
 
 

Journal of Choice Modelling, 3(2), pp 1-28 
www.jocm.org.uk 

 
Bernoulli Regression Models: Revisiting the 

Specification of Statistical Models with Binary 
Dependent Variables 

 
 

Jason S. Bergtold
1,*

       Aris Spanos
2,†

 Eberechukwu Onukwugha
3,Ŧ

 
 
 

 
1Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 

2Department of Economics, Virginia Tech, Blacksburg, VA 
3Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, 

Baltimore, MD 
 

 
Received 5 June 2008, received version revised 12 June 2009, accepted 22 June 2009 

 
 

Abstract 
 

The latent variable and generalized linear modelling approaches do not 
provide a systematic approach for modelling discrete choice observational data. 
Another alternative, the probabilistic reduction (PR) approach, provides a 
systematic way to specify such models that can yield reliable statistical and 
substantive inferences. The purpose of this paper is to re-examine the underlying 
probabilistic foundations of conditional statistical models with binary dependent 
variables using the PR approach. This leads to the development of the Bernoulli 
Regression Model, a family of statistical models, which includes the binary 
logistic regression model. The paper provides an explicit presentation of 
probabilistic model assumptions, guidance on model specification and estimation, 
and empirical application. 
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1 Introduction 
 
The theoretical specification of discrete choice models with binary dependent 
variables has developed using latent variable methods, such as the random utility 
model, to explain human behaviour (Marschak 1960; McFadden 1984; Train 2003). 
The latent variable approach specifies a theoretical (structural) model based on 
substantive information whose stochastic structure is given via a stochastic error 
term. In the random utility model, the distribution of the stochastic error term 
determines the functional form and interpretation of the choice probabilities being 
modelled (Train 2003). Thus, the underlying statistical properties of these models are 
dependent upon a potentially unverifiable distributional assumption, about which the 
modeller may have no a priori knowledge. If the distributional assumption 
concerning the stochastic error term is incorrect, then the estimable model obtained 
may be misspecified and the parameter estimates inconsistent (Coslett 1983). 

The generalized linear modelling (GLM) framework (Nelder and Wedderburn 
1972) provides an alternative approach to specifying discrete choice models. This 
approach specifies a purely statistical model without regard to potential theoretical 
requirements (Powers and Xie 2000). A binary choice model can be specified with 
appropriate choice of link function, which allows for the estimation of a conditional 
mean that is linear in the explanatory variables, facilitating the interpretation of 
parameter estimates (Hardin and Hilbe 2007). As a statistical modelling framework, 
this approach can ignore the probabilistic structure of the explanatory variables by 
focusing primarily on the distribution of the dependent variable, which affects the 
choice of link function. Ignoring the statistical information related to the probabilistic 
structure of the explanatory variables can leave the statistical model misspecified 
(e.g. Kay and Little 1986), resulting in inconsistent estimates and unreliable 
inferences. 

As an example, the GLM approach lacks specific guidance on the functional 
form of the predictor past the linearity property, resulting in various specifications 
which may not always be appropriate or complete (Arnold et al. 1999). The 
relationship between logistic regression and discriminant analysis provides guidance 
on when the linearity property is satisfied using the log ratio of the conditional 
distributions of the explanatory variables conditional on the dependent variable. 
Linearity in the explanatory variables is satisfied when: (i) the explanatory variables 
are conditionally distributed multivariate normal with constant covariance matrix; or 
(ii) the explanatory variables are independent with conditional distributions from the 
simple exponential family 1 (Anderson 1972; Cox and Snell 1989; Kay and Little 
1987). Linearity in the parameters is satisfied for the above cases when: (i) there are 
multivariate dichotomous variates following a log linear model; (ii) the explanatory 
variables are a combination of a multivariate normal distribution and a multivariate 
Bernoulli distribution; or (iii) the explanatory variables are independent and from the 
simple exponential family (Kay and Little 1987). While these functional 
specifications have been recognized they have been relegated to the realm of possible 
variable transformations for maintaining linearity (e.g. Hosmer and Lemeshow 
2000). Arnold et al. (1999) state that “many of the logistic regression models 
discussed in the applied literature are questionable in the light of these observations” 
(p. 134). That is, although the above specification issues have been raised in the 

                                           
1 See equation (2). 
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literature, in applied settings the linearity property is not checked or is potentially 
ignored due to overriding theoretical considerations. 

Taking account of the probabilistic structure of the explanatory variables as 
done by Kay and Little (1987) can help ensure that the functional form of the binary 
choice model is statistically adequate. The probabilistic reduction (PR) approach is a 
systematic approach to model specification of statistical models with binary 
dependent variables that takes into account all of the pertinent statistical information 
for model specification. The primary goal of this approach is to obtain statistically 
adequate models, where the adequacy of a statistical model is judged by the validity 
of the probabilistic model assumptions vis-a-vis the observed data (Spanos 1999). 
Structural or theoretical models can then be embedded into the statistical model 
whose adequacy has been secured. A significant advantage of the probabilistic 
reduction approach is the ability to explicitly identify the probabilistic model 
assumptions of the statistical model being estimated. A significant weakness in 
discrete choice modelling is the absence of these explicit assumptions in the 
specification of statistical models with binary dependent variables in the literature. 
The PR approach provides cohesive guidance on statistical model development. 

In an attempt to provide a systematic statistical modelling approach that can be 
used for empirical modelling, the purpose of this paper is to re-examine the 
underlying probabilistic foundations of conditional statistical models with binary 
dependent variables using the probabilistic reduction approach. This examination 
leads to a formal presentation of the Bernoulli Regression Model, a family of 
statistical models, which includes the binary logistic regression model. The primary 
contributions of the paper include: (1) a systematic approach for derivation of the 
Bernoulli Regression Model from a proper joint distribution using the PR approach; 
(2) direct presentation of the underlying (testable) statistical assumptions of the 
Bernoulli Regression Model; (3) specification of Bernoulli Regression Models 
including cases that violate the linearity property; and (4) empirical application of the 
Bernoulli Regression Model. The PR approach provides a cohesive story concerning 
the statistical specification of the BRM and provides a proper framework for 
specifying statistically adequate binary choice models. 

The remainder of the paper is organized as follows. The next section examines 
the statistical approaches used for model specification of binary dependent variables 
in the present literature. Section 3 formally presents the Bernoulli Regression Model 
with probabilistic model assumptions, while section 4 examines model specification, 
estimation and simulation. Sections 5 and 6 provide an empirical application of the 
Bernoulli Regression Model and concluding remarks, respectively. 

 
2  Generalized Linear Models and Statistical Specification 
 
The primary statistical approach for specifying statistical models with binary 
dependent variables was developed by Nelder and Wedderburn (1972). The 
univariate GLM approach historically has been associated with modelling 
experimental data, allowing the systematic component of the model, e.g. the 
unconditional mean, to be embedded in a linear structure even when the underlying 
conditional mean of the dependent variable is nonlinear in the parameters. A review 
of the literature (e.g. Fahrmeir and Tutz 2001) on model specification where the data 
are non-experimental and arise from a conditional distribution, i.e. ( )β;|| iiY Yf XX , 
shows a lack of recognition about the role the probabilistic structure of the 
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conditioning variables plays in the specification of the conditional mean or 
regression function. 

To demonstrate, consider the presentation of the GLM approach presented by 
Fahrmeir and Tutz (2001). Let and the linear predictor 

, where  is a  vector of covariates and 
),1(~| iiii pBinY xX =

)i
T

i xβη = ix ( 1×K β  is a  vector of 
parameters. It is assumed that the linear predictor is related to  via the inverse of a 
known one-to-one, sufficiently smooth response function

( 1×K

i

)
ip

( )ipg η= , referred to as 
the link function. Let the inverse link function be given by h( ) ip=iη . The GLM 
approach specifies a mapping relating the conditional mean  to the linear predictor ip

iη  to capture the dependence between  and  and obtain an operational 
statistical model. If  is the logistic (probit) transformation, then this approach 
gives rise to the traditional binary logistic (probit) regression model. 

iY iX
( ).g

The linearity property of the predictor iη in the GLM specification arises when 
(i) iη  is linear in the explanatory variables or (ii) iη  is linear in the parameters. The 
first condition implies the second when satisfied, and the second condition allows for 
nonlinear terms in the explanatory variables (e.g. interaction, logarithmic and 
polynomial terms). For logistic regression, Kay and Little (1987) introduce the 
inverse conditional distribution as a way to specify the functional form of the 
predictor iη  (or index function) based on the log odds: 
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where ( )jiYf θ;| XX  is the inverse conditional distribution and . Kay and 
Little (1987) show that the linearity property will be satisfied when the inverse 
conditional distributions take certain functional forms. That is, many different 
models for X given Y will imply different functional forms for the log odds given by 
equation (1). 

)1( == iYp P

For the univariate case, when the inverse conditional distribution belongs to 
the exponential family defined by the distribution: 

( ) ( ) ( ) ( ) ( )jMjj
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m
jmimijjijY QRhBf ,,1

1
| ,..., ,exp)(; θθθθθθ =
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= ∑
=

= XXXX    (2) 

which includes the beta, binomial, gamma, normal and Poisson distributions, the 
linear predictor will be linear in the parameters. For the multivariate case, 
specification of the linear predictor follows those examples mentioned in the 
introduction, which are linear in the variables and/or parameters. Kay and Little 
(1987) use sequential conditioning to derive alternative models, but conclude that 
larger multivariable cases become increasingly more difficult to specify. These 
multivariable cases are dealt with later in the current paper. 

While Kay and Little show that the inverse conditional distribution provides 
useful information in specifying the logistic regression model, they do not extend 
their methodology back to the joint distribution to provide a unifying framework for 
deriving the conditional mean function. The joint distribution appears to be a more 
natural starting point for motivating and specifying conditional statistical models. In 
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fact, the inverse conditional distribution contains the probabilistic information about 
the explanatory variables needed to arrive at a properly specified model. 
Furthermore, the derivation of the Bernoulli Regression Model next shows how the 
more general framework developed here can give rise to logistic regression models 
with index functions that are nonlinear in the parameters. 

li Regression Models (The Probabilistic Reduction 
pproach) 

es depend. These assumptions can then be tested to 
check tatistical adequ

Let be a s  the probability s
 (Bernoulli), nd

 
3  Bernoul
A
 
The PR approach views statistical models as a parameterization of the joint 
distribution of all the observable (vector) stochastic processes involved. It is the 
importance accorded to the joint distribution that leads to recognition of the role of 
inverse conditional distributions in providing relevant statistical information for 
model specification. A statistical model is chosen so as to render the observed data a 
‘truly typical realization’ of the process defined by the statistical model. A significant 
advantage of the PR approach is that it explicitly provides the underlying 
probabilistic model assumptions upon which the statistical adequacy of the estimated 
model and associated inferenc

for s acy. 
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where iϕ  , ϕ , β  and θ  are appropriate sets of parameters. For the reduction in 
equation (4) to give rise to a proper statistical model, it is necessary that the joint 
density function ( )ϕ;if ,iY X  exist. This existence is dependent upon the 
compatibility of the conditional density function, ( )β;|| iiY Yf XX  and its inverse 
conditional distribution ( )jiYf θ;| XX , where jθ is an appropriate set of parameters and 
a function of  (Arnold et al. 1999).jYi = 2 That is: 

( ) ( ) ( ) ( )pYfffYf iYjiYiiiY ;;;;| || ⋅=⋅ θθβ XXX XXX = ( )ϕ;, iiYf X , (5) 

where  ( ) ii YY
iY pppYf −−= 1)1(; .

Using a result from Arnold et al. (1999, p. 17), a sufficient condition for the 
compatibility of ( )β;|| iiY Yf XX  and ( )jiYf θ;| XX  is that the ratio: 
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does not depend on .iX 3 Using equation (5), the above ratio must be equal to 
p

p
−1
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implying that the following condition must be met: 
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The last ratio in condition (7), ( )θ;if Xx / ( )θ;if Xx  = 1 and drops out. Given 
condition (7) follows from condition (6), condition (7) is a sufficient condition for 
the compatibility of the conditional and inverse conditional distributions. Thus, 
condition (7) is sufficient for the existence of the joint distribution given by equation 
(3) and in turn the underlying statistical model being developed. 

Assume that ( )β;|| iiY Yf XX  is a conditional Bernoulli probability mass 
function with the following functional form: 

                                           

( )

2 This is the standard approach adopted in the statistics literature for viewing conditional 
distributions when the conditioning variable is binary (e.g. Kay and Little 1987; Lauritzen and 
Wermuth 1989; Oklin and Tate 1961; Scrucca and Weisberg 2004; Tate 1954; and Warner 
1963). 
3 This follows from Theorem 1.2 in Arnold et al. (1999, p. 8). In this case, the theorem states 
that the condition: ( ) ( ) ( )iijiYiiY vYufYf XXX XX ⋅=θβ ;/;| ||

( )
 must hold for the two 

conditional distributions  ( )β;|| iiY Yf XX  and jiYf θ;| XX

( )
  to be compatible and ensure that 

ϕ;, iiYf X ( )iY i ( )iv X

iX ( )
exists.  The function u is the marginal distribution of Y  and  is the 

inverse multivariate distribution of . Letting ( )jijYiiYj fjYfd θβ ;/;| || XX XX ===

1,0=j ( ) ( )[ ] ( ) ( )[ ] )1/(0/1/ 01 ppvYuvYud iiii −=⋅=⋅== XX 01 / dd

01 / d iX

i iX

 for 

, then d , where  is given 
by condition (6). It follows from this result that the ratio d  does not depend on  and 
for the given specification of Y  and  this ratio is constant.     
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( ) ( ) ( )[ ii Y
i

Y
iiiY hhYf −−= 1

| ;1;;| βββ XXXX ] ,    (8) 

where  and ( ) [ ]1,0:; →Θ× ββ K
ih RX ββ Θ∈ , the parameter space associated with 

β . The mass function specified by equation (8) can be shown to satisfy the usual 
properties of a density function. Substituting equation (8) into (7) and 
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Given the general properties of density functions, the range of ( )β;ih X
( )

 is [ ] , 
justifying the assumption that . Thus, 

1,0
( ) [ 1,0:; →Θ× ββ K

ih RX ] β;iXh provides a 
general specification for the conditional mean of a conditional binary stochastic 
process. 

A more intuitive and practical choice for ( )β;ih X  can be found by using the 
identity , and after rearranging some terms: ( ) ( )( .lnexp. ff = )
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composite function, ( )( )βη ;ih X ,  represents the logistic cumulative density 
function (the transformation function or inverse link function) and 

( ).h
( ).;.η  represents 

the traditional index function (or predictor). The relationship in equation (11) will 
usually involve a reparameterization of the form ( )1= j ,0, =jθββ , where 

( ) βθβ Θ→Θ:.  and  is the parameter space associated with θΘ 1,0=j ,jθ . 
The conditional distribution ( )β;|| iiY Yf XX  allows the modeller to define a 

statistical generating mechanism (SGM), which is viewed as an idealized statistical 
representation of the true underlying data generating process (Spanos 1999). The 
SGM is usually characterized by a set of conditional moment functions 
of ( 1| ;| )ψiiY Yf XX , such as the regression function: 

                                           
4 The same formula can be derived from the relationship between discriminant analysis and 
logistic regression using Bayes formula (see Cox and Snell 1989), but this approach does not 
highlight the importance of the joint distribution when considering other forms of dependence 
or heterogeneity. 
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The SGM can contain higher order conditional moment functions when they capture 
additional systematic information in the data. 

The regression function for the conditional stochastic process 
 is: { }NiY iii ,...,1,| == xX
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The distribution of the error term  is given by (Maddala 1983): i
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distribution. 
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Equation (13) represents the SGM for a family of statistical models known as 
the Bernoulli Regression Model, which is summarized with probabilistic model 
assumptions in Table 1. The first three model assumptions, i.e. distributional, 
functional form and heteroskedasticity, arise from the assumed probability mass 
function given by equation (8). The homogeneity and independence assumptions 
follow from the IID reduction assumptions (i.e. see condition (4)) made about the 
joint vector stochastic process . The independence assumption 
concerning the joint vector stochastic process  implies that the 
conditional stochastic process {  is independent over i. Each of 
the assumptions is briefly discussed to emphasize the strengths of using the PR 
approach 
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Distributional: The distributional assumption is by nature conditional Bernoulli 
given the stochastic process {  is a conditional binary choice 
process. There is no need to test this assumption, as it is assured by inspection of the 
observed data. 
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Functional Form: The functional form assumption has two components: the 
transformation (or link) and index (or predictor) functions. The functional form of the 
transformation function is derived mathematically from the general functional form 
for h(.) given by equation (10), arising naturally from the joint distribution given by 
equation (1). Thus, the logistic transformation function provides an obvious choice 
for modelling binary choice process and need not be tested empirically. Other
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Table 1. Bernoulli Regression Model 
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functional forms for the transformation function may not be as tractable or derivable 
from a proper joint distribution.6 

The functional form of the index function is determined by the inverse 
conditional distribution ( )jiYf θ;| XX

32 ˆ and η

. Thus, the functional form assumption amounts 
to a distributional assumption concerning the functional form of the inverse 
conditional distribution. Specification of the index function will be discussed in 
detail in the next section. Graphical methods may be useful in helping to determine 
the needed covariates to include in the index function (see Scrucca and Weiserg 
2004). Furthermore, a potential misspecification test for the functional form of the 
index function would be to test for the significance of RESET type terms of the fitted 
index function (e.g. ) in the logistic regression as additional covariates 
using likelihood ratio or Wald test statistics.  

η̂

 

                                           
6 While the use of the logistic regression framework provides a tractable approach for 
specifying the Bernoulli Regression Model, this approach does not rule out the use of other 
transformation functions or the direct estimation of equation (10). Other transformation 
functions have been suggested (for examples see Aranda-Ordaz 1981; Aldrich and Nelson 
1984; Greene 2003; Maddala 1983; and McFadden 1984). The other most common 
transformation function is the probit specification or normal cdf. The probit specification 
provides a unique problem in that the normal cdf cannot be expressed in a finite number of 
additions, multiplications, root extractions or subtractions, making the derivation of such a 
model from equation (10) a significant challenge (Hogg and Craig 1978).   
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Heteroskedasticity: The BRM is inherently heteroskedastic, but the skedastic 
function need not be estimated, given that it is an explicit function of the conditional 
mean. This result is in contrast to the practice of correcting for heteroskedasticity in 
the literature.7  

 
Homogeneity: The model as specified assumes that the parameters of the model, β , 
are not functions of the index i. If the observed data are panel or exhibit 
heterogeneity across groups or time (e.g. trends), then this assumption is violated and 
the model should be corrected for any departures. In this situation, the inclusion of 
appropriate fixed effects or estimation techniques, such as mixed logit (see Train 
2003), may be helpful.  

Corrections for heterogeneity in the conditional variance (skedastic) function 
may not be needed. The conditional variance function is explicitly a function of the 
conditional mean. The only parameters that would exhibit heterogeneity in the 
variance are β , which can be corrected for by properly modelling the conditional 
mean. Variance heterogeneity will arise due to heterogeneity exhibited by  or . 
For , this is captured by shifts in the parameter p. For , the variance/covariance 
matrix of the inverse conditional distribution may exhibit heterogeneity, but this will 
be captured by the parameter vector 

iY iX

iY iX

β , as ( )1,0=,= jjθββ  (i.e. a function of these 
variance/covariance parameters). Thus, the appropriateness of alternative variance 
correction methods may need to be re-examined. 

 
Independence: While independence across space and time is assumed for the BRM 
specification in Table 1, it may be the case that the model exhibits temporal or spatial 
dependence. In this situation, the reduction assumption concerning dependence may 
be modified, which will give rise to an alternative specification of the model. For 
example, consider the case where  is temporally dependent following a Markov(1) 
process and Xi is temporally independent. Then the reduction of the joint distribution 
takes the following form: 

iY
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−=
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i
iiiii

M

NN YYfYfYYf
2

11111

)1(

11 ;|,;,);,...,,,...,( ϕϕφ XXXX )

)

 

                    

 

( ) ( )

( ) ( ) ( .);|;,|;,         

;|,;,    

1
2

1|1111

2
11111

θϕϕ

ϕϕ

−
=

−

=
−

⋅=

=

∏

∏

ii

N

i
iiiY

N

i
iii

tyStationari

YfYYfYf

YYfYf

XXX

XX

XX

Letting ( )jiY qYf ;1−  be the inverse conditional distribution of  given , the index 
function in this situation takes the following form: 

1−iY jYi =

                                           
7 Another potential issue concerning the skedastic function is over-dispersion, which can arise 
when there are repeated observations from the same respondent that are not independent and 
do not have the same likelihood of success. Correcting for this problem has been explored in 
the literature (e.g. Williams 1982). 

10 
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⎠
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iiY
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This index function can be specified by postulating appropriate conditional 
distributions for each of the inverse conditional distributions. This example could 
potentially serve for modelling spatial dependence for the nearest neighbour, as well. 
Thus, the BRM framework has flexibility for taking account of alternative forms of 
dependence. The dependence assumption used for model specification in this 
framework can be tested. This will help ensure that the observed data provide 
support for the dependence assumption. If not, the BRM provides a systematic 
framework for re-examining how to impose alternative forms of dependence.  

The flexibility of the PR approach allows for alternative specifications of the 
BRM that can accommodate a myriad of alternative empirical modelling situations. 
Furthermore, the tractability of the logistic regression model (given the wide array of 
existing software packages for estimating such model types) combined with the PR 
approach provides an accessible and theoretically sound approach to specifying and 
estimating Bernoulli Regression Models using observational data. The probabilistic 
reduction approach extends the work of Kay and Little (1987) by rationalizing the 
dependence of the specification on the inverse conditional distribution and 
formalizing the path from the joint distribution to an estimable model. 

 
4  Model Specification, Estimation and Simulation 
 
4.1 Model Specification 
 
Functional specification of the BRM amounts to determining the functional form for 
the index function ( )βη ;iX  via proper specification of the inverse conditional 
distribution. This is examined in detail for both univariate and multivariable cases. 

 
4.1.1 Univariate Models 
 
While most discrete choice models will have multiple explanatory variables, it will 
be of interest to focus first on the univariate case. Kay and Little (1987) and Scrucca 
and Weisberg (2004) derived a number of univariate cases that satisfy the linearity 
property when the inverse conditional distribution is conditionally distributed beta, 
binomial, gamma, geometric, log-normal, normal or Poisson. Each of these 
distributions belongs to the simple exponential family given by equation (2). This 
paper contributes an additional two models to this group, the logarithmic and Pareto. 
Table 2 provides the functional forms for ( )β;ixh  and ( )( )1,0,; =jx ji θβη  needed to 
obtain a properly specified univariate BRM for each of these inverse conditional 
distribution assumptions. The models presented in Table 2 emphasize the 
relationship between the parameters of the BRM, β , and the inverse conditional 
distributions, 1,0, =jjθ . In addition, the last column in Table 2 provides the needed 
transformation(s) of the explanatory variable to include in the index function, which 
will be linear in the parameters.  

 



Bergtold et al., Journal of Choice Modelling, 3(2), pp. 1-28   

 

Table 2. Specification of ( )βη ;ix  with one explanatory variable and conditional distribution, ( )jiYX Xf θ;| , for . 1,0=j
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Table 2. Continued 
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1 Source: Kay and Little (1987). 
2 Source: Scrucca and Weisberg (2004) and Cook and Weisberg (1999). 

[ ]B [ ]3 Source: Spanos (1999).  represents the beta function and Γ  represents the gamma function. 
( ) ( )4 01 lnln ππκ −=  

5 ‘1’ refers to the inclusion of an intercept term in the model, which is needed to represent κ
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Parameterizations can differ depending on whether or not the location and/or shape 
parameters of the distribution vary with . For example, if iY ( )jiY Xf θ;|X  is 

conditional normal with both the mean ( )jμ  and variance ) dependent on  then 

the transformations in the index function would include  and , as well as an 
intercept term. If the mean varies with , but the variance does not (i.e. ), 
then the  term can be dropped.

( 2
jσ

ix
iY

2
0

2
1 σσ =

2
ix

iY
2x 8 Two other interesting cases include when 

( )jiY Xf θ;|X  is distributed conditional chi-square or exponential. Both are special 
cases of the conditional gamma distribution in Table 2. If ( )jiXYf θ;|X  is conditional 
exponential then the index function would include an intercept and the term . If ix

( )jiY Xf θ;|X  is conditional chi-square then the index function would include an 
intercept and the term . ( )ixln

While the inverse conditional distributions in Table 2 result in index functions 
linear in the parameters, this may not always be the case. Examples of inverse 
conditional distributions that give rise to index functions nonlinear in the parameters 
include the F, extreme value9 and logistic distributions. In such cases, one option is to 
explicitly specify the inverse conditional distribution and estimate the model using 
equation (10). This may be difficult numerically if the parameterization of the model, 
given the mapping ( )1,0, == jjθββ , is not well-defined. Another option is to 

transform  so that it has one of the inverse conditional distributions specified in 
Table 2. Consider the following case, which is explored in more detail later in the 
paper. If the inverse conditional distribution follows a Weibull distribution,

iX

( )γα ,jW
γ
iX

, 

then an appropriate transformation of the explanatory variable  would be , 
given  is exponentially distributed, 

iX
jX i =Yi|γ ( )jExp α . In this case, the index 

function is: 

( ) γββγβη ii x10,; +=x ,       (14) 

where 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

1

0
0 ln

α
αγκβ  and 

γγ

αα
β ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
1

11 .10 This example is the first 

known attempt to derive a BRM that is nonlinear in the parameters using a conditional 
Weibull distribution. 

 
 
 
 

                                           
2x

( )
8 Scrucca and Weisberg (2004) provide other conditions under which  can be dropped when 

14 
 

β;ix  is monotone. η
9 The extreme value distribution being referred to here is the Gumbel type extreme value 
distribution (see Spanos 1999; p. 139). 
10 The estimable parameters of the model are β β γ and , , 10 . Furthermore, the range of γ does 
not restrict the range of 10 or  ββ . 
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4.1.2 Multivariable Models using Multivariate Inverse Conditionals 
 
While the case with one explanatory variable is readily manageable, as the number of 
explanatory variables increase, specification of the model becomes more complex. 
There are a number of different approaches for model specification in this instance. 
The first approach for the multivariable case is to explicitly specify the multivariate 
distribution ( )jiYf θ;| XX  and derive the model. This approach is particularly useful if 
all the explanatory variables follow the same distribution. For example, if ( )jiYf θ;| XX  
is multivariate normal with the same covariance matrix for , then: 1,0=j

        ( ) ∑
=

+=
K

k
ikki x

1
,0; βββη x

On the other hand, if the covariance matrix exhibits heterogeneity and is not equal for 
, then: 1,0=j

( ) ∑∑∑
= ≥=

++=
K

j

K

jl
ilijlj

K

k
ikki xxx

1
,,,

1
,0; ββββη x      (15) 

(Kay and Little 1987). If ( )jiYf θ;| XX  is multivariate Bernoulli made up of K  
explanatory variables, then the index function would include an intercept, as well as 
first order , second order, and so on up to order K interaction terms (e.g. Kay and 
Little 1987).  

A more general multivariate distributional assumption can be utilized following 
the logistic discriminant model proposed by Day and Kerridge (1967). In this case, the 
inverse conditional distribution is: 

( ) )()()(
2
1exp; 1

| ijijjijjiYf XXXXX δαθ
⎭
⎬
⎫

⎩
⎨
⎧ Λ−Α′Λ−−= − ,  (16) 

where are mean vectors for , is a covariance matrix for , and jΛ 1,0=j jΑ 1,0=j
)( iXδ  is a non-negative scalar function of . When iX 1)( =iXδ , the density given by 

equation (16) is the multivariate normal distribution. When 1)( ≠iXδ , the density 
function can represent a wide range of alternatives, including skewed distributions 
(see Byth and McLachlan 1980). The advantage of this distributional assumption is 
that )iX(δ does not have to be specified explicitly to arrive at a estimable model (Day 
and Kerridge 1967). If the distributional assumption given by equation (16) holds 
(which should be tested a posteriori) then the functional form of the model takes that 
given by equation (15). 

A number of bivariate distributions give rise to tractable models, which are 
derived by the authors below. If ( )jiYf θ;| XX  is a conditional bivariate gamma 
distribution of the form:  

15 
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( ) [ ] [ ] ( ) 1
,1,2

1
,1

,2,1

,2,1
,2,1|

,2,1,2;, −−− −
ΓΓ

= jjij
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where [].Γ  is the gamma function,  and  (Spanos 
1999); then:  

0,1,2 ≥> ii XX ( ) 3
,2,1 ,, +∈ Rjjj θθα

( ) ( ) ( )iiiiii xxxxxx ,1,23,12,210,2,1 lnln;, −+++= βββββη . 

If ( )jiYf θ;| XX  is a conditional bivariate beta distribution of the form:  
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where ,  and  for ; 0,1 ≥iX 0,2 ≥iX 1,2,1 ≤+ ii XX Ni ,...,1= ( ) 0,, >jjj γδα  for 
; and 1,0=j ( ).Γ  is the gamma function (Spanos 1999); then: 

( ) ( ) ( ) ( )iiiiii xxxxxx ,2,13,22,110,2,1 1lnlnln;, −−+++= βββββη . 

 
4.1.3 Multivariable Models Assuming Independence of Explanatory  
      Variables                                 
 
The second approach for the multivariate case involves examining and testing the 
conditional dependence structure (on ) between the explanatory variables. While 
this may be problematic when comparing discrete and continuous variables, traditional 
measures of correlation and association may still be useful in gauging independence 
(see Tate 1954; Oklin and Tate 1961). 

iY

The simplest scenario is when all the explanatory variables are conditionally 

independent. In this case, , making the index 

function 
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ln;x  (Kay and Little 1987). In such a 

case, the results in Table 2 can be used to specify the model. For example, consider 
the case of two independent explanatory variables  and , where ( )jYX Xf ,11| ;

1
θ  

is normally distributed and ( )jYX Xf ,22| ;
2

θ  is gamma distributed with all parameters 

dependent on  in both distributions. Then according to Table 2, the index function 
would be linear in the parameters and include an intercept term, as well as the terms 

, ,  and .  

iY

ln1x 2
1x 2x ( )2x
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4.1.4 Multivariable Models using Sequential Conditioning 
 
If some or none of the explanatory variables are conditionally independent, then 
another approach for decomposing ( )jiYf θ;| XX  is sequential conditioning, i.e.: 
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k
jkiikikYXjiYXjiY XXXfXff

k
2

,,1,1,|,1,1|| ;,...,|;;
1

θθθXX ).  

Given the potential complexity of this approach, it can be combined with the previous 
approaches to reduce the dimensionality and increase the tractability of the problem. 
Consider the following original derivation by the authors where ( )jiYf θ;| XX  is the 
product of conditional binomial, exponential and bivariate beta distributions. Let 
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where  and  are conditionally independent of  and . Now assume that 
(i)  given  is distributed Bin(1, ); (ii) given   and 
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Let  and  given  be jointly distributed bivariate beta following equation 
(17). Based on these assumptions:  

iX ,3 iX ,4 jYi =

( ) ( ) ( ) ( ).1lnlnln; ,4,36,45,34,2,13,22.110 iiiiiiiii xxxxxxxx −−++++++= ββββββββη x
 

Kay and Little (1987) provide some other bivariate examples involving discrete and 
continuous variables.  

4.1.5 A General Approach for Multivariable Models 
 

If the decomposition of ( )jiYf θ;| XX

(

 involved an unknown multivariate conditional 
distribution of continuous variables, then it becomes considerably more difficult to 
derive the specification of )β;ih x . A strategy may be to transform the variables to 
achieve a more estimable form of the model. Consider the more general case of a 

17 
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mixture of continuous ( )i,1X  and discrete variables ( )i,2X . Now use sequential 
conditioning of the inverse conditional distribution to obtain: 

( ) (( ) )jYjiiYiiiY ff ,|,,2,1,,1,2,1| ;|;,
22 2X1X XXXX i,2 ;Xf |1 XX θθη ⋅=

j

, 

where the parameters ,1θ  are dependent upon  and . To obtain an operational 
model, appropriate transformations of the continuous variables  could be found to 
try and make 

i,2X iY

i,1X
( )jYf ,,| 21 1XX ii ,2, ;| X1X θ  close to multivariate normal or the more flexible 

distribution following equation (16) (Scrucca and Weisberg 2004).11 To transform the 
discrete variables, recode these variables as binary so that ( )jiYf ,,2| ;

2 2X X θ  is 
multivariate Bernoulli. In this case, ( )ji ,; 2Y ,2|2X Xf θ  can be represented in log-linear 
form. That is:  

( ) ,
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where  is a (  vector of binary variables (Liang et al. 1992). Based on these 
distributional assumptions and assuming  is a  vector of normally 
distributed variables (or following the multivariate distribution given by equation 
(16)), the index function for the associated BRM would take the form: 
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 (18) 

The index function given by equation (18) can be made linear in the parameters via 
reparameterization of the model by letting ( u,αββ = .  To further improve the 
tractability of the model, the number of interaction terms in ( )jiY ,,2| ; 2Xf

2X θ  may need 

to be restricted to order 2KK ≤ , which can be tested a posteriori.  
 

4.2 Estimation 
 
The method of maximum likelihood can be used to estimate the parameters of the 
Bernoulli Regression Model. Gourieroux (2000) and Train (2003) provide background 
for estimation of logistic regression models, which is applicable for the BRM, as well. 
When ( )βη ;ix  is nonlinear in the parameters estimation becomes more difficult, 
because the likelihood function may no longer be globally concave and many 

                                           

18 
 

11 For examples of appropriate transformations see Box and Cox (1964); Draper and Cox 
(1969); and Yeo and Johnson (2000). 
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computer routines only estimate logistic regression models with index functions linear 
in the parameters (Train 2003). In these cases, the researcher may need to write their 
own code and use a number of different algorithms (e.g. Newton-Raphson, quasi-
Newton and conjugate gradient methods) to estimate the model. The asymptotic 
properties of consistency and asymptotic normality of the MLE estimates follow if 
certain regularity conditions are satisfied (see Gourieroux 2000). 

 
4.3 Simulation 
 
A significant benefit of using the probabilistic reduction approach for developing the 
BRM is that it provides a mechanism for randomly generating binary choice data 
using the relationship given by equation (5). The process involves performing two 
steps:  

19 
 

YiStep 1: Generate a realization of the stochastic process  using a { }Ni ,...,1, =
 binomial random number generator.  

Step 2: Using ( )jiYf θ;| XX  generate a realization of the vector stochastic process, 
 {  using appropriate random number generators with the }Nii ,...,1, =X
 parameters given by 0θθ =j  when Y  and 0=i 1θθ =j  when Y .  1=i

No a priori theoretical interpretation is imposed on the generation process; it is purely 
statistical in nature.12 The parameters β  can be determined via the relationship 

( )1,0, =jjθβ  as seen in examples presented above. Thus, this modelling framework 
provides a straightforward set-up to simulate binary choice processes.  

To illustrate, consider the BRM given by equation (14) specified assuming a 
univariate inverse conditional Weibull distribution. Let  and 
be Weibull distributed with 

( 6.0,1~ BinYi ) jYX ii =|  
10 =α , 4.11 =α and 3=γ . In this case, 6040.0−=0β , 

6356.01 =β and 3=γ  for the parameters in equation (14). To examine the asymptotic 
properties of the parameters 0β , 1β and γ  a Monte Carlo simulation was conducted 
with 1000 runs for sample sizes of N = 50, 100, 250, 500, 1000, 2500 and 5000. For 
each run, the regression equation given by equation (14) was estimated using a 
derivative-free algorithm developed by Nelder and Mead (1965).13 The results of the 
simulation are reported in Table 3.  

Two desirable asymptotic properties of estimators are consistency and 
asymptotic normality. For BRM or logistic regression models with nonlinear index 
functions, ensuring these properties hold is important for statistical reliability. To 
check for consistency, two verifiable conditions are: (i) ( ) ββ =

∞→ NN
E ˆlim  and 

(ii) ( ) 0ˆvarlim =
∞→ NN

β , where  is the estimator of interest and N is the sample size 

(Spanos 1999). As the sample size (N) increases, the mean estimate for each 
parameter converges to its true value and the standard error converges to zero. Thus, 

Nβ̂

                                           
12 This generation procedure is in contrast to procedures assuming the existence of an 
unobservable latent stochastic process (see Train 2003). 
13 It was found that this algorithm provided the best convergence properties for the given 
problem.  
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there is evidence that the estimators for each of the parameters are consistent. To 
examine asymptotic normality, we can examine the asymptotic skewness and 
kurtosis.14 As N increases, the skewness and kurtosis for each coefficient converge to 
0 and 3, respectively, providing evidence the estimators are asymptotically normal. In 
addition, the model was compared for each N to a more traditional specification with 
index function linear in the variables using a Hosmer-Lemeshow test (Hosmer and 
Lemeshow 2000). For each N, the traditional specification was rejected over 95 
percent of the time in favour of the BRM specification.15 

 
5  Empirical Application 
 
The primary purpose of the empirical example is to illustrate the specification of a 
Bernoulli Regression Model in an applied setting and compare it to the traditional 

 
Table 3. Monte Carlo Simulation Results for Univariate Bernoulli Regression Model 

with Inverse Conditional Weibull Distribution 
 

Para- 
meter 

Number of 
Observations (N) 

Mean Standard 
Deviation 

Skewness Kurtosis Min Max 

0β  

True Value = -0.60 
N = 50 -1.38 2.84 -6.26 51.09 -30.58 0.86 
N = 100 -1.12 2.26 -7.79 78.15 -29.51 0.50 
N = 250 -0.66 0.45 -2.00 11.96 -4.35 0.28 
N = 500 -0.62 0.25 -0.56 3.88 -1.67 0.10 
N = 1000 -0.62 0.18 -0.55 3.76 -1.42 -0.20 
N = 2500 -0.61 0.11 -0.27 2.94 -0.95 -0.28 
N = 5000 -0.61 0.08 -0.03 3.15 -0.91 -0.31 

 
 
 
1β  

True Value = 0.64 
N = 50 1.36 2.92 6.07 48.36 0.00 31.13 
N = 100 1.14 2.34 7.47 72.76 0.00 29.91 
N = 250 0.68 0.50 2.24 13.03 0.00 4.82 
N = 500 0.64 0.28 0.84 4.54 0.05 2.04 

 
N = 1000 0.65 0.200 0.74 4.15 0.16 1.60 
N = 2500 0.64 0.13 0.34 2.95 0.27 1.07 
N = 5000 0.64 0.09 0.07 3.00 0.32 0.98 

γ  

True Value = 3.0 
N = 50 4.67 4.35 2.42 11.64 -6.62 36.22 
N = 100 4.15 3.51 2.63 13.00 0.08 28.01 
N = 250 3.53 1.70 2.58 16.42 0.45 17.76 
N = 500 3.24 0.92 1.26 6.85 1.13 9.15 
N = 1000 3.08 0.58 0.65 4.32 1.63 6.12 
N = 2500 3.04 0.37 0.29 2.95 2.11 4.23 
N = 5000 3.03 0.26 0.37 3.28 2.29 4.15 

 
 

                                           
14 The skewness and kurtosis take a value of 0 and 3 for the normal distribution. Within the 
Pearson family of distributions, the normal distribution is characterized by these two moments 
(Spanos 1999). If the skewness and kurtosis of the estimator of interest converge to 0 and 3 
respectively, then this should provide evidence of asymptotic normality.  

20 
 

15 Results not shown, but are available from the authors upon request. 



Bergtold et al., Journal of Choice Modelling, 3(2), pp. 1-28   

 

linear specification of the logistic regression model. The empirical example uses data 
from Al-Hmoud and Edwards (2004) who examined private sector participation in the 
water and sanitation sectors of developing countries. A simplified model was 
constructed examining participation based on four explanatory factors. The dependent 
variable, total private investment (Y ), was binary, taking a value of ‘1’ if there was 
private investment in a given year and ‘0’ otherwise. Of the four explanatory variables 
used in the model, two were binary and two were continuous. The two continuous 
variables were per capita GDP ($000s) ( ) and percent urban population growth 
( ). The two binary variables were low renewable water resources ( ) and 
government effectiveness ( ). X3 takes a value of ‘1’ when renewable water 
resources are below 2000 cubic meters per capita per year, and X4 takes a value of ‘1’ 
when the World Bank indicator for government effectiveness indicates the presence of 
effective government operations (see Al-Hmoud and Edwards 2004). The dataset 
contained 149 observations for 39 countries from 1996 to 2001, but data were not 
available for all countries for all years, resulting in an unbalanced panel (Al-Hmoud 
and Edwards 2004).  

1X

2X 3X

4X

Given that Y  is distributed Bernoulli, the BRM provides a natural statistical 
modelling framework for this problem. The general multivariable modelling approach 
using sequential conditioning was used to specify the functional form of the model. In 
this case: 

( )
( ) ( jiiYjiiiiY

jiiiiY

XXfXXXXf

XXXXf

,,4,3|,,4,3,2,1,|

,4,3,2,1|

;,;,|,                           

;,,,

221 2X1XX

X

θθ
θ

⋅

=

) 

where ( )jiiiiY XXXXf ,,4,3,2,1,| ;,|,
21 1XX θ  was assumed to be multivariate normal and 

( )jii XX ,,4,3 ;, 2Yf |2X θ  bivariate Bernoulli. To obtain multivariate normality,  was 

transformed using the natural log, so that 
iX ,1

( ii XX ,1,1 ln= ) . An Omnibus Test for 
multivariate Normality was conducted following Doornik and Hansen (1994) to test 
the distributional assumption for ( )jiiiiYf ,| 21 XX XXXX ,,4,3,2,1 ;,|, 1θ

                                          

, which gave a test 
statistic of 1.39 and associated p-value of 0.85, indicating support for the normality 
assumption.16 

Using equation (18) and reparameterizing to make the index function linear in 
the parameters, gave:  

 
16 Two additional multivariate tests using the skewness and kurtosis coefficients were 
conducted as well following procedures in Spanos (1986). The skewness test gave a test 
statistic of 3.65 with associated p-value of 0.46; and the kurtosis test gave a test statistic of 1.41 
with an associated p-value of 0.24. Both tests provide support for the multivariate normality 
assumption. All tests were conducted using the residuals of OLS regressions of iX ,1 iX 2

iX ,3 iX ,4 i

 and  
on ,  and Y . 

21 
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Given the linearity property is satisfied, a standard computer statistical software 
package for estimating logistic regression models was used to estimate the 
corresponding BRM. Estimation results for the BRM using equation (19) and a more 
common specification of the logistic regression model found in the applied literature: 

( ) iiiii xxxx ,44,33,22,110; ββββββη ++++=x ,    (20) 

are presented in Table 4. It should be noted that in the traditional logistic 
formulation was not transformed using the logarithmic transformation, as was done in 
the BRM. Misspecification testing results for the BRM using equation (19) indicated 
the presence of heterogeneity across time and space, so fixed effects for years and 
regions were incorporated into both models.

ix ,1

17  
The BRM and more traditional model specifications were compared using a 

likelihood ratio test, with the null hypothesis being that the more common 
specification of the logit model using equation (20) with fixed effects across time and 
space was correct. The computed likelihood ratio test statistic was 80.22 with an 
associated p-value of less than 0.001, indicating the more common specification of the 
logistic regression model was misspecified. In addition, the BRM formulation was 
tested for additional functional misspecification using RESET-type tests, which 
indicated strong support for the functional specification used.18 

 If the traditional formulation was used for statistical inference to make 
substantive claims about what variables significantly influence private investment in 
the water and sanitation sectors of developing countries, then such inferences would 
have been statistically invalid. The significance of many of the nonlinear and 
interaction terms provides evidence of the nonlinear nature of the index function, in 
contrast to the linear in variables functional form commonly used in applied

                                           

32 ˆ and ˆ ηη

17 There is only one observation for 2001 in the dataset, which made it difficult to include a 
fixed effect (dummy variable) without encountering convergence problems during estimation. 
A likelihood ratio test was conducted in a Fisherian testing framework to examine the BRM 
without fixed effects across time and regions (see Spanos 1999). The null hypothesis was no 
fixed effects and the likelihood test statistic was 88.10 with an associated p-value less than 
0.001, indicating a strong lack of support for the null hypothesis. The regions tested included 
(1) Central America and the Caribbean; (2) South America; (3) Europe; (4) Africa; (5) Middle 
East; (6) Asia Major; and (7) South East Asia and Australia. The last region was dropped in the 
model for estimation purposes. 
18 The RESET-type test used tested for the significance of a squared and cubed term of the 
fitted values of the index function (i.e. ) as additional covariates. The null hypothesis 
was that the coefficients on these terms were equal to zero. A likelihood ratio test was used to 
conduct the test, giving a test statistic equal to 0.91 and associated p-value of 0.63. Test results 
indicate strong support for the null hypothesis.     
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Table 4. Estimation Results for the Empirical BRM and Traditional Logit Models 
 

Variable1 

BRM using 
Equation (19) 

Traditional Logit 
(LRM) using Equation 

(20) 
Coefficient Estimate 
(Standard Error)2 

Coefficient Estimate 
(Standard Error)2 

                           Fixed Effects 
1996 -4. 99  

(5.91) 
-4.22*** 

(1.65) 
1997 -0.58 

(5.88) 
-3.41** 
(1.55) 

1998 2.66 
(6.18) 

-2.74* 
(1.55) 

1999 7.37 
(7.12) 

-1.98 
(1.53) 

2000 13.53* 
(8.61) 

-0.73 
(1.56) 

Central America and Caribbean -33.94*** 
(12.32) 

-2.48*** 
(0.97) 

South America 6.84** 
(3.32) 

0.06 
(0.87) 

Europe -36.78*** 
(13.60) 

-3.08** 
(1.28) 

Africa -24.73*** 
(9.04) 

-4.27*** 
(1.09) 

Middle East  -35.27*** 
(13.44) 

-5.70*** 
(1.68) 

Asia Major -35.98*** 
(12.99) 

-2.98** 
(1.47) 

                            Covariates 
LRM)for  ( ,1,1 ii XX  -88.33*** 

(34.57) 
0.28 

(0.21) 
iX ,2  -8.64 

(6.09) 
0.76** 
(0.31) 

iX ,3  21.60** 
(9.33) 

3.80*** 
(0.94) 

iX ,4  974.24** 
(409.78) 

0.37 
(0.63) 

2
,1 iX  27.44*** 

(10.49) 
--- 

ii XX ,2,1  23.97** 
(9.48) 

--- 

2
,2 iX  2.07* 

(1.22) 
--- 

ii XX ,3,1  89.64** 
(36.28) 

--- 

ii XX ,3,2  8.63 
(8.43) 

--- 

   
23 
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Table 4. continued. 

 

Variable1 

BRM using 
Equation (19) 

Traditional Logit 
(LRM) using Equation 

(20) 
Coefficient Estimate 
(Standard Error)2 

Coefficient Estimate 
(Standard Error)2 

ii XX ,4,1  -942.74**  
(399.63) 

--- 

ii XX ,4,2  -515.14**  
(208.38) 

--- 

ii XX ,4,3  -1038.46**  
(431.22) 

--- 

ii XX ,3
2
,1  -6.96 (9.84) --- 

iii XXX ,3,2,1  -24.94**  
(10.05) 

--- 

ii XX ,3
2
,2  -1.97 (1.95) --- 

ii XX ,4
2
,1  226.91**  

(97.00) 
--- 

iii XXX ,4,2,1  251.44**  
(102.26) 

--- 

ii XX ,4
2
,2  68.02***  

(26.71) 
--- 

iii XXX ,4,3,1  1042.99**  
(432.76) 

--- 

iii XXX ,4,3,2  551.43**  
(220.56) 

--- 

iii XXX ,4,3
2
,1  -279.48**  

(113.48) 
--- 

iiii XXXX ,4,3,2,1  -274.65**  
(110.11) 

--- 

iii XXX ,4,3
2
,2  -72.43***  

(28.17) 
--- 

Other Statistics 
Log-Likelihood -22.57 -62.68 
McFadden’s Pseudo R2 0.77 0.37 
Estrella’s R2 0.86 0.47 
Fraction Correctly Predicted 94% 81% 

1 
iX ,1 is the log of per capita GDP for the BRM and  is per capita GDP; X2 is percent urban 

population growth; X3 is binary variable indicating low renewable water resources; and X4 is a 
binary variable indicating government effectiveness. 

iX ,1

2 The standard errors are calculated using the estimate of the asymptotic information matrix. 
An * indicates the coefficient was significantly different from zero at the 0.10 level of 
significance, ** at the 0.05 level of significance, and *** at the 0.01 level of significance. 
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modelling. Further evidence that the BRM using equation (19) was superior to the 
more common specification of the logistic regression model is given by the higher 
pseudo R2 values, higher within-sample prediction and lower mean square error.19 

The purpose of the BRM estimated was to examine the correlations between 
private investment in the water and sanitation sector and the explanatory factors 
included in the model, in order to determine factors that create the proper environment 
for private sector participation to exist (following Al-Hmoud and Edwards 2004). No 
underlying theoretical or latent variable model was posited by Al-Hmoud and 
Edwards (2004). Thus, the estimated model becomes the structural model, once 
substantive questions are asked of the estimated model. A particularly useful 
substantive interference that can be made is the examination of marginal effects.  

While the BRM provides a more statistically adequate representation of the 
underlying probabilistic process giving rise to the data, the explanatory power of the 
model could be seen as questionable given the highly nonlinear nature of the index 
function. While the coefficients of the model may or may not be readily interpretable, 
the marginal effects can be used for substantive inferences. The marginal effects are 
the partial derivatives of the conditional mean with respect to the explanatory 
variables of interest. For the logistic formulation of the BRM the vector of marginal 
effects is: 

( ) ( ) ( )( ) ( )
i

i
ii

i

i hhh
x
xxx

x
x

∂
∂

⋅−⋅=
∂

∂ βηβββ ;;1;; .     (21) 

For binary variables the marginal effect is the change in probability from changing 
from a value of ‘0’ to a value of ‘1’ holding all other explanatory variables at their 
present values (or mean). The standard errors can be calculated using the delta method 
(see Greene 2003), to test for statistical significance.  

The marginal effects with standard errors for the estimated BRM and the 
traditional logistic regression model are presented in Table 5. The substantive 
inferences that can be made from each model are significantly different. For the 
traditional logistic regression model, the marginal effects tell us that an increase in 
percent urban population growth or having low water renewable resources will have a 
positive and statistically significant impact on the probability of the private sector in a 
developing country investing in the water and sanitation sector. Given the 
misspecified nature of the traditional logistic regression model in this case, such 
inferences are not statistically valid, rendering the substantive inferences unreliable. 
The properly specified BRM indicates that an increase in percent urban population 
growth will have a positive and statistically significant impact on private sector 
investment in the water and sanitation sector of developing countries, but the impact 
of having low water renewable resources is not statistically significant from zero. 
Furthermore, effective governance has a negative and statistically significant impact  

                                           

25 
 

19 Given the unbalanced panel and potential of serial correlation the BRM model was re-
estimated using a generalized estimating equations (GEE) estimator in SAS (PROC 
GENMOD) assuming observations over time from each country followed an AR(1) process. 
To test model fit of the re-estimated model, a Hosmer-Lemeshow test was conducted for the 
original model and the GEE model. The tests indicated a poor fit for the BRM with AR(1) 
covariance structure (8.58, p-value = 0.035) and relatively better fit for the BRM with 
independent covariance structure (5.21, p-value = 0.157).  
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Table 5. Marginal Effects for the Empirical BRM and Traditional Logit Models 
 

Variable1 

Marginal Effect2 
BRM using 

Equation (19) 
Traditional Logit 

(LRM) using 
Equation (20) 

X1  -0.04 
(1.52) 

0.04 
(0.03) 

X2  1.04 
(1.53) 

0.10* 
(0.06) 

X3  0.62*** 
(0.05) 

0.40*** 
(0.14) 

X4  -0.42*** 
(0.06) 

0.05 
(0.09) 

1 X1 is per capita GDP, X2 is percent urban population growth, X3 is binary variable indicating 
low renewable water resources, and X4 is a binary variable indicating government effectiveness. 
2 The standard errors are in parentheses and are calculated using the delta method (Greene 
2003). Marginal effects and standard errors are calculated for each individual and then 
averaged following recommendations in Greene (2003). Marginal effects for  in the BRM 
model are calculated by taking the derivative in equation (21) with respect to X1 instead of 

1X

)ln( 11 XX = . An * indicates the coefficient was significantly different from zero at the 0.10 
level of significance, ** at the 0.05 level of significance, and *** at the 0.01 level of 
significance. 
 
on private sector investment, opposite in sign from the marginal effect for the 
traditional logistic specification (which was not statistically significant). 
 
6  Conclusion 
 
Rooted in the analysis of observational data, the probabilistic reduction approach 
provides a systematic way to specify regression models with binary dependent 
variables. More traditional approaches to model specification (e.g. the latent variable 
and GLM) provide alternatives that may be less suited for modelling observational 
data. The BRM imposes no a priori theoretical or ad hoc restrictions (or assumptions) 
upon the model, thereby providing a theory-neutral statistical model of the conditional 
binary choice process being examined. In addition, the Bernoulli Regression Model 
(BRM) can provide a parsimonious description of the probabilistic structure of the 
conditional binary choice process being modelled. By understanding the probabilistic 
assumptions underlying the BRM, a modeller can test the statistical adequacy of their 
model a posteriori. Statistical adequacy ensures that any substantive or theoretical 
inferences obtained from the model are statistically valid, providing the needed 
evidence for supporting or rejecting hypotheses concerning the underlying theoretical 
model of interest.  

The paper provides a modelling framework for specifying Bernoulli Regression 
Models that allows the statistical information to play a crucial role in ensuring a 
statistically adequate model is obtained. Furthermore, specification and application 
issues concerning the BRM are addressed along with the presentation of an empirical 
example. This example provides evidence that when an underlying statistically 
adequate model is not obtained prior to making substantive inferences; those 
inferences are likely to be statistically unreliable and potentially erroneous. The 
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Bernoulli Regression Model provides a tractable and statistically sound framework 
upon which to construct statistically adequate models for applied problem solving. In 
addition, the work in this paper provides a framework upon which to gain further 
insight into the specification and estimation of other discrete choice models, such as 
the multinomial regression and ordered logistic regression models. 
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