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ABSTRACT 

 
STATE TRANSITIONS WITHIN THE CORTEX ARE STRONGLY INFLUENCED BY 

LOCAL INTERACTIONS UNDER GENERAL ANESTHESIA 

Brenna Shortal 

Alex Proekt 

 
General anesthetics are a class of drugs with diverse molecular mechanisms that cause 

a state of unconsciousness. Generally, anesthetics are thought to exert this effect by co-

opting endogenous sleep pathways within the brain, and activity patterns recorded 

during anesthesia resemble those recorded during natural sleep. Monitors of anesthetic 

depth take advantage of the relationship between brain activity patterns and anesthetic 

concentration to define a depth of exposure. Recovery from anesthetic-induced 

unconsciousness is typically assumed to be a passive, linear process that relies upon 

elimination of drug from the body. However, it has been shown that activity patterns 

undergo discrete transitions between several distinct brain states under anesthesia. 

Furthermore, the brain exhibits a resistance to recovery of consciousness during 

emergence from anesthesia. Together, these results show that emergence cannot be 

explained by drug elimination alone. 

 
In this dissertation, we present evidence to suggest that stochastic fluctuations between 

distinct brain states account for this resistance to emergence. Furthermore, we show 

evidence to suggest that local cortical interactions are the principal organizing 

mechanism that gives rise to the brain states and state transitions recorded under 

general anesthesia. This mechanism is distinct from those known to drive state 

transitions during natural sleep. During sleep, broadly projecting modulatory pathways 
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engage neurons throughout the thalamocortical network in coherent activity patterns and 

state transitions. Here, we demonstrate local heterogeneity in activity patterns and 

transition times within the cortex. Furthermore, our results indicate that, despite there 

being only weak coupling between activity patterns and transition times between 

different cortical regions, this coupling is sufficient to give rise to global brain states. 

 
Altogether, the work presented in this dissertation indicates that the nature of oscillations 

within the cortex is strongly influenced by local interactions. This finding suggests that 

the mechanisms thought to give rise to state transitions during sleep are not the same as 

those that give rise to transitions under anesthesia. This finding that local interactions 

are potentially a stronger organizing mechanism for cortical activity than previously 

appreciated has important implications for anesthetic monitoring, clinical sleep disorders, 

and our basic understanding of thalamocortical activity patterns.  
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PREFACE 

The question of the nature of consciousness has fascinated humanity for millennia. 

Modern scientific research has provided ample evidence to support the idea that 

consciousness is created by the brain itself. Sensory neuroscientists have defined 

intricate brain circuits that allow the us to sense, interpret, and respond to the world 

around us. Sleep and circadian neuroscientists have defined the circuits and chemical 

signals that drive sleep and wake behaviors and those that shepherd the brain between 

dream sleep, the various stages of deep sleep, and wakefulness at the end of the night. 

Computational neuroscientists have even generated models for how the brain performs 

complex problem-solving tasks. Along the way, the field has grown to include scientists 

from disciplines ranging from philosophy to physics. 

Despite all this research and the high level of interest, the field still cannot define exactly 

what consciousness is. What is it to be me as opposed to what it is to be you? How do 

the circuits characterized by different subdisciplines of neuroscience work together to 

give rise to one single, cohesive conscious experience? The answers to these questions 

are not in reach quite yet, but there is evidence to suggest that consciousness is the 

result of an intentionally organized network within the brain. Specifically, this evidence 

comes from the fact that the brain is able to reassemble its own form of consciousness 

after perturbation. Whether it’s because of sleep, trauma, seizures, coma, or anesthesia, 

any number of things can render the brain unconscious. However, the vast majority of 

the time, an individual regains consciousness to find that they are the same person as 

they were before losing consciousness. This suggests that the networks within the brain 

that allow for conscious awareness are able to reassemble themselves after being 

disrupted. 
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General anesthesia profoundly disrupts consciousness and is able to render the 

recipient so deeply unconscious that they do not respond to or remember stimuli 

including pain associated with surgery. Despite this, the vast majority of anesthetic 

exposures are uneventful, and the patient returns to normal soon after drug delivery 

stops. As a result, it is typically assumed that recovery of consciousness following 

anesthetic exposure is a passive process reliant only on the elimination of drug from the 

body. This theory posits that the deepest level of anesthesia reached by an individual 

sets a starting point for recovery. Once drug delivery stops, the body metabolizes drug 

and consciousness is restored. The latency to emergence is typically thought to depend 

only on how deep this starting point is and how quickly the drug is metabolized. 

However, work presented in this thesis demonstrates that, in humans, knowing the 

starting point of recovery of consciousness for an individual does not provide information 

about how long it will take them to emerge. Furthermore, it has been shown in various 

animal models that the brain resists the transition from anesthetic-induced 

unconsciousness to consciousness. These data demonstrate that the process of 

emerging from anesthesia is not passive and relies on reorganization of neural networks 

within the brain. The precise mechanisms are not yet understood, but recent work 

suggests that they are highly structured. 

Work in rodents, non-human primates, and humans has shown that activity patterns in 

the brain fluctuate across time, even if the concentration of drug being administered 

remains the same. Specifically in rats, it has been shown that these fluctuations are not 

random and, in fact, undergo discrete transitions between distinct, stable brain states on 

a timescale that is similar to switching between stages of sleep in rats. While the same 

activity patterns may appear during exposure to different concentrations of anesthesia, 
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the probability of seeing any one state changes as a function of concentration. 

Additionally, the activity patterns observed during these brain states under anesthesia 

are reminiscent of those recorded during sleep. These activity patterns have known 

neuronal mechanisms. Each of them is generated by the thalamocortical network via the 

dense, reciprocal connectivity between the cortex and thalamus. 

Anesthesia and sleep are not the same. However, anesthesia is known to act by 

modulating endogenous sleep/wake circuitry. Specifically, anesthetics have been found 

to suppress wake-active neuronal populations and activate sleep-active populations. 

Additionally, it has been shown that anesthesia-induced unconsciousness can be 

disrupted via activation of the brain’s endogenous arousal circuits. Taken together, these 

findings suggest that perhaps similar mechanisms are driving the organization and 

timing of transitions between the states recorded during anesthesia and those that occur 

naturally during sleep. 

During sleep, recordings from anywhere in the cortex reveal neurons firing together in 

coordinated bursts of activity. The specific characteristics of this rhythmic activity depend 

on various currents and chemical signals in the thalamocortical network, but transitions 

between states are discrete. Once there is a shift between the relative influence of these 

various drivers, the network transitions and a new state is imposed broadly throughout 

the cortex. These transitions occur almost simultaneously throughout the cortex as a 

result of the extensive innervation of the cortex by the thalamus and hypothalamic 

arousal nuclei. 

Additionally, this thesis presents data addressing whether similar mechanisms drive the 

state transitions observed during anesthesia. Experiments presented here were 
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designed to test whether the state transitions occur simultaneously throughout the 

cortex. If they do, this provides evidence for the hypothesis that state transitions under 

anesthesia are imposed upon the cortex by subcortical structures in a similar fashion to 

sleep states. Alternatively, if transitions do not occur simultaneously throughout the 

cortex, this suggests that brain states and state transitions under anesthesia are 

organized via local interactions between neurons within the cortex. 

The work presented in this thesis has important implications for anesthesia and sleep. A 

better understanding of the mechanisms that give rise to state transitions under 

anesthesia has clear application to clinical anesthesia during which anesthesiologists 

must work within a narrow margin error between anesthetic overdose which is 

associated with respiratory depression or cognitive decline and underdosing which 

leaves the patient susceptible to intraoperative awareness. A more nuanced 

understanding of the relationship between brain state and likelihood to recover 

consciousness could help anesthesiologists better anticipate potential issues before they 

arise. In addition, there is a class of disorders characterized by inappropriate or 

incomplete transitions between sleep and wake: the parasomnias. A better 

understanding of the local dynamics capable of organizing brain states and state 

transitions could offer insight into the mechanisms that underlie parasomnias. 

Finally, work in rats has shown that, in the context of sleep deprivation, spatially 

restricted populations of neurons are capable of entering a sleep-like state during 

behavioral wakefulness. The more areas that enter this sleep-like state, the worse 

performance in a behavioral assay of coordination becomes. This suggests that local 

sleep behavior could be a potential mechanism of drowsiness.  It has also been shown 

in rats that spatially restricted areas of cortex are capable of supplementing for sleep 
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need in a use-dependent fashion. Together, these data suggest that our current 

understanding of sleep and wake states as homogenously expressed throughout the 

brain is incomplete. Local interactions between cortical regions may also be an essential 

mechanism underlying natural sleep and wake behavior that have previously been 

underappreciated. 



CHAPTER 1 – General Introduction  

This general introduction offers essential background information related to the work and 

interpretations presented in this thesis. It is divided into five sections outlined briefly 

here. (1) Anesthetic mechanisms and monitoring: This section offers a brief overview of 

how anesthetic drugs exert their influence over the central nervous system. It begins 

with an explanation of how anesthetic drugs affect brain activity patterns and how that 

effect is used to define anesthetic depth. The section continues with a discussion of the 

anesthetic drugs’ cellular mechanisms of action. (2) Generation of rhythmic activity 

patterns: This section begins with an explanation of how brain activity patterns are 

recorded and the pros and cons of different methods. Then, it gives an overview of the 

known mechanisms that give rise to oscillatory activity patterns in the brain with special 

attention paid to several oscillations that will be discussed in later chapters. (3) State 

transitions under general anesthesia: This section covers work demonstrating that there 

are discrete transitions between distinct activity patterns under general anesthesia. (4) 

Mechanisms known to drive cortical state transitions: This section covers what is 

currently known about major neuronal processes that give rise to state transitions in the 

context of sleep and wake. Then, it covers the central question that motivated my work 

presented in Chapter 2. (5) Neural inertia and the resistance to state transitions: This 

section offers an overview of research showing that the brain resists the transition to 

consciousness following anesthesia and the implications for this finding. From there, it 

draws a connection between my work presented in Chapters 2 and 3. 
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Anesthetic mechanisms and monitoring 

Anesthetics cause slowing of the EEG 

During light anesthesia, the electroencephalogram (EEG) is dominated by relatively low-

amplitude, high frequency activity. As the anesthetic dose increases, there is a 

progressive increase in amplitude coupled with a reduction of power in the higher 

frequency bands and more power concentrated near or below 1 Hz (Hagihira, 2015). 

Thus, higher doses of anesthesia cause the EEG to slow. At the deepest planes of 

anesthesia, burst suppression and even isoelectric, flat signals are observed. Burst 

suppression is a signal composed of transient periods of high-voltage slow waves and 

intervening periods of suppression which is characterized by little to no voltage 

fluctuations (Mircea Steriade et al., 1994).  The next section offers an overview of the 

molecular mechanisms through which anesthetic drugs are thought to cause these 

effects. 

Anesthetic mechanisms of action 

The use of medicinal agents to blunt awareness dates back to at least 3400 BC. Ancient 

examples include herbal remedies, alcohol, and opium poppies. The earliest written 

evidence of opium and alcohol being used for their sedative properties comes from 

Mesopotamia (Al Ansari et al., 2019; Brook et al., 2017). Ancient Egyptian doctors used 

surgical equipment and are thought to have used the mandrake fruit to produce a tonic 

to cause a state of anesthesia (Pahor, 1992; Sullivan, 1996). Even later, substances 

such as cannabis and wolf’s bane were used in ancient India and China to induce an 

anesthesia-like state (Brand and Zhao, 2017; Zhao et al., 2018). Anesthesia, as it is 

known today, was first used in 1846 by Dr. William T. G. Morton in the Massachusetts 

General Hospital Ether Dome. He used the general anesthetic ether to induce and 
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maintain a state of anesthesia to allow for a painless tooth extraction (Larson, 1965). 

Today, millions of Americans are given general anesthesia each year (Rose et al., 

2015). However, the field is still far from understanding how anesthetic agents lead to 

loss of consciousness and how consciousness is reinstated after exposure (Mashour et 

al., 2005; Mashour, 2006a). 

In the 19th century and up through much of the 20th, anesthetics were thought to work by 

disrupting cell membranes in the brain (Seeman, 1972). However, in the years since, the 

field has learned that the mechanisms of anesthetic action are more complicated than 

that. Specifically, much more is known now about how different anesthetic agents work 

at the molecular level. In general, anesthetics work by enhancing inhibitory activity and 

suppressing excitatory activity in the brain. That said, anesthetics, as a class of drugs, 

have diverse molecular targets, and even individual agents bind to many receptors 

throughout the central nervous system (CNS) (Mashour et al., 2005). Despite the vast 

heterogeneity of binding, a few receptors have been identified as especially relevant to 

anesthetics’ ability to cause sedation, amnesia, and hypnosis. 

The most extensively studied of these is the GABAA receptor which is affected by nearly 

every anesthetic agent (Bai et al., 1999; Garcia et al., 2010). The mechanisms through 

which different anesthetic agents interact with this receptor vary, but these mechanisms 

conspire to cause an increased probability of channel opening and slow channel 

desensitization. Together, these actions enhance inhibition within the brain via the 

increased activity of the synaptic and extrasynaptic GABAA receptors (Bai et al., 1999; 

Hemmings et al., 2005). In addition to GABAA receptors, several other ligand-gated 

channels are thought to be potential molecular targets for anesthetic agents’ effects on 

the CNS. Like GABA, glycine is an inhibitory neurotransmitter. Glycine receptors are 
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potentiated by many inhaled anesthetics (Zhang et al., 2003). This potentiation of 

inhibitory signaling has been implicated in anesthetic-induced immobility (Zhang et al., 

2003). 

The previous paragraph highlighted some of the inhibitory neurotransmitter receptors 

that bind anesthetics. Other neurotransmitter receptors also bind anesthetics, but these 

receptors tend to be inhibited rather than potentiated. Serotonin (5-HT3) has receptors 

distributed throughout the nervous system (Jackson and Yakel, 1995). These receptors 

have been shown to be inhibited by several anesthetic agents including pentobarbital 

(Barann et al., 1997) and propofol (Barann et al., 2000). The effect of anesthesia on the 

5-HT3 receptors is thought to contribute to peripheral nociception (Jackson and Yakel, 

1995). Nicotinic acetylcholine receptors are also widely distributed throughout the 

nervous system, and they are generally inhibited by anesthetic agents (Tassonyi et al., 

2002). Their inhibition is thought to contribute to anesthetic amnesia, inattentiveness, 

and delirium (Tassonyi et al., 2002). Glutamate is the major excitatory neurotransmitter 

in the brain (Hudspith, 1997). Anesthetic agents are thought to inhibit glutamate 

receptors and cause myriad downstream affects related to anesthetic actions within the 

CNS (Hudspith, 1997). In particular, the anesthetic agent ketamine is thought to work, in 

large part, via inhibition of the glutamatergic NMDA receptor which is thought to 

preferentially alter NMDA receptor function on interneurons (Li and Vlisides, 2016). In 

addition to interneurons, NMDA receptors on cortical pyramidal cells are also 

suppressed by anesthetics which leads to a reduction in cortical coherence and gamma 

activity (Li and Vlisides, 2016). 

In addition to these ligand-gated ion channels, anesthetics have well-known effects on 

voltage-gated ions channels. Tandem two-pore potassium (K2P) channels are widely 
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expressed throughout the CNS and the peripheral nervous system (Steinberg et al., 

2015). Anesthetic drugs, especially halogenated volatile anesthetics like isoflurane, 

promote opening of K2P channels which enhance potassium ion currents and contribute 

to hyperpolarization of cell membranes and a reduction in neuronal excitability 

(Steinberg et al., 2015). Hyperpolarization-activated cyclic nucleotide-gated (HCN) 

channels are weakly selective for potassium and sodium ions and are activated by 

hyperpolarization, rather than depolarization (Goldstein, 2015). Upon activation, HCN 

channels conduct an inward current, Ih, which modulates the neuronal membrane 

potentials and contributes to subthreshold excitability. In this way, Ih is involved in 

regulating rhythmic oscillations in the nervous system (Goldstein, 2015). The anesthetic 

drug propofol preferentially inhibits Ih in cortical pyramidal cells which have relatively fast 

activation kinetics for HCN channels (Chen et al., 2005). This inhibition causes a 

hyperpolarizing shift in the membrane potential of cortical pyramidal cells (Chen et al., 

2005). Presynaptic voltage-gated sodium channels are also targeted by some general 

anesthetics (Herold and Hemmings Jr., 2012). Volatile anesthetic drugs inhibit these 

channels thereby causing a reduction in evoked neurotransmitter release in the affected 

synapses (Herold and Hemmings Jr., 2012). Glutamate release is selectively inhibited 

which contributes to reduced excitatory transmission and CNS depression (Herold and 

Hemmings Jr., 2012). A variety of both inhaled and intravenous anesthetics have also 

been shown to modulate the activity of voltage-gated calcium channels (Hao et al., 

2020). Generally, anesthetics lead to reduced neurotransmitter release via inhibition of 

voltage-gated calcium channels (Hao et al., 2020). However, it is not completely clear 

whether this reduction in neurotransmitter release is a direct of anesthetic inhibition of 

voltage-gated calcium channels (Hao et al., 2020). 
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The mechanisms reviewed here are only a brief overview of what is a rapidly expanding 

field. Anesthetic drugs do have specific molecular targets, but they can bind to many of 

them simultaneously and likely have additional targets that are yet unknown. Generally, 

anesthetic agents seem to work in the CNS to enhance inhibitory signaling while also 

suppressing excitatory signaling. Together, these effects cause profound changes in the 

patterns of brain activity during anesthesia, relative to wakefulness. 

Monitoring anesthetic depth 

Monitor of anesthetic depth take advantage of this relationship between the frequency 

characteristics of the electrophysiological recordings and anesthetic concentration. They 

rely heavily on metrics related to signal characteristics of EEG to assign a single output 

metric to describe anesthetic depth. For example, the bispectral index (BIS) is a 

statistically based, empirically generated complex parameter derived from a combination 

of time, frequency, and higher order bispectral features of EEG signals (Kaul and Bharti, 

2002). The output of BIS is a single variable that defines the depth of sedation and 

hypnosis caused by an anesthetic agent, regardless of which agent was used (Kaul and 

Bharti, 2002). Values for the BIS output ranges from 100 (wakefulness) to 0 (isoelectric, 

or completely flat EEG) and correlate well with the level of responsiveness, thereby 

giving a good prediction of depth of anesthesia for various agents (Rampil et al., 1980). 

Emergence as a progression through states of synchrony to desynchrony 

When delivery of the anesthetic agent stops, the brain must reassemble its disrupted 

networks and achieve emergence to conscious awareness. Through this process, 

activity recorded from the brain progresses through activity patterns that are increasingly 

desynchronized, starting from the deepest point reached during anesthetic exposure. 
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This process has classically been conceptualized as a passive, steady bubbling up from 

the starting point to a state that is desynchronized enough to allow for consciousness. 

 

Generation of rhythmic cortical activity patterns  

Origins of electrophysiological signals  

Scientists have been recording brain activity using electrophysiological recordings since 

Hans Berger invented the EEG in 1929 (Millett, 2001; Nunez and Srinivasan, 2006; 

Schomer and Lopes da Silva, 2018). EEG is recorded using electrodes placed on the 

surface of the head. The voltage fluctuations that give rise to an EEG signal are tiny (on 

the order of several hundred µV) and the fact that they must pass through protective 

tissue layers surrounding the brain, the skull, and the scalp means that EEG signals are 

attenuated and spatially smoothed, relative to the originating neuronal activity. As a 

result of this spatial smoothing and signal attenuation, more modern studies of neuronal 

circuits and cellular mechanisms employ recording techniques that place electrodes 

close to the neurons themselves. Electrocorticography (ECoG) is recorded using 

subdural electrodes placed on the cortical surface (Buzsáki et al., 2012). Local field 

potentials (LFP) are recorded using penetrating electrodes that are inserted into the 

brain (Buzsáki et al., 2012). Therefore, the voltage fluctuations recorded via LFP reflect 

the extracellular field created by the neurons within a relatively small area of tissue near 

the electrode. Unlike intracellular recordings, extracellular recordings like LFPs cannot 

be used to study cellular specific ionic mechanisms such as those described in the 

previous section. However, they allow for the study of populations of neurons rather than 

just one or two neurons at a time. 
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Extracellular recordings are conventionally split into two signals based on frequency. 

The higher frequency components of the signal reflect spikes and multiunit activity. The 

lower frequency components (typically < 200 Hz) constitute the LFP. Given that LFP 

signals are comprised mainly of the extracellular voltage fluctuations, they can be 

interpreted as representing the inputs to a particular area of brain tissue (Buzsáki et al., 

2012). While many processes contribute to the signal characteristics of the LFP, the two 

main factors are the inputs to the area of brain being recorded and the biophysics of that 

area related to the neural architecture. 

Temporally synchronous input to a population of neurons contributes significantly to the 

LFP because it causes large fluctuations in membrane potentials across the population 

(Buzsáki et al., 2012). This is because all simultaneous voltage fluctuations in an area 

sum up and together contribute to the extracellular field. If a population of cells is firing 

randomly, the positive and negative voltage fluctuations will effectively cancel out. This is 

why the amplitude of cortical electrophysiological signals is small during wakefulness 

when the cortex is engaged in many different tasks simultaneously and firing is 

asynchronous. If a population of neurons is depolarizing and hyperpolarizing in 

synchrony, those voltage changes combine to generate high-amplitude signals in the 

LFP. In fact, power in the different frequency components of the LFP generally follow a 

power law wherein power is approximately 1/f2 where f is the frequency band (Miller et 

al., 2009; Milstein et al., 2009). This relationship is related to physical properties of the 

dendrites. Modeling studies have shown that an extracellular signal detected in the distal 

dendrite following high-frequency stimulation is attenuated 100-fold at the soma, while 

slower signals are attenuated much less (Gold et al., 2006; Lindén et al., 2010; 

Pettersen et al., 2008). In addition to spatial attenuation, network feature also contribute 
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to the power law features of LFP spectral estimates. This is due to the fact that it is more 

likely that many neurons will be recruited to contribute synchronously to the LFP at a 

lower frequency when the duration of each phase of the oscillation is longer than at a 

faster frequency when the phases of the oscillation are very short (Buzsáki et al., 2012). 

The physical features of neurons and their physical arrangement in different brain 

regions also affect the extracellular fields that they generate. The cortex is composed 

mainly of pyramidal cells which have thick apical dendrites that generate strong dipoles 

with considerable separation between the poles (Buzsáki et al., 2012). As a result, 

pyramidal cells can generate huge ionic flow in the extracellular space and contribute 

substantially to the extracellular field (Buzsáki et al., 2012). In contrast, thalamocortical 

cells have a rounder shape with equally sized dendrites reaching in all directions. As a 

consequence of this geometry, thalamocortical cells make small contributions to the 

extracellular potential, relative to pyramidal cells (Lorente de Nó and Davis, 1947). In 

addition to their physical shape, the spatial arrangement of cortical pyramidal cells 

leaves them well-suited to generate large extracellular potentials. They are arranged so 

that they lie parallel to one another with their apical dendrites positioned so that the 

afferent inputs are perpendicular to the dendritic axis (Buzsáki et al., 2012). This 

arrangement is ideal for synchronously active dipoles which pyramidal cells often 

generate, especially during sleep and anesthesia. As a result, LFP signals from the 

cortex are the largest anywhere in the brain (Buzsáki et al., 2012). 

Taken together, these mechanisms contribute to the generation of the extracellular field 

which is reflected in the LFP. LFP signals recorded under anesthesia and those 

recorded during wakefulness look markedly different from one another. As was 

mentioned earlier on, anesthetics cause slowing of electrophysiological signals by 
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suppressing excitatory signaling and enhancing inhibition. Higher concentrations of 

anesthesia are associated with slower, more synchronized signals, and emergence from 

anesthesia is characterized by the progression from states of synchrony to states of 

increasing desynchrony. The following sections present an overview of what is known 

about the circuits that generate the different kinds of oscillations recorded from the 

anesthetized brain. 

Thalamocortical network 

Under general anesthesia, cortical activity patterns tend to take on one of several 

different stereotyped oscillation patterns. These oscillations are generated by the 

thalamus and cortex which share dense, reciprocal connections (Mircea Steriade et al., 

1993a). In this section, some of the key architectural features and connections that allow 

the thalamocortical network to generate these patterns will be discussed. 

The cortex is where higher-order cognitive processes take place. It is organized into 

layers, the general purpose of which seems to be to generate a scaffold that constrains 

the ways in which different neurons are able to connect to one another (Rodney J. 

Douglas and Martin, 2004). Each layer is characterized by its inputs and outputs as well 

as whether it is comprised of mainly pyramidal cell bodies or their dendrites (Rodney J 

Douglas and Martin, 2004). The thalamus is the major relay center within the brain for 

information entering from the outside world (Mircea Steriade et al., 1993a). It is a 

collection of different nuclei which are primarily composed of excitatory neurons that do 

not have many excitatory reciprocal connections between themselves. Instead, thalamic 

nuclei send dense excitatory projections to the cortex (Halassa and Sherman, 2019). 

Classic literature divides thalamic nuclei based on their histological features into several 

groups: lateral nuclear group, medial nuclear group, and anterior nuclear group (Halassa 
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and Sherman, 2019). Each of the nuclei within these groups has a body of associated 

literature that aims to ascribe a functional output to it. While these histological 

distinctions are associated with function to some degree, it is clear that distinct nuclei are 

more often than not involved in several circuits each with their own functional output 

(Rikhye et al., 2018). 

Another way to classify thalamic regions is to do so based on the thalamocortical 

projections leaving an area (Jones, 2001). Jones splits the thalamocortical cells into two 

populations of neurons which he refers to as the “matrix” and “core” (Jones, 2001). 

Matrix neurons dominate the central thalamic nuclei and send sparse, diffuse projections 

to superficial cortical layers (Jones, 2001). The superficial cortical layers are layers I and 

II/III. Layer I is composed mainly of the distal tufts of cortical pyramidal cells dendrites 

whose bodies are in layers III and V (Rodney J Douglas and Martin, 2004). This layer 

contains long-range projections between cortical neurons and is one major target of 

feedback connections between different cortical regions (Rodney J Douglas and Martin, 

2004). Layer II/III is composed of pyramidal cell bodies that make extensive short-range 

arborizations, forming a network of corticocortical connections within this layer (Jones, 

2009). Given the fact that matrix cells innervate cortical regions involved in both close- 

and long-range corticocortical communication, these neurons are well-suited to influence 

activity patterns throughout the cortex. Matrix neurons themselves are heavily innervated 

by the brainstem arousal nuclei which has been shown to be responsible for initiating 

desynchronized activity patterns during the transition from sleep to wake (Moruzzi and 

Magoun, 1949). 

Core neurons have more spatially restricted and dense projections coming mainly from 

the lateral geniculate nucleus to innervate cortical layer IV (Jones, 2001). In the cortex, 
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layer IV is typically considered the principal input layer for projections from the thalamus 

(Jones, 2009). Layer IV sends excitatory projections to the superficial cortical layers 

(Gilbert and Wiesel, 1983; Gilbert, 1992). In turn, superficial layers send projections to 

layer V (Gilbert and Wiesel, 1983; Gilbert, 1992). Layer V has dense, lateral 

corticocortical connections and sends projections that drive activity in subcortical 

structures such as the basal ganglia and ventral spinal cord, superficial cortical layers, 

and layer VI (Rodney J Douglas and Martin, 2004). Layer VI sends projections back to 

thalamus to allow for cortical influence over thalamic activity (Gilbert and Wiesel, 1983; 

Gilbert, 1992). 

This section so far has discussed a very brief overview of the key excitatory connections 

between the cortex and thalamus. It is essential to acknowledge that there are caveats 

and additional connections not discussed here that exist within this network (Fitzpatrick, 

1996; Fitzpatrick and Raczkowski, 1990; Hirsch et al., 1998; Katz, 1987; Lund et al., 

1979; Martin and Whitteridge, 1984; Muly and Fitzpatrick, 1992; Usrey et al., 1992; 

Usrey and Fitzpatrick, 1996). In addition to these excitatory connections, inhibition is 

critical for the proper functioning of the thalamocortical network. This inhibition comes 

mainly from the thalamic reticular nucleus which projects principally to the dorsal 

thalamic nuclei (Crabtree, 1996; Crabtree et al., 1998; Hale et al., 1982; Harris, 1987; 

Jones, 1975; Pinault et al., 1997, 1995; Pinault and Deschênes, 1998; Steriade and 

Deschenes, 1984; Velayos et al., 1989). The reticular thalamus receives input from both 

the cortex and the thalamus but sends projections only to the thalamus (Bourassa and 

Deschênes, 1995; Coleman and Mitrofanis, 1996; Conley et al., 1991; Conley and 

Diamond, 1990; Crabtree, 1992; Crabtree and Killackey, 1989; Montero et al., 1977). 

Reticular nucleus projections to thalamocortical neurons are GABAergic (Cucchiaro et 
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al., 1991; Harting et al., 1991; Montero, 1983; Montero and Scott, 1981; Ohara et al., 

1980). Thalamocortical input to the reticular nucleus is glutamatergic and excitatory 

(Ohara and Lieberman, 1985). Cortical input to the reticular nucleus is excitatory and 

comes from a many different areas (Mircea Steriade et al., 1993a). Via these excitatory 

projections to the reticular nucleus, the cortex is well positioned to exert wide-spread 

influence over activity pattern in thalamus, given that the reticular neurons send 

inhibitory projections to a variety of thalamic nuclei (Mircea Steriade et al., 1993a). Some 

of the thalamic nuclei that receive inhibitory input from the reticular neurons have their 

own wide-spread cortical projections (Mircea Steriade et al., 1993a). 

Thus, the cortex, thalamus, and reticular thalamus together form an intricate network of 

reciprocal excitation and inhibition that allows for each of the areas to affect activity in 

the others. In the next section, we will discuss how this interconnectivity generates three 

different well-characterized oscillation patterns that are commonly recorded during 

anesthesia-induced unconsciousness. 

Spindle oscillation 

The spindle oscillation occurs between 7 - 14 Hz and is generated by the neurons of the 

thalamic reticular nucleus (Steriade et al., 1985). Reticular neurons are able to 

spontaneously generate an oscillation in the spindle frequency due to their unique 

assortment of ionic currents (Avanzini et al., 1989). They generate rhythmic spike-bursts 

of inhibitory post-synaptic potentials (IPSPs) via low-threshold calcium spikes. These 

IPSPs are projected to the thalamus and cause hyperpolarization of many 

thalamocortical neurons (Steriade and Deschênes, 1987). Once thalamocortical neurons 

are hyperpolarized enough, they are removed from inactivation and fire rebound calcium 

spikes and associated bursts of action potentials (Steriade and Deschênes, 1987). 
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These depolarizing bursts are projected to the cortex via thalamocortical synapses in 

layer IV which, in turn, induce rhythmic excitatory post-synaptic potentials (EPSPs) that 

are projected back to the reticular nucleus (Contreras and Steriade, 1997). This 

excitatory feedback from the cortex to the reticular nucleus works to excite the reticular 

neurons to fire another round to IPSPs to the thalamocortical neurons thereby facilitating 

a rhythmic oscillation in the spindle range. 

While reticular neurons are capable of generating a rhythmic oscillation at the spindle 

frequency on their own, reciprocal connectivity between the cortex and thalamus is 

required for the synchronous generation of the spindle oscillation throughout the 

thalamocortical network. This has been shown through a series of complementary 

experiments. First, is has been shown that disruption of corticocortical connections does 

not disrupt synchrony of spindles within the cortex (Contreras and Steriade, 1997). 

Therefore, the signals that drives this oscillation in spatially distinct areas of cortex must 

be coming from a subcortical source: in this case, the thalamus. However, 

thalamocortical projections alone are insufficient to generate a synchronous spindle 

oscillation. It has been shown that removal of the cortex disrupts spindle synchrony in 

the thalamus (Contreras and Steriade, 1997). In the absence of reciprocal connectivity 

from the cortex, spindle oscillations are still generated in thalamus. However, only 

nearby regions of thalamic tissue (on the order of 2 – 4 mm) express synchronous 

spindle oscillations (Contreras and Steriade, 1997). Therefore, corticothalamic 

projections, along with thalamocortical projections, are required to synchronize the 

spindle oscillation throughout the thalamocortical network. 
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Delta oscillation 

The delta oscillation occurs between 1 - 4 Hz and has a more complicated origin than 

the spindle oscillation. There are several different mechanisms that seem to be able to 

generate an oscillation within the delta frequency (Steriade et al., 1990, 1971; Steriade 

and Deschênes, 1987). For the purpose of this thesis, only the best characterized will be 

discussed. This is the delta oscillation generated by the thalamocortical neurons 

(McCormick and Pape, 1990; Steriade and Deschenes, 1984). Thalamocortical neurons 

are able to generate the delta oscillation via the interplay of two intrinsic currents: the 

hyperpolarization-activated current (Ih) and the transient low-threshold calcium current 

(It) (Contreras et al., 1993; Jahnsen and Llinás, 1984; McCormick and Pape, 1990; 

Steriade and Deschenes, 1984). During unconsciousness, the reduction of excitatory 

input from the cortex allows the thalamocortical neurons to hyperpolarize. This 

hyperpolarization is sufficient to cause a spontaneous delta oscillation to begin in 

thalamocortical neurons (Steriade et al., 1991). 

As with the spindle oscillation, reciprocal connectivity between the cortex and thalamus 

is required for the delta oscillation to become synchronous throughout the 

thalamocortical network (Steriade et al., 1991). Once thalamocortical neurons are 

hyperpolarized, a cortical volley is sufficient to elicit the delta oscillation in 

thalamocortical neurons (Steriade et al., 1991). This is true, even for thalamocortical 

cells that are not directly innervated by the stimulated cortical neuron (Steriade et al., 

1991) Therefore, cortical input is able to drive a synchronous delta oscillation in a wide 

area of the thalamus. Additionally, excitatory projections from the thalamocortical 

neurons are thought to engage the reticular neurons and local thalamic GABAergic 

interneurons into the delta oscillation. These populations, then, send IPSPs to 
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thalamocortical neurons. In this way, thalamocortical neurons receive rhythmic inhibitory 

input that maintains the hyperpolarization required for generation of the delta oscillation 

and reinforce activity pattern (Steriade et al., 1991). 

Slow wave oscillation 

The slow wave oscillation occurs at frequencies below 1 Hz and is generated by cortical 

neurons (Mircea Steriade et al., 1993b). During non-REM sleep and anesthesia, cortical 

neurons periodically shift between periods of suppression and periods of bursting. The 

transition back and forth between these periods defines the slow wave oscillation (M. 

Steriade et al., 1993). Periods of suppression can, at least in part, be explained by AHPs 

caused by the coordinating bursting of pyramidal cells during the depolarized period of 

this oscillation (Buzsaki et al., 1988; Sanchez-Vives and McCormick, 2000). Various 

mechanisms are involved in driving this oscillation. They include the gradual decrease in 

extracellular calcium ions in the cortex that occurs as a result of reduced synaptic 

transmission during sleep and the inactivation of Ih channels. 

It is known that the slow wave oscillation is generated by cortical neurons because 

extensive lesioning studies have demonstrated that the slow wave oscillation survives 

within the cortex after extensive thalamic lesions (Mircea Steriade et al., 1993b). While 

the cortical neurons are capable of generating the slow wave oscillation in the absence 

of thalamic input, synchronous firing in the cortex is a powerful driver of activity within 

the thalamus and reticular nucleus (Contreras et al., 1993). As a result, other 

thalamocortical oscillations such as the spindle and delta oscillations tend to be grouped 

into the depolarizing envelope of the slow wave oscillation (Contreras et al., 1993). 
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State transitions under general anesthesia 

Despite being commonly used to fix brain activity patterns for the purpose of basic 

research, a growing body of literature demonstrates that, under anesthesia abrupt, 

spontaneous transitions occur between distinct activity patterns. This has been 

demonstrated in rodents (Clement et al., 2008; Hudson et al., 2014), non-human 

primates (Ballesteros et al., 2020a; Ishizawa et al., 2016a; Patel et al., 2020), and 

humans (Chander et al., 2014) exposed to various anesthetic agents with distinct 

mechanisms of action. Anesthesia induced with urethane is associated with fluctuations 

in cortical state resembling sleep stage switching in that the duration in distinct states 

was approximately equal to the typical duration of an individual sleep stage in a rat 

(Clement et al., 2008). Furthermore, this group shows that muscle tone, respiration rate, 

and cardiac output covary with cortical brain state which is also true during natural sleep 

(Clement et al., 2008). In this study, they used urethane anesthesia which is used in 

animal studies for its minimal effects on the cardiovascular and respiratory systems 

(Hara and Harris, 2002). Therefore, their results related to cardiovascular and respiratory 

effects cannot be explained as a drug effect. 

Ishizawa et al., 2016 recorded LFP in macaques under propofol during loss of 

consciousness and deep anesthesia. Their results show that slow waves first appeared 

in recordings from the somatosensory cortex before they were visible in the frontal 

ventral premotor area during loss of consciousness (Ishizawa et al., 2016b). These data 

show that propofol-induced loss of consciousness is associated with spatiotemporal 

differences in oscillatory dynamics across the cortex (Ishizawa et al., 2016b). This 

suggests that the transitional state is not a continuous process, but rather a series of 

discrete neural changes (Ishizawa et al., 2016b). 
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In a particularly relevant study for my work, Hudson et al. exposed rats to decreasing 

concentrations of isoflurane in one-hour steps with time for equilibration in between. 

During these exposures, they recorded from the thalamus, superficial cingulate cortex, 

deep cingulate cortex, superficial retrosplenial cortex, and deep retrosplenial cortex. 

Spectral estimates of the simultaneously recorded LFP from each of these channels 

shows that, as isoflurane concentration gets lower, activity patterns become more 

desynchronized with less power in the lower in the lower frequency bands and more 

power in the frequency range of theta (Hudson et al., 2014). However, the spectral 

features from the different channels demonstrate that, even within a single step under 

constant isoflurane exposure, there are spontaneous transitions between distinct activity 

patterns, or states. The spectral features also demonstrate that emergence from 

anesthesia is not a graded process, as the brain is regularly switching back and forth 

between states that are more or less desynchronized than one another. If emergence 

were a linear, graded process, each transition leading towards recovery of 

consciousness should be from a state that is more synchronized to one that is less so. 

That is not true of this dataset. Additionally, this group’s data shows that, while most 

state transitions seemed to occur simultaneously in all channels, some did not (Hudson 

et al., 2014). 

Hudson et al. built a classifier of brain state by subjecting spectra from all simultaneously 

recorded channels together to principal component analysis and k-means clustering 

(Hudson et al., 2014). They found that brain states are characterized by discrete, stable 

activity patterns (Hudson et al., 2014). Furthermore, they found that each of their eight 

brain states is characterized by the presence of different oscillation patterns that are 

typically associated with the thalamocortical network during sleep and anesthesia. 
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Specifically, three states were associated with burst suppression, three others were 

associated with power concentrated in the frequency range of the delta oscillation, and 

the last two states were associated with power concentrated in the theta oscillation 

range (Hudson et al., 2014). The output of their state classifier provided a brain state 

classification for each window of spectra across time. When they investigated the 

organization of these states across the duration of their recordings and the transition 

probabilities between them, this group found that not all transitions were possible and 

there was an order to the states across time. While there are fluctuations back and forth 

between states with more or less synchronous activity patterns, in general, deeper 

anesthesia was associated with burst suppression and lighter anesthesia was 

associated with the theta oscillation. There was a progression in the proportion of 

windows in each state during each concentration step that started with virtually all 

windows assigned a burst suppression state in the deepest step towards the majority of 

windows assigned to a theta state in the lightest step (Hudson et al., 2014). 

What these data establish is several important characteristics of state transitions under 

anesthesia. First, emergence from anesthesia relies on the reorganization of the 

thalamocortical network through a series of distinct brain states. Next, while progression 

through these discrete states on the way to emergence generally follows a path from 

most suppressed to least, this progression is not linear. Finally, because the thalamus 

was recorded during these experiments, they demonstrated that brain states during 

emergence from anesthesia involve activity throughout the thalamocortical network. 
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Mechanisms known to drive cortical state transitions 

Most of what is known about cortical state transitions comes from studying sleep which 

is characterized by transitions between a series of sleep stages and the transition to 

wakefulness. Extracellular recordings collected during sleep are dominated by cortical 

activity (Buzsáki et al., 2012). Cortical activity during sleep exhibits the same oscillatory 

activity as described previously. While these oscillations are generated by the 

thalamocortical network, pathways ascending from the pons and the basal forebrain are 

known to heavily influence cortical activity during sleep (Buzsáki et al., 2012; Saper et 

al., 2005; M. Steriade et al., 1993; Takahashi et al., 2009; Yael et al., 2018). These 

ascending pathways are divided between sleep and wake promoting. Sleep and wake 

promoting neuronal populations exhibit self-excitation and mutual inhibition (Cho et al., 

2017; Donlea et al., 2018; Sara, 2009; Scammell et al., 2017; Schwartz and Roth, 2008). 

Such neuronal networks are thought to give rise to a winner-take-all strategy referred to 

as the flip-flop switch (Saper et al., 2005). It has been hypothesized that the main 

purpose of the sleep flip-flop switch is to assure that the states of sleep and wakefulness 

do not co-exist simultaneously and to assure the stability of the states of sleep and 

wakefulness. 

Therefore, states of sleep and wake a typically considered to be global. Similarly, 

transitions between sleep and wake states are also typically considered global 

phenomena. Transitions are driven by subcortical mechanisms that project widely 

throughout the cortex to elicit a global state transition. This section provides an overview 

of some of the key processes that mediate global transitions from a state of less 

synchrony to more synchrony and transitions from a state of synchrony to desynchrony 

during sleep. 
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Transitions from less synchrony to more synchrony 

During wakefulness, activity patterns are desynchronized and there is extensive 

excitatory input passing between the cortex and thalamus. The excitatory signaling from 

the cortex is a powerful depolarizing force for the thalamus, as corticothalamic neurons 

are known to release excitatory amino acids onto their thalamic targets (Steriade et al., 

1991). The activated brain state caused by this excitatory activity effectively suppresses 

the mechanisms that give rise to sleep states by mostly inactivating an ionic current that 

has an important role in the generation of these sleep states: the low-threshold calcium 

current (It) (Steriade and Llinás, 1988). 

It is inactivated by depolarization of the cellular membrane. Therefore, hyperpolarization 

of cell membranes is a critical feature of the sleeping brain. It is generated by the T-type 

calcium channels which are found on neurons throughout the brain, including the 

thalamus where these channels are highly expressed. Once sleep begins, the cells of 

the thalamocortical network become hyperpolarized, and T-type calcium channels 

become available for opening (Cain and Snutch, 2010). Once a neuron is 

hyperpolarized, small membrane depolarizations are sufficient to cause the T-type 

calcium channel to open and allow extracellular calcium ions to enter the cell (Iftinca, 

2011). This rush of positive calcium ions further depolarizes the cell membrane and 

causes the neuron to fire a burst of action potentials. As discussed in a previous section, 

this current is partially responsible for generating the delta oscillation. 

In addition to allowing for the cellular mechanisms that drive the delta oscillation, 

hyperpolarization of the thalamocortical network seems to be essential for the generation 

of all synchronous oscillations associated with sleep (Steriade et al., 1991). This has 

been shown in experiments during which cortex was stimulated while thalamocortical 
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cells were held a different membrane potentials (Steriade et al., 1991). At resting 

membrane potential (-55 mV), cortical stimulation elicited a spindle oscillation in the 

thalamocortical neuron. When the thalamocortical cell was held at a hyperpolarized 

membrane potential (-63 mV), cortical stimulation induced a delta oscillation (Steriade et 

al., 1991). These results suggest that progressive hyperpolarization of the 

thalamocortical network during sleep may be responsible for the activity patterns 

generated by the thalamocortical network during subsequent stages of sleep (Steriade et 

al., 1991). 

Transitions from synchrony to desynchrony 

As discussed earlier, the thalamocortical oscillations characteristic of sleep and 

anesthesia generalize to engage the entire thalamocortical network, and they are each 

self-sustaining. How, then, does the sleeping brain awaken and reenter a depolarized, 

desynchronized brain state that is capable of supporting consciousness? The answer to 

this lies in the reticular formation of the brainstem. The reticular activating system is a 

system of ascending relays whose direct stimulation is sufficient to desynchronize 

activity in the cortex (Moruzzi and Magoun, 1949). This desynchronizing effect occurs in 

all areas of cortex simultaneously and is mediated, in part, by the diffuse projections 

from thalamus to cortex (Moruzzi and Magoun, 1949). It should be noted that the brain 

must be in a hyperpolarized state for the reticular activating system to have an effect. 

Identical stimulation was shown to be effective at inducing desynchrony in both a drowsy 

and anesthetized cortex but had no effect on activity in an already desynchronized 

cortex (Moruzzi and Magoun, 1949). 

Various studies have demonstrated that each of the thalamocortical oscillations 

discussed above are susceptible to disruption via the reticular activating system. The 
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spindle oscillation was blocked by a stimulation to the parabrachial nucleus of the 

reticular formation in anesthetized and naturally sleeping cats (Hu et al., 1989). 

Specifically, the reticular neurons are reliably inhibited by parabrachial stimulation. In 

accordance with Moruzzi and Magoun’s foundational work, inhibition of reticular neurons 

was only observed if the cell was already sitting at a membrane potential favorable for 

sleep (Hu et al., 1989). Hyperpolarization of reticular neurons by the reticular activating 

system prevents them from sending rhythmic IPSPs to thalamocortical neurons and 

thereby effectively ends the spindle oscillation (Steriade et al., 1985). 

Similarly, the delta oscillation is also reliably disrupted by parabrachial stimulation 

(Steriade et al., 1991). Simultaneous cortical EEG recordings show an activation 

response in the cortical recordings after parabrachial stimulation (Steriade et al., 1991). 

This activation response is seen as the cessation of a pronounced delta oscillation and 

beginning of desynchronized, low amplitude signal. These results demonstrate that, like 

the spindle oscillation, the delta oscillation depends on hyperpolarization in the 

thalamocortical network and that short depolarizing input from the reticular activation 

system is sufficient to destabilize this oscillation and induce a state of desynchrony. 

Finally, stimulation of two other reticular nuclei, pedunculopontine tegmental cholinergic 

nucleus and locus coeruleus, blocked a slow wave oscillation at about 0.3 Hz in cortical 

neurons (Mircea Steriade et al., 1993b). 

In sum, the reticular activating system is a subcortical collection of brain regions that 

collectively innervate the entirety of the cerebral cortex and are capable of destabilizing 

the synchronous oscillations of sleep and anesthesia so that a state of wakefulness may 

be established (Mircea Steriade et al., 1993a). These nuclei release various excitatory 

neurotransmitters including acetylcholine, norepinephrine, serotonin, histamine, and 
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glutamate onto their cortical targets (Steriade and McCarley, 1990). There is growing 

recognition of the fact that many of these neurotransmitters are also effective in 

destabilizing the anesthetized state and driving emergence (Aston-Jones et al., 2001; 

Kelz et al., 2008; Luo and Leung, 2009; Solt et al., 2011). The effect of this excitatory 

input is to cause depolarization of the cortical neurons which, in turn, depolarize the 

thalamus via extensive corticothalamic projections. By relieving the synchrony and order 

imposed by hyperpolarization, the reticular activating system allow the thalamocortical 

network to again receive and process information from the environment and regain a 

state of consciousness. 

Why do transitions occur? Two alternatives 

The question at the core of my thesis work is related to why it is that the brain undergoes 

state transitions under general anesthesia. Given that anesthetic-induced 

unconsciousness is an unnatural state of the brain charactered by a disconnection from 

the outside environment and wide-spread suppression of neurons, it would perhaps be 

more intuitive to assume that there should not be different brain states or discrete 

transitions. This was certainly the assumption of basic neuroscientists and 

anesthesiologists until very recently. However, given the results of the studies 

highlighted in the previous sections, it is clear that there are indeed discrete state 

transitions during anesthetic-induced unconsciousness. For my thesis work, I set out to 

investigate the mechanisms driving these state transitions. 

State transitions during states of sleep and wake are generated subcortically via 

modulation of excitatory tone within the thalamus or by the reticular activating system. 

Through dense innervation of the cortex via either the thalamus or the reticular activating 

system, a central signal to change activity patterns is projects widely throughout the 
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cortex which gives rise to discrete, global state transitions. In order to test whether state 

transitions under anesthesia are generated by similar mechanisms, we laid out two 

potential, experimentally distinguishable mechanisms. The first is that transitions are like 

sleep transitions and are coordinated throughout the cortex by a single, central signal 

that is simultaneously projected to the entirety of the cortex. Such a signal would need to 

come from a subcortical structure that sends dense, wide-spread connections to the 

cortex. Evidence to support this hypothesis would be that recordings from spatially 

distinct areas of cortex undergo state transitions at the same time. The alternative 

hypothesis is that state transitions under general anesthesia are local and that local 

cortical interactions are what organize spatially restricted, stable brain states. If this 

mechanism were true, it would imply that corticocortical interactions are what give rise to 

states. Evidence in support of this hypothesis would be spatial heterogeneity between 

brain states and transition times between recordings collected from different areas of 

cortex. 

 

Neural inertia and the resistance to state transitions 

Regardless of the specific mechanisms that give rise to state transitions under 

anesthesia, brain activity patterns under anesthesia fluctuate back and forth between 

states of more or less synchrony (Hudson et al., 2014). This demonstrates that 

emergence from anesthesia is not a linear process during which elimination of drug 

allows the brain to ascend from its deepest point of anesthesia back to consciousness. 

These data provide a potential explanation for what has been a curious phenomenon 

that is gaining more attention in the field of anesthesia: anesthetic hysteresis. 
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Until very recently, it was assumed by basic scientists and anesthesiologists alike that 

emergence from anesthesia was the simple inverse of induction. If this were true, there 

should be a simple mapping between brain state and anesthetic concentration. 

Consequently, it should be possible to predict how long it will take an individual to reach 

emergence based on the deepest plane of anesthesia that they experienced, and there 

should be a one-to-one relationship between probability of reaching emergence and 

anesthetic concentration. However, data collected from several model organisms as well 

as humans demonstrates the relationship between brain state and anesthetic depth is 

not linear. 

First, it has been shown that the anesthetized brain resists the transition to 

consciousness. In rodents, one way to assess emergence is to place them in a supine 

position. If an animal is anesthetized, they are not able to right themselves from this 

vulnerable position. If they are sleeping or conscious, they will immediately right 

themselves. This righting reflex is commonly used to identify deep anesthetic depth in 

rodents. If you expose mice to progressively higher concentrations of isoflurane or 

halothane general anesthesia in long exposure steps with equilibration time in between 

and assess the righting reflex at each step, you are able to get a percentage of mice at 

each concentration that retain the righting reflex. As expected, the percentage of mice 

that retain the righting reflex at each concentration step decreases as a function of 

anesthetic dose during induction (Friedman et al., 2010). However, during emergence 

when the steps of fixed anesthetic concentration become progressively smaller, the dose 

response curve is not the same as for induction. There is a leftward shift, meaning that 

the percentage of mice capable of righting themselves at each step is consistently lower 
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than the percentage of mice capable or righting themselves during the same 

concentration step during induction (Friedman et al., 2010). 

These results were also shown in drosophila melanogaster in the same study using 

percent of flies active during a window of time as the output metric (Friedman et al., 

2010). A trivial explanation of these results could be that the lipophilic property of 

anesthetic drugs causes drug to accumulate in the brain’s fatty tissue and that, while the 

delivered concentration of drug was the same at two steps, the actual concentration 

experienced by the organism was higher during emergence because there is still 

residual drug accumulated in the tissues. To dispel this possible explanation, Friedman 

et al. measured the concentration of the delivered anesthetic in the brain tissue (for 

mice) or whole organism (for drosophila) and found that the concentration of anesthetic 

drug in the tissue at EC50 was higher during induction than emergence (Friedman et al., 

2010). Therefore, the trivial pharmacokinetic explanation of these data cannot be true. 

Rather, these results demonstrate that there is a hysteresis between induction and 

emergence dose-response curves such that the brain resists the emergence to 

consciousness (Friedman et al., 2010). This hysteresis shows the emergence cannot be 

explained simply as the reverse of induction. 

The same study also sought to characterize a potential mechanism for this 

phenomenon. They show results that implicate the endogenous sleep/wake circuitry in 

driving emergence from anesthesia. The locus coeruleus is one of the nuclei of the 

reticular activating system and is the main source of norepinephrine in the brain (Aston-

Jones et al., 2001). To test for the involvement of endogenous arousal circuits, mice with 

a global knockout of norepinephrine and epinephrine was assayed (Thomas et al., 

1995). When these mice were tested alongside heterozygous controls, there was a slight 
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leftward shift in the induction curve: indicating that the homozygous knockouts were 

slightly hypersensitive to anesthesia. However, the effect on the emergence curve was 

far more dramatic. Without norepinephrine and epinephrine, the emergence curve was 

dramatically left shifted: indicating that these mice had enormously delayed emergence 

times, compared to controls (Friedman et al., 2010). Furthermore, reinstating 

norepinephrine and epinephrine in the CNS was sufficient to rescue the wildtype dose-

response curves (Friedman et al., 2010). Similar results were collected using drosophila 

mutants with a mutated potassium channel (Friedman et al., 2010). In wild type flies, this 

potassium channel decreases neuronal activity and promotes sleep. Shaker mutants in 

which this channel has been genetically disrupted, have reduced sleep and resist 

induction with anesthesia (Cirelli et al., 2005). When the induction and emergence dose 

response curves for these mutants were compared to wild type controls, hysteresis in 

the Shaker mutants had collapsed (Friedman et al., 2010). Wild type dose response 

curves were rescued in these mutants with CNS-specific reinstatement of adrenergic 

signaling (Friedman et al., 2010). 

What these data show is that emergence from anesthesia is not the simple inverse of 

induction. There is no simple mapping between the dose of anesthetic drug delivered 

and the state of the brain. If it were, there should be an equal probability across a 

population of retaining the righting reflex at a specific anesthetic concentration, 

regardless of whether it is during induction or emergence. Furthermore, the same lab 

has shown that, even for a single individual mouse, the time it takes to reach emergence 

from anesthesia, given the exact same exposure to anesthesia, is highly variable. This, 

along with the findings drug concentration in the tissue is higher at EC50 during induction 

than during emergence, demonstrates that a pharmacokinetic explanation of these 
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results is insufficient. Instead, these findings provide evidence to support the statement 

that emergence from anesthesia involves complicated, structured mechanisms of 

reorganization within the cortex as it reassembles consciousness. These data also 

implicate the endogenous arousal systems of the brain in anesthetic emergence. 

Disruption of this system substantially delays emergence. This suggests that the same 

circuitry involved in awakening plays a role in emergence from anesthesia. This is an 

important finding because it indicates that the process of reaching emergence relies on 

neuronal mechanisms and not the simple washout of drug. 

 

Goals of thesis 

The aim of this thesis is to present my work in support of a potential mechanism for state 

transitions under anesthesia and evidence that suggests emergence from anesthesia is 

a complex process in humans. In Chapter 2, I will present my work in investigating the 

cortical mechanisms that give rise to state transitions under anesthesia. I show that 

stable brain states and transitions between them are organized by local cortical 

interactions and that weak interactions between distinct cortical regions are sufficient to 

give rise to coherent, global brain states. In Chapter 3, I will present work showing that 

time to emergence from anesthesia cannot be predicted by depth of anesthetic exposure 

alone in humans. These findings suggest that humans, like mice and drosophila, likely 

resist the transition to consciousness following anesthetic exposure. This would imply 

that our own cortices must engage in a careful, complex reorganization process in order 

to achieve emergence. 
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CHAPTER 2 – Weak Coupling Between Spontaneous Local Cortical Activity State 

Switches Under Anesthesia Leads to Strongly Correlated Global Cortical States 

 

INTRODUCTION 

Brain activity arises as a result of interactions amongst billions of neurons and synapses. 

Each component in this vast network exhibits complex nonlinear dynamics (Hodgkin and 

Huxley, 1952; Pan and Zucker, 2009). Generically, such complex nonlinear dynamical 

systems can dramatically change their collective behavior after small changes in 

parameters or perturbations to their ongoing activity (Canavier et al., 1993; Destexhe et 

al., 1994; Ermentrout, 1998; Izhikevich, 2007; Strogatz, 2015). Furthermore, because 

nonlinear systems generally have multiple steady state behaviors, there is no guarantee 

that after a dramatic perturbation, the system will recover to its previous state once the 

perturbation subsides.  

These considerations suggest that brain activity ought to be quite fragile and unable to 

withstand dramatic perturbations. Contrary to this intuition, there is ample evidence that 

the brain is remarkably robust to perturbations. Seizures, for instance, are a 

paradigmatic example of aberrant brain activity, being characterized by extreme 

synchronization in neuronal firing and subthreshold voltage fluctuations (Timofeev et al., 

2004). While seizures can be followed by a transient postictal period characterized by 

abnormal brain activity and function (Fisher and Engel, 2010), normal brain function is 

eventually restored. Another classic example of the brain’s ability to recover from an 

extreme perturbation is general anesthesia (Brown et al., 2010). Every year, millions of 

patients undergo general anesthesia. While some patients experience aberrant brain 
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activity, which manifests as delirium upon emergence (Saczynski et al., 2012), most 

eventually recover normal brain activity and cognitive function. During general 

anesthesia, the brain may exhibit dramatically abnormal activity patterns, such as burst 

suppression, which is caused by the hyperpolarization and silencing of more than 90% 

of cortical neurons (Amzica, 2009; Civillico and Contreras, 2012; Contreras and 

Steriade, 1997). Occasionally, complete isoelectric electroencephalogram (EEG) is 

observed in surgeries requiring circulatory arrest (Stecker et al., 2001). Nevertheless, 

once anesthetic delivery is stopped, the brain regains normal function. Given this and 

the fact that anesthetic delivery can be precisely controlled, general anesthesia is a good 

model system to address the general question of how the brain is able to restore normal 

activity patterns after a dramatic perturbation. 

Several converging lines of evidence strongly argue that recovery from anesthesia 

cannot be explained by anesthetic washout alone. The first is that recovery of 

consciousness after anesthesia occurs at a lower anesthetic concentration than 

induction of anesthesia across taxa, from Drosophila (Joiner et al., 2013) to mice 

(Friedman et al., 2010) and humans (Warnaby et al., 2017). Furthermore, this neural 

inertia can be modulated by factors altogether unrelated to the concentration of 

anesthetic, such as single gene mutations (Friedman et al., 2010) and manipulations of 

specific neuronal populations (Kelz et al., 2008; Reitz et al., 2021; Zhou et al., 2018). 

Together, these results strongly argue that recovery from anesthesia is not simply the 

byproduct of anesthetic washout. They do not, however, directly shed light on the 

mechanisms that allow the brain to recover after general anesthesia.  
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In order to recover from anesthesia, the brain must follow a path through the state space 

that begins in the deeply anesthetized state and eventually leads back to the pre-

anesthetic conditions. The neurophysiological processes that allow the brain to navigate 

this path efficiently have been addressed by Hudson et al. (Hudson et al., 2014). 

Specifically, they show that en route to recovery of consciousness, brain activity is 

constrained to a low-dimensional space. In this space, most activity is confined to a 

small number of discrete activity patterns, and the transitions between these patterns are 

highly structured. In sum, these mechanisms greatly constrain the number of possible 

paths through the activity space that can lead to wakefulness and allow the brain to 

recover consciousness on a physiological time scale. Abrupt transitions between 

discrete activity states have been observed in rodents (Hudson et al., 2014), non-human 

primates (Ballesteros et al., 2020b; Ishizawa et al., 2016a; Patel et al., 2020) and human 

patients (Chander et al., 2014) after exposure to a variety of anesthetics with distinct 

mechanisms of action. Abrupt transitions between different activity patterns at a fixed 

anesthetic concentration are observed not only at the level of the local field potentials  

(e.g., Hudson et al., 2014), but also in the activity of individual cortical neurons (Lee et 

al., 2020). These discrete activity patterns and structured transitions between them 

serve as a scaffold that guides the brain back towards normal patterns of activity after it 

has been profoundly disrupted by anesthetics. 

Given that state transitions are critical for reinstating consciousness, it is of fundamental 

importance to determine the neuronal mechanisms that give rise to transitions between 

discrete activity states during recovery from a dramatic perturbation. Previous work on 

anesthesia (Chander et al., 2014; Hudson et al., 2014; Ishizawa et al., 2016a) and sleep 

(Gervasoni et al., 2004) defined different activity patterns on the basis of oscillatory 
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activity observed in the local field potentials (LFPs) of firing of individual neurons (Lee et 

al., 2020). Much of this oscillatory activity is coordinated via thalamocortical loops 

(Contreras and Steriade, 1997; Liu et al., 2015; Schiff, 2008; Mircea Steriade et al., 

1993b). An extensive body of work shows that the thalamocortical circuitry is modulated 

by the arousal pathways ascending from the brainstem and basal forebrain to produce 

oscillations at different characteristic frequencies (Destexhe et al., 1994; Jones, 2003; 

Mircea Steriade et al., 1993a). Indeed, during constant anesthetic concentration, 

fluctuations in the firing rates of individual neurons within these arousal nuclei co-vary 

with fluctuations in the spectra of cortical LFPs (Gao et al., 2019). Direct manipulations 

of neuronal activity within the reticular activating system can elicit profound changes in 

the oscillations observed in the cortical LFP (Gao et al., 2019; Moruzzi and Magoun, 

1949; Mircea Steriade et al., 1993a; Vazey and Aston-Jones, 2014). Thus, one distinct 

possibility is that the discrete oscillatory patterns of activity observed under fixed 

anesthetic concentration are imposed onto the thalamocortical networks by fluctuating 

modulatory tone. If this is the case, because modulatory systems project broadly across 

the thalamus and cortex (Jones, 2003), we expect to find that abrupt transitions between 

distinct oscillations occur in close temporal proximity across the different cortical layers 

and regions. Alternatively, it is possible that the oscillatory activity in different cortical 

regions is largely coordinated through short-range thalamocortical and cortico-cortical 

interactions. In this case, we expect to find that transitions between different oscillatory 

patterns are largely local.  

Here, we provide direct experimental evidence for this latter possibility by simultaneously 

recording abrupt transitions between different states across cortical layers and across 

distant cortical areas at a constant anesthetic concentration. Using a complementary 
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combination of analytic techniques, we show that state transitions across different 

cortical sites are only weakly coupled. Furthermore, we demonstrate that state 

transitions in layer 4 (L4)—the layer that directly receives input from the thalamus—are 

particularly decoupled from state transitions observed in other layers. This suggests that 

cortico-cortical interactions rather than fluctuations in the broad modulatory tone play a 

crucial role in controlling state transitions under anesthesia. Remarkably, we also show 

that the multitude of weak pairwise interactions between local state transitions is 

sufficient to constrain the overall brain activity to just a few states embedded in a low-

dimensional space. Thus, our results suggest that the highly coordinated, low-

dimensional macroscopic brain dynamics that allow the brain to recover from a dramatic 

perturbation emerge as a consequence of a multitude of weak pairwise interactions 

between different cortical sites. 

 

RESULTS 

State transitions under constant anesthetic can be local 

We sought to determine whether state transitions under a fixed concentration of 

isoflurane (1% atm.) occur simultaneously across different cortical regions and across 

layers within the same cortical region. This concentration was chosen based on previous 

work (Hudson et al., 2014) showing that burst suppression is not likely to occur at this 

concentration, but that state transitions in the spectral characteristics of the LFP are 

frequently observed. Here we focused on the local field potentials (LFPs) recorded using 

two laminar probes that sampled signals across all cortical layers. In half of the 

experiments, both electrodes were inserted into the right hemisphere: one in the primary 

visual area (V1) and the other in the motor cortex (M1) (n = 3) (Figure 2.1A). In the other 
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half of experiments, bilateral V1 recordings were performed (n = 4). Postmortem 

localization of electrodes (Methods) in a representative experiment is shown in Figure 

2.1B.  Consistent with previous findings (Hudson et al., 2014), at 1% isoflurane, the 

power spectrum of the LFP fluctuated between several discrete states (Figure 2.1C).  

State transitions can be readily identified in the raw LFP (Figure 2.2). The top and 

bottom LFP traces show one minute of recordings from a single M1 and V1 electrode, 

respectively. The accompanying spectra were calculated using a multitaper spectral 

estimate. These spectra were averaged across two second windows of LFP with a one 

second step size, sampled either from eight to two seconds prior to transition (black, pre-

transition) or from two to eight seconds after the transition (red, post-transition). Spectral 

estimates are shown as mean ± 95% confidence interval computed from 1000 

bootstraps. In some instances, state transitions occur approximately simultaneously in 

the motor and visual cortices (Figure 2.2A). However, this was not always the case. For 

instance, Figure 2.2B shows an example of a state transition that occurs first in the 

visual cortex and, only after a delay of approximately 10 seconds, is seen in the motor 

cortex. Thus, abrupt changes in the LFP characteristics need not occur simultaneously 

in different brain regions. Figure 2.2C shows a more extreme example of this 

phenomenon. A state transition is clearly seen in the motor cortex, but in the visual 

cortex, the LFP characteristics remain unchanged. These observations suggest that, 

while some state transitions may indeed be global, there is a previously unappreciated 

degree of independence between state fluctuations observed in the cortex during fixed 

anesthetic administration.  
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Multitaper analysis and non-negative matrix factorization extract states and their 

transitions across cortical layers and regions 

To quantify the degree of coupling between state transitions at different recording sites, 

we developed a methodology to automatically detect state transitions at the level of 

individual channels (Methods). We then deployed this methodology to determine the 

degree to which transitions in different cortical sites are coupled. Figure 2.3 is a 

flowchart of the initial analysis steps. The first step in the analysis is to compress the 

LFP recording into a low-sample-rate, low-dimensional matrix that accurately captures 

fluctuations in oscillatory activity. The right side of the figure presents an example five-

minute window of data from one recording site to demonstrate the outcome of each step. 

Briefly, wideband data were filtered between 0.1 and 300 Ηz to extract the LFP signal. 

(Figure 2.3A) LFP signals were converted to frequency domain using multitaper spectral 

analysis, (Figure 2.3B). Raw power spectra were then normalized such that the power 

contained in each frequency band was mapped onto a value between 0 (smallest 

observed power) and 1 (largest observed power) (Figure 2.3C). Non-negative matrix 

factorization (NMF) was used to further decompose the signal into a set of loadings and 

associated scores across time (Figure 2.3D-E). 

NMF can be thought of as a “soft” clustering algorithm. Previous work on state 

transitions under anesthesia (Hudson et al., 2014) and sleep (Gervasoni et al., 2004) 

used k-means clustering of the spectrograms to assign the state of the brain. Our first 

approach to state assignment used a similar strategy—the index of the NMF component 

with the highest score in each time window was defined as the state of the LFP at each 

recording site (Methods). This assumption was relaxed in subsequent stages of the 

analysis (see below). Figure 2.4A shows the score matrices for two different channels 



37 
 

recorded simultaneously from two contacts along the same electrode in the motor 

cortex. The upper matrix is the same as Figure 2.3E, and the lower matrix was 

generated from data collected by a contact 140 um deeper inside the cortex. Notice that 

these matrices resemble one another but are not identical. Figure 2.4B shows state 

classifications for 18 channels of simultaneously recorded data: nine from an electrode 

in V1 and nine from an electrode in M1. Note again that some state transitions are 

observed around the same time in most of the electrodes. There are, however, many 

instances where state transition is observed in just a subset of the recording sites.  

One way to characterize the coupling between state transitions is to quantify the 

propensity of state transitions to occur simultaneously across different recording sites. 

Brain state transitions were defined as time points at which consecutive windows from 

the same channel have different brain state assignments (Methods). Figure 2.4C shows 

an example of this analysis. There are many transitions that appear in only one or very 

few channels, while others appear to be more global. Figure 2.4C is a raster plot of 

transitions. The color of each line shows the synchrony score of that transition with all 

other channels (Methods). Consistent with the observations in Figure 2.2 and 2.4C, the 

synchrony score reflects the fact that most state transitions are localized to a small 

subset of electrodes. 

As we show below, coupling between state transitions depends on the cortical layer. 

Layer assignment in V1 was performed using current source density (CSD) analysis 

computed immediately following brief light stimulus (Methods). Figure 2.5 shows a 

representative example of CSD in V1 showing the stereotypical pattern of response to 

visual stimuli. The first current sink occurs approximately 33 ms following stimulus 

presentation in L4. A short time after, additional sinks and sources appear above and 
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below, revealing interlaminar communication. The channel where the initial sink occurred 

was defined as the center of L4. The dashed black lines in this figure mark the 

approximate boundaries of L4 based on the average thickness of this layer in rats and 

the spacing between channels (Einevoll et al., 2013; Quairiaux et al., 2011; Self et al., 

2013). In the motor cortex, we did not estimate the location of cortical layers directly. 

Instead, we estimated the depth of each recording electrode relative to the cortical 

surface.  

State transitions in different cortical sites exhibit weak synchrony 

We used three different analytical techniques to quantify the tendency of oscillatory 

states and the transitions between them to be coordinated across recording sites. Each 

technique relies on a different set of assumptions and was performed on a different 

feature of the data. First, we quantified the synchrony of transitions, as demonstrated in 

Figure 2.4 (Methods).  Figure 2.6A-B shows the cumulative distribution of synchrony 

scores (red curves) computed over all channel pairings and across all animals (M1/V1: 3 

animals, 16–18 electrodes/animal, median of 99 transitions/electrodes/animal; bilateral 

V1: 4 animals, 15–19 electrodes/animal, median of 175.5 transitions/electrode/animal).   

In order to compare the synchrony scores (Figure 2.6A-B) to those expected by chance, 

we generated shuffled datasets constrained to have the same state transition statistics. 

This was accomplished by simulating a Markov process defined by the state transition 

probability matrix derived from state assignments for each recording (Methods). This 

control preserves the statistics of each recording site, while destroying any coordination 

between them. The cumulative distributions of the synchrony scores obtained in these 

shuffled controls are shown in Figure 2.6A-B (blue curves; shading shows 95% 

confidence intervals computed over 1000 shuffled datasets). Both in the experiments 
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involving M1 and V1 (Figure 2.6A) and in those involving bilateral V1s, we find that the 

synchrony score is consistently higher than expected by chance (p < 0.001, z-test based 

on means of shuffled datasets). Despite this large deviation from the null hypothesis, 

state transitions do not typically occur at the same time in different cortical sites (mean 

synchrony score ≈ 0.35 for both M1/V1 and bilateral V1 recordings). This implies that 

while state transitions observed across different cortical sites are not completely 

independent, coupling between channels is weak.  

Data in Figure 2.6A-B aggregate the transition synchrony scores calculated between all 

channel pairs—both pairs of channels in the same cortical region and those located in 

different cortical sites. We hypothesized that, because most cortical connectivity is local, 

nearby electrodes would tend to have a higher propensity to change state at the same 

time. Figure 2.6C-F shows that state transitions are indeed more synchronous between 

electrodes within a cortical region than between regions. Figure 2.6C-D shows 

synchrony scores between all channel pairs in a representative pair of experiments: an 

M1/V1 experiment (Figure 2.6C) and a bilateral V1 experiment (Figure 2.6D). Pairs with 

scores that did not reach significance compared to the shuffled datasets, after Bonferroni 

correction for multiple comparisons, are shown in gray. Across all experiments, 57.0% of 

channel pairs from M1/V1 experiments and 80.2% of pairs from bilateral V1 experiments 

had significantly synchronous transitions at the corrected p < 0.05 level. The 

synchronization scores for all channel pairs from all experiments are quantified in Figure 

2.6E-F, for M1/V1 and bilateral V1 experiments respectively. Both panels show the 

synchrony scores for within-region channel pairs (red) and between-region channel pairs 

(blue). In both types of recordings, within-region pairs had significantly larger synchrony 
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scores than between-region pairs (p = 1e-7 for M1/V1 and p = 2e-7 for bilateral V1, 

compared to 107 random permutations of the relevant channels (Methods)). 

L4 is the thalamic input layer and has fewer horizontal connections than the 

supragranular or infragranular layers, which are rich in horizontal connections (Zilles and 

Palomero-Gallagher, 2017). To test whether layer organization affects transition 

synchrony, from each V1 recording (in which L4 was identified using CSD), we 

separated channel pairs in which one channel was in L4 from pairs in which neither 

channel was in L4. Figure 2.6G presents synchrony scores from all channel pairs from 

all experiments in which one channel was in L4 and the other was not (purple) and all 

channel pairs from all experiments in which neither channel was in L4 (orange). In 

Figure 2.6E and F, the specific channel pairs that were included in the “L4” and “non-L4” 

groups are outlined in purple and orange, respectively. We found that synchrony 

between channel pairs with one channel in L4 tended to be lower than between pairs in 

which neither channel was in L4 (p = 0.015, compared to 107 random permutations of 

the relevant channels (Methods)). Therefore, transition times in channels from L4 tend to 

be relatively uncoupled from the specific timing of transitions in channels from other 

layers. This observation suggests that it is unlikely that thalamocortical input is the 

principal driver of state transitions in the cortex. If it were, one would expect that the 

thalamic input layer (L4) would transition in synchrony with the rest of the cortex. 

Therefore, these results imply different mechanisms, such as cortico-cortical 

interactions, are likely responsible for the timing of these spatially localized transitions. 

Our final analysis using synchrony scores was performed to build upon these L4 results 

and determine whether the type of subcortical input to a cortical region has an influence 

on transition synchrony. It is typically assumed that switches of the oscillatory activity in 
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the cortical LFP critically involve interactions with the thalamus (Contreras and Steriade, 

1997; Herrera et al., 2016; Liu et al., 2015; Schiff, 2008; Mircea Steriade et al., 1993a, 

1994). In light of this, one may expect two regions receiving similar thalamic input to 

exhibit greater synchrony of state transitions than two regions that interact with the 

thalamus in different ways. Therefore, we tested whether between-region comparisons 

for the bilateral V1 experiments had higher synchrony scores than the between-region 

comparisons for the M1/V1 experiments. Contrary to our hypothesis, we were not able to 

detect any increase in synchrony scores calculated between the bilateral V1s relative to 

M1/V1 experiments (p = 0.35, percentile bootstrap over channels (Methods)). 

Discrete states in different cortical sites have weak correspondence 

Until this point, our analysis was based on transition synchrony, a measure that is 

sensitive to the timing of transitions but not the identities of the states. In what follows, 

we shift our focus away from the timing of state transitions and quantify the consistency 

of LFP-defined states at different sites. We accomplish this using normalized mutual 

information (MI), a measure of the amount of information obtained about one random 

variable by observing another random variable (Methods). In our case, these random 

variables are the time series of discrete states of two channels. High MI between these 

time series represents a large reduction in uncertainty about the state in channel j given 

the state in channel i. Two channels do not need to be in the same brain state to have 

high mutual information; indeed, since states are defined for each channel 

independently, there is no definition of different channels being in the “same” state. 

Rather, there must only be a consistent mapping from the states in one channel to those 

in the other. For example, if channel i is always in state A whenever channel j is in state 

D, one can predict the state of channel i from the state of channel j, and the MI between 
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these channels would be high.  As noted in the Methods, we normalized MI by the total 

entropy of the state distributions in the two channels over time in order to obtain a 

measure that was comparable across channels with different state distributions. 

Figure 2.7A-B shows the normalized MI between all channel pairs in the same 

representative M1/V1 and bilateral V1 experiments as those in Figure 2.6C-D. 81.9% of 

channel pairs from M1/V1 experiments and 96.9% of pairs from bilateral V1 experiments 

had normalized MI that was significantly higher than for shuffled data, after Bonferroni 

correction for multiple comparisons (z-test based on distribution of shuffled data). The 

summary of normalized MI across all animals is shown in Figure 2.7C-D, for M1/V1 and 

bilateral V1 experiments respectively. In both types of recordings, within-region channel 

pairs had significantly higher normalized MI than between-region pairs (p = 1e-7 for 

M1/V1 and p = 1e-7 for bilateral V1, compared to 107 random permutations of the 

relevant channels (Methods)). Note that, while for most channel pairs MI was higher than 

for a shuffled dataset, the amount of information about the state of one channel 

contained in the state of another was small. Normalized mutual information varies 

between 0 and 1, where 1 denotes that the two channels carry identical information. Yet, 

even in a pair of channels within a single cortical region, the mean MI is about 0.3. One 

way to interpret this statistic (Methods) is that no more than 15% of the combined 

information carried by the states of any two channels is redundant. Thus, most of the 

information about the state of one channel cannot be extracted from observing the state 

of a nearby channel in the cortex.  

As with transition synchrony, we did not detect a higher mean normalized MI in left/right 

V1 channel pairs compared to M1/V1 channel pairs (p = 0.70, percentile bootstrap over 

channels (Methods)). Additionally, as with the transition synchrony analysis, pairs 
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including a channel in L4 did have lower normalized MI than pairs where neither channel 

was in L4 (p = 0.002, compared to 107 random permutations of the relevant channels 

(Methods)). These results show, not only that channels from the same brain region are 

more likely to undergo transitions at the same time, but also that the broader structure of 

these state assignments across the entire recording is more similar in channels from the 

same region. Furthermore, the conclusions regarding the differences between L4 and 

other cortical layers are consistent between synchrony and mutual information analyses. 

Full compressed spectrograms of different sites have moderate correspondence, 

depending on distance and cortical layer 

In the previous analyses, to generate a single-value description of activity across time, 

we defined brain state as the NMF loading with the highest score in each time window. 

This method was convenient for comparing synchrony of transitions and mutual 

information of state sequences. Parcellation of the LFP signals into discrete states is 

also supported by previous work (Hudson et al., 2014) However, reducing the LFP to a 

single value eliminates much of the information in the original signal. In order to 

incorporate more of this information, rather than collapsing the LFP signal to a single 

value, we used the vector of NMF scores for the LFP in each temporal window directly. 

Each score vector, once multiplied through by the appropriate loading matrix (Methods 

and Figure 2.3), yields a good approximation of the actual spectrum of the LFP in that 

time window. 

To test for correlated fluctuations in the spectral features of LFPs at different cortical 

sites, we applied canonical correlation analysis (CCA) to the pair of score matrices 

derived from each pair of channels. High canonical correlation indicates a close linear 

relationship between two sets of variables. The mean of the vector ρ of canonical 
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correlations between all pairs of canonical variables was calculated to give a measure of 

overall state similarity that is invariant to invertible linear transformations of each 

channel’s state space. This method of taking the average across ρ is explained further in 

Alpert and Peterson (1972). Figure 2.8A-B shows the CCA similarity measure for all 

channel pairs from the same representative M1/V1 and bilateral V1 experiments that 

have been shown previously. All channel pairs from both M1/V1 and bilateral V1 

experiments had significantly higher CCA similarities than for shuffled data, after 

Bonferroni correction for multiple comparisons (z-test based on distribution of shuffled 

data). The summary of CCA similarity across all animals is shown in Figure 2.8C-D. 

These results are very similar to those for transition synchrony and normalized MI and 

show that in both types of recordings, within-region channel pairs had significantly higher 

CCA similarities than between-region pairs (p = 1e-7 for M1/V1 and p = 1e-7 for bilateral 

V1, compared to 107 random permutations of the relevant channels (Methods)). 

Furthermore, as with the previous measures, channel pairs including a channel in L4 

had lower CCA similarities than pairs in which neither channel was in L4 (p = 0.001, 

compared to 107 random permutations of the relevant channels (Methods)). We did not 

detect a higher mean CCA similarity in left/right V1 channel pairs compared to M1/V1 

channel pairs (p = 0.12, percentile bootstrap over channels (Methods)).  

Global brain state is low-dimensional, despite weak pairwise interactions 

All results shown up until this point were calculated on pairs of channels for which state 

assignments were computed independently. What we have shown is that channels 

within the same cortical region tend to be more similar in their activity patterns and state 

transition times than channels from different cortical regions. However, close inspection 

of the results shows that, even for the channel pairs within the same cortical region, only 
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about one third of the information contained within the discrete state sequences is 

shared between channels (Figure 2.7C). For channel pairs from different cortical 

regions, the amount of mutual information in state sequences is even lower. This weak 

coupling between channels could imply that spatially restricted regions of the brain act 

independently of one another and there is no discernable global state of the brain at any 

given time. Alternatively, it is possible that this weak coupling between channels, en 

masse, gives rise to a complex, global state of activity that is differently expressed in the 

oscillation patterns of spatially restricted regions of cortex. In this final analysis, we 

sought to directly distinguish these possibilities by characterizing the global brain state. 

In a key distinction from the previous work, rather than defining the global state on the 

basis of the concatenated spectra from all recordings, we attempted to identify global 

macroscopic dynamics from the simplified dynamics observed at each recording site. 

This was accomplished by first concatenating the NMF score vectors from all 

simultaneously recorded channels at each timepoint into a single vector that encodes 

the joint state of all channels. The resulting full matrix of joint states over time was then 

subjected to principal component analysis (PCA). 

We found that all but one recording required 10 or fewer components to account for 80% 

of the variance in the concatenated NMF score matrices, which ranged in dimensionality 

from 91 to 136. The recording that required greater than 10 required 15 components to 

reach the same threshold. This is far outside the 95% confidence interval of expected 

cumulative explained variance, computed on Markov-shuffled controls which ignore 

weak pairwise correlations between fluctuations in different channels (Figure 2.9A, D). 

These results demonstrate that widespread weak coupling is sufficient to give rise to a 

highly correlated global state. Figures 2.9B and E show the loadings onto channels and 
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frequencies (mapped back from corresponding NMF loadings) for the top two principal 

components of a representative M1/V1 and bilateral V1 recording, respectively. These 

data offer qualitative evidence that the global state is differentially reflected in different 

regions and layers of the cortex. For example, the loadings of the second principal 

component (PC2) of the M1/V1 recording in Figure 2.9B show that, while there is high 

power in the higher frequencies for the V1 channels, the same is not true in the M1 

channels. In contrast, Figure 2.9E shows that the loadings of PC1 of the bilateral V1 

recording onto all channels of both electrodes are fairly uniform, except for in channels 

near L4 where there is higher power in the lowest frequency bands. Figures 2.9C and F 

show histograms of all samples from these representative recordings projected onto the 

first two principal components. Although more than two dimensions would be necessary 

to fully visualize the landscape of the global dynamics, even in this limited projection, a 

clustered pattern is visible, similar to previous results (Hudson et al., 2014). These data 

suggest that global brain states comprise regionally distinct oscillation patterns that are 

weakly coupled with one another. Remarkably, these results show that discrete 

transitions between global cortical states (Ballesteros et al., 2020b; Hudson et al., 2014; 

Patel et al., 2020) under a fixed anesthetic concentration arise from the multitude of 

weakly coupled local fluctuations. 

 

DISCUSSION 

Here we set out to determine how abrupt transitions between global thalamocortical 

states arise at a fixed anesthetic concentration. Using several complementary analysis 

methods, we demonstrate that correlated fluctuations in the oscillatory behavior 

observed at different cortical sites are widespread, but that each pairwise interaction is 
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weak. Thus, for instance, the ability to infer the current state of one channel by observing 

the state of a nearby channel in the cortex is limited. Remarkably, we provide evidence 

that abrupt transitions between discrete macroscopic cortical activity patterns 

(Ballesteros et al., 2020b; Chander et al., 2014; Hudson et al., 2014; Ishizawa et al., 

2016a; Lee et al., 2020; Patel et al., 2020) emerge naturally from the multitude of these 

quasi-independent local fluctuations. We also demonstrate that the strength of the 

interactions between recording sites depends on the inter-electrode distance and on the 

cortical layer. Specifically, we find that fluctuations in L4, the thalamic input layer, tend to 

be less congruent with those in other layers. Altogether, these results argue that abrupt 

global state transitions are not imposed on the thalamocortical networks by changes in 

the activity of broadly projecting modulatory arousal systems, but rather are strongly 

influenced by the local cortico-cortical interactions. 

It has been conjectured that structured transitions between discrete states constrain the 

space of possible brain activity patterns and thereby allow the brain to efficiently recover 

its normal waking state after a dramatic perturbation (Hudson et al., 2014). The idea 

that, in order to recover from a perturbation, the space of possible activity states must be 

constrained by stabilization of a few discrete activity patterns is not specific to recovery 

from anesthesia per se. For instance, pharmacologically provoked recovery of 

consciousness in the setting of brain injury is also characterized by abrupt transitions 

between quasi-stable activity patterns (Victor et al., 2011). Sleep is also well known to 

consist of discrete activity patterns (e.g., Gervasoni et al., 2004). Thus, it appears that 

abrupt state transitions among discrete activity states accompany recovery of normal 

consciousness in a variety of settings.  
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It is thus of great interest to determine how such state transitions arise and how they are 

coordinated across thalamocortical networks. Here, in keeping with previous work (e.g., 

Gervasoni, 2004; Hudson et al., 2014), we defined the state of each local recording site 

on the basis of the power spectrum of the LFP. Since we focused on state transitions 

observed in the anesthetized brain, most fluctuations occurred in the slow oscillations (< 

1 Hz) (Mircea Steriade et al., 1993b), delta oscillations (1-4 Hz), and the spindle range of 

8-14 Hz (Purpura, 1968). Multiple distinct neurophysiological mechanisms contribute to 

the generation and coordination of the various brain oscillations observed in the 

anesthetized brain. Slow oscillations, for instance, are thought to be primarily generated 

through local synaptic mechanisms in the cortex (Sanchez-Vives and McCormick, 2000; 

Mircea Steriade et al., 1993b). Thalamocortical and thalamic reticular neurons reflect 

these slow oscillations and are phase locked to them (Mircea Steriade et al., 1993b). 

However, the fact that slow oscillations are abolished in the thalamus of decorticated 

animals (Timofeev and Steriade, 1996) but are observed in the cortex of athalamic 

animals (Mircea Steriade et al., 1993b) strongly argues for the cortical origin of slow 

oscillations. Corticocortical interactions are thought to underlie not just the generation of 

slow waves, but also the synchronization of these waves across the cortex. 

Pharmacologic and surgical lesions of intra-cortical connections disrupt the synchrony of 

slow waves (Amzica and Steriade, 1995).   

The observation that slow oscillations are coordinated primarily through corticocortical 

interactions is consistent with our results. Many of the state transitions under isoflurane 

involve fluctuations in the power of slow oscillations. Using three distinct analysis 

methods, we consistently find that state fluctuations in L4 are relatively dissimilar to 

those observed in the infra- and supragranular layers. L4 neurons are most directly 
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affected by spatially localized inputs from the thalamus, whereas  supra- and infra-

granular neurons are primarily driven by corticocortical connections and matrix 

projections from the thalamus (Jones, 2001). While anesthetics suppress both core and 

matrix thalamocortical inputs, their dominant effect is specifically suppressing cortico-

cortical connectivity (Raz et al., 2014). It is thus likely that the local nature of state 

transitions in the slow oscillation range is a consequence of both weakened 

thalamocortical and corticocortical interactions in the anesthetized brain.  

Transitions between slow (< 4Hz) and faster EEG oscillations, occasionally observed 

even in the anesthetized brain (e.g., Figure 2.2), are thought to arise as a result of the 

interaction of the thalamocortical networks with neuromodulatory projections from 

cholinergic neurons in the brainstem and basal forebrain (Steriade, 2004). Noradrenergic 

neurons (Vazey and Aston-Jones, 2014) and other brain stem and basal forebrain nuclei 

also contribute to the modulation of the oscillations exhibited by the thalamocortical 

networks (Jones, 2003). Activity within the various arousal promoting nuclei is 

coordinated by a group of medullary neurons, activation of which can trigger prompt 

awakening from deep states of anesthesia (Gao et al., 2019). In the anesthetized brain, 

fluctuations in the firing rate of these medullary neurons co-varies with the fluctuations in 

the spectral characteristics of the cortical LFP (Gao et al., 2019). Thus, it is possible that 

the spontaneous fluctuations of the LFP characteristics between the slower and faster 

oscillations are in part mediated by fluctuations in the activity of the nuclei that modulate 

the thalamocortical networks. However, most arousal nuclei have broad projections to 

the thalamus and the cortex (Jones, 2003). Thus, if the fluctuations in the state of the 

LFP were entirely driven by the fluctuations in the activity of the modulatory projections, 

one would expect that the state of the LFP would fluctuate coherently across the cortex. 
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Instead, we observe that fluctuations in state of the LFP are only weakly coupled 

between different cortical sites. This implies that the influence of the modulatory nuclei 

on the power of specific cortical oscillations, within the physiological range, is not 

absolute. Rather, activation of the modulatory systems likely biases the cortex towards a 

particular oscillatory state. The overall pattern of activity at each cortical site, however, is 

strongly influenced by interactions within the thalamocortical networks.  

The experiments performed here cannot directly address the cellular and synaptic 

mechanisms that give rise to local state transitions and their coordination across the 

cortex. They do, however, offer clear insights into network mechanisms of global state 

transitions. Here, rather than attempting to simplify the dynamics of the global signals 

directly (Hudson et al., 2014), we embedded the dynamics of the local signals into a low-

dimensional space. This analysis revealed only weak interactions between local signals. 

Remarkably, assembling just the low-dimensional projections of the local signals into a 

state vector recapitulated the low-dimensional dynamics and discrete global cortical 

states. Thus, we show that the global states and abrupt transitions between them arise 

because of weak coupling between local state fluctuations.  

We are not the first to note that weak coupling among local fluctuations can give rise to 

coherent macroscopic states. In the retina, weak correlations in spike timing  co-exist 

with a conspicuously high probability of certain large ensembles of neurons firing in 

synchrony (Schneidman et al., 2006). It may seem that a network with weakly correlated 

nodes can be well approximated by a collection of completely independent nodes, but 

this is not the case. Weakly coupled elements can yield highly correlated macroscopic 

states if the weak interactions are prevalent enough throughout the network. Indeed, we 
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find that while the correlations between different cortical sites were weak, they were 

present and statistically significant for most electrode pairs.  

The emergence of highly correlated global states from weak pairwise interactions has 

been investigated extensively in statistical mechanics using Ising models. It has been 

shown that  an Ising model is mathematically equivalent to a maximum entropy models 

of the statistics of neural firing that are constrained only by the experimentally observed 

firing probabilities of individual neurons and their pairwise correlations (Schneidman et 

al., 2006; Tkačik et al., 2006). The maximum entropy approach has proven successful in 

diverse systems (Ohiorhenuan et al., 2010; Tang et al., 2008; Tkačik et al., 2014; Yu et 

al., 2008). Although Ising models have traditionally been applied to binary state spaces, 

such as the presence or absence of an action potential within a small time window, the 

maximum entropy approach can be generalized to continuous variables (Bialek et al., 

2012), such as local fields. In this work, we did not explicitly attempt to construct a 

maximum entropy model of local field fluctuations, as we are recording only a tiny 

fraction of all cortical signals. Future work may sample of local field fluctuations more 

densely to determine whether an Ising-type model suffices to explain the fluctuations of 

the global state of the brain under anesthesia, or whether other mechanisms in addition 

to pairwise interactions are needed (Ohiorhenuan et al., 2010; Tang et al., 2008). 

Regardless of the specific details of such a model, however, we directly demonstrate 

that widespread weak correlations in local field fluctuations give rise to coherent global 

cortical states. This conclusion is strongly supported by the observations that locally 

defined cortical states yield highly correlated global behavior despite weak pairwise 

interactions, whereas the shuffled controls do not.  



52 
 

There are multiple parallels between our characterization of state transitions in the 

anesthetized brain and those observed during slow wave sleep (NREM). While sleep 

and anesthesia are clearly distinct phenomena, the neurophysiological mechanisms that 

give rise to oscillations in the thalamocortical circuitry under anesthesia and during 

natural sleep share some essential similarities (Mircea Steriade et al., 1993b; Steriade 

and Amzica, 1998). Many diverse anesthetics promote activity in the sleep active 

subcortical nuclei and suppress activity in the wake active ones (Jiang-Xie et al., 2019; 

Moore et al., 2012; Nelson et al., 2002; Zhang et al., 2015). Furthermore, both sleep and 

anesthesia consist of several discrete states, each characterized by a distinct pattern of 

oscillations in the cortex and thalamus (Saper et al., 2010). Based on the original 

recordings at the microscopic level of single isolated neurons or, alternatively, on the 

macroscopic level using EEG, it has long been hypothesized that sleep stages are brain-

wide phenomena and that the neurophysiological mechanisms that give rise to sleep 

stage switching specifically prevent multiple sleep stages or sleep and wakefulness from 

coexisting at the same time in different brain regions (Lu et al., 2006; Saper et al., 2010). 

Interestingly, at the mesoscopic level of neuronal populations and local fields, sleep 

state transitions, much like in this work, can be  local (Nir et al., 2011; Poulet and 

Petersen, 2008; Vyazovskiy et al., 2011). Furthermore, it has been suggested that 

antecedent neuronal activity driven by a specific task can increase the propensity of a 

population of cortical neurons to exhibit local sleep-like slow oscillations (Huber et al., 

2004), implying that transitions between different oscillatory modes are strongly 

influenced by local synaptic interactions. The degree of synchrony between cortical 

locations across naturally observed state transitions, such as those between different 

sleep stages or between sleep and wake, has not been directly quantified in a 

systematic fashion. Because sleep is strongly influenced by both homeostatic and 
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circadian influences, it will be challenging to disentangle these global influences from the 

local interactions between different sites in the cortex. However, analysis of cortical state 

transitions in the brain anesthetized with a fixed anesthetic concentration is free from 

these complications. This analysis shows that the apparently global coordinated shifts in 

cortical activity arise naturally out of weakly interacting local state switches. 

 

MATERIALS AND METHODS 

Animals 

All experiments were performed using ten male Sprague-Dawley rats, each two to three 

months of age (250–350 g) (Charles River Laboratories, Wilmington, MA). Two animals 

were excluded from further analyses because of excessive burst suppression or noise, 

respectively. One additional animal was excluded after current source density analysis 

revealed that the V1 probe was inserted too deeply to clearly identify cortical L4 and the 

supragranular layers. Rats were housed under a conventional 12:12 h, light:dark cycle 

and given food and water ad libitum. All experiments were performed in accordance with 

the Institutional Animal Care and Use Committee at the University of Pennsylvania and 

conducted in accordance with the National Institute of Health Guidelines. 

Surgery 

All surgeries were performed under aseptic conditions. Each animal was weighed 

immediately prior to surgery. Animals were induced with 2.5% isoflurane in oxygen and 

secured in a stereotaxic frame (Kopf Instruments, Los Angeles, CA) in the prone 

position. Core body temperature was maintained at 37 (± 0.5) °C using a temperature 

controller (TC-1000 Temperature Controller, CWE, Incorporated, Ardmore, PA). Prior to 
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surgery, isoflurane concentration was reduced to 1.5% (flow rate 1 L/min), and 

dexamethasone (0.25 mg/kg) was delivered subcutaneously. Bupivacaine (5 mg/mL) 

was injected under the scalp to provide local anesthesia. Throughout the surgery, the 

lack of response to a toe pinch was used to assess proper anesthetic depth. 

The scalp was retracted and two 2 x 2 mm craniotomies were performed using a dental 

drill: one centered over -5.52 mm AP, 4 mm ML of bregma and another centered over -

1.26 mm AP and 1.55 mm ML of bregma for V1 and M1 sites respectively. Dura was 

removed and Gelfoam (Pfizer, New York, NY) was placed on the exposed cortical tissue 

to prevent the tissue from desiccating. Prior to insertion, both linear probes (Cambridge 

NeuroTech, Cambridge, UK; H3 acute 64-channel linear probe) were dipped in DiI to 

allow for subsequent track tracing and lowered to 1.2 mm into the brain. Prior to 

electrode insertion, Dura Gel (Cambridge NeuroTech) was applied to each craniotomy 

and isoflurane concentration was lowered again to 1% (flow rate 1 L/min) for recordings. 

Immediately following electrophysiological recordings, animals were perfused trans-

cardically with 4% paraformaldehyde under 4% isoflurane. Brain was harvested and 

processed for electrode track tracing.  

Histological confirmation of recording sites 

Brains were sectioned at 80 µm on a vibratome (Leica Microsystems, Wetzlar, 

Germany). Sections were mounted with medium containing a DAPI counterstain (Vector 

Laboratories, Burlingame, CA). Electrode tracks were manually identified and localized 

using epifluorescence microscopy (Olympus, Tokyo, Japan; BX41) at 4x magnification. 
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Electrophysiology and Preprocessing 

All recordings were performed at 1% isoflurane, after allowing the anesthetic 

concentration to equilibrate for at least 30 minutes. Signals were amplified and digitized 

on an RHD2132 headstage (Intan, Los Angeles, CA) and streamed to a PC using an 

Omniplex acquisition system (Plexon, Dallas, TX) at a rate of 40,000 samples per 

second per channel. All recordings were performed using a ground skull screw as 

reference. Local field potentials (LFP) were extracted from raw signals online using the 

bandpass filter with a passband of 0.1-300 Hz. Offline, LFP were decimated to 1 kHz 

and filtered using a custom acausal FIR 0.1–200 Hz bandpass filter. Noisy channels 

were removed by visual inspection of the signals. Before subsequent analyses, data 

were re-referenced to the mean computed over all clean channels on the laminar probe. 

All data analysis was completed using custom built MATLAB (MathWorks, Natick, MA) 

code unless otherwise stated. In total, 29.88 hours of recordings were used to generate 

all data in this manuscript. 

Current Source Density and Channel Selection 

In order to facilitate cortical layer localization, a series of 10 ms light flash stimuli was 

presented from a green LED positioned about one inch from the eye contralateral to the 

craniotomy over V1. Interstimulus intervals were drawn from a uniform distribution 

between 3 and 5 seconds to prevent stimulus entrainment. Current source density 

(CSD) analysis was then applied to the post-stimulus LFP to identify layers in V1. The 

CSD Ct at time t was calculated by computing a smoothed second spatial derivative (a 

representative example is shown Figure 2.5): 

(2.1) 
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Here, z is the channel depth, σ = 280 μm is the distance along the electrode from z at 

which the kernel changes sign, Vt is the mean voltage over all light flash trials at time t 

relative to flash onset, and ∗ indicates convolution. The electrode closest to the center of 

L4 was identified manually from the CSD as the earliest current sink. Once L4 was 

identified, supra- and infragranular channels were selected for analysis at 140 μm 

intervals above and below L4. 

Time-Frequency Analysis 

Spectrograms of selected channels were calculated from LFP signals using the 

multitaper method with 17 Slepian tapers and time-bandwidth product (NW) = 9. A 6-

second sliding window with a step size of 100 ms was used. Windows containing signal 

artifacts were identified and removed using a combination of automatic burst 

suppression detection based on the root-mean-square of LFP in a moving exponential 

window and manual inspection of multitaper spectrograms. Each window was zero-

padded to 65.536 s to increase the frequency resolution and input a power-of-2 number 

of samples to the Fourier transform. In order to sample frequencies of greater interest 

more densely, 279 frequencies were selected from 0.14 to 300 Hz, spaced on a log 

scale from 0.14 to 10 Hz and on a linear scale above 10 Hz. The multitaper 

spectrograms were then smoothed over frequencies with a median filter spanning 10 

frequency steps (up to 17.5 Hz) and over time with an exponential (Poisson) window 

spanning 2 minutes. In order to remove baseline differences in power across 

frequencies (such as power-law scaling) and emphasize temporal fluctuations, each 

spectrogram was rank-order normalized along the time axis.  At each frequency bin, the 

time window with the highest power was given the value of one. Each other window was 

given the value of (r−1)/(N−1), where r is that window’s sorted index among the N 
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windows. Thus, the smallest power value at each frequency was represented as zero, 

and the largest as one. 

Dimensionality Reduction 

Dimensionality reduction was performed on each channel’s spectrogram individually, in 

order to obtain high reconstruction accuracy and ensure that any characteristic 

differences in activity patterns between sampled regions and cortical depths were 

preserved. Non-negative matrix factorization (NMF) (Lee and Seung, 1999; Mankad and 

Michailidis, 2013) was used to compress the rank-ordered spectrograms. The NMF 

output represents the signal at each time as a short vector of K non-negative coefficients 

(scores) that weight a sum of corresponding frequency components (loadings) to 

reproduce the original spectrum. Given a spectrogram A of size 279 x N, NMF produces 

a loading matrix U of size 279 x K and a score matrix V of size N x K. The product UVT 

reconstructs A with some error E, quantified relative to the norm of A as: 

(2.2) 

 

Where  is the Frobenius norm. To select an appropriate number of components (K) 

for each channel, a cross-validation approach was employed (Owen and Perry, 2009). 

First, spectrograms were downsampled across time by a factor of 20, for computational 

efficiency. Then, a random subset of 20% of the rows and columns were selected to be 

withheld. Starting with K = 1 and increasing to 15, NMF was applied to the down-

sampled matrix after the random subset of rows and columns had been removed. This 

iteration provides both a loading and score matrix. Next, NMF was run again on the data 

with only the pre-selected rows withheld. In this iteration, the loading matrix from the first 

round was fixed and only a new score matrix was calculated. In the third and final run of 
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NMF, NMF was run on the data with only the pre-selected columns removed, fixing the 

score matrix from the first round and calculating only a new loading matrix. Finally, the 

loading and score matrices produced in the second and third run of NMF, respectively, 

were multiplied to generate an estimate of the original dataset and calculate error as a 

function of K. This procedure was repeated for five replicates for each value of K, and 

the optimal K was chosen such that increasing K by one would reduce mean 

reconstruction error by less than 1%. In our dataset, the optimal value for K ranged from 

five to nine for different channels. After the cross-validation procedure, each channel’s 

full, normalized spectrogram was subjected to NMF using the channel’s optimal K, 

resulting in a mean reconstruction error of 14.8% across all channels (~85% of the 

variance captured by NMF for each spectrogram). Note that NMF does not constrain the 

relative scales of the loading vectors: for any invertible diagonal K x K matrix D, 

UVT = UD(VD-1)T. To remove these degrees of freedom, U and V were rescaled by a 

matrix D such that the rescaled loadings had unit L2 norm. 

Transition and Discrete State Identification 

The rescaled score matrix VD-1 is the basis for defining each channel’s state over time. 

For each channel, at each time point, the component with the highest score was taken 

as the state of the brain near that channel’s recording site, and samples where the state 

changed were marked as local transition times. In order to prevent an arbitrarily high 

number of transitions during periods when two or more components had similar scores, 

transitions that were likely to reflect transient fluctuations were ignored and the state 

assignments between them were updated accordingly. Specifically, suppose one time 

segment between two transitions was assigned state “A” and either the previous or next 

segment was assigned state “B.” If the first segment was less than 100 seconds long 
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and, within the first segment, the mean score for NMF component A was less than 1.1 

times the mean score for component B (i.e., if the state assignment was sufficiently 

ambiguous), the transition between the two segments was ignored and the combined 

segment was assigned state B. If a segment could be merged with either the previous or 

next segment, the tie was broken by ignoring the transition with a smaller magnitude of 

change in the full NMF score vector from the 3 seconds before the transition to the 3 

seconds following it. A matrix of state transition frequencies was computed by tabulating 

how often each discrete state followed each other state over the duration of the 

recording using the table of discrete state transitions for each channel. 

Markov-based Shuffled Null Model 

When testing whether pairs of channels are synchronized in the sense that they 

preferentially occupy certain combinations of discrete states, apparent synchrony could 

arise due to the channels’ individual NMF score distributions, independent of the relative 

timing of transitions. To control for this possibility, a discrete-time Markov chain (the “null 

model”) was fit to the transition frequencies of each channel independently. The 

channel’s null model was then used to simulate 1000 new discrete state sequences of 

the same length as the original data. For each pair of channels, these “null” state 

sequences were then used to fit distributions of transition synchrony and normalized 

mutual information (see corresponding sections below). This distribution reflects the 

probability of observing a given state synchrony and mutual information under the 

assumption of complete independence between different recording sites. To obtain a null 

distribution of canonical correlation-based synchrony (see below), full score matrices 

were generated from each channel’s null state sequences as follows: for each of the K 

states k, at each sample with null discrete state assignment k, the corresponding row of 
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the null score matrix was randomly drawn from the set of rows of the original data score 

matrix where the original discrete state was equal to k. These random sequences for all 

pairs of channels were then subjected to canonical correlation analysis.  

After fitting normal distributions for each of the three channel pair interaction measures 

(transition synchrony, normalized mutual information, and canonical correlations) to the 

shuffled surrogates, the values obtained for the real data were tested against these 

distributions to estimate whether they would be expected by chance, given the statistics 

of the data (see “Statistical Tests” below).  

Transition Synchrony 

To quantify how frequently channels transitioned together we employed the SPIKE-

synchronization score (“synchrony score”), a method for quantifying synchrony between 

two simultaneously recorded sequences of events (Kreuz et al., 2015). At its core, this 

method is a coincidence detector in which the coincidence window is derived from the 

dataset. The adaptive definition of the coincidence window means that this method for 

quantifying synchrony is equally well-suited for state transitions as it is to spike trains. 

Each transition r is assigned a local window length τ(r), which is defined as half the 

smaller of the inter-transition intervals directly before and after r. For a pair of channels i 

and j, if transition rj in j was the closest transition to transition ri in i and vice versa, and 

the time between ri and rj is less than min(τ(ri), τ(rj)), both transitions have a synchrony 

score of 1. All other transitions have a score of 0. This measure is extended to the multi-

channel case by assigning each transition a synchrony score equal to its mean pairwise 

synchrony score with the nearest transitions in all other channels. Both pairwise and all-

channel synchrony scores were computed for all discrete state transitions in each 
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recording, and then averaged over all transitions to obtain pairwise and global mean 

synchrony measures. 

Normalized Mutual Information 

Mutual information of discrete states was used to quantify the synchrony of states 

themselves rather than just the timing of their transitions. Specifically, this measure was 

implemented to quantify how well one could predict the state in one channel, given the 

state of another channel at the same time point. Since NMF was performed separately 

on each channel, states labeled with the same index in different channels are not 

necessarily the same with respect to the frequency characteristics of the signal. 

Regardless, mutual information is able to reveal temporal relationships between channel 

pairs because it does not assume any particular relationship between the state 

assignments of the different channels and is, therefore, agnostic to the assignments 

themselves. 

Mutual information I(X; Y) between two channels X and Y with N observations and sets 

of classes KX and KY was computed pointwise as follows: 

(2.3) 
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Mutual information is not a pure measure of the predictability of one variable given the 

other; it also increases with the entropy of each variable. For example, if channels X and 

Y each occupy a wider distribution of states and, as a result, have higher entropy than 

both channels W and Z, then I(X; Y) > I(W; Z). This is true even if the state of X is 

perfectly predictable given Y, Y given X, W given Z, and Z given W. In order to control 

for this, mutual information was normalized by the sum of the entropies of the two 

channels, giving the normalized mutual information, or symmetric uncertainty (Witten et 

al., 2011): 

(2.4) 

 

Using another definition for mutual information in terms of the individual and joint 

entropies of X and Y, we can write:   

(2.5) 

 

Thus, normalized mutual information can be understood as twice the fraction of the sum 

of individual entropies, H(X) + H(Y), that exceeds (is redundant to) the joint entropy H(X, 

Y) due to mutual information between X and Y. For example, if X and Y are identical, 

U(X, Y) = 1 and 50% of H(X) + H(Y) is redundant, as only one of the variables carries 

unique information. 

Canonical Correlation 

Both the transition synchrony and normalized mutual information measures assume that 

LFP signals at each channel form discrete states and that the sequence of NMF 

components with the largest magnitude at each time point is informative about this state. 

However, there may be cases where multiple components must be considered. For 

instance, consider a situation in which NMF component A in channel i is characterized 
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by strong activity in two frequency bands, and components B and C in channel j are 

characterized by strong activity in one of those frequency bands each. If only the “top” 

component determines the discrete state, there could be artificially low synchrony and 

mutual information between channels i and j. This is because, during a bout of state A in 

channel i, there could be frequent switching between states B and C in channel j, even 

though the overall signal characteristics in channel j remain largely static. To address 

this kind of ambiguity and compute a state synchrony measure that softens the artificially 

sharp boundaries between “discrete states,” canonical correlation analysis (CCA) was 

applied to the NMF score matrices of pairs of channels. Intuitively, CCA allows each 

score matrix to be linearly transformed to optimally match components between 

channels. CCA maximizes the correlations between the matched, transformed 

components. These correlations are used to derive a measure of state similarity. 

The procedure for computing CCA-based synchrony is as follows: let V ∈ ℝNxL and W ∈ 

ℝNxM be the NMF score matrices two channels, and let K = min(L, M). At each step i from 

1 to K, CCA finds coefficient vectors ai and bi to maximize the correlation ρi = corr(Vai, 

Wbi), with the constraints that ai is uncorrelated with all previous vectors a1, …, ai-1, and 

likewise for bi. The MATLAB function canoncorr was used to perform this algorithm and 

the canonical correlation coefficients ρ1, …, ρΚ were averaged to obtain a state similarity 

measure. 

Statistical Tests 

This section describes the procedure used to establish the statistical significance of 

interactions between recordings sites as measured by the synchrony score, normalized 

mutual information, and canonical correlation analysis. For each channel pair under 

consideration and each of these three interaction measures, the measure was computed 
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both on the experimental dataset and on a set of 1000 null-model datasets generated 

from discrete Markov models of each channel’s transition statistics, as described above.  

The values of each measure were approximately normally distributed across null-model 

datasets. To test statistical significance, the deviation of each measure obtained in the 

experimental dataset from those generated from null-model datasets was expressed as 

a z-score. The one-tailed p-value was then directly computed from the z-score. The 

significance threshold was set at α=0.05. Bonferroni correction was applied to account 

for multiple comparisons over all channel pairs in each animal. The percentage of pairs 

for which each interaction measure was different from chance after Bonferroni correction 

is reported in the manuscript, and non-significant pairs are grayed out in Figures 2.6-8.  

To compare interaction measures between different sets of channel pairs, special 

consideration must be paid to the statistical dependence between observations. In a 

recording with n channels, for any channel k, one would not in general expect the values 

of a distance-like measure on the pairs (k, 1), …, (k, k-1), (k, k+1), …, (k, n) to be 

independent. For example, if channel k were an outlier, all n-1 pairs would take extreme 

values due to what is statistically only one extreme observation. If pairwise statistics 

were compared naively, e.g., using a two-sample t-test, these dependencies would 

result in an overestimation of effective sample size and thus significance. Instead, a 

Monte Carlo permutation procedure was used to establish null distributions for 

comparisons of pairwise measures between groups of channel pairs. This procedure 

randomly shuffled group assignments while preserving the dependency structure 

inherent in the matrix of pairwise measures by only shuffling rows and columns. For 

each such comparison, 107 permutations of only the channels of each recording that 

were included in that comparison were conducted, and the difference of group means 
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was computed after each permutation. The frequency with which these null differences 

exceeded the difference of means of the unpermuted groups was taken as the p-value of 

the comparison. 

Finally, when comparing the interaction measures for between-region channel pairs in 

M1/V1 recordings to those in bilateral V1 recordings, the method of permuting channel 

labels cannot be used because there are no data for pairs of channels that mix different 

recordings. Instead, the distribution for the difference of means of the measure over 

pairs between the two sets of recordings was estimated by bootstrapping over channels. 

Specifically, each group in such a comparison consists of a set of rectangular matrices, 

containing values of the measure for each pair of one channel along the rows and one 

channel along the columns. By resampling both rows and columns with replacement in 

each such matrix, the dependencies along rows and columns were preserved, but the 

variance in the mean could be estimated thanks to the principles of bootstrapping. A 

total of 106 bootstrapped estimates of the group mean difference were computed in this 

manner for each interaction measure and used to obtain a p-value for the one-tailed 

hypothesis that the measure is greater on average between hemispheres of V1 than 

between M1 and V1. 
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FIGURES 

 

Figure 2.1: Experimental setup. (A) Verification of Electrode placement into V1 and 

M1. DAPI-stained histological section showing tracks of the DiI-dipped electrode (right) 

juxtaposed with the corresponding section from the rat brain atlas (left). The zoomed 

cutout includes an image to show electrode channel layout. (B) Time-resolved 

spectrogram recorded from V1 under 1% isoflurane general anesthesia (concentration 

shown above spectrogram). 
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Figure 2.2: Examples of state transitions. (A – C) Right: LFP traces (1 minute) 

recorded simultaneously from right M1and V1. Visually apparent abrupt transitions in the 

character of the LFP are indicated by shifts of color from black to red. Left: spectra 

computed from the red and black time periods respectively to indicate that the abrupt 

switches in the features of the signals are associated with changes in the spectra. (A) An 

example where both M1 and V1 LFPs appear to change state simultaneously. (B) An 

example where both M1 and V1 signals change states but with an appreciable time 

delay (~10 s). (C) An example where a state transition is observed in M1 but not in V1. 

In this case for the purposes of computing the spectrum (left, red) in V1, the time 

segment highlighted in red for the M1 electrode was used. 
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Figure 2.3: Schematic of LFP analysis, through NMF calculation. Left: Flowchart of 

analysis steps. Right: (A) Five minutes of raw LFP signal centered around a state 

transition. (B) Power spectrogram of LFP, computed using the multitaper method. (C) 

The spectrogram from panel B after smoothing and rank-order normalization across time 

(Methods). (D – E) The loading (D) and score (E) matrices generated using NMF 

showing the spectral characteristics of each component and its relative contribution to 

the signal across time, respectively. The number of NMF components was optimized 

individually for each channel (Methods). 
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Figure 2.4: Schematic of NMF score analysis to define state transitions and 

synchrony. Left: Flowchart of analysis steps.  Right: (A) The NMF score matrix 

presented in Figure 2.3E (upper) and another NMF score matrix from simultaneously 

collected LFP from a neighboring channel(lower). Note that while nearby channels share 

similar characteristics across time, they are not identical. Also, the two channels have 

different optimal number of components, since NMF was performed and optimized 

(Methods)independently for each channel. (B) State assignments across example time 

window from 18 simultaneously recorded signals: 9 signals from an M1 (top rows) 

electrode and 9 from V1 (bottom rows).  State # indicates the NMF component with the 

highest score in each time window, after removing state segments that were both short 

and ambiguous due to small score fluctuations (Methods). (C) Raster plot of all transition 

times from the channels presented in panel B. Transitions are colored according to their 

synchrony (sync score) with transitions in all other channels (Methods). 
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Figure 2.5: Current source density computed for a representative V1 recording. 

Evoked potential was elicited using a brief green LED flash (Methods). Dotted lines 

indicate the approximate boundaries of L4. Depth denotes estimated depth from the 

cortical surface. 
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Figure 2.6: Transition synchrony between channels in the same anatomical region 

is higher than between channels in different regions. (A – B) The cumulative 

distribution of SPIKE-synchronization (synchrony)scores across all channels, in real 

recordings (blue) and the median ± 95% CI of 1000 shuffled recordings (red), for M1/V1 

experiments (A) and bilateral V1 experiments (B). (C – D) Mean synchrony score across 

transitions for all channel pairs from a representative M1/V1 (C) and bilateral V1 (D) 

recording.  Channel pairs whose synchrony scores were not significantly different from 

shuffled controls after Bonferroni correction are colored gray. (E – F) Channel pairs in 

which both channels are in the same region (red) have higher synchrony scores than 

those in which the channels are in different regions (blue) for M1/V1 (E, p = 1e-7, 

permutation test) and bilateral V1 (F, p = 2e-7, permutation test) recordings. (G) Channel 

pairs in which one channel was within L4 and the other was not had lower synchrony 

scores than pairs in which neither channel was in L4 (p = 0.015, permutation test). Data 

included in these comparisons for the representative experiments are outlined in orange 

and purple, respectively, to highlight that only data from V1 electrodes were used. 
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Figure 2.7: Normalized mutual information (MI) between channels in the same 

anatomical region is higher than between channels indifferent regions. (A – B) 

Normalized MI between state assignment vectors for all channel pairs from a 

representative M1/V1 (A) and bilateral V1 (B) recording. All normalized MI values are 

significantly different from shuffled controls after Bonferroni correction. (C – D) Channel 

pairs in which both channels are in the same region (red) have higher normalized MI 

than those in which the channels are in different regions (blue) for M1/V1 (C, p = 1e-7, 

permutation test) and bilateral V1 (D, p = 1e-7, permutation test) recordings. (E) Channel 

pairs in which one channel was within L4 and the other was not had lower normalized MI 

than pairs in which neither channel was in L4 (p = 0.002, permutation test). Data 

included in these comparisons for the representative experiments are outlined in orange 

and purple, respectively, to highlight that only data from V1 electrodes were used. 
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Figure 2.8: Canonical correlation analysis (CCA) reveals higher correspondence of 

overall activity between channels in the same anatomical region than between 

channels in different regions. (A – B) CCA measure on NMF scores for all channel 

pairs from representative M1/V1 (A) and bilateral V1 (B) recordings. (C – D) Channel 

pairs in which both channels are in the same region (red) have higher NMF score 

correspondence than those in which the channels are indifferent regions (blue) for 

M1/V1 (C, p = 1e-7, permutation test) and bilateral V1 (D, p = 1e-7, permutation test) 

recordings. (E) Channel pairs in which one channel was within L4 and the other was not 

had lower NMF score correspondence than pairs in which neither channel was in L4 (p = 

0.001, permutation test). Data included in these comparisons for the representative 

experiments are outlined in orange and purple, respectively, to highlight that only data 

from V1 electrodes were used. 
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Figure 2.9: Weakly correlated fluctuations in different cortical sites give rise to 

highly correlated cortical states. NMF scores from all recorded channels were 

concatenated into a single state vector (median dimension across recordings = 106) and 

subjected to PCA. Fraction of total variance as a function of number of PCs is shown in 

(A) and (D) for M1/V1 and bilateral V1 example recordings respectively (blue).  Shuffled 

surrogates (Methods) were subjected to the same analysis (red). (B) and (E) show 

loadings of the top 2 principal components, mapped back from each channel’s NMF 

components to frequencies, for the two representative recordings. This projection 

reveals consistent differences between M1 and V1 (B) but is relatively consistent across 

bilateral V1s (E). In both instances, Layer 4 is distinct from supra-and infragranular 

layers. C and F show histograms of the data projected onto the top two PCs for the 

representative M1/V1 (C) and bilateral V1 (F) recordings. In both instances, the 

distribution of data is multimodal, suggesting the presence of discrete global cortical 

states. 
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CHAPTER 3 – Duration of EEG Suppression Does Not Predict Recovery Time or 

Degree of Cognitive Impairment After General Anesthesia in Human Volunteers 

 

INTRODUCTION 

As an experimental tool, general anesthesia provides a valuable opportunity to study 

how a healthy brain recovers from a dramatic perturbation that disrupts consciousness 

(Hudson et al., 2014). EEG features under general anesthesia have been extensively 

studied and used to quantify anesthetic depth for decades (Mashour, 2006b). Burst 

suppression is one well-known EEG activity pattern traditionally associated with deep 

anesthesia. This pattern is characterized by periods of isoelectric EEG punctuated by 

bursts of electrical activity and is induced at high concentrations of various general 

anesthetics with different mechanisms of action (Akrawi et al., 1996). During burst 

suppression, 95% of cortical neurons are hyperpolarized (M. Steriade et al., 

1994), excitatory transmission is greatly diminished (Ferron et al., 2009), inhibitory 

postsynaptic potentials are completely abolished (Ferron et al., 2009), and cerebral 

metabolic rate is reduced (Woodcock et al., 1987).  

Outside of the domain of anesthesia, burst suppression is observed during states of 

profound cerebral dysfunction, including encephalopathy (Ohtahara and Yamatogi, 

2003) and coma (Cloostermans et al., 2012). Furthermore, burst suppression has been 

hypothesized to be a poor prognostic indicator for recovery after brain injury (Hofmeijer 

et al., 2014). Burst suppression has been associated with adverse outcomes such as 

delirium and death in post-surgical (Fritz et al., 2016; Radtke et al., 2013; Soehle et al., 

2015) and intensive care (Andresen et al., 2014) settings (Sessler et al., 2012; Watson 
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et al., 2008). Yet, the fundamental physiology of burst suppression as a determinant of 

recovery from anesthesia has not been established. 

We hypothesized that greater duration of EEG suppression during anesthesia would be 

associated with increased time to emergence, defined as time to recovery of 

consciousness after discontinuation of the anesthetic. Contrary to our hypothesis, the 

addition of metrics of EEG suppression in a model built to predict time to emergence did 

not sufficiently improve the predictive ability of the model. We also hypothesized that a 

longer duration of EEG suppression would be correlated with greater cognitive 

impairment at emergence from anesthesia. The assumption that suppression would 

predict cognitive impairment also proved false. Thus, while burst suppression is thought 

to reflect the deepest plane of general anesthesia, EEG suppression is not a good 

predictor of prolonged recovery time or degree of impairment of cognition in healthy 

human volunteers. 

 

RESULTS 

Individual variability in EEG characteristics during constant anesthetic 

administration 

The end-tidal isoflurane concentration (Figure 3.1A) was maintained near 1.3 age-

adjusted MAC. Temperature (Figure 3.1B) was maintained in the physiologic range. The 

population mean (Figure 3.2A) and median (Figure 3.2B) spectrogram exhibited a 

canonical high power of low frequency oscillations during isoflurane administration. Yet, 

both the mean and median spectrograms conceal two important sources of variability: 

inter- and intra-subject variability (Figure 3.3). In the absence of surgical stimulus, and 
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despite a constant isoflurane concentration, the spectra of EEG fluctuate as a function of 

time. Four examples of this variability are highlighted in Figure 3.3. One subject 

(Figure 3.3A) had two periods of prolonged isoelectric EEG in the first hour of isoflurane 

administration. During the remaining two hours, no significant suppression was 

observed, but the frequency of α oscillations waxed and waned. In contrast, another 

subject (Figure 3.3B) exhibited short periods of EEG suppression throughout the 3-h 

administration of isoflurane, and another (Figure 3.3C) had EEG dominated by 

suppression interrupted by a consolidated period of non-suppressed period. Finally, a 

fourth subject (Figure 3.3D) did not exhibit any appreciable EEG suppression at all. 

Thus, the population mean and median spectrograms do not reflect individual EEG 

dynamics under anesthesia in healthy human volunteers undergoing constant isoflurane 

exposure. In the remainder of the manuscript, we will focus on one aspect of EEG 

activity—EEG suppression—to determine whether it is associated with a longer time to 

recovery of consciousness or greater impairment of cognition at emergence. 

The first two principal components separate suppression from non-suppression 

Periods of suppression are characterized as flat-lined, or isoelectric EEG, which is 

associated with a dramatic decrease in cortical activity. In the frequency domain, this is 

seen as a broadband decrease in power (blue regions in the spectrograms 

in Figure 3.3). 

Because EEG suppression is associated with a broadband decrease in EEG power, we 

reasoned that projecting the spectra onto the first principal component should separate 

periods of suppressed EEG into a distinct cluster. In 21 out of 25 subjects with burst 

suppression, assessed by visual inspection, the null hypothesis that the distribution is 

unimodal was rejected (P<0.05 after multiple comparison correction). 
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Consistent with the results of the Hartigan dip test, spectrograms projected onto a plane 

spanned by the first two PCs formed two clusters (Figure 3.4A). Points were assigned to 

each cluster using a standard k-means algorithm and overlaid on the spectrogram to 

demonstrate the accuracy of cluster assignments (Figure 3.4B). 

Visual inspection suggested that all episodes of suppressed EEG were assigned to a 

single cluster. To verify that this was the case, we concatenated all epochs of the EEG 

assigned to the suppressed and the non-suppressed cluster (Figure 3.4C).  

EEG suppression is not independently associated with increased time to recovery 

of consciousness 

As demonstrated in Figure 3.3, the suppression patterns varied over all 27 subjects, 

including two subjects who failed to exhibit any EEG suppression. Variability occurred in 

the total amount of suppression, number of distinct suppression episodes, dwell time of 

suppression episodes, and the organization of suppressed episodes during isoflurane 

administration. 

Of the 25 subjects exhibiting suppression, the cumulative percentage of suppression 

ranged from 1.1 to 67.9% (average: 25%; SD: 21) of the recording. The maximum length 

of suppression ranged from 0.28 to 13 min (average: 3.5; SD: 3.3 min). The number of 

transitions between suppression and non-suppression ranged from six to 412 (average: 

150.8; SD: 120.2). We also calculated the percentage of suppression during the last 15 

min of isoflurane administration, as this might be a better indicator of whether a subject 

is likely to recover consciousness more quickly or more slowly than their suppression 

over the entire 3 h of isoflurane administration. Fourteen subjects showed no 
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suppression during the last 15 min of isoflurane administration. In the remaining 

subjects, the average suppression duration was 2.9 min (2.3 SD). 

None of the four suppression-derived measures were individually correlated with time to 

emergence (percent suppression: R2=0.03, P=0.40, longest suppressed episode: 

R2=8×10−4, P=0.89, number of suppressed episodes: R2=0.02, P=0.51, percent 

suppression in the last 15 min: R2=0.02, P=0.44) (Figure 3.5). 

We investigated the relationship between time to emergence and three measures 

derived from the age-adjusted isoflurane MAC values. Two showed no relationship with 

time to emergence (MAC in the first 30 min: R2=9×10−5, P=0.96 and mean MAC from 50 

to 180 min: R2=0.02, P=0.53). The third isoflurane-derived measure κ is the exponential 

decay rate for the end-tidal isoflurane starting from the moment isoflurane was shut off 

(Eq. 3.1). As expected, the decay rate constant was strongly correlated with time to 

emergence (R2=0.39, P=5×10−4), but accounted for less than 40% of the variance 

(Figure 3.6). Therefore, the rate constant, κ, was included in all subsequent models that 

predict the time of emergence and impairment of cognition. 

We start with the conventional approach using linear regression. The regression models 

incorporated the isoflurane decay rate constant, κ, and either the percent of total time in 

suppression or percent of the last 15 min of isoflurane exposure spent in suppression. 

Both of these models demonstrated statistical significance (Table 3.1, Table 3.2). Yet, 

neither the fraction of total time spent in suppression nor the fraction of the last 15 min of 

isoflurane exposure spent in suppression showed a statistically significant association 

with time to emergence. Furthermore, no statistically significant interaction was found 

between the isoflurane decay rate constant and EEG suppression. 
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We, next, turn to a more physiologically motivated modelling approach graphically 

illustrated in Figure 3.7. We model recovery of consciousness as a process that starts 

from some anesthetic depth observed at the time when isoflurane is turned off (ω). As 

the anesthetic is eliminated, the system gradually evolves towards a threshold (Ω) at the 

rate dictated by the elimination rate constant (κ). We model the percent of time spent in 

suppression as an additive anesthetic depth (σ), as we expect that the brain with more 

EEG suppression should take longer to recover. To test this intuition, we determine 

whether the ability to predict the time of emergence is significantly improved by 

incorporating the fraction of time spent in suppression. 

The ability of each model to predict time of recovery is shown in Table 3.3 as the 

Pearson correlation coefficient between the model and the time to emergence of each 

subject. Notice that each model has a similar correlation coefficient. To select the best 

one among the considered models, we computed the AIC for each. From the AIC, we 

computed the probability that each model minimizes loss of information relative to the 

other models considered (Burnham and Anderson, 2003). From an information theoretic 

standpoint, the model with the highest probability is chosen as the most appropriate 

model. Using this approach, we conclude that the model without any measure of EEG 

suppression is the most appropriate model. In the interest of testing the consistency of 

the AIC and the associated relative probabilities, we bootstrapped our calculation of 

corrected AIC values. This was accomplished by randomly selecting (with replacement) 

a set of 27 subjects. Each model was then fit to this subset. The best model was 

selected for each such subset as the one that maximizes relative probability. The model 

that did not include a measure of burst suppression was chosen in 86% of the 1000 

bootstraps. 
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EEG suppression is not associated with impairment in cognitive task performance 

at emergence 

Having established that there is no statistically significant relationship between EEG 

suppression and recovery of consciousness, we asked whether increased EEG 

suppression is associated with greater impairment of cognitive function at this time point. 

For this purpose, we turned to estimates of changes in cognitive performance on the 

DSST and the PVT at emergence. Performances on both the PVT and DSST, in terms 

of both accuracy and response time, were impaired immediately upon recovery of 

consciousness. We hypothesized that subjects exhibiting more burst suppression would 

exhibit greater impairment relative to baseline. Additionally, we hypothesized that slower 

elimination kinetics of isoflurane would result in greater impairment. Yet, we found no 

evidence that the duration of EEG suppression is associated with greater impairment in 

accuracy or response time for both the PVT and DSST 

(Figure 3.8 and Table 3.4, Table 3.5). Likewise, the time constant of isoflurane 

elimination was not correlated with estimates of impairment at emergence for either 

cognitive task, in terms of accuracy or response times (Table 3.6). 

 

DISCUSSION 

The results of this study do not reveal an association between EEG suppression and 

time to recovery from general anesthesia. Furthermore, we failed to find an association 

between the amount of EEG suppression and the degree of impairment in cognitive 

performance at emergence, as measured using two independent cognitive tests. 

Anesthetic exposure profoundly impeded performance on both of these tests. Burst 



86 
 

suppression, however, did not confer any additional decrement in cognitive function after 

anesthesia. 

Absence of evidence is clearly not evidence of absence. However, our findings reduce 

the probability of a strong relationship between EEG suppression and recovery of 

consciousness or impairment of cognition in healthy subjects. Here we defined recovery 

of consciousness as the time when the subject was first able to follow instructions to 

squeeze either the right or left hand twice. The ability to follow this command implies that 

the subject is capable of parsing a simple sentence, has an elementary conception of 

numbers, and the ability to communicate via the execution of a simple motor task. Thus, 

recovery of consciousness as defined herein, signifies return of at least rudimentary 

cognition. In an attempt to discover a relationship between the time it takes to recover 

consciousness and EEG suppression, we used several complementary modelling 

approaches. None reveals a significant association between EEG suppression and time 

to recovery of consciousness. This conclusion is further reinforced by the finding that 

subjects whose EEG exhibited significant suppression were no more impaired in 

performance time or performance accuracy of two cognitive tests that assess distinct 

neurobehavioral processes (Basner et al., 2015, 2011) than those without any 

suppression of the EEG. This is a counterintuitive observation, as isoelectric EEG is 

universally considered to be the deepest attainable state of anesthesia. 

Animal studies have established previously that EEG suppression is not necessarily 

associated with prolonged recovery (Hambrecht-Wiedbusch et al., 2017). For example, 

Hambrecht-Wiedbusch and colleagues (Hambrecht-Wiedbusch et al., 

2017) added ketamine to an isoflurane anesthetic, which induced burst suppression but 

nevertheless accelerated emergence time. Our findings here are distinct from those of 
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Hambrecht-Wiedbusch and colleagues (Hambrecht-Wiedbusch et al., 2017) as we 

demonstrated that burst suppression induced in humans with a single anesthetic agent 

is not associated with longer time to recovery of consciousness. 

Although the effect of various anesthetics on the EEG has been extensively studied in 

humans (Blain-Moraes et al., 2014; Cimenser et al., 2011; Gibbs et al., 1937; John et al., 

2001; Lee et al., 2013), most studies present EEG characteristics averaged across 

subjects and time. When group averages (e.g. Figure 3.2) and individual EEG 

recordings (e.g. Figure 3.3) are compared, it becomes clear that the population and time 

averaging fail to represent the behavior of any individual subject. We exploited this 

natural inter- and intra-subject variability to isolate the effect of EEG suppression on the 

timing of subsequent recovery of consciousness and impairment of cognition without the 

confounds of variably noxious surgical stimuli, changing anesthetic concentrations, or 

complex polypharmacy commonly used in the operating room. Yet, we were unable to 

discover any statistically significant association between features of EEG suppression 

and 1) restoration of consciousness or 2) cognitive impairment at this time point. 

A major limitation of the study was that only a single anesthetic and a single 

concentration were evaluated. Full exploration of the possible activity patterns of the 

EEG and their dependence on the anesthetic agent and concentration will require 

additional investigation. Further, it is likely that EEG activity patterns and the dynamics of 

switching among them could be dramatically altered by clinically relevant factors such as 

brain pathology, surgical stimulation, and the addition of opioids. Yet, this study in a 

healthy volunteer population establishes that, even when many variables are 

constrained, variability in EEG activity does not vanish in the anesthetized brain. 
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The surprising results from this study indicate that no aspect of EEG suppression 

assessed here (cumulative time in suppressed EEG, longest epoch of suppressed EEG, 

percent of time in suppressed EEG during the penultimate 15 minutes before 

discontinuing the anesthetic, and the frequency with which the anesthetized brain 

transitions into and out of the suppressed state) correlate with the time to emerge from 

anesthesia. Furthermore, features of EEG suppression were not significantly associated 

with estimates of cognitive impairment on the PVT and DSST at emergence. Such a 

result, while not definitive, is clearly consistent with the notion of a non-linear depth of 

anesthesia, a dissociation between the dynamics governing the state of anesthesia and 

recovery from anesthesia. It also instructs the clinician that heretofore unrecognized 

factors underlie the variable fluctuation between states of EEG suppression and non-

suppression in the presumptively healthy human brain. 

In the clinical literature, burst suppression has received much attention because of its 

reported association with adverse outcomes in surgical and ICU patients. Monk and 

colleagues (Monk et al., 2005) showed in a prospective study that increased cumulative 

deep anesthesia time was associated with increased mortality after noncardiac surgery. 

While they did not directly study burst suppression, bispectral index below 45—defined 

as deep anesthesia by Monk and colleagues (Monk et al., 2005)—is typically associated 

with burst suppression (Bruhn et al., 2000). Watson and colleagues (Watson et al., 

2008) found that burst suppression is associated with increased mortality in the ICU 

patient population. In addition to mortality, burst suppression has been reported to be 

associated with delirium in ICU (Andresen et al., 2014) and in surgical patients (Chan et 

al., 2012; Fritz et al., 2016; Radtke et al., 2013; Soehle et al., 2015). One interpretation 

of these findings is that administering excessive doses of anesthetics may have 
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deleterious effects on the brain. This view is consistent with the multiple lines of 

evidence demonstrating potentially neurotoxic effects of anesthetics (reviewed by 

Vutskits and Xie (Vutskits and Xie, 2016)). 

In studies on surgical and ICU patients, it is difficult to delineate why certain patients had 

more burst suppression than others. One possibility is that patients with more burst 

suppression received higher doses of anesthetics and sedatives. Another possibility is 

that some patients are more sensitive to the effects of anesthetics, and therefore are 

more likely to exhibit burst suppression at anesthetic doses that do not typically elicit 

burst suppression in others. As all subjects in our study were exposed to similar 

anesthetic concentrations, it is tempting to speculate that subjects who exhibit more 

suppression are more sensitive to the effects of isoflurane. If so, one would expect that 

more sensitive subjects should take a longer time to recover from anesthesia and 

experience greater cognitive impediment. We find no evidence to support this 

hypothesis. Instead, we find that a parsimonious measure of deep anesthesia—

isoelectric EEG—is not useful in predicting the time to recovery of consciousness or 

subsequent decrement in cognitive function. While our findings do not invalidate the 

previously published association between suppressed EEG and cognitive outcomes 

(Hesse et al., 2019), they illustrate that burst suppression per se may not be an 

important determinant of the recovery of consciousness and cognition. Indeed, none of 

the subjects in this cohort exhibited delirium based on the standard confusion 

assessment method for the intensive care unit (CAM-ICU) assessment. However, it is 

possible that EEG suppression is associated with subtle cognitive deficits upon recovery 

in normal subjects that were not captured in our study. This relationship will require 

further investigation, but results herein suggest that EEG suppression caeteris paribus is 
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not associated with significantly greater impairment of cognition or increased time to 

recovery in healthy adults. 

 

MATERIALS AND METHODS 

All data were collected as a part of the ReCCognition (NCT01911195) study after 

appropriate institutional review board approval: University of Pennsylvania, Philadelphia, 

PA, USA (Protocol #818401), University of Michigan, Ann Arbor, MI, USA (Protocol 

#HUM0071578), and Washington University in St. Louis, St. Louis, MO, USA (Protocol 

#201308073). To be eligible to participate, all subjects gave written informed consent in 

accordance with the Declaration of Helsinki. Details of the study design and eligibility 

and exclusion criteria are previously described (Maier et al., 2017).  

Anesthetic administration 

EEG was recorded in 30 healthy (ASA patient status 1 and 2) (Vacanti et al., 

1970) volunteers (12 women and 18 men, 22–39.5 yr), with 10 subjects recorded at 

each of three sites: University of Michigan, Washington University, and University of 

Pennsylvania. EEG was sampled at 500 Hz using the Electrical Geodesics, Inc. 

(Eugene, OR, USA) EEG system with either a 32 (20 subjects), 64 (one subject), or 128 

(nine subjects) channel montage referenced to Cz. Sessions began with baseline 

cognitive testing. After pre-oxygenation using a face mask, anesthesia was induced with 

a stepwise increasing infusion rate of propofol: 100 μg kg−1 min−1×5 min, increasing to 

200 μg kg−1 min−1×5 min, and then to 300 μg kg−1 min−1×5 min. After 15 min of propofol 

administration, we administered isoflurane 1.3 age-adjusted MAC, delivered via 
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a laryngeal mask airway, for three hours. Subjects breathed spontaneously with 

pressure support adjusted to attain tidal volumes 5–8 ml kg−1. 

During anesthetic administration, vital signs and other data (ECG, noninvasive BP, pulse 

oximetry, end-tidal carbon dioxide and isoflurane concentration, and nasopharyngeal 

temperature) were monitored and recorded in an electronic anesthetic record and 

analyzed post hoc. Surface warming blankets were applied to maintain body 

temperature in the normal range. BP was maintained within 20% of starting values by 

intermittent boluses or infusions of phenylephrine. I.V. ondansetron (4 mg) was 

administered 30 min before discontinuation of isoflurane. 

At the discontinuation of isoflurane, an audio command loop, issued every 30 seconds, 

asked the subject to squeeze either the right or left hand twice. Emergence was defined 

by the initial time at which participants responded correctly to two consecutive 

commands. Recovery time was defined as the period between isoflurane discontinuation 

and emergence. 

Cognitive testing battery 

Upon emergence, a cognitive testing battery was administered at 30-min intervals. Six 

tasks from the computerized Cognition test battery (Basner et al., 2015) were used to 

serially assess cognitive task performance with high temporal resolution. Here, we 

focused on two robust cognitive tests in order to reduce the number of statistical 

comparisons. We first used the digit symbol substitution test (DSST), a test of cognitive 

throughput and visual scanning previously used to characterize cognitive recovery in 

surgical patients recovering from general anesthesia (Ibrahim et al., 2001; Larsen et al., 

2000; McLeod et al., 1982). The DSST requires participants to select keys based upon a 
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menu of nine matching symbols and numbers displayed on the screen. We additionally 

used the psychomotor vigilance test (PVT), a measure of vigilance and attention 

resistant to learning effects with repeat administration (Basner and Dinges, 2011). The 

PVT measures reaction time (Basner et al., 2011) by requiring the space bar to be 

pressed as quickly as possible after the appearance of a counter with incrementing 

numbers. 

Tests were administered on a 14″ LCD Dell Latitude E4530 laptop computer (Dell, 

Round Rock, TX, USA). Test order was randomized between participants. Alternate 

forms of cognitive tests were used at each administration to reduce practice effects. In 

considering a speed-accuracy trade-off (Wickelgren, 1977), we analyzed median 

response times and performance accuracy separately for each test. 

EEG analysis 

The analyses presented herein were performed on the EEG recorded during the 3 h of 

isoflurane administration at 1.3 MAC. Artifacts attributable to noise or movement were 

rejected manually. K-means clustering was performed on the number of minutes of clean 

data for all 30 subjects, resulting in the exclusion of three subjects. These three 

excluded subjects had only 92.2 (±12 min) (∼51% of recorded data) of clean data 

compared with the 158.8 (±9.8 min) (∼88% of recorded data) of clean data for the 

remaining 27 subjects (nine women, 22–39.5 yr). Thus, only the 27 subjects with longer 

clean EEG recordings were used in all subsequent analyses. 

Data were high pass filtered at 0.1 Hz using a 4th order Butterworth filter. Spectrograms 

were computed on lead F3 for each subject using the Thomson's multitaper method 

(Thomson, 1982) implemented in MATLAB using the following parameters: 10 s window 
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length, 1 s step size, time-bandwidth product NW=9, and number of tapers K=5. Power 

estimates were computed for frequencies up to 50 Hz. In order to expose fluctuations 

around the mean spectrogram, the temporal mean spectrogram was computed by 

averaging across all 10 second windows during the three hour isoflurane administration. 

This mean spectrum was subtracted from the original spectrum obtained in each 10 

second window, after a log transformation. For the group mean and median 

spectrograms, the individual spectrograms were not normalized. All subjects' 

spectrograms were truncated to the length of the shortest clean spectrogram, 124.35 

min. 

Many methods exist for detecting suppressed EEG (e.g.(Chemali et al., 2013; Leistritz et 

al., 1999; Särkelä et al., 2002). Here, we sought to separate periods of suppression in 

the EEG using the methodology similar to that described by Hudson and 

colleagues such that the EEG spectrum of the signal in each window is a vector. Each 

element of the vector specifies the power estimate at each frequency. To reduce the 

dimensionality of this vector, we subjected the matrix consisting of spectral estimates at 

each 10 second window to principal component analysis performed on each subject 

individually. To determine whether distribution of the data projected onto first principal 

component (PC1) was unimodal, we used Hartigan's dip statistic (1000 bootstraps) 

(Hartigan and Hartigan, 1985). For every subject, if the null hypothesis of unimodality 

was rejected, k-means clustering was performed on their data projected onto the first 

two principal components. In the subjects with burst suppression, this procedure resulted 

in suppressed epochs grouped into a single cluster. Thus, each one of the 10-s windows 

of the spectrogram was effectively categorized as either EEG suppression or non-

suppression. 
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Statistical analysis 

To determine how time to emergence is related to experimental variables, we began our 

statistical analyses by constructing linear regression models for each of three isoflurane-

derived measures and four suppression-derived measures with time to emergence. 

These isoflurane and suppression measures are described in further detail below. 

For all 27 subjects, end-tidal isoflurane values were collected and analyzed (Figure 1A). 

The three predictors derived from isoflurane measures were: 1) the summation from 1 to 

30 min; 2) the mean value from 50 to 180 min; and 3) the rate constant of exponential 

decay of a curve fit to the measured isoflurane concentration after discontinuation of 

anesthesia at 180 min until time of emergence. This rate constant was calculated for 

each subject individually using the following equation: 

(3.1) 

where t is the time in minutes since isoflurane was shut off. Parameters a and κ were fit 

to the data using the least-squares method. The only isoflurane-derived variable that had 

a significant relationship with time to emergence was the exponential time constant for 

isoflurane expiration, κ. 

Several measures of suppression were also considered in our initial analyses: fraction of 

total time spent in suppression, longest single episode of suppression, number of distinct 

suppression episodes, and the fraction of time spent in suppression during the last 15 

min of isoflurane administration. Given the limited number of subjects included in this 

study, we chose to focus subsequent analyses on the fraction of total time spent in 

suppression and the fraction of time spent in suppression in the last 15 min at isoflurane 

1.3 MAC. 

["#$%&'()*+] = )+!"# 
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To further investigate the relationship between suppression and time to emergence, we 

tested for independence between the rate of isoflurane expiration and durations of EEG 

suppression. To assess this, we constructed a pair of linear regression models with time 

to emergence as the dependent variable and independent variables κ and one of two 

suppression measures (either the fraction of total time spent in suppression or the 

fraction of suppression in the last 15 min of isoflurane exposure) in addition to an 

interaction term between κ and the suppression measure. 

In order to test the hypothesis that the inclusion of information about the amount of EEG 

suppression improves model predictions of emergence time, we generated three 

additional models. Each model was built to estimate the emergence time based on 

measured and fitted parameters. The general intuition we used in construction of these 

models was that isoelectric EEG can be thought of as the deepest state of anesthesia. 

Recovery of consciousness can then be conceptualized as the gradual evolution of the 

brain state from its starting point towards some threshold brain state at which 

emergence occurs. We modelled this trajectory as an exponential decay from the 

starting brain state at which anesthetic was turned off to brain state at which emergence 

is observed. This model is mathematically expressed as follows: 

(3.2) 

where Ω is the threshold brain state at which emergence occurs, κ is the rate constant 

obtained by fitting decay of expired isoflurane to an exponential (Eq. 3.1) and A is the 

initial brain state at the time of isoflurane shut-off. Finally, twake is the time of emergence 

in minutes. The equation can be solved for twake and rewritten as: 

(3.3) 

Ω = #$!"#!"#$ 
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In order to determine whether the amount of EEG suppression can predict twake, A was 

constructed in three different ways; models 1 and 2 each include a different measure of 

EEG suppression (σ), while model 3 does not contain any information concerning 

suppression of the EEG. The variable σ is percent of total time in suppression during the 

3-h exposure, in model 1. In model 2, σ is percent of time in suppression during the last 

15 min. In models 1 and 2, A=σ+ω where ω is an offset that ensures A is never equal to 

Ω. This offset allows us to deal with subjects that had no suppression. Model 3 does not 

include a suppression variable and A=ω. 

We estimated Ω and A using least-squares fitting of Eq. 3.2 to the observed emergence 

times and measured parameters. Using the fitted parameters, we obtained three 

different sets of predictions for the time to emergence, t̂: one from each model. 

The ultimate question we aim to address in this study is whether incorporating a 

measure of EEG suppression (σ) into a model of emergence from anesthesia improves 

predictions. To answer this question, we use a model selection strategy grounded in 

information theory—Akaike Information Criterion (AIC) (Bozdogan, 1987). The best 

model is not necessarily the one that minimizes residuals. This is because models with 

more parameters will generally fit data better than models with fewer parameters, 

regardless of how relevant the additional parameters are. To ensure that there is not a 

bias for models with more parameters, AIC assigns a penalty for each additional 

parameter used in a model. With correction for a finite sample size, AIC was 

implemented according to the following equation: 

(3.4) !"# = 2& − 2(&)*+, +	 2&
! + 2&
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where, n is the number of parameters in the model, L is the log likelihood of the 

residuals, and N is the total number of subjects. L is calculated using the following 

equation: 

(3.5) 

Models 1 and 2 include suppression and have two parameters (κ and σ). whereas model 

3 has only one parameter (κ). AIC can be converted to the probability that the ith model, 

out of a set of considered models, is preferred. This probability is computed according to 

the following equation (Burnham and Anderson, 2003):  

(3.6) 

In order to maximize reproducibility, we bootstrapped our calculation of AIC probabilities 

(1000 bootstraps). 

Analysis of cognitive task performance 

Accuracy and response time measures for the PVT and DSST were standardized as z-

scores based upon the distribution of pre-intervention baseline scores from the study 

sample. The standardized scores were expressed as differences from individuals' 

baseline performance before anesthesia (Maier et al., 2017). Cognitive task performance 

as a function of time was fit using non-linear mixed effects model using a damped 

exponential function: 

(3.7) 

where i is the subject index and t represents time after recovery of consciousness. Φ1-

2 were modelled as random effects that were fit for each subject independently, 

while Φ3 was treated as a fixed effect and accounted for differences relative to baseline. 

The sum of Φ1,i and Φ3 was used to model the change in cognitive performance at the 
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time of emergence (t0). This accounted for the variability in the timing of DSST and PVT 

task administration and allowed cognitive task performance to be compared at a 

common time point across participants. As the modelled cognitive task measures at time 

of emergence were not normally distributed, Spearman's rank-order correlation was 

used to assess for relationships between measures of burst suppression and impairment 

in task performance at emergence. 

Non-linear mixed effects modelling of cognitive task performance was performed in SAS 

(SAS Institute Inc., Cary, NC, USA). All further analyses were performed in R or in 

Matlab R2017a using customized scripts. All errors are shown in terms of standard 

deviation (SD) unless otherwise indicated. 
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TABLES 

Linear Regression with Elimination Time Constant and Overall Percent Suppression 

Overall Significance (F-statistic: 6 on 3 and 23 
DF) Adjusted R2: 0.37 P-value: 0.004* 

Isoflurane Elimination Time Constant (k) 0.79 (0.6) P-value: 0.18 

Percent Suppression (overall) 0.23 (0.3) P-value: 0.46 

Interaction 0.02 (0.01) P-value: 0.27 

Asterisk denotes statistical significance at the level defined as p < 0.05. 

 

Table 3.1: Results of linear regression model including decay time constant and 

overall percent suppression. Overall suppression is not significantly associated with 

time to recovery and fails to show statistically significant interaction with the isoflurane 

elimination time constant. 
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Linear Regression with Elimination Time Constant and Percent Suppression in the last 15 
minutes 

Overall Significance (F-statistic: 5.35 on 3 and 23 
DF) Adjusted R2: 0.33 P-value: 0.006* 

Isoflurane Elimination Time Constant (k) 1.4 (0.4) P-value: 0.003* 

Percent Suppression (overall) 22.8 (51.8) P-value: 0.66 

Interaction -0.49 (2.9) P-value: 0.87 

Asterisk denotes statistical significance at the level defined as p < 0.05. 

 

Figure 3.2: Results of linear regression model including decay time constant and 

percent of last 15 min of isoflurane exposure spent in EEG suppression. EEG 

suppression is not significantly associated with time to recovery and fails to show a 

statistically significant interaction with the isoflurane elimination time constant. 
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 Model with % 
Suppression 

Model with % 
Suppression in last 

15 minutes 
Model with no 

Suppression Term 

R2 0.41 0.40 0.39 

P-value 3x10-4 4x10-4 5x10-4 

No. of Parameters 2 2 1 

AIC Probability 0.24 0.19 0.58 

 

Table 3.3: Statistical results of three exponential decay models. Pearson's R2 

shows similar predictive ability of each model for time of emergence from anesthesia. 

Probabilities based on Akaike information criteria indicate the probability that a single 

model is the best one to fit experimental data, given the set of models being considered. 

AIC, Akaike Information Criterion. 
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Association between EEG Suppression and Cognitive Performance 

 Spearman’s Rho P-value 

DSST Reaction Time -0.0519 0.7971 

DSST Accuracy 0.036 0.8584 

PVT Reaction Time 0.3444 0.078 

PVT Accuracy 0.1105 0.5832 

 

Table 3.4: Analysis of correlation between the total time spent in EEG suppression 

and the degree of impairment in cognitive performance upon emergence. No 

significant relationship was observed between total duration of suppression and change 

in cognitive metrics relative to baseline. DSST, digit symbol substitution test; PVT, 

psychomotor vigilance test. 
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Association between EEG Suppression in the last 15 Minutes and Cognitive Performance 

 Spearman’s Rho P-value 

DSST Reaction Time -0.1656 0.409 

DSST Accuracy -0.0165 0.9351 

PVT Reaction Time 0.2754 0.1645 

PVT Accuracy 0.3007 0.1275 

 

Table 3.5: Analysis of correlation between the fraction of the last 15 min of 

isoflurane exposure spent in EEG suppression and the degree of impairment in 

cognitive performance upon emergence. As with the measure of total duration of 

suppression, suppression in the last 15 min of anesthetic exposure was not significantly 

correlated to initial cognitive task performance at emergence. DSST, digit symbol 

substitution test; PVT, psychomotor vigilance test. 
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Association between Isoflurane Elimination Time Constant and Cognitive Performance 

 Spearman’s Rho P-value 

DSST Reaction Time -0.3291 0.0941 

DSST Accuracy -0.3065 0.1201 

PVT Reaction Time -0.0122 0.9527 

PVT Accuracy 0.1099 0.5839 

 

Table 3.6: Analysis of correlation between the time constant of elimination of 

isoflurane and the degree of impairment in cognitive performance upon 

emergence. The time constant of elimination was not significantly associated with any of 

the cognitive task measures. DSST, digit symbol substitution test; PVT, psychomotor 

vigilance test. 
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FIGURES 

 

Figure 3.1: End-tidal isoflurane concentration and body temperature during 

anesthetic exposure. (A) Age-adjusted isoflurane minimum alveolar concentration 

(MAC) from the start of isoflurane administration (time 0) to the discontinuation of 

isoflurane at 180 min (vertical dotted black line) for all 27 subjects. (B) Temperature is 

presented in °C over the three hours of isoflurane administration. 
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Figure 3.2: Group spectrograms show canonical low frequency oscillations in the 

anesthetized brain. Spectrograms measured from F3 combined over all 27 subjects. 

Spectra are computed for the last two hours of isoflurane administration (starting one 

hour into the administration). (A) The mean spectrogram computed over all subjects 

shows consistent power over all frequencies for the duration of anesthetic exposure after 

equilibration. (B) The median spectrogram computed over all subjects shows similar 

results to the mean spectrogram. Both ways of combining the data across subjects show 

the well-known slow oscillations in the EEG under anesthesia. 



107 
 

 



108 
 

Figure 3.3: Individual spectrograms reveal the variability of EEG activity between 

subjects and across time. (A - D) Spectrograms of four individual subjects computed 

over the entire three hour isoflurane administration. To better expose fluctuations in the 

spectral content, the mean of the spectrum across three hours is subtracted. Periods in 

which there is suppressed EEG appear in the spectrogram as vertical blue lines, as 

these periods have decreased spectral activity across all frequencies. There is individual 

variability in the overall amount of suppression that occurred during the recording, the 

number of times a subject transitioned between suppressed and non-suppressed states, 

and the duration of a suppression period. (A) Suppression condensed into distinct 

periods. (B) Suppression occurring intermittently throughout the recording. (C) 

Suppression dominating the recording but interrupted by a period without suppression. 

(D) No suppression. A lack of suppression was seen for two subjects (data not shown). 
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Figure 3.4: Illustration of principal component analysis (PCA)-based method for 

isolating episodes of EEG suppression. (A) Projection of the spectrogram in (B) onto 

its first two principal components reveals two well-separated groups of points. These 

data were subjected to k-means clustering which revealed two distinct clusters (red and 

black). (B) Suppression-classified times (black) and non-suppression-classified (red) 

times are shown over the spectrogram. Suppression times do indeed correspond to 

periods of broadband power decreases. (C) To illustrate that PCA and k-means reliably 

separate periods of suppressed EEG from non-suppressed periods, all EEG time 

periods classified as suppressed (black) were concatenated. Note that almost no 

detectable voltage oscillations are observed. In contrast, EEG epochs classified as non-

suppressed (red) exhibit sustained activity. 
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Figure 3.5: The time to emerge from isoflurane (time to recovery of 

consciousness) is not significantly correlated with different measures of 

suppression. (A) The cumulative percentage of the recording spent in suppression 

(R2=0.03, P=0.40); (B) the longest period of continuous suppression (R2=8×10−4, 

P=0.89); (C) the number of transitions between suppression and non-suppression 

(R2=0.02, P=0.51); and (D) the cumulative percentage of the last 15 minutes of the 

recording before isoflurane is discontinued spent in suppression (R2=0.02, P=0.44). 
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Figure 3.6: The time to emerge from isoflurane (time to recovery of 

consciousness) is significantly correlated with the rate of isoflurane expiration. 

The subjects that clear isoflurane more rapidly tend to be those that recover 

consciousness more quickly after discontinuation of isoflurane anesthesia (R2=0.39, 

P=5×10−4). 
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Figure 3.7: Schematic of physiologically motivated model. Emergence occurs as the 

progression from initial brain state to a threshold brain state (Ω) at which consciousness 

is regained. The rate of this progression is defined by the rate of exponential decay in 

expired isoflurane (κ). Suppressed EEG (σ) is modelled as increased anesthetic depth in 

(A). The motivating hypothesis for this model is that increased anesthetic depth is 

expected to be correlated with increased time to emergence (B). 
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Figure 3.8: Association between amount of EEG suppression on performance 

speed and accuracy on both the psychomotor vigilance test (PVT) and digit 

symbol substitution test (DSST). (A - D) The dashed line at zero marks individuals' 

baseline performance. While most subjects demonstrated impaired performance upon 

emergence from anesthesia, the degree of this impairment does not appear to be related 

to the amount of EEG suppression. 
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CHAPTER 4 – General Discussion 

Converging lines of evidence suggest that patterns of brain activity during anesthetic-

induced unconsciousness are not fixed. Rather, activity patterns fluctuate between a 

small number of distinct brain states that are organized via weak, local interactions 

within the cortex. Despite these local interactions being weak, widespread activity 

patterns throughout the cortex can be well described in a low-dimensional space. Weak 

local interactions are a previously underappreciated organizing force for cortical activity 

patterns.  

Three complementary analysis methods show that activity patterns and transition times 

recorded from the same cortical region are more similar than those recorded 

simultaneously from different cortical regions. This was true with the notable exception of 

recordings from cortical layer IV. Given the differential innervation of layer IV, relative to 

the superficial and infragranular cortical layers, this result alludes to the importance of 

local communication between neurons within the cortex in organizing brain states and 

transitions under anesthesia. Further evidence in support of the importance of local 

communication comes from our results showing that recordings from functionally similar 

regions are no more similar than those from functionally dissimilar regions. If subcortical 

structures were responsible for driving state transitions, one would expect to find that 

recordings collected from bilateral, homologous cortical regions would show more similar 

activity patterns than recordings from functionally unrelated cortical regions. This was 

not true in our dataset and implies that the subcortical drivers of cortical activity and 

state transitions are not the principal drivers of the brain states and transitions we record 

under anesthesia. The third line of evidence in support of the importance of local, cortical 

communication comes from our results showing that local communication is necessary 
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in order for widespread cortical activity patterns to be well described in a low-

dimensional space. The shuffled datasets used in Chapter 2 to test for statistical 

significance were built to specifically test for the importance of local interactions between 

nearby channels. These shuffled datasets preserved the internal statistics of the channel 

from which they were generated, by using that channel’s transition probabilities. In this 

way, each individual channel is indistinguishable from the shuffled datasets generated 

from it. Because these shuffled datasets were generated for each channel individually, 

they do not preserve the influence that one channel may have on another. For all three 

of our measures, within- and between-channel comparisons with real data were 

significantly higher than would be expected by chance. Furthermore, only the real data 

could be well described in a low dimensional space which demonstrates that, while 

different regions of cortex may not have the same activity patterns, the activity patterns 

present in those regions are not completely independent, and the interactions between 

channels are sufficient to give rise to coherent, global brain states. All together, these 

results suggest that local communication between cortical neurons are the main 

organizing mechanism behind the brain states and state transitions that occur under 

general anesthesia. 

States of sleep and those recorded under anesthesia both have pronounced oscillatory 

activity in the spindle, delta, and slow wave ranges. However, while we show that states 

under anesthesia are spatially localized, natural sleep is characterized by brain states 

that engage neurons throughout the thalamocortical network (Dement and Kleitman, 

1957; Timo-Iaria et al., 1970). During sleep, dense, reciprocal connections between the 

cortex and thalamus are known to be responsible for propagating spindle and delta 

oscillations (Contreras and Steriade, 1997; Steriade et al., 1991), and corticocortical 
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communication propagates the slow wave oscillation (Mircea Steriade et al., 1993b). 

Progressive hyperpolarization of the thalamocortical network over the course of a 

continuous sleep bout is responsible for the transitions between states of increasing 

synchrony (Steriade et al., 1991). Additionally, widespread innervation of the cortex by 

the reticular activating system is responsible for destabilizing states of high synchrony 

and causing an abrupt transition to a state of more desynchronized activity (Moruzzi and 

Magoun, 1949). Together, these connections are able to drive transitions and organize 

coherent oscillatory activity that engages neurons throughout the cortex during sleep. 

Anesthetic drugs suppress the neurons in the thalamocortical network. Their strongest 

effect seems to be on the cortical neurons which disrupts corticocortical communication. 

However, matrix and core thalamocortical projections are also suppressed (Raz et al., 

2014). In this way, anesthetic drugs interfere with key connections responsible for 

coordinating coherent oscillations throughout the thalamocortical network (Contreras and 

Steriade, 1997; Mircea Steriade et al., 1993a; Steriade et al., 1991). It is possible that 

disruption of thalamocortical and corticocortical communication prevents signals that 

would normally cause transitions between sleep and wake states from spreading 

throughout the thalamocortical network. While reciprocal connectivity is not required for 

the generation of spindle or delta oscillations, it is required for their coherent expression 

throughout the cortex and thalamus (Contreras and Steriade, 1997; Steriade et al., 

1991). Anesthetics activate sleep-promoting circuits within the brain, but they disrupt the 

connections through which the thalamocortical network engages widespread synchrony 

in firing. The combination of these effects could be an explanation for our observation 

that activity patterns and transition times are only weakly correlated between cortical 

regions under anesthesia but that there is greater similarity in nearby regions, regardless 
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of function. In this case, specific oscillations or activity patterns could initiate 

spontaneously or as a result of subcortical input, but the ability of this pattern to spread 

would be impaired. Thereby, rather than the entire thalamocortical network entering a 

new activity pattern, local interactions stabilize the activity only in a localized region. 

In order to know for certain whether or not activity patterns in the thalamus are like those 

recorded from the cortex under anesthesia, one would need to record from the thalamus 

directly. While we did not do that, another experiment using very similar methods to our 

own did record from thalamus and cortex simultaneously and showed distinct brain 

states with discrete transitions en route to emergence (Hudson et al., 2014). When 

spectra from all simultaneously recorded cortical and thalamic channels were 

decomposed together using principal component analysis, they show that about 70% of 

the variance within their dataset can be described by three principal components. This 

result is aligned with our own data showing very similar results. Given these similarities, 

an experiment exactly like the one presented here with an additional thalamic electrode 

would be an exciting future direction to this work. Such an experiment would offer 

valuable insight into the relationship between transitions and activity patterns recorded in 

the thalamus and the different cortical layers: in particular layer IV. 

Sleep and wake promoting nuclei in the basal forebrain engage in self-excitation and 

mutual inhibition that is thought to stabilize states of sleep and wakefulness to prevent 

both from existing in the brain simultaneously (Cho et al., 2017; Donlea et al., 2018; 

Sara, 2009; Scammell et al., 2017; Schwartz and Roth, 2008). However, there are 

known exceptions to this boundary between sleep and wake during which spatially 

restricted regions of cortex can enter a state of sleep. A classic example of this local 

sleep behavior is observed in cetaceans and other marine mammals (Kendall-Bar et al., 
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2019; Lyamin et al., 2008). In these animals, sleep involves one hemi-cortex while the 

other hemisphere exhibits wake-like activity. Similar phenomena are observed in birds 

(Rattenborg et al., 2019) and some reptiles (Kelly et al., 2015). In terrestrial mammals 

such as rodents, local sleep has also been demonstrated (Krueger and Tononi, 2011; 

Rector et al., 2005; Vyazovskiy et al., 2011). When rats are sleep-deprived, local 

patches of cortex can spontaneously enter slow wave sleep-like activity patterns while 

other locations in the cortex continue to exhibit wake-like activity patterns (Vyazovskiy et 

al., 2011). Such local sleep phenomena may underlie performance decrements 

observed during drowsiness. In both humans and rats, learning tasks designed to 

engage specific regions of the brain have been shown to induce spatial differences in 

slow-wave sleep activity during subsequent sleep bouts (Huber et al., 2004; Vyazovskiy 

et al., 2000). In humans suffering from NREM parasomnias, NREM-like and wake- like 

activity patterns can be simultaneously present in different parts of the brain (Mahowald 

and Schenck, 2005). Altogether, these observations suggest that switch from one brain 

state to another can occur locally in the context of natural sleep and wake if there are 

homeostatic or environmental pressures that differentially influence specific cortical 

regions. This implies that local interactions within cortex may have a stronger influence 

over activity patterns during sleep and wake than has previously been appreciated. 

Our results in Chapter 2 show that brain activity recorded at a single, unchanging 

anesthetic concentration is not fixed and that activity patterns fluctuate back and forth 

between a small number of discrete brain states. The work presented in Chapter 3 

looked at a more indirect measure of brain state to explore the relationship between 

brain state and anesthetic depth in humans. In this study, we hypothesized that more 

time spent in an activity pattern associated with the deepest plane of anesthesia, burst 
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suppression, would be associated with longer time to emergence. This hypothesis 

comes from the common assumption that anesthesia can be thought of as a depth from 

which one must recover back to consciousness. By this logic, more time spent in burst 

suppression should indicate a deeper plane of anesthesia and, therefore, a greater 

distance the brain must traverse to achieve emergence. Contrary to this hypothesis, we 

did not find an association between time spent in burst suppression and time to 

emergence or performance on cognitive tasks. Our results indicate that the relationship 

between anesthetic depth and time to emergence is not linear. While it is not possible to 

collect data from humans to directly test this, it is an exciting possibility that this 

nonlinearity comes from the stochastic switching between discrete, stable brain states 

en route to emergence similar to those that have been in rats (Hudson et al., 2014). 

Hudson et al. found that only certain states are capable of allowing the brain to exit a 

state of higher synchrony to a state of lower synchrony (Hudson et al., 2014). The brain 

had to be in one of three hub states to either exit burst suppression and enter a delta-

dominated state, to exit from delta to a theta-dominated state, or to emerge to 

consciousness (Hudson et al., 2014). Entry into a hub state does not guarantee that the 

brain transitions to a state of more desynchrony, but entry into a hub state is essential 

for there to be such a transition. Given that many transitions do not necessarily bring the 

brain closer to achieving emergence, transitions back and forth between states with 

more or less synchrony could account for why there is hysteresis between induction and 

emergence from anesthesia. 

Additional indirect evidence to support stochastic fluctuations back and forth between 

different brain states as a potential explanation for the hysteresis between induction and 

emergence is the variability in time spent in suppression we observed between subjects. 
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Each subject received identical exposure to anesthesia without confounding factors such 

as illness or additional pharmaceutical agents. Therefore, the variability in time spent in 

suppression cannot be explained by experimental factors. Had we found a relationship 

between time spent in suppression and time to emergence or performance on the 

cognitive tests, an individual’s sensitivity to isoflurane anesthesia could have been an 

explanation for this variability. However, no such relationship exists. This lack of 

relationship argues that individual sensitivity is insufficient to explain why some 

individuals take longer to emerge after identical exposures to anesthesia and leaves 

open the possibility that stochastic transitions between different brain states is 

responsible for the between-subject variability we see. This interpretation is in line with 

other work in zebrafish and mice showing both within- and between-subject variability in 

responsiveness following identical exposures to anesthesia (McKinstry-Wu et al., 2019). 

Responses were assayed after allowing time for equilibration and demonstrate 

stochastic switching between whether or not the animal could respond to stimuli 

(McKinstry-Wu et al., 2019). Therefore, the stochastic nature of this switching between 

states of more or less responsiveness during fixed exposure to anesthesia could be the 

mechanism that gives rise to the anesthetic hysteresis. 

Taken together, the work presented in this thesis highlight the importance of local 

cortical interactions in stabilizing brain activity. The local nature of these interactions 

gives rise to spatiotemporally complex global states during anesthetic-induced 

unconsciousness. Activity patterns recorded during these states seem to be influenced 

by endogenous sleep/wake circuits, but the disruption of widespread connectivity 

prevents states from propagating throughout the cortex. Stability of brain states and 

timing of state transitions are governed by local corticocortical interactions. The purpose 
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of these brain states seems to be to constrain brain activity to a relatively small number 

of states which allows emergence from anesthesia to occur on a physiologic timescale 

(Hudson et al., 2014). Fluctuations between states of more or less synchrony is a 

potential mechanism that underlies the hysteresis between anesthetic induction and 

emergence whereby the brain must reassemble its networks into a state that can sustain 

consciousness before emergence my occur. The local and stochastic nature of this 

reorganization process means that emergence takes longer than induction. 

These data have important implications for anesthetic monitoring. They suggest that 

population-based metrics are insufficient for monitoring anesthetic depth and predicting 

adverse outcomes such as intraoperative awareness. They also have implications for 

clinical sleep disorders such as parasomnias which could perhaps be better understood 

as a disruption in the local mechanisms meant to stabilize states of sleep and wake. 

Finally, these data provide evidence that greater attention should be paid to local 

dynamics during basic science studies of sleep and wake. 
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