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ABSTRACT

CAUSAL INFERENCE METHODS FOR ADDRESSING POSITIVITY VIOLATIONS AND BIAS IN

OBSERVATIONAL AND CLUSTER-RANDOMIZED STUDIES

Angela Yaqian Zhu

Nandita Mitra

Jason Roy

Observational data are increasingly used to evaluate the effects of treatments on health outcomes.

Causal inference provides a framework for formulating estimands of interest in this setting; how-

ever, identifiability of these estimands relies on certain assumptions. One assumption is called

positivity, which requires the probability of treatment to be bounded away from 0 and 1. That is, for

every covariate combination, we should observe both treated and control subjects. If the positivity

assumption is violated, population-level causal inference necessarily involves some extrapolation.

Ideally, a greater amount of uncertainty around the causal effect estimate is reflected in areas of

non-overlap. With that goal in mind, we construct a Gaussian process model for estimating treat-

ment effects in the presence of practical violations of positivity. Our method does not rely on strong

parametric assumptions, provides a cohesive model for estimating treatment effects, and incorpo-

rates more uncertainty in areas of the covariate space where there is less overlap. Our work also

focuses on the causal analysis of cluster randomized trials (CRTs) with a small number of clusters

and a rare binary outcome. While estimation and covariate adjustment via generalized estimat-

ing equations (GEE) can account for chance imbalances and increase statistical power, analytical

challenges frequently arise in such settings. For example, traditional GEE models tend to produce

negatively biased standard error estimates, and regression adjustment often fails to converge with

a rare outcome. We evaluate the utility of propensity score weighting and regression adjustment

both in conjunction with bias-corrected sandwich variance estimators to precisely estimate a causal

odds ratio and to obtain valid inference. In each project, we assess the proposed approaches and

compare with alternative methods through simulation studies and then demonstrate their imple-

mentation with real use cases, including an observational study of right heart catheterization in

female patients and a CRT that tests a sedation protocol in 31 pediatric intensive care units.
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CHAPTER 1

INTRODUCTION

In this dissertation, we consider two distinct problems in biostatistics pertaining to observational

studies and cluster randomized trials (CRTs), respectively. The objective in clinical studies is often

to assess the effect of a treatment or intervention for some target population . Although randomized

clinical trials are the gold standard, there may be situations in which their implementation is difficult

due to logistic, financial, or ethical considerations. Further, a large amount of data is available from

routine clinical care. For instance, observational data, including electronic health records (EHR) and

public health registries, have become increasingly used to evaluate the causal effects of treatments

on health outcomes. Because randomization is absent, estimation and inference is susceptible to

confounding bias. Causal inference provides a framework for addressing the possible confounding

and formulating estimands, whose identifiability relies on certain conditions (Hernan and Robins,

2020).

To define a causal effect estimand, which is the quantity of interest, the potential outcomes frame-

work is commonly used (Rubin, 2005; Splawa-Neyman, Dabrowska, and Speed, 1990). For a

binary treatment, we can define the potential outcome under treatment as the outcome that a sub-

ject would have if he or she were to be given treatment and the potential outcome under the control

as the outcome that a subject would have if he or she were to be given the control or comparator

treatment. Because, in practice, only the outcome value under the treatment a subject actually

received is available, the missing potential outcome (termed the counterfactual) must be estimated

appropriately (Westreich et al., 2015). Then the treatment effect is estimated with a contrast in

the two potential outcomes, such as the expected difference. Valid estimates of the causal es-

timand rely on several identifiability conditions including the stable unit treatment value (SUTVA)

assumption, the ignorability assumption, and the positivity assumption.

Briefly, SUTVA requires that there be no subject to subject interference and the treatment is well

defined so that the observed outcome is equal to the potential outcome under the treatment actually

received. The ignorability assumption states that the measured covariates are sufficient to account

for all confounding so that conditional on these covariates, treatment is independent of the set of
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potential outcomes. Lastly, conditional on the covariates, probability of being assigned to every

treatment value is positive, essentially requiring all treatments of interest to be observed in every

patient subgroup.

Violations of the positivity assumption are indicated by nonoverlap in the data in the sense that

patients with certain covariate combinations are not observed to receive the treatment of interest.

While covariate values themselves may be used to assess nonoverlap, propensity scores are of-

ten used as a way to evaluate presence of positivity violations and employed in balancing weights,

which address limited overlap (Crump et al., 2009; Li, Morgan, and Zaslavsky, 2018; Stürmer et al.,

2010). Defined to be the estimated conditional probability of receiving the treatment of interest,

propensity scores provide a sense for how likely a subject is to get treatment (Rosenbaum and

Rubin, 1983). However, depending on modeling decisions about variable inclusion and type of

model employed (Brookhart et al., 2006; Sauer et al., 2013; Westreich, Lessler, and Funk, 2010),

evaluations of the degree of nonoverlap and set of subjects that violates positivity may vary. Pos-

itivity violations produce problems for identifiability of causal effects in subgroups with nonoverlap

because the data does not provide information to estimate what the outcome would have been

had all subjects with those characteristics received the treatment that was not observed. Common

methods such as standardization or inverse probability weighting encounter estimation problems

(Hernán and Robins, 2006). In Chapter 2, we emphasize the importance of this often-overlooked

assumption and discuss previously proposed methods to take when data exhibit nonoverlap, which

can be categorized as trimming, weighting, and extrapolation approaches. Note that trimming and

weighting approaches may change the target of inference as they may shift focus to a subpopula-

tion of subjects so that results from different approaches may vary in terms of generalizability. We

distinguish between structural (arising from absolute contraindications to treatment) and practical

violations (which occur when certain patients are eligible but not observed to receive treatment

in the finite sample) and provide insight into which methods are appropriate depending on study

objectives and the population of interest (Westreich and Cole, 2010). To demonstrate alternative

approaches and relevant considerations (including how overlap is defined and the target population

to which results may be generalized) when addressing positivity violations, we employ an elec-

tronic health record-derived data set to assess the effects of metformin on colon cancer recurrence

among diabetic patients (Chubak et al., 2018).
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In Chapter 3, we propose a Bayesian nonparametric model involving Gaussian process (GP) priors

to address practical positivity violations for estimation of a population-level causal effect. A GP

prior characterizes a distribution over functions, providing a flexible way of modeling complex data

patterns while involving any prior knowledge of the treatment effect (Neal, 1998). Specifically, the

mean function may be centered on probable values while the choice of the covariance function

determines the degree of smoothness and the types of additive structure involved (Neal, 1998).

Our proposed model extrapolates causal trends observed for subjects in overlap regions to those

who may violate the positivity assumption. When there are practical violations, population-level

causal inference necessarily involves some extrapolation. A greater amount of uncertainty about

the causal effect estimate should be reflected in such settings.

In the presence of nonoverlap, a model utilizing GP priors provides accurate effect estimation and

better captures the uncertainty when incorporating subjects who are in regions of nonoverlap. The

GP model provides several advantages over the Bayesian additive regression trees (BART) model,

a popular nonparametric method for estimating causal effects (Chipman, George, and McCulloch,

2010; Hill, 2011), for this problem. Since BART uses binary decision rules to make predictions,

it extrapolates poorly and the uncertainty inherent in nonoverlap regions may be underestimated.

Further, proposed approaches for addressing positivity violations that involve BART tend to require

user specified parameters or inputs (Nethery, Mealli, and Francesca, 2019). The GP model’s use

of differences in inputs to fit the model and make predictions allows the extent of nonoverlap to

be built in and accounted for in a continuous manner. Advantages of our method include minimal

distributional assumptions, a cohesive model for estimating treatment effects, and more uncertainty

associated with areas in the covariate space where there is less overlap. We assess the perfor-

mance of our GP model with respect to bias and efficiency using simulation studies and apply it to

a study of critically ill female patients to examine the effect of undergoing right heart catheterization

(Connors et al., 1996).

Chapter 4 considers cluster-randomized trials (CRTs), which randomize groups of subjects rather

than individuals to treatment groups (Hayes and Moulton, 2009), with a small number of clusters

and a rare binary outcome for which standard generalized estimating equations (GEE) methods

lead to invalid inference and possible breakdown of models (Liang and Zeger, 1986). Because

hypothesis testing and confidence intervals with Wald statistics rely on asymptotic theory, a small

3



number of clusters (fewer than 40 in GEE analyses) tend to produce negatively biased variance

estimates (Donner and Klar, 2000; Eldridge and Kerry, 2012; Kahan et al., 2016; Mancl and DeR-

ouen, 2001; Murray, Varnell, and Blitstein, 2004). Although bias corrections have been proposed

to ameliorate this issue, they are rarely utilized as shown by reviews of randomly selected CRTs

that reported 21, 25, and 36 as the median number of clusters, respectively (Huang, Fiero, and

Bell, 2016; Ivers et al., 2011; Kahan et al., 2016). Thus, a CRT with fewer than 40 clusters oc-

curs often yet analyses do not incorporate the appropriate variance corrections. Further, covariate

adjustment may account for chance imbalances and increase statistical efficiency in individually

randomized clinical trial analyses so that recent recommendations have been made by the FDA

regarding inclusion of baseline variables (Benkeser et al., 2021). It is of interest to assess whether

covariate adjustments provide similar improvements for CRTs. With a low incidence binary out-

come, multivariable regression often fails to converge (Allison, 2008). On the other hand, weighting

by propensity scores provides a strategy to improve estimation efficiency without being hindered

by failure to converge due to separation of the data (Turner et al., 2020). To provide practical

recommendations to support the development of statistical analysis plans in cluster trials, we com-

pare propensity score weighting and regression adjustment under a GEE framework in conjunction

with several bias-corrected sandwich variance estimators including approaches due to Mancl and

DeRouen (2001), Kauermann and Carroll (2001), and Fay and Graubard (2001) through extensive

simulations informed by real-world study settings. In an illustration, we apply these approaches to

a CRT that tests a sedation protocol in 31 pediatric intensive care units.
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CHAPTER 2

VIOLATIONS OF THE POSITIVITY ASSUMPTION IN THE CAUSAL ANALYSIS OF

OBSERVATIONAL DATA: CONSEQUENCES AND STATISTICAL APPROACHES

2.1. Introduction

Electronic Health Records (EHR), medical claims data, and public health registries are increas-

ingly used to assess the causal effects of treatments, interventions, or other exposures on health

outcomes. Valid causal inference relies on careful attention to underlying assumptions. Because

treatments are not assigned randomly in observational studies, inference is susceptible to con-

founding bias. The assumption of no unmeasured confounding is often the primary focus of ana-

lysts (Rosenbaum and Rubin, 1983; Roy and Mitra, 2021). To that end, researchers often control

for a large number of pre-treatment covariates using approaches such as regression adjustment or

matching. However, controlling for many patient and disease level characteristics threatens another

vital causal assumption—positivity.

The positivity assumption states that the conditional probability of receiving a given treatment can-

not be 0 or 1 in any patient subgroup as defined by combinations of covariate values (Hernan and

Robins, 2020). Consider an example in which a subgroup of patients never receives the treatment

of interest. In such a subgroup, the treatment effect cannot be estimated directly because outcomes

for treated subjects are never observed. In other words, this lack of variability in treatment assign-

ment would threaten the identifiability of causal effects—whether they can be uniquely determined

or estimated based on observed variables—in both this subgroup and the overall population that

includes this subgroup.

Positivity violations can take two forms. Structural (also called theoretical) violations occur when

it is impossible for a subject to receive a certain treatment, e.g., if certain patient characteristics

constitute an absolute contraindication for treatment (D’Amour et al., 2020). Increasing sample

size does not ameliorate this problem. From the perspective of target trial emulation, structural

positivity holds if we can think of an individual as being eligible to be randomized based on his

or her baseline data (Hernan and Robins, 2020; Hernán and Robins, 2016). On the other hand,

practical (also termed random) violations of positivity occur when assignment to the treatment of
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interest is theoretically possible for patients in a given subgroup but is not observed to occur in the

data under study. Suppose, in general, individuals over the age of 50 with a history of heart failure

have a 10% chance of receiving treatment. In a particular study, however, it is possible that no one

in this subpopulation will be observed to be in the treatment group. We can therefore think of this

as a small sample problem that can occur due to chance (Petersen et al., 2012). As the number

of confounders increases, it becomes less likely to observe both treated and control subjects for all

combinations of covariate values, making practical violations more likely (D’Amour et al., 2020).

Positivity is related to the concept of overlap. Overlap regions are defined by covariate values that

are shared by both treatment groups. One way to assess overlap, especially for a large number

of confounders, is with the propensity score (PS). The PS, denoted by e(X), is the probability of

receiving the treatment of interest conditional on covariates X (Rosenbaum and Rubin, 1983). The

PS can be used to assess overlap because it indicates how likely a subject is to be in either treat-

ment group given covariate values (Figure 2.1). People with characteristics resulting in a PS near

0.5 are expected to be in the overlap region because they are nearly equally likely to be in either

treatment group. Although the estimated PS is a common measure of overlap, there is a distinction

between PS overlap and overlap of the joint distributions of covariates. Specifically, there may be

a subject in the control group that has a very similar estimated propensity score to someone in the

treatment group but their covariate combinations may not match and could even be quite dissimilar.

If PS approaches are used for achieving balance, we may focus only on PS overlap for evaluating

positivity. On the other hand, when the approach involves assessing positivity violations based on

covariate values themselves and when there is interest in generalizing to a population with particu-

lar characteristics, it is important to note that PS nonoverlap may not account for all nonoverlap in

covariate values.

To provide further intuition for why positivity violations create a challenge for causal inference, con-

sider estimation using standard methods for the data displayed in Figure 2.2. Let Y be the outcome

and A be the indicator for treatment assignment. The standardized risk among treated subjects in-

volves calculating P (Y = 1|A = 1, X1, X2), but this conditional probability is not well-defined since

P (A = 1|X1, X2) is 0 forX1 < −1 andX2 < 0 (Figure 2.2). If we use inverse probability of treatment

weighting, treated subjects are given 1
P (A=1|X1,X2)

as weights. However, for those with X1 < −1

and X2 < 0, this fraction is undefined because the denominator is 0 which results in an infinite
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Figure 2.1: Distribution of propensity scores for study populations in which (a) the potential for
positivity violations is low and (b) the potential for positivity violations is high, respectively. Subjects
with propensity scores near 0 and 1 are more likely to violate the positivity assumption.

weight. An initial thought is to force overlap by constructing broader categories (e.g., making age

ranges wider so that both treated and control subjects are present in all age categories). However,

potential residual confounding may become a concern especially since broad categories may result
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in a loss of information. Even regression adjustment relies on extrapolation when estimating the

potential outcomes under treatment for these covariate values, leading to possibly inaccurate and

imprecise estimates if trends in nonoverlap regions are not well captured (King and Zeng, 2006).

It is therefore important for researchers to understand methods to remedy this problem and the

various trade-offs involved with different approaches that have been proposed to deal with positivity

violations.

Figure 2.2: Overlap may be assessed by determining which regions of the covariate space (based
on variables X1 and X2) contain both treated and untreated subjects. These regions may be
visualized by plotting subjects based on their covariate values. Areas where we only see treated
subjects or only untreated subjects would be deemed regions of nonoverlap. Equivalently, the
positivity assumption does not hold for these subjects.

We provide an overview of approaches that have been proposed in the literature for estimating

causal effects when faced with positivity violations. The last review was Petersen et al. (2012)’s in

2012. Here, we provide a comprehensive update on the advancements on this topic and provide

insights and practical advice regarding which approaches have superior performance or should be

employed based on study characteristics.

We demonstrate how the definition of the region of overlap may influence the target estimand (the

quantity we are interested in estimating) and corresponding population of inference. Specifically,

we discuss the suitability of each approach in the context of study objectives and target populations,

which have been largely overlooked. Using data from a study on the association between diabetes

and colon cancer recurrence, we assess how different models for estimating the PS may affect
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nonoverlap regions and how different methods approach treatment effect estimation and inference

(Chubak et al., 2018).

2.2. Methods

2.2.1. Potential Outcomes and Average Treatment Effect

Suppose there are n independent observations from a population. Define treatment assignment as

Ai = 1 if subject i receives the treatment of interest and Ai = 0 if subject i receives a comparator

treatment (commonly, the absence of treatment). For a dichotomous treatment, each subject i has

two potential outcomes: Yi(1) , the outcome under treatment, and Yi(0), the outcome under the

comparator (Rubin, 2005). However, since each subject only receives one treatment in a study, the

observed outcome is Yi = AiYi(1) + (1 − Ai)Yi(0). Furthermore, we define Xi to be a vector of p

pre-treatment variables or covariates for the ith subject.

A common objective of causal inference is to estimate the average treatment effect (ATE), de-

fined as the mean difference in potential outcomes under treatment and comparator, respectively:

E[Y (1) − Y (0)]. This represents the average effect had everyone received the treatment of in-

terest versus had everyone received the comparator. Identifiability of this parameter rests on

the consistency, stable unit treatment value, ignorability, and positivity assumptions (Hernan and

Robins, 2020; Rosenbaum and Rubin, 1983). In this paper, we focus on the positivity assumption:

P (Ai = a|Xi) > 0, for a = 0, 1. If this probability is 0 for some values of X, then there is a structural

violation of the positivity assumption. Even with no structural violation, practical violations are pos-

sible in finite samples. In a given data set, it is often difficult to distinguish between structural and

practical violations although subject matter knowledge may provide information about treatment

protocol.

2.2.2. Approaches for Addressing Positivity Violations

We review several methods that have been proposed for dealing with violations of positivity for the

setting with two treatment or exposure groups. For a continuous treatment or one involving more

than two levels, positivity may be defined in terms of the generalized propensity score (GPS), the

conditional density of a treatment a given the covariates r(a, x) = fA|X(a|x) (Hirano and Imbens,

2004; Imbens, 2000). Briefly, the positivity assumption requires that for all treatment values a and

covariate values x, r(a, x) > 0; that is, the conditional probability of receiving each treatment level

is positive. Common approaches for inferring causality for a multivalued or continuous treatment
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rely on regression modeling of the outcome, which may use machine learning methods and doubly

robust estimation (Galagate, 2016; Hill, 2011; Kennedy et al., 2017; Kreif et al., 2015; Linden et al.,

2016). To assess nonoverlap in multiple treatment settings, one may compare the distributions of

estimated GPS for each treatment across all treatment groups via boxplots or histograms; quartiles

of exposure may be employed in the continuous treatment setting (McCaffrey et al., 2013). For

this paper, we will focus on the binary treatment setting because it is the most commonly explored

setting in the existing literature and has a well-developed set of methods available for comparison.

Trimming

Trimming involves identifying a subgroup of subjects for whom the positivity assumption appears to

be violated, removing them from the data set, and drawing inference about the remaining sample

(Ghosh, 2018; Petersen et al., 2012). Often, the PS is used to identify the subjects to discard.

PS-based trimming first estimates PSs from the full cohort and then removes subjects with values

that are rare in either the treated or control group. Exclusion of subjects reduces the effective

sample size, which may increase the variance. Crump et al. (2009) propose a method that trims

those with PSs near 0 and 1 and seeks to obtain a subsample for which the conditional ATE, given

covariate values for the particular subsample, has minimum variance. This approach searches for

the subgroup with PSs in the interval [α, 1−α] (Figure 2.3(a)). The optimal value of α is the one that

provides the most precise estimate of ATE over the class of semiparametric efficient estimators.

Thus, their definition of overlap employs PS bounds; the authors suggest that the range [.1, .9],

which corresponds to α = .1, results in good performance generally. Because this set is purported

to satisfy positivity, standard inference may be used for these observations. Yang et al. (2016) use

estimated GPS to extend this trimming approach to multi-level treatments.

Another approach that addresses subjects in the tails of the PS distribution is Stürmer et al. (2010)’s

asymmetrical trimming, which seeks to restrict treatment comparisons to those with a common co-

variate range. Specifically, treated subjects below a certain percentile of the PS (say, 1st, 2.5th,

or 5th) and untreated subjects above a certain PS percentile (say, 99th, 97.5th, or 95th) are dis-

carded—essentially those who are given a treatment contrary to what is expected. Common PS

approaches, such as direct adjustment, matching, inverse probability weighting, and stratification

may be used to estimate treatment effects for the remaining subsample. Trimming in this way has

been shown to reduce bias.
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Matching, which can be considered a type of trimming, is another approach that can address posi-

tivity violations. For each treated subject, one or more control subjects with similar covariate values

are selected. Two matching algorithms that have been proposed for limited overlap settings are

optimal matching and cardinality matching (Rosenbaum, 2012; Visconti and Zubizarreta, 2018).

Optimal matching is an approach that seeks to minimize the total covariate or propensity score dis-

tances between matched treated and control pairs. Details regarding the algorithm may be found

in Rosenbaum (2012). Cardinality matching solves an optimization problem in which the objective

function seeks to maximize the number of matched sets, while the balancing constraints determine

the allowable distance within matched sets based on a pre-specified tolerance (Figure 2.3(b)). The

balance constraints aim to reduce bias by constructing comparable treatment groups while the ob-

jective function aims to reduce variance. This procedure accommodates different forms of balance

based on a chosen feature of the empirical distributions of observed covariates (Visconti and Zu-

bizarreta, 2018). Original covariates, rather than the PS, may be used in dealing with nonoverlap,

allowing covariates to be directly balanced (Visconti and Zubizarreta, 2018). Note that a very large

number of variables may require more computation time and give fewer matches for a given degree

of balance. Subjects who are not matched are trimmed, and estimation and inference are con-

ducted on the remaining subsample. When matching is carried out with respect to treated subjects

and there is a match for each treated subject, the resulting estimand is the average treatment effect

on the treated (ATT) rather than the ATE. Some external validity may be lost because the popula-

tion to which results can be generalized is the one observed to receive the treatment of interest. If

there are treated subjects for whom there are no matching untreated subjects, the target population

consists of subjects with covariate values found in the matched sample.

Other criteria have been proposed for matching to trim samples (Ho et al., 2007). For instance,

Cochran and Rubin (1973) discuss caliper matching to limit within-match differences based on

some threshold. Other approaches match on estimated PSs based on similarity to a specified digit

and enforcing bounds on the range of the PS—i.e., comparator subjects with PSs lower than the

minimum PS in the treatment group are discarded (Dehejia and Wahba, 2002; Heckman, Ichimura,

and Todd, 1997; Smith and Todd, 2005; Vincent et al., 2002). Because the PS is a summary

measure of variation in covariates, it may or may not capture the nonoverlap in individual covariates.

Several of these trimming methods evaluate the positivity assumption based on PS values and do

not necessary ensure that the positivity is not violated for covariates, which is a possible drawback.
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Figure 2.3: Several proposed methods for addressing positivity violations. (a) Given optimal value
of α, subjects with estimated PS less than α and greater than 1−α are discarded—those to the left
of the first dashed line and those to the right of the second. (b) Pairs of treated and control subjects
from cardinality matching are connected by lines. Points that are not connected to another repre-
sent trimmed subjects. (c) The dashed red line is at M1, the maximum BART posterior standard
deviation under treatment among treated subjects. Control subjects corresponding to points above
this line are trimmed. (d) Treated subjects with PS near 0 and control subjects with PS near 1 are
given the most weight because they are most likely to be in either group.

Unlike the previously described methods, which use the subjects’ pre-treatment variables for trim-

ming decisions, Hill and Su (2013) address overlap by using outcome information via Bayesian Ad-

ditive Regression Trees (BART) (Chipman, George, and McCulloch, 2010). Suppose the expected

potential outcomes are modeled by Ê(Yi(0)|Xi = x) = g(0, x) and Ê(Yi(1)|Xi = x) = g(1, x)

for each subject i. There tends to be more uncertainty in BART counterfactual outcomes for a

subject with covariate values in an area of little or no overlap. Defining sg0i = ŝd(g(0, Xi)) and

sg1i = ŝd(g(1, Xi)) to be the counterfactual standard deviations under the control and under treat-

ment, a rule may trim subject i with Ai = a if sg1−a

i > Ma, where Ma = maxjs
ga
j is the maximum

standard deviation from the model for subjects given treatment a (Figure 2.3(c)). Although their

approach avoids specifying the PS model, using BART to model the covariates themselves may be

unwieldy with high dimensional data. Furthermore, specifying the cutoff in this way may overlook

nonoverlap regions that have few data points. This approach has been generalized to the setting
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of three or more treatments by Hu et al. (2020), who apply analogous discarding rules to each

treatment group.

In general, trimming methods discard subjects who may be problematic from a positivity standpoint

so that the positivity assumption holds in the resulting subsample. This means that the estimates

of ATE may only generalize to the population reflected by that subsample. For matching, although

balanced comparisons become possible, the target of inference shifts to the matched population,

which consists of characteristics present in the matched sample. Thus, when trimming or matching

is employed, the characteristics of the sample on which inference is based should be communicated

(Traskin and Small, 2011).

Weighting

Inverse probability of treatment weighting, though commonly used to control for confounding and

selection bias, runs the risk of unstable or infinite weights in situations where there is nonoverlap

(e.g., when the denominator of the weight is close to 0). Alternative weighting schemes have been

proposed that mitigate this problem (Petersen et al., 2012). Li, Morgan, and Zaslavsky (2018)’s

overlap weights deal with subjects most likely to violate the positivity assumption by giving greater

weight to covariate strata that have variability in treatment assignment (Li, Thomas, and Li, 2019).

Specifically, the overlap weight is wi = 1−êi for subject i receiving the treatment of interest and wi =

êi for subject i receiving the comparator treatment, where êi is the estimated PS; thus, subjects

are weighted by their probability of being in the opposite treatment group. This upweights people

who are likely to receive either treatment and downweights treated subjects with PS near 1 and

control subjects with PS near 0 (Figure 2.3(d)). The resulting estimand corresponds to the “overlap”

population, which consists of covariate combinations for which the treated and control groups have

the most overlap. Individuals with these characteristics have a substantial probability of being

in either treatment group and are the ones to whom treatment effect estimates generalize. In

clinical studies, there may not be a consensus or clear decision regarding treatment assignment

for these patients; that is, they have the most treatment equipoise and may be randomized to

either treatment. Li and Li (2019) have generalized the overlap weights to the context of multiple

treatments by defining them in terms of estimated GPS.

13



Extrapolation

Despite maintaining the identifiability of causal estimates, a limitation of the approaches discussed

thus far is that they may change the target of inference. Estimands correspond to a population that

differs from the combined treated and control population because certain subgroups have been

excluded from or downweighted in the analysis. To address this, Nethery, Mealli, and Francesca

(2019) propose a two-stage procedure for estimating population causal effects via inference on the

entire sample. Motivated by environmental health studies that serve to inform policy, the authors

emphasize the importance of inference that preserves the original estimand and generalizes to

the original population of interest. As we discuss later, this is appropriate for addressing random

violations of positivity due to finite sample size. Their definition of overlap is based on two user-

specified parameters, u (a number less than 1 reflecting a PS range) and v (a count of subjects),

and estimated PSs. For each subject i whose PS is êi, we take v + 1 treated subjects with the

closest PSs to êi and see if the range of PSs for this group is less than u and covers êi. Then, we

make the same assessment but with control subjects. If both ranges are less than u, then subject

i is considered in the region of overlap (Nethery, Mealli, and Francesca, 2019). Otherwise, subject

i is placed in the region of nonoverlap. This provides flexibility in defining overlap—the required

amount of data support may differ for different studies. Nethery, Mealli, and Francesca (2019)

recommend u = 0.1 · range(ê), v = 10 as the default specification although altering these values

based on sample size may provide better assessments of nonoverlap.

Their approach employs two types of models. In the imputation phase, a BART model is fit to

subjects in the overlap region and is used to predict individual causal effects. In the subsequent

smoothing stage, a restricted cubic spline (SPL) is fit to the estimated effects obtained from BART.

The trends in the region of overlap are extrapolated to subjects in the region of nonoverlap while

using their observed variables. An added variance component for those with nonoverlap accounts

for the higher uncertainty. However, we note that the authors’ specification of this component may

lead to excessively conservative standard errors. To estimate the population ATE, a Bayesian

bootstrap is performed. The overall approach is called BART+SPL.

If positivity violations are present, standard regression methods extrapolate beyond the overlap

region, relying on modeling assumptions to do so. These approaches assume the outcome model

is correctly specified for the covariate space represented by data, even in areas where there are
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no observed data for a particular treatment group. Further, the uncertainty associated with the

extrapolation might not be conveyed in the resulting estimates.

2.2.3. Considerations When Dealing with Positivity Violations

Type of Positivity Violation

The type of positivity violation has implications for the target causal estimand and the population

to which it applies. With structural violations, since it is clinically impossible for certain patients to

receive a treatment, estimating the effect on these patients is not of interest as they will either always

or never receive treatment. Thus, structural violations, as determined by eligibility guidelines, may

be dealt with using trimming or weighting approaches that shift the population for which inference

is made. Interpretation of the causal effect depends on who remains or is upweighted in later

analyses.

When there are practical violations, subjects with certain covariate values may be observed to not

have received treatment. However, there are people in the population with these covariates who

are actually eligible for the treatment. How do we then understand the treatment effects on these

individuals? Estimators that alter the target of inference do not achieve the intended objective of

preserving the original population ATE. Thus, careful consideration should be given to whether each

subject is part of the population of interest when deciding on the approach (Figure 2.4). Further,

since many proposed methods for addressing overlap rely on estimated PSs, decisions that are

involved in estimation of these values warrant attention.

Specification of the Propensity Score Model

Defining overlap based on the estimated PS depends on modeling decisions regarding the PS.

Two specific decisions involve which variables to include in the PS model and how to model them.

Variable selection is either knowledge-driven or data-driven (Sauer et al., 2013), and the effects

of including certain types of variables in the PS model on effect estimates have been explored by

Brookhart et al. (2006). Variables may be generally described as confounders (cause for both treat-

ment and outcome), instruments (cause for treatment only), and risk factors (variables associated

only with outcome). Ignorability (no unmeasured confounding) would hold when all confounders are

included in the model, but it would also be satisfied if instruments and risk factors in addition to all

confounders are in the model. Even though ignorability would hold in either case, the subjects in the

overlap and nonoverlap groups might differ; including a strong instrument may make it less likely
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Figure 2.4: Considerations for addressing positivity violations or nonoverlap in data analysis.

for positivity to be satisfied. Decisions regarding variable inclusion have implications for treatment

effect estimation with inclusion of confounders and risk factors tending to provide the most efficient

estimates (Brookhart et al., 2006).

The most common modeling choice for estimating the PS is logistic regression, which requires

specifying important interaction terms. On the other hand, nonparametric methods, such as BART

(Chipman, George, and McCulloch, 2010), and machine learning algorithms, such as gradient

boosting machine (GBM) (Friedman, 2001; Ridgeway, 2007), provide greater flexibility in modeling

PSs. Super Learner (SL), an ensemble machine learning approach, combines multiple parametric

and nonparametric models and uses cross-validation to assess their respective predictive perfor-

mances (Laan, Polley, and Hubbard, 2007). The choice of model affects PS estimates, which in

turn can affect the overlap region and ultimately treatment effect estimates.

2.3. Addressing Nonoverlap in a Colon Cancer Recurrence Study

We use EHR data for a cohort of colon cancer patients treated in the Kaiser Permanente Washing-

ton (KPWA) health care system to illustrate differences across the alternative methods described

above. Data for patients with stage I-IIIA colon cancer diagnosed between 1994 and 2014 were

derived from the KPWA Data Warehouse and manual chart abstractions. Complete details on
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the inclusion and exclusion criteria have been previously published (Chubak et al., 2018). In the

present analysis, we focus on patients with diabetes and assess the effect of metformin use, the

most common medication used to treat diabetes (Cavaiola and Pettus, 2017; Krentz and Bailey,

2005), compared to that of no metformin medication on colon cancer recurrence (binary outcome)

between 90 days after end of incident cancer treatment and the end of follow up, which was the

earliest of death, disenrollment, or medical records abstraction. Potential confounders include age,

sex, race, Charlson co-morbidity score, primary tumor location, stage of primary cancer diagnosis,

whether the cancer was diagnosed following a screening examination, treatment with chemother-

apy, treatment with radiation, smoking status, weight, prior non-colon cancer diagnosis, highest

hemoglobin A1c (HbA1c) measurement in the period from 1 year prior to cancer diagnosis to 90

days after end of cancer treatment, prior hypertension, prior hypercholesterolemia, and use of in-

sulin and/or sulfonylurea. Our cohort of interest consists of patients with diabetes and available

HbA1c data (n = 216)—80 treated subjects and 136 comparators.

Using this sample, we assess the association between metformin and the recurrence of colon

cancer. Previous studies have shown metformin to lower the risk of cancer development, and

metformin has been found to be significantly associated with a smaller risk of primary colon cancer

in subjects with diabetes (Dowling, Goodwin, and Stambolic, 2011; Higurashi and Nakajima, 2018;

Sehdev et al., 2015; Zhang et al., 2011). Because metformin is already the recommended first-

line treatment for diabetes, greater interest lies in whether its use may reduce cancer recurrence,

potentially even in patients without diabetes. Prescribing practices giving rise to data observed

in routine clinical care may result in clustering of variables and possibly positivity violations. For

instance, recommended diabetes treatment tends to depend on which range the patient’s HbA1c

levels fall (Cavaiola and Pettus, 2017).

2.3.1. Approach

We first compare different approaches to modeling the PS— logistic regression with only the main

effects for all the variables, BART, GBM, and SL (which includes BART, Bayesian logistic regression,

classification and regression training (caret), GBM, logistic regression, and random forest)—and

their effect on the overlap region. We consider three PS-based definitions of the overlap region for

trimming.

1. (C): Those with PSs outside [.1, .9] are excluded (Crump et al. (2009)’s recommendation).
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2. (S): Stürmer et al. (2010)’s asymmetrical trimming of treated subjects with PS below the 5th

percentile and control subjects with PS above the 95th percentile.

3. (N): Using Nethery, Mealli, and Francesca (2019)’s definition of the region of overlap with

u = .1, v = 7.

The size of the trimmed sample and differences in overlap status are compared across the different

PS models. Next, we examine the resulting subsamples provided by the various trimming strategies

in terms of their empirical covariate distributions. Further, we provide effect estimates in the context

of target estimands and populations. The employed methods are as follows (Table 2.1).

Table 2.1: Methods for addressing positivity violations that we employ in the colon cancer recur-
rence data analysis.

Approach Method Details

PS-based
trimming

(C), (S), and (N)
Logistic PS PS are estimated using the specified model or algorithm,

and trimming is performed based on the three definitions of
overlap.

(C), (S), and (N)
BART PS

(C), (S), and (N)
GBM PS

(C), (S), and (N)
SL PS

Alternative
trimming

appraoches

Cardinality matching

We implement the fine balance (exact balance of categorical
variables), which ensures equal counts for nominal covariate
categories between the treatment groups
(Rosenbaum, Ross, and Silber, 2007). Continuous
covariates are binned using 10 categories.

Hill & Su

For cut-offs, we define M1 to be the 90th percentile of sg1i
for subjects who received metformin and M0 to be the 90th
percentile of sg0i for those who did not. These bounds
trim subjects whose counterfactual standard deviation are
greater than most (90%) of the standard deviations under the
observed treatment condition, avoiding the impact of
extreme outliers in either treatment group and ensuring more
overlap in the trimmed sample.

Weighting OW Estimated PSs from the four types of models are used to
compute weights

Extrapolation BART+SPL We specify u = .1, v = 7.
(C): Crump et al.’s definition of overlap
(S): Stürmer et al.’s definition of overlap
(N): Nethery et al.’s definition of overlap
PS: propensity score
BART: Bayesian additive regression trees
GBM: gradient boosting machines
SL: Super Learner
OW: overlap weights
BART+SPL: extrapolation method for addressing nonoverlap as proposed by Nethery et al. (2019)
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We compute the average causal effect as a risk difference from the alternative trimming ap-

proaches, overlap weights, and BART+SPL. Specifics regarding estimation for each method are

presented in the next section.

Calculation of Effect Estimates

For the propensity score trimming methods, we use Horvitz-Thompson for estimation of the effect of

metformin on the trimmed sample (Horvitz and Thompson, 1952). Specifically, we define wi =
1

ê(xi)

for treated subjects and wi =
1

1−ê(xi)
for control subjects, and we obtain a nonparametric estimate

of the ATE:

∆ =

∑n
i=1 wiAiYi∑n
i=1 wiAi

−
∑n

i=1 wi(1−Ai)Yi∑n
i=1 wi(1−Ai)

Standard errors and 95% confidence intervals are obtained using 1000 bootstrap replications. The

average causal effect obtained from cardinality matching is an unadjusted risk difference for the

matched sample. The estimator obtained using Hill & Su’s BART posterior standard deviations

(SD) approach is the mean posterior difference in BART estimated potential outcomes for only

those in the trimmed sample. Corresponding standard errors and 95% credible intervals are also

obtained from the posterior estimates. Estimators from overlap weights and BART+SPL follow the

original procedures (Li, Morgan, and Zaslavsky, 2018; Nethery, Mealli, and Francesca, 2019).

2.3.2. Results

Assessments of overlap based on propensity scores

PSs estimated using logistic regression, BART, GBM, and SL are shown in Figure 2.5. Logistic

regression resulted in more subjects with estimated PS very close to 1. The nonparametric (BART)

and machine learning approaches (GBM and SL) gave similar PS distributions and show greater

separation of those who are less likely to take metformin.

Using Crump et al.’s definition, the percentages of subjects remaining in the analytic sample after

trimming were 81.5%, 99.1%, 80.1%, and 98.1% when logistic regression, BART, GBM, and SL,

respectively, were used to estimate the PS. The analogous percentages from Stürmer et al.’s def-

inition were 92.1%, 94.0%, 95.4%, and 92.1%. Based on Nethery et al.’s definition, the overlap

proportion based on logistic PS was 58.8%, and BART, GBM, and SL PS gave overlap proportions

of 83.8%, 25.5%, and 45.8%, respectively. For PSs estimated with logistic regression, the pro-

portion of subjects who had overlap statuses that agreed—that is, being designated in the overlap
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Figure 2.5: Histograms of propensity scores estimated using (a) logistic regression, (b) Bayesian
additive regression trees (BART), (c) gradient boosting machines (GBM), and Super Learner (SL).

region or in the nonoverlap region by all three definitions—was 66.7%. The analogous percentages

for BART, GBM, and SL were 84.3%, 27.8%, and 46.3%, respectively. Even comparing the two

approaches that trim at the tails, (C) and (S), the proportions in agreement were 89.4%, 94.0%,

80.1%, and 92.1%, for logistic regression, BART, GBM, and SL, respectively. These suggest that

different definitions for overlap can substantially differ in their classifications of which subjects satisfy

the positivity assumption. Although logistic regression and GBM gave PSs closer to 1, indicating

certain subjects are very likely to receive metformin, there is a substantial number of values near

the middle. Trimming only at the tails of the PS distributions resulted in a much larger subsample.

On the other hand, Nethery et al.’s definition using the specified u and v values resulted in less

overlap because of the small sample size and differences in PS values between those receiving

metformin and those who did not. Larger u or smaller v would result in fewer subjects in the re-

gion of nonoverlap, indicating the impact of these user-specified parameters on assessments of

nonoverlap.

Table 2.2 gives the percentages of subjects who had the same overlap status under different PS

models. There is a smaller discrepancy between logistic regression and each of the other models
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Table 2.2: Percentage (%) of subjects with the same overlap status (either trimmed or retained)
based on estimated propensity scores obtained from various types of models.

Logistic BART GBM Super
Learner

Crump et al.’s
recommendation to

exclude those with PS
outside [.1, .9]

Logistic 100.0
BART 82.4 100.0
GBM 81.0 81.0 100.0

Super Learner 83.3 99.1 81.9 100.0

Stürmer et al.’s trimming
at the lower and upper 5th

percentiles

Logistic 100.0
BART 96.3 100.0
GBM 93.9 95.8 100.0

Super Learner 100.0 92.6 90.3 100.0

Nethery et al.’s definition
of the region of overlap

Logistic 100.0
BART 72.2 100.0
GBM 61.1 41.7 100.0

Super Learner 73.1 61.1 73.1 100.0

when trimming occurs at the tails of the PS distribution. Because there are fewer subjects with

PSs near 0 and 1, most are considered in the overlap region. When the definition of overlap

from Nethery et al. is used, the agreement across models tends to be low with 41.7% of subjects

having the same overlap status when comparing BART and GBM estimated PSs, for example. By

assessing nonoverlap across the PS range, the Nethery et al. definition better captured the amount

of nonoverlap and the differences in PS values estimated using different models. Thus, although

the overall amount of nonoverlap may appear similar, different models may give different estimates

and disagree on the overlap status for a particular subject.

Shifts in target populations and estimators

Not only does trimming reduce sample sizes, but subject characteristics may also change (Table

2.3). (We include the covariate distribution for the samples from Stürmer et al.’s asymmetrical

trimming as Table A.1 in Appendix A.) For instance, the subsamples based on logistic, GBM, and

SL estimated PSs and Nethery et al.’s definition tend to have a smaller proportion of male subjects

and lower Charlson score on average than the original sample. For the distribution of race, trimming

based on logistic estimated PS, GBM and SL estimated PS using Nethery et al.’s definition, and

cardinality matching gave samples that did not contain all the original racial categories. Thus, for

rare characteristics, trimmed samples may exclude some subgroups entirely, suggesting a change

in the population of inference. Although Hill & Su’s approach did not discard many subjects, the

percentage in the trimmed sample that received chemotherapy (9.3%) is lower than that of the
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original sample (13.0%); this difference from the original is larger than those observed for the other

approaches (even ones that discarded substantially more observations). Thus, the distribution of

covariate values in the sample may differ by discarding rules.

Table 2.3: Sample size and descriptive statistics at cancer diagnosis for covariates of interest for
the original and trimmed samples.

Original
(C)

Logistic
PS

(N)
Logistic

PS

(N)
BART

PS

(C)
GBM
PS

(N)
GBM
PS

(C)
SL
PS

(N)
SL
PS

Cardinality
Matching

Hill &
Su

n 216 176 127 181 173 55 212 94 88 194
Age 70 (11) 70 (10) 71 (10) 71 (10) 69 (10) 70 (9) 70 (11) 70 (10) 68 (11) 71 (11)
Sex (male) 56.5 55.1 49.6 55.8 57.2 49.1 57.1 48.9 56.8 52.6
Race

WH 83.8 83.0 84.3 84.0 80.9 78.2 83.5 84.0 79.5 85.1
BA 6.0 5.1 4.7 5.0 6.9 9.1 6.1 5.3 6.8 5.2
AS 5.6 6.8 5.5 6.6 6.4 7.3 5.7 8.5 6.8 5.7
IN 1.4 1.7 2.4 1.7 1.7 3.6 1.4 1.1 2.3 1.5

HP 0.5 0 0 0.6 0.6 0 0.5 0 0 0.5
MU 0.9 1.1 0.8 0.6 1.2 0 0.9 0 0 1.0

OT/UN 1.9 2.3 2.4 1.7 2.3 1.8 1.9 1.1 4.5 1.0

Charlson score 2.38
1.67

2.15
(1.48)

2.22
(1.54)

2.34
(1.58)

2.21
(1.51)

2.18
(1.39)

2.33
(1.64)

2.14
(1.36)

2.15
(1.43)

2.29
(1.58)

Tumor location
Left 40.3 39.8 38.6 42.0 42.8 40.0 41.0 48.9 40.9 41.8

Transverse 9.7 9.7 10.2 10.5 9.8 12.7 9.9 9.6 15.9 8.2
Right 50.0 50.6 51.2 47.5 47.4 47.3 49.1 41.5 43.2 50.0

Tumor stage
I 42.6 41.5 42.5 42.0 42.8 34.5 42.5 37.2 40.9 46.9

IIA 45.8 46.0 48.0 46.4 44.5 54.5 45.8 53.2 45.5 42.3
IIB 6.9 7.4 4.7 6.1 8.7 7.3 7.1 5.3 9.1 6.7

IIIA 4.6 5.1 4.7 5.5 4.0 3.6 4.7 4.3 4.5 4.1
Screening 26.4 25.6 27.6 27.6 27.2 32.7 26.9 28.7 27.3 27.3
Chemotherapy 13.0 12.5 11.0 11.6 13.9 12.7 13.2 13.8 15.9 9.3
Radiotherapy 2.8 2.8 3.1 3.3 3.5 3.6 2.8 4.3 2.3 2.1

Weight 199.09
(50.41)

199.02
(46.28)

195.01
(42.97)

198.10
(51.18)

201.21
(49.53)

198.36
(47.46)

199.99
(43.38)

191.99
(43.38)

204.18
(42.54)

198.10
(50.68)

Smoking 57.4 55.1 52.0 56.4 53.8 47.3 56.5 50.0 52.3 55.7
Prior non-colon
cancer 12.0 11.4 11.0 11.0 11.0 14.5 11.3 13.8 6.8 12.9

HbA1c 8.15
(2.02)

8.18
(1.94)

8.16
(2.00)

8.12
(2.00)

8.38
(1.99)

8.61
(1.84)

8.19
(2.02)

8.54
(2.10)

8.54
(1.94)

7.99
(1.95)

Hypertension 62.0 60.2 59.8 61.3 62.4 65.5 61.3 56.4 63.6 61.3
Hyper-
cholesterolemia 33.3 31.8 29.1 32.0 32.4 25.5 33.0 26.6 25.0 30.9

Insulin Use 36.1 33.0 35.4 35.4 35.3 41.8 35.4 41.5 37.5 33.0
Sulfonylurea 34.7 35.2 32.3 33.7 34.1 29.1 35.8 34.0 28.4 34.5
The cells for continuous variables present mean (SD) and those for categorical or binary variables give percentages (%).
(C) BART PS is not included because only two subjects were trimmed.
The categories for race are White (WH), Black or African American (BA), Asian (AS), American Indian or Alaska Native (IN),
Native Hawaiian or Other Pacific Islander (HP), multiple categories reported (MU), and other/unknown (OT/UN).
HbA1c refers to hemoglobin A1c, a measure of average blood sugar levels.

Figure 2.6 presents effect estimates from the trimming procedures, overlap weighting, as well as

BART+SPL. With the exception of cardinality matching and Hill & Su’s method, point estimates

suggest that metformin may have a protective effect against colon cancer recurrence, as a smaller

proportion of those given metformin experienced recurrence. However, we would not necessarily
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expect the estimates to be the same as they are measuring different quantities and reflect differ-

ences in how positivity violations were addressed. The estimates may also correspond to different

populations as discussed previously. For trimming methods, the target population reflects the sub-

sample remaining after discarding observations. On the other hand, BART+SPL preserves the

original population intended for inference. The standard error from the BART+SPL, however, is

larger than those obtained for the other methods, suggesting a lack of efficiency.

Figure 2.6: Effect estimates and 95% intervals for various methods for addressing nonoverlap. For
methods that use BART as an outcome model, a 95% credible/posterior interval is given. The
outcome was not observed (no recurrence) in the trimmed sample for the (N) GBM PS method.

2.4. Discussion

In observational studies, ignoring positivity violations may result in unstable or inaccurate estimates.

To address nonoverlap, the appropriate approach should be governed by the way overlap is defined,

the study’s objectives, and the population of interest. Our data analysis demonstrates that the

distribution of subject characteristics may be altered because of trimming since certain subjects

are left out of the analysis. Weighting methods also change the covariate distribution by making

certain characteristics more prominent. Thus, although trimming and weighting approaches focus
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analysis on the sample for which positivity holds, they shift the target of inference. To preserve

the original target of inference, extrapolation methods (e.g., BART+SPL) are recommended, but

the added uncertainty from extrapolating to nonoverlap regions must be accounted for with larger

estimates of variability.

The estimates of the ATE of metformin on colon cancer recurrence obtained from the various meth-

ods differed but their validity depends on the study’s objectives. In this case, all methods suggested

that metformin is not significantly related to colon cancer recurrence, but it is important to note that

these results may correspond to different patient populations and different estimands.

To estimate causal effects, the positivity assumption may be evaluated by comparing the treatment

and comparator groups in terms of their confounder values. Considering whether each patient

subgroup is in the population of interest using treatment eligibility guidelines may help determine

whether the violation is structural or practical. Depending on the approach employed, the popula-

tion to which results may be generalized and specifications of user-defined parameters should be

communicated.

Given the increasing emphasis on personalized medicine, it is also important to consider positivity

in that context (Yang et al., 2021). If a subgroup analysis was deemed appropriate for a given

study, then it is recommended that the propensity scores be re-estimated for that subgroup. Along

with the re-estimation, all of the accompanying diagnostics should be repeated including checking

for positivity violations, and if needed, the approaches that we have presented including trimming,

weighting, or extrapolation could be applied to the subgroup.

Although we have focused on the dichotomous treatment setting in this paper, we note that there

is a need to extend approaches that address positivity violations to settings with multi-level or

continuous treatments. Further, the possibility of time-dependent treatments and covariates raises

questions regarding how positivity may be assessed in longitudinal studies and which models are

appropriate for addressing violations. Future studies that consider covariate nonoverlap in these

more complex settings are warranted.
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CHAPTER 3

ADDRESSING POSITIVITY VIOLATIONS IN CAUSAL EFFECT ESTIMATION USING

GAUSSIAN PROCESS PRIORS

3.1. Introduction

Researchers often aim to infer the causal effects of a treatment on a population of interest from

observational studies. Identification of causal effects from observational data relies on assump-

tions including ignorability, often referred to as “no unmeasured confounding,” which holds when

treatment assignment is random (that is, independent of potential outcomes) given measured con-

founders (Hernán and Robins, 2006). If the treatment received depends on observed covariates,

then the distribution of these covariates is expected to differ by treatment group. This raises con-

cerns about violations of a second identifying assumption called positivity. Positivity assumes that

there is a non-zero probability of receiving treatment for all individuals. If there is a subpopulation

defined by covariates for which one of the treatments is not observed, causal contrasts for that sub-

group cannot be identified without further assumptions (Imbens and Rubin, 2015; Westreich and

Cole, 2010).

Theoretical (or structural) violation of the positivity assumption occurs when a subpopulation of

individuals have zero probability of receiving at least one of the treatments, so that even if we let

the sample size go to infinity, we would still never observe all treatment values. This can happen,

for example, when treatment is contraindicated in a certain subgroup of patients because of their

age, comorbidities, and family history of disease. D’Amour et al. (2020) elaborate on this type of

violation in the context of high-dimensional covariates. On the other hand, practical (also called

random) violation of positivity arises when, in a given observational data set, a subpopulation is not

observed to receive a particular treatment by chance. For example, suppose in a sample, no males

between the ages of 35 to 45 receive treatment A purely by chance. In reality, their probability of

receiving treatment A may be small but not zero. In this case, we will not be able to learn about the

treatment effect of A in this subpopulation of men without making additional modeling assumptions.

We expect practical positivity violations to arise in clinical data, especially when there are a large

number of covariates. However, we could potentially learn about these nonoverlap regions using
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modeling. For instance, if we are willing to assume an additive linear regression model, we could

learn about males treated with treatment A via linear interpolation or extrapolation from younger or

older men who received treatment A. The disadvantage is that we would need to rely on strong

parametric assumptions (King and Zeng, 2006). Further, these approaches may underestimate the

degree of uncertainty that would be expected in data-sparse regions.

Trimming approaches are commonly used to address positivity violations and are discussed in (Pe-

tersen et al., 2012). Crump et al. (2009) propose a method that removes (trims) subjects whose

propensity scores are outside specified bounds and calculates a minimum variance estimate on the

remaining subsample. This approach requires correct specification of the propensity score model

and may result in a final sample that is a small subsample of the original study population. Others

(Rosenbaum, 2012; Visconti and Zubizarreta, 2018) have suggested matching treated and control

subjects on covariates or propensity scores; however, external validity may be diminished due to

matching because the target population of interest will have changed to that of the matched popula-

tion. Hill and Su (2013) define nonoverlap as the set of subjects whose estimated individual causal

effects have corresponding variances that are greater than specified upper bounds. However, these

upper bound cut-offs may rely on user specifications and may not adequately reflect the amount

of data sparsity. Ghosh (2018) and Ghosh and Cortes (2019) characterize multivariate covariate

overlap using convex hulls to determine positivity violations. This overlap subset is termed ‘the

margin’ and is determined using a propensity score model; subjects who are outside the margin

are trimmed. A disadvantage to these trimming procedures is that by discarding subjects, the target

of inference may shift to a resulting subpopulation which may not represent the original population

of interest.

An alternative to removing subjects entirely is to downweight subjects in regions with less overlap.

In that spirit, Li, Morgan, and Zaslavsky (2018) proposed estimating causal effects using overlap

weights (Li, Thomas, and Li, 2019). However, overlap weights involve propensity score estimation

and place more emphasis on those with higher probabilities of receiving either treatment. Although

trimming or weighting approaches may be appropriate for structural violations, they fall short for

practical violations of the positivity assumption. In this practical violations setting, we expect co-

variates of subjects who violate this assumption to not be too far from the area of the covariate

space where there is complete overlap. In other words, we consider the setting where our study
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objectives aim to make inference for a population but, by chance, the available sample of individu-

als does not include certain individual characteristics. For example, in studies that seek to inform

public policy, population-level inference is desired since changes in policy will affect the general

population. However, in a particular data set there could be some non-overlap by chance. Or,

consider a study comparing the safety and effectiveness of drug A versus drug B. Suppose there

happens to be no Hispanic individuals over age 60 who take drug A, but we expect that if we had

a larger study that cell would no longer be empty. We do not want to exclude Hispanic individuals

over age 60 from our analysis, but we do want our inferential procedures to account for the fact

that contributions to the overall treatment effect estimate from this subpopulation will involve extra

uncertainty due to extrapolation. In situations when there is an intended patient population for a

treatment or intervention, but this population may not be entirely reflected in the available treatment

group data, methods for population-level estimation are needed. The objective in these studies is

often to obtain inference that preserves the original population, ensuring results may be general-

ized accordingly. When there are practical but not structural violations, interest generally centers on

understanding the treatment effects for the entire population. Approaches that account for positivity

violations while also targeting a causal estimand for the whole population are, therefore, of most

interest.

There has been some recent work on methods that are based on extrapolating information from

overlap regions to nonoverlap regions in a way that preserves the intended target of inference. For

instance, Nethery, Mealli, and Francesca (2019) propose a method for estimating a causal effect on

the entire population using extrapolation. Their definition of the overlap region relies on two user-

specified parameters that indicate the desired extent of closeness between treatment groups based

on subjects’ estimated propensity scores. Choices regarding propensity score model specification

and user inputs influence whether a subject is included in the overlap region. Having a fixed region

means that uncertainty around subjects’ inclusion in the overlap or nonoverlap region is ignored.

In this approach, Bayesian additive regression tree (BART) models are used to estimate causal

effects for the overlap regions and then in a subsequent stage, spline (SPL) models extrapolate

those trends to subjects in the nonoverlap region (Chipman, George, and McCulloch, 2010). These

choices in modeling mean that prior information on the treatment effect cannot be directly utilized.

Lastly, although they account for the greater uncertainty in areas of nonoverlap, their proposed

variance inflation strategy results in over-coverage as seen in their simulation studies.
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To address some of the above limitations of existing approaches, we propose a Gaussian process

modeling approach for estimating average treatment effects in a way that preserves the original tar-

get of inference when there are practical positivity violations (Neal, 1998; Rasmussen and Williams,

2006). Our method contributes several advances to the current literature. First, because we use

a non-parametric prior distribution, we avoid making parametric modeling assumptions. Further,

the prior does not rely on user-specified parameters nor cut-offs to define regions of overlap. The

amount of nonoverlap is accounted for in the covariance functions of the Gaussian process as the

distances of a subject’s covariate values from those of individuals in the other treatment group. This

provides us with a sense for nonoverlap that is data driven. We also avoid the need to construct

explicit overlap and nonoverlap groups, allowing covariate distance and positivity violations to be

considered in a more continuous fashion. Importantly, the further subjects are from each other in

terms of their covariate values, the larger the variances, which reflects the underlying point that

there should be greater uncertainty around estimated causal effects when there is less overlap.

The remainder of the article is organized as follows. In Section 3.2, we formulate the Gaussian

process model and present the Bayesian inferential framework with its priors, likelihood, and pos-

teriors. In Section 3.3, we conduct simulation studies to assess the performance of our method

compared to other current approaches. We then apply our approach to data from an observa-

tional study of right heart catheterization in female patients in Section 3.4. Section 3.5 provides a

discussion of results and offers concluding remarks.

3.2. The Gaussian Process Model and Posterior Computation

3.2.1. Notation and Framework for Causal Effect Estimation

Here, we use the potential outcomes framework for estimating causal effects (Rubin, 2005). Sup-

pose there are n i.i.d. observations from a population. For each subject i in the sample, let Ai be

the treatment assignment indicator with Ai = 1 if subject i receives the treatment of interest and

Ai = 0 if subject i receives the control. For a dichotomous treatment, each subject i has two poten-

tial outcomes: Yi(1), the outcome under treatment, and Yi(0), the outcome under control. However,

each subject may only receive one treatment in a study; that is, the observed outcome for subject i

is Yi = AiYi(1) + (1− Ai)Yi(0). Furthermore, define Xi to be a vector of p pre-treatment variables

or covariates.

Our target parameter of interest is the mean difference in potential outcomes under treatment and
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under control, respectively, given by Ψ = E[Y (1) − Y (0)]. This represents the average effect had

everyone been given treatment versus had everyone been given control. Here we assume that

there is superpopulation of units from which the study sample is drawn, consisting of individuals

who are eligible for treatment. Due to the finite size of the study sample, positivity violations can

occur when certain patient characteristics are not observed in the treated sample. Identifiability of

this parameter rests on the following assumptions (Rosenbaum and Rubin, 1983; Rubin, 2007).

1. Consistency: Y = Y (a) whenever A = a.

2. Ignorability: Conditional on covariates, treatment assignment is independent of the set of

potential outcomes, A ⊥⊥ {Y (0), Y (1)}|X. This essentially says that there can be no unmea-

sured confounding.

3. Positivity: The probability of receiving either treatment given the covariates is nonzero, 0 <

P (A = 1|X) < 1.

3.2.2. Gaussian Process Model

We assume the model for the observed continuous outcome Y given confounders X and treatment

A has the following form (Hahn, Murray, and Carvalho, 2020).

Yi = µ(Xi) + ∆(Xi)Ai + ϵi, where ϵi ∼ N(0, σ2).

The function µ(Xi) represents the relationship between X and Y that is not part of the treatment

effect; that is, it is the prognostic impact of covariates. The function ∆(Xi), which is a functional

coefficient of Ai, can be thought of as representing conditional treatment effects, reflecting inter-

actions between covariates and treatment. Under the causal assumptions described above, the

average causal effect is just Ψ = E(∆(X)).

We treat the functional form of µ() and ∆() as unknown, and therefore need to specify priors for

those functions. We assume independent Gaussian process priors for these functions. Specifically,

µ(X) ∼ GP (Xβ,Kµ),

∆(X) ∼ GP (0,K∆).

The mean function in the prior for µ(X) centers this parameter on a linear model, Xβ, while the
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mean function for ∆(X) is zero to reflect the a priori belief of small heterogeneous treatment effects.

An advantage of GP priors is that we can center the priors on a parametric model. Essentially, the

prior mean based on these functions is a linear model with no effect modification. Thus, when there

is limited data, the outcome model will shrink towards this prior specification.

With the goal of having a noisier mean function when there is less overlap, we choose the squared

exponential (SQEXP) form for the covariance functions. For matrices of covariate values X =

{X1, ...,Xp} and X∗ = {X∗
1, ...,X

∗
p}, the covariance function K∆ is defined to be

K∆(X,X
∗|l∆, η∆) = η2∆ exp

{
−1

2

[
|X −X∗|

l∆

]2}
.

The (i, j)th element of the covariance matrix K∆ would be

K∆,ij = K∆(X(i), X∗(j)) = η2∆ exp

{
−1

2

P∑
p=1

[
Xp(i)−X∗

p (j)

l∆

]2}
.

Xp(i) is the value of the pth covariate value for subject i, and X∗
p (j) is the pth covariate value for

subject j, p = 1, ..., P . The covariance Kµ has the same form, but with different parameters, lµ and

ηµ. The reason that this particular covariance function is useful when there are practical violations

of the positivity assumption is that the variability of the function increases as distance between

covariates increases, which we later show using the posterior distribution of ∆.

The hyperparameters l and η in the GP prior determine the shape and smoothness of functions

defined by the prior distribution. The parameters lµ and l∆ are the length scales which characterize

the extent to which µ and ∆ function values change as the input changes (Neal, 1998). Small values

correspond to more frequent changes in the parameter values for the same change in inputs X;

that is, the distance in X needed for the parameters to vary by an amount comparable to its range

is smaller for small length scales. Larger values of this hyperparameter correspond to more smooth

curves a priori. The parameters ηµ and η∆ are the signal variances (output-scale amplitude), which

control the range of the function values. For η near 0, posterior mean estimates of the parameters

µ and ∆ tend to be close to each other with fewer fluctuations in the curve (closer to a straight

line). At larger η values, regions with nonoverlap will have more variability associated with the

corresponding causal effect for a particular combination of covariate values.
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Choice of Kernel

The kernel or covariance function determines the types of statistical structures that may be captured

by the GP model (Duvenaud, 2014). Our model is presented using the SQEXP kernel, resulting in

functions that are infinitely differentiable to allow for smoothing. However, other stationary kernels,

which only depend on the distance between two points, may also be appropriate since these meth-

ods all aim to capture the similarity in baseline characteristics of subjects (Genton, 2002). Common

covariance function specifications include the following (Rasmussen and Williams, 2006).

• Rational quadratic: k(x, x′) = η2
(
1 + (x−x′)2

2αl2

)−α

.

This kernel is infinitely mean square differentiable and is a scale mixture of SQEXP kernels

with different length-scales. The limit of this covariance function as α → ∞ is the SQEXP

kernel.

• Matérn: k(x, x) = η2 21−v

Γ(v)

(√
2v |x−x′|

l

)v
Kv

(√
2v |x−x′|

l

)
, where l and v are positive hyper-

parameters and Kv is the modified Bessel function (Abramowitz and Stegun, 1965; Matern,

1960).

This kernel also converges to the SQEXP kernel as v → ∞.

• Exponential covariance function (or Ornstein-Uhlenbeck in the one-dimensional case):

k(x, x′) = η2exp
(
− |x−x′|

l

)
(Uhlenbeck and Ornstein, 1930).

We consider these three specifications of the covariance and compare their performances to our

proposed SQEXP kernel in our simulations. In all cases, the hyperparameters are given hyperpriors

such that their values are sampled in each iteration of the Markov chain Monte Carlo (MCMC) chain

to allow the data to influence their values. In practice, these kernels may be combined by addition

or multiplication so that the resulting kernel may capture more complexities in the data (Duvenaud,

2014).

3.2.3. Priors, Likelihood, and Posteriors

The outcome given treatment and confounders is distributed as Y ∼ MVN(µ + ∆A, σ2I), which

implies that the likelihood is

p(y|µ,∆, σ2) ∝ det(σ2I)−
1
2 exp

[
−1

2
(y − (µ+∆A))T (σ2I)−1(y − (µ+∆A))

]
.
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Note that µ = µ(X) and ∆ = ∆(X) for simplification of notation. Also, ∆A =


∆1A1

...

∆nAn

.

We specify priors for the hyperparameters

p(β) ∝MVN(0, σ2
βIP ),

p(lµ) ∝ gamma(lµ|αlµ , βlµ),

p(ηµ) ∝ gamma(ηµ|αηµ
, βηµ

),

p(l∆) ∝ gamma(l∆|αl∆ , βl∆),

p(η∆) ∝ gamma(η∆|αη∆
, βη∆

),

p(σ2) ∝ Inv − gamma(σ2|ασ2 , βσ2).

The vector of coefficients β is given a multivariate normal prior. This conjugate prior leads to a

conditional posterior distribution for β that is also multivariate normal. The hyperparameters l and

η are given gamma priors since their values need to be positive. The hyperparameter σ2 has a

inverse-gamma prior, which is a common prior for variance parameters. The joint prior is

p(µ, β, lµ, ηµ,∆, l∆, η∆, σ
2) ∝ p(µ|β, lµ, ηµ)p(lµ)p(β)p(ηµ)p(∆|l∆, η∆)p(l∆)p(η∆)p(σ2),

which assumes a priori independence of the hyperparameters.

Then the joint posterior is

p(µ, β, lµ, ηµ,∆, l∆, η∆, σ2|Y ) ∝ p(y|µ,∆, σ2)p(µ|β, lµ, ηµ)p(β)p(lµ)p(ηµ)p(∆|l∆, η∆)p(l∆)p(η∆)p(σ2).

Conditional Posteriors

To ensure the Gaussian process priors for µ and ∆ are not in too much disagreement with the data,

we estimate hyperparameter values based on data and the posterior. That is, rather than choosing

fixed values for the hyperparameters, l and η, in the GP priors, we assign them gamma priors as

specified in the previous subsection and use Metropolis-Hastings to update their values. These are

integrated in a Metropolis within Gibbs algorithm to obtain posterior inference for µ and ∆ (Craiu and
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Rosenthal, 2014) The conditional distributions for β, µ, and ∆ have analytical forms, so estimates

of these parameters may be drawn directly in their corresponding Gibbs steps (Casella and George,

1992; Gelfand, 2000). Because these conditional distributions are needed in the algorithm and are

specific to the form of our Gaussian process model, we present them here. Detailed derivations

are provided in Appendix B.1.

• β|µ, y ∼MVN

([
XTK−1

µ X + (σ2
βIP )

−1
]−1

XTK−1
µ µ,

[
XTK−1

µ X + (σ2
βIP )

−1
]−1
)

• µ|β,∆, y ∼MVN
([
K−1

µ + (σ2I)−1
]−1 [

(σ2I)−1(y −∆A) +K−1
µ Xβ

]
,
[
K−1

µ + (σ2I)−1
]−1
)

• To obtain the conditional posterior for ∆, we first define some notation. Recall, A is the vector

of treatment indicators for all the subjects, and letM denote a square matrix. AT⊙M indicates

A is multiplied element-wise to each column of M while M ⊙ A indicates A is multiplied

element-wise to each row of M .

∆|µ, y ∼ MVN
([

K−1
∆ +AT ⊙ (σ2I)−1 ⊙A

]−1
AT ⊙ (σ2I)−1(y − µ),

[
K−1

∆ +AT ⊙ (σ2I)−1 ⊙A
]−1
)

The posterior distribution for the treatment effects of all subjects has covariance matrix [K−1
∆ +

AT ⊙ (σ2I)−1⊙A]−1. Because it is difficult to write out the inverses, we obtain each element for the

simple case with two subjects and a single covariate X. Let A1 = 1 and X1 denote the treatment

status and covariate for subject 1 and A2 = 0 and X2 denote the treatment status and covariate for

subject 2, so that there is a treated subject and a control subject. The covariance matrix is given

by

[
K−1

∆ +AT ⊙ (σ2I)−1 ⊙A
]−1

=


σ2η2

∆

σ2+η2
∆

σ2η2
∆

σ2+η2
∆

exp

{
− 1

2

(
X1−X2

l∆

)2
}

σ2η2
∆

σ2+η2
∆

exp

{
− 1

2

(
X1−X2

l∆

)2
}

η2∆

[
1− η2

∆

σ2+η2
∆

exp

{
−

(
X1−X2

l∆

)2
}]



Subject 2’s variance increases the further X2 is from X1 since a smaller amount would be sub-

tracted from the second component of the product of [K−1
∆ +AT ⊙ (σ2I)]−1

22 ; that is,[
1− η2

∆

σ2+η2
∆
exp

{
−
(

X1−X2

l∆

)2}]
becomes larger when |X1 −X2| increases. Thus, there is greater

variability in the treatment effect posterior as |X1 − X2| increases. The dissimilar expressions for

the diagonal elements may be attributed to ∆ being the treatment effect. For a treated subject,

when we condition on µ(X), we are not extrapolating when it comes to identification of ∆(X) since

the mean for treated subjects is µ(X) + ∆(X). On the other hand, for a control subject, we are ex-

trapolating when it comes to ∆(X) because he/she was not treated–the mean for control subjects

is µ(X). Because outcome information from treated subjects is driving estimation of ∆, we can
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expect more uncertainty when estimating this parameter for control subjects. For the off-diagonal

elements, larger distances in the covariates result in smaller covariances so that there is less in-

formation that can be learned from the other person, which also corresponds to larger variability.

This illustrates why with this prior specification we expect regions with little to no overlap to result

in more uncertainty when it comes to causal effect estimation.

Metropolis within Gibbs Algorithm for Posterior Inference

In this section, we briefly describe the steps of the algorithm for obtaining posterior sampling of

the parameters of interest, µ and ∆, and the hyperparameters. Details regarding the steps may

be found in Appendix B.2. For the hyperparameters in the GP priors (lµ, ηµ, l∆, and η∆) and σ2,

we use a Metropolis-Hastings step for each one and update their values based on current values

of the other parameters using an acceptance ratio. A candidate value is drawn from the proposal

distribution—we employ a truncated normal distribution centered at the previous value with vari-

ance τ2, a tuning parameter, and bounded below at 0. We tune the standard deviation parameters

of the proposal distribution so that the jump sizes reflect spread in the posterior and the correspond-

ing chain trace varies quickly around the mean (Ellis, 2018; Gelman et al., 2004). Convergence is

assessed using time-series plots for each parameter to understand the number of MCMC iterations

needed to observe stabilization of chains. The acceptance ratio compares the value of the poste-

rior at the candidate value with that at the previous value. We randomly generate a value from the

standard uniform distribution U ∼ Unif(0, 1); if U is less than or equal to the ratio, than the can-

didate value is accepted as the parameter value at the current iteration. Otherwise, the parameter

value is set to its value from the previous iteration. For β, µ, and ∆, at each iteration, their new

value is drawn from their respective conditional distributions given current values of all the other

parameters.

The chain is ran until the number the posterior draws after thinning and burn-ins (say, J) is reached.

The effect estimate at iteration j is obtained as the mean over the elements of the ∆(j) vector (i.e.,

the average across all subjects): ψ(j) = 1
n

∑n
i=1 ∆

(j)
i . The average treatment effect is then esti-

mated as the mean of the posterior draws of ψ, Ψ = 1
J

∑J
j=1 ψ

(j), so that estimation for continuous

outcomes may be obtained directly from the posterior distribution of ∆.
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3.2.4. Extension to Binary Outcomes

In this section, we extend our model to dichotomous outcomes where Y may take on the values

of either 0 or 1. Let θ = {µ, β, lµ, ηµ,∆, l∆, ηµ}. The probit model assigns to each Xi the variable

Yi ∈ {0, 1} using P (Yi = 1) = Φ(f(Xi, Ai, θ)) = Φ(µ(Xi) + ∆(Xi)Ai), where Φ is the standard

normal cumulative distribution function. Assuming the same priors for the parameters in θ as those

for the continuous outcome case, the posterior is

p(θ|X,A, Y ) ∝ p(Y |X,A, θ)p(θ) ∝
n∏

i=1

Φ(f(Xi, Ai, θ))
Yi(1− Φ(f(Xi, Ai, θ))

1−Yip(θ)

Sampling θ from this form is difficult. Thus, we consider the model augmented with a random vari-

able Z (Meng and Van Dyk, 1999; Van Dyk and Meng, 2001). Specifically, we define independent

latent variables Zi, where each Zi is normally distributed. Then the augmented probit model has

the hierarchical structure as follows:

Yi =


1, if Zi > 0

0, if Zi ≤ 0

Zi|θ,Xi = µi +∆iAi + ϵi, ϵi ∼ N(0, 1)

θ ∼ p(µ, β, lµ, ηµ,∆, l∆, ηµ)

Here, Yi is deterministic conditional on the sign of Zi (Albert and Chib, 1993). Under the augmented

model, P (Yi = 1|Xi, Ai, θ) = Φ(f(Xi, Ai, θ)), so the two models give the same inference. We will

employ the augmented model in sampling of the parameters of interest and the latent variables.

The joint posterior of latent variables Z and model parameters θ given data X,A, Y is

p(Z, θ|X,A, Y ) ∝ p(Z|X,A, Y, θ)p(θ)

∝ p(Z|µ,∆, A,X, Y )p(µ|β, lµ, ηµ, X)p(β)p(lµ)p(ηµ)p(∆|l∆, η∆)p(l∆)p(η∆)
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where

p(µi|β, lµ, ηµ, X) = N(µ|Xβ,Kµ)

p(∆|l∆, η∆, X) = N(∆|0,K∆)

p(Z|µ,∆, A, Y ) = N(Z|µ+∆A, 1)[I(Y = 1)I(Z > 0) + I(Y = 0)I(Z ≤ 0)]

Note that θ is not dependent on Y given Z, so the conditional posterior of the model parameters θ

is

p(θ|Z,X) ∝ p(θ)N(Z|µ+∆A, 1).

The conditional posterior of the latent variable Zi is

Zi|θ, Yi, Xi ∼


TN(mean = µi +∆iAi, sd = 1, lower = 0, upper = ∞), if Yi = 1

TN(mean = µi +∆iAi, sd = 1, lower = −∞, upper = 0), if Yi = 0

Estimates of parameters are obtained by modifying the Metropolis within Gibbs algorithm such that

Ai takes the place of the continuous outcome and an additional step is used to sample Zi from a

truncated normal distribution.

Our interest is in the causal risk difference, Ψ = P{Y (1) = 1} − P{Y (0) = 1}. The posterior for Ψ

can be obtained as follows. From the Gibbs sampler, we will have stored J draws of µ and ∆ (after

discarding burn-ins and thinning). At each iteration j, we obtain a draw of each potential outcome

via computation. The probability of outcome under treatment, p(j)1 = P{Y (1) = 1}(j), is

p
(j)
1 =

1

n

n∑
i=1

Φ(µ
(j)
i +∆

(j)
i )

and the probability of the outcome in the absence of treatment is, p(j)0 = P{Y (0) = 1}(j), is

p
(j)
0 =

1

n

n∑
i=1

Φ(µ
(j)
i ).

Then the effect estimate at iteration j of the MCMC chain is Ψ(j) = p
(j)
1 − p

(j)
0 . The estimate of the
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risk difference is calculated as the average difference in proportions over the J posterior samples:

Ψ = 1
J

∑J
j=1 Ψ

(j).

3.3. Simulation Studies

Simulation studies were used to assess the performance of the GP model for scenarios with varying

degrees of nonoverlap. In these, we considered both linear and nonlinear response surfaces with

the latter including treatment heterogeneity and interactions between covariates. We compared our

GP approach to the following methods:

BCF Bayesian causal forest with the prognostic and treatment components as functions of covari-

ates and propensity scores, as proposed by Hahn, Murray, and Carvalho (2020).

BART-Stratified separate BART models are fit to treated and control subjects using covariates

only and potential outcomes are estimated as the expected value of the function (Chipman,

George, and McCulloch, 2010).

BART-Single untrimmed BART as implemented by Nethery et al. (2019) in which the treatment

variable and propensity score are included as covariates, and potential outcomes are esti-

mated with posterior predictive distributions (Chipman, George, and McCulloch, 2010; Neth-

ery, Mealli, and Francesca, 2019). A single model is fit for the entire sample.

BART+SPL the method proposed by Nethery, Mealli, and Francesca (2019) for nonoverlap using

the recommended u = .1, v = 10 to define the region of overlap based on propensity scores.

GLM generalized linear model regression of outcome on main effects of treatment indicator and

covariates with identity link for continuous outcomes and probit link for binary outcomes.

For the Bayesian methods, MCMC specifications include 10, 000 burn-ins and 5000 iterations after

burn-ins, in which every 5th is kept, yielding 1000 posterior draws of the average treatment effect.

We use 1000 replications for the simulations. For each simulated data set, we obtain 1000 posterior

estimates (after discarding burn ins and thinning) of treatment effect by averaging over all subjects.

Specifically, for each replication r, we have 1000 posterior draws of the treatment component (av-

erage over individual causal effects at each iteration). Denote the estimate of the treatment effect,

the mean over the posterior draws, by Ψr. The standard deviation SDr and 95% credible intervals
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CIr are obtained from these 1000 posterior draws. Over the 1000 replications we compute several

quantities to measure performance:

ATE =
1

1000

1000∑
r=1

Ψr Bias =
1

1000

1000∑
r=1

(Ψr −ATEtrue)

%Bias =
1

1000

1000∑
r=1

Ψr −ATEtrue

|ATEtrue|
· 100 SD =

1

1000

1000∑
r=1

SDr

SE =

√√√√ 1

1000− 1

1000∑
r=1

(Ψr −ATE)2 MSE =
1

1000

1000∑
r=1

(Ψr −ATEtrue)
2

Coverage =
1

1000

1000∑
r=1

I(ATEtrue ∈ CIr)

These simulations were conducted in R (R Core Team, 2021).

3.3.1. Continuous Outcome

For the setting with a continuous outcome, we generate treatment indicator A, two continuous

covariates, and one binary covariate for n = 500 subjects. Our data generating model is specified

as follows. First, treatment status is simulated as A ∼ Bernoulli(.5), and covariates are simulated

based on treatment received. If A = 1, the covariates are generated as X1 ∼ N(µ1, 1), X2 ∼

N(µ2, 1), X3 ∼ Bernoulli(p); if A = 0, X1 ∼ N(0, 1), X2 ∼ N(2, 1), X3 ∼ Bernoulli(.4). We

consider two different outcome models.

1. Y1 ∼ N(1− 2X1 +X2 − 1.2X3 + 2A, 1)

2. Y2 ∼ N(−3− 2.5X1 + 2X2
1A+ exp(1.4−X2A) +X2X3 − 1.2X3 − 2X3A+ 2A, 1)

Different combinations of µ1, µ2, and p are chosen to control the amount of covariate nonoverlap

in the sample. We consider settings with some nonoverlap (µ1 = 1, µ2 = 2, p = .5) and substantial

nonoverlap (µ1 = 1, µ2 = 3, p = .6). In the first model, the outcome is linearly related to covariates

and treatment. In this case, for any combination of covariates, the treatment effect is the same–

that is, treatment effect is homogeneous. We expect all methods to have decent performance

since there are no interactions between covariates and treatment in the outcome model. Data

generating model 2 incorporates nonlinearity and treatment heterogeneity. For instance, as X1

values increase, the outcome Y for treated subjects tends to increase while Y values for control

subjects tends to decrease. This leads to treatment effects that are larger in magnitude at larger X1
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values. Further, there is nonoverlap for these X1 values since only treated subjects are observed

in this region. The combination of treatment heterogeneity and nonoverlap makes it difficult to

assess the treatment effect; parametric models would find it especially challenging to capture the

true relationships.

We also consider the set of simulation scenarios in Nethery, Mealli, and Francesca (2019) since

our primary comparative method is BART+SPL. We use scenarios for which BART+SPL had the

best performance; this method underperforms when propensity scores are misspecified as shown

by simulation results from Nethery, Mealli, and Francesca (2019) that considered misspecified

propensity score models. Specifically, they show that larger bias and lower coverage resulted when

estimated propensity scores from logistic regression are used. For n = 500 subjects, half are

assigned treatment A = 1 and half are assigned to A = 0. Here, c controls the degree of overlap.

The values of c that are considered are 0, 0.35, 0.70, where larger values correspond to greater

extents of nonoverlap. Covariates are generated based on treatment assignment. For treated

subjects (A = 1), the covariates are generated withX1 ∼ Bernoulli(.5), X2 ∼ N(2+c, (1.25+.1c)2).

For control subjects (A = 0), X1 ∼ Bernoulli(.4), X2 ∼ N(1, 1). The true propensity score is

calculated based on density functions as follows:

True PS =
N(X2;µ = 2 + c, σ = 1.25 + .1c) ·Ber(X1; p = .5)

N(X2;µ = 2 + c, σ = 1.25 + .1c) ·Ber(X1; p = .5) +N(X2;µ = 1, σ = 1) ·Ber(X1; p = .4)

The true potential outcomes under control and under treatment for all subjects are generated:

Y (0) = −1.5X2,

Y (1) =
−3

1 + exp(−10(X2 − 1))
+ .25X1 −X1X2.

Then the true treatment effect for each person is Yi(1) − Yi(0), so that there is a “true” ATE value

for each simulated data set (say ATEtrue,r for the rth replication).

ATEtrue,r =
1

N

N∑
i=1

Yi(1)− Yi(0)

The observed outcome is taken to be Yi = AiYi(1) + (1−Ai)Yi(0).

Because there is a true ATE value for each replication indexed by r, for r = 1, ..., 1000, we modify
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the bias and coverage metrics to accommodate different true values across the replications.

Bias =
1

1000

1000∑
r=1

(Ψr −ATEtrue,r)

% Bias =
1

1000

1000∑
r=1

Ψr −ATEtrue,r

|ATEtrue,r|
· 100

Coverage =
1

1000

1000∑
r=1

I(ATEtrue,r ∈ CIr).

Results

Simulation results for the nonoverlap scenarios in which the continuous outcomes are generated

with a linear response surface are presented in Table 3.1. All methods provide estimates with

low bias except BART-Stratified in the setting with some nonoverlap. We observe differences in

the variability of the estimates. In particular, in the setting with some nonoverlap, the GP model’s

estimate of variability is closest to that obtained from linear regression (the gold standard in this

case). As the extent of nonoverlap increases, the variability obtained from the GP model increases

to account for the greater uncertainty in those regions while maintaining nominal coverage. On the

other hand, with increasing amounts of nonoverlap, the BART+SPL method results in doubled MSE

and coverage very close to 1 (indicating overcoverage).

Table 3.1: Effect estimates for nonoverlap scenarios involving a linear response surface across
methods. The true ATE is 2 for both degrees of nonoverlap.

Method ATE Bias % Bias SD SE MSE Coverage

Some
nonoverlap

GP 1.968 -.032 -1.604 .102 .100 .011 .948
BCF 2.002 .002 .082 .112 .104 .011 .961

BART-Stratified 1.904 -.096 -4.820 .111 .113 .022 .855
BART-Single 2.011 .011 .561 .115 .106 .011 .968
BART+SPL 2.015 .015 .729 .156 .118 .014 .980

Linear model 1.998 -.002 -.110 .101 .098 .010 .945

Substantial
nonoverlap

GP 1.971 -.029 -1.458 .115 .110 .013 .947
BCF 1.971 -.029 -1.428 .130 .118 .015 .962

BART-Stratified 1.946 -.054 -2.684 .136 .133 .020 .927
BART-Single 1.985 -.015 -.772 .137 .122 .015 .965
BART+SPL 1.976 -.024 -1.203 .288 .175 .031 .997

Linear model 1.999 -.001 -.070 .112 .108 .012 .955

Simulation results for data simulated using the second data generating model are given in Table 3.2.
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For both degrees of nonoverlap, the GP model provided estimates with the smallest bias among the

comparator methods. For this complex data scenario, linear regression has the worst performance

as expected. The other nonparametric models, BCF, the two BART models, and BART+SPL, all

underestimate the average treatment effect with BART+SPL being the most biased. Note that the

variability in the estimates of average treatment effect from the GP model again increase as the

amount of nonoverlap increases as shown by SD values. Thus, although there was bias from all

the methods, the GP performed the best in terms of bias and efficiency, as reflected in its MSE

metric, among the approaches considered.

Table 3.2: Effect estimates for nonoverlap scenarios involving a nonlinear response surface and
treatment heterogeneity. The true ATE for the some nonoverlap and substantial nonoverlap settings
are .950 and .564, respectively.

Method ATE Bias % Bias SD SE MSE Coverage

Some
nonoverlap

GP .849 -.101 -10.612 .119 .225 .061 .657
BCF .814 -.136 -14.298 .140 .251 .082 .658

BART-Stratified .758 -.192 -20.240 .118 .237 .093 .535
BART-Single .658 -.292 -30.695 .205 .252 .149 .667
BART+SPL .580 -.370 -38.918 .254 .285 .218 .689
Probit model -.049 -.999 -105.120 .315 .279 1.075 .082

Substantial
nonoverlap

GP .411 -.153 -27.154 .149 .242 .082 .692
BCF .349 -.215 -38.079 .168 .256 .111 .663

BART-Stratified .344 -.219 -38.898 .148 .247 .109 .588
BART-Single .190 -.374 -66.373 .218 .258 .207 .589
BART+SPL .013 -.550 -97.639 .386 .357 .430 .707
Probit model -.562 -1.125 -199.632 .338 .319 1.368 .088

Table 3.3 presents the simulation results using the scenarios from Nethery, Mealli, and Francesca

(2019). For each degree of nonoverlap, the GP model results in the smallest bias—even under the

settings where BART+SPL was previously shown to perform best (Nethery, Mealli, and Francesca,

2019). The GP model has coverage that is nearly the same as that of BART+SPL but has variability

estimates that are smaller. The high coverage for the GP model indicates that it both accurately

estimates the truth and translates the uncertainty from nonoverlap regions into higher variability.

The greater than nominal coverage from the GP model for these scenarios may be due to the

absence of an error term when outcomes were generated. In this scenario, estimates provided by

the GP model had smaller bias than estimates from BCF. The increase in the variability estimates

as the amount of nonoverlap grows is larger for the GP model than for the BART-only models (BCF,

BART-Stratified, and BART-Single), better reflecting the extent of nonoverlap. Given the nonlinearity

and interactions specified in the outcome model, the parametric linear regression has the worst
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performance as expected.

Table 3.3: Performance of the methods for nonoverlap scenarios from Nethery, Mealli, and
Francesca (2019) that employ true propensity scores.

Setting Method ATE Bias % Bias SD SE MSE Coverage

c=0

GP -.264 .001 .326 .024 .051 8.916× 10−5 1.000
BCF -.296 -.031 -12.491 .012 .057 .002 .369

BART-Stratified -.304 -.039 -15.643 .014 .056 .002 .378
BART-Single -.287 -.022 -8.981 .050 .056 .001 .990
BART+SPL -.256 .009 3.486 .063 .054 3.216× 10−4 1.000

Linear model -.330 -.065 -26.642 .082 .073 .008 .941

c=0.35

GP -.190 -.002 -1.583 .030 .057 2.910× 10−4 .998
BCF -.242 -.054 -33.446 .016 .067 .004 .257

BART-Stratified -.263 -.075 -45.849 .020 .067 .007 .204
BART-Single -.231 -.043 -26.700 .054 .068 .004 .905
BART+SPL -.173 .015 8.714 .073 .060 7.744× 10−4 1.000

Linear model -.363 -.175 -110.756 .093 .086 .037 .546

c=0.70

GP -.095 -.009 -54.992 .041 .066 9.488× 10−4 .995
BCF -.172 -.087 -333.973 .020 .081 .011 .189

BART-Stratified -.215 -.130 -472.294 .026 .083 .021 .123
BART-Single -.158 -.073 -282.576 .058 .085 .010 .705
BART+SPL -.058 .026 72.858 .087 .070 .002 .998

Linear model -.402 -.316 -1128.419 .106 .102 .110 .137

Illustration of Individual Causal Effect Estimates

To illustrate individual causal effects obtained by each method using, we use one simulated data for

each nonoverlap scenario. For the linear response surface under substantial nonoverlap, we plot

estimates of posterior mean and posterior standard deviation of individual causal effects across the

iterations for each subject (Figure 3.1). The analogous figure for the moderate nonoverlap setting is

included as Figure B.1 (Appendix B). The GP model provides estimates of individual causal effects

that are close to 2 (the truth) indicating high precision, while those provided by BART-Single and

BART+SPL are highly variable. Although the average treatment effect given by BART+SPL is close

to the true value, the estimates of individual treatment effects range from −0.36 to 4.98, reflecting

great variability.

The GP model tends to provide the lowest posterior standard deviations in regions of overlap.

These estimates are only slightly greater than estimates of variability from linear regression, which

would be correctly specified for this scenario. Because BART-Stratified models the treatment and

control groups separately, baseline variability in estimates of treatment effect is higher. Notably,

the Bayesian approaches show increases in variability in areas of increasing non-overlap, indicat-

ing that they are capturing the greater uncertainty in those regions. The GP model’s estimates
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Figure 3.1: Individual causal effect exploration when outcome is generated with Y1 for the substan-
tial nonoverlap case.

of individual-level standard deviations are greater than those of BCF in the nonoverlap areas; the

continuous nature of the GP model means that uncertainty increases with covariate distance. How-

ever, the increase in the posterior SD values when using BART+SPL is so steep that estimates for

individuals in the nonoverlap areas may hold little value.
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Figure 3.2: Individual-level posterior mean and standard deviation estimates from the methods
considered. Red points denote the true individual causal effect based on the data generating
model.

In Figure 3.2, we display individual causal effects when there is moderate overlap (c = 0.35).

The plots for c = 0 and c = 0.70 are similar and are included in Appendix B.3. In this scenario,

it is clear that the BART-only methods tend to give constant estimates in regions of nonoverlap

(due to splitting on tails of covariate distributions) while the GP model and the BART+SPL model

are able to capture the trends since their estimates of individual-level effects are closer to the
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true values. Thus, the BART-only methods underestimate the treatment effect in these areas.

BART+SPL deems those with propensity scores larger than .75 to be in the region of nonoverlap,

so that the posterior standard deviations increase substantially for these subjects. The increase in

individual level posterior standard deviations for the GP model is more gradual. Further, the few

treatment subjects relative to the number of control subjects with PS near 0 is reflected in the larger

variability as estimated by the GP model for these regions. BART+SPL does not take this into

account for the specified u and v values.

Sensitivity to Specification of the Gaussian Process Prior

In the proposed GP model, prior distributions are specified for the hyperparameters instead of

setting them to specific values in an effort to reduce sensitivity to these specifications. Further, a

choice must be made about the covariance function K. We explore the sensitivity of the model to

these choices using two representative simulation scenarios–the some nonoverlap scenario with

outcome generating model Y1 and the nonoverlap setting from Nethery, Mealli, and Francesca

(2019) with c = 0.35. The first one involves a small degree of nonoverlap and a linear response

surface while the second one involves a moderate degree of nonoverlap and a nonlinear response

surface, reflecting varying data complexity.

Figure 3.3: Different gamma distributions employed for the hyperpriors.

For our primary implementation of the Gaussian process prior, we employed gamma (2,1) as the

hyperprior for the l and η parameters–that is, we set αlµ , αηµ
, αl∆ , αη∆

= 2 and βlµ , βηµ
, βl∆ , βη∆

=
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1. These values corresponds to a distribution that is right skewed and gives large probabilities to

values near 0. To see if the model is sensitive to these hyperprior specifications, we examine the

performance when l and η are assumed to have a gamma(4, .5) prior, such that αlµ , αηµ
, αl∆ , αη∆

=

4 and βlµ , βηµ , βl∆ , βη∆ = .5. This distribution is centered at larger values and has a much larger

spread (Figure 3.3). Simulation results comparing these two specifications are given in Table 3.4.

Measures of bias, variability, and coverage are similar for these different hyperprior specifications.

Table 3.4: Simulation results for two representative simulation settings based on different choices
of hyperpriors in the Gaussian process priors.

ATE Bias % Bias SD SE MSE Coverage
Some nonoverlap,

Linear response surface
Gamma(2,1) 1.968 -.032 -1.603 .102 .010 .011 .948
Gamma(4,.5) 1.993 -.007 -367 .101 .097 .009 .960

Nethery et al. setting
with c=.35

Gamma(2,1) -.190 -.002 -1.583 .030 .057 2.909× 10−4 .998
Gamma(4,.5) -.185 .001 .641 .029 .058 2.344× 10−4 1.000

Next, we compare different specifications of the covariance function for these two representative

simulation settings. We compare the SQEXP covariance function to the rational quadratic, Matérn,

and Ornstein-Uhlenbeck (exponential) covariance functions. For these specifications, the hyperpa-

rameters are given a gamma (2,1) prior and sampled using MCMC. Results are provided in Table

3.5. Again, estimates are in the same ballpark across the different covariance functions specifica-

tions, suggesting that the model is relatively insensitive to which kernel is used.

Table 3.5: Simulation results from two representative simulation settings based on different choices
in the covariance function in the Gaussian process priors.

ATE Bias % Bias SD SE MSE Coverage

Some nonoverlap,
Linear response surface

Squared exponential 1.968 -.032 -1.603 .102 .010 .011 .948
Rational quadratic 1.971 -.029 -1.445 .104 .098 .011 .954

Matérn 1.965 -.035 -1.737 .104 .099 .011 .956
Ornstein–Uhlenbeck 1.951 -.049 -2.430 .104 .099 .012 .944

Nethery et al. setting
with c=.35

Squared exponential -.190 -.002 -1.583 .030 .057 2.909× 10−4 .998
Rational quadratic -.186 .001 .505 .028 .057 1.119× 10−4 1.000

Matérn -.183 .002 .908 .027 .056 7.251× 10−5 1.000
Ornstein–Uhlenbeck -.183 .004 2.034 .027 .058 1.691× 10−4 1.000

3.3.2. Binary Outcomes

In simulation studies for binary outcomes, the treatment indicator A and covariates X1, X2, and

X3 are generated identically to the continuous case. We again consider two levels of nonoverlap

and two outcome generating distributions. Outcomes are drawn from the Bernoulli distribution with

proportion parameter that depends on covariate values and treatment received.

• Y1B ∼ Bernoulli(Φ(−1− 2X1 +X2 − 1.2X3 + 2A))
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• Y2B ∼ Bernoulli(Φ(−3− 2.5X1 + 2X2
1A+ exp(1.4−X2A) + 1X2X3 − 1.2X3 − 2X3A+A))

Detailed results of these simulations are provided in Appendix B.4. In brief, the GP model gives

lower or similar bias and higher efficiency compared to the other methods and maintains its cover-

age when nonlinear and interaction terms are added to the outcome models.

3.3.3. High Dimensional Covariate Setting

Covariate nonoverlap is more likely to occur when there are many variables that are controlled for.

To explore this setting, we simulate data according to the high dimensional scenarios employed

in Nethery, Mealli, and Francesca (2019) and compare the performance of the GP model to our

primary comparator, the BART+SPL method. Implementation of the BART+SPL approach follows

the original procedure used by Nethery, Mealli, and Francesca (2019) when considering the high

dimensional setting. Again, half of the N = 500 subjects are assigned to treatment (A = 1) and

the other half are placed in the control group (A = 0). 10 confounders (variables associated with

both treatment and outcome) are generated. For treated subjects (A = 1), the covariates are

generated with X1, ..., X5 ∼ Bernoulli(.45), X6, ..., X10 ∼ N(2, 4). For control subjects (A = 0),

X1, ..., X5 ∼ Bernoulli(.4), X6, ..., X10 ∼ N(1.3, 1). The true potential outcomes under control and

under treatment for all subjects are generated as follows.

Y (0) = .5(X1 +X2 +X3 +X4 +X5) + 15(1 + exp(−8X6 + 1))−1 +X7 +X8 +X9 +X10 − 5,

Y (1) = X1 +X2 +X3 +X4 +X5 − .5(X6 +X7 +X8 +X9 +X10)

Three scenarios are explored via simulations.

1. HD 1: Only the 10 confounders are included in the model.

2. HD 2: The 10 confounders and 25 additional randomly generated variables (not truly related

to the outcome variable) are included in the model.

3. HD 3: The 10 confounders and 50 additional variables are included in the model.

Measure of bias, variability, and coverage for the GP model and the BART+SPL method are pre-

sented in Table 3.6. Bias is slightly higher from the GP model for these particular simulation sce-

narios. However, the MSE from the GP model is less than that from the BART+SPL method. While
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the bias and coverage from the BART+SPL method tends to get worse as additional variables are

included in the model, there is no clear pattern for the GP model. Further investigation of the GP

model’s performance and modification to its form or prior specifications may be needed to better

accommodate high dimensional covariate settings.

Table 3.6: Comparisons of performance of the GP model to the BART+SPL method for high-
dimensional covariate settings.

ATE Bias % Bias SD SE MSE Coverage

HD 1 GP -16.688 .732 4.203 .353 .513 .684 .430
BART+SPL -17.631 -.212 -1.218 .667 1.877 3.462 .524

HD 2 GP -18.315 -.912 -5.249 .272 .380 .896 .072
BART+SPL -16.991 .412 2.371 .537 1.712 2.961 .492

HD 3 GP -18.125 -.715 -4.113 .300 .405 .588 .354
BART+SPL -16.856 .554 3.169 .513 1.548 2.671 .486

3.4. Application to Study of Right Heart Catheterization

We applied our GP approach to data on critically ill patients in the Study to Understand Prognoses

and Preferences for Outcomes and Risks of Treatments (SUPPORT). Details on the study popula-

tion and data collection have been previously described in Connors et al. (1996). We note that the

purpose of this data example is to demonstrate our method and not to make clinical claims. These

data are publicly available which will allow readers to readily replicate our results. In our analysis,

we assess the effects of right heart catheterization (RHC) in the first 24 hours upon entry into study

on survival for female subjects. The binary outcome of interest in this study is defined as

Yi =


1, if subject i died within 180 days

0, otherwise

The confounding variables of interest include age, race, years of education, income, medical in-

surance, primary disease category, Activities of Daily Living score, Duke Activity Status Index,

do-not-resuscitate status, cancer status, SUPPORT model estimate of the probability of surviving 2

months, APACHE III score, coma score based on Glasgow on day 1, physiological measurements,

and categories of comorbid illness. Of the 617 female subjects of interest, 137 received an RHC

while 480 did not. In the treatment group, 62 died within 180 days, compared with 219 in the control

group. Characteristics of the sample for analysis are provided in Table 3.7.
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Table 3.7: Characteristics of patients who received a right heart catheterization and those who did not.
Continuous variables are represented by mean (SD); categorical variables are represented by n (%).

No RHC RHC p-value
n 480 137

Age 61.64 (18.02) 58.04 (16.33) .036
Race .364

white 361 (75.2) 97 (70.8)
black 92 (19.2) 28 (20.4)
other 27 (5.6) 12 (8.8)

Education (years) 11.60 (2.89) 12.03 (2.43) .109
Income ($) .004

<11k 291 (60.6) 71 (51.8)
11-25k 105 (21.9) 23 (16.8)
25-50k 58 (12.1) 32 (23.4)
>50k 26 (5.4) 11 (8.0)

Medical insurance .146
Private 118 (24.6) 50 (36.5)

Medicare 144 (30.0) 35 (25.5)
Medicaid 74 (15.4) 16 (11.7)

Private & Medicare 83 (17.3) 21 (15.3)
Medicare & Medicaid 38 (7.9) 8 (5.8)

No insurance 23 (4.8) 7 (5.1)
Primary disease category <.001

ARF 201 (41.9) 50 (36.5)
CHF 70 (14.6) 25 (18.2)

Cirrhosis 26 (5.4) 2 (1.5)
Colon Cancer 1 (0.2) 0 (0.0)

Coma 1 (0.2) 0 (0.0)
COPD 83 (17.3) 6 (4.4)

Lung Cancer 3 (0.6) 1 (0.7)
MOSF with Malignancy 35 (7.3) 9 (6.6)

MOSF with Sepsis 60 (12.5) 44 (32.1)
Activities of Daily Living score 1.43 (1.91) 1.18 (1.82) .186

Duke Activity Status Index 18.86 (6.71) 19.73 (7.09) .190
Do-not-resuscitate status 45 (9.4) 3 (2.2) .010

Cancer status .358
Metastatic 41 (8.5) 8 (5.8)

Yes 70 (14.6) 16 (11.7)
No 369 (76.9) 113 (82.5)

SUPPORT model survival probability 0.70 (0.15) 0.67 (0.17) .146
APACHE III score 49.09 (16.29) 51.52 (17.18) .129

Glasgow coma score 5.30 (16.22) 6.71 (17.39) .378
Physiological measurements

Weight (kg) 65.33 (26.23) 69.36 (22.47) .102
Temperature 37.43 (1.61) 37.50 (1.66) .632

Mean blood pressure 85.93 (39.47) 75.62 (36.08) .006
Respiratory rate 30.48 (11.87) 26.39 (13.86) .001

Heart rate 112.64 (38.45) 117.10 (36.39) .226
PaO2/FiO2 ratio 256.66 (119.85) 225.53 (103.30) .006

PaCO2 41.46 (14.61) 36.93 (10.05) .001
PH 7.38 (0.10) 7.40 (0.09) .182

White blood count 14.54 (11.22) 15.83 (8.71) .211
Hematocrit 32.42 (8.77) 30.81 (7.26) .050

Sodium 135.67 (6.71) 135.55 (6.40) .848
Potassium 4.07 (1.01) 3.89 (0.86) .063
Creatinine 1.94 (2.14) 2.26 (2.23) .133
Bilirubin 1.46 (3.38) 1.45 (2.17) .982
Albumin 3.22 (0.64) 3.09 (0.64) .041

Comorbidity illness
Cardiovascular comorbidity 100 (20.8) 36 (26.3) .215

Congestive heart failure 123 (25.6) 38 (27.7) .699
Dementia 24 (5.0) 3 (2.2) .237

Psychiatric history 44 (9.2) 6 (4.4) .102
Pulmonary disease 124 (25.8) 17 (12.4) .001

Renal disease 26 (5.4) 10 (7.3) .534
Cirrhosis, hepatic failure 28 (5.8) 9 (6.6) .908

Upper GI bleeding 16 (3.3) 3 (2.2) .687
Tumor, leukemia, lymphoma 108 (22.5) 24 (17.5) .256

Immunosuppression, organ transplant 173 (36.0) 50 (36.5) 1.000
Transfer from other hospital 44 (9.2) 22 (16.1) .032

Definite myocardial infarction 22 (4.6) 13 (9.5) .048
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We see that the RHC group tends to be younger on average, have higher income, are less likely

to sign a do-not-resuscitate form, and have lower respiratory rates and lower PaCO2 on Day 1.

Further, the proportions of people with pulmonary disease were significantly different between the

RHC and non-RHC groups. Propensity scores were estimated using a BART probit model with

treatment status as the response and all confounding variables as predictors. Figure 3.4 demon-

strates nonoverlap in the tails.

Figure 3.4: Histograms of estimated propensity scores for patients who received an RHC and those
that did not.

To fit the Gaussian process model, we employed four chains with different initial values to estimate

the parameters of interest. Specifically, each chain involved 10, 000 burn-ins and 20, 000 iterations

after burn-ins, from which every 80th was kept in order to minimize autocorrelation. Combining

these iterations, we obtained 1000 posterior draws for the parameters. We calculated a risk dif-

ference defined as the mean difference in probabilities of dying within 180 days from the start of

study entry had the RHC been given versus had the RHC not been given, respectively. The risk

difference estimate was 0.024 with 95% credible interval [−0.031, 0.098]. These estimates indicate

that the 180-day survival of subjects who received the RHC did not differ significantly from that of

patients who did not get RHC. Point estimates obtained from the comparator methods were found

to be similar as shown in Table 3.8. The GP model resulted in narrower credible intervals, which is

consistent with what we found in some of the simulation studies (Tables 3.1 and 3.3).
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Table 3.8: Estimated average treatment effect of receiving the RHC.
ATE SE 95% CrI

GP .022 .032 [-.032, .100]
BCF .033 .044 [-.047, .126]

BART-Stratified .035 .049 [-.059, .124]
BART-Single .031 .042 [-.049, .114]
BART+SPL .030 .077 [-.111, .177]

3.5. Discussion

In this paper, we develop a model that employs Gaussian process priors to address practical vio-

lations of the positivity assumption when estimating causal effects from observational data. Unlike

matching or trimming approaches, our method allows inference about the original target population.

Further, unlike previous extrapolation methods, our approach does not require specifying arbitrary

cut-offs in order to define nonoverlap regions. Importantly, our Gaussian process approach better

reflects the greater uncertainty around estimated causal effects that is expected in areas of less

covariate overlap.

For complex outcome models containing nonlinearities and interactions, the GP model provided

average treatment effect estimates with good performance. This result may be attributed to the

nonparametric nature of the GP model and the centering of the GP prior of the prognostic compo-

nent on a linear model. By pulling the prior in the direction of the data, more accurate estimates

were obtained in data sparse areas. Further, the form of our model places a direct prior on the

treatment effect, which may be beneficial for incorporating prior knowledge of the treatment effect

and for subsequent interpretation–the form of the posterior for treatment effects is known. The GP

model also provided more accurate and precise estimates of individual causal effects, which were

most likely due to its accommodation of each subject’s actual covariate values. For instance, for

subjects in nonoverlap regions, we observed the GP model to be superior to the BART-only models

in providing individual-level estimates that are close to the truth.

We emphasize the point that the type of positivity violation and the choice of approach that would

be appropriate for addressing those violations depends on the clinical or study question of interest

and the population of interest. If the objective is to account for all patient subgroups, that is, the

set eligible for a particular treatment or intervention, then the population-level estimand is needed.

There may be an extent of nonoverlap past which it would not be reasonable to obtain a population-
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level estimand–this may be a case when there are issues with study design or sampling, which

should be dealt with before data are analyzed. Prior to fitting the GP model, standard exploratory

analyses to assess covariate or propensity score overlap should be carried out and different defi-

nitions of overlap that have been proposed could be considered (Zhu et al., 2021). High degrees

of nonoverlap may indicate that the current differences between the groups may result in invalid

comparisons and that an alternative target population may be of more scientific or clinical interest.

In their invited discussion to Hahn, Murray, and Carvalho (2020), Papadogeorgou and Li suggest

the Guassian process model may better address regions of poor overlap, where the GP model was

shown to have larger measures of uncertainty. In their example, they consider a single covariate

and then fit separate outcome models for the treatment and control groups where the functions for

each are given a GP prior. In our proposed approach, instead of placing priors on the outcome

models for treated subjects and control subjects, respectively, we propose utilizing two GP priors in

the same model for the prognostic and treatment effect components. With this choice of modeling,

we allow data from both the treatment and control groups to influence the model fitting and thus

more information is utilized in estimating the treatment effects. Our study furthers their illustrations

by exploring the performance of the GP prior to address covariate nonoverlap in more complex data

scenarios involving different degrees of nonoverlap and varying numbers of covariates. Further, by

employing hyperpriors for the hyperparameters in the GP prior in the implementation of our model,

results may be less sensitive to the particular prior specification.

One current limitation to our approach is the potential lack of scalability to very large studies due

to computational challenges. The computational complexity is O(n3) due to inversion of matrices

that have dimensions equal to the sample size. Further, the long run time may be due to the

number of parameters being sampled in our Markov Chain Monte Carlo; our algorithm estimates

hyperparameters rather than fixing them at constant values. In the covariance function, the same

length-scale parameter is used for all the covariates. Modifying the kernel in the GP prior to allow for

different length-scale parameters for different covariates may be beneficial especially when there is

a large number of covariates. This may better capture the correlation between each covariate and

outcome to reflect the relative importance of each variable and allow prior information regarding

relevant confounders to be utilized. Moreover, here we have focused on continuous and binary

outcomes. We are currently considering extensions of the GP approach to other outcomes that
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are common in clinical studies such as censored survival outcomes and longitudinal outcomes.

In the longitudinal setting, addressing positivity violations may pose particular challenges due to

time-dependent confounding.
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CHAPTER 4

LEVERAGING BASELINE COVARIATES IN GEE ANALYSES OF SMALL CLUSTER

RANDOMIZED TRIALS WITH A RARE BINARY OUTCOME

4.1. Introduction and Problem of Interest

In cluster-randomized trials (CRTs), groups of subjects, rather than the individuals themselves, are

randomly allocated to treatment and control arms (Hayes and Moulton, 2009). Examples of clus-

ters include hospitals, schools, residential care homes, work sites, and whole communities (Lorenz

et al., 2018; Murray, Varnell, and Blitstein, 2004). CRTs are typically employed when interventions

of interest are targeted or can only be delivered at the group or organization level due to logisti-

cal, ethical, or concerns about contamination or spillover effects if the interventions were delivered

at the individual level (Kahan et al., 2016; Leyrat et al., 2018). As clusters are often determined

by physical, social, or other shared exposures, the outcome measurements from subjects within a

cluster tend to be more similar than those from different clusters, leading to a positive intracluster

correlation coefficient (ICC). This positive intracluster correlation must be accounted for in anal-

ysis to avoid inflated type I error rates—that is, risk of a false positive conclusion (Kahan et al.,

2016; Murray, Varnell, and Blitstein, 2004). Methods to adjust for intracluster correlations include

cluster-level analyses that use summary measures for each cluster and individual-level analyses

that employ generalized linear mixed models or marginal models estimated with generalized esti-

mating equations (GEEs) (Donner and Klar, 2000; Eldridge and Kerry, 2012; Leyrat et al., 2018;

Liang and Zeger, 1986). Marginal models are sometimes preferred because they carry a straight-

forward population-averaged interpretation of the intervention effect parameter, which is often of

public health or policy interest (Preisser et al., 2003). In addition, marginal models coupled with

the sandwich variance estimator have been shown to be robust to misspecification of the working

covariance structure, and provides asymptotically valid confidence intervals as long as the marginal

mean structure is correctly specified (Zeger, Liang, and Albert, 1988). However, despite its asymp-

totic validity, when the number of clusters is small (typically not exceeding 30), the sandwich vari-

ance estimator can exhibit negative bias and may lead to inflated type I error rates for hypothesis

testing. There remains considerable interest in improving finite-sample inference of the sandwich

variance estimator for GEE analysis of small CRTs (Donner and Klar, 2000; Eldridge and Kerry,
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2012; Kahan et al., 2016; Murray, Varnell, and Blitstein, 2004).

CRTs with a small number of clusters are common as it may be logistically difficult or expensive

to recruit additional facilities or clusters into a given study, or the available number of clusters is

simply constrained (e.g., number of villages in a geographic region) (Eldridge and Kerry, 2012;

Huang, Fiero, and Bell, 2016; McNeish and Stapleton, 2016). A systematic review by Ivers and

colleagues (2011) of 300 randomly selected CRTs published between 2000 and 2008 found the

median number of clusters to be 21. Kahan et al. (2016) conducted a similar review of CRTs

published in 2011 and found a median of 25 clusters with minimum number of clusters equal to

4. Another systematic review of CRTs published between 2013 and 2014 found a median of 36

with 28 out of 51 trials having fewer than 40 clusters (Huang et al. 2016); the smallest trial in

this review also had 4 clusters. Given that the standard GEE analysis may overstate the statistical

significance when there is a limited number of clusters, several approaches have been proposed

to correct for the downwardly biased sandwich standard error estimator, including approaches by

MacKinnon and White (1985), Mancl and DeRouen (2001), Kauermann and Carroll (2001), Fay and

Graubard (2001), and Morel, Bokossa, and Neerchal (2003). These finite-sample bias-corrections

increase the variability of the treatment effect estimator by either multiplying the middle term of

the sandwich estimator by a factor (multiplicative bias-correction) or adding a term to the classical

sandwich estimator (additive bias-correction). In addition, Lipsitz, Dear, and Zhao (1994), Pan and

Wall (2002), and Wang and Long (2011) have proposed corrections which provide variance similar

estimates but make a strong assumption that the cluster sizes are balanced, which typically arises

in longitudinal studies but is not typical in CRTs.

Previous simulation studies have compared the relative performances of different bias-corrected

sandwich variance estimators in the context of continuous, binary, and count outcomes. In general,

employing any of the bias-corrections in the sandwich variance estimator produces type I error

rates that are closer to nominal levels while uncorrected sandwich variance estimators frequently

lead to inflated type I error even with 70 total clusters as shown by Kahan et al. (2016). Li and Red-

den (2015) have recommended the corrections proposed by Kauermann and Carroll (2001) (KC)

and Fay and Graubard (2001) (FG) depending on various ranges of cluster size when analyzing

binary outcomes. Ford and Westgate (2017) have indicated that the KC bias-corrected sandwich

variance estimator may still give downwardly biased estimates of the standard error and that the
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FG bias-corrected sandwich variance estimator gives similar performance to KC . Further, they

note that the Mancl and DeRouen (2001) (MD) bias-corrected sandwich variance estimator tends

to over-correct resulting in conservative inference, and thus recommended the average of the MD

and KC standard error estimators as the top performer in CRTs with continuous and binary out-

comes (Ford and Westgate, 2017). Similar observations and recommendations were discussed

in Li and Tong (2021a) for CRTs with count outcomes subject to truncation. It is evident that the

performance of these bias-corrected sandwich variance estimators can depend on the settings of

interest; recent statistical software including SAS, R, and Stata have now incorporated some of

these bias-corrections for improved GEE analyses (Gallis, Li, and Turner, 2020; Wang et al., 2016).

A notable limitation of existing comparative studies of analytical strategies for CRTs is that they

have primarily focused on unadjusted analyses; hence, current recommendations may or may not

be generalized to situations where covariate adjustment is being considered in the analysis of a

CRT (Ford and Westgate, 2017; Huang, Fiero, and Bell, 2016; Leyrat et al., 2018; Li and Redden,

2015; Thompson et al., 2021). In CRTs, individual-level covariates are often collected at baseline

and there can be interest in adjusting for baseline covariates during the analysis stage. The need

for covariate adjustment in CRTs can fall into one the following categories. First, in CRTs where

covariate-constrained randomization is utilized in the design stage, it has been recommended that

covariates balanced by design should be adjusted for in the analysis model to adequately control

for the type I error rate (Li et al., 2015, 2017; Watson, Girling, and Hemming, 2021; Zhou et

al., 2022). Second, adjusting for baseline covariates can be based on precision considerations.

Specifically, covariate adjustment has been shown to provide efficiency gains, allowing for better

precision and power in individually-randomized trials (Benkeser et al., 2021; Tsiatis et al., 2008;

Zhang, Tsiatis, and Davidian, 2008). With regulators such as the U.S. Food and Drug Administration

and the European Medicines Agency recommending prognostic baseline covariate adjustment in

individually-randomized trials (FDA, 2019; EMA, 2015), there remains sufficient interest in whether

covariate adjustment can improve efficiency and precision in CRTs, especially when the number of

clusters is often limited. Third, it has been shown that covariate adjustment can reduce selection

bias or recruitment bias in CRTs in the absence of no unmeasured confounders (Leyrat et al., 2013;

Leyrat et al., 2014; Li et al., 2021).

In this article, we focus on addressing the second consideration: leveraging baseline covariates to
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improve precision. We return to a discussion of the first and third points in Section 6. To provide

practical guidance and improve statistical practice in analyzing CRTs under realistic scenarios, we

contribute new numerical evidence to clarify (1) whether leveraging baseline covariates improves

the efficiency of the average treatment effect estimator, and if so, by how much relative to the unad-

justed analysis; and (2) whether the bias-corrected sandwich variance estimators can be success-

fully extended to provide valid statistical inference under covariate adjustment when the number of

clusters is small. Further, we focus on rare binary outcomes which are often seen in CRTs of public

health interventions Augustine, Adams, and Mink, 2013; Basch and Bennett, 2014; Singh and Loke,

2012 but introduce unique challenges. For instance, adjusting for multiple covariates may lead to

separation issues and non-convergence when fitting traditional multivariable regression models.

This convergence problem, however, may be ameliorated using propensity score weighting, which

has been demonstrated to be a valid covariate adjustment approach in individually-randomized tri-

als and can be adapted to analyzing CRTs with a rare binary outcome (Leyrat et al., 2014; Zeng

et al., 2021).

The remainder of this article is organized as follows. In Section 4.2, we define the notation and

causal estimand in CRTs with a rare binary outcome. We also provide the technical details on the

propensity score weighting and multivariable regression approaches under the GEE framework for

covariate adjustment in CRTs as well as the associated bias-corrected sandwich variance estima-

tors for inference under each of these approaches. Section 4.3 provides the details of our simulation

study, structured under the ADEMP (aims, data-generating mechanisms, estimands, methods, and

performance measures) framework (Morris, White, and Crowther, 2019). We compare the rela-

tive efficiency of covariate-adjusted and the unadjusted estimator and evaluate the bias-corrected

sandwich variance estimators regarding their ability to provide nominal coverage in a comprehen-

sive and neutrally designed comparative simulation study. Section 4.4 presents performance based

on bias, variance, coverage, and rates of non-convergence under the various simulation settings.

In Section 4.5, we implement the various approaches to reanalyze a previously published CRT

assessing a nurse-implemented goal-directed sedation protocol versus usual care in 31 pediatric

intensive care units. We conclude with practical recommendations on appropriate procedures when

analyzing CRTs with a small number of clusters and a rare binary outcome in Section 4.6.
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4.2. Methods

4.2.1. Notation and estimand

Suppose we have a two-arm parallel CRT with N total clusters and 1:1 randomization, and let Z

denote the treatment indicator withA = 1 corresponding to inclusion in the treatment group andA =

0 corresponding to being in the control group. Let Yij denote the binary outcome of the jth patient

in cluster i with P -dimensional covariate vector Xij , i = 1, ..., N and j = 1, ...,mi. We assume the

outcomes are correlated within the same clusters but independent across clusters. Specifically, for

the ith cluster, Yi = [Yi1, ..., Yimi ]
′ is the outcome vector and Xi = [Xi1, ...,Ximi ]

′ is the covariate

matrix. In this article, we are interested in estimating the average treatment effect on the ratio

scale. Briefly, as the outcome of interest is binary, we are interested in the target estimand as the

marginal log odds ratio of the treatment to the control. We assume {Yij(1), Yij(0)} ∈ {0, 1}⊗2 is the

pair of potential/counterfactual binary outcomes under the treatment and control conditions. For

each subject j in cluster i, define the individual-specific probability of outcome under the treatment

condition as P1,ij = P (Yij(1) = 1|Xij) and the individual-specific probability of outcome under

control as P0,ij = P (Yij(0) = 1|Xij), and let J =
∑N

i=1mi denote the total number of subjects.

Then the causal odds ratio of interest is

OR =
(
∑N

i=1

∑mi

j=1 P1,ij)(J −
∑N

i=1

∑mi

j=1 P0,ij)

(J −
∑N

i=1

∑mi

j=1 P1,ij)(
∑N

i=1

∑mi

j=1 P0,ij)
, (4.1)

and we further define ∆ = log(OR), the log causal odds ratio, as our target estimand. This causal

estimand is also referred to as the participant-average treatment effect by Brennan et al. (2022),

but on the odds ratio scale (instead of the risk difference scale). While our focus is on estimand

(4.1), we refer to Brennan et al. (2022) and Wang et al. (2022) for alternative estimands such as

the cluster-average treatment effect that may also be of interest in CRTs.

4.2.2. Overview of generalized estimating equations (GEE) analyses of CRTs

To estimate the parameter defined in (4.1), we primarily consider the GEE approach, for which we

provide a brief overview. Under the GEE approach, the relationship between the marginal mean

E[Yij |Xij ] = µij and the covariates Xij may be modeled with a generalized linear model, g(µij) =

Xijβ, where g(·) is the specified link function and β is a vector of regression coefficients. With a

binary outcome, logistic regression is often used where g is taken as the canonical logit link function,

which we use in this article. Let Vi = B
1/2
i RiB

1/2
i denote the working covariance structure for Yi,
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where Bi = diag[ϕv(µi1), ..., ϕv(µimi)] are the marginal variances, v is a known function, ϕ is an

unknown dispersion parameter, and Ri is the working correlation matrix. The parameter estimates

β̂ in the marginal model are obtained by solving the estimating equations,
∑N

i=1 D
′
iV

−1
i (Yi−µi) =

0, where Di =
∂µi

∂β′ . The estimator β̂ is consistent and asymptotically normal, and, even if the

working correlation structure is misspecified, its variance-covariance can be consistently estimated

by V = Cov(β̂) = Ω
(∑N

i=1 D
′
iV

−1
i rir

′
iV

−1
i Di

)
Ω, where Ω =

(∑N
i=1 D

′
iV

−1
i Di

)−1

and rir
′
i =

(Yi − µ̂i)(Yi − µ̂i)
′ is an estimate of the covariance of Yi. The variance V is often referred to as

the robust sandwich estimator or the empirical sandwich estimator (Liang and Zeger, 1986).

Oftentimes, the primary analysis of CRTs proceed with the marginal model without any baseline

covariates, or the so-called unadjusted analysis. In this approach, Xij = Ai in the marginal mean

model and the mean model can be explicitly written as

logit(µij) = β0 + β1Ai, (4.2)

and β = (β0, β1)
′. To estimate β1, one may choose either the independence or exchangeable

working correlation structures. When the true data generating model is indeed the unadjusted

model (4.2), β1 directly corresponds to our target estimand ∆, and the choice of exchangeable

working correlation structure provides a more efficient causal effect estimator when the cluster

sizes are variable (Li and Tong, 2021a,b). However, when the true data generating process in

fact involves additional covariates or when the cluster size is predictive of the treatment effect, we

show in the Appendix that β̂1 is a consistent estimator to ∆ only under the independence working

correlation structure. This argument extends the ones provided in Wang et al. (2022) and Brennan

et al. (2022) to ratio effect measures. Because of this rationale, we primarily focus on the case

with an independence working correlation model and defer to Section 4.6 for a discussion on the

exchangeable working correlation model. Beyond the unadjusted analysis, the GEE approach can

be extended to leverage baseline covariates to potentially increase the efficiency for estimating

∆. In Section 4.2.3, we consider using propensity score weighting for covariate adjustment. In

addition, model (4.2) can be expanded to include additional baseline covariates, in which case a

population standardization procedure is required to estimate ∆, because the regression does not

directly correspond to ∆ as a result of non-collapsibility. We describe this multivariable regression

approach in Section 4.2.4.
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CRTs often include a fairly limited number of clusters (typically not exceeding 30 or 40). In that case,

the term rir
′
i in the sandwich variance estimator tends to underestimate the true covariance of Yi

since the fitted values µ̂i are closer to the observed values Yi than the true values (Li and Redden,

2015; Mancl and DeRouen, 2001; Morel, Bokossa, and Neerchal, 2003). Residuals are too small

especially when the total number of clusters is small (Mancl and DeRouen, 2001), and Wald test

statistics, which rely on asymptotic theory, will result in inflated type I errors due to the negative

bias in estimation of Cov(β̂). In these settings, the use of bias-corrections has been recommended

with the corrections of Mancl and DeRouen (2001), Kauermann and Carroll (2001), and Fay and

Graubard (2001) being the more popular ones and having been compared in simulation studies

by Ford and Westgate (2017), Li and Tong (2021a,b), Li and Redden (2015), and Lu et al. (2007)

and others. However, these empirical studies have almost all focused on the unadjusted analysis

and recommendations on small sample corrections for covariate-adjusted GEE analyses remain

unclear.

4.2.3. Propensity score weighting for covariate adjustment

Rosenbaum and Rubin (1983) developed the the propensity score which is defined as the proba-

bility of treatment conditional on observed covariates; that is, e(X) = P (A = 1|X). Approaches

based on the propensity score, such as matching, weighting, and stratification, are commonly em-

ployed in the design and analysis of observational studies to control for confounding, since it has

been shown that conditional on the propensity score, treatment is conditionally randomized (Austin,

2011; Lunceford and Davidian, 2004; Rosenbaum and Rubin, 1984). In the context of randomized

trials, the true propensity score is often known by design and there is no need to leverage the

propensity score for unbiased estimation of treatment effect. However, propensity score weighting

has been shown to provide efficiency gains by addressing chance imbalance of baseline covari-

ates (Rosenbaum and Rubin, 1983; Williamson, Forbes, and White, 2014; Zeng et al., 2021). In

particular, Williamson, Forbes, and White (2014) have shown in individually-randomized trials that

(1) inversely weighting by the estimated propensity score with prognostic covariates can reduce

the variance of the unadjusted treatment effect estimator and (2) with a rare binary outcome, the

propensity score weighting approach often circumvents non-convergence issues that multivariable

regression is vulnerable to. In addition, Zeng et al. (2021) demonstrated that in individually ran-

domized trials, weighting by overlap weights almost always leads to smaller variance than inverse

propensity score weighting. Here we explore the use of these two propensity score weighting ap-
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proaches as covariate adjustment strategies for CRTs.

Inverse probability of treatment weighting (IPW) seeks to construct a sample in which the distri-

butions of observed baseline variables are similar between treatment and control groups (Rosen-

baum, 1987). These weights are defined to be the reciprocal of the conditional probability of being

assigned to the treatment group that they were observed to be in. In CRTs, for subject j in cluster

i, the weight is given by,

wij =


1/e(Xij) if treated (Ai = 1)

1/{1− e(Xij)} if control (Ai = 0)

On the other hand, overlap weighting (OW) was proposed to overcome possible limitations of IPW

when there is limited overlap in covariate distributions between treatment arms in observational

studies (Li, Morgan, and Zaslavsky, 2018), and also improves upon IPW in individually-randomized

trials. Specifically, the overlap weights are defined to be the probability of being in the opposite

treatment group (the one the subject was not observed to be in) given confounders:

wij =


1− e(Xij) if treated (Ai = 1)

e(Xij) if control (Ai = 0)

For individual-level randomized trials, IPW and OW correspond to the same population estimand,

but Zeng et al. (2021) indicates that OW provides better finite-sample performance in that it is

more efficient at smaller sample sizes. We are therefore interested in whether OW provides similar

relative improvement over IPW in cluster randomized trial analyses.

The propensity score is often estimated using parametric logistic regression, which models the

probability of being treated given baseline covariates. Alternative models for propensity score esti-

mation that have been considered include neural nets, decision trees, boosting, Bayesian additive

regression trees, and ensemble learners (Westreich, Lessler, and Funk, 2010; Zhu et al., 2021). In

observational studies, these nonparametric and machine learning approaches often provide greater

flexibility and more accurate estimates when there are complex relationships among the variables;

however, their role in the analysis of CRTs currently remains unknown. In this work, we explore
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whether using Bayesian additive regression trees (BART) models to estimate propensity scores will

impact results in the CRT context (Chipman, George, and McCulloch, 2010). BART is a Bayesian

nonparametric sum-of-trees model that involves binary splits in the predictor space and a regular-

ization prior to avoid overfitting. This model has become popular in the area of causal inference

due to its flexible and robust approach to and good performance in treatment effect estimation (Hill,

2011). In settings where there are nonlinear relationships or interactions among the covariates

included in the propensity score model, there may be difficulty specifying those patterns through a

parametric model. BART can handle inclusion of several predictors with easier model fitting in this

case. In our ensuing simulation study, we will examine whether using a more flexible propensity

score model with BART can potentially improve efficiency when analyzing CRTs.

Next, we describe bias-corrected sandwich variance estimators under covariate adjustment via

propensity score weighted GEE. Once propensity scores are estimated for each subject, the weight

matrix Wi is formed for each cluster i with wij on the diagonal and 0 for the off diagonal elements.

The regression parameter estimators are obtained by solving the weighted GEE,∑N
i=1 D

′
iV

−1
i Wi(Yi − µi) = 0.

Since the weighted GEE model only contains the treatment indicator as a covariate, the estimate

of the coefficient for this variable obtained from fitting the model is the log(ÔR), which estimates

the participant-average treatment effect ∆. For convenience, we ignore the variability due to the

estimation of propensity scores, and the corresponding bias-corrected sandwich variance estima-

tors incorporating these weights are developed in Table 4.1. Here, Ω̂ = (
∑N

i=1 D
′
iV

−1
i WiDi)

−1 is

the propensity score weighted “model-based” variance, and Hi = DiΩ̂D′
iV

−1
i Wi is the propensity

score weighted leverage matrix for cluster i. Further, for the FG bias-corrected sandwich variance

estimator, Fi = diag{(1−min{.75, [Qi]jj})−1/2} and Qi = D′
iV

−1
i WiDiΩ̂, which also includes the

weight matrix with estimated propensity scores. Note that the sandwich variance estimators here

differ from previous bias-correction forms in that weight matrices have been integrated, and we will

formally examine whether any of these bias-corrections can help maintain the nominal coverage of

the covariate-adjusted estimation of ∆, when there is only a limited number of clusters.

4.2.4. Direct multivariable regression for covariate adjustment

As an alternative to propensity score weighting, we also consider the direct multivariable regres-

sion approach for covariate adjustment in CRTs. Due to non-collapsibility with the logit link func-
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Table 4.1: Bias-corrected sandwich variance estimators incorporating the propensity score weights.

Estimator Cov(β̂)

Robust sandwich estimator Ω̂
{∑N

i=1 D
′
iV

−1
i Wirir

′
iWiV

−1
i Di

}
Ω̂

Mancl and DeRouen
(MD) bias-corrected estimator Ω̂

{∑N
i=1 D

′
iV

−1
i Wi(I−Hi)

−1rir
′
i(I−H′

i)
−1WiV

−1
i Di

}
Ω̂

Kauermann and Carroll
(KC) bias-corrected estimator Ω̂

{∑N
i=1 D

′
iV

−1
i Wi(I−Hi)

−1/2rir
′
i(I−H′

i)
−1/2WiV

−1
i Di

}
Ω̂

Fay and Graubard
(FG) bias-corrected estimator Ω̂

{∑N
i=1 FiD

′
iV

−1
i Wirir

′
iWiV

−1
i DiFi

}
Ω̂

tion, the estimator of the coefficient for the treatment variable (when there are other covariates in

the model) reflects a conditional treatment effect. To ensure we are targeting the marginal esti-

mand ∆, we will use the model fit to obtain estimates of the probability of the potential outcomes

averaged or standardized over the covariate distribution. Suppose we fit the multivariable model

logit {E(Yij |Xij , Ai)} = β0 +
∑P

p=1 βpX
(p)
ij + δAi. Let β̂

′
= [β̂0, β̂1, ..., β̂P , δ̂] denote the estimates

of the coefficients from the GEE model fit, where δ̂ represents the estimator for the conditional

log odds ratio. Then, the predicted risk for subject j in cluster i, if he/she was given treatment is

P̂1,ij =
exp(X′

1,ij β̂)

1+exp(X′
1,ij β̂)

where X1,ij = [1,X′
ij , 1]

′. Similarly, the predicted risk for subject j in cluster i

under the control is P̂0,ij =
exp(X′

0,ij β̂)

1+exp(X′
0,ij β̂)

where X0,ij = [1,X′
ij , 0]

′. Then an estimate of the ATE is

log(ÔR) = log

{
(
∑N

i=1

∑mi

j=1 P̂1,ij)(J −
∑N

i=1

∑mi

j=1 P̂0,ij)

(J −
∑N

i=1

∑mi

j=1 P̂1,ij)(
∑N

i=1

∑mi

j=1 P̂0,ij)

}

Then using the delta method, V̂ ar(log(ÔR)) = M′Cov(β̂)M, where Cov(β̂) may either be the ro-

bust sandwich estimator or the bias-corrected estimators in the existing literature (Ford and West-

gate, 2017; Li et al., 2015) and M = ∂log(ÔR)/∂β.

To determine the form of M, for log(ÔR) = log(
∑N

i=1

∑mi

j=1 P̂1,ij) + log(J −
∑N

i=1

∑mi

j=1 P̂0,ij) −

log(J −
∑N

i=1

∑mi

j=1 P̂1,ij)− log(
∑N

i=1

∑mi

j=1 P̂0,ij), taking partial derivatives gives

∂

∂β
log

 N∑
i=1

mi∑
j=1

P̂1,ij

 =
1∑N

i=1

∑mi

j=1 P̂1,ij


N∑
i=1

mi∑
j=1

exp(X′
1,ijβ̂)X1,ij

[1 + exp(X′
1,ijβ̂)]

2


∂

∂β
log

J −
N∑
i=1

mi∑
j=1

P̂0,ij

 = − 1

J −
∑N

i=1

∑mi

j=1 P̂0,ij


N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij

[1 + exp(X′
0,ijβ̂)]

2


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∂

∂β
log

J −
N∑
i=1

mi∑
j=1

P̂1,ij

 = − 1

J −
∑N

i=1

∑mi

j=1 P̂1,ij


N∑
i=1

mi∑
j=1

exp(X′
1,ijβ̂)X1,ij

[1 + exp(X′
1,ijβ̂)]

2


∂

∂β
log

 N∑
i=1

mi∑
j=1

P̂0,ij

 =
1∑N

i=1

∑mi

j=1 P̂0,ij


N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij

[1 + exp(X′
0,ijβ̂)]

2


Combining the above elements, we have that

M =

(
1∑N

i=1

∑mi

j=1 P̂1,ij

+
1

J −
∑N

i=1

∑mi

j=1 P̂1,ij

)
N∑
i=1

mi∑
j=1

exp(X′
1,ijβ̂)X1,ij

[1 + exp(X′
1,ijβ̂)]

2


−

(
1∑N

i=1

∑mi

j=1 P̂0,ij

+
1

J −
∑N

i=1

∑mi

j=1 P̂0,ij

)
N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij

[1 + exp(X′
0,ijβ̂)]

2


We provide intermediate steps of this derivation in the Appendix. For regression adjustment with the

goal of estimating a causal odds ratio, the analogous robust sandwich estimator and bias-corrected

sandwich estimators are then summarized as follows in Table 4.2.

Table 4.2: Bias-corrected sandwich variance estimators for marginal odds ratio estimation using
the multivariable adjusted GEE model.

Estimator V̂ ar(log(ÔR))

Robust sandwich estimator M′Ω̂
{∑N

i=1 D
′
iV

−1
i rir

′
iV

−1
i Di

}
Ω̂M

Mancl and DeRouen
(MD) bias-corrected estimator M′Ω̂

{∑N
i=1 D

′
iV

−1
i (I−Hi)

−1rir
′
i(I−H′

i)
−1V−1

i Di

}
Ω̂M

Kauermann and Carroll
(KC) bias-corrected estimator M′Ω̂

{∑N
i=1 D

′
iV

−1
i (I−Hi)

−1/2rir
′
i(I−H′

i)
−1/2V−1

i Di

}
Ω̂M

Fay and Graubard
(FG) bias-corrected estimator M′Ω̂

{∑N
i=1 FiD

′
iV

−1
i rir

′
iV

−1
i DiFi

}
Ω̂M

4.3. Simulation Studies

We use simulatation studies to evaluate the performance and properties of adjusted participant

average treatment effect estimators under a wide range of realistic scenarios. We employ the

ADEMP structured approach proposed by Morris, White, and Crowther (2019) to report the details

of our simulation studies.

4.3.1. Aims

The motivation of our simulation studies is to inform practical choices for covariate-adjusted analy-

sis of CRTs with small numbers of clusters and rare binary outcomes. These studies are intended

to provide evidence-supported guidance in potentially challenging scenarios for the methods de-
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scribed above. Our goals are two-fold. First, we aim to demonstrate the utility of covariate adjust-

ment in small CRTs with rare binary outcomes, hoping to provide some justification for incorporating

baseline covariates. Second, we aim to assess and compare the performances of propensity score

weighting and multivariable adjustment models using various bias-corrected sandwich estimators

in this challenging and unique context. This addresses an important gap in the existing literature

which has primarily focused on evaluating similar methods assuming common binary outcomes

and without covariate adjustment (Ford and Westgate, 2017; Li et al., 2015; Li and Tong, 2021b; Lu

et al., 2007).

4.3.2. Data-generating mechanism

We generate CRT data with two parallel arms (treated vs control). Suppose N total clusters were

randomized to the two arms under 1:1 randomization. The cluster size for each cluster is drawn

from a Poisson(m) distribution, where m is the mean cluster size; the exact number of subjects in

cluster i is denotedmi. The outcome ICC under the latent response formulation, ρLogit, will be used

to reflect similarity among people in the same cluster (Eldridge and Kerry, 2012; Li et al., 2017).

This parameter will be set at values relatively small according to values reported in practice and the

fact that the low incidence can limit the mangitude of ICC (Li and Redden, 2015; Murray, Varnell,

and Blitstein, 2004). Defining P1 to be the population incidence under treatment and P0 to be

the population icnidence under the control, we consider two levels of the outcome incidence—low

incidence (P1 ≈ 0.05, P1 ≈ 0.10) and very low incidence (P1 ≈ 0.025, P0 ≈ 0.05).

The general combinations of simulation parameters that we consider are summarized as follows:

(i) Number of total clusters: N = {6, 10, 20, 30}; (ii) Mean cluster size: m = {100, 30}; (iii) ICC on

the latent scale: ρLogit = {.001, .01}; (iv) Number of covariates: P = {6, 15}; (v) Incidence levels:

low and very low. For each simulation setting, 1000 data sets were generated, and the Monte Carlo

errors will be described in Section 4.3.5.

For the outcome generating mechanism, we consider four parametric models. First, we simulate

covariates from a standard normal distribution, X(p) ∼ N(0, 1), p = 1, . . . , P . The number of

covariates will be some factor of 3. The first two outcome models assume a constant additive

treatment effect with constant covariate effects on the logistic scale–that is, there are no interactions

among variables and no treatment effect heterogeneity explained by covariates. Specifically, the
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latent continuous outcome for the jth subject in the ith cluster is

Y c
ij = β0 + β1

P/3∑
p=1

X
(p)
ij + β2

2P/3∑
p=P/3+1

X
(p)
ij + β3

P∑
p=2P/3+1

X
(p)
ij + δAi + ui + ϵij

where ui ∼ N(0, σ2
u) is the random effect and ϵij is assumed to follow the standard logistic dis-

tribution with mean 0 and variance σ2
ϵ = π2

3 . Then σ2
u =

ρLogit

1−ρLogit
· π2

3 according to the latent

response definition of binary ICC. The binary outcome is obtained by dichotomizing Y c
ij : Yij ∼

Bernoulli(expit(Y c
ij)). We consider two sets of fixed coefficients for the covariates X(1), ..., X(P ),

which correspond to varying strength for covariate-outcome associations.

(i) Outcome generating model 1: β1 = 0, β2 = 0.4, β3 = 0.8. In this model, some of the covariates

are not related to the outcome while the others are weakly correlated with the outcome.

(ii) Outcome generating model 2: β1 = 0.8, β2 = 1.6, β3 = 2.4. With this model, all covariates are

prognostic and some strongly correlated with the outcome.

Next, we consider more complex outcome generating models that incorporates nonlinearity and

treatment effect heterogeneity (interaction between treatment and covariates). For these models,

we consider six covariates, which are simulated from a multivariable model with mean vector 0

and covariance matrix diagonal elements of 1 and off diagonal elements of 0.1, reflecting weak

correlations among the covariates.

(iii) Outcome generating model 3: Y c
ij = β0 − 3
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(iv) Outcome generating model 4: Y c
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4.3.3. Estimands

To address the issue that regression coefficients of different modeling strategies can correspond to

different parameters, we have articulated a common, nonparametric causal estimand of interest in

Section 4.2.1. Specifically, our estimand is the participant average treatment effect in log odds ratio,

which is an extension of the estimand defined in Brennan et al. (2022) to binary outcomes. Note
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that the treatment effect δ has a conditional interpretation since our outcome generating model

includes other covariates. Since interest is in the marginal effects, the “true” average treatment

effect δ for each setting is based on the log odds ratio calculated from a large simulated data

set (N = 5000,m = 100). Each individual has two potential outcomes, which are obtained by

taking draws from the Bernoulli distribution with probability equal to the expit of the expression

with their covariates under A = 1 and A = 0, respectively. From these, the population incidences

under treatment and under control are obtained, so that true parameter value is ∆ ≈ log P1(1−P0)
P0(1−P1)

,

where P1 is the large sample (population) incidence under treatment and P0 is the large sample

(population) incidence under control. Further, the parameters β0 and δ for each combination of

generating model, incidence level, and number of covariates are set at values that give the desired

incidences. These more granular considerations are detailed in the Appendix.

4.3.4. Methods: analytical strategies with and without baseline covariates

We consider two modeling approaches for obtaining propensity scores indicating the estimated

probability of being in the treatment group conditional on the subject’s baseline covariates. The first

is the multivariable logistic model that regresses the treatment variable on the main effects of the co-

variates. We next employ a more flexible BART model with a probit link (Chipman, George, and Mc-

Culloch, 2010), hoping that a more flexible propensity score model can potentially adjust for chance

imbalances on higher moments of the covariates beyond the mean. We intend to test whether using

BART for estimating propensity scores provides improvements over parametric propensity scores

for covariate adjustment in CRTs and to identify settings in which that is the case. Once the indi-

vidual propensity score values are estimated, we construct two types of weight matrices based on

IPW and OW. To estimate the average treatment effect, we employ the GEE approach described

earlier. Specifically, we consider six different models and evaluate their respective performances.

Crude The crude model is our reference in which there is no adjustment for covariates, and only

the treatment indicator variable is included. The model can be written as

logit{P (Y = 1)} = β0 + δZ

Multi The multivariable model involves covariate adjustment and includes the main effects of the
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covariates along with the treatment indicator.

logit{P (Y = 1)} = β0 +

P∑
p=1

βpX
(p) + δZ

IPW-Logit, IPW-BART, OW-Logit, OW-BART The individual-level propensity scores are estimated

with logistic regression and BART, inverse probability or overlap weights based on the esti-

mated propensity scores are calculated, and then the resulting weight matrix Wi is included

in the GEE model for estimation and inference.

For the Crude approach, we consider the robust sandwich variance estimator and its bias-corrected

versions as in Li et al. (2015). For the Multi approach, we consider the sandwich variance estima-

tors described in Table 4.2, and for the weighting based approaches, we consider the sandwich

variance estimators defined in Table 4.1. We use the R statistical software to estimate propensity

scores and perform regression analysis. Specifically, the dbarts package is used to implement

BART, and geepack package is used to fit the GEE models. We developed our own code for com-

puting the suite of sandwich variance estimators in Table 4.1 and 4.2.

4.3.5. Performance measures

We report five performance metrics for each combination of simulation setting and analytic ap-

proach to compare the relative performances of the methods considered. At each replication r we

obtain an estimate of the replication-specific participant average treatment effect, ∆̂r. Then over

the 1000 replications, we can obtain estimates an estimate of the true participant average treatment

effect, ∆ = 1
1000

∑1000
r=1 ∆̂r. Bias is calculated as the mean difference in each estimate and the true

effect value, Bias = 1
1000

∑1000
r=1 (∆̂r −∆). To determine whether covariate adjustment provides effi-

ciency gains over the unadjusted model, we present the relative efficiency (RE), which is the ratio of

the empirical variance of the crude model to the empirical variance of the regression or propensity

score weighting approaches. Further, for each replication, we construct a 95% normality-based

confidence interval. Then the coverage (CVG) using standard error estimates from the robust and

bias-corrected estimators is obtained as the proportion of intervals across the replications that

includes the true estimand value, ∆. Based on the binomial model with 1000 replications, we con-

sider the coverage between [93.6%, 96.4%] to be nominal (Morris, White, and Crowther, 2019), and

in general, higher coverage represents a conservative performance which is typically more tolerable
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than lower coverage (as a reflection of the sandwich variance estimator being anti-conservative).

Lastly, to get a sense for how often separation issues arise for each model, we report the non-

convergence rate (Non-Con), which refers to the proportion of replications that resulted in an error

when fitting the model; this metric is particularly relevant as we assume a low incidence binary

outcome and success in model fitting represents a common practical issue for analyzing such data.

4.4. Simulation Results

Performance measures for each combination of GEE model, variance estimator, and trial param-

eters are provided in detail in the Appendix. To keep the main illustration simple and concise, we

focus on the settings with average cluster size of 100 and ICC of .01 since the patterns and results

do not vary much for the remaining combinations of simulation parameters.

4.4.1. Outcome generating model 1: Additive effect model that includes weakly prognostic and

non-prognostic variables

The relative efficiency of the covariate adjustment methods as compared to the crude model for

data generated using Outcome generating model 1 are close to 1 across the number of clusters

considered (Figure 4.1). This is also the case for other the scenarios with other values of average

cluster size (m), outcome ICC (ρLogit), and total number of covariates (P ). Thus, in this particular

setting, there is limited efficiency gain and, in some cases, slightly less efficiency from covariate

adjustment if the included variables are unrelated or weakly related to the outcome, but the number

of clusters is limited.

Figure 4.2 and and Figure 4.3 present the coverage rates from 95% confidence intervals for vary-

ing total number of clusters under Outcome generating model 1 and assumed low and very low

incidences, respectively. In general, differences in coverage among the sandwich variance esti-

mators considered are larger for a smaller number of clusters. For the crude and multivariable

models, most of the estimators result in under-coverage for fewer than 30 clusters with the MD bias-

corrected sandwich variance estimator giving closest to nominal. Under IPW, the coverage rates

from the FG bias-corrected sandwich variance estimator tend to be the largest and within nominal

range; the MD bias-corrected sandwich variance estimator also provides nominal coverage with

slight undercoverage for the smallest number of clusters, N = 6. Under OW, the MD bias-corrected

sandwich variance estimator provides nominal coverage while the other bias-corrected estimators

only reached nominal coverage at N = 30. Overall, even with N = 30 clusters, the uncorrected ro-
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Figure 4.1: Measures of relative efficiency for simulation settings with average cluster size of 10
and ICC of .01.
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Figure 4.2: Measures of coverage for simulations based on the Outcome generating model 1, low
outcome incidences, 6 covariates, average cluster size of 100, and latent ICC of .01.

bust sandwich estimator results in under-coverage while the bias-corrected estimators give similar

coverage rates that are at nominal level, regardless of whether covariate adjustment is considered.

Non-convergence tends to not be much of an issue when outcome variables are simulated under

Outcome generating model 1, where there are 6 covariates except at very low incidences and
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Figure 4.3: Measures of coverage for simulations based on the first outcome generating model,
very low outcome incidences, 6 covariates, average cluster size of 100, and latent ICC of .01.

N = 6 and m = 30. Here, the non-convergence rate is 0.147 and 0.160 for the multivariable model

and 0.136 and 0.151 for the other models at ICC of .001 and .01, respectively. If 15 covariates are

adjusted for, approximately half of the replications do not converge for the multivariable model at 6

clusters with 30 subjects per cluster on average (see Appendix). However, weighting based analysis

encounters much less non-convergence and is a practical solution for covariate adjustment when
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multivariable regression fails to provide a point estimate.

Figure 4.4: Measures of coverage for simulations based on Outcome generating model 2, low
outcome incidences, 6 covariates, average cluster size of 100, and latent ICC of .01.

4.4.2. Outcome generating model 2: Additive effect model that includes variables that are strongly

correlated with the outcome

In this setting, adjustment for covariates that have a large effect on the outcome may substantially

increase the efficiency of the model over the crude model (Figure 4.1). Further, the multivariable
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model, when it converges, tends to provide the largest efficiency gain. This is expected because the

multivariable model is approximately correctly specified. For the same propensity score estimates

(either logistic or BART), IPW and OW provide almost identical estimates of empirical variance.

Results are similar for other values of average cluster size (m) and outcome ICC (ρLogit). This

result is in contrast to those under individually-randomized trials, where OW has been shown to

dominate IPW in terms of performance (Zeng et al., 2021).

In Figure 4.4 and Figure 4.5, the coverage based on 95% confidence intervals by the number of

clusters under Outcome generating model 2 and for low and very low incidences, respectively, are

given. All variance estimators result in undercoverage for N = 6, 10 clusters although the MD bias-

corrected sandwich variance estimator came close to nominal when the crude and multivariable

models are used. Under IPW, the FG bias-corrected sandwich variance estimator gives slight over-

coverage while the MD bias-corrected sandwich variance estimator gives nominal coverage. Under

OW, the MD bias-corrected sandwich variance estimator gives nominal coverage for N = 6, 10

while the other estimators result in undercoverage. However, once N = 20 clusters are reached,

coverage becomes close to the nominal 0.95 for all estimators based on propensity score weighting.

Even at low incidences, under Outcome generating model 2, the multivariable analysis tends to

have larger non-convergence rates than the crude and propensity score weighted models. Specif-

ically, with 6 covariates under N = 6 and m = 30 at very low incidences, the multivariable

model does not converge for 0.333 and 0.309 of the replications when the ICC is .001 and .01,

respectively—almost tripling that of the other models. The problem becomes quite serious when

15 covariates are adjusted for. The analogous non-convergence rates are 0.774 and 0.768 when

incidences are low and 0.976 and 0.986 when incidences are very low. When N = 10 and m = 30,

the non-convergence rates are 0.793 and 0.826 when the ICC is .001 and .01, respectively. Further,

the multivariable model with 15 covariates is observed to have at least one non-convergence repli-

cation even when we have as large as N = 30 clusters. These findings show that, although the

multivariable adjustment GEE can often provides the largest efficiency gain, it could exhibit serious

non-convergence issues when covariates are strongly prognostic and when the number of clusters

is limited. In those scenarios, propensity score weighting, both IPW and OW, becomes a more

practical solution that offers a moderate precision gain over the unadjusted analysis. When the out-

come generating model is relatively simple and additive, machine learning propensity score models
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Figure 4.5: Measures of coverage for simulations based on Outcome generating model 2, very low
outcome incidences, 6 covariates, average cluster size of 100, and latent ICC of .01.

do not exhibit any advantage over logistic propensity scores, and the latter is often sufficient.

4.4.3. Outcome generating model 3 and Outcome generating model 4: Nonlinear covariate-

outcome associations with treatment effect heterogeneity explained by covariates

In terms of the relative efficiency of each covariate adjustment method compared to the crude anal-

ysis, the results can vary depending on the nature of the nonlinearity and interactions embedded in
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Figure 4.6: Measures of coverage for simulations based on Outcome generating model 3, low
outcome incidences, average cluster size of 100 and latent ICC of .01.

the outcome data generation. Under Outcome generating model 3, the multivariable analysis gives

the largest RE for any number of clusters considered. Further, for this complex outcome data gen-

erating model, weighting using BART propensity scores provides larger RE than weighting based

on logistic propensity scores, demonstrating that machine learning propensity scores leads to an

efficiency advantage over their parametric counterparts when the true outcome model includes
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Figure 4.7: Measures of coverage for simulations based on Outcome generating model 3, very low
outcome incidences, average cluster size of 100, and latent ICC of .01.

complex covariate-outcome associations. On the other hand, for Outcome generating model 4,

the weighting using BART-estimated propensity scores resulted in higher efficiency compared to

the multivariable analysis. This is somewhat expected because the multivariate analysis does not

include correctly specified functional forms of the covariate in the marginal mean model. However,

this result represents an importance piece of evidence that machine learning propensity scores can
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confer an efficiency advantage in analyzing small CRTs. Further, weighting using BART-estimated

propensity scores gave higher RE as the number of clusters increases.

Under Outcome generating model 3, the trends and patterns are similar to the previous simula-

tion scenarios in that coverage increases as the number of clusters increases with the MD bias-

corrected sandwich variance estimator providing close to nominal coverage even at N = 6 clusters

(Figure 4.6 and Figure 4.7). With propensity score weighting, all the sandwich variance estimators,

including the robust estimator gives coverage that is at least 0.90 starting with N = 10 clusters. IPW

with BART-estimated propensity scores and OW for both logistic and BART-estimated propensity

scores provide coverage close to 0.95 regardless of the sandwich estimator when the number of

clusters is at least 10. This is in contrast with the multivariable model, which still results in under-

coverage at N = 10 for the KC and FG bias-corrected sandwich variance estimator as well as the

robust estimator. This set of results highlights the important benefit of propensity score weighting

as a practical and effective covariate adjustment strategy when the true data generating model is

complex, even for small CRTs with low outcome incidences. As shown in Figure 4.8 and Figure

4.9, under Outcome generating model 4, patterns in coverage are similar to those observed under

Outcome generating model 3.

For these more complex outcome generating models, the non-convergence rates from the multi-

variable analyses are worse than the weighting approaches at very small number of clusters. For

instance, under Outcome generating model 3, N = 6, m = 30, and very low incidence, the multi-

variate analysis did not converge for 0.344 and 0.387 of the replications as compared to 0.113 and

0.119 for the other approaches, under latent ICC values of .001 and .01, respectively. Under Out-

come generating model 4, N = 6, m = 30, and very low incidence, the multivariate analysis did not

converge for 0.162 and 0.149 or replications, which were slightly more than the 0.139 and 0.128 for

the other approaches under latent ICC values of .001 and .01, respectively.

4.5. Illustrative Application to the RESTORE Cluster Randomized Trial

To illustrate the methods for analyzing CRTs with a low incidence outcome, we apply the propensity

score weighting and multivariable regression methods to the Randomized Evaluation of Sedation

Titration for Respiratory Failure (RESTORE) trial, which was a CRT that took place in N = 31 U.S.

pediatric intensive care units (PICUs). RESTORE compared a nurse-implemented, goal-directed

sedation protocol against usual care. The intervention was introduced to 17 PICUs from the Pedi-
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Figure 4.8: Measures of coverage for simulations based on Outcome generating model 4, low
outcome incidences, average cluster size of 100, and latent ICC of .01.

atric Acute Lung Injury and Sepsis Investigators (PALISI) Network while 14 others in this network

comprised the control clusters and given usual care. the total sample size was 2,449 children.

Additional details about this study may be found in Curley et al. (2015).

In this example, we consider three secondary binary outcomes that appeared to have clinically
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Figure 4.9: Measures of coverage for simulations based on Outcome generating model 4, very low
outcome incidences, average cluster size of 100, and latent ICC of .01.

relevant effects: (i) not successfully extubated by day 28 (with incidence rates (P1 = .084, P0 =

.108); (ii) 90-day in-hospital mortality (P1 = .055, P0 = .072); and (iii) postextubation stridor (P1 =

.072, P0 = .045). For each of the covariate adjustment method, we consider three sets of covariates

corresponding to a small, medium, and large number of variables, all of which are expected to be

prognostic, though at varying degrees, of the three selected outcomes for this illustration. The three
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sets of covariates are:

1. 3 covariates: age, PRISM III-12 score, and baseline POPC score equal to 1

2. 7 covariates: age, PRISM III-12 score, baseline POPC score equal to 1, pneumonia as pri-

mary diagnosis, bronchiolitis as primary diagnosis, acute respiratory failure related to sepsis

as primary diagnosis, and oxygenation index

3. 11 covariates: age, PRISM III-12 score, baseline POPC score equal to 1, pneumonia as pri-

mary diagnosis, bronchiolitis as primary diagnosis, acute respiratory failure related to sepsis

as primary diagnosis, oxygenation index, prematurity, asthma, cancer (current or previous

diagnosis), and intubation at other hospital and transferred to participating PICU

The baseline characteristics for subjects in the control and intervention groups are summarized in

Table 4.3. The absolute standardized difference (ASD) for each covariate is reported as a mea-

sure of covariate imbalance beween intervention and control groups. The values for age, PRISM

score, bronchiolitis, acute respiratory failure, and asthma are great than 0.1, which is a common

threshold for assessing balance, suggesting residual imbalance between the treatment arms for

these variables. Covariate adjustment approaches are expected to correct for those differences.

In the Appendix, we present the propensity score weighted covariate distributions based on the

three adjustment sets of interest and the corresponding weighted ASD measures. We see that

there are substantial differences among the unadjusted intervention effect estimates and the ad-

justed estimates, indicating that confounders are present and need to be accounted for to obtain

valid estimates. When only a subset of the covariates are included in the propensity score models,

we see that there remains imbalance in variables that were not adjusted for which could result in

spurious conclusions. With either IPW or OW, covariates that are included in the propensity model

had reduced baseline imbalance based on the weighted ASD with all of them less than 0.1. With

OW and logistic propensity scores, OW completely removes the baseline imbalance for covariates

that were included, reflecting its exact mean balance property (Li, Morgan, and Zaslavsky, 2018)

(Appendix). With propensity score weighting, we are able to assess the balance in the covariates;

however, with direct multivariable adjustment, there is not an intuitive way to check for balance.

Figure 4.10 presents the data analysis results for the postextubation stridor outcome, under each
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Table 4.3: Baseline demographic and clinical characteristics of children who were mechanically ven-
tilated for acute respiratory failure for control and intervention (use of RESTORE protocol) groups.

Characteristics Control Intervention ASD
n=1224 n=1225

Age (mean (SD)) 5.21 (5.49) 4.22 (5.38) 0.183

PRISM score (mean (SD)) 9.91 (7.50) 7.93 (7.32) 0.266

Baseline POPC score = 1 (%) 862 (70.4) 885 (72.2) 0.040

Pneumonia (%) 433 (35.4) 394 (32.2) 0.068

Bronchiolitis (%) 228 (18.6) 428 (34.9) 0.375

Acute respiratory failure (%) 212 (17.3) 145 (11.8) 0.156

Oxygenation index (mean (SD)) 8.27 (7.34) 8.16 (6.85) 0.015

Prematurity (%) 175 (14.3) 194 (15.8) 0.043

Asthma (%) 210 (17.2) 146 (11.9) 0.149

Cancer (%) 109 (8.9) 88 (7.2) 0.063

Transferred (%) 306 (25.0) 334 (27.3) 0.052

set of adjustment variables. An overall pattern in this data analysis is that the unadjusted analysis

appears to provide a larger participant average treatment effect compared to any covariate adjusted

analysis. This is possibly due to the moderate chance imbalance observed with a limited number of

possibly heterogeneous clusters, which may occasionally exaggerate the treatment benefit. Specif-

ically, for the postextubation stridor outcome, covariate adjustment appears to bring efficiency gain

as shown by the smaller confidence intervals as compared to those obtained based on the crude

model. Further, while the new sedation protocol is shown to significantly increase the odds of

postextubation stridor, this effect is no longer significant after variables are adjusted for. However,

adjusting for a larger number of covariates tends to increase the efficiency of the estimation and

results in more similar estimates across the models that adjusted for covariates. The width of the

confidence intervals from the robust and bias-corrected sandwich variance estimates reflect our

simulation results in that the MD bias-corrected sandwich variance estimator tends to give wider

intervals except under IPW, in which case the FG bias-corrected sandwich variance estimator gives

the widest intervals. For this specific outcome, the multivariable regression analysis leads to similar

results to the propensity score weighting analysis, both in terms of point estimates and 95% CI.

This might be because the true outcome model is roughly additive and only a few covariates have

weak to moderate prognostic values (akin to our Outcome generating model 1). For the outcomes

of not successfully extubated by day 28 and 90-day in-hospital mortality, the RESTORE protocol

intervention did not have a significant effect (see Appendix).
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Figure 4.10: Estimates of ATE and 95% confidence intervals (CIs) for postextubation stridor out-
come.
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4.6. Discussion

The present work employed a structured and comprehensive simulation approach to evaluate sev-

eral covariate adjustment methods for treatment effect estimation within a GEE framework in the

challenging setting of CRTs with a small number of clusters and a rare binary outcome. In such set-

tings, we offered a balanced discussion on the benefits and limitations of propensity score weighting

and multivariable adjustment methods, and identified scenarios under which one of these methods

may provide relatively higher statistical efficiency for treatment effect estimation. Furthermore, re-

cent reviews of CRTs indicate that having fewer than 40 clusters is common (Turner et al., 2017a,b);

however, despite previous recommendations on the application of bias-corrected sandwich vari-

ance estimators for improved statistical inference (Ford and Westgate, 2017; Li et al., 2015; Lu

et al., 2007), few studies have examined their applications or empirical performance under covari-

ate adjustment and a rare binary outcome. Our study findings reinforce the importance of bias-

corrected sandwich variance estimators in small CRTs after covariate adjustment, fill a major gap

in the existing literature and hope to refine the evidence-supported guidance on the application of

such techniques in challenging although not uncommon CRT settings.

To summarize, our results suggest that covariate adjustment tends to provide better performance

than an unadjusted model, especially when the covariates are at least moderately prognostic, and

found that the MD bias-corrected sandwich variance estimator frequently provides nominal cov-

erage for covariate-adjusted estimation of the causal odds ratio in CRTs. In our study, we have

demonstrated that propensity score weighting represents a useful and effective approach for co-

variate adjustment in CRTs with a rare binary outcome and when the number of clusters is limited.

Further, propensity score approaches may be preferred when data complexities, such as interac-

tions and/or a nonlinear response surface, are expected. While in some cases, the increase in

efficiency gain may be greater from multivariable regression, inclusion of several covariates makes

the model prone to non-convergence issues due to perfect splits in the data, which are likely when

the binary outcome is rare. When it is successfully fit, the multivariable model provides substantial

efficiency gain when covariates are strongly prognostic of outcome and the model is approximately

correctly specified. In those cases, we also recommend the use of the MD bias-corrected sand-

wich variance estimator, especially when working with a very small number of clusters, i.e, fewer

than 10. With at least 20 clusters, the coverage from the MD, KC, and FG bias-corrected sandwich
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variance estimators tend to to converge at the nominal value, while the robust sandwich estimator

has slight undercoverage. Although the MD bias-corrected sandwich variance estimator has been

shown to be over conservative in previous comparative studies, it gave approximate 95% coverage

especially when there are very few clusters. This suggests that the recommendation by Ford and

Westgate (2017) to take the direct average of the MD and KC bias-corrected sandwich variance

estimators may not be the best option when covariate adjustment is considered as in our work. To

facilitate application, we summarize a few practical recommendations and important considerations

in Table 4.4.

Table 4.4: Recommendations and important considerations for analyses involving CRTs with a
small number of clusters and a rare binary outcome.

Summary of findings:

* MD bias-corrected sandwich variance estimator is recommended when there are small number of
clusters, especially if there are fewer than 20 clusters.
* MD, KC, and FG bias-corrected sandwich variance estimators perform similarly when there are at
least 20 clusters.
* If outcome incidences are under .05, propensity score weighting should be preferred over
multivariable regression, which is very likely to have separation and convergence issues.
* Depending on the number of covariates and outcome incidences, if multivariable model converges
and is correctly specified, it tends to provide greater efficiency gains than propensity score weighting.
* For 20 or more clusters, propensity scores should be estimated with BART over logistic regression.
* When there are possible nonlinearities in response surface or treatment heterogeneity, propensity
score estimation with BART provides greater efficiency.
* For certain complex relationships among the outcome and covariates, weighting by BART-
estimated propensity scores may be most efficient.

Our simulation study produced several interesting observations. First, the FG bias-corrected sand-

wich variance estimator showed the largest variability in terms of performance depending on the

weighting approach (IPW vs OW), in which it tended to give overcoverage with IPW and becomes

conservative. On the other hand, with OW, it consistently gave lower coverage than the MD bias-

corrected sandwich variance estimator. Second, the choice of weights (IPW versus OW) did not

have much effect on the performance. Rather, efficiency gains from propensity score weighting var-

ied with the type of model used to estimate the propensity score in some settings. This is in slight

contrast to Zeng et al. (2021), who found OW often dominates IPW in small individually-randomized

trials. The likely reason is that when the number of clusters is small, the total sample size remains

moderate to large in CRTs; further, the efficiency advantage of OW may be more prominent when

the total sample size is small, which, however, is unlikely in most CRTs. Specifically for choices of

the propensity score model, BART-estimated propensity scores may provide more efficiency gain
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as compared to a parametric propensity score model, such as logistic regression, when the true

outcome data generating model becomes complex and includes possible nonlinear interactions

between covariates and treatment. Even though machine learning propensity score models have

been shown to provide benefit in analyzing observational studies (Lee, Lessler, and Stuart, 2010),

to the best of our knowledge, this is the first study that demonstrates the utility of a machine learn-

ing propensity score model for covariate adjustment in CRTs. We do acknowledge, however, that

even though BART is a Bayesian nonparametric approach, we have integrated its posterior mean

estimates for the propensity scores into the IPW-GEE and OW-GEE estimators and therefore pur-

sued a final, frequentist estimator for estimating the causal odds ratio. The consideration of this

approach is mostly based on practical utility, rather than relying on theoretical grounds. An alter-

native approach is to consider an approximate Bayesian inference through Bayesian bootstrap, as

in Saarela et al. (2015) and Capistrano, Moodie, and Schmidt (2019) for analyzing non-clustered

observational data. However, while that approach is operationally feasible, it is unclear how to

consider bias-corrected sandwich variance estimation under Bayesian bootstrap. Therefore, the

practical benefits of a potentially more rigorous Bayesian formulation for weighting based analysis

of small CRTs are yet to be explored.

While the utility of covariate adjustment has been relatively well-studied for analyzing individually-

randomized trials, the potential benefit of covariate adjustment is currently under-appreciated for

analyzing CRTs. Our study represents the first effort in clarifying the role of covariate adjustment

in CRTs in challenging scenarios with a small number of clusters and a rare outcome. Despite

the preliminary evidence contributed by our study, there are several limitations that we plan to

address in future work. Above all, to improve the small sample inference after covariate adjustment,

we have only considered coupling the normality-based confidence interval with the bias-corrected

sandwich variance estimators. For the unadjusted analysis, Li and Redden (2015) showed that the

Wald t-tests tend to outperform Wald z-tests for analyzing common binary outcomes, and further

improvements may be possible with the t-distribution approximation for either propensity score

weighting analysis or the multivariable regression analysis. Second, we have only generated the

cluster sizes from a Poisson distribution and therefore have not considered extremely large cluster

size variability, as in Li et al. (2015) and Ford and Westgate (2017) when they studied unadjusted

GEE analysis of CRTs. The impact of larger variation in cluster sizes may be explored in future

work. Third, we have only considered the causal odds ratio as a target estimand in our evaluation,
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whereas the causal risk difference or causal relative risk could also be of interest in many scientific

studies. It would be valuable to explore to what extent our recommendations can be generalized to

estimating these two alternative effect measures. The major difference in those evaluations is that

the alternative link functions should be considered, such as the log link for estimating relative risk

measures. However, the log-binomial GEE may exhibit non-convergence issues and the so-called

modified Poisson GEE has been recommended. Current guidance on modified Poisson GEE has

been limited to the unadjusted analysis (Li and Tong, 2021b), and it would be worthwhile to study

and compare covariate adjustment strategies. Finally, we have only considered the independence

working correlation model in our evaluations. As we explained in the Appendix, this is because the

treatment effect coefficient in independence GEE directly corresponds to our target causal estimand

even if the marginal mean model differs from the true data generating model. Similar explanations

can also be found in Brennan et al. (2022) and Wang et al. (2022), although they focused on

a continuous outcome. While the exchangeable working correlation model is a standard choice

in analyzing CRTs, the associated GEE estimator for treatment effect coefficient may not always

converge to our target estimand, unless the marginal mean model is the true data generating model.

The role of exchangeable working correlation model for causal inference with CRTs remains to be

further explored.
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CHAPTER 5

DISCUSSION

In this dissertation, we evaluated the implications of violations of the positivity assumption with

respect to treatment effect estimation and generalizability to the intended target of inference. While

restricting analyses to subjects who satisfy positivity is a popular approach that may hone in on

a group of clinical interest, it may fall short when study objectives seek to obtain population-level

inference for which extrapolation approaches may be more appropriate. With trimming approaches,

analysis may be on a subsample with covariate distributions that differ from those of the original

population, shifting the target of inference. Further, the same subject may be considered to satisfy

positivity under one definition of overlap but not under a different definition. Thus, when employing

methods to address positivity violations, it is important to note the final analytic sample and the way

overlap is assessed.

The positivity assumption may be assessed by comparing the treatment and control groups in terms

of their covariate values. Standard exploratory analyses to assess covariate or propensity score

overlap should be carried out before implementing estimation procedures. As propensity scores

are commonly used to assess positivity, decisions in regards to their modeling and estimation may

affect the overlap status of each subject. High degrees of nonoverlap may suggest that the present

differences in covariate distributions of the treatment groups may result in invalid comparisons and

an alternative target population may be of greater interest. Determination of whether observed

violations are structural or practical involves considering whether there is interest in understanding

the treatment effect for patient subgroups who violate positivity.

For practical violations of positivity, we propose a model employing Gaussian process priors to

estimate causal effects. Our method preserves the original target population and, unlike previ-

ous extrapolation approaches, does not involve arbitrary cut-offs for defining nonoverlap regions.

An advantage of our Gaussian process approach is that estimated causal effects in areas of less

covariate overlap have greater variability to account for the increased uncertainty. When causal

patterns observed in the overlap region persist in the areas of nonoverlap, the continuous and non-

parametric nature of the GP model allows it to accurately and precisely estimate average treatment
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effects as shown by better performance in capturing trends in nonoverlap areas as compared to

the BART model. Since hyperpriors are specified for the hyperparameters in the GP prior, results

are less sensitive to the particular prior specification, which leads to more robust estimation and

inference.

With respect to the current proposed approaches for addressing positivity violations, most have

focused on continuous and binary outcomes. A future direction is developing extensions of these

methods to other outcomes, such as censored survival outcomes and longitudinal outcomes, which

are commonly employed in clinical studies. Different challenges that arise for these types of data in-

clude potential time-dependent confounding in longitudinal studies, which raises questions regard-

ing how to assess positivity given that there are multiple time points. Another issue is, if treatment

occurs at more than one time point, the potential imbalance in covariates that may be affected by

treatment. In regards to our proposed Gaussian process model, extension to longitudinal data may

involve adding a random effect component. Extensions to survival outcomes may consider adapting

existing methods that apply the Gaussian process methodology to survival analysis to our model

form (Fernández, Rivera, and Teh, 2016; Kim and Pavlovic, 2018). Similarly, many approaches

have been constructed based on a binary treatment setting. We note that another possible future

direction is to extend approaches that address positivity violations to studies that are interested in a

multi-level or continuous treatment. Future work that explores covariate nonoverlap in these more

complex settings is warranted.

Next, while GEE models are robust to specifications of the correlation matrix when analyzing CRTs,

they tend to encounter bias in standard error estimates when the trial contains a small number of

clusters and involves a rare binary outcome. In CRTs, there is interest in adjusting for baseline

covariates that are collected and in particular, we sought to understand the precision gains pro-

vided by these adjustments. With a rare binary outcome, including covariates in the traditional

multivariable model may result in nonconvergence issues. To address these analytical challenges,

we propose the use of propensity score weighting incorporated into the existing bias corrections.

Based on our simulation study, we recommend that CRTs requiring small sample adjustment con-

sider employing Mancl and DeRouen (2001)’s proposed correction, which provides nominal cover-

age even at a very small number of clusters, along with covariate adjustment, which substantially

increases estimation efficiency. Other bias corrections that were considered tend to provide nom-
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inal coverage at moderate number of clusters (i.e., at least 20) but show undercoverage for fewer

clusters. Further, if many covariates are included and incidence is very low, weighting by flexibly

estimated propensity scores is recommended to achieve convergence. Covariate adjustment via

propensity score weighting has the potential to provide efficiency gains and adjust for residual con-

founding or chance imbalance. Further, propensity score approaches may be preferred when data

complexities, such as interactions and/or a nonlinear response surface, are expected. The ability

of propensity score approaches to control for confounding points to a possible future direction of

evaluating propensity score weighting and bias corrected sandwich variance estimators in settings

where there is selection or recruitment bias.

While we have attempted to understand performance under different modeling choices and varying

trial parameters, future work could consider the effects of larger variation in cluster sizes. In addi-

tion, while the unbalanced design is not as common, it may still be beneficial to consider covariate

adjustment in settings with unbalanced randomization and a very small number of clusters, in which

the various bias corrections may perform differently. Future work may aim to study the propensity

score weighted and bias corrected estimators for these scenarios.
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APPENDIX A

ADDITIONAL TABLE FOR CHAPTER 2

Table A.1: Sample size and descriptive statistics at cancer diagnosis for covariates of interest for
the original and trimmed samples based on Sturmer et al.’s PS trimming.

Original
(S)

Logistic
PS

(S)
BART

PS

(S)
GBM
PS

(S)
SL
PS

n 216 199 203 206 199
Age 70 (11) 70 (10) 70 (10) 70 (11) 70 (10)
Sex (male) 56.5 55.3 55.2 56.3 55.3
Race

WH 83.8 84.4 84.2 84.5 84.4
BA 6.0 5.0 4.9 4.9 5.0
AS 5.6 6.0 5.9 5.8 6.0
IN 1.4 1.5 1.5 1.5 1.5

HP 0.5 0 0.5 0.5 0
MU 0.9 1.0 1.0 1.0 1.0

OT/UN 1.9 2.0 2.0 1.9 2.0

Charlson score 2.38
(1.67)

2.30
(1.60)

2.37
(1.66)

2.40
(1.65)

2.30
(1.60)

Tumor location
Left 40.3 41.2 40.9 40.3 41.2

Transverse 9.7 9.0 9.4 10.2 9.0
Right 50.0 49.7 49.8 49.5 49.7

Tumor stage
I 42.6 41.2 41.4 41.3 41.2

IIA 45.8 46.2 46.8 46.6 46.2
IIB 6.9 7.5 6.9 7.3 7.5

IIIA 4.6 5.0 4.9 4.9 5.0
Screening 26.4 26.1 25.6 25.7 26.1
Chemotherapy 13.0 13.6 12.8 13.1 13.6
Radiotherapy 2.8 3.0 3.0 2.9 3.0

Weight 199.09
(50.41)

198.58
(48.18)

198.83
(51.01)

198.55
(49.98)

198.58
(48.18)

Smoking 57.4 58.3 57.6 58.7 58.3
Prior non-colon
cancer 12.0 12.1 11.8 11.7 12.1

HbA1c 8.15
(2.02)

8.13
(2.01)

8.12
(2.01)

8.15
(2.02)

8.13
(2.01)

Hypertension 62.0 60.8 61.6 62.1 60.8
Hyper-
cholesterolemia 33.3 32.2 33.5 34.5 32.2

Insulin Use 36.1 35.7 34.5 33.0 35.7
Sulfonylurea 34.7 34.2 35.5 36.4 34.2
The categories for race are White (WH), Black or African American (BA), Asian (AS),
American Indian or Alaska Native (IN), Native Hawaiian or Other Pacific Islander (HP),
multiple categories reported (MU), and other/unknown (OT/UN).
HbA1c refers to hemoglobin A1c, a measure of average blood sugar levels.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1. Conditional distributions for µ, β, and ∆

For the choice of prior for the hyperparameter β in the GP prior for µ is
p(β) ∝ det(σ2

βIP )
−1/2 exp

{
− 1

2β
T (σ2

βIP )
−1β

}
, the conditional posterior distribution for β is
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Thus, β|µ, y ∼MVN
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XTK−1

µ X + (σ2
βIP )

−1
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XTK−1
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[
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βIP )
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The prior for µ is p(µ) ∝ det(Kµ)
− 1

2 exp
[
− 1

2 (µ−Xβ)TK−1
µ (µ−Xβ)

]
.

The prior for ∆ is p(∆) ∝ det(K∆)
− 1

2 exp
[
− 1

2∆
TK−1

∆ ∆
]
.

Assuming prior independence of µ and ∆, p(µ,∆) = p(µ)p(∆), the joint posterior is

p(µ,∆|y) ∝ p(y|µ,∆)p(µ,∆)

∝ p(y|µ,∆)p(µ)p(∆)

The posterior distributions for µ and ∆ are obtained as follows.
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The posterior for µ|∆, y is given by

p(µ|∆, y) ∝ p(y|µ,∆)p(µ)
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B.2. Steps of the Metropolis-within-Gibbs Algorithm

In this section, we present the steps of the algorithm for obtaining posterior sampling of the pa-

rameters and hyperparameters. Let l(µ, β, lµ, ηµ,∆, l∆, η∆, σ2) = log p(µ, β, lµ, ηµ,∆, l∆, η∆, σ
2|Y )

denote the log posterior distribution, and let q( · ;m, s2) be the density of the proposal distribution

with mean m and variance s2. We start the chains with initial values

µ(0), β(0), l(0)µ , η(0)µ ,∆(0), l
(0)
∆ , η

(0)
∆ , σ2(0)

At iteration j,

1. Draw l∗µ from the proposal distribution–truncated normal distribution centered at l(j−1)
µ with

variance τ2lµ and bounded below at 0:

l∗µ ∼ TN(l(j−1)
µ , τ2lµ ; lower = 0)

log rlµ = l(l∗µ, η
(j−1)
µ , β(j−1), µ(j−1), l

(j−1)
∆ , η

(j−1)
∆ ,∆(j−1), σ2(j−1))

− l(l(j−1)
µ , η(j−1)

µ , β(j−1), µ(j−1), l
(j−1)
∆ , η

(j−1)
∆ ,∆(j−1), σ2(j−1))

+ log[q(l(j−1)
µ ; l∗µ, τ

2
lµ)]− log[q(l∗µ; l

(j−1)
µ , τ2lµ)]

We then draw a random U ∼ Unif(0, 1) and set

l(j)µ =


l∗µ, if logU ≤ log rlµ

l
(j−1)
µ , otherwise

2. Draw η∗µ from the proposal distribution–truncated normal distribution centered at η(j−1)
µ with

variance τ2ηµ
and bounded below at 0:

η∗µ ∼ TN(η(j−1)
µ , τ2ηµ

; lower = 0)
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log rηµ
= l(l(j)µ , η∗µ, β

(j−1), µ(j−1), l
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)]

We then draw a random U ∼ Unif(0, 1) and set
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η∗µ, if logU ≤ log rηµ

η
(j−1)
µ , otherwise
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5. Draw l∗∆ from its proposal distribution:

l∗∆ ∼ TN(l
(j−1)
∆ , τ2l∆ ; lower = 0)

log rl∆ = l(l(j)µ , η(j)µ , β(j), µ(j), l∗∆, η
(j−1)
∆ ,∆(j−1), σ2(j−1))

− l(l(j)µ , η(j)µ , β(j), µ(j), l
(j−1)
∆ , η

(j−1)
∆ ,∆(j−1), σ2(j−1))

+ log[q(l
(j−1)
∆ ; l∗∆, τ

2
l∆)]− log[q(l∗∆; l

(j−1)
∆ , τ2l∆)]
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We then draw a random U ∼ Unif(0, 1) and set

l
(j)
∆ =


l∗∆, if logU ≤ log rl∆

l
(j−1)
∆ , otherwise

6. Draw η∗∆ from its proposal distribution:

η∗∆ ∼ TN(η
(j−1)
∆ , τ2η∆

; lower = 0)

log rη∆
= l(l(j)µ , η(j)µ , β(j), µ(j), l

(j)
∆ , η∗∆,∆

(j−1), σ2(j−1))

− l(l(j)µ , η(j)µ , β(j), µ(j), l
(j)
∆ , η

(j−1)
∆ ,∆(j−1), σ2(j−1))

+ log[q(η
(j−1)
∆ ; η∗∆, τ

2
η∆

)]− log[q(η∗∆; η
(j−1)
∆ , τ2η∆

)]

We then draw a random U ∼ Unif(0, 1) and set

η
(j)
∆ =


η∗∆, if logU ≤ log rη∆

η
(j−1)
∆ , otherwise

7. Draw ∆(j) from

MVN([K−1
∆ +AT ⊙ (σ2I)−1 ⊙A]−1AT ⊙ (σ2I)−1(y − µ), [K−1

∆ +AT ⊙ (σ2I)−1 ⊙A]−1)

8. Draw σ2∗ from its proposal distribution:

σ2∗ ∼ TN(σ2(j−1), τ2σ2 ; lower = 0)
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log rσ2 = l(l(j)µ , η(j)µ , β(j), µ(j), l
(j)
∆ , η

(j)
∆ ,∆(j), σ2∗)

− l(l(j)µ , η(j)µ , β(j), µ(j), l
(j)
∆ , η

(j)
∆ ,∆(j), σ2(j−1))

+ log[q(σ2(j−1);σ2∗, τ2σ2)]− log[q(σ2∗;σ2(j−1), τ2σ2)]

We then draw a random U ∼ Unif(0, 1) and set

σ2(j) =


σ2∗, if logU ≤ log rσ2

σ2(j−1), otherwise

This continues until the number the posterior draws after thinning and burn-ins (say, J) is reached.
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B.3. More Figures Illustrating Individual Causal Effect Estimates

Figure B.1: Individual causal effect exploration when the continuous outcome is generated with Y1
for the some nonoverlap setting.

Figure B.2 and B.3 provide further information regarding individual causal effects estimated by

each method. The GP model is able to capture the larger average treatment effects for subjects with

estimated propensity scores near 0, which helps to pull up its estimates of the ATE. Furthermore, for

these subjects, estimates of posterior standard deviations obtained from the GP model are larger
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than those from both BART models. This suggests that the continuous nature of the GP model

better allows larger distances to be translated into greater estimates of uncertainty as compared to

the BART models. On the other hand, BART+SPL’s variation inflation factor greatly overestimates

the corresponding uncertainty, which results in inconsequential knowledge about the treatment

effects for subjects in nonoverlap areas.

Figure B.2: Individual causal effect exploration when the continuous outcome is generated with Y2
for the some nonoverlap setting.

99



Figure B.3: Individual causal effect exploration when the continuous outcome is generated with Y2
for the substantial nonoverlap setting.

B.4. Simulation Results for Binary Outcomes
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Figure B.4: Subject level mean and variability estimates for simulation setting c=0.

101



Figure B.5: Subject level mean and variability estimates for simulation setting c=.70.
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Table B.1: Effect estimates from each method for nonoverlap scenarios involving a outcome model
(Y1B) that is linear on the probit scale. The true ATE is .280 for the some nonoverlap setting and
.283 for the substantial nonoverlap setting.

Method ATE Bias % Bias SD SE MSE Coverage

Some
nonoverlap

GP .269 -.010 -3.602 .024 .026 .001 .902
BCF .300 .020 7.242 .035 .028 .001 .957

BART-Stratified .249 -.031 -11.008 .030 .028 .002 .833
BART-Single .270 -.010 -3.535 .028 .026 .001 .947
BART+SPL .276 -.004 -1.393 .033 .033 .001 .952
Probit model .279 −4.652× 10−4 -.166 .011 .026 .001 .614

Substantial
nonoverlap

GP .274 -.009 -3.044 .030 .032 .001 .916
BCF .279 -.004 -1.313 .041 .036 .001 .976

BART-Stratified .267 -.016 -5.590 .039 .034 .001 .964
BART-Single .271 -.012 -4.131 .036 .031 .001 .970
BART+SPL .280 -.003 -.894 .054 .043 .002 .984
Probit model .283 −3.862× 10−4 -.136 .011 .031 .001 .517

Table B.2: Effect estimates from each method for nonoverlap scenarios involving a outcome model
(Y2B) that is nonlinear and involves interactions on the probit scale. The true ATE is -.146 for the
some nonoverlap setting and -.202 for the substantial nonoverlap setting.

Method ATE Bias % Bias SD SE MSE Coverage

Some
nonoverlap

GP -.157 -.011 -7.785 .029 .036 .001 .863
BCF -.148 -.002 -1.297 .031 .038 .001 .882

BART-Stratified -.197 -.051 -35.129 .037 .038 .004 .697
BART-Single -.199 -.053 -36.505 .044 .040 .004 .790
BART+SPL -.213 -.067 -46.190 .050 .051 .007 .736
Probit model -.259 -.113 -77.437 .001 .048 .015 .001

Substantial
nonoverlap

GP -.220 -.017 -8.456 .039 .045 .002 .893
BCF -.212 -.010 -4.696 .038 .047 .002 .877

BART-Stratified -.254 -.052 -25.639 .043 .043 .005 .781
BART-Single -.268 -.065 -32.275 .048 .045 .006 .750
BART+SPL -.297 -.094 -46.567 .066 .057 .012 .729
Probit model -.332 -.130 -64.012 .001 .052 .020 0
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1. Data generation details

Table C.1: Specification of parameters in outcome generating model.

Generating model Incidence level Number of
covariates (P) β0 δ (P1, P0) ∆

Outcome 1 low 6 -3.6 -1.2 (.0455, .0987) -.8317
Outcome 1 very low 6 -4.7 -1.1 (.0224, .0490) -.8103
Outcome 1 low 15 -4.2 -1.2 (.0484, .0954) -.7292
Outcome 1 very low 15 -5.4 -1.2 (.0221, .0486) -.8155
Outcome 2 low 6 -6.4 -1.8 (.0490, .0974) -.7392
Outcome 2 very low 6 -8.1 -1.7 (.0240, .0507) -.7756
Outcome 2 low 15 -9.0 -2.4 (.0559, .1045) -.6785
Outcome 2 very low 15 -11.8 -2.2 (.0254, .0499) -.7007
Outcome 3 low 6 -4.8 -2.8 (.0498, .0988) -.7380
Outcome 3 very low 6 -6.6 -4.2 (.0253, .0511) -.7298
Outcome 4 low 6 -4.9 -3.0 (.0504, .1004) -.7433
Outcome 4 very low 6 -6.6 -3.2 (.0246, .0490) -.7144
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C.2. Detailed derivation of M matrix

∂

∂β
log

(
N∑
i=1

mi∑
j=1

P̂1,ij

)

=
1∑N

i=1

∑mi
j=1 P̂1,ij

[
N∑
i=1

mi∑
j=1

exp(X′
j1β̂)X1,ij(1 + exp(X′

1,ijβ̂)− exp(X′
1,ijβ̂)X1,ijexp(X

′
1,ijβ̂)

[1 + exp(X′
1,ijβ̂)]

2

]

=
1∑N

i=1

∑mi
j=1 P̂1,ij

[
N∑
i=1

mi∑
j=1

exp(X′
1,ijβ̂)X1,ij

[1 + exp(X′
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2

]

∂
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log

(
J −

N∑
i=1

mi∑
j=1

P̂0,ij

)

=
−1

J −
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i=1

∑mi
j=1 P̂0,ij

[
N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij(1 + exp(X′

0,ijβ̂)− exp(X′
0,ijβ̂)X0,ijexp(X

′
0,ijβ̂)

[1 + exp(X′
0,ijβ̂)]

2

]

= − 1

J −
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i=1

∑mi
j=1 P̂0,ij

[
N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij

[1 + exp(X′
0,ijβ̂)]

2

]

∂

∂β
log
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J −

N∑
i=1

mi∑
j=1

P̂1,ij

)

=
−1

J −
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i=1

∑mi
j=1 P̂1,ij

[
N∑
i=1

mi∑
j=1

exp(X′
j1β̂)X1,ij(1 + exp(X′

1,ijβ̂)− exp(X′
1,ijβ̂)X1,ijexp(X

′
1,ijβ̂)

[1 + exp(X′
1,ijβ̂)]

2

]

= − 1

J −
∑N

i=1

∑mi
j=1 P̂1,ij

[
N∑
i=1

mi∑
j=1

exp(X′
1,ijβ̂)X1,ij

[1 + exp(X′
1,ijβ̂)]

2

]

∂

∂β
log

(
N∑
i=1

mi∑
j=1

P̂0,ij

)

=
1∑N

i=1

∑mi
j=1 P̂0,ij

[
N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij(1 + exp(X′

0,ijβ̂)− exp(X′
0,ijβ̂)X0,ijexp(X

′
0,ijβ̂)

[1 + exp(X′
0,ijβ̂)]

2
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=
1∑N

i=1

∑mi
j=1 P̂0,ij

[
N∑
i=1

mi∑
j=1

exp(X′
0,ijβ̂)X0,ij

[1 + exp(X′
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2

]
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C.3. Simulation study results

C.3.1. Performance metrics under Outcome generating model 1

Table C.2: Simulation results under Outcome generating model 1 with six covariates and low out-
come incidences.

Outcome generating model 1, 6 covariates, low incidence, θ = −.8317, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.861 -.029 1.000 .806 .925 .881 .888 0
Multi -.864 -.033 1.031 .800 .925 .857 .871 0

IPW-Logit -.860 -.029 1.033 .821 .930 .873 .965 0
IPW-BART -.861 -.029 1.012 .812 .924 .878 .964 0
OW-Logit -.861 -.029 1.032 .820 .928 .873 .847 0
OW-BART -.863 -.031 1.013 .806 .928 .879 .848 0

m = 100,
ρLogit = .01

Crude -.862 -.031 1.000 .811 .919 .860 .881 0
Multi -.865 -.033 1.037 .800 .924 .868 .882 0

IPW-Logit -.861 -.030 1.034 .816 .930 .874 .964 0
IPW-BART -.862 -.031 1.017 .814 .933 .879 .961 0
OW-Logit -.862 -.030 1.032 .816 .930 .873 .849 0
OW-BART -.863 -.032 1.017 .815 .932 .881 .850 0

m = 30,
ρLogit = .001

Crude -.880 -.048 1.000 .857 .947 .908 .924 .012
Multi -.887 -.056 .961 .819 .957 .894 .909 .013

IPW-Logit -.881 -.050 .974 .854 .951 .910 .983 .012
IPW-BART -.884 -.052 .985 .848 .952 .911 .979 .012
OW-Logit -.883 -.052 .972 .853 .951 .907 .886 .012
OW-BART -.884 -.053 .974 .856 .951 .912 .885 .012

m = 30,
ρLogit = .01

Crude -.905 -.074 1.000 .862 .954 .913 .925 .006
Multi -.905 -.073 1.001 .835 .956 .904 .913 .006

IPW-Logit -.908 -.077 1.011 .855 .951 .918 .978 .006
IPW-BART -.915 -.083 .984 .854 .952 .911 .976 .006
OW-Logit -.909 -.077 1.013 .857 .954 .920 .899 .006
OW-BART -.917 -.086 .970 .853 .951 .919 .890 .006

N=10

m = 100,
ρLogit = .001

Crude -.843 -.011 1.000 .875 .938 .906 .911 0
Multi -.839 -.007 1.063 .863 .933 .905 .912 0

IPW-Logit -.840 -.008 1.063 .885 .943 .914 .958 0
IPW-BART -.842 -.010 1.050 .886 .945 .918 .960 0
OW-Logit -.840 -.008 1.061 .884 .944 .916 .903 0
OW-BART -.842 -.010 1.045 .883 .944 .919 .909 0

m = 100,
ρLogit = .01

Crude -.842 -.010 1.000 .881 .942 .912 .922 0
Multi -.838 -.006 1.048 .879 .938 .911 .920 0

IPW-Logit -.838 -.006 1.045 .893 .943 .916 .963 0
IPW-BART -.840 -.008 1.032 .892 .946 .922 .962 0
OW-Logit -.838 -.006 1.044 .892 .940 .916 .911 0
OW-BART -.840 -.009 1.027 .889 .946 .920 .909 0

m = 30,
ρLogit = .001

Crude -.904 -.072 1.000 .875 .945 .910 .915 .003
Multi -.901 -.069 1.056 .887 .960 .922 .923 .003

IPW-Logit -.903 -.071 1.060 .893 .949 .921 .970 .003
IPW-BART -.902 -.070 1.031 .888 .950 .919 .967 .003
OW-Logit -.903 -.072 1.063 .896 .949 .921 .912 .003
OW-BART -.904 -.072 1.029 .890 .947 .920 .909 .003

m = 30,
ρLogit = .01

Crude -.881 -.049 1.000 .912 .972 .945 .952 .002
Multi -.884 -.052 1.003 .898 .965 .940 .946 .002

IPW-Logit -.884 -.052 1.001 .913 .970 .950 .981 .002
IPW-BART -.883 -.051 1.017 .926 .966 .945 .982 .002
OW-Logit -.885 -.053 1.004 .914 .970 .945 .941 .002
OW-BART -.883 -.052 1.008 .923 .967 .944 .936 .002
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Outcome generating model 1, 6 covariates, low incidence, θ = −.8317, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.838 -.006 1.000 .907 .935 .923 .928 0
Multi -.837 -.005 1.039 .905 .930 .920 .920 0

IPW-Logit -.837 -.005 1.028 .911 .932 .925 .942 0
IPW-BART -.838 -.006 1.021 .913 .939 .925 .948 0
OW-Logit -.837 -.006 1.029 .910 .932 .925 .917 0
OW-BART -.838 -.007 1.018 .913 .939 .925 .923 0

m = 100,
ρLogit = .01

Crude -.836 -.005 1.000 .907 .930 .918 .922 0
Multi -.835 -.003 1.038 .904 .934 .923 .924 0

IPW-Logit -.836 -.004 1.030 .917 .944 .929 .949 0
IPW-BART -.836 -.005 1.025 .923 .946 .932 .954 0
OW-Logit -.836 -.004 1.031 .917 .944 .929 .926 0
OW-BART -.837 -.005 1.024 .921 .947 .934 .929 0

m = 30,
ρLogit = .001

Crude -.843 -.011 1.000 .917 .950 .938 .941 0
Multi -.843 -.011 1.055 .924 .946 .941 .941 0

IPW-Logit -.841 -.009 1.038 .927 .956 .947 .964 0
IPW-BART -.843 -.011 1.022 .928 .954 .944 .959 0
OW-Logit -.841 -.009 1.036 .927 .956 .945 .938 0
OW-BART -.843 -.011 1.016 .928 .955 .943 .939 0

m = 30,
ρLogit = .01

Crude -.841 -.009 1.000 .930 .943 .934 .936 0
Multi -.841 -.009 1.054 .921 .948 .932 .937 0

IPW-Logit -.838 -.007 1.031 .923 .951 .939 .962 0
IPW-BART -.841 -.009 1.013 .923 .950 .937 .962 0
OW-Logit -.839 -.007 1.029 .924 .952 .939 .932 0
OW-BART -.841 -.009 1.009 .922 .952 .937 .929 0

N=30

m = 100,
ρLogit = .001

Crude -.841 -.009 1.000 .939 .954 .945 .947 0
Multi -.840 -.008 1.045 .930 .953 .945 .947 0

IPW-Logit -.839 -.007 1.034 .941 .955 .948 .959 0
IPW-BART -.840 -.008 1.016 .943 .957 .950 .962 0
OW-Logit -.839 -.007 1.034 .941 .956 .948 .947 0
OW-BART -.840 -.009 1.016 .944 .957 .950 .948 0

m = 100,
ρLogit = .01

Crude -.842 -.010 1.000 .934 .957 .946 .948 0
Multi -.840 -.009 1.034 .924 .949 .942 .945 0

IPW-Logit -.840 -.008 1.026 .934 .953 .943 .960 0
IPW-BART -.841 -.009 1.007 .933 .955 .946 .958 0
OW-Logit -.840 -.008 1.027 .935 .955 .945 .939 0
OW-BART -.841 -.009 1.006 .934 .955 .944 .941 0

m = 30,
ρLogit = .001

Crude -.848 -.017 1.000 .939 .955 .949 .953 0
Multi -.851 -.019 1.046 .932 .951 .942 .944 0

IPW-Logit -.848 -.016 1.025 .939 .952 .947 .958 0
IPW-BART -.849 -.017 1.010 .938 .947 .945 .954 0
OW-Logit -.848 -.017 1.024 .940 .952 .947 .947 0
OW-BART -.849 -.017 1.008 .937 .951 .943 .941 0

m = 30,
ρLogit = .01

Crude -.844 -.012 1.000 .931 .950 .940 .945 0
Multi -.846 -.014 1.056 .940 .951 .947 .948 0

IPW-Logit -.843 -.012 1.030 .941 .954 .948 .958 0
IPW-BART -.845 -.013 1.017 .939 .957 .950 .959 0
OW-Logit -.843 -.012 1.030 .941 .955 .948 .943 0
OW-BART -.844 -.013 1.016 .942 .957 .949 .945 0

C.3.2. Performance metrics under Outcome generating model 2

C.3.3. Performance metrics under Outcome generating model 3

C.3.4. Outcome generating model 4

107



Table C.3: Simulation results under Outcome generating model 1 with six covariates and very low
outcome incidences.

Outcome generating model 1, 6 covariates, very low incidence, θ = −.8103, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.851 -.041 1.000 .819 .932 .885 .902 .002
Multi -.859 -.049 .987 .816 .941 .882 .898 .002

IPW-Logit -.854 -.043 .992 .820 .933 .887 .971 .002
IPW-BART -.855 -.044 .983 .825 .933 .894 .965 .002
OW-Logit -.854 -.044 .989 .818 .935 .891 .858 .002
OW-BART -.857 -.047 .968 .830 .938 .892 .868 .002

m = 100,
ρLogit = .01

Crude -.847 -.037 1.000 .801 .926 .874 .890 .001
Multi -.846 -.036 1.012 .786 .920 .869 .881 .001

IPW-Logit -.845 -.034 1.021 .806 .928 .868 .968 .001
IPW-BART -.850 -.040 1.013 .808 .924 .876 .963 .001
OW-Logit -.845 -.034 1.020 .807 .929 .866 .847 .001
OW-BART -.850 -.040 1.011 .802 .927 .876 .847 .001

m = 30,
ρLogit = .001

Crude -.701 .109 1.000 .926 .979 .963 .973 .136
Multi -.748 .062 .895 .880 .984 .946 .954 .147

IPW-Logit -.718 .092 .986 .916 .978 .961 .997 .136
IPW-BART -.717 .093 .975 .917 .977 .962 .993 .136
OW-Logit -.716 .094 .983 .917 .977 .964 .953 .136
OW-BART -.721 -.089 .951 .911 .979 .961 .949 .136

m = 30,
ρLogit = .01

Crude -.693 .117 1.000 .931 .981 .960 .971 .151
Multi -.725 .085 .857 .885 .977 .949 .963 .160

IPW-Logit -.704 .106 .970 .927 .980 .958 .994 .151
IPW-BART -.700 .110 .986 .925 .979 .963 .993 .151
OW-Logit -.704 .106 .969 .928 .981 .958 .952 .151
OW-BART -.704 .106 .968 .927 .980 .960 .955 .151

N=10

m = 100,
ρLogit = .001

Crude -.840 -.030 1.000 .876 .942 .908 .912 0
Multi -.833 -.023 1.039 .888 .948 .916 .926 0

IPW-Logit -.835 -.025 1.019 .886 .945 .912 .963 0
IPW-BART -.835 -.025 1.027 .892 .942 .922 .961 0
OW-Logit -.835 -.025 1.019 .887 .946 .913 .903 0
OW-BART -.835 -.025 1.026 .896 .940 .917 .911 0

m = 100,
ρLogit = .01

Crude -.843 -.032 1.000 .890 .936 .920 .926 0
Multi -.840 -.030 .999 .870 .947 .916 .924 0

IPW-Logit -.840 -.030 1.003 .884 .941 .916 .964 0
IPW-BART -.844 -.033 .976 .883 .942 .918 .962 0
OW-Logit -.840 -.030 1.003 .884 .942 .918 .904 0
OW-BART -.844 -.044 .970 .880 .939 .912 .903 0

m = 30,
ρLogit = .001

Crude -.840 -.029 1.000 .936 .971 .956 .965 .030
Multi -.846 -.036 .968 .925 .969 .953 .954 .030

IPW-Logit -.845 -.035 .994 .933 .970 .956 .989 .030
IPW-BART -.849 -.039 .982 .936 .973 .960 .989 .030
OW-Logit -.846 -.036 .991 .935 .968 .957 .952 .030
OW-BART -.852 -.041 .960 .933 .973 .958 .949 .030

m = 30,
ρLogit = .01

Crude -.800 .011 1.000 .927 .974 .943 .960 .036
Multi -.811 -.001 .961 .913 .977 .951 .957 .036

IPW-Logit -.800 .011 .993 .932 .971 .957 .990 .036
IPW-BART -.803 .008 .983 .927 .973 .949 .984 .036
OW-Logit -.800 .010 .989 .933 .973 .955 .945 .036
OW-BART -.805 .005 .968 .921 .970 .949 .942 .036
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Outcome generating model 1, 6 covariates, very low incidence, θ = −.8103, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.825 -.014 1.000 .917 .943 .930 .933 0
Multi -.825 -.014 1.022 .914 .941 .926 .930 0

IPW-Logit -.825 -.014 1.015 .918 .943 .935 .950 0
IPW-BART -.827 -.017 .999 .915 .944 .929 .949 0
OW-Logit -.825 -.014 1.015 .918 .943 .935 .933 0
OW-BART -.827 -.017 .996 .917 .942 .930 .925 0

m = 100,
ρLogit = .01

Crude -.811 -.001 1.000 .924 .952 .938 .944 0
Multi -.810 -.001 1.029 .923 .948 .934 .935 0

IPW-Logit -.808 .002 1.011 .918 .955 .937 .962 0
IPW-BART -.809 .001 1.001 .917 .952 .937 .962 0
OW-Logit -.808 .002 1.012 .919 .954 .938 .931 0
OW-BART -809 .001 1.003 .922 .950 .937 .929 0

m = 30,
ρLogit = .001

Crude -.851 -.040 1.000 .921 .954 .942 .947 .001
Multi -.848 -.038 1.021 .921 .950 .938 .940 .001

IPW-Logit -.847 -.037 1.013 .925 .957 .942 .966 .001
IPW-BART -.850 -.040 .996 .923 .950 .937 .956 .001
OW-Logit -.846 -.036 1.016 .924 .954 .944 .936 .001
OW-BART -.850 -.040 .996 .923 .954 .938 .929 .001

m = 30,
ρLogit = .01

Crude -.848 -.038 1.000 .937 .968 .952 .957 0
Multi -.855 -.045 1.021 .935 .967 .952 .954 0

IPW-Logit -.853 -.043 1.008 .936 .969 .955 .979 0
IPW-BART -.852 -.042 .997 .939 .966 .948 .976 0
OW-Logit -.853 -.043 1.010 .935 .971 .953 .947 0
OW-BART -.854 -.043 .994 .940 .965 .950 .947 0

N=30

m = 100,
ρLogit = .001

Crude -.828 -.018 1.000 .933. 947 .939 .945 0
Multi -.827 -.017 1.013 .921 .948 .936 .940 0

IPW-Logit -.827 -.016 1.008 .935 .952 .946 .958 0
IPW-BART -.827 -.016 .988 .931 .950 .942 .953 0
OW-Logit -.827 -.016 1.008 .935 .952 .945 .940 0
OW-BART -.827 -.017 .989 .933 .950 .941 .939 0

m = 100,
ρLogit = .01

Crude -.808 .002 1.000 .932 .950 .942 .945 0
Multi -.808 .002 1.049 .941 .954 .947 .948 0

IPW-Logit -.807 .003 1.034 .937 .949 .946 .955 0
IPW-BART -.809 .002 1.017 .938 .953 .945 .957 0
OW-Logit -.807 .003 1.034 .938 .949 .946 .939 0
OW-BART -.809 .002 1.019 .937 .955 .944 .944 0

m = 30,
ρLogit = .001

Crude -.847 -.036 1.000 .931 .948 .940 .942 0
Multi -.848 -.038 1.028 .925 .952 .936 .937 0

IPW-Logit -.846 -.036 1.019 .932 .952 .943 .958 0
IPW-BART -.844 -.034 1.000 .931 .953 .942 .962 0
OW-Logit -.846 -.036 1.018 .931 .950 .942 .938 0
OW-BART -.845 -.035 .999 .933 .950 .943 .939 0

m = 30,
ρLogit = .01

Crude -.841 -.030 1.000 .929 .949 .938 .941 0
Multi -.837 -.027 1.028 .931 .962 .949 .950 0

IPW-Logit -.838 -.028 1.017 .943 .960 .952 .967 0
IPW-BART -.840 -.030 .988 .936 .957 .944 .965 0
OW-Logit -.838 -.028 1.017 .943 .961 .953 .947 0
OW-BART -.840 -.030 .985 .938 .956 .950 .947 0
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Table C.4: Simulations results under Outcome generating model 1 with fifteen covariates and low
outcome incidences.

Outcome generating model 1, 15 covariates, low incidence, θ = −.7292, N=6,10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.758 -.029 1.000 .833 .929 .893 .904 0
Multi -.763 -.034 1.076 .814 .936 .885 .892 0

IPW-Logit -.758 -.029 1.072 .844 .927 .895 .975 0
IPW-BART -.761 -.031 1.062 .828 .936 .898 .966 0
OW-Logit -.759 -.029 1.076 .842 .930 .896 .872 0
OW-BART -.761 -.032 1.062 .835 .931 .895 .861 0

m = 100,
ρLogit = .01

Crude -.751 -.022 1.000 .829 .932 .891 .903 0
Multi -.756 -.027 1.062 .810 .927 .875 .884 0

IPW-Logit -.751 -.022 1.060 .842 .936 .893 .969 0
IPW-BART -.754 -.025 1.060 .846 .934 .892 .965 0
OW-Logit -.752 -.023 1.064 .846 .935 .892 .875 0
OW-BART -.754 -.025 1.061 .840 .933 .891 .874 0

m = 30,
ρLogit = .001

Crude -.764 -.034 1.000 .858 .959 .915 .935 .022
Multi -.824 -.095 .794 .769 .972 .891 .889 .081

IPW-Logit -.776 -.047 .928 .850 .955 .914 .991 .022
IPW-BART -.771 -.041 1.009 .862 .959 .924 .982 .022
OW-Logit -.780 -.051 .930 .854 .955 .913 .893 .022
OW-BART -.775 -.046 .993 .862 .958 .924 .894 .022

m = 30,
ρLogit = .01

Crude -.797 -.067 1.000 .850 .960 .924 .939 .009
Multi -.830 -.101 .858 .788 .980 .904 .893 .064

IPW-Logit -.803 -.074 .949 .867 .961 .913 .991 .009
IPW-BART -.798 -.068 1.014 .868 .953 .922 .980 .009
OW-Logit -.805 -.075 .955 .862 .959 .914 .898 .009
OW-BART -.798 -.068 1.010 .870 .954 .920 .897 .009

N=10

m = 100,
ρLogit = .001

Crude -.761 -.032 1.000 .883 .946 .913 .923 0
Multi -.763 -.034 1.150 .881 .947 .915 .923 0

IPW-Logit -.760 -.030 1.108 .901 .945 .921 .965 0
IPW-BART -.761 -.031 1.086 .901 .943 .921 .956 0
OW-Logit -.760 -.031 1.106 .900 .946 .922 .915 0
OW-BART -.761 -.032 1.087 .898 .943 .923 .914 0

m = 100,
ρLogit = .01

Crude -.758 -.028 1.000 .890 .945 .920 .924 0
Multi -.760 -.031 1.133 .876 .949 .912 .917 0

IPW-Logit -.756 -.027 1.099 .900 .952 .929 .971 0
IPW-BART -.757 -.028 1.080 .899 .952 .926 .967 0
OW-Logit -.757 -.027 1.098 .897 .952 .928 .918 0
OW-BART -.758 -.029 1.080 .897 .951 .925 .914 0

m = 30,
ρLogit = .001

Crude -.783 -.054 1.000 .895 .958 .935 .940 0
Multi -.790 -.-061 .970 .851 .963 .906 .899 0

IPW-Logit -.789 -.060 .977 .909 .950 .932 .975 0
IPW-BART -.786 -.057 1.012 .901 .958 .935 .977 0
OW-Logit -.791 -.062 .986 .911 .955 .934 .923 0
OW-BART -.787 -.057 1.002 .908 .960 .933 .923 0

m = 30,
ρLogit = .01

Crude -.808 -.079 1.000 .896 .949 .931 .938 .001
Multi -.818 -.089 1.016 .867 .970 .928 .923 .001

IPW-Logit -.803 -.074 1.094 .015 .964 .941 .982 .001
IPW-BART .802 -.073 1.072 .905 .959 .935 .976 .001
OW-Logit -.804 -.075 1.094 .914 .966 .943 .931 .001
OW-BART -.802 -.072 1.070 .906 .961 .937 .927 .001
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Outcome generating model 1, 15 covariates, low incidence, θ = −.7292, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.755 -.026 1.000 .929 .954 .941 .946 0
Multi -.757 -.027 1.148 .923 .954 .938 .940 0

IPW-Logit -.757 -.028 1.079 .941 .954 .946 .963 0
IPW-BART -.757 -.028 1.077 .939 .956 .950 .964 0
OW-Logit -.757 -.028 1.079 .940 .956 .946 .944 0
OW-BART -.758 -.028 1.074 .938 .960 .949 .942 0

m = 100,
ρLogit = .01

Crude -.755 -.026 1.000 .933 .963 .948 .952 0
Multi -.757 -.028 1.127 .925 .960 .944 .947 0

IPW-Logit -.757 -.028 1.063 .939 .966 .952 .971 0
IPW-BART -.757 -.028 1.072 .940 .966 .953 .974 0
OW-Logit -.757 -.028 1.062 .938 .967 .952 .947 0
OW-BART -.758 -.029 1.069 .944 .966 .953 .950 0

m = 30,
ρLogit = .001

Crude -.771 -.042 1.000 .928 .961 .940 .945 0
Multi -.769 -.040 1.046 .922 .954 .935 .933 0

IPW-Logit -.766 -.037 1.035 .937 .956 .949 .966 0
IPW-BART -.770 -.041 1.037 .932 .962 .944 .966 0
OW-Logit -.767 -.038 1.037 .937 .955 .951 .945 0
OW-BART -.770 -.041 1.034 .932 .956 .945 .944 0

m = 30,
ρLogit = .01

Crude -.778 -.048 1.000 .928 .949 .938 .939 0
Multi -.767 -.038 1.098 .904 .954 .930 .927 0

IPW-Logit -.770 -.041 1.060 .926 .948 .943 .963 0
IPW-BART -.774 -.045 1.064 .936 .956 .941 .964 0
OW-Logit -.770 -.041 1.066 .925 .951 .944 .940 0
OW-BART -.774 -,045 1.059 .933 .954 .941 .938 0

N=30

m = 100,
ρLogit = .001

Crude -.743 -.013 1.000 .928 .947 .939 .942 0
Multi -.747 -.018 1.168 .930 .946 .938 .939 0

IPW-Logit -.746 -.017 1.105 .945 .959 .951 .963 0
IPW-BART -.747 -.017 1.103 .943 .957 .948 .959 0
OW-Logit -.747 -.017 1.105 .945 .959 .951 .951 0
OW-BART -.747 -.018 1.104 .944 .959 .950 .948 0

m = 100,
ρLogit = .01

Crude -.742 -.013 1.000 .928 .948 .940 .942 0
Multi -.746 -.017 1.146 .933 .950 .939 .941 0

IPW-Logit -.746 -.017 1.093 .945 .957 .950 .960 0
IPW-BART -.746 -.017 1.087 .945 .960 .953 .964 0
OW-Logit -.746 -.017 1.092 .945 .957 .951 .950 0
OW-BART -.746 -.017 1.086 .947 .960 .955 .950 0

m = 30,
ρLogit = .001

Crude -.743 -.014 1.000 .936 .954 .945 .952 0
Multi -.750 -.021 1.111 .934 .954 .943 .943 0

IPW-Logit -.749 -.020 1.084 .946 .960 .952 .961 0
IPW-BART -.750 -.020 1.052 .944 .956 .952 .961 0
OW-Logit -.749 -.020 1.083 .947 .959 .953 .949 0
OW-BART -.750 -.021 1.049 .946 .957 .951 .948 0

m = 30,
ρLogit = .01

Crude -.740 -.011 1.000 .938 .952 .948 .948 0
Multi -.744 -.015 1.045 .919 .952 .935 .933 0

IPW-Logit -.740 -.011 1.042 .945 .961 .947 .965 0
IPW-BART -.740 -.011 1.050 .946 .963 .953 .967 0
OW-Logit -.740 -.011 1.041 .945 .960 .952 .949 0
OW-BART -.740 -.011 1.042 .947 .963 .953 .951 0
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Table C.5: Simulations results under Outcome generating model 1 with fifteen covariates and very
low outcome incidences.

Outcome generating model 1, 15 covariates, very low incidence, θ = −.8155, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.836 -.020 1.000 .831 .939 .884 .901 .001
Multi -.855 -.039 .948 .805 .944 .885 .882 .001

IPW-Logit -.840 -.025 1.004 .835 .947 .901 .979 .001
IPW-BART -.842 -.027 .998 .834 .941 .889 .973 .001
OW-Logit -.842 -.027 1.002 .833 .946 .900 .874 .001
OW-BART -.843 -.028 .991 .835 .939 .893 .967 .001

m = 100,
ρLogit = .01

Crude -.875 -.059 1.000 .841 .941 .908 .922 .003
Multi -.877 -.062 .969 .820 .954 .896 .903 .003

IPW-Logit -.869 -.054 1.027 .849 .958 .922 .985 .003
IPW-BART -.872 -.057 1.003 .844 .948 .914 .981 .003
OW-Logit -.868 -.053 1.029 .851 .959 .921 .897 .003
OW-BART -.871 -.056 .998 .844 .951 .913 .889 .003

m = 30,
ρLogit = .001

Crude -.723 .092 1.000 .925 .986 .964 .979 .149
Multi -.904 -.088 .550 .707 .979 .875 .884 .518

IPW-Logit -.741 .074 .883 .921 .985 .962 .996 .149
IPW-BART -.729 .088 .987 .919 .985 .962 .995 .140
OW-Logit -.741 .074 .871 .914 .985 .965 .958 .149
OW-BART -.730 .085 .963 .917 .987 .964 .951 .149

m = 30,
ρLogit = .01

Crude -.711 .105 1.000 .012 .975 .948 .959 .161
Multi -.953 -.138 .633 .769 .986 .927 .917 .506

IPW-Logit -.734 .082 .918 .918 .971 .954 .998 .161
IPW-BART -.712 .103 .975 .917 .977 .950 .986 .161
OW-Logit -.735 .080 .902 .913 .971 .957 .946 .161
OW-BART -.715 .100 .944 .914 .971 .949 .942 .161

N=10

m = 100,
ρLogit = .001

Crude -.814 .002 1.000 .890 .945 .915 .929 0
Multi -.819 -.003 1.068 .886 .946 .925 .927 0

IPW-Logit -.812 .004 1.047 .896 .948 .916 .960 0
IPW-BART -.811 .005 1.039 .895 .953 .925 .960 0
OW-Logit -.812 .004 1.047 .897 .945 .917 .908 0
OW-BART -.811 .004 1.038 .895 .952 .924 .917 0

m = 100,
ρLogit = .01

Crude -.813 .003 1.000 .883 .942 .914 .923 0
Multi -.816 -.001 1.013 .884 .948 .921 .927 0

IPW-Logit -.809 .007 .996 .890 .946 .922 .963 0
IPW-BART -.811 .004 1.014 .890 .949 .925 .966 0
OW-Logit -.809 .006 .995 .889 .946 .922 .908 0
OW-BART -.812 .004 1.007 .902 .948 .923 .919 0

m = 30,
ρLogit = .001

Crude -.848 -.032 1.000 .932 .965 .952 .960 .050
Multi -.908 -.093 .763 .823 .973 .921 .912 .096

IPW-Logit -.853 -.038 .957 .933 .971 .958 .987 .050
IPW-BART -.850 -.035 .986 .929 .972 .956 .983 .050
OW-Logit -.851 -.036 .953 .935 .969 .956 .947 .050
OW-BART -.851 -.035 .961 .929 .971 .958 .945 .050

m = 30,
ρLogit = .01

Crude -.831 -.016 1.000 .944 .978 .963 .971 .036
Multi -.904 -.089 .769 .837 .988 .938 .920 .096

IPW-Logit -.843 -.027 .969 .940 .980 .965 .994 .036
IPW-BART -.839 -.023 .994 .939 .981 .961 .991 .036
OW-Logit -.844 -.029 .985 .936 .977 .966 .957 .036
OW-BART -.843 -.027 .984 .936 .978 .964 .952 .036
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Outcome generating model 1, 15 covariates, very low incidence, θ = −.8155, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.825 -.009 1.000 .916 .944 .928 .933 0
Multi -.827 -.011 1.124 .922 .951 .937 .940 0

IPW-Logit -.827 -.011 1.039 .920 .942 .932 .954 0
IPW-BART -.829 -.013 1.037 .922 .944 .934 .952 0
OW-Logit -.827 -.011 1.038 .920 .940 .932 .927 0
OW-BART -.829 -.014 1.036 .922 .946 .933 .927 0

m = 100,
ρLogit = .01

Crude -.808 .007 1.000 .913 .947 .929 .936 0
Multi -.812 -.004 1.055 .909 .938 .926 .926 0

IPW-Logit -.808 .008 1.042 .921 .947 .930 .957 0
IPW-BART -.807 .008 1.041 .922 .944 .936 .953 0
OW-Logit -.808 .008 1.042 .919 .948 .930 .928 0
OW-BART -.807 .008 1.043 .923 .948 .935 .932 0

m = 30,
ρLogit = .001

Crude -.861 -.046 1.000 .926 .956 .938 .942 .002
Multi -.865 -.049 1.007 .918 .970 .945 .936 .002

IPW-Logit -.853 -.038 1.025 .935 .961 .946 .970 .002
IPW-BART -.858 -.043 1.011 .931 .961 .946 .970 .002
OW-Logit -.855 -.039 1.022 .935 .963 .947 .939 .002
OW-BART -.859 -.043 .997 .930 .960 .947 .942 .002

m = 30,
ρLogit = .01

Crude -.874 -.059 1.000 .929 .965 .948 .957 0
Multi -.894 -.079 1.001 .921 .971 .951 .943 0

IPW-Logit -.883 -.067 1.030 .943 .964 .957 .977 0
IPW-BART -.877 -.062 1.025 .940 .959 .949 .970 0
OW-Logit -.882 -.067 1.035 .945 .968 .958 .953 0
OW-BART -.877 -.062 1.026 .942 .964 .952 .945 0

N=30

m = 100,
ρLogit = .001

Crude -.807 .009 1.000 .937 .954 .944 .946 0
Multi -.811 .004 1.090 .929 .943 .935 .935 0

IPW-Logit -.811 .004 1.056 .938 .955 .946 .960 0
IPW-BART -.810 .005 1.057 .944 .959 .952 .964 0
OW-Logit -.811 .004 1.056 .938 .955 .946 .943 0
OW-BART -.811 .005 1.057 .947 .957 .949 .949 0

m = 100,
ρLogit = .01

Crude -.815 3.690× 10−4 1.000 .927 .947 .940 .943 0
Multi -.815 3.828× 10−4 1.097 .936 .951 .941 .941 0

IPW-Logit -.816 −9.694× 10−5 1.058 .936 .952 .943 .956 0
IPW-BART -.816 −9.091× 10−5 1.037 .932 .948 .942 .955 0
OW-Logit -.816 −1.898× 10−4 1.058 .936 .951 .945 .940 0
OW-BART -.816 −3.165× 10−4 1.036 .932 .949 .940 .939 0

m = 30,
ρLogit = .001

Crude -.812 .004 1.000 .950 .962 .953 .957 0
Multi -.823 -.007 1.020 .935 .962 .952 .950 0

IPW-Logit -.811 .004 1.026 .952 .965 .959 .966 0
IPW-BART -.813 .003 1.023 .952 .963 .957 .965 0
OW-Logit -.812 .003 1.026 .952 .963 .957 .956 0
OW-BART -.813 .002 1.017 .950 .959 .958 .955 0

m = 30,
ρLogit = .01

Crude -.831 -.016 1.000 .936 .950 .945 .948 0
Multi -.844 -.028 1.057 .933 .957 .947 .940 0

IPW-Logit -.839 -.023 1.029 .942 .956 .948 .961 0
IPW-BART -.836 -.021 1.020 .937 .951 .946 .957 0
OW-Logit -.839 -.023 1.037 .941 .958 .948 .944 0
OW-BART -.838 -.022 1.029 .937 .953 .948 .944 0
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Table C.6: Simulations results under Outcome generating model 2 with six covariates and low
outcome incidences.

Outcome generating model 2, 6 covariates, low incidence, θ = −.7392, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.769 -.030 1.000 .820 .929 .886 .899 0
Multi -.777 -.037 1.621 .802 .924 .869 .882 0

IPW-Logit -.769 -.030 1.269 .857 .940 .910 .974 0
IPW-BART -.773 -.033 1.270 .863 .946 .919 .972 0
OW-Logit -.770 -.031 1.265 .857 .941 .913 .892 0
OW-BART -.774 -.035 1.284 .867 .948 .919 .892 0

m = 100,
ρLogit = .01

Crude -.745 -.006 1.000 .818 .924 .877 .892 0
Multi -.744 -.005 1.565 .811 .925 .873 .886 0

IPW-Logit -.745 -.006 1.245 .863 .942 .907 .973 0
IPW-BART -.747 -.008 1.259 .873 .938 .917 .974 0
OW-Logit -.746 -.007 1.246 .863 .943 .907 .889 0
OW-BART -.748 -.009 1.266 .873 .940 .910 .900 0

m = 30,
ρLogit = .001

Crude -.841 -.102 1.000 .830 .956 .914 .928 .015
Multi -.841 -.102 1.464 .741 .963 .867 .880 .050

IPW-Logit -.843 -.103 1.156 .864 .960 .929 .980 .015
IPW-BART -.849 -.109 1.129 .864 .962 .934 .981 .015
OW-Logit -.847 -.108 1.164 .864 .963 .928 .907 .015
OW-BART -.852 -.113 1.143 .866 .965 .934 .911 .015

m = 30,
ρLogit = .01

Crude -.781 -.042 1.000 .856 .961 .925 .935 .016
Multi -.795 -.056 1.350 .784 .964 .891 .892 .044

IPW-Logit -.793 -.054 1.155 .886 .961 .941 .987 .016
IPW-BART -.791 -.052 1.145 .895 .964 .944 .987 .016
OW-Logit -.797 -.057 1.164 .884 .964 .938 .926 .016
OW-BART -.795 -.056 1.155 .896 .966 .941 .923 .016

N=10

m = 100,
ρLogit = .001

Crude -.762 -.023 1.000 .884 .938 .915 .926 0
Multi -.756 -.017 1.630 .887 .950 .919 .924 0

IPW-Logit -.756 -.017 1.188 .911 .950 .932 .973 0
IPW-BART -.762 -.023 1.236 .911 .964 .946 .974 0
OW-Logit -757 -.018 1.189 .910 .952 .932 .925 0
OW-BART -.763 -.024 1.249 .920 .963 .946 .937 0

m = 100,
ρLogit = .01

Crude -.756 -.017 1.000 .865 .926 .898 .908 0
Multi -.753 -.014 1.620 .862 .928 .906 .910 0

IPW-Logit -.754 -.015 1.252 .895 .951 .923 .968 0
IPW-BART -.761 -.021 1.272 .904 .953 .930 .964 0
OW-Logit -.755 -.016 1.249 .894 .949 .923 .913 0
OW-BART -.762 -.022 1.281 .909 .954 .929 .917 0

m = 30,
ρLogit = .001

Crude -.786 -.047 1.000 .887 .949 .926 .930 0
Multi -.775 -.036 1.496 .850 .934 .899 .901 0

IPW-Logit -.788 -.049 1.166 .914 .968 .940 .979 0
IPW-BART -.790 -.050 1.203 .919 .967 .947 .981 0
OW-Logit -.791 -.052 1.174 .917 .969 .940 .929 0
OW-BART -.792 -.053 1.221 .922 .970 .949 .940 0

m = 30,
ρLogit = .01

Crude -.785 -.045 1.000 .886 .956 .929 .938 0
Multi -.772 -.033 1.417 .871 .933 .908 .905 0

IPW-Logit -.781 -.041 1.182 .921 .973 .952 .982 0
IPW-BART -.783 -.044 1.176 .925 .968 .948 .979 0
OW-Logit -.783 -.044 1.180 .922 .974 .952 .941 0
OW-BART -.786 -.047 1.181 .928 .967 .949 .940 0
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Outcome generating model 2, 6 covariates, low incidence, θ = −.7392, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.768 -.029 1.000 .913 .939 .924 .931 0
Multi -.760 -.021 1.556 .893 .929 .907 .911 0

IPW-Logit -.766 -.027 1.204 .940 .959 .948 .962 0
IPW-BART -.768 -.028 1.311 .958 .972 .966 .977 0
OW-Logit -.767 -.028 1.204 .940 .959 .949 .947 0
OW-BART -.769 -.030 1.317 .959 .973 .966 .966 0

m = 100,
ρLogit = .01

Crude -.745 -.006 1.000 .924 .958 .940 .945 0
Multi -.742 -.003 1.512 .916 .953 .934 .939 0

IPW-Logit -.741 -.002 1.208 .955 .966 .962 .972 0
IPW-BART -.744 -.004 1.301 .966 .979 .971 .981 0
OW-Logit -.741 -.002 1.208 .956 .967 .962 .959 0
OW-BART -.744 -.005 1.302 .965 .977 .972 .972 0

m = 30,
ρLogit = .001

Crude -.776 -.037 1.000 .918 .949 .926 .939 0
Multi -.767 -.028 1.499 .895 .947 .932 .931 0

IPW-Logit -.766 -.027 1.200 .948 .973 .960 .978 0
IPW-BART -.767 -.028 1.228 .950 .969 .962 .974 0
OW-Logit -.767 -.028 1.203 .949 .972 .960 .959 0
OW-BART -.767 -.028 1.243 .954 .970 .964 .963 0

m = 30,
ρLogit = .01

Crude -.761 -.021 1.000 .916 .942 .934 .938 0
Multi -.746 -.007 1.651 .913 .946 .932 .931 0

IPW-Logit -.756 -.017 1.218 .953 .968 .958 .974 0
IPW-BART -.757 -.018 1.237 .954 .971 .964 .976 0
OW-Logit -.758 -.018 1.216 .952 .968 .958 .957 0
OW-BART -.758 -.018 1.254 .959 .972 .964 .962 0

N=30

m = 100,
ρLogit = .001

Crude -.760 -.020 1.000 .934 .945 .939 .940 0
Multi -.756 -.017 1.616 .935 .948 .943 .944 0

IPW-Logit -.756 -.017 1.185 .951 .966 .961 .968 0
IPW-BART -.759 -.020 1.286 .965 .978 .967 979 0
OW-Logit -.756 -.017 1.184 .950 .966 .961 .957 0
OW-BART -.760 -.021 1.291 .966 .976 .967 .967 0

m = 100,
ρLogit = .01

Crude -.748 -.009 1.000 .927 .940 .934 .937 0
Multi -.747 -.008 1.662 .912 .930 .921 .923 0

IPW-Logit -.744 -.005 1.211 .951 .968 .963 .971 0
IPW-BART -.748 -.009 1.317 .958 .973 .967 .978 0
OW-Logit -.744 -.005 1.211 .951 .968 .963 .960 0
OW-BART -.748 -.009 1.212 .961 .976 .964 .964 0

m = 30,
ρLogit = .001

Crude -.757 -.018 1.000 .938 .960 .944 .949 0
Multi -.759 -.019 1.491 .921 .943 .934 .933 0

IPW-Logit -.754 -.015 1.225 .965 .973 .967 .975 0
IPW-BART -.756 -.017 1.264 .963 .975 .972 .975 0
OW-Logit -.755 -.016 1.222 .964 .973 .967 .966 0
OW-BART -.758 -.019 1..271 .965 .974 .973 .970 0

m = 30,
ρLogit = .01

Crude -.750 -.011 1.000 .927 .948 .938 .944 0
Multi -.755 -.016 1.683 .930 .957 .949 .950 0

IPW-Logit -.751 -.011 1.268 .945 .967 .959 .971 0
IPW-BART -.753 -.014 1.319 .956 .970 .966 .975 0
OW-Logit -.751 -.012 1.268 .946 .966 .961 .953 0
OW-BART -.754 -.015 1.335 .957 .971 .966 .961 0
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Table C.7: Simulations results under Outcome generating model 2 with six covariates and very low
outcome incidences.

Outcome generating 2, 6 covariates, very low incidence, θ = −.7756, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.796 -.020 1.000 .809 .936 .883 .899 0
Multi -.809 -.033 1.430 .814 .936 .883 .893 .001

IPW-Logit -.796 -.020 1.135 .836 .946 .894 .973 0
IPW-BART -.804 -.028 1.123 .845 .945 .902 .973 0
OW-Logit -.797 -.021 1.134 .837 .945 .896 .872 0
OW-BART -.807 -.032 1.125 .841 .946 .908 .882 0

m = 100,
ρLogit = .01

Crude -.819 -.043 1.000 .817 .921 .876 .890 .003
Multi -.823 -.047 1.319 .774 .930 .862 .872 .003

IPW-Logit -.819 -.043 1.074 .827 .941 .894 .971 .003
IPW-BART -.824 -.049 1.088 .836 .937 .892 .971 .003
OW-Logit -.821 -.045 1.075 .828 .940 .895 .861 .003
OW-BART -.826 -.051 1.085 .837 .940 .889 .871 .003

m = 30,
ρLogit = .001

Crude -.690 -.086 1.000 .908 .973 .950 .963 .142
Multi -.744 .032 1.043 .729 .967 .875 .893 .333

IPW-Logit -.704 .072 1.065 .920 .981 .959 .994 .142
IPW-BART -.702 .074 1.081 .929 .984 .963 .993 .142
OW-Logit -.708 .068 1.072 .917 .984 .960 .951 .142
OW-BART -.706 .069 1.065 .928 .984 .966 .955 .142

m = 30,
ρLogit = .01

Crude -.670 .106 1.000 .894 .977 .947 .965 .125
Multi -.786 -.011 1.202 .722 .972 .860 .889 .309

IPW-Logit -.678 .098 1.047 .910 .976 .954 .997 .125
IPW-BART -.676 .099 1.041 .905 .977 .952 .992 .125
OW-Logit -.684 .092 1.037 .906 .976 .949 .936 .125
OW-BART -.680 .096 1.027 .897 .981 .955 .937 .125

N=10

m = 100,
ρLogit = .001

Crude -.812 -.036 1.000 .886 .951 .929 .935 0
Multi -.804 -.028 1.423 .859 .942 .901 .903 0

IPW-Logit -.804 -.028 1.090 .888 .960 .932 .971 0
IPW-BART -.811 -.035 1.106 .895 .969 .933 .975 0
OW-Logit -.804 -.029 1.089 .889 .959 .932 .913 0
OW-BART -.812 -.037 1.108 .895 .967 .934 .921 0

m = 100,
ρLogit = .01

Crude -.800 -.024 1.000 .859 .936 .905 .911 0
Multi -.794 -.019 1.453 .845 .931 .898 .902 0

IPW-Logit -.798 -.022 1.117 .893 .951 .929 .970 0
IPW-BART -.804 -.029 1.138 .901 .956 .931 .968 0
OW-Logit -.799 -.023 1.116 .892 .953 .929 .915 0
OW-BART -.805 -.030 1.137 .900 .957 .932 .921 0

m = 30,
ρLogit = .001

Crude -.842 .066 1.000 .954 .981 .967 .975 .024
Multi -.861 -.086 1.258 .861 .974 .927 .928 .045

IPW-Logit -.848 -.072 1.062 .951 .988 .974 .998 .024
IPW-BART -.847 -.072 1.059 .948 .984 .975 .996 .024
OW-Logit -.852 -.076 1.062 .952 .989 .972 .968 .024
OW-BART -.851 -.076 1.052 .954 .982 .975 .968 .024

m = 30,
ρLogit = .01

Crude -.812 -.036 1.000 .932 .975 .959 .969 .024
Multi -.839 -.063 1.203 .844 .965 .921 .922 .047

IPW-Logit -.815 -.040 1.066 .943 .975 .962 .993 .024
IPW-BART -.817 -.042 1.067 .943 .978 .960 .993 .024
OW-Logit -.818 -.042 1.066 .940 .976 .962 .960 .024
OW-BART -.822 -.047 1.061 .941 .976 .962 .955 .024
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Outcome generating model 2, 6 covariates, very low incidence, θ = −.7756, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.800 -.025 1.000 .918 .947 .932 .937 0
Multi -.789 -.014 1.413 .903 .942 .924 .924 0

IPW-Logit -.799 -.024 1.117 .944 .960 .952 .964 0
IPW-BART -.801 -.025 1.172 .946 .965 .956 .972 0
OW-Logit -.800 -.024 1.117 .943 .959 .952 .949 0
OW-BART -.802 -.027 1.171 .945 .964 .955 .950 0

m = 100,
ρLogit = .01

Crude -.784 -.008 1.000 .921 .943 .931 .938 0
Multi -.781 -.005 1.483 .921 .949 .938 .938 0

IPW-Logit -.779 -.004 1.138 .943 .957 .950 .964 0
IPW-BART -.781 -.006 1.236 .955 .970 .962 .973 0
OW-Logit -.780 -.004 1.138 .943 .957 .950 .946 0
OW-BART -.782 -.006 1.244 .954 .970 .964 .960 0

m = 30,
ρLogit = .001

Crude -.807 -.031 1.000 .925 .956 .946 .952 0
Multi -.794 -.018 1.485 .906 .960 .936 .929 0

IPW-Logit -.796 -.021 1.128 .945 .967 .955 .972 0
IPW-BART -.800 -.024 1.152 .943 .969 .960 .977 0
OW-Logit -.797 -.022 1.128 .942 .967 .957 .958 0
OW-BART -.801 -.025 1.161 .945 .973 .963 .957 0

m = 30,
ρLogit = .01

Crude -.798 -.022 1.000 .935 .958 .949 .955 .002
Multi -.810 -.035 1.444 .915 .961 .938 .932 .002

IPW-Logit -.801 -.025 1.103 .946 .973 .962 .978 .002
IPW-BART -.804 -.028 1.121 .954 .970 .963 .974 .002
OW-Logit -.802 -.026 1.104 .946 .973 .962 .956 .002
OW-BART -.807 -.031 1.133 .959 .973 .965 .961 .002

N=30

m = 100,
ρLogit = .001

Crude -.795 -.019 1.000 .929 .948 .940 .942 0
Multi -.790 -.015 1.436 .919 .944 .930 .931 0

IPW-Logit -.791 -.015 1.109 .948 .959 .955 .966 0
IPW-BART -.795 -.020 1.145 .950 .966 .957 .968 0
OW-Logit -.791 -.015 1.109 .949 .959 .955 .953 0
OW-BART -.796 -.020 1.147 .950 .965 .960 .957 0

m = 100,
ρLogit = .01

Crude -.780 -.005 1.000 .927 .938 .933 .935 0
Multi -.781 -.006 1.569 .919 .940 .930 .931 0

IPW-Logit -.777 -.001 1.132 .946 .958 .951 .961 0
IPW-BART -.783 -.007 1.219 .949 .960 .953 .963 0
OW-Logit -.777 -.002 1.131 .946 .957 .950 .948 0
OW-BART -.784 -.008 1.222 .949 .959 .954 .951 0

m = 30,
ρLogit = .001

Crude -.796 -.020 1.000 .941 .961 .953 .956 0
Multi -.803 -.027 1.443 .930 .961 .944 .939 0

IPW-Logit -.793 -.017 1.105 .955 .972 .964 .974 0
IPW-BART -.794 -.018 1.160 .955 .975 .968 .976 0
OW-Logit -.794 -.018 1.105 .954 .972 .965 .961 0
OW-BART -.796 -.020 1.165 .954 .973 .967 .962 0

m = 30,
ρLogit = .01

Crude -.790 -.014 1.000 .918 .945 .932 .938 0
Multi -.798 -.022 1.563 .911 .951 .933 .931 0

IPW-Logit -.791 -.015 1.121 .936 .954 .948 .958 0
IPW-BART -.795 -.019 1.169 .944 .957 .949 .970 0
OW-Logit -.792 -.016 1.121 .937 .953 .948 .946 0
OW-BART -.796 -.020 1.176 .943 .961 .951 .946 0
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Table C.8: Simulations results under Outcome generating model 2 with fifteen covariates and low
outcome incidences.

Outcome generating model 2, 15 covariates, low incidence, θ = −.6785, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.695 -.010 1.000 .807 .918 .870 .886 0
Multi -.701 -.027 2.111 .781 .936 .867 .860 0

IPW-Logit -.696 -.010 1.356 .872 .949 .917 .981 0
IPW-BART -.698 -.012 1.357 .856 .942 .902 .967 0
OW-Logit -.698 -.012 1.359 .869 .948 .916 .901 0
OW-BART -.699 -.013 1.276 .860 .944 .906 .888 0

m = 100,
ρLogit = .01

Crude -.697 -.011 1.000 .807 .921 .872 .886 0
Multi -.702 -.028 2.036 .787 .950 .877 .871 0

IPW-Logit -.697 -.011 1.334 .873 .944 .916 .978 0
IPW-BART -.699 -.013 1.245 .863 .940 .903 .960 0
OW-Logit -.698 -.013 1.338 .877 .948 .917 .899 0
OW-BART -.700 -.014 1.262 .869 .941 .906 .889 0

m = 30,
ρLogit = .001

Crude -.716 -.031 1.000 .851 .958 .907 .926 .011
Multi -.783 -.109 1.679 .729 1.000 .911 .913 .774

IPW-Logit -.721 -.035 1.144 .877 .963 .934 .991 .011
IPW-BART -.721 .035 1.162 .881 .966 .933 .988 .011
OW-Logit -.727 -.042 1.164 .880 .961 .931 .919 .011
OW-BART -.725 -.039 1.185 .885 .969 .939 .918 .011

m = 30,
ρLogit = .01

Crude -.737 -.051 1.000 .857 .946 .915 .927 .010
Multi -.798 -.124 1.391 .674 .986 .924 .916 .768

IPW-Logit -.727 -.041 1.198 .892 .967 .942 .990 .010
IPW-BART -.731 -.045 1.161 .885 .964 .931 .978 .010
OW-Logit -.731 -.045 1.219 .904 .969 .940 .925 .010
OW-BART -.731 -.045 1.186 .895 .965 .934 .916 .010

N=10

m = 100,
ρLogit = .001

Crude -.683 .003 1.000 .899 .942 .921 .926 0
Multi -.684 -.010 2.192 .853 .946 .905 .905 0

IPW-Logit -.68 .005 1.344 .934 .966 .946 .985 0
IPW-BART -.683 .003 1.330 .937 .977 .953 .985 0
OW-Logit -.681 .005 1.348 .935 .966 .945 .942 0
OW-BART -.684 .002 1.344 .937 .978 .954 .950 0

m = 100,
ρLogit = .01

Crude -.679 .006 1.000 .892 .941 .927 .930 0
Multi -.680 -.006 2.195 .866 .957 .918 .916 0

IPW-Logit -.677 .009 1.352 .943 .969 .956 .982 0
IPW-BART -.679 .006 1.340 .941 .975 .955 .981 0
OW-Logit -.677 .008 1.357 .942 .969 .957 .953 0
OW-BART -.680 .006 1.354 .946 .973 .959 .953 0

m = 30,
ρLogit = .001

Crude -.720 -.035 1.000 .893 .952 .927 .936 0
Multi -.731 -.058 1.980 .796 .989 .913 .887 .215

IPW-Logit -.734 -.049 1.205 .926 .963 .942 .976 0
IPW-BART -.728 -.043 1.179 .927 .961 .947 .971 0
OW-Logit -.737 -.052 1.217 .924 .967 .944 .937 0
OW-BART -.731 -.046 1.196 .931 .961 .950 .942 0

m = 30,
ρLogit = .01

Crude -.725 -.039 1.000 .886 .950 .935 .940 .001
Multi -.742 -.069 1.620 .752 .977 .918 .877 .187

IPW-Logit -.715 -.030 1.231 .924 .968 .950 .982 .001
IPW-BART -.722 -.036 1.177 .928 .962 .947 .972 .001
OW-Logit -.716 -.031 1.246 .929 .970 .949 .943 .001
OW-BART -.721 -.035 1.202 .929 .965 .949 .940 .001
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Outcome generating model 2, 15 covariates, low incidence, θ = −.6785, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.688 -.002 1.000 .916 .948 .938 .942 0
Multi -.689 -.015 2.317 .903 .945 .925 .923 0

IPW-Logit -.691 -.005 1.308 .953 .970 .962 .978 0
IPW-BART -.692 -.007 1.312 .955 .971 .962 .973 0
OW-Logit -.691 -.006 1.308 .954 .971 .962 .960 0
OW-BART -.693 -.007 1.320 .957 .970 .960 .958 0

m = 100,
ρLogit = .01

Crude -.688 -.002 1.000 .913 .944 .928 .933 0
Multi -.689 -.015 2.351 .905 .948 .929 .928 0

IPW-Logit -.691 -.005 1.313 .955 .968 .965 .975 0
IPW-BART -.692 -.006 1.322 .955 .973 .964 .978 0
OW-Logit -.691 -.005 1.313 .955 .968 .965 .962 0
OW-BART -.693 -.007 1.331 .957 .974 .963 .961 0

m = 30,
ρLogit = .001

Crude -.692 -.006 1.000 .937 .955 .950 .951 0
Multi -.690 -.016 1.819 .883 .954 .916 .902 0

IPW-Logit -.694 -.008 1.228 .955 .974 .968 .979 0
IPW-BART -.695 -.009 1.225 .957 .976 .962 .978 0
OW-Logit -.695 -.010 1.234 .956 .974 .968 .963 0
OW-BART -.696 -.011 1.243 .952 .975 .966 .963 0

m = 30,
ρLogit = .01

Crude -.711 -.025 1.000 .924 .941 .934 .935 0
Multi -.700 -.026 2.065 .877 .960 .927 .912 0

IPW-Logit -.702 -.017 1.265 .952 .972 .964 .981 0
IPW-BART -.708 -.022 1.253 .951 .966 .959 .972 0
OW-Logit -.704 -.018 1.268 .957 .971 .966 .962 0
OW-BART -.707 -.022 1.277 .951 .972 .963 .959 0

N=30

m = 100,
ρLogit = .001

Crude -.679 .006 1.000 .934 .949 .942 .944 0
Multi -.684 -.010 2.215 .921 .942 .930 .930 0

IPW-Logit -.684 .001 1.349 .969 .980 .976 .981 0
IPW-BART -.685 .001 1.373 .974 .984 .980 .985 0
OW-Logit -.684 .001 1.351 .969 .979 .976 .974 0
OW-BART -.685 2.364× 10−4 1.383 .976 .984 .982 .979 0

m = 100,
ρLogit = .01

Crude -.680 .006 1.000 .936 .952 .944 .949 0
Multi -.685 -.011 2.173 .919 .942 .929 .929 0

IPW-Logit -.685 5.526× 10−4 1.340 .967 .981 .976 .986 0
IPW-BART -.686 −1.558× 10−5 1.366 .973 .987 .983 .990 0
OW-Logit -.685 2.391× 10−4 1.342 .968 .983 .975 .973 0
OW-BART -.686 −7.462× 10−4 1.376 .971 .987 .981 .980 0

m = 30,
ρLogit = .001

Crude -.680 .006 1.000 .954 .966 .959 .962 0
Multi -.691 -.017 2.225 .925 .962 .947 .941 0

IPW-Logit -.688 -.002 1.332 .975 .982 .980 .984 0
IPW-BART -.688 -.002 1.312 .973 .980 .976 .981 0
OW-Logit -.689 -.003 1.326 .975 .984 .980 .979 0
OW-BART -.689 -.003 1.329 .973 .980 .975 .973 0

m = 30,
ρLogit = .01

Crude -.693 -.007 1.000 .941 .953 .949 .949 0
Multi -.693 -.020 1.897 .898 .951 .925 .912 0

IPW-Logit -.693 -.007 1.259 .967 .977 .973 .980 0
IPW-BART -.694 -.009 1.250 .971 .978 .975 .979 0
OW-Logit -.694 -.008 1.259 .967 .977 .972 .971 0
OW-BART -.695 -.009 1.266 .972 .978 .975 .973 0
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Table C.9: Simulations results under Outcome generating model 2 with fifteen covariates and very
low outcome incidences.

Outcome generating model 2, 15 covariates, very low incidence, θ = −.7007, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.731 -.031 1.000 .840 .939 .899 .911 0
Multi -.767 -.067 1.463 .729 .965 .881 .738 .874

IPW-Logit -.730 -.029 1.144 .858 .958 .916 .983 0
IPW-BART -.733 -.032 1.133 .854 .960 .922 .977 0
OW-Logit -.734 -.033 1.149 .863 .955 .922 .900 0
OW-BART -.734 -.034 1.132 .857 .962 .923 .896 0

m = 100,
ρLogit = .01

Crude -.790 -.089 1.000 .836 .931 .894 .905 .001
Multi -.790 .090 1.589 .732 .966 .874 .863 .128

IPW-Logit -.778 -.077 1.091 .854 .941 .907 .981 .001
IPW-BART -.783 -.082 1.106 .852 .940 .906 .976 .001
OW-Logit -.779 -.078 1.094 .855 .941 .907 .893 .001
OW-BART -.782 -.081 1.109 .853 .939 .908 .889 .001

m = 30,
ρLogit = .001

Crude -.676 .025 1.000 .892 .974 .945 .956 .115
Multi -.778 -.077 .874 .696 1.000 .909 .957 .976

IPW-Logit -.686 .015 1.011 .910 .976 .954 .995 .115
IPW-BART -.677 .024 1.071 .913 .981 .953 .992 .115
OW-Logit -.691 .010 .991 .897 .976 .951 .938 .115
OW-BART -.676 .024 1.063 .906 .984 .951 .930 .115

m = 30,
ρLogit = .01

Crude -.696 .005 1.000 .907 .977 .950 .965 .116
Multi -.685 .015 1.075 .571 1.000 .857 .929 .986

IPW-Logit -.728 -.027 .939 .920 .980 .958 .992 .116
IPW-BART -.706 -.005 1.039 .926 .981 .960 .992 .116
OW-Logit -.728 -.027 .915 .917 .981 .954 .942 .116
OW-BART -.711 -.010 1.106 .921 .981 .963 .943 .116

N=10

m = 100,
ρLogit = .001

Crude -.720 -.019 1.000 .899 .951 .925 .937 0
Multi -.724 -.023 1.781 .827 .954 .894 .890 .002

IPW-Logit -.717 -.016 1.167 .921 .965 .946 .976 0
IPW-BART -.718 -.017 1.181 .923 .966 .943 .977 0
OW-Logit -.718 -.017 1.168 .923 .965 .946 .937 0
OW-BART -.719 -.019 1.182 .918 .969 .947 .933 0

m = 100,
ρLogit = .01

Crude -.711 -.011 1.000 .890 .956 .928 .938 0
Multi -.723 -.022 1.704 .844 .960 .900 .892 0

IPW-Logit -.704 -.003 1.128 .910 .955 .939 .968 0
IPW-BART -.708 -.007 1.121 .916 .958 .938 .973 0
OW-Logit -.705 -.004 1.125 .912 .955 .938 .932 0
OW-BART -.709 -.008 1.128 .915 .962 .938 .931 0

m = 30,
ρLogit = .001

Crude -.777 -.076 1.000 .946 .982 .970 .976 .024
Multi -.788 -.088 1.393 .706 1.000 .914 .893 .793

IPW-Logit -.775 -.075 1.076 .947 .985 .970 .995 .024
IPW-BART -.777 -.076 1.080 .957 .988 .972 .995 .024
OW-Logit -.777 -.077 1.095 .949 .984 .970 .964 .024
OW-BART -.778 -.077 1.075 .949 .987 .969 .966 .024

m = 30,
ρLogit = .01

Crude -.725 -.024 1.000 .927 .970 .947 .958 .010
Multi -.757 -.056 1.143 .724 .981 .936 .949 .826

IPW-Logit -.734 -.033 1.036 .932 .972 .958 .993 .010
IPW-BART -.730 -.029 1.071 .941 .977 .958 .991 .010
OW-Logit -.740 -.039 1.030 .926 .974 .955 .949 .010
OW-BART -.736 -.035 1.063 .938 .975 .958 .953 .010
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Outcome generating model 2, 15 covariates, very low incidence, θ = −.7007, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.709 -.009 1.000 .929 .957 .949 .951 0
Multi .713 -.012 1.917 .898 .946 .923 .920 0

IPW-Logit -.712 -.011 1.134 .950 .968 .962 .976 0
IPW-BART -.713 -.012 1.149 .949 .968 .960 .970 0
OW-Logit -.712 -.012 1.134 .950 .969 .961 .957 0
OW-BART -.713 -.013 1.148 .949 .967 .960 .954 0

m = 100,
ρLogit = .01

Crude -.697 .003 1.000 .925 .948 .938 .942 0
Multi -.701 8.540× 10−5 1.827 .888 .942 .914 .904 0

IPW-Logit -.694 .006 1.164 .948 .963 .952 .970 0
IPW-BART -.694 .007 1.204 .947 .967 .959 .969 0
OW-Logit -.695 .006 1.163 .948 .962 .953 .952 0
OW-BART -.695 .006 1.204 .949 .969 .960 .956 0

m = 30,
ρLogit = .001

Crude -.750 -.049 1.000 .935 .956 .944 .949 .001
Multi -.749 -.048 1.515 .803 .976 .923 .894 .121

IPW-Logit -.738 -.037 1.090 .955 .975 .963 .981 .001
IPW-BART -.746 -.046 1.092 .957 .972 .968 .977 .001
OW-Logit -.742 -.041 1.086 .955 .976 .968 .963 .001
OW-BART -.747 -.046 1.094 .962 .974 .968 .966 .001

m = 30,
ρLogit = .01

Crude -.727 -.026 1.000 .929 .960 .946 .948 0
Multi -.761 -.060 1.683 .816 .980 .905 .879 .133

IPW-Logit -.733 -.032 1.190 .940 .969 .953 .977 0
IPW-BART -.733 -.032 1.167 .947 .973 .961 .979 0
OW-Logit -.734 -.034 1.192 .943 .971 .955 .949 0
OW-BART -.734 -.033 1.178 .950 .978 .964 .956 0

N=30

m = 100,
ρLogit = .001

Crude -.702 -.001 1.000 .926 .942 .934 .937 0
Multi -.706 -.005 2.006 .904 .941 .923 .917 0

IPW-Logit -.707 -.006 1.160 .945 .962 .950 .969 0
IPW-BART -.708 -.007 1.177 .948 .958 .953 .962 0
OW-Logit -.708 -.007 1.160 .944 .961 .950 .949 0
OW-BART -.709 -.008 1.181 .947 .957 .952 .951 0

m = 100,
ρLogit = .01

Crude -.709 -.008 1.000 .929 .943 .938 .941 0
Multi -.705 .004 2.029 .920 .949 .934 .933 0

IPW-Logit -.709 -.008 1.140 .949 .958 .954 .961 0
IPW-BART -.709 -.008 1.144 .952 .959 .955 .961 0
OW-Logit -.709 -.008 1.138 .949 .958 .954 .952 0
OW-BART -.709 -.008 1.144 .947 .959 .955 .953 0

m = 30,
ρLogit = .001

Crude -.706 -.005 1.000 .946 .966 .957 .959 0
Multi -.726 -.025 1.702 .898 .974 .943 .921 .004

IPW-Logit -.705 -.004 1.121 .962 .978 .970 .981 0
IPW-BART -.709 -.008 1.123 .960 .974 .968 .980 0
OW-Logit -.706 -.006 1.121 .961 .977 .972 .965 0
OW-BART -.710 -.009 1.129 .961 .974 .965 .965 0

m = 30,
ρLogit = .01

Crude -.706 -.005 1.000 .961 .977 .970 .973 0
Multi -.726 -.026 1.664 .871 .978 .935 .902 .003

IPW-Logit -.710 -.009 1.114 .966 .976 .969 .979 0
IPW-BART -.710 -.010 1.103 .967 .979 .973 .982 0
OW-Logit -.710 -.010 1.115 .966 .975 .970 .969 0
OW-BART -.712 -.011 1.104 .967 .979 .973 .971 0
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Table C.10: Simulations results under the Outcome generating model 3 and low outcome inci-
dences.

Outcome generating model 3, low incidence, θ = −.7392, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.756 -.017 1.000 .805 .930 .877 .893 0
Multi -.766 -.026 1.480 .804 .932 .880 .885 0

IPW-Logit -.750 -.011 1.142 .836 .941 .889 .970 0
IPW-BART -.756 -.017 1.259 .860 .946 .910 .976 0
OW-Logit -.752 -.013 1.141 .835 .937 .891 .870 0
OW-BART -.759 -.019 1.275 .859 .949 .914 .890 0

m = 100,
ρLogit[= .01

Crude -.770 -.031 1.000 .805 .927 .880 .897 0
Multi -.779 -.040 1.491 .814 .936 .883 .894 0

IPW-Logit -.770 -.030 1.113 .829 .934 .888 .969 0
IPW-BART -.775 -.036 1.256 .846 .955 .911 .978 0
OW-Logit -.772 -.033 1.114 .828 .932 .890 .866 0
OW-BART -.777 -.038 1.268 .844 .956 .920 .889 0

m = 30,
ρLogit.001

Crude -.785 -.046 1.000 .833 .954 .900 .925 .013
Multi -.818 -.078 1.417 .794 .958 .897 .901 .024

IPW-Logit -.772 -.033 1.076 .837 .954 .911 .985 .013
IPW-BART -.782 -.043 1.137 .860 .964 .925 .980 .013
OW-Logit -.778 -.039 1.081 .838 .955 .914 .888 .013
OW-BART -.785 -.046 1.152 .867 .964 .926 .906 .013

m = 30,
ρLogit = .01

Crude -.852 -.113 1.000 .848 .952 .917 .935 .014
Multi -.878 -.138 1.353 .815 .961 .904 .908 .021

IPW-Logit -.845 -.105 1.087 .865 .971 .926 .993 .014
IPW-BART -.852 -.113 1.140 .884 .971 .932 .987 .014
OW-Logit -.853 -.114 1.102 .865 .969 .933 .912 .014
OW-BART -.855 -.116 1.164 .885 .972 .937 .913 .014

N=10

m = 100,
ρLogit = .001

Crude -.734 .005 1.000 .882 .934 .909 .915 0
Multi -.744 -.005 1.591 .892 .953 .926 .930 0

IPW-Logit -.735 .005 1.190 .909 .957 .946 .971 0
IPW-BART -.741 -.002 1.319 .926 .962 .944 .978 0
OW-Logit -.736 .003 1.191 .911 .958 .944 .933 0
OW-BART -.744 -.005 1.336 .926 .961 .947 .936 0

m = 100,
ρLogit[= .01

Crude -.741 -.002 1.000 .880 .939 .910 .924 0
Multi -.748 -.009 1.477 .872 .946 .910 .916 0

IPW-Logit -.740 -.001 1.121 .902 .942 .926 .963 0
IPW-BART -.747 -.008 1.290 .915 .959 .942 .974 0
OW-Logit -.741 -.002 1.119 .903 .941 .925 .915 0
OW-BART -.749 -.010 1.296 .916 .963 .946 .930 0

m = 30,
ρLogit.001

Crude -.751 -.012 1.000 .893 .954 .922 .930 0
Multi -.763 -.024 1.467 .884 .963 .933 .935 0

IPW-Logit -.749 -.010 1.148 .922 .967 .950 .985 0
IPW-BART -.757 -.017 1.208 .929 .970 .958 .987 0
OW-Logit -.752 -.013 1.143 .922 .964 .952 .939 0
OW-BART -.760 -.020 1.231 .936 .971 .958 .949 0

m = 30,
ρLogit = .01

Crude -.767 -.028 1.000 .887 .951 .930 .943 0
Multi -.783 -.044 1.445 .869 .959 .916 .920 0

IPW-Logit -.775 -.036 1.132 .922 .972 .948 .986 0
IPW-BART -.772 -.033 1.210 .925 .976 .951 .985 0
OW-Logit -.779 .039 1.131 .922 .970 .948 .937 0
OW-BART -.776 -.037 1.237 .927 .981 .954 .944 0

122



Outcome generating model 3, low incidence, θ = −.7392, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.737 .002 1.000 .921 .938 .932 .933 0
Multi -.740 -.001 1.467 .909 .946 .931 .931 0

IPW-Logit -.737 .002 1.138 .939 .959 .948 .965 0
IPW-BART -.742 -.003 1.330 .955 .972 .965 .981 0
OW-Logit -.737 .002 1.138 .940 .959 .949 .947 0
OW-BART -.744 -.005 1.342 .957 .976 .966 .959 0

m = 100,
ρLogit = .01

Crude -.748 -.009 1.000 .936 .950 .946 .947 0
Multi -.745 -.006 1.547 .925 .955 .940 .944 0

IPW-Logit -.743 -.004 1.173 .952 .967 .959 .974 0
IPW-BART -.744 -.005 1.391 .962 .975 .966 .983 0
OW-Logit -.744 -.005 1.171 .952 .967 .959 .957 0
OW-BART -.746 -.007 1.393 .962 .975 .967 .965 0

m = 30,
ρLogit.001

Crude -.745 -.006 1.000 .917 .949 .934 .938 0
Multi -.752 -.013 1.543 .905 .947 .928 .926 0

IPW-Logit -.745 -.006 1.152 .924 .952 .942 .959 0
IPW-BART -.749 -.010 1.261 .948 .966 .955 .970 0
OW-Logit -.747 -.008 1.150 .926 .952 .941 .935 0
OW-BART -.752 -.013 1.271 .947 .964 .954 .950 0

m = 30,
ρLogit = .01

Crude -.753 -.014 1.000 .932 .950 .944 .946 0
Multi -.764 -.025 1.511 .921 .953 .940 .939 0

IPW-Logit -.758 -.019 1.210 .945 .968 .956 .974 0
IPW-BART -.761 -.022 1.323 .964 .971 .969 .977 0
OW-Logit -.760 -.021 1.212 .947 .968 .958 .951 0
OW-BART -.765 -.026 1.340 .963 .975 .968 .966 0

N=30

m = 100,
ρLogit = .001

Crude -.738 .001 1.000 .938 .951 .942 .947 0
Multi -.737 .002 1.565 .945 .958 .951 .952 0

IPW-Logit -.736 .003 1.157 .952 .967 .959 .971 0
IPW-BART -.736 .003 1.402 .971 .982 .977 .986 0
OW-Logit -.737 .002 1.158 .952 .967 .959 .957 0
OW-BART -.738 .001 1.405 .972 .982 .977 .974 0

m = 100,
ρLogit = .01

Crude -.738 .001 1.000 .950 .961 .955 .956 0
Multi -.738 .001 1.543 .946 .960 .951 .955 0

IPW-Logit -.738 .001 1.152 .952 .970 .962 .974 0
IPW-BART -.738 .001 1.379 .978 .982 .980 .983 0
OW-Logit -.738 .001 1.152 .950 .970 .960 .958 0
OW-BART -.740 −3.583× 10−4 1.378 .977 .982 .980 .980 0

m = 30,
ρLogit.001

Crude -.738 .001 1.000 .924 .948 .935 .941 0
Multi -.738 .001 1.547 .923 .944 .937 .936 0

IPW-Logit -.730 .009 1.165 .952 .962 .957 .967 0
IPW-BART -.737 .002 1.344 .964 .974 .969 .974 0
OW-Logit -.731 .008 1.168 .953 .962 .957 .956 0
OW-BART -.739 −2.945× 10−4 1.360 .966 .975 .970 .967 0

m = 30,
ρLogit = .01

Crude -.765 -.026 1.000 .936 .954 .943 .947 0
Multi -.762 -.023 1.506 .947 .963 .957 .957 0

IPW-Logit -.761 -.022 1.129 .948 .974 .967 .982 0
IPW-BART -.762 -.023 1.283 .971 .979 .974 .982 0
OW-Logit -.763 -.023 1.125 .957 .972 .966 .964 0
OW-BART -.764 -.025 1.292 .971 .980 .975 .973 0
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Table C.11: Simulations results under the Outcome generating model 3 and very low outcome
incidences.

Outcome generating model 3, very low incidence, θ = −.7298, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.764 -.034 1.000 .814 .923 .969 .891 0
Multi -.768 -.038 1.604 .790 .933 .865 .872 .002

IPW-Logit -.752 -.023 1.109 .841 .942 .893 .975 0
IPW-BART -.758 -.028 1.227 .852 .944 .899 .974 0
OW-Logit -.755 -.025 1.107 .843 .938 .893 .874 0
OW-BART -.761 -.031 1.247 .853 .944 .903 .882 0

m = 100,
ρLogit = .01

Crude -.766 -.036 1.000 .837 .949 .910 .919 0
Multi -.782 -.053 1.715 .806 .952 .894 .898 0

IPW-Logit -.762 -.032 1.085 .857 .950 .912 .983 0
IPW-BART -.772 -.042 1.173 .874 .953 .928 .977 0
OW-Logit -.764 -.034 1.085 .861 .950 .911 .891 0
OW-BART -.774 -.045 1.183 .875 .954 .928 .903 0

m = 30,
ρLogit.001

Crude -.661 .068 1.000 .912 .982 .957 .972 .113
Multi -.831 -.101 1.293 .801 .977 .912 .915 .344

IPW-Logit -.657 .073 1.002 .914 .984 .955 .997 .113
IPW-BART -.669 .061 1.084 .924 .986 .966 .995 .113
OW-Logit -.664 .066 .991 .911 .981 .958 .946 .113
OW-BART -.674 .056 1.066 .919 .984 .962 .949 .113

m = 30,
ρLogit = .01

Crude -.614 .116 1.000 .897 .978 .946 .965 .119
Multi -.832 -.102 1.261 .774 .977 .913 .905 .387

IPW-Logit -.615 .115 1.008 .906 .975 .953 .998 .119
IPW-BART -.623 .107 1.114 .910 .985 .960 .995 .119
OW-Logit -.622 .108 .994 .901 .976 .952 .935 .119
OW-BART -.629 .100 1.105 .915 .982 .959 .948 .119

N=10

m = 100,
ρLogit = .001

Crude -.733 -.003 1.000 .900 .951 .927 .930 0
Multi -.741 -.011 1.764 .881 .946 .921 .919 0

IPW-Logit -.728 .002 1.113 .913 .957 .942 .975 0
IPW-BART -.735 -.005 1.293 .934 .968 .955 .985 0
OW-Logit -.729 .001 1.113 .914 .957 .942 .928 0
OW-BART -.737 -.007 1.308 .934 .974 .954 .951 0

m = 100,
ρLogit = .01

Crude -.744 -.014 1.000 .885 .942 .916 .929 0
Multi -.748 -.018 1.881 .887 .952 .924 .925 0

IPW-Logit -.739 -.009 1.148 .907 .959 .939 .971 0
IPW-BART -.745 -.016 1.310 .916 .962 .942 .975 0
OW-Logit -.741 -.011 1.150 .909 .958 .942 .927 0
OW-BART -.748 -.018 1.330 .918 .963 .944 .935 0

m = 30,
ρLogit.001

Crude -.761 -.031 1.000 .933 .973 .959 .965 .028
Multi -.829 -.099 1.606 .872 .979 .934 .931 .083

IPW-Logit -.759 -.029 1.082 .942 .977 .960 .989 .028
IPW-BART -.774 -.044 1.153 .956 .981 .973 .992 .028
OW-Logit -.763 -.034 1.077 .940 .978 .958 .954 .028
OW-BART -.778 -.049 1.160 .958 .983 .975 .969 .028

m = 30,
ρLogit = .01

Crude -.765 -.035 1.000 .925 .977 .960 .971 .028
Multi -.814 -.084 1.560 .862 .976 .933 .928 .078

IPW-Logit -.771 -.042 1.081 .940 .985 .968 .990 .028
IPW-BART -.768 -.038 1.182 .956 .991 .978 .995 .028
OW-Logit -.775 -.045 1.091 .943 .984 .969 .962 .028
OW-BART -.770 -.040 1.191 .957 .991 .979 .973 .028
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Outcome generating model 3, very low incidence, θ = −.7298, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.735 -.005 1.000 .936 .954 .948 .949 0
Multi -.735 -.005 1.735 .913 .951 .938 .939 0

IPW-Logit -.732 -.003 1.113 .942 .966 .952 .971 0
IPW-BART -.737 -.007 1.337 .960 .978 .970 .981 0
OW-Logit -.733 -.003 1.113 .943 .967 .953 .949 0
OW-BART -.739 -.009 1.345 .966 .977 .971 .970 0

m = 100,
ρLogit = .01

Crude -.725 .005 1.000 .913 .939 .929 .934 0
Multi -.726 .003 1.817 .912 .952 .930 .932 0

IPW-Logit -.724 .006 1.140 .933 .955 .942 .962 0
IPW-BART -723 .007 1.391 .962 .977 .968 .984 0
OW-Logit -.724 .005 1.139 .932 .956 .942 .940 0
OW-BART -.724 .006 1.408 .964 .978 .972 .968 0

m = 30,
ρLogit.001

Crude -.786 -.056 1.000 .941 .973 .958 .963 .001
Multi -.773 -.043 1.841 .920 .962 .934 .934 .001

IPW-Logit -.779 -.049 1.126 .955 .974 .966 .977 .001
IPW-BART -.781 -.051 1.245 .965 .978 .974 .983 .001
OW-Logit -.781 -.051 1.127 .955 .974 .967 .962 .001
OW-BART -.782 -.052 1.270 .965 .979 .974 .973 .001

m = 30,
ρLogit = .01

Crude -.769 -.039 1.000 .920 .954 .944 .947 0
Multi -.779 -.049 1.725 .908 .960 .934 .931 0

IPW-Logit -.763 -.034 1.122 .945 .966 .957 .974 0
IPW-BART -.766 -.037 1.218 .954 .970 .964 .975 0
OW-Logit -.765 -.036 1.123 .947 .968 .957 .952 0
OW-BART -.767 -.038 1.244 .954 .973 .967 .966 0

N=30

m = 100,
ρLogit = .001

Crude -.734 -.005 1.000 .923 .949 .934 .940 0
Multi -.734 -.004 1.858 .922 .938 .930 .932 0

IPW-Logit -.732 -.002 1.100 .937 .952 .943 .959 0
IPW-BART -.736 -.007 1.373 .968 .974 .971 .976 0
OW-Logit -.733 -.003 1.100 .937 .952 .942 .940 0
OW-BART -.738 -.008 1.371 .967 .973 .972 .972 0

m = 100,
ρLogit = .01

Crude -.723 .007 1.000 .937 .950 .945 .946 0
Multi -.733 -.003 1.735 .928 .945 .939 .938 0

IPW-Logit -.727 .003 1.124 .949 .969 .962 .971 0
IPW-BART -.734 -.005 1.375 .966 .975 .969 .977 0
OW-Logit -.727 .003 1.124 .950 .968 .960 .958 0
OW-BART -.737 -.007 1.374 .965 .977 .973 .971 0

m = 30,
ρLogit.001

Crude -.726 .004 1.000 .949 .962 .956 .960 0
Multi -.734 -.004 1.747 .927 .966 .946 .945 0

IPW-Logit -.723 .007 1.112 .956 .972 .966 .975 0
IPW-BART -.732 -.003 1.273 .976 .982 .978 .984 0
OW-Logit -.725 .005 1.113 .954 .973 .966 .963 0
OW-BART -.735 -.006 1.284 .975 .983 .981 .977 0

m = 30,
ρLogit = .01

Crude -.763 -.033 1.000 .936 .952 .943 .947 0
Multi -.770 -.040 1.790 .929 .956 .941 .941 0

IPW-Logit -.760 -.030 1.129 .954 .976 .966 .979 0
IPW-BART -.765 -.035 1.293 .966 .977 .974 .981 0
OW-Logit -.762 -.032 1.127 .953 .975 .966 .963 0
OW-BART -.768 -.038 1.306 .970 .980 .975 .973 0
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Table C.12: Simulations results under the Outcome generating model 4 with six covariates and low
outcome incidences.

Outcome model 4, low incidence, θ = −.7433, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.757 -.013 1.000 .822 .924 .875 .894 0
Multi -.760 -.016 1.036 .828 .928 .884 .895 0

IPW-Logit -.759 -.015 1.019 .829 .931 .885 .969 0
IPW-BART -.765 -.022 1.074 .842 .939 .901 .959 0
OW-Logit -.760 -.017 1.018 .826 .934 .883 .860 0
OW-BART -.767 -.024 1.079 .849 .938 .904 .881 0

m = 100,
ρLogit = .01

Crude -.774 -.031 1.000 .814 .929 .875 .889 0
Multi -.775 -.032 1.017 .818 .943 .881 .891 0

IPW-Logit -.773 -.029 1.011 .823 .919 .880 .962 0
IPW-BART -.778 -.035 1.065 .826 .930 .888 .971 0
OW-Logit -.775 -.032 1.009 .821 .918 .880 .857 0
OW-BART -.779 -.036 1.066 .829 .932 .884 .861 0

m = 30,
ρLogit = .001

Crude -.804 -.061 1.000 .847 .957 .914 .926 .012
Multi -.812 -.068 1.005 .842 .969 .911 .919 .012

IPW-Logit -.808 -.065 .974 .845 .953 .913 .988 .012
IPW-BART -.819 .076 1.007 .857 .955 .917 .986 .012
OW-Logit -.812 -.069 .970 .846 .955 .917 .890 .012
OW-BART -.823 -.080 1.002 .854 .959 .918 .892 .012

m = 30,
ρLogit = .01

Crude -.777 -.034 1.000 .854 .962 .921 .940 .012
Multi -790 -.046 .997 .842 .965 .918 .926 .014

IPW-Logit -.775 -.032 .961 .854 .956 .919 .984 .012
IPW-BART -.781 -.038 1.018 .865 .963 .928 .984 .012
OW-Logit -.782 -.039 .961 .854 .959 .916 .894 .012
OW-BART -.785 -.042 .999 .864 .959 .925 .903 .012

N=10

m = 100,
ρLogit = .001

Crude -.760 -.016 1.000 .887 .948 .919 .924 0
Multi -.759 -.015 1.026 .888 .951 .924 .926 0

IPW-Logit -.758 -.015 1.014 .883 .948 .928 .963 0
IPW-BART -.762 -.018 1.101 .900 .961 .932 .970 0
OW-Logit -.759 -.016 1.011 .881 .947 .923 .911 0
OW-BART -.763 -.020 1.103 .895 .958 .932 .920 0

m = 100,
ρLogit = .01

Crude -.754 -.011 1.000 .889 .951 .924 .931 0
Multi -.754 -.011 1.010 .898 .946 .920 .925 0

IPW-Logit -.753 -.010 .999 .893 .949 .920 .970 0
IPW-BART -.759 -.016 1.057 .900 .960 .934 .969 0
OW-Logit -.755 -.011 .998 .891 .948 .919 .914 0
OW-BART -.762 -.018 1.058 .904 .961 .932 .919 0

m = 30,
ρLogit = .001

Crude -.782 -.038 1.000 .886 .953 .918 .927 .001
Multi -.790 -.046 1.050 .889 .960 .932 .937 .001

IPW-Logit -.783 -.040 1.007 .896 .952 .928 .976 .001
IPW-BART -.792 -.049 1.041 .908 .961 .937 .973 .001
OW-Logit -.788 -.045 1.014 .900 .954 .925 .913 .001
OW-BART -.797 -.054 1.043 .906 .962 .934 .929 .001

m = 30,
ρLogit = .01

Crude -.782 -.039 1.000 .894 .941 .921 .926 0
Multi -.778 -.035 1.015 .898 .954 .925 .931 0

IPW-Logit -.775 -.031 1.002 .897 .952 .929 .971 0
IPW-BART -.783 -.040 1.043 .898 .954 .930 .969 0
OW-Logit -.779 -.036 1.011 .900 .952 .930 .919 0
OW-BART -.786 -.042 1.045 .900 .959 .932 .923 0
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Outcome generating model 4, low incidence, θ = −.7433, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.745 -.002 1.000 .922 .954 .932 .944 0
Multi -.745 -.002 1.030 .929 .948 .938 .940 0

IPW-Logit -.743 −4.682× 10−5 1.029 .930 .951 .944 .961 0
IPW-BART -.748 -.005 1.136 .938 .961 .952 .966 0
OW-Logit -.744 -.001 1.029 .931 .951 .944 .939 0
OW-BART -.750 -.006 1.138 .938 .962 .951 .946 0

m = 100,
ρLogit = .01

Crude -.757 -.014 1.000 .920 .948 .934 .938 0
Multi -.755 -.012 1.019 .923 .949 .937 .939 0

IPW-Logit -.754 -.011 1.019 .925 .949 .941 .957 0
IPW-BART -.756 -.013 1.105 .940 .954 .951 .962 0
OW-Logit -.755 -.012 1.017 .925 .949 .941 .936 0
OW-BART -.757 -.014 1.105 .939 .957 .950 .947 0

m = 30,
ρLogit = .001

Crude -.755 -.012 1.000 .919 .943 .930 .934 0
Multi -.758 -.015 1.052 .917 .948 .936 .937 0

IPW-Logit -.758 -.015 1.034 .924 .950 .936 .960 0
IPW-BART -.759 -.016 1.085 .935 .963 .946 .966 0
OW-Logit -.760 -.017 1.032 .922 .951 .935 .930 0
OW-BART -.762 -.019 1.094 .939 .961 .947 .944 0

m = 30,
ρLogit = .01

Crude -.787 -.044 1.000 .912 .946 .927 .931 0
Multi -.791 -.048 1.105 .914 .941 .928 .929 0

IPW-Logit -.791 -.047 .998 .919 .945 .933 .958 0
IPW-BART -.793 -.049 1.063 .932 .951 .945 .959 0
OW-Logit -.792 -.049 .999 .919 .943 .931 .927 0
OW-BART -.795 -.051 1.066 .932 .955 .942 .938 0

N=30

m = 100,
ρLogit = .001

Crude -.746 -.002 1.000 .934 .951 .944 .947 0
Multi -.746 -.003 1.010 .939 .953 .944 .946 0

IPW-Logit -.745 -.002 1.018 .937 .959 .950 .963 0
IPW-BART -.750 -.007 1.118 .951 .962 .955 .969 0
OW-Logit -.746 -.002 1.018 .939 .959 .950 .946 0
OW-BART -.752 -.009 1.120 .953 .963 .955 .955 0

m = 100,
ρLogit = .01

Crude -.744 -.001 1.000 .925 .944 .937 .939 0
Multi -.744 -.001 1.018 .928 .944 .938 .939 0

IPW-Logit -.743 −2.412× 10−4 1.022 .931 .950 .940 .955 0
IPW-BART -.749 -.006 1.132 .938 .958 .948 .961 0
OW-Logit -.744 -.001 1.021 .931 .949 .940 .937 0
OW-BART -.751 -.008 1.136 .939 .957 .948 .947 0

m = 30,
ρLogit = .001

Crude -.767 -.024 1.000 .938 .954 .944 .947 0
Multi -.768 -.025 1.017 .939 .956 .948 .950 0

IPW-Logit -.766 -.023 1.020 .939 .957 .951 .967 0
IPW-BART -.770 -.027 1.068 .955 .966 .961 .970 0
OW-Logit -.768 -.024 1.019 .939 .957 .951 .950 0
OW-BART -.772 -.029 1.064 .954 .966 .964 .962 0

m = 30,
ρLogit = .01

Crude -.753 -.010 1.000 .942 .964 .952 .956 0
Multi -.754 -.011 1.012 .935 .962 .949 .950 0

IPW-Logit -.753 -.010 1.011 .945 .962 .954 .968 0
IPW-BART -.753 -.010 1.068 .945 .967 .957 .972 0
OW-Logit -.754 -.011 1.011 .943 .961 .955 .952 0
OW-BART -.755 -.012 1.064 .945 .967 .957 .949 0
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Table C.13: Simulations results under the Outcome generating model 4 and very low outcome
incidences.

Outcome generating model 4, very low incidence, θ = −.7144, N=6, 10

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=6

m = 100,
ρLogit = .001

Crude -.750 -.035 1.000 .833 .940 .902 .910 0
Multi -.756 -.041 1.069 .838 .944 .905 .915 0

IPW-Logit -.754 -.039 1.018 .830 .946 .896 .983 0
IPW-BART -.760 -.045 1.083 .854 .950 .907 .986 0
OW-Logit -.756 -.041 1.016 .828 .946 .897 .871 0
OW-BART -.764 -.049 1.083 .853 .953 .913 .888 0

m = 100,
ρLogit = .01

Crude -.752 -.037 1.000 .813 .933 .884 .894 .001
Multi -.760 -.046 1.047 .820 .941 .890 .901 .001

IPW-Logit -.749 -.034 1.018 .820 .940 .879 .974 .001
IPW-BART -.757 -.042 1.050 .825 .937 .894 .973 .001
OW-Logit -.751 -.037 1.018 .820 .932 .880 .855 .001
OW-BART -.760 -.045 1.055 .830 .933 .898 .866 .001

m = 30,
ρLogit = .001

Crude -.581 .134 1.000 .899 .967 .944 .958 .139
Multi -.622 -.092 .991 .862 .982 .935 .944 .162

IPW-Logit -.581 .133 .949 .885 .967 .945 .990 .139
IPW-BART -.598 .117 .978 .900 .973 .949 .993 .139
OW-Logit -.583 .131 .940 .885 .965 .942 .933 .139
OW-BART 0605 .110 .949 .898 .972 .944 .933 .130

m = 30,
ρLogit = .01

Crude -.603 .111 1.000 .905 .981 .948 .970 .128
Multi -.646 .068 1.019 .897 .991 .959 .974 .149

IPW-Logit -.603 .111 .926 .904 .982 .953 .994 .128
IPW-BART -.605 .109 1.007 .919 .984 .955 .992 .128
OW-Logit -.605 .109 .917 .907 .981 .953 .946 .128
OW-BART -.605 .110 .985 .922 .985 .956 .943 .128

N=10

m = 100,
ρLogit = .001

Crude -.723 -.009 1.000 .881 .941 .915 .920 0
Multi -.723 -.008 1.027 .890 .941 .914 .920 0

IPW-Logit -.721 -.006 1.003 .891 .940 .916 .955 0
IPW-BART -.726 -.011 1.093 .902 .952 .925 .966 0
OW-Logit -.722 -.008 1.000 .891 .939 .916 .907 0
OW-BART -.728 -.013 1.098 .904 .957 .926 .919 0

m = 100,
ρLogit = .01

Crude -.738 -.024 1.000 .880 .944 .919 .927 0
Multi -.744 -.029 1.027 .883 .943 .917 .929 0

IPW-Logit -.740 -.025 .988 .884 .941 .919 .954 0
IPW-BART -.746 -.032 1.060 .893 .947 .928 .959 0
OW-Logit -.741 -.027 .987 .887 .940 .917 .909 0
OW-BART -.748 -.034 1.060 .894 .949 .927 .917 0

m = 30,
ρLogit = .001

Crude -.731 -.017 1.000 .936 .971 .954 .962 .021
Multi -.749 -.035 1.034 .920 .977 .957 .961 .021

IPW-Logit -.732 -.017 .965 .937 .965 .952 .987 .021
IPW-BART -.740 -.025 1.008 .943 .967 .954 .983 .021
OW-Logit -.737 -.023 .963 .936 .964 .957 .950 .021
OW-BART -.744 -.030 .995 .943 .968 .953 .946 .021

m = 30,
ρLogit = .01

Crude -.739 -.025 1.000 .941 .982 .968 .977 .033
Multi -.742 -.027 1.040 .915 .980 .951 .956 .033

IPW-Logit -.726 -.011 .988 .938 .982 .964 .994 .033
IPW-BART -.736 -.021 1.014 .944 .984 .970 .993 .033
OW-Logit -.728 -.014 .991 .936 .980 .963 .954 .033
OW-BART -.738 -.023 1.003 .947 .982 .968 .959 .033
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Outcome generating model 4, very low incidence, θ = −.7144, N=20, 30

ATE Bias RE CVG-
Robust CVG-MD CVG-KC CVG-FG Non-

Con

N=20

m = 100,
ρLogit = .001

Crude -.725 -.010 1.000 .919 .948 .938 .941 0
Multi -.724 -.010 1.026 .923 .945 .937 .937 0

IPW-Logit -.722 -.008 1.006 .922 .946 .935 .956 0
IPW-BART -.727 -.013 1.085 .933 .955 .940 .961 0
OW-Logit -.723 -.008 1.006 .924 .946 .934 .931 0
OW-BART -.729 -.015 1.086 .933 .955 .944 .939 0

m = 100,
ρLogit = .01

Crude -.731 -.017 1.000 .927 .950 .944 .945 0
Multi -.730 -.016 1.023 .925 .960 .947 .949 0

IPW-Logit -.729 -.014 1.010 .925 .960 .947 .960 0
IPW-BART -.730 -.016 1.088 .941 .961 .954 .967 0
OW-Logit -.729 -.015 1.009 .924 .959 .947 .937 0
OW-BART -.732 -.017 1.082 .938 .959 .949 .948 0

m = 30,
ρLogit = .001

Crude -.762 -.048 1.000 .940 .965 .956 .961 0
Multi -.767 -.052 1.043 .926 .960 .945 .948 0

IPW-Logit -.764 -.049 1.008 .935 .964 .950 .974 0
IPW-BART -.763 -.049 1.055 .945 .966 .957 .970 0
OW-Logit -.766 -.051 1.004 .933 .963 .952 .946 0
OW-BART -.766 -.052 1.056 .948 .964 .957 .952 0

m = 30,
ρLogit = .01

Crude -.782 -.068 1.000 .921 .958 .942 .945 0
Multi -.788 -.074 1.023 .927 .956 .943 .943 0

IPW-Logit -.784 -.069 .999 .927 .956 .940 .964 0
IPW-BART -.783 -.069 1.047 .937 .967 .950 .978 0
OW-Logit -.786 -.072 .996 .927 .956 .939 .931 0
OW-BART -.784 -.070 1.045 .938 .968 .954 .944 0

N=30

m = 100,
ρLogit = .001

Crude -.729 -.015 1.000 .928 .950 .941 .942 0
Multi -.730 -.016 1.019 .930 .952 .937 .939 0

IPW-Logit -.729 -.015 1.011 .928 .948 .938 .956 0
IPW-BART -.735 -.021 1.093 .942 .956 .947 .961 0
OW-Logit -.729 -.015 1.011 .928 .949 .937 .935 0
OW-BART -.738 -.023 1.092 .938 .955 .944 .942 0

m = 100,
ρLogit = .01

Crude -.716 -.002 1.000 .918 .935 .929 .930 0
Multi -.716 -.002 1.023 .922 .937 .931 .932 0

IPW-Logit -.714 2.176× 10−4 1.011 .922 .939 .932 .943 0
IPW-BART -.719 -.005 1.139 .943 .954 .949 .961 0
OW-Logit -.715 2.306× 10−4 1.010 .924 .938 .932 .928 0
OW-BART -.721 -.007 1.148 .943 .955 .952 .947 0

m = 30,
ρLogit = .001

Crude -.721 -.007 1.000 .926 .947 .939 .945 0
Multi -.728 -.014 1.019 .920 .945 .932 .932 0

IPW-Logit -.724 -.009 .996 .930 .944 .937 .954 0
IPW-BART -.730 -.015 1.034 .927 .950 .937 .954 0
OW-Logit -.725 -.011 .996 .930 .944 .938 .934 0
OW-BART -.732 -.018 1.026 .929 .950 .937 .932 0

m = 30,
ρLogit = .01

Crude -.755 -.041 1.000 .938 .955 .948 .949 0
Multi -.760 -.045 1.025 .933 .955 .947 .949 0

IPW-Logit -.755 -.041 .998 .939 .955 .947 .958 0
IPW-BART -.758 -.043 1.035 .951 .958 .955 .961 0
OW-Logit -.756 -.042 .998 .940 .955 .948 .944 0
OW-BART -.759 -.045 1.035 .950 .961 .955 .952 0
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C.4. Effect estimates of the RESTORE protocol for other outcomes

Figure C.1: Estimates of ATE and 95% confidence intervals (CIs) for not successfully extubated
outcome.
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Figure C.2: Estimates of ATE and 95% confidence intervals (CIs) for 90-day mortality outcome.
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