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Abstract

Resilience has emerged as a crucial and desirable characteristic of complex systems due to

the increasing frequency of cyber intrusions and natural disasters. In systems such as power

grids and transportation networks, resilience analysis typically deals with the assessment

of system robustness in terms of identifying and safeguarding key system attributes. Ro-

bustness evaluation methods can be broadly classified into two types, namely network-based

and performance-based. Network-based methodologies involve topological properties of the

system, whereas performance-based methods deal with specific performance attributes such

as voltage fluctuations in a power distribution network. Existing approaches to evaluate

robustness have limitations in terms of (1) inaccurate modeling of the underlying system;

(2) high computational complexity; and (3) lack of scalability.

This dissertation addresses these challenges by developing computationally efficient frame-

works to identify key entities of the system. First, it develops a probabilistic framework for a

performance-based robustness attribute. Specifically, using power grid as a case study, this

work focuses on the performance measure of interest, i.e., voltage fluctuations. This work

first derives an analytical approximation for voltage change at any node of the network due

to a change in power at other nodes of a three-phase unbalanced radial distribution network.

Next, the probability distribution of voltage changes at a certain node due to random power

changes at multiple locations in the network is derived. Then, these distributions with in-

formation theoretic metrics are used to derive a novel voltage influencing score (VIS) that

quantifies the voltage influencing capacity of nodes with distributed energy resources (DERs)

and active loads. VIS is then employed to identify the dominant voltage influencer nodes.

Results demonstrate the high efficacy and low computational complexity of the proposed

approach, enabling various future applications (e.g., voltage control).



In the second part, this dissertation emphasizes on network-based robustness measures.

Particularly, it focuses on the task of identifying critical nodes in complex systems so that

preemptive actions can be taken to improve the system’s resilience. Critical nodes rep-

resent a set of sub-systems and/or their interconnections whose removal from the graph

maximally disconnects the network, and thus severely disrupts the operation of the system.

The majority of the critical node identification methods in literature are based on an iter-

ative approach, and thus suffer from high computational complexity and are not scalable

to larger networks. Therefore, this work proposes a scalable and generic graph neural net-

work (GNN) based framework for identifying critical nodes in large complex networks. The

proposed framework defines a GNN-based model that learns the node criticality score on a

small representative subset of nodes and can identify critical nodes in larger networks. Fur-

thermore, the problem of quantifying the uncertainty in GNN predictions is also considered.

Essentially, Assumed Density Filtering is used to quantify aleatoric uncertainty and Monte

Carlo dropout captures uncertainty in model parameters. Finally, the two sources of uncer-

tainty are aggregated to estimate the total uncertainty in predictions of a GNN. Results in

real-world datasets demonstrate that the Bayesian model performs at par with a frequentist

model.

Furthermore, the combinatorial case of critical node identification is also addressed in this

dissertation, where the node criticality scores would be associated with a set of nodes. This

simulates a concurrent scenario where multiple nodes are being disrupted simultaneously.

Essentially, this problem falls under the generic category of graph combinatorial problems.

This problem is approached through a novel deep reinforcement learning (DRL) based frame-

work. Specifically, GNNs are used for encoding the underlying graph structure and DRL for

learning to identify the optimal node sequence. Moreover, the framework is first developed

for Influence Maximization (IM), where one is interested in identifying a set of seed nodes,

which when activated, will result in the activation of a maximal number of nodes in the

graph. This generic framework can be used for various use-cases, including the identification

of critical nodes set related to concurrent disruption. The results on real world networks

demonstrate the scalability and generalizability of the proposed methodology.



Thirdly, this dissertation presents a comparative study of different performance and

network-based robustness metrics in terms of ranking critical nodes of a power distribu-

tion network. The efficacy of failure-based metrics in characterizing voltage fluctuations is

also investigated. Results show that hybrid failure-based metrics can quantify voltage fluc-

tuations to a reasonable extent. Additionally, several other challenges in existing robustness

frameworks are highlighted, including the lack of mechanism to effectively incorporate var-

ious performance and network-based resilience factors. Then, a novel modeling framework,

namely hetero-functional graph theory (HFGT) is leveraged to model both power distribu-

tion networks as well as other dependent infrastructure networks. Results demonstrate that

HFGT can address key modeling limitations, and can be used to accurately assess system

robustness to failures.
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grids and transportation networks, resilience analysis typically deals with the assessment

of system robustness in terms of identifying and safeguarding key system attributes. Ro-

bustness evaluation methods can be broadly classified into two types, namely network-based

and performance-based. Network-based methodologies involve topological properties of the

system, whereas performance-based methods deal with specific performance attributes such

as voltage fluctuations in a power distribution network. Existing approaches to evaluate

robustness have limitations in terms of (1) inaccurate modeling of the underlying system;

(2) high computational complexity; and (3) lack of scalability.

This dissertation addresses these challenges by developing computationally efficient frame-

works to identify key entities of the system. First, it develops a probabilistic framework for a

performance-based robustness attribute. Specifically, using power grid as a case study, this

work focuses on the performance measure of interest, i.e., voltage fluctuations. This work

first derives an analytical approximation for voltage change at any node of the network due

to a change in power at other nodes of a three-phase unbalanced radial distribution network.

Next, the probability distribution of voltage changes at a certain node due to random power

changes at multiple locations in the network is derived. Then, these distributions with in-

formation theoretic metrics are used to derive a novel voltage influencing score (VIS) that

quantifies the voltage influencing capacity of nodes with distributed energy resources (DERs)

and active loads. VIS is then employed to identify the dominant voltage influencer nodes.

Results demonstrate the high efficacy and low computational complexity of the proposed

approach, enabling various future applications (e.g., voltage control).



In the second part, this dissertation emphasizes on network-based robustness measures.

Particularly, it focuses on the task of identifying critical nodes in complex systems so that

preemptive actions can be taken to improve the system’s resilience. Critical nodes rep-

resent a set of sub-systems and/or their interconnections whose removal from the graph

maximally disconnects the network, and thus severely disrupts the operation of the system.

The majority of the critical node identification methods in literature are based on an iter-

ative approach, and thus suffer from high computational complexity and are not scalable

to larger networks. Therefore, this work proposes a scalable and generic graph neural net-

work (GNN) based framework for identifying critical nodes in large complex networks. The

proposed framework defines a GNN-based model that learns the node criticality score on a

small representative subset of nodes and can identify critical nodes in larger networks. Fur-

thermore, the problem of quantifying the uncertainty in GNN predictions is also considered.

Essentially, Assumed Density Filtering is used to quantify aleatoric uncertainty and Monte

Carlo dropout captures uncertainty in model parameters. Finally, the two sources of uncer-

tainty are aggregated to estimate the total uncertainty in predictions of a GNN. Results in

real-world datasets demonstrate that the Bayesian model performs at par with a frequentist

model.

Furthermore, the combinatorial case of critical node identification is also addressed in this

dissertation, where the node criticality scores would be associated with a set of nodes. This

simulates a concurrent scenario where multiple nodes are being disrupted simultaneously.

Essentially, this problem falls under the generic category of graph combinatorial problems.

This problem is approached through a novel deep reinforcement learning (DRL) based frame-

work. Specifically, GNNs are used for encoding the underlying graph structure and DRL for

learning to identify the optimal node sequence. Moreover, the framework is first developed

for Influence Maximization (IM), where one is interested in identifying a set of seed nodes,

which when activated, will result in the activation of a maximal number of nodes in the

graph. This generic framework can be used for various use-cases, including the identification

of critical nodes set related to concurrent disruption. The results on real world networks

demonstrate the scalability and generalizability of the proposed methodology.



Thirdly, this dissertation presents a comparative study of different performance and

network-based robustness metrics in terms of ranking critical nodes of a power distribu-

tion network. The efficacy of failure-based metrics in characterizing voltage fluctuations is

also investigated. Results show that hybrid failure-based metrics can quantify voltage fluc-

tuations to a reasonable extent. Additionally, several other challenges in existing robustness

frameworks are highlighted, including the lack of mechanism to effectively incorporate var-

ious performance and network-based resilience factors. Then, a novel modeling framework,

namely hetero-functional graph theory (HFGT) is leveraged to model both power distribu-

tion networks as well as other dependent infrastructure networks. Results demonstrate that

HFGT can address key modeling limitations, and can be used to accurately assess system

robustness to failures.
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Chapter 1

Introduction

The world population has increased by 113.3% [1] in the past 50 years. More importantly,

with massive urbanization, the percentage of global population in urban areas increased

from 34% to 52% in the past five decades [2]. The swelling urban population imposes

increasingly intense demands over a variety of critical infrastructures such as electricity [3],

water [4], heating [5], natural gas [6], road transportation [7], and so on. These networks are

inherently integrated and their interdependencies are becoming increasingly tight due to the

increased reliance on cyber infrastructure to enable smart and efficient operation.

The concepts of resilience and robustness related to critical infrastructures have attracted

tremendous attention in response to the frequent and widespread natural disasters and man-

made malicious attacks across the globe. Resilience is a property of the system that describes

its response to and recovery from extreme events and has been studied in diverse contexts

[8], including psychology [9, 10], ecology [11, 12], sociology [13, 14] and engineering [15–17].

Robustness is a key part of resilience and refers to the system’s ability to withstand fluctua-

tions in operating conditions under adverse situations while maintaining proper functionality.

Figure 1.1 further clarifies the different components of resilience via the evolution of system

functionality under extreme conditions. The slope in the red-colored phase of the trajectory

depicts the robustness of the system, i.e., the resistance against degradation. Improving sys-

tem resilience is becoming increasingly important across several domains. This is primarily
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Figure 1.1: Evolution of the performance/service (figure of merit) of a system in the presence
of an extreme event and recovering actions

due to two reasons: (1) the increasing frequency of extreme natural and man-made events

and (2) growing system complexity and interdependency lead to greater social and economic

degradation than ever. Some of the bold examples include power blackouts in the United

States (2003) and India (2012), which affected millions and led to financial losses of more

than a billion US dollars [18]. A very recent example relates to the rise in the usage of digital

infrastructure around the globe because of the ongoing COVID-19 pandemic. This leads to a

surge in cyber attacks on several networks [19, 20], making it crucial to identify and reinforce

the cyber-security of key data stores/nodes. These and other such events highlight the need

for research on resilience and robustness of complex systems against failure.

The first step towards the task of improving resilience is the accurate assessment of

system robustness. In this regard, graph theory offers a powerful framework for studying

the robustness of such complex systems by representing them as an interconnected network

consisting of nodes and edges. Robustness analysis typically deals with identifying key at-

tributes of the system which are majorly responsible for the system’s resilience [21]. For
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instance, in graph-structured models where nodes represent physical assets like buses in a

power grid, these key attributes correspond to critical nodes whose removal/disruption leads

to maximum impact on the system functionality (e.g. power flow). Depending upon the

factors involved, there are broadly two ways to compute the robustness, i.e., performance-

based and network-based. Performance-based methodologies deal with system performance

measures such as power flow in the power distribution system, information flow in the in-

ternet network, etc. On the other hand, network-based methods solely involve topological

characteristics such as node degree and betweenness centrality scores. There are also several

works in the literature that take a hybrid approach of fusing these two categories.

Under the performance-based category, voltage fluctuations across the grid is an impor-

tant factor to consider while assessing power system robustness. This is because, with the

increasing penetration of renewable generation and electric vehicles, the distribution grid

is witnessing significant new dynamics. Specifically, active consumers with rooftop photo-

voltaics and distributed generation are expected to alter their generation and usage patterns

[22]. This in turn induces frequent power variations. The uncontrolled operations of dis-

tributed energy resources (DERs) under this condition lead to voltage fluctuations in the

power distribution system (PDS). Although various control algorithms have been developed

for regulating voltage changes, they are slow and inadequate to deal with bi-directional power

flows and fast dynamics [23]. The voltage fluctuations can have a detrimental impact on the

connected devices and customer experience [24, 25]. Therefore, it is important to identify

dominant voltage influencer (DVI) nodes that have a relatively high impact on the voltage

state of the other nodes in the grid. These DVI nodes allow us to select optimal control

nodes for quickly restoring voltage services, thereby improving system robustness against

voltage issues.

Several graph-theoretic metrics have been proposed under the network-based robustness

characterization category in order to identify critical nodes in complex networks. Essentially,

the reliable operation of a complex system depends on proper functioning of its constituent

sub-systems (nodes) and their interconnections (links). Typically, there exists a set of critical

nodes/links that play a more crucial role in determining the output of the system than other

3



(non-critical) nodes/links. These nodes/links represent a set of sub-systems and/or their

interconnections, whose removal from the graph maximally disconnects the network, and

thus severely disrupts the operation of the system. As a result, the identification of such

failure-based critical nodes/links in complex networks is very crucial for assuring robustness

in complex networks.

The tasks of identifying DVI nodes and failure-based critical nodes have high signifi-

cance with regard to network and performance-based robustness assessment. The accurate

knowledge of these nodes could help us take effective preemptive actions to mitigate the

impact of disruptive actions, thereby improving system resilience. Although several method-

ologies have been continuously developed for accessing the system robustness under these

two classes, existing methods suffer from various shortcomings, which are categorized into

the following four types:

(1) Computational complexity: Most of the conventional approaches to computing ro-

bustness are computationally complex, which hinders their application to large-scale systems.

For instance, the identification of DVI nodes in a power grid, involves scenario-based analy-

ses that relies on a large number of Monte-Carlo simulations to account for stochasticity in

power changes. Each simulation requires running a load flow, which eventually sums up to

a large number of time-consuming processes.

(2) Scalability: The existing frameworks are not scalable to larger networks owing to their

large dependency on the global network properties that demand the traversal of the entire

network. For example, in the case of identifying failure-based critical nodes with betweenness

scores, the entire network needs to be scanned to find all possible node pairs whose paths

cross the target node. Such traversal doesn’t scale well with the increasing size of network.

(3) Generalizability: Current approaches do not systematically incorporate topological

and situational information. Hence, the results are valid for a specific network or scenario.

As a result, the computationally expensive processes need to be repeated for every new test

case. For instance, in the case of voltage sensitivity analysis in a power distribution network,

the Jacobian matrix obtained from the Newton-Raphson method is valid only for a specific

state of the system and must be recomputed for any changes in the network state. Thus,
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this kind of approach is not generalizable across network types and scenarios.

(4) Modeling inefficacy: Conventional graph-based models of complex infrastructure

networks can reveal the topological information and physical relationships among system

components, but they do not provide in-depth knowledge about system functionalities and

mutual dependencies among different types of resources. This leads to an inaccurate assess-

ment of system robustness. For example, in the case of power distribution networks, existing

graph-based test networks cannot explicitly account for the addition of Distributed energy

resources (DERs). Although, these new entities play an important role in deciding system

robustness, they are not systematically handled by the models.

Based on these perspectives, we seek to address a few fundamental research questions

in this dissertation. These questions and the contributions of this dissertation that aim to

address them are discussed in the following sections.

1.1 Research Questions

Related to challenges of computational complexity and scalability we ask the following ques-

tions:

Question 1: Performance based robustness analysis: Can analytical and probabilistic ap-

proximations of performance measures serve as viable alternatives to scenario based ap-

proaches?

Question 2: Network based robustness analysis: Is it possible to efficiently identify nodes

that are critical for network operation in an efficient and scalable manner ?

Related to the challenge of generalizability, we focus on the following questions:

Question 3: For network-based robustness analysis:

a: How can we reliably identify critical nodes even in the presence of aleatoric and epistemic

uncertainties in the network models ?

b: Can we identify a set of nodes critical for a wide variety of networks without explicit

training for each ?

Question 4: Do performance-based and network-based robustness methods and their hybrid
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variants reveal similar insights on the criticality of nodes ?

Related to the challenge of modeling ineffectiveness, we ask the following question:

Question 5: Can we create a generic modeling framework that will provide flexibility in

integrating network and performance-based analysis for large scale interdependent complex

networks?

1.2 Contributions

To address research question 1, Chapter 3 of this dissertation proposes an analytical ap-

proximation of voltage sensitivity analysis and probabilistically models the node voltage

changes under stochastic power change scenarios. Then, the probabilistic model of voltage

change is used in Chapter 4 to derive a novel performance-based voltage influencing score

(VIS). VIS can determine DVI nodes in a very computationally efficient manner. The major

contributions of these chapters are listed below.

• An analytical approximation of voltage change due to power change at multiple nodes

in an unbalanced distribution network is derived. (Chapter 3)

• To systematically incorporate the stochasticity of power variations, the theoretical

probability distribution of voltage change due to random power changes at multiple

nodes is derived.

• This work introduces a voltage influencing score (VIS) that quantifies the voltage

influencing capacity of nodes with DERs/active loads, and a computationally efficient

method to compute it. (Chapter 4)

• The proposed methods are validated against conventional approaches in the standard

IEEE 37-node and IEEE 123-node test systems.

More details on voltage influencing metric for effective assessment of grid robustness can be

found in Chapters 3 and 4, and in the following published articles:
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• Munikoti, S., Jhala, K., Lai, K., & Natarajan, B. (2020, August). Analytical voltage

sensitivity analysis for unbalanced power distribution system. In 2020 IEEE Power &

Energy Society General Meeting (PESGM) (pp. 1-5) IEEE [26].

• Munikoti, S., Natarajan, B., Jhala, K., & Lai, K. (2021). Probabilistic voltage sensi-

tivity analysis to quantify impact of high PV penetration on unbalanced distribution

system. IEEE Transactions on Power Systems, 36(4), 3080-3092 [27].

• Munikoti, S., Abujubbeh, M., Jhala, K., & Natarajan, B. (2022). A novel framework for

hosting capacity analysis with spatio-temporal probabilistic voltage sensitivity analysis.

International Journal of Electrical Power & Energy Systems, 134, 107426 [28].

• Munikoti, S., Abujubbeh, M., Jhala, K., & Natarajan, B. (2022). An Information The-

oretic approach to identify Dominant Voltage Influencers for Unbalanced Distribution

Systems. IEEE Transactions on Power Systems [29].

• Abujubbeh, M., Munikoti, S., & Natarajan, B. (2021, April). Probabilistic voltage

sensitivity based preemptive voltage monitoring in unbalanced distribution networks.

In 2020 52nd North American Power Symposium (NAPS) (pp. 1-6). IEEE. [30]

• Das, L., Munikoti, S., Natarajan, B., & Srinivasan, B. (2020). Measuring smart grid

resilience: Methods, challenges and opportunities. Renewable and Sustainable Energy

Reviews, 130, 109918 [31].

A novel graph machine learning-based methodology is proposed to address research ques-

tions 2 and 3a. Chapter 5 of this dissertation provides a graph neural network (GNN)-driven

predictive model to identify critical nodes of the system which are responsible for its robust-

ness against failures. Chapter 6 further increases the usability and generalizability of these

predictions by providing a confidence interval around them. The key contributions of these

works are as follows:

• The problem of identifying critical nodes/links in a graph is formulated as an inductive

machine learning problem for the first time. This formulation allows exploiting the
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local neighbourhood information of a node/link and does not require knowledge of the

graph’s complete topology.

• The proposed framework is used to identify the critical nodes/links in real-life inter-

connected systems of social networks, biological networks and power grid network.

• The inductive nature of the formulation allows one to train the model on a portion of

the graph or a synthetic graph of similar characteristics and apply the trained model

to the rest of the graph.

• Quantify total uncertainty due to aleatoric and epistemic sources in a GNN model.

• Efficiently propagate aleaotric uncertainty through layers of a GNN model using As-

sumed Density Filtering (ADF).

• Generic and computationally efficient uncertainty framework that can be applied at

the time of fresh training, as well as to pre-trained networks without the need of a

retraining process.

More details related to the GNN-based predictive model can be found in Chapter 5 and

Chapter 6, and in the following published articles:

• Munikoti, S., Das, L., & Natarajan, B. (2022). Scalable graph neural network-based

framework for identifying critical nodes and links in complex networks. Neurocomput-

ing, 468, 211-221. [32].

• Munikoti, S., Das, L., & Natarajan, B. (2021). Bayesian graph neural network for

fast identification of critical nodes in uncertain complex networks. In 2021 IEEE

International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3245-3251).

IEEE [33].

• Munikoti, S., Agarwal, D., Das, L., & Natarajan, B. (2022). A General Framework

for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks. arXiv

preprint arXiv:2205.09968.
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To address research question 3b, Chapter 7 of this dissertation fuses Graph Neural Net-

work (GNN) with Deep Reinforcement Learning (DRL) algorithm to develop an efficient

framework for graph combinatorial problems in general. Here, critical nodes based on their

capability to spread information are investigated. Major contributions of this work are listed

below:

• A novel GNN based approach is undertaken first to prune the search space while

inspecting for the most influential nodes. This improves the computational efficiency

of the DRL module.

• The DRL algorithm of our framework, i.e., double deep Q learning learns the topo-

logical patterns which are recurring at every step of the Graph optimization problem.

Therefore, once the model is trained, it can predict the appropriate sequence for a new

graph in no time.

• Meta learning is achieved by feeding the input graph information along with the state

vector while estimating the Q value (long term benefit) of feasible actions. This in-

duces generalization in our framework by allowing predictions across graphs of different

families.

More details related to the DRL based node search process can be found in Chapter 7 and

in the following articles:

• Munikoti, S., Natarajan, B., & Halappanavar, M. (2022). GraMeR: Graph Meta

Reinforcement Learning for Multi-Objective Influence Maximization. arXiv preprint

arXiv:2205.14834. (under review) [34].

• Munikoti, S., Agarwal, D., Das, L., Halappanavar, M., & Natarajan, B. (2022). Chal-

lenges and Opportunities in Deep Reinforcement Learning with Graph Neural Net-

works: A Comprehensive review of Algorithms and Applications. arXiv preprint

arXiv:2206.07922 (under review) [35].

A comparative study of performance and network-based robustness metrics are carried out

in Chapter 8 to address research question 4. This chapter highlights various limitations of
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existing frameworks. Finally, a hetero-functional graph theory (HFGT) is used for modeling

interdependent networks in order to address research question 5. The key contributions of

these works are as follows:

• Investigate the coherency in rankings of critical nodes using different classes of network

failure-based robustness metrics.

• Analyze the expressiveness of failure-based robustness metrics in characterizing the

impact of voltage fluctuations.

• Identify key challenges with existing approaches and provide potential research direc-

tions related to the design of novel robustness metrics.

• HFGT based model of power distribution network provide more rigorous and detailed

framework for accurate assessment of robustness.

• Unlike the original HFGT model [36] that uses binary terms to quantify dependencies,

this work proposes edge weights with real numbers in the Weighted HFGT (WHFGT)

framework to quantify dependencies. This improvement offers a more generic frame-

work, which enables the simulations of partial attacks (partial loss of functionalities

due to attacks).

• With the proposed WHFGT framework, this chapter conducts an in-depth analysis

of an interdependent system that reveals system robustness against disruptions from

multiple dimensions.

More details related to the comparative study and HFGT based models can be found in

Chapter 8 and Chapter 9, and in the following articles:

• Munikoti, S., Lai, K., & Natarajan, B. (2021). Robustness assessment of hetero-

functional graph theory based model of interdependent urban utility networks. Relia-

bility Engineering & System Safety, 212, 107627. [34].

10



Figure 1.2: Outline of the dissertation
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• Munikoti, S., Abujubbeh, M., & Natarajan, B. (2022). Robustness of power distribu-

tion system: A comparative study of network and performance based metrics. IEEE

Access.

1.3 Organization of the Dissertation

Figure 1.1 outlines the structure of this dissertation. Chapter 2 provides a literature review

of related work. Chapter 3, develops an analytical framework for voltage sensitivity analysis

which does not rely on simulations for quantifying voltage changes in a power distribution

grid. Chapter 4 leverages the foundational work of Chapter 3 to derive a novel voltage

influencing metric that can efficiently identify DVI nodes. Chapter 5 proposes a graph ma-

chine learning-based novel predictive model to compute robustness scores and consequently

identify failure-based critical nodes in complex networks. Chapter 6 further enhances the

usability of this predictive model by providing a confidence interval around GNN predic-

tion using a Bayesian framework. Chapter 7 provides a deep reinforcement learning-based

framework for solving graph combinatorial problems, including a concurrent attack scenario,

where robustness scores would be associated with a group of nodes rather than a single node.

Chapter 8 outlines the challenges of existing methodologies for analyzing robustness. The

limitation due to modeling inefficacy is overcome through hetero functional graph theory

based models in Chapter 9. Finally, Chapter 10 presents key conclusions of this dissertation

and suggests avenues for future research.
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Chapter 2

Literature review

This chapter highlights the gaps in the existing works, and provides a literature review on

the topics covered in this dissertation.

2.1 Voltage sensitivity analysis

VSA quantifies the voltage variation at a given node due to power changes at other locations

of the network, can be used as an effective tool to quantify the impacts of PV variations and

MTD related intentional perturbations on the voltage stability across the network. Method-

ologies for VSA can broadly be divided into two categories, namely numerical and analytical.

Numerical VSA methods, such as the Newton-Raphson load flow and perturb-and-observe

based methods, rely on iterative algorithms to yield an approximate solution. However, these

methods suffer from high computational cost and lack of insights on the system states. Prior

research efforts have examined the performance of numerical sensitivity analysis methods as it

relates to regulating voltage in a power system with distributed generators (DGs)[24, 37, 38],

and its drawback in terms of computational efficiency is repeatedly unveiled in these litera-

ture. For instance, authors in [37], present a reactive power control method based on voltage

sensitivity analysis for mitigating voltage variations in PV integrated distribution systems.

Specifically, a new set point for reactive power is computed with varying active power injec-
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tion/consumption at other nodes, using the Newton-Raphson load flow. In [24], the authors

propose a method for analyzing voltage variations due to PV generation fluctuations in an

unbalanced distribution grid, considering a variety of factors. However, its dependency on

the inefficient simulation method, limits its applications in large scale distribution networks.

In [38], a model predictive control method is proposed to coordinate the active/reactive pow-

ers of DGs and on-load tap changing transformers set-points for voltage regulation. However,

the high computational burden, associated with the sensitivity matrix updates, limits its ap-

plication when applied online. In [38], a model predictive controller is used along with the

sensitivity matrix to regulate voltages. The authors in [39], propose a centralized coordinated

voltage control algorithm for distribution systems with (DGs). Here, the Newton-Raphson

method is used to examine DG’s effect on the voltage stability of a certain node due to

reactive power injection at different nodes across the network. In [40], the authors propose

a new reactive power management method for minimizing voltage variation in both steady

state and transient conditions due to DER integration. Here, the reactive power of each

DER is controlled by exploiting the numerical relationship between variations of voltage

and reactive power, based on the traditional VSA method. Authors in [41], develops an

optimization model for electric vehicle management based on VSA approaches. Still, the re-

quirements of iterative executions of power flow calculations and optimization models hinder

its application in real-world scenarios. Further, an active distribution network management

approach is proposed in [42, 43] for maximization of PV hosting capacity. The approach

involves adjusting switching capacitors and voltage regulator taps. In this case, thousands

of scenarios are incorporated to address the uncertainties that reveal the huge computational

burden of VSA in the presence of renewable energy resources. To summarize, most of these

numerical approaches involve computationally expensive load flow algorithms or some kind

of trade-off that negatively impacts performance, thereby limiting their applicability in large

scale distribution systems with uncertainties [44].

To overcome the drawbacks of numerical methods, there are some limited analytical ap-

proaches for VSA that have been proposed. In [45], a new sensitivity matrix is derived

analytically, relating voltage magnitude with reactive power change. Then, the sensitivity
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product is maximized to obtain the optimal generator that has the greatest influence on the

voltage of the critical node. Similarly, in [46], an algorithm based on the sensitivity analysis

has been designed which optimally manages active and reactive powers of DGs in order to

keep the system voltages inside the limits. Here, instead of repeating a load flow calculation

to solve the optimization problem, a sensitivity matrix is used to conduct load flow compu-

tation in a non-iterative manner, reducing the computational burden significantly. However,

the algorithms proposed both in [45] and [46] are not properly validated with standard test

systems. Authors in [47], have taken a probabilistic approach where smart meter data is

used along with sensitivity analysis to define boundary values of various operation indices.

Here, the real and reactive power consumption of houses are assumed to be independent

which is not the case in reality and the proposed approach doesn’t account for unbalanced

load conditions. In [48], authors have computed voltage sensitivities by formulating an over-

determined system of linear equations constructed solely using measurements of nodal power

injections and voltage magnitudes. Similarly, [49] uses smart meter data with a linear re-

gression model for predicting the voltage change but both [48, 49] rely on the availability

of data and monitoring infrastructure. Authors in [50], obtain load dependent voltage sen-

sitivity factors and develop linearized load flow model based on historical smart meter data

comprising of load and voltage profiles, without leveraging any grid topology information.

This work relies heavily on the availability of smart meter data at the customer level and

data needs to be recollected whenever the network gets reconfigured. In a nutshell, exist-

ing analytical approaches are not generalized enough for analysis of large scale unbalanced

distribution systems with stochastic behavior. Therefore, in our prior work [51], an analyt-

ical bound for voltage sensitivity is derived for single phase balanced distribution network.

Building off our preliminary work, in this paper, we propose an analytical VSA for a gen-

eral case of three phase unbalanced distribution system where stochastic power fluctuations

can simultaneously occur at multiple nodes of the network. This extension presents many

challenges as power change in any one phase impacts the voltage in all the phases.
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2.2 Critical node identification

Several methods have been proposed to compute node criticality scores so that critical

nodes can be identified [52–54]. However, such approaches typically measure the score of a

node/link and repeat the process for all nodes/links in a graph. As a result of this itera-

tive approach, such techniques exhibit computational complexity that increases drastically

with the size of the graph, i.e., the number of nodes/links in the graph. For example, the

complexity for identifying the optimal link whose removal maximally reduces robustness is

of order O(N5) for a graph with N nodes [53]. As a result, various efforts are directed

towards approximating such algorithms and developing a computationally efficient solution

[53, 55, 56]. These approaches offer a trade-off between scalable computation and accurate

identification of links. However, even with the proposed trade-offs, the lowest achieved com-

plexity for the case of link identification is of order O(N2). Similarly, the authors in [54]

deploy effective graph resistance as a metric to relate the topology of a power grid to its

robustness against cascading failures. Specifically, the authors propose various strategies to

identify node pairs where the addition of links will optimizes graph robustness. The minimum

achieved complexity is of the order O(N2 − N + 2Lc), where LC = N !
2!(N−2)!−L

with L links

and N nodes. However, with an increase in graph size, the accuracy of such approximations

decreases, accompanied by a considerable increase in execution time. To overcome com-

putational complexity, the authors in [57], propose a method based on a genetic algorithm

to enhance network robustness. Particularly, the authors focus on identifying links whose

removal would severely decrease the effective graph resistance of the graph. However, the

algorithm requires fine-tuning of various parameters and is not scalable. Moreover, several

applications involve dynamically changing network topologies requiring node/link robust-

ness to be dynamically estimated and maintained. The existing approaches being analytical

in nature, and not exhibiting an inductive nature, one has to repeat the same procedure

whenever the graph structure changes.

In contrast to optimization-based, and related approximation-based approaches, machine

learning frameworks that exploit their ability of extract patterns from data and topology of
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the system have also been applied for critical node identification. For instance, En-Yu et al.

in [58] have proposed the use of convolutional neural networks applied on a feature matrix

derived from the adjacency matrix of a graph to identify critical nodes. The neural network

model learns the topological structure of the graph and identifies the critical nodes in the

system. Sun et al. in [59] formulate a binary classification problem to identify the influential

nodes in a graph by making use of the adjacency matrix and the eigen vector matrix of an

influence graph derived from the original topology of the system. However, despite the use

of machine learning algorithms for automatically learning the topological information from

the features, the above approaches lack significantly in their suitability to real-life problems.

Specifically, the use of a convolutional neural network with the adjacency matrix as an input

restricts the applicability of the trained model to networks of the same size as the trained

graphs. Moreover, such an approach always depends on the information of the entire graph to

calculate the criticality of a node anywhere in the graph. Furthermore, in these approaches,

the fundamental definition of critical nodes involves the use of either a susceptible-infected-

recovered (SIR) model, or an influence graph derived from the original graph of the system.

These definitions inherently capture the ability of a node to infect/influence a large portion

of the graph, a property referred to in the literature as influence of the node. On the other

hand, the criticality of a node refers to the importance of the node in proper functioning of

the system, and is distinct from its influence. In addition, existing methods are limited to

identification of critical (or rather influential) nodes in the network, and do not address the

problem of critical link identification. Finally, these methods are not inductive in nature,

and thus require fresh training for graphs of different sizes and types.

2.3 Handling Uncertainty in Graph neural network

A variety of Bayesian methods are used in the literature to handle aleatoric uncertainty in

deep neural networks [60–63]. However, there are very few works for GNN models. The

authors in Zhang et al. [64] propose a Bayesian framework using joint estimation of graph

structure and GNN parameters. The authors make use of families of parametric random
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graphs to estimate the structure and parameters. This makes the approach sensitive to

the choice of the random graph model and the extent to which the random network can

accurately represent the characteristics of the true underlying network. As a result, inferences

can be inconsistent for different problems and datasets. Another significant drawback of the

technique is that the posterior inference of the graph is carried out solely conditioned on

the observed graph. As a result, any information provided by the node features and the

training labels is completely disregarded. Therefore, Pal et al. [65] proposed an alternative

approach which formulates the posterior inference of the graph in a non-parametric fashion,

conditioned on the observed graph, features and training labels. Precisely, they obtain MAP

estimate of graph, and conducted all the classification/regression tasks on this estimate. It

is argued that MAP estimate handles aleatoric uncertainty of the input graph. However,

the approach does not systematically define/quantify the sources of uncertainty and their

impact on the predictions. Specifically, the uncertainties AU1 and AU2 are not considered

in the framework. We address these shortcomings by explicitly incorporating AU1 and AU2

in our framework. Specifically, ADF is leveraged to propagate the aleatoric uncertainty from

the input of the GNN to final node predictions through all the intermediate layers

Similar to aleatoric uncertainty, the literature on handling epistemic uncertainty in GNN

is limited. Zhang et al.[64] and Pal et al. [65] are some of the few efforts that generated

multiple Monte-Carlo samples by using dropout at test time. To address the problem of

huge dependency of Zhang et al.[64] on the assumed random graph model, Hasan et al. [66]

introduces a stochastic regularization technique for GNN by adaptive connection sampling.

Specifically, it adaptively learns the dropout rate for each layer of GNN. Akin to many of

the aforementioned methods, we use the dropout-at-test approach to generate Monte-Carlo

samples and estimate the epistemic uncertainty in predictions.

2.4 Modeling interdependent systems

The interdependency among infrastructures calls for coordination of the constituent sys-

tems. Some examples of integrated infrastructures include (1) electricity and water networks
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[67, 68], (2) electricity and transportation networks [69, 70], (3) natural gas and electricity

networks [71, 72], (4) heating and electricity networks [73], among others.

To enhance planning, maintenance and emergency decision making, efficient and effective

modeling and simulation tools are required. In this regard, Ouyang provides a comprehensive

review of a variety of modeling frameworks for interdependent systems in [74]. In particular,

graph theory based modeling method is one of the most frequently employed techniques,

particularly to understand and quantify the coupling phenomena between different infras-

tructures [36, 75]. Graph theory has formed the basis of many research works for network

based systems, such as transportation systems [76], power grids [77], water networks [78],

supply chains [79], and healthcare systems [80]. Conventionally, nodes of a graph represen-

tation denote the various infrastructure or service components and edges signify the physical

connections among them. To exploit the conventional graph theory based approaches to

model interdependent infrastructures, the network science community introduced the con-

cept of “multilayer network”. This approach can facilitate modeling of “systems of systems”

that crosses entity boundaries. Several prior publications have presented the relevant re-

search works in this field [81–85]. For instance, in [81], the topological characterization of

two interdependent small-sized networks is analyzed using multi-layer network concept to

investigate the effects of interdependency on network recovery capability. Similarly, Yu et

al. address the issue of uncertainties in edge connections across interdependent critical in-

frastructures via establishing the stochastic block models [82]. In [83, 84], a novel graph

model to map the complex interactions among infrastructures and extract interdependencies

among the building systems, considering shocks and stresses, is proposed and explored. In

[85], a graph based modeling approach is developed to analyze topological factors in a cou-

pled power-law network to characterize network robustness, considering dependency types

among networks. However, the conventional underlying modeling philosophy is adopted in

the relevant works mentioned earlier, i.e. nodes represent resources and edges denote their

physical connections. Although the conventional graph representation of interdependent in-

frastructure networks can reveal the topological information and fundamental relationship

among system components, for complex systems, it does not provide in-depth knowledge
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about system processes and mutual dependencies among resources. In other words, ques-

tions such as “What are the dependencies of a particular facility on the others?”, “What

processes are performed within nodes and edges?”, “How important are nodes and edges for

system performance?” cannot be properly addressed by analyzing conventional graph repre-

sentations [86]. Therefore, Farid et al. [36] introduce a “Hetero-functional Graph Theory”

(HFGT) framework to rigorously model interdependent infrastructure networks and tackle

all the challenges unaddressed within the conventional graph theory paradigm. The HFGT

framework has developed from roots in the Axiomatic Design for Large Flexible Engineering

Systems,which provides a rigorous platform for modeling systems of systems [87].
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Chapter 3

Performance-based Robustness

Analysis: Identification of Dominant

Voltage influencer nodes-Foundations

Robustness evaluation of complex systems is either based on topological features of the associ-

ated network or system performance measures. Voltage fluctuation is one such performance-

based factor to consider while assessing power grid robustness, especially with the increas-

ingly dynamic nature of the grid. In particular, massive deployments of rooftop photovoltaics

(PVs) and demand response programs to incentivize consumers for peak load shaving are

emerging across communities around the world. PV generation offers reduced operation

costs, a low carbon footprint, and other ancillary services. Despite a variety of benefits, high

PV penetration imposes significant challenges on the control and operation of distribution

systems, in terms of (1) voltage stability affected by the increase in uncertainty due to in-

termittent power characteristics; (2) complexity of the system associated with bidirectional

power flow, and (3) unbalanced characteristics due to a variable number/size of PV instal-

lations on the three phases [88]. Therefore, robustness to voltage fluctuations has emerged

as a critical need for smart distribution networks with PV penetrations.

Voltage sensitivity analysis (VSA) quantifies the voltage variation at a given node due to
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Figure 3.1: Example network with multiple actor nodes

power changes at other locations of the network and can be used as an effective tool to quan-

tify the impacts of PV variations and MTD-related intentional perturbations on the voltage

stability across the network. Therefore, this chapter proposes a computationally efficient an-

alytical framework for voltage sensitivity analysis (VSA) that allows for effective robustness

analysis. The proposed framework systematically incorporates the stochasticity associated

with PV generation, resulting in a probabilistic voltage sensitivity analysis (PVSA) tool.

This framework is later used in Chapter 4 to develop a novel performance-based voltage

influencing index.

3.1 Analytical approximation of VSA

This section introduces an analytical approach to VSA for three phase unbalanced power

distribution system. Changes in real or reactive power at any phase of the bus result in

voltage changes at all phases across all nodes of the distribution system. Nodes, where

power changes are referred to as actor nodes (A), and the nodes where voltage change is

monitored are referred to as observation nodes (O). This work assumes that the source bus

is a slack bus and the load is modeled as constant power load with star configuration, which

serves as an example for illustration. The analytical approximation for voltage change at an

observation node due to the power change at an actor node is stated in Theorem 1.

Theorem 1. For an unbalanced power distribution system, change in complex voltage (∆VOA)

at an observation node (O) due to change in complex power of an actor node (A) can be
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approximated by, 

∆V a
O

∆V b
O

∆V c
O


≈ −


∆Sa⋆

A Zaa
OA

V a⋆
A

+
∆Sb⋆

A Zab
OA

V b⋆
A

+
∆Sc⋆

A Zac
OA

V c⋆
A

∆Sa⋆
A Zba

OA

V a⋆
A

+
∆Sb⋆

A Zbb
OA

V b⋆
A

+
∆Sc⋆

A Zbc
OA

V c⋆
A

∆Sa⋆
A Zca

OA

V a⋆
A

+
∆Sb⋆

A Zcb
OA

V b⋆
A

+
∆Sc⋆

A Zcc
OA

V c⋆
A

 , (3.1)

where a, b and c represent the three phases, which are consistent throughout the work. V a
A

and ∆Sa
A represent complex voltage and power changes at the phase a of the actor node A,

respectively; Z denotes the impedance matrix including self and mutual line impedance of the

shared path between observation node and actor node from the source node. Fig. 3.1 depicts

an unbalanced three phase distribution system for illustration. The red lines represent the

shared paths between actor node AL+M and observation node O, from the source node.

Proof. Voltage at an observation node can be computed in terms of the difference between

voltage at the source node and sum of the voltage drops across all lines/edges between the

source node and observation node. Let Eo be set of all edges between the source node and

the observation node. Using KVL, voltage at observation node o can be written as:


VOa

VOb

VOc

 =


VSa

VSb

VSc

−
∑
eϵEo


V d
ea

V d
eb

V d
ec

 , (3.2)

where VOVOVO, VSVSVS, and V d
eV
d
eV
d
e are voltage at observation node, voltage of source node, and the

voltage drop across edge e, respectively. Let IeIeIe and ZeZeZe be the current and impedance for

edge e. Here, along with self impedance, mutual impedance of the line will also contribute

to the voltage drop. In LV distribution network, value of shunt impedance can be ignored.

We can represent (3.2) in a form incorporating line current and impedance, denoted by IeIeIe

and ZeZeZe as:

VOVOVO = VSVSVS −
∑
eϵEo

ZeIeZeIeZeIe, (3.3)
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VOVOVO =


VOa

VOb

VOc

 , IeIeIe =

Iae

Ibe

Ice

, ZeZeZe =


Zaa

e Zab
e Zac

e

Zba
e Zbb

e Zbc
e

Zca
e Zcb

e Zcc
e

.

Let Sn be complex power consumption or injection at node n and V ∗
n be the complex

conjugate of voltage at node n. The current flowing through a particular phase (say phase

a) of edge e can be written as Iae =
∑

nϵNe

S∗
na

V ∗
na

where Ne is the set of all nodes n for which

edge e is between node n and source node. Power from the source node to all the nodes in

the set Ne flows through edge e. Therefore, current in edge e will be affected by the power

change at nodes nϵNe. Therefore, the voltage at the observation node can be written as:

VOVOVO = VSVSVS −
∑
eϵEo

∑
nϵNe

ZeZeZe

[
S⋆
na

V ⋆
na

S⋆
nb

V ⋆
nb

S⋆
nc

V ⋆
nc

]T
(3.4)

When power consumption of node n changes from Sn to S
′
n, the voltage will change from Vn

to V
′
n and consequently voltage at observation node will change to V

′
o . The new voltage at

observation node can be written as:

V
′

OV
′

OV
′

O = VSVSVS −
∑
eϵEo

∑
nϵNe

ZeZeZe

[
S
′⋆
na

V ′⋆
na

S
′⋆
nb

V
′⋆
nb

S
′⋆
nc

V ′⋆
nc

]T
(3.5)

where S
′⋆
n = S⋆

n+∆S⋆
n and V

′
n = Vn+∆Vn. The effective voltage change at observation node

can be written as ∆Vo = Vo − V
′
o∆Vo = Vo − V
′
o∆Vo = Vo − V
′
o . Using (3.4) and (3.5), change in voltage at observation
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node can be expressed as:

∆VO∆VO∆VO =
∑
eϵEo

ZeZeZe
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(3.6)

In practice, voltage changes are typically small compared to actual node voltage. Hence, it

is reasonable to assume that ∆V ∗
n /(V

∗
n +∆V ∗

n )→ 0. Thus, (3.6) can be approximated as:

∆VO∆VO∆VO =
∑
eϵEo

ZeZeZe


∑
nϵNe


−∆S⋆

na

V ⋆
na+∆V ∗

na

−∆S⋆
nb

V ⋆
nb+∆V ∗

nb

−∆S⋆
nc

V ⋆
nc+∆V ∗

nc



 (3.7)

Let Eθ be set of all edges between the actor node and source node. When actor node θ

changes power consumption, current flowing through the edges changes for all edges of set

Eθ. Voltage drop across the edges between the source node and observation node, changes

only for edges that belongs to subset Eθ ∩ Eo.

∆VOθ∆VOθ∆VOθ = ZOθZOθZOθ




−∆S⋆

θa

V ⋆
θa+∆V ∗

θa

−∆S⋆
θb

V ⋆
θb+∆V ∗

θb

−∆S⋆
θc

V ⋆
θc+∆V ∗

θc



 (3.8)

where ZOθZOθZOθ =
∑

eϵEo∩Eθ
ZeZeZe is the impedance matrix. Here, each component in the summation

is the impedance of the shared path between the actor node and observation node from
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source node. We decompose (3.8) into real and imaginary components as follows:

∆V r
Oθ∆V r
Oθ∆V r
Oθ = −
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⋆r
θa +∆V ⋆r

θa )

(V ⋆r
θa +∆V ⋆r

θa )2+(V ⋆i
θa+∆V ⋆i

θa )
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(3.9)

where superscript r and i represents the real and imaginary components, respectively. In a

distribution network, voltage angle relative to source node and magnitude of voltage change

is usually very small. Under the above assumptions, the real part of voltage change can be

approximated as:

∆V r
Oθ∆V r
Oθ∆V r
Oθ ≈ −
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...


3×1

(3.10)

Similarly, with the same arguments, the imaginary part can be approximated. By recombin-

ing the real and imaginary parts, the approximate voltage change for all three phases can

be written as given in Theorem 1.
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 (3.11)
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3.1.1 Multiple actor nodes

With increasing penetration of DERs at different locations across the grid, it is important

to analyze the impact of multiple actor nodes on distribution system voltage. Therefore,

voltage change expression derived for a single actor node in eqn. (3.11) is extended for

multiple actor nodes in the following corollary:

Corollary 2. For an unbalanced power distribution system, change in complex voltage ∆VO

at an observation node (O) due to change in complex power at multiple actor nodes can be

approximated by
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 (3.12)

where Ã is the set of all actor nodes.

Proof. Following (3.7), voltage change expression at an observation node due to single actor

node can be written as:

∆VO∆VO∆VO =
∑
eϵEo

ZeZeZe


∑
nϵNe
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(3.13)

where, InInIn =

[
−∆Sa⋆

n

V a
n +∆V a⋆

n

−∆Sb⋆
n

V b⋆
n +∆V b⋆

n

−∆Sc⋆
n

V c⋆
n +∆V c⋆

n

]T
. Let us assume a generic network with L +M

actor nodes such that there are L nodes between the source node and observation node O

and M nodes between observation node and last actor node of the network as shown in the

Fig. 1. The nodes are arranged in such a way that the set EO ∩EA1 has minimum elements
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(edges) and the sets EO ∩EAL+1
to EO ∩EAL+M

have same and maximum number of edges.

This is represented as,

|EO ∩ EA1| ≤ |EO ∩ EA2| . . . ≤ |EO ∩ EAL
|

≤ |EO ∩ EAL+1
| = |EO ∩ EAL+2

| . . . = |EO ∩ EAL+M
|

(3.14)

where |EO ∩ EA1| denotes the cardinality of set EO ∩ EA1 . On dividing set EO into L + 1

subsets as,

EO =|EO ∩ EA1 | ∪ |EO ∩ (EA2 − EA1)| ∪ . . .

|EO ∩ (EAL+1
− EAL

)|

=

AL+1⋃
l=1

EO ∩ (EAl
− EAl−1

)

(3.15)

since EO ∩ (EAL
− EAL−1

) = ϕ for AL = AL+2 or greater. Using this, (3.13) is expressed as,

∆VO∆VO∆VO =
L+1∑
l=1

∑
eϵEO∩EAl

−EO∩EAl−1

(ZeZeZeInInIn)

=

AL∑
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( ∑
eϵEo∩En

ZeZeZe

)
InInIn.

(3.16)

When power injection/consumption changes at the actor node n, the current flowing through

the edges change for all edges of the set En. However, the voltage drop across the edges

between source node and observation node, changes only for edges that belong to subset

En ∩ Eo. Taking the sum of the impedance across all such edges, reduces (3.16) to:

∆VO∆VO∆VO =

AL∑
n=A1

ZonZonZonInInIn,

=

AL∑
n=A1

∆VOn∆VOn∆VOn

(3.17)
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where ZonZonZon =
∑

eϵEo∩En
ZeZeZe is the impedance matrix and its elements are computed by the

summation of the impedances of shared paths between all actor nodes and observation node

from source node. ∆VOn∆VOn∆VOn is the voltage change due to a single actor node n. This proves that

the analytical expression in 3.11 exhibits superposition law, thus can be extended to (3.12)

for multiple actor nodes.

3.1.2 Upper bound on approximation error

The proposed analytical method in Corollary 2 approximates the true voltage change for a

large range of power variation with very small error magnitude. To further substanticiate

the quality of this approximation, Corollary 3 provides an upper bound for the error.

Corollary 3. For an unbalanced power distribution system, the errors in the real (∆V r
e ) and

imaginary part (∆V i
e ) of the voltage change approximation are upper bounded by:

∆V r
e ≤

∑
uϵŨ

(
ku1/(1 + cu1)

V a,r
A

+
ku2/(1 + cu2)

V a,i
A

)
∆V i

e ≤
∑
uϵŨ

(
ku2/(1 + cu1)

V a,r
A

+
ku1/(1 + cu2)

V a,i
A

)
,

(3.18)

where k1, k2, c1, c2 are parameters dependent on the power change and impedance of the cor-

responding phases. The set Ũ contains the self and cross phase terms of the phase where

error in voltage change is computed (e.g. it is aa, ab, ac for phase a). The voltage change at

any phase consist of three components from the three phases. The value of these parameters

for phase a are: k1 = ∆P a
AR

aa
OA −∆Qa

AX
aa
OA, k2 = ∆P a

AR
aa
OA −∆Qa

AX
aa
OA, c1 = (V a,i

A /V a,r
A )2,

c2 = c−1
1 .

Proof. Firstly, let us recall that the analytical approximation derived in Theorem 1 is based

on a legitimate assumption that the value of voltage change (∆VA) can be ignored compared

to the rated voltage (VA). In other words, the terms containing ∆VA in equation (3.6) are

neglected, which leads to the approximation computed in (3.7). Despite the accurate ap-

proximation, this simplification incurs the inevitable error. In Corollary 3, we prove that the
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incurred error is upper bounded, which ensures the stability of our approximation method.

The approximation error in voltage change at any phase consists of three components, corre-

sponding to three phases. The error ∆V aa,r
e in real part of phase a due to phase a component

is the difference of actual voltage change (eqn. (3.18)) and its approximation (eqn. (3.19))

expressed as,

∆V aa,r
e =

(k1)(V
a,r
A +∆V a,r

A )

(V a,r
A +∆V a,r

A )2 + (V a,i
A +∆V a,i

Aa )
2
−

(k1)(V
a,r
A )

(V a,r
A )2 + (V a,i

A )2

+
(k2)(V

a,i
A +∆V a,i

A )

(V a,r
A +∆V a,r

A )2 + (V a,i
A +∆V a,i

A )2
−

(k2)(V
a,i
A )

(V a,r
A )2 + (V a,i

A )2
.

(3.19)

Similar components from phase b and c exist, which together with (3.19) contribute to the

error in phase a. (3.19) can be further simplified as,

∆V aa,r
e =

(k1)(τ
r)(V a,r

A )

(τ r)2(V a,r
A )2 + (τ i)2(V a,i

A )2
− (k1)(V

a,r
A )

(V a,r
A )2 + (V a,i

A )2

+
(k2)(τ

i)(V a,i
Aa )

(τ r)2(V a,r
A )2 + (τ i)2(V a,i

A )2
− (k2)(V

a,i
A )

(V a,r
A )2 + (V a,i

A )2

= ∆V aa,r
e1 +∆V aa,r

e2

(3.20)

where τ r = 1 + ϵr, τ i = 1 + ϵi, ϵr = (∆V a,r
A /V a,r

A ), ϵi = (∆V a,i
A /V a,i

A ). Here, equation (3.20)

consists of two similar error components ∆V aa,r
e1 and ∆V aa,r

e2 , which are evaluated separately:

∆V aa,r
e1 =

k1/(1 + c1)

V a,r
A

(
1

τ r
− 1

)
(3.21)

where c1 = (V a,i
A /V a,r

A )2. As the ratio of change in voltage and rated voltage, i.e., ϵr and ϵi

are typically very small, we can argue the following inequality:

ϵr ≤ 1− ϵr =⇒ ϵr

1− ϵr
≤ 1 =⇒ 1

τ r
− 1 ≤ 1 (3.22)

Then, using (??), equation (??) can be bounded as,

∆V aa,r
e1 =

k1/(1 + c1)

V a,r
A

(
1

τ r
− 1

)
≤ k1/(1 + c1)

V a,r
A

(3.23)
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Figure 3.2: Modified IEEE 37 node network

Similarly, with the same arguments, the upper bound can be derived for second part of (3.20)

as,

∆V aa,r
e2 =

k2/(1 + c2)

V a,i
A

(
1

τ i
− 1

)
≤ k2/(1 + c2)

V a,i
A

(3.24)

Equations (3.23) and (3.24) are combined to arrive at the upper bound on the specific

component of the voltage change, contributed from phase a.

∆V aa,r
e ≤ k1/(1 + c1)

V a,r
A

+
k2/(1 + c2)

V a,i
A

(3.25)

The bound on the other parts of voltage change, which are contributed from phase b and c,

i.e., ∆V ab,r
e and ∆V ac,r

e , is similar in form to (3.25) except for the constants (k1, k2, c1, c2)

which are dependent on the power and shared path impedance of the corresponding phases.

Then, the bound from all the phase terms are added to give the aggregate upper bound on

the real part of voltage change in phase a, as stated in Corollary 2. The same procedure

can be applied to derive the bounds for the imaginary part of voltage change in phase a.

Finally, the bound on the error magnitude can be computed from the bounds on the real

and imaginary parts of the error. The upper bound is validated against the actual error in

the next sub-section.
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Figure 3.3: Modified IEEE 123 node network

Table 3.1: Power change across different actor nodes

Actor nodes Phase Rated power (kVA) New power (kVA)
22 c 42 + j21 63 + j21
17 b 42 + j21 63 + j31
14 c 84 + j42 126 + j21
8 a 42 + j21 63 + j31
7 c 84 + j42 126 + j21

3.1.3 Validation of VSA

The analytical approximations of VSA need validation via appropriate test networks. There-

fore, this section verifies the derived expression using the modified IEEE 37-node and the

IEEE 123-node test systems, shown in Fig. 3.2 and 3.3, respectively. These test networks are

selected due to their unbalanced characteristics, which include both single and three phase

loads. The nominal voltage of the IEEE 37-node test system is 4.8 kV whereas it is 4.16 kV

for the IEEE 123-node system. The Classical NR method is used as a baseline method for

validating our proposed methods.

The accuracy of the VSA approximation for multiple actor node case, is first evaluated

in the 37-node network by simulating the a scenario assuming 22, 17, 14, 8, 7 as actor nodes.

The power changes at these actor nodes will occur simultaneously at different phases, which

is about 50% of their rated load as tabulated in Table 3.1.
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Figure 3.4: Voltage change on all nodes of 37 node network due to multiple actor nodes

Figure 3.5: Voltage change at phase a of the selected nodes in 123 node test network due to
multiple actor nodes

Fig. 3.4 shows the voltage change at various observation nodes. It can be observed that

the errors between the theoretical approximation and simulated voltage change are negligible

as the maximum deviation is in the range of 10−4 pu. The absolute value of error average

over all the observation nodes is 0.000196 pu, which is significantly low. As expected, the

magnitude of voltage change increases as the observation node moves away from the source

node. This is due to the increase in the length of the shared path between the observation

node and the actor nodes from the source node. Furthermore, the voltage change remains

constant for the range of observation nodes from 25 to 37. This is due to the constant length

of the shared paths between the actor nodes and these observation nodes.

Similar to IEEE 37-node test network, the VSA approximation is also tested in the 123-

node network with 7 actor nodes, i.e., nodes 7,11,19,28,35,42,68. Like the tests conducted

for the IEEE 37-node system, the power changes at these actor nodes occur simultaneously

33



with a magnitude equal to 50 % of their rated load. Fig. 3.5 shows the voltage change at

various observation nodes. Accurate voltage change estimation using the proposed analytical

formulation can be observed, as the error is contained within 10−4 pu. To further demonstrate

the merits of the derived VSA expression, an upper bound on the approximation error is

derived in the next section.

3.2 Probabilistic analysis of Voltage sensitivity (PVSA)

Corollary 2 allows us to compute the voltage change at any observation node from known

power changes at multiple actor nodes. However, in practice, the power could vary ran-

domly due to intermittent characteristics of PV generation. This stochastic variation in

turn introduces randomness in the voltage across the network. Under such stochastic sce-

narios, the grid operator might be interested in predicting the probability of experiencing a

voltage violation, i.e., P (|∆VO| > 0.05 p.u.) so that corrective actions can be taken before-

hand. Therefore, it becomes relevant and necessary to derive the probability distribution

of the magnitude of voltage change at certain nodes of the distribution grid due to random

fluctuations in power at actor nodes. This result is provided by Theorem 4.

Theorem 4. For an unbalanced radial power distribution system, the probability distribution

of voltage change at an observation node (∆VO) due to random changes in power consump-

tion/injection of actor nodes, corresponds to Nakagami distribution

|∆VO| ∼ Nakagami(m,ω) (3.26)

where, shape parameter m = (σ2
r + σ2

i )/θ and scale parameter ω =
√
σ2
r + σ2

i . Here, θ =

2(σ4
r + σ4

i + 2c2)/(σ2
r + σ2

i ), σ
2
r = CT

R

∑
∆S CR, σ

2
i = CT

I

∑
∆S CI and c is the covariance

between the real and imaginary part of voltage change. CR and CI are dependent on the

shared path impedances and base voltages of the actor nodes, and
∑

∆S is the covariance

matrix of complex power change across different actor nodes.
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Proof. The change in complex voltage at any observation node due to change in complex

power injection/consumption of an actor node can be expressed in terms of real and imagi-

nary components as,

∆VOA = ∆V r
OA + j∆V i

OA,

where, the real part (∆V a,r
OA) and imaginary part (∆V a,i

OA) of voltage change at any phase

(here, we use phase a as an example that can be applied to other phases also) of observation

node O can be written as

∆V a,r
OA =

∑
h,u

−1
|V h

A |
[∆P h

A(R
u
OAcos(ωA)−Xu

OAsin(ωA))

+∆Qh
A(R

u
OAsin(ωA) +Xu

OAcos(ωA))]

∆V a,i
OA =

∑
h,u

−1
|V h

A |
[∆P h

A(R
u
OAsin(ωA) +Xu

OAcos(ωA))+

∆Qh
A(X

u
OAsin(ωA)−Ru

OAcos(ωA))]

where h ϵ H̃ and u ϵ Ũ . The sets H̃ and Ũ denote different phases (i.e., a, b, c) and different

phase sequences (i.e., aa, ab, ac), respectively. ∆P h
A and ∆Qh

A are the active and reactive

power changes, respectively. Rh
OA, X

h
OA are the resistance and reactance of shared path

between the observation node O and actor node A from the source node. V h
A denotes the

base voltage of actor node A.

Using the superposition result of Corollary 1, the net voltage change at an observation

node due to the aggregate effect of multiple spatially distributed actor nodes can be written

as the sum of changes in voltage at the observation node due to every single actor node as,

∆V a
O =

∑
A

∆V a,r
OA +

∑
A

∆V a,i
OA (3.27)

Intermittent characteristics of PV injection introduces randomness in the power variation.

Here, node power change (∆S) is modeled as zero-mean random vector with covariance

matrix
∑

∆S. As shown in (3.28), the notation (∆S) is a compact vector representing the
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power change of phases a (∆sa), b (∆sb), and c (∆sc). In addition, the vector representing

power changes of a phase, phase a for e.g., is composed of active and reactive power changes

for the corresponding phase of all the nodes.

∆S = [∆sa ∆sb ∆sc]T

∆sa = [∆P a
1 . . .∆P

a
n ∆Qa

1 . . .∆Q
a
n]

T

(3.28)

The distribution of the magnitude of voltage change |∆VO| can be computed using the

following steps:

Define covariance matrix

The covariance matrix
∑

∆S of the complex power change is used to quantify the correlation

of power changes among various nodes due to geographical proximity. For nodes that do not

have PVs, the variance can be set to zero or equal to the nominal load fluctuation variance.

In practice, the covariance structure can be learned using historical data.

Compute constant vectors CR and CI

In this work, the network topology with meta parameters is assumed to be known. Let

us define two vectors CR and CI which can be computed using the following equation.

CR =


caar

cabr

cacr



CI =


caar

cabr

cacr



cur =



−(Ru
O1cos(ω1)−Xu

O1sin(ω1))

|V a
1 |
...

−(Ru
Oncos(ωn)−Xu

Onsin(ωn))

|V a
n |

−(Ru
O1sin(ω1)+Xu

O1cos(ω1))

|V a
1 |
...

−(Ru
Onsin(ωn)+Xu

Oncos(ωn))

|V a
n |


(3.29)

where cur is the constant matrix for a given set of actor nodes and u denotes the self or
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mutual impedance of the phase a line, i.e., aa, ab, ac. A Similar matrix exists for cui but with

different values and is omitted for brevity. The compact vectors (CR) and (CI) consist of

three components corresponding to three phases. Each component (i.e., cur/c
u
i ) is composed

of ratios between the shared path impedance terms and rated voltage of the corresponding

phase for all the nodes.

Compute distribution of ∆V r
O and ∆V i

O

Voltage change at an observation node due to multiple actor nodes can be expressed as the

weighted sum of elements of vector ∆S as shown by equations (3.30, 3.31). Weights are given

from the elements of CR and CI , which represent the ratio of shared path impedance and

base voltage of the various actor nodes. Invoking the Lindeberg-Feller central limit theorem,

it can be shown that the weighted sum of the elements of ∆S converges in distribution to a

Gaussian random variable. That is, the distribution of ∆V r
O and ∆V i

O can be expressed as,

∆V a,r
O =

∑
A

∆V a,r
OA = CT

R∆S
D∼ N (0, CT

R

∑
∆S CR) (3.30)

∆V a,i
O =

∑
A

∆V a,i
OA = CT

I ∆S
D∼ N (0, CT

I

∑
∆S CI) (3.31)

where variances σ2
r and σ

2
i of ∆V

a,r
O and ∆V a,i

O are CT
R

∑
∆S CR and CT

I

∑
∆S CI , respectively.

Compute distribution of |∆VO|

After obtaining the voltage change in terms of the real part ∆V a,r
O and imaginary part ∆V a,i

O ,

the magnitude of voltage change can be written as

|∆VO|2 = (∆V a,r
O )2 + (∆V a,i

O )2 (3.32)

Square of Gaussian random variables follows a gamma distribution as (∆V a,r
o )2 ∼ Γ(0.5, 2σ2

r)

and (∆V a,i
o )2 ∼ Γ(0.5, 2σ2

i ) [89]. The shape parameter is 0.5 and scale parameter is twice the
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variance of ∆V a,r
O and ∆V a,i

O for (∆V a,r
o )2 and (∆V a,i

o )2, respectively. The real and imaginary

part of voltage change is correlated with c = CT
R

∑
∆S CI as covariance. Then, the covariance

between the square terms, i.e., (∆V a,r
o )2 and (∆V a,i

o )2 is 2c2. Since, the sum of the correlated

gamma variable is also a gamma [90], the sum of (∆V a,r
o )2 and (∆V a,i

o )2 follows a Gamma

distribution

|∆VO|2 = |∆V a,r
O |

2 + |∆V a,i
O |

2 ∼ Γ(k, θ) (3.33)

where scale parameter θ = 2(σ4
r + σ4

i +2c2)/(σ2
r + σ2

i ) and shape parameter k = (σ2
r + σ2

i )/θ.

The square root of |∆VO|2 which is a random gamma variable, follows a Nakagami distribu-

tion [91], and therefore the voltage change magnitude will have the following distribution,

|∆VO| ∼ Nakagami(m,ω), (3.34)

where shape parameter m = k, scale parameter ω =
√
kθ.

Theorem 2 is useful in many ways. Using the equation (3.34), the vulnerability of certain

observation nodes in terms of voltage violation can be identified quantitatively and efficiently.

Furthermore, one can also leverage the probabilistic framework to find dominant nodes,

that have maximum influence on the voltage sensitivity of critical nodes such as hospitals,

schools, etc,. Later, the power at these dominant nodes can be controlled to mitigate voltage

violations at the critical nodes [92]. Specifically, the vulnerability of nodes in terms of

voltage violations can be evaluated by using the probability of the voltage change exceeding

a certain threshold (|∆V | > 0.05 p.u.). The proposed probability distribution is validated

by comparing it with the simulated distribution in the next sub-section.
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3.2.1 Validation of PVSA for three phase system

To evaluate the performance of the proposed theoretical approach, we present two case

studies using the same IEEE 37 node test system and IEEE 123 node test network as shown

in Fig. 3.2 and Fig. 3.3, respectively. In the first case, power is varied randomly on all

odd-numbered nodes, following Gaussian distribution with zero mean. The assumption of

Gaussian distribution is considered as a common assumption applied in many prior works

[92, 93]. The covariance matrix
∑

∆S is constructed based on the correlation of power

changes on various actor nodes due to their geographical proximities. Note that the proposed

approach is quite general and can be applied to PV generation scenarios with different

probability distributions. In the first case, power is varied randomly on all odd numbered

nodes. Due to their geographical proximity, the power changes of various actor nodes may

be correlated. The underlying covariance structure
∑

∆S can be learned from historical or

irradiance related data and its elements are set realistically based on real PV data. The

base loads on the test network are the same as that reported in the IEEE PES Distribution

system analysis subcommittee report. For nodes with PV’s, the variance of change in real

power and reactive power for any phase are set to 50 kW and 40 kvar, respectively. The

variance of ∆P and ∆Q is set to zero for all non actor nodes. The off-diagonal elements of the

covariance matrix capture the covariance between different actor nodes, where correlation

coefficient between ∆P ’s for different actor nodes within the same phase is set to 0.6 and

for ∆Q’s, it is 0.5. Here, covariance between cross phase terms is assumed to be zero but

the proposed approach is quite general to accommodate other covariance structures as well.

The correlation coefficient between ∆P ’s and ∆Q’s within the same phase is set as −0.2.

For illustration purpose, the variance of all actor nodes is set to same value, but the values

can vary with the nodes depending upon the size and location of PVs.

The probability distribution of voltage change at node 9 using two approaches, i.e. the

proposed analytical approximation method and the traditional Newton-Raphson based VSA

method are plotted in Fig. 3.6a. For computing the actual distribution of the magnitude of
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(a) Node 9 of 37-node network (b) Node 10 of 123-node network

Figure 3.6: Distribution of |∆V |

voltage change, a scenario is generated where power is varied randomly on all actor nodes

using the above described covariance structure. Then, a change in voltage is computed us-

ing NR based sensitivity analysis method. On the other hand, for computing theoretical

distribution, the value of vectors CR and CI are calculated using the network parameters.

Then, the variance of real (∆V a,r
O ) and imaginary (∆V a,i

O ) part of voltage change, i.e., σ2
r and

σ2
i are computed by plugging the above defined covariance matrix in equations (3.20, 3.21).

Finally, the shape and scale parameter of voltage change magnitude, which is a Nakagami

distribution, can be directly computed using equation (3.34). Fig. 3.6a shows the sufficiently

high accuracy of the proposed theoretical method particularly the tail probabilities which

is our region of interest. The Jensen-Shannon distance between the actual and theoretical

distribution is 0.07 where 0 represents identical distribution and 1 denotes maximally dif-

ferent cases[94]. The Jensen-Shannon distance average over all the nodes of the network is

0.06. Furthermore, the PVSA formulation considering randomness is implemented on the

modified IEEE 123-node test system for deriving the distribution of the magnitude of voltage

change at node 10, assuming nodes 7, 11, 19, 28, 35, 52, 68 as actor nodes. The covariance

matrix is developed in an identical way to a 37-node network, with the same parameters as

discussed in the above paragraph. Fig. 3.6b depicts the distribution of the magnitude of

voltage change computed using the proposed theoretical method and the load flow based nu-

merical approach. High accuracy can be witnessed, as the Jensen-Shannon distance between
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the resulting PDFs of two approaches is 0.18. This result demonstrates the scalability of

the proposed method and its efficacy in conducting VSA for a larger heterogeneous network

that includes both single and three phase loads.

To further validate the effectiveness of the proposed approach, especially in identifying

the probability of voltage violations, we conduct comparison studies between the simulated

and theoretical approaches with varying percentage of actor nodes in the network. The prob-

ability of voltage violation, i.e., P (|∆V | > 0.05 p.u.) is computed from both the methods

by varying number of actor nodes from 40% to 80%. The comparison results are tabulated

in Table 4.3. It can be observed that the proposed theoretical method approximates the

traditional simulation based method with a high mean accuracy of 94.27% for various pene-

trations of actor nodes, which further demonstrates the scalability of the proposed method.

In addition, the complexity of the proposed analytical method is of the order O(1), because

the calculation of voltage change in Theorem 4 does not scale with the size of the network

(n). While, the complexity in NR method is of order O(n3), as it involves the inversion

operation of the Jacobian matrix.

3.3 Summary

This chapter introduces a novel approach for performance-based robustness analysis of a

power distribution system. Specifically, it proposes an analytical approximation of voltage

change at any node of the distribution network due to changes in complex power at different

actor nodes across a three phase unbalanced distribution network. The approximation error

is shown to be tightly upper bounded, illustrating the fidelity of our approach. We also

derive the probability distribution of magnitude of voltage change due to random change in

power at actor nodes and shown that it can be approximated by a Nakagami distribution.

The proposed method can be useful for grid operation and planning as it efficiently allows

us to compute the probability of voltage violation at any node in the network. In the next
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chapter, this analytical voltage sensitivity analysis approach is used to determine dominant

voltage influencer nodes.
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Chapter 4

Performance-based Robustness

Analysis: Identification of Dominant

Voltage influencer nodes with PVSA

This chapter uses probabilistic method of voltage sensitivity analysis developed in Chapter 3

to propose a novel performance-based index for voltage fluctuations, i.e., voltage influence

score (VIS). VIS is a node level metric that quantifies the voltage influencing capacity of

an actor node on any arbitrary observation node. It can be used to rank the actor nodes

and identify dominant voltage influencer (DVI) nodes. DVI nodes denote all those actor

nodes that have a relatively high impact on the voltage state of observation nodes compared

to the rest of the actor nodes. As a result, altering the actions of DVI nodes result in the

highest reduction in voltage issues at the observation nodes. Thus, VIS allow us to identify

critical nodes where additional control assets can be deployed to improve grid robustness

against voltage fluctuation. Conventional methods of identifying such DVI nodes involve

Monte-Carlo simulations using load flow algorithms. These classical methods possess vari-

ous drawbacks including: (1) high computational complexity, (2) numerical results with no

analytical insights, and (3) scenario dependent results with no generalization. These factors
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limit the applicability of conventional approaches in modern distribution systems.

Therefore, this chapter uses information theoretic metrics and probability distribution of

voltage changes to devise a novel voltage influencing score. VIS enable us to quickly identify

DVI nodes without relying on computationally expensive Monte-Carlo simulations thereby,

significantly reducing the computation time. Apart from this, there are several other use

cases of VIS, including (1) control of DVI nodes in a local area, ensures voltage stability for

all nodes within that cluster with minimum control actions [95]; (2) network partitioning

where DVI nodes are valuable in defining local clusters for islanding and effective control;

(3) DER placement for improving robustness to voltage fluctuations. Later in Chapter 8, we

will investigate the efficacy of standard failure-based robustness metrics in approximating

this performance-based VIS index.

4.1 Conventional approach to identify DVI nodes

The DVI nodes for an observation node are the nodes that have high impact on the voltage

fluctuations at the observation node. An actor node can be a DVI due to the two factors:

(1) location of the actor node, i.e. phase/bus of the distribution network, and (2) genera-

tion/load capacity of DER/loads connected at the actor node which influences the variance

of power change at that node. Generally, simulation-based scenario analysis is used as a

major planning tool to identify DVI nodes. A typical approach involves following steps [23]:

Step 1- Compute variance of voltage change at each phase of observation node

due to all actor nodes The variance of voltage change at each phase of the observation

node is computed by running multiple power flow based Monte-Carlo simulations with vary-

ing power, which captures temporal variation of generations.

Step 2- Calculate reduction in variance of voltage change at the observation node

due to each actor node by setting power drawn/injected by the actor node as

zero This step requires repetition of Step 1 for each actor node after setting the variance of
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actor node as zero.

Step 3- Rank actor nodes based on the reduction in variance caused by the re-

moval of the corresponding actor node: Actor nodes are ranked in an ascending order

with topmost and bottommost rank assigned to those actor node that causes maximum and

minimum reduction in variance of voltage change at the observation node, respectively.

This scenario-based method incurs high computational complexity, which grows with the size

of the network. Specifically, the complexity arises at two hierarchical levels. At the core, we

have load flow runs, whose computation using NR-based method is of complexity O(n3) with

n being the size of the distribution network [27]. At a top level, multiple power change sce-

narios are simulated to obtain voltage change distributions in steps 1 and 2 of the approach.

Each such scenario involves a load flow computation, thus one ends up running thousands

of load flows. Therefore, to counter computational burden, information-theoretic approach

is explored to devise a new VIS metric that can identify DVI nodes in a computationally

efficient manner.

4.2 Proposed information theoretic framework

This section propose to use information-theoretic-based distance metrics as potential indica-

tors of DVI nodes. Fundamentally, the proposed approach consists of four steps. In the first

step, we obtain probability distributions of voltage change at an observation node due to each

actor node as well as due to the aggregate presence of all actor nodes. These distributions are

derived in a computationally efficient way by employing derived analytical approximations

of chapter 3. In the second step, we compute distances between the probability distribution

due to each actor node and the distribution due to the aggregate effect of all actor nodes.

The Third step utilizes the distances to compute voltage influencing score (VIS) for each

pair of observation and actor nodes. Finally, for each observation node, all the actor nodes

are ranked based on the computed VIS. The actor node whose voltage change distribution
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is nearest to the aggregate voltage change distribution is deduced as the major influencer

of voltage change for that particular observation node. Likewise, all actor nodes are ranked

based on the ascending order of their distances. The complete procedure is summarized in

the Algorithm 1.

4.2.1 Probabilistic model of voltage fluctuations

This sub-section provides a probabilistic model of voltage change in a three-phase unbalanced

distribution system, which consist of multiple spatially distributed actor nodes with PVs and

active consumers. Random change in power at actor nodes due to intermittent renewable

generation causes random voltage fluctuations. Therefore, probability distribution is needed

to quantify voltage change under such stochastic scenarios. Here, we implement the first

step of the proposed approach, i.e., derive the probability distributions of voltage change at

any observation node due to random power change at a single actor node as well as due to

the aggregate effect of all actor nodes. Let ∆Sa
A be change in complex power at phase a of

the actor node A. Then, using eqn. (4.1), the voltage change at phase-a of an observation

node O can be expressed as:

∆V a
OA = ∆V a,r

OA + j∆V a,i
OA, (4.1)

∆V a,r
OA =

∑
h,u

−1
|V h

A |
[∆P h

A(R
u
OAcos(ωA)−Xu

OAsin(ωA))

+∆Qh
A(R

u
OAsin(ωA) +Xu

OAcos(ωA))],

∆V a,i
OA =

∑
h,u

−1
|V h

A |
[∆P h

A(R
u
OAsin(ωA) +Xu

OAcos(ωA))+

∆Qh
A(X

u
OAsin(ωA)−Ru

OAcos(ωA))]

(4.2)

where h ϵ H̃ and u ϵ Ũ . The sets H̃ and Ũ denote different phases (i.e., a, b, c) and different

phase sequences (i.e., aa, ab, ac), respectively. ∆P h
A and ∆Qh

A are the active and reactive

power changes, respectively. Rh
OA, X

h
OA are the resistance and reactance of shared path

between the observation node O and actor node A from the source node. ωA is the impedance
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angle for phase-a. V h
A denotes the base voltage of actor node A. For brevity, the derivation

is shown for phase a. However, the same steps can be followed with the corresponding phase

quantities to derive expressions for other phases. The real and imaginary parts of voltage

change can further be simplified as,

∆V a,r
OA =

[
Caa,r

OA ∆P a
A +Daa,r

OA ∆Qa
A + Cab,r

OA ∆P b
b+

Dab,r
OA∆Qb

b + Cac,r
OA ∆P c

c +Dac,r
OA∆Qc

c

]
,

∆V a,i
OA =

[
Caa,i

OA ∆P a
A +Daa,i

OA∆Q
a
A + Cab,i

OA∆P
b
b+

Dab,i
OA∆Q

b
b + Cac,i

OA∆P
c
c +Dac,i

OA∆Q
c
c

]
,

(4.3)

Eqn. (4.3) is further written in compact form as,

Ca,r
OA

T
= [Caa,r

OA Daa,r
OA Cab,r

OA Dab,r
OA Cac,r

OA Dac,r
OA ]

Ca,i
OA

T
= [Caa,i

OA Daa,i
OA Cab,i

OA Dab,i
OA Cac,i

OA Dac,i
OA ]

(4.4)

The constants C and D are the functions of the line impedances and base voltages as ex-

plained in eqn. (4.4). For brevity, the exact expressions are omitted from here and are

provided in the Appendix A. Then, the power change vector can be written as,

∆SA = [∆P a
A, ∆Qa

A ,∆P b
A ,∆Qb

A ,∆P c
A ,∆Qc

A]
T

Thus, because of random power changes at each actor node, the power change vector ∆SA

is a random vector with mean vector µ∆SA
and covariance matrix

∑
∆SA

. The covariance

matrix
∑

∆SA
quantifies the correlation of power changes among various phases of a particular

actor node A. The diagonal elements denote variances of power change at each phase and

off-diagonal elements contain the correlation between the power changes. Thus, it can be
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seen from (4.3) that the voltage change at an observation node O due to actor node A is the

weighted combination of random vector ∆SA, where weights (i.e., Ca,r
OA

T
and Ca,i

OA

T
) are

constant terms. Invoking the Lindeberg-Feller central limit theorem, it can be shown that

the ∆V a,r
OA and ∆V a,i

OA converges in distribution to a Gaussian random variables, i.e.,

∆V a,r
OA

D→ N (µa,r
OA = Ca,r

OA
T
µ∆SA , σ

a,r
OA

2
= Ca,r

OA
T ∑

∆SA
Ca,r

OA)

∆V a,i
OA

D∼ N (µa,i
OA = Ca,i

OA

T
µ∆SA , σ

a,i
OA

2
= Ca,i

OA

T ∑
∆SA

Ca,i
OA),

(4.5)

where, µa,r
OAµa,r
OAµa,r
OA and µa,i

OAµa,i
OAµa,i
OA are the mean vectors of real and imaginary parts of voltage change,

respectively. σa,r
OA

2 and σa,i
OA

2
are the variances of real and imaginary parts of voltage change,

respectively. For investigating the relationship between the real and imaginary parts of the

voltage change, a new bivariate random vector is defined,

∆V a,r
OA

∆V a,i
OA

 ∼ N[
µa,r

OA

µa,i
OA

 ,
σa,r

OA
2 kaOA

kaOA σa,i
OA

2

], (4.6)

where, kaOA = Ca,r
OA

T ∑
∆SA

Ca,i
OA is the covariance between the real and imaginary parts

of the voltage change due to single actor node A. Eqn. (4.6) provides the probability

distribution of voltage change at a particular observation node due to single actor node A.

A similar approach can be used to compute individual voltage change distributions due to

each actor node in the network. Now, we need to obtain the voltage change distribution

due to the aggregate effect of all actor nodes. Using the superposition property in (4.5),

the voltage change due to cumulative effect of power changes at multiple actor nodes can be

expressed as [27],

where L is the number of actor nodes. By leveraging (4.5), the net voltage change can
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be written as,

∆V a,r
O =

N∑
A=1

Ca,r
OA

T
∆SA
6×1

1×6

= [Ca,r
O1

T
Ca,r

O2
T
. . .Ca,r

ON
T
][∆S1∆S2 . . .∆SN ]T

= Ca,r
O

T

1×6N

∆S
6N×1

(4.7)

where Ca,r
O

T and ∆S are the long vectors, composed of a constant term and the power change

vector corresponding to each actor node, respectively. Similarly, the imaginary part of voltage

change can be written as, The equations (4.8) and (4.9) possess a similar form as that of

(4.5), i.e., the net voltage change is the weighted combination of power change vector ∆S.

Here, weight Ca,r
O is a constant vector comprising of line impedances and node base voltages,

whereas, ∆S comprises of power change at all phases of all actor nodes. Now, invoking the

same Lindeberg-Feller central limit theorem, the real ∆V a,r
O and imaginary ∆V a,i

O part of

aggregate voltage change can be shown to converge in distribution to a Gaussian random

variables with the following parameters:

∆V a,r
O

D→ N (µa,r
O = Ca,r

O
T
µ∆S, σ

a,r
O

2 = Ca,r
O

T ∑
∆S C

a,r
O )

∆V a,i
O

D→ N (µa,i
O = Ca,i

O

T
µ∆S, σ

a,i
O

2
= Ca,i

O

T ∑
∆S C

a,i
O )

(4.8)

Similar to the single actor node case, the correlations between the real and imaginary parts

of net voltage change is captured by defining a new random vector as:

∆V a,r
O

∆V a,i
O

 ∼ N[
µa,r

O

µa,i
O

 ,
σa,r

O
2 kaO

kaO σa,i
O

2

] (4.9)

where, kaO = Ca,r
O

T ∑
∆S C

a,i
O is the covariance between the real and imaginary parts of net

voltage change. Equations (4.8) and (4.9) provide the probability distribution due to single

actor node and the aggregation of multiple actor nodes, respectively. It is worth noting that
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the voltage change expressions in equation (4.8) are valid for any number of actor nodes.

Further, the proposed method to determine voltage change is sufficiently general for PV

generation with any arbitrary distribution. This is because the derivation of the voltage

change utilizes standard statistical results that are valid for any probability distribution.

Precisely, eqn. (4.8) computes voltage change in the real part of phase a (∆V a,r
O ) as the

weighted sum of the power changes in the actor nodes. Here, even if each element of ∆S

representing PV generation changes is not Gaussian, we can still invoke Lindeberg-Feller

central limit theorem [4], to show that the weighted sum of the elements of ∆S converges

in distribution to a Gaussian. Therefore, the distributions of the real and imaginary parts

of voltage change will always converge to a normal which eventually leads to a Nakagami

distribution for the magnitude of voltage change. The next sub-section focuses on computing

the statistical distances between these distributions and presents the procedure to rank the

actor nodes.

4.2.2 Information theoretic metrics as DVI indicators

This sub-section implements the second step of our proposed approach, i.e., calculate sta-

tistical distances between the probability distributions (derived in earlier sub-section), and

rank the actor nodes based on the computed distances. The information theoretic distance

metrics which are potential indicators of DVI nodes are defined first.

Kullback-Liebler distance

Kullback-Liebler (KL) distance quantifies how much one probability distribution differs from

another probability distribution. KL divergence between two multivariate Gaussian distri-

butions (N0 and N1) of dimension k with means (µ0 and µ1) and covariance matrices (
∑∑∑

0
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and
∑∑∑

1) can be written as:

DKL(N0||N1) =
1

2

[
tr(
∑∑∑−1

1

∑∑∑
0

+(µ1 − µ0)
T
∑∑∑−1

1 (µ1 − µ0)− k + ln
|
∑∑∑

1 |
|
∑∑∑

0 |
)

] (4.10)

where tr(.) indicates trace of the matrix. Here, the KL distance between the distributions of

voltage change at the observation node due to change in power at an actor node A (∆VOA)

and due to change in power at all actor nodes (∆VO) is given by,

DKL(∆VOA||∆VO) =
1

2

[
tr(
∑∑∑−1

∆V a
O

∑∑∑
∆V a

OA
+(µa

O − µa
OA)

T
∑∑∑−1

1 (µa
O − µa

OA)− 2 + ln
|
∑∑∑

∆V a
O
|

|
∑∑∑

∆V a
OA
|)

]
,

(4.11)

where
∑∑∑

∆V a
OA

and
∑∑∑

∆V a
O
are the covariances of ∆VOA and ∆VO, respectively.

Bhattacharyya distance

Bhattacharyya (BC) distance measures the similarity of two probability distributions. It

is related to the Bhattacharyya coefficient which is a measure of the amount of overlap

between two statistical samples. BC distance between the distributions of voltage change at

the observation node due to change in power at an actor node A (∆VOA) and due to change

in power at all actor nodes (∆VO) can be expressed as:

DBC(∆VOA||∆VO) =
1

8
(µa

O − µa
OA)

T
∑∑∑

(µa
O − µa

OA) +
1
2
ln(

|
∑∑∑
|√

|
∑∑∑

∆V a
O
||
∑∑∑

∆V a
OA
|
), (4.12)

where
∑∑∑

=

∑∑∑
∆V a

O
+
∑∑∑

∆V a
OA

2
.

4.2.3 Voltage Influencing score (VIS)

The influence of an actor node on an observation node needs to be quantified for identifying

its rank among all actor nodes. In this regard, we devise a novel index to quantify voltage
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influencing capacity, i.e., Voltage influencing score (VIS). For a given network scenario, i.e.,

the location of actor nodes with the variance of power change from historical data, the

distances between voltage change distributions at an observation node due to each actor

node and due to aggregate effect of all actor nodes are used to rank the actor nodes. Here,

these distances are employed to compute the VIS between any pair of observation and actor

node as:

V IS(O,A) =

1
D(A,O)

− 1
D(S,O)

1
D(A′,O)

− 1
D(S,O)

, (4.13)

where D(A,O) is the statistical distance between the voltage change distribution at an

observation node O due to aggregate effect of all actor nodes and when actor node A is

solely present in the system. D(S,O) is the statistical distance between source node and

observation node. The distance can be computed with any of the metrics described in the

earlier subsection. For an observation node O, the lower the distance, the more the actor

node A contributes to aggregate voltage change and consequently the more influencing the

actor node is and vice-versa. Therefore, the VIS is expressed in terms of inverse of distance.

To provide an absolute sense to the score, VIS is normalized with minimum and maximum

values. For a particular observation node, the ideal location of actor node A′ for minimum

distance would be the same observation node location. On the other hand, the maximum

distance location would always be the source node as it has minimum influence on voltage

fluctuations of any observation node. These minimum and maximum distances are used to

normalize VIS as shown in eqn. (4.13).

In the final step of the proposed approach, VIS is leveraged for ranking the actor nodes.

The nodes are ranked in an ascending order based on VIS. The topmost (Rank 1) and

bottom-most (Rank L for the case of L actor nodes) ranks will be assigned to the actor
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nodes in the following way:

Rank 1 : argmax
A

V IS(O,A)

Rank L : argmin
A

V IS(O,A)

(4.14)

It is worth to note that the proposed approach can work with any other information theoretic

metric (Frechet distance, Jensen-Shannon distance, etc.), and for illustration purposes, the

method is evaluated with two metrics (KL divergence & Bhattacharyya distance) in the

results section.

4.3 Experimental Results and Discussion

The efficacy of the proposed method in identifying dominant voltage influencer nodes is

evaluated in this section. The baseline method is the conventional Monte-Carlo simulation-

based approach, and both algorithms are implemented in the modified IEEE 37-node test

system as depicted in chapter 3. This test network is chosen as it denotes a typical unbalanced

distribution system and is used by many researchers for illustrating the efficiency of their

methods [26, 27]. The nominal voltage of the test system is 4.8 kV. A scenario is generated

with 15 actor nodes distributed randomly in the IEEE 37-node network. Change in real

and reactive power at 15 actor nodes is modeled as zero-mean Gaussian random vector.

It is worth noting that the proposed approach is generic for any choice of actor node and

power change distributions, and the simulated case-studies are merely a way to illustrate

its performance. Three different PV sizes are considered in this case study. The mean and

variance of real and reactive power change of all three kinds of PV capacities along with
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their location and phase information are as follows:

∆SA ∼ N

(0
0

 ,
1.5 − 0.05

−0.05 0.25

), A ϵ {7c, 8a, 12c, 27b, 28c}

∆SA ∼ N

(0
0

 ,
 3 − 0.1

−0.1 0.5

), A ϵ {7b, 18a, 22c, 34b, 36b}

∆SA ∼ N

(0
0

 ,
4.5 − 0.2

−0.2 0.75

), A ϵ {9c, 14c, 26c, 30a, 31a}

(4.15)

where superscript over actor nodes, i.e., {a, b, c} represent respective phases of actor nodes at

which power is varying. The change in power across different actor nodes can be correlated

because of environmental factors. The DERs such as PVs and wind turbines are expected

to exhibit a similar generation profile due to their geographical proximity. Further, the

real and reactive power of inverter-based DERs is negatively correlated. The underlying

covariance structure
∑

∆S can be estimated based on historical or irradiance-related data.

The base loads on the test network are the same as mentioned in the IEEE PES Distribution

system analysis subcommittee report. For actor nodes, the variance of change in real power

and reactive power are present in the diagonal elements of covariance matrices as shown in

eqn. (4.15). Thus, three approximate PV sizes which are simulated in our experiments are

45 kW, 38 kW and 35 kW. The off-diagonal elements of the covariance matrices capture

the covariance between real and reactive power. These covariance of each actor nodes are

combined to form the covariance matrix of power change vector
∑

∆S which corresponds

to all actor nodes. Here, the correlation coefficient between ∆P ’s and ∆Q’s for different

actor nodes within the same phase is kept same and covariance between cross-phase terms

is assumed to be zero. However, the proposed approach is quite general to accommodate

other covariance structures as well. The variance of nodes other than the actor nodes is set

to zero.
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Table 4.1: Observation node 7

Node MC KL BC
7 1 1 1
9 0.577 0.163 0.129
12 0.543 0.150 0.117
22 0.530 0.127 0.096
14 0.516 0.137 0.106
26 0.441 0.092 0.067
28 0.350 0.084 0.060
8 0.042 0.065 0.045
17 0.026 0.050 0.033
27 0.001 0.043 0.029

Table 4.2: Observation node 16

Node MC KL BC
14 1 1 1
22 0.919 0.840 0.808
18 0.782 0.170 0.133
12 0.613 0.576 0.533
9 0.426 0.422 0.373
7 0.209 0.290 0.242
17 0.146 0.230 0.186
8 0.020 0.111 0.083
26 0.001 0.176 0.138
28 0.001 0.164 0.128

4.3.1 VIS for ranking DVI nodes

To assess the performance of the proposed approach in identifying DVI nodes, VIS for two

arbitrary observation nodes (i.e., 7, 16) are computed using two different distance metrics

namely KL divergence (eqn. (4.11)) and Bhattacharyya distance (eqn. (4.12)). The results

obtained by using the proposed approach is validated against ground truth values. The

baseline approach to compute true DVI nodes is based on Monte-Carlo simulations (MCS)

of load flow as explained in Section 2A. Initially, the variance of voltage change magnitude at

a given observation node is computed due to the presence of all actor nodes. Multiple power

change scenarios are simulated by running 100000 MCS with load flow method. Then, the

reduction in the variance of the magnitude of voltage change is determined by setting the

variance to zero for each actor node sequentially. Again, for each actor node case, different

MCS are executed. Finally, the actor nodes are ranked based on the reduction in variance

they bought when the variance of power change at the corresponding actor node is set to

zero.

Tables 4.5 and 4.6 tabulates the VIS for observation nodes 7 and 16, respectively. MC,

KL and BC refers to baseline MCS approach, proposed KL divergence and Bhattacharyya

distance based methods, respectively. Node in the tables refers to actor node. It can be

inferred that the VIS for the most dominant actor node is 1 and it decreases as we move to
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lower rank nodes. For observation node-7 with KL distance metric, there is a small difference

in VIS between nodes 22 and 14 implying that they exhibit almost equal voltage influencing

capacity. However, there is a considerable difference when it comes to nodes 14 and 26.

Thus, VIS allows us to quantitatively differentiate between dominant influencer nodes.

Table 4.3 tabulate the top 10 dominant voltage influencer nodes for observation nodes 7

and 16, respectively. According to Table 4.3, the MC method indicate that the actor nodes

Table 4.3: DVI nodes for observation nodes 7 and 16

Rank →
Metric ↓ 1 2 3 4 5 6 7 8 9 10

Observation node -7
MC 7 9 12 22 14 26 28 8 17 27
KL 7 9 12 14 22 26 28 8 17 18
BC 7 9 12 14 22 26 28 8 17 18

Observation node -16
MC 14 22 18 12 9 7 17 8 26 28
KL 14 22 12 9 7 17 26 18 28 8
BC 14 22 12 9 7 17 26 18 28 8

7 and 14 are Rank-1 nodes for observation node 7 and 16, respectively. The assignment of

Rank-1 nodes is carried out correctly by both the metrics of the proposed approach. The

reasons for rank-1 allocation are (1) the high variance of power change and (2) proximity

of actor nodes to the given observation node in the IEEE 37-node test system. Apart from

rank-1, utilities might be interested in identifying other dominant nodes which are next to

rank-1. In this regard, we use Top-N accuracy, which can be defined as,

|{Predicted Top-N nodes} ∩ {True Top-N nodes}|
N

, (4.16)

where N is the desired number based on the applications. The Top-5 and Top-10 accuracy

results are presented for observation nodes 7 and 16 in Table 4.4. The last column of the

table denotes the mean accuracy when all the nodes of the IEEE-37 node network act as

observation nodes. It can be observed that distance metrics KL and BC have fairly good

identification accuracy, and the mean accuracy is more than 90%. Apart from Rank-1 node,
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our approach also provides the correct sequence of actor nodes when compared to baseline

MC approach. However, in some positions, the order of actor nodes is flipped or offset by

one or two units. This is because, the corresponding actor nodes have an equal influencing

capacity for that particular observation node. For instance, in the case of observation node

7, the position of actor nodes 22 and 14 are flipped. However, this is not a major concern

here, as we are more interested in correctly identifying nodes lying in a particular band (i.e.,

Top-5, Top-10) rather than their exact order. The power at the Top-5 or Top-10 actor nodes

can be efficiently regulated to mitigate voltage violations.

Table 4.4: Identification accuracy of DVI nodes

Node →
Accuracy ↓

obs. node-7
(%)

obs. node-16
(%)

Mean
all nodes (%)

Top-5 100 80 91
Top-10 90 100 93

Furthermore, to get the overall influencing capacity of actor nodes, one can compute the

mean VIS. For each actor node, the mean of VIS is taken across all observation nodes of

the network. It can be observed From Table ?? that actor nodes 17 and 30 have maximum

and minimum influencing capacity among all the actor nodes present in the network. This

assignment is because of their topological position in the distribution network and the magni-

tude of power variance due to associated DER units or load variation. Moreover, apart from

correctly identifying the dominant voltage influencing nodes, the proposed approach offers

a considerable computational advantage over the conventional approaches. Table ?? reports

the execution time of various approaches to identify Top-5 actor nodes for the observation

node 7. It can be seen that the proposed approach involving any of the two distance metrics

is multiple order faster than that of the conventional approach, which takes around 3.2 hrs.
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Table 4.5: Average VIS of actor nodes

Nodes VIS Nodes VIS Nodes VIS
7 0.220 17 0.444 28 0.156
8 0.220 18 0.304 30 0.154
9 0.212 22 0.349 31 0.189
12 0.258 26 0.163 34 0.378
14 0.300 27 0.166 36 0.427

Table 4.6: Running time of various ap-
proaches

Time
Metric

Running time
Top-5 (s)

MC 12039
KL 0.92
BC 0.96

4.4 Summary

This chapter highlights an application of the performance-based robustness analysis approach

introduced in Chapter 3. Specifically, statistical distance metrics are used to derive a novel

voltage influence score (VIS) that quantifies voltage influencing capacity of actor nodes in

a power distribution grid. The VIS is then leveraged to identify the DVI nodes. The

proposed framework computes VIS not solely on the basis of correlation between change in

power at the actor node and change in voltage at the observation node, but it also relies

on the magnitude of voltage variation that is being caused due to power change at actor

nodes. Effectiveness and computational efficiency of the proposed method are illustrated by

comparing the results with conventional method of identifying DVI nodes in multiple test

networks. Results demonstrates that the proposed metric effectively predict the DVI nodes

while substantially reducing the execution time. Thus, DVI nodes can serve as an optimal

control locations for improving system resilience against detrimental voltage fluctuations.
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Chapter 5

Network-based robustness analysis:

Identification of critical nodes with

Graph Neural Network

Until now, Chapters ( 3 and 4) have focused on developing a computationally efficient frame-

work for a performance-based robustness metric in a power distribution grid. This chapter

introduces a novel methodology for analyzing network-based robustness metrics. In par-

ticular, it focuses on the important task of identifying critical nodes in a large complex

system, where nodes represent some facility or sub-system. In interdependent systems such

as smart grid or smart internet, the proper functioning of constituent sub-systems (nodes)

and their interconnections (links) are responsible for the reliable operation of the overall

system. However, typically there exists a set of critical nodes/links that play a more crucial

role in determining the output of the system than other (non-critical) nodes/links. These

nodes/links represent a set of sub-systems and/or their interconnections, whose removal from

the graph maximally disconnects the network, and thus severely disrupts the operation of

the system. As a result, identification of critical nodes/links is an important task for analysis

and/or design of the underlying systems, and bears significance in several applications in-
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cluding social networks analysis, feature expression in biological networks, risk management

in telecommunication networks, among others.

Critical nodes/links are typically identified by computing its associated criticality score.

Owing to the inherent topological structure of graphs, each node/link contributes differently

to the graph robustness, and hence its removal/loss affects the robustness to a different de-

gree. In this regard, the notion of node/link criticality score is introduced, which quantifies

the decrease in robustness when the corresponding node/link is removed from the graph.

Several methods have been proposed to compute criticality scores based on graph robust-

ness [52, 53]. However, existing approaches suffer from various shortcomings, including high

computational cost due to iterative nature of the algorithm and non-scalable to larger net-

works.

Therefore, this chapter frames the task of identifying critical nodes as an inductive graph

machine learning problem. Specifically, it’s a graph regression problem where criticality

scores are node targets. A graph neural network (GNN) is trained to predict the criticality

scores, which are then employed to rank the nodes/links. The topmost rank corresponds

to the node/link whose removal maximally decreases the graph robustness and vice-versa.

Furthermore, these predictions could be uncertain either due to an uncertain input graph or

uncertain GNN parameters. These uncertainties are systematically handled in chapter 6 to

further improve the efficacy of the robustness evaluation process.

5.1 Metrics of Graph Robustness

The robustness of a system is its ability to function properly in the presence of distur-

bances/perturbations, such as failures of components. In a graph theoretic setting, this

translates to the ability of the graph to function with loss of nodes/links. Several metrics

have been proposed in the literature [96] that quantify the robustness of a graph against

random and targeted loss of nodes/links. Effective graph resistance (Rg) is one such widely
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used metric to quantify graph robustness [53, 54, 97] and is equal to the sum of the effective

resistances over all pairs of nodes [98]. The effective resistance between any two nodes of

a graph is computed by performing series and parallel operations on an electrical circuit-

equivalent of the graph. Rg considers both the number of paths between nodes and their

length (link weight), intuitively measuring the presence and quality of backup possibilities

in the graph. The spectral form of Rg can be expressed as:

Rg =
2

N − 1

N−c∑
i=1

1

λi
, (5.1)

where, λi, i = 1, 2, 3, ....N are the eigen values of the Laplacian matrix of a graph G with N

nodes, and c is the number of connected components in the graph.

Weighted spectrum (Ws) is also a widely used metric for graph robustness [99, 100] and

is defined as the normalized sum of n-cycles in a graph [99]. An n-cycle in a graph G is

defined to be a sequence of nodes u1, u2, ...un where ui is adjacent to ui+1 for i ∈ [1, n − 1]

and un is adjacent to u1. The weighted spectrum can be expressed as,

Ws =
∑
i

(1− λi)n, (5.2)

where, different values of n correspond to different graph properties. For instance, n = 3

denotes the number of triangles in a graph with Ws related to the weighted clustering coef-

ficient. Similarly, with n = 4, Ws is proportional to the number of disjoint paths in a graph.

Since this work focuses on quantifying the robustness of the graph based on connectivity,

n = 4 is used in this study. Thus, we first compute the eigen values of the normalized graph

Laplacian matrix. Then, we sum the difference of eigenvalues from 1 raised to the power

4 to get the final Ws metric. It must be noted here that although this work uses Rg and

Wg as metrics of robustness, the proposed approach is generic enough to be applied for any

robustness metric.
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5.2 Graph Neural Networks

Graph neural networks are a variant of artificial neural networks that are designed to cap-

ture patterns in data that can be represented in a graphical structure. The authors in [101]

initially introduced the transformation of the convolutional operations from Euclidean do-

main to problems involving graphs. The working principle of such models resembles that

of convolutional neural networks and can work directly on graphs and exploit their topo-

logical information. The standard learning tasks on graph data are node classification, link

prediction, graph classification, etc. GNN addresses various learning tasks across domains

including computer vision [102, 103], natural language processing [104, 105], bio-chemistry

[106], etc. A GNN typically involves learning features called node embedding vectors fol-

lowed by feedforward layers for regression or classification tasks. However, the algorithm

proposed in [101] depends on the size of the graph leading to scalability issues. To address

this scalability issue, the authors in [107] propose an inductive learning framework called

GraphSAGE, where node embeddings are learned using subgraphs and thus, is independent

of graph size. Furthermore, this framework can be leveraged to infer about the unseen/new

nodes of graphs belonging to the same family. The standard procedure to learn this embed-

ding vector involves a “message passing mechanism”, where the information (node feature)

is aggregated from the neighbors of a node and then combined with its own feature to gen-

erate a new feature vector. This process is repeated to generate the final embedding for

each node of a graph. The GraphSAGE algorithm learns the mapping (aggregator) function

instead of learning the embedding vectors. Hence, it can induce the embedding of a new

node during training, given its features and neighborhood. The proposed framework makes

use of GraphSAGE as it is a state-of-the-art GNN modeling framework and is applicable to

graphs of different sizes.
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5.3 Proposed ILGR Framework

This paper focuses on identifying critical nodes/links in large graphs. Critical node/link

identification is a combinatorial optimization problem introduced by [108]. In the following,

we present the problem formulation and algorithmic details of the proposed framework.

5.3.1 Problem formulation

Consider a graph G = (V,E), represented as a tuple of nodes V and links E. The problem

of critical node identification is to identify a set of nodes Vc ⊆ V , whose deletion from the

graph results in a maximal decrease in network functionality measured in terms of a graph

robustness metric. Similarly, the problem of link identification is to identify a set of links

Ec ⊆ E, whose deletion from the graph results in a maximal decrease in the graph robustness

metric. It is important to note that in evaluating the decrease in robustness, we remove a

single node/link at a time. Assigning criticality based on a sequence of node/link removal is

beyond the scope of this article and is kept as a future work.

The above problem is addressed by incorporating local neighborhood information for

nodes/links. This approach assumes that there exists a functional relation/mapping that

links the local topology and features with the criticality of a node. The approach then makes

use of a graph neural network framework, specifically, GraphSAGE to learn this mapping

from data via training. Consider a node u, whose criticality score we wish to learn. The first

step involves generating the feature vector of the node u (hu) as well as of the neighboring

nodes i.e., hv ∀v ∈ N(u) where N(u) represents the neighborhood of node u. According

to the assumption of the approach, the underlying mapping between these features and the

criticality score ru can be expressed as:

ru = f(hu, hv) v ∈ N(u) (5.3)

The graph neural network framework makes use of the network topology and the feature vec-
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Figure 5.1: Proposed ILGR framework for node identification

tors to learn the underlying mapping for different graphs, and generates an approximation

of this mapping f̂(hu, hv, N(u)). In this regard, this article proposes a two-step approach for

inductive learning-based approximation of the criticality scores of nodes/links in a graph,

referred to as Inductive Learner for Graph Robustness (ILGR). The framework is first in-

troduced for the identification of critical nodes, and is then extended to link identification

problem. The first step involves the use of computationally manageable graphs to learn

appropriate node embeddings and subsequently criticality scores with a GNN that allows

faster learning. This is followed by the prediction of criticality scores for new nodes or unseen

nodes (nodes not used for training) of the graph. It must be noted, however, that in order

for the neural network to reliably predict the scores at the time of deployment, the training

and testing data (graph) should exhibit some similar properties. In this regard, one can use

standard (synthetic) graphs such as power-law graphs and power-law cluster graphs that

are known to exhibit properties similar to most real-world networks. However, in certain

applications where such synthetic networks with similar properties cannot be obtained, it is

possible to use a subset of the nodes of the testing graph and adopt transfer learning to tune

the parameters of an already trained neural network model.

The proposed framework is illustrated in Figure 5.1. The GNN model first learns node

embeddings from node features and neighborhood sub-graph, which are then used to calculate
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the criticality scores. The following sections discuss in detail, the steps involved in obtaining

the node criticality scores from a set of features and neighborhood.

5.3.2 Node embedding module

The first module of ILGR learns the embedding vector for each node by utilizing the graph

structure and node target (criticality) scores. This is achieved in a manner such that nodes

that are close in the graph space also lie close in the embedding space. As an initialization,

the embedding of each node is composed of only the degree of the node, followed by a

predefined number of ones. The node embeddings are learned based on GraphSAGE which

is described briefly in the previous section. However, there are some modifications that have

been made in the implementation. The node embedding module is further subdivided into

two tasks. The first task learns a representation for every node based on a combination of

the representation of its neighboring nodes, parametrized by a quantity K, which quantifies

the size of the neighborhood of nodes. Specifically, the parameter K controls the number of

hops to be considered in the neighborhood. For instance, if K = 2, then all the nodes which

are 2 hops away from the selected node will be considered as neighbors. This defines the

neighborhood of a node v as:

N(v) = {u : D(u, v) ≤ K, ∀u ∈ G} (5.4)

where D(u, v) is a function that returns the the smallest distance between nodes u and v.

After defining the neighborhood, an aggregator function is employed to associate weights

to each neighbor’s embedding and create a neighborhood embedding for a selected node.

Unlike previous works [107, 109], where weights are pre-defined, this work uses the attention

mechanism to automatically learn the weights corresponding to each neighbor node as [110]:

hlN(v) = Attention(Qlhl−1
k )∀ kϵN(v) (5.5)
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where, hlN(v) represents the embedding of neighbourhood of a node v in layer l of the GNN,

hl−1
k represents the embedding of kth neighboring node of v in the l − 1 layer of the GNN.

Ql is the attention weight at layer l of the GNN. Thereafter, for each neighborhood depth

until k = K, a neighborhood embedding is generated with the aggregator function for each

node and concatenated with the existing embedding for node v. However, the existing node

embedding is not solely the output from the embedding of previous layer as implemented in

various previous works. Rather, for existing node embedding, this article proposes to use the

output of node embeddings from the previous two layers. This is similar to skip connections

used by various researchers in the past for enhancing model performance for images and

speech-related applications [111, 112], and can be expressed as:

hlv = Relu(W l[hl−1
v ||hl−2

v ||hlN(v)])∀ kϵN(v) (5.6)

where, hlv represents the embedding of node v in layer l of the GNN, hl−1
v and hl−2

v denote

the embedding of node v in layers l − 1 and l − 2 respectively and hlN(v) is the embedding

aggregated from neighbors of v as given in equation (5.5). The operations performed by

equations (5) and (6) are known as aggregation and combination, respectively. This aggre-

gation and combination process is repeated for all layers of the model to obtain final node

embeddings. The steps involved in the embedding module is summarized in Algorithm 1.

The symbol || in step 5 of the Algorithm 1 denotes the concatenation operation.

5.3.3 Regression module

The output of the embedding module is passed through a regression module which is com-

posed of multiple feedforward layers. The feedforward layers transform the embedding non-

linearly and finally generate a scalar that denotes the node criticality score. The output of
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Algorithm 1 ILGR embedding module

Input: Graph G, input node features Xv∀ vϵV , unknown model weights W (combination
weights) and Q(aggregation weights).

Output: Nodes embedding vector zv ∀ vϵV .
1: Initialize: h0v = Xv ∀ vϵV
2: for layer l = 1 to l = L do
3: for node v = 1 to v = V do
4: hlN(v) = Attention(Qlhl−1

k ) ∀ kϵN(v) ;

5: hlv = Relu(W l[hl−1
v ||hl−2

v ||hlN(v)]) ∀ vϵV ;
6: end for
7: end for
8: return Final embedding vector zv = hLv ∀ vϵV ;

the mth layer in the regression module can be expressed as:

ymv = f(Wmym−1
v + bm) (5.7)

where Wm and bm represent the weights and biases in the mth layer, f is the activation

function such as ReLU, Softmax, etc. ymv is the output of mth layer corresponding to node v

and y0v = zv (output of embedding module). The complete framework for node identification

is depicted via Fig. 5.1.

The framework for link criticality scores is almost similar to that of the node analysis

with small differences. The output of the node embedding module is connected to a link

embedding layer which generates link embedding from the associated pair of node embed-

dings. There are various ways to combine node embeddings including, concatenation, inner

product, mean, L2 norm, etc. In this work, the Hadamard product is used to generate

link embedding. Thereafter, the link embedding is passed through the regression module to

predict link criticality score. The entire framework of ILGR for link prediction is shown in

Fig. 5.2. It is worth noting that the benefit of posing the node/link identification task as a

regression problem is that once the criticality scores are predicted for nodes/links, then the

user can select top-N % of the nodes/links based on the requirement. Hence, the framework

is more flexible and does not depend on a specific threshold for determining criticality.
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Figure 5.2: Proposed ILGR framework for link identification

The algorithm learns the weights of an aggregator function and feedforward layers by

minimizing an appropriate loss function. In the proposed framework, the output of the model

is node/link criticality score, which is further employed to rank nodes/links and identify the

critical ones. So, instead of exactly learning the criticality values, it is sufficient to learn any

real values provided the relative order of nodes remains intact. A suitable loss function for

this scenario is the ranking loss [113]. Unlike other loss functions, such as Cross-Entropy

Loss or Mean Squared Error Loss, whose objective is to learn to predict a value or a set

of values given an input, the objective of ranking loss is to preserve the relative distances

between the inputs. Here, the pair-wise ranking loss has been used that looks at a pair of

node ranks at a time. The goal of training the model is to minimize the number of inversions

in the ranking, i.e., cases where a pair of node ranks is in the wrong order relative to the

ground truth. This loss function can be expressed as:

Lij = −f(rij) log σ(ŷij)− (1− f(rij)) log(1− σ(ŷij)) (5.8)

where, ri is the ground truth value of criticality score for node i. rij = ri − rj is the actual

rank order, which the model is learning to infer through ŷij = ŷi− ŷj by minimizing the loss

Lij. f is a sigmoid function. The loss is aggregated for all the training node/link pairs, and
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then optimized to update the model weights. The net training loss can be written as,

Loss =
∑

(i,j)⊂E

Lij

where (i, j) denotes an edge pair belonging to graph link set E. Once weights are learned,

then an embedding vector and consequently the node/link scores can be predicted for a test

node/link given its features and neighboring information.

Algorithm 2 Algorithm of ILGR

Input: Model with unknown weights.
Output: Trained model.
1: Generate ground truth criticality scores of nodes/links based on graph robustness score
2: for each iteration do
3: Get each node embedding from embedding module.
4: Estimate criticality score of nodes/links through regression module.
5: Update weights of both modules by solving eqn. (7.5)
6: end for
7: Predict node/link score on test graph.
8: return Top N% of most critical nodes/links.

5.3.4 Model settings and Training

There are various hyper-parameters in the model that need to be tuned for training the

model. The number of node embedding layers, i.e., the depth of the GNN is selected as

three. The number of neurons in these layers are 64, 32, and 16 respectively. The regression

module consists of three feedforward layers with 12, 8 and 1 neurons respectively. The

activation function in all the layers is kept as relu. The training of both the embedding and

regression modules is conducted end to end with input being a specific node/link along with

its neighbor information and output being the corresponding criticality score.

A different model is trained for each family of synthetic graphs. This is because, different

families of graphs vary in their overall structure and link connections, i.e., degree distribu-

tions, assortativity, average clustering coefficient, etc. For a particular graph family, different
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random instances of graph are sampled, and then the ground truth of node/link criticality

scores are computed for each sampled graph using a conventional approach as described in

Algorithm 3. Fundamentally, it involves an iterative method of removing a node/link from

the graph and computing the robustness metric of the residual graph. The term “residual

graph” refers to the leftover graph after the removal of node/link. This process is repeated

for all the nodes/links of the graph. Thereafter, the nodes/links are ranked based on the

computed criticality scores. The ground truth criticality scores are then used to train our

GNN model on multiple graphs of the same family. The training steps are outlined in the

Algorithm 2. At each iteration of the algorithm, we first compute the embedding vector

for nodes via the embedding module. Embedding module primarily takes node features and

neighborhood information as input and outputs embedding vectors by passing information

across different layers of the graph neural network. Next, the regression module uses these

embedding vectors to estimate node/link criticality scores. The trained model is validated

to predict criticality score on graphs of higher dimensions. For example, a model can be

trained on multiple power-law graphs of dimension 100 − 1000, and can be evaluated on

power-law graphs of dimension 100− 100000. The model is trained end to end on the Ten-

sorflow framework with Stellargraph library. For real-world graphs such as US Power grid

[114, 115], Wiki-vote, already trained models are employed for predicting node ranks. Addi-

tionally, transfer learning is also implemented for a real-world network to demonstrate the

efficacy of the framework. The experimental setup and results are shown in the next section.

5.4 Experimental Results

This section discusses results obtained with the proposed framework for node and link crit-

icality score prediction over a wide range of applications. The datasets used in this work

to demonstrate the applicability of the proposed framework are first discussed, followed

by the evaluation metrics used to report the performance of the framework. A baseline
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approach is used to compare the performance of the proposed framework with existing ap-

proaches. Codes related to this work can be found at https://github.com/saimunikoti/

GraphNeuralNetwork-Resilience-ComplexNetworks

5.4.1 Datasets

We examine the performance of ILGR on both synthetic and real world graphs. The two

commonly used synthetic graphs are generated using Python NetworkX library are as follows:

1. Power law: Graphs whose degree distribution follow power law (i.e., heavy tailed),

and many real networks have shown to be of this family [116]. It is generated through

a process of preferential attachment in which probability that a new node Ny connects

with an existing node Nx is proportional to fraction of links connected to Nx.

2. Power law cluster: Graphs which exhibit both power law degree distribution and

clusters, and many real-world networks manifest these properties [117]. As shown in

[118], one can construct a PLC graph by following a process of preferential attachment

but in some fraction of cases (p), a new node Ny connects to a random selection of the

neighbors of the node to which Ny last connected.

The real-world networks that are analyzed in this work are as follows [119]:

1. Bio-yeast: It is a protein-protein interaction network for yeast consisting of 1458

nodes and 1948 links. [117].

2. US-powergrid: It represents the western US power grid with 4941 nodes representing

buses and 6594 links as transmission lines [115].

3. Wiki-vote: It contains all the Wikipedia voting data from the inception of Wikipedia

till January 2008. 7115 Nodes in the network represent wikipedia users with 103689

links, where each link from node i to node j indicates that user i voted a user j [114].
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4. cit-DBLP: It is the citation network of DBLP, a database of scientific publications.

There are 12591 nodes and 49743 links. Each node in the network is a publication,

and each edge represents a citation of a publication by another publication [115].

5.4.2 Evaluation metrics

The trained model predicts the criticality scores of the test nodes/links in a graph, which

are then used to identify the most critical nodes/links. In a general setting of robustness

analysis, it is more relevant to identify top ranked nodes/links that are most critical, rather

than knowing the ranks of all the nodes/links. Therefore, we have used Top-N% accuracy

to evaluate the proposed framework against the conventional approach. It is defined as the

percentage of overlap between the Top-N% nodes/links as predicted by the proposed method

and the Top-N% nodes/links as identified by conventional baseline approach, i.e., Algorithm

3. Top-N% accuracy can be expressed as,

|{Predicted Top-N% nodes/links} ∩ {True Top-N% nodes/links}|
|V | × (N/100)

, (5.9)

where, |V | is the number of nodes/links and N is the desired band. In this work, the results

are reported for Top-5% accuracy. Further, the computational efficiency of the proposed

approach is demonstrated in terms of execution time. More specifically, the execution time

is same as wall-clock running time, i.e., actual time the computer takes to process a program.

5.4.3 Baseline approaches

To evaluate the performance of our proposed approach, we compare ILGR with a conven-

tional method of estimating node/link criticality. The classical methodology involves an

iterative method of removing a node/link from the graph and computing the robustness

metric of the residual graph. The term “residual graph” referred to a leftover graph after

the removal of node/link. This process repeats for all the nodes/links of the graph. There-
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Algorithm 3 Conventional approach of identifying critical nodes/links on the basis of graph
robustness

Input: Graph G with V nodes.
Output: Node/link critical scores
1: for n in V do
2: Remove node/link n from graph G
3: Compute robustness metric of the residual graph (G− n)
4: Assign criticality scores to node/link n
5: end for
6: Rank nodes/links on the basis of above computed criticality scores. Top ranks correspond

to more critical nodes/links.
7: return Top N% of most critical nodes/links.

after, the computed criticality scores of all the nodes/links are arranged to generate ranks

and identify the most critical ones whose removal maximally decreases the graph robustness.

Algorithm 3 summarizes the typical conventional approach to identify critical nodes based

on graph robustness metrics.

Furthermore, we have also implemented a Graph convolutional algorithm (GCN) which

is used in many recent works related to critical node/link identification problem [58, 59, 101].

Mathematically, GCN can be written as:

hl+1 = σ(D̃−0.5ÃD̃0.5hlW l) (5.10)

where, hl denotes the lth layer of the neural network, σ is the non-linearity function (e.g.,

ReLU), and W is the weight matrix for this layer. D̃ and Ã are the degree and adjacency

matrices for the graph with the superscript referring to the additional link between each

node and itself. The model settings (number of layers, node samples, activation functions,

etc.) of GCN is kept identical to our model for fair comparison. From equation (5.10), it

can be inferred that GCN is dependent on the input dimension (i.e., adjacency matrix of

input graph Ã) for prediction. Thus, a model can only be trained on graphs of identical

node dimension and consequently can solely be used for node/link identification in graphs of

similar dimension. This reduces the scalability and generalizability of the framework which
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is collectively addressed in our approach.

Figure 5.3: Left: Power law; Right: Power law cluster graph

5.4.4 Results and Discussion for node identification

This subsection access the performance of the proposed ILGR framework for nodes, in terms

of Top-5% accuracy and algorithm execution time. Different types of a graph with varying

dimensions are considered for assessment. Here, we study two different types of synthetic

graphs, i.e., power-law and power-law cluster. Further, with respect to the robustness index,

we analyze two different metrics namely effective graph resistance and weighted spectrum,

which are described in the earlier section. Therefore, for each type of graph, the proposed

method is evaluated for two different metrics leading to four different scenarios. Table 5.1

tabulates the Top-5% accuracy of each such scenario. The models are trained on 30 graphs

of dimension varying from 100 to 1000 nodes. The trained model is then employed to predict

node criticality scores in power-law and power-law cluster graphs of higher dimensions, i.e.,

500, 1000, 5000, and 10000 nodes.

It can be inferred from the Table 5.1 that in the process of identifying Top-5% of the

most critical nodes, the mean accuracy of the PL model for robustness metrics Rg and Ws

is 94.8% and 95.6%, respectively. The mean is taken across graphs of different node counts.

Similarly, the accuracy of PLC model for Rg and Ws is 93.3% and 94.5%, respectively.

The scalability of the framework is depicted via the model’s high performance in graphs of
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Table 5.1: Accuracy of node identification task in synthetic graphs.
PL: Power-law; PLC-Power-law cluster; Ntest: # test nodes

Test graph size Ntest 500 Ntest 1000 Ntest 5000 Ntest 10000
graph/scores Rg Ws Rg Ws Rg Ws Rg Ws

PL (100-1000): ILGR 0.972 0.965 0.960 0.960 0.939 0.958 0.924 0.942
PLC (100-1000): ILGR 0.943 0.952 0.937 0.950 0.935 0.948 0.919 0.930

PL (1000): GCN - - 0.942 0.938 - - - -
PLC (1000): GCN - - 0.927 0.935 - - - -

increasing node dimensions. PL models perform relatively better than PLC models because

the inherent topology is comparatively simpler in PL than that of PLC. More specifically, the

learning mechanism of the ILGR is based on nodes sub-graphs, which generates embedding

vectors by combining aggregation and combination operations. In PL graphs, there are

very few nodes with a high degree while most of them bear small degrees. Therefore, node

sub-graphs are more or less similar for most of the nodes. On the other hand, PLC graphs

have a high clustering coefficient which introduces variability and complexity in sub-graphs,

thereby makes the learning more challenging. This can be seen from the sample graphs in

Fig. ??. Nevertheless, our framework attains sufficiently high accuracy for both the models,

which demonstrates the accuracy of the proposed framework in the task of estimating node

criticality scores. Table 5.1 also shows the comparison of the proposed ILGR with the GCN

algorithm trained for networks with 1000 nodes. It can be observed that the proposed

approach outperforms GCN model for both PL and PLC networks. Furthermore, it must be

noted that while it is required to train different GCN models for different sizes of networks,

the same ILGR model can be used to predict the criticality for networks of any dimension.

The generalizability and the scalability of the proposed approach are further reinforced

through Table 5.2, which reports the Top-5% accuracy in real-world networks, predicted

through models trained on PL and PLC graphs. It can be observed that the PL model

has a mean accuracy of 87.4% and 89.5 % for Rg and Ws, respectively, where the mean

is taken across four different real graphs. Similarly, the mean accuracy of PLC model is

90.0% and 89.8 % for Rg and Ws, respectively. The proposed framework has sufficiently
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Table 5.2: Accuracy of node identification task in real-world graphs. Ntest: # test nodes

Robustness metric Rg Ws
graph/scores Ntest Model Top-5% Ntest Model Top-5%
bio-yeast 1500 Rg-pl 0.895 1500 ws-pl 0.877
bio-yeast 1500 Rg-plc 0.912 1500 ws-plc 0.898

US powergrid 4941 Rg-pl 0.86 4941 ws-pl 0.923
US powergrid 4941 Rg-plc 0.928 4941 ws-plc 0.914
Wiki-vote 7115 Rg-pl 0.865 7115 ws-pl 0.893
Wiki-vote 7115 Rg-plc 0.892 7115 ws-plc 0.887
cit-DBLP 12591 Rg-pl 0.875 7115 ws-pl 0.889
cit-DBLP 12591 Rg-plc 0.878 7115 ws-plc 0.895

high accuracy in detecting critical nodes with both the robustness metrics, even though the

model has never seen the real-world graph during the training period. This works because

the nodes sub-graphs of real-world networks could match with that of synthetic graphs

and therefore the model might have counter that type of sub-graphs during the training

period. Furthermore, the models trained on PLC graphs perform better than that of PL

graphs. The reason is that the PLC graphs manifest both power-law degree distribution and

clusters, hence, are more accurate depiction of real-world networks compared to PL graphs.

In addition, the model performance for any alternate graph family or robustness metrics

can be enhanced via efficient re-tuning. In this regard, we implement transfer learning by

tuning the model trained on PLC graph for estimating criticality scores in real-world bio-

yeast network. Although we have used 150 nodes for tuning, the model performance has

been increased by 2.7% compared to the scenario when the model trained solely on PLC

graphs is used for estimation. Thus, ILGR can accurately identify critical nodes for any

large network in a very efficient manner which further strengthens its scalability.

Along with the accurate identification of nodes, the proposed framework provides an

appreciable advantage in execution time which is indicated by the running times in Table

5.3. The proposed method is multiple orders faster than the conventional approach, and this

gap will increase as the network size grows. All the training and experiments are conducted

on a system with an Intel i9 processor running at 3.4 GHz with 6 GB Nvidia RTX 2070 GPU.
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The time reported for the proposed approach only includes the prediction time as training

is done offline. Even the training time of the proposed method is relatively less than that of

the conventional approach.

Table 5.3: Running time of node identification task

graphs/specs Ntest Model Time: proposed (s) Time: conventional(s)
PL 5000 Rg-pl 17 64600
PLC 5000 Rg-plc 17 64600

US Powergrid 4941 Rg-plc 16 64212
Wiki-Vote 7115 Rg-plc 23 86420

5.4.5 Results and Discussion for link identification

This subsection assesses the performance of the proposed ILGR framework in the task of

critical link identification. The validation is done across different graph sizes and graph

types. Separate models are trained for all possible combinations of graph type and metric

type, which results in four distinct models. For each model, 30 different random graphs of

dimension varying from 1000 to 2000 links are generated for training. The ground truth for

the selected links is computed with Algorithm 3. The training model is similar to that of

node except that a layer is added that generates a link embedding vector from an associated

pair of node embeddings. Consequently, the link embedding is stacked with a regression

module to predict link criticality score. The trained model is then used to predict link scores

in graphs of higher dimensions, i.e., 1000, 2000, 10000, and 20000 links. Table 5.4 reports

accuracy for Rg and Ws in PL and PLC graphs. It can be observed that the mean accuracy

of PL model in detecting Top-5% of the critical links is 91% and 94% for Rg and Ws both,

respectively. Similarly, the mean accuracy of PLC model is 97.5% and 96.1% for Rg and Ws,

respectively. The model has fairly high identification accuracy even though the mean is taken

across graphs of higher dimensions than that of training. There is a very nominal fall of

accuracy with increasing size although the graph size scales in the order of two. Furthermore,

Table 5.4 depicts the comparison of the proposed ILGR with the GCN algorithm trained for
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Table 5.4: Accuracy of link identification task in synthetic graphs.

Test graph size Ntest 1000 Ntest 2000 Ntest 10000 Ntest 20000
graph/scores Rg Ws Rg Ws Rg Ws Rg Ws

PL (200-2000): ILGR 0.979 0.991 0.970 0.985 0.963 0.982 0.953 0.97
PLC (200-2000): ILGR 0.981 0.968 0.98 0.961 0.972 0.96 0.967 0.957

PLC (1000): GCN 0.975 0.987 - - - - - -
PLC (1000): GCN 0.989 0.974 - - - - - -

Table 5.5: Accuracy of link identification task in real-world graphs. Ntest: # test links

Robustness metric Rg Ws
graph/scores Ntest Model Top-5% Ntest Model Top-5%
bio-yeast 1948 Rg-pl 0.920 1948 ws-pl 0.904
bio-yeast 1948 Rg-plc 0.926 1948 ws-plc 0.952

US powergrid 6594 Rg-pl 0.946 6594 ws-pl 0.91
US powergrid 6594 Rg-plc 0.931 6594 ws-plc 0.946
Wiki-vote 30000 Rg-pl 0.887 30000 ws-pl 0.871
Wiki-vote 30000 Rg-plc 0.896 30000 ws-plc 0.925
cit-DBLP 49743 Rg-pl 0.870 49743 ws-pl 0.831
cit-DBLP 49743 Rg-plc 0.872 49743 ws-plc 0.892

networks with 1000 links. It can be inferred that the proposed approach outperforms the

GCN model for both PL and PLC networks as well as allows identification of critical links

in networks of different sizes.

The scalability and generalizability of our approach in the task of link identification

are further supported by evaluating model performance on real-world networks. Table 5.5

tabulates the Top-5% accuracy in four real-world networks. The accuracy is reported for all

the four different models that have been trained on synthetic graphs. It can be inferred that

the model has sufficiently high accuracy in identifying critical nodes for both robustness

metrics, even though the model has never seen the real-world graph during the training

period. Compared to PL graphs, models trained on PLC graphs seem to have high accuracy

for real-world networks and the reason is the same as discussed earlier. Further, the execution

times in Table 5.6 demonstrate the computational efficiency of the proposed method.

Although the performance of ILGR in the tasks of node identification and link identifi-

cation from the estimated criticality scores are similar to a large extent ( due to common
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Table 5.6: Running time of link identification task

graph/specs Ntest Model Time: proposed (s) Time: conventional (s)
PL 5000 Rg-pl 19 64830
PLC 5000 Rg-plc 19 64830

US Powergrid 6594 Rg-plc 21 65470
Wiki-Vote 10000 Rg-plc 25 88231

framework, i.e., node embeddings of sub-graphs), there are some differences. First of all, the

overall performance of ILGR for link identification is better than that of node identification

as seen from the Tables 5.2 to 5.5. This is because, a link embedding vector is dependent

on two nodes’ embedding vectors, thereby including more information compared to the node

case which solely uses single node embeddings. The second difference can be seen in their

execution times. Link identification takes more time than that of a node as it involves an

extra operation (i.e., the combination of node pair embeddings to generate link embedding)

apart from common executions.

5.4.6 Computational complexity of algorithms

The proposed ILGR framework consists of an embedding module and a regression module.

The embedding module is based on GraphSAGE algorithm which involves aggregation and

combination operation, and basically it is a matrix multiplication of node feature vector with

weight matrix. Similarly, the regression module consists of feed forward layers which require

matrix multiplication of weights with node embedding vectors. However, these operations

are not dependent on the graph size (i.e., number of nodes/links ) and are rather dependent

on the size of the node feature/embedding vector and number of layers as discussed in [107].

Therefore, with respect to graph size (N), the overall time complexity of proposed ILGR

framework is constant which in terms of Big O can be written as O(1). On the other hand,

the time complexity of conventional optimization or analytical based approaches is dependent

on the number of nodes/links of the graph.
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5.5 Summary

This chapter proposes a GNN based inductive learning framework for fast identification of

critical nodes and links in large complex networks. Criticality score is defined based on two

graph robustness metrics, i.e., effective graph resistance and weighted spectrum. The frame-

work consists of two parts, where in the first part, a GNN based embedding and regression

model are trained end to end on synthetic graphs with a small subset of nodes/links. The sec-

ond part deals with the prediction of scores for unseen nodes/links of the graph. The Top-5%

identification accuracy of the model is more than 90% for both the robustness metrics. Fur-

ther, the scalability of the model is shown by identifying critical nodes/links on real-world

networks. The proposed approach is multiple orders faster compared to the conventional

method. In the next chapter, different sources of uncertainty in GNN are incorporated to

improve the usability of the predictions.
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Chapter 6

Handling Uncertainty in Graph

Neural Network models

This chapter presents a generalized framework to quantify uncertainties in graph neural net-

work predictions. It further enhances the usability of criticality score predictions in Chapter 5

by providing a confidence interval around mean scores. Uncertainty in measured quantities

and imprecise information about the underlying structure and features of a network can pose

a serious impediment to the efficiency of the learning process and quality of the resulting

models. Uncertainty in estimated parameters and structure of trained model is a fundamen-

tal modeling challenge that imposes restrictions on the confidence of predictions. Learning

representations in an uncertainty-aware manner is fundamental to producing robust models

and reliable predictions. Models that do not account for these sources of uncertainty can be

over-confident in their predictions [120]. These factors can pose serious problems to effec-

tive utilization of the available information in the model building process as well as reliable

interpretation of the model predictions under adverse situations [32, 121].

Uncertainty quantification ubiquitously arises in modeling, and has been extensively ad-

dressed in the context of deep neural networks in computer vision [122], natural language

processing [123] and robotics [124]. However, in the context of GNN, uncertainty quantifi-
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cation and incorporation has received relatively less attention. Existing methods adopt a

Bayesian approach to mitigate the effect of uncertainty on the predictions [64, 65]. However,

they consider the links and features of nodes in the input graph to be deterministic and

thus, do not consider the measurement uncertainty therein. In addition, an explicit and

systematic quantification of the uncertainty in predictions is also not provided.

This chapter addresses the lack of systematic and explicit incorporation of different

sources of uncertainty in GNNs within a Bayesian framework. Different sources of aleatoric

and epistemic uncertainty in GNNs are formally defined. Specifically, we consider the

aleatoric uncertainty arising from (i) imprecise information about the graph structure via

probabilistic links and (ii) measurement noise in feature vectors of nodes. We propagate

the aleatoric uncertainty through the node embedding layers and classification layers of the

GNN model via Assumed Density Filtering (ADF). We quantify the epistemic uncertainty

arising from the probabilistic parameters of the GNN model with Monte-Carlo sampling.

This framework complements the GNN predictions and also enables us to conduct a fair

comparison of various robustness metrics in Chapter 8.

6.1 Aleatoric Uncertainty in Graph Neural Networks

Consider a graph G represented as a tuple G = (V,E) of a set of nV vertices/nodes V and

nE edges/links E. Each node ui, i ∈ [1, nV ] of the graph consists of d features, represented

as a vector hi = [hij], j = 1, 2, 3, ..., d. Each link eij, between the ith and jth nodes in the

graph is associated with a weight pij, which signifies the strength of the link. We consider

the weight to be normalised between 0 and 1 and interpret the weight as the probability

of the corresponding link eij. In the following subsections, we discuss the different types

and sources of uncertainty. Aleatoric uncertainty refers to intrinsic randomness of the data

due to noisy or inaccurate measurements. In the case of a GNN, the input data is in the

form of graphs that model a real-world network. This data consists of the feature vectors
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hi of the nodes and probabilities/weights pij of the links. The different sources of aleatoric

uncertainty in GNN are as follows:

AU1 Measurement uncertainty associated with feature vectors of nodes hi, i.e., the mea-

sured feature vectors are considered as being the sum of true feature vectors (h∗i ) and

measurement noise (ϵi) as: hi = xi + ϵi, with ϵi ∼ p(ϵ).

AU2 Structural uncertainty of the graph captured via probabilities of links pij, i = 1, 2, 3, ..., nV ,

j = 1, 2, 3, ..., nV .

Uncertainty AU1 refers to the uncertainty in features of the nodes. The feature vectors

can represent physical quantities such as the coverage of a cell tower in a communication

network, or the functionalities of a protein in a biological network.

Uncertainty AU2, on the other hand, represents the uncertainty in the existence of links.

In the protein network scenario, the knowledge of interactions between different proteins

and protein complexes is also highly uncertain, which results in probabilistic links between

different nodes. Since the interactions are derived through noisy and error-prone lab exper-

iments, each link is associated with an uncertainty value [125]. For instance, a graph with

5 nodes and binary weights of links has 25 = 32 possible configurations. In a graph with

continuous valued weights, these weights influence the extent to which information between

any two nodes is exchanged and assimilated. This type of uncertainty therefore results in

fundamentally different information exchange and processing through the graph.

6.2 Epistemic Uncertainty in Graph Neural Networks

Epistemic uncertainty is the scientific uncertainty in the model that exists because of model

in-competency to completely explain the underlying process. A GNN model Ξ(Θ) typically

consists of several layers of complex aggregation and combination operations followed by

feedforward processing. A single type of epistemic uncertainty can be defined as:
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EU1 Parametric uncertainty in the GNN model, i.e., the parameters Θ of the GNN are

assumed to be probabilistic with a probability density function p(Θ)

Uncertainty EU1 represents the uncertainty of the learnable parameters Θ of the GNN

model, and is represented by by placing a distribution over the neural network weights. How-

ever, estimation of the posterior density function of the parameters p(Θ|D) given the data D

is mathematically intractable to compute for deep neural networks and is approximated by

different methods. Among these methods, variational inference [126], and sampling-based

approaches [127] are the most effective ones. Monte-Carlo sampling methods involve sam-

pling the parameters from a distribution and are generally obtained using an ensemble of

neural network predictions. The prediction ensemble could either be generated by differently

trained networks [128], or by using dropout at test-time [127].

6.3 Bayesian framework to incorporate uncertainties

A GNN typically involves two modules - node embedding and feedforward modules. The

node embedding module performs aggregation and combination operations in the embedding

layers of the model and produces a vector of node embeddings. These operations capture the

information propagation and processing phenomena in networked data. The feedforward

module processes the node embeddings with non-linear transformations via feedforward lay-

ers and produces the final output. We next describe the proposed approach for quantification

of the total uncertainty involved in GNN models.

6.3.1 Problem definition

We consider a network G = (V,E) as described in Section 2 where nodes are associated with

noisy feature vectors (AU1) and links are associated with probabilities (AU2) as follows:

1. The noise in the features is considered to be Gaussian with zero mean and known
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Figure 6.1: Proposed BGNN architecture for incorporating aleatoric and epistemic uncer-
tainty in a GNN.

variance. For a node u in the network, we have:

hu = h∗u + ϵu, ϵu ∼ N (0,Σu) (6.1)

where h and h∗ are the measured and true feature vector respectively, ϵu is the noise in

feature vector and Σu is a diagonal matrix consisting of the known variances of noise

in individual features. The noise in the features of different nodes are assumed to be

uncorrelated, i.e., for any two nodes u and ν in the network, we have: E[ϵuϵν ] = 0

2. The probabilities puν of links are assumed to be known a priori.

3. The learnable parameters Θ of the GNN are assumed to be random variables with an

unknown probability density function: Θ ∼ pΘ(ψ)

These sources of uncertainty result in a probabilistic propagation of the feature vectors

through the model, and thus result in probabilistic outputs, i.e., ŷ ∼ p(y|h, p,Θ). Obtaining

the exact distribution of ŷ is mathematically intractable. The problem of uncertainty quan-

tification considered here is to systematically obtain the variance in the predictions because

of the different sources of uncertainty. In the following subsections, we discuss how these

effects are quantified in the proposed framework.
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6.3.2 Propagation of Aleatoric Uncertainty in GNN

We propose a Bayesian approach to propagate the uncertainty in feature vectors through a

GNN while also explicitly incorporating probabilistic links in the system. We achieve this

with Assumed Density Filtering (ADF) and moment matching. We consider propagating

and matching the mean and variance of the probability density function of outputs of all

node embedding and feedforward layers of the model. While this can be achieved with

existing approaches for feedforward layers, the following result formalises the result for node

embedding layers.

Theorem 5. The expected value (µu) and variance (vu) of the node embedding for node

u, accounting for aleatoric uncertainty AU1 and AU2 with mean aggregation and linear

activation functions are:

µ(i)
u = θ

(i)
C µ

(i−1)
u + θ

(i)
A

1

|N(u)|
∑

ν∈N(u)

puνµ
(i−1)
ν (6.2)

v(i)u = θ
(i)2

C v(i−1)
u + θ

(i)2

A

1

|N(u)|D(u)

∑
ν∈N(u)

p2uνv
(i−1)
ν (6.3)

where the superscript (i) represents the corresponding quantities of the ith node embedding

layer; θC and θA represent the parameters of the combination and aggregation operations

of GNN respectively; N(u) and D(u) represent the neighbourhood and degree of node u,

respectively; puν represents the probability of the link between nodes u and ν.

Proof. Consider the noisy feature vector for a node u of the observed graph. This feature

vector, along with the probabilistic graph structure are fed as input to the GNN. According

to Eq. (6.1), feature vector can be expressed as:

hu ∼ N (h∗u,Σ) (6.4)

This random variable is processed by the node embedding layers of the GNN model via ag-
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gregation and combination operations. The aggregation operation in the ith layer aggregates

the embeddings of the neighbouring nodes h
(i−1)
N(u) in the (i − 1)th embedding layer and is

equivalent to information collection operation from neighbours in the network. The combi-

nation operation combines the aggregated embeddings with the node embedding of the node

u and is equivalent to assimilating information from a network. The operation performed

by the ith node embedding layer can be expressed as [107]:

h(i)u = f (i)
(
h(i−1)
u , h

(i−1)
N(u)

)
= g

[
θ
(i)
C h

(i−1)
u + θ

(i)
A Ã

(
h
(i−1)
N(u)

)] (6.5)

where g[·] represents the activation function and Ã(·) denotes the aggregation operation. This

operation is performed recursively lg number of times for a GNN with lg node embedding

layers. The embeddings generated at the ith layer are dependent solely on the embeddings

of the (i − 1)th layer. As a result, joint density of all embeddings generated for a node u,

i.e., p(h
(0:lg)
u ) can be expressed as:

p
(
h(0:lg)u

)
= p
(
h(0)u

) lg∏
i=1

p
(
h(i)u |h(i−1)

u

)
p
(
h(i)u |h(i−1)

u

)
= δ

[
h(i)u − f i

(
h(i−1)
u , h

(i−1)
N(u)

)] (6.6)

where, δ[·] is the Dirac delta function. This process is shown in Figure 6.1. Propagating the

uncertainty through the node embedding layers requires obtaining the joint density function

described in Eq. (6.6), which is mathematically intractable.

We employ ADF to approximate the joint density function. We choose ADF because of

its low computational demand for a systematic propagation of uncertainty through all layers

of a neural network [129, 130]. ADF approximates this intractable distribution as follows
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(we remove the subscript u from the feature vector for the sake of brevity):

p
(
h(0:lg)

)
≈ q

(
h(0:lg)

)
= q

(
h(0)
) lg∏

i=1

q
(
h(i)
)

(6.7)

ADF makes the first approximation by assuming that the probability density of the embed-

dings in the different layers are independent of each other. Furthermore, q
(
h(i)
)
is assumed

to be Gaussian, so that we have:

q
(
h(0)
)
= p

(
h(0)
)

q
(
h(i)
)
=

mi∏
j=1

N
(
µ
(i)
j , v

(i)
j

) (6.8)

where mi represents the size of the embedding vector at ith layer of the model, µ
(i)
j and v

(i)
j

are the mean and variance of the jth element of the embedding vector h(i). The approximate

joint density function of all node embeddings till the ith layer can be expressed as:

p̃
(
h(0:i)

)
= p

(
h(i)|h(i−1)

) i−1∏
j=0

q
(
h(j)
)

(6.9)

This step replaces the conditionals in Eq. (6.6) by the corresponding approximations from

Eq. (6.8) to obtain an approximate density p̃
(
h(0:i)

)
. ADF then finds the best approximate

distribution q
(
h(0:i)

)
by minimizing the KL divergence with p̃

(
h(0:i)

)
as:

q
(
h(0:i)

)
= argmin

q̃(h(0:i))

KL
(
q̃
(
h(0:i)

)
||p̃
(
h(0:i)

))
(6.10)

This can be solved by matching the moments between the two distributions [131]. Thus,

any layer h
(i)
u = f (i)

(
h
(i−1)
u , h

(i−1)
N(u)

)
can be converted into an uncertainty propagation layer

by matching first two moments as:

µ(i)
u = E

q
(
h
(i−1)
u

) [f (i)
(
h(i−1)
u , h

(i−1)
N(u)

)]
(6.11)
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v(i)u = var
q
(
h
(i−1)
u

) [f (i)
(
h(i−1)
u , h

(i−1)
N(u)

)]
(6.12)

where, E and var are the expectation and variance operators respectively. When the aggrega-

tion operation Ã is the mean operator, and the activation function g(·) is linear, substituting

Eq. (6.5) in Eqs. (6.11) and (6.12) yields Eqs. (6.2) and (6.3), and hence proves Theorem 5.

This makes use of the following two identities: (1) Expectation of mean is equivalent to

mean of expectations; and (2) Variance of means is the normalized form of mean of variances.

Equations (6.11) and (6.12) can be determined analytically for most of the functions used

in neural network such as ReLu, sigmoid, convolution, etc. For instance if the function g is

ReLu, then the modified mean and variance are [132]:

µ̂u
(i)
(
µ(i)
u , v

(i)
u

)
= µ(i)

u Φ

(
µ
(i)
u

σ
(i)
u

)
+ σ(i)

u ϕ

(
µ
(i)
u

σ
(i)
u

)
(6.13)

v̂u
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u
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u + v(i)u

)
Φ

(
µ
(i)
u
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u µ
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u

σ
(i)
u

)
−
(
µ̂u

(i)
)2

(6.14)

where, σ
(i)
u =

√(
v
(i)
u

)
, Φ and ϕ are the cumulative normal and standard normal distribu-

tions, respectively. Basically, Eqs. (6.13) and (6.14) are recursive formulae to compute mean(
µ
(i)
u

)
and uncertainty

(
v
(i)
u

)
of the embeddings, given the parameters of the embedding

distribution q
(
h(i−1)

)
in previous layer.

Typically, node embeddings from GNN are fed to feed-forward layers for classifica-

tion/regression task. Therefore, µ
(lg)
u , v

(lg)
u serve as an input to feed-forward layers, and

mean and variance is propagated in a similar way as shown in Gast & Roth [130], Loquercio

et al. [124]. In a nutshell, ADF reshapes the forward pass of a GNN to generate not only

output predictions µ
(l)
u , but also their respective aleatoric uncertainties v

(l)
u . This is achieved

by considering two values per dimension of both embeddings in GNN layers as well as neural

units in feed-forward layers.
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6.3.3 Propagation of Epistemic uncertainty in GNN

Epistemic uncertainty, also known as model uncertainty refers to the model confidence on

its prediction. This uncertainty arises because of the single adoption of weights out of many

combinations that can attain same loss values on training data. This is usually captured by

assuming a probability distribution for neural network weights rather than a scalar value.

However, computation of this distribution p(ω|X, y) is usually intractable. Therefore, MC

based approaches have been used to obtain different weight samples by using dropout at test

time [127, 133, 134]. Specifically, in our case, epistemic uncertainty is the variance of M MC

samples obtained via different dropout masks as shown below:

p(ω|X, y) ≈ q(Θ;ϕ) = Bernoulli(Θ;ϕ)

σ2
model =

1

T

M∑
t=1

(yt − ŷ)2
(6.15)

where, {yt}Mt is a set of M sampled outputs for different weight instances from the distribution

ωt ∼ q(ω, ϕ) and ŷ = 1
T

∑
t yt. Authors in Gal et al.[127] have shown that the optimal dropout

rate ϕ for the computation of σmodel is same as training dropout rate.

6.3.4 Total uncertainty in GNN

Total variance of GNN predictions y for a sample node with feature vector X corrupted by

noise variance v0 can be written as:

σtot =
1

T

T∑
t=1

v
(L)
t +

(
µ
(L)
t − µ̂

)2
,

where, µ̂ =
1

T

T∑
t=1

µ
(L)
t .

(6.16)

The first term
(
v
(L)
t

)
in denotes aleatoric variance and the second term

(
µ
(L)
t − µ̂

)2
represents the model uncertainty from M MC predictions. L = lg + lf is the total number
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of layers in GNN. Thus, the first part of total variance captures ensembles of propagated

variance and the second part handles the ensembles of mean prediction, thereby, addressing

both aleatoric and epistemic uncertainty. The overall algorithm to compute total uncertainty

can be summarized in following steps: (i) Transform GNN into a bayesian network by

associating mean and variance to each embedding vector and neuron unit; (ii) Obtain M

mean and variance predictions by forwarding (X, v0) to network with weights ωt sampled

from q(ω, ϕ); (iii) Compute output predictions and its variances according to Eq. (6.16).

6.4 Experimental Results and Discussion

We apply our method to three standard datasets, namely, Cora, Amazon Computers and

PubMed, with varying number of nodes, links, features and classes. The details of these

datasets can be referred in Chapter 5. In order to test the effectiveness and generalizability

of the method, we address the node classification task in the three networks with 3, 7 and

10 classes. We compare the method with the state-of-the-art in the literature [65] and

highlight the stark contrast in computational efficiency and quantification of uncertainty.

We also demonstrate this ability of the model to capture the uncertainty via a sensitivity

study. It is important to note that the training of GNN is accomplished with standard cross

entropy loss function that solely involves the mean prediction. As a part of future work, both

mean and variance will be incorporated in the loss function via conditional log likelihood.

This will allow using the information about estimated uncertainties for improving model

performance/robustness, rather than just quantifying it.

6.4.1 Baseline

We compare the performance of the proposed method with Bayesian Graph Convolutional

Network (BGCN) proposed by [65]. This work captures the aleatoric uncertainty through

MAP estimation of the network structure and quantifies the epistemic uncertainty with
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Monte-Carlo sampling. However, uncertainties AU1 and AU2 are not explicitly incorporated.

Moreover, the MAP estimation is dependent on accurate knowledge of node features, and

hence the method is incapable of handling AU1.

6.4.2 Experimental Setup

All evaluations are repeated 100 times and average of metrics are reported for each dataset

described in Section 6.4.4. GNN is trained with the GraphSAGE algorithm [107]. The

detailed architecture of the GNN is as follows: Depth i.e., no. of node embedding modules:

2; no. of neurons in 2 layers: 64, 32; no. of Multi-layer perceptron (MLP) layers: 3; no. of

neurons in MLP layers: 12,8,1; Activation function: Linear (except last layer with softmax);

Aggregation function: Mean. Since the core task of the GNN is node classification, the node

embeddings are concatenated with feedforward layers to provide class probabilities. The loss

function is categorical cross entropy with ADAM optimizer. The training is carried out in

a mini-batch manner. The batch size is set to 50, the learning rate is set to 0.001 with a

dropout rate of 0.1. The models are trained 50 epochs in total.

6.4.3 Sources of Uncertainty

We introduce uncertainty in nodes feature (AU1) by adding Gaussian white noise to the true

feature values with zero mean and a known variance as shown in Eq. (6.1). The proposed

method is compared with the baseline with different levels of noise. The variance of noise

is also varied to highlight the ability of the proposed method to capture the impact of this

noise as it propagates through the model. We introduce uncertainty in links (AU2) with

probability of nodes. These probabilities are not available in the datasets for all links in

the networks. We therefore perform link prediction in a supervised manner following the

approach presented by Zhang & Chen [135] and obtain the probabilities of links. These

predicted probabilities are then used for training Bayesian models in the proposed method.

We introduce uncertainty in parameters of GNN (EU1) with a Bernoulli distribution of
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parameters according to Eq. (6.15).

6.4.4 Results

The results demonstrate the computational efficiency of the proposed approach, the ability

to reflect different levels of uncertainty in predictions and generalizability of the approach.

The source code to regenerate all the results can be accessed at this link.

Adequacy of BGNN

We compare the proposed approach in this paper with Pal et al. [65]. To the best of

authors’ knowledge, Pal et al. [65] is the only work in the literature that deals with aleatoric

uncertainty in GNN. A summary of results evaluated on Cora dataset based on 100 MC

runs obtained via different dropout masks is presented in Table 6.1. The results in Table

6.1 show that the proposed method yields higher classification accuracy as compared to the

baseline BGCN in all the cases of input variance. In this work, we specify input variance

as the percentage of mean features across all nodes in the dataset. The similar trends

were observed in PubMed and Amazon Computers datasets as well. This demonstrates

that learning MAP estimate of the input graph does not add much value in quantifying

uncertainty related to noisy node feature vectors and link weights. On the other hand, the

proposed method systematically propagates uncertainties through all the layers of GNN, as

discussed in the forthcoming subsections.

Table 6.1: Performance comparison of BGCN and BGNN on Cora dataset (average of 100
MC runs). Standard deviation is shown underneath the average classification accuracy.

Input Variance Classification Accuracy (%)
BGCN BGNN (ours)

0.0% 97.71 ± 0.0 97.96 ± 0.0
2.5% 89.25 ± 0.00357 90.21 ± 0.00311
5.0% 76.16 ± 0.00966 78.11 ± 0.0088
12.0% 58.60 ± 0.01153 61.22 ± 0.0108
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Effectiveness of BGNN

We demonstrate the effectiveness of the proposed approach by selecting a few samples from

the datasets randomly, and examining the variations in class probabilities with changes in

input variance. Table 6.2 presents a summary of the results for three random samples, one

from each class of the PubMed dataset. Firstly, it can be seen that the class probabilities

corresponding to the true class decreases with increase in the levels of input variance. This

is intuitive as a higher amount of input variance will introduce more uncertainty in the

network, specifically in the node embeddings of GNN layers, thereby leading to reduction

in class probabilities (i.e., moving towards a more uniform distribution). Secondly, in some

cases like Sample ID 28, increasing levels of input variance may lead to mis-classification.

This is because the prediction probability corresponding to the true class in no variance

case is much lesser as compared to other samples. Finally, the total propagated variance at

the output is observed to increase with increase in input variance across all samples. These

examples illustrate the systematic propagation of uncertainties across all layers of GNN for

different cases of input variance.

Table 6.2: Longitudinal analysis of a few test samples selected at random from PubMed
dataset. Prediction probabilities correspond to the class probabilities of true class. Bold
values indicate the misclassification at corresponding variance levels. Total propagated vari-
ance are the mean values across all classes.

Sample
ID

True
Class

Metrics across different levels of input variance
Prediction Probabilities Total propagated variance

0.0% 2.5% 5.0% 12.0% 0.0% 2.5% 5.0% 12.0%
12 1 0.923 0.835 0.767 0.578 0.0003 0.0031 0.0062 0.0166
13 2 0.775 0.716 0.689 0.635 0.0031 0.0081 0.0119 0.0218
28 3 0.551 0.353 0.262 0.131 0.0023 0.0034 0.0044 0.0063

Generalizability of BGNN

The generalizability of proposed approach is examined by performing experiments over

graphs of different sizes and characteristics. The model performance is evaluated using
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classification accuracy. Owing to the absence of ground truth for variance assessment, it is

evaluated using average per-class negative log likelihood (NLL) [124, 130, 134]. The value

of NLL for a specific class is evaluated as:

NLL =
1

2
log(σtot) +

1

2σtot
(y − ŷ)2 (6.17)

where, ŷ is the mean prediction of class probabilities across 100 MC runs and y is a 0/1

value indicating whether the given node belongs to a specific class. σtot is the total variance

comprising of propagated input variance and that due to model uncertainty. Tables 6.3 and

6.4 depict the metrics values for Cora and PubMed datasets, respectively. These values are

obtained based on the average of 100 MC runs, and mean of per-class NLL is reported. It can

be observed for all the datasets that the mean classification accuracy of the model decreases

with the increase in the input variance. It is intuitive in a sense that as variance in the input

feature vector increases, it consistently becomes hard for the model to uniquely identify

nodes with the node embeddings and thereby their labels. This idea is also reinforced by

the increasing values of prediction loss observed with increase in input variance.

The total variance propagated at output (σtot) in all the cases is also indicated in Tables

6.3 and 6.4. It can be seen that σtot lies between 0 and 1 in all the cases of datasets considered

in this work. Therefore, the first term in right hand side (RHS) of eq. (6.17) will always be

negative. If the values of σtot are relatively higher, as in Cora (Table 6.3), the values of first

term in eq. (6.17) dominate, the second term will not be positive enough and consequently,

the overall NLL values turn out to be negative. In these cases, the NLL values increase with

increase in input variance as log(σtot) is a monotonically increasing function. This is clearly

evident from the NLL values in Tables 6.3. On the other hand, if the values of σtot are

relatively lower, as in PubMed (Table 6.4) dataset, the values of second term in eq. (6.17)

dominate and the overall NLL values are positive. In such cases, the NLL values decrease

with increase in input variance, as observed in Table 6.4. Thus, NLL demonstrates the high
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quality estimates of uncertainty without changing or re-training the GNN.

Table 6.3: Results for Cora dataset (average of 100 MC runs). Input variance is specified as
percentage of mean features across all nodes in the dataset.

Input
Variance

Classification
Accuracy

Prediction
Loss

Avg. per
class NLL

Variance
propagated
at Output

0.0% 97.96% 0.19 - -
2.5% 90.21% 0.45 -0.98 0.12
5.0% 78.11% 0.76 -0.65 0.24
12.0% 61.22% 1.64 -0.23 0.57

Table 6.4: Results for PubMed dataset.

Input
Variance

Classification
Accuracy

Prediction
Loss

Avg. per
class NLL

Variance
propagated
at Output

0.0% 84.00% 0.40 - -
2.5% 82.83% 0.46 10.75 0.0029
5.0% 80.70% 0.52 6.83 0.0046
12.0% 76.03% 0.70 3.90 0.0092

6.5 Summary

This chapter introduces a generic framework for incorporating aleatoric and epistemic un-

certainty in GNN. The aleatoric uncertainty arising from imprecise information about graph

structure (probabilistic links) and node features is propagated via ADF. On the other hand,

epistemic uncertainty arising from the probabilistic parameters of GNN model is quantified

through MC sampling. The proposed method, BGNN, systematically propagates these un-

certainties through the layers of GNN to final predictions without the need of retraining.

Furthermore, this method is agnostic to network architecture, algorithm and the learning

tasks. Experimental results show that BGNN achieves superior performance in quantifying

uncertainties for different levels of input noise across several types of graphs. Next chap-

ter presents a deep reinforcement learning based framework for addressing concurrent case,
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where multiple nodes/links can be disrupted at a time.
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Chapter 7

Network-based robustness analysis:

Identification of concurrent critical

nodes with Deep Reinforcement

learning

The graph neural network-based approach introduced in Chapter 5 to identify critical nodes

belongs to a supervised learning setting. The ground truth node criticality scores are ob-

tained by simulating a single attack at a time, i.e., one node is being impacted at a time.

However, there could be a scenario where multiple nodes could be disrupted simultaneously.

Then, the research question modifies to “what is the optimal set of nodes whose removal

leads to maximum degradation in graph robustness given some budget”. Under this scenario,

the sequence of selected nodes plays a crucial role in determining the final desired set, unlike

the previous case of Chapter 5. Essentially, this problem falls under the generic category of

graph combinatorial problems, having use-cases in a variety of applications, including attack

graphs [136], influence maximization [137], etc. Existing graph-theoretic techniques to solve

this kind of combinatorial problem suffer from various challenges in terms of computational

98



inefficiency, low scalability, and lack of generalizability. To address these shortcomings, this

chapter fuses Graph Neural Network (GNN) with Deep Reinforcement Learning (DRL) to

develop an efficient and generic framework for graph combinatorial problems. Specifically,

GNNs are used for encoding the underlying graph structure and DRL for learning to iden-

tify the optimal node sequence. Moreover, the framework is first developed for Influence

Maximization (IM), where one is interested in identifying a set of seed nodes, which when

activated, will result in the activation of a maximal number of nodes in the graph. IM is a

standard combinatorial problem, having applications in several real-world problems related

to social network analysis and epidemiology. Conceptually, IM seed nodes and DVI nodes

of Chapter 4 show a lot of resemblance. Nodes in IM are based on their information spread

capability, whereas, nodes in DVI are based on their voltage influence scores. Nevertheless,

this framework can be tuned for other use-cases, including the identification of critical node

set with regard to robustness scores. The proposed DRL-based method is generic and highly

scalable for networks of large sizes.

7.1 Background

Consider a directed graph G = (V,E, ω), where V is a set of vertices, E is a set of edges

(pairwise relationships on vertices), and ω is a set of edge weights; a diffusion model, and a

budget k. Influence maximization (IM) is the problem of identifying a set of k seed nodes,

which when activated, will result in the activation of a maximal number of nodes in G,

for the given diffusion model of influence. IM has applications in various domains ranging

from viral marketing in social networks to influential proteins in biological networks. For

instance, one of the reasons behind the tremendous success of social media platforms is the

quality of content the users create or generate via sharing. These actions can be attributed to

influence dynamics in the social network. IM was first introduced in 2001 and was formulated

as a combinatorial optimization problem by [138]. Majority of the IM algorithms focus on
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settings where seed nodes are activated deterministically and then neighborhood nodes are

activated via influence. However, there exists two types of activation in real-life scenarios,

namely intrinsic and influenced [137]. In case of social media, intrinsic refers to users who

post content whereas sharing, retweeting, commenting constitute influenced activation. To

this end, the authors in [139] recognize that the events on social media can be categorized as

exogenous and endogenous and model the overall diffusion through a multivariate Hawke’s

process to address activity shaping in social networks.

7.2 Formulation of Activation informed IM (AIM)

The overall architecture of the proposed framework (GraMeR) is depicted in Fig. 7.1,

and consists of three main modules. Each of these modules is explained in forthcoming

sections. In this section, we describe the IM model considered in our work. It is reasonably

different and generic relative to typical IM models explored in related recent work. In a

social network, users propagate their views or opinions while simultaneously consuming and

reacting to content created by friends, people, and organizations they follow. Thus, there are

two ways of activation, namely intrinsic (content creation) and spread of influence (content

spreading). Conventional IM problem solely considers influence activation and overlooks

intrinsic activation. However, in practice, the role of content creators has gained significant

importance due to massive digitization. Therefore, in this work, we are considering a generic

formulation of IM that incorporates both types of activations and is referred to here as

activation-informed influence maximization (AIM).

Enabled by the digital revolution, most users now are both content creators and content

spreaders at the same time. This is probabilistically modeled through parameters ps and pf

which represent the probability of intrinsic and influence activation, respectively. Intrinsic

activation for a user u is based on its own activities, and user u is assumed to be directly

influenced by its 1-hop neighbors. Therefore, the influence part of the probability for activa-
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tion is comprised of the activation probabilities due to the 1-hop neighbors of user u. Thus,

similar to the IC model, the probability of user u being activated via influence of an user v

is written as:

puv = wuvpf (u), (7.1)

where the weights wuv (0 ≤ wuv ≤ 1) can be determined from the user interactions in a net-

work. The described probabilistic formulation has similarities to the Friedkin-Johnsen social

influence model for opinion change [140], where the authors recognize that the dynamics of

opinion change are governed by two mechanisms: intrinsic opinion and influenced opinion.

Furthermore, by assuming that the nodes are not lazy and are activated by either of the

two mechanisms that we outline, we set Pf (u) = (1 − Ps(u)). This renders the overall IC

probability between nodes v and u to be:

puv = wuv(1− ps(u)). (7.2)

Note that all the parameters discussed can be efficiently determined either by a maximum-

likelihood-based approach or expectation-maximization (EM) approach as followed in [141].

For example, in the Twitter network, the proportion of tweets by a user i that are intrinsic in

nature can quantify Ps(u), while a particular weight wuv can be determined by the proportion

of user u′s retweets (or influenced activity) having their origin in the activity of user v that

user u follows.

7.3 Prediction of Candidate Nodes

A fundamental aspect of our framework is the fact that only a certain fraction of nodes

are likely to contribute to the AIM solution set. These nodes are referred to as “candidate

nodes” in this work. Hence, it is desirable that instead of focusing on all nodes, one should

attempt all computationally expensive predictions for the candidate nodes. This section
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describes a novel GNN based node classifier that leverages GNN based classifier to identify

candidate nodes for AIM. This classifier precedes our primary DRL algorithm (GraMeR) as

shown in Fig. ??, and thereby eases the computational burden.

The task of identifying candidate nodes is framed as a binary node classification problem

where the two classes denote “candidate” and “non-candidate” nodes, respectively. The

ground truth labels can either be generated via standard greedy hill climbing algorithm or

novel centrality metrics recently being proposed [142, 143]. This work uses Influence capacity

metric as it is computationally easy to compute compared to other approaches. Influence

capacity (IFC) is a novel centrality metric to identify influential nodes. The influence of any

node depends on its neighbor connection (local influence) and its own location in the graph

(global influence). Local influence of a node u (IL(u)) can be estimated as [142]:

IL(u) = 1 +
∑

v∈N(u)

P (u, v) +
∑

v∈N(u)

∑
z∈N(v)

P (u, v)P (v, z), (7.3)

where, P is the influence probability associated with links, and the operator N(.) denotes

the neighbors. Likewise, the global influence score (IG(u)) can be expressed as:

IG(u) = kc(u)
(
1 +

D(u)

DN

)
, (7.4)

where, kc(u) and D(u) represent coreness score and degree of node u, respectively. Notation

DN denotes maximum node degree in the graph. The overall influence capacity I(u) of a

node u can then be written as:

I(u) =
IL(u)

maxv∈V IL(v)
× IG(u)

maxv∈V IG(v)
. (7.5)

Nodes retaining extreme values of IFC are labeled as “candidate nodes” while the rest

of the nodes are marked as “noncandidate”. The threshold of approx 20% seems to work in

our case and it is determined based on several experiments, where the candidacy of nodes is
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validated with the standard Greedy hill-climbing algorithm. The ground truths from IFC are

then leveraged to train the node classifier without relying on a computationally exhaustive

Greedy hill-climbing approach [144]. It is important to note that there are various other

algorithms to generate groundtruth and one can take any such approach for training the

node classifier.

The GNN based node classification model consists of two hidden layers with GraphSAGE

as the message-passing algorithm. We selected GraphSAGE since the computation graph for

any node u only depends on the induced subgraph up to k-hop neighbors of u. This allows

training/prediction across different graph sizes which is most desirable for GraMeR. The

parameters of GNN are trained by minimizing the categorical cross-entropy loss function.

The overall candidate node prediction task is summarized in Algorithm A.1 in the appendix.

It is interesting to note that if this GNN classifier can provide a confidence interval around its

class predictions as shown in [145], then the succeeding DRL engine can utilize that interval

while searching for optimal seed nodes. This further strengthens the overall framework and

is kept as future work.

7.4 Meta Reinforcement Learner

Graph Meta Reinforcement Learner (GraMeR) is a deep reinforcement learning (DRL)

based framework that learns to identify optimal seed set for AIM. There are various novel

aspects of our framework in terms of: (1) Meta learning to enable prediction across different

graph types and sizes; (2) double Q learning to estimate sequence of seed nodes without

solving a computationally intensive optimization problem at every test time and (3) single

policy multi-objective reward formulation for systematic balancing of multiple AIM objec-

tives. This section describes these novel aspects of GraMeR, and architecture is shown in

Fig. ??.
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Figure 7.1: Basic architecture of GraMeR. Graphs of different types and sizes are provided
to Candidate node prediction module for identifying candidate nodes (C: Candidate; NC:
Non-candidate). The Influencer set identification module uses Meta DRL algorithm to train
on the candidate nodes of a graph.

7.4.1 Finite MDP

The task of identifying an optimal set of AIM seed nodes is a sequential process where nodes

are added one at a time. More importantly, the factors determining the selection of node

at any step of the process solely depends on the last node added to the sequence (solution

set). Thus, this process follows the Markov property and is therefore formulated as a Markov

decision process (MDP). Further, at any step of the process, the action space is finite, i.e.,

a node has to be selected from a finite set of nodes. So, more precisely, the process can be

termed as a finite MDP. The key ingredients to define any finite MDP in the context of DRL

are:

State represents the current solution set where nodes are appended in sequence to form

the final AIM solution set. Thus, cardinality of the state keeps increasing with the process.

Therefore, a state representing vector (Xt) of fixed dimension is needed. Xt should charac-

terize the state of the system at any time step t in terms of nodes being selected. Therefore,

Xt can be expressed as:

Xt = f(St) (7.6)
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where, St is the partial AIM solution set at time t and f is the transformation operator. As

nodes in the state are sampled from a graph, an appropriate choice for f operator would

be a Graph neural network based transformation which will be discussed in detail in the

forthcoming sub-section.

Action refers to the process of adding a new node u to a partial solution set St.

Reward quantifies the benefit of taking an action. There are two objectives in our AIM

formulation which leads to two reward functions. The first reward (R1) belongs to the

marginal gain in influence spread when a particular node has been added to the solution set.

The second reward (R2) corresponds to the intrinsic probability of node being added to the

solution set. The rewards can be written as:

R1(X, a) = I(G,S ∪ {a})− I(G,S)

R2(X, a) = ps(a)

(7.7)

where, the operator I computes the influence spread of solution set S in graph G under the

independent cascade model.

Environment: It’s an agent world with which it interacts and comprises of everything

outside the agent. Here, the environment is a graph. These interactions occur continually,

i.e., agent selects node and the graph environment responds to those actions and present

new situations to the agent.

Policy: The policy is a strategy or suggested actions that the DRL agent should take at

every state of the environment so as to pursue the goal of the learning. It is a probability

distribution over feasible nodes that could be added to partial solution set St to move the

state from X t to X t+1. Hence, policy π(a|X t) selects the node that yields highest cumulative

reward at any arbitrary state X t.

Termination: At every episode, the search starts with a random node from the candidate

set, and the estimated nodes are appended to the partial solution set, one at a time ( one

at each step of the episode). The episode is terminated when the cardinality of the solution
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set St attains the search budget b.

7.4.2 Algorithm

GraMeR consists of three modules as illustrated in Fig. 7.1. The first module acts as an

environment pool containing training graphs from different families and sizes. The second

module provides a set of candidate nodes (described in Section 4) on which the AIM search

algorithm will be implemented. Finally, the third module deals with the DRL agent. The

process of training the agent starts by randomly selecting a graph Gi from the pool and

passing through second module to generate a candidate node set. Each training graph

serves as an environment with which our agent interacts via MDP. An episode starts with a

random node from the candidate set of the sampled graph and it continues until the budget

is consumed. At each step of the episode, the agent will select the next node based on its

current policy. Thereafter, the agent updates its current policy by training a Q network with

a sampled batch of data from the buffer. Replay buffer stores the state, action and rewards

from all the past steps of the process across episodes and environments (graphs), allowing

Q network to exploit known information. Once the episode meets termination criterion, the

agent samples a new graph and the training iterates until the policy converges.

Vanilla Q Learning: The agent in GraMeR trains via double Q-learning as it is a

discrete finite MDP. The vanilla Q-learning maximizes a cumulative reward of actions taken

during the interactions of agent with environment [146]. Reward at future times depends

on actions taken at current time. The optimal value of an action (i.e., Q-value) corresponds

to the optimal policy that maximizes the Q-value. Therefore, Q-value is iteratively updated

according to Bellman equation as,

Q(X t, at) = Q(X t, at)+

θ ∗ [rt + γmax
a′

Q(X t+1, a′)−Q(X t, a′)]
(7.8)
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Q learning using Eq. (7.8) usually suffers from overestimation in practice due to the use

of single estimator (Q-network) that determines the best action at next state with highest

Q-value as well as the Q-value of that best action [147]. To avoid overestimation, double

Q-leaning is proposed in [148], that uses two different estimators. One estimator (Local

network QL) determines the best possible action for the next state and the other (target

network QT ) provides the Q-value of the selected action. The modified update equation of

QL(X t, at) is,

QL(X t, at) + θ ∗ [rt + γQT (X t+1, a∗)−QL(X t, at)],

a∗ = argmax
a′

QL(X t+1, a′),
(7.9)

and θ is the tuning parameter. Local network (QL) is trained at every step of the

episode by sampling a batch of data from replay buffer. Mean squared error loss between

the predicted Q value (i.e., QL(X t, at)) and the desired Q value from the bellman equation

(rt+γQT (X t+1, a∗)) is minimized to update the parameters of the local QL network. While,

the target network QT is not explicitly trained at every step, it is continuously updated with

the weights of entire QL network after a certain number of episodes.

Meta Q Learning: A meta-learning attribute is introduced in the GraMeR to solve

unseen tasks fast and efficiently. Here, the agent is expected to generalize to new graph

types that have never been encountered during training. Typically, the Meta reinforcement

learning approach contains two optimizer loops [149]. The outer optimizer samples a new

environment in every iteration and adjusts parameters that determine agent behavior. In

the inner loop, the agent interacts with the environment and optimizes for maximum reward.

As in most of the environments (such as mazes, self driving car, etc.), it is not feasible to

obtain a representing vector for entire environment. Therefore, learning across environments

is captured via an outer optimizer. However, in the case of AIM, the environment is a graph,

and it can be represented very accurately by a single graph embedding vector [150]. Hence,

we skip the outer optimizer and feed the entire environment (graph) information ( graph
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embedding vector) along with state and actions to the training algorithm. This enables Q

learning to capture the variation of environment via a single optimizer. Then the exact

update equations of our agent turns out to be,

a∗ = argmax
a′

QL(X t+1, a′, Gi)

QL(X t, at, Gi) = QL(X t, at, Gi)+

θ ∗ [rt + γQT (X t+1, a∗, Gi)−QL(X t, at, Gi)]

(7.10)

where, Gi corresponds to the sampled graph for the ith episode. It is worth noting that

graphs changes with episodes but for a particular episode, a single graph is explored.

GNN encoding: Similar to the graph, we also need representing vectors for the state

(partial solution set ) as well as action (node). In this regard, we leverage GraphSAGE [107]

to estimate node embeddings. Thereafter, the embedding vectors of nodes in the state St are

aggregated via mean/max operation to obtain a single representing vector Xt for the entire

state. As action corresponds to a single node, it is represented by the corresponding node

embedding vector. GraphSAGE is selected over conventional GCN [101] due to the factor

that the candidacy of a particular node to be a part of AIM solution set depends mostly on

its sub-graph. Therefore, GraphSAGE being an indutive sub-graph based learning approach

is an appropriate choice. Further, GraphSAGE does not demand entire graph information

unlike GCN, which requires the entire adjacency matrix and thus does not scale well with

the size of the graph.

Multi-objective shaping: Along with states and action, the reward function needs to

be explicitly designed for AIM as it comprises of multiple objectives. The first objective is

related to maximizing influence spread and the other goal corresponds to maximizing intrinsic

probability of seed nodes. Therefore, GraMeR belongs to the category of multi-objective

DRL [151]. We take a single policy approach to learn one optimal policy by combining the

two objectives with a known preference weight. Precisely, at each step of the episode, rewards
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(Eq. (7.7)) are computed individually for each objective and accumulated in the buffer

along with state and actions. Then, Q values of two objectives are combined using linear

scalarization technique to generate a single Q value that is used to select an action. This is

different than a typical approach of combining rewards into a single value and consequently

learning single Q value and it is shown to be a stable and efficient [152]. Algorithms 1 and

2 summarizes the entire GraMeR involving GNN based state/environment representation,

meta learning across different graph types and multi-objective rewards shaping.

Algorithm 4 Pseudocode of GraMeR

Input: set of training graphs G, input node features X, set of candidate nodes C.
Output: Trained GraMeR agent.

Initialize: State X ← Max {hu∀u ∈ S}
2: Initialize: Graph embedding to Gi ← Max{hu∀u ∈ V }

Initialize: Action a corresponds to selection of node u ← hu where hu denotes node
embedding from GraphSAGE.

4: Initialize: Some arbitrary values to Q1(X, a), Q2(X, a) for all state-action pairs.
for Loop for each episode do

6: Initialize: X0 to initial state (random node from C)
for Loop for each step of episode until state is terminal do

8: Select node a∗ from scalarized action selection strategy
Append node a to partial solution set S.

10: Obtain rewards r1, r2 from both objectives.
Move to next step X

′
.

12: Update QL of both objectives.
QL

1 (X, a,Gi) = QL
1 (X, a,Gi) + θ ∗ [r + γQT

1 (X, a
∗, Gi)−QL

1 (X, a,Gi)]
14: QL

2 (X, a,Gi) = QL
2 (X, a,Gi) + θ ∗ [r + γQT

2 (X, a
∗, Gi)−QL

2 (X, a,Gi)]
end for

16: end for
update QL

1 and QL
2 parameters by minimizing cross entropy loss between target values

from bellman equation and actual prediction from networks.
18: update QT network by copying QL parameters to QT at every U steps.

return Trained models QL
1 and QL

2

7.5 Experimental Results

This section validates the proposed framework against modified greedy hill-climbing algo-

rithm (MGHC) and S2VDQN. GraMeR offers improved performance with more flexibility
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Algorithm 5 Scalarized action selection

Input: Q values of both objectives for current state-action pair (X, a).
Output: action a∗.

Qnew = W1 ∗Q1(X, a) +W1 ∗Q2(X, a)
Greedy action selection

a∗ =

{
argmaxAa′ probability 1− ϵ
random selection from set C probability ϵ

3: return action a∗

while being orders of magnitude faster. The performance is examined on standard networks,

namely Barabasi Albert, Power law cluster, stochastic block models. As per the architec-

ture, 1st phase of the local Q-network (QL) comprises of 3 GNN layers for generating node

embeddings. The number of neurons in these layers are 64, 32 and 16, respectively. This

phase generates state, action and graph embedding vectors which are concatenated into a

vector and passed through a regression phase of the QL network. Regression phase consists

of 2 feedforward layers with 16 and 1 neurons respectively. All other settings have been

discussed in the appendix.

7.5.1 Baselines

We have first validated the performance of the proposed candidate node prediction model

with Greedy Hill-climbing (GHC) algorithm that selects seed nodes based on the marginal

gain in influence spread. Then, GraMeR (core module) is compared with modified greedy

Hill-climbing (MGHC) algorithm [137] that sample nodes based on intrinsic probability and

select seed nodes which provide high gain in spread. Although this algorithm strives for

two objectives (i.e, high intrinsic probability and high marginal gain in influence spread) of

AIM, there is no inbuilt mechanism to control their priorities. In fact, none of the recent

data-driven work addresses this type of multi-objective formulation of IM [153, 154]. In con-

trast, we have systematically incorporated the multi-objective formulation with a controlled

weighing factor α. Furthermore, the baseline also includes modified S2V-DQN (MS2V-DQN)
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Figure 7.2: Time in identifying seed nodes with and without candidate nodes
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Figure 7.3: Spread/Intrinsic probability vs Budget. PLC: Power law cluster; BA- Barabasi-
Albert; SBM-Stochastic block model

[153] that combines RL with graph representation. The baselines implementation is further

discussed in the Appendix.

7.5.2 Results

This section demonstrates the performance of proposed framework against baselines via

performance metrics and execution times. The evaluation is repeated 100 times and aver-
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Figure 7.4: Running time vs Budget. PLC: Power law cluster; BA- Barabasi-Albert; SBM-
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Figure 7.5: Mean Spread and Running time vs graph size for three graph types
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Figure 7.6: Running time vs graph size of GraMeR and MGHC for PLC graph

age scores are reported for each test scenario. The source code can be found in the fol-

lowing anonymized github link https://anonymous.4open.science/r/InfluenceMaximization-

Deep-QLearning-B20B.

Performance of Candidate node predictor

The candidate node prediction module is trained on 6 graphs of varying dimension (200 to

400 nodes) and type (BA, PLC, BP). The ground truth value of node classes is obtained using

influence capacity metric as discussed in Eq.(7.5). The model is evaluated on 3 test graphs

of 1000 nodes, one from each graph family. The mean classification accuracy in detecting

candidate and non-candidate nodes is around 96.24 % with a recall score (class-1 accuracy)

of 97.95 %. Further, it has been shown via Fig. 7.2 that there is a noticeable reduction

of 40% in algorithm running time compared to the greedy hill-climbing approach. This is

due to a significant reduction in search space which can immensely speedup the training of

GraMeR agent in later part of the learning pipeline.
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Accuracy of GraMeR

The performance of GraMeR for activation aware influence maximization can be evaluated

via two metrics namely influence spread and node intrinsic probability. Expected influence

spread provides the mean number of nodes getting influenced in the network if seed nodes

in the solution set are activated with corresponding intrinsic probabilities and information is

spread via IC diffusion model. Influence spread is normalized between 0 to 1 for comparison

across different graph sizes. The second metric (i.e., intrinsic probability) represents the

probability of seeds nodes being activated on their own. The mean probabilities for all the

seed nodes in the estimated solution set are reported.

Fig. 7.3 compares expected influence spread and mean intrinsic probability across dif-

ferent graph types and budget. It can be observed that the proposed GraMeR is at par

with the baseline MGHC with much lower computational effort as demonstrated in the next

subsection. Specifically, GraMeR consistently outperforms MGHC and MS2V-DQN in terms

of spread whereas the reverse phenomenon can be seen in case of intrinsic probability. This

is because the MGHC and MS2V-DQN does not have a mechanism to balance between

influence spread and intrinsic probability. Therefore, they always provides the seed nodes

having high intrinsic probability but sub-optimal in terms of influence spread. The scale of

the plots is kept same for a fair comparison across different graph types. Further, it can be

seen that for a similar graph size (600 nodes) and diffusion model, the influence spread is

maximum in case of SBM graph and minimum in BA. This is due to the fact that SBM have

community structures where subsets of nodes are connected with each other through a large

link densities. AIM led to the selection of seed nodes from different clusters which results in

a high influence spread compared to BA graph that misses such clusters.

Computational gain of GraMeR

One of the key advantages of the proposed approach is the computational efficiency which

is demonstrated via algorithm running times i.e. wall clock time. Fig. 7.4 depicts the
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running times across different budgets and graphs. It can be inferred that as the budget

increases, the search time increases which is very intuitive. However, the increase in time is

very sharp (linear for the experimented budgets) in the case of baseline MGHC, while it is

almost constant for the proposed GraMeR. This is because the trained deep Q networks in

GraMeR computes the solution set via forward propogation which mainly involves matrix

operations. On the other hand, the MGHC searches for increasing number of nodes as the

budget increases which eventually demands the computation of influence spread for large

number of sets. Fig. 7.4 also illustrates that search algorithms for AIM are fastest in BA

and slowest in SBM. This observation could be attributed to the high clustering coefficient

in SBM leading to a large time cost associated with shifting from one cluster to an other

while searching for an optimum seed set.

Generalizability of GraMeR

The core theme of our framework reinforces the property of generalizability since several

types of real-world and synthetic networks exist in the literature. Many of these graph types

have only slight variation in their topological property. Thus, a separate DRL model to

identify AIM seed nodes for each of these graph types is not needed rather, a meta learning

can serve the purpose by learning across different environments (graph types). This fact is

demonstrated by training on two graph types (i.e., PLC and BA) while validating on all the

three graph families. The performance in terms of influence spread, intrinsic probability and

running time is consistent across all three graphs as shown in Figs. 7.3 to 7.6.

Scalability of GraMeR

Scalability of GraMeR is summarized in Fig. 7.5, which presents the compute time for

different graph sizes. Here, the model is trained on 8 graphs (4 from PLC and BA) each

having 400 nodes. Then, it is tested on graphs of sizes varying from 200 to 20000. It

can be inferred that GraMeR outperforms the baseline without any significant impact on
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computational effort. Specifically, running time for MGHC scales by 1500 for 10x increase

in graph size whereas, it remains almost constant for GraMeR. Further, to reinforce the

scalability benefit, the training of GraMeR is carried for a fixed budget of 10 but prediction

is carried out for multiple budgets from 5 to 20. The scalability can further be enhanced

through distributed computing as shown by [155]. This work will address scaling to larger

graphs on a wide variety of platforms (GPUs), which we plan to pursue in our future work.

Ablation study

The proposed GraMeR has computational supremacy over conventional methods because of

two factors: (1) Deep Q networks based meta reinforcement learning approach to identify

AIM solution set; and (2) candidate node predictor that reduces the search space. Fig. 7.6

depicts the ablation study results where running time is monitored for GraMeR and MGHC

with and without the candidate node prediction module. The budget is fixed as 10 and

prediction is done for the PLC graph across different sizes. It can be seen that the time gap

between the two cases increases with the graph size with nearly 1 minute for GraMeR and

110 minute for MGHC. This gap will further increase as the network size grows. Further,

apart from prediction, noticeable gap is also seen in training time. This demonstrates the

importance of the node prediction module in GraMeR.

7.6 Summary

This chapter presents a GNN fused meta reinforcement learning framework (GraMeR) for

identifying influential nodes in a network. Firstly, the search space of IM is reduced via GNN

based candidate node predictor. Then deep Q learning is employed to learn to identify IM

seed nodes with GNN as environment encoders. The unique aspects of GraMer lies in its

computational efficiency and generalizability. Next chapter presents a comparative study of

various performance and network-based robustness metrics.
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Chapter 8

Network vs Performance-based

Robustness metrics - Smart Grid

Case study

This chapter presents a comparative study of various performance and network-based ro-

bustness metrics that have been explored till now. Chapter 5 presents a scalable graph

neural network-based framework for computing network-based failure metrics. Authors in

[96, 156] have conducted a comparative study of several robustness metrics, but they are

analyzed from the perspective of general complex networks. Though plenty of robustness

metrics are defined for power distribution systems (PDS), there is no systematic study on

their coherency and applicability. By coherency, we mean the similarity or dissimilarity

(consistency) in the rankings of critical nodes from various robustness indices.

Furthermore, Chapter 4 develops a computationally efficient analytical framework for

determining a performance-based voltage fluctuation metric. In general, very little attention

has been devoted to defining node-level metrics for accurately quantifying voltage fluctua-

tions, primarily due to their complex computation process. This necessity the need for more

metrics in this area. Hence, it is worthwhile to explore the potential of readily available

117



robustness metrics against system failure to quantify voltage fluctuations.

Therefore, this chapter first conducts a comparative study of various robustness metrics

to analyze their coherency, and then investigate their efficacy in characterizing the impact

of voltage fluctuations. This comparative study enables us to highlight the benefits and

limitations of existing methodologies. Lack of efficacy in robustness evaluation, particularly

due to modeling inefficiency, is addressed through a novel modeling framework in Chapter 9.

8.1 Robustness metrics

The term “robustness” in this work is primarily concerned with the drop in performance

of a power grid when a disruption occurs [157]. Several metrics have been proposed in the

literature to study and improve the robustness against system failures [31, 157–160]. These

approaches can be divided into three classes, namely network (topology) based, performance

(power flow, system dynamics) based and hybrid which combines topology with electrical

properties of the network. Further, this section also describes a voltage variation metric,

which would later be compared with the robustness metrics to system failure. Figure 8.1

depicts the the taxonomy of robustness metrics studied in this work.

8.1.1 Robustness to System failure

The failure of the system corresponds to the loss of connectivity which further leads to

the loss of power flow to the end users. Some of the widely used metrics to determine

system robustness to failures include effective graph resistance, flow robustness, etc. More

importantly, different nodes contribute differently to the overall robustness. Hence, some

nodes could be more critical compared to others in terms of inducing cascading failures once

they are affected. Relevant metrics from each of the three introduced earlier classes are

summarized below.
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Network-based metrics

• Network efficiency (NEF): It is the communication effectiveness of a networked

system. That is,

E =
1

N(N − 1)

∑
u̸=v

1

duv
, (8.1)

is a measure of the network performance under the assumption that the efficiency

for sending load (electricity, information, packets, whatsoever) between two nodes u

and v is proportional to the reciprocal of their distance. Based on this definition, the

robustness of a network can be defined as the drop in the efficiency when a node u is

removed from the network, i.e.,

Re(u) =
E − Eu

E
, (8.2)

where Eu is the score after removing node u from the network.

• Betweenness centrality: It quantifies how often a node u occurs in the paths linking

other pairs of nodes. That is,

CB(u) =
n∑

s=1

n∑
t=1

σst(u)

σst
, s ̸= t ̸= u ∈ V. (8.3)

where, σst is the total number of shortest paths from node s to t, and σst(u) is the

number of those paths that pass through u.

• Effective node resistance (ENR): It is related to the eigenvalues of the graph

Laplacian matrix and corresponds to [53]

R(u) =
2

N − 1

N−1∑
u=1

1

λu
, (8.4)

where λ are the non zero eigen values of graph Laplacian matrix. Recently, authors in
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Figure 8.1: A taxonomy of Robustness metrics for power distribution network

[161] introduce the metric Effective Node Resistance by extending the notion of EGR

from graph level to node level. Essentially, it is defined as the sum of all node-to-node

effective resistances (Ruv) with all other nodes. It can be expressed as:

Re(u) =
∑
v∈V

Ruv. (8.5)

It has been shown that ENR correlates well with other standard robustness metrics

against node and link failures [161].

Performance-based metrics

The performance of the network with respect to robustness is typically measured via loss of

active power due to disruption. Some of the relevant metrics under this category are:

• Electrical coupling connection degree (ECD): For a power network with total N

nodes, the electrical coupling connection degree Du for the node u is defined as [162]:

Du =

∣∣∣∣∣ 1∑N
v=1,u̸=v Z

equ
uv

∣∣∣∣∣ (8.6)

where, Zequ
uv is the electrical distance, and can be described as the equivalent impedance
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between two nodes (similar to the concept of distance in graph theory). It is computed

for each node through entries in the node impedance matrix as [162]:

Zequ
uv = (Zuu − Zuv)− (Zuv − Zvv), (8.7)

where, Zuv is the branch impedance between node pair u and v. ECD can be used

to rank the nodes based on electrical attribute. The shorter the electrical distance,

greater the dependence will be. A node with a high electrical coupling connection

degree has a high current transmission capability and a high electrical dependence on

the other nodes. When this node fails, it will soon induce power flow changes among

numerous nodes, resulting in a cascade of failure.

• Active power flow loss (APL): The power supplied (PS) is an essential measurement

in DC power flow model. Its loss can be evaluated as [160]:

Pl = 1−
∑N

u=1 P
d
u∑N

u=1 P
n
u

, (8.8)

where P n
u is the active power of the node u under normal operating conditions of the

grid, and P d
u is the power after failure.

• Electrical node significance (ENS): Typically in power grids, some nodes serve

as hubs distributing a large amount of power while others distribute very little. A

considerable quantity of power is exposed to the rest of the network when a link from

one of the hub nodes fails. Redistributing this extra power to neighboring components

gradually leads to more link overload failures, which can lead to a large-scale power

outage. However, if a link connected to a less critical node fails, the power is instantly

re-routed to surrounding components, and the disruption is usually mitigated. This

implies that nodes have varied effects on the cascading failure robustness, and that

this impact is dependent on the quantity of power distributed by the associated node.
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Therefore, ENS is introduced in [163] to determine the impact of a node as:

δu =
Pu∑N
v=1 Pv

, (8.9)

where, Pu denotes the total power distributed by node u, and N is the number of nodes

in the network.

Hybrid metrics

The unexpected behavior in the power system is related to both the topological (location of

events, interconnection of components) and the operative state (flow distribution, demand

level, etc.) of the system. Therefore, there is a growing interest in combining both the

factors to obtain novel metrics that can better capture network robustness to failures [160].

Some of the hybrid metrics that have been found to work well are presented below:

• Electrical betweenness (EBW): The electrical betweenness centrality of a node u

in a network of N nodes is defined as [164];

CE
B (u) =

n∑
s=1

n∑
t=1

Pst(u)

Pst

, s ̸= t ̸= u ∈ V, (8.10)

where, Pst is the maximum power flowing in the shortest electrical path between nodes

s and t, and Pst(u) is the maximum of inflow and outflow at bus k within the shortest

electrical path between nodes s and t.

• Electrical degree (EDG): The power flowing in the adjacent links of the target node

can be considered as electrical degree of the node and can be written as [164],

CE
D(u) =

∑
u∼v Puv

N − 1
(8.11)

where, u ∼ v indicates that node u and v are connected. Puv represents power flowing

in line connected in between nodes u and v.
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• Electrical node robustness (ENT): It quantifies the ability of a node to resist

cascades of link overload failures. It incorporates both flow dynamics and network

topology. ENT of a node u (i.e. Rn(u)) can be expressed as [163],

Rn(u) = −
L∑
l=1

αlPllogPl, (8.12)

where, L refers to the out-degree of the corresponding node, α denotes the loading

level of the line, and Pl corresponds to normalised flow values on the out-going links

given as,

Pl =
fl∑L
l=1 fl

, (8.13)

where, fl refers to the power flow in line l. The formulation is similar to entropy because

entropy of a load distribution of a node increases as flows over lines are distributed

more homogeneously and the node out-degree increases. The loading level of the line

has inverse relationship on robustness, therefore α is inversely proportional to loading

level. Thus, higher the value of nodal robustness, the more robust the node is.

8.1.2 Robustness to voltage fluctuations

Apart from the robustness metrics to node failures, it is also important to investigate metrics

to quantify voltage variations since we are interested in comparing the efficacy of these

metrics in characterizing robustness to voltage fluctuations. In this regard, one of the relevant

metrics for voltage variations is the Voltage influencing score (VIS) which can be expressed

as [29],

V IS(O,A) =

1
D(A,O)

− 1
D(S,O)

1
D(A′,O)

− 1
D(S,O)

, (8.14)

where, D(A,O) is the statistical distance between the voltage change distribution at a target

node O due to aggregate effect of all actor nodes (actor node refers to node where power

varies) and when actor node A is solely present in the system. D(S,O) is the statistical

123



distance between source node and observation node. The distance can be computed with

any of the information theoretic metrics such as KL divergence, Frechet distance, among

others. To provide an absolute value to the score, VIS is normalized with minimum and

maximum values. As VIS is defined for a pair of nodes, the net influencing capacity of a

particular node can be determined by averaging its score across all the other nodes of the

network. The lower the distance, the more the actor node A contributes to aggregate voltage

change and consequently the more influencing the actor node is and vice-versa.

Table 8.1: Robustness metrics and their relationship with critical node ranking. Up-arrow
denotes increasing value and down-arrow for decreasing value.

Metric Class Criticality ranking
Betweenness (BTW) ↑ Network ↑

Network efficiency (NEF) ↑ Network ↑
Effective node resistance (ENR) ↑ Network ↓
Active power flow loss (APL) ↑ Performance ↑

Electrical coupling connection degree (ECD) ↑ Performance ↑
Electrical node significance (ENS) ↑ Performance ↑
Electrical betweenness (EBW) ↑ Hybrid ↑

Electrical degree (EDG) ↑ Hybrid ↑
Electrical node robustness (ENT) ↑ Hybrid ↓
Voltage influencing score (VIS) ↑ Hybrid ↑

8.2 Comparative results and Discussion

The metrics that have been developed under the network and performance-based robustness

analysis paradigms can be used to identify critical nodes for enhancing network resilience

against failures. This section presents a comparative analysis of metrics introduced in the

previous section. To this end, this study first investigates the coherency of these metrics

in explaining the system’s robustness. Then, we analyze the efficacy of the methods in

representing cross-domain metrics, i.e., leveraging robustness metrics for system failure to

quantify voltage variations.

Table 8.1 reports the metrics studied in this work and their relationship with criticality
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ranking. Criticality ranking denotes the ranking of nodes based on the robustness metric

scores. The lower the rank, the more important the node is with respect to network robust-

ness. Depending upon the metric formulation, increasing metric values have a positive or

negative impact on the ranking. For example, a higher value of the node betweenness score

implies a better node criticality ranking, whereas the opposite effect can be seen in the case

of electrical node resistance. Furthermore, this paper considers the IEEE-37 node network

as a test system.

Table 8.2: Ranking of nodes in regard to network-based metrics

Metrics
Rank

BTW NEF ENR
Node Cb Node E Node R

1 14 0.050 9 0.067 9 0.627
2 9 0.047 28 0.056 14 0.635
3 18 0.029 14 0.052 28 0.734
4 28 0.021 18 0.026 18 0.796
5 30 0.004 30 0.009 30 0.958
6 7 0.0 22 0.004 22 0.969
7 8 0.0 34 0.003 34 0.981
8 12 0.0 17 0.003 36 0.982
9 17 0.0 36 0.003 17 0.983
10 22 0.0 31 0.002 31 0.987
11 26 0.0 7 0.002 7 0.991
12 27 0.0 8 0.002 8 0.991
13 31 0.0 26 0.001 26 0.997
14 34 0.0 27 0.001 27 0.997
15 36 0.0 12 0.001 12 0.998

8.2.1 Network based metrics:

For network-based analysis, the IEEE-37 test network is abstracted as a directed weighted

graph, with nodes representing buses (nodes) of the distribution system and links corre-

sponding to physical connections between buses. The test network under this scenario is

solely analyzed from the perspective of topological (i.e., network) features. Radial distri-

bution networks like the IEEE-37 node network are not scale-free like other engineered
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networks, since their degree distribution follows a uniform distribution. We have selected

three widely used effective metrics under this category, namely betweenness (BTW), net-

work efficiency (NEF) and effective node resistance (ENR). Further, there are 15 actor

nodes in the test network, where power can vary. These 15 actor nodes are as follows:

7, 8, 9, 12, 14, 17, 18, 22, 26, 27, 28, 30, 31, 34, 36.

Table 8.2 tabulates the criticality ranking of 15 actor nodes with the three selected

metrics. Although power measurements are not utilized to determine the ranking in this

case, they are provided for these 15 nodes to allow for a fair comparison to other approaches.

Table 8.2 also includes metric values in addition to node numbers, denoted by “Node”. It

can be seen that the betweenness values are non-zero only for the top 5 nodes, indicating

that only the rank of the Top 5 nodes makes sense. All the remaining nodes can be arranged

in any manner, and the presented rank in Table 8.2 is merely one among several ways. Since

none of the shortest paths pass through leaf nodes (nodes in the periphery of the distribution

network), their betweenness scores are zero, making this metric less effective in distinguishing

nodes. This shortcoming is addressed in both NEF and ENR. They provide differentiating

values to different nodes as much as possible. However, nodes lying in the lower score band

are less distinguishable compared to those in the upper band.

It is also evident from Table 8.2 that the rankings of Top-1 or Top-5 nodes are different

with different metrics. For instance, BTW assigns the top position to node 14, whereas the

other two metrics place node 9 in position one. Furthermore, the correlation between the

rankings of NEF and ENR is high compared to that of BTW. However, it is interesting to

note that although different metrics offer different ranks, there is a consistency in the Top-5

nodes when seen as a set rather than ranked entries, i.e., all three metrics assign nodes

9, 14, 18, 28, 30 in Top-5 positions. Thus, in applications where node selection has major

computational and financial implications, i.e., high discriminatory scores are necessary, the

priority of metrics usage should be ENR followed by NEF and BTW.
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8.2.2 Performance based metrics:

The term “performance” in this category of metrics refers to the electrical attributes of the

distribution network, such as power flow in lines, voltage quality, etc. The nominal voltage

of the test system is 4.8 kV, and the base load is kept the same as reported in the IEEE PES

distribution system subcommittee report. Furthermore, for better generalizability, different

load scenarios are simulated by varying the base load at 15 actor nodes. The mean results

are reported from over 100, 000 different simulations.

Table 8.3: Ranking of nodes in regard to performance-based metrics

Metrics
Rank

APL ECD ENS
Node Pl Node D Node δ

1 9 0.506 28 0.267 36 0.210
2 14 0.331 9 0.258 18 0.209
3 28 0.245 26 0.217 26 0.130
4 18 0.232 7 0.187 9 0.130
5 36 0.083 12 0.208 28 0.127
6 30 0.063 30 0.202 27 0.127
7 26 0.050 14 0.187 31 0.064
8 31 0.050 27 0.170 14 0.064
9 27 0.050 8 0.159 22 0.064
10 8 0.024 31 0.145 12 0.064
11 22 0.024 34 0.141 7 0.063
12 17 0.024 22 0.140 17 0.063
13 34 0.024 18 0.140 34 0.063
14 12 0.024 36 0.134 8 0.063
15 7 0.024 17 0.105 30 0.031

Table 8.3 illustrates the ranking of 15 actor nodes for the three electrical-based robustness

metrics, namely active power flow loss (APL), electrical coupling connection degree (ECD),

and electrical node significance (ENS). It can be observed from the very first glance that

the ECD has the largest discriminatory power compared to the other two. In comparison to

network-based metrics, here the ranking among the three metrics is relatively less consistent,

likely due to the diverse electrical attributes employed to compute these ranks. However,

considering the Top-5 node set, APL and ENS appear to match to a greater extent compared
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to ECD. This is because, both APL and ENS involve node power in their formulations, unlike

ECD, which deals with the branch impedances. Overall, the performance-based rankings are

noticeably different than those of network one, except for a few nodes such as node 9, which

is consistently present in the Top-5 nodes in all the cases. In a nutshell, one must experiment

with different metrics before determining the relevant metric for a specific use case.

Table 8.4: Ranking of nodes in regard to hybrid metrics

Metrics
Rank

EBW EDG ENT
Node Ce

b Node Ce
d Node Rn

1 14 0.682 9 0.99 14 6.365
2 9 0672 14 0.879 7 0.000
3 18 0.404 28 0.698 8 0.000
4 28 0.252 18 0.558 9 0.000
5 30 0.034 30 0.266 12 0.000
6 7 0.000 36 0.199 17 0.000
7 8 0.000 26 0.121 18 0.000
8 12 0.000 27 0.121 22 0.000
9 17 0.000 31 0.121 26 0.000
10 22 0.000 8 0.06 27 0.000
11 26 0.000 7 0.06 28 0.000
12 27 0.000 34 0.06 30 0.000
13 31 0.000 12 0.06 31 0.000
14 34 0.000 22 0.06 34 0.000
15 36 0.000 17 0.06 36 0.000

8.2.3 Hybrid metrics:

Hybrid approaches consider both topological and electrical attributes of the network. The

base loads, actor nodes, and other settings are kept the same as in the previous two cases.

Table 8.4 presents the ranking of nodes based on three powerful hybrid metrics, namely

electrical betweenness (EBW), electrical degree (EDG), and electrical node robustness (ENT).

Similar to the performance-based metric case, there is no consistency in ranking among the

three approaches. However, there is noticeable consistency with respect to the Top-5 nodes

set. In particular, the rankings of EBW and EDG have a high correlation compared to that
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of ENT, although all three involve power flows in their formulations. Another distinguishing

characteristic of hybrid metrics is their substantially lower discriminatory power compared

to performance and network-based methods. In fact, only the top nodes have distinct values,

and the remaining bottom nodes have almost zero values in EBW and ENT. Specifically for

ENT, most of the nodes have zero values, either because of no outgoing links (as appears to

be the case in leaf nodes) or because of a single outgoing link. Thus, although these hybrid

approaches seem to be more elegant in their formulation due to the incorporation of both

electrical and topological features, they are not very effective in identifying critical nodes,

as evident via entries in Table 8.4.

Overall, when comparing the rankings of three approaches, node 9 appears to be in the

first position in a majority of cases, followed by node 14. For network-based metrics, it is the

central position of nodes that makes them critical. As for hybrid cases, both power flow and

central position make them strong candidates. Nevertheless, node 36 lies in the bottommost

position for most of the metrics, followed by 34. These nodes are leaf nodes whose loss would

have a minimal impact on the electrical connectivity of the major part of the network.

8.2.4 Robustness metrics for voltage fluctuations

It is interesting to study whether robustness metrics to system failure can capture voltage

variations. To this end, we must first rank the actor nodes based on their voltage influencing

capacity (VIC). VIC refers to a node’s capability of inducing voltage variations in other

nodes of the network, and it depends on the node’s position as well as its power variation.

The experimental setup for this case study is kept the same as in the case of previous metrics.

The only extra factor to consider here is the probability distribution of power changes with

which different power change scenarios are simulated. This distribution is needed since

we rely on [29] for determining the VIC of nodes, which essentially utilizes power change

distribution and topological information such as shared path impedances. The change in real

and reactive power at 15 actor nodes is modeled as a zero-mean Gaussian random variable.
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The Gaussian distribution is commonly used to validate statistical frameworks, and it has

been considered a common assumption in many prior works related to distribution systems

[92, 165]. Furthermore, a covariance matrix consisting of power change variances and co-

variances is required which can be learned from the historical data as illustrated in [29]. In

this regard, three different power change scenarios are considered with different means and

variances similar to eqn. (4.15) in Chapter 4. where ∆S signifies the power change vector

across all actor nodes, A denotes the actor node set, and superscript over actor nodes, i.e.,

{a, b, c} represent respective phases at which power is varying. Changes in power across

different actor nodes can be correlated because of the geographical proximity of DERs (PV

and wind turbines). The diagonal elements of covariance matrices represent the variance

of change in real and reactive power at actor nodes, while off-diagonal elements reflect the

covariance between real and reactive power change as shown in eqn. (??).

Table 8.5: Ranking of nodes based on voltage influencing capacity. Obs: Observation nodes

Node
Rank

Obs Node7 Obs node-16 All nodes
Node Node Node

1 7 14 7
2 9 22 8
3 12 12 9
4 14 9 12
5 22 7 14
6 26 17 18
7 8 26 22
8 8 18 26
9 17 28 28
10 18 8 30
11 27 27 31
12 30 34 17
13 31 31 27
14 34 34 34
15 36 36 36

Table 8.5 depicts the ranking of 15 actor nodes for various scenarios. The voltage influence

score is computed in a pair-wise manner, with one node being an actor where power varies and

the other being an observation node where voltage change is monitored [29]. For illustration,
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the rankings in Table 8.5 are shown for two observation nodes, 7 and 16. Furthermore, one

can compute the mean of each actor node’s voltage influencing score across all observation

nodes to determine its overall influencing capacity. The last column of Table 8.5 shows the

average ranking of the actor nodes.

If we strictly compare the top positions of voltage influencing nodes with those of ro-

bustness metrics to system failure in tables 8.2, 8.3, 8.4, none of them seems to match. It is

not even fair to make such a strict comparison since process of computing these two classes

of metrics are quite different. In fact, it makes sense only to compare the hybrid robustness

metrics with voltage influencing scores since both involve power flow and topological related

characteristics, unlike network and performance-based metrics that only consider one of the

two aspects at a time. EBW and EDG appear to match VIF ranking to a certain extent

since they capture two of the Top-5 nodes, i.e., nodes 9 and 14. So, hybrid metrics can

be safely employed in applications that require a set of critical nodes to monitor/control

voltage fluctuations. There are numerous advantages to using these kinds of hybrid metrics

for voltage fluctuations, including (1) light and easy computation; (2) no need to rely on

computationally expensive simulations and other system states that are difficult to obtain.

8.3 Challenges and opportunities

The metrics studied in this work, reveal the importance of different factors in determin-

ing the system’s robustness and the advantage of fusing performance and network-based

methodologies. However, to enable widespread adoption, there is scope for improvement in

robustness metric design. This section identifies key challenges that lie ahead and suggests

future research directions in effective metric formulation.
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8.3.1 Generic formulation

There are plenty of metrics developed for exploring various aspects of robustness in PDS.

However, there is no clear consensus or analysis regarding their applicability, which ulti-

mately leads users to experiment with different metrics before finding the most effective

ones for their use case. In addition, most of the metrics are designed to work for a specific

use case, rendering them useless for other applications. Thus, there is a pressing need to

design robustness metrics with a generic formulation that can work for multiple applications.

One way to approach the generic paradigm is by incorporating all relevant aspects into

the metric formulation itself, i.e., all the factors that contribute to the target objectives

should be included in the metric formula. For example, in the ENT metric, the loading level

of the line is explicitly added to the actual power flow to effectively account for the link

overload failure. Similarly, the voltage influencing score of the studied node can be merged

into the current ENT formulation to account for the voltage fluctuations. This will allow the

metric to simultaneously account for two objectives, i.e., link overload failure and voltage

fluctuations.

8.3.2 Scalable computation

Existing methods for computing robustness metrics, especially those involving electrical char-

acteristics, are computationally intensive and do not scale well with the network size. As

a result, robustness analysis on large test networks such as the IEEE 8500 node feeder or

10477 bus system is difficult and time-consuming [166–168]. Furthermore, for every small

change in network configuration, the process of computing the metric needs to be repeated

without leveraging any past solutions. Thus, a more elegant framework is required that can

tackle these issues.

Data-driven models could be a potential candidate to address some of the computational

shortcomings of the existing approaches. Deep neural network-based models can be trained

to estimate robustness scores at the node level as well as at the graph level. For example,
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some inspirations can be drawn from [32], where graph neural network is utilized to obtain

critical nodes by training a node classifier. These models are easily scalable to larger networks

since they only rely on the sub-graph or a relevant part of the network for any node/link level

prediction rather than relying on entire network. Furthermore, this type of model can make

predictions across networks of varying sizes. There are numerous other advantages compared

to conventional approaches, such as the ability to capture a node’s non-linear relationships

with the robustness of the entire network, high expressive power due to a large number of

model parameters, etc.

8.3.3 Holistic modeling

The majority of current modeling frameworks for studying robustness analyze the electrical

network in isolation, without taking into account its interdependency with other coexisting

critical infrastructures such as water, transportation, etc. In addition, disruptive events

disproportionately impact the low-income and socially vulnerable communities underscoring

the need for incorporating social equality via true assessment of community resilience. How-

ever, the robustness of complex systems is typically evaluated solely in terms of engineering

attributes, such as network topology or electrical parameters, and tends to ignore social

factors that are equally important. As a result, robustness evaluations of such decoupled

and partially informed systems are sub-optimal. Thus, there is a need to develop a holistic

modeling framework for accurate robustness assessment.

Stochastic hetero-functional graph theory (SHFGT), inspired by [157, 169] is one poten-

tial modeling framework to incorporate the above-discussed factors. SHFGT can effectively

model complex interdependent systems, including electrical, power, and transport networks,

via a set of graphs corresponding to different activities. Essentially, these graph-structured

models leverage functionality as building blocks, unlike conventional frameworks that only

describe physical attributes in terms of nodes. This allows them to efficiently integrate var-

ious aspects, including engineering and social robustness factors. Robustness assessment
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within this kind of modeling framework would be more realistic and thus enable one to take

effective decisions in improving system resilience.

8.4 Summary

This chapter presents a systematic study of different robustness metrics to system failure by

comparing their similarity and dissimilarity in ranking critical nodes in a power distribution

network. Then, the efficacy of these metrics in characterizing voltage fluctuations is accessed

by comparing their rankings with that of voltage influencing scores. From experimental

results, it appears that the hybrid robustness metrics can express voltage fluctuations to a

reasonable extent. In the next chapter, a new modeling framework is introduced that further

enhances the robustness evaluation process.
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Chapter 9

Integrated Robustness Analysis via

Hetero-Functional Graph Theory

The comparative study in the Chapter 8 reveals that the majority of current modeling

frameworks for studying robustness analyze the electrical network in isolation, without tak-

ing into account its interdependency with other coexisting critical infrastructures such as

water, transportation, etc. In addition, disruptive events disproportionately impact the low-

income and socially vulnerable communities underscoring the need for incorporating social

equality via true assessment of community resilience. However, the robustness of complex

systems is typically evaluated solely in terms of engineering attributes, such as network

topology or electrical parameters, and tends to ignore social factors that are equally impor-

tant. As a result, robustness evaluations of such decoupled and partially informed systems

are sub-optimal. Thus, there is a need to develop a holistic modeling framework for accu-

rate robustness assessment. Hetero-functional graph theory (HFGT), inspired by [169] is

one potential modeling framework to incorporate the above-discussed factors. HFGT can

effectively model complex interdependent systems, including electrical, power, and transport

networks, via a set of graphs corresponding to different activities. Essentially, these graph-

structured models leverage functionality as building blocks, unlike conventional frameworks
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that only describe physical attributes in terms of nodes. This allows them to reveal various

functionalities and their dependencies within the system as well as integrate various aspects,

including engineering and social factors. Robustness assessment within this kind of mod-

eling framework would be more realistic and thus enable one to take effective decisions in

improving system resilience.

This chapter first utilizes HFGT framework for analyzing robustness in the standard

IEEE 37-node power distribution network. Specifically, we highlight the various advantages

of HFGT, including the feasibility of combining performance and network based robustness

measures. Then in the second part, we extend our study to interdependent urban infras-

tructure networks (IUN), comprising of electricity, water, heating, natural gas and road

transportation networks (along with infrastructure repair services). Unlike original HFGT

[36] that uses binary terms to quantify dependencies among functionalities, we introduces

weighted hetero functional graph theory (WHFGT) framework, where real numbers are used

to accurately quantify dependencies. Then a comprehensive and in-depth robustness evalu-

ation of an IUN is carried out via a failure based analysis. WHFGT offers a more generic

framework, including the simulations of partial attacks (partial loss of functionalities due to

attacks), which is not feasible with conventional HFGT models.

9.1 Background

HFGT framework [36] can be viewed as an intellectual fusion of model-based systems engi-

neering and network science, and has been applied in transportation networks [170], produc-

tion systems [171], power grids [172], among others. It aims to merge the fields of system

engineering and network science for holistic modeling of interdependent engineering systems.

Primarily, it is comprised of seven graph-based models that are related to their counterparts

in model based system engineering. These graph-based models include (1) System con-

cept ; (2) Hetero-functional adjacency graph; (3) The controller agency graph; (4) Controller
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adjacency graph; (5)Service as operand behavior ; (6) Service feasibility graph; (7) System

adjacency matrix. The first two models are structural models and can be applied to many

types of engineering systems. Due to explicit differentiation of system functionalities in the

system concept model, the networks with unlike functions can be integrated into a single

mathematical model via models (1) and (2). Unlike the conventional graphic representa-

tion, where nodes and edges represent system elements, nodes of the hetero-functional graph

represent system functionalities and edges represent the logical sequences or dependencies

among them. The models (3) and (4) constitute the system control models. Together, they

differentiate systems based upon the structure of their control and decision-making archi-

tectures. The models (5) and (6) constitute the service models, which differentiate systems

based upon the behaviors of their operands. These models are then ultimately coupled to-

gether for a holistic modeling of interdependent engineering systems in a matrix form that

is defined as the model (7) (i.e. system adjacency matrix).

9.2 HFGT model of Power distribution network

This section analyzes a standard IEEE-37 node power distribution network with HFGT-

based models. We focus solely on the system concept model of the HFGT, since it is a

fundamental building block for other models. Essentially, the system concept maps system

functionalities to its physical form (resources). To this end, resources can be divided into

transformation (capable of transforming operand states), transportation (capable of trans-

porting operands), and buffer (capable of storing operands). Similarly, functionalities can be

categorized into transformation (transforming properties of the operands) and transporta-

tion (transporting operands between the resources/buffer). Transformation knowledge base

maps transformation resources and transformation processes, transportation knowledge base

maps transformation resources and transformation processes. System knowledge base con-

nects all processes with their associated resources. The hetero-functional adjacency matrix
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(HFAM) provides information related to the sequence of processes.

Figure 9.3: Hetero functional graph of IEEE-37 node system

Figure 9.3 illustrates a Hetero functional graph (HGF) of the IEEE 37-node system, and

it is different than that of regular graph (RG) shown in Fig. 3.2 of Chapter 3. HFG is

generated based on HFAM, where nodes represent processes and links denote their depen-

dencies. The regular graph shows the IEEE-37 node power network with a source node, load

nodes, transformers, DERs, and BESS. These are connected by links representing power

lines. Rather than 37 nodes that only represent physical facilities in RG, HFG has 77 nodes

that represent all system functionalities. The details of the facility locations and their func-

tionalities are provided in Table 9.1 and Table 9.2, respectively. In fact, the RG does not

incorporate changes even when end-users add PVs/BESS to their houses/community, while

HFG can incorporate those changes explicitly as additional nodes (e.g., nodes 75 to 77 ).

These kinds of fundamental differences reinforce our deduction that HFG is a more rigorous

framework compared to regular models. Additionally, HFG captures the logical flow of sys-

tem functionalities, making it easy to track the services from their start to their end process.

Figures 9.1 and 9.2 denote the system knowledge matrix and hetero functional adjacency
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matrix for the IEEE 37-node system. To further compare HFG with RG, we simulated

several attacks on these graphs and analyzed robustness via failure trajectories in the next

subsection.

Table 9.1: Locations of Resources in IEEE 37-node network

Resource Description Resource Description
M1 Source node 1 H14 Power line between node 14 to 15
M2 Load node 2 H15 Power line between node 15 to 16
M3 Load node 3 H16 Power line between node 15 to 17
M4 Load node 4 H17 Power line between node 14 to 18
- - H18 Power line between node 18 to 19

M37 Load node 37 H19 Power line between node 19 to2 20
M38 Transfomer for load node 24 H20 Power line between node 20 to 21
M39 DER at load node 7 H21 Power line between node 20 to 22
M40 DER at load node 9 H22 Power line between node 10 to 23
M41 DER at load node 14 H23 Power line between node 10 to 24
H1 Power line between node 1 to 2 H24 Power line between node 3 to 25
H2 Power line between node 2 to 3 H25 Power line between node 25 to 26
H3 Power line between node 3 to 4 H26 Power line between node 25 to 27
H4 Power line between node 4 to 5 H27 Power line between node 3 to 28
H5 Power line between node 5 to 6 H28 Power line between node 28 to 29
H6 Power line between node 6 to 7 H29 Power line between node 29 to 30
H7 Power line between node 7 to 8 H30 Power line between node 30 to 31
H8 Power line between node 4 to 9 H31 Power line between node 29 to 32
H9 Power line between node 9 to 10 H32 Power line between node 32 to 33
H10 Power line between node 10 to 11 H33 Power line between node 33 to 34
H11 Power line between node 11 to 12 H34 Power line between node 32 to 35
H12 Power line between node 11 to 13 H35 Power line between node 35 to 36
H13 Power line between node 13 to 14 H36 Power line between node 36 to 37

9.3 Contingency Analysis in HFGT framework

In this section, we have conducted a percolation-based assessment, where nodes would be

removed one at a time, and then the robustness of the residual network is measured at each

step. The nodes are removed with two different strategies, i.e., random (randomly selecting

nodes ) and targeted (nodes are selected based on some criterion). The robustness at each

step of the percolation is determined by the size of the largest cluster component (LCC)

and the number of connected components (NCC). The larger the LCC, the more connected
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Table 9.2: Defined Processes in IEEE 37-node network

Name Functionality Name Functionality
P1 Maintain voltage at source node 1 P40 Transport power from M2 to M3
P2 Consume power at load node 2 P41 Transport power from M3 to M4
P3 Consume power at load node 3 P42 Transport power from M4 to M5
P4 Consume power at load node 4 P43 Transport power from M5 to M6
P5 Consume power at load node 5 P44 Transport power from M6 to M7
P6 Consume power at load node 6 P45 Transport power from M6 to M8
P7 Consume power at load node 7 P46 Transport power from M4 to M9
P8 Consume power at load node 8 P47 Transport power from M9 to M10
P9 Consume power at load node 9 P48 Transport power from M10 to M11
P10 Consume power at load node 10 P49 Transport power from M11 to M12
P11 Consume power at load node 11 P50 Transport power from M11 to M13
P12 Consume power at load node 12 P51 Transport power from M13 to M14
P13 Consume power at load node 13 P52 Transport power from M14 to M15
P14 Consume power at load node 14 P53 Transport power from M15 to M16
P15 Consume power at load node 15 P54 Transport power from M15 to M17
P16 Consume power at load node 16 P55 Transport power from M14 to M18
P17 Consume power at load node 17 P56 Transport power from M18 to M19
P18 Consume power at load node 18 P57 Transport power from M19 to M20
P19 Consume power at load node 19 P58 Transport power from M20 to M21
P20 Consume power at load node 20 P59 Transport power from M20 to M22
P21 Consume power at load node 21 P60 Transport power from M10 to M23
P22 Consume power at load node 22 P61 Transport power from M10 to M24
P23 Consume power at load node 23 P62 Transport power from M3 to M25
P24 Consume power at load node 24 P63 Transport power from M25 to M26
P25 Consume power at load node 25 P64 Transport power from M25 to M27
P26 Consume power at load node 26 P65 Transport power from M3 to M28
P27 Consume power at load node 27 P66 Transport power from M28 to M29
P28 Consume power at load node 28 P67 Transport power from M29 to M30
P29 Consume power at load node 29 P68 Transport power from M30 to M31
P30 Consume power at load node 30 P69 Transport power from M29 to M32
P31 Consume power at load node 31 P70 Transport power from M32 to M33
P32 Consume power at load node 32 P71 Transport power from M33 to M34
P33 Consume power at load node 33 P72 Transport power from M32 to M35
P34 Consume power at load node 34 P73 Transport power from M35 to M36
P35 Consume power at load node 35 P74 Transport power from M35 to M37
P36 Consume power at load node 36 P75 Generate power at node 7
P37 Consume power at load node 37 P76 Generate power at node 9
P38 Step down voltage to load node 24 P77 Generate power at node 14
P39 Transport power from M1 to M2
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the network is and thus more robust. In contrast, the larger value of NCC corresponds

to lower connectivity and lower robustness. Furthermore, in the targeted case, nodes are

removed based on the out-degree of a node since the out-degree of a node signifies the

importance of that node in terms of providing functionalities to other nodes of the network.

The experiments are repeated for both HFG and RG. Figures 9.4 and 9.5 illustrate the

LCC and NCC for both random and targeted attacks in HFG and RG, respectively. LCC

decreases with the progress of percolation since node removals will disintegrate the graph into

various components with a smaller number of nodes. However, LCC decays sharply in the

case of RG because it always has fewer nodes and edges compared to HFG. Similar behavior

is demonstrated by the NCC. While in the case of a targeted attack, degradation is very fast

with a very few attacks compare to that of random case. particularly, in RG representation,

removing node 3 prevents the power flow in the entire network. Since DERs located in nodes

7, 9 and 14, they can serve the local nodes. Therefore, a separate analysis is required for

the isolated network to evaluate system robustness. However, their contribution to maintain

system functionality (in other words enhance system robustness) is clearly ignored in RG.

On the other hand, HFG maintains the functionality of transporting power active as long

as any of the generation sources (i.e., source node 1, DERs at node 7, 11, 14) is active in the

graph. Thus, HFG enables seamless computation in a single step. This demonstrates the

benefit of using HFG while studying system robustness.

9.4 Interdependent system configuration

To exploit the full potential of HFGT for assessing robustness, we extended the test system

from a single power distribution network to an interdependent network. Fig. 9.6 shows the

integrated urban network of interest. This network comprises of an electric power system

[173], a gas network [174], a water system [175], a road transportation network [176], and

a district heating network [177]. Further, Table 9.3 tabulates the locations of various in-

143



Figure 9.4: Trajectory of robustness metrics in HFG across various stages of percolation

Figure 9.5: Trajectory of robustness metrics in regular graph (RG) across various stages of
percolation

frastructure facilities within the networks, including 1 gas-fired power plant (GPP), 1 solar

power plant (SPP), 2 water treatment plants (WTP), 3 heating plants (HPL), 2 gas sta-

tions (GS), 1 gas-driven CHP, 2 industry parks (IP1-IP2), 3 commercial zones (CZ1-CZ3), 6

residential zones (RZ1-RZ6), 1 water infrastructure repair facility (WIRF), 1 power infras-

tructure repair facility (PIRF) and 1 natural gas infrastructure repair facility (GIRF). To

ensure the proper operation of these facilities, 121 functionalities are required in total. In

particular, electricity supplies of industry parks, commercial zones and one residential zone
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(RZ1) depend on three electric power sources, including the gas-driven power plant, CHP

and the solar plant. The complete process relation matrix is presented in [178], with the

same structure as defined earlier for the conceptual diagram with 43 functionalities.

(a) (b)

(c) (d) (e)

Figure 9.6: Integrated infrastructure with (a) electricity, (b) gas, (c) district heating, (d)
transportation, (e) water networks

For this system network configuration, the relation matrix needs to be extended to incor-

porate the additional dependencies among processes due to the shared path of energy/service

deliveries. For instance, the successful execution of the process that transmits power from

GPP (located at node 5 in electric power network) to WIRF (located at node 1 in electric

power network) depends on the successful execution of process that transmits power from

GPP (located at node 5 in electric power network) to WTP1 (located at node 3 in electric

power network). This is because, the electricity delivery path between GPP (node 5) and

WTP1 (node 3) is a part of the only path for electricity transmission from GPP (node 5) to

WIRF (node 1). Similarly, the effects of other network constraints on process dependencies
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are integrated into the process relation matrix.

Table 9.3: Locations of Entities in Various Networks

UtilityDescription Entity Location Entity Location Entity Location
WIRF Node 1 CZ1 Node 9 RZ2 Node 17
WTP1 Node 3 WTP2 Node 11 RZ3 Node 19
IP1 Node 4 CZ2 Node 12 RZ4 Node 20

Power GPP Node 5 RZ1 Node 13 GS2 Node 21
IP2 Node 6 GIRF Node 14 RZ5 Node 22
GS1 Node 7 SPP Node 15 CHP1 Node 23
PIRF Node 8 CZ3 Node 16 RZ6 Node 24
WIRF Node 1 CZ1 Node 9 RZ2 Node 17
HPL1 Node 2 HPL2 Node 10 HPL3 Node 18
WTP1 Node 3 WTP2 Node 11 RZ3 Node 19

Water IP1 Node 4 CZ2 Node 12 RZ4 Node 20
GPP Node 5 RZ1 Node 13 GS2 Node 21
IP2 Node 6 GIRF Node 14 RZ5 Node 22
GS1 Node 7 SPP Node 15 RZ6 Node 24
PIRF Node 8 CZ3 Node 16
GS1 Node 1 HPL3 Node 8 RZ3 Node 14
HPL1 Node 2 CHP1 Node 10 RZ4 Node 15

Gas GPP Node 5 RZ1 Node 12 RZ5 Node 17
HPL2 Node 6 RZ2 Node 13 RZ6 Node 19
WIRF Node 1 CZ2 Node 12 RZ3 Node 19
IP1 Node 4 RZ1 Node 13 RZ4 Node 20

Heat IP2 Node 6 GIRF Node 14 RZ5 Node 22
PIRF Node 8 CZ3 Node 16 CHP1 Node 23
CZ1 Node 9 RZ2 Node 17 RZ6 Node 24
WIRF Node 1 PIRF Node 8 HPL3 Node 18
HPL1 Node 2 HPL2 Node 10 GS2 Node 21

Transport WTP1 Node 3 WTP2 Node 11 CHP1 Node 23
GPP Node 5 GIRF Node 14
GS1 Node 7 SPP Node 15

9.5 Weighted hetero functional graph theory (WHFGT)

Using the system knowledge matrix of the HFGT framework, system resources and system

processes can be mapped. To more realistically capture functionality interactions, we propose

a process relation matrix (PR), which is developed on top of the conventional dependency
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Figure 9.7: Conventional Graph Representation of a Conceptual Interdependent Urban In-
frastructure Network (IUN)

matrix of HFGTs. For the conventional dependency matrix, the relationships between the

functionalities are expressed in binary terms, i.e., it only captures whether the dependency

is present or not. However, it is inadequate to quantify the degree of dependency between

the two functionalities. For instance, an electric power consumer can be supplied by multiple

power plants. The conventional HFGT framework cannot present the degree of dependency

of the electricity consumer on each power plant precisely. Therefore, to address this short-

coming, we propose a WHFGT framework and the corresponding relation matrix (PR), which

quantifies the degree of dependency using weights of real numbers. As performing a particu-

lar functionality could depend on multiple other functionalities, the proportion contributed

from each functionality signifies the weight. Thus, for a particular node in the WHFGT,

the weights of its associated edges in matrix PR denote the degree of dependencies on other

functionalities. For instance, in Fig. 9.7, electricity demand of the community customers can

be supplied by two sources, i.e., the gas-driven power plant and CHP, and the dependencies

on both of them can be reflected by assigning weights. With the assumption that gas-driven
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plant contributes 20% of the total demand and CHP supplies remaining 80%, we can allocate

0.2 to the edge connecting the functionality of “consuming electricity in community” and the

functionality of “delivering electricity from gas-driven power plant to community consumer”,

and 0.8 to the other edge. For the illustration purpose, we have arbitrarily allocated weights

in this work. Note that the proposed method can be adapted to accommodate other param-

eters in practice based on the collected relevant information. The process relation matrix

(PR) for the conceptual diagram depicted in Fig. 9.7 is a 43 × 43 matrix as 43 functionali-

ties are incorporated. For brevity, the process relation matrix (PR) is provided in an online

repository [178]. The rows and columns of the matrix represent functionalities, while the

entries represent the dependencies between two corresponding functionalities. Correspond-

ingly, Fig. 9.8 depicts the process relation graph for a synthetic network shown in Fig. 9.7.

The direction of edges are from the source to target nodes, where target nodes (functional-

ities) are dependent on the source nodes (functionalities) with dependency proportional to

the edge weights.

Figure 9.8: Process relation graph corresponding to the network shown in Fig. 1
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9.6 Contingency Analysis in WHFGT Framework

The tight interconnections among various infrastructures may exacerbate the impact of po-

tential cascading failures, as contingencies in one part of the system might propagate to other

networks. Therefore, robustness evaluation of IUNs is critical for vulnerability analysis and

robustness enhancement.

To simulate contingencies on IUNs, the nodes are defined as the targets for attacks.

In other words, disabling certain functionalities is equivalent to removing the associated

nodes in the WHFGT graphs. Note that the edges merely denote the dependencies among

functionalities, thus, they are not considered as attack targets, as disabling dependency

relations has no interpretative meaning. Besides, based on graph percolation procedure [179],

nodes are removed in stages and the robustness metrics of the residual graph are computed

at each stage to study the transition properties of the graph. Along with the removal of a

selected node, the child nodes of the selected node are also removed under specific conditions.

Here, child nodes are defined as nodes that can be reached (directed path exist) from the

selected node and are computed using depth first search algorithm [180]. We would like to

reiterate that, for the sake of simplicity, all the contingencies in this paper are referred to as

“attacks”.

According to the available system information and attacker capabilities/strength, the at-

tacks can be further divided into four categories, as tabulated in Table 9.4. Random/targeted

attacks are categorized based on the knowledge level of attackers about the system. Specif-

ically, in a random attack, nodes are removed randomly at each stage of the percolation

whereas, in a targeted attack, nodes are removed based on certain importance scores of

nodes (assuming the system information is available to the attacker). On the other hand,

complete/partial attacks are categorized based on attackers capability. Specifically, in a

complete attack, the attacker disables a process completely, while in a partial attack, the

attack can only degrade the process to a certain degree. Detailed description of these attack

categories will be provided later.
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Table 9.4: Types of attack strategies

StrengthInformation Random Target
Complete complete random complete target
Partial partial random partial target

As mentioned earlier, targeted attacks are launched based on the importance scores as-

signed to nodes, assuming the attacker has acquired the entire system information. Here, the

concept of centrality is applied to quantify importance of nodes in a network. Four types of

centrality are widely applied in prior literature, including degree centrality, eigenvector cen-

trality, pagerank centrality and betweenness centrality [181]. In IUN, we select betweenness

and weighted out-degree centrality as the basis to conduct targeted attacks. Specifically,

removal of nodes with high betweenness centrality and high weighted out-degree centrality

in the earlier stages is considered as efficient approaches to impair the system connectivity,

thereby simulating extreme conditions.

9.6.1 Complete attack

The most trivial type of attack scenario would be the situation where the attacker is capable

of disabling a process completely, referred to as a complete attack. This can be caused by

extreme natural events or powerful malicious attackers. In WHFGT, complete attacks can be

represented by removal of corresponding nodes entirely, within a single stage. Based on the

knowledge level of the attacker, complete attacks can be further categorized into complete

random and complete targeted attacks. Specifically, for a complete random attack, it is

assumed that the attacker is not aware of the internal configuration of the IUN and hence the

targeted nodes (processes) will be attacked randomly. Under this situation, nodes are selected

randomly for removal at each stage of the percolation and the percolation is continued until

the graph is left with two nodes. Obviously, if a child node (functionality) is dependent

on its only parent node (functionality), disabling the parent node (functionality) will lead

to obliteration of the child node. For instance, the node representing the functionality of
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“transport water from WTP to the residential community” will be removed once the node

corresponding to the functionality of “treat water in WTP” is out of the graph. On the

other hand, for child nodes with multiple parent nodes, removing some (not all) of its parent

nodes will lead to a certain degree of degradation, which is quantified by the out-degree weight

reduction. Out-degree weights of a node indicate the amount of dependency the neighbors

have on the node, whereas the in-degree weights of a node signify the extent of dependency

the node has on its neighbor. Specifically, the decrease of out-degree weights is assumed to

be in proportion to the decrease of in-degree weights. In other words, for a particular node

(process), with less inputs from parent nodes (functionalities), its performance of supporting

other nodes (functionalities) will be degraded accordingly. When the out-degree weight of

a node decreases to a pre-defined threshold, namely critical quality of functionality (QoF),

it will be removed from the graph. The practical interpretation of this rule is that when a

process is unable to support certain follow-up services, it will be considered as dysfunctional.

For instance, when the process of “deliver electricity to customers 1-5” is degraded to “deliver

electricity to only customer 1” due to attacks, the relevant infrastructure might be considered

as dysfunctional and the temporary shutdown or maintenance actions may be needed. Note

that the critical QoF value can be assigned flexibly, based on the specific processes and

situations.

Furthermore, considering the frequent occurrences of malicious cyber attacks around the

globe, it is increasingly vital to address the situation wherein the attacker could obtain in-

sights on the entire system and launch targeted attacks. Targeted attacks aim to remove

nodes with higher weighted out-degree/betweenness centrality in the earlier stages of per-

colation. In other words, functionalities with higher importance are targeted in the earlier

stages of percolation. The complete targeted attack is similar to its random counterpart

except that the nodes are selected on the basis of predefined importance score, determined

by weighted out-degree/betweenness centrality. During targeted attacks, nodes are removed

in descending order of importance. The detailed procedure of complete attack is shown in
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Algorithm 6 Complete attack

Input: Graph G with V nodes.
Output: List of robustness metrics corresponding to various percolation stages

LOOP Process
1: while |V | > 2 do
2: nodeselected : Select a node randomly or based on the order of important scores.
3: childnodes : Find all child nodes of nodeselected.
4: remove nodeselected from G
5: for child in childnodes do
6: indeg : Find weighted in degree of child node
7: outdeg : Find weighted out degree of child node
8: Degradationratio= current indeg of child

indeg of child before percolation

9: outdegweights : Decrease the out edges weight of child by Degradationratio
10: if ( indeg= 0) or (outdegweights < Quality of Function) then
11: remove child from G
12: end if
13: end for
14: compute robustness metrics
15: end while
16: return list of robustness metrics corresponding to various percolation stages

Algorithm 1. The robustness metrics indicated in the output of Algorithm 1 will be elab-

orated in section 4. Again, it should be noted that the word “attack” used in this paper

does not necessarily denote malicious cyber/physical destruction, but also represents natural

disasters that may lead to serious damage.

9.6.2 Partial attack

The complete attack is designed for simulating the scenarios where the attack is sufficiently

powerful to destroy a functionality completely, which results in loss of the entire process.

To examine the robustness of the graph against less severe contingencies, we propose a new

type of attack strategy referred to as partial attack. The key difference between partial and

complete attack strategies is that during percolation of a partial attack, the attacked nodes

will only experience out-degree depletion until the critical QoF value is violated. In contrast

to complete attacks where the attacked process is disabled unconditionally, partial attacks

will only lead to a certain level of degradation, namely degradation level, which signifies the
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extent of performance degradation of functionalities. In other words, functionalities operat-

ing at the level above QoF value is considered to be at an operative stage. Once degradation

level of a functionality reaches QoF threshold, it becomes no longer operative that results in

the removal of corresponding node from the graph. On the other hand, similar to complete

attacks, partial attacks can be further subdivided into two types depending upon the knowl-

edge level of the attacker, namely partial random attacks and partial targeted attacks. For

partial random attacks, the attacked nodes are selected randomly, while nodes with higher

weighted out-degree/betweenness centrality will be targeted in the early stages during par-

tial targeted attacks. Algorithm 2 describes the complete procedure of a partial attack. It

should be noted that partial attack analysis only applies to our proposed weighted hetero

functional graphs, since partial degradation of weights can be incorporated. Traditional

HFGT framework cannot accommodate these realistic attack scenarios.

Algorithm 7 Partial attack

Input: Graph G with V nodes.
Output: List of robustness metrics corresponding to various percolation stages

LOOP Process
1: while |V | > 2 do
2: nodeselected : Select a node randomly or based on the order of important scores.
3: childnodes : Find all child nodes of nodeselected.
4: outdegweights : Decrease the out edges weight of nodeselected by random quantity.
5: if ( outdegweights < Acceptable service) then
6: remove nodeselected from G
7: end if
8: for child in childnodes do
9: indeg : Find weighted in degree of child node
10: outdeg : Find weighted out degree of child node
11: Degradationratio= current indeg of child

indeg of child before percolation

12: outdegweights : Decrease the out edges weight of child by Degradationratio
13: if ( indeg= 0) or (outdegweights < Quality of Function) then
14: remove child from G
15: end if
16: end for
17: compute robustness metrics
18: end while
19: return list of robustness metrics corresponding to various percolation stages
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9.7 Numerical Study

In this section, we implement WHFGT based modeling of IUN and evaluate its robustness.

To begin with, the system network configuration is described, along with its effects on

the process relation matrix (PR). After introducing several robustness metrics, the IUN

robustness is quantified by analyzing the impacts of four types of attack scenarios.

9.7.1 Metrics for robustness evaluation

Robustness of IUN in the present work is studied through the percolation process, where

nodes of the network are removed in stages and the connectivity of the residual network is

assessed at each stage, until the graph is completely disconnected. In a high level definition,

the connectivity of the residual graph after node removal represents the robustness of the

graph towards that node attack. In general, higher connectivity of the residual graph indi-

cates enhanced robustness. The conventional indices for quantification of graph connectivity

include Largest Connected Component (LCC) and the Number of Connected Components

(NCC) [182]. Here, a component denotes a subgraph, in which any two vertices are connected

to each other by paths and is connected to no additional vertices in the graph. Specifically,

LCC denotes the size of the largest component where every node is at least connected to

one other node, while NCC represents the number of connected components in the entire

graph. Furthermore, we use flow robustness (FR) to quantify robustness, from the compo-

nents standpoint [96]. It captures the ability of the nodes to communicate with each other

in all the clusters and hence characterizes the overall reachability of the graph. Unlike LCC

that only accounts for the largest connected component, FR incorporates the number of

nodes in all components of the residual graph. The FR metric corresponds to:

FR =

∑
i |Ci|(|Ci| − 1)

N(N − 1)
(9.1)
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where Ci is the number of nodes in component i and N denotes the total number of nodes

in the original graph before attacks. As seen, FR represents the degradation at a global

level by monitoring the connectivity situation of all components and hence reveals global

robustness.

However, the three indices described earlier are inherently incapable of incorporating

weights of edges. Therefore, we design a new robustness metric, namely service robustness

(SR). It can be expressed as:

SR =

∑
iQ

a
i∑

iQi

(9.2)

where Qa
i denotes the weighted out-degree of node i after each stage of attack and Qi rep-

resents the total weighted out-degree of all nodes in the original graph without attacks.

The SR index not only infers connectivity of the graph, but also incorporates the weights

of edges. Since the weights of edges quantify the dependencies between source and target

nodes, integrating them into the robustness analysis would aid in providing a more precise

evaluation of impacts of attacks. In the next sub-section, we examine the robustness of the

graph described earlier by observing the trajectories of the four robustness metrics along the

percolation stages with different types of attacks.

9.7.2 IUN Robustness Analysis

The robustness of IUN is examined by evaluating the robustness metrics, i.e., LCC, NCC,

SR and FR, after each stage of percolation. The impacts of four attack strategies, i.e.,

complete random attack, complete targeted attack, partial random attack and partial tar-

geted attack, are examined and compared in the following. The attacked node selections in

targeted attack are carried out based on betweenness and weighted out-degree. Addition-

ally, Monte-Carlo simulation approach is used here to evaluate the effects of random attack

strategies by repeating the simulation for 10,000 times.

155



Complete attack

As mentioned earlier, in a complete attack, the attacked nodes are removed completely once

the attack is imposed. Under this category, we first simulate the random attack situation.

The trajectories of the four robustness metrics are depicted in Fig. 9.9. The horizontal axis

denotes the numbers of sequential attacks imposed on the system. After each attack, the

robustness metrics of the residual graph are evaluated and plotted in the vertical axis. The

robustness analysis is performed in steps, namely in percolation stages, which is in consistent

with the definition of percolation in [183]. In this way, real-world situations such as sequential

cyber-attack events or natural disasters can be simulated. As expected, LCC decreases along

with the progress of percolation, as node removals will decompose the graph into various

components with a smaller number of nodes. On the other hand, the NCC increases in the

initial stages and starts declining after a certain stage. This is because, initially, the entire

graph is fragmented into several sub-graphs that lead to an increasing number of connected

components. After a certain stage (stage 14 in this case), those sub-graphs will be further

decomposed into individual nodes, decreasing the value of NCC. The global metric FR also

drops exponentially but with a lower decay rate compared to LCC, which implies the slower

degradation of connectivity (weighted or unweighted) among various components across the

entire graph (compared to the local connectivity in the largest component). The trajectory

of SR shows a gradual decline as well, which captures the diminishing mutual dependencies

among nodes.

To demonstrate the effects of attackers’ knowledge about the system, we further illustrate

the trajectories of robustness metrics with imposed betweenness- and weighted outdegree-

based targeted attacks along the percolation stages, as depicted by blue and green curves in

Fig. 9.9, respectively. Like the results associated with complete random attacks, the gen-

eral patterns of trajectories of robustness metrics correspond to the trend of gradual decline

except for NCC. The NCC metric initially increases abruptly followed by fluctuations and

eventually settles in the final stages. Additionally, the value of FR has a lower decay rate
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compared to LCC value, which indicates a certain level of connectivity among components

even with few nodes in the largest component. Additionally, compared to a random at-

tack, the degradation of the system robustness is substantially higher with targeted attacks.

Specifically, it takes 12 and 10 stages to disconnect the graph entirely if betweenness and

weighted out-degree are selected as the basis to launch targeted attacks, compared to an av-

erage of 40 stages required to completely disconnect the graph with imposed random attacks.

To further quantify the distinctions between random and targeted attacks, the numbers of

sequential attacks required for degrading the robustness metrics to certain levels are tabu-

lated in Table 9.5. The results illustrate that targeted attacks require fewer steps to reach the

same level of degradation as random attacks. For instance, achieving 50% degradation in FR

only takes 3 and 1 stages for betweenness- and weighted outdegree-based targeted attacks,

respectively, while 10 steps are needed to attain the same level of degradation with random

attacks. In other words, this test demonstrates the value of securing system information,

as attackers with system information are capable of causing severe destruction rapidly. Fig.

9.10 depicts the histograms of numbers of nodes in each component at various stages with

a complete targeted attack. The rapid decrease of node number in each component at the

early stages can be witnessed, while the component decomposition process slows down after

stage 6. Furthermore, comparing two types of targeted attacks, we can observe that the

weighted outdegree-based targeted attacks outperform betweenness-based targeted attacks

for all robustness metrics. This implies that weighted outdegree centrality could provide a

more precise indication of nodes importance in this test.

Partial attack

In partial random attacks, attacked nodes are selected randomly with a certain level of

degradation at each stage of percolation. The orange curves in Fig. 9.11 depict the trajec-

tories of robustness metrics. The general trends in Fig. 9.11 are similar to the results of

a complete random attack. Specifically, the metrics of LCC, FR and SR decrease abruptly
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Figure 9.9: Trajectory of robustness metrics across various stages of percolation with com-
plete attack
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Figure 9.10: Histogram of nodes per sub-component/cluster across different stages of perco-
lation in complete targeted attack

Table 9.5: Number of attacks for various degradation levels corresponding
to random and targeted attacks with complete attack strategy RN: Random
attack BW: Betweenness based targeted attack OD: Out-degree based targeted
attack

Degradation Level 20% 50% 80%
Metric Attack RN BW OD RN BW OD RN BW OD

LCC 3 1 1 7 1 1 15 3 2
FR 4 1 1 10 3 1 22 3 2
SR 3 1 1 8 2 1 17 3 2
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at the beginning followed by a moderate decline, while the index of NCC increases initially

and decreases after a certain stage. These observations are consistent with the results from

complete attack case described earlier.

We also illustrate the trajectories of robustness metrics along the percolation stages with

partial targeted attacks, as depicted in blue and green curves in Fig. 9.11. As seen in the

figure, targeted attacks lead to a more abrupt decrease in LCC, FR and SR. To further

illustrate the graph fragmentation process, Fig. 9.12 depicts the histograms of numbers

of nodes in each component at representative stages of partial targeted attack. The rapid

decrease of node number in each component at the beginning can be explicitly observed, while

the component decomposition process significantly slows down after stage 10. The results

correspond to the conclusion drawn from Fig. 9.11, which again signifies the remarkable

ability of targeted attacks in decimating the network rapidly. Additionally, the notable

gap between partial random and targeted attack strategies can be observed in Table 9.6,

which tabulates the required numbers of attack stages to reach certain degradation levels.

As expected, it takes fewer steps for targeted attacks to fragment the graph into a certain

level. In a nutshell, the general trend of robustness metrics are similar in both complete and

partial attacks. The distinction between complete and partial attacks is compared with the

distinction between targeted and random attacks in the following subsection.

Table 9.6: Number of attacks for various degradation levels corresponding to
random and targeted attacks with partial attack strategy

Degradation Level 20% 50% 80%
Metric Attack RN BW OD RN BW OD RN BW OD

LCC 4 1 1 11 4 1 23 6 4
FR 4 1 1 13 6 1 30 6 4
SR 5 1 1 13 4 1 26 6 4

Complete random attack versus partial targeted attack

Evidently, complete, targeted attacks cause more severe damage than partial, random at-

tacks, as demonstrated in Tables 9.5 and 9.6. In this section, the comparison between the
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Figure 9.11: Trajectory of robustness metrics across various stages of percolation with partial
attack.
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Figure 9.12: Histogram of nodes per sub-component/cluster across different stages of perco-
lation in partial targeted attack

impacts of a complete random attack and a partial targeted attack is conducted to evaluate

the merits of securing system information and infrastructure hardening.

From tables 9.5 and 9.6, we can witness that, in general, the distinction between random

and targeted attacks is more significant, compared to the distinction between complete and

partial attacks. For instance, assuming the targeted attacks are based on out-degree weight,

to reach the degradation level of 80% in FR, the gap in the required percolation stages
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between a partial random attack and a complete random attack is 8, whereas this gap

between a complete targeted attack and a complete random attack is 20. Similar conclusions

can be draw from other comparisons from tables 9.5 and 9.6. To further compare the effects

of attack strength (complete attack vs partial attack) and attack intelligence (targeted attack

vs random attack), we compare the outcomes of a complete random attack and a partial

targeted attack. The results show that the required percolation stages to reach a same

degradation level with a complete random attack is more than a partial targeted attack.

For instance, it takes 22 and 4 stages for a complete random attack and a partial targeted

attack (based on out-degree weight) to reach 80% of degradation in FR, respectively. These

results reveal that intelligent attacks are more likely to result in severe consequences than

powerful attacks, which call for the demanding needs for securing system information. To

further illustrate and demonstrate which factor dominates severity of attacks, strength or

information, Fig. 9.13 depicts snapshots of the residual graph at three representative stages

with a complete random attack and a partial targeted attack. It can be observed that the

partial targeted attack outperforms the complete random attack in rate of node eliminations.

This study reinforces the merits of securing system information for robustness enhancement.

9.8 Summary

This chapter leverages a hetero-functional graph theory-based framework for modeling power

distribution networks. It highlights the several advantages of HFGT over regular graphs, in-

cluding their thoroughness in capturing minor system details and their ability to provide

a reliable assessment of robustness. For exhibiting the real potential, the test system is

extended to an interdependent system comprising of electricity, water, district heating, nat-

ural gas, road transportation networks and relevant services. In addition, this chapter also

introduces a weighted hetero functional graph theory (WHFGT) based framework that can

capture dependencies in real-numbers. We conduct various types of attack simulations on
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Figure 9.13: Snapshots of graph across representative stages of percolation with complete
random attack and partial targeted attack.

the weighted hetero functional graphs and provide in-depth information about the trajecto-

ries of graph fragments. Results demonstrate that the proposed WHFGT-based framework

and robustness metrics can provide precise insights into the robustness of interdependent

infrastructure networks, which highlights the great importance of infrastructure hardening

and securing network information. The next chapter concludes the thesis and highlights the

potential future research directions.
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Chapter 10

Conclusions and Future work

10.1 Conclusions

This concluding chapter summarizes the contributions of this dissertation and discusses

future research directions. This dissertation addresses the fundamental questions related

to improving complex system resilience against disruptive events. Primarily, it focuses on

developing frameworks for accurate assessment of system robustness so that effective actions

can be undertaken to mitigate the impact of disruptive events on system operations. Broadly,

there are two different ways to access system robustness depending upon the factors involved,

i.e., performance and network-based. In this regard, an analytical framework has been

proposed for performance-based voltage violations metrics, and a graph machine learning-

based predictive model for network-based robustness metrics. The central theme across all

the proposed methods is related to “reducing complexity, enhancing scalability, and inducing

generalizability”. The developed frameworks can be applied to complex systems such as

the smart grid, transportation, etc., to identify key elements of robustness, and undertake

effective actions to improve system resilience towards extreme events. The accomplishments

of this dissertation can be summarized as follows:

Chapter 3 presents a foundational work for performance-based robustness analysis of a
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power distribution network. Specifically, it develops a probabilistic formulation of voltage

change due to random change in power at multiple locations of the network. The proposed

method can be used for various operation and planning-related tasks, including the monitor-

ing of voltage violations in the network. This analytical framework is then combined with

information theoretic metrics to derive a novel voltage influencing score in Chapter 4. VIS

is a node level metric that measures the voltage influencing capacity of actor nodes (nodes

where power varies) in a power distribution grid. VIS has several use cases, including the

identification of dominant voltage influencer (DVI) nodes. Results in standard test networks

demonstrate that the proposed metric effectively predicts the DVI nodes while substantially

reducing the execution time. The DVI nodes can serve as optimal control locations for

improving system resilience against detrimental voltage fluctuations.

Chapter 5 develops a graph neural network-based predictive model for identifying critical

nodes/links in complex networks. Essentially, the framework consists of two parts, where

in the first part, a GNN based embedding and regression model are trained end-to-end on

synthetic graphs with a small subset of nodes/links. The second part deals with the pre-

diction of scores for unseen nodes and links in the graph. Results on real-world networks

demonstrate the computational efficiency and scalability of the proposed approach over con-

ventional methods. These critical nodes can be prioritized to improve the system’s resilience.

Moreover, the predictions from GNN could be unreliable due to uncertain input graph or

GNN parameters. To address this issue, a Bayesian framework for incorporating aleatoric

and epistemic uncertainty into GNN is introduced in Chapter 6. Basically, the aleatoric

uncertainty arising from imprecise information about graph structure (probabilistic links)

and node features is propagated via the Assumed Density Filter. Furthermore, this method

is agnostic to network architecture, algorithms, and the learning tasks. Experimental results

show that the proposed method achieves superior performance in quantifying uncertainties

for different levels of input noise across several types of graphs. The confidence interval

around the mean prediction improves the usability of predictions related to critical nodes.
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Chapter 7 further extends the graph neural-based framework of Chapter 5 to graph com-

binatorial problems. This kind of problem is related to identifying a set of nodes for a

desired objective where the sequence of nodes plays a crucial role in determining the optimal

node set. Therefore, a Deep Reinforcement learning-based engine is leverage for learning to

identify the desired node sequence, and GNN is used for encoding the underlying network

information. Experiments on real-world networks show the computational efficiency and

higher scalability of the proposed framework.

In Chapter 8, a systematic study of different network node failure-based robustness met-

rics is conducted by comparing their similarity and dissimilarity in ranking critical nodes of

a power distribution network. Then, the efficacy of these metrics in characterizing voltage

fluctuations is accessed by comparing their rankings with that of voltage influencing scores.

Results show that the hybrid failure-based metrics can express voltage fluctuations to a

reasonable extent. Several key challenges related to the assessment of robustness in present-

day complex networks are also highlighted. Finally, Chapter 9 leverages a hetero functional

graph theory-based framework for modeling power distribution networks. It highlights the

several advantages of HFGT over regular graphs, including their thoroughness in capturing

even the smallest system details and their ability to provide a reliable assessment of robust-

ness. In addition, this chapter also introduces a weighted hetero functional graph theory

(WHFGT) based framework that can capture dependencies in real-numbers. We conduct

various types of attack simulations on the weighted hetero functional graphs and provide

in-depth information about the trajectories of graph fragments. Results demonstrate that

the proposed WHFGT-based framework and robustness metrics can provide precise insights

into the robustness of interdependent infrastructure networks, which highlights the great

importance of infrastructure hardening and securing network information.
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10.2 Future work

This section presents possible future directions in the areas of novel modeling frameworks for

large-scale complex networks and effective methodologies for computing their performance

and network-based robustness metrics. The following are the potential extensions to the

work presented in this dissertation:

• Chapter 4 provides dominant voltage influencer nodes for a given system in a static

manner, i.e., DVI nodes do not change with time. However, in practice, DVI nodes

could change with the power change profile. Developing a dynamic framework for DVI

nodes can be pursued in the future.

• Chapter 5 presents a graph machine learning-based framework for identifying critical

nodes and links in a complex network. It will be interesting to investigate the efficacy

of this framework, particularly the link identification module, for determining critical

links in power transmission lines. Furthermore, the criticality score in the current

methodology is determined by obliterating a single node/link at a time. Extension

of this framework from single node/link analysis to concurrent cases where multiple

nodes/links would be affected at a time could be another area of further inquiry.

• Chapter 6 generates a confidence interval along with the mean predictions in a graph

neural network. However, only the mean predictions are used for minimizing the loss

while training the model. The future extension of this work could be on utilizing

both the mean and variance values in training the model, thereby, improving the

model performance and robustness. Additionally, Bayesian posteriors can be used to

quantify the epistemic uncertainty arising due to the distribution of model parameters.

However, its computation is not feasible for complex deep learning models, including

graph neural networks. Developing an analytical approximation of posterior similar to

our ADF approach for aleatoric uncertainty could be a potential future work.

166



• The learning-based models in Chapters 5 and 6 do not include predefined auto-corrective

actions while assessing system robustness at different stages of degradation. It will be

interesting to incorporate those factors into our predictive models, thereby improving

the applicability of the proposed methodologies for real-world deployments.

• Chapter 7 develops a generic framework for graph combinatorial problem taking In-

fluence maximization as a case study. Trimming this framework for robustness related

concurrent node attack study could be a potential area for future research.

• Chapter 8 introduces a weighted hetero functional graph theory for modeling interde-

pendent networks. However, it only considers system concepts, which solely involves

structural models. Extension to other hetero-functional models involving control and

service graphs could be a potential venue to explore. Moreover, the hetero-functional

graphs could be significantly large and sparse for a real-world complex system. There-

fore, partitioning and analyzing the graphs on the basis of clusters can ease their

robustness analyses. This could also be explored as a potential future task.

• Chapters 3 to 9 focus on developing a computationally efficient and scalable framework

for determining system robustness. It will also be interesting to explore deep reinforce-

ment learning and the graph neural network-based framework for developing efficient

system restoration models after the onset of extreme events.
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ment learning: Novel design techniques,” in 2013 IEEE Symposium on Adaptive Dy-

namic Programming and Reinforcement Learning (ADPRL). IEEE, 2013, pp. 191–199.

[153] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial

optimization algorithms over graphs,” arXiv preprint arXiv:1704.01665, 2017.

[154] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh, “Gcomb:

Learning budget-constrained combinatorial algorithms over billion-sized graphs,” 2020.

[155] M. Minutoli, M. Halappanavar, A. Kalyanaraman, A. Sathanur, R. Mcclure, and J. Mc-

Dermott, “Fast and scalable implementations of influence maximization algorithms,”

185



in 2019 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,

2019, pp. 1–12.

[156] M. J. Alenazi and J. P. Sterbenz, “Evaluation and comparison of several graph robust-

ness metrics to improve network resilience,” in 2015 7th International Workshop on

Reliable Networks Design and Modeling (RNDM). IEEE, 2015, pp. 7–13.

[157] S. Munikoti, K. Lai, and B. Natarajan, “Robustness assessment of hetero-functional

graph theory based model of interdependent urban utility networks,” Reliability Engi-

neering & System Safety, p. 107627, 2021.
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Appendix A

Nomenclature

A.1 Acronyms

VSA Voltage sensitivity analysis

PVSA Probabilistic voltage sensitivity analysis

DERs Distributed energy resources

PV Photovoltaic

BESS Battery energy storage system

DVI Dominant voltage influencer nodes

VIS Voltage influencing score

KL KL divergence

BC Bhattacharyya distance

MCS Monte-Carlo simulation

GNN Graph Neural Network

GCN Graph convolutional Network

ILGR Inductive Learner for Graph Resilience

BILGR Bayesian Inductive Learner for Graph Resilience

PL Power law
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PLC Power law cluster

SBM Stochastic block model

ADF Assumed density filtering

BGCN Bayesian Graph convolutional Network

MAP Maximum aposteriori estimate

NLL Negative log likelihood

DRL Deep Reinforcement learning

GraMeR Graph Meta reinforcement learning

IM Influence Maximization

AIM Activation informed Influence Maximization

MDP Markov decision process

GHC Greedy hill climbing

NEF Network efficiency

ENR Effective node resistance

ECD Electrical coupling connection degree

APL Active power flow loss

ENS Electrical node significance

EBW Electrical betweenness

EDG Electrical degree

ENT Electrical node robustness

HFGT Hetero-functional graph theory

WHFGT Weighted Hetero-functional graph theory

IUN Interdependent urban network

QoF Quality of functionality

LCC Largest connected component

NCC Number of connected components

FR Flow robustness
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