantee of the

learner, Lemma 13 and 14, and the no-regret guarantee of the auditor, Lemma 16 and 17,

into Theorem 12. We defer the actual proof to Appendix 4.A.

4.5. Generalization

In this section, we show that fairness loss generalizes out-of-sample. (Error generalization

follows from the standard VC-dimension bound, which — because it is a uniform convergece

statement is unaffected by the addition of fairness constraints. See Appendix 4.B for the

standard statement.)

Proving that the fairness loss generalizes doesn’t follow immediately from a standard VC-

dimension argument for several reasons: it is not linearly separable, but defined as an average

over non-disjoint pairs of individuals in the sample. The difference between empirical fair-

ness loss and true fairness loss of a randomized hypothesis D ∈ ∆H is also a non-convex

function of the supporting hypotheses h, and so it is not sufficient to prove a uniform con-

vergence bound merely for the base hypotheses in our hypothesis class H. We circumvent

these difficulties by making use of an ϵ-net argument, together with an application of a

concentration inequality, and an application of Sauer’s lemma. Briefly, we show that with

respect to fairness loss, the continuous set of distributions over classifiers have an ϵ-net

of sparse distributions. Using the two-sample trick and Sauer’s lemma, we can bound the

number of such sparse distributions. The end result is the following generalization theorem:

94

Theorem 13. Let S consists of n i.i.d points drawn from P and let M represent a set of

m pairs randomly drawn from S × S. Then we have:

Pr
S∼Pn

M∼(S×S)m

(
sup
D∈∆H

∣∣∣∣∣ΠD,w,γ(M)− E
(x,x′)∼P2

[
ΠD,w,γ(x, x

′)
]∣∣∣∣∣ > 2ϵ

)

≤

(
8 ·
(
e · 2n
d

)dk
exp

(
−nϵ2

32

)
+

(
e · 2n
d

)dk′
exp

(
−8mϵ2

))
,

where k′ = 2 ln(2m)
ϵ2

+ 1, k = ln(2n2)
8ϵ2

+ 1, and d is the VC-dimension of H.

See Appendix 4.B for the proof. To interpret this theorem, note that the right hand side

(the probability of a failure of generalization) begins decreasing exponentially fast in the

data and fairness constraint sample parameters n andm as soon as n ≥ Ω(d log(n) log(n/d))

and m ≥ Ω(d log(m) log(n/d)).

4.6. A Behavioral Study

The framework and algorithm we have provided can be viewed as a tool to elicit and en-

force a notion of fairness defined by a collection of stakeholders. In this section, we describe

preliminary results from a human-subject study we performed in which pairwise fairness

preferences were elicited and enforced by our algorithm.

We note that the subjects included in our empirical study were not stakeholders affected

by the algorithm we used (the COMPAS algorithm). Thus, our results should not be inter-

preted as cogent for any policy modifications to the COMPAS algorithm. We instead report

our empirical findings primarily to showcase the performance of our algorithm and to act

as a template for what should be reported if our framework were applied with relevant

stakeholders (for example, if fairness preferences about COMPAS data were elicited from

inmates).9

The framework and algorithm we have provided can be viewed as a potentially powerful

tool for empirically studying subjective individual fairness as a behavioral phenomenon.

9We omit such an empirical study due to the difficulty of accessing such stakeholders and leave this for
future work.

95

In this section we describe preliminary results from a human-subject study we performed

in which subjective fairness was elicited and then enforced by our algorithm.

4.6.1. Data

Our study used the COMPAS recidivism data gathered by ProPublica 10 in their celebrated

analysis of Northepointe’s risk assessment algorithm [4]. This data consists of defendants

from Broward County in Florida between 2013 to 2014. For each defendant the data consists

of sex (male, female), age (18-96), race (African-American, Caucasian, Hispanic, Asian, Na-

tive American), juvenile felony count, juvenile misdemeanor count, number of other juvenile

offenses, number of prior adult criminal offenses, the severity of the crime for which they

were incarcerated (felony or misdemeanor), as well as the outcome of whether or not they

did in fact recidivate. Recidivism is defined as a new arrest within 2 years, not counting

traffic violations and municipal ordinance violations.

4.6.2. Subjective Fairness Elicitation

Figure 3: Screenshot of sample subjective fairness elicitation question posed to human sub-
jects.

We implemented our fairness framework via a web app that elicited subjective fairness

notions from 43 undergraduates at a major research university. After reading a document

describing the data and recidivism prediction task, each subject was presented with 50

randomly chosen pairs of records from the COMPAS data set and asked whether in their

opinion the two individuals should treated (predicted) equally or not. Importantly, the

subjects were shown only the features for the individuals, and not their actual recidivism

10The data can be accessed on ProPublica’s Github page here. We cleaned the data as in the ProPublica
study, removing any records with missing data. This left 5829 records, where the base rate of two-year
recidivism was 46%.

96

https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv

outcomes, since we sought to elicit subjects’ fairness notions regarding the predictions of

those outcomes. While absolutely no guidance was given to subjects regarding fairness,

the elicitation framework allows for rich possibilities. For example, subjects could choose

to ignore demographic factors or criminal histories entirely if they liked, or a subject who

believes that minorities are more vulnerable to overpolicing could discount their criminal

histories relative to Caucasians in their pairwise elicitations.

For each subject, the pairs they identified to be treated equally were taken as constraints on

error minimization with respect to the actual recidivism outcomes over the entire COMPAS

dataset, and our algorithm was applied to solve this constrained optimization problem, us-

ing a linear threshold heuristic as the underlying learning oracle [59]. We ran our algorithm

with η = 0 and variable γ in Equations (4.1) through (4.3), which represents the strongest

enforcement of subjective fairness — the difference in predicted values must be at most γ

on every pair selected by a subject. Because the issues we are most interested in here (con-

vergence, tradeoffs with accuracy, and heterogeneity of fairness preferences) are orthogonal

to generalization — and because we prove VC-dimension based generalization theorems —

for simplicity, the results we report are in-sample.

4.6.3. Results

Since our algorithm relies on a learning heuristic for which worst-case guarantees are not

possible, the first empirical question is whether the algorithm converges rapidly on the

behavioral data. We found that it did so consistently; a typical example is Figure 4a, where

we show the trajectories of model error vs. fairness violation for a particular subject’s data

for variable values of the input γ (horizontal lines). After 1000 iterations, the algorithm has

converged to the optimal errors subject to the allowed γ.

Perhaps the most basic behavioral questions we might ask involve the extent and nature of

subject variability. For example, do some subjects identify constraint pairs that are much

harder to satisfy than other subjects? And if so, what factors seem to account for such

variation?

97

(a) (b) (c)

(d) (e)

Figure 4: (a) Sample algorithm trajectory for a particular subject at various γ. (b) Sample
subjective fairness Pareto curves for a sample of subjects. (c) Scatterplot of number of con-
straints specified and number of opposing constraints vs. error at γ = 0.3. (d) Scatterplot of
number of constraints where the true labels are different vs. error at γ = 0.3. (e) Correlation
between false positive rate difference and γ for racial groups.

Figure 4b shows that there is indeed considerable variation in subject difficulty. For each of

the 43 subjects, we have plotted the error vs. fairness violation Pareto curves obtained by

varying γ from 0 (pairs selected by subjects must have identical probabilistic predictions of

recidivism) to 1.0 (no fairness enforced whatsoever). Since our model space is closed under

probabilistic mixtures, the worst-case Pareto curve is linear, obtained by all mixtures of

the error-optimal model and random predictions. Easier constaint sets are more convex.

We see in the figure that both extremes are exhibited behaviorally — some subjects yield

linear or near-linear curves, while others permit huge reductions in unfairness for only slight

increases in error, and virtually all the possibilities in between are realized as well. 11

Since each subject was presented with 50 random pairs and was free to constrain as many or

as few as they wished, it is natural to wonder if the variation in difficulty is explained simply

by the number of constraints chosen. In Figure 4c we show a scatterplot of the the number

11The slight deviations from true convexity are due to approximate rather than exact convergence.

98

of constraints selected by a subject (x axis) versus the error obtained (y axis) for γ = 0.3

(an intermediate value that exhibits considerable variation in subject error rates) for all 43

subjects. While we see there is indeed strong correlation (approximately 0.69), it is far from

the case that the number of constraints explains all the variability. For example, amongst

subjects who selected approximately 16 constraints, the resulting error varies over a range

of nearly 8%, which is over 40% of the range from the optimal error (0.32) to the worst

fairness-constrained error (0.5). More surprisingly, when we consider only the ‘opposing’

constraints, pairs of points with different true labels, the correlation (0.489) seems to be

weaker. Enforcing a classifier to predict similarly on a pair of points with different true labels

should increase the error, and yet, it is less correlated with error than the raw number of

constraints. This suggests that the variability in subject difficulty is due to the nature of

the constraints themselves rather than their number or disagreement with the true labels.

It is also interesting to consider the collective force of the 1432 constraints selected by all

43 subjects together, which we can view as a “fairness panel” of sorts. Given that there

are already individual subjects whose constraints yield the worst-case Pareto curve, it is

unsurprising that the collective constraints do as well. But we can exploit the flexibility of

our optimization framework in Equations (4.1) through constraint (4.3), and let γ = 0.0

and vary only η, thus giving the learner discretion in which subjects’ constraints to discount

or discard at a given budget η. In doing so we find that the unconstrained optimal error

can be obtained while having the average (exact) pairwise constraint be violated by only

roughly 25%, meaning roughly that only 25% of the collective constraints account for all

the difficulty.

Finally, we can investigate the extent to which behavioral subjective fairness notions align

with more standard statistical fairness definitions, such as equality of false positive rates.

For instance, for each subject and a pair of racial groups, we take the absolute difference

in false positive rates of the classifier at γ ∈ {0.0, 0.1, . . . , 1.0} and calculate the correlation

coefficient between realized values of γ (which measure violation of subjective unfairness)

99

and the false positive rate differences. Figure 4e shows the average correlation coefficient

across subjects for each pair of racial groups. We note that subjective fairness correlates with

a smaller gap between the false positive rates across Caucasians and African Americans:

but correlates substantially less for other pairs of racial groups.

We leave a more complete investigation of our behavioral study for future work, including

the detailed nature of subject variability and further comparison of behavioral subjective

fairness to standard algorithmic fairness notions.

100

Appendix

4.A. Missing Details from Section 4.4

4.A.1. Primal Player’s Best Response

Lemma 12. For fixed λ, τ , the best response optimization for the primal player is separable,

i.e.

argmin
D,α

L(D,α, λ, τ) = argmin
D

Lρ1λ,τ (D)× argmin
α
Lρ2λ,τ (α),

where

Lρ1λ,τ (D) = err(h,D) +
∑

(i,j)∈[n]2
λij E

h∼D
[h(xi)− h(xj)]

and

Lρ2λ,τ (α) =
∑

(i,j)∈[n]2
λij (−αij) + τ

 1

|A|
∑

(i,j)∈[n]2
wijαij


Proof. First, note that α is not dependent on D and vice versa. Thus, we may separate the

101

optimization argminD,α L as such:

argmin
D,α

L(D,α, λ, τ)

= argmin
D,α

err(D,S) +
∑

(i,j)∈[n]2
λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

+ τ

 1

|A|
∑

(i,j)∈[n]2
wijαij − η


= argmin

D
err(D,S) +

∑
(i,j)∈[n]2

λij E
h∼D

[h(xi)− h(xj)]×
∑

(i,j)∈[n]2
λij (−αij)

+ τ

 1

|A|
∑

(i,j)∈[n]2
wijαij


= argmin

D
Lρ1λ,τ (D)× argmin

α
Lρ2λ,τ (α)

4.A.2. Dual Player’s Best Response

Lemma 15. For fixed D and α, the best response optimization for the dual player is sepa-

rable, i.e.

argmax
λ∈Λ,τ∈T

L(D,α, λ, τ) = argmax
λ∈Λ

Lψ1

D,α(λ)× argmax
τ∈T

Lψ2

D,α(τ),

where

Lψ1

D,α(λ) =
∑

(i,j)∈[n]2
λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

and

Lψ2

D,α(τ) = τ

 1

|A|
∑

(i,j)∈[n]2
wijαij − η

 .

102

Proof.

argmax
λ∈Λ,τ∈T

L(D,α, λ, τ)

= argmax
λ∈Λ,τ∈T

E
h∼D

[err(h, S)] +
∑

(i,j)∈[n]2
λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

+ τ

 1

|A|
∑

(i,j)∈[n]2
wijαij − η


= argmax

λ∈Λ

∑
(i,j)∈[n]2

λij

(
E

h∼D
[h(xi)− h(xj)]− αij − γ

)

× argmax
τ∈T

τ

 1

|A|
∑

(i,j)∈[n]2
wijαij − η


= argmax

λ∈Λ
Lψ1

D,α(λ)× argmax
τ∈T

Lψ2

D,α(τ)

Algorithm 7 Best Response, BESTψ(D,α), for the dual player

Input: training examples S = {xi, yi}ni=1, D ∈ ∆(H), α ∈ [0, 1]n
2

λ = 0 ∈ Rn2

(i∗, j∗) = argmax(i,j)∈[n]2 Eh∼D [h(xi)− h(xj)]− αij − γ
if Eh∼D [h(xi∗)− h(xj∗)]− αi∗j∗ − γ ≤ 0 then
λi∗j∗ = Cλ

end

Set τ =

{
0 1

|A|
∑

(i,j)∈[n]2 wijαij − η ≤ 0

Cτ o.w.

Output: λ, τ

Lemma 18. For fixed D and α, the output λ from BESTψ(D,α) minimizes Lψ1

D,α

Proof. Because Lψ1

D,α is linear in terms of λ and the feasible region is the non-negative

orthant bounded by 1-norm, the optimal solution must include putting all the weight to the

pair (i, j) where Eh∼D[h(xi)− h(xj)− αij] is maximized.

Lemma 19. For fixed D and α, the output τ from BESTψ(D,α) minimizes Lψ2

D,α

103

Proof. Because Lψ2

D,α is linear in terms of τ , the optimal solution is trivially to set τ at

either Cτ or 0 depending on the sign.

4.A.3. No-Regret Dynamics

Theorem 14 (Freund and Schapire [31]). Let (D1, α1), . . . , (DT , αT) be the primal player’s

sequence of actions, and (λ1, τ1), . . . , (λT , τT) be the dual player’s sequence of actions. Let

D̄ = 1
T

∑T
t=1D

t, ᾱ = 1
T

∑T
t=1 α

t, λ̄ = 1
T

∑T
t=1 λ

t, and τ̄ = 1
T

∑T
t=1 τ

t. Then, if the regret of

the dual player satisfies

max
λ∈Λ,τ∈T

T∑
t=1

L
(
Dt, αt, λt, τ t

)
−

T∑
t=1

L
(
Dt, αt, λt, τ t

)
≤ ξψT,

and the primal player best responds in each round

(Dt, αt) = argmax
D∈∆(H),α∈[0,1]n2

L
(
D,α, λt, τ t

)
,

then (D̄, ᾱ, λ̄, τ̄) is an ξψ-approximate solution

4.A.4. Omitted Proof of Theorem 11

Theorem 11. Fix parameters ν, Cτ , Cλ that serve to trade off running time with approx-

imation error. There is an efficient algorithm that makes T =

(
2Cλ

√
log(n)+Cτ

ν

)2

CSC

oracle calls and outputs a solution (D̂, α̂) with the following guarantee. The objective value

is approximately optimal:

err(D̂, S) ≤ min
(D,α)∈Ω(S,ŵ,γ,η)

err(D,S) + 2ν.

And the constraints are approximately satisfied: Eh∼D̂[h(xi)−h(xj)] ≤ α̂ij+γ+
1+2ν
Cλ

, ∀(i, j) ∈

[n]2 and 1
|A|
∑

(i,j)∈[n]2 ŵijα̂ij ≤ η +
1+2ν
Cτ

.

Proof. Observe that

L(D,α, λ, τ) = err(D,S) + Lψ1

D,α(λ) + L
ψ2

D,α(τ)

104

By how we constructed Lψ1

D,α and Lψ2

D,α, combining Lemma 16 and 17 yields

max
λ∈Λ,τ∈T

T∑
t=1

L
(
Dt, αt, λt, τ t

)
−

T∑
t=1

L
(
Dt, αt, λt, τ t

)
= max

τ∈T

T∑
t=1

Lψ2

Dt,αt(τ)−
T∑
t=1

Lψ2

Dt,αt

(
τ t
)
+max

λ∈Λ

T∑
t=1

Lψ1

Dt,αt(λ)−
T∑
t=1

Lψ1

Dt,αt

(
λt
)

≤ ξψT,

where ξψ = 2Cλ
√
T logn+Cτ

√
T

T .

Then, theorem 14 tells us that D̄, ᾱ, λ̄, ᾱ form a ξψ-approximate equilibrium, where D̄ =

1
T

∑T
t=1D

t, ᾱ = 1
T

∑T
t=1 α

t, λ̄ = 1
T

∑T
t=1 λ

t, and τ̄ = 1
T

∑T
t=1 τ

t. And finally, with T =(
2Cλ

√
log(n)+Cτ

v

)2

results in ξψ = ν, theorem 12 gives

err(D̂, S) ≤ min
(D,α)∈Ω(S,ŵ,γ,η)

err(D,S) + 2ν.

And as for the constraints,

E
h∼D̂

[h(xi)− h(xj)] ≤ α̂ij + γ +
1 + 2ν

Cλ
,∀(i, j) ∈ [n]2

and

1

|A|
∑

(i,j)∈[n]2
ŵijα̂ij ≤ η +

1 + 2v

Cτ
.

4.B. Missing Details from Section 4.5

4.B.1. Error

Theorem 15 (Kearns and Vazirani [58]). Fix some hypothesis class H and distribution P.

Let S ∼ Pn be a dataset consisting of n examples {xi, yi}ni=1 sampled i.i.d. from P. Then,

105

for any 0 < δ < 1, with probability 1− δ, for every h ∈ H, we have

|err(h,P)− err(h, S)| ≤ O

√V CDIM(H) + log(1δ)

n



4.B.2. Fairness Loss

At a high level, our argument proceeds as follows: using McDiarmid’s inequality, for any

fixed hypothesis, its empirical fairness loss concentrates around its expectation. This ar-

gument extends to an infinite family of hypotheses with bounded VC-dimension via the

standard two-sample trick, together with Sauer’s lemma: the only catch is that we need

to use a variant of McDiarmid’s inequality that applies to sampling without replacement.

However, proving that the fairness loss for each fixed hypothesis h concentrates around

its expectation is not sufficient to obtain the same result for arbitrary distributions over

hypotheses, because the difference between a randomized classifier’s fairness loss and its

expectation is a non-convex function of the mixture weights. To circumvent this issue, we

show that with respect to fairness loss, there is an ϵ-net consisting of sparse distributions

over hypotheses. Once we apply Sauer’s lemma and the two-sample trick, there are only

finitely many such distributions, and we can union bound over them.

We begin by stating the standard version of McDiarmid’s inequality:

Theorem 16 (McDiarmid’s Inequality). Suppose X1, . . . , Xn are independent and f satis-

fies

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci.

Then, for any ϵ > 0,

Pr
X1,...,Xn

(∣∣∣∣f(X1, . . . , Xn)− E
X1,...,Xn

[f(X1, . . . , Xn)]

∣∣∣∣ ≥ ϵ) ≤ 2 exp

(
− 2ϵ2∑n

i=1 c
2
i

)

Lemma 20. Fix a randomized hypothesis D ∈ ∆H. Over the randomness of S ∼ Pn, we

106

have

Pr
S∼Pn

(∣∣∣∣ΠD,w,γ(S × S)− E
S
[ΠD,w,γ(S × S)]

∣∣∣∣ ≥ ϵ) ≤ 2 exp
(
−2nϵ2

)
Proof. Define a slightly modified fairness loss function that depends on each instance instead

of a pair.

Π′
D,w,γ (x1, x2, . . . , xn) =

1

n2

∑
(i,j)∈[n]2

ΠD,w,γ ((xi, xj)) .

Note that Π′
D,w,γ(x1, . . . , xn) = ΠD,w,γ(S × S). The sensitivity of Π′

D,w,γ(x1, x2, . . . , xn) is

1
n , so applying McDiarmid’s inequality yields the above concentration.

Theorem 17. If n ≥ 2 ln(2)
ϵ2

,

Pr
S

(
sup
D∈∆H

∣∣∣∣ΠD,w,γ(S × S)− E
x,x′

[
ΠD,w,γ(x, x

′)
]∣∣∣∣ > ϵ

)
≤ 8 ·

(
e · 2n
d

)dk
exp

(
−nϵ2

32

)

where d is the VC-dimension of H, and k = ln(2n2)
8ϵ2

+ 1.

Proof. First, by linearity of expectation, we note that ES [ΠD,w,γ(S × S)] = Ex,x′ [ΠD,w,γ(x, x′)].

Given S, let D∗
S be some randomized classifier such that

∣∣∣∣ΠD∗
S ,w,γ

(S × S)− E
x,x′

[
ΠD∗

S ,w,γ
(x, x′)

]∣∣∣∣ > ϵ.

If such hypothesis does not exist, let it be some fixed hypothesis in H. We now use standard

symmetrization argument, which allows us to bound the difference between the fairness loss

of our sample S and that of another independent ‘ghost’ sample S′ = (x′1, . . . , x
′
n) instead

107

of bounding the difference between the empirical fairness loss and its expected fairness loss.

Pr
S∼Pn,S′∼Pn

(
sup
D∈∆H

∣∣ΠD,w,γ(S × S)−ΠD,w,γ(S
′ × S′)

∣∣ > ϵ

2

)
≥ Pr

S,S′

(∣∣∣ΠD∗
S ,w,γ

(S × S)−ΠD∗
S ,w,γ

(S′ × S′)
∣∣∣ > ϵ

2

)
≥ Pr

S,S′

(∣∣∣∣ΠD∗
S ,w,γ

(S × S)− E
x,x′

[
ΠD∗

S ,w,γ
(x, x′)

]∣∣∣∣ > ϵ

and

∣∣∣∣ΠD∗,w,γ(S
′ × S′)− E

x,x′

[
ΠD∗,w,γ(x, x

′)
]∣∣∣∣ ≤ ϵ

2

)

= E
S,S′

[
1

(∣∣∣∣ΠD∗
S ,w,γ

(S × S)− E
x,x′

[
ΠD∗

S ,w,γ
(x, x′)

]∣∣∣∣ > ϵ

)

· 1
(∣∣∣∣ΠD∗,w,γ(S

′ × S′)− E
x,x′

[
ΠD∗,w,γ(x, x

′)
]∣∣∣∣ ≤ ϵ

2

)]

= E
S

[
1

(∣∣∣∣ΠD∗
S ,w,γ

(S × S)− E
x,x′

[
ΠD∗

S ,w,γ
(x, x′)

]∣∣∣∣ > ϵ

)

· Pr
S′|S

(∣∣∣∣ΠD∗,w,γ(S
′ × S′)− E

x,x′

[
ΠD∗,w,γ(x, x

′)
]∣∣∣∣ ≤ ϵ

2

)]

≥ Pr
S

(∣∣∣∣ΠD∗
S ,w,γ

(S × S)− E
x,x′

[
ΠD∗

S ,w,γ
(x, x′)

]∣∣∣∣ > ϵ)

)
·
(
1− exp(−nϵ

2

2
)

)
≥ 1

2
Pr
S

(
sup
D∈∆H

∣∣∣∣ΠD,w,γ(S × S)− E
x,x′

[
ΠD,w,γ(x, x

′)
]∣∣∣∣ > ϵ

)

We used Lemma 20 for the second to last inequality, and the last inequality follows from

the theorem’s condition and the definition of D∗
S .

Now, imagine sampling S̄ = 2n points from P, and uniformly choosing n points without

replacement to be S and the remaining n points to be S′. This process is equivalent to

sampling n points from P to form S and another independent set of n points from P to

108

form S′.

Pr
S̄,S,S′

(
sup
D∈∆H

∣∣ΠD,w,γ(S × S)−ΠD,w,γ(S
′ × S′)

∣∣ > ϵ

2

)
=
∑
S̄

Pr
(
S̄
)
Pr
S,S′

(
sup
D∈∆H

∣∣ΠD,w,γ(S × S)−ΠD,w,γ(S
′ × S′)

∣∣ > ϵ

2

∣∣∣∣∣S̄
)

Now, instead of bounding the supremum over ∆H, we pay approximation error of ϵ′ in order

to bound the supremum over H.

Lemma 21. For some fixed data sample S of size n, any D ∈ ∆H can be approximated by

some uniform mixture over k := 2 ln(2n2)
ϵ′2 + 1 hypotheses D̂ = 1

k{h1, . . . , hk} such that for

every (x, x′) ∈ S × S,

∣∣∣∣ E
h∼D

[
h(x)− h(x′)

]
− E
h∼D̂

[
h(x)− h(x′)

]∣∣∣∣ ≤ ϵ′.
Proof. Fix some (x, x′) ∈ S × S. Randomly sample k hypotheses from D: {hi}ki=1 ∼ Dk.

Because for each randomly drawn hypothesis hi ∼ D, the difference in its prediction for x

and x′ is exactly Eh∼D[h(x)− h(x′)], Hoeffding’s inequality yields that

Pr
hi∼D,i∈[k]

(∣∣∣∣∣ E
h∼D

[
h(x)− h(x′)

]
− 1

k

k∑
i=1

[
hi(x)− hi(x′)

]∣∣∣∣∣ > ϵ′

)

≤ 2 exp

(
−2k2ϵ′2

4k

)
= 2 exp

(
−kϵ

′2

2

)
.

However, there are n2 fixed pairs in S×S, and if we distribute the failure property between

n2 pairs and union bound over all of them, we get

Pr
hi∼D,i∈[k]

(
max

(x,x′)∈S×S

∣∣∣∣∣ E
h∼D

[
h(x)− h(x′)

]
− 1

k

k∑
i=1

[hi(x)− hi(x′)]

∣∣∣∣∣ > ϵ′

)
≤ 2n2 exp

(
−kϵ

′2

2

)
.

109

In order to achieve non-zero probability of having

∣∣∣∣∣ E
h∼D

[
h(x)− h(x′)

]
− 1

k

k∑
i=1

[hi(x)− hi(x′)]

∣∣∣∣∣ ≤ ϵ′,∀(x, x′) ∈ S × S,
we need to make sure 2n2 exp

(
−kϵ′2

2

)
< 1 or k >

2 ln(2n2)
ϵ′2 .

Corollary 2. For some fixed data sample S, any D ∈ ∆H can be approximated by a uniform

mixture of k := 2 ln(2n2)
ϵ′2 + 1 hypotheses D̂ = 1

k{h1, . . . , hk} such that

∣∣∣ΠD,w,γ(S × S)−ΠD̂,w,γ(S × S)
∣∣∣ ≤ ϵ′

Proof. It simply follows from Lemma 21 and the fact that max (0,Eh∼D [h(xi)− h(xj)]− γ)

is 1-Lipschitz in terms of Eh∼D[h(xi)− h(xj)].

Using Corollary 2 and using Sauer’s lemma that bounds the total number of possible label-

ings by H over 2n points to be
(
e·2n
d

)d
, we can show

∑
S̄

Pr
(
S̄
)
Pr
S,S′

(
sup
D∈∆H

∣∣ΠD,w,γ(S × S)−ΠD,w,γ(S
′ × S′)

∣∣ > ϵ

2

∣∣∣ S̄)

≤
∑
S̄

Pr
(
S̄
)
Pr
S,S′

(
sup
D̂∈Hk

∣∣∣ΠD̂,w,γ(S × S)−ΠD̂,w,γ(S
′ × S′)

∣∣∣ > ϵ

2
+ ϵ′

∣∣∣ S̄)

≤
∑
S̄

Pr
(
S̄
)
·
(
e · 2n
d

)dk
sup
D̂∈Hk

Pr
S,S′

(∣∣∣ΠD̂,w,γ(S × S)−ΠD̂,w,γ(S
′ × S′)

∣∣∣ > ϵ

2
+ ϵ′

∣∣∣ S̄)

Now, for any D̂, we will try to bound the probability that the difference in fairness loss

between S and S′ is big. We do so by union bounding over cases where both of them deviate

from its mean by too much.

110

If we have ∣∣∣ΠD̂,w,γ(S × S)− ES|S̄ [ΠD̂,w,γ(S × S)]∣∣∣ ≤ ϵ

4
+
ϵ′

2∣∣∣ΠD̂,w,γ(S′ × S′)− ES|S̄
[
ΠD̂,w,γ(S × S)

]∣∣∣ ≤ ϵ

4
+
ϵ′

2
,

then
∣∣∣ΠD̂,w,γ(S × S)−ΠD̂,w,γ(S

′ × S′)
∣∣∣ ≤ ϵ

2 + ϵ′. In other words,

Pr
S,S′

(∣∣∣ΠD̂,w,γ(S × S)−ΠD̂,w,γ(S
′ × S′)

∣∣∣ ≤ ϵ

2
+ ϵ′

∣∣∣ S̄)
≥ Pr

S,S′

(∣∣∣ΠD̂,w,γ(S × S)− ES|S̄ [ΠD̂,w,γ(S × S)]∣∣∣ ≤ ϵ

4
+
ϵ′

2
and

∣∣∣ΠD̂,w,γ(S′ × S′)− ES|S̄
[
ΠD̂,w,γ(S × S)

]∣∣∣ ≤ ϵ

4
+
ϵ′

2

∣∣∣∣∣S̄
)
.

Therefore, by looking at the compliment probabilities, we have

Pr
S,S′

(∣∣∣ΠD̂,w,γ(S × S)−ΠD̂,w,γ(S
′ × S′)

∣∣∣ > ϵ

2
+ ϵ′

∣∣∣ S̄)
≤ Pr

S,S′

(∣∣∣ΠD̂,w,γ(S × S)− ES|S̄ [ΠD̂,w,γ(S × S)]∣∣∣ > ϵ

4
+
ϵ′

2

or
∣∣∣ΠD̂,w,γ(S′ × S′)− ES|S̄

[
ΠD̂,w,γ(S × S)

]∣∣∣ > ϵ

4
+
ϵ′

2

∣∣∣ S̄)

≤ 2Pr
S

(∣∣∣ΠD̂,w,γ(S × S)− ES|S̄ [ΠD̂,w,γ(S × S)]∣∣∣ > ϵ

4
+
ϵ′

2

∣∣∣ S̄) .
Here, we can’t appeal to McDiarmid’s because S is sampled without replacement from S̄.

However, we can use the same technique that [74] leveraged – stochastic covering property

can be used to show concentration for sampling without replacement [77].

Definition 14 ([77]). Z1, . . . , Zn satisfy the stochastic covering property, if for any I ⊂ [n]

and a ≥ a′ ∈ {0, 1}I coordinate-wise such that ||a′ − a||1 = 1, there is a coupling ν of the

distributions µ, µ′ of (Zj : j ∈ [n] \ I) conditioned on ZI = a or ZI = a′, respectively, such

that ν(x, y) = 0 unless x ≤ y coordinate-wise and ||x− y||1 ≤ 1.

111

Theorem 18 ([77]). Let (Z1, . . . , Zn) ∈ {0, 1} be random variables such that Pr(
∑n

i=1 Zi =

k) = 1 and the stochastic covering property is satisfied. Let f : {0, 1}n → R be an c-Lipschitz

function. Then, for any ϵ > 0,

Pr (|f(Z1, . . . , Zn)− E [f(Z1, . . . , Zn)]| ≥ ϵ) ≤ 2 exp

(
−ϵ2

8c2k

)

Lemma 22 ([74]). Given a set S of n points, sample k ≤ n elements without replacement.

Let Zi = {0, 1} indicate whether ith element has been chosen. Then, (Z1, . . . , Zn) satisfy the

stochastic covering property.

Let S̄ = {x1, . . . , x2n}. If we slightly change the definition of the fairness loss so that it

depends on the indicator variables Z1, . . . , Z2n,

Π′′
D̂,w,γ,S̄

(Z1, . . . , Z2n) =
1

n2

∑
i,j∈[2n]2

ZiZjΠD̂,w,γ(xi, xj) = ΠD̂,w,γ(S × S).

We see that Π′′
D̂,w,γ,S̄

is 1
n -Lipschitz, so by theorem 18 and lemma 22, we get

Pr
S

(∣∣∣ΠD̂,w,γ(S × S)− ES|S̄ [ΠD̂,w,γ(S × S)]∣∣∣ > ϵ

4
+
ϵ′

2

∣∣∣ S̄)

≤ 2 exp

−
(
ϵ
4 + ϵ′

2

)2
8 1
n2 · n

 = 2 exp

−n
(
ϵ
4 + ϵ′

2

)2
8



112

Combining everything, we get

Pr
S

(
sup
D∈∆H

∣∣∣∣ΠD,w,γ(S × S)− E
x,x′

[ΠD,w,γ(x, x
′)]

∣∣∣∣ > ϵ

)
≤ 2

∑
S̄

Pr
(
S̄
)
·
(
e · 2n
d

)dk
sup
D̂∈Hk

Pr
S,S′

(∣∣∣ΠD̂,w,γ(S × S)−ΠD̂,w,γ(S
′ × S′)

∣∣∣ > ϵ

2
+ ϵ′

∣∣∣ S̄)
≤ 4

∑
S̄

Pr
(
S̄
)
·
(
e · 2n
d

)dk
sup
D̂∈Hk

Pr
S

(∣∣∣ΠD̂,w,γ(S × S)− ES|S̄ [ΠD̂,w,γ(S × S)]∣∣∣ > ϵ

4
+
ϵ′

2

∣∣∣ S̄)

≤ 8 ·
(
e · 2n
d

)dk
exp

−n
(
ϵ
4 + ϵ′

2

)2
8



For convenience, we set ϵ′ = ϵ
2 .

However, in our case, instead of finding the average over all pairs in S, we calculate the

fairness loss only over m pairs. Fixing S, if m is sufficiently large, our empirical fairness loss

should concentrate around the fairness loss over all the pairs for S.

Lemma 23. For fixed S, randomly chosen pairs M ⊂ S × S, and randomized hypothesis

D,

Pr
M∼(S×S)m

(ΠD,w,γ(M)−ΠD,w,γ(S × S) ≥ ϵ) ≤ exp
(
−2mϵ2

)
Proof. Write a random variable La = ΠD,w,γ((x2a−1, x2a)) for the fairness loss of the ath

pair. Note that

E[La] =
∑

(i,j)∈[n]2

1

n2
ΠD,w,γ ((xi, xj)) = ΠD,w,γ(S × S), ∀a ∈ [|M |].

Therefore, by Hoeffding’s inequality, we have

Pr
M

(ΠD,w,γ(M)−ΠD,w,γ(S × S) ≥ ϵ) ≤ exp
(
−2mϵ2

)
.

113

Lemma 24. For fixed S and randomly chosen pairs M ⊂ S × S,

Pr
M∼(S×S)m

(
sup
D∈∆H

|ΠD,w,γ(M)−ΠD,w,γ(S × S)| ≥ ϵ
)
≤
(
e · 2n
d

)dk′
exp

(
−8mϵ2

)
,

where k′ = 2 ln(2m)
ϵ2

+ 1.

Proof.

Pr
M∼(S×S)m

(
sup
D∈∆H

|ΠD,w,γ(M)−ΠD,w,γ(S × S)| ≥ ϵ
)

≤ Pr
M∼(S×S)m

(
sup
D̂∈Hk

∣∣∣ΠD̂,w,γ(M)−ΠD̂,w,γ(S × S)
∣∣∣ ≥ ϵ+ 2ϵ′

)

≤
∑
D̂∈Hk

Pr
M∼(S×S)m

(∣∣∣ΠD̂,w,γ(M)−ΠD̂,w,γ(S × S)
∣∣∣ ≥ ϵ+ 2ϵ′

)

≤
(
e · 2n
d

)dk
exp

(
−2m

(
ϵ+ 2ϵ′

)2)
,

where k = 2 ln(2m)
4ϵ′2 + 1. The last inequality is from Corollary 2 and Lemma 23. For conve-

nience, we just set ϵ′ = ϵ/2.

4.B.3. Omitted Proof of Theorem 13

Combining theorem 17 and lemma 24 yields the following theorem for fairness loss general-

ization.

Theorem 13. Let S consists of n i.i.d points drawn from P and let M represent a set of

m pairs randomly drawn from S × S. Then we have:

Pr
S∼Pn

M∼(S×S)m

(
sup
D∈∆H

∣∣∣∣∣ΠD,w,γ(M)− E
(x,x′)∼P2

[
ΠD,w,γ(x, x

′)
]∣∣∣∣∣ > 2ϵ

)

≤

(
8 ·
(
e · 2n
d

)dk
exp

(
−nϵ2

32

)
+

(
e · 2n
d

)dk′
exp

(
−8mϵ2

))
,

where k′ = 2 ln(2m)
ϵ2

+ 1, k = ln(2n2)
8ϵ2

+ 1, and d is the VC-dimension of H.

114

Proof. With probability 1 −
(
8 · (e·2nd)dk exp

(
−nϵ2
32

)
+
(
e·2n
d

)dk′
exp

(
−8mϵ2

))
, where k′ =

2 ln(2m)
ϵ2

+ 1 and k = ln(2n2)
8ϵ2

+ 1, we have

sup
D∈∆H

|ΠD,w,γ(M)−ΠD,w,γ(S × S)| ≤ ϵ

and

sup
D∈∆H

∣∣∣∣ΠD,w,γ(S × S)− E
x,x′

[ΠD,w,γ(x, x
′)

∣∣∣∣ ≤ ϵ.
Then, by triangle inequality,

sup
D∈∆H

∣∣∣∣ΠD,w,γ(M)− E
x,x′

[ΠD,w,γ(x, x
′)

∣∣∣∣ ≤ 2ϵ.

In other words, with probability
(
8 ·
(
e·2n
d

)dk
exp

(
−nϵ2
32

)
+
(
e·2n
d

)dk′
exp

(
−8mϵ2

))
, we have

sup
D∈∆H

∣∣∣∣ΠD,w,γ(M)− E
x,x′

[
ΠD,w,γ(x, x

′)
]∣∣∣∣ > 2ϵ.

115

“Wisdom is knowing what you don’t know.”

Socrates

II

Uncertainty Estimation for

Subgroups

Chapter 5

Uncertainty Estimation for Subgroups: Offline

5.1. Introduction

Uncertainty estimation is fundamental to prediction and regression. Given a training set of

labelled points D ⊆ X × [0, 1] consisting of feature vectors x ∈ X and labels y ∈ [0, 1], the

standard regression problem is to find a function µ : X → [0, 1] that delivers a good

point estimate of µ(x) = E[y|x]. We also desire the variance of the label distribution

E[(y−µ(x))2|x] as a measure of the inherent uncertainty of a prediction. Higher central mo-

ments would yield even more information about this uncertainty which can be represented

by prediction intervals: An interval [ℓ(x), u(x)] that with high probability contains y, i.e.,

Pry[y ∈ [ℓ(x), u(x)]|x] ≥ 1− δ for some δ ∈ (0, 1).

If the data are generated according to a parametric model as in the classic ordinary least

squares setting, one can form confidence regions around the underlying model parameters

and translate these into both mean and uncertainty estimates about individual predictions.

In non-parametric settings, it is unclear how one should reason about uncertainty. We

typically observe each feature vector x infrequently, so we have essentially no information

about the true distribution on y conditional on x. One solution to this problem is to compute

marginal prediction intervals which average over data points x to give guarantees of the form:

Prx,y[y ∈ [ℓ(x), u(x)]] ≥ 1−δ. This is the approach that is taken in the conformal prediction

literature — see e.g. Shafer and Vovk [86].

Marginal prediction intervals, unlike prediction intervals, do not condition on x. They offer

a promise not over the randomness of the label conditional on the features, but over an

average over data points. To make the distinction vivid, imagine one is a patient with

high blood pressure, and a statistical model asserts that a certain drug will lower one’s

diastolic blood pressure to between 70 and 80 mm Hg. If [70, 80] were a 95% prediction

117

interval conditional on all of one’s observable features, then one could reason that over the

unrealized randomness in the world, there is a 95% chance that one’s new blood pressure will

lie in [70, 80]. If [70, 80] is a 95% marginal prediction interval, however, it means that 95% of

all patients who take the drug will see their blood pressure decline to a level contained within

the interval. Because the average is taken over a large, heterogeneous collection of people, the

guarantee of the marginal prediction interval offers no meaningful promise to individuals.

For example, it is possible that patients that share one’s demographic characteristics (e.g.

women of Sephardic Jewish descent with a family history of diabetes) will tend to see their

blood pressure elevated by the drug.

This fundamental problem with uncertainty estimation in non-parametric settings is also a

problem for mean estimation: what does it mean that a point prediction µ(x) is an estimate

of E[y|x] if we have no knowledge of the distribution on y conditional on x (because we have

observed no samples from this distribution)? A standard performance measure is calibration

[17], which similarly averages over data points: a predictor µ is calibrated (roughly) if

E(x,y)[µ(x) − y|µ(x) = i] = 0 for all predictions i: i.e. for every i, conditioned on x being

such that the prediction µ(x) was (close to) i, the expected outcome y is also (close to) i. Just

as with marginal prediction intervals, guarantees of calibration mean little to individuals,

who differ substantially from the majority of people over whom the average is taken.

Hébert-Johnson et al. [43] proposed multicalibration as a way to interpolate between the

(unattainable) ideal of being able to correctly predict E[y|x] for each x and offering a guar-

anteed averaged over the entire data distribution. The idea is to fix a large, structured set

of (possibly overlapping) sub-populations (G ∈ 2X). A predictor µ is multicalibrated if, in-

formally, for all predictions i and groups G ∈ G, E(x,y)[µ(x)− y|µ(x) = i, x ∈ G] = 0. Thus,

µ is calibrated not just on the overall population, but also simultaneously on many differ-

ent finely defined sub-populations that one might care about (e.g. different demographic

groups). Hébert-Johnson et al. [43] show how to compute an approximately multicalibrated

predictor µ on all subgroups in G that have substantial probability mass—we provide a high

118

level description of their algorithm, which we use, below.

The main contribution of this chapter is to show how to achieve what can loosely be termed

multicalibration for higher moment estimates. We provide not just estimates µ(x) of means

(µ(x) = E[y|x]), but also estimates, mk(x), for higher central moments, (mk(x) = E[(y −

µ(x))k|x]) such that all of these forecasts are appropriately multicalibrated in a sense made

precise below. This is useful for a number of basic tasks. One we briefly highlight is that it

can help diagnose data iniquities: for example, if the set of collected features is much less

predictive of the target label on certain demographic groups G ∈ G this will necessarily

manifest itself in multicalibrated moment predictions by having higher variance predictions

on individual members of those populations.

As an important application, we show that standard concentration inequalities which could

be applied using the true moments of a distribution to obtain prediction intervals can

also be applied using our multicalibrated moment estimates. Doing so produces intervals

[ℓ(x), u(x)] for each data point that are simultaneously valid marginal prediction intervals

not just overall, but also conditioned on x lying in any of the (sufficiently large) subgroups

over which we are multicalibrated. This allows one to interpret these prediction intervals as

predicting something meaningful not just an average over all people, but — simultaneously

— as averages over all of the people who were given the same prediction, across many

finely defined subgroups (like women of Sephardic Jewish descent with a family history of

diabetes). Note that because the groups G ∈ G may overlap, a single individual can belong

to many such groups and can at her option interpret the prediction interval as averaging

over any of them.

5.1.1. Overview of Our Approach and Results

Mean Multicalibration and Impediments to Extensions to Higher Moments

We first review the algorithm of Hébert-Johnson et al. [43], recast in the framework in

which we will conduct our analysis. We here elide some issues such as how we deal with

discretization and how calibration error is parameterized — see Section 5.3 for the formal

119

model and definitions. Fix a feature space X , labels Y = [0, 1], and an unknown distribution

P over X × Y. Given are sets G ⊆ 2X , corresponding to sub-populations of interest. The

goal is to construct a predictor, µ : X → Y, that is multicalibrated, i.e. calibrated on each

group G ∈ G. This means that we want a predictor, µ, that is mean-consistent on every

set of the form G(µ, i) = {x ∈ G : µ(x) = i} for some i: in other words, for every such set

G(µ, i) we want E(x,y)∼P [µ(x) − y]|x ∈ G(µ, i)] = 0. We describe the algorithm as if it has

direct access to the true distribution P and defer for now a description of how to implement

the algorithm using a finite sample.

It is helpful to conceive of the task as a zero-sum game between two players: a “(mean)

consistency player”, and an “audit player” who knows the true distribution P. The con-

sistency player chooses a predictor µ, and the audit player, given a predictor, attempts to

identify a subset S of X on which the predictor is not mean consistent.12 Given a pair of

choices, the corresponding cost (which the consistency player wishes to minimize and the

audit player wishes to maximize) is the absolute value difference between the average pre-

diction of the consistency player and the average expected label on the subset S identified

by the audit player. The value of this game is 0, since the consistency player can obtain

perfect consistency using the true conditional label distribution µ(x) = E[y|x]. The algo-

rithm of Hébert-Johnson et al. [43] can be interpreted as solving this zero sum game by

simulating repeated play, using online gradient descent for the consistency player, and “best

response” for an audit player, who stops play if there are no remaining sets S = G(µ, i)

witnessing violations of multicalibration. This works because by linearity of expectation,

we can formulate the game so that the consistency player’s utility function is linear in her

individual predictions µ(x). A formal description and proof of correctness can be found in

Section 5.4.1.

There are two—related—impediments to extending this approach to higher moments, i.e.,

finding predictorsmk(x) ≈ mk(x) = E[(y−E[y|x])k|x], that are “consistent” with P on many

12Here, and in what follows, we adopt the convention that G refers to a group in G, while S refers to any
generic subset of X .

120

sets. The first of these is definitional—what do we mean by “consistent” for higher moments?

The second is algorithmic—given a definition, how do we achieve it? Both are impediments

because, unlike means, higher moments are not linear functionals of the distribution. A

consequence is that moments for k > 1 do not combine linearly in the way expectations do.

In particular for S = S1 ∪ S2 where S1 and S2 are disjoint,

E[(y − E[y|x ∈ S])k|S]

̸= Pr[x ∈ S1|S]E[(y − E[y|x ∈ S1])k|S1] + Pr[x ∈ S2|S]E[(y − E[y|x ∈ S2])k|S2].

It is therefore silly to require that moment predictions mk(x) satisfy the same “average con-

sistency” condition asked of means: i.e. we cannot demand that the population variance on

the subset of the population on which we predict variance v be v, because this is not a prop-

erty that the true moments mk(x) satisfy. Consider, for example, a setting in which there

are two types of points, x1 and x2. The true distribution is uniform over {(x1, 0), (x2, 1)}

(and so in particular the label y is deterministically fixed by the features). We have that

for all k > 1, µ(x1) = 0, µ(x2) = 1, and mk(x0) = mk(x1) = 0. Nevertheless, the variance

over the set of points on which the true distribution satisfies mk(x) = 0 is 1/4, not 0. We

cannot ask that our “moment calibrated” predictors satisfy properties violated by the true

distribution because we would have no guarantee of feasibility — and our ultimate goal in

multicalibration is to find a set of mean and moment predictors that are indistinguishable

from the true distribution with respect to some class of tests.

Mean Conditioned Moment Multicalibration and Marginal Prediction Intervals

A key observation (Observation 1) is that higher moments do linearize over sets that have

the same mean: in other words, if we have S = S1 ∪ S2 for disjoint S1 and S2 such that

E[y|x ∈ S1] = E[y|x ∈ S2], then, it follows that

E[(y − E[y|x ∈ S])k|S]

= Pr[x ∈ S1|S]E[(y − E[y|x ∈ S1])k|S1] + Pr[x ∈ S2|S]E[(y − E[y|x ∈ S2])k|S2].

121

An implication of this is that the true distribution does satisfy what we term mean-

conditioned moment multicalibration. Namely, if for a fixed k > 1 we define for each set

G ∈ G and each pair of mean and kth moment values i, j the sets: G(µ,mk, i, j) = {x ∈ G :

µ(x) = i,mk(x) = j}, then we have both mean consistency: E[(y− i)|x ∈ G(µ,mk, i, j)] = 0

and moment consistency: E[(y − i)k − j|x ∈ G(µ,mk, i, j)] = 0 over these sets. Therefore,

we require the same condition to hold for our mean and moment predictors µ and {ma}ka=1:

namely that simultaneously for every a, that over each of the sets G(µ,ma, i, j), the true

label mean should be i and the true label a-th moment should be j. In other words, if we

have a set of predictors that are mean conditioned moment multicalibrated, then an indi-

vidual who receives a particular mean and (e.g.) variance prediction can be assured that

amongst all the people who received the same mean and variance prediction even averaged

over any of the possibly large number of sub-groups G of which the individual is a member,

the true mean and variance are faithful to the prediction.

Section 5.6 demonstrates a key application of mean-conditioned moment-multicalibrated

estimators: They can be used in place of real distributional moments to derive prediction

intervals. Given moments of a random variable X, a standard way to derive concentration

inequalities for X is by using the following inequality for any even moment (for k = 2 this

is Cheybychev’s inequality):

Pr[|X − µ(X)| ≥ t] ≤ E
[
(X − µ(X))k

]
tk

.

If X is the label distribution conditional on features x, this yields the prediction interval:

Pr
y

[
y ∈

[
µ(x)−

(
mk(x)

δ

)1/k

, µ(x) +

(
mk(x)

δ

)1/k
]∣∣∣∣∣x
]
≥ 1− δ.

In Section 5.6, we show that if we have a mean-conditioned moment-multicalibrated pair

(µ,mk), we can replace the true mean and moments in the derivation of this prediction

interval, and get marginal prediction intervals, which are valid not just averaged over all

122

points, but simultaneously as averaged over all point that received the same prediction

within any of the groups within which we are mean-conditioned moment multicalibrated.

In other words, for all G ∈ G and for all i, j:

Pr
(x,y)∼P

[
y ∈

[
µ(x)−

(
mk(x)

δ

)1/k

, µ(x) +

(
mk(x)

δ

)1/k
]∣∣∣∣∣x ∈ G(µ,mk, i, j)

]
≥ 1− δ.

Achieving Mean Conditioned Moment Multicalibration

What is the difficulty with finding sets of predictors (µ, {ma}ka=2) such that simultaneously

each pair (µ,ma) are mean-conditioned moment multicalibrated? It is that moments do not

have the linear structure that means do. Hence, the zero-sum game formulation we describe

for mean-multicalibration cannot be applied directly. A näıve approach (which fails but will

be a useful sub-routine for us) is to first train a mean-multicalibrated predictor µ, and then

define “pseudo-moment” labels for each x as m̃k,µ(x) = (y−µ(x))k. Since these are constant

values, we can then use the algorithm for mean multicalibration to achieve “pseudo-moment

calibration with respect to µ” — i.e. mean consistency on each set G(µ,mk, i, j) with respect

to our pseudo-moment labels m̃k,µ(x). By itself this doesn’t guarantee any sort of “moment

consistency,” but we show in Section 5.4.2 that if we can:

1. Find moment predictors mk that satisfy pseudo-moment calibration with respect to

µ, and

2. Our mean predictor µ satisfies mean consistency on every set of the form G(µ,mk, i, j),

then the pair (µ,mk) will satisfy mean-conditioned moment calibration.

The difficulty is that these two requirements are circularly defined. Once we have a fixed

mean predictor µ, we can use a gradient descent procedure to find moment predictors

{ma}ka=2 that are pseudo-calibrated with respect to µ. However, we also require our mean

predictor to be mean consistent on the sets G(µ,ma, i, j), which are undefined until we

fix our moment predictors {ma}ka=2. Section 5.4.3 resolves the circularity by using an al-

123

ternating descent procedure that toggles between updating µ and {ma}ka=2, each aiming

for a mean calibration target that is defined with respect to the other. We prove that this

alternating gradient descent procedure is guaranteed to converge after only a small number

of rounds.

Finally, we show in Section 5.5 how to implement our algorithm using a finite sample from

the distribution and furnish sample complexity bounds, in a way analogous to Hébert-

Johnson et al. [43]. The sample complexity bounds are logarithmic in the number of groups

|G| that we wish to be multicalibrated with respect to, and polynomial in our desired

calibration error parameters and the number of moments k with which we wish to achieve

mean-conditioned moment multicalibrated predictors. In particular, because dependence

on |G| is only logarithmic, we can satisfy mean-conditioned moment-multicalibration on an

exponentially large collection of intersecting sets G from just a polynomial sample of data

from the unknown population distribution. Note, however, that despite our polynomial

dependence on k, the natural scale of the k’th moment decreases exponentially in k, and so

to obtain non-trivial approximation guarantees for k’th moments with polynomial sample

complexity, we should think of taking k at most logarithmic in the relevant parameters of the

problem. See Theorem 22 and Corollary 4 for details. Our running time scales polynomially

with our approximation error parameters, the number of moments k with which we wish to

be multicalibrated, and the running time of solving learning problems over G (which is at

most linear in |G|, but can be much faster). See Theorems 22 and 25 for details. In other

words, our algorithms are “oracle efficient” in the sense that if we have a subroutine for

solving learning problems over G, then we can use it to solve mean-conditioned moment-

multicalibration problems with at most polynomial overhead. In theory, for almost every

interesting class G, learning over G is hard in the worst case — but oracle efficiency has

proven to be a useful paradigm in the design of learning algorithms (especially in the

fairness in machine learning literature — see e.g. [2, 43, 59, 61]) because in practice we have

extremely powerful heuristics for solving complex learning problems. Moreover, this kind of

oracle efficiency is the best running time guarantee that we can hope for, because as shown

124

by Hébert-Johnson et al. [43], even mean-multicalibration is as hard as solving arbitrary

learning problems over G in the worst case.

5.2. Related Work

Calibration as a means of evaluating forecasts of expectations dates back to Dawid [17].

This literature focuses on a simple online forecasting setting, motivated by weather predic-

tion problems: in a sequence of rounds, nature chooses the probability of some binary event

(e.g. rain), and a forecaster predicts a probability of that event. Dawid [17] shows that a

Bayesian forecaster will always be subjectively calibrated (i.e. he will believe himself to be

calibrated). Foster and Vohra [29] show that there exist randomized forecasters that can

asymptotically satisfy calibration against arbitrary sequences of outcomes (this is impos-

sible for deterministic forecasters [76]). These papers focus on the online setting, because

simple calibration is trivial in a batch/distributional setting: simply predicting the mean

outcome on every point satisfies calibration. Within this literature, the most related works

are Lehrer [68] and Sandroni et al. [82], which give very general asymptotic results that

are able to achieve (mean) multicalibration as a special case. Lehrer [68], operating in the

sequential online setting, asks for calibration to hold not just on the entire sequence of real-

ized outcomes, but on countably many infinite sub-sequences (e.g. the set of all computable

subsequences). He proves that there exists an online forecasting algorithm which can asymp-

totically achieve this. Sandroni et al. [82] extend this result to subsequences which can be

defined in terms of the forecasters predictions as well. Both of these papers operate in a

setting that is general enough to encode the constraint of mean multicalibration (by encod-

ing the features of datapoints in the “state space”) even in an online, adversarial setting —

albeit not in a computationally or sample efficient way. In contrast, Hébert-Johnson et al.

[43], who define the notion of mean multicalibration, give an algorithm for achieving it in a

batch distributional setting — in a much more computationally and sample efficient man-

ner than could have been achieved by applying the machinery of Lehrer [68] and Sandroni

et al. [82]. Recently, Zhao et al. [101] gave a notion of “individual level” (mean) calibration,

defined over the randomness of the forecaster, that is valid conditional on individual data

125

points (i.e. without needing to average over a population). They provide promising empiri-

cal results, but the theoretical guarantees of predictors satisfying this notion do not provide

non-trivial information about a data distribution because (as the authors note) their notion

of individual calibration can be satisfied without observing any data.

Hébert-Johnson et al. [43] also proposed the notion of “multi-accuracy,” a weaker notion

than multicalibration which asks for a predictor µ that satisfies mean consistency on each

set G ∈ G, but not on sets G(µ, i). Kim et al. [61] gave a practical algorithm for achiev-

ing multi-accuracy, and a promising set of experiments suggesting that it could be used

to correct for error disparities between different demographic groups on realistic data sets,

without sacrificing overall accuracy. Dwork et al. [21] propose notions of fairness and evi-

dence consistency for ranking individuals by their “probability of success” when historical

data only records binary outcomes: they show that their proposed notions are closely related

to multicalibration of the probability predictions implicitly underlying the rankings. Sha-

bat et al. [85] prove uniform convergence bounds for multicalibration error over hypothesis

classes of bounded complexity. In this chapter, as in Hébert-Johnson et al. [43], we learn

over hypothesis classes that are only implicitly defined by the set of groups G, and so we

bound generalization error in the same manner that Hébert-Johnson et al. [43] do, rather

than using uniform convergence arguments.

Conformal prediction is similarly motivated to calibration, but is focused on finding marginal

prediction intervals rather than mean estimates: see e.g. Shafer and Vovk [86] for an

overview of this literature. Finding marginal prediction intervals on its own (i.e. when

prediction intervals only have to be valid on average over the entire population) is easy in

the batch/distributional setting, and so just as with the calibration literature, the conformal

prediction literature is primarily focused on the online setting in which predictions must be

made as points arrive. The most closely related paper related to this literature is Barber

et al. [6] who also study the batch distributional setting, and also aim to find marginal

prediction intervals which hold not just over the entire population, but on a collection G of

126

more finely defined sub-populations. Barber et al. [6] obtain prediction intervals of this sort

by using a holdout set method from conformal prediction: roughly speaking, they compute

empirical 1 − δ coverage intervals on each set G ∈ G in the holdout set, and then for an

individual x, select the widest such interval amongst all groups G that contain x, which

is a very conservative choice. The algorithm given by Barber et al. [6] relies on explicit

enumeration of groups G ∈ G over the holdout set.

There are also several papers in the “fairness in machine learning” literature (in addition

to [43, 61]), which are similarly motivated by replacing coarse statistical constraints with

constraints that come closer to offering individual guarantees: see Chouldechova and Roth

[14] for a survey. Kearns et al. [57, 59] propose to learn classifiers which equalize statis-

tical measures of harm like false positive or negative rates across a very large number of

demographic subgroups G ∈ G, and give practical algorithms for this problem by solving a

zero-sum game formulation using techniques from no-regret learning. Kim et al. [60] give

algorithms for satisfying a notion of metric fairness which similarly enforces constraints

averaged over a large number of subgroups G ∈ G. Rothblum and Yona [81] define a PAC-

like version of the individual fairness notion of Dwork et al. [19] and prove generalization

bounds showing how to achieve their notion out of sample on all sufficiently large groups

of individuals. Sharifi-Malvajerdi et al. [87] show how to equalize statistical measures of

harm like false positive rates across individuals — when the rates in question are defined

over the randomness of the problem distribution and the classifier. Joseph et al. [49, 51]

propose an individual-level notion of “weakly meritocratic fairness” that can be satisfied in

bandit learning settings whenever it is possible to compute confidence or prediction intervals

around individual labels. They analyze the parametric setting, when actual (conditional)

prediction and confidence intervals are possible — but the techniques from our paper could

be used for learning in the assumption-free setting (with a slightly weaker notion of fairness)

using marginal prediction intervals.

127

5.3. Preliminaries

Let X be the domain of features, Y = [0, 1] the label domain, and P the true (unknown)

probability distribution over X ×Y.13 Let PX refer to the induced marginal distribution on

X and define PY analogously. Going forward, we refer to the associated random variables

with capital letters (e.g. X, Y), and realizations with lowercase letters (x, y).

Let G ⊆ 2X be a collection of subsets of X ,14 and for each G ∈ G, let χG denote that

associated indicator function, i.e. χG(x) = 1 ⇔ x ∈ G. For implementation purposes,

we assume that each indicator function χG(x) can be computed by a polynomially sized

circuit15.

Definition 15. Given the true distribution P, we write

µ = E
P
[y],

and its kth central moment is:

mk = E
P

[
(y − µ)k

]
.

Given a set S ⊆ X , we abuse notation and write

µ(S) = E
P
[y|x ∈ S] and mk(S) = E

P

[
(y − µ(S))k |x ∈ S

]

for the conditional mean and kth central moment of labels on the distribution conditional

on x ∈ S.

We are given n independent draws from X × Y according to distribution P, denoted D =

13Our approach applies for both finite and infinite feature domains. If X is uncountably infinite, define
an associated measure space, and P is a countably additive probability measure on this space. We omit the
associated notation since it will have no use in what follows.

14If X is uncountably infinite, then G is a collection of measurable, computable sets. We abuse notation
and write 2X to denote this.

15Our algorithm in the end will need to manipulate these indicator functions. We might imagine e.g. that
G is the hypothesis class of some learning algorithm for a binary prediction problem, and that the functions
χG(x) are particular hypotheses from this class — e.g. linear threshold functions.

128

{(xb, yb)}nb=1. The goal is to predict means and higher moments of Y|X , i.e. to construct

functions µ : X → [0, 1], (we shall refer to this as a mean predictor) and mk : X → [0, 1]

(analogously, kth-moment predictor)—as Y is the unit interval, means and moments also

lie in the unit interval.

To define calibration, we need to reason about all points that receive a particular prediction.

For real valued predictors, this can be a measure zero set. One solution is to to restrict

attention to predictors that are discretized to lie on the grid Gm = { 1
2m ,

3
2m , . . . ,

2m−1
2m },

for some (large) number m. If one were to do this, the discretization parameter m would

be coupled to the error one could ultimately obtain: since it may be inevitable to suffer

error at least 1/2m if one is restricted to making predictions on a discrete grid. Alternately,

one can define calibration by “bucketing” real valued predictions into m buckets of width

1
m each. This allows us to treat m (a parameter controlling the fineness of our calibration

constraint) as an orthogonal parameter to our calibration error. To that end, given a set

S ⊆ X , mean predictor µ, and some i ∈ [m], define

S(µ, i) ≡
{
x ∈ S :

∣∣∣∣µ(x)− 2i− 1

2m

∣∣∣∣ ≤ 1

2m

}

to be the set of points in S whose mean predictions fall into the ith bucket, i.e. [2i−1
2m −

1
2m ,

2i−1
2m + 1

2m]. Analogously, define

S(µ,mk, i, j) ≡
{
x ∈ S :

∣∣∣∣µ(x)− 2i− 1

2m

∣∣∣∣ ≤ 1

2m
,

∣∣∣∣mk(x)−
2j − 1

2m

∣∣∣∣ ≤ 1

2m

}

to be the set of points in S that receive mean predictions in the ith bucket and kth moment

predictions in the jth bucket. Given mean and kth moment predictors µ and mk, and any

set S ⊆ X we write

µ(S) = E
P
[µ(x)|x ∈ S] and mk(S) = E

P
[mk(x)|x ∈ S] ,

i.e. µ(S) is the average mean prediction of µ when x’s are drawn according to the true

129

distribution, P, conditional on x ∈ S, and mk(S) is the analogous quantity for k’th moment

predictions.

To be clear, we will maintain the convention for means and higher moments that quanti-

ties with bars refer to predictions (µ,mk) and unmodified notation (µ,mk) refer to true

(unknown) population values.

Definition 16 (Consistency). Call a mean predictor µ (α, ϵ)-mean consistent on a set S if

|µ (S)− µ (S)| ≤ α

PX (S)
+ ϵ.

Similarly, a moment predictor mk is called (α, ϵ)-moment consistent on a set S if:

|mk (S)−mk (S)| ≤
α

PX (S)
+ ϵ.

When ϵ = 0, we say µ is α-mean consistent and mk is α-moment consistent. Note that

(α, ϵ)-mean consistency implies (α+ ϵ)-mean consistency.

Remark 5. Our notion of consistency on a set S corresponds to error that smoothly de-

grades with the size (measure) of the set S. This is essential to giving out of sample guar-

antees. Hébert-Johnson et al. [43] handles this slightly differently, by giving uniform guar-

antees, but only for sets that have measure at least γ. Our approach of giving smoothly

parameterized error guarantees for all sets is only stronger (up to a reparameterization of

α← αγ), and makes the analysis of our algorithms more transparent because it corresponds

more directly to the guarantees they achieve.

The following simple observation will be useful in understanding our approach.

Observation 1. Let P be a mixture distribution over m component distributions Pℓ with

mixture weights wℓ ≥ 0,
∑m

ℓ=1wℓ = 1. Let µℓ,mkℓ be the mean and kth moment associated

130

with Pℓ. Then, we have

mk =
m∑
ℓ=1

wℓ

(
k∑
a=0

(
k

a

)
(µℓ − µ)k−amaℓ

)
.

If the mixture variables have the same mean, i.e. µℓ = µ for all ℓ, then, the above expression

reduces to:

mk =
m∑
ℓ=1

wℓmkℓ.

Observation 1 highlights the key challenge: unlike means, higher moments combine non-

linearly over mixtures. That is to say, that although mk(S) is defined to be an average

over the values mk(x) for x ∈ S, mk(S) is not an average over the values mk(x) for x ∈ S

for k > 1. Observation 1 also makes clear what we are trying to exploit in defining mean-

conditioned moment calibration: mk(S) is an average over the values mk(x) for x ∈ S

whenever µ(x) is constant over S.

We are now ready to define calibration, which asks for mean and moment consistency on

particular sets defined by the mean and moment predictors themselves:

Definition 17 (Calibration). Fix a set S ⊆ X and a true distribution P.

1. A mean predictor µ is (α, ϵ)-mean calibrated on a set S if it is (α, ϵ)-mean consistent

on every set S(µ, i), i.e. if for each i ∈ [m]:

|µ (S(µ, i))− µ(S(µ, i))| ≤ α

PX (S(µ, i))
+ ϵ.

Again, if ϵ = 0, we say µ is α-mean calibrated.

2. Predictors (µ,mk) are (α, β, ϵ)-mean-conditioned-moment calibrated on a set S if they

are (α, ϵ)-mean and (β, ϵ)-moment consistent on every set S(µ,mk, i, j), i.e. if for

131

every i, j ∈ [m]:

|µ (S(µ,mk, i, j))− µ (S(µ,mk, i, j))| ≤
α

PX (S(µ,mk, i, j))
+ ϵ,

and |mk (S(µ,mk, i, j))−mk (S(µ,mk, i, j))| ≤
β

PX (S(µ,mk, i, j))
+ ϵ.

If ϵ = 0, we say (µ,mk) are (α, β)-mean-conditioned-moment calibrated.

We say that µ,mk are (α, ϵ)-multicalibrated and (α, β, ϵ)-mean-conditioned-moment mul-

ticalibrated with respect to (a collection of sets) G if they are (α, ϵ)-mean calibrated and

(α, β, ϵ)-mean conditioned moment calibrated respectively on every G ∈ G.

Remark 6. Observe that by construction, the true feature conditional mean and moment

functions µ(x),mk(x) are mean-conditioned-moment multicalibrated on every collection of

sets G. We can view the goal of multicalibration as coming up with mean and moment

predictors µ,mk that are almost indistinguishable from the true distributional means and

moments, with respect to a class of consistency checks defined by G. Note that it is only

because we have defined our goal as mean conditioned moment calibration that the true

moments mk(x) of the distribution satisfy these consistency conditions, which are defined

as expectations.

We highlight the difference between calibration and consistency on a given set S in terms of

mean prediction µ; an analogous discussion applies to higher moments. Consistency requires

that the prediction µ(x), averaged over x’s in S according to the conditional distribution,

approximately equals the true label average µ(S). It doesn’t impose a similar requirement

on subsets of S. Therefore, a predictor consistent on S will be correct on average for the

set S but could be systematically biased for each prediction in S that it makes.

Calibration on S requires, for every prediction i ∈ [m], that µ is consistent on the set S(µ, i).

That is to say it ensures consistency on every subset of x’s in S on which the predictor µ

makes predictions in some some fixed bucket i. Exact calibration implies exact consistency,

132

but the reverse is not true.

5.4. Achieving Mean Conditioned Moment Multicalibration

5.4.1. Mean Multicalibration

We summarize an algorithm to achieve mean multicalibration. It is a modest extension

to the one in Hébert-Johnson et al. [43] that accommodates arbitrary distributions over a

possibly infinite domain and arbitrary initializations. We present it in somewhat greater

generality than needed for mean-calibration, because our final algorithm in Section 5.4.3

needs to achieve mean consistency on more sets than are required for mean calibration

alone.

For intuition, consider the following mini-max problem, which captures a more difficult

problem than mean multicalibration (as there is no restriction at all on the sets S):

min
µ:X→[0,1]

max
S⊆X ,

λ∈{−1,1}

λ · PX (S) · (µ(S)− µ(S)) .

We can associate a zero-sum game with this mini-max problem by viewing the minimization

player as a consistency player who must commit to a mean predictor µ, and viewing the

maximization player as an auditor who attempts to identify sets S on which the consistency

player fails to be mean consistent. Observe that the inclusion of the measure term PX (S) in

the objective makes the learner’s utility function linear in her individual predictions µ(x).

There is a strategy for the consistency player that would guarantee her a payoff of 0—or

in other words, would guarantee consistency on all possible sets S: she could simply set

µ(x) = E[y|x]. This establishes the value of the game, but of course it requires knowledge

of P. Given only a finite sample of the data, we will be unable to determine E[y|x] for all

x, and so this strategy is not implementable.

One way to solve our problem absent knowledge of the distribution is to allow the consistency

player to play online gradient descent [102] on the set of mean predictors over rounds t, and

to allow the auditor to “best respond” at every round, by exhibiting a set S corresponding

133

to a large consistency violation16. This is guaranteed to converge quickly to an approximate

equilibrium of the game: i.e. a mean predictor satisfying approximate consistency on all sets.

If the auditor limits herself to choosing sets S(µt, i) corresponding to mean calibration, then

we converge quickly to approximate mean calibration. Here we give a direct analysis of a

general gradient descent procedure of the sort we need, in terms of the sets that the auditor

happens to choose during this interaction. For finite support distributions P, this bound

could be derived directly from the regret bound of online projected gradient descent [102]

or from the analysis of the similar algorithm in Hébert-Johnson et al. [43]. We reproduce a

direct analysis in the Appendix to match the theorem statement we want for distributions

which may have infinite support. (Note that for such distributions the mean predictor will

have to be maintained implicitly). In Algorithm 3, after each gradient update, we project

µt back into the set of functions with range [0, 1] using an ℓ2 projection. Because squared ℓ2

distance is linearly separable, it can be accomplished by a simple coordinate-wise operation

which we write as project[0,1](x) = min(max(x, 0), 1).

Algorithm 3: Projected Gradient Descent(η) for µ

Start with an arbitrary initial mean predictor µ1 : X → [0, 1]

for t = 1, . . . , T do

Audit player plays some St ⊆ X , λt ∈ {−1, 1}

µt+1(x) =


project[0,1]

(
µt(x)− ηλt

)
if x ∈ St,

µt(x) otherwise.

end

Lemma 25. For any initial mean predictor µ1 ∈ X → [0, 1] and any sequence of (St, λt)Tt=1,

Algorithm 3 satisfies:

T∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η
+
η

2

T∑
t=1

PX (St).

16Because the objective function of our game weights the consistency violations µ(S)−µ(S) by the measure
of the set PX (S), these violations are linear functions of the individual predictions µ(x). Thus it suffices
to run gradient descent over the space of individual predictions X , rather than the space of all possible
functions µ : X → [0, 1].

134

The proof is in the Appendix. A direct consequence of the bound in Lemma 25 is that, when

interacting with a consistency player who uses gradient descent with learning rate η = α,

an auditor will be able to find sets that fail to be α-mean consistent for at most 1/α2 many

rounds.17 The following theorem is a direct consequence of Lemma 25 — its short proof is

in the Appendix.

Theorem 19. Set T = 1
α2 − 1 and η = α = 1√

T+1
in Algorithm 3. Assume that for every

t ∈ [T],

λt
(
µt(St)− µ(St)

)
≥ α

PX (St)
,

Then, for every S ⊆ X , we have

∣∣µT+1(S)− µ(S)
∣∣ ≤ α

PX (S)
.

In particular, if the auditor selects sets G(µt, i) that fail to satisfy approximate mean con-

sistency whenever they exist, then we quickly converge to a mean-multicalibrated predictor.

Either we reach a state in which µt is approximately mean consistent on every set G(µt, i)

before T rounds, in which case we are done, or after T rounds, the conclusion of Theorem

19 implies not only that we are approximately mean-multicalibrated with respect to G, but

that we are approximately mean-consistent on every set.

5.4.2. Pseudo-Moment Consistency

In this section we make a simple observation: Algorithm 3 from Section 5.4.1 for achieving

mean consistency and calibration did not depend on any properties of the labels y. It would

have worked equally well had we invented an arbitrary label for each datapoint x, and

asked for mean consistency with respect to that label. Using this observation, we consider a

(näıve, and incorrect) attempt at achieving calibration for higher moments — but one that

will be a useful subroutine in our final algorithm. Recall that mk(S) = E[(y−µ(x))k|x ∈ S].
17A somewhat better bound is achievable by using a non-uniform learning rate that depends on the

measure of the sets St chosen by the auditor; we use a uniform learning rate throughout this chapter for
clarity.

135

If we have a mean predictor µ(x), it is therefore tempting to imagine that each point x is

associated with an alternative label ỹ(x) = m̃k,µ(x), where:

m̃k,µ(x) = E
[
(y − µ(x))k

∣∣∣x] .
We could then use the algorithm from Section 5.4.1 to construct an predictor mk that was

mean multicalibrated with respect to these labels. We refer to the property of being mean

consistent with respect to the moment-like labels m̃k,µ(x) as “pseudo-moment-consistency”:

Definition 18 (Pseudo-Moment-Consistency). Fixing a mean predictor µ, define the kth

pseudo-moment labels to be m̃k,µ(x) = E
[
(y − µ(x))k

∣∣∣x]. A moment predictor mk is (β, ϵ)-

pseudo-moment-consistent on a set S, with respect to a mean predictor µ if

|mk(S)− m̃k,µ(S)| ≤
β

PX (S)
+ ϵ

We simply say β-pseudo-moment consistent if the predictor is (β, 0)-pesudo-moment-consistent.

We can achieve pseudo-moment consistency using the following gradient descent procedure,

analogous to Algorithm 3.

Algorithm 4: Projected Gradient Descent(η) for mk

Start with an arbitrary initial pseudo-moment predictor mk
1 : X → [0, 1]

for t = 1, . . . , T do

Audit player plays some Rt ⊆ X , ψt ∈ {−1, 1}

mk
t+1(x) =


project[0,1]

(
mk

t(x)− ηψt
)

if x ∈ Rt,

mk
t(x) otherwise.

end

In particular, we obtain the following theorem, whose proof is deferred to the Appendix.

Theorem 20. Let T = 1
β2 − 1 and η = 1√

T+1
= β in Algorithm 4, and fix any mean

136

predictor µ, which defines the function m̃k,µ(x). Assume that for every t ∈ [T],

∣∣mk
t(Rt)− m̃k,µ(R

t)
∣∣ ≥ β

PX (Rt)
,

Then, for every R ⊆ X , we have

|mk(R)− m̃k,µ(R)| ≤
β

PX (R)
.

i.e. mk is β-pseudo-moment-consistent on every set R.

Now, a guarantee of “pseudo-moment-consistency” is really a guarantee of mean consis-

tency with respect to “moment-like” labels m̃k,µ(x), and does not correspond to moment

consistency. This is because moments mk for k > 1 don’t combine linearly the way means

do: recall Observation 1. But also recall from Observation 1 that higher moments do happen

to combine linearly if we average only over points that share the same mean.

We take advantage of this to prove the following key lemma: if we achieve pseudo-moment

consistency on all sets G(µ,mk, i, j) (for G ∈ G) with respect to a mean predictor µ that

happens also to be mean-consistent on all sets G(µ,mk, i, j), then, the pair of predictors is

in fact approximately mean-conditioned moment multicalibrated with respect to G.

Lemma 26. Assume µ is such that for all G ∈ G and i, j ∈ [m], µ is α-mean consistent on

every set G(µ,mk, i, j)):

|µ(G(µ,mk, i, j))− µ(G(µ,mk, i, j))| ≤
α

PX (G(µ,mk, i, j))
.

Assume also thatmk is β-pseudo-moment-consistent with respect to µ on every set G(µ,mk, i, j))

for G ∈ G and i, j ∈ [m]:

|mk(G(µ,mk, i, j))− m̃k,µ(G(µ,mk, i, j))| ≤
β

PX (G(µ,mk, i, j))
.

Then, for every G ∈ G, i, j ∈ [m], we have

|mk(G(µ,mk, i, j))−mk(G(µ,mk, i, j))| ≤
β + kα

PX (G(µ,mk, i, j)
+
k

m
.

137

This implies in particular that (µ,mk) are (α, β′, ϵ)-mean-conditioned moment multicali-

brated with respect to G, for β′ = β + kα and ϵ = k
m .

Proof. Fix G ∈ G and i, j ∈ [m] and let S ≡ G(µ,mk, i, j). Because µ is α-mean consistent

on S, we have that:

|µ(S)− µ(S)| ≤ α

PX (S)
. (5.1)

We can use this to bound the difference between the true moment mk(S) and the pseudo-

moment m̃k,µ(S) on S. First, note that:

mk(S) = E
P

[
(y − µ(S))k

∣∣∣x ∈ S] ,
= E

P

[
[(y − µ(x)) + (µ(x)− µ(S))]k

∣∣∣x ∈ S] .
We will make use of the following fact:

Lemma 27. For any a, b ∈ [0, 1], |ak − bk| ≤ k|a− b|.

Proof. Observe that:

|ak − bk| =

∣∣∣∣∣(a− b)
(
k−1∑
ℓ=0

aℓbk−1−ℓ

)∣∣∣∣∣ ≤ |a− b||k(max(a, b))k−1| ≤ k|a− b|.

138

Finally, we conclude that:

|mk(S)− m̃k,µ(S)| =
∣∣∣∣EP
[
((y − µ(x)) + (µ(x)− µ(S)))k − (y − µ(x))k

∣∣∣x ∈ S]∣∣∣∣
≤ kE

P
[|µ(x)− µ(S)||x ∈ S]

≤ k
(
E
P
[|µ(x)− µ(S)||x ∈ S] + |µ(S)− µ(S)|

)
≤ k

(
1

m
+

α

PX (S)

)
.

The first inequality follows from Lemma 27 with a = (y − µ(x)) + (µ(x)− µ(S)) and b =

y − µ(x). The final inequality follows from (5.1) (mean consistency) together with the

fact that µ(x) falls within a bucket of width 1
m for any x ∈ S (recall that by definition,

S = G(µ,mk, i, j)), and so does µ(S)

Finally, because mk is β-pseudo-moment consistent on S with respect to µ we can invoke

the triangle inequality to conclude:

|mk(S)−mk(S)| ≤ |mk(S)− m̃k,µ(S)|+ |m̃k,µ(S)−mk(S)| ,

≤ β

PX (S)
+ k

(
1

m
+

α

PX (S)

)
.

Lemma 26 reduces the problem of finding mean-conditioned-moment multicalibrated pre-

dictors (µ,mk) to the problem of finding a pair of predictors (µ,mk) satisfying mean-

consistency and pseudo-moment-consistency on the sets G(µ,mk, i, j). It is unclear how to

do this, because these conditions have a circular dependency: pseudo-moment consistency

of mk with respect to µ is not defined until we have fixed a mean predictor µ, because the

“labels” m̃k,µ(x) with respect to which pseudo-moment consistency is defined depend on µ.

On the other hand, the sets G(µ,mk, i, j) on which µ must satisfy mean consistency are not

defined until we fix the moment predictor mk. The next section is devoted to resolving this

circularity and finding predictors satisfying the conditions of Lemma 26.

139

5.4.3. Mean-Conditioned Moment Multicalibration

We arrive at the last block upon which our main result rests: an alternating gradient descent

procedure that on any distribution finds a mean multicalibrated predictor µ together with

moment predictors {ma}ka=2 such that each pair (µ,ma) is approximately mean-conditioned

moment multicalibrated on G. We continue, for clarity’s sake, to assume access to the under-

lying distribution P, and postpone to Section 5.5 the details of implementing this approach

with a polynomially sized sample of points. Our strategy is to obtain a set of predictors

that together satisfy the hypotheses of Lemma 26: mean consistency and pseudo-moment-

consistency on every set of the form G(µ,ma, i, j)) ⊆ G ∈ G, 1 < a ≤ k, and i, j ∈ [m].

We have already seen in Section 5.4.1 that for a fixed collection of sets, a simple gradient-

descent procedure can obtain mean consistency on each of the sets. Section 5.4.2 demon-

strates that for a fixed mean predictor µ, a similar gradient descent procedure can obtain

pseudo-moment-consistency with respect to µ on each set G(µ,ma, i, j)). Our algorithm

simply alternates between these two procedures. In rounds t, we maintain hypothesis pre-

dictors µt, {mt
a}ka=2. In alternating rounds, we perform updates of gradient descent using

Algorithm 5 to arrive at a mean predictor µt that has taken a step towards consistency on

sets G(µt,mt−1
a , i, j), and then using the newly updated mean predictor µt, run Algorithm

6 to obtain moment predictors mt
a that obtain pseudo-moment-consistency with respect to

µt on all sets G(µt,mt
a, i, j). This is coordinated via a wrapper algorithm, Algorithm 7.

We prove this alternating procedure terminates after 1/α2 − 1 many rounds and outputs

predictors µ, {ma}ka=2 that are jointly mean-conditioned moment-multicalibrated.

Algorithm 5: MeanConsistencyUpdate(µ, S, λ)

µ(x) =


project[0,1](µ(x)− αλ) if x ∈ S,

µ(x) otherwise.

return µ

140

Algorithm 6: PseudoMomentConsistency(a, β, µ,ma,G)
define pseudo-moment labels m̃a,µ(x) = E [(y − µ(x))a|x] for all x

while ∃R = G(µ,ma, i, j) for some G ∈ G, i, j ∈ [m] s.t.

|ma(R)− m̃a,µ(R)| ≥ β
PX (R) do

ψ = sign(mk(R)− m̃k,µ(R))

ma(x) =


project[0,1](ma(x)− βψ) if x ∈ R

ma(x) otherwise.

end

return mk

Algorithm 7: AlternatingGradientDescent(α, β,G)
initialize µ1(x) = 0 for all x

for all 1 < a ≤ k, initialize m1
a(x) = 0 for all x

t = 1

while ∃St = G(µt, i) or St = G(µt,mt
a, i, j) for some G ∈ G, i, j ∈ [m], 1 < a ≤ k

s.t.
∣∣µt(St)− µ(St)∣∣ ≥ α

PX (St) do

λt = sign(µ(St)− µ(St))

µt+1 = MeanConsistencyUpdate(µt, St, λt)

for a = 2, . . . , k do

mt+1
a = PseudoMomentConsistency(a, β, µt+1,mt

a,G).

end

t = t+ 1

end

return (µt, {mt
a}ka=2)

Theorem 21. Let T be the final iterate t of Algorithm 7 (i.e. its output is (µT , {mT
a }ka=2).

Algorithm 7 has the following guarantees:

1. Total Iterations: The algorithm halts. The final iterate T is s.t. T ≤ 1
α2−1. The total

number of gradient descent update operations is at most
(

1
α2 − 1

) (
1 + (k − 1)

(
1
β2 − 1

))
.

141

2. Mean multicalibration: Output µT is α-mean multicalibrated with respect to G.

3. Mean Conditioned Moment multicalibration: For every a ∈ {2, . . . , k}, the pair

(µT ,mT
a) is (α, β + aα, am)-mean-conditioned moment-multicalibrated with respect to

G.

Proof. We prove each guarantee in turn.

Total Iterations: Every step t of the while loop in Algorithm 7 performs a gradient descent

update using MeanConsistencyUpdate on a pair (λt, St) such that:

λt
(
µt(St)− µ(St)

)
≥ α

PX (St)
.

By Theorem 19, this process can continue for at most T ≤ 1
α2 − 1 many iterations. Within

each iteration t of the loop, the algorithm makes one call to PseudoMomentConsistency for

each 1 < a ≤ k for a total of (k−1) calls per iteration. Each of these calls performs at most

1
β2 − 1 iterations of gradient descent, by Theorem 20.

Mean multicalibration: Suppose for a contradiction that Algorithm 7 terminates at t = T

with output µT which is not mean multicalibrated, i.e. there exists a set S ≡ G(µT , i) for

some G ∈ G, i ∈ [m] such that |µt(S)− µ(S)| ≥ α
PX (S) . Then, by construction of the while

loop in Algorithm 7, T cannot be the final iterate of t.

Mean Conditioned Moment multicalibration: The While loop in Algorithm 7 will

continue as long as there exists a set St ≡ G(µt,mt
a, i, j) for some G ∈ G, i, j ∈ [m] such

that |µt(St) − µ(St)| ≥ α
PX (St) . Hence we can conclude that at termination, µT is α-mean

consistent on every set G(µT ,mT
a , i, j) for some G ∈ G, i, j ∈ [m].

Moreover, during the final iteration, for each 1 < a ≤ k, mT
a was constructed by run-

ning PseudoMomentConsistency(a, β, µT ,mT−1
a ,G). Therefore, by Theorem 20 we know

142

that mT
a is β-pseudo-moment consistent on every set G(µT ,mT

a , i, j). To see this, note that

if PseudoMomentConsistency runs for 1
β2 −1 many rounds, then it is β-pseudo-moment con-

sistent on every set. On the other hand, the only way it can halt before that many rounds

(by construction of the halting condition in its While loop) is if mT
a is β-pseudo-moment

consistent on every set G(µT ,mT
a , i, j).

Therefore, µT and {mT
a }ka=2 jointly satisfy the conditions of Lemma 26. It follows from the

Lemma that they are mean-conditioned moment-multicalibrated at the desired parameters.

5.5. Implementation with Finite Sample and Runtime Guarantees

In Section 5.4, we analyzed a version of our algorithm as if we had direct access to the true

distribution, P. In particular, in both Algorithm 6 and Algorithm 7, access to P was needed

in (only) two places. First, to identify a set St such that
∣∣µt(St)− µ(St)∣∣ ≥ α

PX (St) . Second,

to identify a set R such that |ma(R)− m̃a,µ(R)| ≥ β
PX (R) . In this section, we show how

to perform these operations approximately by using a small finite sample of points drawn

from P, and hence to obtain a finite sample version of our main result together with sample

complexity and running time bounds.

There are two issues at play here: the first issue is purely statistical: how many samples are

needed to execute the two checks needed to implement our algorithm? Our finite sample

algorithm will essentially use a sufficiently large fresh sample of data at every iteration

to guarantee uniform convergence of the quantities to be estimated over all of the sets

that must be checked at that iteration. The second issue is computational: even if we have

enough samples so that we can check in-sample quantities as proxies for the distributional

quantities we care about, what is the running time of our algorithm? We are performing

gradient descent in a potentially infinite dimensional space, and so we cannot explicitly

maintain the weights µt(x),mt
a(x) for all x. Instead, we maintain these weights implicitly

as a weighted linear combination of the indicator functions for each of the sets St, R, used

to perform updates (recall that we have assumed that each set G ∈ G can be represented by

143

an indicator function computed by a polynomially sized circuit, so we have concise implicit

representations of every set that our algorithm must manipulate). Ostensibly one must

exhaustively enumerate the collection of sets S,R, for which our algorithm must perform

some check (in fact their indicator functions), which takes time that scales with m2 · |G|.

We first focus on the statistical problem, showing that the number of samples needed to

implement our algorithm is small, and then we observe that if we have an agnostic learning

algorithm for G, we can use it to replace exhaustive enumeration. In both cases—although

the details differ—we handle these issues in largely the same way they were handled by

Hébert-Johnson et al. [43], so many of the proofs and calculations will be deferred to the

Appendix.

Finally, we remark that it is essential that we draw a fresh sample of n data points each

time we try to find a set for consistency violation because ℓ, ℓ, as well as the collection of

sets S that we are auditing, are not fixed a priori but change adaptively (i.e. as a function

of the data) between rounds. Due to the adaptive nature of the statistical tests that need

to be performed, we cannot simply union bound over these queries. We remark that we

could have applied adaptive data analysis techniques (see e.g. [7, 20, 52]) to partially re-use

the data, which would save a quadratic factor in the sample complexity (or for finite data

domains, an exponential improvement in some of the existing parameters, at the cost of an

additional dependence on log |X | by using the private multiplicative weights algorithm of

Hardt and Rothblum [40]). This idea is applied in Hébert-Johnson et al. [43]; it applies here

in the same manner; interested readers can refer to Hébert-Johnson et al. [43].

5.5.1. Sample Complexity Bounds and a Finite Sample Algorithm via Exhaustive Group

Enumeration

First, recall that pseudo-moment consistency is mean consistency with respect to the ar-

tificially created label m̃k,µ(x) = (y − µ(x))k. To avoid needless repetition, we focus on

achieving mean consistency for an arbitrary label defined by a label function ℓ(x, y) with a

predictor ℓ(x). Then, auditing for mean consistency for µ and pseudo-moment consistency

144

for mk follows by setting

ℓ(x) = µ(x) and ℓ(x, y) = y

ℓ(x) = mk(x) and ℓ(x, y) = (y − µ(x))k

for mean consistency and pseudo-moment consistency respectively. For economy of notation

set,

ℓ(S) = E
P
[ℓ(x)|x ∈ S] and ℓ(S) = E

P
[ℓ(x, y)|x ∈ S],

for all S ⊆ X . For any set S ⊆ X , given a dataset D, we refer to DS as the subset of the

data where the corresponding points lie in S (i.e. DS = {(x, y) ∈ D : x ∈ S}). If dataset

DS has n′ points each drawn independently from P conditional on x ∈ S, we can appeal to

the Chernoff bound (Theorem 28) to argue that empirical averages must be close to their

expectations.

We can also appeal to the Chernoff bound to argue that when we sample data points from

P, the number of points that fall into some set S (e.g. G(µ,mk, i, j)) scales roughly with

nPX (S) (Lemma 33).

Throughout the execution of our algorithm, we need to audit the current mean and moment

estimators for α-mean consistency violations. This is important, because the analysis of the

running time of the algorithm (e.g. the fact that it converges after at most T = 1
α2 −1 itera-

tions) relies on making a minimum amount of progress guaranteed by α-mean inconsistency.

In the next lemma, we provide a condition that can be checked using empirical estimates

which guarantees α-mean inconsistency (on the true, unknown distribution) whenever the

sample is appropriately close to the distribution; it follows from two applications of a Cher-

noff bound that this approximate closeness condition will occur with high probability. We

encapsulate this empirical check in Algorithm 8.

145

Algorithm 8: Auditor(ℓ, ℓ, α, δ, {(xb, yb)}n
′
b=1)

if n′ > 0 and
∣∣∣ 1n′
∑n′

b=1 ℓ(xb)−
1
n′
∑n′

b=1 ℓ(xb, yb)
∣∣∣− 2

√
ln(2

δ
)

2n′ ≥ α

n′
n
−

√
ln(2

δ
)

2n

then

λ = sign(1
n′
∑n′

b=1 ℓ(xb)−
1
n′
∑n′

b=1 ℓ(xb, yb))

Output Y ES, λ (A Consistency Violation has been found)

else

Output No

end

Definition 19. Fix any set S ⊆ X . Given a set of n data points D and its associated

DS = {(xb, yb)}n
′
b=1, we say that D is approximately close to P with respect to (S, ℓ, ℓ), if

the following inequalities hold true:

n′ > 0∣∣∣∣n′n − PX (S)
∣∣∣∣ ≤

√
ln(2δ)

2n
(5.2a)∣∣∣∣∣ 1n′

n′∑
b=1

ℓ(xb)− ℓ(S)

∣∣∣∣∣ ≤
√

ln(2δ)

2n′
(5.2b)

∣∣∣∣∣ 1n′
n′∑
b=1

ℓ(xb, yb)− ℓ(S)

∣∣∣∣∣ ≤
√

ln(2δ)

2n′
(5.2c)

Lemma 28. Fix any set S ⊆ X . If dataset D is approximately close to P with respect to

(S, ℓ, ℓ), then we have

Auditor(ℓ, ℓ, α,DS) = (YES, λ) =⇒
∣∣ℓ(S)− ℓ(S)∣∣ ≥ α

PX (S)
and λ = sign(ℓ(S)− ℓ(S))

Lemma 28 implies that when we find an empirical consistency violation using Algorithm 8,

it is indeed a real α-consistency violation with respect to the true distribution, allowing us

to make progress — this guarantees that our algorithm will not run for too many iterations.

But we need a converse condition, in order to make sure that we don’t halt too early: we

146

must show that if there are no empirical α′-consistency violations for some α′ > α, then

there are also no α-consistency violations with respect to the true distribution. This is what

we do in Lemma 29. Observe, that without loss of generality, we can restrict attention to

sets such that PX (S) ≥ α because any estimator in the range [0, 1] is trivially α-mean

consistent on every set with measure < α.

Lemma 29. Fix any set S ⊆ X such that PX (S) ≥ α. Assume n is sufficiently large such

that 2

√
ln(2

δ
)

2n < α If D is approximately close to P with respect to (S, ℓ, ℓ), we have

∣∣ℓ(S)− ℓ(S)∣∣ ≥ α′

PX (S)
=⇒ Auditor(ℓ, ℓ, α,DS) = YES,

where α′ = α+ 4
√

1
2n ln(

2
δ) +

(
α− 2

√
ln(2

δ
)

2n

)−2(
2

√
ln(2

δ
)

2n

)
.

The Auditor subroutine above performs a consistency check on a single set. We now use it

to audit for mean consistency and pseudo-moment consistency across a collection of sets.

Algorithm 9: ConsistencyAuditor(ℓ, ℓ, α, δ,D,S)

for S ∈ S do

if |DS | > 0 and Auditor(ℓ, ℓ, α, δ,DS) = Y ES, λ then

return S, λ

end

end

return NULL

Corollary 3. Fix ℓ, ℓ, α, δ, and a collection of sets S. Given a set of n points D drawn i.i.d.

from P where α > 2

√
ln(2

δ
)

2n , ConsistencyAuditor(µ, α,D,S) has the following guarantee with

probability 1− 3δ|S| over the randomness of D:

1. If ConsistencyAuditor does output some set S and λ, then

∣∣ℓ(S)− ℓ(S)∣∣ ≥ α

PX (S)
and λ = sign(ℓ(S)− ℓ(S)).

147

2. If ConsistencyAuditor outputs NULL, then for all S ∈ S,

∣∣ℓ(S)− ℓ(S)∣∣ ≤ α′

PX (S)
,

where α′ = α+ 4
√

1
2n ln(

2
δ) +

(
α− 2

√
ln(2

δ
)

2n

)−2(
2

√
ln(2

δ
)

2n

)
.

Thus, to detect a set S with α-mean consistency violation in line 7 of Algorithm 7, we can

leverage Algorithm 9 by drawing a fresh sample of size n and setting ℓ(x) = µ(x), ℓ(x, y) = y,

and S = {G(µ, i) : G ∈ G, i ∈ [m]} ∪ {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}.

Likewise, for every a ∈ {2, . . . , k}, to detect a set S with β-pseudo-moment consistency

violation in line 6 of Algorithm 6, we can leverage Algorithm 9 by drawing a fresh sample

of size n and setting ℓ(x) = mk(x), ℓ(x, y) = (y − µ(x))k, and S = {G(µ,ma, i, j) : G ∈

G, i, j ∈ [m]}. We write out the pseudocode of this process below.

Algorithm 10: PseudoMomentConsistencyFinite(a, β, δ, µ,ma, n,G)
D = {(xb, yb)}nb=1 ∼ Pn

S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}

ℓ(x) = ma(x)

ℓ(x, y) = (y − µ(x))a

R,ψ = ConsistencyAuditor(ℓ, ℓ, β, δ,D,S)

while R,ψ ̸= NULL do

ma(x) =


project[0,1](ma(x)− βψ) if x ∈ R

ma(x) otherwise.

D = {(xb, yb)}nb=1 ∼ Pn

S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}

ℓ(x) = ma(x)

R,ψ = ConsistencyAuditor(ℓ, ℓ, β, δ,D,S)

end

return mk

148

Algorithm 11: AlternatingGradientDescentFinite(α, β, δ, n,G)
Initialize µ1(x) = 0 for all x

For all 1 < a ≤ k, initialize m1
a(x) = 0 for all x

t = 1

ℓ
t
(x) = µ(x)

ℓ(x, y) = y

Dt = {(xb, yb)}nb=1 ∼ Pn

St = {G(µt, i) : G ∈ G, i ∈ [m]} ∪ {G(µt,mt
a, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}

St, λt = ConsistencyAuditor(ℓ
t
, ℓ, α, δ,D,S)

while St, λt ̸= NULL do

µt+1 = MeanConsistencyUpdate(µt, St, λt)

for a = 2, . . . , k do

mt+1
a = PseudoMomentConsistencyFinite(a, β, δ, µt+1,mt

a, n,G).

end

t = t+ 1

ℓ
t
(x) = µ(x)

Dt = {(xb, yb)}nb=1 ∼ Pn

St = {G(µt, i) : G ∈ G, i ∈ [m]} ∪ {G(µt,mt
a, i, j) : G ∈ G, i, j ∈ [m], a ∈

{2, . . . , k}}

St, λt = ConsistencyAuditor(ℓ
t
, ℓ, α, δ,Dt,St)

end

return (µt, {mt
a}ka=2)

Theorem 22. Let T be the final iterate of Algorithm 11. If 2

√
ln(2

δ
)

2n ≤ α and 2

√
ln(2

δ
)

2n ≤ β,

we have the following guarantees:

1. Total Iterations: With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
over the ran-

domness of our samples, the final iterate T is s.t. T ≤ 1
α2 − 1 and the total number of

149

gradient descent update operations will be at most Q, where

Qα =
1

α2
− 1, Qβ = (k − 1)

(
1

β2
− 1

)
, Q = Qα(1 +Qβ).

In particular, the algorithm uses at most nQ samples from P.

2. Mean multicalibration: With probability 1− 3δ(m2 +m)|G|, output µT is α′-mean

multicalibrated with respect to G where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n

 .

3. Mean Conditioned Moment multicalibration: With probability 1− 3δ|G|(km2 +

m), for any a ∈ {2, . . . , k}, pair (µT ,mT
a) is (α′, aα′ + β′, am)-mean-conditioned-

moment multicalibrated where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n



β′ = β + 4

√
ln
(
2
δ

)
2n

+

β − 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n


The following corollary derives the sample complexity of our algorithm, implied by Theorem

22, for a target set of parameters. Observe that the sample complexity is polynomial in

k,m, 1/α, 1/β, 1/ϵ, log(1/δ), and log |G|.

150

Corollary 4. Fix target parameters α′, β′, δ′ and ϵ > 0 such that ϵ < α′ and ϵ < β′. Define

Q =
6|G|km2(

α′−ϵ
6+ 2

ϵ2

)2(
β′−ϵ
6+ 2

ϵ2

)2 , δ =
δ′

max(3|G|(km2 +m), Q)
,

nα =
ln(2Qδ)

2

(
α′−ϵ
6+ 2

ϵ2

)2 , nβ =
ln(2Qδ)

2

(
β′−ϵ
6+ 2

ϵ2

)2 .

Then, AlternatingGradientDescentFinite(α, β, δ, n,G) where

α = 2

√
ln(2Qδ)

2nα
+ ϵ, β = 2

√√√√ ln(2Qδ)

2nβ
+ ϵ,

n = max

(
ln(2Qδ)

ln(2δ)
nα,

ln(2Qδ)

ln(2δ)
nβ,

2 ln(2δ)

α2
,
2 ln(2δ)

β2

)

has the following guarantees with probability 1− δ′:

1. The total number of gradient descent updates will be at most Q, where Q is as defined

in Theorem 22.

2. µT is α′-mean-multicalibrated.

3. For every a ∈ {2, . . . , k}, (µT ,mT
a) is (α

′, aα′+β′, am)-mean-conditioned-moment mul-

ticalibrated.

Finally, we state the running time of the algorithm in the following Theorem.

Theorem 23. With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
, the running time of Al-

gorithm 11 is O
(
Q|G|m2n

)
= O

(
k|G|m2n
α2β2

)
where Qα, Qβ, and Q are as defined in Theorem

22.

5.5.2. Oracle Efficient Implementation

In Section 5.5.1 we analyzed an algorithm that had favorable sample-complexity bounds,

but was computationally expensive when G was large: although it ran for only a small

151

number of iterations, each iteration required a complete enumeration of every set in G. In

this section, we show how to replace this expensive step with a call to an algorithm which

can solve learning problems over G, if one is available. Because the remaining portion of

the algorithm is computationally efficient — even if G is very large — this yields what is

sometimes known as an “oracle efficient algorithm”. Similar reductions have been given in

Hébert-Johnson et al. [43], Kearns et al. [59] and Kim et al. [61].

Definition 20. For some ρ ∈ [0, 1] and non-increasing function p : N → [0, 1], A is a

(ρ, p)-agnostic learning oracle for hypothesis class H ⊆ 2X with respect to a label function

r(x, y) ∈ [−1, 1], if for any distribution P, given n random samples from P, it outputs

f : X → {0, 1} such that with probability 1− p(n),

E
(x,y)∼P

[f(x) · r(x, y)] + ρ ≥ sup
h∈H

E
(x,y)∼P

[h(x) · r(x, y)].

We write τ(n) to denote the running time of the oracle A when n data points are used,

which we assume is at least Ω(n).

Remark 7. A more common definition of an agnostic learning oracle would use hypotheses

with range {−1, 1} rather than {0, 1}. But this definition will be more convenient for us,

and is equivalent (up to a constant factor in the parameters) via a linear transformation.

We will use a learning algorithm for any class H such that G ⊆ H to replace the set

enumeration steps of our algorithm. In particular, to find a set of the form G(µ, i) on which

our existing predictor µ fails to be mean consistent, we run our learning algorithm on the

subset of our sample that intersects with X (µ, i), labelled with the positive and negative

residuals of our predictor — i.e. on the labels r+R(x, y) = µ(x) − y and r−R = y − µ(x).

Similarly, to find a set of the form G(µ,ma, i, j), we run our learning algorithm on the

sets X (µ,ma, i, j) labeled with both the positive and negative residuals. Finding sets on

which we fail to be moment pseudo-consistent with respect to µ is similar. All in all, this

requires O(k ·m2) runs of our learning algorithm per gradient descent step, replacing the

152

complete enumeration of the collection of sets G. We make this process more precise in

Algorithm 13 and state the guarantees in Theorem 24. We also include the pseudocode for

the correspondingly updated AlternatingGradientDescentFinite using Algorithm 13 as the

auditing subroutine in the appendix – see Algorithm 15.

Algorithm 12: LearningOracleConsistencyAuditor(ℓ, ℓ, α, δ,D,R,A)

r+R(x, y) =


ℓ(x)− ℓ(x, y) if x ∈ R

0 otherwise

and D+
R = {(xb, r+R(x, y))}nb=1

r−R(x, y) =


ℓ(x, y)− ℓ(x) if x ∈ R

0 otherwise

and D−
R = {(xb, r−R(x, y))}nb=1

χS+ = A(D+
R ,H)

χS− = A(D−
R ,H)

return (S+, S−)

Algorithm 13: LearningOracleConsistencyAuditorWrapper(ℓ, ℓ, α, δ,D,Dcheck,R, A)

V = {} for R ∈ R do

if |DR| > 0 then

S+, S− = LearningOracleConsistencyAuditor(ℓ, ℓ, α, δ,D,Dcheck, R,A)

V = V ∪ {(S+ ∩R), (S− ∩R)}

end

end

return ConsistencyAuditor(ℓ, ℓ, α,Dcheck,V)

First we observe that the objective of the agnostic learning oracle on the sets we run it on

corresponds directly to the (positive and negative) violation of mean consistency on these

sets, weighted by the measure of the sets.

Lemma 30. For each R ∈ R and any χS:

E
(x,y)

[χS(x) · r+R(x, y)] = PX (R ∩ S)
(
ℓ(R ∩ S)− ℓ(R ∩ S)

)

153

E
(x,y)

[χS(x) · r−R(x, y)] = PX (R ∩ S)
(
ℓ(R ∩ S)− ℓ(R ∩ S)

)

Using this, we can show that our learning oracle based consistency auditor has comparable

guarantees to the consistency auditor that operated via set enumeration:

Theorem 24. Assume n is sufficiently large such that α > 2

√
ln(2

δ
)

2n . Algorithm 13 has the

following guarantees:

1. If it returns some S and λ, then with probability 1 − 3δ|R| over the randomness of

Dcheck,

|ℓ(S)− ℓ(S)| ≥ α

PX (S)
.

2. If it returns NULL, then with probability 1− |R|(3δ + 2p(n)) over the randomness of

D and Dcheck, for all χS ∈ H and R ∈ R,

|ℓ(R ∩ S)− ℓ(R ∩ S)| ≤ α′ + ρ

PX (R ∩ S)
,

where α′ is as defined in Corollary 3.

Observe that when G ⊆ H and R = {X (µ,ma, i, j) : i, j ∈ [m]}, then, the collection of

intersections R ∩ S over all χS ∈ H and R ∈ R contains {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m]}.

The same observation applies when R = {X (µ, i) : i ∈ [m]} ∪ {X (µ,ma, i, j) : i, j ∈ [m]}

– the collection of intersections includes {G(µ, i) : G ∈ G, i ∈ [m]} ∪ {X (µ,ma, i, j) : G ∈

G, i, j ∈ [m]}.

We now present the guarantees of a version of AlternatingGradientDescent that uses Algo-

rithm 13 as the auditor. Its pseudo-code can be found as Algorithm 15 in the appendix. We

elide the proof as it is almost identical to that of Theorem 21 and Theorem 22.

Theorem 25. Assume G ⊆ H. Let T be the final iterate of Algorithm 15. If 2

√
ln(2

δ
)

2n ≤ α,

2

√
ln(2

δ
)

2n ≤ β, and G ⊆ H, we have the following guarantees:

154

1. Total Iterations: With probability 1 − 3δQα
(
(m2 +m) +m2Qβ

)
over the random-

ness of our samples, the final iterate T is such that T ≤ 1
α2 − 1 and the total number

of gradient descent update operations will be at most Q, where Qα, Qβ, and Q are all

as defined in Theorem 22.

In particular, the algorithm uses at most O(nQ) samples from P.

2. Mean multicalibration: With probability 1 − (m2 + m)(3δ + 2p(n)), output µT is

α′′-mean multicalibrated with respect to G where α′′ = α′ + ρ and α′ is as defined in

Theorem 22.

3. Mean Conditioned Moment multicalibration: With probability 1−(km2+m)(3δ+

2p(n)), for any a ∈ {2, . . . , k}, pair (µT ,mT
a) is (α′′, aα′′ + β′′, am)-mean-conditioned-

moment calibrated where β′′ = β′ + ρ and β′ is as defined in Theorem 22.

Finally, we state the running time of Algorithm 15.

Theorem 26. With probability at least 1− 3δQα
(
(m2 +m) +m2Qβ

)
, the running time of

Algorithm 15 is bounded by O(Qm2τ(n)), where Q is the total number of gradient descent

operations as defined in Theorem 22.

5.6. Marginal Prediction Intervals

We now present an application of our results. Given subgroups of interest G, we have shown

how to to construct a multicalibrated mean predictor µ and moment predictors (ma)
k
a=2 that

are simultaneously mean-conditioned moment-multicalibrated. A key question is whether

we can use mean-conditioned moment multicalibrated predictors in applications in which

we would use real distributional moments, were they available.

In this section, we show that the answer is yes in an important application. Mean-conditioned

moment multicalibrated predictors can be used in tail bounds just as real moments could be

to compute prediction intervals. Where real moments would yield prediction intervals con-

ditioned on an individual vector of features x, mean-conditioned moment-multicalibrated

155

predictors when used in the same computations yield marginal prediction intervals that

are simultaneously valid for every sufficiently large subgroup. In particular, given a cov-

erage failure probability δ and a group size γ we show how to construct just from mean

and moment predictions, for every x ∈ X, an interval I(x, γ) such that for every G ∈ G

and for every pair of predictions i, j such that G(µ,ma, i, j) has mass at least γ we have:

Pr(x,y)[y ∈ I(x, γ)|x ∈ G(µ,ma, i, j)] ≥ 1− δ.

Recall the following tail inequality (a simple consequence of Markov’s inequality: when

k = 2, it is known as Chebyshev’s inequality):

Lemma 31. Let X be a random variable with mean µ. Then for even k, t > 0:

Pr[|X − µ| ≥ t] ≤ E[(X − µ)k]
tk

.

Suppose we knew the real moments mk(x) of the distribution on y conditional on features

x: A direct application of the above lemma would allow us to conclude that for any even

moment k:

Pr

[
y ̸∈

[
µ(x)−

(
mk(x)

δ

) 1
k

, µ(x) +

(
mk(x)

δ

) 1
k

]∣∣∣∣∣x
]
≤ δ.

Bounds of this form are simple, but also strong: there is always an integer moment k such

that the above bound is at least as tight as a generalized Chernoff bound18 [78], and only

the first k ≤ O(log(1/δ)) moments are necessary to match Chernoff bounds at coverage

probability 1− δ [83].

If we had exactly mean-conditioned moment-calibrated predictors (µ,mk) for some k even,

over a set of groups G, we would obtain exactly the same bound using these predictors as

18Chernoff’s bound is Pr[X ≥ t] ≤ infθ≥0 MX(θ)e−θt, where MX(θ) is the moment generating function
for X

156

a marginal prediction interval: i.e. we would obtain for every G ∈ G, and every i, j:

Pr
(x,y)

[
y ̸∈

[
µ(x)−

(
mk(x)

δ

)1/k

, µ(x) +

(
mk(x)

δ

)1/k
]∣∣∣∣∣x ∈ G(µ,mk, i, j)

]
≤ δ.

This is because mean-conditioned moment-multicalibrated predictors actually do provide

real distributional moments, over the selection of a random point within any setG(µ,mk, i, j).

Of course we only have approximately mean-conditioned-moment multicalibrated predic-

tors. Given (α, β, ϵ)-mean-conditioned-moment multicalibrated predictors (µ,mk), k even,

with respect to some collection of groups G, we can endow our predictions with (marginal)

prediction intervals that have coverage probability 1 − δ as follows. The width of our pre-

diction interval for a point x will be:

∆γ,k(x) =
α

γ
+ ϵ+

1

m
+

(
mk(x) + ϵ+ 1

m + β
γ

δ

) 1
k

,

Our prediction interval for x will be centered at its predicted mean, and is defined as follows:

Iγ,k(x) = [µ(x)−∆γ,k(x), µ(x) + ∆γ,k(x)].

These are valid marginal prediction intervals as averaged over any set of the formG(µ,mk, i, j)

that has measure larger than γ. Note that all of the approximation terms α, β, ϵ, 1/m are

terms that we can drive to zero at polynomial cost in running time and sample complexity.

Theorem 27. Assume that µ,mk is (α, β, ϵ)-mean-conditioned moment multicalibrated with

respect to G, with k even. Then for any group G ∈ G and any set G(µ,mk, i, j) such that

PX [G(µ,mk, i, j)] ≥ γ, we have:

P[y ̸∈ Iγ,k(x)|x ∈ G(µ,mk, i, j)] ≤ δ

157

Proof. To see this note that:

P[y ̸∈ Iγ,k(x)|x ∈ G(µ,mk, i, j)]

= P

|y − µ(x)| ≥ α

γ
+

1

m
+ ϵ+

(
mk(x) +

1
m + ϵ+ β

γ

δ

) 1
k

∣∣∣∣∣∣x ∈ G(µ,mk, i, j)


≤ P

|y − µ(G(µ,mk, i, j))| ≥
α

γ
+ ϵ+

(
mk(G(µ,mk, i, j)) +

β
γ + ϵ

δ

) 1
k

∣∣∣∣∣∣x ∈ G(µ,mk, i, j)


≤ P

[
|y − µ(G(µ,mk, i, j))| ≥

(
mk(G(µ,mk, i, j))

δ

) 1
k

∣∣∣∣∣x ∈ G(µ,mk, i, j)

]

≤ δ

Here, the first inequality follows from the fact that all x ∈ G(µ,mk, i, j) are (by definition)

such that |µ(x)− i
m | ≤

1
2m and |mk(x)− j

m | ≤
1
2m , and hence |µ(x)−µ(G(µ,mk, i, j))| ≤ 1

m

and |mk(x)−mk(G(µ,mk, i, j)))| ≤ 1
m . The second inequality follows from the definition of

(α, β)-mean conditioned moment multicalibration and the fact that P[G(µ,mk, i, j)] ≥ γ.

Finally, once we have replaced our mean and moment estimates with the true mean and

moment of G(µ,mk, i, j), the final inequality follows as an application of Lemma 31.

This theorem shows how—given (α, β, ϵ) mean-conditioned moment-multicalibrated predic-

tors µ,mk—we can construct prediction intervals for any set G(µ,mk, i, j) with probability

larger than γ.19 However, we have more information available to us: We have mean condi-

tioned moment-calibrated predictors for all moments 2 thru k, (ma)
k
a=2. A straightforward

valid solution is to pick some even moment a s.t. 1 < a ≤ k, and then construct prediction

19We showed this just for even moments k — but a version of Lemma 31 also holds for k odd, i.e. for

any r.v. X with mean µ, any number k, and any t > 0, we have Pr[|X − µ| ≥ t] ≤ E[|(X−µ)k]

tk
. We can use

this to construct valid confidence intervals using “absolute central moments” of any degree, even or odd.
Note also that our algorithms and analysis apply identically if the goal was to provide mean-conditioned,
multicalibrated predictors of absolute central moments (i.e. the analog of Definition 17 but where instead of
mk(·), we calibrate our predictor to the analogous absolute central moment).

158

intervals as above. We could optimize our choice of a so as to minimize e.g. the expected

width of the prediction intervals over a random choice of x. But this leads to the question

of whether we can do better by using more than one moment estimator at a time.

In Appendix 5.D, we show that this problem reduces to the venerable submodular-cost set-

cover problem. Known approximation guarantees for this problem are relatively weak in this

context (scaling with log |X |, which will typically be linear in the dimension of the data).

We leave the question of how to optimally use multiple mean-conditioned moment mul-

ticalibrated predictors—taking advantage of multiple moments simultaneously—to future

research.

159

Appendix

5.A. Details and Proofs from Section 5.4.1

Lemma 25. For any initial mean predictor µ1 ∈ X → [0, 1] and any sequence of (St, λt)Tt=1,

Algorithm 3 satisfies:

T∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η
+
η

2

T∑
t=1

PX (St).

Proof. Because µt+1(x) = µt(x) for x ̸∈ St, we can lower bound the “progress” made

towards µ at each round t ∈ [T] as:

E
P

[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2

]
= PX (St)E

P

[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2|x ∈ St

]
≥ PX (St)E

P

[
(µt(x)− µ(x))2 − (µt(x)− ηλt − µ(x))2|x ∈ St

]
= PX (St)E

P

[
(µt(x)− µ(x))2 −

(
(µt(x)− µ(x))2 − 2ηλt(µt(x)− µ(x)) + (ηλt)2

)
|x ∈ St

]
= PX (St)E

P

[
2ηλt(µt(x)− µ(x))|x ∈ St

]
− PX (St)(ηλt)2

= 2ηλtPX (St)
(
µt(St)− µ(St)

)
− PX (St)(ηλt)2.

The inequality would be an equality if we did not project µt into the range [0, 1]. Performing

the projection only decreases its ℓ2 distance to µ, which yields the inequality. Rearranging

terms and observing that (λt)2 = 1 yields

λtPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η
E
P

[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2

]
+
ηPX (St)

2

160

Therefore we have that

T∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤

T∑
t=1

(
1

2η
E
P

[
(µt(x)− µ(x))2 − (µt+1(x)− µ(x))2

]
+
ηPX (St)

2

)

=
1

2η
E
P

[
(µ1(x)− µ(x))2 − (µT+1(x)− µ(x))2

]
+
η

2

T∑
t=1

PX (St)

≤ 1

2η
+
η

2

T∑
t=1

PX (St)

as desired. The last inequality follows because µ1(x), µ(x), and µT+1(x) all fall in [0, 1].

Theorem 19. Set T = 1
α2 − 1 and η = α = 1√

T+1
in Algorithm 3. Assume that for every

t ∈ [T],

λt
(
µt(St)− µ(St)

)
≥ α

PX (St)
,

Then, for every S ⊆ X , we have

∣∣µT+1(S)− µ(S)
∣∣ ≤ α

PX (S)
.

Proof. Fix any set S ⊆ X and imagine extending the sequence by setting ST+1 = S and

setting λT+1 = sign(µT+1(S)− µ(S)). By Lemma 25, we would then have:

T+1∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤ 1

2η
+
η

2

T+1∑
t=1

PX (St)

≤ 1

2η
+
η(T + 1)

2

≤
√
T + 1 (substituting η =

1√
T + 1

)

161

We can then peel off the last term in the sum corresponding to ST+1 = S to obtain:

PX (S)
∣∣µT+1(S)− µ(S)

∣∣ ≤ √T + 1−
T∑
t=1

λtPX (St)
(
µt(St)− µ(St)

)
≤
√
T + 1− αT (by assumption)

= α (since T =
1

α2
− 1)

which completes the proof.

5.B. Details and Proofs from Section 5.4.2

For intuition, we can think of the pseudo-moment calibration algorithm as playing the

following zero sum game using projected online gradient descent against an adversary who

plays best responses. Recall that µ is a fixed quantity so that m̃k,µ is well defined.

min
mk

max
R⊆X

ψ∈{−1,1}

ψPX (R) (mk(R)− m̃k,µ(R)) .

Lemma 32. For any arbitrary mk
1 : X → [0, 1] and any sequence of (Rt, ψt)Tt=1, we have

that
T∑
t=1

ψtPX (Rt)
(
mk

t(R)− m̃k,µ(R)
)
≤ 1

2η
+
η

2

T∑
t=1

PX (Rt)

162

Proof.

E
P

[
(mk

t(x)− m̃k,µ(x))
2 − (mk

t+1(x)− m̃k,µ(x))
2
]

=PX (Rt)E
P

[
(mk

t(x)− m̃k,µ(xi))
2 − (mk

t+1(x)− m̃k,µ(x))
2|x ∈ Rt

]
≥PX (Rt)E

P

[
(mk

t(x)− m̃k,µ(x))
2 − (mk

t(x)− ηψt − m̃k,µ(x))
2|x ∈ Rt

]
=PX (Rt)E

P

[
(mk

t(x)− m̃k,µ(x))
2

−
(
(mk

t(x)− m̃k,µ(x))
2 − 2ηψt(mk

t(x)− m̃k,µ(x)) + (ηψt)2
)
|x ∈ Rt

]

=2ηψtPX (Rt)E
P

[
mk

t(x)− m̃k,µ(x))|x ∈ Rt
]
− PX (Rt)(ηψt)2

Here the inequality comes from the fact that projection can only make the ℓ2 norm smaller.

Rearranging terms and observing that (ψt)2 = 1 yields

ψtPX (Rt)E
P

[
mk

t(x)− m̃k,µ(x)|x ∈ Rt
]

≤ 1

2η
E
P

[
(mk

t(x)− m̃k,µ(x))
2 − (mk

t+1(x)− m̃k,µ(xi))
2
]
+
ηPX (Rt)

2
.

Plugging this inequality back into the regret, we get

T∑
t=1

ψtPX (Rt)
(
mk

t(R)− m̃k,µ(R)
)

=
T∑
t=1

ψtPX (Rt)E
P

[
mk

t(x)− m̃k,µ(x)|x ∈ Rt
]

≤
T∑
t=1

(
1

2η
E
P

[
(mk

t(x)− m̃k,µ(x))
2 − (mk

t+1(x)− m̃k,µ(xi))
2
]
+
ηPX (Rt)

2

)

=
1

2η

(∑
x∈X

E
P

[
(mk

1(x)− m̃k,µ(x))
2 − (mk

T+1(x)− m̃k,µ(xi))
2
])

+
η

2

T∑
t=1

PX (Rt)

≤ 1

2η
+
η

2

T∑
t=1

PX (Rt)

163

as desired. The last inequality follows because mk
1(x), m̃k,µ(x), and mk

T+1(x) all fall in

[0, 1].

Theorem 20. Let T = 1
β2 − 1 and η = 1√

T+1
= β in Algorithm 4, and fix any mean

predictor µ, which defines the function m̃k,µ(x). Assume that for every t ∈ [T],

∣∣mk
t(Rt)− m̃k,µ(R

t)
∣∣ ≥ β

PX (Rt)
,

Then, for every R ⊆ X , we have

|mk(R)− m̃k,µ(R)| ≤
β

PX (R)
.

i.e. mk is β-pseudo-moment-consistent on every set R.

Proof. Set RT+1 = R. From Lemma 32, we get

T+1∑
t=1

ψtPX (Rt)
(
mk

t(Rt)− m̃k,µ(R
t)
)
≤ 1

2η
+
η

2

T+1∑
t=1

PX (Rt) ≤
√
T + 1

=⇒PX (RT+1)
∣∣mk

T+1(RT+1)− m̃k,µ(R
T+1)

∣∣ ≤ √T + 1− βT = β

5.C. Details and Proofs from Section 5.5

Theorem 28 (Chernoff Bound). Fix distribution P and some function f(x, y) ∈ [0, 1]. Let

{(xb, yb)}nb=1 be n points sampled i.i.d. from P. Then, we have for any δ ∈ [0, 1],

Pr
{(xb,yb)}nb=1∼Pn

∣∣∣∣∣ 1n
n∑
b=1

f(xb, yb)− E
(x,y)∼P

[f(x, y)]

∣∣∣∣∣ ≥
√

ln(2δ)

2n

 ≤ δ.

164

Lemma 33. For any set S ⊆ X ,

Pr
D∼Pn

∣∣∣∣∣ 1n
n∑
b=1

1(xb ∈ S)− PX (S)

∣∣∣∣∣ >
√

ln(2δ)

2n

 ≤ δ
Proof. We apply a Chernoff bound (Theorem 28) with f(x, y) = 1(x ∈ S). Observe that

E[f(x, y)] = PX (S).

Lemma 28. Fix any set S ⊆ X . If dataset D is approximately close to P with respect to

(S, ℓ, ℓ), then we have

Auditor(ℓ, ℓ, α,DS) = (YES, λ) =⇒
∣∣ℓ(S)− ℓ(S)∣∣ ≥ α

PX (S)
and λ = sign(ℓ(S)− ℓ(S))

Proof. To see this, observe that

∣∣ℓ(S)− ℓ(S)∣∣
≥

∣∣∣∣∣ 1n′
n′∑
b=1

ℓ(xb)−
1

n′

n′∑
b=1

ℓ(xb, yb)

∣∣∣∣∣− 2

√
ln(2δ)

2n′

≥ α

n′

n −
√

ln(2
δ
)

2n

≥ α

PX (S)

Here, the first inequality follows from the (5.2b) and (5.2c), the second from the condition

of Algorithm 8, and the last inequality follows from (5.2a).

Finally, if 1
n′
∑n′

b=1 ℓ(xb) ≥
1
n′
∑n′

b=1 ℓ(xb, yb), then

ℓ(S) ≥ 1

n′

n′∑
b=1

ℓ(xb)−

√
ln(2δ)

2n′
≥ 1

n′

n′∑
b=1

ℓ(xb, yb) +

√
ln(2δ)

2n′
≥ ℓ(S).

The same argument applies when 1
n′
∑n′

b=1 ℓ(xb) <
1
n′
∑n′

b=1 ℓ(xb, yb). Therefore, sign(
1
n′
∑n′

b=1 ℓ(xb)−
1
n′
∑n′

b=1 ℓ(xb, yb)) = sign(ℓ(S)− ℓ(S)).

165

Lemma 29. Fix any set S ⊆ X such that PX (S) ≥ α. Assume n is sufficiently large such

that 2

√
ln(2

δ
)

2n < α If D is approximately close to P with respect to (S, ℓ, ℓ), we have

∣∣ℓ(S)− ℓ(S)∣∣ ≥ α′

PX (S)
=⇒ Auditor(ℓ, ℓ, α,DS) = YES,

where α′ = α+ 4
√

1
2n ln(

2
δ) +

(
α− 2

√
ln(2

δ
)

2n

)−2(
2

√
ln(2

δ
)

2n

)
.

Proof. The pre-condition implies that

∣∣∣∣∣ 1n′
n′∑
b=1

ℓ(xb)−
1

n′

n′∑
b=1

ℓ(xb, yb)

∣∣∣∣∣− 2

√
ln(2δ)

2n′

≥
∣∣ℓ(S)− ℓ(S)∣∣− 4

√
ln(2δ)

2n′

≥ α′

PX (S)
− 4

√
ln(2δ)

2n′
.

166

Therefore it is sufficient to show that α′

PX (S) − 4

√
ln(2

δ
)

2n′ ≥ α

n′
n
−

√
ln(2

δ
)

2n

.

α′

PX (S)
=

α+ 4
√

1
2n ln(

2
δ) +

(
α− 2

√
ln(2

δ
)

2n

)−2(
2

√
ln(2

δ
)

2n

)
PX (S)

≥
α+ 4

√
1
2n ln(

2
δ)

PX (S)− 2

√
ln(2

δ
)

2n

(5.3)

≥ α

PX (S)− 2

√
ln(2

δ
)

2n

+
4
√

1
2n ln(

2
δ)

PX (S)−
√

ln(2
δ
)

2n

≥ α

PX (S)− 2

√
ln(2

δ
)

2n

+ 4

√√√√ ln(2δ)

2n(PX (S)−
√

ln(2
δ
)

2n)

∀x ∈ [0, 1] : x ≤
√
x

≥ α

PX (S)− 2

√
ln(2

δ
)

2n

+ 4

√
ln(2δ)

2n′
by (5.2a)

≥ α

n′

n −
√

ln(2
δ
)

2n

+ 4

√
ln(2δ)

2n′
by (5.2a)

Inequality (5.3) comes from Lemma 34, where we plug in x = PX (S), c = α + 4
√

1
2n ln(

2
δ)

and ϵ = 2

√
ln(2

δ
)

2n .

Lemma 34. For any 0 < ϵ ≤ α ≤ x ≤ 1 and 0 < c ≤ 1,

c+ ϵ
(α−ϵ)2

x
≥ c

x− ϵ

Proof. Because
c+ ϵ

(α−ϵ)2

x
≥ c

x
+

ϵ

(α− ϵ)2
,

it is sufficient to show that

c

x
+

ϵ

(α− ϵ)2
≥ c

x− ϵ
.

167

Because f(x) = c
x is convex, it’s easy to see that:

f(x− ϵ) + ϵf ′(x− ϵ) ≤ f(x)
c

x− ϵ
− cϵ

(x− ϵ)2
≤ c

x
.

Now, because ϵ ≤ α ≤ x and 0 < c ≤ 1, we have

c

x− ϵ
− ϵ

(α− ϵ)2
≤ c

x
.

Corollary 3. Fix ℓ, ℓ, α, δ, and a collection of sets S. Given a set of n points D drawn i.i.d.

from P where α > 2

√
ln(2

δ
)

2n , ConsistencyAuditor(µ, α,D,S) has the following guarantee with

probability 1− 3δ|S| over the randomness of D:

1. If ConsistencyAuditor does output some set S and λ, then

∣∣ℓ(S)− ℓ(S)∣∣ ≥ α

PX (S)
and λ = sign(ℓ(S)− ℓ(S)).

2. If ConsistencyAuditor outputs NULL, then for all S ∈ S,

∣∣ℓ(S)− ℓ(S)∣∣ ≤ α′

PX (S)
,

where α′ = α+ 4
√

1
2n ln(

2
δ) +

(
α− 2

√
ln(2

δ
)

2n

)−2(
2

√
ln(2

δ
)

2n

)
.

Proof. For each set S ∈ S, we write DS = {(xSb , ySb)}
n′
S
b=1 to denote the points from D that

fall in S.

First, by union bounding the failure probabilities of Lemma 33 over every S ∈ S, we have

with probability 1− δ|S|, ∣∣∣∣n′Sn − PX (S)
∣∣∣∣ >

√
ln(2δ)

2n
.

168

We apply the Chernoff bound again for every set S where n′S > 0 and take the union bound

to argue that with probability at least 1− 2|S|δ, for all such sets S where n′S > 0,

∣∣∣∣∣∣ 1n′S
n′
S∑

b=1

ℓ(xSb)− ℓ(S)

∣∣∣∣∣∣ ≤
√

ln(2δ)

2n′S∣∣∣∣∣∣ 1n′S
n′
S∑

b=1

ℓ(xSb , y
S
b)− ℓ(S)

∣∣∣∣∣∣ ≤
√

ln(2δ)

2n′S
.

Observe that despite the fact that n′S is not fixed before we draw the sample, we can

still apply a Chernoff bound here because for every realized value of n′S , the distribution,

conditional on the value of n′S , of points (x, y) such that (x, y) ∈ S remains a product

distribution, with individual such points distributed as P|x ∈ S. Now, we go through each

scenario:

1. ConsistencyAuditor outputs some set S and λ: In this case, S would have been

returned only if n′S > 0 due to the if condition in Algorithm 8. Therefore, D must be

approximately close to P with respect to (S, ℓ, ℓ). By Lemma 29, we have

|ℓ(S)− ℓ(S)| ≥ α

PX (S)
and λ = sign(ℓ(S)− ℓ(S))

2. ConsistencyAuditor outputs NULL: For any set S, PX (S) < α directly implies

that

|ℓ(S)− ℓ(S)| ≤ 1 <
α

PX (S)
≤ α′

PX (S)
.

Therefore, we focus only on sets S where PX (S) ≥ α. For these sets, we have n′S > 0

because

n′S
n
≥ PX (S)−

√
ln(2δ)

2n
≥ α−

√
ln(2δ)

2n
>

√
ln(2δ)

2n
> 0,

as we assumed α > 2

√
ln(2

δ
)

2n . Therefore, for every set S where PX (S) ≥ α, we must

169

have that D must be approximately close to P with respect to (S, ℓ, ℓ). Thus, by

applying Lemma 29 to these sets S, we have

∣∣ℓ(S)− ℓ(S)∣∣ ≤ α′

PX (S)
,

where α′ = α+ 4
√

1
2n ln(

2
δ) +

(
α− 2

√
ln(2

δ
)

2n

)−2(
2

√
ln(2

δ
)

2n

)
.

Theorem 22. Let T be the final iterate of Algorithm 11. If 2

√
ln(2

δ
)

2n ≤ α and 2

√
ln(2

δ
)

2n ≤ β,

we have the following guarantees:

1. Total Iterations: With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
over the ran-

domness of our samples, the final iterate T is s.t. T ≤ 1
α2 − 1 and the total number of

gradient descent update operations will be at most Q, where

Qα =
1

α2
− 1, Qβ = (k − 1)

(
1

β2
− 1

)
, Q = Qα(1 +Qβ).

In particular, the algorithm uses at most nQ samples from P.

2. Mean multicalibration: With probability 1− 3δ(m2 +m)|G|, output µT is α′-mean

multicalibrated with respect to G where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n

 .

3. Mean Conditioned Moment multicalibration: With probability 1− 3δ|G|(km2 +

m), for any a ∈ {2, . . . , k}, pair (µT ,mT
a) is (α′, aα′ + β′, am)-mean-conditioned-

170

moment multicalibrated where

α′ = α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n



β′ = β + 4

√
ln
(
2
δ

)
2n

+

β − 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n


Proof. We prove each guarantee in turn.

Total Iterations: As argued in Theorem 21, if the auditor can successfully find a set S

on which there is α-mean inconsistency and β-pseudo-moment inconsistency respectively

in AlternatingGradientDescentFinite (Algorithm 11) and PseudoMomentConsistencyFinite

(Algorithm 10), Theorem 19 guarantees that T will be at most 1
α2 − 1 and Theorem 20

guarantees that the total number of gradient descent operations in each PseudoMoment-

consistencyFinite will be at most 1
β2 − 1. Then, because in each iteration of Alternating-

GradientDescentFinite, there are k − 1 calls to PseudoMomentconsistencyFinite, the total

number of number of gradient descent operations will be at most Q = Qα(1 + Qβ) where

Qα = 1
α2 − 1 and Qβ = (k − 1)(1

β2 − 1).

Therefore, it is sufficient for us to show that there is α-mean inconsistency and β-pseudo-

moment inconsistency on every St and R returned by ConsistencyAuditor (Algorithm 9)

for AlternatingGradientDescentFinite and PseudoMomentconsistencyFinite respectively.

For AlternatingGradientDescentFinite, because we set ℓ
t
(x) = µt(x), ℓ(x, y) = y, and St =

{G(µ, i) : G ∈ G, i ∈ [m]} ∪ {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}, Corollary 3

guarantees that with probability 1 − 3δ|G|(m2 +m), µt is α-mean inconsistent on St with

n λt = sign(µt(St) − µ(St)) as desired. Because T is at most Qα, by a union bound, µt is

α-mean-inconsistent on St for every t ∈ [T] with probability 1− 3δ|G|(m2 +m)Qα.

Likewise, for PseudoMomentconsistencyFinite, we set ℓ(x) = mk(x), ℓ(x, y) = (y − µ(x))a,

and S = {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}. Hence, by union bounding over

171

every a ∈ {2, . . . , k}, Corollary 3 promises us that with probability 1 − 3δ|G|m2QαQβ, ma

is β-pseudo-moment inconsistent on R throughout every iteration of PseudoMomentCon-

sistencyFinite for every a ∈ {2, . . . , k} and ψ = sign(ma(S)− m̃a,µ(S) as desired. Note that

there are a total of Qβ calls to ConsistencyAuditor from each PseudoMomentConsisten-

cyFinite, which is invoked a total of Qα many times.

Mean Multi-Calibration: Our algorithm halts only if ConsistencyAuditor doesn’t find

S in AlternatingGradientDescentFinite. Corollary 3 promises us that with probability 1 −

3δ(m2 +m)|G|, µT must be α′-mean-consistent on every set S ∈ ST . Because S includes

{G(µT , i) : G ∈ G, i ∈ [m]}, it must be that µT is α′-mean multi-calibrated with respect to

G.

Mean Conditioned Moment Multi-Calibration: In the last round T , consider eachmT
a

for a ∈ {2, . . . , k}. PseudoMomentConsistencyFinite returns mT
a only if ConsistencyAuditor

doesn’t return any R. Corollary 3 guarantees us that with probability 1 − 3δm2|G|, mT
a

must be β′-pseudo-moment-consistent. Because µT is α′-mean consistent and mT
a is pseudo-

moment-consistent on {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}, Lemma 26 tells us

that (µT ,mT
a) must be (α′, aα+β′, am)-mean-conditioned-moment multicalibrated. By union

bounding over each a ∈ {2, . . . , k} the total failure probability is 1− 3δ|G|(km2 +m).

Corollary 4. Fix target parameters α′, β′, δ′ and ϵ > 0 such that ϵ < α′ and ϵ < β′. Define

Q =
6|G|km2(

α′−ϵ
6+ 2

ϵ2

)2(
β′−ϵ
6+ 2

ϵ2

)2 , δ =
δ′

max(3|G|(km2 +m), Q)
,

nα =
ln(2Qδ)

2

(
α′−ϵ
6+ 2

ϵ2

)2 , nβ =
ln(2Qδ)

2

(
β′−ϵ
6+ 2

ϵ2

)2 .

172

Then, AlternatingGradientDescentFinite(α, β, δ, n,G) where

α = 2

√
ln(2Qδ)

2nα
+ ϵ, β = 2

√√√√ ln(2Qδ)

2nβ
+ ϵ,

n = max

(
ln(2Qδ)

ln(2δ)
nα,

ln(2Qδ)

ln(2δ)
nβ,

2 ln(2δ)

α2
,
2 ln(2δ)

β2

)

has the following guarantees with probability 1− δ′:

1. The total number of gradient descent updates will be at most Q, where Q is as defined

in Theorem 22.

2. µT is α′-mean-multicalibrated.

3. For every a ∈ {2, . . . , k}, (µT ,mT
a) is (α

′, aα′+β′, am)-mean-conditioned-moment mul-

ticalibrated.

Proof. Note that by construction, we have

α > 2

√
ln(2δ)

2n
and β > 2

√
ln(2δ)

2n
.

173

Therefore, in Theorem 22, the level of mean calibration for µT will be

α+ 4

√
ln
(
2
δ

)
2n

+

α− 2

√
ln
(
2
δ

)
2n

−22

√
ln(2δ)

2n



≤ α+ 4

√√√√ ln
(
2Q
δ

)
2nα

+

α− 2

√√√√ ln
(
2Q
δ

)
2nα


−22

√
ln(2Qδ)

2nα



= 2

√
ln(2Qδ)

2nα
+ ϵ+ 4

√√√√ ln
(
2Q
δ

)
2nα

+

(
2

√
ln(2Q

δ
)

2nα

)
ϵ2

=

√
ln(2Qδ)

2nα

(
6 +

2

ϵ2

)
+ ϵ

= α′,

where the first inequality follows because n ≥ ln(2Q
δ
)

ln(2
δ
)
nα and the last equality from the

definition of nα.

Applying the same analysis, we can show that we satisfy pseudo-moment-consistency at level

β′. Therefore, for any a ∈ {2, . . . , k}, (µt,mT
a) satisfy (α′, aα′ + β′, am)-mean-conditioned-

moment multicalibration.

The failure probabilities for mean muticalibration and that of mean-conditioned-moment

multicalibration are both less than δ′, as 3δ(m2 + m)|G| ≤ 3δ|G|(km2 + m) ≤ δ′ and

3δ|G|(km2 +m) ≤ δ′.

174

The failure probability for termination is

3δ|G|
(

1

α2
− 1

)(
(m2 +m) +m2(k − 1)

(
1

β2
− 1

))
≤ 3δ|G|

(
1

α2

)
2km2

β2

= 6|G|km2δ · 1(√
ln(2Q

δ
)

2nα
+ ϵ

)2(√
ln(2Q

δ
)

2nβ
+ ϵ

)2

≤ 6|G|km2δ · 1

ln(2Q
δ
)

2nα

ln(2Q
δ
)

2nβ

≤ 24|G|km2δ · 1(
ln(2Qδ)

)2nαnβ
= 24|G|km2δ · 1(

ln(2Qδ)
)2 ln(2Qδ)

2

(
α′−ϵ
6+ 2

ϵ2

)2

ln(2Qδ)

2

(
β′−ϵ
6+ 2

ϵ2

)2

≤ 6|G|km2δ · 1(
α′−ϵ
6+ 2

ϵ2

)2(
β′−ϵ
6+ 2

ϵ2

)2

= Qδ

≤ δ′

Theorem 23. With probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
, the running time of Al-

gorithm 11 is O
(
Q|G|m2n

)
= O

(
k|G|m2n
α2β2

)
where Qα, Qβ, and Q are as defined in Theorem

22.

Proof. Theorem 22 tells us that except with probability 1 − 3δ|G|Qα
(
(m2 +m) +m2Qβ

)
,

the algorithm will halt after at most Q many gradient descent updates. For each gradient

descent update, it must have been that Algorithm 9 was invoked with either S = {G(µ, i) :

G ∈ G, i ∈ [m]} ∪ {G(µ,ma, i, j) : G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}} or S = {G(µ,ma, i, j) :

G ∈ G, i, j ∈ [m], a ∈ {2, . . . , k}}. Note that Algorithm 9 needs to iterate through each set

175

S in S, whose size is at most O(|G|m2) in either case. And processing each set S through

Algorithm 8 requires finding the average of at most O(n) elements twice. Therefore, the

algorithm will take time O
(
Q|G|m2n

)
with probability 1−3δ|G|Qα

(
(m2 +m) +m2Qβ

)
Q.

Algorithm 14: PseudoMomentConsistencyWithOracle(a, β, δ, µ,ma, n,G)
D = {(xb, yb)}nb=1 ∼ Pn

Dcheck ∼ Pn

S = {X (µ,ma, i, j) : i, j ∈ [m]}

ℓ(x) = ma(x)

ℓ(x, y) = (y − µ(x))a

R,ψ = LearningOracleConsistencyAuditorWrapper(ℓ, ℓ, β, δ,D,Dcheck,S, A)

while R,ψ ̸= NULL do

ma(x) =


project[0,1](ma(x)− βψ) if x ∈ R

ma(x) otherwise.

D = {(xb, yb)}nb=1 ∼ Pn

S = {X (µ,ma, i, j) : i, j ∈ [m]}

ℓ(x) = ma(x)

D = {(xb, yb)}nb=1 ∼ Pn

Dcheck ∼ Pn

R,ψ = LearningOracleConsistencyAuditorWrapper(ℓ, ℓ, β, δ,D,Dcheck,S, A)

end

return mk

Lemma 30. For each R ∈ R and any χS:

E
(x,y)

[χS(x) · r+R(x, y)] = PX (R ∩ S)
(
ℓ(R ∩ S)− ℓ(R ∩ S)

)
E

(x,y)
[χS(x) · r−R(x, y)] = PX (R ∩ S)

(
ℓ(R ∩ S)− ℓ(R ∩ S)

)

176

Algorithm 15: AlternatingGradientDescentWithOracle(α, β, δ, n,G, A)
Initialize µ1(x) = 0 for all x
For all 1 < a ≤ k, initialize m1

a(x) = 0 for all x
t = 1
ℓ
t
(x) = µ(x)

ℓ(x, y) = y
Dt =∼ Pn
Dcheckt ∼ Pn
St = {X (µt, i) : i ∈ [m]} ∪ {X (µt,mt

a, i, j) : i, j ∈ [m], a ∈ {2, . . . , k}}
St, λt = LearningOracleConsistencyAuditorWrapper(ℓ

t
, ℓ, β, δ,Dt, Dcheckt,St, A)

while St, λt ̸= NULL do
µt+1 = MeanConsistencyUpdate(µt, St, λt)
for a = 2, . . . , k do

mt+1
a = PseudoMomentConsistencyFinite(a, β, δ, µt+1,mt

a, n,G).
end
t = t+ 1
ℓ
t
(x) = µ(x)

Dt ∼ Pn
Dcheckt ∼ Pn
St = {X (µt, i) : i ∈ [m]} ∪ {X (µt,mt

a, i, j) : i, j ∈ [m], a ∈ {2, . . . , k}}
St, λt = LearningOracleConsistencyAuditorWrapper(ℓ

t
, ℓ, β, δ,Dt, Dcheckt,St, A)

end

return (µt, {mt
a}ka=2)

177

Proof.

E
(x,y)

[χS(x) · r+R(x, y)] =
∑
x,y

P(x, y)χS(x)r+R(x, y)

=
∑

x,y:x∈S,x∈R
P(x, y)(ℓ(x)− ℓ(x, y))

= PX (R ∩ S)
(
ℓ(R ∩ S)− ℓ(R ∩ S)

)
The same argument applies for r−R as well.

Theorem 24. Assume n is sufficiently large such that α > 2

√
ln(2

δ
)

2n . Algorithm 13 has the

following guarantees:

1. If it returns some S and λ, then with probability 1 − 3δ|R| over the randomness of

Dcheck,

|ℓ(S)− ℓ(S)| ≥ α

PX (S)
.

2. If it returns NULL, then with probability 1− |R|(3δ + 2p(n)) over the randomness of

D and Dcheck, for all χS ∈ H and R ∈ R,

|ℓ(R ∩ S)− ℓ(R ∩ S)| ≤ α′ + ρ

PX (R ∩ S)
,

where α′ is as defined in Corollary 3.

Proof. With probability at least 1−3|R|δ (since |R| ≥ |V|), Corollary 3 gives us the following

guarantees:

1. If S, λ is returned, then

∣∣ℓ(S)− ℓ(S)∣∣ ≥ α

PX (S)
and λ = sign(ℓ(S)− ℓ(S)).

178

2. If NULL is returned, then for all V ∈ V,

|ℓ(V)− ℓ(V)| ≤ α′

PX (V)
(5.4)

Whenever the distributional closeness conditions of Definition 19 hold (which occur with

the same 1− 3|R|δ success probability of Corollary 3), and α > 2

√
ln(2

δ
)

2n , it must be that if

|DR| = 0 then PX (R) ≤ α. And for any such R we have that PX (R∩ S′) ≤ α for any other

set S′, which implies that we trivially satisfy (α′ + ρ)-mean consistency for R ∩ S′. More

precisely, if PX (R) ≤ α, then

sup
χS′∈H

|ℓ(R ∩ S′)− ℓ(R ∩ S′)| ≤ 1 ≤ α

PX (R ∩ S′)
≤ α′ + ρ

PX (R ∩ S′)
.

We can therefore restrict our attention to those R ∈ R that satisfy |DR| > 0, since we

only have a non-trivial statement to prove for sets R with PX (R) > α. Using Lemma 30

and the definition of an agnostic learning oracle, we know that for each V = R ∩ S+, with

probability 1− p(n),

PX (R ∩ S+)
(
ℓ(R ∩ S+)− ℓ(R ∩ S+)

)
+ ρ

= E
(x,y)

[χS+(x) · r+R(x, y)] + ρ

≥ sup
χS′∈H

E
(x,y)

[χS′(x) · r+R(x, y)]

= sup
χS′∈H

PX (R ∩ S′)
(
ℓ(R ∩ S′)− ℓ(R ∩ S′)

)
(5.5)

The same argument applies for V = R ∩ S−, and we obtain

PX (R ∩ S+)
(
ℓ(R ∩ S−)− ℓ(R ∩ S−)

)
+ ρ ≥ sup

χS′∈H
PX (R ∩ S′)

(
ℓ(R ∩ S′)− ℓ(R ∩ S′)

)
.

(5.6)

179

Combining (5.4), (5.5), and (5.6), we get that with probability 1− 2|R|p(n),

sup
χS′∈H

|ℓ(R ∩ S′)− ℓ(R ∩ S′)| ≤ α′ + ρ

PX (R ∩ S′)

Theorem 26. With probability at least 1− 3δQα
(
(m2 +m) +m2Qβ

)
, the running time of

Algorithm 15 is bounded by O(Qm2τ(n)), where Q is the total number of gradient descent

operations as defined in Theorem 22.

Proof. The running time of Algorithm 13 is O(m2τ(n)), as we always call it with |R| =

O(m2) and we assumed τ(n) = Ω(n), meaning the running time of the learning oracle

dominates the calculations in the empirical check. And Theorem 25 gives that with proba-

bility 1 − 3δQα
(
(m2 +m) +m2Qβ

)
, there will be at most Q gradient descent operations.

Because the number of gradient descent operations is equal to the number of subroutine

calls to Algorithm 13, the overall running time is O(Qm2τ(n)).

5.D. A Submodular Set-Cover Formulation

We can define the following problem. Theorem 27 shows us that for every even a, and

every G ∈ G, i, j ∈ [m], Iγ,a(x) forms a valid marginal prediction interval for every set

G(µ,ma, i, j) with probability at least γ under PX . Can we construct tighter prediction

intervals using all ⌊k2⌋ moments?

We make the following simplifying assumptions in this section:

1. X is a set with finite cardinality.

2. PX is known exactly (note that we do not assume we know the distribution on labels

y, which preserves the core motivation of the problem).

3. For every x ∈ X , there exists G ∈ G, a even s.t. 1 < a ≤ k, and i, j ∈ [m] such that

180

x ∈ G(µ,ma, i, j) and PX (G(µ,ma, i, j)) ≥ γ (otherwise there is no way to give a valid

marginal prediction interval for such an x).

Let us define the set of all relevant sets as

S ≡ {G(µ,ma, i, j) : ∀G ∈ G, i, j ∈ [m], 1 < a ≤ k, a even s.t. PX (G(µ,ma, i, j)) ≥ δ}.

With each set S ∈ S, we associate the width ∆S(·) in the obvious way.

Given any S ′ ⊆ S we say that S ′ covers X if ∀x ∈ X , ∃S ∈ S ′ s.t. x ∈ S. Given any S ′ ⊆ S

that covers X , we can construct valid marginal prediction intervals for all x ∈ X:

∆S′(x) ≡ max
S∈S′|x∈S

∆S(x),

IS′(x) = [µ(x)−∆S′(x), µ(x) + ∆S′(x)].

To see that this will result in a valid prediction interval, observe that for any x ∈ X, it is

covered by some S ∈ S ′. By definition of S ′, S = G(µ,ma, i, j) for some a even, i, j ∈ [m],

G ∈ G. Note that Iγ,a(x) ⊆ IS′(x) by construction of IS′(·). Therefore Theorem 27 ensures

that these prediction intervals are valid for any S ∈ S ′, and indeed, therefore valid for any

group G ∈ G.

A natural optimization problem is to find a subset S ′ that covers X so as to minimize the

expected width of the marginal prediction intervals that can be produced in this way, i.e.

solves (exactly or approximately)

min
S′⊆S

E
x∼PX

[∆S′(x)]

s.t. S ′ covers X .

We can rewrite the problem in the following way. Let A be a 0 − 1 matrix of dimension

181

|X |×|S|. The columns correspond to sets S ∈ S and the rows to elements x ∈ X . If AxS = 1

this means that element x ∈ X is contained in set S ∈ S. Associated with each column S

there is a function ∆S . Recall that PX (x) denotes the probability of x.

We can denote any subset of S ′ ⊆ S by a 0/1 vector w ∈ {0, 1}|S| such that wS = 1 if

S ∈ S ′. We can therefore recast the optimization problem:

min
z,w

∑
x∈X
PX (x)zx

s.t. zx −∆S(x)AxSwS ≥ 0 ∀x ∈ X∑
S∈S

AxSwS ≥ 1 ∀x ∈ X .

For any subset S ′ ⊆ S let fx(S ′) = maxS∈S′ ∆S(x)AxS . Notice fx(S ′) is a non-decreasing

and submodular function of S ′. Let f(S ′) =
∑

x PX (x)fx(S ′), clearly f(·) is non-decreasing

and submodular. Similarly, for any S ′ ⊆ S let w be the associated 0/1 vector and define

g(S ′) = |{x :
∑

S∈S AxSwS ≥ 1}|. Again g(·) is a non-decreasing and submodular function

of S ′. Observe that can write our problem as:

min
S′⊆S

f(S ′),

s.t. g(S ′) ≥ |X |.

Therefore, our problem is the submodular cost submodular cover problem.

We can now hope to apply known results to solve it. For example, [94] show that the

greedy solution (to iteratively add the set with the smallest average width) is approximately

optimal. In particular, their Theorem 2.1 guarantees that the greedy solution provides a

k
2H-approximate to our optimization problem where H is the ℓth-harmonic number, ℓ =

max{|S| : S ∈ S}, and k is the number of moments we have access to.

Unfortunately in this context, these guarantees are unsatisfactory: the approximation grows

182

with the number of moments k we have access to, and with log |X |, which will typically be

linear in the data dimension. Note that [94] study general submodular objective functions

and does not exploit the specific structure of the objective function here. We leave the

question of whether guarantees can be offered for this problem to future research. Another

natural question is how to approximate this optimization when PX is not known, i.e. we

only have a finite sample from P.

183

Chapter 6

Uncertainty Estimation for Subgroups: Online

6.1. Introduction

Consider the problem of making predictions about the prognoses of patients with an in-

fectious disease at the early stages of a pandemic. To be able to guide the allocation of

medical interventions, we may want to predict, from each patient’s observable features x,

things such as the expected severity of the disease y in two days’ time. And since we will be

using these predictions to allocate scarce resources, we will want to be able to quantify the

uncertainty of our predictions: perhaps by providing estimates of the variance of outcomes,

or perhaps by providing prediction intervals at a desired level of confidence.

This is slightly different than the setting considered in the previous chapter, as it’s an

online problem. In the previous chapter, we showed how to calibrate moment estimates

for a large number of groups and how to leverage Chebyshev’s inequality on these mul-

ticalibrated moments in order to construct uncertainty estimates. However, there was an

underlying assumption about a distribution and our access to this distribution via a set of

samples drawn i.i.d. from the distribution. By contrast, in the above described problem, we

must start making predictions before we have much data, and the predictions are needed

immediately upon the arrival of a patient. It is also a problem in which the environment is

rapidly changing: the distribution of patients changes as the disease spreads through differ-

ent populations, and the conditional distribution on outcomes given features changes as we

learn how to better treat the disease.

How can we approach this problem? The conformal prediction literature [86] aims to equip

arbitrary regression and classification procedures for making point predictions with predic-

tion intervals that contain the true label with (say) 95% probability. But for the application

in our example, conformal prediction has two well-known shortcomings:

184

Marginal Guarantees: Conformal prediction only gives marginal prediction intervals:

in other words, it provides guarantees that (e.g.) 95% of the prediction intervals produced

over a sequence of predictions cover their labels. But these guarantees are averages over

what are typically large, heterogeneous populations and therefore provide little guidance

for making decisions about individuals. For example, it would be entirely consistent with

the guarantee of a 95% marginal prediction interval [ℓt, ut] if for individuals from some

demographic group Gmaking up less than 5% of the population, their labels yt fall outside of

[ℓt, ut] 100% of the time.20 One could run many parallel algorithms for different demographic

groups Gi, but then there would be no clear way to interpret the many different predictions

one would receive for an individual belonging to several demographic groups at once (x ∈

Gi for multiple groups Gi); for example, prediction intervals corresponding to different

demographic groups could be disjoint. To see that marginal guarantees on their own are

extremely weak, consider a batch (distributional) setting in which labelled points are drawn

from a fixed distributionD: (x, y) ∼ D. Then we could provide valid 95% marginal prediction

intervals by entirely ignoring the features and giving a fixed prediction interval of [ℓ, u] for

every point, where [ℓ, u] is such that Pr(x,y)∼D[y ̸∈ [ℓ, u]] = 0.05.

Distributional Assumptions: The conformal prediction literature almost exclusively

assumes that the data is drawn from an exchangeable distribution (for example, i.i.d. data

satisfies this property) and does not offer any guarantees when the data can quickly change

in unanticipated or adversarial ways.

In this chapter, we give techniques for dealing with both of these problems (and similar issues

that arise for the problem of predicting label means and higher moments) by drawing on

ideas from the literature on calibration [17, 29]. Calibration is similar to conformal prediction

in that it aims to give point estimates in nonparametric settings that satisfy marginal rather

than conditional guarantees (i.e. that agree with the true distribution as averaged over the

data rather than conditioned on the features of a particular data point). But calibration

20Even more insidious reversals, albeit not in the context of conformal prediction, have been observed on
real world data—see the Wikipedia entry for Simpson’s paradox (https://en.wikipedia.org/wiki/Simp
son%27s paradox) for several examples.

185

https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://en.wikipedia.org/wiki/Simpson%27s_paradox

is concerned with predicting label expectations, rather than giving prediction intervals.

Informally speaking, calibrated predictions satisfy that when averaging over all rounds over

which the prediction was (approximately) p, the realized labels average to (approximately) p,

for all p. Note that in a distributional setting, if a learner truly was predicting the conditional

label expectations conditional on features px = E(x,y)∼D[y|x], then the forecasts would be

calibrated — but just as with marginal prediction intervals, calibration on its own is a very

weak condition in a distributional setting. For example, a learner could achieve calibration

simply by making a single, constant prediction of p = E(x,y)∼D[y] for every point, and so

calibrated predictions need not convey much information. Thus, just like the conformal

prediction literature, the calibration literature is primarily focused on the online prediction

setting. But from early on, the calibration literature has focused on the adversarial setting

in which no distributional assumptions need to be made at all [29, 33, 82].

As described in Chapter 5, we emphasize again that calibration also suffers from the weak-

nesses that come with marginal guarantees: namely that calibrated predictions may have lit-

tle to do with the conditional label expectations for members of structured sub-populations.

Hébert-Johnson et al. [43] proposed an elegant solution to this problem in the batch setting,

when predicting expectations, which they termed “multicalibration”. Informally speaking,

a guarantee of multicalibration is parameterized by a large collection of potentially inter-

secting subsets of the feature space G (corresponding e.g. to demographic groups or other

categories relevant for the prediction task at hand). Multicalibration asks for predictions

that are not just calibrated over the full distribution P but are also simultaneously cali-

brated over all of the induced distributions that are obtained by conditioning on membership

in a set G ∈ G. Moreover, Hébert-Johnson et al. [43] showed how to obtain multicalibrated

estimators in the batch, distributional setting with sample complexity that depends only log-

arithmically on |G|. In Chapter 5, we showed how to extend the notion of (multi)calibration

from expectations to variances and other higher moments — and derived algorithms for

obtaining such estimates in the batch setting.

186

6.1.1. Our Results and Techniques

In this chapter, we give a general method for obtaining different kinds of “multivalid” pre-

dictions in an online, adversarial setting. This includes mean estimates that satisfy the

notion of mean multicalibration from [43], moment estimates that satisfy the notion of

mean-conditioned moment multicalibration from Chapter 5, and prediction intervals which

satisfy a new notion of multivalidity, defined in this chapter. The latter asks for tight

marginal prediction intervals, which are simultaneously valid over each demographic group

G ∈ G. We give a formal definition in Section 6.3 (and review the definitions of mean and

moment multicalibration), but informally, multivalidity for prediction intervals asks, given

a target coverage probability 1 − δ, that for each group G ∈ G there be roughly a 1 − δ-

fraction of points (xt, yt) with xt ∈ G whose label is contained within the predicted interval

(yt ∈ [ℓt, ut)). In fact, we ask for the stronger calibration-like guarantee, that these marginal

coverage guarantees hold even conditional on the prediction interval, which (among other

things) rules out the trivial solution to marginal coverage that predicts the full interval

with probability 1 − δ and an empty interval with probability δ. Because our algorithms

handle adversarially selected examples, they can equally well be used to augment arbitrary

point prediction procedures which give predictions ft(xt) = ŷt, independently of how they

are trained: we can simply feed our algorithms for multivalid predictions with the residuals

ŷt − yt. For example, we can get variance estimates or prediction intervals for the residu-

als to endow the predictions of ft with uncertainty estimates. Endowing point predictors

with prediction intervals in this way provides an alternative to conformal prediction that

gives stronger-than-marginal (multivalid) guarantees, under much weaker assumptions (ad-

versarially chosen examples). In general, for each of our techniques, if we instantiate them

with the trivial group structure (i.e. one group, containing all points), then we recover stan-

dard (or slightly stronger) marginal guarantees: i.e. simple calibrated predictions and simple

marginal prediction intervals.21 But as we enrich our collection of sets G, our guarantees

21In fact, even with the trivial group structure, our guarantees (with appropriately set parameters) remain
stronger than marginal coverage. This is because our prediction intervals remain valid even conditioning on
the prediction that we made. For example, a prediction interval [ℓ, u) is valid not just as averaged over all
rounds t, but also as averaged over all rounds t for which we made that specific prediction: t : [ℓt, ut) = [ℓ, u).

187

become correspondingly stronger.

The General Strategy We derive our online algorithms using a general strategy that

dates back to Fudenberg and Levine [33], who used it to give online algorithms for the

problem of simple calibration in a setting without features (see also the argument by Sergiu

Hart, communicated in Foster and Vohra [29] and more recently elaborated on in Hart [42]).

In our context, the general strategy proceeds as follows:

1. Define a surrogate loss function, such that if the surrogate loss is small at the end

of T rounds, then the learner’s predictions satisfy our chosen notion of multivalidity

over the empirical distribution of the history of the interaction.

2. Argue that if at each round t, the adversary’s chosen distribution over labelled exam-

ples were known to the learner, then there would be some prediction that the learner

could make that would guarantee that the expected increase in the surrogate loss

function at that round would be small. This step is often straightforward, because

once we fix a known data distribution D, “true distributional quantities” like condi-

tional label expectations, conditional label variances, conditional label quantiles, etc,

generally satisfy our corresponding multivalidity desideratum by design.

3. Appeal to the minimax theorem to conclude that there must therefore exist a ran-

domized prediction strategy for the learner that guarantees that the expected increase

in the surrogate loss function is small for any choice of the adversary.

On its own, carrying out this strategy for a particular notion of multivalidity proves the

existence of an algorithm that can obtain the appropriate notion of multivalidity against

an adversary; but turning it into an actual (and efficient) algorithm requires the ability to

compute at each round the equilibrium strategy whose existence is shown in Step 3 above.

We instantiate this general strategy in Section 6.4 for the case of mean multicalibration,

which also serves as a template for our derivation and analysis of algorithms for moment

188

multicalibration in Section 6.5 and prediction interval multivalidity in Section 6.6. The

framework of our analysis is the same in each case, but the details differ: to carry out

Step 2, we must bound the value of a different game, and to carry out Step 3, we must solve

for the equilibrium of a different game. In each case, we obtain efficient online algorithms for

obtaining high probability α-approximate multivalidity bounds (of different flavors), with α

scaling roughly as α ≈
√
log |G|/T , over interactions of length T — but see Sections 6.4.2,

6.5.2, and 6.6.2 for exact theorem statements. In all cases, our algorithms have per-round

runtime that is linear in |G|, and polynomial in the other parameters of the problem. In fact,

both our run-time and our convergence bounds can be improved if each individual appears

in only a bounded number of groups. Our algorithms can at each step t be implemented

in time linear in the number of groups G ∈ G that contain the current example xt. This

is linear in |G| in the worst case, but can be substantially smaller. Similarly, we show in

Appendix 6.A that if each individual appears in at most d groups, then the log |G| term in

our convergence bounds can be replaced with log(d), which gives informative bounds even

if G is infinitely large. Without assumptions of this sort, running time that is polynomial in

|G| (rather than logarithmic in |G|, as our convergence bounds are) is necessary in the worst

case, even for mean multicalibration in the offline setting, as shown by Hébert-Johnson et al.

[43].

Adapting the original approach of Fudenberg and Levine [33] runs into several obstacles,

stemming from the fact that the action space of both the learner and the adversary and

the number of constraints defining our calibration desideratum are both much larger in our

setting. Consider the case of mean prediction — in which the goal is to obtain calibrated

predictions. In the featureless setting studied by Fudenberg and Levine [33], the action space

for the learner corresponds to a discretization of the real unit interval [0, 1], and the action

space of the adversary is binary. In our setting, in which data points are endowed with

features from a large feature space X , the learner’s action space corresponds to the set of

all functions mapping X to [0, 1], and the adversary’s action space corresponds to the set of

all labelled examples X ×[0, 1]. Similarly, for simple calibration, the number of constraints is

189

equal to the chosen discretization granularity of the unit interval [0, 1], whereas in our case,

the number of constraints also grows linearly with |G|, the number of groups over which we

want to be able to promise guarantees.

Convergence Rates and Sample Complexity The surrogate loss function used by Fu-

denberg and Levine [33] bounds the ℓ2 calibration error — i.e. the average squared violation

of all of the constraints used to define calibration. Because all of the notions of multivalidity

that we consider consist of a set of constraints of size scaling linearly with |G|, if we were

to attempt to bound the ℓ2 violation of our multivalidity constraints, we would necessarily

obtain convergence bounds that scale polynomially with |G|. Instead, we use a different sur-

rogate loss function — a sign-symmetrized version of an exponential soft-max — that can

be used to bound the ℓ∞ violation of our multivalidity constraints and allows us to obtain

bounds that scale only logarithmically with |G|. For moment multicalibration, we face the

further complication of needing to define a potential function bounding a linear surrogate

for what is ultimately a nonlinear measure of distributional fidelity. An outline of the specific

ideas needed here adapting the techniques from Chapter 5 can be found in Section 6.5.1.

For interval multivalidity, we face the further complication that tight prediction intervals

need not exist even in the distributional setting, for worst-case distributions. An outline of

the new ideas we need to overcome this can be found in Section 6.6.1. Finally, we note that

ℓ∞ violation is consistent with how the existing literature on batch multicalibration [43]

has quantified approximation guarantees. In fact, by using standard online-to-offline reduc-

tions, we can derive new sample complexity bounds for mean and moment multicalibration

for the batch distributional setting that improve on the sample complexity bounds given

in Hébert-Johnson et al. [43] and Chapter 6 — see Appendix A of Jung et al. [53] which

this chapter is based off of. This is because when applied to the batch setting, our online

algorithms take only a single pass through the data and avoid issues related to adaptive

data re-use that complicated previous algorithms in the batch setting.

Computation of Equilibrium Strategies To compute equilibria of the large action

space games we define, we do not attempt to directly compute or represent the function

190

that we use at each round t to map features to labels. Instead, we represent this function

implicitly by “lazily” solving a smaller equilibrium computation problem only after we

have observed the adversary’s choice of feature vector x (but before we have observed

the label y) to compute a distribution over predictions. We show in each of our three

settings that this computation is tractable. In the case of mean multicalibration, we are

able to analytically derive a simple algorithm for sampling from this equilibrium strategy,

presented in Section 6.4.3. For mean-conditioned kth moment multicalibration we show that

the equilibrium can be found using a linear program with polynomially many variables and

2k + 1 constraints. For the most interesting cases, k is a small constant (e.g. for variance,

k = 2, and so the linear program has only 5 constraints). Even when k is large, we show

that this linear program has a separation oracle that runs in time O(k), and so it can be

solved efficiently via the Ellipsoid algorithm. We show in Appendix 6.B that there always

exists an equilibrium for the learner with support over at most k + 1 many predictions,

limiting the extent to which it needs to deploy randomization. Finally, for prediction interval

multivalidity, we show in Section 6.6.3 that we can express the equilibrium computation

problem as a linear program. Although the linear program is naively defined by infinitely

many constraints, we show that it can ultimately be represented with only finitely many

constraints, and that it has an efficient separation oracle, so can be solved in polynomial

time using the Ellipsoid algorithm.

Advantages of Conformal Prediction We have thus far emphasized the advantages

that our techniques have over conformal prediction — but we also want to highlight the

strengths of conformal prediction relative to our work, and directions for future improve-

ment. Conformal prediction aims to obtain marginal coverage with respect to some (un-

known) underlying distribution. As a result of the distributional assumption, it is able to

obtain coverage (over the randomness of the distribution) at a rate of coverage 1−δ+O(1/T)

[69]. In contrast, in our setting, there is no underlying distribution. We therefore give guar-

antees on empirical coverage — i.e the fraction of labels that our predicted intervals have

covered in the realized sequence of examples. As a result, our coverage bounds necessar-

191

ily have error terms that tend to 0 at a rate of O(1/
√
T), over sequences of length T .

We note that conformal prediction methods also obtain empirical coverage on the order of

1− δ±O(1/
√
T), as our methods do [69]. Conformal prediction methods naturally give one

sided coverage error on the distribution (i.e. the coverage probability is always ≥ 1 − δ),

whereas as we present our bounds, our empirical coverage has two sided error. Techniques

from the conformal prediction literature also can be applied to very general label domains Y

and can be used to produce very general kinds of prediction sets. In this chapter, we restrict

attention to real-valued labels Y = [0, 1] and prediction intervals. We do not believe that

there are any fundamental obstacles to generalizing our techniques to other label domains

and prediction sets, and this is an interesting direction for future work. Finally, the con-

formal prediction literature has developed a number of very simple, practical techniques.

In this chapter, we give polynomial time algorithms, of varying complexity. Our algorithm

for mean multicalibration in Section 6.4 is very simple to implement, but our algorithm

for multivalid interval prediction in Section 6.6 requires solving a linear program with a

separation oracle. Another important direction for future work is reducing the complexity

of our techniques, and doing empirical evaluations.

6.2. Related Work

Work on calibrated mean prediction dates back to Dawid [17]. Foster and Vohra [29] were

the first to show that in the online setting without features, it is possible to obtain asymp-

totic calibration even against an adversary. Once this initial result was proven, a number

of proofs of it were given using different techniques, including Blackwell’s approachability

theorem [25] and a non-constructive minimax argument (originally communicated verbally

by Sergiu Hart, appearing first in [29], and more recently formalized in [42]). This argument

was “non-constructive” because it was a minimax argument over the entire algorithm design

space. [33] gave a more tractable per-round minimax argument, which we adapt to our work

— although they were satisfied with an existential argument, and do not derive a concrete

algorithm. The algorithm we give for online multicalibration is similar to the algorithm

given by Foster and Hart [27] for the simple calibration problem in the special case of a

192

featureless setting and the trivial group structure. Lehrer [68] and Sandroni et al. [82] (and

in a slightly different context, Fudenberg and Levine [34]) generalized this literature and

showed that it was possible to extend these ideas in order to satisfy dramatically more de-

manding notions of calibration (e.g. calibration on all computable subsequences of rounds).

This line of work primarily gives limit results via non-constructive arguments without es-

tablishing rates. There are two notable exceptions. Foster et al. [30] give a non-constructive

argument establishing that it is possible to obtain mean calibration loss Õ(
√

logK
T) with

respect to a set of K “checking rules” which define subsequences over which the algorithm

must be calibrated. These results are derived in a setting without features x, but we believe

their techniques could be used to establish the same convergence bounds that we do, for

mean multicalibration: α = Õ(

√
log |G|
T). Foster and Kakade [28] give an efficient algorithm

based on ridge-regression which can be used to achieve what we call mean consistency22

on a collection of sets G with error rates converging as α = Õ(

√
|G|
T). Their algorithm is

deterministic, which in particular means it cannot be used to achieve the standard notion

of calibration, which can only be achieved by randomized algorithms in adversarial envi-

ronments [76]. It can be used to achieve what is called “weak calibration” by Kakade and

Foster [55] and “smooth calibration” by Foster and Hart [26] — a relaxation that can be ob-

tained by deterministic algorithms. In comparison, our algorithm for mean multicalibration

achieves the standard notion of calibration with the optimal sample complexity dependence

on log |G|, while simultaneously being explicitly defined and computationally efficient.

There has also been a recent resurgence of interest in calibration in the computer science

community, in part motivated by fairness concerns [13, 63, 79]. It is from this literature that

the original proposal for multicalibration arose [43], as well as the related notion of multi-

accuracy [43, 61]. Shabat et al. [85] prove uniform convergence bounds for multicalibrated

predictors, Dwork et al. [21] draw connections between multicalibrated predictors and no-

tions of fair rankings, and Dwork et al. [22] define a notion of outcome indistinguishability

related to distribution testing, and show close connections to multicalibration. Jung et al.

22This is also what is known as multi-accuracy in Hébert-Johnson et al. [43] and Kim et al. [61].

193

[53], which Chapter 5 is based off of, extend the notion of mean calibration to variances

and higher moments, and give efficient algorithms for learning moment multicalibrated pre-

dictors. Recall that in Chapter 5, we showed show that moment predictors can be used to

derive conservative multivalid prediction intervals, using Chebyshev’s inequality and gen-

eralizations to higher moments. In general, however, these moment-based inequalities give

intervals that may cover their label much more frequently than the target 1 − δ coverage

probability and cannot achieve the kinds of tight multicoverage guarantees that we obtain

in this chapter.

All of this work operates in the batch, distributional setting. Recently, Qiao and Valiant

[80] proved lower bounds for simple mean calibration in the online setting, showing that

no algorithm can obtain rates better than O(T−0.472) against an adversary. At first blush,

our upper bounds appear to contradict these lower bounds — but they do not, because we

study convergence in the ℓ∞ sense, whereas they study it in the ℓ1 sense.

Conformal prediction is motivated similarly to calibration, but aims to produce marginal

prediction intervals rather than mean estimates — see Shafer and Vovk [86] for an overview.

The problems that we highlight — namely, that marginal guarantees are weak, and that

this literature relies on strong distributional assumptions — have been noted before. For

example, Barber et al. [6] prove that even in the distributional setting, conditional prediction

intervals are impossible to provide, and aim instead for a goal that is similar to ours:

providing marginal prediction intervals that are valid as averaged over a large number of

subgroups G. They take a conservative approach, by using a holdout set to estimate empirical

prediction intervals separately for each group, and then taking the union of all of these

prediction intervals over the demographic groups of a new individual. The result is that their

prediction intervals — unlike ours — do not become tight, even in the limit. Chernozhukov

et al. [12] consider the problem of conformal prediction for time series data, for which

the exchangeability assumption may not hold. They show that if the data comes from a

rapidly mixing process (so that, in particular, points that are well separated in the sequence

194

are approximately independent) then it is still possible to obtain approximate marginal

coverage guarantees. Tibshirani et al. [91] consider the problem of conformal prediction

under covariate shift, in which the marginal distribution on features X differs between the

training and test distributions, but the conditional distribution on labels Y|X remains the

same. They show how to adapt techniques from conformal prediction when the likelihood

ratio between the training and test distribution is known. In the distributional setting,

Gupta et al. [36] have proven close relationships between calibration, confidence intervals,

and prediction intervals.

Finally, the notion of multicalibration is related to subgroup fairness notions [57, 59, 60]

that ask for statistical “fairness” constraints of various sorts (beyond calibration) to hold

across all subgroups defined by some rich class G. See Chouldechova and Roth [14] for a

survey.

6.3. Preliminaries

6.3.1. Notation

We write X to denote a feature domain and Y = [0, 1] to denote a label domain. We write

G ⊆ 2X to denote a collection of subsets of X . Given any x ∈ X , we write G(x) for the set

of groups that contain x, i.e. G(x) = {G ∈ G : x ∈ G}. Given an integer T we write [T] to

denote the set of integers [T] = {1, . . . , T}. In general, we denote our random variables with

tildes (e.g. X̃, Ỹ) to distinguish them from their realizations (denoted e.g. X, Y). Given a

finite set A, we write ∆A for the probability simplex over the elements in A.

6.3.2. Online Prediction

Online (contextual) prediction proceeds in rounds that we index by t ∈ [T], for a given finite

horizon T . In each round, an interaction between a learner and an adversary proceeds as

follows. In each round t:

1. The adversary chooses a joint distribution over feature vectors xt ∈ X and labels

yt ∈ Y. The learner receives xt (a realized feature vector), but no information about

yt is revealed.

195

2. The learner chooses a distribution over predictions pt ∈ P. (We will consider several

different kinds of predictions in this chapter, and so are agnostic to the domain of the

prediction for now — we use P as a generic domain).

3. The learner observes yt (a realized label).

For an index s ∈ [T], we denote by πs the transcript of the interaction in rounds t = 1

through s: πs = ((xt, pt, yt))
s
t=1. We write Π∗ as the domain of all transcripts.

Formally, the adversary is modelled as a probabilistic mapping Adv : Π∗ → ∆(X × Y)

from transcripts to distributions over labelled data points, and the learner is modeled as a

mapping Learn : Π∗ → (X → ∆P) from transcripts to a probabilistic mapping from feature

vectors to distributions over predictions. An adversary may be either unconstrained (free

to play any point in ∆(X × Y)) or constrained to choose from some specified subset of

∆(X × Y). Fixing both a learner and an adversary induces a probability distribution over

transcripts. Our goal is to derive particular learning algorithms, and to prove that various

kinds of bounds hold either in expectation, or with high probability over the randomness

of the transcript, in the worst case over transcript distributions, where we quantify over all

possible adversaries.

Given a transcript πT , a group G ∈ G and a set of rounds S ⊆ [T], we write

GS = {t ∈ S : xt ∈ G}.

In words, this is the set of rounds in S in which the realized feature vectors in the transcript

belonged to G. When it is clear from context, we sometimes overload notation, and for a

group G ∈ G, and a period s ≤ T , write Gs to denote the set of data points (indexed by

their rounds) in a transcript πs that are members of the group G:

Gs = {t ∈ [s] : xt ∈ G}.

196

Types of Predictions, and Notions of Validity

We consider three types of predictions in this paper: Mean predictions, pairs of mean and

higher moment predictions (e.g. variance), and prediction intervals.

Mean Predictions For mean predictions, the prediction domain will be the unit interval:

Pmean = [0, 1]. The learner will select pt ≡ µt ∈ Pmean in each round t, with the goal of

predicting the conditional label expectation E[yt|xt]. For any subset of days S ⊆ [T], we

write

µ(S) =
1

|S|
∑
t∈S

yt, µ(S) =
1

|S|
∑
t∈S

µt

to denote the true label population mean conditional on t ∈ S and the average of our mean

estimates over days t ∈ S, respectively. We will ask for our predictions to satisfy large num-

bers of mean consistency constraints: that the conditional label averages be (approximately)

equal to conditional prediction averages over different sets S.

Definition 21 (Mean Consistency). Given a transcript πT , we say that the mean predictions

{µt}Tt=1 are α-mean consistent on S ⊆ [T] , if

|µ(S)− µ(S)| ≤ α T

|S|
.

Remark 8. Note the scaling with both T and |S|. If S = [T], then this condition simply

asks for the true label mean and the average prediction to be within α of one another, as

averaged over the entire transcript. For smaller sets, the allowable error grows with the

inverse of |S|
T — i.e. the measure of S within the uniform distribution over the transcript.

Even in a distributional setting, estimates inevitably degrade with the size of the set we are

conditioning on, and our formulation here corresponds exactly to how mean consistency is

defined in Chapter 5. Our definitions are also consistent with how the literature on online

calibration quantifies calibration error with respect to subsequences. Hébert-Johnson et al.

[43] handle this issue slightly differently, by asking for uniform bounds, but in the end proving

197

bounds only for sets S that have sufficient mass γ in the underlying probability distribution.

In the batch setting, our formulation can recover bounds that are strictly stronger than those

of Hébert-Johnson et al. [43] after a reparametrization α← γα.

Next, we define multicalibration in our setting. Informally, a sequence of mean predictions is

calibrated if the average realized label yt on all days for which µt is (roughly) p is (roughly)

p. The need to consider days in which the prediction was roughly p arises from the fact

that a learning algorithm will not necessarily ever make the same prediction twice. More

generally, by bucketing predictions at a fixed granularity, we can guarantee that the average

number of predictions within each bucket grows linearly with T .

To collect mean predictions µt that are approximately equal to p for each p, we group

real-valued predictions into n buckets of width 1
n . Here n is a parameter controlling the

coarseness of our calibration guarantee. For any coarseness parameter n and bucket index

i ∈ [n− 1], we write Bn(i) =
[
i−1
n , in

)
and Bn(n) =

[
n−1
n , 1

]
so that these buckets partition

the unit interval. Conversely, given a µ ∈ [0, 1], define B−1
n (µ) ∈ [n] in the obvious way

i.e. B−1
n (µ) = i where i is such that µ ∈ Bn(i). When clear from the context, we elide the

subscript n and write B(i) and B−1(µ).

For any S ⊆ [T] and i ∈ [n], we write

S(i) = {t ∈ S : µt ∈ Bn(i)} .

In words, S(i) corresponds to the subset of rounds in S where the mean prediction falls in

the ith bucket.

(Simple) calibration asks for the sequence of predictions to be α-mean-consistent on all sets

[T](i) for i ∈ [n] — i.e. for the subset of rounds in which the prediction fell into the ith

bucket, for all i. Multicalibration asks for the predictions to be calibrated not just on the

overall sequence, but also simultaneously on all the subsequences corresponding to each

group G ∈ G. In our notation, it asks for mean consistency on each set G(i), for every group

198

G ∈ G and i ∈ [n].

Definition 22 (Mean-Multicalibration). Given a transcript πT , we say that the mean pre-

dictions {µt}Tt=1 are (α, n)-mean multicalibrated with respect to G if we have that for every

G ∈ G and i ∈ [n], the mean-predictions are α-mean consistent on GT (i):

|µ(GT (i))− µ(GT (i))| ≤ α
T

|GT (i)|
.

Remark 9. Note that we define mean multicalibration (and our other notions of multivalid-

ity, shortly) to have two parameters: n, which controls the coarseness of the guarantee, and

α, which controls the error of the guarantee. These parameters can be set independently —

in the sense that we will be able to achieve (α, n) mean multicalibration for any pair (α, n)

— but they should be interpreted together. For example, to avoid the trivial solution in which

the learner simply selects uniformly at random at each iteration (thereby guaranteeing that

|GT (i)| ≤ T/n for all G, i), we should set α≪ 1
n .

(Mean, Moment) Predictions In this case, the prediction domain is the product of the

unit interval with itself: P(mean,moment) = [0, 1] × [0, 1]. In each round t, the learner selects

pt = (µt,m
k
t) with the goal of matching E[yt|xt] and E[(yt − E[yt|xt])k|xt] respectively —

the conditional label expectation, and its conditional kth central moment. For simplicity,

we assume throughout that k is even, so the kth moment has nonnegative range, but there

is no obstacle other than notation to handling odd moments as well.

We group continuous predictions (µ,mk) into a finite set of discrete buckets—again, defined

with respect to a pair of discretization parameters n and n′. Recall our bucketing notation

for mean prediction: for any i ∈ [n − 1], we wrote Bn(i) =
[
i−1
n , in

)
and Bn(n) =

[
n−1
n , 1

]
.

Here we generalize this notation to pairs, and write for any i ∈ [n] and j ∈ [n′]:

Bn,n′(i, j) = {(a, b) ∈ [0, 1]× [0, 1] : a ∈ Bn(i), b ∈ Bn′(j)} .

199

If n = n′, we will write Bn(i, j). Once again, when n and n′ are clear from the context, we

may elide the subscript (n, n′) entirely.

Analogously to our notation for mean prediction, for any S ⊆ [T] we write

mk(S) =
1

|S|
∑
t∈S

(yt − µ(S))k, mk(S) =
1

|S|
∑
t∈S

mk
t

for the empirical kth central moment of the label distribution on the subsequence S, and

for the average of the moment prediction on S, respectively. Just as with mean consistency,

moment consistency asks that these two quantities be approximately equal on a set S.

Definition 23 (Moment Consistency). Given a transcript πT , we say that moment predic-

tions {mk
t }Tt=1 are α-moment consistent on set S ⊆ [T] if

|mk(S)−mk(S)| ≤ α T

|S|
.

It is not sensible to ask for moment consistency on arbitrary sets S, because higher central

moments are not linear, and so even true conditional label moments would not satisfy

moment consistency conditions on arbitrary sets S. True conditional label moments do

satisfy moment consistency on sets of points x that share the same label mean, however,

and so this is what we will ask of our predictions as well just as in Chapter 5. To that end,

for any S ⊆ [T] and i ∈ [n], j ∈ [n′], we write

S(i, j) =
{
t ∈ S : (µt,m

k
t) ∈ Bn,n′(i, j)

}
.

In words, S(i, j) corresponds to the subset of rounds in S in which our predicted mean and

moment fall into the bucket Bn,n′(i, j).

Definition 24 (Mean-Conditioned Moment Multicalibration). Given a transcript πT , we

say that the (mean, moment) predictions {(µt,mk
t)}Tt=1 are (α, β, n, n′)-mean-conditioned

200

moment multicalibrated with respect to G, if for every i ∈ [n], j ∈ [n′] and G ∈ G, we have

that the mean predictions are α-mean consistent on GT (i, j) and the moment predictions

are β-moment consistent on GT (i, j):

|µ(GT (i, j))− µ(GT (i, j))| ≤ α
T

|GT (i, j)|
,

|mk(GT (i, j))−mk(GT (i, j))| ≤ β
T

|GT (i, j)|
.

Interval Predictions In this case, the prediction domain is the set of ordered pairs of

endpoints in the unit interval: Pinterval = {(ℓ, u) : ℓ ≤ u, and u, ℓ ∈ [0, 1]}. Given a pair

(ℓ, u) ∈ Pinterval, we say that it covers a label y ∈ [0, 1] if y falls between ℓ and u, which

we write as Cover((ℓ, u), y) = 1. To avoid issues of “double counting”, we define coverage

in the same manner as we defined our bucketing, using intervals that are closed on the left

but open on the right, with the exception of u = 1:

Cover((ℓ, u), y) =


1(y ∈ [ℓ, u)) if u < 1,

1(y ∈ [ℓ, u]) if u = 1.

In each round t, we will predict an interval pt = (ℓt, ut) with the goal of achieving

E[Cover((ℓt, ut), y)|xt] = 1− δ

for some target coverage probability 1 − δ ∈ [0, 1]. We again bucket our coverage intervals

using a discretization parameter n, using the same notation as for moment predictions.

For any S ⊆ [T] and i ≤ j ∈ [n], we write

S(i, j) =
{
t ∈ S : (ℓt, ut) ∈ Bn(i, j)

}
.

In words, S(i, j) corresponds to the subset of rounds in S in which our predicted interval’s

201

endpoints are in buckets i and j, respectively. We can now define multivalidity analogously

to how we defined multicalibration.

For any S ⊆ [T], we write

H(S) =
1

|S|
∑
t∈S

Cover((ℓt, ut), yt).

Definition 25. We say that interval predictions {(ℓt, ut)}Tt=1 are α-consistent on set S with

respect to failure probability δ ∈ (0, 1), if the following holds:

|H(S)− (1− δ)| ≤ α T

|S|
.

Definition 26. Given a transcript πT , we say that the interval predictions are (α, n)-

multivalid with respect to δ and G, if for every i ≤ j ∈ [n] and G ∈ G, we have that the

interval predictions are α-consistent on GT (i, j) with respect to coverage probability 1− δ:

|H(GT (i, j))− (1− δ)| ≤ α T

|GT (i, j)|
.

6.3.3. Zero-sum Games

Our analysis will hinge on properties of zero-sum games, and in particular on the minimax

theorem.

Definition 27. A zero-sum game is defined by:

1. A minimization player with a convex and compact strategy space Q1 ⊆ Rd1 for some

d1 ∈ (0,∞).

2. A maximization player with a convex and compact strategy space Q2 ⊆ Rd2 for some

d2 ∈ (0,∞).

202

3. An objective function u : Q1 ×Q2 → R, concave in its first argument and convex in

its second argument.

Zero-sum games are often defined by endowing each player with a finite set of pure strategies

X1, X2. The convex compact strategy sets Q1 and Q2 are then formed by allowing players to

randomize over their pure strategies and taking Q1 = ∆X1, Q2 = ∆X2 to be the probability

simplices over the pure strategies of each player. An objective function u : X1 × X2 → R

can be linearly extended to Q1 and Q2 in the natural way (i.e. by taking expectations over

the randomized strategies of each player) – i.e. for any Q1 ∈ Q1 and Q2 ∈ Q2, we write

u(Q1, Q2) = Ex1∼Q1,x2∼Q2 [u(x1, x2)].

In a zero-sum game, the minimization player chooses some action Q1 ∈ Q1 and the maxi-

mization player chooses some action Q2 ∈ Q2, resulting in objective value u(Q1, Q2). The

goal of the minimization player is to minimize the objective value, and the goal of the max-

imization player is to maximize it. The key property of zero-sum games, first proved by von

Neumann for the case of games with finite sets of pure strategies and generalized to general

zero-sum games of the form considered in Definition 27 by Sion, is that the order of play

does not affect the objective value that each player can guarantee. This is captured in the

minimax theorem, which says that whether the minimization player first gets to observe

the strategy of the maximization player, and then best respond, or whether she must first

announce her strategy and allow the maximization player to best respond, she is able to

guarantee herself the same value.

Theorem 29 (Sion’s Minimax Theorem). For any zero-sum game (Q1,Q2, u):

min
Q1∈Q1

max
Q2∈Q2

u(Q1, Q2) = max
Q2∈Q2

min
Q1∈Q1

u(Q1, Q2).

The minimax theorem justifies the following definitions:

Definition 28 (Value, Equilibrium, and Best Response). The value of a zero-sum game

203

(Q1,Q2, u) is the unique v ∈ R such that

min
Q1∈Q1

max
Q2∈Q2

u(Q1, Q2) = max
Q2∈Q2

min
Q1∈Q1

u(Q1, Q2) = v.

We say that a strategy for the minimization player Q∗
1 ∈ Q1 is a (minimax) equilibrium

strategy if it guarantees that the objective value is at most the value of the game, for any

strategy Q2 ∈ Q2 of the maximization player:

max
Q2∈Q2

u(Q∗
1, Q2) = v.

We say that Q2 is a best response for the maximization player in response to Q∗
1 if it realizes

the above maximum.

In our analysis, we will identify the Learner with the minimization player and the Adversary

with the maximization player, and so will denote their strategy spaces as QL and QA

respectively.

6.4. Online Mean Multicalibration

In this section, we show how to obtain mean multicalibrated estimators in an online adver-

sarial setting. Our derivation also serves as a warm up example of our general technique,

which we also instantiate (in somewhat more involved settings) in Sections 6.5 and 6.6 to

derive online algorithms for mean-conditioned moment multicalibrated estimators and for

multivalid prediction intervals respectively.

6.4.1. An Outline of Our Approach

At a high level, the derivation of our algorithm and its proof of correctness proceeds as

follows:

1. For each group G ∈ G, i ∈ [n], and transcript πs up to period s, we define an empirical

quantity V G,i
s (Definition 29) which represents the calibration error that our algorithm

has incurred with respect to group G over those of the rounds 1 through s when the

ith bucket was predicted. These quantities are defined so that if for each G and i,

204

|V G,i
T | is small, then our algorithm is approximately multicalibrated with respect to G

across T rounds.

The premise of our algorithm will be to greedily make decisions at each round s so

as to minimize the maximum possible increase of these quantities (maxG,i |V G,i
s+1| −

maxG,i |V G,i
s |), in the worst case over the choices of the adversary. If we could bound

this quantity at every round, then by telescoping, we would have a bound on maxG,i |V G,i
T |

at the end of the interaction, and therefore a guarantee of mean multicalibration.

2. The increase in the maximum value of |V G,i
s+1| is inconvenient to work with, and so

we instead define a smooth potential function Ls (Definition 30) corresponding to a

soft-max function which upper bounds maxG,i |V G,i
s |. Our design goal instead becomes

to upper bound the increase in our potential function from round to round: ∆s+1 =

Ls+1 − Ls. We view this as defining a zero-sum game, in which the learner’s goal is

to minimize this increase, and the adversary’s goal is to maximize it.

3. We show that for each fixed distribution that the adversary could employ at each

round s+1, there is a prediction the learner could employ (if only she knew the adver-

sary’s distribution) that would guarantee that the increase in potential ∆s+1 is small.

Intuitively, this is because if we knew the true joint distribution over feature label

pairs, then we could predict the true conditional expectations, µs+1 = E[ys+1|xs+1],

which would be perfectly calibrated on all groups. Of course, the learner does not

have the luxury of knowing the adversary’s distribution before choosing her own. But

this thought experiment establishes the value of the game, and so we can conclude via

the minimax theorem that there must be some fixed distribution over prediction rules

that the learner can play that will guarantee ∆s+1 being small against all actions of

the adversary.

4. Step 3 suffices to argue for the existence of an algorithm obtaining multicalibration

guarantees (Algorithm 16). However, to actually derive an implementable algorithm

205

we need to find a way to compute the equilibrium strategy at each round, whose

existence was argued in Step 3. A priori, this seems daunting because the learner’s

strategy space consists of all randomized mappings between X and Y, and the adver-

sary’s strategy space consists of all joint distributions on X × Y. However, we derive

a simple algorithm in Section 6.4.3 that implements the optimal equilibrium strategy

needed to realize Step 3. Informally, we are able to do so by representing the mapping

between X and Y only implicitly, and delaying all computation until xt has been cho-

sen. We then show that the equilibrium strategy for the learner has a simple structure

and randomizes over only at most 2 predictions. Our final algorithm (Algorithm 17)

simply computes the relevant portion of the equilibrium strategy at each round and

then samples from it.

5. To apply the minimax theorem, and to derive a concrete algorithm, we need to restrict

our algorithm to making predictions in [0, 1] that are discretized at units of 1/rn for

some r > 1. This parameter r appears in our final bounds, but neither the runtime

of our algorithm nor our convergence rate has any dependence on r, and so it can be

imagined to be arbitrarily small. Taking it to be r = 1/
√
T causes it to become a low

order term in our final bounds.

In the appendix of [38] which this chapter is based off of, we give a standard online-to-offline

conversion to show how to use our Algorithm 17 to solve offline (batch) multicalibration

problems. This gives optimal sample complexity bounds for the offline problem, yielding an

improvement over those proven in Hébert-Johnson et al. [43] and Chapter 5. The crux of the

improvement is that unlike the algorithms given in [43] and Chapter 5, our algorithm takes

only a single pass over the data, and so avoids complications that arise from data re-use.

However, unlike previous batch algorithms which make deterministic predictions, the batch

algorithm that we obtain through this reduction makes randomized predictions.

206

6.4.2. An Existential Derivation of the Algorithm and Multicalibration Bounds

We begin by defining notation V G,i
s for the (unnormalized) portion of the mean calibration

error corresponding to each group G ∈ G and bucket i ∈ [n]:

Definition 29. Given a transcript πs = ((xt, µt, yt))
s
t=1, we define the mean calibration

error for a group G ∈ G and bucket i ∈ [n] at time s to be:

V G,i
s (πs) = |Gs(i)| (µ (Gs(i))− µ (Gs(i))) =

s∑
t=1

1[µt ∈ B(i), xt ∈ G] (yt − µt) (6.1)

When the transcript is clear from context we will sometimes simply write V G,i
s .

Observe that our definition of mean multicalibration (Definition 22) corresponds to asking

that |V G,i
s | be small for all i, G.

Observation 2. Fix a transcript πT . If for all G ∈ G, i ∈ [n], we have that:

∣∣∣V G,i
T

∣∣∣ ≤ αT,
then the corresponding sequence of predictions is (α, n)-mean multicalibrated with respect to

G.

We next define a surrogate loss function that we can use to bound our calibration error.

Definition 30 (Surrogate loss function). Fixing a transcript πs ∈ Π∗ and a parameter

η ∈ [0, 12], define a surrogate calibration loss function at day s as:

Ls(πs) =
∑
G∈G,
i∈[n]

(
exp(ηV G,i

s) + exp(−ηV G,i
s)

)
.

When the transcript πs is clear from context, we will sometimes simply write Ls.

We will leave η unspecified for now, and choose it later to optimize our bounds. Observe

207

that this “soft-max style” function allows us to tightly upper bound our calibration loss:

Observation 3. For any transcript πT , and any η ∈ [0, 12], we have that:

max
G∈G,i∈[n]

∣∣∣V G,i
T

∣∣∣ ≤ 1

η
ln(LT) ≤ max

G∈G,i∈[n]

∣∣∣V G,i
T

∣∣∣+ ln (2|G|n)
η

.

Part of our analysis will depend on viewing the transcript as a random variable: in this case,

in keeping with our convention for random variables, we refer to it as π̃. The associated

random variables tracking calibration and surrogate loss are denoted Ṽ and L̃ respectively.

Our goal is to find a strategy for the learner that guarantees that our surrogate loss LT

remains small. Towards this end, we define ∆s+1(πs, xs+1, µs+1) to be the expected increase

in the surrogate loss function in the event that the adversary plays feature vector xs+1 and

the learner plays prediction µs+1. Here the expectation is over the only remaining source of

randomness after the conditioning — the distribution over labels ys+1 (which we observe is

determined, once we fix πs and xs+1).

Definition 31 (Conditional Change in Surrogate Loss).

∆s+1(πs, xs+1, µs+1) = E
ỹs+1

[
L̃s+1 − Ls

∣∣∣xs+1, µs+1, πs

]
.

We begin with a simple bound on ∆s+1(πs, xs+1, µs+1):

Lemma 35. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any µs+1 ∈ Pmean such that

µs+1 ∈ B(i) for some i ∈ [n]:

∆s+1(πs, xs+1, µs+1) ≤ η
(

E
ỹs+1

[ỹs+1]− µs+1

)
Cis(xs+1) + 2η2Ls,

208

where for each i ∈ [n]:

Cis(xs+1) ≡
∑

G(xs+1)

exp(ηV G,i
s)− exp(−ηV G,i

s). (6.2)

Proof. Fix any transcript πs ∈ Π∗ (which defines Ls), feature vector xs+1 ∈ X , and µs+1

such that µs+1 ∈ B(i) for some i ∈ [n]. By direct calculation, we obtain:

∆s+1(πs, xs+1, µs+1)

= E
ỹs+1

[∑
G∈G(xs+1)

exp(ηV G,i
s)

(
exp(η(ỹs+1 − µs+1))− 1

)
+ exp(−ηV G,i

s)
(
exp(−η(ỹs+1 − µs+1))− 1

)]

≤ E
ỹs+1

 ∑
G∈G(xs+1)

exp(ηV G,i
s)

(
η(ỹs+1 − µs+1) + 2η2

)
+ exp(−ηV G,i

s)
(
−η(ỹs+1 − µs+1) + 2η2

)
= η

(
E
ỹs+1

[ỹs+1]− µs+1

) ∑
G∈G(xs+1)

(
exp(ηV G,i

s)− exp(−ηV G,i
s)

)
+ 2η2

∑
G∈G(xs+1)

(
exp(ηV G,i

s) + exp(−ηV G,i
s)

)

≤ η
(

E
ỹs+1

[ỹs+1]− µs+1

) ∑
G∈G(xs+1)

exp(ηV G,i
s)− exp(−ηV G,i

s)

+ 2η2Ls

= η

(
E
ỹs+1

[ỹs+1]− µs+1

)
Cis(xs+1) + 2η2Ls.

Here, the first inequality follows from the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1+x+2x2.

Using this bound, we define a zero-sum game between the learner and the adversary and

use the minimax theorem to conclude that the learner always has a strategy that guarantees

that the per-round increase in surrogate loss can be bounded. To satisfy the convexity and

compactness requirements of the minimax theorem, it will be convenient for us to imagine

that the learner’s pure strategy space is a finite, discrete subset of Pmean = [0, 1]. To this end,

we define the following discretization for any r ∈ N (here n is the discretization parameter

209

we use to define the coarseness of our bucketing):

Prn =

{
0,

1

rn
,
2

rn
, . . . , 1

}
.

We use this discretization also in our algorithm in Section 6.4.3 — but we remark at the

outset that the need to discretize is only for technical reasons, and our algorithm will have

no dependence — neither in runtime nor in its convergence rate — on the value of r that

we choose, so we can imagine the discretization to be arbitrarily fine.

To simplify notation, for each µ ∈ Prn, define Cµs ≡ Cis where i ∈ [n] s.t. µ ∈ Bn(i).

Lemma 36. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any r ∈ N there exists

a distribution over predictions for the learner QLs+1 ∈ ∆Prn, such that regardless of the

adversary’s choice of distribution of ys+1 over ∆Y, we have that:

E
µ∼QL

s+1

[∆s+1(πs, xs+1, µ)] ≤ Ls
(η
rn

+ 2η2
)
.

Proof. We define a zero-sum game played between the learner (the minimization player)

and the adversary (the maximization player). The learner’s pure strategy space is the set of

discrete predictions X1 = Prn. The adversary’s pure strategy space is (a priori) the set of all

distributions over labels in [0, 1]. However, we will observe in a moment that the objective

function of our game depends only on the expected value of the label, and so without loss

of generality, we will be able to take the adversary’s full strategy space to be the set of all

pure strategies, i.e., QA = [0, 1] (which is closed and convex), because it already spans the

set of realizable expectations. As usual, we take the learner’s full strategy space to be the

set of distributions over pure strategies: QL = ∆Prn.

Fix the transcript πs and the feature vector xs+1. We define the objective of this game to

be the upper bound we proved on ∆s+1(πs, xs+1, µ) in Lemma 35. For each µ ∈ Prn and

210

each y ∈ [0, 1], we let:

u(µ, y) = η (y − µ)Cµs (xs+1) + 2η2Ls.

Note that for any distribution over labels y of the adversary, the expected objective value

depends on his strategy only through E[ỹ] because the above objective function is linear in

y: that is, Eỹ[u(µ, ỹ)] = u(µ,E[ỹ]). Thus we are justified in our reduced-form representation

of the adversary’s full strategy as choosing E[ỹ] in the interval [0, 1].

We now establish the value of this game. Observe that for any strategy of the adversary

(which fixes E[ỹ]), the learner can respond by playing µ∗ = argminµ∈Prn |E[ỹ] − µ|, and

that because of our discretization, min |E[ỹ] − µ∗| ≤ 1
rn . Therefore, the value of the game

is at most:

max
y∈[0,1]

min
µ∗∈Prn

u(µ∗, y) ≤ max
µ∈Prn

η

rn

∣∣Cµs (xs+1)
∣∣+ 2η2Ls,

≤ Ls

(η
rn

+ 2η2
)
.

Here the latter inequality follows since Cµs (xs+1) ≤ Ls for all µ ∈ Prn, by observation. We

can now apply the minimax theorem (Theorem 29) to conclude that there exists a fixed

distribution QLs+1 ∈ QL for the learner that guarantees that simultaneously for every label

y ∈ [0, 1] that might be chosen by the adversary:

E
µ∼QL

s+1

[u(µ, y)] ≤ Ls
(η
rn

+ 2η2
)
,

as desired.

Corollary 5. For every r ∈ N, s ∈ [T], πs ∈ Π∗, and xs+1 ∈ X (which fixes Ls and Q
L
s+1),

and any distribution over Y:

E
µs+1∼QL

s+1

[L̃s+1|πs] = Ls + E
µs+1∼QL

s+1

[∆s+1(πs, xs+1, µs+1)] ≤ Ls
(
1 +

η

rn
+ 2η2

)
.

211

Lemma 36 defines (existentially) an algorithm that the learner can use to make predictions—

Algorithm 16. We will now show that Algorithm 16 (if we could compute the distributions

QLt) results in multicalibrated predictions. In Section 6.4.3 we show a simple and efficient

method for sampling from QLt .

Algorithm 16: A Generic Multicalibrator

for t = 1, . . . , T do

Observe xt. Given πt−1 and xt, let Q
L
t ∈ QLt be the distribution over predictions

whose existence

is established in Lemma 36. Sample µ ∼ QLt and predict µt = µ

end

We now prove two convergence bounds for Algorithm 16. The first will bound its multical-

ibration error in expectation, and the other will provide a high probability bound. To show

these bounds, we first state a helper theorem that will be useful not just in this section,

but also in deriving the final convergence bounds for the algorithms presented in Sections

6.5 and 6.6. The proof is in Appendix 6.C.

Theorem 30. Consider a nonnegative random process X̃t adapted to the filtration Ft =

σ(πt), where X̃0 is constant a.s. Suppose we have that for any period t, and any πt−1,

E[X̃t|πt−1] ≤ Xt−1(1 + ηc+ 2η2) for some η ∈ [0, 12], c ∈ [0, 1]. Then we have that:

Ẽ
πT
[X̃T] ≤ X0 exp

(
Tηc+ 2Tη2

)
. (6.3)

Further, define a process Z̃t adapted to the same filtration by Z̃t = Zt−1+ln X̃t−E[ln(X̃t)|πt−1].

Suppose that |Zt − Zt−1| ≤ 2η, where Z0 = 0 a.s. Then, with probability 1− λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2

)
+ η

√
8T ln

(
1

λ

)
. (6.4)

We are now ready to bound our multicalibration error. As a straightforward consequence

of Corollary 5 and the first part of Theorem 30, we have the following Corollary.

212

Corollary 6. Against any adversary, Algorithm 16 instantiated with discretization param-

eter r results in surrogate loss satisfying:

Ẽ
πT
[L̃T] ≤ 2|G|n exp

(
Tη

rn
+ 2Tη2

)
.

Proof. Note that the first part of Theorem 30 applies to the process L with L0 = 2|G|n and

c = 1
rn . The bound follows by plugging these values into (6.3).

Next, we can convert this into a bound on Algorithm 16’s expected calibration error:

Theorem 31. When Algorithm 16 is run using n buckets for calibration, discretization

r ∈ N, and η =

√
ln(2|G|n)

2T ∈ (0, 1/2), then against any adversary, its sequence of mean

predictions is (α, n)-multicalibrated with respect to G, where:

E[α] ≤
1

rn
+ 2

√
2 ln(2|G|n)

T
.

For r =
√
T

ϵn
√

2 ln(2|G|n)
this gives:

E[α] ≤ (2 + ϵ)

√
2

T
ln (2|G|n).

Here the expectation is taken over the randomness of the transcript πT .

Proof. From Observation 2, it suffices to show that

1

T
Ẽ
πT

[
max

G∈G,i∈[n]
|Ṽ G,i
T |

]
≤ 1

rn
+ 2

√
2 ln(2|G|n)

T
.

213

We begin by computing a bound on the (exponential of) the expectation of this quantity:

exp

(
η Ẽ
πT

[
max
G,i
|Ṽ G,i
T |

])
≤ Ẽ

πT

[
exp

(
ηmax

G,i
|Ṽ G,i
T |

)]
,

= Ẽ
πT

[
max
G,i

exp
(
η|Ṽ G,i

T |
)]
,

≤ Ẽ
πT

[
max
G,i

(
exp

(
ηṼ G,i

T

)
+ exp

(
−ηṼ G,i

T

))]
,

≤ Ẽ
πT

∑
G,i

(
exp

(
ηṼ G,i

T

)
+ exp

(
−ηṼ G,i

T

)) ,
= Ẽ

πT
[L̃T],

≤ 2|G|n exp
(
Tη

rn
+ 2Tη2

)
.

Here the first step is by Jensen’s inequality and the last one follows from Corollary 6. Taking

the logarithm of both sides and dividing by ηT , we have

1

T
Ẽ
πT

[
max
G,i
|Ṽ G,i
T |

]
≤ ln(2|G|n)

ηT
+

1

rn
+ 2η.

Choosing η =

√
ln(2|G|n)

2T , we thus obtain the desired inequality

1

T
Ẽ
πT

[
max
G,i
|Ṽ G,i
T |

]
≤ 1

rn
+ 2

√
2 ln(2|G|n)

T
.

Now, given L̃, let us define its associated martingale process Z̃ as in the second part of

Theorem 30. The next lemma shows that the increments of Z̃ are uniformly bounded over

all rounds t. The proof is in Appendix 6.C.

Lemma 37. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

We can now use the second part of Theorem 30 to prove a high probability bound on the

multicalibration error of Algorithm 16.

214

Theorem 32. When Algorithm 16 is run using n calibration buckets, discretization r ∈ N

and η =

√
ln(2|G|n)

2T ∈ (0, 1/2), then against any adversary, its sequence of mean predictions

is α-multicalibrated, with respect to G with probability 1 − λ over the randomness of the

transcript πT , for

α ≤ 1

rn
+ 4

√
2

T
ln

(
2|G|n
λ

)
.

Choosing r =
√
T

ϵn
√

2 ln(2|G|n/λ)
, this gives:

α ≤ (4 + ϵ)

√
2

T
ln

(
2|G|n
λ

)
.

Proof. By Lemma 37, the second part of Theorem 30 applies; plugging in L0 = 2|G|n and

c = 1
rn , we have:

ln(LT (πT)) ≤ ln(2|G|n) + T
(η
rn

+ 2η2
)
+ η

√
8T ln

(
1

λ

)
.

Now, note that

exp

(
ηmax

G,i
|V G,i
T |

)
= max

G,i
exp

(
η|V G,i

T |
)
,

≤ max
G,i

(
exp

(
ηV G,i

T

)
+ exp

(
−ηV G,i

T

))
,

≤
∑
G,i

(
exp

(
ηV G,i

T

)
+ exp

(
−ηV G,i

T

))
,

= LT (πT).

Taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i
|V G,i
T | ≤

1

ηT
ln(LT (πT)) ≤

ln(2|G|n)
ηT

+
1

rn
+ 2η +

√
8 ln

(
1
λ

)
T

.

215

Choosing η =

√
ln(2|G|n)

2T , we thus obtain the desired inequality

1

T
max
G,i
|V G,i
T | ≤

1

rn
+ 2

√
2 ln(2|G|n)

T
+

√
8 ln

(
1
λ

)
T

≤ 1

rn
+ 4

√
2

T
ln

(
2|G|n
λ

)
.

Remark 10. In both Theorems 31 and 32, the dependence on log(|G|) can be replaced with

a dependence on log(d) under the assumption that |G(xt)| ≤ d for all t — i.e. that each

observed data point is contained in only boundedly many groups. This gives us non-trivial

guarantees even when G is infinitely large. See Appendix 6.A for details.

6.4.3. Deriving an Efficient Algorithm via Equilibrium Computation

Algorithm 17: Von Neumann’s Mean Multicalibrator(η, n, r)

for t = 1, . . . , T do

Observe xt and compute for each i ∈ [n] Cit−1(xt) as defined in (6.2). if

Cit−1(xt) > 0 for all i ∈ [n] then

Predict µt = 1.

else if Cit−1(xt) < 0 for all i ∈ [n] then

Predict µt = 0.

else

Find i∗ ∈ [n− 1] such that Ci
∗
t−1(xt) · C

i∗+1
t−1 (xt) ≤ 0

Define 0 ≤ qt ≤ 1 such that qtC
i∗
t−1(xt) + (1− qt)Ci

∗+1
t−1 (xt) = 0. In other

words, define it as follows (using the convention that 0/0 = 1):

qt =
|Ci∗+1
t−1 (xt)|

|Ci∗+1
t−1 (xt)|+ |Ci

∗
t−1(xt)|

.

Predict µt =
i∗

n −
1
rn with probability qt and µt =

i∗

n with probability 1− qt.

end

end

In Section 6.4.2, we derived Algorithm 16 and proved that it results in mean multicalibrated

predictions. However, Algorithm 16 was not defined explicitly: it relies on the distributions

QLt , whose existence we showed in Lemma 36 but which we did not explicitly construct. In

216

this section, we derive a scheme for sampling from these distributions QLt , which leads to

Algorithm 17 — an explicit, efficient implementation of Algorithm 16.

Theorem 33. Algorithm 17 implements Algorithm 16. In particular it obtains the multi-

calibration guarantees proven in Theorems 31 and 32.

Proof. Recall that Algorithm 16 samples at every round s+1 from a distribution QLs+1 that

is a minimax equilibrium strategy of a game between the learner and the adversary, with

objective function

u(µ, y) = η (y − µ)Cµs (xs+1) + 2η2Ls.

The equilibrium structure of the game is preserved under positive affine transformations,

so instead we consider

u(µ, y) = (y − µ)Cµs (xs+1).

We wish to find a distribution QLs+1 ∈ QL that guarantees — against any strategy of the

adversary — an objective value that is at most the bound on the value of the game we

proved in Lemma 36. For the transformed game, this bound is:

max
y∈[0,1]

E
µ∼Qs+1

[u(µ, y)] ≤ 1

rn
Ls.

We can start by characterizing the best response of the adversary.

Observation 4. For any QL ∈ QL:

max
y∈[0,1]

E
µ∼QL

[u(µ, y)] =

(
E

µ∼QL
[Cµs (xs+1)]

)+

− E
µ∼QL

[
µCµs (xs+1)

]
,

where (x)+ = max(x, 0).

217

Proof. Note that:

u(µ, y) = (y − µ)Cµs (xs+1)

= yCµs (xs+1)− µCµs (xs+1).

Observe that only the first term depends on y. Therefore, if the learner plays accord-

ing to QL, then the adversary will choose y so as to maximize the linear expression

y Eµ∼QL [C
µ
s (xs+1)]. This is always maximized either at y = 0 or y = 1. It is maximized at

y = 1 when Eµ∼QL [C
µ
s (xs+1)] > 0, and at y = 0 otherwise.

Finally, we can reduce the analysis to three disjoint cases:

1. Cis(xs+1) > 0 for all i ∈ [n]: Then for any distribution QL, by Observation 4 we have:

max
y∈[0,1]

E
µ∼QL

[u(µ, y)] = E
µ∼QL

[Cµs (xs+1)]− E
µ∼QL

[
µCµs (xs+1)

]
.

In this case, letting QL be a point mass on µ = 1 achieves a value of 0 < 1
rnLs.

2. Cis(xs+1) < 0 for all i ∈ [n]: Then for any distribution QL, by Observation 4 we have:

max
y∈[0,1]

E
µ∼QL

[u(µ, y)] = − E
µ∼QL

[
µCµs (xs+1)

]
In this case, letting QL be a point mass on µ = 0 achieves a value of 0 < 1

rnLs.

3. In the remaining case, there must exist some index i∗ ∈ [n − 1] such that either

Ci
∗
s (xs+1) and Ci

∗+1
s (xs+1) have opposite signs, or such that at least one of them

218

takes value exactly zero. Randomizing as in the algorithm results in:

max
y∈[0,1]

E
µ∼QL

s+1

[u(µ, y)]

=

(
E

µ∼QL
s+1

[
Cµs (xs+1)

])+

− Eµ∼QL
s+1

[
µCµs (xs+1)

]
=
(
qs+1C

i∗
s (xs+1) + (1− qs+1)C

i∗+1
s (xs+1)

)+
−
(
qs+1

(
i∗

n −
1
rn

)
Ci

∗
s (xs+1) + (1− qs+1)

i∗

nC
i∗+1
s (xs+1)

)
=

1

rn
Ci

∗
s (xs+1)

≤ 1

rn
Ls.

Algorithm 17 plays according to this distribution QLs+1 at every round, which completes the

proof.

Running Time Our algorithm is elementary, and given values for Cit−1(xt), it runs in

time per iteration which is linear in the number of buckets n. For large collections of groups

G, the bulk of the computational cost is due to the first step of Algorithm 17, in which we

compute the quantities Cit−1(xt) as in Equation 6.2:

Cit−1(xt) ≡
∑
G(xt)

exp(ηV G,i
t−1)− exp(−ηV G,i

t−1)

These quantities are a sum over every group G ∈ G such that xt ∈ G. In the worst case, we

can compute this by enumerating over all such groups, and we obtain runtime that is linear

in |G|. However, for any class G such that we can efficiently enumerate the set of groups

containing xt (i.e. G(xt)), our per-round runtime is only linear in |G(xt)|, which may be

substantially smaller than |G|. For example, this property holds for collections G of groups

induced by conjunctions or disjunctions of binary features. Finally, we observe that our

runtime is entirely independent of the choice of the discretization parameter r.

219

6.5. Online Moment Multicalibration

6.5.1. An Outline of Our Approach

In this section, we derive an online algorithm for supplying mean and kth-moment predic-

tions that are mean-conditioned moment multicalibrated with respect to some collection of

groups G, as defined in Definition 24. We follow the same basic strategy that we developed

in Section 6.4 for making multicalibrated mean predictions. In particular, the first few steps

of our approach exactly mirror the approach in Section 6.4: Analogously to Steps 1 and 2

of Section 6.4.1 we define calibration losses and a convenient soft-max style surrogate loss

function and bound the increase to that surrogate loss function at each round. However, we

make a couple of important deviations.

1. The first complication that arises is that moment consistency is not a linearly sep-

arable constraint across rounds (because moments are nonlinear). However, we are

able to define linearly separable “pseudo-moment” consistency losses M and prove

in Lemma 38 that if both our pseudo-moment consistency losses M and our mean

consistency losses V are small then our predictions are mean-conditioned moment

multicalibrated.

2. The next complication arises when we attempt to define a zero-sum game using our

bound on the per-round increase of the surrogate loss. The bound on the loss that

we obtain for mean-conditioned moment multicalibration is nonlinear in both the

learner’s (mean) prediction and the adversary’s choice of label y. We cannot directly

apply a minimax theorem because the necessary concavity and convexity conditions

are not satisfied. Our argument instead requires a change of variables: we show that

in the game we define, the adversary’s payoff, fixing the strategy of the learner, is

linear in the first k (uncentered) moments of the distribution over the labels chosen

by the adversary. We also expand the strategy space of the adversary to allow him

to pick k arbitrary real numbers, representing the first k centered moments of his

label distribution, unencumbered by the requirement that these chosen values actually

220

correspond to the moments of any real label distribution. Enlarging the adversary’s

strategy space in this way can only increase the value of the game, and so the upper

bounds we prove on the value of this simplified game continue to hold for the original

game. Moreover, a minimax theorem applies to this transformed game, and therefore

guarantees the existence of a prediction strategy for the learner that is approximately

mean-conditioned moment multicalibrated.

3. In order to implement this strategy with an explicit efficient prediction algorithm,

we need to solve a game in which the learner has r2nn′ pure strategies. Doing this

naively would inherit a running time dependence on r, a discretization parameter that

we want to take to be very small. However, we prove a “structure theorem” about

the enlarged game described above: that without loss of generality, the learner need

only randomize over a support of at most 4nn′ pure strategies. With this structure

theorem in hand, we show that the equilibrium computation problem can be cast as

a linear program with 4nn′ variables and 2k + 1 constraints. If k is a small constant

(e.g. k = 2 for variance multicalibration), then this linear program can be explicitly

described and solved. But even when k is too large to enumerate all 2k constraints, we

show that there is a separation oracle that runs in time O(k), allowing us to efficiently

solve this linear program using the Ellipsoid algorithm. In Appendix 6.B, we show that

there exist solutions to the learner’s problem that have small support—in which the

learner mixes over at most k + 1 strategies.

6.5.2. An Existential Derivation of the Algorithm and Moment Multicalibration Bounds

We will calibrate our mean predictions {µt}Tt=1 over n buckets, and kth moment predictions

{mk}Tt=1 over n′ < n buckets. As before, we introduce notation to denote the portion of

the mean calibration error corresponding to each pair of buckets (i, j) and group G, and

consider a similar quantity that serves as a proxy for the portion of the moment calibration

error corresponding to each group G ∈ G and buckets i ∈ [n], j ∈ [n′]. We will need an extra

piece of notation: for any i ∈ [n], define µ̂i ≡ 2i−1
2n . For any i ∈ [n] and µ ∈ Bn(i), we abuse

notation and write µ̂µ = µ̂i.

221

Definition 32. Given a transcript πs = ((xt, (µt,m
k
t), yt))

s
t=1, for each group G ∈ G and

buckets i ∈ [n], j ∈ [n′] at time s, we write

V G,i,j
s (πs) =

s∑
t=1

1[µt ∈ Bn(i),mk
t ∈ Bn(j), xt ∈ G] (yt − µt) ,

MG,i,j
s (πs) =

s∑
t=1

1[µt ∈ Bn(i),mk
t ∈ Bn(j), xt ∈ G]

(
(yt − µ̂i)k −mk

t

)
.

When the transcript πs is clear from context we will simply write V G,i,j
s ,MG,i,j

s .

In words, V G,i,j
s calculates the difference between the true mean and the mean of our

predictions over the subset of periods up to s in which the realized feature vector was

in group G and the learner predicted a mean µ ∈ Bn(i) and a moment mk ∈ Bn′(j).

MG,i,j
s defines a similar quantity for moments — but not exactly. Instead of calculating the

empirical moment around the empirical mean (i.e. (yt − µ(Gs(i, j)))k), we center around

µ̂i, i.e. the middle of the bucket Bn(i). We do this to make MG,i,j
s linearly separable across

rounds.

We show, using an argument similar23 to Chapter 5, that if our mean predictions are

sufficiently calibrated — which ensures µ̂i ≈ µ(GT (i, j)) — then we can still bound the

mean-conditioned moment multicalibration error through our proxy quantity MG,i,j
s .

Lemma 38. For a given i ∈ [n], j ∈ [n′] and G ∈ G, if 1
T |V

G,i,j
T | ≤ α, 1

T |M
G,i,j
T | ≤ β, then

we have

|µ(GT (i, j))− µ(GT (i, j))| ≤
αT

|GT (i, j)|
, (Mean Consistency)∣∣∣mk(GT (i, j))−mk(GT (i, j))

∣∣∣ ≤ (β + kα+ k
2n)T

|GT (i, j)|
. (Moment Consistency)

23(yt − µ̂i)
k roughly corresponds to what is referred to as a pseudo-moment in Chapter 5

222

Proof. It is easy to see mean-consistency:

|GT (i, j)|
T

|µ(GT (i, j))− µ(GT (i, j))| =
1

T

∣∣∣∣∣∣
∑

t∈GT (i,j)

(µt − yt)

∣∣∣∣∣∣ = 1

T
|V G,i,j
T | ≤ α.

Now, we show that we achieve mean-conditioned moment consistency. First note that

1

T
|MG,i,j

T | = 1

T

∣∣∣∣∣∣
∑

t∈GT (i,j)

mk
t − (µ̂i − yt)k

∣∣∣∣∣∣ ≤ β.
Now,

∣∣∣∣∣∣mk(GT (i, j))−
1

|GT (i, j)|
∑

t∈GT (i,j)

(yt − µ̂i)k
∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

|GT (i, j)|
∑

t∈GT (i,j)

((yt − µ̂i) + (µ̂i − µ(GT (i, j))))k − (yt − µ̂i)k
∣∣∣∣∣∣ ,

≤ k

|GT (i, j)|
∑

t∈GT (i,j)

|µ̂i − µ(GT (i, j))| ,

=
k

|GT (i, j)|
∑

t∈GT (i,j)

|µ̂i − µ(GT (i, j)) + µ(GT (i, j))− µ(GT (i, j))| ,

≤ k

|GT (i, j)|
∑

t∈GT (i,j)

|µ̂i − µ(GT (i, j))|+ |µ(GT (i, j))− µ(GT (i, j))| ,

≤
Tk(α+ 1

2n)

|GT (i, j)|
,

where the first inequality follows from the fact that |ak − bk| ≤ k|a− b| for any a, b ∈ [0, 1]

with a = (yt − µ̂i)+ (µ̂i − µ(GT (i, j))) and b = yt− µ̂i. The last inequality follows from the

guarantee of mean consistency as shown above in the proof and the fact that µ(GT (i, j)) ∈

Bn(i) and |µ̂i − x| ≤ 1
2n for any x ∈ Bn(i).

223

Therefore, we can invoke the triangle inequality to conclude

∣∣∣mk(GT (i, j))−mk(GT (i, j))
∣∣∣

≤

∣∣∣∣∣∣mk(GT (i, j))−
1

|GT (i, j)|
∑

t∈GT (i,j)

(yt − µ̂i)k
∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

|GT (i, j)|
∑

t∈GT (i,j)

(yt − µ̂i)k −mk(GT (i, j))

∣∣∣∣∣∣
≤

(β + kα+ k
2n)T

|GT (i, j)|
.

This lemma implies that if we can force each term V G,i,j
s ,MG,i,j

s to be small, then we will

have achieved our desired goal of mean-conditioned moment multicalibration (Definition 24).

Observation 5. Suppose a transcript πT is such that for all i ∈ [n], j ∈ [n′] and G ∈ G,

we have that |V G,i,j
T |, |MG,i,j

T | ≤ αT . Then the predictions are (α, β, n, n′)-mean-conditioned

moment multicalibrated in the sense of Definition 24 for β = (k + 1)α+ k
2n .

Remark 11. Note that with this parametrization, we can take α as small as we like relative

to n, and by choosing an appropriately large value of n, we can take β = (k + 1)α + k
2n as

small as we like relative to n′.

As before, we define a surrogate loss function at each round s.

Definition 33 (Surrogate Loss). Fixing a transcript πs ∈ Π∗ and a parameter η ∈ [0, 12],

define:

Ls(πs) =
∑
G∈G,

i∈[n],j∈[n′]

(
exp(ηV G,i,j

s) + exp(−ηV G,i,j
s) + exp(ηMG,i,j

s) + exp(−ηMG,i,j
s)

)
,

where V and M are functions of πs as defined in Definition 32. When the transcript πs is

clear from context we will sometimes simply write Ls.

224

As before, our goal is to find a strategy for the learner that guarantees that our surrogate

loss LT remains small. Towards this end, we define ∆s+1(πs, xs+1, µ,m
k) to be the expected

increase in the surrogate loss function in the event that the adversary plays feature vector

xs+1 and the learner predicts (µ,mk). Here the expectation is over the only remaining

source of randomness after the conditioning — the distribution over labels ys+1, which for

any adversary is defined once we fix πs and xs+1.

Definition 34 (Conditional Change in Surrogate Loss).

∆s+1(πs, xs+1, µ,m
k) = E

ỹs+1

[
L̃s+1 − Ls

∣∣∣πs, xs+1, µ,m
k
]
.

We again show a simple bound on ∆s+1(πs, xs+1, µ,m
k):

Lemma 39. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any predictions µ,mk ∈ [0, 1]

such that µ ∈ Bn(i) and mk ∈ Bn′(j) for some i ∈ [n] and j ∈ [n′]:

∆s+1(πs, xs+1, µ,m
k) ≤ η

(
E
ỹs+1

[ỹs+1]− µ
)
Cµ,m

k

s (xs+1)

+ η

(
Ẽ
y
(ỹs+1 − µ̂µ)k −mk

)
Dµ,mk

s (xs+1) + 2η2Ls,

where

Cµ,m
k

s (xs+1) = Ci,js (xs+1) =
∑

G∈G(xs+1)

exp(ηV G,i,j
s)− exp(−ηV G,i,j

s), (6.5)

Dµ,mk

s (xs+1) = Di,j
s (xs+1) =

∑
G∈G(xs+1)

exp(ηMG,i,j
s)− exp(−ηMG,i,j

s). (6.6)

For economy of notation, we will generally elide the dependence on xs+1 for the C and D

quantities and simply write Ci,js , Di,j
s when the feature vector is clear from context.

225

Proof. To see this, observe that by definition:

∆s+1(πs, xs+1, µ,m
k)

= E
ỹs+1

[∑
G(xs+1)

exp(ηV G,i,j
s) (exp (η (ỹs+1 − µ))− 1) + exp(−ηV G,i,j

s) (exp (−η (ỹs+1 − µ))− 1)︸ ︷︷ ︸
∗

+ exp(ηMG,i,j
s) exp

(
η
(
(ỹs+1 − µ̂µ)k −mk

)
− 1
)

︸ ︷︷ ︸
∗∗

+ exp(−ηMG,i,j
s) exp

(
−η
(
(ỹs+1 − µ̂µ)k −mk

)
− 1
)

︸ ︷︷ ︸
∗∗∗

]
.

Using the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1 + x+ 2x2, we have that

∗ ≤ exp(ηV G,i,j
s)

(
η (ys+1 − µ) + 2η2

)
+ exp(−ηV G,i,j

s)
(
−η (ys+1 − µ) + 2η2

)
.

Similarly, we have

∗ ∗+ ∗ ∗ ∗ ≤ exp(ηMG,i,j
s)

(
η
(
(ys+1 − µ̂µ)k −mk

)
+ 2η2

)
+ exp(−ηMG,i,j

s)
(
−η
(
(ỹs+1 − µ̂µ)k −mk

)
+ 2η2

)
.

Now, using the linearity of expectation and distributing the outer expectation to each

relevant term where ỹs+1 appears, we get

∆s+1(πs, xs+1, µ,m
k)

≤
∑

G(xs+1)

exp(ηV G,i,j
s)

(
η (E[ỹs+1]− µ) + 2η2

)
+ exp(−ηV G,i,j

s)
(
−η (E[ỹs+1]− µ) + 2η2

)
+ exp(ηMG,i,j

s)
(
η
(
E
[
(ỹs+1 − µ̂µ)k

]
−mk

)
+ 2η2

)
+ exp(−ηMG,i,j

s)
(
−η
(
E
[
(ỹs+1 − µ̂µ)k

]
−mk

)
+ 2η2

)
.

226

Collecting terms appropriately and observing that

∑
G(xs+1)

(
exp(ηV G,i,j

s) + exp(−ηV G,i,j
s) + exp(ηMG,i,j

s) + exp(−ηMG,i,j
s)

)
≤ Ls,

we have the desired bound.

As before, we proceed by defining a zero-sum game between the learner and the adversary

and using the minimax theorem to conclude that the learner always has a strategy that

guarantees a bounded per-round increase in surrogate loss. To satisfy the convexity and

compactness requirements of the minimax theorem, we will again consider a game where

the learner’s pure strategy space is a finite subset of P(mean,moment). To this end, we define

the following grids for any r ∈ N (n and n′ are the coarseness parameters of our bucketings

from above):

Prn =

{
0,

1

rn
,
2

rn
, . . . , 1

}
,

Prn′
=

{
0,

1

rn′
,
2

rn′
, . . . , 1

}
.

As in the previous section, the need to discretize is only for technical reasons, and our

algorithm has no dependence — neither in runtime nor in its convergence rate — on the

value of r that we choose, so we can imagine the discretization to be arbitrarily fine.

Lemma 40. For any transcript πs ∈ Π∗ and any xs+1 ∈ X , there exists a distribution over

predictions for the learner QLs+1 ∈ ∆(Prn × Prn′
), such that regardless of the adversary’s

choice of distribution of ys+1 over ∆Y, we have that:

E
(µ,mk)∼QL

s+1

[
∆s+1(πs, xs+1, µ,m

k)
]
≤ Ls

(η
rn

+
η

rn′
+ 2η2

)
.

Proof. Fix the transcript πs and the feature vector xs+1. As before, we define a zero-sum

game played between the learner (the minimization player) and the adversary (the max-

227

imization player), where the objective function of the game equals the upper bound on

∆s+1(πs, xs+1, µ,m
k) from Lemma 39. Then, we again show that for every strategy of the

adversary (i.e. distribution over y), there exists a best response for the learner that guaran-

tees the objective function of the game is small. Finally, we appeal to the minimax theorem

to conclude that there always exists a strategy for the learner that guarantees small objective

value against any strategy of the adversary.

More precisely, consider the following objective function for the game:

u((µ,mk), y) = η (y − µ)Cµ,mk

s + η
(
(y − µ̂µ)k −mk

)
Dµ,mk

s + 2η2Ls

= η (y − µ)Cµ,mk

s + η

((
k∑
ℓ=0

(
k

ℓ

)
(−µ̂µ)k−ℓyℓ

)
−mk

)
Dµ,mk

s + 2η2Ls

where the pure strategy space for the learner is X1 = Prn×Prn
′
and that of the adversary

is (a priori) the set of all distributions over [0, 1]. However, we observe that the expected

value of the objective for any label distribution over [0, 1] is linear in E[y], . . . ,E[yk]. So the

payoff for any mixed strategy of the adversary is determined only by the associated k terms:

E[y], . . . ,E[yk].

With this observation in mind, we perform a change of variables and define a new game

with an enlarged strategy space for the adversary. In the new game, the strategy space for

the learner remains QL = ∆(Prn × Prn′
). The strategy space for the adversary becomes

QA = [0, 1]k, representing a choice for each of the values E[y], . . .E[yk]. Note that this strat-

egy space for the adversary is unencumbered by the requirement that these chosen values

actually correspond to any feasible label distribution over [0, 1]. The objective function of

the game is obtained by replacing each term E[yℓ] from our previous objective function with

ψℓ:

u((µ,mk), ψ) = η (ψ1 − µ)Cµ,m
k

s + η

((
µ̂kµ +

k∑
ℓ=1

(
k

ℓ

)
(−µ̂µ)k−ℓψℓ

)
−mk

)
Dµ,mk

s + 2η2Ls.

228

As we have noted, in the original game, the set of achievable moments E[y], . . . ,E[yk] is a

strict subset of [0, 1]k. However, enlarging the strategy space of the maximization player can

only increase the (maxmin) value of the game, so the upper bound we are about to prove

on the game value against this more powerful adversary also applies to the adversary who

is implicitly choosing moments E[y], . . . ,E[yk] via some distribution over [0, 1].

Note that u thus defined is linear in both players’ strategies, and the strategy spaces for both

players QL and QA are compact and convex. Hence, Sion’s minimax theorem (Theorem 29)

applies to this game. We now establish (a bound on) the value of this game. Observe that

for any strategy of the adversary, the learner can pick µ ∈ Prn as close as possible to ψ1,

and then pick mk ∈ Prn′
as close as possible to µ̂kµ +

∑k
ℓ=1

(
k
ℓ

)
(−µ̂µ)k−ℓψℓ. Therefore, since

Cµ,m
k

s , Dµ,mk

s ≤ Ls by definition, we have that:

∀ψ ∈ [0, 1]k, ∃(µ,mk) ∈ (Prn × Prn′
) s.t. u((µ,mk), ψ) ≤ Ls

(η
rn

+
η

rn′
+ 2η2

)
.

We can now apply the minimax theorem (Theorem 29) to conclude that there exists a fixed

distribution QLs+1 ∈ QL for the learner that guarantees objective value that is at most the

above bound for every choice of the adversary, i.e.

∃QLs+1 ∈ QL s.t. ∀ψ ∈ [0, 1]k : u(QLs+1, ψ) ≤ Ls
(η
rn

+
η

rn′
+ 2η2

)
,

as desired.

Corollary 7. For every s ∈ [T], πs ∈ Π∗, xs+1 ∈ X (which fixes Ls and QLs+1), and every

adversary (which fixes a distribution over Y):

E
QL

s+1

[L̃s+1|πs] = Ls + E
QL

s+1

[∆s+1(πs, xs+1, µ,m
k)|πs] ≤ Ls

(
1 +

η

rn
+

η

rn′
+ 2η2

)
.

Lemma 40 defines (existentially) an algorithm that the learner can use to make predictions—

Algorithm 18. We will now show that Algorithm 18 (if we could compute the distributions

229

QLt) results in mean-conditioned moment multicalibrated predictions. In Section 6.5.3 we

show how to compute QLt .

Algorithm 18: A Generic Mean Moment Multicalibrator

for t = 1, . . . , T do

Observe xt. Given πt−1 and xt, let Q
L
t ∈ ∆(Prn ×Prn′

) be the distribution over

predictions whose existence is established in Lemma 40. Sample µ,mk ∼ QLt

and predict (µt,m
k
t) = (µ,mk).

end

We are now ready to bound our multicalibration error. The results that follow mirror the

structure of Section 6.4.2: essentially, we apply Theorem 30 to the surrogate loss func-

tion of this section. As a straightforward consequence of Corollary 7 and the first part of

Theorem 30, we have the following result.

Corollary 8. Against any adversary, Algorithm 18 instantiated with discretization param-

eter r results in surrogate loss satisfying:

Ẽ
πT
[L̃T] ≤ 4|G|n · n′ · exp

(
Tη

rn
+
Tη

rn′
+ 2Tη2

)
.

Proof. Note that the first part of Theorem 30 applies in this case to the process L, with

L0 = 4|G|n ·n′ and c = 1
rn +

1
rn′ . The bound follows by plugging these values into (6.3).

Next, we can convert this into a bound on Algorithm 16’s expected calibration error, us-

ing Theorem 30. The proof mirrors the argument in Section 6.4 and can be found in the

Appendix.

Theorem 34. When Algorithm 18 is run using bucketing coarseness parameters n and

n′, discretization parameter r ∈ N, and η =

√
ln(4|G|n·n′)

2T ∈ (0, 1/2), then against any ad-

versary, its sequence of mean-moment predictions is (α, β, n, n′)-mean-conditioned moment

230

multicalibrated with respect to G, where β = (k + 1)α+ k
2n and:

E[α] ≤
1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′)

T
.

For r =
√
T (n+n′)

εn·n′·
√

2 ln(4|G|n·n′)
, this gives:

E[α] ≤ (2 + ε)

√
2

T
ln (4|G|n · n′).

Here the expectation is taken over the randomness of the transcript πT .

We can similarly use the second part of Theorem 30 to prove a high probability bound on

the multicalibration error of Algorithm 18. The proof is in the Appendix.

Theorem 35. When Algorithm 18 is run using bucketing coarseness parameters n and n′,

discretization r ∈ N and η =

√
ln(4|G|n·n′)

2T ∈ (0, 1/2), then against any adversary, with prob-

ability 1−λ over the randomness of the transcript, its sequence of predictions is (α, β, n, n′)-

mean-conditioned moment multicalibrated with respect to G for β = (k + 1)α+ k
2n and:

α ≤ 1

rn
+

1

rn′
+ 4

√
2

T
ln

(
4|G|n · n′

λ

)
.

For r =
√
T (n+n′)

ϵn·n′
√

2 ln(4|G|n·n′/λ)
, this gives:

α ≤ (4 + ϵ)

√
2

T
ln

(
4|G|n · n′

λ

)
.

6.5.3. Deriving an Efficient Algorithm via Equilibrium Computation

Previously, we derived Algorithm 18 and proved that it results in mean-conditioned moment

multicalibrated predictions. But Algorithm 18 is not explicitly defined, as it relies on the

distributions QLt whose existence we showed in Lemma 40 but which we did not explicitly

construct. In this section, we show how to efficiently solve for this distribution QLt using a

231

linear program with 4n · n′ variables and 2k + 1 constraints. If k is a small constant (e.g.

k = 2 for variance multicalibration), then this linear program can be explicitly described

and solved. But even when k is too large to enumerate all 2k constraints, we show that

there is a separation oracle that runs in time O(k), allowing us to efficiently solve this linear

program (i.e. in time polynomial in n, n′, T, |G|, and k) using the Ellipsoid algorithm.

Recall that in our simplified game, the learner has pure strategies (µ,mk) ∈ Prn × Prn′
,

and the adversary has strategy space QA = [0, 1]k. Since the objective function is linear in

the adversary’s action ψ, we can view this as the set of mixed strategies over the 2k pure

strategies ψ ∈ {0, 1}k. We recall the objective function:

u((µ,mk), ψ) = η (ψ1 − µ)Cµ,m
k

s + η

((
µ̂kµ +

k∑
ℓ=1

(
k

ℓ

)
(−µ̂µ)k−ℓψℓ

)
−mk

)
Dµ,mk

s + 2η2Ls.

Since the equilibrium structure stays the same under positive affine transformations of the

objective function, for the purposes of computing equilibria, we may redefine the objective

function to be:

u((µ,mk), ψ) = (ψ1 − µ)Cµ,m
k

s +

((
µ̂kµ +

k∑
ℓ=1

(
k

ℓ

)
(−µ̂µ)k−ℓψℓ

)
−mk

)
Dµ,mk

s . (6.7)

The specific values of Cµ,m
k

s , µ̂µ and Dµ,mk

s do not matter for the analysis that follows—but

what is relevant is that by definition, they are constant for any two (µ,mk) and (µ′,mk′)

both in the same bucket — in other words, if ∃i ∈ [n], j ∈ [n′] such that (µ,mk), (µ′,mk′) ∈

Bn,n′(i, j). We wish to find a minimax strategy for the learner in this game, i.e. to find a

solution to

argmin
QL∈QL

max
QA∈QA

u(QL, QA).

A priori, the learner has r2n′n pure strategies (i.e. |Prn × Prn′ | = r2n′n), and a minimax

strategy could potentially be supported over all of them (causing our algorithm to have

232

running time depending on r). However, we prove that we can without loss of generality

reduce the size of the learner’s pure strategy space to 4n′n (Lemma 41), which will eliminate

any running time dependence on r and allow us to choose as fine a discretization as we

like. We also show in Appendix 6.B that the learner always has a minimax strategy that

randomizes over a support of at most k + 1 actions. Thus, as with mean multicalibration,

we need only make limited use of randomness (at least for k small).

We first reduce the space of “relevant” pure strategies for the learner — intuitively, points

that are at—or just barely below—the boundary of a bucket:

P̂r,n =
⋃

i∈[n−1]

{
i− 1

n
,
i

n
− 1

rn

}⋃{
n− 1

n
, 1

}
⊂ Prn,

P̂r,n′
=

⋃
i∈[n′−1]

{
i− 1

n′
,
i

n′
− 1

rn′

}⋃{
n′ − 1

n′
, 1

}
⊂ Prn′

.

Given these sets, define Q̂Lr,n,n′ ≡ ∆
(
P̂r,n × P̂r,n′

)
⊂ QL.

Lemma 41. In the game with objective function u as defined in (6.7), the value of the game

is unaffected if the learner is restricted to mixed strategies in Q̂Lr,n,n′, a set of distributions

which in particular have support over at most 4nn′ actions. In other words:

min
QL∈QL

max
QA∈QA

u(QL, QA) = min
Q̂L∈Q̂L

r,n,n′

max
QA∈QA

u(Q̂L, QA).

Proof. Fix any strategy QL ∈ QL. Since Q̂Lr,n,n′ ⊆ QL, it is sufficient to show that there

exists a strategy Q̂L ∈ Q̂Lr,n,n′ such that:

max
QA∈QA

u(QL, QA) ≥ max
QA∈QA

u(Q̂L, QA).

To see this, first observe that we can regroup terms in the objective function (6.7) and write

233

it as:

u((µ,mk), ψ) = −µCµ,mk

s + µ̂kµD
µ,mk

s −mkDµ,mk

s +
k∑
ℓ=1

ψℓF
µ,mk

ℓ (6.8)

where Fµ,m
k

1 = Cµ,m
k

s − kµ̂k−1
µ Cµ,m

k

s , (6.9)

∀ℓ > 1, ℓ ∈ [n] : Fµ,m
k

ℓ =

(
k

ℓ

)
(−µ̂µ)k−ℓDµ,mk

s . (6.10)

Further, by definition for any µ, µ′ ∈ Bn(i) for some i ∈ [n] and mk,mk ′ ∈ Bn′(j), we have,

for X = C,D,

Xµ,mk

s = Xµ′,mk′

s = Xi,j
s ,

µ̂µ = µ̂µ′ ,

and therefore this equality holds for X = F as well. Against a given strategy QL for the

learner, the adversary’ payoff from pure strategy ψ is:

u(QL, ψ) =
∑

(µ,mk)

QL(µ,mk)

(
−µCµ,mk

s + µ̂kµD
µ,mk

s −mkDµ,mk

s +
k∑
ℓ=1

ψℓF
µ,mk

ℓ

)
,

which, given the previous fact about F , can be rewritten as

u(QL, ψ) =
∑

(µ,mk)

QL(µ,mk)
(
−µCµ,mk

s + µ̂kµD
µ,mk

s −mkDµ,mk

s

)
︸ ︷︷ ︸

(∗)

+

k∑
ℓ=1

ψℓ
∑
i∈[n],
j∈[n′]

F i,jℓ

 ∑
(µ,mk)∈B(i,j)

QL(µ,mk)


︸ ︷︷ ︸

(∗∗)

.

Observe that term (∗) is independent of ψ. Therefore, fixing a QL, it is equivalent for the

adversary to maximize (∗∗). By observation, for any mixed strategy of the learner QL, the

adversary’s incentives are only affected through the induced distribution over buckets.

234

So, given QL, the best response of the adversary is preserved for any other strategy Q̂L that

maintains the same mass on each bucket, i.e. for all i ∈ [n] and j ∈ [n′],

∑
(µ,mk)∈B(i,j)

(
QL(µ,mk)− Q̂L(µ,mk)

)
= 0.

Consider the learner’s problem of minimizing the objective value among strategies of this

form, i.e. preserving the mass on each bucket. This reduces to solving, for each i ∈ [n], j ∈

[n′], the optimization problem

min
Q̂L≥0

∑
(µ,mk)∈B(i,j)

Q̂L(µ,mk)
(
−µCi,js + µ̂kiD

i,j
s −mkDi,j

s

)
s.t.

∑
(µ,mk)∈B(i,j)

(
QL(µ,mk)− Q̂L(µ,mk)

)
= 0.

Within a bucket, the coefficients
(
−µCi,js + µ̂kiD

i,j
s −mkDi,j

s

)
are linear in µ,mk and there-

fore there must exist a solution that puts all mass
∑

(µ,mk)∈B(i,j)Q
L(µ,mk) on an extreme

point of the bucket. For example, if i ∈ [n− 1], j ∈ [n′ − 1]; all mass can be placed without

loss of generality on one of the four points in
{
i−1
n , in −

1
rn

}
×
{
j−1
n′ ,

j
n −

1
rn′

}
. If i = n, the

corresponding set is {n−1
n , 1}, and if j = n′, the corresponding set is {n′−1

n′ , 1}. Moving all

the mass in each bucket to the optimal corner point, we have that for any strategy QL of the

learner, there exists Q̂L ∈ Q̂Lr,n,n′ such that maxQA∈QA u(QL, QA) ≥ maxQA∈QA u(Q̂L, QA),

as desired. This concludes the proof.

The result is that to compute the equilibrium strategy for the learner, it suffices to solve:

argmin
QL∈Q̂L

r,n,n′

max
ψ∈{0,1}k

u(QL, ψ).

We can directly express this as a linear program with 4nn′ variables and 2k +1 constraints

— see Linear Program 6.5.1.

235

min
QL∈Q̂L

r,n,n′

γ s.t.

∀ψ ∈ {0, 1}k :u(QL, ψ) ≤ γ,∑
(µ,mk)∈P̂r,n×P̂r,n′ Q

L((µ,mk)) = 1,

∀(µ,mk) ∈ P̂r,n × P̂r,n′
:QL((µ,mk)) ≥ 0.

Figure 6.5.1: A Linear Program for Computing a Minimax Equilibrium Strategy for the
Learner at Round t.

This is a linear program in 4nn′+1 variables, with 2k+1 constraints. If k is a constant, this

is a polynomially sized linear program that can be solved explicitly. If k is superconstant,

we will see that we can still solve the linear program with the Ellipsoid algorithm, because

we can efficiently find violated constraints.

Algorithm 19: Von Neumann’s Mean Moment Multicalibrator

Input: ϵ > 0

for t = 1, . . . , T do

Observe xt and compute Cµ,m
k

t−1 (xt), D
µ,mk

t−1 (xt), (F
µ,mk

ℓ,t−1 (xt))
n
ℓ=1 for each

(µ,mk) ∈ P̂r,n × P̂r,n′
as in Equations (6.5, 6.6, 6.9, 6.10).

Find an ϵ-approximate solution to the linear program from Figure 6.5.1, to

obtain solution QLt ∈ Q̂Lr,n,n′ .

Predict (µt,m
k
t) = (µ,mk) with probability QLt ((µ,m

k)).

end

We thus obtain the following theorem:

Theorem 36. Algorithm 19 implements Algorithm 18. In particular, it obtains multivalidity

guarantees arbitrarily close to those of Theorems 34 and 35. Namely, for any desired ϵ > 0,

we have the following.

236

Choosing η =

√
ln(4|G|n·n′+ϵ)

2T ∈ (0, 1/2), against any adversary, over the randomness of the

transcript, the sequence of mean-moment predictions produced by Algorithm 19 is (α, β, n, n′)-

mean-conditioned moment multicalibrated with respect to G where β = (k + 1)α+ k
2n and:

E[α] ≤
1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′ + ϵ)

T
.

For r =
√
T (n+n′)

ϵ′n·n′·
√

2 ln(4|G|n·n′+ϵ)
, this gives:

E[α] ≤
(
2 + ϵ′

)√ 2

T
ln (4|G|n · n′ + ϵ).

Moreover, choosing η =

√
ln(4|G|n·n′)+ϵT

2T ∈ (0, 1/2), with probability 1− λ over the random-

ness of the transcript πT we have

α ≤ 1

rn
+

1

rn′
+ 4

√
2

T
ln

(
4|G|n · n′

λ

)
+ 2ϵ.

For r = (n+n′)

ϵ′n·n′
√

2
T
ln(4|G|n·n′/λ)+2ϵ

, this gives:

α ≤
(
4 + ϵ′

)√ 2

T
ln

(
4|G|n · n′

λ

)
+ 2ϵ.

The runtime of Algorithm 21 scales as O(|G|) with the total number of groups |G|, and is

polynomial in n, n′, T, k, and log(1ϵ) (and is independent of r).

Remark 12. As before, if |G(xt)| is efficiently enumerable, then the running time depen-

dence on |G| can be replaced with a dependence on |G(xt)|.

Proof. First consider the running time of the algorithm. The quantities Cµ,m
k

t−1 (xt), D
µ,mk

t−1 (xt),

and Fµ,m
k

ℓ,t−1 (xt) are simple sums, which can be computed in time linear in |G| (or |G(xt)| if

it is efficiently enumerable) and T . The linear program has 4nn′ + 1 variables, and 2k + 1

237

constraints. If k is a constant, this is polynomially sized. Now consider the case in which k

is large. In this case we will solve the linear program by applying the Ellipsoid algorithm to

its “rational” modification (see below). The runtime of this approach is polynomial under

several well-known conditions, which are given in the following theorem:

Theorem 37 ([84], Corollary 14.1a). For an optimization program of a linear objective

with rational coefficients over a rational polyhedron P in Rq for which we are given a

separation oracle, the Ellipsoid algorithm solves it exactly in time polynomial in the following

parameters: the number of variables q, the largest bit complexity ϕ of any linear inequality

defining P , the bit complexity c of the objective function, and the runtime of a separation

oracle.

Linear Program 6.5.1 has finitely many constraints so its feasible region is a polyhedron.

However, exponential terms in the coefficients of the constraints associated with the adver-

sarial best-responses (which are due to our definition of the soft-max surrogate loss) prevent

it from being rational. To fix this, we only keep O(log 1
ϵ) bits of precision after the integer

part of every coefficient of LP 6.5.1, resulting in a new LP whose coefficients are all rational

and within ± ϵ
2 from their original values in LP 6.5.1. The new LP indeed has a rational

polyhedron as its feasible region. We now pause to see that solving the rational LP achieves

value within ϵ of the desired optimum of LP 6.5.1. This is shown more generally in the

following technical lemma, which we will reuse in Section 6.6.3; its proof is deferred to the

Appendix.

Lemma 42. Consider a linear program of the following form, with variables x ∈ Rm, γ ∈ R

for some m:

Minimize γ, subject to: Ax ≤ γ1m, x · 1m = 1, x ≥ 0.

Here, 1m ∈ Rm is the all-ones vector, and A = (aji) is a finite matrix with real entries.

238

Take any ϵ > 0. Modify the above linear program by replacing matrix A with matrix Ã =

(ãji), where each ãji is a rational number within ± ϵ
2 from aji, obtained by truncating aji

to O(log 1
ϵ) bits of precision. Then, any optimal solution (x∗,r, γ∗,r) of the resulting rational

linear program is an ϵ-approximately optimal feasible solution of the original linear program.

Linear Program 6.5.1 is of the type given in Lemma 42, so we have that solving the rational

LP gives the desired ϵ-approximation to the optimum of Linear Program 6.5.1. Now we

verify that all linear constraints of the rational version of LP 6.5.1 have polynomial bit

complexity. Recall that the left side of any constraint bounding the objective function can

be written as:

u(QL, ψ) =
∑

(µ,mk)

QL(µ,mk)
(
−µCµ,m

k

t−1 + µ̂kµD
µ,mk

t−1 −m
kDµ,mk

t−1

)
︸ ︷︷ ︸

(∗)

+
k∑
ℓ=1

ψℓ
∑
i∈[n],
j∈[n′]

F i,jℓ

 ∑
(µ,mk)∈B(i,j)

QL(µ,mk)


︸ ︷︷ ︸

(∗∗)

.

There are 4nn′+1 variables. We can bound the coefficient in which any QL(µ,mk) appears

in (*) by:

max
µ,mk

∑
G

exp(ηV G,i,j
t−1)− exp(−ηV G,i,j

t−1) + 2
(
exp(ηMG,i,j

t−1)− exp(−ηMG,i,j
t−1)

)
≤ |G|(6 exp(η2T))

≤ 6|G| exp(2T).

The coefficient of any variable QL(µ,mk) in (**) is at most:

k∑
ℓ=1

ψℓ
∑
i∈[n],
j∈[n′]

F i,jℓ ≤ k · (nn
′) ·max

i,j

{
2k

(∑
G

2 exp(ηMG,i,j
T)

)}
≤ 2k+1k|G|nn′ · exp(2T).

239

Recalling that we are also keeping O(log 1
ϵ) bits of precision for each coefficient, it follows

that the maximum bit complexity of any constraint is bounded by

O

(
2 · 4nn′ ·

(
log
(
2k+1k|G|nn′ · exp(2T)

)
+ log

1

ϵ

))
= poly

(
n, n′, |G|, T, k, log 1

ϵ

)
.

Of course, the objective value, which is simply γ, also has polynomial bit complexity.

Next, we describe an efficient separation oracle for the LP. Consider a candidate solution

(QL, γ). The constraint requiring that QL be a probability distribution can be checked

explicitly. Thus, it remains to either find a violated constraint corresponding to some pure

strategy ψ ∈ {0, 1}k of the adversary, or to assert that none exists. But this reduces to the

problem of finding the most violated such constraint, which corresponds to the adversary’s

pure best response problem. Note that only the (**) term of the objective function (see the

formula above) depends on the adversary’s action. Thus, the best response problem of the

adversary corresponds to finding

ψ∗ = arg max
ψ∈{0,1}k

k∑
ℓ=1

ψℓ
∑

i∈[n],j∈[n′]

F i,jℓ

∑
(µ,mk)∈B(i,j)

QL(µ,mk).

The best response for the adversary given a fixed distribution QL can be computed by

setting each coordinate ℓ ∈ [k] independently to be either 0 or 1: namely, ψℓ = 1 if∑
i∈[n],
j∈[n′]

F i,jℓ

(∑
(µ,mk)∈B(i,j)Q

L(µ,mk)
)
≥ 0 and ψℓ = 0 otherwise. This takes O(k) iter-

ations, at each of which the expression whose sign determines ψℓ is computed in polynomial

time. Once the adversary’s best response has been computed, the oracle simply outputs the

corresponding constraint if it is violated, and otherwise it asserts that the proposed solutions

is feasible. Thus, we have a polynomial-time separation oracle for Linear Program 6.5.1.

This completes the proof that Linear Program 6.5.1 can be solved, at each round, to pre-

cision ϵ > 0 in time polynomial in n, n′, log |G|, T, k, log 1
ϵ . The runtime of Algorithm 19 is

therefore also poly(n, n′, |G|, T, k, log 1
ϵ), where the dependence on |G| is O(|G|) — since at

240

the beginning of each round t, we precompute the coefficients of the linear program in time

linear in |G|, and the Ellipsoid runs in time polynomial in log |G|.

Finally, we need to demonstrate that the claimed multivalidity guarantees (which are a

function of the chosen ϵ > 0) indeed hold. If we were exactly solving the linear program,

this would be immediate from Lemma 41 and the fact that Linear Program 6.5.1 is directly

solving for:

argmin
QL∈Q̂L

r,n,n′

max
ψ∈{0,1}k

u(QL, ψ).

We only need to verify that our approximate guarantees follow from approximately solving

the linear program.

Lemma 43. Algorithm 19 achieves the multivalidity guarantees specified in Theorem 36.

The proof of this lemma involves repeating several calculations from Section 6.5.2 with an

ϵ error term, and so is deferred to the Appendix.

6.6. Online Multivalid Marginal Coverage

6.6.1. An Outline of Our Approach

In this section, we derive an online algorithm for supplying prediction intervals with a cov-

erage target 1 − δ that are multivalid with respect to some collection of groups G. When

G = {X}, this corresponds to giving simple marginal prediction intervals — a similar prob-

lem as solved by conformal prediction24, but without requiring distributional assumptions.

For richer classes G, we obtain correspondingly stronger guarantees. We follow the same ba-

sic strategy that we developed in Section 6.4 for making multicalibrated mean predictions,

with a couple of important deviations.

1. First, we observe that even in the distributional setting, it is not always possible to

24In fact, even with G = {X} the guarantees are stronger than the marginal guarantees promised by
conformal prediction techniques, because they remain valid even conditioning on the prediction. This is
important and rules out trivial solutions, like predicting the full interval with probability 1−δ and an empty
interval with probability δ.

241

provide prediction intervals that have coverage probability exactly 1 − δ. Consider,

for example, the case in which the label distribution is a point mass. Then, any pre-

diction interval will have coverage probability either 0 or 1 — in both cases, bounded

away from the target 1− δ. More generally, if we are giving prediction intervals with

endpoints in some discrete set {0, 1/rn, . . . , 1}, in order for there to exist prediction

intervals with approximately the desired coverage probability in the distributional

setting, the distribution must not be overly concentrated on any sub-interval of width

1/rn. We define a sufficient smoothness condition (Definition 36) for appropriately

tight prediction intervals to be guaranteed to exist in the distributional setting — a

condition that becomes increasingly mild as we take our discretization parameter r to

be larger. We then derive — existentially, using the minimax theorem — the existence

of an online algorithm that gives prediction intervals that are multivalid at the desired

coverage probability when played against an adversary who is constrained at every

round to play smooth label distributions. We observe (Remark 14) that our smooth-

ness condition is very mild, in the sense that we can enforce it ourselves by adding

noise U [−ϵ, ϵ] to the adversary’s labels, rather than making assumptions about the

adversary. When we do this, the intervals we obtain continue to have valid coverage

if we widen both endpoints by ϵ.

2. To instantiate our algorithm, we again need to compute equilibrium strategies for

an appropriately defined game for our learner to sample from. Unlike in the cases of

mean and moment multicalibration, however, the equilibrium strategies in this case

do not appear to have any nice structure. We can still derive an efficient algorithm,

however, by solving a linear program at each round to compute an equilibrium of the

corresponding game. Because we assume that our adversary plays label distributions

that are appropriately smooth, the adversary has exponentially many pure strategies

in this game, and so we cannot efficiently enumerate all of the constraints in our

equilibrium computation program. Instead, we show that a simple greedy algorithm

is able to implement a separation oracle, which allows us to solve the linear program

242

efficiently using the Ellipsoid algorithm.

6.6.2. An Existential Derivation of the Algorithm and Multicoverage Bounds

Our goal in this section is to derive an algorithm which at each round, makes predictions

(ℓt, ut) ∈ Pinterval that are multivalid with respect to some target coverage probability 1−δ.

Towards this end, we define the coverage error of a group G and interval (ℓ, u):

Definition 35. Given a transcript πs = (xt, (ℓt, ut), yt)
s
t=1, we define the coverage error for

a group G ∈ G and bucket (i, j) ∈ [n]× [n] at time s to be:

V G,(i,j)
s =

s∑
t=1

1[xt ∈ G, (ℓt, ut) ∈ Bn(i, j)] · vδ((ℓt, ut), yt),

where vδ((ℓ, u), y) = Cover((ℓ, u), y)− (1− δ).

Just as before, our coverage error serves as a bound on our multicoverage error.

Observation 6. Fix a transcript πT . If for all G ∈ G, and buckets (i, j) ∈ [n] × [n], we

have that: ∣∣∣V G,(i,j)
T

∣∣∣ ≤ αT
then the corresponding sequence of prediction intervals are (α, n)-multivalid with respect to

G.

We now pause to observe that even in the easier distributional setting where data are drawn

from a fixed distribution: (x, y) ∼ D — there may not be any interval (ℓ, u) ∈ Pinterval that

satisfies the desired target coverage value, i.e. that guarantees that |E(x,y)∼D[vδ((ℓ, u), y]| is

small. Consider for example a label distribution that places all its mass on a single value

y = i ∈ [0, 1]. Then any interval (ℓ, u) covers the label with probability 1 or probability 0,

which for δ ̸∈ {0, 1} is bounded away from our target coverage probability. Of course, if

achieving the target coverage is impossible in the easier distributional setting, then it is also

impossible in the more challenging online adversarial setting. With this in mind, we define

243

a class of smooth distributions for which achieving (approximately) the target coverage

is always possible for some interval (ℓ, u) defined over an appropriately finely discretized

range:

Prninterval = {(i, j) ∈ Pinterval : i, j ∈ Prn} ,

where as before, Prn is the uniform grid on [0, 1], {0, 1
rn , . . . , 1}. We show that we can

similarly achieve (approximately) our target coverage goals in the online adversarial setting

when the adversary is constrained to playing smooth distributions.

Definition 36. A label distribution Q ∈ ∆Y is (ρ, rn)-smooth if for any 0 ≤ a ≤ b ≤ 1

such that |a− b| ≤ 1
rn ,

Pr
y∼Q

[y ∈ [a, b]] ≤ ρ.

We say that a joint distribution D ∈ ∆(X × Y) is (ρ, rn)-smooth if for every x ∈ X , the

marginal label distribution conditional on x, D|x, is (ρ, rn)-smooth.

Observation 7. For any δ ∈ [0, 1] and any fixed (ρ, rn)-smooth label distribution Q, there

always exists some interval (ℓ, u) ∈ Prninterval such that |Pry∼Q[Cover((ℓ, u), y)]−(1−δ)| ≤ ρ.

Remark 13. The assumption of (ρ, rn)-smoothness becomes more mild for any ρ as r →∞.

Just as for mean and moment multicalibration, in which our error bounds inevitably depend

on the level of discretization r that we choose, here our error bounds will depend on the

smoothness level ρ of the adversary’s distributions at the discretization level r that we choose.

Finally, observe that smoothness is an extremely mild condition in that we can enforce

it ourselves if we so choose, rather than assuming that the adversary is constrained. We

elaborate on this in Remark 14.

Definition 37. We write Qρ,rn for the set of all (ρ, rn) smooth distributions over [0, 1].

We write Q̂ρ,rn for the set of all (ρ, rn)-smooth distributions whose support belongs to the

grid Prn = {0, 1
rn , . . . , 1}:

Q̂ρ,rn ≡ ∆Prn ∩Qρ,rn.

244

We will show (in Lemma 46) that when the learner is restricted to selecting intervals from

Prninterval, without loss of generality, rather than considering adversaries that play arbitrary

distributions over Qρ,rn, it suffices to consider adversaries that play discrete distributions

from Q̂ρ,rn, which will be more convenient for us.

To bound the maximum absolute value of our coverage errors across all groups and interval

predictions, we again introduce the same style of surrogate loss function:

Definition 38 (Surrogate loss). Fixing a transcript πs ∈ Π∗ and a parameter η ∈ (0, 1/2),

define a surrogate coverage loss function at day s as:

Ls(πs) =
∑
G∈G,

(i,j)∈[n]×[n]

(
exp(ηV G,(i,j)

s) + exp(−ηV G,(i,j)
s)

)
,

where V
G,(i,j)
s are implicitly functions of πs. When the transcript is clear from context we

will sometimes simply write Ls.

Once again, 0 < η < 1
2 is a parameter that we will set later.

As before, we proceed by bounding the conditional change in the surrogate loss function:

Definition 39 (Conditional Change in Surrogate Loss). Fixing πs ∈ Π∗, xs+1 ∈ X and an

interval (ℓ, u) ∈ Prninterval, define the conditional change in surrogate loss to be:

∆s+1(πs, xs+1, (ℓt+1, ut+1)) = E
ỹs+1

[L̃s+1 − Ls|xs+1, (ℓs+1, us+1), πs].

Lemma 44. For every transcript πs ∈ Π∗, every xs+1 ∈ X , and every (ℓs+1, us+1) ∈ Bn(i, j)

we have that:

∆s+1(πs, xs+1, (ℓs+1, us+1)) ≤
(
η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])

)
Ci,js (xs+1) + 2η2Ls,

245

where for each i ≤ j ∈ [n], we have defined

Ci,js (xs+1) ≡
∑

G(xs+1)

exp(ηV G,(i,j)
s)− exp(−ηV G,(i,j)

s).

When xs+1 is clear from context, for notational economy, we will elide it and simply write

Ci,js .

As in Section 6.5, we defer proofs that mirror previous arguments to the Appendix.

Next, we abuse notation and write V
G,(ℓ,u)
s to denote V

G,(i,j)
s for i, j ∈ [n] × [n] such that

(ℓ, u) ∈ Bn(i, j). Given (ℓ, u) ∈ Pinterval such that (ℓ, u) ∈ Bn(i, j), we let Cℓ,us ≡ Ci,js ,

with the latter defined in the statement of Lemma 44. That is, fixing πs and xs+1, for any

(ℓ, u) ∈ Pinterval such that (ℓ, u) ∈ Bn(i, j),

Cℓ,us (xs+1) ≡ Ci,js (xs+1) =
∑

G(xs+1)

exp(ηV G,(i,j)
s)− exp(−ηV G,(i,j)

s), (6.11)

where in turn the V ’s are as defined in Definition 35.

Lemma 45 (Value of the Game). For any xs+1 ∈ X , any adversary restricted to playing

(ρ, rn)-smooth distributions, and any transcript πs ∈ Π∗, there exists a distribution over

predictions for the learner QLs+1 ∈ ∆Prninterval which guarantees that:

E
(ℓ,u)∼QL

s+1

[
∆s+1(πs, xs+1, (ℓs+1, us+1))

]
≤ Ls

(
ηρ+ 2η2

)
.

Proof. We again proceed by defining a zero-sum game with objective function equal to the

upper bound on ∆s+1(πs, xs+1, (ℓs+1, us+1)) that we proved in Lemma 44:

u((ℓ, u), y) = η · vδ((ℓ, u), y) · Cℓ,us + 2η2Ls.

Here, the strategy space for the learner (the minimization player) is the set of all distribu-

tions over Prninterval: QL = ∆Prninterval. A priori, the strategy space for the adversary is Qρ,rn

246

the set of all (ρ, rn)-smooth distributions, but we show that it suffices to take QA = Q̂ρ,rn,

the set of all discrete (ρ, rn)-smooth distributions (i.e. restricting the adversary in this way

does not change the value of the game).

Lemma 46. For any strategy QL ∈ ∆Prninterval for the learner, the adversary has a best

response amongst the set of all (ρ, rn)-smooth distributions with support only over the

discretization {0, 1/rn, . . . , 1}. In other words, for any QL ∈ ∆Prninterval, there exists a

Q̂A ∈ Q̂ρ,rn such that:

Q̂A ∈ argmax
QA∈Qρ,rn

E
(ℓ,u)∼QL,

y∼QA

[u((ℓ, u), y)].

Proof. Fix anyQA
′ ∈ argmaxQA∈Qρ,rn E(ℓ,u)∼QL,y∼QA [u((ℓ, u), y)] — i.e. an arbitrary (ρ, rn)-

smooth best response for the maximization player. We will construct a discrete (ρ, rn)-

smooth Q̂A ∈ Q̂ρ,rn that obtains the same objective value, as follows. For each i
rn ∈

{0, 1/rn, . . . , 1}, let:

Pr
y∼QA

[
y = i

rn

]
= Pr

y∼QA′

[
y ∈

[i
rn
,
i+ 1

rn

)]
.

Observe first by construction that QA is a discrete probability distribution (because QA
′

is a probability distribution over [0, 1], and the set of intervals [irn ,
i+1
rn) partition the

unit interval), and that QA is (ρ, rn)-smooth because QA
′
is (ρ, rn)-smooth — we have

Pry∼QA [y = i
rn] ≤ ρ for all i. Finally observe that (by definition) for any (ℓ, u) ∈ Prninterval,

ℓ, u ∈ {0, 1/rn, . . . , 1}.

Therefore, we have that for any (ℓ, u) ∈ Prninterval, any i ∈ {0, 1, . . . , n}, and any y, y′ ∈[
i
rn ,

i+1
rn

)
, u((ℓ, u), y) = u((ℓ, u), y′). To see this, note that y ≥ ℓ if and only if y′ ≥ ℓ, and

y < u if and only if y′ < u. Since vδ((ℓ, u), y) is a function only of the indicators of the event

that ℓ ≤ y < u, this proves the claim.

Recall (from Observation 7) that for any (ρ, rn)-smooth label distribution QA, there exists

247

an interval (ℓ, u) ∈ Prninterval such that |Pry∼QA [y ∈ [ℓ, u)] − (1 − δ)| ≤ ρ, meaning there

exists (ℓ, u) such that Eỹs+1 [vδ((ℓ, u), ỹs+1)] ≤ ρ. We can thus bound the value of the game

we have defined as follows:

max
QA∈Q̂ρ,rn

min
(ℓ,u)∈Prn

interval

E
y∼QA

[u(ℓ, u), y]

≤
∑

G(xs+1)

exp(ηV G,(ℓ,u)
s) (ηρ) + exp(−ηV G,(ℓ,u)

s) (ηρ) + 2η2Ls,

≤ Ls(ηρ+ 2η2).

It is easy to verify that ∆Prninterval and Q̂ρ,rn are both compact sets (closed and bounded in

a finite dimensional Euclidean space) and convex. The lemma then follows by applying the

minimax theorem (Theorem 29).

Corollary 9. For every s ∈ [T], πs ∈ Π∗, and xs+1 ∈ X (which fixes Ls and QLs+1), and

any distribution over Y:

E
(ℓ,u)∼QL

s+1

[L̃s+1|πs] ≤ Ls + E
(ℓ,u)∼QL

s+1

[
∆s+1(πs, xs+1, (ℓs+1, us+1))

]
< Ls

(
1 + ηρ+ 2η2

)
.

As with mean multicalibration, Lemma 45 defines (existentially) an algorithm that the

learner can use to make predictions — Algorithm 20. We will now show that Algorithm 20

(if we could compute the distributions QLt) results in multivalid prediction intervals.

Algorithm 20: A Generic Multivalid Predictor

for t = 1, . . . , T do

Observe xt. Given πt−1 and xt, let Q
L
t ∈ ∆Prninterval be the distribution over

prediction intervals whose existence is established in Lemma 45.

Sample (ℓ, u) ∼ QLt and predict (ℓt, ut) = (ℓ, u)

end

Lemma 47. Against any adversary who is constrained to playing (ρ, rn)-smooth distribu-

248

tions, Algorithm 20 results in surrogate loss satisfying:

Ẽ
πT
[L̃T] ≤ 2|G|n2 exp

(
Tηρ+ 2Tη2

)
.

Proof. Using Corollary 9, the first part of Theorem 30 applies in this case to the process L

with L0 = 2|G|n2 and c = ρ. The bound follows by plugging these values into (6.3).

Finally, we can calculate a bound on our expected multivalidity error. The proof (which

mirrors similar claims in previous sections) is in the Appendix.

Theorem 38. When Algorithm 20 is run using n buckets, discretization parameter r and

η =

√
ln(2|G|n2)

2T ∈ (0, 1/2), then against any adversary constrained to playing (ρ, rn)-smooth

distributions, its sequence of interval predictions is α-multivalid with respect to G in expec-

tation over the randomness of the transcript πT , where:

E[α] ≤ ρ+ 2

√
2 ln(2|G|n2)

T
.

We can also use the second part of Theorem 30 to prove a high probability bound on the

multicalibration error of Algorithm 20. The proof is in the Appendix.

Theorem 39. When Algorithm 20 is run using n buckets, discretization parameter r and

η =

√
ln(2|G|n2)

2T ∈ (0, 1/2), then against any adversary who is constrained to playing (ρ, rn)-

smooth distributions, its sequence of interval predictions is α-multivalid with respect to G

with probability 1− λ over the randomness of the transcript πT :

α ≤ ρ+ 4

√
2

T
ln

(
2|G|n2
λ

)
.

Remark 14. The hypothesis of our theorems has an assumption: that the adversary is

restricted to playing (ρ, rn)-smooth distributions. This may be reasonable if we are not in

249

a truly adversarial setting, and are simply concerned with unknown distribution shift. But

what if we are truly in an adversarial environment? It turns out that in order to have a

useful algorithm, we need not make any assumptions on the adversary at all. Observe that

if we randomly perturb observed labels with uniform noise: ŷt = yt + U(−ϵ, ϵ), then the

distribution on our perturbed points will be
(

1
2rnϵ , rn

)
-smooth by construction. Now recall

that r is a parameter that we can select. By taking r = 1
2ρnϵ , we obtain that the distribution

on the perturbed points is (ρ, rn)-smooth, for a value of ρ that we can take as small as we

like. Taking ρ = 1/
√
T (r =

√
T

2nϵ) makes the contribution of ρ to the multivalidity error a

low order term. If we feed these perturbed labels to our algorithm, we will obtain prediction

intervals that are multivalid for the perturbed labels. But observe that if we simply widen each

of our prediction intervals by ϵ at each end, so that we predict the interval [ℓt−ϵ, ut+ϵ), then

our intervals continue to have coverage probability at least 1−δ for the original, unperturbed

labels. We can similarly take ϵ as small as we like. Our algorithm in Section 6.6.3 will have

running time depending polynomially on r, so with this construction obtains a polynomial

dependence on 1/ϵ.

6.6.3. Deriving an Efficient Algorithm via Equilibrium Computation

In this section, we show how to implement Algorithm 20 to efficiently sample from the

distributions QLt whose existence we established in Lemma 45. We do this by efficiently

computing an equilibrium strategy QLt using the Ellipsoid algorithm by solving the linear

program in Figure 6.6.1. This linear program has (rn)2+1 variables and (a priori) an infinite

number of constraints. However, as we will show:

1. The number of constraints can in fact be taken to be finite (albeit exponentially large),

and

2. We have an efficient separation oracle to identify violated constraints.

Together, this allows us to apply the Ellipsoid algorithm.

250

min
QL∈Prn

interval

γ s.t.

∀QA ∈ Q̂ρ,rn :
∑

y∈Prn
QA(y)

(∑
(ℓ,u)∈Prn

interval

QL((ℓ, u))
(
vδ((l, u), y)C

ℓ,u
t−1(xt)

))
≤ γ,∑

(ℓ,u)∈Prn
interval

QL((ℓ, u)) = 1,

∀(ℓ, u) ∈ Prninterval :QL((ℓ, u)) ≥ 0.

Figure 6.6.1: A Linear Program for Computing a Minimax Equilibrium Strategy for the
Learner at Round t.

Algorithm 21: Von Neumann’s Multivalid Predictor

Input: ϵ > 0.

for t = 1, . . . , T do

Observe xt and compute Cℓ,ut−1(xt) for each (ℓ, u) ∈ Prninterval as in (6.11).

Solve the Linear Program from Figure 6.6.1 using the Ellipsoid algorithm, with

Algorithm 22 as a separation oracle, to obtain an ϵ-approximate solution

QLt ∈ ∆Prninterval.

Predict (ℓt, ut) = (ℓ, u) with probability QLt ((ℓ, u)).

end

Theorem 40. Algorithm 21 implements Algorithm 20. In particular, it obtains multivalidity

guarantees arbitrarily close to those of Theorems 38 and 39. Namely, for any desired ϵ > 0,

we have the following.

Choosing η =

√
ln(2|G|n2+ϵ)

2T ∈ (0, 1/2), we have against any adversary constrained to play-

ing (ρ, rn)-smooth distributions that the sequence of prediction intervals produced by Al-

gorithm 21 is α-multivalid with respect to G in expectation over the randomness of the

transcript πT , where:

E[α] ≤ ρ+ 2

√
2 ln(2|G|n2 + ϵ)

T
.

251

Moreover, choosing η =

√
ln(2|G|n2)+ϵT

2T ∈ (0, 1/2), we have, with probability 1 − λ over the

randomness of the transcript πT ,

α ≤ ρ+ 4

√
2

T
ln

(
2|G|n2
λ

)
+ 2ϵ.

The runtime of Algorithm 21 is linear in |G|, and polynomial in r, n, T , and log(1ϵ).

Remark 15. As with all of our other algorithms, the dependence on |G| can be replaced at

each round with a possibly substantially smaller dependence on the number of groups which

contain xt, |G(xt)|, whenever this set is efficiently enumerable.

Proof. Recall that at each round t we need to find an equilibrium strategy for the learner

in the zero-sum game defined by the objective function:

u((ℓ, u), y) = ηvδ((ℓ, u), y)C
ℓ,u
t−1 + 2η2Lt−1

= η (Cover((ℓ, u), y)− (1− δ))Cℓ,ut−1 + 2η2Lt−1.

In this game, the strategy space for the learner is the set of all distributions over discrete

intervals: QL = ∆Prninterval, and (by Lemma 46), the action space for the adversary can be

taken to be the set of all discrete smooth distributions: QA = Q̂ρ,rn.

The equilibrium structure of a game is invariant to adding and multiplying the objective

function by a constant. Hence we can proceed to solve the game with the objective function:

u((ℓ, u), y) = (Cover((ℓ, u), y)− (1− δ))Cℓ,ut−1.

To compute an equilibrium of the game, we need to solve for a distribution QL satisfying:

QL ∈ argmin
QL∈∆Prn

interval

max
QA∈Q̂ρ,rn

E
y∼QA,

(ℓ,u)∼QL

[u(ℓ, u), y)].

252

We can write this as a linear program, over the O((rn)2) variables QL((ℓ, u)): see Fig-

ure 6.6.1. A priori, this linear program has infinitely many constraints.25 Nevertheless, we

show that we can efficiently implement a separation oracle, which given a candidate solution

(QL, γ), can find a violated constraint whenever one exists. This is sufficient to efficiently

find, using the Ellipsoid algorithm, a feasible solution of the linear program achieving value

within any desired ϵ > 0 of the optimum.

Algorithm 22: A Separation Oracle for Linear Program 6.6.1

Input: A proposed solution QL, γ for Linear Program 6.6.1

Output: A violated constraint of Linear Program 6.6.1 if one exists, or a

certification of feasibility.

for i = 0, 1 . . . , rn do

Compute

Wi ≡
∑

(ℓ,u)∈Prn
interval:Cover((ℓ,u), i

rn
)=1

QL((ℓ, u))Cℓ,ut−1

end

Let σ : {0, . . . , rn} → {0, . . . , rn} be a permutation such that:

Wσ(0) ≥Wσ(1) ≥ . . . ≥Wσ(rn).

for i = 0, 1 . . . , rn do

Set QA(σ(i)) = min(ρ, 1−
∑i−1

j=0Q
A(σ(j))

end

if
∑

y∈Prn
QA(y)

(∑
(ℓ,u)∈Prn

interval

QL((ℓ, u))
(
vδ((l, u), y)C

ℓ,u
t−1

))
> γ, or QL not

a prob. dist. then

Return the violated constraint.

Return FEASIBLE

We will identify the output of Algorithm 20 with the distribution QA associated with the

constraint it outputs. Observe that if there is a violation (i.e. the proposed solution QL, γ

25Although in fact, in the proof of Lemma 48, we will show that without loss of generality we can equiv-
alently impose only finitely (but exponentially) many constraints.

253

is infeasible), and there are ties, i.e. indices i and j such that Wi = Wj , then there are

multiple candidate QA’s that could be the output of Algorithm 22. To that end, note that

a solution QA can be output by Algorithm 22 if and only if it is greed-induced :

Definition 40. Let Wi be defined as in Algorithm 22 for i ∈ {0, . . . , rn}. We say that

a distribution QL ∈ Q̂ρ,rn is greed-induced if for every pair of indices i and j such that

Wi > Wj:

QA(j) > 0 =⇒ QA(i) = ρ.

Lemma 48. Algorithm 22 is a separation oracle for the Linear Program in Figure 6.6.1.

It runs in time O((rn)3).

Proof. Recall that a separation oracle is given a candidate distribution QL ∈ ∆Prninterval and

a value γ ∈ R, and must determine if there is any QA ∈ Q̂ρ,rn such that:

∑
y∈Prn

QA(y)

(∑
(ℓ,u)∈Prn

interval

QL((ℓ, u))
(
vδ((l, u), y)C

ℓ,u
t−1

))
> γ.

Suppose the learner is playing a distribution QL ∈ ∆Prninterval over intervals. The adversary

will seek to maximize the objective function over the set of (ρ, rn)-smooth distributions

QA ∈ Q̂ρ,rn. Recall that vδ((ℓ, u), y) = Cov((ℓ, u), y)−(1−δ). Therefore, fixing a distribution

QL for the learner, there are terms in the objective function that are independent of the

adversary’s actions (roughly, those corresponding to the (1−δ) term), and hence irrelevant to

the inner maximization problem (i.e the adversary’s best response). We define the following

quantity ũ which eliminates these y-independent terms:

ũ(QL, QA) =
∑

i∈{0,...,rn}

QA
(
i

rn

) ∑
(ℓ,u)∈Prn

interval:Cover((ℓ,u), i
rn

)=1
QL((ℓ, u))Cℓ,ut−1,

=
∑

i∈{0,...,rn}

QA
(
i

rn

)
Wi.

254

Observe that for any QL ∈ ∆Pinterval:

argmax
QA∈Q̂ρ,rn

 E
ỹ∼QA,

(ℓ̃,ũ)∼QL

[u((ℓ̃, ũ), ỹ)]

 = argmax
QA∈Q̂ρ,rn

ũ(QL, QA).

Hence, to derive a separation oracle, it suffices to find an algorithm which maximizes ũ

given a fixed distribution over intervals QL for the learner. This is how we proceed.

Observe that by the argument above, the adversary’s problem is equivalent to solving:

max
QA

∑
i∈{0,...,rn}

QA
(
i

rn

)
Wi,∑

i∈{0,...,rn}
QA

(
i

rn

)
= 1,

∀i ∈ {0, . . . , rn} :QA
(
i

rn

)
≤ ρ,

∀i ∈ {0, . . . , rn} :QA
(
i

rn

)
≥ 0.

By observation, this is a fractional knapsack problem—the value of each item i ∈ {0, . . . , rn}

is Wi, the quantity of each item i is ρ, and the total capacity is 1. Therefore the optimal

solution is greed-induced.

To bound the runtime of Algorithm 22, first observe that checking that QL is a probability

distribution takes time O((rn)2 log rn). Now, we focus on the remaining constraints. Since

the quantities Cℓ,ut−1 are precomputed at the beginning of round t, the separation oracle

computesWi for each i ∈ {0, . . . , rn} in time O((rn)2), and hence we can compute allWi’s in

time O((rn))3. All that remains is to sort the indicesWi which takes time O(rn ln rn), which

is a low order term. Altogether, this results in a runtime of O((rn)3) for Algorithm 22.

Now, we verify that Algorithm 21 runs efficiently — to do so, we need to show that the

Ellipsoid algorithm can efficiently (approximately) solve Linear Program 6.6.1.

255

Lemma 49. Each run of the Ellipsoid algorithm within Algorithm 21 solves the LP to a

desired accuracy ϵ > 0 in runtime poly(rn, log |G|, T, log 1
ϵ). Consequently, Algorithm 21

runs in time poly(rn, |G|, T, log 1
ϵ), where the dependence on |G| is O(|G|).

Proof. To ensure the Ellipsoid has polynomial runtime, we need to satisfy the conditions of

Theorem 37.

We first check that the feasible set of Linear Program 6.6.1 is a polyhedron, i.e. that it has

finitely many faces. By Lemma 48 above, the adversary always has a greed-induced best-

response QA constructed by Algorithm 22. Every distribution QA output by Algorithm 22

corresponds to selecting ⌊1ρ⌋ “full” buckets that will have probability ρ each and one bucket

for the remaining probability mass, so there are at most rn ·
(
rn
⌊ 1
ρ
⌋
)
= O(rn · 2rn) such

distributions. The feasible set of Linear Program 6.6.1 is thus equivalently given by the

corresponding finitely many (O(rn · 2rn)) constraints.

Thus, the feasible region of LP 6.6.1 is indeed a polyhedron; however, exponential terms

in the coefficients of the constraints associated with the adversarial best-responses (which

are due to our definition of the soft-max surrogate loss) prevent it from being rational. To

fix this, we only keep O(log 1
ϵ) bits of precision after the integer part of every coefficient

of the original LP, resulting in a new LP whose coefficients are all rational and within ± ϵ
2

from their original values in LP 6.6.1. The new LP indeed has a rational polyhedron as its

feasible region.

We now observe that Linear Program 6.6.1 has the form given in Lemma 42. This implies

that by solving the just described rational LP corresponding to LP 6.6.1 exactly, we will

obtain the desired ϵ-approximate solution to Linear Program 6.6.1. With this in mind, it

remains to bound the bit complexity of the rational LP.

Consider any constraint of the rational LP. The coefficient of each variable QL((ℓ, u)) has

256

absolute value at most:

max
(ℓ,u)∈Pinterval

∑
G∈G

exp(ηV
G,(ℓ,u)
t−1)− exp(−ηV G,(ℓ,u)

t−1)

≤ |G|2 exp
(
η max
G∈G,(ℓ,u)∈Pinterval

∣∣∣V G,(ℓ,u)
t−1

∣∣∣)
≤ 2|G| exp(ηT)

≤ 2|G| exp(T).

Thus, every constraint in the rational LP has bit complexity at most:

O

(
(rn)2 ·

(
log |G|+ T + log

1

ϵ

))
,

where the log 1
ϵ term reflects the chosen precision. This is polynomial in r, n, T, log |G|, and

log 1
ϵ . Also, the objective function, which is simply γ, takes O((rn)2) bits to write down.

We may now apply Theorem 37 with the parameters

q = O((rn)2),

ϕ = O

(
(rn)2(log |G|+ T + log

1

ϵ
)

)
,

c = O((rn)2).

The runtime of the separation oracle (which, we note, applies to the rational LP just as it

did for the original LP) is O((rn)3) by Lemma 48. Hence, the Ellipsoid algorithm will solve

Linear Program 6.6.1 with accuracy ϵ in time poly(rn, log |G|, T, log 1
ϵ).

Hence, Algorithm 21 has time complexity poly(rn, |G|, T, log 1
ϵ) — where the dependence

on |G| is linear, because we precompute the Cℓ,ut−1’s once at the beginning of each round t,

taking time linear in |G|, and the runtime of the Ellipsoid algorithm is polylogarithmic in

|G|. (We remark once more that the dependence on |G| can be reduced to a dependence on

|G(xt)| if G(xt) is efficiently enumerable, and that this might be much smaller.)

257

Finally, we need to demonstrate that the claimed multivalidity guarantees (which are a

function of the chosen ϵ > 0) indeed hold.

Lemma 50. Algorithm 21 achieves the multivalidity guarantees stated in Theorem 40.

The proof of this lemma involves repeating several calculations from Section 6.6.2 with an

ϵ error term, and so is deferred to the Appendix.

258

Appendix

6.A. Unboundedly Many Groups, Bounded Group Membership

In this section, we briefly sketch how we can modify our results so that we can handle the

case that there are a “large number” of groups (i.e. |G| is infinite or larger than 2T — a range

in which the bounds we prove in the main body are vacuous). In this scenario, we maintain

the assumption that any given x ∈ X appears in at most d groups, i.e. that |G(x)| ≤ d for

all x ∈ X . As we have already noted, in this scenario, our running time dependence on |G|

can be replaced with d— here we show that we can do the same in our convergence bounds.

The first step is to redefine our surrogate loss function L. The way it was previously defined,

L0 was already a quantity at the scale of |G|, and so it would be hopeless to use it for infinite

collections of groups. But a small modification solves this problem:

Definition 41 (Surrogate loss function). Fixing a transcript πs ∈ Π∗ and a parameter

η ∈ [0, 12], define a surrogate calibration loss function at day s as:

Ls(πs) = 1 +
∑
G∈G,
i∈[n]

(
exp(ηV G,i

s) + exp(−ηV G,i
s)− 2

)
.

When the transcript πs is clear from context, we will sometimes simply write Ls.

Observe that this modified function satisfies L0 = 1, independently of the size of |G|, and

still allows us to tightly upper bound our calibration loss:

Observation 8. For any transcript πT , and any η ∈ [0, 12], we have that:

max
G∈G,i∈[n]

∣∣∣V G,i
T

∣∣∣ ≤ 1

η
ln(LT + 2dT) ≤ max

G∈G,i∈[n]

∣∣∣V G,i
T

∣∣∣+ ln (dT)

η
.

259

This observation uses the fact that because (by assumption) |G(xt)| ≤ d for all t, after T

time steps, there are at most dT quantities V G,i
T that are non-zero.

We can now provide a modified bound on ∆s+1(πs, xs+1, µs+1):

Lemma 51. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any µs+1 ∈ Pmean such that

µs+1 ∈ B(i) for some i ∈ [n]:

∆s+1(πs, xs+1, µs+1) ≤ η
(

E
ỹs+1

[ỹs+1]− µs+1

)
Cis(xs+1) + 2η2Ls + 4dη2,

where for each i ∈ [n]:

Cis(xs+1) ≡
∑

G(xs+1)

exp(ηV G,i
s)− exp(−ηV G,i

s).

Proof. Fix any transcript πs ∈ Π∗ (which defines Ls), feature vector xs+1 ∈ X , and µs+1

such that µs+1 ∈ B(i) for some i ∈ [n]. By direct calculation, we obtain:

∆s+1(πs, xs+1, µs+1)

= E
ỹs+1

[∑
G∈G(xs+1)

exp(ηV G,i
s)

(
exp(η(ỹs+1 − µs+1))− 1

)
+ exp(−ηV G,i

s)
(
exp(−η(ỹs+1 − µs+1))− 1

)]
,

≤ E
ỹs+1

 ∑
G∈G(xs+1)

exp(ηV G,i
s)

(
η(ỹs+1 − µs+1) + 2η2

)
+ exp(−ηV G,i

s)
(
−η(ỹs+1 − µs+1) + 2η2

) ,
= η

(
E
ỹs+1

[ỹs+1]− µs+1

) ∑
G∈G(xs+1)

(
exp(ηV G,i

s)− exp(−ηV G,i
s)

)
+ 2η2

∑
G∈G(xs+1)

(
exp(ηV G,i

s) + exp(−ηV G,i
s)

)
,

≤ η
(

E
ỹs+1

[ỹs+1]− µs+1

) ∑
G∈G(xs+1)

exp(ηV G,i
s)− exp(−ηV G,i

s)

+ 2η2Ls + 4dη2,

= η

(
E
ỹs+1

[ỹs+1]− µs+1

)
Cis(xs+1) + 2η2Ls + 4dη2.

260

Here, the first inequality follows from the fact that for 0 < |x| < 1
2 , exp(x) ≤ 1+x+2x2.

We can use this to provide a modified bound to Lemma 36.

Lemma 52. For any transcript πs ∈ Π∗, any xs+1 ∈ X , and any r ∈ N there exists

a distribution over predictions for the learner QLs+1 ∈ ∆Prn, such that regardless of the

adversary’s choice of distribution of ys+1 over ∆Y, we have that:

E
µ∼QL

s+1

[∆s+1(πs, xs+1, µ)] ≤ Ls
(η
rn

+ 2η2
)
+ 2d.

Proof. As in the proof of Lemma 36, we construct a zero-sum game between the learner

and the adversary. Fix the transcript πs and the feature vector xs+1. We define the utility

of this game to be the upper bound we proved on ∆s+1(πs, xs+1, µ) in Lemma 51. For each

µ ∈ Prn and each y ∈ [0, 1], we let:

u(µ, y) = η (y − µ)Cµs (xs+1) + 2η2Ls + 4dη2.

We now establish the value of this game. Observe that for any strategy of the adversary

(which fixes E[ỹ]), the learner can respond by playing µ∗ = argminµ∈Prn |E[ỹ] − µ|, and

that because of our discretization, min |E[ỹ] − µ∗| ≤ 1
rn . Therefore, the value of the game

is at most:

max
y∈[0,1]

min
µ∗∈Prn

u(µ∗, y) ≤ max
µ∈Prn

η

rn

∣∣Cµs (xs+1)
∣∣+ 2η2Ls + 4dη2,

≤ Ls

(η
rn

+ 2η2
)
+ 2d.

Here the latter inequality follows since Cµs (xs+1) ≤ Ls+2d for all µ ∈ Prn, by observation,

and then since η ∈ (0, 12) we have the bound. We can now apply the minimax theorem

(Theorem 29) to conclude that there exists a fixed distribution QLs+1 ∈ QL for the learner

that guarantees that simultaneously for every label y ∈ [0, 1] that might be chosen by the

261

adversary:

E
µ∼QL

s+1

[u(µ, y)] ≤ Ls
(η
rn

+ 2η2
)
+ 2d,

as desired.

Corollary 10. For every r ∈ N, s ∈ [T], πs ∈ Π∗, and xs+1 ∈ X (which fixes Ls and

QLs+1), and any distribution over Y:

E
µLs+1∼Qs+1

[L̃s+1|πs] = Ls + E
µs+1∼QL

s+1

[∆s+1(πs+1, xs+1, µs+1)] ≤ Ls
(
1 +

η

rn
+ 2η2

)
+ 2d.

Lemma 52 shows that playing the minimax strategy of this zero-sum game (Algorithm 16)

continues to provide a low value to the learner. We now show the counterpart of the first

part of Theorem 30 for these modified bounds:

Theorem 41. Consider a nonnegative random process X̃t adapted to the filtration Ft =

σ(πt), where X̃0 is constant a.s. Suppose we have that for any period t, and any πt−1,

E[X̃t|πt−1] ≤ Xt−1(1 + ηc + 2η2) + 2d for some η ∈ [0, 12], c ∈ [0, 1], d > 0. Then we have

that:

Ẽ
πT
[X̃T] ≤ (X0 + 2dT) exp

(
Tηc+ 2Tη2

)
. (6.12)

262

Proof. First, observe that:

Ẽ
πT
[X̃T] = E

π̃T−1

[
E[X̃T |πT−1]

]
,

≤ E
π̃T−1

[
E[
(
1 + ηc+ 2η2

)
XT−1 + 2d|πT−1]

]
=
(
1 + ηc+ 2η2

)
E

π̃T−1

[
X̃T−1

]
+ 2d

...

≤X0

(
1 + ηc+ 2η2

)T
+ 2d

T−1∑
t=0

(1 + cη + 2η2)t,

≤X0

(
1 + ηc+ 2η2

)T
+ 2dT (1 + cη + 2η2)T

=(X0 + 2dT) exp
(
T ln

(
1 + ηc+ 2η2

))
,

≤(X0 + 2dT) exp
(
Tηc+ 2Tη2

)
,

where the last inequality holds because ln(1 + x) ≤ x for any x > −1. This concludes the

proof of (6.12).

We are now ready to bound our multicalibration error. As a straightforward consequence

of Corollary 10 and Theorem 41, we have the following Corollary.

Corollary 11. Against any adversary, Algorithm 16 instantiated with discretization pa-

rameter r results in surrogate loss satisfying:

Ẽ
πT
[L̃T] ≤ (1 + 2dT) exp

(
Tη

rn
+ 2Tη2

)
.

Proof. Note that the first part of Theorem 41 applies to the process L with L0 = 1 and

c = 1
rn . The bound follows by plugging these values into (6.12).

Next, we can convert this into a bound on Algorithm 16’s expected calibration error:

Theorem 42. When Algorithm 16 is run using n buckets for calibration, discretization

263

r ∈ N, and η =

√
ln(1+2dT)

2T , then against any adversary, its sequence of mean predictions

are (α, n)-multicalibrated with respect to G, where:

E[α] ≤
1

rn
+ 2

√
2 ln(1 + 4dT)

T
.

For r =
√
T

ϵn
√

2 ln(1+4dT)
this gives:

E[α] ≤ (2 + ϵ)

√
2

T
ln (1 + 4dT).

Here the expectation is taken over the randomness of the transcript πT .

Proof. From Observation 2, it suffices to show that

1

T
Ẽ
πT

[
max

G∈G,i∈[n]
|Ṽ G,i
T |

]
≤ 1

rn
+ 2

√
2 ln(1 + 4dT)

T
.

We begin by computing a bound on the (exponential of) the expectation of this quantity:

exp

(
η Ẽ
πT

[
max
G,i
|Ṽ G,i
T |

])
≤ Ẽ

πT

[
exp

(
ηmax

G,i
|Ṽ G,i
T |

)]
,

= Ẽ
πT

[
max
G,i

exp
(
η|Ṽ G,i

T |
)]
,

≤ Ẽ
πT

[
max
G,i

(
exp

(
ηṼ G,i

T

)
+ exp

(
−ηṼ G,i

T

))]
,

≤ Ẽ
πT

 ∑
G,i

GT (i)̸=ϕ

(
exp

(
ηṼ G,i

T

)
+ exp

(
−ηṼ G,i

T

)) ,
= Ẽ

πT
[L̃T + 2dT],

≤ (1 + 2dT) exp

(
Tη

rn
+ 2Tη2

)
+ 2dT,

≤ (1 + 4dT) exp

(
Tη

rn
+ 2Tη2

)
.

Here the first step is by Jensen’s inequality and the second last one follows from Corollary 11.

264

Taking the logarithm of both sides and dividing by ηT , we have

1

T
Ẽ
πT

[
max
G,i
|Ṽ G,i
T |

]
≤ ln(1 + 4dT)

ηT
+

1

rn
+ 2η.

Choosing η =

√
ln(1+4dT)

2T , we thus obtain the desired inequality

1

T
Ẽ
πT

[
max
G,i
|Ṽ G,i
T |

]
≤ 1

rn
+ 2

√
2 ln(1 + 4dT)

T
.

The corresponding high-probability bounds are omitted for brevity. They have the analogous

dependence on dT replacing |G|. Similar bounds can be obtained for the case of moment-

multicalibration and multivalid intervals with the same approach.

6.B. Mean Conditioned Moment Multicalibrators Can Randomize Over Small Sup-

port

In Section 6.5.3, we derived a linear programming based algorithm for making mean con-

ditioned moment multicalibrated predictors. Although we proved that we could reduce the

pure strategy space of the learner from (r2nn′) to 4nn′, a priori, the solutions we find via

linear programming could have full support. Here we prove that this need not be the case

— there always exists a basic feasible solution of the linear program that we solve that has

support only over k + 1 pure strategies for the learner.

Lemma 53. For any game with objective function (6.7), there exists a minimax strategy

for the learner Q̂L ∈ Q̂Lr,n,n′, such that |support(Q̂L)| ≤ k + 1.

Proof. Suppose that Q∗ is a minimax strategy for the learner.

Observe that the adversary’s best response in this problem is straightforward: we have that

ψℓ = 1 if
∑

µ,mk F
µ,mk

ℓ Q∗(µ,mk) > 0, that ψℓ = 0 if
∑

µ,mk F
µ,mk

ℓ Q∗(µ,mk) < 0, and

265

otherwise the adversary is indifferent. Define

L+ = {ℓ ∈ [k] :
∑
µ,mk

Fµ,m
k

ℓ Q∗(µ,mk) > 0},

L− = {ℓ ∈ [k] :
∑
µ,mk

Fµ,m
k

ℓ Q∗(µ,mk) < 0},

L= = {ℓ ∈ [k] :
∑
µ,mk

Fµ,m
k

ℓ Q∗(µ,mk) = 0}.

Note that L+ ∪ L− ∪ L= = [k].

Since Q∗ is a minimax strategy, it must solve the following linear program, which corre-

sponds to minimizing the learner’s objective value over all strategies Q which engender the

same best response for the adversary as Q∗:

min
Q∈Q̂L

r,n,n′

∑
µ,mk

Q(µ,mk)
(
µCµ,m

k

s +mkDµ,mk

s − µ̂kiDµ,mk

s

)
subject to:

∀ℓ ∈ L+ :
∑
µ,mk

Fµ,m
k

ℓ Q(µ,mk) ≥ 0,

∀ℓ ∈ L− :
∑
µ,mk

Fµ,m
k

ℓ Q(µ,mk) ≤ 0,

∀ℓ ∈ L= :
∑
µ,mk

Fµ,m
k

ℓ Q(µ,mk) = 0,

∑
µ,mk

Q(µ,mk) = 1,

Q ≥ 0.

Further, any solution to this LP must also be a minimax strategy for the learner. Observe

that this has k+1 linear constraints. Any such linear program has a basic feasible solution:

so there exists a solution Q̂L (viewed as a vector) with exactly the number of non-zero

entries as the number of binding constraints, i.e. ≤ k + 1, as desired.26 This is exactly the

26As an aside, we point out that this also implies the square submatrix with rows corresponding to binding

266

statement of the Lemma.

6.C. Proofs from Section 6.4

Theorem 30. Consider a nonnegative random process X̃t adapted to the filtration Ft =

σ(πt), where X̃0 is constant a.s. Suppose we have that for any period t, and any πt−1,

E[X̃t|πt−1] ≤ Xt−1(1 + ηc+ 2η2) for some η ∈ [0, 12], c ∈ [0, 1]. Then we have that:

Ẽ
πT
[X̃T] ≤ X0 exp

(
Tηc+ 2Tη2

)
. (6.3)

Further, define a process Z̃t adapted to the same filtration by Z̃t = Zt−1+ln X̃t−E[ln(X̃t)|πt−1].

Suppose that |Zt − Zt−1| ≤ 2η, where Z0 = 0 a.s. Then, with probability 1− λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2

)
+ η

√
8T ln

(
1

λ

)
. (6.4)

constraints and corresponding to non-zero variables is of full rank. Textbook treatments that we are aware of
consider either LPs with all inequality constraints or all equality constraints. So for completeness we include
the following argument. Convert the LP above into a LP in standard form min cTx s.t. Ax = b, x ≥ 0 by
adding/subtracting non-negative slack variables to the inequality constraints L+, L−. This is a system of
k + 1 linear equality constraints in 4nn′ + |L−|+ |L+|+ 1 variables. We know that there exists an optimal
of this LP that is a Basic feasible solution (BFS) (see e.g. Theorem 4.7 of [93]), i.e. an optimal solution with
exactly k+ 1 non-zero variable with the corresponding (k+ 1)× (k+ 1) sub-matrix of A, denoted Â, of full
rank. By observation, the number of non-zero Q’s in this BFS must equal the number of constraints that
bind at equality in the original LP (any non-zero slack variable will correspond to a slack constraint in the
original). The sub-matrix of Ā corresponding to the non-zero Q’s as columns and binding constraints of the
original LP as rows must be of full rank, because these rows have all 0’s in the columns corresponding to
the slack variables in Ā.

267

Proof. First, observe that:

Ẽ
πT
[X̃T] = E

π̃T−1

[
E[X̃T |πT−1]

]
,

≤ E
π̃T−1

[
E[
(
1 + ηc+ 2η2

)
XT−1|πT−1]

]
=
(
1 + ηc+ 2η2

)
E

π̃T−1

[
X̃T−1

]
,

...

≤X0

(
1 + ηc+ 2η2

)T
,

=X0 exp
(
T ln

(
1 + ηc+ 2η2

))
,

≤X0 exp
(
Tηc+ 2Tη2

)
,

where the last inequality holds because ln(1 + x) ≤ x for any x > −1. This concludes the

proof of (6.3).

Towards demonstrating the high-probability bound 6.4, we first show the following state-

ment.

Lemma 54. For any πT , we have

T∑
t=1

(
Ẽ
πt

[
ln(X̃t)

∣∣∣πt−1

]
− ln(Xt−1(πt−1))

)
≤ T

(
ηc+ 2η2

)
.

Proof. Fixing πT and taking any t ≤ T , we have

Ẽ
πt

[
ln(X̃t)|πt−1

]
≤ ln

(
Ẽ
πt
[X̃t|πt−1]

)
, (Jensen’s inequality)

≤ ln(Xt−1(πt−1)) + ln
(
1 + cη + 2η2

)
, (by assumption)

≤ ln(Xt−1(πt−1)) +
(
cη + 2η2

)
. (ln(1 + x) ≤ x for any x > −1)

Summing over every round t ∈ [T] gives us the result.

268

Now observe that for any πt−1, we have E[Z̃t|πt−1] = Zt−1, so the process Z̃t is a mar-

tingale. Further, its increments are bounded by assumption. Recall Azuma’s inequality for

martingales with bounded increments (see e.g. [18]):

Lemma 55 (Azuma’s Inequality). For any martingale {Z̃t}Tt=1 with |Zt − Zt−1| ≤ c a.s.,

for all T it holds

Pr
[
Z̃T − Z̃0 ≥ ϵ

]
≤ exp

(
− ϵ2

2c2T

)
.

By assumption, we may apply Azuma’s inequality with c = 2η, and we obtain

Pr
π̃T

[
T∑
t=1

(
ln(Xt(πt))− Ẽ

πt
[lnXt(π̃t)|πt−1]

)
≥ ϵ

]
≤ exp

(
− ϵ2

8η2T

)
.

So, with probability 1− λ, it holds that

T∑
t=1

(
ln(Xt(πt))− Ẽ

πt
[lnXt(π̃t)|πt−1]

)
≤ η

√
8T ln

(
1

λ

)

=⇒ ln(XT (πT)) ≤ ln(X0) +

(
T∑
t=1

Ẽ
πt
[ln(Xt(π̃t))|πt−1]− ln(Xt−1(πt−1))

)
+ η

√
8T ln

(
1

λ

)

=⇒ ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2

)
+ η

√
8T ln

(
1

λ

)
,

where the last inequality follows from Lemma 54.

Lemma 37. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

Proof. Observe that

|Zt − Zt−1| = |ln(Lt(πt))− E [ln(Lt(π̃t))|πt−1]|

=

∣∣∣∣E [ln(Lt(πt)Lt(π̃t)

)∣∣∣∣πt−1

]∣∣∣∣

269

Note that for any πt,

Lt(πt) = Lt−1(πt−1) + ∆t(πt−1, xt, yt, µt)

where

∆t(πt−1, xt, yt, µt)

=
∑
G(xt)

exp(ηV
G,B−1(µt)
t−1) (exp(η(yt − µt))− 1) + exp(−ηV G,B−1(µt)

t−1) (exp(−η(yt − µt))− 1) .

Since yt − µt must lie in [−1, 1], we have that:

(exp(−η)− 1)Lt−1(πt−1) ≤ ∆t(πt−1, xt, yt, µt) ≤ (exp(η)− 1)Lt−1(πt−1)

which implies

exp(−η)Lt−1(πt−1) ≤ Lt(πt) ≤ exp(η)Lt−1(πt−1).

Hence, for any two transcripts πt, π
′
t which are equal over the first t− 1 periods, we have

∣∣∣∣ln(Lt(πt)Lt(π′t)

)∣∣∣∣ ≤ ln

(
exp(η)

exp(−η)

)
= 2η.

Therefore,
∣∣∣E [ln(Lt(πt)

Lt(π̃t)

)∣∣∣πt−1

]∣∣∣ ≤ 2η as desired.

6.D. Proofs from Section 6.5

Theorem 34. When Algorithm 18 is run using bucketing coarseness parameters n and

n′, discretization parameter r ∈ N, and η =

√
ln(4|G|n·n′)

2T ∈ (0, 1/2), then against any ad-

versary, its sequence of mean-moment predictions is (α, β, n, n′)-mean-conditioned moment

multicalibrated with respect to G, where β = (k + 1)α+ k
2n and:

E[α] ≤
1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′)

T
.

270

For r =
√
T (n+n′)

εn·n′·
√

2 ln(4|G|n·n′)
, this gives:

E[α] ≤ (2 + ε)

√
2

T
ln (4|G|n · n′).

Here the expectation is taken over the randomness of the transcript πT .

Proof. From Observation 5, it suffices to show that:

1

T
Ẽ
πT

[
max

G∈G,i∈[n],j∈[n′]
|Ṽ G,i,j
T |

]
≤ 1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′)

T
,

1

T
Ẽ
πT

[
max

G∈G,i∈[n],j∈[n′]
|M̃G,i,j

T |
]
≤ 1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′)

T
.

We begin by computing a bound on the (exponential of) the expectation of the first quantity:

exp

(
η Ẽ
πT
[max
G,i,j
|Ṽ G,i,j
T |]

)
≤ Ẽ

πT

[
exp

(
ηmax
G,i,j
|Ṽ G,i,j
T |

)]
= Ẽ

πT

[
max
G,i,j

exp
(
η|Ṽ G,i,j

T |
)]

≤ Ẽ
πT

[
max
G,i,j

(
exp

(
ηṼ G,i,j

T

)
+ exp

(
−ηṼ G,i,j

T

))]

≤ Ẽ
πT

∑
G,i,j

(
exp

(
ηṼ G,i,j

T

)
+ exp

(
−ηṼ G,i,j

T

)
+ exp

(
ηM̃G,i,j

T

)
+ exp

(
−ηM̃G,i,j

T

))
= Ẽ

πT
[L̃T]

≤ 4|G|n · n′ · exp
(
Tη

rn
+
Tη

rn′
+ 2Tη2

)
.

Here the first inequality follows from Jensen’s inequality and the last one follows from

Corollary 8. Taking the log of both sides and dividing by ηT we obtain

1

T
Ẽ
πT
[max
G,i
|Ṽ G,i
T |] ≤

ln(4|G|n · n′)
ηT

+
1

rn
+

1

rn′
+ 2η.

271

Choosing η =

√
ln(4|G|n·n′)

2T , we have

1

T
Ẽ
πT
[max
G,i
|Ṽ G,i
T |] ≤

1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′)

T
.

Repeating the same steps, we get an identical bound for 1
T Eπ̃T [maxG∈G,i∈[n],j∈[n′] |M̃

G,i,j
T |].

Now, given L̃, define Z̃ analogously to the second part of Theorem 30. Next, we can show

that the increments of Z̃ thus defined, at any round t, can be bounded.

Lemma 56. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

Proof. Observe that

|Zt − Zt−1| = |ln(Lt(πt))− E [ln(Lt(π̃t))|πt−1]|

=

∣∣∣∣E [ln(Lt(πt)Lt(π̃t)

)∣∣∣∣πt−1

]∣∣∣∣
Note that for any πt,

Lt(πt) = Lt−1(πt−1) + ∆t(πt−1, xt, yt, µt,m
k
t)

where:

∆t(πt−1, xt, yt, µt,m
k
t)

=
∑
G(xt)

exp(ηV
G,B−1(µt),B

−1(mk
t)

t−1) (exp(η(yt − µt))− 1)

+ exp(−ηV G,B−1(µt),B
−1(mk

t)
t−1) (exp(−η(yt − µt))− 1) ,

+
∑
G(xt)

exp(ηM
G,B−1(µt),B

−1(mk
t)

t−1)
(
exp(η((yt − µ̂µt)

k −mk
t))− 1

)
+ exp(−ηMG,B−1(µt),B

−1(mk
t)

t−1)
(
exp(−η((yt − µ̂µt)

k −mk
t))− 1

)
.

272

Since (yt − µt) and ((yt − µ̂µt)
k −mk

t) must lie in [−1, 1], we have that:

(exp(−η)− 1)Lt−1(πt−1) ≤ ∆t(πt−1, xt, yt, µt,m
k
t) ≤ (exp(η)− 1)Lt−1(πt−1)

which implies:

exp(−η)Lt−1(πt−1) ≤ Lt(πt) ≤ exp(η)Lt−1(πt−1).

Therefore, for any two πt, π
′
t such that the corresponding transcripts for the first t−1 periods

is the same, we have

∣∣∣∣ln(Lt(πt)Lt(π′t)

)∣∣∣∣ ≤ ln

(
exp(η)

exp(−η)

)
= 2η.

Therefore we have
∣∣∣E [ln(Lt(πt)

Lt(π̃t)

)∣∣∣πt−1

]∣∣∣ ≤ 2η as desired.

Theorem 35. When Algorithm 18 is run using bucketing coarseness parameters n and n′,

discretization r ∈ N and η =

√
ln(4|G|n·n′)

2T ∈ (0, 1/2), then against any adversary, with prob-

ability 1−λ over the randomness of the transcript, its sequence of predictions is (α, β, n, n′)-

mean-conditioned moment multicalibrated with respect to G for β = (k + 1)α+ k
2n and:

α ≤ 1

rn
+

1

rn′
+ 4

√
2

T
ln

(
4|G|n · n′

λ

)
.

For r =
√
T (n+n′)

ϵn·n′
√

2 ln(4|G|n·n′/λ)
, this gives:

α ≤ (4 + ϵ)

√
2

T
ln

(
4|G|n · n′

λ

)
.

Proof. By Lemma 56, the second part of Theorem 30 applies, and plugging in L0 = 4|G|n·n′

and c = 1
rn+

1
rn′ , we have that, with probability (1−λ) over the randomness of the transcript:

ln(LT (πT)) ≤ ln(4|G|n · n) + T
(η
rn

+
η

rn′
+ 2η2

)
+ η

√
8T ln

(
1

λ

)
.

273

Now, note that

exp

(
ηmax
G,i,j
|V G,i,j
T |

)
= max

G,i,j
exp

(
η|V G,i,j

T |
)
,

≤ max
G,i,j

(
exp

(
ηV G,i,j

T

)
+ exp

(
−ηV G,i,j

T

))
,

≤
∑
G,i,j

(
exp

(
ηV G,i,j

T

)
+ exp

(
−ηV G,i,j

T

)
+ exp

(
ηMG,i,j

T

)
+ exp

(
−ηMG,i,j

T

))
,

= LT (πT).

By an analogous argument we have that exp
(
ηmaxG,i,j |MG,i,j

T |
)
≤ LT (πT).Taking log on

both sides and dividing both sides by ηT , we get

1

T
max
G,i
|V G,i,j
T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(4|G|n · n′)
ηT

+
1

rn
+

1

rn′
+ 2η +

√
8 ln

(
1
λ

)
T

.

Choosing η =

√
ln(4|G|n·n′)

2T , we obtain:

1

T
max
G,i,j
|V G,i,j
T | ≤ 1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′)

T
+

√
8 ln

(
1
λ

)
T

≤ 1

rn
+

1

rn′
+ 4

√
2

T
ln

(
4|G|n · n′

λ

)
,

and, by an analogous argument,

1

T
max
G,i,j
|MG,i,j

T | ≤ 1

rn
+

1

rn′
+ 4

√
2

T
ln

(
4|G|n · n′

λ

)
,

as desired.

Lemma 42. Consider a linear program of the following form, with variables x ∈ Rm, γ ∈ R

274

for some m:

Minimize γ, subject to: Ax ≤ γ1m, x · 1m = 1, x ≥ 0.

Here, 1m ∈ Rm is the all-ones vector, and A = (aji) is a finite matrix with real entries.

Take any ϵ > 0. Modify the above linear program by replacing matrix A with matrix Ã =

(ãji), where each ãji is a rational number within ± ϵ
2 from aji, obtained by truncating aji

to O(log 1
ϵ) bits of precision. Then, any optimal solution (x∗,r, γ∗,r) of the resulting rational

linear program is an ϵ-approximately optimal feasible solution of the original linear program.

Proof. Let (x∗, γ∗) be the optimal solution of the original LP. Consider the constraint of the

original (resp. rational) LP associated with any row j of matrix A (resp. Ã). This constraint

is written as
∑

i ajixi ≤ γ in the original LP, and
∑

i ãjixi ≤ γ in the rational LP. Here and

below, i ranges over [m]. Now, we have that

∑
i

ãjix
∗
i ≤

∑
i

(
aji +

ϵ

2

)
x∗i =

∑
i

ajix
∗
i +

ϵ

2

∑
i

x∗i ≤ γ∗ +
ϵ

2

∑
i

x∗i = γ∗ +
ϵ

2
.

Since this holds for any row j of the matrix, then setting x = x∗ achieves value at most

γ∗ + ϵ
2 with respect to the rational LP.

Conversely, consider an optimal solution (x∗,r, γ∗,r) of the rational LP — by the above, we

immediately have γ∗,r ≤ γ∗ + ϵ
2 . We claim it achieves value at most γ∗ + ϵ with respect to

the original LP. Indeed, for any matrix row j,

∑
i

ajix
∗,r
i ≤

∑
i

(
ãji +

ϵ

2

)
x∗,ri

=
∑
i

ãjix
∗,r
i +

ϵ

2

∑
i

x∗,ri

=
∑
i

ãjix
∗,r
i +

ϵ

2
≤ γ∗,r + ϵ

2
≤
(
γ∗ +

ϵ

2

)
+
ϵ

2
= γ∗ + ϵ.

Therefore, by solving the rational LP, we obtain an ϵ-approximate solution to the original

275

LP, as desired.

Lemma 43. Algorithm 19 achieves the multivalidity guarantees specified in Theorem 36.

Proof. We briefly argue that the additive ϵ-approximation to the (shifted and rescaled)

value of the game results in the claimed dependence of the multivalidity guarantees on ϵ.

When the learner achieves an ϵ approximation to the value of the game at each round, the

statement of Corollary 7 becomes:

E
QL

s+1

[L̃s+1|πs] ≤ Ls
(
1 +

η

rn
+

η

rn′
+ 2η2

)
+ ηϵ ≤ Ls

(
1 +

η

rn
+

η

rn′
+ 2η2

)
+ ϵ.

Indeed, recall that the linear program that we solve at each round solves for the value of

the game that has been shifted by 2η2Ls and divided by η. For the second inequality, recall

that η < 1.

Now, using the telescoping argument from the first part of the proof of Theorem 30, we

obtain

exp

(
η Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |]

)
≤ 4|G|n · n′

(
(1 +

η

rn
+

η

rn′
+ 2η2

)T
+ ϵ

T−1∑
t=0

(
1 +

η

rn
+

η

rn′
+ 2η2

)t
,

≤ 4|G|n · n′
(
(1 +

η

rn
+

η

rn′
+ 2η2

)T
+ ϵT

(
1 +

η

rn
+

η

rn′
+ 2η2

)T
,

= (4|G|n · n′ + ϵT) exp
(
T ln

(
1 +

η

rn
+

η

rn′
+ 2η2

))
,

≤ (4|G|n · n′ + ϵT) exp

(
Tη

rn
+
Tη

rn′
+ 2Tη2

)
.

Taking logs and dividing by ηT , we get

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ ln(4|G|n · n′ + ϵT)

ηT
+

1

rn
+

1

rn′
+ 2η.

276

Setting the two terms involving η equal, we have:

η =

√
ln(4|G|n · n′ + ϵT)

2T
.

For this choice of η, we obtain the following in-expectation multivalidity guarantee (and the

same guarantee for the M ’s):

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ 1

rn
+

1

rn′
+ 2

√
2 ln(4|G|n · n′ + ϵT)

T
.

Now, setting ϵ = ϵ′

T for any desired ϵ′ > 0, we obtain the guarantee (and same for the M ’s)

that

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ 1

rn
+

1

rn′
+2

√
2 ln(4|G|n · n′ + ϵ′)

T
if we set η =

√
ln(4|G|n · n′ + ϵ′)

2T
,

and the resulting runtime will be polynomial in T and log 1
ϵ and thus polynomial in T and

log 1
ϵ′ .

Now, we show the high-probability multivalidity guarantee. In the proof of Theorem 30, the

statement of Lemma 54 changes to:

Lemma 57. For any πT , we have

T∑
t=1

(
Ẽ
πt

[
ln(X̃t)

∣∣∣πt−1

]
− ln(Xt−1(πt−1))

)
≤ T

(
ηc+ 2η2 + ϵ

)
.

277

Proof. Fixing πT and taking any t ≤ T , we have

Ẽ
πt

[
ln(X̃t)|πt−1

]
≤ ln

(
Ẽ
πt
[X̃t|πt−1]

)
≤ ln

(
Xt−1(πt−1) ·

(
1 + cη + 2η2

)
+ ϵ
)

≤ ln
(
Xt−1(πt−1) ·

(
1 + cη + 2η2

))
+

ϵ

Xt−1(πt−1) · (1 + cη + 2η2)

≤ ln(Xt−1(πt−1)) + ln
(
1 + cη + 2η2

)
+ ϵ

≤ ln(Xt−1(πt−1)) +
(
cη + 2η2 + ϵ

)
.

The first inequality follows from Jensen’s inequality, the second from the fact that we

computed an ϵ-approximation, the third from ln(x+ y) ≤ ln(x) + y
x for x, y ≥ 0, the fourth

from the fact that loss satisfies Xt−1(πt−1) ≥ 1, and the last from the fact that ln(1+x) ≤ x

for any x > −1. Summing over every round t ∈ [T] gives us the result.

Thus, the statement of the second part of Theorem 30 becomes that with probability 1−λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2 + ϵ

)
+ η

√
8T ln

(
1

λ

)
.

Now, applying it to the setting at hand, we obtain:

ln(LT (πT)) ≤ ln(4|G|n · n′) + T

(
η

(
1

rn
+

1

rn′

)
+ 2η2 + ϵ

)
+ η

√
8T ln

(
1

λ

)
.

Thus, taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i,j
|V G,(i,j)
T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(4|G|n · n′)
ηT

+
1

rn
+

1

rn′
+ 2η +

ϵ

η
+

√
8 ln

(
1
λ

)
T

.

278

Choosing η =

√
ln(4|G|n·n′)+ϵT

2T , we obtain (and the same holds for the M ’s):

1

T
max
G,i,j
|V G,i,j
T | ≤ 1

rn
+

1

rn′
+ 2

√
2(ln(4|G|n · n′) + ϵT)

T
+

√
8 ln

(
1
λ

)
T

≤ 1

rn
+

1

rn′
+ 4

√
2

T
ln

(
4|G|n · n′

λ

)
+ 2ϵ,

as desired.

6.E. Proofs from Section 6.6

Lemma 44. For every transcript πs ∈ Π∗, every xs+1 ∈ X , and every (ℓs+1, us+1) ∈ Bn(i, j)

we have that:

∆s+1(πs, xs+1, (ℓs+1, us+1)) ≤
(
η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])

)
Ci,js (xs+1) + 2η2Ls,

where for each i ≤ j ∈ [n], we have defined

Ci,js (xs+1) ≡
∑

G(xs+1)

exp(ηV G,(i,j)
s)− exp(−ηV G,(i,j)

s).

When xs+1 is clear from context, for notational economy, we will elide it and simply write

Ci,js .

279

Proof. We calculate:

∆s+1(πs, xs+1, (ℓs+1, us+1))

= E
ỹs+1

[∑
G(xs+1)

exp(ηV G,(i,j)
s)

(
exp(ηvδ((ℓs+1, us+1), ỹs+1))− 1

)
+ exp(−ηV G,(i,j)

s)
(
exp(−ηvδ((ℓs+1, us+1), ỹs+1)− 1

)]

≤ E
ỹs+1

[∑
G(xs+1)

exp(ηV G,(i,j)
s)

(
ηvδ((ℓs+1, us+1), ỹs+1) + 2η2

)
+ exp(−ηV G,(i,j)

s)
(
−ηvδ((ℓs+1, us+1), ỹs+1) + 2η2

)]

= η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])C
i,j
s + 2η2

∑
G(xs+1)

exp(ηV G,(i,j)
s) + exp(−ηV G,(i,j)

s)

≤ η(E
ỹs+1

[vδ((ℓs+1, us+1), ỹs+1)])C
i,j
s + 2η2Ls,

as desired. Here the first inequality follows from the fact that for 0 < |x| < 1
2 , exp(x) ≤

1+ x+2x2, the following equality from organizing terms and the final inequality by noting

that
∑

G(xs+1)
exp(ηV

G,(i,j)
s) + exp(−ηV G,(i,j)

s) ≤ Ls by definition of L.

Theorem 38. When Algorithm 20 is run using n buckets, discretization parameter r and

η =

√
ln(2|G|n2)

2T ∈ (0, 1/2), then against any adversary constrained to playing (ρ, rn)-smooth

distributions, its sequence of interval predictions is α-multivalid with respect to G in expec-

tation over the randomness of the transcript πT , where:

E[α] ≤ ρ+ 2

√
2 ln(2|G|n2)

T
.

Proof. From Observation 6, it suffices to show that 1
T EπT [max |V G,(i,j)

T |] ≤ α.

280

We begin by computing a bound on the (exponential of) the expectation of this quantity:

exp

(
η Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |]

)
≤ Ẽ

πT

[
exp

(
η max
G,(i,j)

|Ṽ G,(i,j)
T |

)]
= Ẽ

πT

[
max
G,(i,j)

exp
(
η|Ṽ G,(i,j)

T |
)]

≤ Ẽ
πT

[
max
G,(i,j)

(
exp

(
ηṼ

G,(i,j)
T

)
+ exp

(
−ηV G,(i,j)

T

))]

≤ Ẽ
πT

 ∑
G,(i,j)

(
exp

(
ηṼ

G,(i,j)
T

)
+ exp

(
−ηṼ G,(i,j)

T

))
= Ẽ

πT
[L̃T (π̃T)]

≤ 2|G|n2 exp
(
Tηρ+ 2Tη2

)
.

Here the first inequality follows from Jensen’s inequality and the last one follows from

Lemma 47. Taking the log of both sides and dividing by ηT we obtain:

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ ln(2|G|n2)

ηT
+ ρ+ 2η.

Choosing η =

√
ln(2|G|n2)

2T we obtain:

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ ρ+ 2

√
2 ln(2|G|n2)

T
,

as desired.

Now, given L̃, define Z̃ analogously to the second part of Theorem 30. Next, we can show

that the increments of Z̃ thusly defined, at any round t, can be bounded.

Lemma 58. At any round t ∈ [T] and for any realized transcript πt, |Zt − Zt−1| ≤ 2η.

281

Proof. Observe that

|Zt − Zt−1| = |ln(Lt(πt))− E [ln(Lt(π̃t))|πt−1]|

=

∣∣∣∣E [ln(Lt(πt)Lt(π̃t)

)∣∣∣∣πt−1

]∣∣∣∣
Note that for any πt,

Lt(πt) = Lt−1(πt−1) + ∆t(πt−1, xt, yt, (ℓt, µt))

where:

∆t(πt−1, xt, yt, (ℓt, ut))

=
∑
G(xt)

exp(ηV
G,B−1

n (ℓt,ut)
t−1) (exp(ηvδ((ℓt, ut), yt))− 1)

+ exp(−ηV G,B−1
n (ℓt,ut)

t−1) (exp(−ηvδ((ℓt, ut), yt)− 1) .

Since vδ((ℓt, ut), yt) must lie in [−1, 1] (actually [−(1− δ), δ]), we have that:

(exp(−η)− 1)Lt−1(πt−1) ≤ ∆t(πt−1, xt, yt, (ℓt, ut)) ≤ (exp(η)− 1)Lt−1(πt−1)

which implies:

exp(−η)Lt−1(πt−1) ≤ Lt(πt) ≤ exp(η)Lt−1(πt−1).

Therefore, for any two πt, π
′
t such that the corresponding transcripts for the first t−1 periods

are the same, we have

∣∣∣∣ln(Lt(πt)Lt(π′t)

)∣∣∣∣ ≤ ln

(
exp(η)

exp(−η)

)
= 2η.

Therefore we have
∣∣∣E [ln(Lt(πt)

Lt(π̃t)

)∣∣∣πt−1

]∣∣∣ ≤ 2η as desired.

Theorem 39. When Algorithm 20 is run using n buckets, discretization parameter r and

282

η =

√
ln(2|G|n2)

2T ∈ (0, 1/2), then against any adversary who is constrained to playing (ρ, rn)-

smooth distributions, its sequence of interval predictions is α-multivalid with respect to G

with probability 1− λ over the randomness of the transcript πT :

α ≤ ρ+ 4

√
2

T
ln

(
2|G|n2
λ

)
.

Proof. By Lemma 58, the second part of Theorem 30 applies, and plugging in L0 = 2|G|n2

and c = ρ, we have that, with probability (1− λ) over the randomness of the transcript:

ln(LT (πT)) ≤ ln(2|G|n2) + T
(
ηρ+ 2η2

)
+ η

√
8T ln

(
1

λ

)
.

Now, note that

exp

(
ηmax
G,i,j
|V G,(i,j)
T |

)
= max

G,i,j
exp

(
η|V G,(i,j)

T |
)
,

≤ max
G,i,j

(
exp

(
ηV

G,(i,j)
T

)
+ exp

(
−ηV G,(i,j)

T

))
,

≤
∑
G,i,j

(
exp

(
ηV

G,(i,j)
T

)
+ exp

(
−ηV G,(i,j)

T

))
,

= LT (πT).

Taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i,j
|V G,(i,j)
T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(2|G|n2)
ηT

+ ρ+ 2η +

√
8 ln

(
1
λ

)
T

.

Choosing η =

√
ln(2|G|n2)

2T , we obtain

1

T
max
G,i,j
|V G,i,j
T | ≤ ρ+ 2

√
2 ln(2|G|n2)

T
+

√
8 ln

(
1
λ

)
T

≤ ρ+ 4

√
2

T
ln

(
2|G|n2
λ

)
,

283

as desired.

Lemma 50. Algorithm 21 achieves the multivalidity guarantees stated in Theorem 40.

Proof. We briefly argue that the additive ϵ-approximation to the (shifted and rescaled)

value of the game results in the claimed dependence of the multivalidity guarantees on ϵ.

When the learner achieves an ϵ approximation to the value of the game at each round, the

statement of Corollary 9 becomes:

E
(ℓ,u)∼QL

s+1

[L̃s+1|πs] ≤ Ls
(
1 + ηρ+ 2η2

)
+ ηϵ ≤ Ls

(
1 + ηρ+ 2η2

)
+ ϵ.

Indeed, recall that the linear program that we solve at each round solves for the value of

the game that has been shifted by 2η2Ls and divided by η. For the second inequality, recall

that η < 1.

Now, using the telescoping argument from the first part of the proof of Theorem 30, we

obtain

exp

(
η Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |]

)
≤2|G|n2

(
1 + ηρ+ 2η2

)T
+ ϵ

T−1∑
t=0

(1 + ηρ+ 2η2)t,

≤2|G|n2
(
1 + ηρ+ 2η2

)T
+ ϵT (1 + ηρ+ 2η2)T ,

=(2|G|n2 + ϵT) exp
(
T ln

(
1 + ηρ+ 2η2

))
,

≤(2|G|n2 + ϵT) exp
(
Tηρ+ 2Tη2

)
,

Taking logs and dividing by ηT , we get

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ ln(2|G|n2 + ϵT)

ηT
+ ρ+ 2η.

Setting the two terms involving η equal, we have:

η =

√
ln(2|G|n2 + ϵT)

2T
.

284

For this choice of η, we obtain the following in-expectation multivalidity guarantee:

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ ρ+ 2

√
2 ln(2|G|n2 + ϵT)

T
.

Now, setting ϵ = ϵ′

T for any desired ϵ′ > 0, we obtain the guarantee that

1

T
Ẽ
πT
[max
G,(i,j)

|Ṽ G,(i,j)
T |] ≤ ρ+ 2

√
2 ln(2|G|n2 + ϵ′)

T
if we set η =

√
ln(2|G|n2 + ϵ′)

2T
,

and the resulting runtime will be polynomial in T and log 1
ϵ and thus polynomial in T and

log 1
ϵ′ .

Now, we show the high-probability multivalidity guarantee. In the proof of Theorem 30, the

statement of Lemma 54 changes to:

Lemma 57. For any πT , we have

T∑
t=1

(
Ẽ
πt

[
ln(X̃t)

∣∣∣πt−1

]
− ln(Xt−1(πt−1))

)
≤ T

(
ηc+ 2η2 + ϵ

)
.

We show this updated claim in the proof of Lemma 43 of Section 6.5.3.

Thus, the statement of the second part of Theorem 30 becomes that with probability 1−λ,

ln(XT (πT)) ≤ ln(X0) + T
(
ηc+ 2η2 + ϵ

)
+ η

√
8T ln

(
1

λ

)
.

Now, applying it to the setting at hand, we obtain:

ln(LT (πT)) ≤ ln(2|G|n2) + T
(
ηρ+ 2η2 + ϵ

)
+ η

√
8T ln

(
1

λ

)
.

285

Thus, taking log on both sides and dividing both sides by ηT , we get

1

T
max
G,i,j
|V G,(i,j)
T | ≤ 1

ηT
ln(LT (πT)) ≤

ln(2|G|n2)
ηT

+ ρ+ 2η +
ϵ

η
+

√
8 ln

(
1
λ

)
T

.

Choosing η =

√
ln(2|G|n2)+ϵT

2T , we obtain:

1

T
max
G,i,j
|V G,i,j
T | ≤ ρ+ 2

√
2(ln(2|G|n2) + ϵT)

T
+

√
8 ln

(
1
λ

)
T

≤ ρ+ 4

√
2

T
ln

(
2|G|n2
λ

)
+ 2ϵ,

as desired.

286

BIBLIOGRAPHY

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for
linear stochastic bandits. In Advances in Neural Information Processing Systems 24:
25th Annual Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12-14 December 2011, Granada, Spain., pages 2312–2320, 2011. URL
http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stoch

astic-bandits. 32, 33

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dud́ık, John Langford, and Hanna M.
Wallach. A reductions approach to fair classification. In Jennifer G. Dy and An-
dreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pages 60–69. PMLR, 2018. URL
http://proceedings.mlr.press/v80/agarwal18a.html. 1, 75, 124

[3] Alekh Agarwal, Miroslav Dud́ık, and Zhiwei Steven Wu. Fair regression: Quantita-
tive definitions and reduction-based algorithms. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 120–129. PMLR, 2019. URL
http://proceedings.mlr.press/v97/agarwal19d.html. 1

[4] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. prop-
ublica, may 23, 2016, 2016. 1, 96

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–164,
2012. 42, 45, 55

[6] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshi-
rani. The limits of distribution-free conditional predictive inference. arXiv preprint
arXiv:1903.04684, 2019. 126, 127, 194

[7] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and
Jonathan Ullman. Algorithmic stability for adaptive data analysis. In Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing, pages 1046–1059,
2016. 144

[8] Yahav Bechavod, Christopher Jung, and Zhiwei Steven Wu. Metric-free individual
fairness in online learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedi

ngs.neurips.cc/paper/2020/hash/80b618ebcac7aa97a6dac2ba65cb7e36-Abstra

ct.html. 42

287

http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stochastic-bandits
http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stochastic-bandits
http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v97/agarwal19d.html
https://proceedings.neurips.cc/paper/2020/hash/80b618ebcac7aa97a6dac2ba65cb7e36-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/80b618ebcac7aa97a6dac2ba65cb7e36-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/80b618ebcac7aa97a6dac2ba65cb7e36-Abstract.html

[9] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fair-
ness in criminal justice risk assessments: The state of the art. Sociological Methods &
Research, 50(1):3–44, 2021. 4

[10] Xuanyu Cao and K. J. Ray Liu. Online convex optimization with time-varying con-
straints and bandit feedback. IEEE Trans. Autom. Control., 64(7):2665–2680, 2019.
doi: 10.1109/TAC.2018.2884653. URL https://doi.org/10.1109/TAC.2018.28846

53. 48, 49

[11] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):
427–485, May 1997. ISSN 0004-5411. doi: 10.1145/258128.258179. URL https:

//doi.org/10.1145/258128.258179. 42, 45, 55

[12] Victor Chernozhukov, Kaspar Wüthrich, and Zhu Yinchu. Exact and robust conformal
inference methods for predictive machine learning with dependent data. In Conference
On Learning Theory, pages 732–749, 2018. 194

[13] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big data, 5(2):153–163, 2017. 2, 7, 193

[14] Alexandra Chouldechova and Aaron Roth. A snapshot of the frontiers of fairness in
machine learning. Communications of the ACM, 63(5):82–89, 2020. 127, 195

[15] Vincent Conitzer, Walter Sinnott-Armstrong, Jana Schaich Borg, Yuan Deng, and
Max Kramer. Moral decision making frameworks for artificial intelligence. In Pro-
ceedings of the International Symposium on Artificial Intelligence and Mathematics
(ISAIM), 2018. 2

[16] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A
critical review of fair machine learning. CoRR, abs/1808.00023, 2018. URL http:

//arxiv.org/abs/1808.00023. 1

[17] A Philip Dawid. The well-calibrated bayesian. Journal of the American Statistical
Association, 77(379):605–610, 1982. 118, 125, 185, 192

[18] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009. 269

[19] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel.
Fairness through awareness. In Shafi Goldwasser, editor, Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 214–226.
ACM, 2012. doi: 10.1145/2090236.2090255. URL https://doi.org/10.1145/2090

236.2090255. 1, 2, 7, 8, 13, 15, 16, 76, 77, 127

[20] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Leon Roth. Preserving statistical validity in adaptive data analysis. In Pro-
ceedings of the forty-seventh annual ACM symposium on Theory of computing, pages
117–126, 2015. 144

288

https://doi.org/10.1109/TAC.2018.2884653
https://doi.org/10.1109/TAC.2018.2884653
https://doi.org/10.1145/258128.258179
https://doi.org/10.1145/258128.258179
http://arxiv.org/abs/1808.00023
http://arxiv.org/abs/1808.00023
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255

[21] Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona.
Learning from outcomes: Evidence-based rankings. In 2019 IEEE 60th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 106–125. IEEE, 2019.
126, 193

[22] Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona.
Outcome indistinguishability. In Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 1095–1108, 2021. 193

[23] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
On agnostic learning of parities, monomials, and halfspaces. SIAM Journal on Com-
puting, 39(2):606–645, 2009. 75

[24] Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Agnostic
learning of monomials by halfspaces is hard. SIAM Journal on Computing, 41(6):
1558–1590, 2012. 75

[25] Dean P Foster. A proof of calibration via blackwell’s approachability theorem. Games
and Economic Behavior, 29(1-2):73–78, 1999. 192

[26] Dean P Foster and Sergiu Hart. Smooth calibration, leaky forecasts, finite recall, and
nash dynamics. Games and Economic Behavior, 109:271–293, 2018. 193

[27] Dean P Foster and Sergiu Hart. Forecast hedging and calibration. Journal of Political
Economy, 129(12):3447–3490, 2021. 192

[28] Dean P Foster and Sham M Kakade. Calibration via regression. In 2006 IEEE
Information Theory Workshop-ITW’06 Punta del Este, pages 82–86. IEEE, 2006. 193

[29] Dean P Foster and Rakesh V Vohra. Asymptotic calibration. Biometrika, 85(2):
379–390, 1998. 125, 185, 186, 188, 192

[30] Dean P Foster, Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari.
Complexity-based approach to calibration with checking rules. In Proceedings of the
24th Annual Conference on Learning Theory, pages 293–314, 2011. 193

[31] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting.
In COLT, volume 96, pages 325–332. Citeseer, 1996. 83, 104

[32] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.
doi: 10.1006/jcss.1997.1504. URL https://doi.org/10.1006/jcss.1997.1504. 42,
45, 55

[33] Drew Fudenberg and David K Levine. An easier way to calibrate. Games and economic
behavior, 29(1-2):131–137, 1999. 186, 188, 189, 190, 192

[34] Drew Fudenberg and David K Levine. Conditional universal consistency. Games and
Economic Behavior, 29(1-2):104–130, 1999. 193

289

https://doi.org/10.1006/jcss.1997.1504

[35] Stephen Gillen, Christopher Jung, Michael J. Kearns, and Aaron Roth. Online learn-
ing with an unknown fairness metric. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 2605–2614, 2018. URL https://proceedings.neurips.cc/paper/2

018/hash/50905d7b2216bfeccb5b41016357176b-Abstract.html. 14

[36] Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. Distribution-free binary
classification: prediction sets, confidence intervals and calibration. Advances in Neural
Information Processing Systems, 33, 2020. 195

[37] Swati Gupta and Vijay Kamble. Individual fairness in hindsight. In Proceedings of
the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ,
USA, June 24-28, 2019, pages 805–806, 2019. doi: 10.1145/3328526.3329605. URL
https://doi.org/10.1145/3328526.3329605. 12, 16

[38] Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth.
Online multivalid learning: Means, moments, and prediction intervals. In Mark
Braverman, editor, 13th Innovations in Theoretical Computer Science Conference,
ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs,
pages 82:1–82:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4
230/LIPIcs.ITCS.2022.82. URL https://doi.org/10.4230/LIPIcs.ITCS.2022.82.
206

[39] Sara Hajian and Josep Domingo-Ferrer. A methodology for direct and indirect dis-
crimination prevention in data mining. IEEE transactions on knowledge and data
engineering, 25(7):1445–1459, 2012. 7

[40] Moritz Hardt and Guy N Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 61–70. IEEE, 2010. 144

[41] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 3315–3323, 2016. URL https://proceedings.neur

ips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html.
1, 7

[42] Sergiu Hart. Calibrated forecasts: The minimax proof. oral communication, 2020.
URL http://www.ma.huji.ac.il/~hart/papers/calib-minmax.pdf. 188, 192

[43] Úrsula Hébert-Johnson, Michael P. Kim, Omer Reingold, and Guy N. Rothblum. Mul-
ticalibration: Calibration for the (computationally-identifiable) masses. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1944–1953.

290

https://proceedings.neurips.cc/paper/2018/hash/50905d7b2216bfeccb5b41016357176b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/50905d7b2216bfeccb5b41016357176b-Abstract.html
https://doi.org/10.1145/3328526.3329605
https://doi.org/10.4230/LIPIcs.ITCS.2022.82
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
http://www.ma.huji.ac.il/~hart/papers/calib-minmax.pdf

PMLR, 2018. URL http://proceedings.mlr.press/v80/hebert-johnson18a.ht

ml. 4, 7, 12, 118, 119, 120, 124, 125, 126, 127, 130, 133, 134, 144, 152, 186, 187, 189,
190, 193, 197, 198, 206

[44] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963. 34

[45] Christina Ilvento. Metric learning for individual fairness. In Aaron Roth, editor, 1st
Symposium on Foundations of Responsible Computing, FORC 2020, June 1-3, 2020,
Harvard University, Cambridge, MA, USA (virtual conference), volume 156 of LIPIcs,
pages 2:1–2:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.423
0/LIPIcs.FORC.2020.2. URL https://doi.org/10.4230/LIPIcs.FORC.2020.2.
12, 77

[46] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron
Roth. Fairness in reinforcement learning. In International conference on machine
learning, pages 1617–1626. PMLR, 2017. 13

[47] Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric
learning and fast similarity search. In Advances in neural information processing
systems, pages 761–768, 2009. 13

[48] Rodolphe Jenatton, Jim Huang, and Cédric Archambeau. Adaptive algorithms for
online convex optimization with long-term constraints. In International Conference
on Machine Learning, pages 402–411. PMLR, 2016. 48

[49] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in
learning: Classic and contextual bandits. Advances in neural information processing
systems, 29, 2016. 13, 127

[50] Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, and Aaron Roth. Fairness
in learning: Classic and contextual bandits. In Daniel D. Lee, Masashi Sugiyama, Ul-
rike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 325–333, 2016.
URL https://proceedings.neurips.cc/paper/2016/hash/eb163727917cbba1e

ea208541a643e74-Abstract.html. 1, 8, 13, 76

[51] Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth.
Meritocratic fairness for infinite and contextual bandits. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, pages 158–163, 2018. 127

[52] Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi,
and Moshe Shenfeld. A new analysis of differential privacy’s generalization guarantees.
In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 144

[53] Christopher Jung, Changhwa Lee, Mallesh Pai, Aaron Roth, and Rakesh Vohra. Mo-
ment multicalibration for uncertainty estimation. In Conference on Learning Theory,
pages 2634–2678. PMLR, 2021. 190, 194

291

http://proceedings.mlr.press/v80/hebert-johnson18a.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html
https://doi.org/10.4230/LIPIcs.FORC.2020.2
https://proceedings.neurips.cc/paper/2016/hash/eb163727917cbba1eea208541a643e74-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/eb163727917cbba1eea208541a643e74-Abstract.html

[54] Anson Kahng, Min Kyung Lee, Ritesh Noothigattu, Ariel D. Procaccia, and Christos-
Alexandros Psomas. Statistical foundations of virtual democracy. In Proceedings of
the 36th International Conference on Machine Learning (ICML), pages 3173–3182,
2019. 2

[55] Sham M Kakade and Dean P Foster. Deterministic calibration and nash equilib-
rium. In International Conference on Computational Learning Theory, pages 33–48.
Springer, 2004. 193

[56] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification
without discrimination. Knowl. Inf. Syst., 33(1):1–33, 2011. doi: 10.1007/s10115-011
-0463-8. URL https://doi.org/10.1007/s10115-011-0463-8. 1, 7

[57] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical study
of rich subgroup fairness for machine learning. In Proceedings of the conference on
fairness, accountability, and transparency, pages 100–109, 2019. 127, 195

[58] Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computational
learning theory. MIT press, 1994. 105

[59] Michael J. Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fair-
ness gerrymandering: Auditing and learning for subgroup fairness. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 2569–2577.
PMLR, 2018. URL http://proceedings.mlr.press/v80/kearns18a.html. 1, 2, 4,
7, 12, 75, 97, 124, 127, 152, 195

[60] Michael Kim, Omer Reingold, and Guy Rothblum. Fairness through computationally-
bounded awareness. Advances in Neural Information Processing Systems, 31, 2018.
12, 77, 127, 195

[61] Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-
processing for fairness in classification. In Proceedings of the 2019 AAAI/ACM Con-
ference on AI, Ethics, and Society, pages 247–254, 2019. 124, 126, 127, 152, 193

[62] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132:1–63, 1997. 83, 87,
90

[63] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in
the fair determination of risk scores. arXiv preprint arXiv:1609.05807, 2016. 1, 2, 7,
193

[64] Felicitas Kraemer, Kees Van Overveld, and Martin Peterson. Is there an ethics of
algorithms? Ethics and information technology, 13(3):251–260, 2011. 2

[65] Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine
Learning, 5(4):287–364, 2013. 13

292

https://doi.org/10.1007/s10115-011-0463-8
http://proceedings.mlr.press/v80/kearns18a.html

[66] Preethi Lahoti, Krishna P. Gummadi, and Gerhard Weikum. Operationalizing indi-
vidual fairness with pairwise fair representations. CoRR, abs/1907.01439, 2019. URL
http://arxiv.org/abs/1907.01439. 77

[67] Min Kyung Lee, Daniel Kusbit, Anson Kahng, Ji Tae Kim, Xinran Yuan, Allissa
Chan, Daniel See, Ritesh Noothigattu, Siheon Lee, Alexandros Psomas, and Ariel D.
Procaccia. Webuildai: Participatory framework for algorithmic governance. Proc.
ACM Hum. Comput. Interact., 3(CSCW):181:1–181:35, 2019. 2

[68] Ehud Lehrer. Any inspection is manipulable. Econometrica, 69(5):1333–1347, 2001.
125, 193

[69] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman.
Distribution-free predictive inference for regression. Journal of the American Statis-
tical Association, 113(523):1094–1111, 2018. 191, 192

[70] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal, and David C
Parkes. Calibrated fairness in bandits. arXiv preprint arXiv:1707.01875, 2017. 13

[71] Ilan Lobel, Renato Paes Leme, and Adrian Vladu. Multidimensional binary search
for contextual decision-making. In Proceedings of the 2017 ACM Conference on Eco-
nomics and Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017, page
585, 2017. doi: 10.1145/3033274.3085100. URL http://doi.acm.org/10.1145/30

33274.3085100. 11, 13, 19, 20, 22, 23

[72] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online
convex optimization with long term constraints. J. Mach. Learn. Res., 13:2503–2528,
2012. URL http://dl.acm.org/citation.cfm?id=2503322. 48, 49

[73] Arvind Narayanan. Translation tutorial: 21 fairness definitions and their politics. In
Proc. Conf. Fairness Accountability Transp., New York, USA, volume 1170, 2018. 1

[74] Seth Neel, Aaron Roth, and Zhiwei Steven Wu. How to use heuristics for differential
privacy. arXiv preprint arXiv:1811.07765, 2018. 111, 112

[75] Ritesh Noothigattu, Snehalkumar (Neil) S. Gaikwad, Edmond Awad, Sohan Dsouza,
Iyad Rahwan, Pradeep Ravikumar, and Ariel D. Procaccia. A voting-based system
for ethical decision making. In Proceedings of the 32nd Conference on Artificial In-
telligence, (AAAI), pages 1587–1594, 2018. 2

[76] David Oakes. Self-calibrating priors do not exist. Journal of the American Statistical
Association, 80(390):339–339, 1985. 125, 193

[77] Robin Pemantle and Yuval Peres. Concentration of lipschitz functionals of determi-
nantal and other strong rayleigh measures. Combinatorics, Probability and Comput-
ing, 23(1):140–160, 2014. 111, 112

[78] Thomas K Philips and Randolph Nelson. The moment bound is tighter than chernoff’s
bound for positive tail probabilities. The American Statistician, 49(2):175–178, 1995.
156

293

http://arxiv.org/abs/1907.01439
http://doi.acm.org/10.1145/3033274.3085100
http://doi.acm.org/10.1145/3033274.3085100
http://dl.acm.org/citation.cfm?id=2503322

[79] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger.
On fairness and calibration. arXiv preprint arXiv:1709.02012, 2017. 4, 193

[80] Mingda Qiao and Gregory Valiant. Stronger calibration lower bounds via sidestepping.
arXiv preprint arXiv:2012.03454, 2020. 194

[81] Guy N. Rothblum and Gal Yona. Probably approximately metric-fair learning. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 5666–5674, 2018.
URL http://proceedings.mlr.press/v80/yona18a.html. 11, 76, 127

[82] Alvaro Sandroni, Rann Smorodinsky, and Rakesh V Vohra. Calibration with many
checking rules. Mathematics of operations Research, 28(1):141–153, 2003. 125, 186,
193

[83] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds
for applications with limited independence. SIAM Journal on Discrete Mathematics,
8(2):223–250, 1995. 156

[84] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., USA, 1986. ISBN 0471908541. 238

[85] Eliran Shabat, Lee Cohen, and Yishay Mansour. Sample complexity of uniform con-
vergence for multicalibration. arXiv preprint arXiv:2005.01757, 2020. 126, 193

[86] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of
Machine Learning Research, 9(Mar):371–421, 2008. 117, 126, 184, 194

[87] Saeed Sharifi-Malvajerdi, Michael Kearns, and Aaron Roth. Average individual fair-
ness: Algorithms, generalization and experiments. In Advances in Neural Information
Processing Systems, pages 8242–8251, 2019. 127

[88] Maurice Sion et al. On general minimax theorems. Pacific Journal of mathematics,
8(1):171–176, 1958. 83

[89] Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following
the perturbed leader is optimal. CoRR, abs/1903.08110, 2019. URL http://arxiv.

org/abs/1903.08110. 42, 45

[90] Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert E. Schapire. Efficient algo-
rithms for adversarial contextual learning. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, pages 2159–2168, 2016. URL http://proceedings.mlr.press/v48/syrg

kanis16.html. 42, 45, 53, 59, 60, 62, 70

[91] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas.
Conformal prediction under covariate shift. Advances in Neural Information Process-
ing Systems, 32:2530–2540, 2019. 195

294

http://proceedings.mlr.press/v80/yona18a.html
http://arxiv.org/abs/1903.08110
http://arxiv.org/abs/1903.08110
http://proceedings.mlr.press/v48/syrgkanis16.html
http://proceedings.mlr.press/v48/syrgkanis16.html

[92] Sahil Verma and Julia Rubin. Fairness definitions explained. In Yuriy Brun, Brittany
Johnson, and Alexandra Meliou, editors, Proceedings of the International Workshop
on Software Fairness, FairWare@ICSE 2018, Gothenburg, Sweden, May 29, 2018,
pages 1–7. ACM, 2018. doi: 10.1145/3194770.3194776. URL https://doi.org/10.1

145/3194770.3194776. 1

[93] Rakesh V Vohra. Advanced mathematical economics. Routledge, 2004. 267

[94] Peng-Jun Wan, Ding-Zhu Du, Panos Pardalos, and Weili Wu. Greedy approximations
for minimum submodular cover with submodular cost. Computational Optimization
and Applications, 45(2):463–474, 2010. 182, 183

[95] Pak-Hang Wong. Democratizing algorithmic fairness. Philosophy & Technology, 33:
225–244, 2020. doi: 10.1145/3290605.3300830. URL http://doi.acm.org/10.1145/

3290605.3300830. 2

[96] Ariana Yaptangco. Male tennis pros confirm serena’s penalty was sexist and admit
to saying worse on the court. Elle, 2018. https://www.elle.com/culture/a230518
70/male-tennis-pros-confirm-serenas-penalty-was-sexist-and-admit-to-

saying-worse-on-the-court/. 71

[97] Hao Yu and Michael J. Neely. A low complexity algorithm with o(
√
t) regret and

O(1) constraint violations for online convex optimization with long term constraints.
J. Mach. Learn. Res., 21:1:1–1:24, 2020. URL http://jmlr.org/papers/v21/16-4

94.html. 48

[98] Hao Yu, Michael J. Neely, and Xiaohan Wei. Online convex optimization with stochas-
tic constraints. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
1428–1438, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/da0

d1111d2dc5d489242e60ebcbaf988-Abstract.html. 48

[99] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P.
Gummadi. Fairness beyond disparate treatment & disparate impact: Learning clas-
sification without disparate mistreatment. In Rick Barrett, Rick Cummings, Eu-
gene Agichtein, and Evgeniy Gabrilovich, editors, Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW 2017, Perth, Australia, April 3-
7, 2017, pages 1171–1180. ACM, 2017. doi: 10.1145/3038912.3052660. URL
https://doi.org/10.1145/3038912.3052660. 1, 7

[100] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning
fair representations. In International conference on machine learning, pages 325–333.
PMLR, 2013. 12, 77

[101] Shengjia Zhao, Tengyu Ma, and Stefano Ermon. Individual calibration with ran-
domized forecasting. In International Conference on Machine Learning, pages 11387–
11397. PMLR, 2020. 125

295

https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
http://doi.acm.org/10.1145/3290605.3300830
http://doi.acm.org/10.1145/3290605.3300830
https://www.elle.com/culture/a23051870/male-tennis-pros-confirm-serenas-penalty-was-sexist-and-admit-to-saying-worse-on-the-court/
https://www.elle.com/culture/a23051870/male-tennis-pros-confirm-serenas-penalty-was-sexist-and-admit-to-saying-worse-on-the-court/
https://www.elle.com/culture/a23051870/male-tennis-pros-confirm-serenas-penalty-was-sexist-and-admit-to-saying-worse-on-the-court/
http://jmlr.org/papers/v21/16-494.html
http://jmlr.org/papers/v21/16-494.html
https://proceedings.neurips.cc/paper/2017/hash/da0d1111d2dc5d489242e60ebcbaf988-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/da0d1111d2dc5d489242e60ebcbaf988-Abstract.html
https://doi.org/10.1145/3038912.3052660

[102] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the Twentieth International Conference on Machine Learning
(ICML-2003), 2003. 83, 87, 88, 133, 134

296

	Beyond Statistical Fairness
	Recommended Citation

	Beyond Statistical Fairness
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Subject Categories

	Acknowledgements
	Abstract
	List of Illustrations
	1 Introduction
	I Fairness In the Hands of the People
	2 Individual Fairness via Auditing: Mahalanobis Fairness Metric
	2.1 Introduction
	2.2 Related Work
	2.3 Preliminaries
	2.4 Warmup: The Known Objective Case
	2.5 The Full Algorithm
	2.6 Discussion

	3 Individual Fairness via Auditing: No Assumption on the Fairness Metric
	3.1 Introduction
	3.2 Preliminaries
	3.3 Related Work
	3.4 Lagrangian Regret
	3.5 Achieving No Regret Simultaneously
	3.6 Discussion

	4 Fairness Elicitation
	4.1 Introduction
	4.2 Related Work
	4.3 Preliminaries
	4.4 Empirical Risk Minimization
	4.5 Generalization
	4.6 A Behavioral Study

	Appendices
	4.A Missing Details from Section 4.4
	4.B Missing Details from Section 4.5

	II Uncertainty Estimation for Subgroups
	5 Uncertainty Estimation for Subgroups: Offline
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.4 Achieving Mean Conditioned Moment Multicalibration
	5.5 Implementation with Finite Sample and Runtime Guarantees
	5.6 Marginal Prediction Intervals

	Appendices
	5.A Details and Proofs from Section 5.4.1
	5.B Details and Proofs from Section 5.4.2
	5.C Details and Proofs from Section 5.5
	5.D A Submodular Set-Cover Formulation

	6 Uncertainty Estimation for Subgroups: Online
	6.1 Introduction
	6.2 Related Work
	6.3 Preliminaries
	6.4 Online Mean Multicalibration
	6.5 Online Moment Multicalibration
	6.6 Online Multivalid Marginal Coverage

	Appendices
	6.A Unboundedly Many Groups, Bounded Group Membership
	6.B Mean Conditioned Moment Multicalibrators Can Randomize Over Small Support
	6.C Proofs from Section 6.4
	6.D Proofs from Section 6.5
	6.E Proofs from Section 6.6

	Bibliography

