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ABSTRACT 

COMPUTATIONAL MECHANISMS UNDERLYING PERCEPTION OF VISUAL MOTION 

Benjamin M. Chin 

Johannes Burge 

 Motion is a fundamental property estimated by human sensory-perception. When 

visual shapes and patterns change their positions over time, we perceive motion. 

Relating properties of perceived motion—speed and direction—to properties of visual 

stimuli is an important endeavor in vision science. Understanding this relationship 

requires an understanding of the computations performed by the visual system to extract 

motion information from visual stimuli. The present research sheds light on the nature of 

these computations. In the first study, human performance in a speed discrimination task 

with naturalistic stimuli is compared to performance of an ideal observer model. The 

ideal observer model utilizes computations that have been optimized for discriminating 

speed among a large training set of naturalistic stimuli. Although human performance 

falls short of ideal observer performance because of the presence of internal noise, the 

remarkable finding is that the computations performed minimize, to the maximum 

possible extent, the performance limits imposed by external stimulus variability. In other 

words, humans perform computations that are optimal. The second study focuses on 

how spatial frequency, a basic characteristic of visual patterns, impacts the process by 

which the visual system integrates motion across time (temporal integration). A 

continuous target-tracking task demonstrates that longer temporal integration periods 

are associated with higher spatial frequencies. This predicts a visual depth illusion when 

the left and right eyes are simultaneously presented stimuli having different spatial 

frequencies. A second experiment using traditional forced-choice psychophysics 

confirms this prediction. The third study explores how color impacts estimates of spatial 
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position during motion. We parameterize color in terms of L-cone and S-cone activity 

modulations in the eye. Using the same continuous target-tracking paradigm from 

Chapter 2, we demonstrate that position estimates for stimuli comprised of pure S-cone 

modulations lag behind position estimates for stimuli comprised of pure L-cone 

modulations. A key finding is that when L-cone and S-cone modulations are combined, 

processing lag is almost exclusively determined by L-cone modulations.   
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CHAPTER 1: BACKGROUND  

1.1 Introduction 

 Motion is a fundamental physical property of the world. In one sense, the story of 

our universe is a story of motion. Objects at all manner of scales—atoms, living beings, 

celestial bodies—change their positions over time. Motion has been treated as a central 

topic in physics since the very beginning of the field, from Aristotle’s Physics to Newton’s 

Laws of Motion.   

 This dissertation concerns the perception of motion, which is the domain of 

psychology and vision science. The ability to accurately estimate the speed and direction 

of distal objects in the environment is key to our interactions with the world. Human 

beings need accurate motion perception to intercept moving objects, or to avoid 

dangerous objects heading towards us. Accurate perception of self-motion—knowing 

how fast we are walking, running, or being moved—is necessary to successfully 

navigate our environment.   

 The process of perceiving distal motion begins with retinal motion. Light reflected 

from objects in the environment enters the eye and forms images on the retina. When 

objects in the environment move, light patterns on the retina move. Thus, in order for the 

visual system to estimate the motion of distal objects in the environment, accurate 

estimation of motion on the retina must first be achieved. Understanding the process of 

estimating retinal motion is the focus of Chapter 2.  

1.2 Distinction between Local and Global Motion 

 In vision science, a distinction is drawn between local motion, which occurs over 

a small spatial extent, and global motion, which occurs over a large spatial extent. The 

spatial extent of local motion is not exactly defined but is typically considered to match 

that of receptive fields belonging to motion-selective neurons in visual cortex. It is widely 

thought that local motion computations form building blocks that are later integrated to 
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support global motion processing. This belief is backed by psychophysical evidence. 

Certain global motion percepts can be disrupted by simple stimulus manipulations, such 

as changing the orientation of small elements in the stimulus (Lorenceau & Alais, 2001), 

or decreasing the overall contrast of the stimulus (Weiss, Simoncelli, & Adelson, 2002). 

When global motion percepts are disrupted in this way, subjects typically perceive local 

motion instead.   

 Importantly, the work in this chapter focuses on local rather than global motion 

processing. In the vision science community, the computations underlying local motion 

processing remain incompletely understood. Since global motion processing is widely 

thought to rely on local motion processing, it stands to reason that unraveling the nature 

of these computations will facilitate progress in understanding more complex types of 

motion.   

1.3 Motion Energy 

 For decades, the motion energy model and its variants (Adelson & Bergen, 1985; 

van Santen & Sperling, 1985; Watson & Ahumada, 1985) have dominated the study of 

local motion processing. In its most general form, a motion energy unit consists of a pair 

of linear spatiotemporal filters oriented in space-time (Fig. 1.1A). The filters are phase-

shifted with respect to each other by 90 degrees (also known as a quadrature pair). The 

output of the motion energy unit is computed by squaring and summing the linear 

responses of each filter in the quadrature pair. The ‘motion energy’ over a visual 

stimulus can be computed by convolving the motion energy unit with the space-time 

representation of the stimulus (Fig. 1.1BC). Motion energy models are explicitly 

designed to detect orientation in space-time; a property shared by a wide range of visual 

stimuli that elicit motion percepts.   
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Figure 1.1. The motion energy model. A Schematic of the motion energy model. The outputs of two linear 
spatiotemporal filters are squared and summed. In this example, the filters are oriented in space-time such 
that they select for leftward motion. The filters are in quadrature phase. B An example stimulus that the 
motion energy model in A could be applied to. The stimulus is represented in space-time, with horizontal 
position on the x-axis, and time on the y-axis. In this case, the stimulus is a sharp vertical edge that drifts 
rightwards, and then leftwards, sinusoidally. C Output of the motion energy model shown in A when applied 
to the stimulus shown in B. The motion energy model responds selectively to leftward motion, but not to 
rightward motion.  
 
 Motion energy models have been popular for at least two important reasons. 

Owing to their quadrature filters, motion energy units have the key property of being 

phase invariant; they produce a constant response to their preferred motion regardless 

of the polarity of the stimulus contrast. Such phase invariance is frequently observed in 

motion-selective MT neurons. Additionally, motion energy models provide a simple, 

unified explanation for motion percepts observed in several types of visual stimuli that 

fall outside the ordinary category of continuous, translating motion. These include 

sampled motion (as seen on cathode-ray tube televisions), the Reverse Phi illusion, and 

the fluted square-wave illusion.   

 The motion energy approach, and those of any filter-based models of motion 

processing, appear counterintuitive at first; absent is the notion of a well-defined object 

translating through space. Indeed, prior to the introduction of filter-based models, a 

‘corresponding points’ approach to modeling motion processing was popular (Ullman, 

1979; Anstis, 1980; Anstis, 1979; Lappin and Bell, 1972). In this approach, the visual 

system is modeled as extracting motion in several stages: 1) identifying salient features 
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in visual input, 2) locating these features across successive points in time, 3) estimating 

the time  and distance  traveled, and 4) computing motion as . Such an 

approach is attractive because it often coheres with one’s own perceptual experience of 

motion. However, ‘corresponding points’ approaches often have difficulty making 

predictions about how motion is perceived. Such models need to first specify what 

counts as a salient ‘feature’; a challenging endeavor given the staggering variety of 

possible visual inputs. Additionally, for many visual stimuli in which clear motion is 

perceived, it is difficult to devise rules specifying which features need to be matched 

across time. Such stimuli include the Reverse Phi and fluted-square-wave illusions, 

which are specifically designed to not contain matching features across successive 

frames. On the other hand, the motion energy model offers an intuitive, easily visualized 

explanation for these motion perception phenomena. ‘Corresponding points’ approaches 

have thus been less popular than filter-based models.   

 Despite the relative success of the motion energy model compared to other 

modeling approaches, it is not actually an account of motion perception. The motion 

energy model alone does not output estimates of motion direction or speed, which are 

the basic attributes of motion perception. Rather, the motion energy model is a model of 

motion encoding; a motion energy unit outputs responses to motion information present 

in its inputs. A decoder is still required to convert these responses into motion 

estimates.   

 The motion energy model has other weaknesses. First, it fails to account for a 

number of motion perception phenomena that have collectively been termed second-

order and third-order motion (Badcock & Derrington, 1985; Lu & Sperling, 1995). 

Second, the form and shape of the spatiotemporal filters (spatial frequency, bandwidth, 

etc.) comprising a motion energy unit are unconstrained. Thus, it is up to the researcher 

Δt Δx Δx / Δt
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to choose these parameters when implementing the motion energy model. In many 

cases, the parameterized forms of the filters are chosen for mathematical convenience 

rather than based on normative principles. Third, the motion energy model cannot 

distinguish between changes in speed and contrast; the two properties are confounded. 

A weak response from a motion energy unit could be due simply due to the input 

stimulus having low contrast, rather than to a lack of motion in the input stimulus.   

1.4 Ideal Observers 

 Recent breakthroughs in ideal observer modeling have addressed weaknesses 

of the motion energy model. Accuracy Maximization Analysis (AMA) is a recently 

developed Bayesian method for discovering the optimal linear filters that, when paired 

with a matched optimal decoder, maximize performance in a particular task with a 

particular set of stimuli (Geisler et al., 2009; Burge & Jaini, 2017; Jaini & Burge, 2017). 

The optimal filters and optimal decoder together form what is known as an ideal 

observer model. AMA has been successfully applied to the task of retinal speed 

estimation (Burge & Geisler, 2015). The resulting filters were specifically optimized for 

the statistics of a large training set of natural image movies. Thus, they constitute a 

principled starting point for investigating the filters used by the human visual system, 

rather than an arbitrary choice made by the researcher. Interestingly, the response 

distributions of the optimal filters can be optimally decoded by motion energy-like 

computations. This is despite the fact that the optimal filters were not explicitly designed 

to be used in conjunction with motion energy computations; the filter properties were 

entirely determined by the training set of stimuli.   

 AMA is one of the latest developments in a long history of ideal observer 

modeling. It supports the creation of an important class of ideal observers: image-

computable ideal observers. These observers explicitly model the computations 
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performed on the proximal stimulus (Banks et al., 1987; Geisler, 1989). Image-

computable ideal observers have been successfully applied to simple visual tasks with 

simple stimuli, such as detection of a Gabor target in Gaussian white noise. For such 

cases, the optimal computations can often be derived analytically because the statistical 

properties of the stimuli are known exactly. In the case of speed estimation with 

naturalistic stimuli, an analytic solution is not available due to the complex statistics of 

natural stimuli. These complex statistics make it difficult to determine which features in 

natural stimuli are relevant to the task of speed estimation (signal), and which features 

are irrelevant (noise). AMA solves the problem of determining the task-relevant features 

by numerically searching the space of possible linear filters.   

 Once an ideal observer has been built for a task, and the optimal computations 

determined, an obvious question to ask is whether the same optimal computations are 

also performed by humans. The image-computable ideal observer developed by Burge 

and Geisler (2015) for speed estimation with naturalistic stimuli yielded predictions that 

closely approximated the pattern of behavioral data from human observers performing 

the same task. By fitting a single free parameter, efficiency, ideal observer performance 

could be quantitatively matched to human performance. The efficiency parameter was 

necessary because without any free parameters, human performance was significantly 

lower than that of the ideal observer. This discrepancy does not necessarily mean that 

humans are performing suboptimal computations; it could be due instead to 

unsystematic noise in the visual system. The aim of the work described in Chapter 2 was 

to determine whether the discrepancy was due to suboptimal computations, noise, or a 

mixture of both.   

 A defining aspect of the optimal computations emphasized in Chapter 2 is the 

fact that they were optimized for a set of naturalistic stimuli. These stimuli are naturalistic 
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because they were generated from a large image database of natural scenes. Thus, 

their statistical properties are far more complex than those typically used in studies of 

motion perception, such as Gabors. Naturalistic stimuli are typically broadband, 

containing energy at many spatial frequencies. The ideal observer described in Chapter 

2 quantifies the net effect of these naturalistic variations in spatial frequency content on 

motion perception.   

1.5 3D Motion Perception and the Pulfrich Effect 

 Chapter 3, like Chapter 2, investigates the effect of spatial frequency on motion 

perception. But rather than investigating the net effect of variations in spatial frequency, 

Chapter 3 inspects a targeted hypothesis about the relationship between spatial 

frequency and a key process supporting motion perception: temporal integration. 

Additionally, Chapter 3 investigates the perception of 3D motion in depth rather than 

retinal motion.   

 Central to 3D perception is stereopsis: differences in retinal image positions 

between the eyes, known as binocular disparities, are strong cues to the depths of 

objects in space. Percepts of motion in depth result from changes in binocular disparities 

over time. The computations underlying the estimation of binocular disparity have 

received significant attention in vision science. Of particular importance is the 

correspondence problem; the visual system needs to determine what image patterns are 

to be matched between the two eyes. Only when a match has been established can 

binocular disparity be computed. With visual stimuli that move, the correspondence 

problem can be disrupted by differences in temporal processing properties between the 

eyes. A well-known example of such a disruption is the Pulfrich effect: when the same 

image oscillates horizontally in both eyes, delaying the processing of the image in one 

eye leads to an illusory elliptical trajectory in depth. This is because the processing delay 
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induces an effective position shift of the image in one eye relative to the other; an ‘older’ 

position signal is matched with a ‘newer’ position signal. The processing delay can be 

achieved by decreasing the luminance (Pulfrich, 1922) or contrast in one eye. If the 

stimulus is blurred, processing is sped up rather than blurred, leading to an elliptical 

depth trajectory in the opposite direction (Burge, Rodriguez-Lopez, & Dorronsoro, 2019). 

This is known as the Reverse Pulfrich effect. Blur speeds up processing by selectively 

removing higher spatial frequencies, which are known to be processed more slowly than 

lower spatial frequencies.   

1.6 Characteristics of Temporal Processing 

 Differences in processing delay for different spatial frequencies have been well-

established through both psychophysical and neurophysiological methods. Human 

observers are slower to react to the onset of Gabors with higher spatial frequencies than 

to lower spatial frequencies, either when pressing a button (Parker, 1980; Mihaylova, 

Stomonyakov, & Vassilev, 1998; Vassilev, Mihaylova, & Bonnet, 2002) or when pulling a 

lever (Harweth & Levi, 1978). Visual evoked potentials (VEPs) have longer latencies for 

higher spatial frequencies (Vassilev, Mihaylova, & Bonnet, 2002). Extracellular 

recordings of neurons in macaque areas V1 and MT, as well as cat area 17, indicate 

longer response latencies for higher spatial frequencies (Bair & Movshon, 2004; Frazor 

et al., 2004).   

 Here, we explore the effects on 3D motion perception of a comparatively less-

studied aspect of temporal processing: the temporal integration period. At various stages 

of the visual system, motion signals are averaged over time. This has been 

demonstrated in electrophysiological experiments. Spike-triggered averages (STAs) over 

velocity in macaque areas V1 and MT typically have full-widths-at-half-height ranging 

from 25-50ms, meaning that stimulus motion must be sustained for at least 25-50ms to 
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elicit a spike from these neurons (Bair & Movshon, 2004). Notably, STAs are broader in 

time for higher spatial frequencies, indicating longer temporal integration durations for 

higher spatial frequencies.   

 Signatures of temporal integration are also clear in behavior. Smooth pursuit eye 

movements made in response to dot textures executing a spatially uniform random walk 

in time contain fewer high temporal frequency components than the stimulus motion 

itself (Osborne & Lisberger, 2009). Temporal integration can also be measured in target 

detection experiments by examining how contrast sensitivity increases as a function of 

stimulus duration (Nachmias, 1967; Burr, 1981; Marx & May, 1983). Short temporal 

integration periods result in contrast sensitivity curves that saturate quickly as a function 

of stimulus duration, whereas long temporal integration periods result in contrast 

sensitivity curves that saturate slowly. As is the case with neurophysiological findings, 

estimated temporal integration periods from psychophysics are longer for higher spatial 

frequencies.   

 Our investigation of temporal integration was driven by two complementary 

goals. One goal was to characterize the temporal integration periods associated with 

different spatial frequencies. To do so, we used a recently developed paradigm (Bonnen 

et al., 2015) requiring observers to track a continuously moving Gabor target with a 

mouse cursor. The second goal was to demonstrate that these differences in temporal 

integration periods can measurably impact perception of 3D motion in depth: namely, 

they cause a previously-reported but poorly-understood anomalous Pulfrich effect.   

1.7 The Temporal Binding Problem and Color 

 The problems investigated in Chapter 3 are manifestations of the Temporal 

Binding Problem: how should different components of a visual stimulus be bound into a 

coherent percept, when these components have different temporal processing 
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properties? In the case of binocular disparity, the Binding Problem is solved between the 

two eyes. From this perspective, the Pulfrich effect and its variants are the 

consequences of inaccurate solutions to the Temporal Binding Problem; signals 

originating from different points in time are bound together when they should not be, 

resulting in a visual illusion.   

 Chapter 4 focuses on a monocular manifestation of the Temporal Binding 

Problem. For any given visual stimulus presented to one eye, the Temporal Binding 

Problem needs to be solved, on some level; even a single pixel of light contains a 

spectrum of light wavelengths. With this fact in mind, we leveraged the target-tracking 

task described previously to investigate the binding of signals from different type of 

photoreceptors. We were particularly interested in the known fact that S-cone 

modulations have longer processing latencies than L-cone modulations. Given that most 

visual stimuli modulate both cone types to varying degrees, the Temporal Binding 

Problem is highly relevant here: when a visual stimulus is comprised of both L-cone and 

S-cone modulations (as well as M-cone modulations, which we have not yet used in our 

experiments), what is the processing latency of the combined stimulus, and can this 

latency be predicted?   
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CHAPTER 2 

ABSTRACT 

PREDICTING THE PARTITION OF BEHAVIORAL VARIABILITY IN SPEED 

PERCEPTION WITH NATURALISTIC STIMULI 

Benjamin M. Chin 

Johannes Burge 

 A core goal of visual neuroscience is to predict human perceptual performance 

from natural signals. Performance in any natural task can be limited by at least three 

sources of uncertainty: stimulus variability, internal noise, and suboptimal computations. 

Determining the relative importance of these factors has been a focus of interest for 

decades, but requires methods for predicting the fundamental limits imposed by stimulus 

variability on sensory-perceptual precision. Most successes have been limited to simple 

stimuli and simple tasks. But perception science ultimately aims to understand how vision 

works with natural stimuli. Successes in this domain have proven elusive. Here, we 

develop a model of humans based on an image-computable (images in, estimates out) 

Bayesian ideal observer. Given biological constraints, the ideal optimally uses the 

statistics relating local intensity patterns in moving images to speed, specifying the 

fundamental limits imposed by natural stimuli. Next, we propose a theoretical link between 

two key decision-theoretic quantities that suggests how to experimentally disentangle the 

impacts of internal noise and deterministic suboptimal computations. In several 

interlocking discrimination experiments with three male observers, we confirm this link, 

and determine the quantitative impact of each candidate performance-limiting factor. 

Human performance is near-exclusively limited by natural stimulus variability and internal 

noise, and humans use near-optimal computations to estimate speed from naturalistic 

image movies. The findings indicate that the partition of behavioral variability can be 
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predicted from a principled analysis of natural images and scenes. The approach should 

be extendable to studies of neural variability with natural signals.   
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2.1 Introduction 

 Human beings are adept at many fundamental sensory-perceptual tasks. A 

sufficiently difficult task, however, can reveal the limits of human performance. A principal 

aim of perception science and systems neuroscience is to determine the limits of 

performance, and then to determine the sources of those limits. Performance limits have 

been rigorously investigated with simple tasks and stimuli(Burgess et al., 1981; Pelli, 1985; 

Burgess & Colborne, 1988; Geisler, 1989; Dosher & Lu, 1998; Michel & Geisler, 2011; 

Abbey & Eckstein, 2014) 

 Ultimately, perception science aims to achieve a rigorous understanding of how 

vision works in the real world. In natural viewing, there exist at least three factors that limit 

performance: natural stimulus variability, suboptimal computations, and internal noise. 

Testing the relative importance of these sources requires two key ingredients: i) an image-

computable (images in, estimates out) ideal observer that specifies optimal performance 

in the task, and ii) experiments that can distinguish the behavioral signatures of each 

factor. Here, we develop theoretical and empirical methods that can predict and diagnose 

the impact of each source in mid-level visual tasks with natural and naturalistic stimuli. We 

investigate the specific task of retinal speed estimation, a critical ability for estimating the 

motion of objects and the self through the environment.  

 When a pattern of light falls on the retina, millions of photoreceptors transmit 

information to the brain about the visual scene. This information is used to build stable 

representations of image and scene properties (i.e., latent variables) that are relevant for 

survival and reproduction, like motion speed, three-dimensional position, and object 

identity. The visual system successfully extracts these critical latent variables from local 

areas of natural images despite tremendous stimulus variability; infinitely many unique 

retinal images (i.e. light patterns) are consistent with each value of a given latent variable. 
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Some image features that vary across different natural images are particularly informative 

for extracting the latent variable(s) of interest. These are the features that the visual 

system should encode. Many other image features carry no relevant information. These 

features should be ignored. (Stimulus variation unrelated to the latent variable is often 

referred to as ‘nuisance’ variation.) Variation in both the relevant and irrelevant feature 

spaces can limit performance. But the impact of stimulus variability on performance is 

minimized only if all relevant features are encoded. Thus, stimulus variability can 

differentially impact performance depending on the quality of feature encoding.  

 Signal detection theory posits that sensory-perceptual performance is based on 

the value of a decision variable(Green & Swets, 1966). But signal detection theory does 

not specify how to obtain the decision variable from the stimulus. Image-computable 

observer models do (Adelson & Bergen, 1985; Simoncelli & Heeger, 1998; Schrater et al., 

2000; Ziemba et al., 2016; Schütt & Wichmann, 2017; Fleming & Storrs, 2019). Image-

computable ideal observer models specify how to optimally encode and process the most 

useful stimulus features(Burgess et al., 1981; Banks et al., 1987; Geisler, 1989; Burge & 

Geisler, 2011; 2012; 2014; 2015; Sebastian et al., 2017). Image-computable ideal 

observer models specify how pixels in the image should be transformed into task-relevant 

estimates (or categorical decisions) that optimize performance in a particular task.  

 Ideal observers play an important role in the study of perceptual systems because 

they allow researchers to precisely ask, given the information available to a particular 

stage of processing, whether subsequent processing stages use that information as well 

as possible(Geisler, 1989). The explicit description of optimal processing provided by an 

image-computable ideal observer specifies how natural stimulus variability should 

propagate into the decision variable given biological constraints. Optimal processing 
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minimizes stimulus-driven nuisance variation in the decision variable. Thus, stimulus 

variability and the optimal processing jointly set a fundamental limit on performance. 

 Human performance often tracks the pattern of ideal observer performance, but 

rarely achieves the same absolute performance levels. It is common to attribute these 

discrepancies to noise, but discrepancies can also arise from systematically suboptimal 

computations. To what extent does each factor contribute?  

 Using complementary computational and experimental techniques we answer this 

question for a speed discrimination task with naturalistic stimuli. We show that i) natural 

stimulus variability equally impacts human and ideal performance, ii) the deterministic 

computations (encoding, pooling, decoding) performed by the human visual system are 

very nearly optimal, and iii) the humans underperform the ideal near-exclusively because 

of stochastic internal sources of variability (e.g. late noise), not a systematic misuse of the 

available stimulus information. The work demonstrates that with appropriate experimental 

designs, image-computable ideal observer analysis can identify the reasons for human 

perceptual limits in visual tasks with natural and naturalistic stimuli. 

2.2 Materials & Methods 

Experimental design and statistical analyses 

 Three male human observers participated in the experiment; two were authors, 

and the third was naïve to purposes of the experiment. All had normal or corrected-to-

normal acuity. The research protocol was approved by the Institutional Review Board of 

the University of Pennsylvania and was in accordance with the Declaration of Helsinki. 

The study was not preregistered. All experiments were performed in MATLAB 2017a using 

Psychtoolbox version 3.0.12 (Brainard, 1997). Psychophysical data are presented for 

each individual human observer. Cumulative Gaussian fits of the psychometric functions 

were in good agreement with the raw data. Bootstrapped or Monte-Carlo-simulated 
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standard errors or confidence intervals are presented on all data points unless otherwise 

noted. Data will be made available upon reasonable request.  

Equipment 

 Stimuli were presented on a ViewSonic G220fb 40.2cm x 30.3cm cathode ray tube 

monitor with 1280x1024pixel resolution, and a refresh rate of 60htz. At the at the 92.5cm 

viewing distance, the monitor subtended a field of view of 24.5x18.6deg of visual angle. 

The display was linearized over 8 bits of grey level. The maximum luminance was 

74cd/m2. The mean background grey level was set to 37cd/m2. The observer’s head was 

stabilized with a chin-and-forehead rest.  

Stimuli: Detection experiment 

 Target stimuli in the detection experiment consisted of static, vertically-oriented 

Gabor targets in cosine-phase (3cpd and 4.5cpd) with 1.5 octave bandwidths embedded 

in vertically-oriented (1D) dynamic Gaussian noise that was uncorrelated in space and 

time. Targets subtended 1.0deg of visual angle for a duration of 250ms (15 frames at 

60htz). Stimuli were windowed with a raised-cosine window in space and a flattop-raised-

cosine window in time, exactly the same as the image movies in the speed discrimination 

experiment. The RMS contrast of the target and the noise were varied independently 

according to the experimental design. To minimize target uncertainty, the target was 

presented to the subject, without noise every 10 trials.  

 For the detection experiment, a bit-depth of greater than 8 bits is required to 

accurately measure contrast detection thresholds. We achieved a bit-depth of more than 

10 bits using the LOBES video switcher(Li et al., 2003). The video switcher combines the 

blue channel and attenuated red channel outputs in the graphics card. Picking the right 

combination of blue and red channel outputs generates a precise gray-scale luminance 

signal.  
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Procedure: Detection experiment 

 Stimuli in the target detection experiment were presented using a two-interval 

forced choice (2IFC) procedure. On each trial, one interval contained a target plus noise, 

and the other interval contained noise only. The task was to select the interval containing 

the target. Feedback was provided. Psychometric functions were measured for each of 

four different root-mean-squared (RMS) stimulus noise contrasts (0.00, 0.05, 0.10, 0.20) 

using the method of constant stimuli, with five different target contrasts per condition. Each 

observer completed 3200 trials in this experiment (4 noise levels x 5 target contrasts per 

noise level x 80 trials per target x 2 target frequencies). Each block contained 50 trials. To 

minimize observer uncertainty, trials were blocked by stimulus and noise contrast. The 

target stimulus was also presented at the beginning of each block, and then again every 

10 trials, throughout the experiment.  

 In target detection tasks, stimulus (e.g. pixel) noise is under experimental control. 

Internal noise is not. Both noise types influence target detection thresholds. Target 

contrast power at threshold is a function of stimulus noise  and is 

proportional to the sum of pixel and internal noise variances(Burgess et al., 1981); the 

constant of proportionality depends on the target. This fact can be leveraged to estimate 

the internal noise that limits detection performance. For example, when stimulus noise 

and internal noise have equal variance, the squared detection threshold will be twice what 

it is when pixel noise is zero: . The amount of stimulus 

noise required to double thresholds is known as the equivalent input noise. The amount 

of internal noise that limits performance in a target detection task can therefore be 

estimated from the pattern of detection thresholds. The estimate of equivalent input noise 
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from the detection experiment sets an upper bound on the amount of early noise in the 

human visual system (see Results).  

Stimuli: Speed discrimination experiment 

 Natural image movies were created by texture-mapping randomly selected 

patches of calibrated natural images onto planar surfaces, and then moving the surfaces 

behind a stationary 1.0deg aperture. The movies were restricted to one dimension of 

space by vertically averaging each frame of the movie(Burge & Geisler, 2015). Each movie 

subtended 1.0deg of visual angle. Movie duration was 250ms (15 frames at 60htz). All 

stimuli were windowed with a raised-cosine window in space and a flattop-raised-cosine 

window in time. The transition regions at the beginning and end of the time window each 

consisted of four frames; the flattop of the window in time consisted of seven frames. 

Contrast was computed under the space-time window. To prevent aliasing, stimuli were 

low-pass filtered in space and time before presentation (Gaussian filter in frequency 

domain with =4cpd, =30htz). No aliasing was visible. Training and test sets of 

naturalistic stimulus movies were generated. The training set had 10,500 unique stimuli 

(500 stimuli x 21 speeds); the test set had 61,000 unique stimuli (1000 stimuli x 61 

speeds). Training stimuli were used to develop the ideal observer (see below). Test stimuli 

were used to evaluate the ideal and human observers in the speed discrimination 

experiment. 

 All stimuli were set to have the same mean luminance as the background and had 

a RMS contrast of 0.14 (equivalent to 0.20 Michelson contrast for sinewave stimuli), the 

modal contrast of the stimulus ensemble. The RMS contrast is given by  

 

        (1) 
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where  is a Weber contrast image movie,  is the space-time window, and 

 is a vector of space-time positions. Stimuli were contrast fixed because 

contrast is known to affect speed percepts and our focus was on how differences in Weber 

contrast patterns between stimuli impact performance rather than on differences in overall 

contrast impact performance, which have already been intensively studied(Thompson, 

1982; Weiss et al., 2002). 

 The short (i.e. 250ms) presentation duration was chosen to approximate the typical 

duration of a human fixation, and to reduce the possibility that large eye movements would 

occur while the stimulus was onscreen. For stimuli with speeds and contrasts similar to 

those used in this experiment, the latencies of smooth pursuit eye movements tend to be 

140-200ms(Spering et al., 2005). Saccadic latencies tend to be longer than pursuit 

latencies.  

Procedure: Speed discrimination experiment 

 For the speed discrimination task, data was collected using a 2IFC procedure. On 

each trial, a standard and a comparison image movie were presented in pseudo-random 

order (see below). The task was to choose the interval with the movie having the faster 

speed. Human observers indicated their choice via a key press. The key press also 

initiated the next trial. Feedback was given. A high tone indicated a correct response; a 

low tone indicated an incorrect response. Experimental sessions were blocked by absolute 

standard speed. In the same block, for example, data was collected at the -5 and +5 

deg/sec standard speeds. Movies always drifted in the same direction within a trial, but 

directions were mixed within a block. An equal number of left- and right-drifting movies 

were presented in the same block to reduce the potential effects of adaptation.  

 
c x( )  

w x( )

   x = x, y,t{ }
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 In each pass of the experiment (see below), psychometric data were measured for 

each of 10 standard speeds (+5, +4, +3, +2, +1deg/sec) using the method of constant 

stimuli. Seven comparison speeds were presented for each standard speed, spanning a 

range centered on each standard speed. Thus, across the entire experiment, observers 

viewed stimuli with speeds ranging from 0.25 to 8.00deg/sec. Each standard-comparison 

speed combination was presented 50 times each for a total of 3,500 trials (2 directions x 

5 standard speeds x 7 comparison speeds x 50 trials).  

 The exact same naturalistic movie was never presented twice within a pass of the 

experiment. Rather, movies were randomly sampled without replacement from a test set 

of 1,000 naturalistic movies at each speed. For each standard speed, 350 ‘standard speed 

movies’ were randomly selected. Similarly, for each of the seven comparison speeds 

corresponding to that standard, 50 ‘comparison speed movies’ were randomly selected. 

Standard and comparison speed movies were then randomly paired together. This 

stimulus selection procedure was used to ensure that the stimuli used in the 

psychophysical experiment had approximately the same statistical variation as the stimuli 

that were used to train and test the ideal observer model. Assuming the stimulus sets are 

representative and sufficiently large, the stimuli presented in the experiment are likely to 

be representative of natural signals.  

Ideal observer for speed estimation 

 As signals proceed through the visual system, neural states become more 

selective for properties of the environment, and more invariant to irrelevant features of the 

retinal images. The ideal observer for speed estimation computes the Bayes’ optimal 

speed estimate from the posterior probability distribution over speed  given the 

responses  to a stimulus of a small population of optimal space-time receptive fields 

(Burge & Geisler, 2015). The receptive fields are assumed to be no larger than the 

   p X | R( )

 R
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stimulus (i.e. 1.0deg) and to have a temporal integration period no longer than the stimulus 

duration (i.e. 250ms). No restrictions were placed on the smallest size and shortest 

integration period of the receptive fields. The receptive fields operate on captured retinal 

images that include the constraints of the early visual system. The optics of the eye, the 

spatial sampling, wavelength sensitivity, and temporal integration of the photoreceptors, 

and response normalization all constrain and shape the information available for further 

processing. Each natural image movie was convolved with a point-spread function 

consistent with a 2mm pupil—a typical size on a bright sunny day(Wyszecki & Stiles, 

1982)—and the chromatic aberrations of the human eye(Thibos et al., 1992). The 

temporal integration time of the photoreceptors was approximately 30ms, consistent with 

direct neurophysiological measurements(Schneeweis & Schnapf, 1995). Receptive field 

responses were normalized consistent with standard practice(Albrecht & Geisler, 1991; 

Heeger, 1992; Carandini & Heeger, 2012; Burge & Geisler, 2015; Jaini & Burge, 2017; 

Sebastian et al., 2017; Iyer & Burge, 2019). Given the constraints imposed by natural 

stimulus variability and the front-end properties of the early visual system, the space-time 

receptive fields and the subsequent computations for decoding the speed must be optimal 

in order for the estimates to be considered optimal. The most useful stimulus features and 

the computations that optimally pool them are jointly dictated by the task and the stimuli. 

The receptive fields that encode the most optimal stimulus features for the task are 

determined via a recently developed technique called Accuracy Maximization 

Analysis(Geisler et al., 2009; Burge & Jaini, 2017; Jaini & Burge, 2017) (AMA). AMA 

requires a labeled training set, a model of receptive field response, and a cost function, 

but requires no parametric assumptions about the shape of the receptive fields. When the 

training set is representative and sufficiently large, as it is here, the learned receptive fields 

support equivalent performance on test and training stimulus sets.  
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 The joint response of the set of receptive fields to each stimulus is given by 

  where   is the set of filters,   is the contrast stimulus, and  is a 

sample of early noise. The optimal computations for pooling the responses of the receptive 

fields are specified by how the receptive field responses are distributed. The conditional 

receptive field responses  are jointly Gaussian and mean 

zero(Burge & Geisler, 2015; Jaini & Burge, 2017) after response normalization. For any 

observed response , the computations that specify the likelihood  

that an observed response was elicited by a stimulus moving with speed  is obtained 

by evaluating the response in the response distribution corresponding to that speed. The 

responses must therefore be pooled in a weighted quadratic sum, with weights  that 

are given by simple functions of the covariance matrices (Burge & Geisler, 2015). A 

neuron that performs these quadratic computations outputs a response 

 that is proportional to the likelihood that a stimulus moving at 

speed  elicited the response . After response (e.g. contrast) normalization(Albrecht 

& Geisler, 1991; Heeger, 1992; Carandini & Heeger, 2012; Sebastian et al., 2017; Iyer & 

Burge, 2019), these likelihood neurons instantiate an energy-model-like hierarchical LNLN 

(linear, non-linear, etc.) cascade(Adelson & Bergen, 1985; Jaini & Burge, 2017). Thus, the 

computations that yield likelihood neurons can be thought of as a recipe, grounded in 

natural image and scene statistics, for how to construct speed-tuned neurons that are 

maximally selective for speed and maximally invariant to natural stimulus (i.e. nuisance) 

variability. Similar computations yield selective invariant tuning for latent variables like 

defocus blur, binocular disparity, and three-dimensional motion(Burge & Geisler, 2011; 

2012; 2014; 2015). 
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 To obtain the posterior probability of each speed, the likelihood must be weighted 

by the prior  and normalized by the weighted sum of likelihoods 

. Finally, the optimal estimate must be ‘read out’ from the posterior probability distribution. 

In the case of the 0,1 cost function (i.e. L0 norm) the optimal estimate 

 is the posterior max. If the prior probability distribution is flat, which 

it is in the training and test sets, the optimal estimate is the latent variable value that 

corresponds to the maximum of the likelihood function (i.e. the max of the population 

response over the likelihood neurons).  

Ideal, degraded, and human decision variables 

 The ideal decision variable for the task of speed discrimination is obtained by the 

subtracting the optimal speed estimates corresponding to the comparison and standard 

stimuli 

         (2) 
 
where  and  are the ideal observer estimates for the standard and comparison 

stimuli, respectively. The total variance of the ideal observer decision variable is  

where  is the variance of the ideal observer estimates across stimuli at a given speed.  

If the decision variable is greater than zero, the ideal observer responds that the 

comparison stimulus was faster. If the decision variable is less than zero, the ideal 

observer responds that the comparison stimulus was slower. Degraded observer decision 

variables are similarly obtained, except that the degraded observer estimates are obtained 

by reading out the responses of suboptimal receptive fields as well as possible. 
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 The human decision variable is a noisy version of the ideal decision variable, under 

the hypothesis that human inefficiency is due only to internal sources of variability (e.g. 

noise). Specifically, 

         (3) 
 
where  is a sample of zero mean Gaussian noise, which corresponds to 

adding noise with variance   to the comparison and standard stimulus speed estimates.  

Double pass experiment 

 A double pass experiment requires that each observer performs all (or a subset) 

of the unique trials in an experiment twice. In our experiment, each trial was uniquely 

identified by its standard and comparison movies. An observer completed the first pass 

by completing each unique trial once over 20 blocks consisting of 175 trials each. The 

standard speed was always constant within a block. Blocks were counterbalanced. The 

observer completed the second pass by completing each unique trial again over another 

10 blocks. Before collecting data in the main experiment, each human observer completed 

multiple practice sessions to ensure that perceptual learning had stabilized. Analysis of 

the practice data showed no significant learning effects. Stimuli presented in practice 

sessions were not presented in the main experiment.  

Estimating decision variable correlation 

 Human decision variable correlation is estimated via maximum likelihood from the 

pattern of human response agreement in the double-pass experiment. The log-likelihood 

of the double-pass response data is given by  

         (4) 
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where   is a vector of model parameters describing decision variable distribution and 

observer criteria across both passes of the double pass experiment. The log-likelihood of 

the double-pass response data is given by 

  (5) 
 
where   and  are the number of times that the observer chose standard on both 

passes or the comparison on both passes, respectively, and   and  are the 

number of times that the observer chose the standard on first pass and the comparison 

on the second and vice versa. The likelihoods of observing those samples are given by 

       (6a) 

       (6b) 

        (6c) 

        (6d) 

where  is the joint decision variable across passes with mean  and covariance  and 

 and  are the observer criteria on passes one and two. The mean decision variable 

values are set equal to the speed difference  between the standard 

and comparison stimuli in each condition.  

 In practice, and without loss of generality, we estimate the decision variable 

correlation using normalized decision variables . The parameter vector for maximizing 

the likelihood of the normalized decision variables is  where  

indicates that the parameter is associated with the normalized variable, and  is the 

correlation specified by the covariance . The integrals in Eq. 6a-d can be equivalently 

expressed with limits of integration  and integrand  with 

normalized mean and normalized covariance 
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       (7a) 

         (7b) 

where the normalizing matrix is , and where  is the 

standard deviation of the human estimates.    Normalizing the variables has the practical 

advantage that it converts the covariance matrix to a correlation matrix, so that it can be 

fully characterized with a single parameter: decision variable correlation. It also sets the 

normalized means equal to sensitivity . We fix the normalized means  to 

the human sensitivity measured in the discrimination experiment. We also fix the 

normalized criteria to , which is justified both by the data and the experimental 

design. These choices reduce the number of parameters to be estimated from five to one.  

Efficiency and early noise  

 Efficiency quantifies the degree to which human performance falls short of ideal 

performance. The exact expression for efficiency is given by  

     (8) 

 
where  and  are the variances of the ideal and human speed estimates, and 

 and  are the stimulus-driven and early-noise-driven variances in the ideal speed 

estimates. Note that the early-noise-driven variance in the estimates—and consequently 

in the decision variable—is distinct from early noise itself, which is defined in the domain 

of the image pixels instead of the decision variable. This is analogous to how the stimulus-

driven variance in the decision variable is distinct from stimulus variability. Stimulus 
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variability, like early noise, is defined in domain of the image pixels and is non-zero in any 

set of non-identical stimuli having the same value of the latent variable. We computed 

efficiency using the exact expression in Eq. 8 and the approximate equality presented in 

the main text, which assumes that the impact of early noise on the ideal decision variable 

is negligible (see Results). We found that, because the maximum possible amount of early 

noise in the system is small (i.e. the upper bound on early noise established by the 

detection experiment is low), both the exact and the approximate expressions yield similar 

estimates of efficiency. 

2.3 Results 

 The impact of natural stimulus variability, internal noise, and suboptimal 

computations can only be distinguished by combining an ideal observer with appropriate 

behavioral experiments. We examine how these factors impact local motion estimation, a 

sensory-perceptual ability that is critical for appropriate interaction with the 

environment(Burge et al., 2019). The plan for the manuscript is diagrammed in Fig. 2.1A. 

First, we develop an image-computable ideal observer model of retinal speed estimation 

that is constrained by measurements of natural stimulus variability and early noise. Then 

we compare human to ideal performance with matched stimuli in two main experiments 

with matched stimuli. The first main experiment shows that humans track the predictions 

of the ideal but are consistently less sensitive: one free parameter—efficiency—accounts 

for the gap between human and ideal performance. We hypothesize that human 

inefficiency is due to stochastic internal sources of variability (e.g. late noise), and not 

deterministic sub-optimal computations. This hypothesis predicts that natural stimulus 

variability should equally limit human and ideal observers. The second main experiment 

tests this hypothesis. Human observers viewed thousands of trials with naturalistic stimuli 

in which each unique trial was presented twice. In this paradigm, the repeatability of 
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responses reveals the respective roles of stimulus- and noise-driven variability. If our 

hypothesis about the source of human inefficiency is correct, efficiency should predict 

response repeatability with zero additional free parameters. These predictions are 

confirmed by the experimental data.  

 An image-computable ideal observer for estimating retinal image speed from local 

regions of natural images is shown in Fig. 2.1B. Given a set of stimuli, it uses the optimal 

computations (encoding receptive fields, pooling, decoding) for estimating speed from 

natural image movies(Burge & Geisler, 2015). The ideal observer thus provides a 

principled benchmark against which to compare human performance. The tradition in ideal 

observer analysis is to constrain the ideal observer by stimulus and physiological factors 

that can be well-characterized and are known to limit the information available for 

subsequent processing(Geisler, 1989). Natural stimulus variability and early 

measurement noise are two such factors (red text, Fig. 2.1B). The optimal computations 

govern how these factors propagate into and determine the variance of the ideal decision 

variable (Fig. 2.1B). The ideal decision variable controls ideal observer performance. 

 
Figure 2.1. Plan for manuscript and ideal observer. A Plan for the manuscript. First, we measure natural 
stimuli and early noise to constrain an ideal observer for speed estimation. Next, we run an experiment and fit 
the efficiency of each human observer (1 free parameter) by comparing human to ideal sensitivity. Finally, we 
run a double-pass experiment and show that efficiency predicts human response repeatability and decision 
variable correlation (0 free parameters).  B Ideal observer. Speed (i.e. the latent variable) can take on one of 
many values. Many different image movies share the same speed. The ideal observer is defined by the optimal 
computations (encoding, pooling, decoding) for estimating speed with natural stimuli. The optimal 
computations are grounded in natural scene statistics (gray box). For each unique movie, the ideal observer 
outputs a point estimate of speed. The ideal observer’s estimates vary across movies primarily because of 
natural stimulus variability, variability that is external to the observer. The degraded ideal observer is matched 
to overall human performance by adding late noise.   
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 Human performance is typically worse than ideal performance. To account for this 

performance gap, other factors must be considered. We consider suboptimal 

computations and internal noise, both of which have the potential to increase the variance 

of the human decision variable relative to the ideal. Suboptimal computations are 

deterministic, and reflect a systematic misuse of the available stimulus information. 

Internal noise is random, and is uncorrelated with individual stimuli; although we model it 

as occurring at the level of the decision variable (see Fig. 2.1B), our methods do not 

distinguish between different stochastic internal sources of variability (see Discussion). To 

simultaneously determine the impact of all three factors—natural stimulus variability, 

suboptimal computations, and internal noise—the ideal observer must be paired with an 

appropriate psychophysical experiment in which each factor has a distinct behavioral 

signature. We perform this experiment, and determine the relative importance of each 

factor. We find that natural stimulus variability and late noise are the primary factors 

limiting human performance. The impact of suboptimal computations is negligible.  

Measuring natural stimuli 

 A fundamental problem of perception is that multiple proximal stimuli can arise 

from the same distal cause. This stimulus variability is an important source of uncertainty 

that limits human and ideal speed discrimination performance. To measure natural 

stimulus variability, we photographed a large number of natural scenes(Burge & Geisler, 

2011; 2015), and then drifted those photographs at known speeds behind a one degree 

aperture, approximately the size of foveal receptive fields in early visual cortex(Gattass et 

al., 1981; 1988). This procedure generates motion signals that are equivalent to those 

obtained by rotating the eye during smooth tracking of a target (Spering et al., 2005; 

Osborne et al., 2007) (Fig. 2.2A). The sampled set of stimuli approximates, but almost 

certainly underestimates, the variability present in the natural stimulus ensemble; looming 
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and discontinuous motions, for example, are not represented in our training set(Schrater 

et al., 2001; Nitzany & Victor, 2014). Thus, the forthcoming estimates of the impact of 

natural stimulus variability on ideal and human performance are likely to underestimate 

the impact of stimulus variability on human performance in natural viewing. 

 
Figure 2.2. Naturalistic image movies and pre-processing. A Naturalistic image movies were obtained by 
drifting photographs of natural scenes at known speeds behind one-degree apertures for 250ms. Rotating the 
eye in its socket (e.g. tracking an object) creates the same pattern of motion in the stationary background. 
Optical properties of the eye and the temporal integration of the photoreceptors were also modeled. B Full 
space-time image movies (Ixyt) and vertically filtered space-time image movies (Ixt). Moving images can be 
represented as oriented signals in space-time. C Vertically oriented receptive fields respond identically to full 
space-time movies and vertically filtered movies. 
 
 Movies drifted leftward or rightward with speeds ranging between 0.25 to 

8.0deg/sec. Movies were presented for 250ms, the approximate duration of a typical 

human fixation. The sampling procedure yielded tens of thousands of unique stimuli (i.e. 

image movies) at dozens of unique speeds. Image movies were then filtered so that only 

vertical orientations were present; that is, the stimuli were vertically averaged (i.e. xt) 

versions of full space-time (i.e. xyt) movies (Fig. 2.2B). Vertical averaging reduces 

stimulus complexity, but the resulting stimuli are still substantially more realistic than 

classic motion stimuli like drifting sinewaves. Furthermore, vertically oriented receptive 

fields respond identically to vertically averaged and original movies (Fig. 2.2C). Thus, in 

an individual orientation column, the filtered movies should generate the same response 

statistics as the full space-time movies(Burge & Geisler, 2015; Jaini & Burge, 2017). 

Finally, the contrasts of the vertically-averaged stimuli were fixed to the modal contrast in 
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natural scenes (see Discussion). Thus, our stimuli represent a compromise between 

simple and real-world stimuli, allowing us to run experiments with more natural stimuli 

without sacrificing quantitative rigor and interpretability. Our analysis should be 

generalizable to full space-time movies with more realistic forms of motion. 

Measuring early noise 

 All measurement devices are corrupted by measurement noise. The human visual 

system is no exception. Early measurement noise occurs at the level of the retinal image 

and places a fundamental limit on how well targets can be detected. Possible sources of 

early noise include the Poisson variability of light itself and the stochastic nature of the 

photoreceptor and ganglion cell responses(Hecht et al., 1942). The ideal observer for 

speed discrimination should be constrained by the same early noise as the human 

observer if it is to provide an accurate indication of the theoretically achievable human 

performance limits (see Fig. 2.1A).  

 Human observers performed a target detection task using the equivalent input 

noise paradigm(Burgess et al., 1981; Pelli, 1985). The task was to detect a known 

stationary target embedded in dynamic Gaussian white noise. On each trial, human 

observers viewed two stimuli in rapid succession, and tried to identify the stimulus 

containing the target (Fig. 2.3AB). The time-course of stimulus presentation was identical 

to the forthcoming speed discrimination experiment. Fig. 2.3C shows psychometric 

functions for target detection in one human observer as a function of target contrast. Each 

function corresponds to a different noise contrast. Detection thresholds, which are the 

target contrasts required to identify the target interval 76% of the time (i.e. d-prime of 1.0 

in a 2IFC task), are shown for two different targets (3.0 and 4.5 cpd) in Fig. 2.3D. 

Consistent with previous studies, contrast power at threshold increases linearly with pixel 

noise(Burgess et al., 1981; Pelli, 1985). Fig. 2.3E shows the same data plotted on 



 32 

logarithmic axes, a common convention in the literature. There are two critical points on 

this function. The first is its value when pixel noise equals zero, where detection 

performance is limited only by internal noise. The second is at double the contrast power 

of the first point—the so-called ‘knee’ of the function—where the pixel noise equals the 

internal noise. This level of pixel noise is known as the equivalent input noise. Note that 

the knee of the function, and thus the estimate of equivalent input noise, is robust to 

whether or not the observer is using a detector (e.g. receptive field) that is optimal for 

detecting the target. 

 The equivalent input noise was estimated separately for each target type and 

human observer. Estimates were consistent across target types and were thus averaged. 

Noise estimates for the first, second, and third human observers are 2.5%, 2.3% and 2.9%, 

respectively (Fig. 2.3E). These values are in line with previous reports(Burgess et al., 

1981; Pelli, 1985; Williams, 1985).  

 The estimates of equivalent input noise may reflect the exact amount of early 

measurement noise alone (Pelli, 1991). The estimates of equivalent input noise may also 

reflect the combined effect of early measurement noise and noise arising at later 

processing (e.g. decision) stages. Regardless of which possibility is correct, the target 

detection experiment provides an upper bound on the amount of early noise in the human 

visual system. The ideal observer used in the main text is limited by early noise at this 

upper bound. Because the upper bound is small, early noise only weakly impacts ideal 

observer performance (see below).  
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Figure 2.3. Measuring early noise with a target detection experiment. A Stimulus construction. On each 
interval, the stimulus was either a stationary target Gabor stimulus or a middle gray field corrupted by dynamic 
noise. B On each trial, the task was to report which of two intervals contained the target stimulus. C 
Psychometric functions from one human observer (S1) for detecting a 3cpd target, in noise having different 
RMS contrasts (0.00, 0.05, 0.10, 0.20). D Threshold target contrast power for the same human observer. 
Thresholds increase linearly with noise contrast power. Error bars represent 95% bootstrapped confidence 
intervals; many error bars are smaller than the symbols. E Target contrast power at detection threshold plotted 
on a log-log axis (same data as D) for all three observers. Arrows indicate the estimate of equivalent input 
noise. 
 
Ideal observer 

 An ideal observer performs a task optimally, making the best possible use of the 

available information given stimulus variability and specified biological constraints. In 

addition to natural stimulus variability and early noise (see Figs. 2.2, 2.3), we model the 

optics of the eye(Wyszecki & Stiles, 1982; Thibos et al., 1992) , the temporal integration 

of photoreceptors(Schneeweis & Schnapf, 1995), and the linear filtering(Hubel and 

Wiesel, 1962) and response normalization(Albrecht & Geisler, 1991; Heeger, 1992; 

Carandini & Heeger, 2012) of cortical receptive fields. These are all well-established 

features of early visual processing and determine the information available for subsequent 

processing.  

 Assuming the relevant factors have been accurately modeled, ideal observers 

provide principled benchmarks against which to compare human performance. Given the 
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information available to a particular stage of processing, ideal observers allow the 

researcher to ask whether subsequent processing stages use that information as well as 

possible. Humans often track the pattern but fail to achieve the absolute limits of ideal 

performance. As a consequence, ideal observers often serve as principled starting points 

for determining additional unknown factors that cause humans to fall short of theoretically 

achievable performance limits.  

 Developing an ideal observer with natural stimuli is challenging because it is 

unclear a priori which stimulus features are most useful for the task. We find the optimal 

receptive fields for speed estimation using a recently developed Bayesian statistical 

learning method called Accuracy Maximization Analysis(Geisler et al., 2009; Burge & 

Jaini, 2017; Jaini & Burge, 2017) (AMA). Given a stimulus set, the method learns the 

receptive fields that encode the most useful stimulus features for the task (Fig. 2.4A). Once 

the optimal features are determined, the next step is to determine how to optimally pool 

and decode the responses  of those receptive fields where  is the total 

number of receptive fields. Eight receptive fields capture essentially all of the useful 

stimulus information; additional receptive fields provide negligible improvements in 

performance(Burge & Geisler, 2015).  

    R = R1, R2 ,!, Rn⎡⎣ ⎤⎦  n
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Figure 2.4. Ideal observer receptive fields, response distributions, computations, and estimates. A Optimal 
space-time receptive fields (RFs) for speed estimation given the naturalistic stimulus set and biological 
constraints. B Receptive-field response distributions for RFs 1 and 2, conditioned on the speed of the image 
movie (colors). Each symbol represents the joint response to an individual movie. The variability of responses 
for each speed (color) is due to natural stimulus variability; that is, it is the nuisance stimulus variability in the 
feature space defined by the optimal RFs. C Computations of a hypothetical neuron implementing optimal 
encoding and pooling. Each noisy, contrast-normalized stimulus is processed by the optimal RFs. The 
responses of these RFs are pooled in a weighted quadratic sum. The weights are determined by the response 
covariance in B corresponding to the neuron’s preferred speed. The response of this hypothetical neuron 
represents the likelihood that a given stimulus had its preferred speed. The optimal pooling rules thus 
represent a LNLN (linear, non-linear, etc.) cascade. D Speed-tuning curves of hypothetical neurons 
implementing optimal encoding and pooling, whose responses represent the likelihood of each speed given a 
stimulus. The speed-tuning curve  is the average likelihood across stimuli at each of many different 
speeds. Shaded regions indicate +1SD confidence intervals on response. This response variability is due to 

natural stimulus variability. E An arbitrary stimulus creates a population response  over hypothetical speed-
tuned neurons. Optimal decoding yields the optimal estimate. F Ideal observer estimates. The optimal estimate 
is read out from the population of hypothetical speed-tuned neurons in E, and is equivalent to reading out the 
posterior probability distribution  over speed. The variance of ideal observer speed estimates 
(histogram) is dominated by stimulus-driven variance. 
 
 The optimal pooling rules are specified by the joint statistics relating the latent 

variable and the receptive field responses(Bishop, 2006; Jaini & Burge, 2017). With 

appropriate response normalization, the responses across stimuli for each speed are 

conditionally Gaussian(Lyu & Simoncelli, 2009; Burge & Geisler, 2015; Sebastian et al., 

2017; Iyer & Burge, 2019) (Fig. 2.4B). To obtain the likelihood of a particular speed, the 
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Gaussian response statistics require that the receptive field responses to a given stimulus 

be pooled via weighted quadratic summation (see Fig. 2.4C). The computations for 

computing the likelihood thus instantiate an enhanced version of the motion-energy model, 

indicating that energy-model-like computations are the normative computations 

supporting speed estimation with natural stimuli(Adelson & Bergen, 1985; Jaini & Burge, 

2017). The speed tuning curves of hypothetical neurons implementing these computations 

are approximately log-Gaussian, similar to the approximately log-Gaussian speed tuning 

curves of neurons in area MT(Nover et al., 2005) (Fig. 2.4D). Finally, an appropriate read 

out of the population response of these hypothetical neurons is equivalent to decoding the 

optimal estimate from the posterior probability distribution  over speed (Fig. 

2.4EF). If a 0,1 cost function is assumed, the latent variable value corresponding to the 

maximum of the posterior is the optimal estimate. We have previously verified that 

reasonable changes to the prior and cost function do not appreciably alter the optimal 

receptive fields, pooling rules, or performance(Burge & Jaini, 2017). This approach 

provides a recipe for how to construct neurons that are highly invariant to nuisance 

stimulus variability and tightly tuned to speed. It also provides a normative justification, 

grounded in natural scene statistics, for descriptive models proposed to account for 

response properties of neurons in cortex(Adelson & Bergen, 1985; Simoncelli & Heeger, 

1998; Perrone & Thiele, 2001; Nover et al., 2005; Rust et al., 2006; Jaini & Burge, 2017). 

 The factors thus far described in the paper—stimulus variability and early noise, 

biological constraints, and the optimal computations (encoding, pooling, decoding)—all 

impact ideal performance in our task. Given a particular stimulus set, the only factor 

subject to some uncertainty is the precise amount of early noise. However, within the 

bound set by the detection experiment (see Fig. 2.3), different amounts of early noise have 

   p X | R( )
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only a minor effect on ideal performance (see below). Thus, estimates of ideal 

performance are set overwhelmingly by stimulus variability. 

Measuring efficiency 

 The ideal observer benchmarks how well humans use the stimulus information 

available for the task. Efficiency quantifies how human sensitivity  compares to ideal 

observer sensitivity  and is given by 

        (9) 

 
where  is the total variance of the human decision variable,  is the total variance 

of the ideal decision variable, and  is the stimulus-driven component of the ideal 

decision variable. The third approximate equality in Eq. 9 assumes that stimulus-driven 

variability equals ideal observer variability because the impact of early noise is bounded 

to be small (c.f. Fig. 2.3).  

 To measure human sensitivity, we ran a two-interval forced choice (2IFC) speed 

discrimination experiment. On each trial, human observers viewed two moving stimuli in 

rapid succession, and indicated which stimulus was moving more quickly (Fig. 2.5A). This 

design is similar to classic psychophysical experiments with one critical difference. Rather 

than presenting the same (or very similar) stimuli in each condition hundreds of times, we 

present hundreds of unique stimuli one time each. This stimulus variability jointly limits 

human and ideal performance. Human sensitivity is computed using standard expressions 

from signal detection theory  where  is the proportion of 

times that the comparison is chosen in a given condition in a 2IFC experiment and  
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is the inverse cumulative normal. (This expression is correct assuming the observer uses 

the optimal criterion, an assumption that is justified by the data.) 

 

 
Figure 2.5. Measuring speed discrimination. A The task in a two-interval forced choice experiment was to 
report the interval containing the faster of two naturalistic image movies. Unlike classic psychophysical studies, 
which present the same stimuli hundreds of times, the current study presents hundreds of unique stimuli one 
time each. This design injects naturalistic stimulus variability into the experiment. Human responses are 
assumed to be based on samples from decision variable distributions (inset). B Ideal observer estimates 
across hundreds of standard (red) and comparison movies (white) at one standard speed (3 deg/sec) and four 
comparison speeds. C Human vs. ideal observer sensitivity for all standard and comparison speeds. Shaded 
regions mark regions of plot where humans are less efficient than ideal but are still performing the task. For 
all conditions, humans are less sensitive than the ideal observer by a single scale factor: efficiency: 

. Negative d-primes correspond to conditions in which the comparison was slower than the 
standard. D Psychometric functions for one human observer (symbols) at five standard speeds. The degraded 
ideal observer (solid curves) matches the efficiency of the human observer (one parameter fit to human data). 
E Human speed discrimination thresholds (d-prime = 1.0) as a function of standard speed for three human 
observers (symbols) on a semi-log plot. The pattern of human thresholds matches ideal observer thresholds 
(solid curve). Vertically shifting the ideal observer thresholds by an amount set by each human’s efficiency 
(arrows) shows degraded observer performance (solid curves, one free parameter fit per human).  
 
 To measure ideal sensitivity, we ran the ideal observer in a simulated experiment 

with the same stimuli as the human. (Note that the ideal observer was trained on different 

stimuli than the human and ideal observers were tested on.) Ideal sensitivity (i.e. d-prime) 

was computed directly from the distributions of ideal observer speed estimates in each 

condition (Fig. 2.5B). Human and ideal sensitivities across all speeds are linearly related 

(Fig. 2.5C). Rearranging Eq. 9 shows that human sensitivity  equals the 

ideal observer sensitivity degraded (scaled) by the square root of the efficiency. Thus, a 

single free parameter (efficiency) relates the pattern of human and ideal sensitivities for 

all conditions. The efficiencies of the first, second, and third human observers are 0.43, 

0.41, and 0.17, respectively.  
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  Transforming the sensitivity data back into percent comparison chosen shows that 

the details of the degraded ideal nicely account for the human psychometric functions (Fig. 

2.5D). The psychometric functions can be summarized by the speed discrimination 

thresholds (d-prime = 1.0; 76% correct in a 2IFC task). The pattern of human and ideal 

thresholds match; the proportional increases of the human and ideal threshold functions 

with speed are the same (Fig. 2.5E). These results quantify human uncertainty , 

show that an ideal observer analysis of naturalistic stimuli predicts the pattern of human 

speed discrimination performance, and replicate our own previously published 

findings(Burge & Geisler, 2015).  

 Together, the ideal observer and speed discrimination experiment reveal the 

degree of human inefficiency (i.e. how far human performance falls short of the theoretical 

ideal). But they cannot determine the sources of this inefficiency. Humans could be 

inefficient because of late noise (i.e. stochastic internal sources of variability arising after 

early noise). Humans could also be inefficient because of fixed suboptimal computations. 

If inefficiency is due exclusively to late noise, stimulus variability must equally limit human 

and ideal observer performance. If human inefficiency is partly due to suboptimal 

computations, stimulus variability will cause more stimulus-driven variability in the human 

than in the ideal. How can human behavioral variability be partitioned to determine the 

sources of inefficiency in speed perception? To do so, additional experimental tools are 

required. 

Predicting and measuring decision variable correlation 

 A double pass experiment, when paired with ideal observer analysis, can 

determine why human performance falls short of the theoretical ideal. In a double pass 

experiment(Burgess & Colborne, 1988; Gold et al., 2004; Li et al., 2006), each human 

observer responds to each of a large number of unique trials (the first pass), and then 

  σ human
2
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performs the entire experiment again (the second pass). Double pass experiments can 

‘unpack’ each point on the psychometric function (Fig. 2.6AB), providing far more 

information about the factors driving and limiting human performance than standard single 

pass experiments. The correlation in the human decision variable across passes—

decision variable correlation—is key for identifying the factors that limit performance and 

determine efficiency(Burgess & Colborne, 1988; Sebastian & Geisler, 2018).  

 
Figure 2.6. Decision variable correlation and response repeatability in a double pass experiment. A 
Psychometric data from the first human observer and cumulative Gaussian fit plotted as proportion comparison 
chosen vs. d-prime for the standard speed of 1 deg/sec. (Same data as in Fig. 2.5D.) B Schematic for 
visualizing decision variable correlation across passes when standard and comparison speeds are identical 
(e.g. both equal 1 deg/sec). Samples correspond to individual double pass trials (small circles). The value of 
each sample represents the difference between the estimated speeds of the comparison and standard stimuli 
on each trial. Decision variable values corresponding to response agreements and disagreements fall in white 
and gray quadrants, respectively. Decision variable distributions with the decision variable correlation 
predicted by efficiency (solid ellipse) and by the null model with a decision variable correlation of zero (dashed 
ellipse). Decision variable correlation depends on the relative importance of correlated and uncorrelated 
factors across passes. Stimuli are correlated on each repeated trial of a double pass experiment; internal 
noise is not. Criteria on each pass (vertical and horizontal lines, respectively) are assumed to be optimal and 
at zero. C Predicted response counts (bars) for each response type (--, -+, +-, ++) across passes (100 trials 
per condition) given the decision variable correlation shown in B. D Proportion of trials on which responses 
agreed across both passes of the double pass experiment as a function of proportion comparison chosen for 
one human observer. Agreement data (symbols) and prediction (solid curve) assuming that efficiency predicts 
decision variable correlation (i.e. that all human inefficiency is due to late noise). The null prediction assumes 
that the decision variable correlation across passes is zero (dashed curve). The agreement data is predicted 
directly from the efficiency of the human observer (zero free parameters). Error bars represent 68% 
bootstrapped confidence intervals on human agreement. Shaded regions represent 68% confidence intervals 
from 10000 Monte Carlo simulations of the predicted agreement data assuming 100 trials per condition. 
 
 The power of this experimental design is that it enables behavioral variability to be 

partitioned into correlated and uncorrelated factors. Factors that are correlated across 

passes, like the stimuli, increase the correlation of the decision variable across passes. 

Factors that are uncorrelated across passes, like internal noise, decrease decision 

variable correlation. If the variance of the human decision variable is dictated only by 

stimulus-driven variability, decision variable correlation will equal 1.0. If the variance of the 
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human decision variable is dictated only by internal noise, decision variable correlation will 

equal 0.0. If both stimulus-driven variability and internal noise play a role, the correlation 

will have an intermediate value.  

 Decision variable correlation, like the decision variable itself, cannot be measured 

directly using standard psychophysical methods. Rather, it must be inferred from the 

repeatability of responses across passes in each condition. The higher the decision 

variable correlation, the greater the proportion of times responses agree (i.e. repeat) in a 

given condition (Fig. 2.6BC).  

 In each condition, we used the pattern of response agreement to estimate decision 

variable correlation (Fig. 2.6BC), and then plotted agreement against the proportion of 

times the human observer (symbols) chose the comparison stimulus as faster (Fig. 2.6D). 

Human response agreement implies a decision variable correlation that is significantly 

different from zero. For the seven conditions shown in Fig. 2.6D (i.e. all comparison 

speeds at the 1 deg/sec standard speed), the maximum likelihood fit of decision variable 

correlation across the seven comparison levels is 0.43. Thus, 43% of the total variance in 

the human decision variable is due to factors that are correlated across repeated 

presentations of the same trials.  

 How should the estimate of decision variable correlation be interpreted? Human 

decision variable correlation across passes is given by 

        (10) 

 
where  is the variance of the speed estimates due to external (i.e. stimulus) factors, 

 is the variance due to internal factors (e.g. noise), and  is the total variance of 

the human speed estimates. Decision variable correlation is driven by stimulus variation, 

because the stimuli are perfectly correlated across passes.  
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 The estimated decision variable correlation is strikingly similar to the efficiency 

measured for each observer. Although the exact relationship between decision variable 

correlation and efficiency depends on the source of human inefficiency, the fact that they 

are similar is no accident. Under the hypothesis that all human inefficiency is due to noise 

(i.e. stochastic internal factors that are uncorrelated with the stimuli), stimulus variability 

must impact human and ideal observers identically: the stimulus-driven variance in the 

human speed estimates (  in Eq. 10) will equal the stimulus-driven variance in the ideal 

observer speed estimates (  in Eq. 9). Plugging Eq. 9 into Eq. 10 shows that, under the 

stated hypothesis, human decision variable correlation equals efficiency 

 
           (11) 
 
 This mathematical relationship has important consequences. It means that the 

estimate of human efficiency from the speed discrimination experiment (Fig. 2.5C) 

provides a zero-free parameter prediction of human decision variable correlation in the 

double pass experiment (Fig. 2.6). The behavioral data confirm this prediction. Human 

efficiency in the discrimination experiment quantitatively predicts human response 

agreement in the double-pass experiment (Fig. 2.6D; symbols vs. solid curve). The 

implication of this result is striking. It suggests that natural stimulus variability equally limits 

human and ideal observers and thus that the source of human inefficiency is due near-

exclusively to late noise. Human speed discrimination is therefore optimal except for the 

impact of late internal noise.  

 These results generalize across all conditions and human observers. Fig. 2.7A 

shows measured response agreement vs. proportion comparison chosen for the first 

human observer in each of the five standard speed conditions. Fig. 2.7B plots measured 

response agreement against efficiency-predicted agreement, summarizing the agreement 
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data for each human observer across all standard speeds; prediction uncertainty given 

the number of double-pass trials in each condition is shown as 95% confidence intervals 

(shaded regions). The decision variable correlations that best account for the response 

repeatability across all conditions of the first, second, and third human observers are 0.45, 

0.43, and 0.18, respectively. For the first two observers, stimulus-driven variance and 

noise variance have approximately same magnitude. For all observers, the data is 

consistent with the hypothesis that decision variable correlation equals efficiency (solid 

curves), and is not consistent with the null model in which decision variable correlation 

equals zero (dashed curves). Fig. 2.7C plots decision variable correlation against 

efficiency for each human observer. Efficiency tightly predicts decision variable correlation 

for all three human observers, with zero additional free parameters.  

 
Figure 2.7. Predicted vs. measured response agreement and decision variable correlation. A Proportion 
response agreement vs. proportion comparison chosen for all five standard speeds (1-5deg/sec), for the first 
human observer. Human data (symbols) and predictions (curves) are shown using the same conventions as 
Fig. 2.6D. B Measured vs. predicted response agreement for all conditions and all human observers 
(symbols). Human agreement equals efficiency-predicted agreement for all three human observers (solid line); 
shaded regions indicate 95% confidence intervals on the prediction from 1000 Monte Carlo simulations. 
Efficiency-predicted agreement for the null model, which assumes decision variable correlation is zero, is also 
shown (dashed curve). C Decision variable correlation vs. efficiency for each human observer (symbols). 
Human efficiency, measured in first pass of the speed discrimination experiment, tightly predicts human 
decision variable correlation in the double pass experiment with zero free parameters. Error bars represent 
95% bootstrapped confidence intervals on human efficiency and on human decision variable correlation. 
Shaded regions show the expected relationship between efficiency and decision variable correlation if humans 
use fixed suboptimal computations (i.e. sub-optimal receptive fields). Red brackets indicate uncertainty about 
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the precise value of efficiency due to uncertainty about the precise amount of early noise (see Fig. 2.3). Solid 
and dashed black lines are the best-fit regression lines, corresponding to receptive field correlations of 0.97 
and 0.92, respectively.  
 
 These results must be interpreted with some caution. Uncertainty about the 

amount of early measurement noise can cause uncertainty about human efficiency (Eq. 

8) and thus about the predicted decision variable correlation (Eq. 11). We simulated ideal 

observers with different amounts of early noise and computed efficiency for each human 

observer (Fig. 2.8A). Fortunately, the detection experiment establishes an upper bound 

on the amount of early noise for each human observer (c.f. Fig. 2.3), thereby constraining 

the uncertainty about the predicted decision variable correlation (Fig. 2.8B; red brackets). 

Because the upper bound on early noise is low, the maximum and minimum possible 

efficiencies differ by approximately 10% depending on whether early noise at the upper or 

lower bound is assumed (Fig. 2.8AB; red brackets). The measured decision variable 

correlation values (Fig. 2.8C) are in line with the predictions. Thus, uncertainty about the 

amount of early noise has only a minor impact on the interpretation of our results.  

 
Figure 2.8. Early noise, efficiency, and predicted decision variable correlation. A Efficiency in speed 
discrimination for each human observer (symbols) changes as a function of the amount of early noise modeled 
in the ideal observer. If early noise is negligible, efficiency is given by (Eq. 9). If early noise is 

non-negligible, efficiency is given by  (Eq. 8). The red brackets and shaded regions 
indicate the minimum and maximum human efficiencies, given the bound on early noise established by the 
detection experiment (c.f. Fig. 2.3). B Predicted decision variable correlation for each human observer given 
the uncertainty about human efficiency. The maximum (solid line) and minimum (dashed line) predicted 
decision variable correlations correspond to ideal observers having the maximum and minimum amount of 
early noise. The predicted decision variable correlations differ by ~10% at maximum. C Measured decision 
variable correlation for each human observer. Error bars are 95% bootstrapped confidence intervals.  
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 In the best performing observers, natural stimulus variability accounts for nearly 

half of all behavioral variability, despite the fact that the naturalistic stimulus set used to 

probe speed discrimination performance almost certainly underestimates the importance 

of stimulus variability in natural viewing (see Discussion). External variability therefore 

shapes the optimal computations, dictates the pattern of human performance, and predicts 

the partition of behavioral variability (i.e. the relative importance of external and internal 

sources of variability). These findings motivate continued efforts to model and characterize 

how natural stimulus variability impacts neural and perceptual performance in natural 

tasks. 

Suboptimal computations 

 Human efficiency equals human decision variable correlation (Figs. 2.7C; 2.8BC). 

To confidently conclude from this result that human inefficiency is almost entirely due to 

noise (i.e. stochastic internal sources of variability), we must rule out the possibility that 

suboptimal computations can produce the same result. How do fixed suboptimal 

computations impact the relationship between efficiency and decision variable 

correlation? To answer this question, one must determine how suboptimal computations 

impact the stimulus-driven component of the decision variable. To do so, we analyzed the 

estimates of a degraded observer that suboptimally encodes stimulus features(Burgess 

et al., 1981; Dosher & Lu, 1998; Neri & Levi, 2006; Sebastian & Geisler, 2018). If the 

wrong features are encoded, informative features may be missed, irrelevant features may 

be processed, and the variance of the stimulus-driven component of the decision variable 

may be increased relative to the ideal.  
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Figure 2.9. Relationship between suboptimal receptive fields and stimulus-driven variability in degraded 
observers. A Optimal receptive fields (top; also see Fig. 2.4A) and suboptimal receptive fields from the 
degraded observer (bottom); only the first two receptive fields of each observer are shown. To obtain a 
suboptimal receptive field with a particular receptive field correlation , we added fixed samples of Gaussian 
white noise to the corresponding optimal receptive field. The variance of the corrupting noise is given by 

 where  is the number of pixels defining each receptive field. B Impact of suboptimal 

receptive fields on the conditional response distributions . As the receptive fields become more 
suboptimal, the response distributions (colored ellipses) more poorly distinguish different values of the latent 
variable (colors). C Effect of suboptimal receptive fields on degraded observer speed estimates for movies 
drifting at one speed (3 deg/sec). As receptive field correlation decreases, the stimulus-driven variance of the 
estimates increases, because informative stimulus features are not encoded and uninformative features are. 
D The proportional increase of stimulus-driven standard deviation for degraded vs. the ideal observer 
estimates, assuming that the degraded observer has no late internal noise. Symbols plot the mean result from 
100 Monte Carlo simulations. The stimulus-driven variance of the speed estimates increases with the squared 
inverse of receptive field correlation. E Relationship between decision variable correlation and efficiency for 
degraded observers with different combinations of fixed suboptimal computations (i.e. receptive field 
correlations; gray levels) and internal noise. Points represent mean decision variable correlation and mean 
efficiency from 100 Monte Carlo simulations of each degraded observer.  
 
 To create suboptimal feature encoders (i.e. suboptimal receptive fields), we 

corrupted the optimal receptive fields with fixed samples of Gaussian white noise (Fig. 

2.9A). Receptive field correlation (i.e. cosine similarity) quantifies the degree of sub-

optimality  where  and  are the optimal and suboptimal 

receptive fields, respectively. Compared to the responses of the optimal receptive fields, 

the responses of these suboptimal receptive fields segregate less well as a function of 
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speed (Fig. 2.9B). We generated degraded observers with suboptimal receptive fields 

having different receptive field correlations and examined estimation performance (Fig. 

2.9C). We found that the stimulus-driven variance  of the degraded observer 

estimates is a scaled version of the ideal stimulus-driven variance; the scale factor 

 is equal to the squared inverse of receptive field correlation (Fig. 2.9D). Thus, 

suboptimal receptive fields systematically increase the variance of the stimulus-driven 

component of the decision variable. 

 If humans are well modeled by a degraded observer with both suboptimal receptive 

fields and late noise, the total variance of the human estimates is given by 

. Replacing terms in Eqs. 9 and 10 and performing some simple algebra 

shows that the relationship between efficiency and decision variable correlation is given 

by 

         (12) 

 
 Thus, with sub-optimal computations (i.e. receptive fields) decision variable 

correlation will be systematically larger than efficiency by the inverse square of receptive 

field correlation. (Note that when receptive field correlation equals 1.0, Eq. 12 reduces to 

Eq. 11.) For example, if receptive field correlation is 0.5, decision variable correlation is 

4x higher than efficiency. We verified the relationship between decision variable 

correlation and efficiency by simulating degraded observers with different levels of 

suboptimal computations and late noise (Fig. 2.9E). As predicted by Eq. 12, the more 

suboptimal the computations (i.e. receptive field correlations), the more decision variable 

correlation exceeds efficiency. We reanalyzed our results in the context of Eq. 12, 

comparing the behavioral data to the predictions of various degraded observer models. 
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For all three observers, decision variable correlation is larger than efficiency by ~5%, 

corresponding to a receptive field correlation of 0.97 (Fig. 2.7C). (Note that these numbers 

assume an ideal observer with early noise set to the upper bound established by the 

detection experiment (see Fig. 2.3). If no early noise is assumed, then decision variable 

correlation exceeds efficiency by 15%, corresponding to a receptive field correlation of 

0.92; Fig. 2.7C). Thus, no more than 15% of human inefficiency can be attributed to fixed 

suboptimal computations.  

 Note that the simulations just described only consider the potential impact of fixed 

suboptimal computations that are linear. We cannot definitively rule out non-linear 

suboptimal computations that leave stimulus-driven variability unchanged while selectively 

amplifying the impact of early noise, making amplified early noise indistinguishable from 

late noise. However, such computations are highly unlikely, given current knowledge of 

early visual processing. More importantly, suboptimal computations that selectively 

amplify early noise will not alter the predicted relationships between efficiency and 

decision variable correlation.  

 Thus, our results imply that the deterministic computations performed by the 

human visual system in speed estimation are very nearly optimal. Although natural 

stimulus (i.e. nuisance) variability is a major and unavoidable factor that limits performance 

in natural viewing, its impact is minimized as much as possible by the computations 

performed by the visual system.  

Stimulus variability and behavioral variability 

 In this paper, we have shown that natural stimulus variability limits behavioral 

performance and drives response repeatability. Thus, reducing stimulus variability should 

increase sensitivity (i.e. improve behavioral performance) but decrease response 

repeatability. To test this prediction, we ran a new speed discrimination experiment using 
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drifting random-phase sinewave gratings (Fig. 2.10). A stimulus set composed of drifting 

sinewaves has less variability than the set of naturalistic stimuli used in the main 

experiment. As predicted, with sinewave stimuli human sensitivity improves (Fig. 2.10A), 

responses become less repeatable (Fig. 2.10B), and decision variable correlation is lower 

(Fig. 2.10C). Interestingly, reducing stimulus variability affects decision variable 

correlation in the third human observer less than it does in the first two. This is the 

expected pattern of results given that the third observer (S3) had low decision variable 

correlation with naturalistic stimuli and was thus already dominated by internal noise (see 

Figs. 2.7C, 2.8C). However, not all of the results were quite as expected. We anticipated 

that decision variable correlation would equal zero for all three human observers with 

sinewave stimuli. But decision variable correlation exceeded zero for all three observers. 

What accounts for this discrepancy? We have ruled out commonly considered trial order 

effects (e.g. feedback-based effects) as the cause (Laming, 1979), but we are unsure of 

the cause. Whatever the case, with reduced stimulus variability, internal noise—which is 

uncorrelated across stimulus repeats—becomes the dominant source of variability limiting 

performance in all human observers.  

 
Figure 2.10. Effects of reducing stimulus variability. A Speed discrimination psychometric functions for the 
first human observer with naturalistic stimuli (black curve) and drifting sinewave stimuli (gray curve) for a 1 
deg/sec standard speed. Sinewave stimuli can be discriminated more precisely. B Proportion response 
agreement vs. proportion comparison chosen for naturalistic stimuli (black) and artificial stimuli (grey) for the 
same human observer. C Decision variable correlation with artificial stimuli vs. decision variable correlation 
with naturalistic stimuli for each human observer (symbols). Error bars represent 95% bootstrapped 
confidence intervals. Decision variable correlation is consistently lower when artificial stimuli are used.  
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 Simple stimuli and/or simple tasks have dominated behavioral neuroscience 

because of the need for rigor and interpretability in assessing stimulus influences on 

neural and behavioral responses. The present experiments demonstrate that, with 

appropriate techniques, the required rigor and interpretability can be obtained with 

naturalistic stimuli. We have shown that image-computable ideal observers can be 

fruitfully combined with human behavioral experiments to reveal the factors the limit 

behavioral performance in mid-level tasks with naturalistic stimuli. In particular, an image-

computable ideal observer, constrained by the same factors as the early visual system, 

predicts the pattern of human speed discrimination performance with naturalistic 

stimuli(Burge & Geisler, 2015). Perhaps more remarkably, human efficiency in the task 

predicts human decision variable correlation in a double pass experiment without free 

parameters, a result that holds only if the deterministic computations performed by 

humans are very nearly optimal.  

Limitations and future directions 

 One limitation of our approach, which is common to most psychophysical 

approaches, is that it cannot pinpoint the processing stage or brain area at which the 

limiting source of internal variability arises. Although we model it as noise occurring at the 

level of the decision variable, it could also occur at the encoding receptive field responses, 

the computation of the likelihood, the readout of the posterior into estimates, the 

placement of the criterion at the decision stage, or some combination of the above. We 

believe we have ruled out the possibility that the noise limiting speed discrimination is 

early (Fig. 2.3). But we cannot distinguish amongst other stochastic sources of internal 

variability. These issues are probably best addressed with neurophysiological methods. 

Similarly, our approach cannot distinguish between different types of fixed suboptimal 

computations. We modeled them by degrading each in the set of optimal receptive fields. 
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But an array of computations that make fixed suboptimal use of the available stimulus 

information could have similar effects.  

 Another potential issue is that eye movements were not controlled, raising the 

concern that human and ideal observers were not on equal footing. If eye movements are 

stimulus independent, they could manifest like internal noise, and decrease decision 

variable correlation(Rolfs, 2009; Kowler, 2011). On the other hand, if different eye 

movements are reliably elicited by different stimuli with the same speed (Turano & 

Heidenreich, 1999; Rucci & Poletti, 2015), they could manifest like suboptimal 

computations, and increase decision variable correlation. However, we believe that the 

steps we took to minimize the possible impact of uncontrolled eye movements are likely 

to have been largely successful. First, stimuli were presented for 250ms, the approximate 

duration of a typical fixation, and our stimuli were above half-max contrast for only 

~200ms. Under stimulus conditions (i.e. speeds and contrasts) similar to ours, smooth 

pursuit eye movements have a latency of 140-200ms(Spering et al., 2005). Thus, if large 

eye movements occurred, it is likely that they would have occurred only in the last fraction 

of the trial. Second, numerous reports indicate that, when estimating motion, humans and 

other primates tend to weight stimulus information more heavily at the beginning than at 

the end of trial(Yates et al., 2017). Thus, the portion of the trial in which the eyes are most 

likely to have been stable is the portion that is most likely to have contributed to the speed 

estimate. Finally, fixational eye movements (i.e. drift, microsaccades, tremor) are likely to 

have contributed to our estimate of early measurement noise, and thus would have 

equivalently impacted both human and ideal performance. Still, given that eye movements 

can impact speed percepts under certain conditions(Turano & Heidenreich, 1999; 

Freeman et al., 2010; Goettker et al., 2018), this issue should be examined rigorously in 

future experiments. 
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 There are many other possible directions for future work. First, there is a well 

established tradition of examining how changing overall contrast impacts speed sensitive 

neurons and speed perception(Thompson, 1982; Schrater et al., 2000; Weiss et al., 2002; 

Priebe et al., 2003; Priebe & Lisberger, 2004; Jogan & Stocker, 2015; Gekas et al., 2017). 

All stimuli in the current experiment were fixed to the most common contrast in the natural 

image movie set.  As overall contrast is reduced speed sensitive neurons respond less 

vigorously, and moving stimuli are perceived to move more slowly(Thompson, 1982; 

Weiss et al., 2002; Priebe et al., 2003). It is widely believed that these effects occur 

because the visual system has internalized a prior for slow speed(Weiss et al., 2002). In 

the current manuscript, rather than covering well-trodden ground, we have focused on 

quantifying how image structure (i.e. the pattern of contrast) impacts speed estimation and 

discrimination. Thus, our results likely underestimate the impact of stimulus variability on 

ideal and human performance in natural viewing. The approach advanced in this 

manuscript can be generalized to examine how changes in overall contrast impact human 

and ideal performance. The role of stimulus variability has not been examined in this 

context, and may make an interesting topic for future work. Experiments should also be 

performed with full space-time (i.e. xyt) movies, with stimuli containing looming and 

discontinuous motion(Schrater et al., 2001; Nitzany & Victor, 2014). Finally, these same 

methods could be applied to a host of other tasks in vision and in other sensory modalities. 

New databases of natural images and natural sounds with corresponding groundtruth 

information about the distal scenes will significantly aid these efforts(Adams et al., 2016; 

Burge et al., 2016; Traer & McDermott, 2016). 

Sources of performance limits 

 Efforts to determine the dominant factors that limit performance span research 

from sensation to cognition. The conclusions that researchers have reached are as 
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diverse as the research areas in which the efforts have been undertaken. Stimulus 

noise(Hecht et al., 1942), physiological optics(Banks et al., 1987), internal noise(Burgess 

et al., 1981; Pelli, 1985; Williams, 1985; Pelli, 1991), suboptimal computations(Dosher & 

Lu, 1998; Beck et al., 2012; Drugowitsch et al., 2016), trial-sequential 

dependences(Laming, 1979), and various cognitive factors(Tversky & Kahneman, 1971) 

have all been implicated as the dominant factors that limit performance. What accounts 

for the diversity of these conclusions? We cannot provide a definitive answer. The relative 

importance of these factors is likely to depend on several things.  

 Evolution has pushed sensory-perceptual systems towards the optimal solutions 

for tasks that are critical for survival and reproduction. Humans are more likely to be 

assessed as optimal when visual systems are probed with stimuli that they evolved to 

process in tasks that they evolved to perform. In target detection tasks, for example, 

humans become progressively more efficient as stimuli become more natural(Banks et 

al., 1987; Abbey & Eckstein, 2014; Sebastian et al., 2017). Conversely, when stimuli and 

tasks bear little relation to those that drove the evolution of the system, the computations 

are less likely to be optimal. A new framework—a sciences of tasks—would be useful to 

help reconcile these disparate findings.  

Image-computable ideal observers 

 Ideal observer analysis has a long history in vision science and systems 

neuroscience. In conjunction with behavioral experiments, image-computable ideal 

observers have shown that human light sensitivity is as sensitive as allowed by the laws 

of physics(Hecht et al., 1942), that the shape of the human contrast sensitivity function is 

dictated by the optics of the human eye(Banks et al., 1987), and that the pattern of human 

performance in a wide variety of basic psychophysical tasks can be predicted from first 

principles(Geisler, 1989).  



 54 

 To develop an image-computable ideal observer, it is critical to have a 

characterization of the task-relevant stimulus statistics. Obtaining such a characterization 

has been out of reach for all but the simplest tasks with the simplest stimuli. The vision 

and systems neuroscience communities have traditionally focused on understanding how 

simple forms of stimulus variability (e.g. Poisson or Gaussian white noise) impact 

performance(Hecht et al., 1942; Burgess et al., 1981; Pelli, 1985; Banks et al., 1987; 

Frechette et al., 2005). The impact of natural stimulus variability—the variation in light 

patterns associated with different natural scenes sharing the same latent variable values—

has only recently begun to receive significant attention(Geisler & Perry, 2009; Burge & 

Geisler, 2011; Kane et al., 2011; Burge & Geisler, 2012; 2014; 2015; Sebastian et al., 

2015; Schütt & Wichmann, 2017; Sebastian et al., 2017; Kim & Burge, 2018; Sinha et al., 

2018). 

 Many impactful ideal observer models developed in recent years are not image-

computable(Landy et al., 1995; Ernst & Banks, 2002; Weiss et al., 2002; Stocker & 

Simoncelli, 2006; Burge et al., 2010; Wei & Stocker, 2015). The weakness of these models 

is that they do not explicitly specify the stimulus encoding process, and therefore make 

assumptions about the information that stimuli provide about the task relevant variable 

(e.g. the likelihood function in the Bayesian framework). Consequently, these models 

cannot predict directly from stimuli how nuisance stimulus variability will impact behavioral 

variability, or explain how information is transformed as it proceeds through the hierarchy 

of visual processing stages. Image-computable models are thus necessary to achieve the 

goal of understanding how vision works with real-world stimuli. The current work 

represents an important step in that direction. 

Impact on neuroscience 
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 Behavioral and neural responses both vary from trial to trial even when the value 

of the latent (e.g. speed) is held constant. In many classic neurophysiological experiments, 

stimulus variability is eliminated by design, and experimental distinctions are not made 

between the latent variable of interest (e.g. orientation) and the stimulus (e.g. an oriented 

Gabor) used to probe neural response. Such experiments are well suited for quantifying 

how different internal factors impact neural variability. Indeed, it has recently been shown 

that, under these conditions, neural variability can be partitioned into two internal factors: 

a Poisson point-process and system-wide gain fluctuations(Goris et al., 2014). This 

approach provides an elegant account of a widely observed phenomenon (‘super-Poisson 

variability(Tomko & Crapper, 1974; Tolhurst et al., 1981; 1983)) that had previously 

resisted rigorous explanation. However, the designs of these classic experiments are 

unsuitable for estimating the impact of stimulus variability on neural response. 

 In the real world, behavioral variability is jointly driven by external and internal 

factors. Our results show that both factors place similar limits on performance. A full 

account of neural encoding and decoding must include a treatment of all significant 

sources of response variability. Partitioning the impact of realistic forms of stimulus 

variability from internal sources of neural variability will be an important next step for the 

field. 
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CHAPTER 3 

ABSTRACT 

PERCEPTUAL CONSEQUENCES OF INTEROCULAR IMBALANCES IN THE 

DURATION OF TEMPORAL INTEGRATION 

Benjamin M. Chin 

Johannes Burge 

 Temporal differences in visual information processing between the eyes can 

cause dramatic misperceptions of motion and depth. Processing delays between the 

eyes cause the Pulfrich effect: oscillating targets in the frontal plane are misperceived as 

moving along near-elliptical motion trajectories in depth (Pulfrich, 1922). Here, we 

explain a previously reported but poorly understood variant: the anomalous Pulfrich 

effect. When this variant is perceived, the illusory motion trajectory appears oriented left- 

or right-side back in depth, rather than aligned with the true direction of motion. Our data 

indicate that this perceived misalignment is due to interocular differences in neural 

temporal integration periods, as opposed to interocular differences in delay. For 

oscillating motion, differences in the duration of temporal integration dampen the 

effective motion amplitude in one eye relative to the other. In a dynamic analog of the 

Geometric effect in stereo-surface-orientation perception (Ogle, 1950), the different 

motion amplitudes cause the perceived misorientation of the motion trajectories. Forced-

choice psychophysical experiments, conducted with either different spatial frequencies 

and/or different onscreen motion damping in the two eyes, show that the perceived 

misorientation in depth is associated with the eye having greater motion damping. A 

target-tracking experiment provided more direct evidence that the anomalous Pulfrich 

effect is caused by interocular differences in temporal integration and delay. These 

findings highlight the computational hurdles posed to the visual system by temporal 
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differences in sensory processing. Future work will explore how the visual system 

overcomes these challenges to achieve accurate perception. 
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3.1 Introduction 

 Temporal processing changes with the sensory stimuli being processed. Some 

sensory signals take longer to process than others. Stimulus-based differences in 

temporal processing delays—relative latencies—have received significant attention in 

vision science and neuroscience. Luminance signals are processed more quickly than 

chromatic signals. High luminance signals are processed more quickly than low luminance 

signals. High contrast signals are processed more quickly than low contrast signals. And 

low frequency stimuli are processed more quickly than high frequency stimuli. Despite 

differences in the speed by which these signals are processed, they are integrated by the 

brain. The computational rules that govern the integration of complementary signals with 

different temporal dynamics are not yet well understood. Identifying striking perceptual 

phenomena that result from combining such signals, and developing high-fidelity tools for 

measuring and characterizing these phenomena, should aid the discovery of 

computational principles underlying the combination rules. 

 Binocular integration of information between the eyes is crucial to depth 

perception. When a scene is viewed binocularly, the images are different in the two eyes 

because of their different vantage points on the scene. The spatial differences between 

the images in the two eyes underlie stereopsis, the perception of depth from binocular 

information. Estimation of these spatial differences can be impacted by differences in 

temporal processing between the eyes, especially when the images move.  
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 Simple processing delays between the eyes cause oscillating targets in the frontal 

plane to be misperceived as moving along near-elliptical motion trajectories in depth (Fig. 

3.1AB). Such interocular delays cause effective spatial displacements in one eye relative 

to the other—a neural disparity—that results in the illusory motion in depth. This illusion is 

known as the Pulfrich effect (Pulfrich, 1922). Luminance, contrast, and blur differences 

between the eyes are all known to the effect. Two types of the Pulfrich effect have been 

reported: the classic Pulfrich effect and the reverse Pulfrich effect. In the classic Pulfrich 

effect, the eye with lower luminance or contrast is processed more slowly (Lit, 1949; 

Reynaud & Hess, 2017; Wilson & Anstis, 1969; Fig. 3.1A). In the reverse Pulfrich effect, 

the eye with lower image quality (due to blur) is processed more quickly (Burge, 

Rodriguez-Lopez, & Dorronsoro, 2019; Rodriguez-Lopez, Dorronsoro, & Burge, 2020; Fig. 

3.1B). 

 The reverse Pulfrich effect is mediated by blur-induced differences in the spatial 

frequency content between the stimuli in the two eyes (Burge et al., 2019; Rodriguez-

Lopez et al., 2020). Blurring an image low-pass filters the image: high spatial frequencies 

are selectively removed. Because high spatial frequencies are processed more slowly 

than low spatial frequencies, the sharp image is processed more slowly than the blurry 

image. Complementarily, high-pass filtering increases the proportion of high frequencies 

in the image, and causes the high-pass filtered image to be processed more slowly (Burge 

et al., 2019). Similarly, if the two eyes are stimulated by moving Gabor stimuli with different 

carrier frequencies, signals from the eye with higher frequencies are processed more 

slowly (Min, Reynaud, & Hess, 2020). Thus, simple processing delays (i.e. time shifts in 

neural responses) nicely account for the standard Pulfrich effect: the perception of illusory 

3D motion aligned with the true path of motion.  



 60 

 Anomalous Pulfrich percepts have also been reported (Emerson & Pesta, 1992; 

Harker & O'neal, 1967; Trincker, 1953; Weale, 1954). In such cases, observers report 

perceiving near-elliptical motion paths with principal axes that are rotated in depth relative 

to the true direction of motion (Fig. 3.1CD). Simple processing delays cannot explain these 

percepts. Various explanations have been proposed regarding the cause of anomalous 

Pulfrich percepts: saccadic suppression, velocity extrapolation, and perceptual distortion 

of objective visual space (Emerson & Pesta, 1992; Harker & O'neal, 1967; Trincker, 1953; 

Weale, 1954). But scientific consensus has not coalesced around any of these 

explanations. The aim of this paper is to explain this previously reported but poorly 

understood variant of the illusion. 

 
Figure 3.1. Standard and anomalous versions of the classic and reverse Pulfrich effects. A 
Standard version of the classic Pulfrich effect. A neutral density filter delays the signal in one eye 
relative to the other by decreasing luminance. B Standard version of the reverse Pulfrich effect. A 
blurring lens advances the signal in one eye relative to the other. C Anomalous version of the 
classic Pulfrich effect. D Anomalous version of the reverse Pulfrich effect. 
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 We hypothesize that anomalous Pulfrich percepts—illusory motion trajectories that 

are rotated in depth with respect to the true motion trajectory—are caused by differences 

in the duration of time over which each eye integrates visual information; that is, different 

temporal integration periods. To understand this hypothesis, consider the temporal 

dynamics of sensory processing. The neural response to a sensory stimulus evolves over 

time. This temporal evolution can be described by an impulse response function. For a 

moving stimulus, the effective position over time of the neural image is impacted by this 

impulse response function. If the impulse response function in one eye is delayed relative 

to the impulse response function in the other eye (i.e. they are time-shifted copies of each 

other), stereo-geometry predicts the standard Pulfrich effect, when oscillatory motion is 

presented (Fig. 3.2AB). If, on the other hand, the impulse response function in one eye is 

both delayed and has a longer temporal integration period than the impulse response 

function in the other eye, then the amplitude of the effective motion signal will be damped 

in that eye relative to the other eye (Fig. 3.2CD). In this case, stereo-geometry predicts 

the anomalous Pulfrich effect: illusory motion-in-depth along a trajectory that is misaligned 

with the true direction of motion (see Fig. 3.1CD and Discussion).  

 Informally, we have most often observed anomalous Pulfrich percepts when there 

is different spatial frequency content in the two eyes. It is well-known that different spatial 

frequencies are processed both with different delays and with temporal integration periods 

of different durations. Neurons in early visual cortex (V1) and the middle-temporal area 

(MT) respond to higher spatial frequencies with more delay and longer temporal 

integration periods, all else equal (Bair & Movshon, 2004; Frazor, Albrecht, Geisler, & 

Crane, 2004; Vassilev, Mihaylova, & Bonnet, 2002). Psychophysical experiments have 

shown that human perceptual responses are similarly affected by spatial frequency (Levi, 

Harwerth, & Manny, 1979).  
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 Here, with a traditional two-alternative forced choice (2AFC) paradigm previously 

used to study the Pulfrich effect, we first presented different spatial frequencies to the two 

eyes and asked observers to report the perceived orientation of the motion trajectory in 

depth (‘left side back’ vs ‘right-side back’; see Fig. 3.1CD). Anomalous (i.e. non-fronto-

parallel) motion trajectories were reported in the expected direction. Next, to confirm that 

effective motion damping in the eye with the higher spatial frequency was indeed the 

proximal cause of anomalous Pulfrich percepts, we presented identical stimuli in the two 

eyes and independently damped the onscreen amplitudes of the left and right eye motion 

trajectories. Again, anomalous Pulfrich percepts occur as expected directions. Then, we 

conducted an experiment with multiple levels of onscreen damping and measured 

psychometric functions. This experiment allowed us to estimate the relative neural 

damping caused by interocular differences in spatial frequency.  

 
Figure 3.2. Predicting standard and anomalous Pulfrich percepts. Temporal impulse response 
functions (top) and effective neural image positions over time (bottom) for the left (blue) and right 
(red) eyes when A processing in the right eye is delayed relative to the left, B processing in the left 
eye is delayed relative to the right, C processing in the right eye is delayed and damped (due to a 
longer temporal integration period) relative to the left, and D processing in the left eye is delayed 
and damped relative to the right. Standard Pulfrich percepts result from delays only. Anomalous 
Pulfrich percepts result when the effective motion trajectory in one eye is both delayed and damped 
relative to the other (see Discussion). 
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 Finally, with a recently developed target-tracking paradigm for continuous 

psychophysics that uses hand movement as the measure of response, we demonstrate 

that the visuomotor system processes high spatial frequencies with more delay and longer 

temporal integration periods than low spatial frequencies. These results dovetail with 

those from the traditional forced-choice experiments. Previous studies have shown that 

delays in sensory processing are faithfully preserved in the movement of the hand (Burge 

& Cormack, 2020). (Similar findings have been reported for the smooth pursuit eye 

movements of the oculomotor system; Lee, Joshua, Medina, & Lisberger, 2016). We 

conclude that differences in temporal integration between the eyes can cause anomalous 

Pulfrich percepts. 

3.2 Results  

 We conducted four separate experiments to test the hypothesis that mismatched 

temporal integration periods can cause anomalous Pulfrich percepts. We used a within-

subjects design. The first three experiments used a traditional forced choice paradigm. 

Observers binocularly viewed an oscillating Gabor stimulus and indicated the perceived 

orientation of its motion trajectory in depth. The fourth experiment was conducted using 

continuous target-tracking psychophysics (Bonnen, Burge, Yates, Pillow, & Cormack, 

2015; Bonnen, Huk, & Cormack, 2017; Burge & Cormack, 2020; Knöll, Pillow, & Huk, 

2018; Mulligan, Stevenson, & Cormack, 2013). Observers manually tracked a randomly 

moving Gabor stimulus with a cursor. The results of all experiments support the conclusion 

that different temporal integration periods can cause differential motion damping in the two 

eyes, and that this differential damping is the cause of anomalous Pulfrich percepts.  

Experiment 1: Neural damping with mismatched spatial frequencies in the two eyes 
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 Experiment 1 was designed to establish the dependence of the 

anomalous Pulfrich effect on spatial frequency. On each trial, the observer was 

dichoptically presented an oscillating Gabor stimulus. The onscreen disparities specified 

a near-elliptical trajectory in depth that was aligned with the screen.  

 A different carrier spatial frequency was presented to each eye. Under our working 

hypothesis, the Gabor with the higher spatial frequency should be processed with more 

delay and (crucially) with a longer temporal integration period than the lower frequency 

Gabor in the other eye. The longer temporal integration period should cause damping of 

the effective motion in that eye. The damping, in turn, should cause the illusory orientation 

of the motion trajectory in depth. We predict that observers will report more ‘left-side-back’ 

orientations when the left eye has the lower spatial frequency, and more ‘right-side-back’ 

orientations when the right eye has the lower spatial frequency (Fig. 3.3AB).  

 Observers were asked to report the apparent orientation of the motion trajectory in 

depth by indicating with a key press whether the principal axis of the trajectory appeared 

rotated left-side-back or right-side-back from the plane of the screen. Recall that the 

onscreen disparities specified that the motion trajectory was aligned with the screen. 

Absent eye-specific effects of spatial frequency, observers should not perceive left- and 

right-side-back orientations, such that each response is equally probable. If, on the other 

hand, if the two spatial frequencies are processed with different temporal integration 

periods, observers should report more ‘right-side-back’ orientations when the right eye 

has the lower spatial frequency, and vice versa. 
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 Observers reported more ‘right-side back’ orientations of the perceived motion 

trajectory in depth when the right eye contained the lower frequency and more ‘left-side 

back’ orientations when the left eye contained the lower frequency (Fig. 3.3CD; also see 

Fig. 3.S1). In one observer, the effect appeared in all four conditions. For three observers, 

this effect was present in three out of the four conditions. This pattern of results is 

consistent with the experimental hypothesis. The null hypothesis is that spatial frequency 

has no effect on perceived orientation. Thus, if the null hypothesis was correct, observers 

should have reported right-side back orientations 50% of the time regardless of whether 

the left or right eye was presented the higher spatial frequency. We performed binomial 

tests on the group data to determine whether the null hypothesis could be rejected (see 

Methods). The tests rejected the null hypothesis for interocular spatial frequency 

combinations of 1cpd vs. 3cpd (p<0.01), 2cpd vs. 4cpd (p<0.001), and 3cpd vs. 6cpd 

(p<0.001), but not 1cpd vs. 2cpd (p=0.25). These results are largely consistent with the 

hypothesis that higher frequencies are processed by the visual system with longer 

temporal integration periods.  
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 Conditions in which the left eye was stimulated with the lower spatial frequency 

(e.g. 1cpd to the left eye, 3cpd to the right eye; Fig. 3.3A) were interleaved with conditions 

in which the right eye was stimulated the lower spatial frequency (e.g. 3cpd to the left eye, 

1cpd to the right eye; Fig. 3.3B). There are two benefits to this design. First, idiosyncratic 

block-specific response biases that may be present on a given block should be equally 

distributed amongst both conditions and have little effect on the final results. Second,  

because humans are poor at utrocular discrimination, it is difficult to determine which of 

the two eyes are being presented a given stimulus (Blake & Cormack, 1979; Schwarzkopf, 

Schindler, & Rees, 2010). Intermixing conditions ensures that, on any given trial, 

observers were unclear about which eye was being presented which stimulus. Hence, it 

would be quite difficult for observers to deliberately respond in a manner consistent with 

the experimental hypothesis.  
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Figure 3.3. Experiment 1 stimuli, conditions, and results. A A low frequency Gabor in the left eye 
and a high frequency Gabor in the right eye predicts that the target will be perceived as moving 
along a trajectory oriented left-side-back in depth. B A high frequency Gabor in the left eye and a 
low frequency Gabor in the right eye predicts that the target will be perceived as moving along a 
trajectory oriented right-side-back in depth. Although fusion was imperfect, all observers reported 
percepts of motion in depth. C Mean-centered results from one observer (see Methods). A different 
spatial frequency was presented to each eye. In all cases, ‘right-side back’ orientations were 
reported less often when the low frequency was in the left eye, and more often when the low 
frequency was in the right eye and. D Results combined across observers. Note that the 2cpd vs. 
6cpd condition is absent from this plot. In the screening phase (see Methods), no observers other 
than observer S1 were able to fuse the stimuli in this condition, even when large onscreen 
disparities were present. 
 
 Presenting substantially different images to the two eyes in a task that is supported 

in part by stereopsis raises concerns about poor binocular fusion. We screened eight 

observers for their ability to fuse and perform a stereo-motion task with mismatched stimuli 

in the two eyes (see Methods). Four of the eight screened observers were able to perform 

the task. That is, four of eight observers reported seeing depth and were able to acceptably 

fuse the target when large binocular disparities were presented onscreen.  
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Figure 3.4. Experiment 2 stimuli, conditions, and results. A When the eyes are presented Gabors 
with the same spatial frequency, but the right-eye motion amplitude is damped (and delayed) 
onscreen, stereo-geometry specifies a near-elliptical motion trajectory that is oriented left-side back 
with respect to the screen. B When the eyes are presented Gabors with the same spatial frequency, 
but the left-eye motion amplitude is damped (and delayed) onscreen, stereo-geometry specifies a 
near-elliptical motion trajectory that is oriented right-side back with respect to the screen. C Mean-
centered results from one observer. For all frequencies, responses are consistent with stereo-
geometry-based predictions. Error bars indicate ±1 standard error. D Combined results across all 
observers. 
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 In Experiment 1, our hypothesis is that the effective motion amplitude in one eye 

was damped because a higher spatial frequency was presented to that eye. Assuming the 

hypothesis is correct, Experiment 1 therefore manipulated motion amplitude indirectly. 

Experiment 2 was designed to provide direct evidence that damping the motion signal in 

one eye changes the perceived orientation of the motion trajectory in depth with respect 

to the screen. Experiment 2 is distinguished from Experiment 1 by two major design 

changes. First, the motion amplitude was damped onscreen rather than manipulated 

indirectly via interocular spatial frequency differences (Fig. 3.4AB). The resulting onscreen 

disparities specified a motion trajectory in depth with a principal axis that was misaligned 

with the screen. Unlike in Experiment 1, identical Gabors—with the same spatial 

frequencies used in Experiment 1—were presented to the two eyes. Matched Gabors 

alleviate the fusion difficulties associated with mismatched Gabors. More importantly, 

because the Gabors were matched, neural processing delays and temporal integration 

periods should be matched between the eyes.  
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 The task performed by each observer was the same as in Experiment 1. Observers 

reported both whether the perceived motion trajectory appeared to be oriented ‘left-side 

back’ or ‘right-side back’ with respect to the screen. When the right-eye onscreen motion 

amplitude was damped relative to the left-eye onscreen motion amplitude, observers more 

often reported trajectories that were oriented left-side back. When the left-eye onscreen 

motion amplitude was damped relative to the right-eye motion amplitude, observers more 

often reported trajectories that were oriented right-side back (Fig. 3.4CD; also see Fig. 

3.S2). This data is similar to that collected in the first experiment. Recall that, under the 

working hypothesis, the mismatched Gabors in Experiment 1 should yield mismatched 

temporal integration periods between the eyes. The mismatched temporal integration 

periods, in turn, cause differential neural damping of the effective motion amplitude in the 

two eyes. The fact that the data exhibits similar patterns in the two experiments suggests 

that similar percepts result from differential onscreen damping, on one hand, and 

differential neural damping that results from mismatched Gabors in the two eyes, on the 

other.  

Experiment 3: Estimating the magnitude of neural damping  

 Experiment 3 was designed to measure the amount of neural damping that is 

induced by mismatched frequencies in the two eyes. The logic of the design is as follows: 

If anomalous Pulfrich percepts are due to neural damping differences in addition to neural 

delays, it should be possible to find the onscreen damping differences that eliminate the 

perceived orientation of the motion-in-depth trajectory. These onscreen damping 

differences should be equal in magnitude but opposite in sign of the neural damping 

differences that are induced by mismatched spatial frequencies in the two eyes.  
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 We collected psychometric functions with onscreen damping difference as the 

independent variable in each condition, and measured the proportion of times that 

observers reported motion trajectories that were oriented ‘right side back’ with respect to 

the screen. The resulting psychometric functions are shown in Fig. 3.5A (also see Fig. 

3.S3). The point of subjective equality (PSE) in each condition indicates the onscreen 

damping that is equal in magnitude and opposite in sign to the corresponding neural 

damping. When the right eye had the higher spatial-frequency stimulus, the left-eye 

onscreen motion had to be damped to eliminate anomalous Pulfrich percepts, and vice 

versa (Fig. 3.5BC; also see Fig. 3.S4). This finding held across all tested frequency 

combinations. These results further support the hypothesis that stimulus-induced 

differences in temporal integration periods cause neural motion damping that can be 

neutralized by onscreen motion damping.  
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Figure 3.5. Experiment 3 stimuli, conditions, and results. A Psychometric functions from the first 
human observer for five different frequency pairs (i.e. 1cpd vs 3cpd, 1cpd vs 2cpd, 2cpd vs 6cpd, 
2cpd vs 4cpd, and 3cpd vs 6cpd). When the left eye had the lower frequency stimulus, the 
psychometric functions were shifted consistently to the left (blue points and curves), indicating that 
the left-eye motion amplitude had to be damped onscreen to null the perceived orientation in depth. 
When the right eye had the lower frequency stimulus (red points and curves), the psychometric 
functions were shifted consistently to the right, indicating that the right-eye motion amplitude had 
to be damped onscreen to null the perceived orientations in depth. B Mean-centered points of 
subjective equality (PSEs; arrows in A) in each condition for one observer (see Methods). The 
PSEs are estimates of the amount of onscreen damping required to null the perceived orientations 
associated with different spatial frequencies in the two eyes. C Mean-centered PSEs averaged 
across all observers. Error bars represent bootstrapped ±1 standard errors on the points of 
subjective equality. Note that the 2cpd vs. 6cpd conditions are absent from this subplot. In the 
screening phase (see Methods), no observers other than observer S1 were able to perform the 
task in these conditions.  
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 The results from the first three experiments i) establish that mismatched spatial 

frequencies in the two eyes cause anomalous Pulfrich percepts, ii) demonstrate that 

damping the onscreen motion amplitude in one eye causes anomalous Pulfrich percepts 

with matched spatial frequencies in the two eyes, and iii) show that onscreen damping can 

eliminate spatial-frequency-induced anomalous Pulfrich percepts. Together, these results 

suggest that different temporal integration periods between the eyes are the root cause of 

spatial-frequency-induced anomalous Pulfrich percepts. The evidence for this conclusion, 

however, is indirect. To gain more direct evidence that mismatched frequencies induce 

interocular differences in temporal integration, Experiment 4 made use of an entirely 

different paradigm: continuous target-tracking psychophysics  (Bonnen et al., 2015).  
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Figure 3.6. Effects of spatial frequency on target tracking performance for the first human observer. 
A On each trial, the observer tracked, with a mouse cursor (black dot at the center of the screen), 
a Gabor stimulus following a horizontal random walk across the center of the screen. B Example 
target-tracking performance on a single trial. The solid black trace indicates the horizontal random 
walk taken by the stimulus (1cpd Gabor). The blue trace indicates the position of the observer’s 
cursor. C Cross-correlograms in the target tracking task derived from target-tracking performance. 
The cross-correlograms change systematically as a function of spatial frequency (colors). D The 
temporal integration period (i.e. full-width at half-height) increases from approximately 115ms to 
165ms as spatial frequency increases from 1cpd to 6cpd. E The amplitude spectra of the cross-
correlograms provide an estimate of the amount of effective motion damping for each of many 
temporal frequencies. The inset shows the estimated amount of visuomotor motion damping for 
each spatial frequency at 1.0htz, the temporal frequency of the motion stimulus in the 2AFC 
experiments. 
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 Using a mouse, observers manually tracked one of five Gabor targets at a time 

(Fig. 3.6A). The Gabor targets had carrier spatial frequencies of 1cpd, 2cpd, 3cpd, 4cpd, 

and 6cpd. These spatial frequencies were matched to those used in the previous 

experiments. For example, spatial frequencies of 1cpd and 3cpd were used in the target-

tracking task because conditions in the previous experiments involved presenting a 1cpd 

Gabor to one eye and a 3cpd Gabor to the other. Throughout each run, the target 

underwent a horizontal random walk on the screen (Fig. 3.6B). The task was performed 

without difficulty. The cross-correlation between the target and response motions provides 

information about the temporal processing of the visuo-motor system. If the visuomotor 

system is linear, the cross-correlogram equals an estimate of the temporal impulse 

response function when the target velocities are white noise, which they are here by 

design.  
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Figure 3.7. Comparison of 2AFC-based vs. target-tracking-based estimates of motion damping. A 
Results for the first observer. The best-fit line via weighted linear regression (solid), and the unity 
line (dashed) are also shown. Error bars on data points indicate 68% bootstrapped confidence 
intervals.  B Average results across all observers (see Methods). C Results for each of the other 
three observers.  
 
 The cross-correlograms are broader in time as spatial frequency increases (Fig. 

3.6CD). The amplitude spectra of the cross-correlograms indicate the proportion by which 

each spatial frequency is damped as a function of temporal frequency (Fig. 3.6E, see 

Methods). The inset shows at 1.0htz—the temporal frequency at which targets oscillated 

in the 2AFC forced-choice experiments (i.e. Exp. 1-3)—the motion amplitude of the 

visuomotor response in the tracking task decreases as spatial frequency increases. (The 

same is true for other temporal frequencies.) In other words, the amplitude of the 

visuomotor response is damped increasingly more as target spatial frequency increases. 

 To examine whether the visuomotor damping estimated in the target tracking task 

(Exp. 4, see Fig. 3.6E) can predict the effective sensory-perceptual motion damping 
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estimated in the 2AFC forced-choice task (Exp. 3, see Fig. 3.5), we plotted the estimates 

of damping from the two experiments against each other. For the first human observer, 

the damping estimates are strongly correlated (r=0.90; p<0.04; Fig. 3.7A). The group 

average shows a similar trend (r=0.98; p=0.02; Fig. 3.7B). For all observers but one, the 

same qualitative pattern exists: sensory-perceptual- and tracking-based estimates of 

motion damping increase together. However, the slopes of the best-fitting lines vary 

substantially across observers (Fig. 3.7C). It will therefore be difficult, on an observer-by-

observer basis, to predict the magnitude of the visuomotor motion damping in the tracking 

task from estimates of visual motion damping in the forced-choice task, or vice versa (see 

Discussion). Nevertheless, these results are consistent with the hypothesis that effective 

motion damping underlies anomalous Pulfrich percepts.  

3.3 Methods 

Participants 

 Four human observers participated in the experiment. Three observers were male 

and one observer was female. One was an author and the rest were naïve to the purposes 

of the experiment. All had normal or corrected to normal visual acuity (20/20), and normal 

stereoacuity as determined by the Titmus Stereo Test. The observers were aged 23, 26, 

27, and 42 years old at the time of the measurements. All observers provided informed 

consent in accordance with the Declaration of Helsinki using a protocol approved by the 

Institutional Review Board at the University of Pennsylvania. 

Apparatus 

 Stimuli were presented on a custom four-mirror stereoscope. Left- and right-eye 

images were presented on two identical Vpixx VIEWPixx LED monitors. The monitors 

were 52.2x29.1cm, with a spatial resolution of 1920x1080 pixels, a refresh rate of 120Hz, 

and a maximum luminance of 105.9cd/m2. After light loss due to mirror reflections, the 
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maximum luminance was 93.9cd/m2. The gamma function of each monitor was linearized 

using custom software routines. A single AMD FirePro D500 graphics card with 3GB 

GDDR5 VRAM controlled both monitors to ensure that the left and right eye images were 

presented simultaneously. To overcome bandwidth limitations of the monitor cables, 

custom firmware was written so that a single color channel drove each monitor; the red 

channel drove the left monitor and the green channel drove the right monitor. The single-

channel drive to each monitor was then split to all three channels for gray scale 

presentation.  

 Observers viewed the monitors through a pair of mirror cubes positioned one inter-

ocular distance apart. The mirror cubes had 2.5cm openings. Given the eye positions 

relative to the openings, the field of view through the mirror cubes was ~15x15º. The outer 

mirrors were adjusted such that the vergence distance matched the 100cm distance of the 

monitors. This distance was confirmed both by a laser ruler measurement and by a visual 

comparison with a real target at 100cm. At this distance, each pixel subtended 1.09arcmin. 

Stimulus presentation was controlled via the Psychophysics Toolbox-3 (Brainard, 1997). 

Anti-aliasing enabled sub-pixel resolution permitting accurate presentations of disparities 

as small as 15-20arcsec. Heads were stabilized with a chin and forehead rest. 

Forced-choice psychophysics target motion 

 For the forced-choice psychophysics experiments, we simulated the classic 

pendulum Pulfrich stimulus on the display. For each trial, the left- and right-eye on-screen 

bar positions in degrees of visual angle were given by  

 x"(t) = E" cos(2πω ∙ (t + ∆t) + ϕ2)      (1a) 
 
 x3(t) = E3 cos(2πω ∙ (t) + ϕ2)      (1b) 
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where E" and E3  are the left- and right-eye motion amplitudes in degrees of visual angle, 

 is the on-screen delay between the left- and right-eye target images, w is the temporal 

frequency of the target movement,  is the starting phase, and  is time in seconds.  

 The undamped motion amplitude was 1.5º of visual angle (3.0º total change in 

visual angle in each direction). The maximum onscreen motion damping in one eye (20%) 

corresponded to 80% (1.2º of visual angle) of the undamped amplitude in the other. The 

range of particular damping values was adjusted to the sensitivity of each observer. The 

on-screen interocular delays were set at +25ms. The temporal frequency was 1 cycle per 

second. The starting phase  was randomly chosen on each trial to equal either 0 or , 

which forced the stimuli to start either to the left or to the right of center. 

 When the onscreen interocular difference in motion amplitude equals zero and the 

onscreen interocular delay is zero, the target moves in the frontoparallel plane at the 

distance of the screen; the onscreen disparities are zero throughout the trial. If the 

interocular difference in motion amplitude is non-zero and/or if the interocular delay is non-

zero spatial binocular disparities result, and the disparity-specified target follows a motion-

in-depth trajectory outside the plane of the monitor. Differences in motion amplitude cause 

a disparity-specified misalignment in depth of the motion trajectory. Non-zero delays 

cause a disparity-specified elliptical trajectory of motion in depth. Negative delay values 

indicate the left-eye on-screen image is delayed relative to the right; positive delay values 

indicate the left eye on-screen image is advanced relative to the right.  

 The on-screen binocular disparity for a given interocular delay and damping as a 

function of time is given by 

∆x(t) = x3(t) − x"(t) = 5E"6 + E36 − 2E"E3 cos(2πω ∙ ∆t) cos(ϕ2) ∙ 

																																																																																		cos 82πωt − tan;< = >?@AB	(6CD∙∆E)
>F;>?@AB	(6CD∙∆E)

GH    (2) 

Δt

φ0 t

 φ0 π
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where negative disparities are crossed (i.e. nearer than the screen) and positive disparities 

are uncrossed (i.e. farther than the screen). The disparity takes on its maximum magnitude 

when the perceived stimulus is directly in front of the observer and the lateral movement 

is at its maximum speed. The maximum disparity in visual angle is given by ∆xIJK =

5E"6 + E36 − 2E"E3cos	(2πω ∙ ∆t)and it occurs when t = tan;< = >?@AB	(6CD∙∆E)
>F;>?@AB	(6CD∙∆E)

G /2πω. Note 

that we did not temporally manipulate when left- and right-eye images were presented on-

screen; both eyes’ images were presented coincidently on each monitor refresh. Rather, 

we calculated the disparity  given the target velocity and the desired on-screen 

delay on each time step, and appropriately shifted the spatial positions of the left- and 

right-eye images. 

 Two sets of five vertically-oriented picket-fence bars (0.25x1.00º) flanked the 

region of the screen traversed by the target stimulus. The picket fences were specified by 

disparity to be at the screen distance. A 1/f noise texture, also defined by disparity to be 

at the screen distance, covered the periphery of the display. Both the picket fences and 

the 1/f noise texture served as stereoscopic references to the screen distance and helped 

to anchor vergence. 

 Before the target appeared on each trial, a small dot appeared 1.5º to the left of 

center or 1.5º right of center at the location of imminent target appearance. Observers 

were instructed to fixate the dot and then, after the target appeared, fixate and follow the 

target throughout the trial. In pilot experiments, we found that if observers did not follow 

the target with their eyes, the highest spatial frequency Gabor occasionally appeared to 

vanish during the trial at and near when it hit top speed (i.e. 6cpd). Observers reported 

whether the perceived motion trajectory was oriented left-side back or right-side back from 

∆ x = !x∆ t
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frontoparallel. All experiments used a one-interval, two-alternative forced choice 

procedure.  

Forced-choice psychophysics stimuli 

 The same Gabor targets were presented in the forced-choice psychophysical 

experiments as in the tracking experiments. A vertically-oriented Gabor is given by the 

product of a sinewave carrier and a Gaussian envelope  

 G(x, y) = gaussRx, y; σK, σUVcos(2πfx + ϕ)     (3) 
 
where σK and σU are the standard deviation in X and Y of the Gaussian envelope, f is the 

frequency of the carrier, and ϕ is the phase. Five Gabor targets with different carrier 

frequencies were used: 1cpd, 2cpd, 3cpd, 4cpd, and 6cpd. All had the spatial size because 

all had same Gaussian envelope (σK = 0.39 and σU = 0.32). The octave bandwidths thus 

equaled 1.5, 0.7, 0.46, 0.35, 0.23 and the orientation bandwidths equaled 60º, 32º, 22º, 

16º, and 11º, respectively. The phase of the carrier frequency was equal to 0.0 for all 

Gabor stimuli (i.e. all Gabors were in cosine phase). 

 Experiment 1 presented Gabors with different spatial frequencies in the two eyes. 

Data was collected in blocks with an intermixed design. For example, blocks containing 

conditions in which the left and right eyes were respectively presented 1cpd and 3cpd 

Gabors were intermixed with conditions in which the left and right eyes were presented 

3cpd and 1cpd Gabors. In each condition, we used two values of interocular delay. The 

increased neural temporal integration period associated with high spatial frequencies 

served to dampen the effective motion amplitude in one eye relative to the other. Human 

observers have poor utrocular discrimination; humans have significant difficulty 

determining which eye is being presented a given stimulus (Blake & Cormack, 1979; 

Schwarzkopf et al., 2010). Intermixing conditions ensured that, on any given trial, 

observers—even non-naïve observers—were unclear about which eye was being 
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presented which stimulus. Thus, observers—even non-naïve observers—would be unable 

to determine, on a given trial, which response was consistent with the experimental 

hypothesis.   

 Experiment 2 presented Gabors with the same spatial frequency in the two eyes, 

and used two interocular delays and two damping values. We chose damping values that 

made the orientation of the near-elliptical trajectory in depth (‘left side back’ vs. ‘right side 

back’) easy for the observers to identify.  

 Experiment 3 was designed to measure observer sensitivity to interocular 

differences in motion amplitude (i.e. damping). Experiment 3 thus measured full 

psychometric functions in each condition using the method of constant stimuli. Seven 

different levels of damping were collected for each function. The psychometric functions 

were fit with a cumulative Gaussian via maximum likelihood methods. The 50% point on 

the psychometric function—the point of subjective equality (PSE)—indicates the onscreen 

motion damping needed to null the relative motion damping due to spatial frequency 

differences. Observers ran 140 trials per condition (i.e. 140 trials per psychometric 

function) in counter-balanced blocks of 70 trials each.  

Mean-centering of effects 

 Data from Experiments 1-3 were mean-centered for pairs of matched conditions. 

Matched conditions were those involving the same spatial frequencies (e.g. 1cpd vs. 3cpd 

and 3cpd vs. 1cpd). The proportion of ‘right-side back’ responses or effective damping 

was mean-centered across matched conditions according to the following equation:  

       (4a) 

       (4b)  
 

Ψ L
* = Ψ L − Ψ L +ΨR( ) / 2+Ψ0

ΨR
* = ΨR − Ψ L +ΨR( ) / 2+Ψ0
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 For Exp. 1,  represents the proportion of ‘right-side back’ responses, where  

and  respectively correspond to conditions where the left eye, or the right eye, were 

presented the lower spatial frequency. For Exp. 2,  also represents the proportion of 

‘right-side back’ responses, and  and  respectively correspond to conditions where 

the onscreen motion was damped in the left eye, or in the right eye. For Exp. 3,  

represents the psychophysical estimate of onscreen motion damping, , that is required 

to null the neural damping, and  and  correspond to the condition in which 

onscreen motion was damped in the left-eye, or in the right eye, respectively. In 

Experiments 1 and 2,  has a value of 0.5. In Experiment 3,  has a value of 0%.  

Binomial test for significance 

 Under our working hypothesis, ‘right-side back’ responses should be reported 

more often when the effective motion-amplitude in the left eye is smaller than that in the 

right eye. Similarly,  when the effective motion-amplitude in the right eye is smaller than 

that in the left eye, ‘right-side back’ responses should be reported less often. The null 

hypothesis predicts that there will be no difference in the proportion of ‘right-side back’ 

responses across two matched conditions (e.g. 1cpd vs. 3cpd and 3cpd vs. 1cpd). To 

determine whether the proportions of ‘right-side back’ responses differed significantly from 

those predicted by the null hypothesis, we used a binominal test. Under the null 

hypothesis, the probability, , of the observed response proportions is given by 

   (5) 
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where  is the number of trials in a given condition,  is the probability of the observer 

responding ‘right-side back’ in each of the two matched conditions under the null 

hypothesis (i.e., 0.5), and  is the difference in the number of ‘right-side back’ responses 

between two matched conditions.  

Reliability-weighted averaging of estimated motion damping 

 PSEs estimates in Experiment 3 were averaged across observers using reliability-

weighted averaging: 

 ,       (6a,b) 

 
where  is the estimate of motion damping for a given condition, averaged across all 

observers.  is the number of observers and  is the standard error of motion damping 

estimates (as determined by 68% bootstrapped confidence intervals). Reliability-weighted 

averaging takes into consideration differences in the reliability of damping estimates 

across observers. These differences in reliability arise because some observers are more 

sensitive to onscreen motion damping than others. It is well-known from signal detection 

theory that greater sensitivity in a task is associated with more reliable estimates of the 

point of subjective equality (here, estimates of motion damping).  

Estimated relationship between forced-choice- and target-tracking-based motion damping 

estimates 

 The relationship between 2AFC-based and target-tracking-based estimates of 

motion damping was fit with a line via weighted linear regression. Since estimates of 

motion damping from both tasks have associated uncertainty, simple linear regression is 

not appropriate. This is because simple linear regression assumes that one of the 

variables is independent, and thus has no associated uncertainty. We fit the parameters 
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of the best-fit line with maximum likelihood methods using numerical optimization. The 

cost function was  

 (7) 

where  is the total number of conditions for an observer,  is the experiment-derived 

estimate of motion damping for a given condition,  is a free parameter indicating the 

expected amount of motion damping for a given condition,  is the standard error of the 

motion damping estimate for a given condition (as determined by 68% bootstrapped 

confidence intervals),  is the y-intercept of the best fit line, and  is the slope of the best 

fit line.  

Observer screening 

 Before inclusion in the main experiments, observers were screened for their ability 

to perform the task when the spatial frequencies in the two eyes differed by a factor of 

three. During this screening phase, the onscreen motion amplitude differed in the two eyes 

by a large amount of up to 20%. These onscreen amplitude differences caused the stereo-

specified motion trajectory to be misaligned with the screen. If an observer was unable to 

correctly report the direction of the stereo-specified misalignment at least 80% of the time, 

no further data was collected from that observer. Four out of eight screened observers 

were excluded from the study on this basis. The excluded observers all reported difficulty 

fusing and difficulty seeing any stereo-specified depth at all. The pilot data is consistent 

with these reports.  

Target-tracking procedure 

 Tracking data was collected from each observer in blocks of individual runs. Each 

run was initiated with a mouse click, which caused the target and a small dark mouse 

cursor to appear in the center of the screen. After a stationary period of 500ms, the target 
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began a one-dimensional horizontal random walk (i.e. Brownian motion) for eleven 

seconds. The task was to track the target as accurately as possible with a small dark 

mouse cursor. Blocks contained intermixed runs from each of the four conditions. 

Target-tracking psychophysics: Onscreen stimuli 

 Data was collected in five conditions, each of which was distinguished by a 

different target Gabor stimulus. Each Gabor target had one of five different carrier 

frequencies: 1cpd, 2cpd, 3cpd, 4cpd, and 6cpd. All Gabor targets shared the same 

Gaussian envelope (𝜎Y=0.39º & 𝜎Z=0.32º), and subtended approximately 2.0ºx2.0º of 

visual angle (i.e. five sigma). Hence, in the five conditions, the octave bandwidths equaled 

1.5, 0.7, 0.46, 0.35, and 0.23 and the orientation bandwidths equaled 60º, 32º, 22º, 16º, 

and 11º, respectively. Data was collected in five intermixed blocks of twenty runs each for 

a total 20 runs per condition. 

Target-tracking psychophysics: Target motion 

 For the tracking experiments, the target stimulus performed a random walk on a 

gray background subtending 10.0x7.5º of visual angle, and was surrounded by a static 

field of 1/f noise. The region of the screen traversed by the target was flanked by two 

horizontal sets of thirteen vertically-oriented picket fence bars (Fig. 3.6A).  

 The x-positions of the target on each time step  were generated as follows 

 

        (8) 
  

where  is a random sample of Gaussian noise and  is the drift variance. The random 

sample determines the change in target position between the current and the next time 

step. The drift variance determines the expected magnitude of the position change on 

each time step, and hence the overall variance of the random walk. The variance of the 

walk positions across multiple walks  is equal to the product of the drift variance 

t +1

x t +1( ) = x t( )+ ε x  ;     ε x ~ N 0,Q( )
ε x Q

σ 2 t( ) =Qt
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and the number of elapsed time steps. The value of the drift variance in our task (0.8mm 

per time step) was chosen to be as large as possible such that each walk would traverse 

as much ground as possible while maintaining the expectation that less than one walk out 

of 500 (i.e. less than one per human observer throughout the experiment) would escape 

the horizontal extent of the gray background area (176x131mm) before the 11 second trial 

completed. 

 The effective on-screen positions of the images are obtained by convolving the 

on-screen target images with the temporal impulse response function  

         (9) 
 
where is a temporal impulse response function corresponding to a specific frequency. 

Convolving the target velocities with the impulse response function gives the velocities of 

the effective target images. Integrating these velocities across time gives the effective 

target positions. 

 To determine the impulse response function relating the target and response, we 

computed the zero-mean normalized cross-correlations between the target and response 

velocities 

     (10) 

 
where  is the lag,  and  are the target and response velocities. Assuming a linear 

system, when the input time series (i.e. the target velocities) is white, as it is here by 

design, the cross-correlation with the response gives the impulse response function of the 

system. 

 To compute the normalized cross-correlations, we did not include the first second 

of each eleven second tracking run so that observers reached steady state tracking 

performance. The mean cross-correlation functions shown in the figures were obtained by 
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first computing the normalized cross-correlation in each run (Eqn. 10), and then averaging 

these cross-correlograms across runs in each condition. 

Gamma distribution fits to mean cross-correlograms 

 To summarize the mean cross-correlograms, we fit a Gamma distribution function 

using maximum likelihood methods. The form of the fitted function was given by 

      (11) 

 
where 𝐴 is the amplitude, and 𝑚, 𝑠, and  are the parameters determining the shape and 

scale of the fit. The mode (i.e. peak) of the function is given by . We use the mode as 

our measure of delay. The full-width at half-height can be used as a measure of the 

temporal integration period, and can be computed via numeric methods. The damping 

associated with a given fitted function is given by the value of the normalized amplitude 

spectrum at the temporal frequency of the stimulus, which in the current experiments is 

one cycle per second. 

3.4 Discussion 

 In this manuscript, we presented evidence that anomalous Pulfrich percepts—

illusory motion trajectories in depth misaligned with the true direction of motion—are 

caused by interocular differences in temporal integration periods in the two eyes. This 

specific perceptual effect, and the reasons it occurs, have more general implications.  

 The integration of multiple complementary streams of incoming information with 

different temporal dynamics is fundamental to the performance of biological systems. In 

most cases, sensory-perceptual systems successfully solve this temporal binding 

problem, and compute accurate estimates of environmental properties. In some cases, 

the visual system fails to compensate for temporally mismatched signals, and inaccurate 

estimates result. Such cases are instructive. They can help reveal fundamental properties 
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about the temporal nature of sensory signals, and make plain the striking perceptual 

consequences of insufficient compensatory mechanisms.  

 In this discussion section, we contextualize the anomalous Pulfrich effect with 

reference to other areas of vision research, consider how visual and visuomotor measures 

of performance are related, and discuss potential future directions. 

Analogy to the Geometric effect in surface orientation perception 

 Horizontal minification (or magnification) of the image in one eye causes the 

misperception of surface orientation. This phenomenon is known as the Geometric effect 

(Banks & Backus, 1998; Ogle, 1950). The Geometric effect occurs because the horizontal 

minification in one eye distorts the patterns of binocular disparity such that they specify a 

surface slant that is different from the actual surface slant. For example, when a 

frontoparallel surface is viewed with a horizontal minifier in front of the right eye, the 

surface is perceived to be slanted left-side back. If the left-eye image is minified, the same 

surface is perceived to be slanted right-side back (Fig. 3.8).  

 
Figure 3.8. The Geometric effect in stereo-slant perception. Horizontal minification (or 
magnification) distorts the pattern of binocular disparities such that the disparity-specified 
orientation of the surface appears rotated in depth. If the horizontal minifier is in front of the right 
eye, a frontal surface straight-ahead is perceived left side back. If the horizontal minifier is in front 
of the left eye, a frontal surface straight-ahead is perceived right side back. The same principles 
account for both the Geometric effect and anomalous Pulfrich percepts.  
 
 The principles behind the Geometric effect mirror the principles behind the 

anomalous Pulfrich effect. An obvious analogy can be drawn between right- or left-eye 

left side back

horizontal
minifier

horizontal
minifier

right side back

parallel
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motion damping and right- or left-eye horizontal minification. Anomalous Pulfrich percepts 

are caused by motion that is differentially damped between the two eyes. Indeed, if the 

effective image motion is damped but not delayed in one eye relative to the other, the 

disparity-specified motion trajectory lies in the plane of the slanted surface specified by 

disparities caused by the Geometric effect.  

Preservation of sensory processing dynamics in motor movements 

 The current manuscript reports a series of results that strongly suggest that 

different spatial frequencies are processed with different temporal integration periods, and 

that these differences underlie anomalous Pulfrich percepts. Linking the target-tracking 

results to sensory-perceptual processing requires an assumption. The assumption is that 

changes in the ability of an observer to track a target across different target stimuli reflect 

changes in the sensory-perceptual processing of the stimuli as opposed to changes in the 

motor response. Multiple studies have shown this assumption holds in various situations. 

Motor variation in smooth-pursuit eye movements is due overwhelmingly to sensory errors 

(Osborne, Lisberger, & Bialek, 2005). Changes in the width of the cross-correlogram 

associating target and hand movements during target-tracking are linked to the sensitivity 

of visual target location discrimination (Bonnen et al., 2015). Delays in visual processing 

match delays in the motor response of both the eye (Lee et al., 2016), and the hand (Burge 

& Cormack, 2020; Lee et al., 2016). However, it appears from the present experiments 

that differences in the visual temporal integration period are not always faithfully preserved 

in the motor response of the hand.  

 Experiments 1-3 used traditional forced-choice psychophysical techniques to 

establish the anomalous Pulfrich phenomenon and quantify the effective motion damping 

that is caused by differences in temporal processing induced by different spatial 

frequencies. Experiment 4 used continuous target-tracking psychophysics to collect more 
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direct evidence that different spatial frequencies are indeed associated with different 

temporal integration periods. The average estimates of motion damping across human 

observers from the target-tracking task very nearly matched those from the forced-choice 

task (see Fig. 3.7B). But there was significant inter-observer variability regarding how the 

two sets of estimates were related (see Fig. 3.7A,C). In two of four observers, the forced-

choice-based estimates were systematically larger than the tracking-based estimates. In 

one observer, the reverse was true. And in the remaining observer, the estimates were 

nearly matched, except for an apparent outlier.   

 The finding that forced-choice- and target-tracking-based estimates of damping 

are correlated but do not exactly agree for individual observers warrants further study. Our 

analysis assumes that the motor component of the visuomotor response can be accurately 

modeled with convolution, a linear open-loop computation. It is likely that there 

are benefits to modeling visuomotor performance in the target-tracking task as a closed-

loop system, given that visual feedback is integral to good performance in many 

visuomotor tasks. It is also possible that convolution does not accurately capture how the 

motor system translates visual input into a motor response. If so, other (possibly nonlinear) 

operations will be required to accurately model the motor contribution to 

performance. These, and related, issues are under active investigation. 

Computational challenges of mismatched temporal processing 

 The visual system must constantly deal with the problem of staggered information 

arrival. We have focused on the perceptual consequences of temporal processing 

differences associated with mismatched spatial frequency content in the two eyes. 

Interocular differences in spatial frequency content commonly occur in natural viewing. 

During binocular viewing of surfaces that are slanted about a vertical axis, for example, 

the spatial frequencies tend to be higher in one eye than the other. These differences, 
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while extremely common, tend to be relatively small. For a surface at a distance of 30cm 

and a slant of 72º, the corresponding frequencies in the two eyes will differ by 

approximately a factor of two (i.e. horizontal size ratios of 0.5 or 2.0, depending on whether 

the surface is slanted left- or right-side back). For more distant and less slanted surfaces, 

which are more common in natural viewing (Adams et al., 2016; Backus, Banks, van Ee, 

& Crowell, 1999; Burge, McCann, & Geisler, 2016; Kim & Burge, 2018; 2020; Yang & 

Purves, 2003), the ratio tends to be substantially smaller. However, typical natural images 

have broadband 1/f spectra, and frequencies above the contrast detection threshold 

typically vary by a factor of ten or more. Thus, the temporal binding problem may be a 

more acute computational challenge within each eye’s image than between the images in 

the two eyes. In spite of this challenge, the visual system usually generates (largely) 

accurate estimates of environmental properties.  

 Measuring the temporal processing constraints of the nervous system, and 

developing normative theory for how different streams of information should be integrated 

to achieve accurate perceptual estimates, will help advance our understanding of how the 

spatial-frequency binding problem is resolved by biological systems (Burge et al., 2019). 

Incorporating these solutions into image-computable ideal observers for sensory-

perceptual tasks with natural stimuli is a potentially fruitful future direction for neuroscience 

and vision research (Burge, 2020; Burge & Geisler, 2011; 2012; 2014; 2015; Chin & 

Burge, 2020).  

Conclusion 

 The problem of binding temporally damped and temporally staggered information 

is not a niche problem. It is not at all specific to the combination of information from 

different spatial frequency channels, as we have focused on in this paper. The visual 

system must resolve temporal differences between luminance and chromatic signals, high 
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and low luminance signals, and high and low contrast signals. More generally, the different 

senses—visual, auditory, vestibular, proprioceptive, tactile—transmit signals possessing 

substantially different temporal properties. These signals must also be combined to form 

accurate, temporally coherent percepts. Future work will investigate how sensory-

perceptual systems solve the temporal binding problem within and across senses. 
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3.5 Supplement 
 

 
Figure 3.S1. Experiment 1 results for all observers and conditions.   
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Figure 3.S2. Experiment 2 results for all observers and conditions.   
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Figure 3.S3. Experiment 3 stimuli, conditions, and psychometric functions for all observers and 
conditions. The data from all four observers follow the same qualitative pattern.  
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Figure 3.S4. Experiment 3 points of subjective equality (PSEs) for all observers and conditions. 
The data from all four observers follow the same qualitative pattern. Note that for observer S2, the 
PSEs for the rightmost two conditions are larger than the scale of the plot.  
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Figure 3.S5. Experiment 4 stimuli and cross-correlograms for all observers and conditions.  
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CHAPTER 4 

ABSTRACT 

BINDING OF CHROMATIC SIGNALS ACROSS TIME DURING VISUAL MOTION 

PERCEPTION 

Benjamin M. Chin* 

Johannes Burge 

*work performed jointly with Michael Barnett 

 A core problem for the visual system to solve is the binding of sensory signals 

across time. In the retina, light is encoded by three types of cone photoreceptors. Of 

these, the S-cone signals have the longest temporal processing delays, and L-cone 

signals the shortest. This predicts that when visual stimuli move, spatial position signals 

driven by S-cones should lag behind signals driven by L-cones. We investigate how the 

visual system binds L-cone and S-cone spatial modulations when they are both present 

in a moving stimulus. Three observers tracked, with a cursor, the position of a chromatic 

Gabor conducting a horizontal random walk. The Gabor was composed of L-cone-

directed and S-cone-directed modulations whose ratios define polar angles (i.e. color 

directions) in cone contrast space. We measured tracking performance for stimuli in 

twelve color directions, with six log-spaced contrasts in each direction. To analyze the 

data, we computed the cross-correlation between target and tracking velocities. This 

yields an estimate of the impulse response function associated with the signals that drive 

tracking. We use time-to-peak of the estimated impulse response functions to estimate 

processing latency for each stimulus condition. For all subjects, we found that i) temporal 

lag decreases as contrast increases, for all color directions, and ii) nominally L-cone 

isolating stimuli are associated with smaller lags than nominally S-cone isolating stimuli, 

when contrast is equated. A model based on two underlying chromatic mechanisms 
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accounts for the data well. Each mechanism is determined by a weighted sum of 

nominal L- and S-cone contrasts. For all observers, one mechanism dominates for the 

majority of color directions. The dominant mechanism weights L-cone contrast 30-60x 

higher than weights on S-cone contrast. Future work will examine how the visual system 

binds other kinds of signals, such as the output of spatial frequency selective channels.  

 

  



 101 

4.1 Introduction 

 The Binding Problem in perception refers to the problem of integrating 

information from a multitude of signals. When we perceive an object, we combine its 

various properties—shape, color, motion, and many other properties—into a coherent 

percept. At a finer level, perceiving any one of these properties involves the integration 

of multiple signals. Shape perception involves the integration of contours, and color 

perception involves the integration of outputs from at least three chromatic pathways. 

  Much research on the Binding Problem over the past several decades has 

focused on binding between properties. Significant effort has been made to probe the 

limits of binding between properties. Binding failures such as illusory conjunctions (ICs) 

have generated strong interest. For example, a red triangle and a green square might be 

misperceived as a green triangle and a red square. These errors are typically induced by 

brief stimulus exposures or rapid temporal modulations of the stimulus (Bartels & Zeki, 

2006). Binding between properties is also considered important for visual search. 

Certain conjunctions of properties can cause visual search to be serial rather than 

parallel, such as when the search target is a green letter ‘H’ among green letter ‘X’ and 

brown letter ‘H’ distractor stimuli (Treisman & Gelade, 1980).  

 Multisensory cue combination is another manifestation of the Binding Problem 

that has inspired a large amount of research. When observers receive conflicting 

estimates about an object property, such as size, from different sensory modalities, such 

as vision and touch, they often do not notice the discrepancy. Instead, they combine the 

conflicting estimates into a single estimate (Ernst & Banks, 2002). In many cases, the 

estimates are combined in a Bayes-optimal manner; the final estimate is a weighted sum 

of estimates from each sensory modality, with the weights determined by the relative 

reliability of the estimates. Such Bayes-optimal cue combination computations have also 
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been found to apply when combining cues within a sensory modality, such as when 

using binocular disparity and texture cues to estimate 3D slant (Hillis et al., 2004).  

 Perceiving even a single property, such as color, requires the Binding Problem to 

be solved. In the first stage of color processing, light energy is transduced into electrical 

signals by three classes of cone photoreceptors (the L-, M-, and S- cones) located in the 

retina. The spectral sensitivity functions of each cone type have been well-characterized 

by the color science community (Stockman & Sharpe, 2000). This enables the Method of 

Silent Substitution: the precise modulation of cone activity by presenting visual stimuli 

with the appropriate light wavelength spectra. The ability to precisely modulate cone 

activity has facilitated a large body of research on post-receptoral mechanisms that 

combine cone signals to support color perception. It is widely believed that there are 

three cone-opponent mechanisms: two chromatic mechanisms, a red-green (L-M) and a 

blue-yellow (S-(L+M)) mechanism, and an achromatic mechanism (L+M) (Jameson & 

Hurvich, 1955; Krauskopf, Williams, & Heeley, 1982, Derrington, Krauskopf, & Lennie, 

1984).  

 Previous work has investigated the processing latencies of the cone-opponent 

pathways. Reaction times to modulations in the (S-(L+M)) pathway are slower than 

those to modulations in the L-M opponent pathway (Smithson & Mollon, 2004; McKeefry, 

Parry, & Murray, 2003). These results are consistent with neurophysiological evidence 

suggesting a sluggish S-cone pathway (Cottaris & De Valois, 1998). These latency 

differences raise the question of how the visual system binds signals from the different 

cone types in time: a Temporal Binding Problem.  

 The Temporal Binding Problem is particularly relevant to the perception of 

chromatic stimuli that move. Most chromatic stimuli modulate activity all three cone types 

to varying degrees. Under photopic conditions, the cones constitute the earliest stage of 
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motion processing. For a moving stimulus, position signals derived from S-cone 

modulations should lag behind position signals derived from L-cone and M-cone 

modulations due to the longer processing latency for S-cones. Thus, without solving the 

Temporal Binding Problem, a single moving stimulus would appear as multiple moving 

stimuli at different positions. But human beings typically perceive moving stimuli to be 

rigid. This suggests a single, bound percept. We were particularly interested in the 

temporal processing characteristics associated with the rigid stimulus.  

4.2 Results 

 We leveraged a recently developed psychophysical paradigm, continuous target-

tracking, to investigate how the Temporal Binding Problem is solved between L-cone 

and S-cone modulations. Due to the novel nature of the task, we made no assumptions 

about the mechanisms binding signals from the two cone types. Instead, we set out to 

uncover the mechanisms from the experimental data. Observers tracked Gabor targets 

comprised of both L-cone and S-cone spatial modulations. We determine that when a 

stimulus is comprised of both L-cone and S-cone modulations, the visual system heavily 

prioritizes L-cone signals during target-tracking. We present a descriptive mechanistic 

model that quantifies the relative contributions of L-cone and S-cone modulations. 

 All chromatic stimuli lay in a two-dimensional space of L-cone and S-cone 

modulations relative to a grey background (Fig. 4.1A). The angle 𝜃	 specifies a chromatic 

axis in this space. Twelve chromatic axes between –86.25° and 90° were investigated, 

with six contrast levels tested per axis. The 0° axis corresponds to pure L-cone 

modulations, and the 90° axis corresponds to pure S-cone modulations. Cone contrast 

modulations were spatial in nature; all stimuli were 1 cyc/° Gabors. Notably, because all 

Gabors were in sine phase, each stimulus was symmetric, containing both positive and 

negative modulations of equal magnitude across its chromatic axis.  
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Figure 4.1. Stimuli, task, and analysis of tracking data. A Directions of cone contrast modulation for stimuli 
used in the experiment, shown in the L-S plane. The origin corresponds to the gray background. B On each 
trial, the observer tracked, with a mouse cursor, a Gabor stimulus following a horizontal random walk across 
the center of the screen. C Example target-tracking performance on a single trial. The solid black trace 
indicates the horizontal random walk taken by the stimulus. The gray trace indicates the position of the 
observer’s cursor. D Cross-correlograms in the target tracking task derived from target tracking 
performance, for three levels of pure L-cone modulations (0° in Fig. 4.1A). The cross-correlograms become 
narrower, and have shorter times to peak, as contrast increases.  
 

 On each trial, a Gabor target underwent a horizontal random walk on the screen 

(Fig. 4.1BC). Cross-correlation between the target and response motions yields a 

unimodal cross-correlogram (Fig. 4.1D). Assuming the visuomotor system is linear, this 

cross-correlogram equals the temporal impulse response function of the visuomotor 

system to the target. The time-to-peak of the cross-correlogram provides an estimate of 

response lag in the visuomotor system.  

 We investigated how lag changes as a function of chromatic modulation direction 

and cone contrast. Figure 4.2 shows how lag changes with contrast for 12 directions 

between –86.25° and 90° in the space of L-cone and S-cone modulations. Across all 

three observers, lag decreases with cone contrast. Pure S-cone modulations (90°) have 

the highest lags across a large range of contrasts, while pure L-cone modulations (0°) 

have the lowest lags. Response lags along non-cardinal directions in the space (45°, 

75°, etc.) lie in between response lags to pure S-cone and pure-L-cone modulations.  
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Figure 4.2. Estimated response lag as a function of cone contrast, for all chromatic directions and 
observers. Error bars represent 68% bootstrapped confidence intervals on estimated response lag. 
Response lag decreases with cone contrast, and increases as chromatic direction approaches 90°.  
 

 Response lags along the ±45° and ±75° chromatic axes are more similar to pure 

L-cone modulations than pure S-cone modulations. Only for steep chromatic axes 

greater than 75° or less than -75° do response lags become more similar to pure S-cone 

modulations. We quantify the relative dominance of L-cone modulations with a two-

mechanism, two-stage model of response lag. The first stage of the model describes the 

color mechanisms underlying target-tracking behavior:  

          (1) 

         (2)  
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mechanism,  is the weight on S-cone contrast for the first color mechanism, and  is 

the weight on S-cone contrast for the second color mechanism. Each color mechanism 

output is equivalent to the rectified dot product of the stimulus vector  with the 

weight vector . Thus, it is proportional to the projection of the stimulus vector onto 

the weight vector (Fig. 4.3A). The outputs of both color mechanisms are then combined 

into a final mechanism output:  

          (3) 
 
 The final mechanism output 𝑚	 is then converted into response lag via an 

exponential decay function (Fig. 4.3A):  

 
         (4)  
 
where  is response lag,  is a parameter controlling the slope of the function, and  is 

the minimum lag achievable.  

 
Figure 4.3. Model of lag as a function of chromatic direction. A Schematic for illustrating the operation of a 
color mechanism. The output of the color mechanism is proportional to the projection of the stimulus vector 
onto the weight vector. The projection is indicated by the length of the red arrow. B Output of both color 
mechanisms for each stimulus index, for observer S2. Each stimulus index corresponds to a specific 
combination of chromatic direction and contrast. The output of one mechanism is consistently higher than 
that of the other mechanism, for the majority of stimuli. There is a small subset of stimuli for which the other 
mechanism has higher output. C Weights on L-cone and S-cone contrast for the dominant color mechanism, 
for all three observers. Weights on L-cone contrast are 30-60 times larger than weights on S-cone contrast. 
Error bars represent 68% bootstrapped CIs on L-cone and S-cone weights.  
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the cost function. The free parameters were , , , , , and . Model fits are 

shown in Figure 4.S1. The model captures the pattern of data across all chromatic axes.  

 An examination of the color mechanism outputs given the fit values for 

parameters , , , and  reveals that one of the two mechanisms has a larger 

response than the other for the majority of chromatic directions, and thus dominates the 

model response (Fig. 4.3B). We find that for the more dominant color mechanism, the L-

cone weight  is much larger than the S-cone weight . This pattern is consistent 

across all observers (Fig. 4.3C). These findings indicate that during target-tracking, the 

binding process of the visual system preferentially weights L-cone modulations over S-

cone modulations. 

4.3 Methods 

Subjects 

 Three human observers (two male, one female) between 18 and 65 years of age 

participated in the experiment: 2 were authors, and the third was naïve to the purposes 

of the experiment. All had normal or corrected-to-normal acuity. The research protocol 

was approved by the Institutional Review Board of the University of Pennsylvania and 

was in accordance with the Declaration of Helsinki. The study was preregistered. All 

experiments were performed in MATLAB 2017a using Psychtoolbox version 3.0.12 

(Brainard, 1997). Psychophysical data are presented for each individual human 

observer. Bootstrapped SEs or CIs are presented on all data points unless otherwise 

noted. 

Equipment 

 Stimuli were presented on a ViewSonic G220fb 40.2cm X 30.3cm cathode ray 

tube monitor with 1280 X 1024 pixel resolution, and a refresh rate of 60 Hz. At the 92.5 

a1 a2 b1 b2 A l0

a1 b1 a2 b2
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cm viewing distance, the monitor subtended a FOV of 24.5° X 18.6° of visual angle. The 

observer’s head was stabilized with a chin-and-forehead rest. Primaries of the CRT were 

measured using a PR-650 spectroradiometer (PhotoResearch).  

Stimuli 

 Stimuli were colored Gabor patches comprised of bipolar L-cone and S-cone 

directed spatial modulations around a constant background light (mean luminance 

~30.75 cd/m2, chromaticity: x≈0.326, y≈0.372). All Gabor patches were in sine phase 

and had carrier spatial frequencies of 1 cpd. All Gabor had an octave bandwidth of 1.5, 

corresponding to a Gaussian window with a standard deviation of 0.6°. Stimuli were 

created at 12 directions in the L-S plane. Within a direction, stimuli were created at six 

log-spaced contrast levels. The maximum and minimum contrast levels for each 

direction are shown in Tables 3.1 and 3.2. Cone contrast values for all stimuli were 

computed using the Stockman and Sharpe 2° cone fundamentals. We use the 

convention that the cone contrast values shown in Tables 1 and 2 represent the cone 

contrast corresponding to the peak modulation of the carrier sinewave for each Gabor.  

 
Table 3.1: Chromaticity coordinates of Stimuli in the L-S plane 

 -75° -45° 0° 45° 75° 90° 
Maximum 
Contrast 78% 26% 18% 25% 65% 85% 

Minimum 
Contrast 6% 3% 2% 3% 6% 18% 

 
Table 3.2: Chromaticity coordinates of Stimuli in the L-S plane 
 -86.25° -82.5° -78.75° 78.75° 82.5° 86.25° 
Maximum 
Contrast 78% 26% 18% 25% 65% 85% 

Minimum 
Contrast 18% 15% 13% 13% 14% 18% 

 

Target-tracking procedure 
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 Tracking data was collected from each observer in blocks of individual runs. Each 

run was initiated with a mouse click, which caused the target and a small dark mouse 

cursor to appear in the center of the screen. After a stationary period of 500ms, the target 

began a one-dimensional horizontal random walk (i.e. Brownian motion) for eleven 

seconds. The task was to track the target as accurately as possible with a small dark 

mouse cursor.  

Target-tracking psychophysics: Onscreen stimuli 

 Data was collected in 72 conditions, with each condition defined by its chromatic 

direction and contrast. Data was collected in 40 intermixed blocks of 36 runs each for a 

total 20 runs per condition. For each observer, data was collected over 6 hours, split 

among 4 sessions of 1.5 hours. Data for the following directions was collected in the first 

2 sessions: -75°, -45°, 0°, 45°, 75°, and 90°. Data for the remaining 2 sessions was 

collected in the subsequent 2 sessions. 

Target-tracking psychophysics: Target motion 

 For the tracking experiments, the target stimulus performed a random walk on a 

gray background. The region of the screen traversed by the target was flanked by two 

horizontal sets of thirteen vertically-oriented picket fence bars (Fig. 4.2A).  

 The x-positions of the target on each time step  were generated as follows 

        (5) 
  
where  is a random sample of Gaussian noise and  is the drift variance. The random 

sample determines the change in target position between the current and the next time 

step. The drift variance determines the expected magnitude of the position change on 

each time step, and hence the overall variance of the random walk. The variance of the 

walk positions across multiple walks  is equal to the product of the drift variance 

t +1

x t +1( ) = x t( )+ ε x  ;     ε x ~ N 0,Q( )

ε x Q

σ 2 t( ) =Qt
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and the number of elapsed time steps. The value of the drift variance in our task (0.8mm 

per time step) was set such that the mean of the velocity distribution was ~4 °/s and that 

90% of the velocity distribution fell within ±10 °/s.  

 The effective on-screen positions of the images are obtained by convolving the 

on-screen target images with the temporal impulse response function  

         (6) 
 
where is a temporal impulse response function corresponding to a specific frequency. 

Convolving the target velocities with the impulse response function gives the velocities of 

the effective target images. Integrating these velocities across time gives the effective 

target positions. 

 To determine the impulse response function relating the target and response, we 

computed the zero-mean normalized cross-correlations between the target and response 

velocities 

     (7) 

 
where  is the lag,  and  are the target and response velocities. Assuming a linear 

system, when the input time series (i.e. the target velocities) is white, as it is here by 

design, the cross-correlation with the response gives the impulse response function of the 

system. 

 To compute the normalized cross-correlations, we did not include the first second 

of each eleven second tracking run so that observers reached steady state tracking 

performance. The mean cross-correlation functions shown in the figures were obtained by 

first computing the normalized cross-correlation in each run (Eqn. 7), and then averaging 

these cross-correlograms across runs in each condition. 

Log-normal fits to mean cross-correlograms 

   
ρ τ ; !x, "!x( ) = 1

!x t( ) "!x t( ) !x t( )− !x( ) "!x t +τ( )− "!x( )
t=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥

τ !x !"x
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 To summarize the mean cross-correlograms, we fit a log-Gaussian-shaped 

function using maximum likelihood methods. The form of the fitted function was given by 

       (8) 

where 𝐴 is the amplitude, and  and  are the parameters determining the shape and 

scale of the fit, respectively. The mode (i.e. peak) of the function can be used as a measure 

of delay, and is given by .  

4.4 Discussion  

Summary of results and relation to other work 

 We have investigated how processing latency, as quantified by the target-

tracking task, is influenced by L-cone and S-cone modulations. Our findings can be 

summarized as follows: 1) S-cone modulations require more processing time than L-

cone modulations, 2) L-cone modulations primarily determine processing latency when 

both L-cone and S-cone modulations are present in a stimulus, and 3) a single post-

receptoral mechanism captures the pattern of processing latency data for a majority of 

angles in the L-S plane.   

 The finding that S-cone modulations are associated with longer processing 

latency than L-cone modulations coheres with findings by McKeefry, Parry, and Murray 

(2003), as well as Smithson and Mollon (2004). A key distinguishing feature of the 

present research is the absence of assumptions about the mechanisms underlying 

continuous target-tracking behavior; modulations targeted individual cone classes rather 

than putative post-receptoral color mechanisms. Previous studies, on the other hand, 

modulated their stimuli along the L-M and S-(L+M) cone-opponent pathways. Our results 

suggest that processing latency in continuous target tracking can be best accounted for 

by two mechanisms that differ from the canonical cone-opponent pathways.   

ρ τ( ) = Aexp −0.5 ln τ( )−m( ) / s( )2⎡
⎣⎢

⎤
⎦⎥

m s

exp m( )
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General Discussion 

 From an ecological standpoint, there is an inherent tradeoff between prioritizing 

L-cone modulations and prioritizing S-cone modulations. Information arriving from L-

cone modulations arrives sooner, supporting quicker action responses. On the other 

hand, S-cone modulations also contain information about the stimulus. It is likely that in 

some tasks, it is beneficial for the visual system to wait for information from S-cone 

modulations to arrive. The current study suggests that in the task of continuous target-

tracking, the visual system prioritizes information that arrives sooner, rather than 

integrating information from slower-arriving signals.   

 Research on multisensory integration and cue combination, which are 

manifestations of the Binding Problem, has identified normative principles governing the 

integration of information. In many cases, when a sensory-perceptual system receives 

conflicting estimates of a stimulus property, the estimates are combined via a weighted 

average that is optimal from a Bayesian perspective (Ernst & Banks, 2002; Hillis et al., 

2004). This suggests that optimality is a useful lens through which human perception 

can be understood. Theoretical work might explore whether the preferential weighting of 

L-cone modulations in the current study can be predicted by normative principles, or 

whether such a weighting scheme is suboptimal.   

Future directions 

 It has long been known that S-cone modulations are more difficult to detect than 

L-cone modulations (Eskew et al., 1999). Future work will thus examine the extent to 

which slower processing latencies and downweighting of S-cone modulations can be 

explained by the lower detection sensitivity of the visual system to S-cone modulations.  

 For each observer in our study, there is a direction in the L-S plane that is 

orthogonal to the dominant color mechanism determined for that observer. Under our 
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model, that chromatic direction should elicit no response from the dominant color 

mechanism; a so-called ‘null’ direction. Future work will examine whether the null 

direction for each observer corresponds to that observer’s true tritan line, which might 

deviate from the theoretical tritan line. Psychophysical work has demonstrated that the 

true tritan line can be empirically determined via an adaptation paradigm (Smithson, 

Sumner, & Mollon, 2003).  

 Color is not the only dimension of visual stimuli along which significant 

differences in processing latency have been found. Differences in processing latency for 

different spatial frequencies have been well established: higher spatial frequencies are 

processed with longer latency (Parker, 1980; Mihaylova, Stomonyakov, & Vassilev, 

1998). Future work will explore how the temporal binding problem is solved for 

compound Gabors consisting of more than one carrier spatial frequency. Of particular 

interest is the question of whether low spatial frequencies are prioritized during the 

binding process, owing to their shorter temporal latencies.  
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4.5 Supplement 

 
Figure 4.S1. Fits of the two-mechanism model to response lag data for all observers (S1, S2, and S3) and all 
conditions. Dotted lines represent fits of the model. Solid points represent observer data. Error bars represent 
68% bootstrapped confidence intervals on estimated response lag. Data from pairs of chromatic directions 
were split across plots for viewing clarity.  
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CHAPTER 5: SUMMARY OF CONTRIBUTIONS 

 I have investigated the relationship between basic properties of visual stimuli and 

the perception of motion. It has long been known in the field of vision science that 

properties such as spatial frequency and color impact motion perception, but a full 

quantitative characterization of their impact has yet to be achieved. The work discussed 

in this dissertation constitutes an important step towards achieving such a 

characterization. The present research is rooted in hypotheses about the computations 

performed by the visual system to extract motion. These hypotheses yield testable 

predictions about how different stimulus properties influence motion perception. The 

predictions have been validated by a rich set of psychophysical data collected across an 

array of interlocking experiments.   

5.1 Contributions of Chapter 2  

 Normative Bayesian ideal observer models have exploded in popularity in recent 

years, as a means to predict and understand neural properties and behavioral 

performance. However, many recent ideal observers have dispensed with a 

characteristic that was key to their early success. Early ideal observer models were 

image-computable: they explicitly modeled the flow of visual information from the retinal 

image to the perceptual estimate, making optimal use of the statistics relating task-

relevant image features to task-relevant latent variables. In the 1980s and early 1990s, 

image-computable ideal observer models markedly advanced spatial vision and visual 

neuroscience, yielding deep insights about simple tasks like target detection or 

orientation discrimination in noise.   

 Image-computable ideal observer analysis fell out of favor in the 1990s because 

it resisted successful application to more complicated tasks (e.g. motion estimation) with 

more complicated (e.g. naturalistic) stimuli. With natural images, the probabilistic 



 116 

relationship between image features and the task-relevant variable is generally not 

known. Indeed, many modern Bayesian ideal observers cannot be directly applied to the 

patterns of light falling in the retinas, and instead must rely on assumptions (which may 

be incorrect) about the information available in the encoded image. An exception to this 

trend is our recent previous work (Burge & Geisler, 2015), in which we developed an 

image-computable ideal observer for speed estimation with naturalistic stimuli and used 

it to fit human performance. This provided us with a measure of how well human 

performance compares to the ideal observer, but left open the more fundamental 

question of why human performance falls short.  

 Chapter 2 answers that question, providing a suite of new tools and 

mathematical results in the process that should benefit research going forward. We 

develop an experimental protocol that can distinguish two distinct sources of human 

inefficiency: internal noise and suboptimal computations. A complementary 

computational model predicts the behavioral signatures of each source without fitting 

parameters to the data. By confirming the predictions, we find that human observers 

perform near-optimal computations on natural stimuli for estimating speed, 

underperforming the ideal because of noise rather than the systematic misuse of the 

available information. Furthermore, we find that human behavioral variability is majorly 

impacted by external sources of uncertainty (i.e. stimulus variability). External variability 

i) shapes the optimal computations, ii) dictates the pattern of human performance, and 

iii) predicts the partition of behavioral variability (i.e. the relative importance of external 

and internal variability). These findings motivate continued efforts to understand how 

natural stimulus variability impacts perceptual performance. They are part of a larger 

trend in vision and systems neuroscience to characterize the impact of typically 

unstudied sources of uncertainty on behavioral and neural measures.  
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5.2 Contributions of Chapter 3  

 The Pulfrich effect is a striking visual illusion that has been known for 100 years. 

The effect is well-understood: differences in processing latency between the eyes cause 

oscillating targets in the frontal plane to be misperceived as moving along a near-

elliptical motion trajectory in depth. These differences in processing latency can be 

induced by interocular differences in luminance (Pulfrich, 1922) or blur (Burge, 

Rodriguez-Lopez, & Dorronsoro, 2019). This explanation does not account for all 

Pulfrich-like phenomena, however.   

 Anomalous Pulfrich percepts have been occasionally reported (Emerson & 

Pesta, 1992; Harker & O’neal, 1967; Trincker,1953; Weale, 1954). Specifically, 

observers sometimes report perceiving near-elliptical motion trajectories that are 

misaligned in depth relative to the true direction of motion. The standard explanation 

does not account for these percepts; interocular differences in processing latency predict 

perceived motion trajectories that are aligned with the true path of motion. Although 

various explanations have been proposed regarding the cause of anomalous Pulfrich 

percepts, no scientific consensus exists.  

 Chapter 3 proposes a novel explanation for anomalous Pulfrich percepts and 

validates it with results from a set of interlocking experiments. The anomalous Pulfrich 

effect is caused by interocular differences in temporal integration periods. For oscillating 

motion, these differences in the temporal integration period effectively damp the motion 

amplitude in one eye relative to the other. Under these circumstances, stereo-geometry 

predicts the illusory misorientation of the motion trajectory in depth. The anomalous 

Pulfrich effect can therefore be thought of as a dynamic analog to the ‘geometric effect’ 

in stereo-slant perception (Ogle, 1950).  
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 Our findings motivate continued efforts to characterize the variations in temporal 

processing properties across different visual stimuli. Our work demonstrates that 

differences in temporal processing pose challenges to the visual system, and in some 

cases, impact its ability to accurately estimate properties of the environment. Given that, 

in most circumstances, the visual system computes (largely) accurate estimates of 

motion and other properties of the environment, it is thus important to understand the 

compensatory computations that the visual system uses to solve these challenges. We 

expect the current paper to be an early contribution to a series of papers on the general 

topic.  

5.3 Contributions of Chapter 4  

 The Binding Problem is ubiquitous in perception; how should sensory-perceptual 

signals with different characteristics be combined into a coherent percept? Much work in 

perceptual psychology has investigated how human beings solve the Binding Problem 

between properties, such as between motion and color, or between color and 

orientation. The popularity of such work perhaps belies the fact that estimating even a 

single property, spatial position, requires the Binding Problem to be solved. In the case 

of estimating spatial position, the Binding Problem arises early in the visual system; how 

are signals from L, M, and S cones in the retina bound across time during stimulus 

motion? The question is pertinent because it is well known that S-cones have longer 

processing latency than L-cones. This implies that during motion, spatial position 

estimates derived from S-cone signals should lag behind spatial position estimates 

derived from L-cone signals. We find that the visual system prioritizes L-cone signals 

during stimulus motion by having observers continuously track visual stimuli comprised 

of both L-cone and S-cone spatial modulations. Our findings motivate future work to 
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understand how the visual system binds signals across time for other perceptual tasks 

and stimulus properties.   
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