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ABSTRACT

CAUSAL INFERENCE METHODS FOR JOINT CENSORED COST AND EFFECTIVENESS

OUTCOMES

Nicholas Andrew Illenberger

Nandita Mitra

Informed healthcare policy decisions must be driven by consideration of an intervention’s effective-

ness as well as its cost. Cost-effectiveness analyses provide a framework for decision making that

balances these joint outcomes in some optimal way. However, because these studies often use data

from observational sources, results may be biased due to unmeasured or time-varying confound-

ing, informative cost censoring, and skewed or zero-inflated data. The goals of this dissertation

are two-fold; we aim to (1) elucidate the conditions under which causal conclusions can be drawn

from cost-effectiveness data, and (2) develop novel statistical methods for identifying cost-effective

treatments while accounting for confounding and other data irregularities. We discuss three such

developments: regression methodology for a novel probabilistic measure of cost-effectiveness, in-

terpretable Q-learning based methods for identifying cost-effective treatment strategies, and a flex-

ible and efficient influence function based estimator of average treatment cost that is robust to

unmeasured confounding given a valid instrumental variable. We evaluate the operating character-

istics of our proposed methods under several realistic data scenarios through simulation studies.

We also illustrate usage by identifying cost-effective adjuvant treatments for early-stage endome-

trial cancer patients as well as assessing differences in costs between surgical and non-surgical

interventions for gallstones and hemorrhaging using observational data.
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CHAPTER 1

INTRODUCTION

Due to rising healthcare costs, there has been growing interest in improved methods for cost-

effectiveness analyses. Cost-effectiveness research is concerned with identifying policies that can

balance treatment effectiveness and overall costs. Optimizing decisions with respect to effective-

ness may result in prohibitively expensive treatment strategies; on the other hand, optimizing with

respect to costs may result in poor patient outcomes. Data for cost-effectiveness analyses are of-

ten drawn from large observational databases, such as insurance claims data. Because patients

in these databases often have claims data for long periods of time, censoring and time-varying

confounding is often present. The major complications of analysing cost-effectiveness data are (1)

joint cost and effectiveness outcomes, (2) informative cost censoring, (3) measured and unmea-

sured confounding that may vary over time, and (4) irregular cost and effectiveness distributions.

Irregularity in the distributions of these outcomes may include right-skewed or zero-inflated costs,

and censored survival data.

This dissertation is focused on developing causal inference methodologies for determining the cost-

effectiveness of medical interventions. We propose three major contributions: (1) regression meth-

ods for a probabilistic measure of cost-effectiveness, (2) a two-step procedure built upon Q-learning

methodology for identifying optimal cost-effective treatment strategies, and (3) an instrumental vari-

able estimator of expected treatment costs that can be used with censored cost data. The methods

proposed have been constructed to allow for flexible modelling of joint cost and effectiveness out-

comes, corrections for informative cost censoring, and adjustments for confounding- measured and

unmeasured, static and time-varying. While developed for use in cost-effectiveness analyses, these

methods are applicable in any complex settings with a ”cost-benefit” framework or other joint out-

comes. For example, they may be used to find optimal treatments that can maximize patient health

outcomes survival while reducing the risk of adverse events associated with aggressive treatments.

In Chapter 2, we develop regression methodology to assess heterogeneity in the cost-effectiveness

of a treatment due to measured covariates. This work focuses on the Net Benefit Separation (NBS),

a probabilistic measure of cost-effectiveness that describes the probability that a randomly selected
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patient receiving treatment will experience greater treatment benefit than another patient receiv-

ing control. Because regression methodologies are traditionally used to estimate the relationship

between measured covariates and the expected value of an outcome, certain modifications are

required to estimate the NBS, a measure of stochastic ordering. Additionally, because data in cost-

effectiveness settings are typically drawn from observational databases and may be censored, we

must consider methods to account for both exposure-outcome confounding and informative cost

censoring.

Regression approaches for alternative measures of average cost-effectiveness, namely the Incre-

mental Cost-Effectiveness Ratio (ICER) and the Net Monetary Benefit (NMB) have been explored

(Nixon and Thompson, 2005; Willan, Briggs, and Hoch, 2004). Because the distribution of medical

costs is often skewed, cost-effectiveness comparators that do not rely on the average values of cost

or measures of effectiveness can be useful. Pepe (1997) developed regression methods for mea-

sures of stochastic ordering for use in diagnostic testing settings. Their methodology cannot directly

be used in cost-effectiveness settings because it does not account for exposure-outcome confound-

ing, nor can it accommodate censored outcomes. In their paper introducing the NBS, Spieker et

al. (2021) describe a Monte Carlo standardization procedure combined with Inverse Probability of

Censoring Weighting (IPCW) approaches to account for both concerns when the estimand of inter-

est is the population-level NBS. Because the cost-effectiveness of a treatment may vary according

to patient covariates modifications to their approach are required to estimate conditional variants of

the NBS.

Our proposed regression methodology can account for variability in the NBS using observed co-

variates. Because the NBS can be characterized as a measure of stochastic ordering, we can

embed the approach of Pepe (1997) within our proposed methodology. We implement a Monte

Carlo Standardization procedure to account for observed differences between patients receiving

treatment and those receiving control. To adjust for informative cost censoring, models for the cost

distribution used within the standardization procedure are estimated using IPCW approaches. Addi-

tionally, in this chapter we propose a hypothesis testing framework based upon the non-parametric

bootstrap for determining the strength of evidence for the effects of covariates on NBS.

In Chapter 3, we develop methodology for identifying optimal and interpretable dynamic treatment

regimes under a constraint on overall treatment costs. In addition, we describe a novel cost-
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effectiveness analysis that can be used to select an optimally cost-effective regime from among

a set of candidate regimes corresponding to different cost-constraints. Due to heterogeneity in

how patients respond to treatments as well as in their cost accrual rates, individualized treatment

strategies which can identify which treatments are most beneficial for which patients are necessary.

Estimation of optimal treatment rules within this setting are complicated by time-varying confound-

ing and censoring. When possible, the form of treatment rules should be restricted to ensure that

they are interpretable to health policy professionals.

Recently, Lakkaraju and Rudin (2017) and Xu et al. (2020) have developed methodology to learn

optimal cost-effective individualized treatment rules in settings with point-exposures. Both propose

treatment rules that maximize treatment effectiveness while placing a penalty on overall treatment

cost. For settings with time-varying treatments, Laber et al. (2018) proposed policy search method-

ology to identify optimal treatment regimes under a pre-determined constraint on overall cost (de-

fined by number of safety events). While this approach can accommodate time-varying treatments,

the proposed decision rules take the form of linear decision boundaries, which may be difficult to in-

terpret. Alternatively, Zhang et al. (2018) argue that treatment rules based on decision lists provide

both flexibility and interpretability.

In this work, we propose an efficient algorithm for identifying optimal list-based decision rules under

fixed cost constraints. We use Q-learning with policy search methodology to maximize treatment

effectiveness within the class of list-based regimes with cost constraints. We modify an algorithm

proposed by Zhang et al. (2018) to efficiently estimate list-based decision rules while placing a

constraint on overall cost. Additionally, we propose a novel iterative cost-effectiveness analysis that

uses ICER to select an optimally cost-effective regime from a set of candidate regimes correspond-

ing to different cost-constraints. Use of an iterative cost-effectiveness analysis allows us to (1)

characterize how the optimal regime changes as cost-restrictions vary, and (2) avoid complications

arising from non-sequential cost-effectiveness analyses in settings with two or more experimental

treatments.

In Chapter 4, we provide instrumental variable methodology for estimating differences in treatment

cost. Studies aimed at estimating medical costs accrued under different treatments are neces-

sary for making informed healthcare policy decisions. These methods are particularly useful when

analysing treatments with similar clinical effectiveness. In a recent series of papers, Keele et al.

3



(2018, 2019) and Fogarty et al. (2021) assessed the effect of treatment by emergency general

surgery (EGS) on patient mortality for a set of acute conditions for which non-operative alternatives

exist. While more aggressive forms of care often exhibit protective effects in adjacent medical set-

tings (Lorch et al., 2012), these analyses showed a lack of beneficial evidence for EGS for many

of the conditions under study. Here, knowledge of how EGS affects accrued medical costs is crit-

ical for making informed policy recommendations. Data for performing these analyses are often

pulled from complex observational sources such as claims databases. Common complications in

this setting are: (1) measured and unmeasured confounding of the exposure-outcome relationship,

(2) informative cost censoring, and (3) irregular cost distributions. Methodologies that are robust

to both sources of confounding and that are flexible enough to account for irregularities in the cost

distribution and censoring have not previously been explored.

Popular IV approaches such as two stage least squares (2SLS) or two stage predictor substitution

(2SPS) have become more common in medical and epidemiologic research (Keele et al., 2018,

2019; Lorch et al., 2012). Because these methods often rely on parametric assumptions, imple-

mentation may not be valid in settings with highly skewed cost data. Additionally, extensions of

these methods to settings with informatively censored cost outcomes have not been adequately

developed. Influence function based approaches have recently been proposed by Dı́az (2019) and

Lee, Kennedy, and Mitra (2020) to identify treatment effects on patient survival in the presence of

censoring. These methods are doubly robust, efficient, and can incorporate semiparametric model-

ing approaches. However, extensions to informatively censored cost data have not been explored.

We propose two instrumental variable estimators of the complier average treatment effect on costs.

Given a valid instrument, these estimators are unbiased in the presence of unmeasured confound-

ing. Additionally, the use of a partitioned cost estimator allows us to address informative cost

censoring and improve efficiency by utilizing data from patients with censored medical costs. The

proposed estimators are based on influence functions and hence provide doubly robust, semi-

parametric, and efficient estimation of treatment effects as well as valid asymptotic inference. We

present results from simulation studies assessing the performance of the proposed estimator under

varying degrees of censoring, IV strength, and nuisance function misspecification. We also apply

the proposed approach to a study assessing the costs of surgical and non-surgical interventions for

gallstones and hemorrhaging using observational data.

4



CHAPTER 2

A REGRESSION FRAMEWORK FOR A PROBABILISTIC MEASURE OF

COST-EFFECTIVENESS

2.1. Introduction

Cost-effectiveness analyses are a useful tool for aggregating information on the differences in

cost and clinical effectiveness between two comparator health interventions. Typically, a cost-

effectiveness analysis relies on defining a particular kind of summary measure, which may be used

to optimize the tradeoff between treatment costs and effectiveness. Historically, most analyses have

involved either the incremental cost-effectiveness ratio (ICER) or the equivalent net monetary ben-

efit (NMB). Each of these compares the mean difference in cost and the mean difference in some

clinical measure between treatments. Specifically, the ICER is defined as the ratio of these two

quantities and therefore has units of cost per unit of the clinical measure (for instance, $USD per

year, if the clinical outcome is marked by post-treatment survival time). The experimental treatment

is declared cost-effective if the ICER lies below a certain threshold, known as the willingness-to-pay

(WTP). The NMB was introduced by Stinnett and Mullahy (1998) as a refined, yet equivalent mea-

sure of cost-effectiveness that suffers from neither a singularity in the denominator nor the known

poor statistical properties associated with ratio quantities.

In recent work, Spieker et al. (2021) introduced a novel probabilistic measure of cost-effectiveness,

the net benefit separation (NBS). The NBS characterizes the stochastic ordering of individual net

benefits (INB) between treated and untreated populations. The INB itself is not a comparative

measure; rather, the NBS characterizes the difference in the distribution of INBs between treated

and untreated groups and can serve as an alternative measure of a treatment’s cost-effectiveness.

Compared with NMB and ICER, which are functions of the average difference in cost and effec-

tiveness measures between treatments, NBS measures the probability that a patient receiving

treatment will experience greater treatment benefit than a patient receiving control. Because the

distribution of medical costs, and consequently INBs, are often skewed, cost-effectiveness com-

parators that do not rely on the average values of cost or measures of effectiveness can be useful.

In settings where treatment is randomized, NBS can be estimated nonparametrically using a scaled
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variant of the Wilcoxon rank-sum statistic. As with NMB and ICER, extensions of NBS to settings

with informative cost censoring and confounding have been proposed. Spieker et al. (2021) intro-

duce a semiparametric Monte Carlo standardization procedure to estimate NBS while adjusting for

differences in the distribution of confounding variables across treatment arms. Models used within

the standardization procedure may be fit using inverse probability of censoring weighting (IPCW)

techniques if there are censored cost data (Bang and Tsiatis, 2000).

In practice, the extent of cost-effectiveness associated with a treatment may vary across levels of

an observed covariate. As an example, consider the setting of endometrial cancer, in which treat-

ment often involves total hysterectomy. Following surgery, there is a large degree of variation in

the treatment a patient receives, with some receiving adjuvant radiation, some receiving adjuvant

chemotherapy, and some receiving neither (Latif et al., 2014). While costs associated with radia-

tion and chemotherapy are certain to exceed those associated with a control condition, the survival

benefit associated with either radiation or chemotherapy relative to neither could reasonably be

expected to vary by patient covariates, e.g., cancer stage. Specifically, those with a lower cancer

stage (and therefore, a lower overall risk of recurrence) may not experience the same degree of sur-

vival benefit from adjuvant treatment as compared to those with a higher cancer stage. In addition,

because NBS and NMB are complementary but not equivalent measures of cost-effectiveness, they

can provide different conclusions regarding the cost-effectiveness of a treatment. For example, if

costs are highly right-skewed, then the expected monetary benefit of a treatment may be negative

even if treated patients tend to observe greater monetary benefit than untreated ones. Understand-

ing how the cost-effectiveness of a treatment changes with respect to measured covariates can

help reconcile this heterogeneity.

In previous work, regression methods for NMB and ICER have been developed to compare cost-

effectiveness across subgroups defined by observed covariates. Willan, Briggs, and Hoch (2004)

show how NMB may be characterized as a function of the parameters in a regression of cost and

effectiveness outcomes on treatment and observed covariates. Under the assumption of bivariate

normal errors, the authors proposed a hypothesis test for the effects of covariates on NMB. Be-

cause cost distributions are typically skewed, Nixon et al. presented an alternative approach which

could accommodate more flexible error structures (Nixon and Thompson, 2005). While positing

regression models similar to those of Willan, Briggs, and Hoch (2004), their method implements
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Markov Chain Monte Carlo methods to accommodate gamma and log-normal distributed errors.

These approaches are useful if we are interested in how the cost-effectiveness of an intervention

(as measured by NMB or ICER) varies across levels of measured covariates, however no methods

currently exist which can explain variability in NBS using covariates.

In this paper, we introduce regression methodology to account for variability in the NBS using

observed covariates. In previous work, Pepe et al. developed regression methods for measures

of stochastic ordering for use in diagnostic testing settings (Pepe, 1997). Alonzo and Pepe later

extended this work to improve computational efficiency in large samples (Alonzo and Pepe, 2002).

Because the NBS is defined as the stochastic ordering of INBs between treatment groups, we are

able to embed their approach within our proposed methodology. We also describe how Monte

Carlo standardization and IPCW methods may be used to account for censoring and confounding

when performing NBS regression. Additionally, we propose a hypothesis testing framework for

determining the strength of evidence for the effects of covariates on NBS.

The remainder of this paper is organized as follows: In Section 2.2 we review the net benefit

separation as proposed by Spieker et al. (2021). In Section 2.3 we define a conditional variant

of the NBS and introduce our regression-based estimation procedure. In Section 2.4 we conduct

simulation studies to examine the finite sample properties of this estimator. In Section 2.5, we use

our proposed approach to analyze the cost-effectiveness of adjuvant treatments for endometrial

cancer. In the final section, we summarise the utility of our proposed cost-effectiveness parameters

and discuss limitations of our methodology.

2.2. Net benefit separation

Assume we have individual patient data on costs and treatment effectiveness. Let A be a binary

treatment indicator, Z be a measure of effectiveness, Y be a measure of medical cost, and let

i = 1, . . . , n index sample units. In a typical setting, Z and Y may represent survival time and

medical cost in USD($). For predefined WTP, λ, INB is defined as B(λ) = λZ − Y . We assume

without loss of generality that larger values of Z are desirable, so that greater INB indicates greater

treatment benefit. If we let Ba(λ) represent a randomly sampled INB from a hypothetical population
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receiving treatment A = a, then NBS is a measure of stochastic ordering that is defined as

θ(λ) = P
(
B1(λ) > B0(λ)

)
.

NBS can be interpreted as the probability that a randomly sampled unit from a population receiving

treatment will have a greater INB than an independently sampled unit from a control population. If

the only distributional difference between INBs in treated and untreated populations is a location

shift, then the NBS may be used to describe differences in the median INB, although this is not

generally true. For a particular λ, if θ(λ) = 0.5, then the treatments are equally cost-effective with

respect to NBS. To be specific, θ(λ) = 0.5 implies that randomly selected INBs from a treated

population do not tend to be larger than those from an untreated distribution and vice versa. Note

also that θ(λ) > 0.5 does not imply E [B1(λ)] > E [B0(λ)], i.e. cost-effectiveness with respect to

NBS does not imply greater expected INB. For example, if the distribution of INBs is skewed, then

the expected benefit under control may be larger than that under treatment even if the majority of

patients receiving treatment experience greater benefit than those receiving control. Thus, NBS

can help provide a more complete view of the range of patient experiences, particularly when cost

and effectiveness metrics are skewed.

For simplicity, we first consider estimation in a setting where treatment is randomized and with

no censoring. Here, the observed distribution of INBs in the treatment and control arms form

nonparametric estimates of the distributions of B1(λ) and B0(λ). Thus, NBS can be consistently

estimated using a scaled variant of the Wilcoxon rank-sum statistic

θ̂(λ) =
1

2N0

(
1

N1

N∑
i=1

2AiRi(λ)−N1 − 1

)
,

where Na is the number of participants receiving treatment A = a and Ri(λ) is the pooled rank of

the INB for the ith individual. Spieker et al. proposed a flexible standardization approach to estimate

the NBS in the presence of measured confounders (Spieker et al., 2021). By modelling the joint

distribution of observed variables, they are able to apply Monte Carlo methodology to sample INBs

from treated and untreated populations which have the same underlying distribution of confounders.

Applying the scaled Wilcoxon rank-sum statistic to the generated INBs provides an estimate of NBS
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that accounts for measured confounding. If data are censored, then IPCW can be incorporated in

the modeling step to account for censored cost data. In the section that follows, we will extend this

methodology to evaluate the association between measured covariates and the NBS.

2.3. Regression of net benefit separation

In this section we introduce regression methodology for NBS. Section 2.3.1 defines a conditional

variant of NBS and describes procedures for estimation and hypothesis testing when treatment

is randomized. In Section 2.3.2 we propose a Monte Carlo standardization procedure to address

measured confounding. Section 2.3.3 discusses how to incorporate IPCW to account for informa-

tive cost censoring.

2.3.1. Conditional net benefit separation

Suppose X is some covariate of interest which may explain variation in the NBS. In an endometrial

cancer setting, X may represent cancer stage or age at diagnosis. We want to assess how the

cost-effectiveness of a treatment changes with respect to X. Specifically, we may seek to (1)

characterize the association between X and NBS, (2) assess the NBS across levels of X, and (3)

evaluate the strength of evidence for association. When treatment is randomized and X is discrete,

the first two goals can be accomplished by estimating θ(λ|X = x) using the scaled Wilcoxon rank-

sum statistic within subsets defined by X = x. On the other hand, if X is continuous, then this is

not possible without first discretizing X. In either case, there are currently no methods to assess

the strength of association between X and the NBS. In this section, we introduce a procedure that

can accomplish all three of the stated goals for continuous or discrete X.

For a given λ, the NBS conditional on X is defined as

θ(λ|X) = P (B1(λ) > B0(λ)|X). (2.1)

It can be shown that the conditional NBS is equivalent to

θ(λ|X) =

∫ 1

0

S1|X(S−1
0|X(ω))dω (2.2)

where Sa|X(u) = P (Ba(λ) > u|X) denotes the conditional survivor function for INB in a hypothetical
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population receiving treatment A = a and S−1
a|X(u) is the quantile function for the same population.

To estimate θ(λ|X), we build methodology parallel to that used by Alonzo and Pepe (2002) for ROC

regression. Earlier work by Pepe (2000) noted that if we define Uij = 1(B1i(λ) > B0j(λ)) where

i and j index treated and untreated patients, then S1|x(S
−1
0|x(ωj)) is equivalent to the expectation

of Uij conditional on S0|x(B0j) = ωj and X = x. Given estimated quantiles ω̂j , standard GLM

procedures can be used to estimate S1|x(S
−1
0|x(ω)). Because Uij must be defined for every pair

of treated and untreated units, this approach is intractable for large samples. Instead, we use an

alternative approach proposed by Alonzo and Pepe (2002) which improves on the efficiency of the

original estimator. Let Ω be a finite set of values between 0 and 1. For each ω ∈ Ω and each unit i

receiving treatment define Uiω = 1(B1i(λ) > S−1
0|Xi

(ω)). That is, Uiω is the indicator of whether the i-

th treated unit’s INB is greater than the ω-th quantile of the distribution of INBs among the untreated

units. It follows that E[Uiω] = S1|Xi
(S−1

0|Xi
(ω)). For a given probability, ω ∈ Ω, this definition of Uiω

gives the indicator of whether a treated unit’s observed INB is greater than the ω-quantile of the

distribution of INBs in an untreated population. In practice, because S−1
0|X(ω) is unknown, Uiω is

defined using a consistent estimator of the quantile function Uiω = 1(Bi(λ) > Ŝ−1
0|Xi

(ω)). Alonzo

and Pepe (2002) suggest using empirical estimates of the quantiles when possible (i.e. for discrete

X) and quantile regression (Koenker and Bassett Jr, 1978) otherwise.

The conditional expectation of Uiω can be modeled using any flexible regression approach. One

sensible modeling choice is the probit form: E[Uω|X] = Φ(β0 + β1X + β2Φ
−1(ω)) where Φ(·) and

Φ−1(·) are the cumulative distribution function and the quantile function of the standard normal dis-

tribution respectively. This is the form that would arise if B1(λ) and B0(λ) were normally distributed

or if they could be monotonically rescaled to be normally distributed. Hanley (1988) shows that

when fitting ROC curves using the binormal form, estimates of AUC exhibit low bias even when the

model is misspecified. Because we characterize NBS as the area under the fit binormal model, it

can be seen as analogous to AUC. Once the conditional expectation has been modeled, NBS can

be estimated through numerical integration using standard software (Piessens et al., 2012). Under

the probit model, our estimate is given by

θ̂(λ|X) =

∫ 1

0

Φ(β̂0 + β̂1X + β̂2Φ
−1(ω))dω. (2.3)
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Testing whether X influences θ(λ|X) is equivalent to testing whether the coefficient(s) associated

with X are equal to zero. For example, under the probit model this is a test of if β1 = 0. Because

multiple values Uiω are defined for each individual (one for each ω ∈ Ω), model-based variance

estimates that assume independent observations are invalid. Instead, we propose the nonpara-

metric bootstrap hypothesis test. An important consideration in the regression of NBS is the choice

of Ω. For sets consisting of Nω equally spaced points, Ω = {j/(Nω + 1); j = 1, ..., Nω}, selecting

Nω = N0 − 1 is equivalent to the estimator originally proposed by Pepe (2000) and is maximally ef-

ficient. However, Alonzo and Pepe (2002) showed that smaller choices of Nω were able to achieve

close to maximal efficiency while mitigating computational burden.

2.3.2. Adjustment for measured confounding

Suppose that there are measured covariates, L, which affect the probability of receiving treatment

as well as the cost or effectiveness outcomes. Our proposed estimation procedure consists of

two steps: a Monte Carlo standardization step, and a regression step. The first step constructs

two pseudo-populations which differ in treatment status, but where the distribution of confounding

variables, L, is equivalent. Let f̂(z, y|A,X,L) denote some model for the conditional distribution

of cost and effectiveness measures. The pseudo-population under treatment A = a is built by

drawing M observations from the empirical distribution of the baseline covariates, F̂ (L,X), and

then using the sampled values of L and X to sample from the fit model f̂(z, y|A = a,X,L). From

these pseudo-populations, we may sample from the joint distributions of the INBs and X among

treated and untreated units, (B1(λ), X) and (B0(λ), X) respectively. This methodology ensures

that INBs are sampled from populations which receive different treatments, but have the same

underlying distribution of measured confounders. This procedure is semiparametric because, while

parametric models may be used to fit the distributions of Z and Y , the joint distribution F (X,L) is

estimated nonparametrically. The Monte Carlo standardization procedure is summarized below:

1. Model the conditional distributions f(Z|A,X,L) and f(Y |A,X,L, Z) where f(·) and F (·) de-

note the probability density function and the cumulative density function of a random variable.

Let f̂(Z|A,X,L) and f̂(Y |A,X,L, Z) denote the estimated distributions.

2. For a = 0, 1:

• Sample l̃m and x̃m for m = 1, ...,M from the empirical distribution F̂ (L,X).
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• For m = 1, ...,M sample z̃m and ỹm from f̂(Z|A = a, x̃m, l̃m) and f̂(Y |A = a, x̃m, l̃m, z̃m)

• Calculate B̃a,m(λ) for each pair (z̃m, ỹm)

The goal of the Monte Carlo standardization procedure is to sample INBs from their true underlying

distribution while adjusting for differences in measured covariates between treatment groups. Be-

cause of this, it is important to incorporate residual variance when drawing samples from f̂(Z|A,X,L)

and f̂(Y,A,X,L, Z). This can be accomplished by adding randomly sampled residuals to predicted

values arising from the fit models. Additionally, the models for f(Z|A,X,L) and f(Y |A,X,L, Z) can

be flexibly estimated to reduce bias. For example, zero-inflated gamma regression models can be

used to accommodate skewed cost distributions with structural zeros. By including effectiveness as

a predictor of cost, this procedure allows for correlation between Z and Y . In estimating the condi-

tional distributions f(Z|A,X,L) and f(Y |A,X,L, Z), we aim to properly specify the joint distribution

f(Z, Y |A,X,L, Z). Alternatively, this joint distribution may be decomposed into f(Y |A,X,L) and

f(Z|A,X,L, Y ). Because these approaches are equivalent, the choice to model one distribution

prior to the other is flexible. However, this decision should be driven by beliefs regarding correct

model specification that relies on knowledge of the data and question of interest. Using flexible

methodology to estimate the conditional distributions of cost and effectiveness may reduce the risk

of model misspecification.

The second step of our estimation procedure entails regressing the NBS using the sampled INBs.

Sampled values from the joint distributions of (B1(λ), X) and (B0(λ), X) are independent from the

distribution of measured confounders. This independence allows us to perform NBS regression as

described in Section 2.3.1. The regression step is outlined below:

1. For each ω ∈ Ω, use sampled values B̃0,m(λ) to estimate S−1
0|X(ω).

2. For each generated B̃1,m(λ) and ω ∈ Ω, define Umω = 1(B̃1,m(λ) > Ŝ−1
0|X(ω)).

3. Fit a model for E[Umω|X]

4. For X = x, estimate the subgroup-specific NBS by numerically integrating:

θ̂(λ|X = x) =

∫ 1

0

Ê[Uiω|X = x]
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2.3.3. Informative Censoring

Up until this point, we have developed methods which are suitable for cases with no censoring,

e.g. when Z is a continuous outcome with no missing data. Often, the effectiveness outcome

of greatest clinical interest is time to death post treatment. Because patients followed over time

may be lost to follow-up, we introduce methodology to account for censoring when estimating NBS.

Suppose we are interested in estimating costs up until a maximum time, τ . For observation i, let

Ci be the censoring time, Ti be the survival time, and T ∗
i = min(Ti, τ). Define δi = 1(Ci < Ti) and

δ∗i = 1(Ci < T ∗
i ) be indicators of censored survival time and censored costs. The observable data

are δ, δ∗, and Z = min(Ti, Ci). Because costs at time of censoring can be correlated with costs at

event time, it is necessary to use IPCW to estimate f(Y |A,X,L, Z). Let G(t) = P (t ≤ C) denote

the probability that the censoring time is beyond t. If we assume T and C are independent, then

G(t) can be modeled within each treatment group using the Kaplan-Meier product limit estimator

based on the data (C, δ∗). If instead we assume that survival and censoring times are independent

only once we condition on measured discrete and continuous variables, V and W , then we can use

the stratified cox model to estimate G(t). Under this model, we assume that the hazard function for

censoring is given by:

h(t|V,W ) = exp(ηTW )hV (t)

where ηT is the transposed vector of regression coefficients, η. Under the stratified cox model the

baseline hazard function, hV (t) may vary over strata defined by V . This enables adjustment for

predictors that satisfy the proportional hazards assumption, W , as well as for those that do not, V .

Importantly, selection of W and V is driven by beliefs regarding the censoring mechanism and may

not be related to confounding variables, L, or effect modifiers, X. The coefficients in this model, η,

can be estimated using the Cox partial likelihood (Cox, 1975):

Ĝ(T ∗
i |Vi,Wi) = exp

−
n∑
j=1

δj1(Vi = Vj , T
∗
i > Xj)exp(η̂TWi)∑n

k=1 1(Vi = Vk, Xk ≥ Xj)exp(η̂TWk)


For each individual we define the IPCW as
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wi =
δ∗i

Ĝ(T ∗
i )

Note that for censored individuals δ∗i = 0, so that wi = 0. The weights, wi, can be incorporated into

the Monte Carlo procedure when modeling f(Y |A,X,L, Z). For example, suppose we assume that

costs follow a log-normal distribution. To fit f(Y |A,X,L, Z), we can perform weighted log-normal

regression using only patients with fully observed cost data (i.e. those with δ∗i = 1). Any modeling

procedure that incorporates weighting may be used to estimate the cost distribution. The resulting

estimate, f̂(Y |A,X,L, Z), can be used in the standardization procedure described in Section 2.3.2.

2.4. Simulations

We perform a simulation study to determine the finite-sample properties of the proposed regression

estimator. Although data used for cost-effectiveness analyses often have thousands of observa-

tions, it is beneficial to understand how our methodology performs in both small and large sample

settings. We consider simulation settings with low sample size (n = 500) and high sample size

(n = 5000) as well as low (10%), medium (30%), and high (50%) rates of censoring. Finally, we

consider the case where the stratifying variable is and is not associated with θ(λ|X). For each

simulation, we estimate the NBS under two WTP thresholds, λ = 2 and 12. These represent the

cost a payer is willing to incur for a unit change in effectiveness.

We generate the data as follows: L ∼ N(0, 1), X ∼ Bernoulli(px = 0.25), A ∼ Bernoulli(pa =

expit(L)), T ∼ Weibull(k = 2, λ = exp(4.05 + 0.15A+ 0.2L+ βxX + βaxA×X)), C ∼ Weibull(k =

2, λ = exp(γ + 0.5A)), and Y ∼ Lognormal(µ = 4.2 + 0.002T + 0.5A, σ2 = 0.16). In simulations

where X is associated with θ(λ|X) we set βx = 0.1 and βax = 0.5. Under these parameter values

θ(2|X = 0) = 0.353, θ(2|X = 1) = 0.588, θ(12|X = 0) = 0.527 and θ(12|X = 1) = 0.746.

Treated subjects are expected to have greater costs and survival times than those which are un-

treated. Patients with X = 1 benefit more from treatment (with respect to survival) than those with

X = 0. The separation between the distribution of INBs between treated and untreated subjects

is larger in a population where X = 1 than in one with X = 0. In the setting where θ(λ|X) does

not depend on X, both βx and βax are set to zero. In these simulations, θ(2|X) = 0.353 and

θ(12|X) = 0.527 regardless of the value of X. In simulations where X affects NBS, we set γ to
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0.5119, 0.4410, and 3.9600 to induce 10%, 30%, and 50% censoring. When X does not affect NBS,

these values are 5.007, 4.315, and 3.8760, respectively.

To estimate θ(λ|X), we use the standardization procedure described in Section 2.3.1. A Weibull

regression model is used to estimate the distribution of T and a log-normal model is used for

costs. Because Y is informatively censored, we use IPCW when estimating the cost model. To

estimate the probability of being uncensored, we use the Cox proportional hazards model. In the

standardization step, we draw M = 5000 observations within each level of A. For the regression

of S1|X(S−1
0|X(ω)), we obtain Ŝ−1

0|X(ω)) for ω ∈ Ω using the empirical quantiles within levels of X.

The previously described probit link is used to model Uiω conditional on X. Standard errors are

estimated as the standard deviation of B = 300 bootstrap replicates. The nominal type-I error rate

is set to 0.05 for our hypothesis tests. Hypothesis tests are performed using symmetric 95% CIs

based on the bootstrap replicates.

For each setting, we simulate 1000 datasets, estimate the NBS conditional on X, and perform the

nonparametric bootstrap hypothesis test. We report the mean estimate of the NBS across simula-

tions, the mean bootstrap estimated standard error of the NBS, the standard deviation of estimated

NBS across simulations, and the proportion of hypothesis tests in which the null hypothesis was

rejected. Tables 2.1 and 2.2 provide simulation results for the settings where X affects and does

not affect the NBS, respectively.

Average point estimates of NBS are close to their true values for all tested values of X and λ.

Bootstrap estimated standard errors closely approximate the empirical standard errors observed

accross simulations. Due to a lower effective sample size, standard errors increase as the propor-

tion of censored units increases. Similarly, higher variability in the estimates of θ(λ|X = 0) can

be attributed to the fact that there is a lower prevalence of X = 0 in our simulations. In simula-

tions where X affects NBS, power is lowest when there is a sample size of 500, 50% censoring,

and a WTP of 2. All other observed rejection rates exceed 0.80. When X does not affect cost-

effectiveness, the probability of rejecting the null is close to the desired 0.05. All simulations are

performed in R 3.6.0. Code to replicate simulation results and for the following data example are

provided in our supplemental materials.
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Cens. Sample Size λ X θ(λ|X) Est. ŜE ESE Pr. Reject

10% 500 2 0 0.353 0.352 0.028 0.030 0.986
10% 500 2 1 0.588 0.589 0.049 0.049 −
10% 500 12 0 0.527 0.526 0.028 0.030 0.988
10% 500 12 1 0.746 0.745 0.038 0.038 −
10% 5000 2 0 0.353 0.354 0.011 0.010 1.000
10% 5000 2 1 0.588 0.587 0.019 0.020 −
10% 5000 12 0 0.527 0.527 0.011 0.010 1.000
10% 5000 12 1 0.746 0.745 0.015 0.015 −
30% 500 2 0 0.353 0.351 0.032 0.032 0.924
30% 500 2 1 0.588 0.591 0.061 0.065 −
30% 500 12 0 0.527 0.526 0.032 0.032 0.964
30% 500 12 1 0.746 0.746 0.045 0.046 −
30% 5000 2 0 0.353 0.352 0.012 0.012 1.000
30% 5000 2 1 0.588 0.588 0.023 0.023 −
30% 5000 12 0 0.527 0.526 0.012 0.012 1.000
30% 5000 12 1 0.746 0.745 0.017 0.017 −
50% 500 2 0 0.353 0.353 0.041 0.040 0.694
50% 500 2 1 0.588 0.580 0.083 0.087 −
50% 500 12 0 0.527 0.527 0.037 0.036 0.842
50% 500 12 1 0.746 0.742 0.057 0.055 −
50% 5000 2 0 0.353 0.353 0.015 0.016 1.000
50% 5000 2 1 0.588 0.586 0.034 0.033 −
50% 5000 12 0 0.527 0.527 0.013 0.014 1.000
50% 5000 12 1 0.746 0.745 0.020 0.019 −

Table 2.1: Results for setting where X has an effect on the NBS. Columns represent the probability
of being censored, sample size, WTP (λ), value of X, true NBS (θ(λ|X)), mean point estimate
(Est.), mean estimated standard error (ŜE), empirical standard error (ESE), and proportion of sim-
ulations in which the null hypothesis of no effect of X is rejected (Pr. Reject).
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Cens. Sample Size λ X θ(λ|X) Est. ŜE ESE Pr. Reject

10% 500 2 0 0.353 0.355 0.028 0.029 0.054
10% 500 2 1 0.353 0.355 0.047 0.049 −
10% 500 12 0 0.527 0.528 0.029 0.029 0.048
10% 500 12 1 0.527 0.530 0.047 0.049 −
10% 5000 2 0 0.353 0.354 0.011 0.010 0.048
10% 5000 2 1 0.353 0.353 0.018 0.017 −
10% 5000 12 0 0.527 0.528 0.011 0.010 0.046
10% 5000 12 1 0.527 0.527 0.018 0.018 −
30% 500 2 0 0.353 0.353 0.033 0.034 0.040
30% 500 2 1 0.353 0.356 0.055 0.054 −
30% 500 12 0 0.527 0.526 0.032 0.035 0.046
30% 500 12 1 0.527 0.529 0.053 0.051 −
30% 5000 2 0 0.353 0.352 0.012 0.013 0.054
30% 5000 2 1 0.353 0.353 0.021 0.020 −
30% 5000 12 0 0.527 0.525 0.012 0.012 0.054
30% 5000 12 1 0.527 0.527 0.020 0.020 −
50% 500 2 0 0.353 0.354 0.043 0.041 0.046
50% 500 2 1 0.353 0.356 0.069 0.068 −
50% 500 12 0 0.527 0.528 0.038 0.037 0.040
50% 500 12 1 0.527 0.529 0.062 0.061 −
50% 5000 2 0 0.353 0.354 0.017 0.016 0.036
50% 5000 2 1 0.353 0.354 0.027 0.027 −
50% 5000 12 0 0.527 0.527 0.014 0.014 0.054
50% 5000 12 1 0.527 0.527 0.023 0.023 −

Table 2.2: Results for setting where X has no effect on the NBS. Columns represent the probability
of being censored, sample size, WTP (λ), value of X, true NBS (θ(λ|X)), mean point estimate
(Est.), mean estimated standard error (ŜE), empirical standard error (ESE), and proportion of sim-
ulations in which the null hypothesis of no effect of X is rejected (Pr. Reject).
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2.4.1. Sensitivity to unmeasured confounding

In settings where we estimate NBS using data from observational databases, we must consider

the potential effects of unmeasured confounding. Because the Monte Carlo procedure described

in Section 2.3.2 only ensures that INBs are sampled from populations with the same underlying

distribution of measured covariates, it is necessary to understand how estimates of NBS may be

affected by unmeasured confounding. We perform simulations to determine how sensitive the pro-

posed regression estimator of NBS is to unmeasured confounding. We simulate two standard

normal variates, U1 and U2. The confounder U1 influences treatment probability and survival time,

while U2 affects treatment and cost. We consider two settings, (1) where only the exposure-survival

relationship is confounded and (2) where only the exposure-cost relationship is confounded. Vari-

ables L,X, and C are simulated as in previous simulations, A ∼ Bernoulli (expit(L+ γ1U1 + γ2U2)),

T ∼ Weibull(k = 2, λ = exp(4.05+0.15A+0.2L−η1U1+0.1X+0.5A×X)), and Y ∼ Lognormal(µ =

4.2 + 0.002T + 0.5A + η2U2, σ
2 = 0.16). The parameters γ1, γ2, η1 and η2 control the strength of

unmeasured confounding. In simulations where the exposure-survival relationship is confounded,

we examine the effect of low (γ1 = 0.5, η1 = 0.05), medium (γ1 = 0.75, η1 = 0.15), and high (γ1 = 1,

η1 = 0.3) levels of confounding. The parameters γ2 and η2 equal zero in this setting. When the

exposure-cost relationship is confounded, γ1 = η1 = 0. Low, medium, and high levels of confound-

ing are simulated by setting (γ2 = 0.5, η2 = 0.17), (γ2 = 0.75, η2 = 0.5), and (γ2 = 1, η2 = 1)

respectively

We simulate 1000 datasets with 5000 observations and a 30% censoring rate. We do not account for

U1 or U2 when estimating NBS using the Monte Carlo standardization procedure. Simulation results

for these simulations are provided in Table 2.3. As the level of confounding increases, the mean

estimate of the NBS becomes more biased. When confounding is strongest, percent bias exceeds

10%. Because cost is given less weight in INB for large WTP, the bias from unmeasured exposure-

cost confounding decreases as WTP increases. Similarly, bias increases with WTP when there

is unmeasured confounding of the exposure-survival relationship. Bootstrap estimated standard

errors are able to capture the true variability in estimates of NBS regardless of the strength of

confounding.
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Survival Confounded Cost Confounded
Conf. λ X θ(λ|X) Est. ŜE ESE θ(λ|X) Est. ŜE ESE

low 2 0 0.354 0.346 0.012 0.012 0.358 0.329 0.011 0.012
low 2 1 0.588 0.578 0.024 0.023 0.586 0.559 0.024 0.024
low 12 0 0.527 0.516 0.011 0.012 0.527 0.519 0.012 0.012
low 12 1 0.746 0.735 0.018 0.017 0.745 0.740 0.017 0.017

med. 2 0 0.356 0.323 0.012 0.011 0.384 0.285 0.011 0.011
med. 2 1 0.585 0.546 0.024 0.023 0.571 0.475 0.026 0.026
med. 12 0 0.526 0.482 0.012 0.012 0.522 0.490 0.012 0.012
med. 12 1 0.739 0.700 0.019 0.020 0.741 0.718 0.018 0.018
high 2 0 0.362 0.287 0.011 0.011 0.423 0.251 0.011 0.011
high 2 1 0.576 0.488 0.024 0.024 0.556 0.386 0.027 0.027
high 12 0 0.523 0.425 0.012 0.012 0.512 0.427 0.012 0.012
high 12 1 0.722 0.631 0.020 0.020 0.720 0.651 0.020 0.021

Table 2.3: Results concerning sensitivity to unmeasured confounding of the exposure-survival and
the exposure-cost relationship. Columns represent the WTP (λ), value of X, true NBS (θ(λ|X)),
mean point estimate (Est.), mean estimated standard error (ŜE), and empirical standard error
(ESE).

2.5. Endometrial Cancer Study

The standard treatment for early-stage endometrial cancer is complete hysterectomy. Patients

sometimes receive additional adjuvant radiation or chemotherapy to decrease the risk of recurrence

(Latif et al., 2014). However, there is insufficient evidence that adjuvant radiation therapy increases

overall survival (Shaeffer and Randall, 2005). Because more than half of the cost associated with

the treatment of endometrial cancer is accrued in the period after initial treatment (Mariotto et al.,

2011), it is important to ensure that only those patients who are likely to benefit from adjuvant thera-

pies receive additional treatment. We illustrate how to determine the cost-effectiveness of adjuvant

radiation and chemotherapy using empirically-based synthetic data developed by Spieker et al.

(2021). This dataset was developed based on data from a large observational endometrial cancer

database. Followup for patients in the original database is insufficient to perform a meaningful cost-

effectiveness analysis. Covariates in the synthetic data are drawn from their empirical distribution

in the cancer database. Cost and survival outcomes are simulated based on relations observed

in the database and from literature surrounding the prognoses of stage I and stage II endometrial

cancer (Shaeffer and Randall, 2005; Spieker et al., 2020a; Susumu et al., 2008). The data have

covariate, treatment, and outcome distributions similar to what would be observed in practice. The

use of synthetic data is motivated by a desire to make the code and data for this analysis available
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as well as to ensure sufficient followup.

We consider three possible courses of treatment post-hysterectomy: (1) receipt of adjuvant radi-

ation therapy (RT), (2) receipt of adjuvant chemotherapy (CT), and (3) receipt of neither therapy,

hereafter referred to as control. In our first analysis we compare those receiving RT to those re-

ceiving control, and in our second we compare CT to control. Because the data are simulated, the

results of our analysis are to be used solely for illustrating how NBS regression can be used in a

practical setting. This work does not make use of data from human subjects and does not require

IRB approval.

The data contain monthly follow-up information on N = 13526 endometrial cancer patients. The

upper bound on follow-up time is ten years, at which point all observations are administratively

censored. Our goal is to evaluate the association between two measures of patient health, cancer

stage and Charlson comorbidity index (Charlson et al., 1994), and the cost-effectiveness of adjuvant

RT or CT compared to control. We define cost-effectiveness using medical costs in USD($) and

survival time in years. We assume that age at diagnosis, cancer stage, Charlson index, baseline

receipt of RT or CT, and number of hospitalizations in the first-month post-surgery are confounders

of the exposure-outcome relationship. Treatment status is defined over the period from two-to-four

months post-hysterectomy. For example, if a patient received adjuvant RT during this period, then

they are included in the RT group in our analysis regardless of their treatment status throughout

the remainder of the study period. If a patient received both RT and CT during this period, they

are included in both treatment groups. The mean age at diagnosis is 73.70 (SD = 6.59), and most

patients have stage I cancer (93.6%). Charlson comorbidity indices are between zero and five,

with 51.32% of patients having an index of zero. In the first month post-hysterectomy, the baseline

period, 74 (0.55%) patients received RT and 810 (5.99%) received CT. From two-to-four months

post-surgery, these figures were 3440 (25.43%) and 305 (2.25%), respectively.

2.5.1. Analysis

We wish to estimate NBS comparing each adjuvant therapy to control conditional on cancer stage

and Charlson comorbidity index. We consider a range of WTP (from $50k to $120k per year),cancer

stages (stages I and II), and categorized Charlson indices (0, 1, and 2+). Because baseline co-

variates affect both treatment status and patient outcomes, we apply the standardization procedure
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Treatment λλλ Charlson(0) Charlson(1) Charlson(2+)

Stage I
RT 50 0.54 (0.51, 0.55) 0.52 (0.50, 0.54) 0.51 (0.48, 0.53)

120 0.55 (0.52, 0.62) 0.53 (0.52, 0.56) 0.53 (0.50, 0.55)
CT 50 0.63 (0.56, 0.68) 0.60 (0.53, 0.66) 0.56 (0.49, 0.63)

120 0.67 (0.60, 0.71) 0.64 (0.58, 0.70) 0.60 (0.54, 0.67)

Stage II
RT 50 0.59 (0.54, 0.64) 0.57 (0.54, 0.63) 0.56 (0.52, 0.62)

120 0.62 (0.56, 0.65) 0.60 (0.56, 0.65) 0.60 (0.54, 0.64)
CT 50 0.58 (0.37, 0.69) 0.54 (0.34, 0.67) 0.49 (0.30, 0.63)

120 0.64 (0.45, 0.74) 0.61 (0.43, 0.72) 0.58 (0.40, 0.70))

Table 2.4: Estimated NBS comparing RT to control and CT to control conditional on Charlson index
and cancer stage. Non-parametric bootstrap-based 95% CIs for each estimated NBS are provided
in parentheses.

described in Section 2.3.2. We assume survival time can be modelled using a Weibull distribution.

To account for structural zeros in cost data, we use a two-stage zero-inflated cost model where the

probability of having zero costs is estimated using a logistic model and the distribution of nonzero

costs is fit using a log-normal model. All models are fit conditional on treatment status and con-

founders. For each treatment, we draw M = 10000 Monte Carlo observations from the fit models

for survival and medical costs and use a probit model when finding the regression estimator of the

NBS. For our analysis of RT versus control, we model the NBS using the form:

θ(λ|Charlson, Stage) =
∫ 1

0

Φ

(
β̂R0 + β̂R1 Stage II + β̂R2 Charlson(1)

+ β̂R3 Charlson(2+) + β̂R4 Φ
−1(ω)

)
dω

The variables Charlson(1) and Charlson(2+) are indicators of whether a patient’s Charlson score

is equal to one or at least two, respectively. Analogous models are used when estimating the

NBS comparing CT to control conditional on cancer stage and Charlson index. Parameters for the

regression model comparing CT to control are denoted by the superscript C. Hypothesis testing is

based on B = 1000 nonparametric bootstrap replicates.

2.5.2. Results

In Table 2.4, we provide estimates of the NBS for each of the treatments as a function of Charlson

index and cancer stage. In almost every setting, the estimated NBS is greater than 0.5, indicating
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Figure 2.1: Estimates of the NBS comparing RT to control as a function of the WTP, λ. CED
curves are provided for patient cohorts conditional on cancer stage and Charlson comorbidity index.
Results for patients with stage I cancer are provided on the left, while those for patients with stage
II cancer are on the right. Estimated NBS within the range of primary interest are denoted in black.
Gray indicates estimated NBS outside of this region, provided to observe the behavior of the NBS.

that patients are likely to benefit from treatment regardless of their cancer stage or number of

comorbidities at diagnosis. Because there are few subjects who have stage II cancer and receive

adjuvant chemotherapy (n = 45), estimates of the NBS within this cohort too uncertain to claim

cost-effectiveness. For WTP of $50k, the estimated NBS comparing RT to control among patients

with stage I cancer and a comorbidity index of zero is 0.54 with 95% CI (0.51, 0.55). We conclude

that a randomly selected patient receiving RT will have a greater INB than a patient receiving

control 54% of the time. Adjuvant radiation is cost-effective for this patient cohort. The 95% CI for

θ(λ = 50|Stage I, Charlson(2+)) comparing RT to control is (0.48, 0.53). Thus, there is inconclusive

evidence on the cost-effectiveness of RT compared to control for patients with stage I cancer and

multiple comorbidities. Figures 2.1 and 2.2 provide cost-effectiveness determination curves (CED)

comparing adjuvant radiation to control and adjuvant chemotherapy to control, respectively. The

CED is defined by Spieker et al. (2021) as a graphical tool which shows how NBS is affected by

changes in WTP. The bold segment of the plots represent estimated NBS at WTP between $50k

and $120k, the range of primary interest (Shiroiwa et al., 2010). Estimates of NBS outside of this

range are in gray to illustrate the behavior of NBS at extreme WTP.
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Figure 2.2: Estimates of the NBS comparing CT to control as a function of the WTP, λ. CED
curves are provided for patient cohorts conditional on cancer stage and Charlson comorbidity index.
Results for patients with stage I cancer are provided on the left, while those for patients with stage
II cancer are on the right. Estimated NBS within the range of primary interest are denoted in black.
Gray indicates estimated NBS outside of this region, provided to observe the behavior of the NBS.

For each treatment and WTP, we conduct a hypothesis test to evaluate if there is an association

between either cancer stage or Charlson comorbidity index and NBS. As per Section 2.3.1, we can

determine whether cancer stage is associated with NBS after controlling for comorbidities by testing

the null hypotheses HR
0 : βR1 = 0 and HC

0 : βC1 = 0 against their alternatives. At λ = $50k, the

p-values for these tests are 0.019 and 0.366, respectively. There is evidence that, after adjusting for

Charlson comorbidity indices, the cost-effectiveness of adjuvant radiation may depend on cancer

stage. However, there is insufficient evidence to say same for adjuvant chemotherapy at this WTP.

At a WTP of $120k, the p-values for the tests of the same hypotheses are 0.007 and 0.543. Again,

there is evidence that cancer stage is associated with the cost-effectiveness of adjuvant radiation

therapy but not of chemotherapy. Among patients with a Charlson comorbidity score of zero, the

estimated NBS at a WTP of $120k is 0.55 for patients with stage I cancer and 0.62 for those with

stage II cancer. This indicates that patients with more advanced cancers may benefit more from

receiving adjuvant radiation therapy than those with stage I cancer. A similar conclusion is drawn

at a WTP of $50k.

To test whether patient’s comorbidity indices are associated with NBS after accounting for cancer
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stage, we perform a test of the hypotheses HR
0 : βR2 = βR3 = 0 and HC

0 : βC2 = βC3 = 0 against their

respective alternatives. At a WTP of $50k, the p-value for the test of parameters in the adjuvant

radiation model is 0.022, while that for chemotherapy less than 0.005. At a WTP of $120k, the

test for association between the Charlson comorbidity index and the cost-effectiveness of adjuvant

radiation results in a p-value of 0.076. At the same WTP the test for adjuvant chemotherapy, again,

has a p-value less than 0.005. At both considered WTP, there is evidence that Charlson comorbidity

score can help determine which patients may most benefit from adjuvant chemotherapy. However,

while there is evidence that the cost-effectiveness of adjuvant radiation is affected by Charlson

comorbidity index at a WTP of $50k, there is insufficient evidence at the larger WTP. Because

medical costs are given greater weight for lower WTP, this suggests that comorbidities may have

a greater effect on medical costs than on patient survival. For patients being treated with adjuvant

chemotherapy, point estimates of the NBS in Table 2.4 indicate that patients with greater Charlson

comorbidity indices may not receive as much benefit as those with fewer comorbidities, regardless

of cancer stage.

2.6. Discussion

In this paper, we introduce a regression framework for NBS that allows us to explain variability

in cost-effectiveness arising from covariates. The proposed method is the first to enable estima-

tion of NBS within levels of measured covariates and allow for testing the effects of covariates on

NBS. Regression of NBS is done in three steps: (1) estimate the distribution of cost and effec-

tiveness outcomes conditional on treatment and measured covariates, (2) implement Monte Carlo

standardization to sample INBs from treated and untreated populations with the same underlying

distribution of confounders, and (3) apply ROC regression techniques developed by Alonzo and

Pepe (2002) to estimate NBS. Our proposed methodology generalizes the work of Spieker et al.

(2021) on estimating NBS to allow for covariate adjustment and hypothesis testing. Understanding

how patient characteristics influence cost-effectiveness can help policy makers allocate resources

towards groups which are most likely to benefit from treatment.

In cost-effectiveness analyses where patients are lost to follow-up, estimators that assume indepen-

dence between costs at time of censoring and those at time of death are known to be inconsistent

(Lin et al., 1997). We provide methodology for incorporating IPCW in models for the conditional dis-
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tribution of treatment costs. When the probability of censoring depends on measured covariates,

we describe how Cox proportional hazards models can be used to determine covariate-specific

IPCW. In simulations, we find that our method is able to attain low bias and adequate power in

settings with small sample size and up to 50% censoring. Moreover, estimates of standard error

obtained using the nonparametric bootstrap are representative of empirical standard errors across

various levels of censoring.

Our proposed estimation procedure assumes that models for the conditional distributions of cost

and effectiveness are properly specified. Flexible modeling techniques present a potential route

to reduce the risk of model misspecification. Bayesian nonparametric methods for zero-inflated

data have been developed by Oganisian, Mitra, and Roy (2018) to estimate cost distributions, but

extensions of this methodology to cost-effectiveness analyses have not been explored. Similarly,

ensemble learning algorithms such as Super Learner (Laan, Polley, and Hubbard, 2007) could

be used to model complex cost and effectiveness distributions. For example, in their doubly robust

estimator of NMB, Li et al. (2018) successfully use Super Learner to estimate both propensity score

and outcome models. In future work, it would be useful to determine the best ways to incorporate

these methods into regression of NBS. After the standardization step, parametric regression models

for NBS may also be misspecified. Prior work by Hanley (1988) has examined the robustness of the

binormal form for modeling ROC curves. Their results suggest that estimates of AUC arising from

the binormal form, and analogously NBS, may exhibit low bias even when the form is misspecified.

Additionally, because the underlying distribution of INBs are left unspecified, the proposed NBS

regression framework can be described as “distribution-free” (Alonzo and Pepe, 2002). Optimally

efficient selection of Ω is an open area of research. In their paper concerning ROC regression,

Alonzo and Pepe (2002) perform simulations illustrating close to maximal efficiency can be achieved

even if the number of selected quantiles in Ω is 10% of the maximum length (i.e. the number of

unique values among untreated units). Further work that explores how to tune selection of Ω to the

distribution of INBs may improve efficiency.

The methods proposed in this article are suited for settings where all confounding variables are

measured, such as in cost-effectiveness analyses run in conjunction with randomized clinical trials

or for certain covariate rich observational databases. When unmeasured confounding is present,

estimates of NBS may be affected. In simulations with low levels of unmeasured confounding, our
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regression estimator of NBS exhibits small to moderate bias (between 2% and 8% bias). As ex-

pected, we found that as the strength of confounding increases, estimates of NBS become more

biased. In any studies involving observational databases, researchers should consider potential

sources of unmeasured confounding. Methods to assess sensitivity of NBS to unmeasured con-

founding may also be useful and will be a subject of future work.

Note that NBS is defined in terms of baseline treatment status. In our endometrial cancer exam-

ple, the comparison groups are those who received some adjuvant therapy in the period from two

to four months after surgery and those who did not. Because treatment effects may depend on

the duration or frequency of treatment, conclusions concerning cost-effectiveness may change de-

pending on whether treatment is considered time-stable, as in our definition, or time-dependent.

To estimate cumulative medical costs under a time-dependent treatment strategy, Spieker, Roy,

and Mitra (2018) developed a nested g-computation procedure. Similar methodologies that can

incorporate time-dependent treatment may be useful when we are interested in comparing the

cost-effectiveness of multiple treatment strategies and are the subject of future work.

Because patient covariates may influence the cost-effectiveness of a treatment, our proposed re-

gression framework for NBS provides a useful approach to identify which groups may benefit the

most from treatment. The results from our synthetic data analysis illustrate how we can evaluate the

effects of cancer stage or number of comorbidities on the cost-effectiveness of adjuvant therapies

for endometrial cancer patients. This information may be useful to policy makers aiming to better

allocate resources.
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CHAPTER 3

IDENTIFYING OPTIMALLY COST-EFFECTIVE DYNAMIC TREATMENT REGIMES WITH A

Q-LEARNING APPROACH

3.1. Introduction

Due to rising healthcare costs, there has been growing interest in improved methods for cost-

effectiveness analyses. Cost-effectiveness research is concerned with identifying policies that can

balance treatment effectiveness and overall costs. Adjuvant radiation or chemotherapy is occa-

sionally recommended to endometrial cancer patients undergoing hysterectomy because these

therapies can reduce the risk of locoregional recurrence (Heerik et al., 2021). However, these

therapies are also associated with higher toxicity rates and greater treatment costs (Randall et al.,

2006). Identifying treatment sequences that are both effective and cost-efficient is complicated by

heterogeneous treatment responses across individuals. Patients at high-risk of cancer recurrence

are likely to benefit more from adjuvant therapies than are patients at low-risk of recurrence (Heerik

et al., 2021). These complications underscore the need for treatment regime methodology that can

optimally allocate limited resources towards patients that are most likely to benefit.

Traditionally, regression approaches have been used to address treatment response heterogeneity

and its effects on cost-effectiveness. Willan, Briggs, and Hoch (2004) show that if cost and ef-

fectiveness metrics are linear functions of treatment status and covariates, then the incremental

cost-effectiveness ratio (ICER), one measure of cost-effectiveness, can be represented as a func-

tion of the parameters in a least-squares regression and standard inferential procedures can be

used to assess cost-effectiveness within subgroups. Alternatively, Nixon and Thompson (2005) de-

velop Bayesian Markov Chain Monte Carlo methods for inference that are more robust to skewed

costs. While these methods can describe cost-effectiveness within subgroups, neither allows for es-

timation of an optimal treatment strategy. Xu et al. (2020) developed methodology to learn optimal

cost-effective treatment rules by maximizing a composite measure of cost-effectiveness, the individ-

ual net benefit. For a given willingness-to-pay, this method targets the true optimally cost-effective

regime. However, because estimates of the expected cost and effectiveness under this regime

can not be determined, its use is difficult in policy recommendation settings. Laber et al. (2018)
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provides policy search methodology to identify a maximally effective treatment regime from among

regimes with a pre-determined threshold on overall cost (defined by number of safety events). This

approach allows for direct estimation of the cost and effectiveness of a regime fit under a given cost

constraint. However, the decision rules within these regimes take the form of linear decision bound-

aries and may be difficult to interpret. Recent work by Zhang et al. (2018) argues that treatment

rules based on decision lists provide both flexibility and interpretability.

In this paper, we propose an efficient algorithm for identifying optimal list-based decision rules under

fixed cost constraints. We use Q-learning with policy search methodology to maximize treatment

effectiveness within the class of list-based regimes with cost constraints. We modify the algorithm

proposed by Zhang et al. (2018) to efficiently estimate our list-based decision rules. Within our

data example, we propose an iterative cost-effectiveness analysis that uses ICER to select an opti-

mally cost-effective regime for the adjuvant treatment of endometrial cancer from a set of candidate

regimes corresponding to different cost-constraints.

The remainder of this manuscript is organized as follows. In Section 3.2 we introduce methodology

for estimating optimal list-based treatment regimes under a constraint on overall expected treatment

costs. We explore the operating characteristics of our proposed regime identification approach

through simulations in Section 3.3. In Section 3.4 we perform a cost-effectiveness analysis to

identify an optimal cost-effective treatment strategy for assigning endometrial cancer patients to

adjuvant radiation and chemotherapy. We describe additional considerations and avenues for future

developments in Section 3.5.

3.2. Methods

3.2.1. Set-up and notation

Assume that treatment decisions are made at the beginning of K distinct intervals indexed by

k = 1, ...,K. For each individual i = 1, ..., n in interval k, we observe (Wik, Aik, Cik, Zik, Yik).

Here, Wk denotes confounding variables collected at the beginning of interval k, Ak denotes treat-

ment status, Ck is a censoring indicator, and Zk and Yk are clinical effectiveness and cost out-

comes collected at the end of interval k. Within each interval, variables are observed in the or-

der: Wk −→ Ak −→ Ck −→ (Zk, Yk). We use overbar notation to denote covariate history, e.g.
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Ak = (A1, A2, ..., Ak−1, Ak), and underbar notation to denote future values of a covariate, e.g.

Ak = (Ak+1, Ak+2, ..., AK). Let Hk = (W k, Ak−1, Zk−1, Y k−1) denote a patient’s covariate and

treatment history at prior to decision k.

A dynamic treatment regime is a set of decision rules d = {d1, ..., dK} where dk is a mapping dk :

Hk −→ Ak from the space of all possible covariate histories into that of treatment decisions. Under

a potential outcomes framework, if D is a class of treatment regimes, then the optimal dynamic

treatment regime within this class, dopt, satisfies the condition E[Zd
opt,cK=0
K ] ≥ E[Zd,cK=0

K ] for all d ∈

D. Because a common goal in health policy is making treatment decisions within resource-limited

settings, we restrict consideration to the class of list-based treatment rules with E[Y d,cK=0
K ] < τ

for a predetermined cost-constraint, τ . Note that τ constrains the expected cost for the entire

population. Individual costs under this regime may exceed this constraint. This restricted search

sacrifices regime flexibility in favor of interpretability. Following Zhang et al. (2018), a list-based

regime is a regime for which each treatment rule dk for k = 1, ...,K consists of a series of if-else

statements:

If Hk ∈ Rk1 then Ak = ak1;

else if Hk ∈ Rk2 then Ak = ak2;

...

else if Hk ∈ RkLk
then Ak = akLk

Here, Lk is the preset maximal list length for a decision at interval k, and Rkl is a subset of Hk for

l = 1, ..., Lk. The maximal list length should be chosen to balance flexibility and interpretability, with

longer lists being more flexible but more difficult to interpret. For simplicity and to aid interpretability,

we restrict Rkl to clauses involving thresholding of a single covariate (e.g. Rkl = {hk ∈ Hk : hkj ≤

θ} for 1 ≤ j ≤ dim(Hk), θ ∈ R).

Estimation of the optimal cost-restricted regime involves identifying optimal values for {(Rkl, akl) :

l = 1, ..., Lk}Kk=1. We employ an integrated Q-learning and policy search approach to define and
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estimate these values. Define the Kth stage Q-functions for Z and Y :

QZK(aK , hK) = E[ZK |AK = aK , HK = hK , CK = 0]

QYK(aK , hK) = E[YK |AK = aK , HK = hK , CK = 0]

For a treatment regime d, we may recursively define Q-functions for intervals k = K − 1, ..., 1:

QZk (ak, hk; d) = E[Zk +QZk+1(dk+1(Hk+1), Hk+1)|Ak = ak, Hk = hk, Ck = 0],

QYk (ak, hk; d) = E[Yk +QYk+1(dk+1(Hk+1), Hk+1)|Ak = ak, Hk = hk, Ck = 0].

By the principles of dynamic programming, the optimal treatment regime can be identified by opti-

mizing over the Q-functions at each individual decision point (Bellman, 1966). In the policy search

context, the process of finding an optimal regime within a pre-specified class reduces to finding

the optimal decision rule within this class at each decision point. Because the kth stage Q-function

for cost denotes the expected cost accrued in the kth interval and in future intervals under a pre-

specified regime, decompose the overall cost constraint τ intoK components τ1, ..., τK representing

the interval specific cost constraints where
∑K
k=1 τk = τ . The optimal choices of (RK , aK) within

the class of list-based and cost constrained decision rules are given by:

{Ropt
K , aopt

K } = argmax
RK ,aK

E
[
QZK (dK(Hk;RK , aK), HK)

]
subject to E

[
QYK(d(HK ;RK , aK), HK)

]
< τK .

For decision intervals k = K − 1, ..., 1 the optimal choices (Rk, ak) are given by:

{Ropt
k , aopt

k } = argmax
Rk,ak

E
[
QZk

(
dK(hk;Rk, ak), hk;R

opt
k , aopt

k

)]
subject to E

[
QYk (d(Hk;Rk, ak), Hk; ;R

opt
k , aopt

k )
]
<

K∑
j=k

τk.

To connect the distribution of the observed covariates to that of the potential outcomes we invoke

the following identification assumptions:

(A1) (Positivity) If P (Hk = hk) > 0, then P (Ak = ak|Hk = hk) > 0 for all ak
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(A2) (Consistency) Zk = ZAk

k and Yk = Y Ak

k for k = 1, ...,K

(A3) (Sequentially ignorable treatment assignment) (Zakk , Y akk , Lakk+1) |= Ak|Hk for k = 1, ...,K

(A4) (Sequentially ignorable censoring) (Zakk , Y akk , Lakk+1) |= Ck|Ak, Hk for k = 1, ...,K

Under these assumptions, Schulte et al. (2014) and Laber et al. (2018) show:

QZK(aK , hK) = E[ZaK−1,aK ,cK=0
K |HaK−1,aK ,cK−1=0

K = hK ]

QYK(aK , hK) = E[Y aK−1,aK ,cK=0
K |HaK−1,aK ,cK−1=0

K = hK ]

and, for k = 1, ..., k − 1:

QZk (ak, hK ; d) = E
[
Z
ak−1,ak,ck=0
k +

K∑
j=k+1

Z
ak−1,ak,ck=0,dk+1

j

∣∣∣∣Hak−1,ak,ck−1=0
k = hk

]

QYk (ak, hK ; d) = E
[
Y
ak−1,ak,ck=0
k +

K∑
j=k+1

Y
ak−1,ak,ck=0,dk+1

j

∣∣∣∣Hak−1,ak,,ck−1=0
k = hk

]

It follows that identifying optimal choices of {(Rkl, akl) : l = 1, ..., Lk}Kk=1 maximizes the potential

treatment effectiveness under a constraint on potential cost.

In the next subsection, we propose a modification of the algorithm developed by Zhang et al. (2018)

for identifying globally optimal list-based regimes. Our extension allows for regimes to be fit under

a preset cost constraints.

3.2.2. Estimating the Optimal Decision Rules

To estimate the optimal list-based and cost constrained regime, we use a backwards recursive

procedure. The optimal decision rule for the final interval is estimated first, and earlier timepoints

are estimated assuming optimal decisions are made at all future timepoints. For each decision

point k, we sequentially estimate the pairs (Rkl, akl) for clauses l = 1, ..., Lk.

We illustrate estimation of the final decision rule, dK , before describing estimation for earlier in-

tervals. For a unit entering the final interval with covariate history hK , define the unconstrained

optimal rule d̃K(hK) = argmax
aK

QZK (aK , hK). We want to approximate the optimal rule within the

class of interpretable list-based and cost constrained treatment rules. To estimate the first clause
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of the constrained rule, define the intermediate list-based decision rule:

If hK ∈ RK1 then AK = aK1;

else if HK ∈ HK then AK = d̃K(hK)

Given estimates of theKth stage Q-functions, the estimated mean effectiveness and cost measures

under this regime are given by:

ΨZK1(RK1, aK1) =
1

n

n∑
i=1

[
I(hKi ∈ RK1)Q̂

Z
K(aK1, hKi) + I(hKi ̸∈ RK1)Q̂

Z
K(d̃K(hKi), hKi)

]
ΨYK1(RK1, aK1) =

1

n

n∑
i=1

[
I(hKi ∈ RK1)Q̂

Y
K(aK1, hKi) + I(hKi ̸∈ RK1)Q̂

Y
K(d̃K(hKi), hKi)

]
.

We search for the values of (RK1, aK1) which maximize ΨZK1 while ensuring that the expected cost,

ΨYK1, is less than or equal to the cost constraint, τK . As Zhang et al. (2018) point out, maximizing

the objective function, ΨZK1, is equivalent to minimizing the difference between this intermediate

rule and the optimal rule. Imposing the constraint ΨYK1 < τK ensures that we are minimizing within

the class of cost constrained rules. Different choices of (RK1, aK1) may lead to equivalent expected

effectiveness and cost estimates. For example, for units where the posited treatment, aK1, is equal

to the optimal treatment, d̃K(hKi), inclusion in RK1 will not influence expected outcomes. In these

cases, we opt to reward decision regions that assign treatment to a greater number of patients by

adding a complexity term, η, to our objective function: ΨZK1(RK1, aK1) + η {
∑n
i=1 I(hKi ∈ RK1)}.

Because η may reward “larger” regions at the expense of mean effectiveness, cross-validation can

be used to select this parameter. Ideally, η should be large enough to prevent searching over trivial

clauses but small enough to retain maximal effectiveness. The optimal choices of (RK1, aK1) for

the intermediate rule are given by:

(R̂K1, âK1) =argmax
RK1, aK1

ΨZK1(RK1, aK1) + η

{
n∑
i=1

I(hKi ∈ RK1)

}

subject to ΨYK1(RK1, aK1) < τK .

This procedure can be generalized to estimate optimal regions and treatment choices for each of

the LK clauses in the list-based rule. The algorithm can be summarized as follows:
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1. Let l = 1.

2. Define ĜKl = HK \
(⋃

s<l R̂Ks

)
. If l = LK , force RKl = HK . The estimated mean of X = Z

or Y under the lth intermediate rule is defined as:

ΨXKl(RKl, aKl) =
1

n

n∑
i=1

{
I(hKi ∈ RKl, hKi ∈ ĜKl)Q̂

X
K(aKl, hKi)+ (3.1)

I(hKi ̸∈ RKl, hKi ∈ ĜKl)Q̂
X
K(d̃K(hKi), hKi)+

l−1∑
j=1

I(hKi ∈ R̂Kj , hKi ̸∈ ĜKj)Q̂
X
K(aKj , hKi)

}
.

3. Define (R̂Kl, âKl) as:

(R̂Kl, âKl) = argmax
RKl,aKl

ΨZKl(RKl, aKl) + η

(
1

n

n∑
i=1

I(hKi ∈ RKl, hKi ∈ ĜKl)

)
;

subject to ΨYKl(RKl, aKl) < τK .

If l < LK set l = l + 1 and return to Step 2, otherwise stop.

The algorithm above can be used to estimate
{
(R̂Kl, âKl) : l = 1, ..., LK

}
. These estimates com-

pletely determine the optimal list-based and cost constrained decision rule for the K th interval, d̂K .

To estimate treatment rules for decisions k = 1, ...,K − 1, let QZk (hk, ak; d̂ ) and QYk (hk, ak; d̂ )

denote the Q-functions for interval k assuming that the optimal list-based and cost constrained

rule is followed in future intervals. The unconstrained optimal treatment decision at interval k is

d̃k = argmaxak Q
Z
k (hk, ak; d̂ ). To approximate this rule within the class of list-based and cost con-

strained treatment rules, we may apply the steps listed above replacing the K th stage Q-functions

with their kth stage equivalents, and the cost constraint τK with
∑K
j=k τj .

The proposed algorithm allows estimation of an optimal list-based regime under a set of interval-

specific cost constraints. This work requires two important modifications of the algorithm described

by Zhang et al. (2018) for identifying globally optimal list-based regimes. First, our procedure

requires that the optimal values of (Rkl, akl) result in a rule which satisfies some pre-specified

cost constraint. To achieve this, we must be able to estimate the expected cost accrued under

each intermediate decision rule. This motivates our second departure from the original algorithm.
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Equation 3.1 can be viewed as the sum of expected outcomes in three exhaustive groups: (1) those

satisfying the current clause but not past clauses (I(hki ∈ Rkl, hki ∈ Ĝkl) = 1), (2) those satisfying

neither the current clause nor past clauses (I(hki ̸∈ Rkl, hki ∈ Ĝkl) = 1), and (3) those satisfying

at least one previous clause (
∑l−1
j=1 I(hki ∈ Rkj , hki ̸∈ Ĝkj) = 1). In order to estimate the overall

expected outcomes, we must consider the expected outcome in each of these groups. Because

Zhang et al. (2018) are interested in finding an optimal list-based regime without a cost constraint,

at each clause they need only find (Rkl, akl) that maximize effectiveness among unassigned units,

i.e. those in groups (1) and (2). Because the outcomes for those in group (3) are fixed with respect

to the choice of (Rkl, akl), these two methods will result in equivalent rules in cases where there is

no cost constraint. This modification is necessary for ensuring the overall expected cost is below

the cost constraint. A final important clarification concerns adjustments for censored individuals.

While Q-functions for a given interval must be estimated using only those patients with observed

outcomes, all patients who are uncensored at the beginning of a decision interval may be used

to estimate optimal clauses within the decision list. This is true because the objective functions

described in Equation 3.1 only require covariate histories, Hk, for each individual. This information

is available for all units who have neither died nor been censored prior to interval k.

3.2.3. Efficient optimization of treatment rules

We propose an algorithm for identifying optimal choices of Rkl and akl, at clause l of decision rule

k. Let {R̂kj , âkj : j = 1, ..., l− 1} denote estimated optimal regions and treatments for clauses prior

to l. Recall that regions Rkl are defined in terms of a threshold, θ, on a variable within Hk. Let Hkp,

for 1 ≤ p ≤ dim(Hk), denote a covariate contained within Hk. First, consider decision regions of

the form Rkl = {hk : hkp ≤ θ} where patients with hk ∈ Rkl are given treatment akl. For l < Lk the

intermediate decision rule is given by:

If hk ∈ R̂k1 then Ak = âk1;

else if hk ∈ R̂k2 then Ak = âk2;

...

else if hk ∈ R̂k,l−1 then Ak = âk,l−1;

else if hkp ≤ θ then Ak = akl;
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else Ak = d̃(hk)

For each unit, define:

UZi = I(hi ∈ Ĝl)Q̂
Z
k (akl, hi) +

l−1∑
j=1

I(hi ∈ R̂j , hi ̸∈ Ĝj)Q̂
Z
k (akj , hi)

V Zi = I(hi ∈ Ĝl)Q̂
Z
k (d̃(hi), hi) +

l−1∑
j=1

I(hi ∈ R̂j , hi ̸∈ Ĝj)Q̂
Z
k (akj , hi)

The values UZi and V Zi represent expected effectiveness outcomes for patients included in and

excluded from Rkl, respectively. Note that if a patient satisfies a previous clause, then UZi = V Zi so

that the patient’s expected outcome is independent of the choice of θ and akl. It can be seen that

ΨZkl(Rkl, akl) =
1
n

∑n
i=1 I(hkpi ≤ θ)UZi + I(hkpi > θ)V Zi . If we define UYi and V Yi similarly, it follows

that ΨYkl(Rkl, akl) =
1
n

∑n
i=1 I(hkpi ≤ θ)UYi + I(hkpi > θ)V Yi .

Although θ may take any real value, the unique values of ΨZkl and ΨYkl can be obtained by setting

θ to the order statistics of hkp. Let θ∗1 , ..., θ∗m denote the unique values of Hkp, where m ≤ n. The

regimes using θ∗j and θ∗j−1 differ only in the treatments received by previously unassigned units with

hkpi = θ∗j . Under the first regime these units receive treatment akj , while under the second they

receive d̃(hi). It can be seen that ΨZ and ΨY follow the recursive relationships:

ΨZkl
(
θ = θ∗j , akl)

)
= ΨZkl

(
θ = θ∗j−1, akl

)
+

n∑
i=1

I(hkpi = θ∗j )(U
Z
i − V Zi )

ΨYkl
(
θ = θ∗j , akl)

)
= ΨYkl

(
θ = θ∗j−1, akl

)
+

n∑
i=1

I(hkpi = θ∗j )(U
Y
i − V Yi ).

These relationships allow us to quickly enumerate all possible values of ΨZ and ΨY for regions

of the form Rkl = {hk : hkp ≤ θ} and assigned treatment akl. Analogous relationships can be

defined for regions of the form Rkl = {hk : hkp > θ}. Optimal choices for Rkl and akl can be

obtained by iterating over each variable in Hk and each possible treatment option, and identifying

which choices lead to maximal values of ΨZ(Rkl, akl) + η
∑n
i=1 I(Hki ∈ Rkl) under the restriction

ΨYRkl,akl
<
∑K
j=k τk. As a result of this recursive relationship, we may enumerate all possible values

of ΨZ and ΨY corresponding to a specific treatment akj and regions of the form Rkl = {hk : hkp ≤

θ} in O(n) time. Thus, if there are p candidate covariates and s different treatment options, then

each clause can be optimized in O(nps) time.
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Table 3.1: Mean value of Monte Carlo estimates of the mean survival (MC. Surv.) and cost (MC.
Cost), and mean estimated survival (Ŝurv.) and cost (Ĉost) arising from averaging over the Q-
functions. Results are provided for simulations with 30% censoring and with low, medium, and high
levels of correlation and sample sizes (n).

Linear Model SuperLearner

Corr. τ n Ĉost Ŝurv. MC. Cost MC. Surv. Ĉost Ŝurv. MC. Cost MC. Surv.

Low 26 500 25.73 1.46 25.25 1.42 25.23 1.62 25.57 1.62
1000 25.81 1.43 24.15 1.43 25.36 1.65 25.80 1.70
5000 25.98 1.39 23.70 1.42 25.90 1.70 26.21 1.77

28 500 27.69 1.50 26.89 1.47 27.78 1.65 27.11 1.67
1000 27.79 1.46 25.70 1.46 27.82 1.70 27.36 1.76
5000 28.02 1.42 25.72 1.44 27.87 1.76 28.05 1.84

30 500 29.71 1.54 28.92 1.50 29.42 1.69 28.69 1.72
1000 29.86 1.49 27.76 1.48 29.79 1.74 29.24 1.80
5000 29.99 1.45 27.52 1.47 29.83 1.80 29.89 1.88

Med. 26 500 25.57 1.44 25.59 1.41 25.76 1.56 25.24 1.56
1000 25.71 1.39 24.26 1.40 25.84 1.59 25.81 1.64
5000 25.97 1.36 23.55 1.40 25.94 1.63 26.40 1.69

28 500 27.65 1.46 27.02 1.42 27.26 1.60 27.57 1.62
1000 27.78 1.42 25.87 1.42 27.78 1.63 27.44 1.68
5000 27.99 1.38 25.32 1.41 27.91 1.68 28.26 1.75

30 500 29.71 1.48 28.70 1.45 29.53 1.63 28.89 1.65
1000 29.74 1.44 27.20 1.45 29.79 1.68 29.42 1.74
5000 30.00 1.41 27.16 1.43 29.89 1.74 30.11 1.80

High 26 500 25.56 1.41 25.69 1.37 25.77 1.52 25.66 1.51
1000 25.65 1.37 24.52 1.38 25.64 1.53 25.75 1.56
5000 25.87 1.33 23.55 1.38 25.95 1.56 26.51 1.62

28 500 27.44 1.43 27.23 1.40 27.72 1.54 27.40 1.55
1000 27.66 1.39 25.91 1.40 27.70 1.58 27.66 1.62
5000 27.95 1.36 25.18 1.39 27.95 1.62 28.44 1.68

30 500 29.56 1.45 29.12 1.42 29.71 1.58 29.09 1.59
1000 29.63 1.41 27.21 1.42 29.74 1.62 29.57 1.66
5000 29.99 1.38 26.73 1.41 29.92 1.66 30.40 1.72

3.3. Simulation study

We perform a simulation study to (1) demonstrate that our approach is able to fit valid cost con-

strained regimes in realistic settings and (2) illustrate the utility of flexible ensemble learning ap-

proaches for improving regime performance. We simulate data with K = 3 decision points and

n = 500, 1000, and 5000 sample units. At each time point, we simulate a vector of independent stan-

dard normal confounding variables, Wk; a binary treatment decision, Ak; an indicator of whether a

unit is censored during an interval, Ck; an indicator of whether a unit has survived to the end of the

interval, Sk; and cost accrued within the interval, Yk. Simulations are run at various sample sizes

and levels of correlation between survival and cost outcomes. Details for how data are simulated

can be found in the appendix. We compare two approaches for modeling the Q-functions: (1) linear
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models, and (2) SuperLearner. SuperLearner is an ensemble learner, combining predictions from

a set of candidate learners to minimize cross-validated risk (Laan and Rose, 2011). The candi-

date learners within our SuperLearner are random forests, neural nets, elastic net, and generalized

linear models.

For each simulation setting, we generate 500 datasets and estimate an optimal cost constrained

regimes under overall cost constraints of τ = 26, 28, and 30. We set the maximal list length, Lk, to

5 for all decision intervals k = 1, 2, 3. After regimes are identified, we simulate 106 new units, treat

them according to the estimated treatment rules, and record the mean survival and cost among

these units. This procedure results in two estimates of the mean cost and survival under each

fit regime; one obtained by averaging over the estimated Q-functions for the initial interval, and

another based on Monte Carlo simulation. The Monte Carlo approach allows us to determine how

each regime performs when applied to new data and approximates the true cost and survival under

that regime. If the Q-functions are appropriately modelled, then estimates of the expected cost and

survival for a fit regime should be similar to Monte Carlo approximations of the truth.

Table 3.1 provides the mean Q-function-based estimate of cost and survival as well as the mean

Monte Carlo estimated cost and survival across regimes fit under varying cost constraints and lev-

els of correlation between cost and effectiveness outcomes. Results in this table are from settings

with approximately 30% censoring over the course of the three treatment intervals. Results at 0%

and 60% censoring are provided in the appendix. In nearly all settings, the mean Monte Carlo

estimated cost fall below the specified cost threshold. Only in scenarios where SuperLearner was

used with large sample datasets, was the cost constraint not satisfied. In these settings, the mean

Q-function based estimate of the total cost underestimated the true Monte-Carlo estimated cost

(e.g. true vs. estimated cost of 30.40 vs. 29.92, when n = 5000, τ = 30, and under high corre-

lation). Due to misspecification, regimes identified using linear models consistently overestimated

the costs observed among new units. Because total regime costs are overestimated when using

linear models, some regimes which would truly satisfy the cost constraint may be excluded from

consideration. This results in more conservative treatment strategies and decreased survival when

compared to SuperLearner-based regimes. In the simulation setting with n = 1000, τ = 28, and

medium correlation between outcomes, both Linear-model and SuperLearner-based regimes have

a mean estimated treatment cost of 27.78. However, because the SuperLearner-based models
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more accurately estimate the true regime cost (25.87 and 27.44 for linear-model and SuperLearner-

based regimes, respectively), resources are better utilized and units achieve greater survival (1.42

vs. 1.68). Additionally, because SuperLearner may improve our ability to identify patients that are

likely to benefit from treatment, Monte Carlo estimates of survival in SuperLearner-based regimes

exceed those of Linear-model-based regimes even when costs are similar (e.g. Linear model vs.

SuperLearner-based survival of 1.37 vs. 1.51 and costs of 25.69 vs. 25.66 when n = 500, τ = 26,

and under high correlation).

3.4. The cost-effectiveness of adjuvant therapies for endometrial cancer

The standard treatment for patients with early-stage endometrial cancer is complete hysterectomy.

Throughout the post-surgical period, patients may receive adjuvant radiation or chemotherapy to

decrease the risk of recurrence (Latif et al., 2014). The decision to provide adjuvant therapy will

depend on individual patient characteristics. In particular, younger patients or those with low-grade

histology have low risk of recurrence and may not benefit from adjuvant therapies (Creutzberg et al.,

2000). Additionally, the best treatment decision for a given patient will change over time. Hogberg

et al. (2010) found that certain high risk patients who initially receive adjuvant chemotherapy may

exhibit greater survival if switched to radiation therapy. However, the optimal sequencing of adjuvant

therapies remains a subject of controversy (Heerik et al., 2021). In this analysis, we use data from

the linked SEER-Medicare database to identify an optimally cost-effective regime for assigning

adjuvant treatments to endometrial cancer patients. In doing so, we aim to explore how different

treatment strategies effect patient survival and costs. Patients in this database were diagnosed with

endometrioid histology cancer between 2000 and 2011, with follow-up until 2013.

Each patient in the database is followed for 24 months. We divide this period into four intervals

(months 1-6, 7-12, 13-18, and 19-24), wherein treatment is assigned within the first month of each

interval. At the beginning of each interval, patients are assigned one of three treatments: (1)

adjuvant radiation therapy (RT), (2) adjuvant chemotherapy (CT), or (3) monitoring alone (neither

radiation nor chemotherapy), hereafter referred to as control. The data contain followup information

on 13722 patients, 714 of whom have censored outcomes. Of the total study population, 27 patients

were excluded because they were treated with both adjuvant RT and CT. At baseline, data are

available on patient’s age, race, and cancer stage and grade. Additionally, Charlson comorbidity
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indices and the number of hospitalizations are recorded at every month of follow-up. The mean

age at diagnosis is 73.72 (SD = 6.58), and most patients have stage I cancer (94.03%). Charlson

comorbidity indices are between zero and five, with 54.39% of patients having an index of zero. The

24-month-restricted mean survival among patients is 22.86 months and the mean accumulated cost

over the study period is 33830.89.

Due to sensitivity from random seeds when using SuperLearner, we fit Q-functions using a gener-

alized additive model. Generalized additive models provide a compromise model that is both more

flexible than linear models and more robust to random seed than SuperLearner. Our outcomes of

interest were total cost over the 24 month period and restricted mean survival. Covariates used as

predictors include: age at diagnosis, race, cancer stage, cancer grade, number of hospitalizations

over the previous six months, maximum Charlson comorbidity index over the previous six months,

total cost accrued over the previous six months, and previous treatment assignment. Treatment

rules for each interval contain a maximum of five clauses and assign adjuvant therapies based

upon a patient’s age at diagnosis, Charlson comorbidity index, number of hospitalizations over the

past 6 months, previous treatments, and their cancer stage and grade.

Because medical costs do not accrue at the same rate throughout the post-surgical period, we allow

the interval specific cost constraints for each candidate regime to change with time. To select the

cost-constraints of our candidate regimes, we first identify a maximally effective treatment regime by

optimizing decision rules without resource constraints (i.e. τ = ∞). Next, identify the cost accrual

pattern under both the optimally effective regime and some ”lower bar” regime- here, the standard

of care or what is observe in the data. The cost constraints for the candidate regimes are defined

as mixtures of the lower and upper bound cost accrual patterns. For s ∈ [0, 1], the vector of interval-

specific cost constraints corresponding to s is given by τs = (1 − s)(18500, 5500, 5500, 5000)T +

s(18500, 5500, 9000, 8000)T . For s = 0, the interval-specific constraints approximate the pattern

of cost-accrual observed among patients within the database, while for s = 1, the constraints

mirror the cost-accrual pattern under an optimal regime fit without resource constraints. Candidate

regimes are fit under the vector of cost constraints corresponding to s = 0, 0.25, 0.5, 0.75, 1.

To identify an optimally cost-effective regime, we sequentially compare each candidate regime us-

ing the ICER. Given two candidate regimes, d1 and d2, ICER is a comparative measure defined as

the ratio of the difference in expected cost to the difference in expected effectiveness between the
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two regimes:

ICER(d2, d1) =
E[Y d2 ]− E[Y d1 ]
E[Zd2 ]− E[Zd1 ]

.

ICER can be interpreted as the cost per unit change in effectiveness obtained by switching from

treatment regime d1 to d2. Let λ denote a pre-selected willingness-to-pay (WTP) parameter. The

WTP represents the maximum cost a payer is willing to incur for a unit change in effectiveness.

Adopting regime d2 over the comparator regime, d1, is considered cost-effective if ICER is less than

the chosen WTP. Given a set of regimes corresponding to different cost-constraints, d̂(τ1), ..., d̂(τJ),

we provide an algorithm that identifies the optimally cost-effective regime by sequentially comparing

each candidate regime to the best existing alternative.

1. Define the current most cost-effective regime: d̂CE := d̂(τ1) and set j = 2

2. If
(

ICER(d̂(τj), d̂CE) < λ
)

, then d̂CE := d̂(τj), otherwise do not update d̂CE.

3. If j < J , set j = j + 1 and repeat from Step 2, otherwise d̂CE is the optimally cost-effective

regime.

We perform this cost-effectiveness analysis to select an optimally cost-effective regime from the

set of regimes with cost-constraints given by τs for s = 0, 0.2, 0.4, ..., 1. Results of this analysis

under a WTP of $4,166/month or equivalently, $50,000/year are provided in Table 3.2. Because

none of the regimes have ICER less than this WTP when compared with Regime I, Regime I (the

least expensive regime) is the optimally cost-effective list-based treatment regime. The treatment

rules for this regime are provided within the appendix. Under this regime, patients are expected

to accrue approximately $34,380 in medical costs and to survive for 22.840 months within the two

years following hysterectomy. Estimated restricted mean survival and cost under this regime are

similar to those observed among patients in our database.

We may characterize the differences between the optimal regime and other candidate regimes is by

comparing treatment patterns under each regime. Figure 3.1 provides the most frequent treatment

patterns under the optimal, a moderately expensive (regime III), and the most expensive regimes.

Under the optimal regime the three most common treatment patterns are: (1) Neither treatment

for 2.0 years (68%), (2) Neither treatment for the first 1.0 years and chemotherapy for 1.0 years

(21%), and (3) adjuvant chemotherapy for 0.5 years followed by neither therapy for 1.5 years (4%).

40



Table 3.2: Estimated mean survival (months) and cost (USD$) for patients treated according to
each candidate regime. Incremental cost-effectiveness ratios comparing subsequent candidate
regimes. Results for optimally cost-effective treatment regime at WTP of $4,166/month bolded.

Regime s Cost Survival ICER Comparator

1 0 34379.86 22.840 NA NA
2 0.25 37623.31 23.018 18250.62 1
3 0.50 40976.36 23.079 27663.32 1
4 0.75 44447.11 23.157 31801.15 1
5 1.00 46590.46 23.175 36464.93 1

(a) (b)

Figure 3.1: Most common treatment patterns (a) and variables (b) for the optimally cost-effective,
a moderately expensive, and most expensive treatment regimes. Estimated by determining which
treatments the observed units would be assigned to based on their covariate history.

This differs from the most common treatment patterns under both the moderately expensive and

the most expensive regimes, under which less than 5% of patients receive neither adjuvant therapy

for the duration of study. In practice, treatment with radiation or chemotherapy after the initial

monitoring period often indicates cancer recurrence. Because our data do not contain information

on recurrence, other covariates must be used as proxies to determine whether recurrence has

occurred and additional treatment is required. The most common treatment patterns in the more

expensive regimes entail treatment after a period of monitoring, suggesting that additional costs are

incurred due to more aggressive predictions of recurrence. We may also compare which variables

are most frequently selected to assign treatment between regimes using Figure 3.1. For all three

considered regimes, treatment decisions were most commonly based on patient’s age, cancer

grade, and cancer stage with variation in the relative importance of these factors.
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3.5. Discussion

In this paper, we present a two-step procedure for identifying an optimally cost-effective dynamic

treatment regime with interpretable, list-based decision rules. In the first step, we use a novel Q-

learning and policy search-based approach to estimate optimal list-based regimes that maximize

treatment effectiveness under a predefined constraint on treatment costs. Through simulations we

show the validity of our cost constrained regimes and illustrate how flexible ensemble learners can

improve regime performance. The second step consists of a cost-effectiveness analysis that can

select an optimally cost-effective regime from a set of candidate regimes characterized by variable

cost constraints. This procedure identifies the most cost-effective treatment strategy by iteratively

comparing each candidate regime with the best existing alternative.

While our method works for general measures of effectiveness, in our simulations and data ex-

ample we focus on restricted mean survival. This is a traditional measure of effectiveness within

cost-effectiveness studies (Li et al., 2018; Spieker et al., 2019). Recently, Linn, Laber, and Stefan-

ski (2017) developed methods for optimizing specified quantiles of a distribution. Future extensions

may explore how this methodology could be used to allow for maximization of median survival

time while placing a constraint on overall cost. In contrast with previous work on identifying cost-

effective regimes which have maximized effectiveness while penalizing costs Lakkaraju and Rudin

(2017) and Xu et al. (2020), our proposed cost-effectiveness analysis is based upon iterative com-

parisons of candidate regimes. This allows us to better characterize how decisions change as

the allowable cost increases and avoids complications arising from non-iterative cost-effectiveness

analyses (Cohen and Reynolds, 2008). For example, suppose two or more experimental treat-

ments are considered cost-effective when compared with the standard of care. Additional iterative

comparisons between the experimental treatments are necessary to determine which treatment is

preferred under a pre-specified budgetary constraint.

An important consideration in the design of cost-effectiveness analyses is in the selection of cost

constraints. In general, if too few cost constraints (and thus, too few candidate regimes) are se-

lected, then we may be unable to approximate a true optimally cost-effective regime. If cost con-

straints are too similar, then ICER may become unstable due to similar estimated effectiveness.

This consideration is further complicated by difficulties in quantifying uncertainty. Constrained esti-
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mation results in nonstandard asymptotic theory, and methods for performing inference have not yet

been explored (Laber et al., 2018). Additionally, the modeling choice for Q-functions may influence

estimated treatment rules. Flexible methods like SuperLearner may improve regime performance,

but are also subject to variability across random seeds. For estimates of treatment effects, Benkeser

(2020) propose combining estimates arising from different seeds. However, work is required to de-

termine the best procedure for combining decision-list based rules.
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CHAPTER 4

INFLUENCE FUNCTION BASED INSTRUMENTAL VARIABLE ESTIMATOR OF

CENSORED MEDICAL COSTS

4.1. Introduction

Studies aimed at estimating medical costs accrued under different treatments are necessary for

making informed healthcare policy decisions. These methods are particularly useful when analysing

treatments with similar clinical effectiveness. In a recent series of papers, Keele et al. (2018, 2019)

and Fogarty et al. (2021) assessed the effect of treatment by emergency general surgery (EGS)

on patient mortality for a set of acute conditions for which non-operative alternatives exist. While

more aggressive forms of care often exhibit protective effects in adjacent medical settings(Lorch

et al., 2012), these analyses showed a lack of beneficial evidence for EGS for many of the condi-

tions under study. Here, knowledge of how EGS affects accrued medical costs is critical for making

informed policy recommendations. Data for performing these analyses are often pulled from com-

plex observational sources such as claims databases. Common complications in this setting are:

(1) measured and unmeasured confounding of the exposure-outcome relationship, (2) informative

cost censoring, and (3) irregular cost distributions. Methodologies that are robust to both sources

of confounding and that are flexible enough to account for irregularities in the cost distribution and

censoring have not previously been explored.

Drawing causal conclusions from observational databases requires careful consideration of the ef-

fects of exposure-outcome confounding. If all sources of confounding are measured, then we may

assess the effect of different treatments on overall medical costs using inverse probability weight-

ing (Li et al., 2016), g-computation (Spieker et al., 2020b) , or doubly robust approaches (Li et al.,

2018). Many of these approaches build upon the inverse probability of censoring weighting (IPCW)

framework for accounting for informative cost censoring (Bang and Tsiatis, 2000). This problem

was first noted by Lin et al. (1997), who discussed how correlation between accrued costs at time

of censoring and those at time of event can induce bias in estimates of overall treatment cost. How-

ever, these methods do not extend to settings with unmeasured confounding. Sensitivity analyses

to assess how robust cost estimates may be to unmeasured confounding have been proposed,
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namely by Handorf et al. (2013, 2018). Alternatively, the instrumental variable (IV) framework can

be used to directly estimate causal effects in settings with unmeasured confounding.

Popular IV approaches such as two stage least squares (2SLS) or two stage predictor substitution

(2SPS) have become more common in medical and epidemiologic research (Keele et al., 2018,

2019; Lorch et al., 2012). Because these methods often rely on parametric assumptions, imple-

mentation may not be valid in settings with highly skewed cost data. Additionally, extensions of

these methods to settings with informatively censored cost outcomes have not been adequately

developed. Influence function based approaches have recently been proposed by Dı́az (2019) and

Lee, Kennedy, and Mitra (2020) to identify treatment effects on patient survival in the presence of

censoring. These methods are doubly robust, efficient, and can incorporate semiparametric model-

ing approaches. However, extensions to informatively censored cost data have not been explored.

In this paper, we propose two instrumental variable estimators of the complier average treatment

effect on costs. Given a valid instrument, these estimators are unbiased in the presence of un-

measured confounding. Additionally, the use of a partitioned cost estimator allows us to address

informative cost censoring and improve efficiency by utilizing data from patients with censored med-

ical costs. The proposed estimators are based on influence functions and hence provide doubly

robust, semiparametric, and efficient estimation of treatment effects as well as valid asymptotic in-

ference. We present results from simulation studies assessing the performance of the proposed

estimator under varying degrees of censoring, IV strength, and nuisance function misspecification.

We also apply the proposed approach to a study assessing the costs of surgical and non-surgical

interventions for gallstones and hemorrhaging using observational data.

In Section 4.2 we describe instrumental variable methodology for estimating the causal effect of

an exposure on accrued medical costs using a simple and partitioned weighted estimator. Details

concerning asymptotic inference are also provided. Section 4.3 provides the results of simulation

studies exploring the operating characteristics of our two proposed estimators in various realistic

settings.To conclude, Section 4.4 will first discuss the utility of our proposed methodologies and the

implications of our results before describing challenges and areas for future work.
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4.2. Methods

4.2.1. Notation and Identification

In this section, we present novel methodology for estimating the effect of an exposure on poten-

tially censored medical costs using an instrumental variable. Specifically, if a study follows patients

up to some maximal time, τ , then we aim to estimate the treatment effect on costs over the in-

terval [0, τ ]. For each unit i = 1, ..., n we observe the random vector Oi = (Li, Zi, Ai, Ti,∆i, Yi).

Here, L is a vector of confounding variables, Z is a binary or continuous instrumental variable,

A denotes exposure status, T denotes time of censoring or event, ∆ is an indicator of whether

a patient has fully observed cost outcomes, and Y represents total accrued medical costs up to

time τ . If patient cost data is recorded at multiple points during the study duration, say at times

0 = t0 < t1 < t2 < ... < tK = τ , then we may also represent the observed data vector as

Oi = (Li, Zi, Ai, T1i,∆1i, Y1i, T2i,∆2i, Y2i, ..., TKi,∆Ki, YKi) where Tk = min(T, tk) denotes sur-

vival up to time tk, ∆k indicates whether costs are fully observed up to time tk, and Yk represents

costs accrued over the interval (tk−1, tk]. Note that the sum of interval-specific costs for each

individual is equal to the total accrued cost, i.e.
∑K
k=1 Yki = Yi.

We want to estimate the causal effect of the treatment, A, on overall medical costs, Y . Specifically,

we want to know the treatment effect on the restricted mean cost (cost up to the end of interval K,∑K
k=1 Yk = Y ). Our target parameter is the local average treatment effect (LATE):

Ψ = E[Y a=1 − Y a=0|Az=1 > Az=0]

In the absence of censoring, the LATE may be identified using the observed data under the following

set of assumptions:

(A1) IV relevance: The IV must be associated with the treatment of interest, E[A|L,Z = 1] ̸=

E[A|L,Z = 0]

(A2) There must be no unmeasured confounding between the IV and the outcome, Z |= Az|L and

Z |= Y a,z|L

(A3) Exclusion Restriction: The IV can only affect the outcome through the treatment. Y z =
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Y A
z,z = Y A

z

(A4) No defiers: There are no units that would take treatment under Z = 0 that would not have

given Z = 1, P (Az=0 > Az=1) = 0

Theorem 4.2.1. Under assumptions (A1)-(A4) the LATE, Ψ, may be identified as:

Ψ =

E

[
E[Y |Z = 1, L]− E[Y |Z = 0, L]

]
E

[
E[A|Z = 1, L]− E[A|Z = 0, L]

] (4.1)

where E[Y |Z = z, L] =
∑1
a=0E[Y |A = a, Z = z, L]P (A = a|Z = z, L)

When cost data are censored, additional consideration must be given to avoid bias due to infor-

mative cost censoring (Lin et al., 1997). This problem arises due to correlation between costs at

time of event and costs at time of censoring. Under an additional assumption of non-informative

censoring, (A5) T |= C|A,Z,L, we may identify the LATE using an inverse probability of censoring

weighted (IPCW) estimator. This is accomplished by noting the following equivalencies:

E[E[Y |Z = z, L]] = E
[ 1∑
a=0

E[Y |A = a, Z = z, L]P (A = a|Z = z, L)

]

= E
[ 1∑
a=0

E
[

Y∆

G(T |a, z, L)
|A = a, Z = z, L

]
P (A = a|Z = z, L)

]
(4.2)

= E
[ 1∑
a=0

K∑
k=1

E
[

Yk∆k

G(Tk|a, z, L)
|A = a, Z = z, L

]
P (A = a|Z = z, L)

]
(4.3)

where G(T |a, 1, L) = P (C > T |A = a, Z = 1, L) represents the survivor function for the censor-

ing distribution evaluated at time T . Based on the representations in Equations 4.2 and 4.3, we

provide two methods for identifying the LATE based upon IPCW estimation: (1) a simple estimator

corresponding to settings where costs are measured at event or end-of-study and (2) a partitioned

estimator for use in settings where costs are measured over time. Unlike the simple weighted

estimator, which only uses information from units which are fully observed, the partitioned repre-

sentation allows utilization of cost data for as long as that data is available on a given unit. Define

the following nuisance functions:

1. µa,z(l) = E

[
Y∆
G(T )

∣∣∣∣A = a, Z = z, L = l

]
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2. µ2
a,z(l) = E

[
Y∆
G(T )2

∣∣∣∣A = a, Z = z, L = l

]
3. πa,z(l) = P (A = a|Z = z, L = l)

4. ωz(l) = P (Z = z|L = l)

5. G(t|a, z, l) = P (C > t|A = a, Z = z, L = l)

Let Θ denote the set of nuisance functions. Using these nuisance functions, we define the two

IPCW-based identifications of the LATE below:

Ψs =

E

[∑1
a=0 µa,1(L)πa,1(L)− µa,0(L)πa,0(L)

]
E[π1,1(L)− π1,0(L)]

(4.4)

And

Ψw =

E

[∑1
a=0

∑K
k=1 µa,1,k(L)πa,1(L)− µa,0,k(L)πa,0(L)

]
E[π1,1(L)− π1,0(L)]

(4.5)

4.2.2. Influence Function Estimators

We want to define an influence function based estimator of the LATE using both the simple and

partitioned cost estimators. An influence function based estimator will allow us to perform valid

asymptotic inference while (1) incorporating flexible modeling approaches, (2) being doubly robust,

and (3) attaining parametric rates of convergence if models are correctly specified. We first consider

the influence function estimator based upon the simple weighted representation in Equation 4.4.

Theorem 4.2.2. The efficient influence function for the simple weighted representation, Ψs, is given

by:

IF (Ψ) =

(
Ms(Z = 1)−Ms(Z = 0)

)
−Ψ

(
Π(Z = 1)−Π(Z = 0)

)
E[π1,1(L)− π1,0(L)]

Where

Ms(Z = z) =

1∑
a=0

I(a, z)

ωz(L)

(
Y∆

G(T |a, z, L)
− µa,z(L)− µ2

a,z(L)(∆−G(T |a, z, L)

)
+

µa,z(L)

(
I(Z = z)

ωz(L)

(
I(A = a)− πa,z(L)

)
+ πa,z,L

)
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and

Π(Z = z) =
I(Z = z)

ωz(L)
(A− π1,z(L)) + π1,z(L)

We may similarly prove that the EIF for the partitioned representation, Ψp, is equivalent to that of

Ψs except replacing Ms(Z = z) with Mp(Z = z) where

Mp(Z = z) =

1∑
a=0

I(a, z)

ωz(L)

{
K∑
k=1

(
Yk∆k

G(Tk|a, z, L)
− µa,z,k(L)− µ2

a,z,k(L)(∆−G(Tk|a, z, L)

)}
+{

K∑
k=1

µa,z,k(L)

}(
I(Z = z)

ωz(L)

(
I(A = a)− πa,z(L)

)
+ πa,z,L

)

Under true values of Θ, it can be shown that E[IF (Ψ;Θ)] = 0. Given estimates of the nuisance

functions, Θ̂, this implies the construction of an estimator for Ψ that solves the estimating equation

Pn(IF (Ψ, Θ̂)) = 0. Define the simple and partitioned influence function based estimators of the

LATE:

Ψ̂s =
Pn(Ms(1; Θ̂)−Ms(0; Θ̂))

Pn(Π(1; Θ̂)−Π(0; Θ̂))
(4.6)

and

Ψ̂p =
Pn(Mp(1; Θ̂)−Mp(0; Θ̂))

Pn(Π(1; Θ̂)−Π(0; Θ̂))
(4.7)

4.2.3. Asymptotic Results

In this section we describe asymptotic results for our simple and partitioned influence function

based estimators. The asymptotic distribution of the simple weighted influence function estimator,

Ψ̂s is described by the following theorem:

Theorem 4.2.3. Assume the following conditions:

(C1) The nuisance functions, Θ, are in the Donsker class.

(C2) For some constant ϵ > 0, P (ϵ < ω̂z < ∞) = 1, P (ϵ < πaz < ∞) = 1, P (ϵ < µ̂2
azπaz < ∞) = 1,

and P (ϵ < µ̂az <∞) = 1 for all z and a

49



Under (C1), (C2), and (A1)-(A6), we can show the following:

Ψ̂s −Ψ = Op

( ∑
z,a∈{0,1}

∥ωz − ω̂z∥ ∥µaz − µ̂az∥+ ∥ωz − ω̂z∥ ∥πaz − π̂az∥+
∥∥∥G(T )− Ĝ(T )

∥∥∥)+
ζ−1
n (Pn − P )(ϕ1(Θ)−Ψϕ2(Θ)) + op(n

−1/2)

Where:

ζn = Pn(ϕ2(Θ̂) + ψ2(Θ̂))

Theorem 4.2.3 describes the asymptotic behavior of our proposed simple weighted estimator of

the LATE. It can be seen that the first error component goes to zero if either (1) the censoring

mechanism, G, and the IV prevalence model, ωz, or (2) the censoring mechanism and both the

mean model, µaz, and the propensity score model, πaz, are correctly specified. If neither of these

conditions are true, then the simple weighted estimator will exhibit bias. The second term, (Pn −

P )(ϕ1(Θ) − Ψϕ2(Θ)), is asymptotically normal under the central limit theorem. This suggests that

we may estimate the variance of the simple weighted estimator as:

V̂ (Ψ̂s) = (n− 1)−1
n∑
i=1

(
ϕ1si(Θ̂)− Ψ̂sϕ2si(Θ̂)

ϕ2si(Θ̂) + ψ2si(Θ̂)
−

[
n−1

n∑
i=1

ϕ1si(Θ̂)− Ψ̂sϕ2si(Θ̂)

ϕ2si(Θ̂) + ψ2si(Θ̂)

])2

Under a similar set of assumptions, we may draw similar conclusions regarding the partitioned

weighted estimator.

Theorem 4.2.4. Assume the following conditions:

(C1) The nuisance functions, Θ, are in the Donsker class.

(C2) For some constant ϵ > 0, P (ϵ < ω̂z < ∞) = 1, P (ϵ < πaz < ∞) = 1, P (ϵ <
∑K
k=1(µ̂

2
azk)πaz <

∞) = 1, and P (ϵ <
∑K
k=1(µ̂az) <∞) = 1 for all z and a

Under (C1), (C2), and (A1)-(A6), we can show the following:

Ψ̂p −Ψ = Op

( ∑
z,a∈{0,1}

∥ωz − ω̂z∥

∥∥∥∥∥
K∑
k=1

(µazk − µ̂azk)

∥∥∥∥∥+ ∥ωz − ω̂z∥ ∥πaz − π̂az∥+
∥∥∥G(T )− Ĝ(T )

∥∥∥)+
ζ−1
n (Pn − P )(ϕ1(Θ)−Ψϕ2(Θ)) + op(n

−1/2)
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Where:

ζn = Pn(ϕ2(Θ̂) + ψ2(Θ̂))

This suggests similar robustness properties as the simple weighted estimator, and the following

estimator of the asymptotic variance:

V̂ (Ψ̂p) = (n− 1)−1
n∑
i=1

ϕ1pi(Θ̂)− Ψ̂pϕ2pi(Θ̂)

ϕ2pi(Θ̂) + ψ2pi(Θ̂)

The asymptotic results for both the simple and partitioned weighted estimators rely on the condition

that the nuisance functions, Θ, are within the Donsker class. This condition controls how close

functions of the estimated nuisance functions can get to their limiting versions (e.g. the difference

between (Pn − P )ϕ1(Θ̂) and (Pn − P )ϕ1(Θ)) (Kennedy, 2016). This condition can be restrictive

if estimators with unbounded variation (such as random forests) are used, as these are generally

not Donsker (Dı́az, 2019). This condition can be removed by implementing sample-split versions

of the estimators. Partition the index set {1, ..., n} into M mutually exclusive groups V1, ..., VM such

that
⋃M
m=1 Vm = {1, ..., n} and V m

⋂
Vm′ = ∅ for m ̸= m

′
. Let Ψ̂sm and Ψ̂pm be the simple and

partitioned estimators obtained by using units {1, ..., n} /∈ Vm to estimate the nuisance functions and

units Vm to estimate the causal effect. Define the sample-split simple and partitioned estimators,

Ψ̂s =M−1
M∑
m=1

Ψ̂sm Ψ̂p =M−1
M∑
m=1

Ψ̂pm,

and their associated variances,

V̂ (Ψ̂s) =M−1
M∑
m=1

V̂ (Ψ̂sm) V̂ (Ψ̂p) =M−1
M∑
m=1

V̂ (Ψ̂pm).

Note that within each validation set, Vm, the estimated nuisance functions Θ̂ are fixed. This fact

allows us to apply the empirical process properties that our asymptotic results are based upon

without invoking Donsker class conditions.
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4.3. Simulation studies

We perform simulation studies to evaluate the operating characteristics of our proposed influence

function based instrumental variable estimators. This study will compare three instrumental variable

estimators: (1) a 2SPS estimator based upon complete cases, (2) the simple weighted influence

function estimator, and (3) the partitioned weighted influence function estimator. Our estimators’

ability to capture the true treatment effect may be affected by instrument strength, censoring, or

by mispecification of the nuisance functions described in Section 4.2. Because of this, we explore

simulation settings with both weak and strong instruments, high and low levels of censoring, and

different degrees of model mispecification.

Within each simulation setting, we construct 500 datasets of n = 5000 units. For each unit, we

simulate the covariates (L,U,Z,A,C, T, Y ) where L and U are random normal covariates with

means µL = 2 and µU = 1 shared variance of σ2 = 1, Z is a binary instrumental variable with P (Z =

1|L) = expit(0.5L), A is a binary exposure with P (A = 1|Z,L,U) = expit(−0.4+νZ+0.25L+0.5U−

0.5(U2)), C and T are exponentially distributed censoring and survival times with rate parameters

of λC = exp(γc+0.3A) and λT = exp(0.2−A−0.25L−0.25U), and Y is a right-skewed cost variable.

Units are followed for until a maximal time, τ = 4. Costs (Y0, Y1, Y2, Y3, Y4) are simulated at baseline,

and at times t = 1, 2, 3, and 4 for each unit depending on their observed survival outcomes. In

addition, costs associated with death, YD, are simulated for units if they have an observed event.

Baseline costs are simulated from a gamma distribution with shape parameter α = 2.5 and scale

parameter θ = 1/β where β = exp(−1A − 0.5L− 0.2U). Follow-up costs and death costs are also

simulated with shape α, but have scale parameters of 0.1/β and 0.2/β respectively. Under this

setup the difference in total expected treatment costs Y =
∑4
k=0 Yk + YD between exposed and

non-exposed units is Ψ = 22.987. The parameters ν and γc control the instrument strength and

degree of censoring. In weak instrument settings (10% difference in treatment prevalence between

instrument levels), ν = 0.35 and for strong instrument settings (45% difference in prevalence),

ν = 2.5. Low levels of censoring (30%) correspond to γc = −2.5 and high levels of censoring (50%)

to γc = −1.25.

Table 4.1 provides simulation results across simulated datasets at varying levels of IV strength and

degrees of censoring. We may notice the following across all simulation settings: (1) the simple
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IV Strength Censoring Estimator Mean % Bias SE ŜE Coverage

Weak 30% Naive 14.852 -0.354 7.377 8.538 0.874
Simple 23.404 0.018 16.144 18.097 0.968
Partitioned 22.808 -0.008 12.764 13.533 0.978

50% Naive 14.522 -0.369 8.677 9.724 0.914
Simple 27.537 0.197 30.962 29.325 0.924
Partitioned 25.672 0.116 17.964 17.756 0.950

Strong 30% Naive 18.484 -0.196 1.164 1.536 0.108
Simple 23.340 0.015 1.950 1.894 0.926
Partitioned 22.539 -0.020 1.620 1.619 0.940

50% Naive 17.924 -0.221 1.241 1.613 0.084
Simple 26.937 0.171 3.298 3.307 0.704
Partitioned 24.810 0.079 1.847 1.836 0.792

Table 4.1: Mean point estimate, percent bias, standard error (SE), mean estimated standard error,
and empirical coverage of the three instrumental variable estimators of the LATE under different
degrees of IV strength and censoring. All nuisance functions correctly specified.

and partitioned estimators exhibit smaller bias than the naive estimator, (2) the standard error of

the partitioned estimator is less than that of the simple weighted estimator, and (3) the standard

errors of all estimators are appropriately estimated. When we compare simulations based on weak

and strong instruments, we notice that observed coverage is greater when the instrument is weak.

This appears to be driven by large increases in the estimated standard errors of these estimators

in this setting. For example, the standard errors of the partitioned estimator when there is 50%

censoring are 17.756 and 1.836 in weak and strong IV settings, respectively. Additionally, the bias of

all estimators increases as the level of censoring increases. These two results lead to decreased

coverage for our proposed simple and partitioned estimators when there is a strong IV and high

levels of censoring.

Table 4.2 provides the performance of each of the instrumental variable estimators under different

modeling specifications for the nuisance functions. Here, model misspecification is defined as

follows: models for ω are incorrect if they do not adjust for L, models for π are incorrect if they

account for Z but not L, models for G are incorrect if they do not adjust for A, Z, or L, and those

for µ are incorrect if they adjust for A and Z but not L. Because the complete-case 2SPS estimator

does not rely on the estimated nuisance functions, we only provide results for this estimator in the

first scenario, wherein all models are correctly specified. The bias of the naive estimator is nearly
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Scenario Estimator Mean % Bias SE ŜE Coverage

(1) Correct Naive 18.644 -0.189 2.670 2.683 0.650
Simple 23.091 0.004 5.406 4.686 0.940
Partitioned 22.484 -0.022 4.149 3.851 0.950

(2) Incorrect ω Simple 24.706 0.074 4.097 3.383 0.860
Partitioned 23.038 0.002 3.215 2.869 0.910

(3) Incorrect π, µ Simple 23.133 0.006 6.212 5.707 0.950
Partitioned 22.009 -0.043 4.874 4.963 0.983

(4) Incorrect G Simple 23.463 0.020 4.869 4.396 0.930
Partitioned 22.642 -0.016 4.118 3.836 0.947

(5) Incorrect ω, µ Simple 37.433 0.628 4.309 4.338 0.073
Partitioned 36.136 0.571 3.740 3.811 0.050

(6) Incorrect ω, π Simple 23.945 0.041 4.089 3.238 0.860
Partitioned 22.524 -0.021 3.138 2.742 0.910

(7) Incorrect ω, π, µ Simple 36.702 0.596 4.110 4.038 0.073
Partitioned 35.543 0.545 3.578 3.533 0.040

Table 4.2: Mean point estimate, percent bias, standard error (SE), mean estimated standard error,
and empirical coverage of the three instrumental variable estimators of the LATE under different
degrees of nuisance function misspecification. Simulations based on strong IV and 30% censoring.

20%, while both the simple and partitioned estimators exhibit less than 10% bias in settings (1),

(2), (3), (4), and (6). We notice the largest increase in bias when both the IV prevalence model, ω,

and the outcome model, µ, are misspecified (e.g. scenarios (5) and (7)). In both of these settings,

the observed bias of the simple and partitioned estimators exceed that of the naive estimator (

>50% bias vs. 18.9% bias). As in the previous simulations, estimated standard errors are good

approximations of the empirically observed standard errors.

4.4. Discussion

In this paper we propose two influence function based estimators of the local average treatment

effect of an exposure on restricted mean medical costs. Our estimators are built upon inverse

probability of censoring weighting techniques, which can be used to eliminate bias associated with

informative cost censoring. In studies where medical cost information is recorded at multiple points,

our partitioned estimator can improve efficiency by utilizing available cost information on all units

rather than on only those with fully observed cost data. In addition, our proposed simple and
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partitioned weighted estimators are built upon influence function theory. Under a set of entropy

conditions, this allows for flexible and efficient semiparametric estimation of treatment effects and

valid asymptotic inference based upon the central limit theorem.

Through simulation studies, we are able to illustrate the bias reduction and efficiency gains of our

simple and partitioned estimators in a range of realistic settings. Due to informative cost censoring

and skewed cost data, the common two-stage predictor substitution model based upon complete

case data results in large degrees of bias and poor coverage. In all simulation settings except those

in which both the IV prevalence and outcome models were misspecified, the influence function

based estimators resulted in large reductions in bias compared with this naive estimator. Both

of the proposed estimators exhibited small bias in settings with high levels of censoring. This

may be due to difficulty in modeling the outcome mechanism when the censoring weights have a

large effect. More flexible modeling procedures, such as stacking methods (Xing, Lesperance, and

Zhang, 2020), may be able to further reduce bias in these scenarios.

In future work, this methodology could potentially be used to conduct flexible and efficient cost-

effectiveness analyses in settings with unmeasured confounding. The development of methodol-

ogy for estimating the effectiveness and cost of a treatment using instrumental variables can lead

to straightforward estimation of measures of cost-effectiveness such as the Net Monetary Benefit.

Given two proposed interventions, the net monetary benefit (NMB) is obtained by subtracting the

observed difference in medical costs from the product of a willingness-to-pay parameter and the

difference in observed effectiveness. The NMB measures net monetary value associated with a

treatment. Combination of the proposed methods with similar methods for estimating treatment ef-

fects (Lee, Kennedy, and Mitra, 2020) may be able to facilitate efficient cost-effectiveness analyses

that are robust to unmeasured confounding using observational data.
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CHAPTER 5

DISCUSSION

In this dissertation, we propose three novel methodologies for performing cost-effectiveness anal-

yses. These developments are motivated by the need for methods that can (1) assess censored

joint outcomes data, (2) account for confounding arising from non-randomization, and (3) accomo-

date flexible modeling approaches for zero-inflated or skewed cost and effectiveness data. These

methods may be used to help guide the optimal allocation of limited resources in medical settings.

In our first project, we introduce a regression framework for NBS that allows us to explain variability

in cost-effectiveness arising from covariates. The proposed method is the first to enable estimation

of NBS within levels of measured covariates and allow for testing the effects of covariates on NBS.

Regression of NBS is done in three steps: (1) estimate the distribution of cost and effectiveness

outcomes conditional on treatment and measured covariates, (2) implement Monte Carlo standard-

ization to sample INBs from treated and untreated populations with the same underlying distribution

of confounders, and (3) apply ROC regression techniques developed by Alonzo and Pepe (2002)

to estimate NBS. Understanding how patient characteristics influence cost-effectiveness can help

policy makers allocate resources towards groups which are most likely to benefit from treatment.

In the future, flexible modeling techniques present a potential route to reduce the risk of model

misspecification. Bayesian nonparametric methods for zero-inflated data have been developed by

Oganisian, Mitra, and Roy (2018) to estimate cost distributions, but extensions of this methodology

to cost-effectiveness analyses have not been explored. Similarly, ensemble learning algorithms

such as Super Learner (Laan, Polley, and Hubbard, 2007) could be used to model complex cost

and effectiveness distributions. For example, in their doubly robust estimator of NMB, Li et al. (2018)

successfully use Super Learner to estimate both propensity score and outcome models. In future

work, it would be useful to determine the best ways to incorporate these methods into regression

of NBS. Additionally, when unmeasured confounding is present, estimates of NBS may be affected.

In our simulation studies, we found that as the strength of confounding increases, estimates of NBS

become more biased. Methods to assess the sensitivity of NBS to unmeasured confounding may

also be useful avenue for future research.
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For our second project, we present a two-step procedure for identifying an optimally cost-effective

dynamic treatment regime with interpretable, list-based decision rules. In the first step, we use

a novel Q-learning and policy search-based approach to estimate optimal list-based regimes that

maximize treatment effectiveness under a predefined constraint on treatment costs. Through sim-

ulations we show the validity of our cost constrained regimes and illustrate how flexible ensemble

learners can improve regime performance. The second step consists of a cost-effectiveness analy-

sis that can select an optimally cost-effective regime from a set of candidate regimes characterized

by variable cost constraints. This procedure identifies the most cost-effective treatment strategy

by iteratively comparing each candidate regime with the best existing alternative. Recently, Linn,

Laber, and Stefanski (2017) developed methods for optimizing specified quantiles of a distribu-

tion. Future extensions of our work may explore how this methodology could be used to allow for

maximization of median survival time while placing a constraint on overall cost. Additionally, the

modeling choice for Q-functions may influence estimated treatment rules. Flexible methods like

SuperLearner may improve regime performance, but are also subject to variability across random

seeds. For estimates of treatment effects, Benkeser (2020) propose combining estimates arising

from different seeds. However, work is required to determine the best procedure for combining

decision-list based rules.

For our third project, we propose two instrumental variable estimators of the local average treatment

effect of an exposure on restricted mean medical costs. Our estimators are built upon inverse

probability of censoring weighting techniques, which can be used to eliminate bias associated with

informative cost censoring. In studies where medical cost information is recorded at multiple points,

our partitioned cost estimator can improve efficiency by utilizing available cost information on all

units rather than on only those with fully observed cost data. In addition, our proposed simple and

partitioned weighted estimators are built upon influence function theory. Under a set of entropy

conditions, this allows for flexible and efficient semiparametric estimation of treatment effects and

valid asymptotic inference based upon the central limit theorem. In future work, this methodology

could potentially be used to conduct flexible and efficient cost-effectiveness analyses in settings with

unmeasured confounding. The development of methodology for estimating the effectiveness and

cost of a treatment using instrumental variables can lead to straightforward estimation of measures

of cost-effectiveness such as the Net Monetary Benefit. Given two proposed interventions, the

net monetary benefit (NMB) is obtained by subtracting the observed difference in medical costs
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from the product of a willingness-to-pay parameter and the difference in observed effectiveness.

The NMB measures net monetary value associated with a treatment. Combination of the proposed

methods with similar methods for estimating treatment effects (Lee, Kennedy, and Mitra, 2020) may

be able to facilitate efficient cost-effectiveness analyses that are robust to unmeasured confounding

using observational data.

This work develops novel statistical methods for performing cost-effectiveness analyses using com-

plex observational data. The studies included in these works illustrate how our methodologies can

be applied to help guide the allocation of limited resources towards patients who are most likely

to benefit. These methods are tailored to be robust to confounding, informative cost censoring,

and allow flexible analysis of joint outcomes data. Moving forward, we believe that this work could

seed the development of nonparametric machine-learning approaches for joint outcomes such as

those that arise in cost-effectiveness analyses. Because cost and effectiveness data often exhibit

complex nonlinear relationships, influence function based estimators of NMB and ICER can provide

robust evidence for health policy implementation.
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APPENDIX A

INFLUENCE FUNCTION BASED INSTRUMENTAL VARIABLE ESTIMATOR OF

CENSORED MEDICAL COSTS.

A.1. Identification of the LATE

Proof. Identification of the LATE. Recall that the LATE is defined as:

ψ = E[Y a=1 − Y a=0|Az=1 > Az=0]

=
E[(Y a=1 − Y a=0)(Az=1 −Az=0)]

P (Az=1 > Az=0)

= (A)/(B)

The numerator of this expression can be identified as follows:

(A) = E[(Y a=1 − Y a=0)(Az=1 −Az=0)]

= E[(Y a=1 − Y a=0)Az=1 − (Y a=1 − Y a=0)Az=0 + Y a=0 − Y a=0]

= E[(Y a=1 − Y a=0)Az=1 + Y a=0 − (Y a=1 − Y a=0)Az=0 − Y a=0]

= E[Y A
z=1

− Y A
z=0

]

= E[Y z=1 − Y z=0]

= E[E[Y z=1|L]− E[Y z=0|L]]

= E[E[Y z=1|Z = 1, L]− E[Y z=0|Z = 0, L]]

= E[E[Y |Z = 1, L]− E[Y |Z = 0, L]]

Here, the fourth equality follows from the equality Y = (Y a=1−Y a=0)A+Y a=0, he fifth follows from

the exclusion restriction, the seventh from no unmeasured confounding, and the eighth follows from
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consistency. The denominator is given by:

(B) = P (Az=1 > AZ=0)

= E[Az=1 −Az=0]

= E[E[A|Z = 1, L]− E[A|Z = 0, L]]

A.2. EIF for LATE

We wish to find the EIF for the simple weighted estimator of the LATE. Consider the following:

IF

(
Ms(Z = 1) −Ms(Z = 0)

Π(Z = 1) − Π(Z = 0)

)
=

IF (Ms(Z = 1) −Ms(Z = 0))(Π(Z = 1) − Π(Z = 0)) − (Ms(Z = 1) −Ms(Z = 0))IF (Π(Z = 1) − Π(Z = 0)))

(Π(Z = 1) − Π(Z = 0))2

Where

IF (Ms(Z = 1)−Ms(Z = 0)) = IF (Ms(Z = 1))− IF (Ms(Z = 0))

and

IF (Π(Z = 1)−Π(Z = 0)) = IF (Π(Z = 1))− IF (Π(Z = 0)).
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This implies we need only find the influence functions for Ms(Z = z) and Π(Z = z). First consider

the influence function for Π(Z = z).

IF (Π(Z = z)) = IF

(∫
E[A|Z = z, L = l]p(l)dl

)
=

∫
IF (E[A|Z = z, L = l])p(l)dl +∫
E[A|Z = z, L = l]IF (p(l))dl

=

∫
IF (E[A|Z = z, L = l])p(l)dl +∫
E[A|Z = z, L = l](I(L = l)− p(l))dl

=

∫
IF (E[A|Z = z, L = l])p(l)dl +∫
E[A|Z = z, L = l]I(L = l))dl+∫
E[A|Z = z, L = l]p(l)dl

=

∫
IF (E[A|Z = z, L = l])p(l)dl −

E[A|Z = z, L]−Π(Z = z)

=

∫
I(Z = z, L = l)

p(z|l)p(l)
(A− E(A|z, l)p(l)dl +

E[A|Z = z, L]−Π(Z = z)

=
I(Z = z)

p(z|L)
(A− E[A|z, L]) + E[A|Z = z, L]−Π(Z = z)

Finally, we can identify the IF for Ms(Z = z) as follows:

IF (Ms(Z = z)) = IF

(∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]P (A = a|z, l)p(l)dl

)

=

∫ 1∑
a=0

IF

(
E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l])P (A = a|z, l)p(l)dl + (A.1)

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]IF(P (A = a|z, l)
)
p(l)dl + (A.2)

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]P (A = a|z, l)IF
(
p(l)

)
dl (A.3)
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We break down this derivation into parts (1), (2), and (3). Consider (3):

(3) =

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]P (A = a|z, l)IF
(
p(l)

)
dl

=

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]P (A = a|z, l)(I(L = l)− p(l))dl

=

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]P (A = a|z, l)I(L = l)dl −

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]P (A = a|z, l)p(l)dl

=

1∑
a=0

E

[
Y δ

G(T |a, z, L)

∣∣∣∣a, z, L]P (A = a|z, L)−Ms(Z = z)

Consider (2):

(2) =

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]IF(P (A = a|z, l)
)
p(l)dl

=

∫ 1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]I(Z = z, L = l)

p(z|l)p(l)
(
A− E[A|Z = z, l]

)
p(l)dl

=

1∑
a=0

E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]I(Z = z, L = l)

p(z|l)
(
A− E[A|Z = z, l]

)
Finally, consider (1):

(1) =

∫ 1∑
a=0

IF

(
E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l])P (A = a|z, l)p(l)dl
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Where

IF

(
E

[
Y δ

G(T |a, z, l)

∣∣∣∣a, z, l]) = IF

(∫ ∫ ∫
yδ

G(t|a, z, l)
p(y, δ, t|a, z, l)d(y, δ, t)

)
=

∫ ∫ ∫
IF
( yδ

G(t|a, z, l
)
p(y, δ, t|a, z, l)d(y, δ, t) +∫ ∫ ∫

yδ

G(t|a, z, l)
IF
(
p(y, δ, t|a, z, l)

)
d(y, δ, t)

=

∫ ∫ ∫ −yδ
G(t|a, z, l)2

IF (G(t|a, z, l))p(y, δ, t|a, z, l)d(y, δ, t) +∫ ∫ ∫
yδ

G(t|a, z, l)

(
I(a, z, l)

p(a, z, l)
(I(y, δ, t) − p(y, δ, t|a, z, l))

)
d(y, δ, t)

=

∫ ∫ ∫ −yδ
G(t|a, z, l)2

(
I(a, z, l)

p(a, z, l)
I(T = t)(∆ −G(T |a, z, l)

)
p(y, δ, t|a, z, l)d(y, δ, t) +∫ ∫ ∫

yδ

G(t|a, z, l)

(
I(a, z, l)

p(a, z, l)
(I(y, δ, t))

)
d(y, δ, t) −∫ ∫ ∫

yδ

G(t|a, z, l)

(
I(a, z, l)

p(a, z, l)
(p(y, δ, t|a, z, l)

)
d(y, δ, t)

=

(
I(a, z, l)

p(a, z, l)
(∆ −G(T |a, z, l)))E

[ −Y∆

G(T |a, z, l)2

]
(

Y∆

G(T |a, z, l)
− E

[
Y∆

G(T |a, z, l)

∣∣∣∣a, z, l]
)(

I(a, z, l)

p(a, z, l)

)

=
I(a, z, l)

p(a, z, l)

(
Y∆

G(T |a, z, l)
− E

[
Y∆

G(T |a, z, l)

∣∣∣∣a, z, l]− E

[
Y∆

G(T |a, z, l)2

∣∣∣∣a, z, l](∆ −G(T |a, z, l)
)

So that,

(1) =

∫ 1∑
a=0

I(a, z, l)

p(a, z, l)

(
Y∆

G(T |a, z, l)
− E

[
Y∆

G(T |a, z, l)

∣∣∣∣a, z, l]− E

[
Y∆

G(T |a, z, l)2

∣∣∣∣a, z, l](∆ −G(T |a, z, l)
)
P (A = a|z, l)p(l)dl

=

∫ 1∑
a=0

I(a, z, l)

p(a, z|l)

(
Y∆

G(T |a, z, l)
− E

[
Y∆

G(T |a, z, l)

∣∣∣∣a, z, l]− E

[
Y∆

G(T |a, z, l)2

∣∣∣∣a, z, l](∆ −G(T |a, z, l)
)
P (A = a|z, l)dl

=

1∑
a=0

I(a, z, L)

p(a, z|L)

(
Y∆

G(T |a, z, L)
− E

[
Y∆

G(T |a, z, L)

∣∣∣∣a, z, L]− E

[
Y∆

G(T |a, z, L)2

∣∣∣∣a, z, L](∆ −G(T |a, z, L)
)
P (A = a|z, L)

Because of this, we have the following result:

IF (Ms(Z = z)) = (1) + (2) + (3)

=
1∑

a=0

I(a, z)

p(a, z|L)

(
Y ∆

G(T |a, z, L)
− E

[ Y ∆

G(T |a, z, L)

∣∣∣∣a, z, L

]
− E

[ Y ∆

G(T |a, z, L)2

∣∣∣∣a, z, L

]
(∆ − G(T |a, z, L)

)
P (A = a|z, L)+

1∑
a=0

E

[ Y δ

G(T |a, z, L)

∣∣∣∣a, z, L

] I(Z = z)

p(z|L)

(
I(A = a) − P (A|Z = z, l)

)
+

1∑
a=0

E

[ Y δ

G(T |a, z, L)

∣∣∣∣a, z, L

]
P (A = a|z, L) − Ms(Z = z)

=
1∑

a=0

I(a, z)

p(z|L)

(
Y ∆

G(T |a, z, L)
− E

[ Y ∆

G(T |a, z, L)

∣∣∣∣a, z, L

]
− E

[ Y ∆

G(T |a, z, L)2

∣∣∣∣a, z, L

]
(∆ − G(T |a, z, L)

)
+

E

[ Y δ

G(T |a, z, L)

∣∣∣∣a, z, L

] ( I(Z = z)

p(z|L)

(
I(A = a) − P (A|Z = z, l)

)
+ P (A = a|z, L)

)
− Ms(Z = z)
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A.3. Asymptotic Results

Consider the following:

Ψ̂(Θ̂)−Ψ(Θ) =
Pn(ϕ1(Θ̂) + ψ1(Θ̂))

Pn(ϕ2(Θ̂) + ψ2(Θ̂))
− P (ψ1(Θ))

P (ψ2(Θ))

= ζ−1

{
Pn(ϕ1(Θ̂) + ψ1(Θ̂)− P (ψ1(Θ))

P (ψ2(Θ))
Pn(ϕ2(Θ̂) + ψ2(Θ̂))

}

Where:

ζ = Pn(ϕ2(Θ̂) + ψ2(Θ̂))

From there:

Ψ̂(Θ̂) − Ψ(Θ) = ζ
−1

{
Pn(ϕ1(Θ̂) + ψ1(Θ̂) −

P (ψ1(Θ))

P (ψ2(Θ))
Pn(ϕ2(Θ̂) + ψ2(Θ̂))

}
= ζ

−1
{
Pn(ϕ1(Θ̂) + ψ1(Θ̂) − Ψ(Θ)Pn(ϕ2(Θ̂) + ψ2(Θ̂)) + P (ψ1(Θ)) − P (ψ1(Θ))

}
= ζ

−1
{
Pn(ϕ1(Θ̂) + ψ1(Θ̂) − P (ψ1(Θ)) − Ψ(Θ)

(
Pn(ϕ2(Θ̂) + ψ2(Θ̂)) − P (ψ2(Θ))

)}
= ζ

−1
{
Pn(ϕ1(Θ̂) + ψ1(Θ̂) − ϕ1(Θ) − ψ1(θ)) + Pn

(
ϕ1(Θ) + ψ1(Θ)

)
− P (ψ1(Θ))

− ψ(Θ)
(
Pn(ϕ2(Θ̂) + ψ2(Θ̂) − ϕ2(Θ) − ψ2(Θ)) + Pn(ϕ2(Θ) + ψ2(Θ)) − P (ψ2(Θ))

)}
= ζ

−1
{
(Pn − P )[ϕ1(Θ̂) + ψ1(Θ̂) − ϕ1(Θ) − ψ1(Θ)] + P [ϕ1(Θ̂) + ψ1(Θ̂) − ϕ1(Θ) − ψ1(Θ)]

− ψ(Θ)(Pn − P )[ϕ2(Θ̂) + ψ2(Θ̂) − ϕ2(Θ) − ψ2(Θ)] − ψ(Θ)P [ϕ2(Θ̂) + ψ2(Θ̂) − ϕ2(Θ) − ψ2(Θ)]

+ Pn[ϕ1(Θ) + ψ1(Θ)] − P [ψ1(Θ)] + ψ(Θ)(Pn[ϕ2(Θ) + ψ2(Θ)] − P [ψ2(Θ)])
}

This difference can be broken down into three components as follows:

Ψ̂(Θ̂) − Ψ(Θ) = ζ
−1
{
(Pn − P )[ϕ1(Θ̂) + ψ1(Θ̂) − ϕ1(Θ) − ψ1(Θ)] − ψ(Θ)(Pn − P )[ϕ2(Θ̂) + ψ2(Θ̂) − ϕ2(Θ) − ψ2(Θ)]

}
(A.4)

+ ζ
−1
{
P [ϕ1(Θ̂) + ψ1(Θ̂) − ψ1(Θ)] − ψ(Θ)P [ϕ2(Θ̂) + ψ2(Θ̂) − ψ2(Θ)]

}
(A.5)

+ ζ
−1
{
(Pn − P )[ψ1(Θ) + ϕ1(Θ)] + ψ(Θ)(Pn − P )[ψ2(Θ) + ϕ2(Θ)]

}
(A.6)
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