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ABSTRACT

MACHINE LEARNING UNDER ENDOGENEITY

Edvard Bakhitov

Amit Gandhi

Recent advances in machine learning literature provide a series of new algorithms that both
address endogeneity and can be applied in high-dimensional environments, we call them
MLIV. These algorithms are data-driven and exploit various forms of regularization to ame-
liorate the ill-posedness of the problem while maintaining the functional form flexibility.
In this thesis, we discuss how MLIV estimators can be used to answer economic questions.

In the first chapter, Causal Gradient Boosting: Boosted Instrumental Variables Regression, we
propose an MLIV algorithm called boostIV that builds on the traditional gradient boosting
algorithm and corrects for the endogeneity bias. The algorithm is very intuitive and re-
sembles an iterative version of the standard 2SLS estimator. The second chapter, Automatic
Debiased Machine Learning in Presence of Endogeneity, introduces an approach for perform-
ing valid asymptotic inference on regular functionals of MLIV estimators. The approach is
based on construction of an orthogonal moment function that has a zero derivative with
respect to the MLIV estimator. We develop a penalized GMM estimator of the bias cor-
rection term necessary to obtain asymptotically normal debiased estimates and derive its
convergence rate. We also give conditions for root-n consistency and asymptotic normality
of the debiased MLIV estimator of the functional of interest. Finally, in the third chapter,
Flexible Demand Estimation using Machine Learning, we demonstrate how to estimate sub-
stitution patterns in the market for sodas using the debiasing procedure from the second
chapter.

These three chapters are highly interconnected. The first chapter proposes a new MLIV al-
gorithm for flexible estimation in presence of endogenous regressors. However, it focuses
on the underlying structural function which in the majority of cases does not have a clear
economic interpretation. While the second chapter develops a method to perform infer-
ence on functionals of MLIV estimators, which have a clear economic interpretation and
can be used to answer various economic questions of interest. Finally, the third chapter
investigates an important applied question of flexible estimation of demand for differenti-
ated goods, which is a perfect example of a high-dimensional problem with endogenous
regressors. As a result, we get a full picture about the potential of MLIV methods in eco-
nomics.
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CHAPTER 1: Causal Gradient Boosting: Boosted
Instrumental Variables Regression

”Human intelligence discovered a way of perpetuating itself, one not only more durable and more
resistant than architecture, but also simpler and easier. Architecture was dethroned. The stone letters
of Orpheus gave way to the lead letters of Gutenburg. The book will kill the edifice.”

- Victor Hugo

1.1. Introduction

Gradient boosting method is considered one of the leading machine learning (ML) algo-
rithms for supervised learning with structured data. There is a large body of evidence
showing that gradient boosting dominates in a significant number of ML competitions con-
ducted on Kaggle1. However, recent literature (e.g., see Hartford et al., 2017a) has shown
that traditional supervised machine learning methods do not perform well in the presence
of endogeneity in the explanatory variables.

A common approach to correct for the endogeneity bias is to use instrumental variables
(IVs). Nonparametric instrumental variables (NPIV) techniques have gained popularity
among applied researchers over the last decade as they do not require imposing (possibly)
implausible parametric assumptions on the target function. On the other hand, existing
nonparameteric estimation techniques require the researcher to specify a target function
approximation (ideally driven by some ex-ante understanding of the data generating pro-
cess), e.g. a sieve space, which in turn drives the choice of unconditional moment restric-
tions (or simply put, the choice of IV basis functions). Moreover, the complexity of both
modeling and estimation explodes when there are more than a handful of inputs.

In this Chapter, we introduce an algorithm that allows to learn the target function in the
presence of endogenous explanatory variables in a data driven way, meaning that the re-
searcher does not have to make a stance on neither the form of the target function approx-
imation nor the choice of instruments. We build on gradient boosting algorithm to trans-
form the standard NPIV problem into a learning problem that accounts for endogeneity in
explanatory variable, and thus, we call our algorithm boostIV.

We also consider a couple extensions to the boostIV algorithm that might improve its finite
sample performance. First, we show how to incorporate optimal IVs, i.e. IVs that achieve
the lowest asymptotic variance (Chamberlain, 1987). Second, we augment the boostIV al-

1For reference see https://www.kaggle.com/dansbecker/xgboost
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gorithm with a post-processing step where we re-estimate the weights on the learnt basis
functions, we call this algorithm post-boostIV. The idea is based on Friedman and Popescu
(2003) who propose to learn an ensemble of basis functions and then apply lasso to perform
basis function selection.

To avoid potentially severe finite sample bias due to the double use of data, we resort to the
cross-fitting idea of Chernozhukov, Newey and Robins (2018). For the boostIV algorithm
we split the data to learn instruments and basis functions on different data folds. We add
an additional layer of cross-fitting to the post-boostIV algorithm to update the weights on
the learnt basis functions.

Our method has a number of advantages over the standard NPIV approach. First, our ap-
proach allows the researcher to be completely agnostic to the choice of basis functions and
IVs. Both basis functions and instruments are learnt in a data driven way which picks up
the underlying data structure. Second, the method becomes even more attractive when
the dimensionality of the problem grows, as the standard NPIV methods suffer greatly
from the curse of dimensionality. Intuitively, learning via boosting should be able to con-
struct basis functions that approximately represent the underlying low dimensional data
features. However, our approach does not work in purely high-dimensional settings where
the number of regressors exceeds the number of observations.

We study the performance of boostIV and post-boostIV algorithms in a series of Monte
Carlo experiments. We compare the performance of our algorithms to both the standard
sieve NPIV estimator and a variety of modern ML estimators. Our results demonstrate
that boostIV performs at worst on par with the state of the art ML estimators. Moreover,
we find no empirical evidence that post-boostIV achieves superior performance compared
to boostIV and vice versa. However, adding the post-processing step reduces the amount
of boosting iterations needed for the algorithm to converge rendering it (potentially) com-
putationally more efficient2.

This paper brings together two strands of literature. First, our approach contributes to the
literature on nonparametric instrumental variables modeling. Newey and Powell (2003)
propose to replace the linear relationships in standard linear IV regression with linear pro-
jections on a series of basis functions (also see Blundell et al. (2007) for an application to
Engel-curve estimation). Darolles et al. (2011) and Hall and Horowitz (2005) suggest to
nonparametrically estimate the conditional distribution of endogenous regressors given

2To be more precise, there is a trade-off at play. One boostIV iteration takes less time than one post-boostIV
iteration as the latter algorithm includes an additional estimation step plus one more layer of cross-fitting. As
a result, if adding the post-processing step reduces the amount of boosting iterations significantly, then we
achieve computational gains. It might not be the case otherwise.
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the instruments, F (x|z), using kernel density estimators. However, despite their simplicity
and flexibility, both approaches are subject to the curse of dimensionality. Machine learning
literature has recently also contributed to the nonparametric IV literature. Hartford et al.
(2017a) propose a DeepIV estimator which first estimates F (x|z) with a mixture of deep
generative models on which then the structural function is learned with another deep neu-
ral network. Kernel IV estimator of Singh et al. (2019) exploits conditional mean embedding
of F (x|z), which is then used in the second stage kernel ridge regression. Muandet et al.
(2019) avoid the traditional two stage procedure by focusing on the dual problem and fitting
just a single kernel ridge regression.

Second, we exploit insights from the boosting literature. Originally boosting came out as an
ensemble method for classification in the computational learning theory (Schapire, 1990;
Freund, 1995; Freund and Schapire, 1997). Later on Friedman et al. (2000) draw connections
between boosting and statistical learning theory by viewing boosting as an approximation
to additive modeling. A different perspective on boosting as a gradient descent algorithm
in a function space that connects boosting to the more common optimization view of statis-
tical inference (Breiman, 1998, 1999; Friedman, 2001). L2-boosting introduced by Bühlmann
and Yu (2003) provides a powerful tool to learning regression functions. A comprehensive
boosting review can be found in Bühlmann and Hothorn (2007).

The remainder of the Chapter is organized as follows. Section 1.2 briefly introduces the
NPIV framework. Section 1.3 describes the standard boosting procedure. We present boos-
tIV and post-boostIV in Section 1.4. Section 1.5 talks about hyperparameter tuning. Sec-
tion 1.6 discusses consistency. We illustrate the numerical performance of our algorithms
in Section 1.7. Section 1.8 concludes. All the proofs and mathematical details are left for
the Appendix.

1.2. Set-up

Consider the standard conditional mean model of Newey and Powell (2003)

y = f(x) + ε, E[ε|z] = 0, (1.1)

where y is a scalar random variable, f is an unknown structural function of interest, x
is a dx × 1 vector of (potentially) endogenous explanatory variables, z is a dz × 1 vector
of instrumental variables, and ε is an error term3. Suppose that the model is identified
and the completeness condition holds, i.e. for all measurable real functions δ with finite

3The approach can easily be extended to cases where only some of the regressors are endogenous. Suppose
x = (x1, x2) where x1 consists of endogenous regressors and x2 is a vector of exogenous regressors. Let w be
a vector of excluded instruments and set z = (w, x2). This perfectly fits into the model described by (1.1).

3



expectation,
E[δ(x)|z] = 0⇒ δ(x) = 0.

Intuitively this condition implies that there is enough variation in the instruments to ex-
plain the variation in x.

The conditional expectation of (1.1) yields the integral equation

E[y|z] =
∫
f(x)dF (x|z), (1.2)

where F denotes the conditional cdf of x given z. Solving for f directly is an ill-posed
problem as it involves inverting linear compact operators (e.g., see Kress, 1989). Note that
the model in (1.1) does not have an explicit reduced form, i.e. a functional relationship
between endogenous and exogenous variables, however, it is implicitly embedded in F .
Thus, from the estimation perspective we have two objects to estimate: (i) the conditional
cdf F (x|z) and (ii) the structural function f .

A common approach in applied work is to assume that the relationships between y and x
as well as x and z are linear, which leads to a standard 2SLS estimator. However, it can be
a very restrictive assumption in practice, which can result in misspecification bias. A lot of
more flexible non-parametric extension to 2SLS have been developed in the econometrics
literature. The standard approach is ti use the series estimator of Newey and Powell (2003)
who propose to replace the linear relationships with a linear projections on a series of basis
functions.

To illustrate the approach let us approximate f with a series expansion

f(x) ≈
L∑

`=1

γ`p`(x),

where pL(x) = (p1(x), . . . ,pL(x)) is a series of basis functions. It allows us to rewrite the
conditional expectation of y given z as

E[y|z] ≈
L∑

`=1

γ`E[p`(x)|z]. (1.3)

Let qK(z) = (q1(z), . . . ,qK(z)) be a series of IV basis functions. This implies a 2SLS type
estimator of γ

γ̂ =
(
Ê[pL(x)|z]′Ê[pL(x)|z]

)−
Ê[pL(x)|z]′y, (1.4)

4



where Ê[pL(x)|z] = qK(z)
(
qK(z)′qK(z)

)−
qK(z)′pL(x). GivenL,K →∞ asn→∞, asymp-

totically one can recover the true structural function. However, in finite samples one has to
truncate the sieve at some value. Despite that, the finite sample performance of the estima-
tor hinges crucially on the choice of the approximating space, especially in high dimensions.
Moreover, NPIV estimators suffer greatly from the curse of dimensionality which renders
them inapplicable in many applications. Alternatively, we propose a data-driven approach,
which is agnostic to the choice of the approximating space.

1.3. Revisiting Gradient Boosting

Boosting is a greedy algorithm to learn additive basis function models of the form

f(x) = α0 +
M∑

m=1

αmϕ(x; θm), (1.5)

where ϕm are generated by a simple algorithm called a weak learner or base learner. The
weak learner can be any classification or regression algorithm, such as a regression tree, a
random forest, a simple single-layer neural network, etc. One could boost the performance
(on the training set) of any weak learner arbitrarily high, provided the weak learner could
always perform slightly better than chance4 (Schapire, 1990; Freund and Schapire, 1996). It
is a very nice feature, since the only thing we need to make a stance on is the form of the
weak learner.

The goal of boosting is to solve the following optimization problem

min
f

N∑
i=1

L(yi,f(xi)), (1.6)

where L(y,y′) is a loss function and f is defined by (1.5). Since the boosting estimator de-
pends on the choice of the loss function, the algorithm to solve (1.6) should be adjusted for a
particular choice. Instead, one can use a generic version called gradient boosting (Friedman,
2001; Mason et al., 2000), which works for an arbitrary loss function.

Breiman (1998) showed that boosting can be interpreted as a form of the gradient descent
algorithm in function space. This idea then was further extended by Friedman (2001) who
presented the following functional gradient descent or gradient boosting algorithm:

1. Given data {(yi, xi)}ni=1, initialize the algorithm with some starting value. Common
4This is relevant when applied to classification problems. For regression problems any simple method such

as least squares regression, regression stump, or one or two-layered neural network will work.

5



choices are

f0(x) ≡ argmin
c

N∑
i=1

L(yi,c),

which is simply ȳ under the squared loss, or f0(x) ≡ 0. Set m = 0.

2. Increase m by 1. Compute the negative gradient vector and evaluate it at fm−1(xi):

rim = − ∂L(yi, f)

∂f

∣∣∣∣
f=fm−1(xi)

, i = 1, . . . , n.

3. Use the weak learner to compute (αm, θm) which minimize
∑N

i=1(rim − αφ(xi; θ))2.

4. Update
fm(x) = fm−1(x) + αmφ(x; θm),

that is, proceed along an estimate of the negative gradient vector. In practice, better
(test set) performance can be obtained by performing “partial updates” of the form

fm(x) = fm−1(x) + ναmφ(x; θm),

where 0 ≤ ν ≤ 1 is a shrinkage parameter, usually set close to zero (Friedman, 2001).

5. Iterate steps 2 to 4 until m =M for some stopping iteration M .

The key point is that we do not go back and adjust earlier parameters. The resulting basis
functions learnt from the data are φ(x) = (φ(x; θ1), . . . ,φ(x; θM )). The number of iterations
M is a tuning parameter, which can be optimally tuned via cross-validation or some model
selection criterion (see Section 1.5 for more details).

1.4. Boosting the IV regression

The main complication in the NPIV set-up is that x is potentially endogenous, otherwise
learning the structural function via boosting would be straightforward. Moreover, we can-
not learn basis functions in the first step and then construct IVs in the second. Dependence
of the basis functions for the structural equation on the instruments and vice versa suggests
an iterative algorithm.

Before we introduce the algorithm, we need to set up the boosting IV framework first. Com-

6



bining (1.1) and (1.5) gives

y = α0 +
M∑

m=1

αmϕ(x; θm) + ε. (1.7)

Hence, the conditional expectation of y given z becomes

E[y|z] = α0 +
M∑

m=1

αmE[ϕ(x; θm)|z]. (1.8)

Note that (1.7) and (1.8) closely resemble their standard NPIV counterparts (1.1) and (2.1).
The only difference is that the form of basis functions for boosting must be estimated, while
for the standard NPIV it has to be ex-ante specified. Since we assume that f can be approx-
imated by an additive basis function model, equation (1.8) is no longer ill-posed. This can
be seen as sieve truncation, which is a standard way to regularize the series NPIV estimator,
with M being a regularization parameter. Unlike standard boosting, where the goal is to
learn E[y|x], in the presence of endogeneity, we want to learn E[y|z], implying that in each
boosting iteration we have to learn the conditional expectation of the weak learner given
the IVs.

To keep things clear and simple, we focus on L2-boosting which assumes the squared loss
function. Bühlmann and Yu (2003) show that L2-boosting is equivalent to iterative fitting
of residuals. In the IV context, it means that at step m the loss has the form

L(y, fm−1(x) + αE[ϕ(x; θ)|z]) = (rm − αE[ϕ(x; θ)|z])2,

where rm ≡ y − fm−1 is the current residual. Thus, at step m the optimal parameters
minimize the loss between the residuals and the conditional expectation of the weak learner
given the instruments,

(αm, θm) = argmin
α,θ

N∑
i=1

(rim − αE[ϕ(xi; θ)|zi])2. (1.9)

However, the conditional expectation E[ϕ(x; θ)|z] is unknown and has to be estimated.

A simple way to estimate the conditional expectation in (1.9) is to project5 the weak learner
5In general we do not have to use a projection, we can use a more complex model to estimate the conditional

expectation.
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on the space spanned by IVs

Ê[ϕ(x; θ)|z] = PZϕ(x; θ),

where PA = A(A′A)−1A′ is a projection matrix. The exogeneity condition in (1.1) implies
that any function of z can serve as an instrument. However, we do not need any function,
we need such a transformation of z that will give us strong instruments, i.e. instruments
that explain the majority of the variation in the endogenous variables. We follow Gandhi
et al. (2019) and introduce an additional step on which we learn the instruments. LetH(·; η)
be a class of IV functions parameterized by η. This formulation allows us to use various
off-the-shelf algorithms such as Neural Networks, Random Forests, etc. to learn H(·; η).
Given the learnt IV transformationH(·; η), we can rewrite (1.9) as

(αm, θm) = argmin
α,θ

N∑
i=1

(rim − αPH(zi;η)ϕ(xi; θ))
2.

Since the basis function parameters (α, θ) depend on the IV transformation parameters η
and vice versa, we propose an algorithm that iterates between two steps. At the first step we
learn instruments, i.e. ηm, given the basis functions parameter estimates from the previous
iteration (αm−1, θm−1), then at the second step we learn new parameter estimates (αm, θm)

given the instruments from the first step. We can draw an analogy with the canonical two-
stage least squares, where we estimate the reduced form in the first stage, and the structural
equation in the second. The details are provided in Algorithm 6.

Algorithm 1 Naive boostIV
Initialize basis functions: ϕ0 = ȳ
for iteration m do

First stage: given ϕ(x; θm−1), estimateH(z; ηm)
Second stage: givenH(z; ηm), solve

(αm, θm) = argmin
α,θ

N∑
i=1

(
rim − αPH(zi;ηm)ϕ(xi; θ)

)2
update: fm(x) = fm−1(x) + αmϕ(x; θm)
end for
Stop at iteration M

We call this algorithm the Naive boostIV, since we use the same data to learn both the
instruments and the basis functions. Asymptotically this will not affect the properties of
the estimator, however, in finite samples biases from the first stage will propagate to the

8



second. This issue can be especially severe if we use regularized estimators in the first stage
as the regularization bias will heavily affect the second stage estimates. To get around this
issue we resort to cross-fitting.

Let D = {yi,xi,zi}ni=1 be our data set, where Di are iid. Split the data set into a K-fold
partition, such that each partition Dk has size

⌊
n
K

⌋
, and let Dc

k be the excluded data. The
boostIV procedure with cross-fitting is described in Algorithm 2.

Algorithm 2 boostIV with cross-fitting
Folds {D1, . . . ,DK} ← Partition(D,K)
Initialize basis functions: ϕk

0 = ȳ for k = 1, . . . ,K
for iteration m do

for fold k do
First stage:

• given ϕ(xck; θkm−1) and zck, estimateH(·; ηkm)
• apply the learnt transformation to generate IVsH(zk; ηkm)

Second stage: GivenH(zk; ηkm), solve

(αk
m, θ

k
m) = argmin

α,θ

∑
i∈Dk

(
rim − αPH(zi;ηk

m)ϕ(xi; θ)
)2

update: fkm(xk) = fkm−1(xk) + αk
mϕ(xk; θ

k
m)

end for
end for
Stop at iteration M : f̂(x) = 1

K

∑K
k=1 f

k
M (x)

1.4.1. Learning optimal instruments

Our boostIV algorithm also allows to incorporate optimal instruments in the sense of Cham-
berlain (1987), i.e. instruments that achieve the smallest asymptotic variance. Assuming
conditional homoskedasticity, the optimal instrument vector of Chamberlain (1987) at step
m is

H(z; ηm) = Dm(z)σ−2
m , (1.10)

where
Dm(z) = E

[
∂ε(γm)

∂γ′m

∣∣∣∣ z] , γm = (αm, θ
′
m)′ (1.11)

is the conditional expectation of the derivative of the conditional moment restriction with
respect to the boosting parameters, and σ2m = E[r2m|z] is the conditional variance of the
error term at step m. Thus, the IV transformation parameters ηm are implicitly embedded
in a particular approximation used to estimate Dm(z).

The main complication with using optimal IVs is that they are generally unknown, hence,
the common approach is to consider approximations. The parametrization in (1.10)-(1.11)
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allows us to use any off-the-shelf statistical/ML method to estimate the optimal functional
form for the instruments. Moreover, the iterative nature of the algorithm allows us to use
the estimates from step m− 1 as proxies.

1.4.2. Post-processing

An important feature of the forward stage-wise additive modeling is that we do not go
back and adjust earlier parameters. However, we might want to revisit the weights on the
learnt basis functions to achieve a better fit. This can be seen as a way of post-processing
our boostIV procedure.

The whole procedure can be broken down into two stages:

1. Apply the boostIV algorithm to learn basis functions ϕ̂m(x) = 1
K

∑K
k=1 ϕ(x; θ

k
m) for

m = 1, . . . ,M ;

2. Estimate the weights

β̂ = argmin
β

n∑
i=1

(
yi − β0 −

M∑
m=1

βmϕ̂m(xi)

)2

. (1.12)

Note that the basis functions (ϕ̂1(x), . . . , ϕ̂M (x)) are causal in the sense that they are con-
structed using estimated parameters θ that identify a causal relationship between x and y.
A more detailed algorithm is presented below.

Algorithm 3 post-boostIV
Folds {D1, . . . ,DL} ← Partition(D, L)
for fold ` do

1. apply boostIV to Dc
` and estimate basis functions (ϕ̂`

1(x), . . . , ϕ̂
`
M (x))

2. estimate post-boosting weights

β̂` = argmin
β

∑
i∈D`

(
yi − β0 −

M∑
m=1

βmϕ̂
`
m(xi)

)2

.

3. fold fit at point x: g`(x) = β̂`0 +
∑M

m=1 β̂
`
mϕ̂

`
m(x)

end for
Stop at iteration M : f̂(x) = 1

L

∑L
`=1 f

`
M (x)

Boosting is an example of an ensemble method which combines various predictions with
appropriate weights to get a better prediction. In the context of boostIV it works in the
following way. We exploit the variation in IVs to get causal parameters θ. Given the esti-
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mated parameters, we can treat each learnt basis function ϕ(x; θm) as a separate prediction
obtained by fitting a base learner. Then, the post-processing step in (1.12) can be simply
seen as model averaging.

We can estimate optimal weights β̂ by simply running a least squares regression as in (1.12)
or use any other method such as Random Forrests, Neural Networks, boosting, etc. To avoid
carrying over any biases from the estimation of (ϕ̂1(x), . . . , ϕ̂M (x)) into the choice of β, we
use cross-fitting once again, which is a generalization of the stacking idea of Wolpert (1992).

1.5. Choosing the optimal number of boosting iterations

Boosting performance crucially depends on the number of boosting iterations, in other
words, M is a tuning parameter. A common way to tune any ML algorithm is cross-
validation (CV). The most popular type of CV is k-fold CV. The idea behind k-fold CV
is to create a number of partitions (validation datasets) from the training dataset and fit
the model to the training dataset (sans the validation data). The model is then evaluated
against each validation dataset and the results are averaged to obtain the cross-validation
error. In application to boosting, we can estimate the CV error for a grid of candidate tuning
parameters (number of iterations) and pickM∗ that minimizes the CV error. Alternatively,
Bühlmann and Hothorn (2007) show how to apply AIC and BIC criteria to boosting in the
exogenous case. However, it is not clear how to adjust those criteria for the presence of
endogeneity.

Both the standard k-fold cross validation and the model selection criteria considered in
Bühlmann and Hothorn (2007) can be computationally costly as it is necessary to compute
all boosting iterations under consideration for the training data. To surpass this issue, we
apply early stopping to k-fold CV. The idea behind early stopping is to monitor the behavior
of the CV error and stop as soon as the performance starts decreasing, i.e. CV error goes
up.

Algorithm 4 provides implementation details for the k-fold CV with early stopping for
either boostIV or post-boostIV procedure. The early stopping criterion compares the CV
error evaluated for the model based on Mj boosting iterations to the CV error evaluated
for the model based on Mi, Mi < Mj . If CV err(Mj) > CV err(Mi) + ε, where ε > 0 but
close to zero is a numerical error tolerance level, then we stop and setM∗ =Mi, otherwise,
continue the search. If the criterion is not met for any of the candidate tuning parameters,
we pick the largest value M∗ = M̄ .

An alternative solution would be to use a slice of the dataset as the validation sample and
tune the number of iterations using the observations from the validation sample. We actu-
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ally use this approach in our simulations since it significantly reduces the computational
burden.

Algorithm 4 k-fold CV with early stopping
Folds {D1, . . . ,Dk} ← Partition(D, k)
Set of indices IM corresponding to a sorted grid of tuning parametersM = {1, . . . , M̄}
whileM[i] ≤ M̄ for i ∈ IM do

for fold κ = 1, . . . , k do
1. training set Tκ = Dc

κ → apply (post-)boostIV(Tκ,M[i])→ f boostM[i],κ(x)

2. validation set Vκ = Dκ → CV err
κ (M[i]) = 1

|Vκ|
∑

i∈Vκ

(
yi − f boostM[i],κ(xi)

)2
end for
Calculate CV err(M[i]) = 1

k

∑k
κ=1CV

err
κ (M[i])

if CV err(M[i]) > CV err(M[i− 1]) + ε then
M∗ =M[i− 1]

else
i = +1

end if
end while
M∗ = M̄
f boostM∗ (x)← (post-)boostIV(D,M∗)

1.6. Theoretical properties

In this section, we show that under mild conditions boostIV is consistent. Theoretical prop-
erties of post-boostIV are beyond the scope of the paper and are left for future research.

We borrow the main idea from Zhang and Yu (2005) and modify it accordingly to apply it
to the GMM criterion. Let g(Wi, f) = (yi − f(xi))zi denote a k × 1 moment function, then
g0(f) = E[g(Wi, f)] is the population moment function and ĝ(f) = n−1

∑n
i=1 g(Wi, f) is its

sample analog. Also let Ω denote a k × k positive semi-definite weight matrix and Ω̂ be its
sample analog. Thus, the population GMM criterion and its sample analog are

Q(f) = g0(f)
′Ωg0(f), Q̂(f) = ĝ(f)′Ω̂ĝ(f). (1.13)

The form of the GMM criterion in (1.13) corresponds to the form of the empirical objective
function in Zhang and Yu (2005) with the loss function replaced by the moment function.

We follow Zhang and Yu (2005) and replace the functional gradient decent step (1.9) leading
to the 2SLS fitting procedure on every iteration with an approximate minimization involv-
ing a GMM criterion. We can do that since the 2SLS solution is a special case of a GMM
solution with an appropriate weighting matrix.
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Assumption 1. Approximate Minimization. On each iteration step m we find ᾱm ∈ Λm

and ϕ̄m ∈ S such that

Q̂(fm + ᾱmϕ̄m) ≤ inf
αm∈Λmϕm∈S

Q̂(fm + αmϕm) + εm, (1.14)

where εm is a sequence of non-negative numbers that converge to 0.

As Zhang and Yu (2005) show, the consistency of the boosting procedure consists of two
parts: (i) numerical convergence of the procedure itself, i.e. the algorithm achieves the true
minimum of the objective function, and (ii) statistical convergence that ensures the uniform
convergence of the sample criterion to its population analog. We will treat these two steps
separately in the following subsections, and then combine them to demonstrate consistency
of the boostIV.

1.6.1. Numerical Convergence

To demonstrate numerical convergence, we first have to verify that the sample GMM crite-
rion in (1.13) satisfies Assumption 3.1 from Zhang and Yu (2005).

Following Zhang and Yu (2005), we introduce some additional notation. Let S be a set of
real-valued functions and define

span(S) =


J∑

j=1

wjϕj : ϕj ∈ S, wi ∈ R, J ∈ Z+

 ,

which forms a linear function space. Also, for all f ∈ span(S) define the 1-norm with
respect to the basis S as

||f ||1 =

||w||1 : f =
J∑

j=1

wjϕj : ϕj ∈ S, J ∈ Z+

 .

Assumption 2. A convex function A(f) defined on span(S) should satisfy the following
conditions:

1. The functional A satisfies the following Frechet-like differentiability condition

lim
h→0

1

h
(A(f + hϕ)−A(f)) = ∇A′ϕ

2. For all f ∈ span(S) and ϕ ∈ S , the real-valued function Af,ϕ(h) = A(f + hϕ) is
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second-order differentiable (as a function of h) and the second derivative satisfies

A′′
f, ϕ(0) ≤M(||f ||1),

where M(·) is a nondecreasing real-valued function.

Lemma 1. Let (i) the basis functions ϕ be bounded as supx |ϕ(x)
2| = C < ∞, (ii) the

maximal eigenvalue λmax of the weighting matrixΩ be bounded from above, λmax(Ω) <∞,
and (iii) E[|z′izi|] ≤ B < ∞. Then the population GMM criterion defined in (1.13) satisfies
Assumption 2.

Assumption 3. Step size.

(a) Let Λm ⊂ R such that 0 ∈ Λm and Λm = −Λm.

(b) Let hm = supΛm satisfy the conditions

∞∑
j=0

hj =∞,
∞∑
j=0

h2j <∞. (1.15)

Then we can bound the step size |ᾱm| ≤ hm.

Note that Assumption 3(a) restricts the step sizeαm. Friedman (2001) argues that restricting
the step size is always preferable in practice, thus, we will restrict our attention to this case6.
Moreover, Λm is allowed to depend on the previous steps of the algorithm. Assumption
3(b) requires the step size hj to be small (

∑∞
j=0 h

2
j < ∞) preventing large oscillation, but

not too small (
∑∞

j=0 hj =∞) ensuring that fm can cover the whole span(S). The following
theorem establishes the main numerical convergence result.

Theorem 1. Assume that we choose quantities f0, εm and Λm independent of the sample
W . Given the results of Lemma 1, as long as there exists hj satisfying Assumption 3 and εj
such that

∑∞
j=0 εj <∞, we have the following convergence result:

lim
m→∞

Q̂(fm) = inf
f∈span(S)

Q̂(f).

6Zhang and Yu (2005) provide a short discussion on how to deal with the unrestricted step size, however,
the argument relies on the exact minimization which greatly complicates the analysis.
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1.6.2. Statistical convergence

We need to show that the sample GMM criterion uniformly converges to its population
analog, then under proper regularity conditions we will be able to ensure consistency of
boostIV.

To show that the sample GMM criterion converges uniformly to its population analog, we
will first bound the moment function and then we will show that it is sufficient to put a
bound on the criterion function.

Assumption 4. Assume the following conditions:

1. The class of weak learners S is closed under negation, i.e. f ∈ S → −f ∈ S .

2. The moment function is Lipschitz with each component j = 1, . . . , k satisfying

∃γj(β) such that ∀|f1|, |f2| ≤ β |gj(f1)− gj(f2)| ≤ γj(β)|f1 − f2|,

implying that

||g(f1)− g(f2)|| ≤ γ(β)|f1 − f2|, γ(β) =

√√√√ k∑
j=1

γ2j (β).

To bound the rate of uniform convergence of the moment function, we appeal to the concept
of Rademacher complexity. Let H = h(w) be a set of real-valued functions. Let {ζi}ni=1

be a sequence of binary random variables such that ζi takes values in {−1,1} with equal
probabilities. Then the sample or empirical Rademacher complexity of classH is given by

R̂(H) = Eζ

[
sup
h∈H

n−1
n∑

i=1

ζih(Wi)

]
. (1.16)

We also denote R(H) = EW R̂(H) to be the expected Rademacher complexity, where EW

is the expectation with respect to the sample W = (W1, . . . ,Wn). Note that the definition
in (1.16) differs from the standard definition of Rademacher complexity where there is an
absolute value under the supremum sign (Vaart and Wellner, 1996). The current version
of Rademacher complexity has the merit that it vanishes for function classes consisting of
single constant function, and is always dominated by the standard Rademacher complex-
ity. Both definitions agree for function classes which are closed under negation (Meir and
Zhang, 2003).
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Lemma 2. Under Assumption 4, for all j = 1, . . . , k,

EW sup
||f ||1≤β

|g0,j(f)− ĝj(f)| ≤ 2γj(β)βR(S).

Note that β controls the complexity of f with respect to the span of S. The more base
learners in the approximation, the harder is the target function to learn.

For many classes the Rademacher complexity can be calculated directly, however, to obtain
a more general result we need to bound R(S). Using the results from Section 4.3 in Zhang
and Yu (2005) we can bound the expected Rademacher complexity of the weak learner class
by

R(S) ≤ CS√
n
, (1.17)

where CS is a constant that solely depends on S. Zhang and Yu (2005) also show that
popular weak learners such as two-level neural networks and trees basis functions satisfy
the requirements. However, Zhang and Yu (2005) point out that in general the bound may
be slower than root-n. In Appendix A.3 we derive an alternative bound onR(S) that works
for any class with finite VC dimension. The derived VC bound is slower by the factor of
log(n) that appears in a lot of ML algorithms.

Condition (1.17) allows us to bound the moment function which leads to a bound on the
rate of uniform convergence of the GMM criterion. The formal statements of the results are
presented below.

Lemma 3. Suppose that condition (1.17) holds, then under Assumption 4,

sup
||f ||1≤β

||g0(f)− ĝ(f)||
p→ 0.

Theorem 2. Suppose that (i) the dataW = (W1, . . . ,Wn) are i.i.d., (ii) Ω̂ p→ Ω, (iii) Assump-
tion 4 is satisfied, and (iv) EW

[
sup||f ||1≤β ||g(Wi, f)||

]
<∞. Then

sup
||f ||1≤β

|Q̂(f)−Q(f)| p→ 0.

1.6.3. Consistency

In this section we put together the arguments for numerical and statistical convergence
presented in the previous subsections to prove consistency of the boostIV algorithm. We
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start with a general decomposition illustrating the proof strategy and highlighting where
exactly numerical and statistical convergence step in.

Suppose that we run the boostIV algorithm and stop at an early stopping point m̂ that sat-
isfies P(||f̂m̂||1 ≤ β) = 1 for some sample-independent β ≥ 0. Let f∗ be a unique minimizer
of the population criterion, i.e. Q(f∗) = inff∈span(S)Q(f). By the triangle inequality, we get
the following decomposition∣∣∣Q(f̂m̂)−Q(f∗)

∣∣∣ ≤ ∣∣∣Q(f̂m̂)− Q̂(f̂m̂)
∣∣∣+ ∣∣∣Q̂(f̂m̂)− Q̂(f∗)

∣∣∣+ ∣∣∣Q̂(f∗)−Q(f∗)
∣∣∣

≤ 2 sup
||f ||1≤β

∣∣∣Q̂(f)−Q(f)
∣∣∣+ ∣∣∣Q̂(f̂m̂)− Q̂(f∗)

∣∣∣
We can bound the first term using the uniform bound on the sample GMM criterion in
Theorem 2, this is the statistical convergence argument. In order to bound the second term,
we have to appeal to the numerical convergence argument in Theorem 1. As a result, since
Q(f̂m̂)→ Q(f∗) as n→∞, it follows that f̂m̂

p→ f∗. The following theorem formalizes the
result.

Theorem 3. Suppose that the assumptions of Theorems 1 and 2 hold. Consider two se-
quences kn and βn such that limn→∞mn =∞ and limn→∞ γ(βn)βnR(S) = 0. Then as long
as we stop the algorithm at step m̂ based onW such that m̂ ≥ mn and ||f̂m̂||1 ≤ βn, we have
the consistency result f̂m̂

p→ f∗.

Note that in Theorem 3 we allow for βn to grow with the sample size. In other words, more
data allows us to learn a more complex function with the desired level of generalization.

1.7. Monte Carlo experiments

1.7.1. Univariate design

To begin with, we consider a simple low-dimensional scenario with one endogenous vari-
able and two instruments.

y = g(x) + ρe+ δ, x = z1 + z2 + e+ γ,

where instruments zj ∼ U [−3, 3] for j = 1, 2, e ∼ N (0, 1) is the confounder, δ, γ ∼ N (0, 0.1)

are additional noise components, and ρ is the parameter measuring the degree of endogene-
ity, which we set to 0.5 in the simulations. We focus on four specifications of the structural
function:

• abs: g(x) = |x|
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• log: g(x) = log(|16x− 8|+ 1)sign(x− 0.5)

• sin: g(x) = sin(x)

• step: g(x) = 1{x < 0}+ 2.5× 1{x ≥ 0}

We compare the performance of boostIV and post-boostIV with the standard NPIV estima-
tor using the cubic polynomial basis, Kernel IV (KIV) regression of Singh et al. (2019)7,
DeepIV estimator of Hartford et al. (2017a)8 and DeepGMM estimator of Bennett et al.
(2019)9. We use 1,000 observations for both train and test sets and 500 observations for
the validation set. Our results are based on 200 simulations for each scenario.

Table 1: Univariate design: Out-of-sample MSE.

NPIV KIV DeepIV DeepGMM boostIV post-boostIV

abs 0.1916 0.0564 0.1347 1.2717 0.0348 0.0217
log 0.6936 0.3367 1.2708 14.4615 0.3173 0.0930
sin 0.1837 0.0217 0.2798 0.8595 0.0292 0.0124
step 0.1267 0.0972 0.1756 0.9796 0.1027 0.0546

We plot our results in Figure 1 which shows the average out of sample fit across simulations
(orange line) compared to the true target function (black line). Table 1 presents the out-of-
sample MSE across simulations. First thing to notice is that NPIV fails to capture different
functional form subtleties. Second, DeepIV’s performance does not improve upon the one
of NPIV. Moreover, even though DeepGMM estimates have lower bias than the ones of
NPIV and DeepIV (except for the log function), they are quite volatile across simulations
leading to higher MSE. BoostIV performs on par with KIV both in terms of the bias term
as they are able to recover the underlying structural relation, and in terms of the variance
leading to low MSE. Finally, the post-processing step helps to further improve upon boos-
tIV’s performance by reducing bias. On top of that, post-boostIV requires less iterations
to converge. We use 5,000 iterations for boostIV, while post-boostIV uses on average 50

iterations.10

7Code: https://github.com/r4hu1-5in9h/KIV
8We use the latest implementation of the econML package: https://github.com/microsoft/EconML
9Code: https://github.com/CausalML/DeepGMM

10In this experiment we do not tune boostIV, we just pick a large enough number of iterations for it to con-
verge. However, we do tune post-boostIV.
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1.7.2. Multivariate Design

Consider the following data generating process:

yi = h(xi) + εi

xi,k = gk(zi) + vi,k, k = 1, . . . , dx,

where yi ∈ R is the response variable, xi ∈ Rdx is the vector of potentially endogenous
variables, zi ∈ Rdz is the vector of instruments, εi ∈ R is the structural error term, and
vi ∈ Rdx is the vector of the reduced form errors. Function h(·) is the structural function of
interest, and function g(·) governs the reduced form relationship between the endogenous
regressors and instrumental variables.

Instruments are drawn from a multivariate normal distribution, zi ∼ N (0,Σz), where Σz

is just an identity matrix. The error terms are described by the following relationship:

ε ∼ N (0, 1), v ∼ N (ρε, I − ρ2),

where ρ is the correlation between ε and the elements of v, which controls the degree of
endogeneity.

We consider two structural function specifications:

1. a simpler design where the structural function is proportional to a multivariate nor-
mal density, i.e. h(x) = exp{−0.5x′x}. We will further refer to this specification as
Design 1;

2. a more challenging design where the structural function is h(x) =
∑dx

k=1 sin(10xk).
We will further refer to this specification as Design 2.

We also consider two different choices of the reduced form function g(·):

(a) linear: g(Zi) = Z ′
iΠ, where Π ∈ Rdz×1 is a matrix of reduced form parameters;

(b) non-linear: gk(Zi) = G(Zi; θk) for k = 1, . . . ,dx, whereG(Zi; θk) is a multivariate nor-
mal density parameterized by the mean vector θk (for simplicity, we use the identity
covariance matrix).

We use 1,000 observations for the train set and 500 observations for both the validation
and test sets. We run 200 simulations for each scenario. The results are summarized in
Tables 2 and 3. We observe that boostIV performs on par with KIV and DeepIV and slightly
outperforms DeepGMM. Unlike the univariate case, post-boostIV does not improve upon
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the boostIV, but it still significantly outperforms NPIV.

Table 2: Design 1: Out-of-sample MSE.

dx dz IV type ρ NPIV KIV DeepIV DeepGMM boostIV post-boostIV

5 7 lin 0.25 4.9535 0.0147 0.0497 0.2234 0.0213 1.3306
0.75 6.8889 0.0286 0.054 0.1655 0.0603 0.7249

nonlin 0.25 4.0548 0.017 0.0757 0.3262 0.0875 0.3457
0.75 1.9932 0.0516 0.1188 0.7265 0.4287 0.9128

10 12 lin 0.25 23.1025 0.0024 0.0867 0.3089 0.0084 1.0953
0.75 39.6902 0.0108 0.0884 0.251 0.0427 0.6347

nonlin 0.25 6.4842 0.0038 0.05 0.4908 0.0525 0.8137
0.75 2.53 0.0147 0.0691 0.822 0.3332 0.8937

Table 3: Design 2: Out-of-sample MSE.

dx dz IV type ρ NPIV KIV DeepIV DeepGMM boostIV post-boostIV

5 7 lin 0.25 21.5854 2.4983 2.5484 2.9105 2.5105 3.5498
0.75 23.2413 2.5043 2.5358 2.792 2.5351 3.5081

nonlin 0.25 19.0871 2.5118 2.5415 2.9867 2.5707 3.0303
0.75 22.1192 2.5367 2.5523 3.4188 2.891 3.7043

10 12 lin 0.25 147.984 5.0047 5.1383 5.9647 5.0209 5.9435
0.75 241.56 5.0326 5.1698 5.7147 5.0781 6.3259

nonlin 0.25 61.0328 5.0103 5.0636 6.2145 5.0713 5.9001
0.75 112.785 4.9799 5.0631 6.193 5.3172 6.4674

1.8. Conclusion

In this Chapter we have introduced a new boosting algorithm called boostIV that allows to
learn the target function in the presence of endogenous regressors. The algorithm is very
intuitive as it resembles an iterative version of the standard 2SLS regression. We also study
several extensions including the use of optimal instruments and the post-processing step.

We show that boostIV is consistent and demonstrates an outstanding finite sample perfor-
mance in the series of Monte Carlo experiments. It performs especially well in the non-
parameteric demand estimation example which is characterized by a complex nonlinear
relationship between the target function and explanatory features.

Despite all the advantages of boostIV, the algorithm does not allow for high-dimensional
settings where the number of regressors and/or instruments exceeds the number of ob-
servations. We also believe it is possible to extend our algorithm in the spirit similar to
XGBoost (Chen and Guestrin, 2016) that could decrease the computation time taken by the
algorithm. These would be interesting directions for future research.
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CHAPTER 2: Automatic Debiased Machine Learning in
Presence of Endogeneity

2.1. Introduction

Instrumental variables methods are widely used in applied research for estimation and
inference in models containing endogenous regressors. In many cases, economic theory
does not impose any functional form restrictions motivating nonparametric instrumental
variables (NPIV) methods, where the function of interest is not assumed to be known up to
a finite-dimensional parameter. In many cases, structural parameters of economic interest
appear as functionals of that underlying unknown function. Examples are policy effects,
average (weighted) partial effects, consumer surplus, measures of substitution patterns,
and various counterfactuals from structural models. It is quite common for the estimation
problem to be high-dimensional. There might be many control variables which we want to
include in a flexible way along with the endogenous regressor, or a structural model may
depend on many variables, e.g. in the demand for differentiated goods framework, the
demand function depends on the vector of prices and product characteristics of all products
in the market. In this paper, we are interested in estimation and inference on structural
economic objects in presence of endogeneity when the dimensionality of the problem is
(moderately) high.

Machine learning (ML) literature provides a collection of modern statistical tools for flexi-
ble estimation of various statistical objects that are especially powerful in high-dimensional
settings. However, standard ML estimators, such as Lasso, boosting, or Neural Networks
are unable to pick up causal relationships when endogenous regressors are present (see
e.g., Hartford et al., 2017b). On the other hand, there is a new line of research in machine
learning and computer science communities that offers a series of new algorithms that both
addresses endogeneity and can be applied in high-dimensional environments, we refer to
them as MLIV estimators. These algorithms are data-driven and exploit various forms of
regularization to ameliorate the ill-posedness of the problem while maintaining the func-
tional form flexibility. Examples include the DeepIV estimator (Hartford et al., 2017b), the
Kernel IV regression (Singh et al., 2019), the Dual IV regression (Muandet et al., 2019),
the DeepGMM estimator (Bennett et al., 2019), the Double Lasso estimator of Gold et al.
(2020), a series of estimators constructed using the minimax framework of Dikkala et al.
(2020), and the boostIV estimator (Bakhitov and Singh, 2021). The goal of this paper is to
use these novel methods to estimate and perform inference on various economic objects of
interest that appear as functionals of the underlying structural function under endogeneity.
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As standard ML algorithms, MLIV estimators produce inherently biased estimates. The
main source of bias is regularization and/or model selection needed to balance out squared
bias and variance to obtain overall small mean squared errors. In the NPIV context, regu-
larization is particularly important as it plays a dual role. First, it allows to deal with the
curse of dimensionality, as in the case of standard ML estimators. Second, it is necessary to
solve the ill-posed problem. As a result, regularization and/or model selection bias leads to
poor coverage unless it is corrected for. Furthermore, the bias term will propagate into the
functional estimate if we simply plug-in an MLIV estimator into the functional formula. As
Chernozhukov, Newey and Robins (2018) point out, squared bias of plug-in estimators can
shrink slower than the variance, leading to extremely poor confidence interval coverage.

In this paper, we provide an approach for performing valid asymptotic inference on func-
tionals of MLIV estimators. Our method bases off of the automatic debiased machine learn-
ing approach of Chernozhukov, Newey and Singh (2018), hereafter CNS, but focuses on the
endogenous setting rather than the exogenous one. To get rid of the regularization and/or
model selection bias, we debias the moment function identifying the functional of interest.
The debiasing is automatic in the sense that it only depends on the form of the identifying
moment function but not on the form of the bias correction term. The key to bias correc-
tion is Neyman orthogonality of the moment function which ensures that the estimated
moment function has a zero derivative with respect to the MLIV estimator. Intuitively it
means that the estimated moment function is insensitive to local perturbations around the
true value of the estimated function, which allows to plug-in noisy estimates in the moment
condition without strongly violating it. We construct Neyman orthogonal, or simply de-
biased, moment functions by adding the influence function for the MLIV estimator to the
identifying moment functions. Then we simply plug-in the MLIV estimator in the debiased
moment function to get the debiased estimate of the functional of interest.

We focus our attention on regular functionals with the finite semiparametric asymptotic
variance bound necessary for root-n estimability. We allow for both linear and non-linear
functionals, though the conditions for root-n rate are much tighter for the nonlinear case.
When the semiparametric asymptotic variance bound is finite, the influence function ad-
justment term depends on the Riesz representer (RR) for the identifying moment function
in case of a linear functional or the derivative of the identifying moment condition in case
of a nonlinear functional. Typically, in the NPIV framework, the form of the RR is either
very complicated to derive or even unknown. We exploit the orthogonality of the identi-
fying moment condition and provide a penalized GMM (PGMM) framework to estimate
the RR. This allows us to learn the RR directly from the identifying moment conditions
without requiring the knowledge of the form of the RR, hence, we refer to this estimator

23



as automatic. The PGMM estimator of the RR is novel and, to the best of our knowledge,
is the only automatic estimator of the RR in the NPIV framework. The PGMM estimator is
a generalization of the Lasso minimum distance estimator of CNS as it allows for a more
general form of the influence function.

We derive the convergence rate for the PGMM estimator and provide conditions for root-n
consistency and asymptotic normality of the debiased MLIV estimator of the functional
of interest. To accommodate for a large variety of MLIV estimators, we only require cer-
tain mean square consistency and convergence rates for MLIV estimators. The required
conditions differ quite drastically for linear and nonlinear functionals. For linear function-
als it is sufficient to require the MLIV estimator to converge at some positive rate in the
projected mean square norm. It is well-known that NPIV estimators exhibit much faster
convergence rates in the projected norm rather than in the standard mean square norm
due to ill-posedness (see e.g., Blundell et al., 2007; Chen and Pouzo, 2012, 2015). However,
for nonlinear functionals it is necessary to account for the linearization bias which requires
the convergence rate to be faster than n−1/4, which is a standard condition in the semipara-
metric literature (Newey, 1994). Moreover, the presence of nonlinearities in the identifying
moment function results in the convergence rate condition in the standard mean square
norm rather than the projected norm, which makes it harder to satisfy in practice.

We apply our approach to learning the conditional demand derivative functional in the
nonparametric demand for differentiated products framework (Berry and Haile, 2016; Com-
piani, 2018; Gandhi et al., 2020) that has been gaining popularity in the last years as an
alternative to the standard parametric procedure of Berry et al. (1995), hereafter, BLP. The
conditional demand derivative with respect to own price has a nice economic interpretation
which has a close connection with traditional parametric models such as logit and nested
logit. Under logit, the conditional demand derivative becomes just the logit price coeffi-
cient, while under nested logit the derivative consists of two parts: (i) the direct effect from
the price coefficient and (ii) the indirect effect coming from the nesting structure. We use
these insights and run Monte Carlo experiments where we nonparametrically estimate the
conditional demand derivative under logit and nested logit data generating processes. We
show that the plug-in estimates are badly biased and have extremely poor coverage as a
result. Furthermore, we demonstrate that our debiasing procedure not only significantly
reduces bias, but also achieves close to the nominal level coverage.

We use the Monte Carlo results as a basis for our empirical application where we estimate
the conditional demand derivative using scanner data. First, we demonstrate that apply-
ing machine learning allows to uncover more complicated substitution patterns compared
to traditional parametric estimators. The nested logit estimates of the conditional demand
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derivative do not exhibit much variation across products and are close the logit price co-
efficient estimate. While, ML estimates have substantial variation across products and state
that similar products have similar responses to price changes. Moreover, our empirical re-
sults are coherent with the evidence from the Monte Carlo experiments: plug-in estimates
are biased upwards and have smaller standard errors compared to the debiased estimates.

This Chapter connects several strands of literature. First, since the focus of the Chapter is
functionals of nonparametric quantities, our methodology relates to the literature on semi-
parametric statistical theory (Van der Vaart, 1991; Bickel et al., 1993; Newey, 1994; Robins
and Rotnitzky, 1995; Van der Vaart, 2000). These papers focus on functionals of densities
or regressions in low dimensional settings, while in this Chapter we focus on functionals
of MLIV estimators over domains that may include low, moderate, and high dimensional
objects. A more recent work by Chernozhukov, Escanciano, Ichimura, Newey and Robins
(2020) generalizes and extends the insights from the classical theory by constructing Ney-
man orthogonal moment conditions allowing for a wide range of ML estimators11. We
follow Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020) and use Neyman
orthogonal moment functions with the influence function adjustment term for the NPIV
estimator from Ichimura and Newey (2017).

Riesz representers are important objects in semiparametric theory as they appear in cal-
culations of the asymptotic variance of functionals of nonparametric quantities (Ichimura
and Newey, 2017; Chernozhukov, Escanciano, Ichimura, Newey and Robins, 2020). For the
same reason they appear in the influence function calculations, which makes estimation of
RRs a cornerstone of the debiased machine learning literature. Chernozhukov et al. (2019)
and CNS propose Lasso and Dantzig minimum distance estimators of the RR based on the
sparse approximation assumption. While the latter provides asymptotic results for regular
functionals, the former provides finite sample analysis and also allows for irregular func-
tionals. A recent paper by Chernozhukov et al. (2021) proposes to use a neural network
to estimate the RR. On the other hand, Chernozhukov, Newey, Singh and Syrgkanis (2020)
take a different approach and allow for a more general estimator of the RR based on the
minimax framework of Dikkala et al. (2020). While the aforementioned papers can be ap-
plied only in exogenous settings, the PGMM estimator we propose allows to estimate the
RR under endogeneity.

This work also contributes to the literature on estimation and inference on conditional re-
11Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020) provide high-level conditions for infer-

ence on functionals for conditional moment restriction models that nest the NPIV problem (see Theorem 19).
Our results are complementary as we provide an estimator of the RR and give low-level conditions to derive
its convergence rate.
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strictions models which nest the NPIV regression problem as a special case. Several NPIV
estimators are now available including kernel-based estimators (Hall and Horowitz, 2005;
Darolles et al., 2011) and series or sieve estimators (Newey and Powell, 2003; Blundell et al.,
2007; Chen and Pouzo, 2012; Chen et al., 2021). There are several papers focusing on linear
regular functionals of NPIV estimators, see e.g., Ai and Chen (2003), Santos (2011), and
Severini and Tripathi (2012) among others. Chen and Pouzo (2015) and Chen and Chris-
tensen (2018) give conditions for pointwise and uniform asymptotic normality, respectively,
of possibly nonlinear functionals of the sieve NPIV estimator. The results presented in this
Chapter are complementary to the results on inference on functionals of NPIV estimators.

The remainder of the Chapter is organized as follows. Section 2.2 briefly introduces the
NPIV framework, discusses practical issues, and describes various MLIV estimators. In
Section 2.3 we describe the objects of interest and provide several economic examples. We
also illustrate how to construct the debiased estimator and the estimator of its asymptotic
variance. Finally, we introduce the PGMM estimator of the RR. Section 2.4 gives conditions
necessary to derive a convergence rate for the PGMM estimator. Section 2.5 gives conditions
for root-n consistency and asymptotic normality of the debiased estimator for linear func-
tionals. In Section 2.6 we introduce additional conditions necessary to extend our results
to nonlinear functionals. Section 2.7 examines the performance of the debiased estimator
in a simple Monte Carlo exercise. Section 2.8 concludes. All additional details and proofs
are left for the Appendix.

Notation: For a vector x ∈ Rn, let |x|1, ||x||, and ||x||∞ denote its `1-, `2-, and `∞-norms
respectively. For an m × n matrix A, we define ||A||∞ = maxj,k |Ajk|. Let ||A||`∞ =

maxi
∑n

j=1 |Aij | denote the induced `∞-norm of A. For S ⊆ {1, . . . , n} let xS be the mod-
ification of x that places zeros in all entries of x whose index does not belong to S. For
a random variable X , let L2(X) denote a space of all measurable and square integrable
functions.

2.2. Flexible estimation under endogeneity

We start with a brief discussion of the NPIV framework and consequences of ill-posedness
of the NPIV problem for practitioners and then we categorize and describe various MLIV
algorithms.
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2.2.1. Nonparametric IV framework

Consider the nonparametric instrumental variables framework of Newey and Powell (2003),

Y = γ0(X) + ε, E[ε|Z] = 0,

where Y is an explanatory variable, X is a vector of potentially endogenous regressors, Z
is a vector of instruments, and ε is an error term. Suppose that γ0 is identified and the
completion condition holds, i.e. for all measurable real functions δ with finite expectation,

E[δ(X)|Z] = 0⇒ δ(X) = 0.

Intuitively, this condition implies that there is enough variation in the instruments to ex-
plain the variation in the endogenous covariates. For example, in the linear model the
completeness condition is equivalent to the usual rank condition.

The unknown function γ0 solves the following integral equation,

E[Y |Z] =
∫
γ0(x)f(x|z)dx, (2.1)

where f denotes the conditional pdf ofX givenZ. Solving for γ directly is an ill-posed prob-
lem as it involves inverting linear compact operators (see e.g., Kress, 1989). Ill-posedness
implies that the solution to (2.1) is not continuous in E[Y |Z] and f(x|z). This leads to cer-
tain estimation issues as one cannot construct an estimator of γ by plugging in consistent
estimators of E[Y |Z] and f(x|z) and approximately solving for γ.

A well-known solution to the ill-posed inverse problem is regularization, which means
constructing an estimator of γ0 in a way that ill-posedness does not affect consistency. In
essence, regularization allows us to avoid estimation of higher-order terms that drive up
the variance. There are several traditional ways to regularize a solution to (2.1). For exam-
ple, Kress (1989) proposes a very intuitive form of regularization where γ0 is replaced with
a finite dimensional approximation. Another popular method is to use Tikhonov regular-
ization (see e.g., Hall and Horowitz, 2005; Carrasco et al., 2007).

Ill-posedness negatively affects convergence rates of the NPIV estimators making them
slower than of the standard nonparametric regression counterparts. To illustrate the issue,
we appeal to an important quantity called the measure of ill-posedness which measures
how much the conditional expectation in (2.1) smoothes out γ. Let T : L2(X) 7→ L2(Z)
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denote the conditional expectation operator given by

Tγ = E[γ(X)|Z].

Let τ denote the measure of ill-posedness defined as

τ = sup
γ∈Γ

||γ − γ0||
||T (γ − γ0)||

,

whereΓ ⊆ L2(X) and ||T (γ−γ0)|| =
√

E{E[γ − γ0|Z]}2 is the projected mean square norm.
Typically, τ grows with n, but for simplicity assume that τ is bounded, then

||γ − γ0|| ≤ τ ||T (γ − γ0)||.

Thus, the convergence rate in the mean square norm is always slower than the convergence
rate in the projected norm. On the other hand, it is possible to obtain fast rates in the pro-
jected norm even when the mean square rate is slow as its definition sidesteps ill-posedness
(see e.g., Blundell et al., 2007; Chen and Pouzo, 2012; Dikkala et al., 2020).

2.2.2. Practical concerns

Standard NPIV methods provide flexible and intuitive approaches to nonparametric esti-
mation under endogeneity. However, the ill-posedness of the problem poses several chal-
lenges to applied researchers as it renders the NPIV estimation problem much more diffi-
cult compared to the standard nonparametric regression.

From the practitioner’s standpoint, the ill-posed inverse problem limits what can be learnt
about γ0 leading to noisy estimates. The level of ill-posedness is associated with the amount
of information the data contain about the structural function and how accurately it can be
estimated. Horowitz (2011) points out that only low-order approximation terms can be
estimated with desirable precision, which is not a fallacy of the estimation method, but
rather a characteristic of the estimation problem itself. In other words, there might not
be enough variation in instruments to explain the variation in higher-order approxima-
tion terms, meaning that we cannot uncover important nonlinearities from the data. Us-
ing a simple Gaussian example, Newey (2013) illustrates the connection between the ill-
posedness of the problem and the instrument strength. He demonstrates that the stronger
the instrument (the higher the reduced form R2), the lower the variance of estimates of
coefficients of higher-order terms relative to coefficients of lower-order terms. As a result,
not only regularization is essential to avoid highly variable estimates, especially when the
sample size is relatively small, but also is the strength of constructed instruments.
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Another implementation concern is the curse of dimensionality which affects all nonpara-
metric estimators. In the NPIV context, this problem becomes more acute due to the ill-
posedness and its effect on convergence rates. For example, in the severely ill-posed case,
it might not be possible to obtain a polynomial in n rate, only polynomial in log(n) (see
Blundell et al., 2007; Darolles et al., 2011; Chen and Pouzo, 2012). Consequently, even if the
estimation problem is not (moderately) high-dimensional, variance of NPIV estimators can
be much higher than that of standard nonparametric regression estimators.

2.2.3. Review of MLIV estimators

One promising solution to the aforementioned practical concerns is to appeal to the ML
literature which offers a plethora of contemporary data-driven algorithms with various
regularization schemes. However, standard ML estimators, such as Lasso, boosting, or
Neural Networks are unable to pick up causal effects from endogenous regressors (see e.g.,
Hartford et al., 2017b). This is not a surprise, since the goal of ML estimators is to fit the con-
ditional expectation E[Y |X], rather than to estimate the structural function γ or any causal
effects associated with its shape. We provide an example illustrating this phenomenon in
Appendix B.1.

However, despite standard ML algorithms fail in presence of endogeneity, there is a new
line of research in machine learning and computer science communities that offers a series
of new algorithms that both address endogeneity and can be applied in high-dimensional
environments. These MLIV algorithms are data-driven and exploit sophisticated regular-
ization schemes that allow to solve the ill-posed problem while maintaining functional form
flexibility.

MLIV estimators can be split into three categories: (i) primal, (ii) dual, and (iii) minimax
methods. Primal methods build upon the standard primal formulation of the NPIV esti-
mation problem. It means that in population γ0 solves

γ0 = argmin
γ∈Γ

E[(Y − E[γ(X)|Z])2]. (2.2)

This is the exact problem the series NPIV estimator solves as well. Hartford et al. (2017b)
were the first one to suggest using ML to estimate γ in the NPIV setting. Instead of modeling
the first stage, they use a Neural Network to model the conditional distribution of endoge-
nous regressors given instruments. Then they plug the estimated pdf in the sample analog
of (2.2) and fit another Neural Network to estimate γ. The Double Lasso estimator of Gold
et al. (2020) can be seen as a nonparametric series estimator with Lasso in both first and sec-
ond stages. The Kernel IV (KIV) regression of Singh et al. (2019) is a very powerful estima-
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tor that allows to easily deal with high-dimensional inputs without explicitly constructing
basis functions or features, which is achieved using the kernel trick. The estimation proce-
dure can be seen a nonlinear generalization of the standard 2SLS estimator, where in both
stages instead of the linear regression we run the regularized kernel regression. Bakhitov
and Singh (2021) propose a boosting based algorithm to estimate the structural function.
The algorithm is very intuitive and resembles an iterative version of the standard 2SLS es-
timator. Moreover, the approach is data driven, meaning that the researcher does not have
to make a stance on neither the form of the target function approximation nor the choice of
instruments.

The second group of algorithms focuses on the dual formulation of the estimation prob-
lem12. The Dual IV (Muandet et al., 2019) uses the dual form of the NPIV estimation prob-
lem in (2.2). There are several advantages to using the dual formulation as it collapses the
two-stage estimation problem to a one-stage problem. It means, first, that the target func-
tion is identified under weaker conditions, completeness is no longer needed, and second,
there is no need to model the conditional distribution of X given Z. Bennett et al. (2019)
consider the dual version of the GMM IV problem, which can be though of as a natural
extension of the Dual IV framework.

Finally, algorithms in the last group are based off of the minimax approach of Dikkala et al.
(2020). The main idea is to use violations of the unconditional moment condition as the
criterion function, i.e.

γ0 = argmin
γ∈Γ

max
f∈F

E[(Y − γ(X))f(Z)]. (2.3)

Note that the minimax problem in (2.3) does not involve the conditional expectation similar
to the dual formulation. Combined with various penalties the minimax criterion function
gives rise to a plethora of algorithms to estimate γ. Despite having a different criterion
function, the minimax estimator can be asymptotically interpreted as the minimum dis-
tance sieve estimator of Chen and Pouzo (2012). However, the formulation is more general
and does not restrict Γ and F to be linear sieve spaces.

In practice, however, the structural function itself is rarely an object of interest, rather it is
some economically meaningful object like average partial effects. Consider, for example,
a demand estimation problem. The demand level itself does not bear a lot of economic
meaning while objects like partial effects of demand shifters, consumer surplus, price and
income elasticities or diversion ratios are potential objects of interest. These quantities are
functionals of the structural function.

12We do not present the dual formulation here as it involves additional derivations. We refer the reader to
Muandet et al. (2019) for more details.
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2.3. Learning functionals of MLIV estimators

2.3.1. Functionals of interest and economic examples

This paper focuses on estimation and inference on functionals of a flexible (i.e. nonparamet-
ric) structural function γ0 in presence of endogenous regressors, i.e. within the framework
of the nonparametric instrumental variables model. LetWi ≡ (Yi, Xi, Zi) be a data observa-
tion. Letm(W, γ) denote a functional of γ that depends on an observationW . We consider
parameters of interest of the form

θ0 = E[m(W,γ0)].

For expositional convenience, in this Section we will focus on functionals that depend lin-
early on γ. In Section 2.6 we extend our results to nonlinear functionals. The object of
interest θ0 is an expectation of some functionalm(W,γ0) over the data distribution. Hence,
we are interested in mean effects, which restricts a set of possible functionals of interest,
such as, for example, a simple evaluation functional θ0 = γ0(X̄), where X̄ ∈ supp(X).
However, our framework is still general enough and covers a wide range of economically
important objects.

Below, we give several examples of the types of objects under consideration, including both
linear and nonlinear functionals.

Example 1. Weighted average derivative.
In this example, X is a vector of continuous endogenous regressors and

θ0 = E
[
ω(X)

∂γ0(X)

∂X1

]
,

which is a weighted average derivative of γ0 with respect to X1 with known weight ω(X)

as in Ai and Chen (2007). Here m(W,γ) = ω(X)∂γ(X)/∂X1, which is linear in γ. When
ω(X) = 1, θ0 becomes an average partial effect of X1 on γ0(X).

Example 2. Average policy effect.
The object of interest here is the average effect of changing the covariates according to some
transformation x 7→ g(x),

θ0 = E[γ0(g(X))− γ0(X)],

where m(W,γ) = γ0(g(X)) − γ0(X) is a linear functional. Thus, θ0 measures the average
policy effect of a counterfactual change of covariate values.
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Example 3. Average consumer surplus (CS) and deadweight loss (DWL).
This example is based on Hausman and Newey (1995) and its adaptation to the NPIV setting
by Chen and Christensen (2018). Here, X = (P, I,X2), where P is product price, which
is potentially endogenous, I is consumer income, and X2 includes additional covariates.
Let S(p0, ι, x2) denote the exact CS from a price change from p0 to p1 at income level ι and
covariate values x2. Then S(p0, ι, x2) is a solution to

∂S(p(u), ι, x2)

∂u
= −γ0(p(u), ι− S(p(u), ι, x2), x2)

∂p(u)

∂u
, S(p(1), ι, x2) = 0,

where p : [0, 1] 7→ R is a twice continuously differentiable price path with p(0) = p0 and
p(1) = p1. Let D(p0, ι, x2) denote the corresponding DWL functional given by

D(p0, ι, x2) = S(p0, ι, x2)−
(
p1 − p0

)
γ0(p

1, ι, x2).

The objects of interest are

θCS
0 = E[ω(I,X2)S(p(u), I,X2)],

θDWL
0 = E[ω(I,X2)D(p(u), I,X2)] = θCS

0 − E[ω(I,X2)(p
1 − p0)γ(p1, I,X2)],

where ω is a weighting function that does not depend on the price level. Unless demand is
independent of income, the exact CS and DWL are typically nonlinear functionals of γ0.

2.3.2. Orthogonal moment condition

Suppose that we are given γ̂, an MLIV estimator of γ0. A natural approach to estimate θ0 is
to simply plug-in γ̂ into m and replace the expectation with the sample average,

θ̂plug-in =
1

n

n∑
i=1

m(W, γ̂).

However, the plug-in estimator will not be root-n consistent if the first-order bias does not
vanish at root-n rate, which is the case when γ̂ involves regularization and/or model selec-
tion (Chernozhukov, Escanciano, Ichimura, Newey and Robins, 2020). In the NPIV model,
regularization is essential to dealing with ill-posedness rendering all NPIV/MLIV estima-
tors regularized estimators.

Figure 2 illustrates the issue. The yellow histogram represents the simulated distribution of
the standardized plug-in estimator, (θ̂plug-in− θ0)/std(θ̂plug-in). The estimator is badly bias,
shifted to much to the right relative to zero. Moreover, the shape of the distribution is quite
different from the standard normal distribution (depicted by the red curve), which would
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approximate the asymptotic distribution if bias was negligible. In contrast, the simulated
distribution of the standardized debiased estimator that we propose illustrates that the
estimator is approximately unbiased (centered around zero) and well approximated by the
standard normal distribution, which insures the validity of the inference procedure.

Figure 2: Distributions of plug-in and debiased estimates.

The reason for the plug-in estimator to be affected by the first-order bias is the fact that
the moment condition defining θ0 is not orthogonal to local perturbations of γ around γ0.
Namely, let δ be a local perturbation around γ0, then the Gateaux derivative in the direction
δ is

∂

∂τ
E[m(W,γ0 + τδ)]

∣∣∣∣
τ=0

= E[m(W, δ)] 6= 0.

Thus, obtaining an orthogonal moment condition is a crucial step for establishing our re-
sults.

We consider functionals m(W,γ) where there exists a function α0(Z) with E[α2
0(Z)] < ∞

and
E[m(W,γ)] = E[α0(Z)γ(X)] for all γ with E[γ2(X)] <∞. (2.4)

As discussed in Ichimura and Newey (2017), if there exists v(X) with E[v2(X)] < ∞ and
E[m(w, γ)] = E[v(X)γ(X)], then the existence of α0(Z) requires v(X) = E[α0(Z)|X]. As
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pointed out in Severini and Tripathi (2012), this is a necessary condition for root-n estima-
bility of θ0. Moreover, by the Riesz representation theorem, the existence of such α0(Z) is
equivalent to E[m(W,γ)] being a mean square continuous functional of γ. Henceforth, we
refer to α0(Z) as a Riesz representer. Newey (1994) shows that mean square continuity of
E[m(W,γ)] is equivalent to the semiparametric efficiency bound of θ0 being finite. Thus,
our approach focuses on regular functionals. Similar uses of the Riesz representation the-
orem can be found in Ai and Chen (2007), Ackerberg et al. (2014), Hirshberg and Wager
(2020), and CNS among others.

Ichimura and Newey (2017) establish the form of the orthogonal moment function for NPIV
estimators

ψ(W, θ, γ, α) = m(W,γ)− θ + α(Z)[Y − γ(X)], (2.5)

where α(Z)[Y − γ(X)] is the influence function. Note that the moment function in (2.5) is
Neyman orthogonal to local perturbations (δ, β) of (γ0, α0) such that

∂

∂τ
E[ψ(W, θ, γ0 + τδ, α0 + τβ)]

∣∣∣∣
τ=0

= E[m(W, δ)]−E[α0(Z)δ(X)]+E[(Y −γ0(X))β(Z)] = 0,

where the first two terms cancel out by the Riesz representation theorem and the last term
is zero by the exogeneity condition. This property makes the orthogonal moment condi-
tion an excellent basis for constructing a debiased estimator of θ0 in the NPIV setting where
estimators are typically regularized. Similar uses of the Neyman-orthogonal moment con-
dition can be found in Chen et al. (2021) for NPIV sieve estimators and in Gautier and Rose
(2021) for the high-dimensional linear IV regression.

Moreover, the exogeneity condition and iterated expectations imply

E[α(Z)(Y − γ0(X))] = E[α(Z)E[Y − γ0(X)|Z]] = 0

for any α(Z), meaning that the expectation of the influence function is zero regardless of
α. This implies

E[ψ(W, θ0, γ0, α)] = E[m(W,γ0)]− θ0 + E [α(Z)[Y − γ0(X)]] = 0,

which allows us to use (2.5) to estimate θ0. The debiased estimator θ̂ can be constructed by
plugging in γ̂ and α̂ into the moment function ψ(W, θ, γ, α) in place of γ and α and solving
for θ̂ from setting the sample moment ψ(W, θ, γ̂, α̂) to zero.

Note that the debiased estimator θ̂ requires an estimator of α0. Typically in the NPIV set-
ting, the form of α0 is very complicated to derive or even unknown. Consider the weighted
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average derivative example from above. The RR is a solution to the following integral equa-
tion

E[α0(Z)|X] = −∂{f0(X)ω(X)}/∂X1

f0(X)
,

where f0(X) is the marginal pdf ofX . As a result, it is desirable to have a flexible approach
for automatic estimation of the RR. The next subsection describes how to construct such an
estimator.

2.3.3. Estimation of the Riesz representer

Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020) show that we can exploit
the orthogonality of the debiased moment functionψ(W, θ, γ, α) to estimateα0. The Gateaux
derivative of ψ(W, θ, γ, α) in the direction δ is

E[ψγ(W, θ0, δ, α0)] =
∂

∂τ
E[ψ(Wi, θ0, γ0 + τδ, α0)]

∣∣∣∣
τ=0

=
∂

∂τ
E [m(W,γ0 + τδ)− θ0 + α0(Z)[Y − γ0(X)− τδ(X)]]

∣∣∣∣
τ=0

= E[m(W, δ)− α0(Z)δ(X)] = 0, (2.6)

where the last equality comes from m(W,γ) being linear in γ. This can be thought of as a
population moment condition for α0.

Several recent papers propose different Riesz representer estimators based on the moment
condition in (2.6) under exogeneity. CNS use minimum distance Lasso and Dantzig estima-
tors. A recent follow-up paper by Chernozhukov et al. (2021) extend the CNS’ approach and
use a neural network to estimate α0. Chernozhukov, Newey, Singh and Syrgkanis (2020)
take a different approach and allow for a more general learner of α0 based on the minimax
framework of Dikkala et al. (2020). It is important to highlight once more that the afore-
mentioned approaches allow for estimation of the Riesz representer only under exogeneity,
when α0 is a function of X rather than Z.

We assume that the Riesz representer estimator takes the form α̂ = b(Z)′ρ̂, where b(Z) is
a p-dimensional dictionary of basis functions with p being possibly much larger than n.
Let d(X) be a q-dimensional dictionary of basis functions that represent deviations from
γ0. Using d(X), we can construct a vector of moment conditions to estimate ρ. Let dj(X)

be an element of d(X), then we can form a sample moment condition corresponding to the
population moment condition (2.6) by replacing the expectation with a sample average and
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α0(Z) with b(Z)′ρ to obtain

ψ̂γ(dj , ρ) =
1

n

n∑
i=1

{
m(Wi, dj)− dj(Xi)b(Zi)

′ρ
}
= 0, j = 1, . . . , q. (2.7)

Note that we require q ≥ p to ensure identification and estimability of ρ.

To allow for a high-dimensional α specification, we follow Caner and Kock (2018) and use
the penalized GMM (PGMM) framework. Let ψ̂γ(ρ) = (ψ̂γ(d1, ρ), . . . , ψ̂γ(dq, ρ))

′ where
ψ̂γ(dj , ρ) is defined in (2.7). Then a solution to the PGMM problem takes the form

ρ̂L = argmin
ρ∈Rp

ψ̂γ(ρ)
′Ω̂qψ̂γ(ρ) + 2λn|ρ|1, (2.8)

where Ω̂q = Ω̂/q, Ω̂ is a q × q positive semi-definite matrix, and 2λn|ρ|1 is a penalty term.
This framework allows for q ≥ p > n, and basically is a Lasso extension of the standard
GMM.

Let Ĝ = 1
n

∑n
i=1 d(Xi)b

′(Zi) and M̂ = 1
n

∑n
i=1m(Wi, d) be unbiased estimators of G =

E[d(X)b′(Z)] and M = E[m(W,d)], respectively. Then we can rewrite (2.8) in matrix form
as

ρ̂L = argmin
ρ∈Rp

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λn|ρ|1. (2.9)

The estimator ρ̂L can be interpreted as a minimum distance version of the high-dimensional
GMM estimator of Caner and Kock (2018). Note that we cannot use the standard optimal
weight matrix as for the low-dimensional GMM due to its rank deficiency. Implementation
details can be found in Appendix B.3.

2.3.4. Informal preview of estimation and inference results

The estimation procedure can be summarized in the following pseudo-algorithm:

1. We follow CNS and use cross-fitting to avoid (i) potentially severe finite sample bias
due to the double use of data and (ii) regularity conditions based on γ̂ and α̂ being
in Donsker class, which ML estimators are usually not. Assuming the data {W}ni=1 is
i.i.d., let I`, ` = 1, . . . , L, be a partition of the observation index set {1, . . . , n} into L
distinct subsets of about equal size. Let n` denote the number of observations in fold
`.

2. For each data fold ` = 1, . . . , L, we obtain estimates γ̂` and α̂` that are constructed
from the observations not in I`. In particular, the RR estimate is of the form α̂` =
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b(Z)′ρ̂`, where

ρ̂` = argmin
ρ∈Rp

(M̂` − Ĝ`ρ)
′Ω̂q(M̂` − Ĝ`ρ) + 2λn|ρ|1,

with Ĝ` =
1

n−n`

∑
i 6∈I` d(Xi)b

′(Zi) and M̂` =
1

n−n`

∑
i 6∈I` m(Wi, d).

3. We construct the estimator θ̂ by setting the sample average of ψ(W, θ, ĥ`, α̂`) to zero
and solving for θ. This estimator θ̂ and the associated asymptotic variance estimator
V̂ have the following explicit forms

θ̂ =
1

n

L∑
`

∑
i∈I`

{m(Wi, γ̂`) + α̂`(Zi)[Yi − γ̂`(Xi)]} (2.10)

V̂ =
1

n

L∑
`=1

∑
i∈I`

ψ̂2
i`, ψ̂i` = m(Wi, γ̂`)− θ̂ + α̂`(Zi)[Yi − γ̂`(Xi)].

Next, we informally discuss the key conditions behind the asymptotic normality result.
Since θ̂ is constructed by plugging-in γ̂ and α̂ in the orthogonal moment condition, asymp-
totic properties of θ̂ depend on the asymptotic behavior of γ̂ and α̂. First, to allow for a
wide range of MLIV estimators, we assume that γ̂ satisfies some projected mean square
convergence rate condition as an estimator of γ0. Specifically, we require

||T (γ̂ − γ0)|| = Op(κ
γ
n),

where κγn can be slower than root-n rate13. As pointed out in Section 2.2.1, it is possible
to obtain a fast rate under the projected mean square norm. Hence, it is a weak high-level
assumption that can be satisfied by a variety of MLIV estimators such as Double Lasso
(Gold et al., 2020), Kernel IV (Singh et al., 2019) and a series of estimators constructed using
the minimax framework of Dikkala et al. (2020).

The second condition is the mean square convergence rate of α̂. For the ease of exposition,
assume that α̂ satisfies the following mean square convergence rate condition,

||α̂− α0|| = Op(κ
α
n).

We derive an exact expression for καn in Section 2.4.

Finally, under quite standard regularity conditions asymptotic normality can be established
13The result also holds for the standard mean square rate condition, i.e. ||γ̂ − γ0|| = Op(κ

γ
n), however, for

NPIV/MLIV estimators this rate is slower due to ill-posedness.
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provided that
√
n||α̂− α0|| ||T (γ̂ − γ0)||

p−→ 0,

which is satisfied when
√
nκγnκαn → 0. Hence, there is a trade-off between the convergence

rates of γ̂ and α̂. It is possible to allow for a slower convergence rate of γ̂ at the expense of
a faster convergence rate of α̂ and vice versa.

2.4. Properties of the PGMM estimator

In this section we provide the mean square convergence rate for the PGMM estimator α̂
which is necessary for the asymptotic analysis of θ̂. We start by introducing some condi-
tions.
Assumption 5. There exists a sequence of non-random matrices Ω such that

||Ω̂− Ω||`∞ = op(1) and ||Ω||`∞ ≤ C <∞

for some constant C.

The first part of Assumption 5 is pretty standard and requires a consistent estimate of the
weight matrix. The second part of the assumption, as discussed in Caner and Kock (2018),
might be restrictive as it requires a high-dimensional matrix to be uniformly bounded in
`∞- norm, but for the notational convenience we keep it. The analysis in the paper will still
go through if we switch to a diagonal weight matrix as Caner and Kock (2018) suggest.

Note that the convergence rate of the PGMM estimator defined in (2.9) depends on the
convergence rates of Ω̂, Ĝ, and M̂ . Assumption 5 ensures that Ω̂ is consistent. To obtain a
convergence rate for Ĝ, we impose the following condition.

Assumption 6. There are constants Cb and Cd such that with probability approaching one,

max
1≤j≤p

|bj(Z)| ≤ Cb and max
1≤j≤q

|dj(X)| ≤ Cd.

This condition implies

||Ĝ−G||∞ = Op(ε
G
n ), where εGn =

√
log(q)
n

.

Unlike the standard Lasso, the second moment matrix convergence rate depends on the
number of moments, i.e. the number of elements in d(X), rather than the number of ele-
ments in b(Z).
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Let us hypothesize a convergence rate for M̂ .

Assumption 7. There is εMn such that

||M̂ −M ||∞ = Op(ε
M
n ), εMn → 0.

Next, we proceed by following CNS and impose a sparse approximation condition for α0.

Assumption 8. There exist C > 1 and ρ̄ with s̄ non-zero elements such that

||α0 − b′ρ̄||2 ≤ Cs̄ε2n,

where εn = max{εGn , εMn }.

Intuitively, this assumption controls the squared approximation error from using the linear
combination b′ρ̄ to approximate α0. Note that Assumption 8 does not necessarily require
α0 to be equal to the linear combination of s̄ terms, it states that there exists a sparse ρ̄
with s̄ non-zero elements such that the approximation error is bounded by Cs̄ε2n. In other
words, Assumption 8 is general enough to accommodate both exact and approximate spar-
sity of α0. Approximate sparsity allows for a large number of potential regressors (possibly
much larger than the sample size) when relatively few important regressors give a good ap-
proximation but the identity of those few is not known, which is different from a standard
series approximation where typically the first s̄ regressors are assumed to achieve a good
approximation (Bradic et al., 2021). Thus, very sparse approximations allow to keep s̄ rel-
atively small which results in faster convergence rates. For a more detailed discussion of
approximation bias conditions we refer the reader to CNS.

Let S = {1, . . . , p}, Sρ be a subset of S with ρj 6= 0, and Sc
ρ be the complement of Sρ in S.

Let ρL be the population coefficients, i.e.

ρL = argmin
ρ∈Rp

(M −Gρ)′Ωq(M −Gρ) + 2εn|ρ|1.

The PGMM estimator ρ̂L estimates the population coefficients ρL, which in turn might be
different from the approximation coefficients ρ̄. The following condition is essential to de-
rive the oracle inequality for ρ̂L, and hence, the convergence rate for α̂L = b′ρ̂L.

Assumption 9. Let G′ΩqG have its largest eigenvalue uniformly bounded in n and

φ2(s) = inf
{
δ′G′ΩqGδ

||δSρ ||2
: δ ∈ Rp\{0}, |δSc

ρ
|1 ≤ 3|δSρ |1, |Sρ| ≤ s

}
> 0.
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Assumption 9 is the modified population restricted eigenvalue condition as in Caner and
Kock (2018). To accommodate for the PGMM estimator the condition is imposed onG′ΩqG

rather than E[b(Z)b′(Z)] as in the classic restricted eigenvalue condition of Bickel et al.
(2009). Showing that its empirical counterpart is bounded uniformly away from zero will
be used to put a bound on the estimation error of α̂L.

Assumption 10. There is C > 0 such that with probability approaching one,

max
1≤j≤q

|m(W,dj)| ≤ C.

This condition is needed to put a bound on ||M ||∞ which is necessary to establish the oracle
inequality for ρ̂L, and hence, the convergence rate for α̂L. Moreover, note that by Assump-
tion 10, εn = εMn = εGn =

√
log(q)/n. This simplifies the analysis, but is not necessary for

establishing the results below. Also, let |ρ̄|1 ≤ Ā < ∞. We can allow for the norm to grow
with n at a certain rate, however, it does not change the main results, hence, for simplicity
we put a bound on |ρ̄1|.

Theorem 4. If Assumptions 6–10 are satisfied and εn = o(λn), then

||α̂L − α0||2 = Op(κ
α
n) where καn = s̄2λ2n.

The presence of endogeneity results in a slower rate of convergence for the RR estimator
compared to the exogenous counterpart in CNS. The MD Lasso estimator of CNS converges
at s̄λ2n rate, while the PGMM estimator is slower by a factor of s̄. Note that the convergence
rate only depends on the number of approximation elements s̄, but is independent of the
number of relevant moments.

Example 4. Consider the approximately sparse case where there are constants C and ξ > 0

such that
||α0 − b′ρ̄||2 ≤ C(s̄)−ξ.

Let s̄ ≤ Cε−2/(1+2ξ)
n . Then Assumption 8 is satisfied with

||α0 − b′ρ̄||2 = O
(
ε2ξ/(1+2ξ)
n

)
and

||α̂L − α0||2 = Op

(
ε−4/(1+2ξ)
n λ2n

)
.

Suppose that εn =
√

log(q)/n and let an be a sequence converging to infinity very slowly
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with n, e.g. an = log(log(n)). Then for λn = anεn,

ε−4/(1+2ξ)
n λ2n =

(
log(q)
n

)− 2
1+2ξ

+1

a2n =

(
log(q)
n

) 2ξ−1
1+2ξ

a2n.

This rate is slower than the CNS rate(
log(p)
n

) 2ξ
1+2ξ

a2n.

However, this difference becomes negligible for large enough ξ.

2.5. Asymptotic properties of linear functionals

In this Section, we provide conditions ensuring root-n consistency and asymptotic normal-
ity of the debiased estimator θ̂. Under the specified conditions, we can do inference in a
standard way. First, we focus on linear functionals and then provide additional conditions
to extend the results to nonlinear functionals in Section 2.6.

We impose the following conditions.

Assumption 11. α0(z) and E
[
[y − γ0(x)]2|z

]
are bounded and E

[
m(w, γ0)

2
]
<∞.

This assumption is purely technical, and we maintain it for simplicity.

Assumption 12.
∫
[m(w, γ̂)−m(w, γ0)]

2F0(dw)
p−→ 0 and ||γ̂ − γ0||

p−→ 0.

Assumption 13. ||T (γ̂ − γ0)|| = Op(κ
γ
n) with κγn → 0.

Assumption 12 allows for estimators γ̂ that are mean square consistent. Assumption 13
requires γ̂ to converge to γ0 in the projected norm at a rate equal to κγn which is typically
slower than root-n. Note that this condition is weaker than convergence in standard mean
square norm (see Section 2.2.1). This specification is general enough and allows for various
MLIV estimators.

Assumption 14. εn = o(λn) and
√
nκαnκ

γ
n → 0.

This condition is sufficient to guarantee
√
n||α̂L − α0|| ||T (γ̂ − γ0)||

p−→ 0, leading to asymp-
totic normality of θ̂. Recall Example 4, in which case Assumption 14 requires

√
ns̄λnκ

γ
n = O

n1/2(√ log(q)
n

) 2ξ−1
1+2ξ

anκ
γ
n

→ 0. (2.11)
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Suppose κγn = n−dγ with dγ > 0. Then condition (2.11) implies

2ξ − 1

2(1 + 2ξ)
+ dγ >

1

2
.

Thus, as in CNS, there is a trade-off between between ξ, which determines how sparse the
approximation is, and dγ , the convergence rate of γ̂ in the projected norm. Note that it
forces γ̂ to converge faster compared to CNS whose rate condition is 2ξ/(1+2ξ)+dγ > 1/2,
which is a consequence of the lower rate of convergence of α̂L. However, for large enough
ξ, dγ can still be arbitrary small.

Theorem 5. If Assumptions 6–14 are satisfied, then for ψ0(w) = m(w, γ0)− θ0 + α0(z)[y −
γ(x)],

√
n(θ̂ − θ) d−→ N (0, V ) and V̂ p−→ V = E

[
ψ2
0(w)

]
.

2.6. Nonlinear functionals

The results from Section 2.5 can be extended to allow for estimation of θ0 = E[m(W,γ0)]

for nonlinearm(W,γ). The estimator is similar to the linear case except we estimate the RR
of the linearization of m(W,γ) leading to a different M̂ needed. In this Section, we show
how to construct such an estimator and provide additional conditions that are sufficient for
valid asymptotic inference for nonlinear functionals. As we mentioned in the introduction,
due to nonlinearity of m(W,γ), we have to impose restrictions on the convergence rate of
γ̂ in terms of the standard mean square norm, not the projected norm as in the linear case.
We provide more details below.

To account for nonlinearity of m(W,γ) in γ, we assume linearity of the Gateaux derivative
of a nonlinear functional (see Chernozhukov, Newey and Singh, 2018). To be more precise,
let ζ be a deviation from γ. We assume that m(W,γ) is Gateaux differentiable with the
derivative D(W,γ, ζ), meaning that

D(W,γ, ζ) =
d

dτ
m(W,γ + τζ)

∣∣∣∣
τ=0

for a scalar τ , and that D(W,γ, ζ) is linear in ζ. Moreover, assume that α0(Z) satisfies

E[D(W,γ0, ζ)] = E[α0(Z)ζ(X)], for all ζ(X) with E[ζ2(X)] <∞. (2.12)

In other words, Equation (2.12) implies that D(W,γ, ζ) is a mean-square continuous func-
tional of ζ, which corresponds to Assumption 3 of Ichimura and Newey (2017), mean-
ing that α0(Z) is a Riesz representer of the Gateaux derivative of m(W,γ) with respect
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to γ evaluated at γ = γ0. Thus, by the Riesz representation theorem, for D(W,γ0, d) =

(D(W,γ0, d1), . . . , D(W,γ0, dq))
′,

M = E[D(W,γ0, d)] = E[α0(Z)d(X)].

We can construct an estimator θ̂ exactly like in Equation (2.10) except we need a different
estimator of α0(Z) based on (2.12). Despite γ entersm(W,γ) nonlinearly, the estimator will
still have zero first-order bias and be root-n consistent and asymptotically normal under
suficient regularity conditions. See Newey (1994), Ichimura and Newey (2017), and Cher-
nozhukov, Escanciano, Ichimura, Newey and Robins (2020) for more details.

An estimator α̂` can be constructed exactly as described in Section 2.3.3 except being based
on a different M̂`, where it is convenient to bring back the ` subscript. Let γ̂`,`′ be based on
observations not in either I` or I`′ , then the unbiased estimator M̂` is given by

M̂` = (M̂`1, . . . , M̂`q.)
′

M̂`j =
1

n− n`

∑
`′ 6=`

∑
i∈I`

D(Wi, γ̂`,`′ , dj),

where M̂`j is the Gateaux derivative of the moment function with respect to γ in the di-
rection of the jth dictionary function. This estimator uses further sample splitting where
M̂ is constructed by averaging over observations that are not used in γ̂`,`′ . This additional
sample splitting allows M̂` to depend on an estimator of γ as required when m(W,γ) is
nonlinear in γ.

To establish the convergence rate for M̂`, we impose the following condition.

Assumption 15. There exist C, ε > 0 such that for any γ with ||γ − γ0|| ≤ ε:

(i) max1≤j≤q |D(W,γ, dj)| ≤ C;

(ii) sup1≤j≤q |E[D(W,γ, dj)−D(W,γ0, dj)]| ≤ C||γ − γ0||.

Lemma 4. Suppose that ||γ̂`, `′ − γ0|| = Op(κ
γ
n) for `, `′ = 1, . . . , L, and Assumption 15 is

satisfied, then
||M̂` −M`||∞ = Op(κ

γ
n).

As CNS point out, the presence of the initial estimator γ̂`,`′ in M̂` makes the convergence rate
of ||M̂` −M`||∞ slower, κγn instead of

√
log(q)/n. Thus, εn = εMn = κγn, which requires λn

to converge to zero slightly slower than κγn. This also affects the convergence rate condition

43



in Assumption 14. Let us illustrate this effect using the set-up from Example 4. Under
κγn = n−dγ and εn = n−dγ , Assumption 14 requires

n1/2s̄λnn
−dγ = O

(
n1/2n

−dγ
4ξ

1+2ξ

)
→ 0,

implying

dγ
4ξ

1 + 2ξ
>

1

2
.

This condition will be satisfied for any dγ > 1/4, given ξ is large enough. The result is
similar to CNS whose rate condition is dγ(4ξ + 1)/(1 + 2ξ) > 1/2. When κγn = log(n)−dγ , it
is required that

n1/2 log(n)−dγ
4ξ

1+2ξ → 0.

For large enough ξ, it implies that dγ must satisfy log(n)−dγ = o(n−1/4).

Assumption 16. There exist C, ε > 0 such that for any γ with ||γ − γ0|| ≤ ε,

|E[m(W,γ)−m(W,γ0)−D(W,γ0, γ − γ0)]| ≤ C||γ − γ0||2.

This condition controls the size of the linearization remainder in a linearization using the
Gateaux derivative. It implies that E[m(W,γ)] is Frechet differentiable in ||γ−γ0|| at γ0 with
derivative E[D(W,γ0 γ − γ0)].

Assumption 17. ||γ̂ − γ0|| = Op(κ
γ
n) and n1/4||γ̂ − γ0||

p−→ 0.

It is a standard assumption to accommodate for nonlinearity of m(W,γ). This might be
a very tight restriction to satisfy given overall slow convergence rates of NPIV estimators,
especially in the severely ill-posed case. However, as discussed in CNS, it is not known
whether it is possible to weaken the n−1/4 condition for nonlinear functionals, which goes
back to Newey (1994).

Theorem 6. If Assumptions 6–12, 14, and 15–17 are satisfied, then for ψ0(w) = m(w, γ0)−
θ0 + α0(z)[y − γ(x)],

√
n(θ̂ − θ) d−→ N (0, V ), V̂

p−→ V = E
[
ψ2
0(w)

]
.

2.7. Monte Carlo

In this Section, we present a simple Monte Carlo exercise illustrating the final sample per-
formance of the approach. We compare the performance of the debiased estimator to the
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plug-in estimator.

Our design bases off of the MC design of Newey and Powell (2003), Santos (2012) and Chen
and Pouzo (2015), which we modify to allow for multiple regressors and instruments. To
be specific, we generate i.i.d. drawsXij

Zij

uij

 ∼ N

00
0

 ,
 1 0.8 0.5

0.8 1 0

0.5 0 1


 , j = 1, . . . , k

The true structural function is given by

γ(Xi) = exp{−0.5X ′
iXi},

which is the pdf of a product of k standard normal random variables. The response variable
is generated as

Yi = γ(Xi) + vi, vi =

k∑
j=1

uij ,

where vi is a composite error term. Note that this form of the composite error term implies
that the degree of endogeneity, i.e. the correlation between each individual regressor Xj

and v diminishes with k. As a result, we do not consider k greater than 10. The functional
of interest is a weighted average of the form

θ = E[w(X)γ(X)], w(X) = X ′X.

We construct dictionaries b(Z) and d(X) using cubic polynomials with interaction terms.
Since dim(Xi) = dim(Zi) = k, both dictionaries have the same number of basis functions,
i.e. p = q. To estimate the structural function γ, we use the Double Lasso estimator of Gold
et al. (2020). We run 1000 replications for k = 2, 5, 10 and n = 100, 500, 1000, and 5000.
Estimation is carried out using five-fold (L = 5) cross-fitting.

The results are presented in Table 4. The plug-in estimator is labeled PI, while DB stands
for the debiased estimator. Bias is the absolute value of bias, SD is the standard deviation,
RMSE is the root mean square error, and Cvg denotes the coverage probability of a 95%
nominal confidence interval.

In all cases the debiased estimator has a significantly smaller bias than the plug-in esti-
mator. Moreover, the coverage probabilities for the debiased estimator are pretty close to
the nominal level except for k = 2, n = 5000 case. On the other hand, larger bias of the
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Table 4: MC results: weighted average derivative.

PI Bias DB Bias PI SD DB SD PI RMSE DB RMSE PI Cvg DB Cvg
k = 2 n = 100 0.106 0.022 0.313 0.253 0.330 0.254 0.51 0.94

n = 500 0.092 0.028 0.080 0.073 0.122 0.078 0.26 0.94
n = 1000 0.068 0.028 0.058 0.050 0.090 0.058 0.21 0.92
n = 5000 0.044 0.028 0.023 0.023 0.050 0.036 0.07 0.77

k = 5 n = 100 0.107 0.028 0.259 0.249 0.280 0.251 0.69 0.96
n = 500 0.107 0.042 0.096 0.100 0.144 0.109 0.17 0.95
n = 1000 0.103 0.035 0.068 0.072 0.123 0.080 0.07 0.94
n = 5000 0.070 0.020 0.037 0.034 0.079 0.040 0.04 0.90

k = 10 n = 100 0.043 0.044 0.374 0.352 0.377 0.355 0.77 0.96
n = 500 0.030 0.009 0.144 0.141 0.147 0.141 0.56 0.96
n = 1000 0.027 0.013 0.096 0.096 0.100 0.097 0.33 0.96
n = 5000 0.029 0.013 0.044 0.046 0.053 0.048 0.06 0.94

plug-in estimator results in poor coverage that is far from the nominal level for all cases.
Furthermore, for all cases the debiased estimator has a smaller RMSE, which is due to bias
reduction. Overall, our results are similar to Chernozhukov, Escanciano, Ichimura, Newey
and Robins (2020), which indicates that our procedure is valid and performs well in prac-
tice.

2.8. Conclusion

In this paper, we have given an automatic method of debiasing functionals of machine
learners under endogeneity. We have shown how to use a PGMM minimum distance esti-
mator to perform debiasing using only the form the object of interest, without knowing the
form of the bias correction term. We allow for a wide range of MLIV estimators that satisfy
certain convergence rate conditions. We have shown root-n consistency and asymptotic
normality and given a consistent asymptotic variance estimator for both linear and nonlin-
ear functionals. For linear functionals we require MLIV estimators to converge fast enough
in the projected mean square norm, while for nonlinear functionals we require fast enough
convergence in the standard mean square norm, which is a more stringent requirement
due to ill-posedness. Relaxing the convergence rate condition for nonlinear functionals as
well extending the approach to irregular functionals are promising directions for future
research.
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CHAPTER 3: Flexible Demand Estimation using
Machine Learning

3.1. Introduction

Demand estimation for differentiated products plays a central role in modern empirical
industrial organization. The groundbreaking work of Berry (1994) and Berry et al. (1995)
(henceforth, BLP) provides an important framework for analyzing aggregate demand by
jointly modeling consumer preference heterogeneity and addressing price endogeneity.
The framework has been used extensively to estimate demand in various markets/indus-
tries, which in turn provides bases for analyzing market outcomes and policy issues.

Recent breakthroughs in digital technology make a vast amount of data available for raw
characteristics of the products, which makes, in practice, estimation of these models face
several challenges. First, the standard estimation procedure, nested fixed point GMM, is
computationally intensive and can be numerically unstable (see discussions in Knittel and
Metaxoglou, 2012; Conlon and Gortmaker, 2020). Furthermore, largely because of this diffi-
culty, researchers are restricted to imposed strong parametric assumptions on the distribu-
tion of random coefficients, e.g., normal distribution (almost exclusively used in practice),
to reduce the number of parameters and thus to simplify the estimation problem. However,
such restrictions are often not well motivated by economic theory and thus increase the risk
of misspecification. Finally, given the inherent non-linearity of the model, it is difficult to
pinpoint the fundamental variation in the data that drives estimates of substitution pat-
terns in applications, which gives rise to the weak instruments problem (see e.g., Reynaert
and Verboven, 2014; Gandhi and Houde, 2019).

Alternatively, flexible demand estimation models based on the identification argument of
Berry and Haile (2014) have been recently proposed. Compiani (2018) follows the frame-
work of Berry and Haile (2014) and demonstrates the performance of the NPIV estimator
in a very simple case of two products with two characteristics. He uses Bernstein polyno-
mials along with shape restrictions to alleviate the curse of dimensionality and nonpara-
metrically estimate the inverse demand function. Methodology developed by Gandhi et al.
(2020), hereafter GNT, is complementary, and allows the practitioner to apply it to more
realistic settings. They resort to the dimensionality reduction idea of Gandhi and Houde
(2019) which mitigates the curse of dimensionality and allows them to stay within the stan-
dard NPIV framework. Lu et al. (2019) consider a similar framework to GNT, but they focus
on applications with large amounts of products instead of large amount of markets. How-
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ever, both approaches still break down when the characteristics space becomes moderate-
and/or high-dimensional. In attempt to address high-dimensionality in the nonparametric
environment, Bakhitov et al. (2020) assume that consumer choices depend on a small set of
product “features”, which can be represented by some possibly nonlinear transformations
of product characteristics, implying a sparsity condition on the true data generating pro-
cess. Fosgerau et al. (2020) and Monardo (2021) consider a different class of inverse product
differentiation models which generalize the inverse demand function of the nested logit
model.

The remainder of the Chapter is organized as follows. In Section 3.2 we introduce the non-
parametric demand estimation framework and discuss identification. In Section 3.3 we
discuss the conditional demand derivative functional and how it can be used to estimated
substitution patterns. Section 3.4 demonstrates the performance of the debiasing proce-
dure from Chapter 2 applied to the conditional demand derivative. Section 3.5 estimates
substitution patterns in the market for sodas using scanner data. Section 3.6 concludes.

3.2. Model and estimation framework

In this Section, we introduce a new framework for demand estimation that follows Gandhi
et al. (2020) (hereafter, GNT). GNT is a flexible framework that combines the nonparamet-
ric identification arguments of Berry and Haile (2014) with the dimensionality reduction
techniques of Gandhi and Houde (2019), which makes it applicable to real data sets with
more than two products unlike Compiani (2018) whose approach fails due to the curse of
dimensionality.

We follow Berry and Haile (2014) and present a general model of demand first, later on we
will impose additional restrictions on the form of the indirect utility function as in GNT.
In market t, t = 1, . . . , T , there is a continuum of consumers choosing from a set of prod-
ucts J = {0, 1, . . . , J} which includes the outside option. The choice set in market t is
characterized by a set of product characteristics χt partitioned as follows:

χt ≡ (xt, pt, ξt),

where xt ≡ (x1t, . . . , xJt) is a vector of exogenous observable characteristics (e.g. exogenous
product characteristics or market-level income), pt ≡ (p1t, . . . , pJt) are observable endoge-
nous characteristics (typically, market prices) and ξt ≡ (ξ1t, . . . , ξJt) represent unobserv-
ables potentially correlated with pt (e.g. unobserved product quality). Let X denote the
support of χt. Then the structural demand system is given by

σ : X 7→ ∆J ,
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where ∆J is a unit J-simplex. The function σ gives, for every market t, the vector st of
shares for the J goods.

Following Berry and Haile (2014), we partition the vector of exogenous characteristics as
xt =

(
x
(1)
t , x

(2)
t

)
, where x(1)t ≡

(
x
(1)
1t , . . . , x

(1)
Jt

)
, xjt ∈ R for j ∈ J \{0}, and define the linear

indices
δjt = x

(1)
jt βj + ξjt, j ∈ J \{0},

and let δt ≡ (δ1t, . . . , δJt). Without loss of generality, we can normalize βj = 1 for all j (see
Berry and Haile (2014) for more details). Given the definition of the demand system, for
every market t,

σ(χt) = σ
(
δt, pt, x

(2)
t

)
.

Following Berry et al. (2013) and Berry and Haile (2014), we can show that there exists at
most one vector δt such that st = σ

(
δt, pt, x

(2)
t

)
, meaning that we can write

δjt = σ−1
j

(
st, pt, x

(2)
t

)
, j ∈ J \{0}. (3.1)

We can rewrite (3.1) in a more convenient form to get the following estimation equation

x
(1)
jt = σ−1

j

(
st, pt, x

(2)
t

)
− ξjt. (3.2)

Note that in (3.2) the inverse demand is indexed by j, meaning that we have to estimate J in-
verse demand functions, that is exactly why the approach of Compiani (2018) gets severely
hit by the curse of dimensionality. To circumvent this problem, Gandhi and Houde (2019)
suggest transforming the input vector space under the linear utility specification to get rid
of the j subscript. GNT follow this idea and show that Equation (3.2) can be rewritten as

log
(
sjt
s0t

)
= x

(1)
jt + γ(ωjt) + ξjt, (3.3)

where γ is such that

σ−1
j

(
st, pt, x

(2)
t

)
= log

(
sjt
s0t

)
− γ(ωjt),

and ωjt ≡ ({skt,∆jkt}j 6=k), where ∆jkt = x̃jt − x̃kt and x̃t ≡
(
pt, x

(2)
t

)
.

Let yjt ≡ log(sjt/s0t)− x(1)jt , then we can rewrite equation (3.3) in a more convenient form

yjt = γ(ωjt) + ξjt. (3.4)
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Equation (3.4) is the main structural equation where γ is a complex non-parametric function
characterizing the relationship between the inverse demand and product attributes and
shares. Dimensionality of the input vector ωjt depends on both the dimensionality of the
characteristics space and the number of products in the market, thus, ωjt is potentially high-
dimensional. This will always be the case if we want to augment standard datasets with
unstructured data such as product reviews, package images, etc. Since both the market
shares st and prices pt depend on the unobservable characteristics ξt, E[ξjt|ωjt] 6= 0, and
hence, ωjt is endogenous.

In order to estimate γ, we need to construct a vector of instruments zjt. Berry et al. (1995) ar-
gue that the vector of product characteristics xjt is exogenous with respect to the structural
error term ξjt, i.e. E[ξjt|xjt] = 0. This exogeneity condition can be used to construct de-
mand side instruments zjt. Instrument construction is a well-known problem in demand
estimation, since it can lead to weak identification and distorted inference. We refer the
reader to Reynaert and Verboven (2014) and Gandhi and Houde (2019) for a more detailed
discussion.

To construct demand side instruments, we follow Gandhi and Houde (2019) and use the
transformed characteristics space zjt = ({∆x

jkt}j 6=k), where ∆x
jkt = xjt − xkt, such that

E[ξjt|zjt] = 0. Note that since ωjt includes zjt, it enforces strong correlation between en-
dogenous inputs and instruments. If data permit, one can augment the instrument space
with supply side instruments, such as cost shifters. Let cjt be a cost shifter for prod-

uct j in market t, then the instrument space becomes zjt =

({
∆x

jkt,∆
c
jkt

}
j 6=k

)
, where

∆c
jkt = cjt − ckt.

3.3. Conditional demand function

One of the main primitives in demand estimation is substitution patterns which allow the
researcher to investigate the responsiveness of consumer choices to changes in the market
structure and, thus, understand the nature of competition between firms. Traditional met-
rics used to evaluate substitution patterns are price elasticities and diversion ratios. The
price elasticity of product j to a price change in product k measures how demand for prod-
uct j changes with the corresponding change in the price of product k. The diversion ratio
for products j and k is the fraction of consumers who leave product j after a price increase
and switch to product k. Both of those measures are widely used in industrial organization
and anti-trust literature.

However, the nonparametric demand estimation framework, and especially the GNT frame-
work, provide us with a novel object that can be used to measure substitution patterns.

50



Recall equation (3.3),

log
(
sjt
s0t

)
= x

(1)
jt + γ(ωjt) + ξjt︸ ︷︷ ︸
conditional demand

,

where the right-hand side of the expression above can be seen as a conditional demand
function for product j in market t. The conditional demand function characterizes the re-
lationship between the demand for product j (or the logarithm of the ratio of the share of
product j to the share of the outside good) and product characteristics given shares of other
products in the market.

In the GNT framework, the conditional demand function is the main building block for
measuring substitution patterns. Let us rewrite equation (3.3) as

Υjt ≡ log
(
sjt
s0t

)
− x(1)jt − γ(ωjt)− ξjt = 0.

Let Υt ≡ (Υ1t, . . . ,ΥJt), then by the implicit function theorem, the gradient of the share
vector in market t with respect to the vector of prices is given by

∇ptst = −[∇stΥt]
−1∇ptΥt.

Note that∇ptst depends on the gradients of the conditional demand function with respect
to shares and prices.

For the rest of the paper we will focus on the conditional demand derivative with respect
to own price. Note that this derivative is simply equal to ∂γ(ωjt)/∂pjt. This object has a
nice economic interpretation and connections to traditional parametric demand estimation
models such as logit and nested logit, which we explore in greater detail in the following
subsection.

Let Wjt ≡ (yjt, ωjt, zjt) be a data tuple. We use θjk to denote the conditional demand
derivative functional such that

θjk = E[m(Wjt, γ)] = E
[
∂

∂pkt
γ(ωjt)

]
= E[αjk(zjt)γ(ωjt)],

whereαjk is the Riesz representer labeled by jk, meaning that for each product pair we have
to estimate its corresponding Riesz representer. We can construct the debiased estimator
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for θjk and its associated asymptotic variance using the formulae in (2.10),

θ̂jk =
1

T

L∑
`

∑
t∈T`

{m(Wjt, γ̂`) + α̂jk,`[yjt − γ̂`(ωjt)]}

V̂jk =
1

T

L∑
`

∑
t∈T`

ψ̂2
jk,`(Wjt), ψ̂jk,`(Wjt) = m(Wjt, γ̂`)− θ̂jk + α̂jk,`[yjt − γ̂`(ωjt)].

Note that in the expressions above we treat one market as one observation, hence, the cross-
fitting is applied across markets.

3.4. Simulated data experiments

3.4.1. Logit model

We focus on the derivative of the conditional demand function for good j with respect to
its own price, θjj = E[∂γ(ωjt)/∂pjt]. This derivative measures sensitivity of the logarithm
of the shares ratio to changes in price of product j conditional on the shares of competing
products. When we fix the shares of other products in the market, the only two quantities
that can change on the left-hand side of (3.3) in response to a price change are sjt and s0t.
Thus, changes in sjt can only occur at the expense of the corresponding change is s0t. For
example, if θjj is negative, it means that an increase in pjt leads to a decrease in sjt and
a corresponding increase in s0t, implying a positive substitution effect toward the outside
good.

To get a better understanding of the interpretation, let us consider a simple logit model.
The logit estimation equation takes the form

log
(
sjt
s0t

)
= βppjt + x′jtβx + ξjt,

where xjt =
(
x
(1)
jt , x

(2)
jt

)
. Recall, the GNT estimation equation is

log
(
sjt
s0t

)
= x

(1)
jt + γ(ωjt) + ξjt.

Thus, if we take the mean derivative of γ with respect to own price, it will correspond to
the price coefficient in the logit model, θjj = βp, given the data are coming from the logit
model. In the logit case, the conditional and unconditional demand functions coincide,
hence, the price derivative does not depend on the shares of competing products. We use
this observation for our next simulation exercise.
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We simulate data from a simple logit model. The mean valuation in the logit model is given
by δjt = βppjt+x

′
jtβx+ ξjt. Product shares can be calculated using the following formulae,

for j = 1, . . . , J and t = 1, . . . , T ,

sjt =
exp(δjt)

1 +
∑J

j=1 exp(δjt)
and s0t =

1

1 +
∑J

j=1 exp(δjt)
.

We set the total number of product characteristics besides the price to be equal to 4, i.e. x(1)jt

is a scalar and x(2)jt is a three-dimensional vector. We draw the observed product character-
istics, xjt, from the standard normal distribution, while the unobserved characteristics, ξjt,
are distributed as N (0, 0.25) for all j and t. The price is

pjt = 2

∣∣∣∣∣x(1)jt +

3∑
k=1

x
(2)
k,jt + cjt + ξjt + ejt

∣∣∣∣∣ ,
where cjt ∼ N (0, 1) is a cost-shifter and ejt ∼ N (0, 0.01) is some additional noise. The
price coefficient is βp = −2 and the coefficients on product characteristics are βx = (1, −
0.5, 0.5, 1)′.

We use KIV14 with the Gaussian RBF kernel to estimate γ. We construct dictionaries b(zjt)
and d(ωjt) using quadratic polynomials with interactions. Under the specified DGP, ωjt =

({skt,∆jkt}j 6=k) and zjt =
({

∆x
jkt,∆

c
jkt

}
j 6=k

)
, and hence, dim(ωjt) = dim(zjt) and p = q.

We run 200 replications for J = 4, 6, 8 and T = 100, 200, 400. We use five-fold cross-fitting,
L = 5.

Table 5: MC results: logit price coefficient.

PI Bias DB Bias PI SD DB SD PI RMSE DB RMSE PI Cvg DB Cvg
J = 4 T = 100 0.691 0.133 0.225 0.485 0.727 0.503 0.00 0.95

T = 200 0.500 0.199 0.091 0.243 0.508 0.314 0.00 0.76
T = 400 0.466 0.239 0.079 0.159 0.473 0.287 0.00 0.56

J = 6 T = 100 0.376 0.088 0.058 0.341 0.380 0.352 0.00 0.96
T = 200 0.311 0.048 0.040 0.316 0.313 0.320 0.00 0.93
T = 400 0.293 0.079 0.032 0.149 0.295 0.169 0.00 0.92

J = 8 T = 100 0.262 0.045 0.042 0.092 0.265 0.102 0.00 0.97
T = 200 0.212 0.008 0.029 0.061 0.214 0.062 0.00 0.93
T = 400 0.181 0.002 0.024 0.041 0.183 0.041 0.00 0.92

Without loss of generality, we focus on the derivative of the conditional demand function
for product 1. Table 5 presents the results. We can clearly see the bias-variance trade-

14Code: https://github.com/r4hu1-5in9h/KIV
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off: the plug-in estimator has a much higher bias and smaller variance than the debiased
estimator. This results in an extremely poor coverage of the plug-in estimator, which is
essentially zero in all cases. Debiasing not only helps to diminish the bias, but also corrects
the variance by adding the variation in the influence function to ensure proper coverage.
Despite higher variance, the debiased estimator still has a lower RMSE. The coverage of
the debiased estimator is close to the nominal 95% level across almost all specifications.
For J = 4 and T = 200, 400 the debiasing is not that prominent which results into worse
coverage compared to other specifications.

3.4.2. Nested logit model

Another model that has a closed form conditional demand function is nested logit. The
estimation equation is given by

log
(
sjt
s0t

)
= βppjt + x′jtβx + π log(sj|gt) + ξjt,

where sj|gt is the within nest share of product j in group g and π ∈ [0, 1] characterizes
the correlation of utilities that a consumer experiences among the products in the same
nest. For simplicity, we assume that there are two mutually exclusive nests, g = 1, 2, and
the outside good belongs to neither of the nests. Unlike logit, the conditional demand
function under the nested logit model is different from the unconditional demand function.
It implicitly depends on shares of within group products as sj|gt = 1 −

∑
k 6=j, k∈Jg

sk|gt,
where Jg denotes products that belong to group g.

Under the nested logit specification, the derivative of the conditional demand function with
respect to price takes the following form

θjj = E
[
βp +

π

sj|gt

∂sj|gt

∂pjt

]
. (3.5)

To proceed, let us first focus on the derivative of the within group share with respect to the
mean valuation, i.e. ∂sj|gt/∂δjt, which is given by

∂sj|gt

∂δjt
=

1

1− π
sj|gt(1− sj|gt).

Applying the chain rule,

∂sj|gt

∂pjt
=
∂sj|gt

∂δjt

∂δjt
∂pjt

=
βp

1− π
sj|gt(1− sj|gt). (3.6)
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Thus, combining (3.5) and (3.6) gives

θjj = E
[
βp

(
1 +

π

1− π
(1− sj|gt)

)]
= βp︸︷︷︸

direct effect

+βp
π

1− π
E[1− sj|gt]︸ ︷︷ ︸

indirect effect

. (3.7)

Note that in equation (3.7) the effect of a price change comes from two components. The
direct effect measures how changes in pjt affect the log ratio of the shares, which is similar to
the logit price coefficient. The indirect effect measures the effect price changes have through
the nesting structure. Note that the closer the nesting parameter is to 1, the larger the
derivative becomes. When π is close 1, consumers tend to substitute more towards products
within the nest. As a result, conditional on the shares of other within group products,
consumers prefer to substitute more towards the outside good rather than towards the off-
nest products, hence, the derivative is larger in absolute value. On the other hand, the
larger the within group share of product j is, the smaller is the derivative. If product j has
a large share within group g, it means that consumers strongly prefer product j to other
products in the nest, and hence, less sensitive they are to its price changes.

Since nested logit enforces stronger substitution effects between products from the same
nest, the shares formulae are more complicated than in the logit case. If product j belongs
to group g, then the choice probability of product j in market t conditional on group g being
chosen equals

sj|gt =
exp

(
δjt
1−π

)
Dgt

, where Dgt =
∑
j∈Jg

exp
(

δjt
1− π

)
.

The probability that group g is chosen equals

sgt =
D1−π

gt∑
gD

1−π
gt

.

Thus, the unconditional probability of product j, from nest g, in market t being chosen is
given by

sjt = sjgtsgt =
exp

(
δjt
1−π

)
Dπ

gt

[∑
gD

1−π
gt

] .
To see whether ML is capable of capturing this departure from logit, we run another Monte
Carlo exercise. Similarly to the logit design, we set the number of observed product charac-
teristics to 4. However, now there is one categorical characteristic which defines nests and
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does not change across markets, x(2)3,jt. It assigns the first half of the products in the market
to the first group and the second half to the second group. For example, if J = 4, then
products 1 and 2 belong to the first nest, while products 3 and 4 belong to the second nest.
The remaining product characteristics are drawn from the standard normal distribution.
All the remaining quantities are constructed in the same fashion as in the logit design. We
set π = 0.5. The estimation procedure is unchanged.

Table 6: MC results: nested logit own price derivative.

PI Bias DB Bias PI SD DB SD PI RMSE DB RMSE PI Cvg DB Cvg
J = 4 T = 100 0.837 0.097 0.458 0.491 0.954 0.501 0.01 0.90

T = 200 0.609 0.001 0.240 0.310 0.655 0.310 0.00 0.88
T = 400 0.496 0.018 0.168 0.220 0.524 0.221 0.01 0.90

J = 6 T = 100 0.455 0.033 0.201 0.245 0.498 0.247 0.01 0.82
T = 200 0.297 0.058 0.124 0.162 0.321 0.172 0.02 0.75
T = 400 0.231 0.032 0.112 0.132 0.257 0.136 0.06 0.71

J = 8 T = 100 0.309 0.040 0.134 0.183 0.337 0.188 0.04 0.81
T = 200 0.200 0.007 0.084 0.118 0.217 0.118 0.06 0.81
T = 400 0.123 0.034 0.086 0.092 0.150 0.091 0.13 0.78

The results are presented in Table 6. The overall pattern is similar to the logit case. How-
ever, the bias-variance trade-off is not that prominent in the nested logit case. The variance
of the debiased estimator is still higher than of the plug-in estimator, however, the gap be-
comes much smaller. Moreover, unlike the logit case, for J = 4 debiasing works equally
well across all sample sizes. Finally, despite the debiased estimator achieves much better
coverage than the plug-in estimator, it still undercovers in all specifications.

3.5. Estimation of substitution patters in the market for sodas

We use retail scanner data from the IRI Academic Database (Bronnenberg et al., 2008). This
dataset includes unit sales by UPC code, store and week for a sample of supermarkets over
2001-2012 as well as information on product characteristics. We focus on one year span of
2003 and top ten most sold products. Among others, the list of products includes Coke,
Pepsi, Sprite, Dr. Pepper, etc. Since we want to exploit the variation in product attributes,
we do not aggregate the data to the brand level. In other words, products are defined by a
combination between a brand and a set of product characteristics.

Carbonated beverages are sold in different packages and package sizes. We restrict our
attention to cans and define a product unit as a 12 oz can. Hence, we construct market
shares based on the total amount of cans sold. Prices are defined as the ratio of total revenue
to total number of units sold. We aggregate the data to geographic region-month level
resulting in 5,640 observations at the product-region-month level.
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Data on product characteristics include beverage flavor, sugar, caffeine and calorie levels.
All characteristics are represented by categorical variables, thus, for computational rea-
sons we aggregate product attributes in larger groups (see Appendix C.1 for more details).
After aggregation and dropping collinear characteristics, we are left with six product at-
tributes we use for estimation. We have CAFFEINE and SUGAR dummy variables indi-
cating whether a product contains caffeine and sugar, respectively. The remaining four
variables represent different flavor categories: COLA, LEMONADE, PEPPER, and OTH-
ERS.

We start our analysis with parametric specifications. To be precise, we estimate logit, nested
logit, and BLP models. Since beverage flavors are represented by four dummy variables,
we drop the intercept to avoid collinearity issues. For the nested logit specification, we
split the products into two categories based on the amount of sugar. When estimating the
BLP model, we put random coefficients on price, CAFFEINE, and SUGAR, while keeping
the flavor variables only in the linear part. We also consider two sets of instruments: (i)
standard BLP instruments and (ii) local differentiation instruments of Gandhi and Houde
(2019). All models are estimated with the PyBLP package (Conlon and Gortmaker, 2020)
available in Python.

Table 7 displays the results. We can observe that the linear coefficients estimates are pretty
close across the estimators. Positive coefficients on CAFFEINE and SUGAR imply that con-
sumers tend to prefer beverages containing caffeine and sugar over decaffeinated and diet
alternatives. As we have dropped the intercept term, we can only interpret differences in
flavor dummies. As COLA has the largest coefficient among all other flavors, we conclude
that consumers prefer cola-flavored drinks over other alternatives.

The price coefficient in the nested logit is slightly smaller compared to the logit estimate
since a part of the price effect comes through the within group share, which is captured in
(3.7). The nesting coefficient estimate equals to 0.195 indicating a relatively weak nesting
structure. BLP specifications mostly differ in the estimates of nonlinear parameters. Using
the vanilla BLP instruments uncovers more heterogeneity in consumer preferences across
sugar levels, while using the differentiation IVs picks up more heterogeneity across caffeine
levels.

Overall, the price coefficient estimates give us a sense of the order of magnitude of the con-
ditional demand function derivative. As in the simulated data experiments, we use KIV to
estimate the conditional demand function γ. Besides prices and shares, there are 5 product
characteristics in x(2)jt leading to dim(ωjt) = 70, which makes the problem moderately high-
dimensional. To construct b(zjt) and b(ωjt) dictionaries, we use empirical moment based
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Table 7: Parametric demand estimates

Logit Nested Logit BLP BLP DIV*

Linear parameters

price -5.353 -4.564 -5.369 -5.364
(0.060) (0.004) (0.071) (0.064)

CAFFEINE 0.522 0.409 0.522 0.414
(0.051) (0.046) (0.056) (0.052)

SUGAR 0.735 0.710 0.095 0.710
(0.066) (0.061) (0.065) (0.073)

COLA -1.491 -1.363 -1.496 -1.495
(0.032) (0.031) (0.035) (0.033)

LEMONADE -2.441 -2.133 -2.447 -2.450
(0.059) (0.045) (0.073) (0.064)

PEPPER -2.630 -2.258 -2.643 -2.638
(0.078) (0.057) (0.092) (0.082)

OTHERS -3.840 -3.182 -3.856 -3.849
(0.052) (0.036) (0.060) (0.054)

Nonlinear parameters

π̂ – 0.195 – –
(0.013)

price – – 0.461 0.332
(0.012) (0.008)

CAFFEINE – – 0.145 1.168
(0.005) (0.010)

SUGAR – – 2.191 0.413
(0.030) (0.006)

* Estimated using local differentiation instruments.

basis functions as in GNT (see Appendix C.2 for more details) with p = 405 and q = 594.
The debiased estimator is constructed using five-fold cross-fitting, L = 5. We compare the
performance of the debiased estimator to the plug-in KIV and nested logit estimators.

Table 8 presents conditional demand function derivative estimates for each product. The
first two columns contain nested logit estimates and their corresponding standard errors.
Nested logit estimates are constructed by simply plugging-in the estimated parameters into
(3.7) and replacing the expectation with the sample average. There is no much variation in
the estimates across products with estimated values being close the logit price coefficient
estimate. Unlike the nested logit estimates, the KIV plug-in estimates do exhibit substantial
variation across products. Moreover, we can observe that products with similar character-
istics exhibit similar responsiveness to price changes. For example, diet Coke and diet Pepsi
have similar derivative estimates, while regular Coke and regular Pepsi are more sensitive.
Given the categorical nature of the characteristics space, we can interpret this findings as
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uncovering the underlying nesting structure in the data.

Table 8: Conditional demand derivative estimates.

Product NL NL SE PI PI SE DB DB SE

Caffeine-free Diet Coke -5.502 0.085 -3.453 0.061 -4.375 0.314
Caffeine-free Diet Pepsi -5.575 0.081 -3.364 0.063 -4.420 0.332
Coke -5.262 0.188 -5.094 0.032 -6.049 0.249
Pepsi -5.340 0.193 -5.046 0.045 -6.172 0.302
Diet Coke -5.169 0.218 -4.034 0.021 -4.667 0.171
Diet Pepsi -5.327 0.210 -4.041 0.025 -4.800 0.204
Dr. Pepper -5.572 0.122 -3.106 0.082 -5.635 0.693
Mountain Dew Classic -5.561 0.086 -4.585 0.066 -6.863 0.617
Mountain Dew Other -5.637 0.058 -2.954 0.103 -5.784 0.781
Sprite -5.539 0.060 -4.015 0.020 -6.025 0.552

We can see a clear debiasing effect in the last two columns of Table 8. First, the plug-in KIV
estimates are biased upwards. It is important to note that despite being numerically dif-
ferent the debiased estimates are qualitatively close to the plug-in estimates and preserve
the data patterns uncovered by the KIV estimator. This indicates that debiasing indeed
corrects for the regularization bias without distorting the estimates. Second, the standard
errors after debiasing are larger than those of the plug-in estimator. These findings are
coherent with the Monte Carlo evidence from Chapter 2.

3.6. Conclusion

In this Chapter, we showed how to apply the debiasing procedure from Chapter 2 to es-
timate the conditional demand derivative in the nonparametric demand for differentiated
products framework. We have obtained evidence from both simulated and real scanner
data that plug-in estimates are biased upwards and have smaller variance compared to the
debiased estimates, which reflects the bias-variance trade-off occurring due to regulariza-
tion. Looking at the conditional demand derivative is a first step towards understanding
the benefits of using machine learning to estimate substitution patterns over the standard
parametric methods. Thus, taking one step further to estimation of classical measures of
substitution like elasticities and diversion ratios and to counterfactual analysis seems like
a natural addition to the future research agenda.
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APPENDIX A: Additional Details and Proofs for
Chapter 1

A.1. Auxiliary lemmas

Lemma A.1.1. Assume the assumptions of Lemma 1 are satisfied. Considerhm that satisfies
Assumption 3. Let f̄ be an arbitrary reference function in S . Also, define sm = ||f0||1 +∑m−1

i=0 hi and
∆Q̂(f) = max

(
0, Q̂(f)− Q̂(f̄)

)
, (A.1.1)

ε̄m =
h2m
2
M + εm. (A.1.2)

Then after m steps the following bound holds for fm+1,

∆Q̂(fk+1) ≤
(
1− hm

sm + ||f̄ ||1

)
∆Q̂(fm) + ε̄m. (A.1.3)

Proof. The result follows directly from Lemma 1 and Lemma 4.1 in Zhang and Yu (2005).
�

Lemma A.1.2. Under the assumptions of Lemma A.1.1, we have

∆Q̂(fm) ≤ ||f0||1 + ||f̄ ||1
sm + ||f̄ ||1

∆Q̂(f0) +

m∑
j=1

sj + ||f̄ ||1
sm + ||f̄ ||1

ε̄j−1. (A.1.4)

Proof. The above lemma directly follows from the repetitive application of Lemma A.1.1.
For detailed proof see Zhang and Yu (2005). �

Lemmas A.1.1 and A.1.2 are direct counterparts of Lemmas 4.1 and 4.2 in Zhang and Yu
(2005) with M(sm+1) replaced by M . Therefore, the main numerical convergence result
below follows as well (see Corollary 4.1).

A.2. Proofs of results

A.2.1. Proof of Lemma 1

First, Q(·) is convex in f , hence, it is convex differentiable. Now we have to bound the
second derivative with respect to h. Note that the second derivative of Qf, ϕ(h) does not
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even depend on h,

Q′′
f, ϕ(h) = E[ϕ(xi)zi]′ΩE[ϕ(xi)zi]

≤ λmax(Ω)||E[ϕ(xi)zi]||2

≤ λmax(Ω)E[|ϕ(xi)|2]E[|z′izi|]

≤ λmax(Ω)CB ≡M <∞,

where the second inequality is a by the Cauchy-Schwarz inequality, and the last inequality
comes from the assumptions of the lemma. Thus, the second derivative has a fixed bound
M <∞. �

A.2.2. Proof of Theorem 1

The result follows directly from Lemmas A.1.1 and A.1.2. For detailed proof see Zhang and
Yu (2005). �

A.2.3. Proof of Lemma 2

Follows directly from Lemma 4.3 in Zhang and Yu (2005). �

A.2.4. Proof of Lemma 3

It follows from Lemma 2 and condition (1.17) that for all j = 1, . . . , k,

EW sup
||f ||1≤β

|g0,j(f)− ĝj(f)| ≤ 2γj(β)βR(S) ≤ 2γj(β)β
CS√
n
= O(n−1/2).

Thus, by Markov inequality,

sup
||f ||1≤β

|g0,j(f)− ĝj(f)|
p→ 0, j = 1, . . . , k.

Since every coordinate of the sample moment function converges uniformly to its popula-
tion analog, we can bound the norm as well

||g0(f)− ĝ(f)|| =

 k∑
j=1

|g0,j(f)− ĝj(f)|2
1/2

≤
√
kOp(n

−1/2),

which combined with Markov inequality completes the proof. �
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A.2.5. Proof of Theorem 2

By the triangle and Cauchy-Schwarz inequalities,∣∣∣Q̂(f)−Q(f)
∣∣∣ ≤ ∣∣∣[ĝ(f)− g0(f)]′Ω̂[ĝ(f)− g0(f)]∣∣∣+ ∣∣∣g0(f)′(Ω̂ + Ω̂′)[ĝ(f)− g0(f)]

∣∣∣
+
∣∣∣g0(f)′(Ω̂− Ω)g0(f)

∣∣∣
≤ ||ĝ(f)− g0(f)||2||Ω̂||+ 2||g0(f)|| ||ĝ(f)− g0(f)|| ||Ω̂||+ ||g0(f)||2||Ω̂− Ω||.

Using Lemma 3, (ii), and (iv) and taking the supremum of both sides of the inequality
completes the proof. �

A.2.6. Proof of Theorem 3

By Theorem 2, the first term converges in probability to zero, and the second term converges
to zero according to the arguments from the proof of Theorem 3.1 in Zhang and Yu (2005),
which completes the proof. �

A.3. Alternative bound on the Rademacher complexity

To derive an alternative bound on the Rademacher complexity, we introduce the following
lemma (Massart’s lemma).

Lemma A.3.1. For any A ⊆ Rn, let M = supa∈A ||a||. Then

R̂(A) = Eσ

[
sup
a∈A

1

n

n∑
i=1

σiai

]
≤
M
√
2 log |A|
n

.

This lemma can be applied to any finite class of functions.

Example 5. Consider a set of binary classifiers H ⊆ {h : W 7→ {−1, 1}}. Given a sample
W = (W1, . . . ,Wn), we can take A = {h(W1), . . . , h(Wn) |h ∈ H}. Then |A| = |H| and
M =

√
n. Massart’s lemma gives

R̂(H) ≤
√

2 log |H|
n

.

In general, Massart’s lemma can also be applied to infinite function classes with a finite
shattering coefficient. Notice that Massart’s finite lemma places a bound on the empirical
Rademacher complexity that depends only on n data points. Therefore, all that matters
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as far as empirical Rademacher complexity is concerned is the behavior of a function class
on those data points. We can define the empirical Rademacher complexity in terms of the
shattering coefficient.

Lemma A.3.2. Let Y ⊂ R be a finite set of real numbers of modulus at most C > 0. Given
a sample W = (W1, . . . ,Wn), the Rademacher complexity of any function class H ⊆ {h :

W 7→ Y} can be bounded in terms of its shattering coefficient s(H, n) by

R̂(H) ≤ C
√

2 log s(H, n)
n

.

Proof. Let A = {h(W1), . . . , h(Wn) |h ∈ H}, then M = supa∈A ||a|| = C
√
n and |A| =

s(H, n). Applying the Massart’s lemma gives

R̂(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(Wi)

]
≤
M
√
2 log |H|
n

= C

√
2 log s(H, n)

n
.

�

Note that we apply the Massart’s lemma conditional on the sample, hence, we can use the
same bound for R̂(H). We can loosen the bound by applying Sauer’s lemma which says
that s(H, n) ≤ nd, where d is the VC dimension ofH. This simplifies the result of Theorem
A.3.2 to

R̂(H) ≤ C
√

2d log(n)
n

= O

(√
log(n)
n

)
. (A.3.1)

The bound in (A.3.1) is valid for any class with finite VC dimension which is coherent with
the results of Zhang and Yu (2005). However, the VC bound is slower that the bound in
(1.17) by the factor or log(n) which appears in a lot of ML algorithms.

Note that the bound in (A.3.1) is still a valid bound for the main results to follow. It only
affects the rate of convergence.
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APPENDIX B: Additional Details and Proofs for
Chapter 2

B.1. Performance of standard ML algorithms under endogeneity

In this example, we illustrate that standard ML algorithms such as Neural Networks fail to
capture the structural function under endogeneity.

Figure 3: Standard ML vs MLIV estimators

Consider the following design similar to Lewis and Syrgkanis (2018), Bennett et al. (2019),
and Bakhitov and Singh (2021). Let

Yi = γ(Xi) + ei + δi, Xi = 0.5Zi + 0.5ei,

Zi ∼ N (0, 1), ei ∼ N (0, 1), δi ∼ N (0, 0.1),
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where ei is a confounder. We consider four different choices of γ,

abs: γ(X) = |X|, log: γ(X) = log(|16X − 8|+ 1)sign(X − 0.5)

sin: γ(X) = sin(X), max: γ(X) = max(X, 0.2X).

We compare the performance of the standard 2-layer Neural Networks with (16, 8) nodes to
the performance of the Kernel IV regression of Singh et al. (2019). We use 2000 observations
for training and 1000 observations for testing.

Figure 3 shows that the Neural Network fails to capture the structural function. We can see
that in all cases it obviously is fitting the conditional expectation E[Y |X] instead of γ. In
contrast, KIV is able to pick up the structural function in all cases, despite having problems
at the boundaries which is a common problem of all kernel methods.

B.2. Analytical solution to the GMM problem

In this Section, we provide additional intuition behind the PGMM estimator of the RR. To
do so, we focus on the standard GMM problem without adding the penalty term, i.e. ρ̂ is a
solution to

min
ρ∈Rp

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ). (B.2.1)

Given the form of the debiased moment function (2.5) and the linear approximation for
the RR, the orthogonal moment condition (2.7) will always be linear in ρ, meaning that the
GMM criterion in (B.2.1) is globally concave and has a unique global minimizer.

For the ease of exposition, we drop the cross-fitting notation and assume that we are inter-
ested in a linear functional θ = E[m(W,γ)]. Then the moment condition takes the form

ψ̂γ(dj , ρ) =
1

n

n∑
i=1

{
m(Wi, dj)− dj(Xi)b(Zi)

′ρ
}
, j = 1, . . . , q.

Let m(W,d) = (m(W,d1), . . . ,m(W,dq)). Taking the first-order condition of the GMM cri-
terion gives

∂ψ̂γ(ρ̂)

∂ρ′
Ω̂q

{
1

n

n∑
i=1

m(Wi, d)−
1

n

n∑
i=1

d(Xi)b(Zi)
′ρ̂

}
= 0. (B.2.2)

We can rewrite (B.2.2) in matrix form as

−Ĝ′Ω̂qM̂ + Ĝ′Ω̂qĜρ̂ = 0,
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which immediately gives a closed-form solution for ρ̂,

ρ̂ = (Ĝ′Ω̂qĜ)
−1Ĝ′Ω̂qM̂. (B.2.3)

Note that the form of the GMM solution in (B.2.3) resembles the GMM solution to the clas-
sical linear IV problem, but with endogenous regressors and instruments being switched.
Ichimura and Newey (2017) point out that α(Z) is the solution of a “reverse” structural
equation involving an expectation conditional on the endogenous variables X rather than
the instruments Z. If we set Ω̂ =

(
1
n

∑n
i=1 d(Xi)d(Xi)

′)−1, we will get the exact solution to
the “reverse” NPIV problem.

B.3. Computing Auto-DML using Penalized GMM

Recall, in matrix form the PGMM problem is given by

min
ρ∈Rp

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λn|ρ|1. (B.3.1)

Note that the objective in (B.3.1) is a generalized version of the Lasso objective. Thus, we
can generalize the coordinate decent approach for Lasso to the PGMM objective that we
use in this paper. We follow CNS and use a coordinate-wise descent algorithm with the
soft-thresholding update.

We denote the jth element of a generic vector v by vj and let ej be a p × 1 unit vector with
1 in the jth coordinate and zeros elsewhere.

Algorithm 5 Coordinate-wise descent algorithm for PGMM
for j = 1 : p do

Calculate loadings that do not depend on ρj :

Bj = e′jĜ
′Ω̂qĜej

Aj = e′jĜ
′Ω̂q(M̂ − Ĝρ+ Ĝejρj)

Update coordinate ρj :

ρj =


Aj+λn

Bj
if Aj < −λn

0 if Aj ∈ [−λn, λn]
Aj−λn

Bj
if Aj > λn

end for

The justification for Algorithm 5 is similar to the one of CNS. It follows from the fact that
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the GMM objective (B.3.1) is of the form of eq. 21 of Friedman et al. (2007), hence, the
coordinate descent converges to the minimizer of the objective (Tseng, 2001).

One can boost the performance of the PGMM algorithm by incorporating adaptive penalty
loadings in the spirit of Zou (2006). This will transform the optimization problem (B.3.1)
into the adaptive PGMM (A-PGMM) problem

min
ρ

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λn

p∑
j=1

ŵj |ρj |, (B.3.2)

where ŵ = (ŵ1, . . . , ŵp) is a vector of data-dependent weights with ŵj = 1/|ρ̃j |, and ρ̃ is
a preliminary consistent estimator. The only difference to Algorithm 5 is that in step 3 we
replace λn with ŵjλn.

B.3.1. Numerical performance

We evaluate the numerical performance of the PGMM algorithm in two scenarios: (i) ex-
ogenous high-dimensional linear regression, (ii) high-dimensional linear IV regression.

HD linear regression

We borrow the set-up from CNS and compare the performance of PGMM and A-PGMM
algorithms with the MD Lasso estimator of CNS as well as with the built-in Python im-
plementations of the stochastic gradient descent (SGD) and least-angle regression (LARS)
algorithms15.

In this design, the data generating process is

Y = X ′β0 + ε,

where X = (1, X1, . . . , X100)
′, Xj ∼ N (0, 1) and i.i.d., and ε ∼ N (0, 1). The true value

of the regression coefficient is β0 = (1, 1, 1, 0, 0, . . . ) and dim(β0) = 101. The number of
observations is n = 100. We can recover β0 by using the functional m(w, h) = yh(x) in the
PGMM and MD Lasso formulations16.

In Table 9, we report MSE defined as |β̂−β0|22 of various implementations based on 200 sim-
ulations. We can see that PGMM performs on par with SGD, LARS, and MD Lasso, while

15We use LassoCV and LassoLarsCV commands to run SGD and LARS algorithms respectively.
16Alternatively, we could simply use the standard GMM moment g(w, h) = (y−h(x))x for the linear regres-

sion to implement PGMM.
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adding adaptive weights on the penalty term improves the performance twice rendering
the lowest MSE across the algorithms, which validates the procedure.

Table 9: HD Linear regression results.

MSE

SGD 0.1553
LARS 0.1786
MD Lasso 0.1474
PGMM 0.1791
A-PGMM 0.0868

HD linear IV regression

We follow the exponential design of Belloni et al. (2012). The DGP is

Y = X ′β0 + ε

X = ΠZ + v,

where β0 = (1, 1, 1, 0, 0, . . . ) and dim(β0) = 101, X = (1, X1, . . . , X100)
′, Z = (Z1, . . . , Z150)

∼ N (0,ΣZ) is a 150 × 1 vector with E[Z2
j ] = 1 and Corr(Zh, Zj) = 0.5|h−j|. We set the

first stage coefficients Π = (1, 0.7, 0.72, . . . , 0.7149). The structure of the error terms is the
following: ε ∼ N (0, 1) and v|ε ∼ N (rε, I − r2) so that the unconditional covariance matrix
of the endogenous variables is the identity. We set r = 0.5 and the number of observations
n = 100.

We compare the performance of PGMM and A-PGMM algorithms to the Double Lasso esti-
mator of Gold et al. (2020). Table 10 demonstrates MSEs of the considered implementations
based on 200 simulations.

Table 10: HD Linear IV regression results.

MSE

Double Lasso 0.1864
PGMM 0.3020
A-PGMM 0.0726

B.4. Proofs of results

In this Section, we present the proofs of the theoretical results of the paper along with
auxiliary lemmas and their corresponding proofs.
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B.4.1. Properties of the PGMM estimator

Lemma B.4.1. If Assumption 6 is satisfied, then

||Ĝ−G||∞ = Op(ε
G
n ), εGn =

√
log(q)
n

.

Proof. The proof is similar to the proof of Lemma C1 of Chernozhukov, Newey and Singh
(2018). Define

Tijk = dj(Xi)bk(Zi)− E[dj(Xi)bk(Zi)], Ujk =
1

n

n∑
i=1

Tijk.

For any constant C,

P(||Ĝ−G||∞ ≥ CεGn ) ≤
q∑

j=1

p∑
k=1

P(|Uijk| ≥ CεGn )

≤ pqmax
j,k

P(|Uijk| ≥ CεGn )

≤ q2 max
j,k

P(|Uijk| ≥ CεGn ),

where the last inequality follows from q ≥ p. Note that E[Tijk] = 0 and by Assumption 6,

|Tijk| ≤ |dj(Xi)| · |bk(Zi)|+ E[|dj(Xi)| · |bk(Zi)|] ≤ 2CbCd.

Since Tijk is a bounded random variable, it is sub-Gaussian. Let ||Tijk||Ψ2 denote the sub-
Gaussian norm. Define K = 2CbCd/ log 2 ≥ ||Tijk||Ψ2 . By Hoeffding’s inequality (see
Theorem 2.6.2 in Vershynin, 2018), there is a constant c such that

q2 max
j,k

P(|Uijk| ≥ CεGn ) ≤ 2q2 exp
(
−c(nCε

G
n )

2

nK2

)
= 2q2 exp

(
−cC

2 log(q)
K2

)
≤ 2 exp

(
log(q)

[
2− cC2

K2

])
→ 0

for any C > K
√
2/c. Thus, for large enough C, P(|Ĝ−G|∞ ≥ CεGn )→ 0, which completes

the proof. �
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Lemma B.4.2. For any q × 1 vector M̂ , q × p matrix Ĝ, q × q matrix Ω̂, and λ > 0, if

ρ∗ = argmin
ρ∈Rp

{
(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λ|ρ|1

}
,

then
||Ĝ′Ω̂q(M̂ − Ĝρ∗)||∞ ≤ λ.

Proof. The proof is similar to the proof of Lemma C0 of Chernozhukov, Newey and Singh
(2018). Since the objective function is convex in ρ, a necessary condition for minimization
is that zero belongs to the sub-differential of the objective function, i.e.

0 ∈ −Ĝ′Ω̂q(M̂ − Ĝρ∗) + λ([−1, 1], . . . , [−1, 1])′.

Thus, for j = 1, . . . , p we have

−e′jĜ′Ω̂q(M̂ − Ĝρ∗) + λ ≥ 0, −e′jĜ′Ω̂q(M̂ − Ĝρ∗)− λ ≤ 0,

where ej is the jth unit vector. Combining two inequalities above yields

||e′jĜ′Ω̂q(M̂ − Ĝρ∗)||∞ ≤ λ,

which completes the proof as the inequality holds for every j. �

Following Bradic et al. (2021), by Assumption 8 we can define Sρ̄ ⊂ S as indices of a sparse
approximation with |Sρ̄| = s̄, where |A| denotes the cardinality of set A, and coefficients
ρ̄ = (ρ̄1, . . . , ρ̄p)

′, with ρ̄j = 0 for j 6∈ Sρ̄ such that

||ρL − ρ̄||2 ≤ Cs̄ε2n.

Also define ρ? as

ρ? = argmin
v∈Rp

(ρL − v)′G′ΩqG(ρL − v) + 2εn
∑
j∈Sc

ρ̄

|vj |. (B.4.1)

Moreover, we assume that |ρ?|1 = O(1).

Lemma B.4.3. ||G′ΩqG(ρ? − ρL)||∞ ≤ εn.

Proof. Follows directly from the proof of Lemma B.4.2. �

Lemma B.4.4. (ρL − ρ?)′G′ΩqG(ρL − ρ?) ≤ Cs̄ε2n.
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Proof. By the definition of ρ? and the fact that the largest eigenvalue of G′ΩqG is bounded,
we have

(ρL − ρ?)′G′ΩqG(ρL − ρ?) + 2εn
∑
j∈Sc

ρ̄

|ρ?,j | ≤ (ρL − ρ̄)′G′ΩqG(ρL − ρ̄) + 2εn
∑
j∈Sc

ρ̄

|ρ̄j |

= (ρL − ρ̄)′G′ΩqG(ρL − ρ̄)

≤ C||ρL − ρ̄||2 ≤ Cs̄ε2n.

�

Lemma B.4.5. Let Sρ? be the vector of indices of nonzero elements of ρ?. Then, s? ≡ |Sρ? | ≤
Cs̄.

Proof. For all j ∈ Sρ?\Sρ̄ the first order conditions to equation (B.4.1) imply |e′jG′ΩqG(ρ? −
ρL)| = εn. Therefore, it follows that∑

j∈Sρ?\Sρ̄

(
e′jG

′ΩqG(ρ? − ρL)
)2

= ε2n|Sρ?\Sρ̄|.

Moreover, using Lemma B.4.5 and the fact that the largest eigenvalue ofG′ΩqG is bounded,
we get

∑
j∈Sρ?\Sρ̄

(
e′jG

′ΩqG(ρ? − ρL)
)2 ≤ p∑

j=1

(
e′jG

′ΩqG(ρ? − ρL)
)2

= (ρ? − ρL)′G′ΩqG

 p∑
j=1

eje
′
j

G′ΩqG(ρ? − ρL)

= (ρ? − ρL)(G′ΩqG)
2(ρ? − ρL)

≤ λmax(G
′ΩqG){(ρ? − ρL)G′ΩqG(ρ? − ρL)} ≤ Cs̄ε2n.

Combining the results above, we obtain

ε2n|Sρ?\Sρ̄| ≤ Cs̄ε2n.

Dividing both sides by ε2n gives |Sρ?\Sρ̄| ≤ Cs̄. As a result,

s? = |Sρ̄|+ |Sρ?\Sρ̄| ≤ s̄+ Cs̄ ≤ Cs̄.

�

Lemma B.4.6. LetB = E[b(Z)b(Z)′] has its largest eigenvalue bounded uniformly in n, then
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||α0 − b′ρ?||2 ≤ Cs̄ε2n.

Proof. By the triangle inequality and Assumption 8,

||α0 − b′ρ?||2 ≤ ||α0 − b′ρ̄||2 + ||b′(ρ̄− ρL)||2 + ||b′(ρL − ρ?)||2

≤ Cs̄ε2n + ||b′(ρ̄− ρL)||2 + ||b′(ρL − ρ?)||2.

Moreover, by the definition of ρ̄ and λmax(B) ≤ C,

||b′(ρ̄− ρL)||2 ≤ λmax(B)||ρ̄− ρL||2 ≤ Cs̄ε2n.

Also, by Lemma B.4.4,

||b′(ρL − ρ?)||2 ≤ λmax(B)||ρL − ρ?||2 ≤ Cs̄ε2n,

which completes the proof. �

Lemma B.4.7. If Assumptions 5–7 and 10 are satisfied, then

||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞ = Op(εn).

Proof. By the triangle inequality,

||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞ ≤ ||Ĝ′Ω̂qM̂ −G′ΩqM ||∞ (B.4.2)

+ ||G′ΩqM −G′ΩqGρ?||∞ (B.4.3)

+ ||(G′ΩqG− Ĝ′Ω̂qĜ)ρ?||∞. (B.4.4)

Consider the first element (B.4.2). Note that by the triangle inequality,

||Ĝ′Ω̂qM̂ −G′ΩqM ||∞ ≤ ||(Ĝ−G)′(Ω̂q − Ωq)(M̂ −M)||∞ (B.4.5)

+ ||(Ĝ−G)′Ωq(M̂ −M)||∞ (B.4.6)

+ ||G′(Ω̂q − Ωq)(M̂ −M)||∞ (B.4.7)

+ ||G′Ωq(M̂ −M)||∞ (B.4.8)

+ ||(Ĝ−G)′ΩqM ||∞ (B.4.9)

+ ||(Ĝ−G)′(Ω̂q − Ωq)M ||∞ (B.4.10)

+ ||G′(Ω̂q − Ωq)M ||∞. (B.4.11)

Now we will bound every term on the RHS of the inequality above. To do so, we will use
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the following matrix norm inequality from Caner and Kock (2018). For any q× p matrix A,
p× q matrix B, and q × q matrix F the following inequality holds

||BFA||∞ ≤ q||B||∞||F ||`∞ ||A||∞. (B.4.12)

We can use (B.4.12) to put an upper bound on (B.4.5),

||(Ĝ−G)′(Ω̂q − Ωq)(M̂ −M)||∞ ≤ ||Ĝ−G||∞||Ω̂− Ω||`∞ ||M̂ −M ||∞
= Op(ε

G
n )op(1)Op(ε

M
n ) = op(ε

2
n).

Moreover, notice that Assumptions 6 and 10 imply that ||G||∞ = O(1) and ||M ||∞ = O(1).
Using this fact and (B.4.12), we can bound the remaining terms (B.4.6)–(B.4.11),

||(Ĝ−G)′Ωq(M̂ −M)||∞ ≤ ||Ĝ−G||∞||Ω||`∞ ||M̂ −M ||∞ = Op(ε
G
n )O(1)Op(ε

M
n ) = Op(ε

2
n)

||G′(Ω̂q − Ωq)(M̂ −M)||∞ ≤ ||G||∞||Ω̂− Ω||`∞ ||M̂ −M ||∞ = O(1)op(1)Op(ε
M
n ) = op(ε

M
n )

||G′Ωq(M̂ −M)||∞ ≤ ||G||∞||Ω||`∞ ||M̂ −M ||∞ = O(1)Op(ε
M
n ) = Op(ε

M
n )

||(Ĝ−G)′ΩqM ||∞ ≤ ||Ĝ−G||∞||Ω||`∞ ||M ||∞ = Op(ε
G
n )O(1) = Op(ε

G
n )

||(Ĝ−G)′(Ω̂q − Ωq)M ||∞ ≤ ||Ĝ−G||∞||Ω̂− Ω||`∞ ||M ||∞ = Op(ε
G
n )op(1)O(1) = op(ε

G
n )

||G′(Ω̂q − Ωq)M ||∞ ≤ ||G||∞||Ω̂− Ω||`∞ ||M ||∞ = O(1)op(1) = op(1).

Collecting all the terms gives the upper bound for (B.4.2)

||Ĝ′Ω̂qM̂ −G′ΩqM ||∞ = Op(εn).

Next, by the triangle and Hölder’s inequalities,

||G′ΩqM −G′ΩqGρ?||∞ ≤ ||G′ΩqM −G′ΩqGρL||∞ + ||G′ΩqG(ρL − ρ?)||∞.

By Lemma B.4.2 and the fact that ρL are the population PGMM coefficients,

||G′ΩqM −G′ΩqGρL||∞ ≤ εn.

Moreover, by Lemma B.4.3,
||G′ΩqG(ρL − ρ?)||∞ ≤ εn.

Thus, using the results above,

||G′ΩqM −G′ΩqGρ?||∞ = O(εn).
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We are left with putting an upper bound on (B.4.4). By Hölder’s inequality,

||(G′ΩqG− Ĝ′Ω̂qĜ)ρ?||∞ ≤ ||G′ΩqG− Ĝ′Ω̂qĜ||∞|ρ?|1.

Moreover, by the triangle inequality,

||G′ΩqG− Ĝ′Ω̂qĜ||∞ ≤ ||(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)||∞
+ 2||(Ĝ−G)′(Ω̂q − Ωq)G||∞
+ ||(Ĝ−G)′Ωq(Ĝ−G)||∞
+ 2||(Ĝ−G)′ΩqG||∞
+ ||G′(Ω̂q − Ωq)G||∞.

Using (B.4.12), we can bound all the terms on the RHS of the inequality above,

||(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)||∞ ≤ ||Ĝ−G||∞||Ω̂− Ω||`∞ ||Ĝ−G||∞ = Op((ε
G
n )

2)op(1) = op((ε
G
n )

2)

2||(Ĝ−G)′(Ω̂q − Ωq)G||∞ ≤ 2||Ĝ−G||∞||Ω̂− Ω||`∞ ||G||∞ = Op(ε
G
n )op(1)O(1) = op(ε

G
n )

||(Ĝ−G)′Ωq(Ĝ−G)||∞ ≤ ||Ĝ−G||∞||Ω||`∞ ||Ĝ−G||∞ = Op((ε
G
n )

2)O(1) = Op((ε
G
n )

2)

2||(Ĝ−G)′ΩqG||∞ ≤ 2||Ĝ−G||∞||Ω||`∞ ||G||∞ = Op(ε
G
n )O(1) = Op(ε

G
n )

||G′(Ω̂q − Ωq)G||∞ ≤ ||G||∞||Ω̂− Ω||`∞ ||G||∞ = op(1)O(1) = op(1).

Collecting all the terms gives,

||(G′ΩqG− Ĝ′Ω̂qĜ)||∞ = Op(ε
G
n ).

Combining the result above with |ρ?|1 = O(1) yields

||(G′ΩqG− Ĝ′Ω̂qĜ)ρ?||∞ = Op(ε
G
n )O(1) = Op(ε

G
n ).

Collecting all the terms for (B.4.2)–(B.4.4) gives us the desired upper bound,

||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞ = Op(εn) +O(εn) +Op(ε
G
n ) = Op(εn).

�

Let φ2(s?) denote the population restricted eigenvalue from Assumption 9 at s = s?,

φ2(s?) = inf
{
δ′G′ΩqGδ

||δSρ?
||2

: δ ∈ Rp\{0}, |δSc
ρ?
|1 ≤ 3|δSρ?

|1, |Sρ? | ≤ s?
}
.

Next, let us introduce an empirical version of the condition above,

φ̂2(s?) = inf
{
δ′Ĝ′Ω̂qĜδ

||δSρ?
||2

: δ ∈ Rp\{0}, |δSc
ρ?
|1 ≤ 3|δSρ?

|1, |Sρ? | ≤ s?

}
.
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In the following Lemma we show that we can bound φ̂2(s?) from below, which will be
useful in the proof of Theorem 4.
Lemma B.4.8. If Assumptions 6 and 5 are satisfied, then

φ̂2(s?) ≥ φ2(s?)−Op(s?ε
G
n ).

Proof. The proof follows the proof of Lemma S3 in Caner and Kock (2018). By adding and
subtracting G and Ωq and the reverse triangle inequality,

|δ′Ĝ′Ω̂qĜδ| = |δ′(Ĝ−G+G)′(Ω̂q − Ωq +Ωq)(Ĝ−G+G)δ|

≥ |δ′G′ΩqGδ|

− |δ′(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)δ|

− |δ′(Ĝ−G)′Ωq(Ĝ−G)δ|

− |δ′G′(Ω̂q − Ωq)Gδ|

− 2|δ′(Ĝ−G)′(Ω̂q − Ωq)Gδ|

− 2|δ′(Ĝ−G)′ΩqGδ|.

The following inequality from Caner and Kock (2018) will help us bound the expression
above. For any q × p matrix A, p × q matrix B, q × q matrix F , and p × 1 vector x the
following inequality holds

|x′BFAx| ≤ q|x|21||B||∞||F ||`∞ ||A||∞. (B.4.13)

Using (B.4.13), we get

|δ′(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)δ| ≤ |δ|21||Ĝ−G||2∞||Ω̂− Ω||`∞
|δ′(Ĝ−G)′Ωq(Ĝ−G)δ| ≤ |δ|21||Ĝ−G||2∞||Ω||`∞

|δ′G′(Ω̂q − Ωq)Gδ| ≤ |δ|21||G||2∞||Ω̂− Ω||`∞
2|δ′(Ĝ−G)′(Ω̂q − Ωq)Gδ| ≤ 2|δ|21||Ĝ−G||∞||Ω̂− Ω||`∞ ||G||∞

2|δ′(Ĝ−G)′ΩqGδ| ≤ 2|δ|21||Ĝ−G||2∞||Ω||`∞ ||G||∞.
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Combining the terms gives

|δ′Ĝ′Ω̂qĜδ| ≥ |δ′G′ΩqGδ| (B.4.14)

− |δ|21||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞)

− |δ|21||G||2∞||Ω̂− Ω||`∞
− 2|δ|21||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞)

Recall, we have the restriction

|δSc
ρ?
|1 ≤ 3|δSρ?

|1 ≤ 3
√
s?||δSρ?

||

where the second inequality is Cauchy-Schwarz. Adding |δSρ?
| to both sides gives

|δ|1 ≤ 4
√
s?||δSρ?

|| ⇒ |δ|21
||δSρ?

||2
≤ 16s?. (B.4.15)

Divide (B.4.14) by ||δSρ?
||2 and use (B.4.15),

|δ′Ĝ′Ω̂qĜδ|
||δSρ?

||2
≥ |δ

′G′ΩqGδ|
||δSρ?

||2

− 16s?||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞)

− 16s?||G||2∞||Ω̂− Ω||`∞
− 32s?||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞).

Since |δ′G′ΩqGδ|
||δSρ?

||2 ≥ φ2(s?) for all δ satisfying |δSc
ρ?
|1 ≤ 3|δSρ?

|1, minimizing the LHS of the
inequality above over such δ yields

φ̂2(s?) ≥ φ2(s?)− an,

where

an = 16s?||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞)

+ 16s?||G||2∞||Ω̂− Ω||`∞
+ 32s?||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞).
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Using Assumptions 6 and 5 and Lemma B.4.1, we can put an upper bound on an as follows

16s?||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞) = 16s?Op((ε
G
n )

2)(op(1) +O(1)) = Op(s?(ε
G
n )

2)

16s?||G||2∞||Ω̂− Ω||`∞ = 16s?O(1)op(1) = op(s?)

32s?||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞) = 32s?Op(ε
G
n )O(1)(op(1) +O(1)) = Op(s?ε

G
n ).

Gathering the terms gives
an = Op(s?ε

G
n ),

which completes the proof. �

Proof of Theorem 4

As Ω̂ is positive definite, we can write

ρ̂L = argmin
ρ∈Rq

{||Ω̂1/2
q (M̂ − Ĝρ)||2 + 2λn|ρ|1}.

The minimizing property of ρ̂L implies

||Ω̂1/2
q (M̂ − Ĝρ̂L)||2 + 2λn|ρ̂L|1 ≤ ||Ω̂1/2

q (M̂ − Ĝρ?)||2 + 2λn|ρ?|1. (B.4.16)

First, observe that

||Ω̂1/2
q (M̂ − Ĝρ̂L)||2 − ||Ω̂1/2

q (M̂ − Ĝρ?)||2 = (M̂ − Ĝρ̂L)′Ω̂q(M̂ − Ĝρ̂L)− (M̂ − Ĝρ?)′Ω̂q(M̂ − Ĝρ?)

= ρ̂LĜ
′Ω̂qĜρ̂L − ρ?Ĝ′Ω̂qĜρ? − 2(Ĝ′Ω̂qM̂)′(ρ̂L − ρ?)

= (ρ̂L − ρ?)′Ĝ′Ω̂qĜ(ρ̂L − ρ?) + 2ρ′?Ĝ
′Ω̂qĜ(ρ̂L − ρ?)

− 2(Ĝ′Ω̂qM̂)′(ρ̂L − ρ?)

= ||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2

− 2(Ĝ′Ω̂qM̂ − Ĝ′Ω̂qĜρ?)
′(ρ̂L − ρ?).

Plug the expression above in (B.4.16) to get

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L|1 ≤ 2(Ĝ′Ω̂qM̂ − Ĝ′Ω̂qĜρ?)

′(ρ̂L − ρ?) + 2λn|ρ?|1
≤ 2||Ĝ′Ω̂qM̂ − Ĝ′Ω̂qĜρ?||∞|ρ̂L − ρ?|1 + 2λn|ρ?|1
= 2||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞|ρ̂L − ρ?|1 + 2λn|ρ?|1
= 2op(λn)|ρ̂L − ρ?|1 + 2λn|ρ?|1, (B.4.17)

where the second inequality is Hölder and the last equality comes from Lemma B.4.7 and the fact
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that εn = o(λn). Hence, with probability approaching one,

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L|1 ≤ 2λn|ρ̂L − ρ?|1 + 2λn|ρ?|1.

Next, note that |ρ̂L|1 = |ρ̂L,Sρ?
|1 + |ρ̂L,Sc

ρ?
|1 and |ρ?|1 = |ρ?,Sρ?

|1 as |ρ?,Sc
ρ?
|1 = 0. Therefore,

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L,Sc

ρ?
|1 ≤ 2λn|ρ̂L − ρ?|1 + 2λn(|ρ?,Sρ?

|1 − |ρ̂L,Sρ?
|1)

≤ 2λn|ρ̂L − ρ?|1 + 2λn|ρ̂L,Sρ?
− ρ?,Sρ?

|1,

where the second line comes from the reverse triangle inequality. Using that |ρ̂L − ρ?|1 = |ρ̂L,Sρ?
−

ρ?,Sρ?
|1 + |ρ̂L,Sc

ρ?
|1 gives

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + λn|ρ̂L,Sc

ρ?
|1 ≤ 3λn|ρ̂L,Sρ?

− ρ?,Sρ?
|1. (B.4.18)

The inequality in (B.4.18) implies λn|ρ̂L,Sc
ρ?
|1 ≤ 3λn|ρ̂L,Sρ?

−ρ?,Sρ?
|1 leading to |ρ̂L,Sc

ρ?
|1 ≤ 3|ρ̂L,Sρ?

−
ρ?,Sρ?

|1, meaning that the restricted eigenvalue condition is satisfied. Note that by Cauchy-Schwarz
inequality, |ρ̂L,Sρ?

−ρ?,Sρ?
|1 ≤

√
s?||ρ̂L,Sρ?

−ρ?,Sρ?
||. Using this along with the restricted eigenvalue

condition on (B.4.18) yields

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + λn|ρ̂L,Sc

ρ?
|1 ≤ 3λn

√
s?||ρ̂L,Sρ?

− ρ?,Sρ?
|| ≤ 3λn

√
s?
||Ω̂1/2

q Ĝ′(ρ̂L − ρ?)||
φ̂(s?)

.

Note that by AM-GM inequality,

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + λn|ρ̂L,Sc

ρ?
|1 ≤

1

2
||Ω̂1/2

q Ĝ′(ρ̂L − ρ?)||2 +
9

2

λ2ns?

φ̂2(s?)
.

Multiplying both sides by 2 and collecting terms gives

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L,Sc

ρ?
|1 ≤

9λ2ns?

φ̂2(s?)
. (B.4.19)

To get the `1-error bound, ignore the first term on the LHS of (B.4.18) and add λn|ρ̂L,Sρ?
− ρ?,Sρ?

|1
to both sides,

λn|ρ̂L − ρ?|1 ≤ 4λn|ρ̂L,Sρ?
− ρ?,Sρ?

|1.

By Cauchy-Schwarz inequality and the restricted eigenvalue condition,

λn|ρ̂L − ρ?|1 ≤ 4λn
√
s?||ρ̂L,Sρ?

− ρ?,Sρ?
|| ≤ 4λn

√
s?
||Ω̂1/2

q Ĝ′(ρ̂L − ρ?)||
φ̂(s?)

.

The bound on ||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 in (B.4.19) implies

|ρ̂L − ρ?|1 ≤
12λns?

φ̂2(s?)
.
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Next, by Lemma B.4.8 and εn = o(λn),

|ρ̂L − ρ?|1 ≤
12λns?

φ2(s?)− op(s?λn)
.

Focus on the RHS of the inequality,

Cλns?
φ2(s?)− op(s?λn)

=
C

φ2(s?)/(λns?)− op(1)
,

meaning that with probability approaching one,

|ρ̂L − ρ?|1 ≤
Cλns?
φ2(s?)

.

Moreover, applying the result of Lemma B.4.5 gives

|ρ̂L − ρ?|1 = Op(s̄λn). (B.4.20)

Finally, let α? = b(Z)′ρ?, then by the triangle inequality and Lemma B.4.6,

||α̂L − α0||2 ≤ ||α̂L − α?||2 + ||α? − α0||2 ≤ ||α̂L − α?||2 + Cs̄ε2n.

By Hölder’s inequality and (B.4.20),

||α̂L − α?||2 = (ρ̂L − ρ?)′B(ρ̂L − ρ?) ≤ ||B||∞|ρ̂L − ρ?|21 ≤ Op(s̄
2λ2n).

The conclusion comes from the fact that s̄2λ2n > s̄2ε2n ≥ s̄ε2n, where the second inequality is due to
s̄2 growing faster than s̄.

�

B.4.2. Asymptotic properties

Lemma B.4.9. If Assumptions 5–7 and 10 are satisfied and εn = o(λn), then

|ρ̂L|1 = Op(1).

Proof. Recall Equation (B.4.17) from the proof of Theorem 4 which implies

2λn|ρ̂L|1 ≤ 2op(λn)|ρ̂L − ρ?|1 + 2λn|ρ?|1.

Dividing both sides by 2λn and applying the triangle inequality gives

|ρ̂L|1 ≤ op(1)|ρ̂L − ρ?|1 + |ρ?|1 ≤ |ρ?|1 + op(1)(|ρ̂L|1 + |ρ?|1),
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which implies that with probability approaching one,

|ρ̂L|1 ≤ |ρ?|1 +
1

2
(|ρ̂L|1 + |ρ?|1).

Subtracting |ρ̂L|1/2 from both sides and multiplying by 2 gives with probability approaching one

|ρ̂L|1 ≤ 3|ρ?|1 = O(1).

�

Proof of Theorem 5

We prove the first conclusion by verifying the conditions of Lemma 15 of Chernozhukov, Escanciano,
Ichimura, Newey and Robins (2020). Let g(w, γ, α, θ) and φ(w, γ, α, θ) in Chernozhukov, Escanciano,
Ichimura, Newey and Robins (2020) be m(w, γ) − θ and α(z)[y − γ(x)] here, respectively. First,
E[ψ(Wi, γ0, α0, θ0)

2] <∞ follows from Assumption 11. Moreover, note that by Assumptions 11 and
12, Theorem 4, and the law of iterated expectations,∫

[φ(w, γ̂`, α0)− φ(w, γ0, α0)]
2F0(dw) =

∫
α2
0(z)[γ̂`(x)− γ0(x)]2F0(dw) ≤ C||T (γ̂` − γ0)||2

p−→ 0∫
[φ(w, γ0, α̂`)− φ(w, γ0, α0)]

2F0(dw) =

∫
[α̂`(z)− α0(z)]

2[y − γ0(x)]2F0(dw)

=

∫
[α̂`(z)− α0(z)]

2E[[y − γ0(x)]2|z]F0(dz)

≤ C||α̂` − α0||2
p−→ 0.

Also, it follows from Assumption 12 that∫
[m(w, γ̂`)−m(w, γ0)]

2F0(dw)
p−→ 0.

Thus, Assumption 1 of Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020) is satisfied.

Next, for each ` let

∆̂`(w) = φ(w, γ̂`, α̂`)− φ(w, γ0, α̂`)− φ(w, γ̂` α0) + φ(w, γ0, α0) = [α̂`(z)− α0(z)][γ̂`(x)− γ0(x)].

Since α0 is bounded by Assumption 11 and supz |α̂`(z)| = Op(1) by Lemma B.4.9,∫
∆̂2

`(w)F0(dw) =

∫
[α̂`(z)− α0(z)]

2[γ̂`(x)− γ0(x)]2F0(dw)

≤ Op(1)

∫
[γ̂`(x)− γ0(x)]2F0(dw)

p−→ 0,

where the conclusion follows from Assumption 12. Furthermore, by Cauchy-Schwarz inequality
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and Assumption 14,∣∣∣∣√n ∫ ∆̂`(w)F0(dw)

∣∣∣∣ = √n ∣∣∣∣∫ [α̂`(z)− α0(z)][γ̂`(x)− γ0(x)]F0(dw)

∣∣∣∣
=
√
n

∣∣∣∣∫ [α̂`(z)− α0(z)]E[γ̂`(x)− γ0(x)|z]F0(dz)

∣∣∣∣
≤
√
n||α̂` − α0|| ||T (γ̂` − γ0)|| = Op(n

1/2καnκ
γ
n)

p−→ 0,

which renders Assumption 2(iii) of Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020)
satisfied.

Also, by construction,∫
α̂`(z)[y − γ0(x)]F0(dw) = E[α̂`(z)E[y − γ0(x)]|z] = 0.

Sincem(w, γ) is affine in γ, it verifies Assumption 3 of Chernozhukov, Escanciano, Ichimura, Newey
and Robins (2020) is satisfied. As a result, we get the first conclusion.

To get the second conclusion, we need to show that V̂ is a consistent estimator of V . This part of
the proof is very similar to the proof of Theorem 5 in Chernozhukov, Newey and Robins (2020). We
start with

V̂ =
1

n

n∑
i=1

ψ̂2
i =

1

n

n∑
i=1

(ψ̂i − ψi)
2 +

2

n

n∑
i=1

(ψ̂i − ψi)ψi +
1

n

n∑
i=1

ψ2
i ,

hence, by re-arranging the terms and Cauchy-Schwarz inequality,

V̂ − V =
1

n

n∑
i=1

(ψ̂i − ψi)
2 +

2

n

n∑
i=1

(ψ̂i − ψi)ψi ≤
1

n

n∑
i=1

(ψ̂i − ψi)
2 + 2

√√√√ 1

n

n∑
i=1

(ψ̂i − ψi)2

√√√√ 1

n

n∑
i=1

ψ2
i .

(B.4.21)
Using the triangle inequality, for i ∈ I`,

(ψ̂i − ψi)
2 ≤ C

4∑
j=1

Rij = C

3∑
j=1

Rij + op(1),

where

Ri1 = [m(Wi, γ̂`)−m(Wi, γ0)]
2,

Ri2 = α̂2
` (Zi)[γ̂`(Xi)− γ0(Xi)]

2,

Ri3 = [α̂`(Zi)− α0(Zi)]
2[Yi − γ0(Xi)]

2,

Ri4 = (θ̂ − θ0)2.

The first conclusion implies Ri4
p−→ 0. Let I−` denote observations not in I`.
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By Markov’s inequality, for some δ > 0,

P

(
1

n

n∑
i=1

(ψ̂i − ψi)
2 > δ

)
≤

E
[
1
n

∑n
i=1(ψ̂i − ψi)

2
]

δ
.

Note that the cross-fitting allows us to write

E

[
1

n

n∑
i=1

(ψ̂i − ψi)
2

]
≤ E

C
n

L∑
`=1

∑
i∈I`

3∑
j=1

Rij

+ op(1) = C

L∑
`=1

n`
n

3∑
j=1

E[E[Rij |I−`]] + op(1).

Furthermore, by Hölder’s inequality and Assumption 6,

max
i∈I`
|α̂`(Zi)| ≤ |ρ̂L|1 max

i∈I`
||b(Zi)||∞ ≤ Cb|ρ̂L|1.

By Lemma B.4.9,
max

i
|α̂`(Zi)| = CbOp(Ān) = Op(1).

Then for i ∈ I` by Assumptions 11, 12, and iterated expectations,

E[Ri1|I−`] =

∫
[m(Wi, γ̂`)−m(Wi, γ0)]

2F0(dW )
p−→ 0,

E[Ri2|I−`] ≤ Op(1)

∫
[γ̂`(Xi)− γ0(Xi)]

2F0(dX)
p−→ 0,

E[Ri3|I−`] = E
[
E
[
[α̂`(Zi)− α0(Zi)]

2[Yi − γ0(Xi)]
2|Zi, I−`

]
|I−`

]
= E

[
[α̂`(Zi)− α0(Zi)]

2E[[Yi − γ0(Xi)]
2|Zi]|I−`

]
≤ C||α̂` − α0||2

p−→ 0.

As a result,
1

n

n∑
i=1

(ψ̂i − ψi)
2 p−→ 0.

Furthermore, E[ψ2
i ] <∞ by Assumptions 11 and 12. Thus, the conclusion follows from (B.4.21) and

the central limit theorem.

�

Proof of Lemma 4

The proof is similar to the proof of Lemma 10 of Chernozhukov, Newey and Robins (2020). We start
with defining

M̂` = (M̂`1, . . . , M̂`q)
′, M̂`j =

1

n− n`

∑
`′ 6=`

∑
i∈I`′

D(Wi, dj , γ̃`,`′),

M̄`(γ) = (M̄`1(γ), . . . , M̄`q(γ))
′, M̄`j =

∫
D(w, dj , γ)F0(dw).
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Note that M = M̄(γ0). Let Γ`,`′ = {||γ̃`,`′ − γ0|| ≤ ε}, and note that P(Γ`,`′)→ 1 for each ` and `′ by
Assumption 15. When Γ`,`′ occurs,

max
1≤j≤q

|D(W,dj , γ)| ≤ C

by Assumption 15. For i ∈ I`′ define

Tij(γ) = D(Wi, dj , γ)− M̄(γ), Uij(γ) =
1

n`′

∑
i∈I`′

Tij(γ).

Note that for any constant C̄ and the eventA = {max1≤j≤q |Uij(γ)| ≥ C̄εn}where εn =
√

log(q)/n,

P(A) = P(A|Γ`,`′)P(Γ`,`′) + P(A|Γc
`,`′)[1− P(Γ`,`′)] (B.4.22)

≤ P
(

max
1≤j≤q

|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
+ [1− P(Γ`,`′)].

Moreover,

P
(

max
1≤j≤q

|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
≤ q max

1≤j≤q
P
(
|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
.

Note that E[Tij(γ̃`,`′)|γ̃`,`′ ] = 0 for i ∈ I`′ . Furthermore, conditional on Γ`,`′ , for i ∈ I`′ ,

|Tij(γ̃`,`′)| ≤ 2C.

Hence, Tij is bounded. Similar to the proof of Lemma B.4.1, define K = 2C/ log 2 ≥ ||Tij ||Ψ2
. By

Hoeffding’s inequality (see Theorem 2.6.2 in Vershynin (2018)) and the independence of {Wi}i∈I`′

and γ̃`,`′ , there is a constant c such that

q max
1≤j≤q

P
(
|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
= qE

[
max
1≤j≤q

P
(
|Uij(γ̃`,`′)| ≥ C̄εn|γ̃`,`′

)∣∣∣∣Γ`,`′

]
≤ 2qE

[
exp

(
−c(n`

′C̄εn)
2

n`′K2

)∣∣∣∣Γ`,`′

]
≤ 2q exp

(
−cn`

′C̄2 log(q)
Ln`′K2

)
≤ 2 exp

(
log(q)

[
1− cC̄2

LK2

])
→ 0

for any C̄ > K
√
L/c. Let U`′(γ) = (U`′1, . . . , U`′q)

′. Then it follows from (B.4.22) that for large C̄,
P(|U`′(γ̃`,`′)| ≥ C̄εn)→ 0, meaning that ||U`′(γ̃`,`′)||∞ = Op(εn).

Next, for each ` by the triangle inequality we have,

||M̂` −M ||∞ ≤ ||M̂` − M̄(γ̃`,`′)||∞ + ||M̄(γ̃`,`′)−M ||∞.
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Furthermore, n− n` =
∑

`′ 6=` n`′ and

||M̂` − M̄(γ̃`,`′)||∞ =

∥∥∥∥∥∥M̂` −
∑
`′ 6=`

n`′

n− n`
M̄(γ̃`,`′)

∥∥∥∥∥∥
∞

≤
∑
`′ 6=`

n`′

n− n`
||U`′(γ̃`,`′)||∞ = Op(εn).

Also, by Assumption 15(ii) and P(Γ`,`′)→ 1 for each ` and `′,

||M̄(γ̃`,`′)−M ||∞ ≤

∥∥∥∥∥∥
∑
`′ 6=`

n`′

n− n`
[M̄(γ̃`,`′)−M ]

∥∥∥∥∥∥
∞

≤ C
∑
`′ 6=`

n`′

n− n`
||γ̃`,`′ − γ0|| = Op(κ

γ
n).

The conclusion follows from κγn being a slower rate than εn. �

Proof of Theorem 6

The proof is analogous to the proof of Theorem 5. We obtain the first conclusion by verifying the
conditions of Lemma 15 of Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020). First, it
follows from the proof of Theorem 5 that the conditions of Assumptions 1 and 2 of Chernozhukov,
Escanciano, Ichimura, Newey and Robins (2020) are satisfied.

Next, by Assumptions 16 and 17,

√
n|ψ̄(w, γ̂`, α0, θ0)| =

√
n

∣∣∣∣∫ [m(w, γ̂`)− θ0 + α0(z)[y − γ̂`(x)]]F0(dw)

∣∣∣∣
=
√
n

∣∣∣∣∫ [m(w, γ̂`)−m(w, γ0) + α0(z)[y − γ̂`(x)]]F0(dw)

∣∣∣∣
=
√
n

∣∣∣∣∫ [m(w, γ̂`)−m(w, γ0) + α0(z)[γ0(x)− γ̂`(x)]]F0(dw)

∣∣∣∣
=
√
n

∣∣∣∣∫ [m(w, γ̂`)−m(w, γ0)−D(w, γ0, γ̂` − γ0)]F0(dw)

∣∣∣∣
≤ C
√
n||γ̂` − γ0||2

=
√
nop((n

−1/4)2) = op(1).

Moreover, as in the proof of Theorem 5,∫
α̂`(z)[y − γ0(x)]F0(dw) = 0.

Thus, Assumption 3 of Chernozhukov, Escanciano, Ichimura, Newey and Robins (2020) is satisfied,
which combined with the results above gives us the first conclusion. The second conclusion follows
exactly as in the proof of Theorem 5. �
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APPENDIX C: Additional Details for Chapter 3

C.1. Data cleaning and aggregation details

C.1.1. Imputations

Data on product characteristics have a lot of missing observations in the type of sweetener
and caffeine level. We use the following heuristics to impute those values:

• TYPE OF SWEETENER:

– if the calorie level is ”REGULAR”, then the type of sweetener will be ”SUGAR”;

– if the calorie level is ”CALORIE-FREE”, then the type of sweetener will be ”
UNSWEETENED”;

– if the calorie level is diet and the flavor is not cola, then the type of sweetener
will be ”SWEETENER”.

• CAFFEINE INFO:

– if flavor is ”GRAPEFRUIT”, ”LEMON LIME”, ”NATURAL”, ”STRAWBERRY”,
”PINEAPPLE”, ”GRAPE”, ”FRUIT PUNCH”, it is ”CAFFEINE FREE”;

– if flavor is ”DEW” , ”PEPPER”, ”CHERRY COLA”, it is ”CAFFEINE”.

We also replace zero sales with ones and impute corresponding missing prices with the
average price of all other observed products in a particular store in a particular week.

C.1.2. Product characteristics aggregation

All product characteristics are categorical variables, to facilitate computations we group
product attributes into larger groups which can be coded up as dummy variables. We use
the following heuristics:

• FLAVOR/SCENT:

– cola (such as ”CHERRY COLA”, ”COLA WITH LEMON” and so on, basically
everything with ”COLA”)

– lemonade (such as ”LEMONADE”, ”LEMON LIME”, ”MANDARINE LIME”,
”CITRUS”, ”TANGERINE”, ”PUNCH”, etc.)
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– alcohol-free beer (such as ”ROOT BEER”,”BIRCH BEER”, etc.)

– berries (”STRAWBERRY”, ”RASPBERRY” , ”CHERRY”, etc.)

– fruit (fruity flavors except berries or lemon, such as ”PINEAPPLE”, ”GRAPE”,
”PEACH”, ”WATERMELON”, etc.)

– cream soda (”RED CREAM SODA”, ”CREAM SODA”, etc.)

– others

• CALORIE LEVEL:

– caffeine free and 55% caffeine free are considered caffeine free

– other beverages are considered to contain caffeine

• CAFFEINE LEVEL:

– calorie free and diet beverages are considered to be diet

– other beverages are considered to be regular

• TYPE OF SWEETENER:

– sugar free

– sweetener (non-saccharin): Nutra, aspartame, sucralose, splenda

– sugar and/or corn sweetener/syrup: contains all entries corresponding to corn
sweeteners and sugar/saccharin containing products

C.2. GNT basis functions

Here we present an idea behind the approximation strategy in GNT. We have a function
γ (ωjt) we need to approximate, where

ωjt =
(
ω′
j,1,t, . . . , ω

′
j,j−1,t, ω

′
j,j+1,t, . . . , ω

′
j,J,t

)′
is a vector representing the “state” of product j in market t (the shares and product charac-
teristic differences with respect to the rivals in the same market). Given the vector symmet-
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ric theory underlying demand across markets, without loss of generality we can express

γ (ωjt) = g (F (ωjt))

where F is the empirical distribution of the variables in ωjt.

An approximation strategy for γ can be structured as following. For simplicity, write Fjt =

F (ωjt) and let us approximate the distribution Fjt by a finite set of momentsm1 (Fjt) , . . . ,

mL (Fjt). Then our approximation to γ can be expressed as

γ (ωjt) ≈ g (m1 (Fjt) , . . . ,mL (Fjt)) .

There are two issues we need to resolve to implement this approximation:

1. The choice of moments m1 (Fjt) , . . . ,mL (Fjt)

2. The choice of a predictive function g

Let us first deal with the choice of ml, l = 1, . . . , L. Let us define Mjt (τ) as the MGF
associated with Fjt, where τ =

(
τ1, . . . , τdx2+1

)
and dx2 is the dimension of x(2). Then

define the moment

mjt
p1,..., pdx2+1

=
∂p1+...pdx2+1

∂tp11 . . . ∂t
pdx2+1

dx2+1

Mjt(τ)

∣∣∣∣∣∣
τ=0

.

This class of moments is defined by the multi-index p1, . . . pdx2+1 for pk ∈ Z+. We can define
the set of nth order moments to be

Bjt
n =

mjt
p1,..., pdx2+1

:

dx2+1∑
k=1

pk = n and n ≥ 2 and p1 > 0 and ∃k > 1 s.t. pk > 0

 .

Observe that we restrict shares which are the first dimension of the state vector ωjt to never
enter with a zero power, e.g., each moment has some interaction with shares. In addition,
shares must interact with at least one dimension of differentiation. Then the set of moments
entering the nth order approximation for each t is

n⋃
i=2

Bjt
i

The choice of g can be determine by any functional form that allows for a flexible ap-
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proximation from the predictors m1 (Fjt) , . . . ,mL (Fjt), such as polynomials, B-splines,
wavelets, etc.

We use the idea above to construct b(zjt) and d(ωjt)dictionaries. We use 3rd order moments
to construct b(zjt) and 2nd order moments to construct d(ωjt). Then we construct quadratic
polynomials with interaction terms based on these moments, which gives p = 405 and
q = 594.
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