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Abstract

Imbalanced classification has drawn considerable attention in the statistics and machine

learning literature. Typically, traditional classification methods, such as logistic regression

and support vector machine (SVM), often perform poorly when a severely skewed class

distribution is observed, not to mention under a high-dimensional longitudinal data structure.

Given the ubiquity of big data in areas including modern health research, face recognition,

and object identification, it is expected that imbalanced classification may encounter an

additional level of difficulty that is imposed by such a complex data structure.

In this dissertation, a nonparametric classification approach has been proposed for binary

imbalanced data in longitudinal and high-dimensional settings. Technically, the proposed

approach involves two stages. The functional principal component analysis (FPCA) is first

applied for feature extraction under the sparse and irregular longitudinal data structure.

The proposed univariate exponential loss function coupled with group LASSO penalty is

then adopted into the classification procedure in high-dimensional settings. Along with the

improvement in AUC and sensitivity under imbalanced classification, the proposed approach

also provides a meaningful feature selection for interpretation while enjoying a remarkable

computational efficiency. Finally, the proposed method is illustrated with the real data of

Alzheimer’s disease, Pima Indians diabetes and Phoneme, and its empirical performance in

finite sample size is extensively evaluated by simulations.

Furthermore, the proposed method has been extended to multi-class scenario for which

those aforementioned complications become more challenging. To accommodate the dense

longitudinal/functional data, the use of natural cubic spline is adopted for feature extraction

and dimension reduction, instead of using the FPCA. Functional biomarkers are efficiently

characterized by spline coefficients which are treated as features for subsequent classification



procedure. With these transformed features, a novel exponential loss function is then pro-

posed to cast the multi-class classification task as a single optimization problem. Coupled

with the group LASSO penalty, the proposed approach is also capable of performing vari-

able selection for each class individually. Besides that, a simple weight-adjusted margin can

be easily incorporated into the proposed loss function to address the issue of imbalance in

multi-class data. The overall empirical performance of the proposed framework is evaluated

by simulations in both high- and low-dimensional settings. Finally, the proposed multi-class

classification framework is illustrated using real data of Alzheimer’s disease, gene expression,

and human walking.
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Chapter 1

Introduction

Imbalanced data are ubiquitous in real-world applications, such as medical diagnosis, object

identification and image classification. Generally, traditional classifiers assume a balanced

class distribution and target to minimize the overall misclassification rate. However, these

methods usually perform poorly on imbalanced data and often misclassify instances from the

minority class as ones from the majority class, thus resulting in a high false negative rate.

Although it is possible to achieve a high predictive accuracy as well as a good specificity,

the sensitivity is anticipated to be low due to the high false negative rate. The classifica-

tion of imbalanced data is even more challenging when the real data structure is complex,

for example, in high-dimensional and longitudinal settings. In many disease screening and

early diagnosis studies, longitudinal and/or high-dimensional data are common and often

collected irregularly and sparsely, where the high-dimensional measurements on each sub-

ject are taken repeatedly at discrete random time points and the number of measurements

may vary between subjects. As a good example, in the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) study, magnetic resonance imaging (MRI) data which are generally

high-dimensional are acquired during the scheduled follow-up visits at 6-month intervals,

for example, months = 6, 12, 18, ..., 144. Such data intrinsic characteristics should be in-

corporated into the procedure of imbalanced classification, but the increasing difficulty and

challenge in implementation is then expected.
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To deal with imbalanced classification, one popular approach in the literature is the

data-based approach which aims at re-balancing the class distribution by simply resampling

the data, such as undersampling the majority class (Japkowicz, 2000) or oversampling the

minority class (Chawla et al., 2002; Batista et al., 2004). Nevertheless, this method may

either cause a loss of information in the majority class or overuse the data from the minority

class. Another popular approach is the algorithm-based approach which mainly depends on

the choice of an appropriate inductive bias (Sun et al., 2007, 2009). For instance, different

penalties are assigned to different classes in the Support Vector Machine (SVM)-based clas-

sifiers (Lin et al., 2002). But this type of approach often requires a thorough knowledge of

the learning algorithm and the specific application domain, which may be a daunting task to

analysts. Another approach is the cost-sensitive approach which considers the varying costs

of different misclassification types (Margineantu, 2002; Zadrozny et al., 2003); however these

types of costs are usually unknown in practice. Other remedies for imbalanced classification

are mainly boosting-based ensemble methods proposed in the area of data science. The

boosting algorithm in these methods is basically centered around the combination of several

simple classifiers/approaches in order to modify the training data sets for better prediction

(Chawla et al., 2003; Seiffert et al., 2009; Wang and Japkowicz, 2010; Galar et al., 2013;

Wan et al., 2014; Dı́ez-Pastor et al., 2015).

To address the classification for high-dimensional data, several approaches have been

proposed over the past decades. For example, Fan and Fan (2008) proposed the features

annealed independence rules (FAIR) to select the most important features via a two-sample

t-test. Fan and Song (2010) established a maximum-marginal-likelihood-type approach for

feature screening. Mai and Zou (2013) developed the Kolmogorov filter which enjoys the

sure screening property to identify statistically significant variables. The fundamental idea

of this filter is to construct a specific rule for dimension reduction and use the screened

features for subsequent analysis. With application to high-dimensional omics data, Yu and

Park (2014) proposed an AUC-based approach with penalization such as LASSO and elastic

net. Nonetheless, these methods are not capable of dealing with the longitudinal and/or

imbalanced structure in data. To handle the classification for longitudinal data, Tomasko
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et al. (1999) and Marshall and Barón (2000) proposed a modified classical linear discrimi-

nant analysis using mixed-effects models to accommodate the over-time underlying associa-

tions. De La Cruz-Mesia and Quintana (2007) considered a nonlinear hierarchical structure

to accommodate the longitudinal profiles and developed a fully Bayesian approach for param-

eter estimation. More recently, Arribas-Gil et al. (2015) considered a semiparametric linear

mixed-effects model (SLMM) and proposed a unified estimation procedure based on a penal-

ized EM-type algorithm. However, these methods require specific distributional assumptions

on biomarkers.

These stated methods can only address parts of the issues for complex imbalanced data.

To our best knowledge, there is no single approach yet that can accommodate all aforemen-

tioned complications comprehensively. In this dissertation, we propose a two-stage approach

to overcome these challenges in classification for complex imbalanced data. In the first stage,

the techniques of functional principal component analysis (FPCA) are employed for feature

extraction from longitudinal biomarkers. In other words, longitudinal data are analyzed via

FPCA with a significant reduction in the longitudinal dimension, and then major principal

components are treated as features for subsequent classification procedure. In the second

stage, an univariate exponential loss is proposed to approximate the empirical area under

the receiving operator characteristic (ROC) curve. The ROC analysis has been attracting

attention in binary classification because it takes into account both true positive rate (TPR)

and false positive rate (FPR) through a single summary measure, i.e., the area under ROC

curve (AUC), and is invariant to the class distribution. Coupled with the group LASSO

penalty, simultaneous model estimation and feature selection can be achieved efficiently by

using the block-wise coordinate descent algorithm. The proposed method is illustrated on the

binary data of Alzheimer’s disease, Pima Indians diabetes, and Phoneme, and its empirical

performance in finite sample sizes is extensively evaluated by simulations.

We further extend the proposed method to multi-class imbalanced data, where the clas-

sification is indeed more difficult as there could be multiple minority and majority classes. A

particular class can be majority and minority concurrently, mainly depending on the sample

size of the class it is compared to. Unfortunately, those methods stated previously for binary
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imbalanced data may not be generalized to multi-class scenario. For instance, for data-based

approaches, the process of determining the sampling rate for each class can be tricky and the

search space is much larger compared to the binary case (Fernández-Navarro et al., 2011). It

is often complicated to select appropriate inductive biases for multiple majority and minority

classes for algorithm-based approaches (Zhou and Liu, 2005).

The most commonly used approach to dealing with the multi-class imbalanced data is

to employ the decomposition strategies (Galar et al., 2011; Kuncheva, 2014). This type of

approach generally divides the original dataset into multiple binary subsets where the class

imbalance will be accommodated separately. One popular method of this type of approach

is the One-Versus-One (Knerr et al., 1990; Kreissel, 1999) method which constructs pairwise

binary classifiers between classes. However, this method only uses partial data for the

construction of each classifier and the computation is often intensive when the total number

of classes is large. Another similar method is the One-Versus-All (Bottou et al., 1994)

method in which a binary classifier is developed for each class. But this One-Versus-All

approach is often unclear whether the output scores from different classifiers are on the

comparable scales (Smola and Schölkopf, 1998). Besides these methods which simply reduce

a multiclass classification problem to multiple binary tasks, several margin-based support

vector machine (SVM) variants have been proposed, where the multi-class learning task is

cast as a single optimization problem (Dogan et al., 2016). However, their algorithms are

less efficient due to the non-convex structure in the loss function. Also, large samples are

often required for model training, which may not be satisfied in typical clinical research.

Some other studies have proposed the multi-class analogs of AUC which may suffer from

either high computational complexity or ambiguous interpretation of the volume under the

constructed ROC surface (Tang et al., 2011; Kleiman and Page, 2019).

To cope with these challenges associated with the classification for multi-class imbalanced

data in a complex structure, we first apply the technique of natural cubic spline to dense

longitudinal/functional data. Specifically, functional biomarkers are efficiently characterized

by spline coefficients which can be treated as features for subsequent classification task. It

is worth mentioning that the FPCA can also be used for feature extraction but its efficiency

4



heavily depends on the longitudinal dimension of data. The extraction process via FPCA

could be extremely computationally intensive if the dimensionality is ultra high. After the

dimension reduction of longitudinal profiles in the first stage, we then consider to integrate

a weight-adjusted margin into our novel exponential loss function for multi-class data in the

second stage. As a result, the multi-class classification task becomes a single optimization

problem. Lastly, we illustrate the proposed multi-class framework using simulations and

real data analyses, such as early detection and conversion prediction on Alzheimer’s disease

data, tumor discrimination on gene expression data, and individual recognition on human

gait data.

The rest of the dissertation is organized as follows. In Chapter 2, the FPCA is briefly

introduced and our AUC-type classification framework for binary imbalanced data is pro-

posed. For the real applications, we illustrate our method with the real data of Alzheimer’s

disease, Pima Indians diabetes and Phoneme. The empirical performance is evaluated by

extensive simulations in finite sample size. In Chapter 3, we extend the proposed binary

classifier to multi-class data by using a novel weight-adjusted exponential loss function. The

feature selection can be conducted simultaneously for all classes through the partial Newton

steps. Lastly, conclusions and discussions are provided in Chapter 4.
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Chapter 2

The proposed AUC-type classification

framework

2.1 Motivating example: Alzheimer’s disease

As we are motivated by the ADNI study, it is particularly of interest to detect Alzheimer’s

Disease (AD) earlier with all available patient data. Early detection and diagnosis of AD

have become increasingly critical for developing future care and treatment. That is because

early intervention with medications may slow the progression of disease (Wilson et al., 2011)

and provide more opportunities for medical caregivers to gain more understanding about

AD and plan for the future. To delay the onset or slow the progression by giving the timely

intervention of AD, a prognostic model that can be used for early detection is therefore

urgently needed. However, the prevalence of AD in the US elder population (for 65yr+) is

approximately 11% (Association, 2021), meaning that the class distribution is expected to

be skewed and imbalanced. As an evidence, we do observe such a highly skewed distribution

in the ADNI data. Additionally, we also observe that some high-dimensional longitudinal

biomarker data, such as brain imaging data, are collected irregularly and sparsely in the

ADNI study, which further escalates the challenge of classification as we mentioned earlier.

The goals of this study include: (1) extract features from longitudinal data for subsequent
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classification procedure, (2) deal with the highly skewed class distribution to improve the

classification performance, especially in terms of sensitivity and AUC, and (3) identify the

most significant biomarkers that are associated with the progression of AD. To achieve these

goals, the functional principal component analysis (FPCA) is employed in the first stage to

accommodate the irregularly and sparsely longitudinal biomarkers for feature extraction. We

then propose to use the univariate exponential loss to approximate the empirical AUC in the

objective function to handle the class imbalance. Lastly, the variable selection is conducted

by incorporating the group LASSO penalty into the proposed loss function.

2.2 Functional principal component analysis

To perform a functional principal component analysis (FPCA) on irregular and sparse longi-

tudinal data, we adopt a version of FPCA proposed by Yao et al. (2005), referred as Principal

components Analysis through Conditional Expectation (PACE). Unlike classical FPCA, their

approach is particularly useful to model irregular and sparse longitudinal data. The PACE

ensures that the functional principal component (FPC) scores extracted from longitudinal

features of each subject are well-approximated even when only few measurements are avail-

able for a subject. These FPC scores then can be treated as important features/biomarkers

summarized from the longitudinal profiles of corresponding subjects (Li et al., 2018; Li and

Luo, 2019) and used for classification subsequently.

Assume that Mij(t) is the longitudinal trajectory of the jth predictor of the ith subject

with t ∈ {1, ..., Ti}. Let µj(t) be its mean function and Σj(t, t
′
) = cov(Mij(t),Mij(t

′
))

denote the covariance function which quantifies the correlation between time points t and t
′
.

According to the spectral decomposition, the covariance function can be written as Σj(t, t
′
) =∑∞

v=1 λjvφjv(t)φjv(t
′
), where {λjv}v=1,...,∞ are nonincreasing eigenvalues, i.e., λj1 ≥ ... ≥

λj∞ ≥ 0, and {φjv}v=1,...,∞ are the corresponding orthonormal eigenfunctions.

Using the Karhunen-Loève (KL) expansion (Karhunen, 1947; Loeve, 1948), Mij(t) can
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be expressed as

Mij(t) = µj(t) +
∞∑
v=1

ξijvφjv(t),

where {ξijv}v=1,...,∞ are uncorrelated random variables with mean zero and variance λjv. In

practice, Mij(t) is usually approximated by the first V eigenfunctions as

Mij(t) ≈ µj(t) +
V∑
v=1

ξijvφjv(t),

where V can be determined by the pre-specified percentage of variance explained (PVE).

Specifically, the value of V is often chosen as the smallest integer such that
∑V

v=1 λjv/
∑∞

v=1 λjv

≥ PVE.

In general, Mij(t) is often observed at irregular and sparse time points. Suppose Uij(t)

is a random observation of Mij(t), we have

Uij(t) = Mij(t) + εij(t),

where εij(t) is the measurement error with mean zero and variance σ2. By applying PACE

to the jth longitudinal predictor in the pooled data, the estimated mean function µ̂j(t), co-

variance function Σ̂j(t, t
′
), eigenvalues λ̂jv, eigenfunctions φ̂jv(t) and error variance σ̂2 can be

obtained hierarchically. Specifically, µ̂j(t) and Σ̂j(t, t
′
) are first estimated using the penal-

ized spline fit and moments approaches as described in Staniswalis and Lee (1998) and Yao

et al. (2003). Then λ̂jv and φ̂jv(t) can be obtained from the spectral decomposition of the

estimated Σ̂j(t, t
′
). The estimated error variance σ̂2 is calculated from the average difference

of the middle 60% of diagonal elements between the raw and estimated covariance matri-

ces (Goldsmith et al., 2013). Finally, FPC scores {ξijv}
′
s for the ith subject are estimated as

follows:

ξ̂ijv = λ̂jvφ̂
T
ijvΣ̂

−1
Uij

(Uij − µ̂ij), v = 1, 2, . . . ,V ,

where µ̂ij = {µ̂j(t)}t=1,...,Ti and φ̂ijv = {φ̂jv(t)}t=1,...,Ti are Ti×1 vectors, and Σ̂Uij
= Σ̂j(t, t

′
)+

σ̂2δtt′ is a Ti × Ti matrix with δtt′ = 1 if t = t
′

and δtt′ = 0 if t 6= t
′

with t, t
′ ∈ {1, ..., Ti}.
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Note that all these FPC scores can be obtained by using the fpca.sc function (Staniswalis

and Lee, 1998; Di et al., 2009; Goldsmith et al., 2013) in the R package refund, and V

can be determined by setting a specific value for PVE, such as 90%, 95% or 99%. Based

on what we have observed from the simulations and real data analyses, using V = 2 is

generally sufficient enough to characterize the longitudinal data and can simplify the process

of extracting features from longitudinal biomarkers using FPCA. With a sensitivity study

(not shown here), we notice that the classification performance of our proposed method

is not affected by the selection of V , only showing very mild differences in performance.

Therefore, we adopt V = 2 for all simulations and real data analysis throughout the paper.

After obtaining theses FPC scores, a classification procedure can be applied subsequently.

2.3 Empirical AUC and its surrogate losses

The area under the receiver operating characteristic (ROC) curve, i.e., the AUC, is a well-

known rank-based statistic and frequently used to evaluate the performance of a classifier.

The AUC summarizes both the sensitivity (or true positive rate, TPR) and 1-specificity (or

the false positive rate, FPR) and reflects all possible trade-offs between TPR and FPR by

varying the decision threshold. Thus, maximizing the AUC is indeed a process of searching

for an optimal threshold that leads to both optimal sensitivity and specificity. Because of

this, AUC that represents a probability of a randomly selected positive instance having a

higher score than a randomly chosen negative instance is thus insensitive to class prevalence

and misclassification costs under data imbalance (Yan et al., 2003; Hu et al., 2017).

After extracting FPC scores from the trajectories of all biomarkers, we can combine them

linearly, as other traditional AUC-based approaches, to improve prognostic accuracy. The

ultimate goal of our study is to find the optimal linear combination of these FPC scores so

that the empirical AUC is maximized even under the complex and imbalanced data structure,

and hence achieving optimal sensitivity and specificity.

Let XH
r and XD

s be a p-dimensional vector containing all FPC scores for the rth and

sth subjects in the health and disease groups, respectively, where r = 1, ..., nh, s = 1, ..., nd,
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and nh and nd denote the number of subjects in the two groups, respectively. Given any

coefficients vector β, the empirical AUC for multiple FPC scores can be estimated as follows:

ÂUC(β) =
1

nhnd

nh∑
r=1

nd∑
s=1

I(βTXH
r < βTXD

s ),

where I(·) is the indicator function. However, this estimated empirical AUC can not be used

directly for classification in high-dimensional settings because of computational concerns.

Due to the discontinuity and non-convexity of empirical AUC, a widely used technique for

circumventing the computational challenge is to approximate the empirical AUC with some

pairwise convex surrogate loss function (Ma and Huang, 2005; Ma and Huang, 2007; Wang

et al., 2007; Zhao et al., 2011b; Zhou et al., 2012). However, it usually necessitates pairwise

comparisons between positive and negative instances, resulting in quadratic computational

complexity (Calders and Jaroszewicz, 2007; Kotlowski et al., 2011; Zhao et al., 2011a; Lyu

and Ying, 2018). To alleviate the computational burden associated with pairwise surrogate

losses, several non-pairwise strongly proper losses, such as the exponential loss and squared

hinge loss, have been proposed and shown to be consistent with the AUC maximization task

(Kotlowski et al., 2011; Agarwal, 2013; Menon and Williamson, 2014). Besides that, Gao

and Zhou (2015) developed a sufficient condition for AUC consistency and established the

equivalence of univariate exponential accuracy loss and pairwise exponential surrogate ac-

curacy loss. As a result, using empirical AUC or univariate exponential loss in classification

is expected to be equivalent in terms of performance. Thus, we use univariate exponential

loss to develop the proposed AUC-type classifier.
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2.4 The proposed AUC-type classification framework

In light of the established equivalence between minimizing the univariate exponential loss

and maximizing the empirical AUC, the loss function used in our approach is given as follows

to address the issue of class imbalance:

`(β) =
N∑
i=1

e−yix
T
i β, (2.4.1)

where xi is a vector containing all FPC scores of ith subject, yi is the corresponding response

with binary outcomes, i.e., yi = 1 if positive and yi = −1 if negative (Menon and Williamson,

2014), and N denotes the total number of subjects with N = nh + nd.

Notice that each biomarker trajectory of a subject is summarized as a set of FPC scores.

Thus, this set of scores is treated as a grouped feature. Due to high-dimensionality, we adopt

the group lasso penalty proposed by Yuan and Lin (2006) to accommodate the grouping

structure and perform group-feature selection. The objective function can be written as:

`τ (β) =
1

N

N∑
i=1

e−yix
T
i β + τ

G∑
g=1

√
pg||βg||2, (2.4.2)

where βg is a coefficient vector corresponding to the gth grouped feature, pg is the number of

FPC scores within the gth group, G is the total number of groups, τ is the tuning parameter,

and || · ||2 is the L2 norm. Here,
√
pg is used to adjust for the varying group sizes. Note that

the tuning parameter τ can be determined using a D-fold cross-validation with empirical

AUC or univariate exponential loss, which are indeed equivalent in terms of classification

performance. By the ease of interpretation of AUC, we use empirical AUC as criterion for

all simulations and real data analyses throughout this study.

Regarding the choice of D, it generally involves a trade-off between bias and variance.

To be more precise, a large value of D typically results in small bias but large variance when

evaluating the model performance, whereas a small value of D results in relatively large bias

but small variance. The most commonly used values for D are D = 3, 5, or 10. Considering
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the small sample size in the disease group under data imbalance, we adopt a 5-fold cross-

validation in the following analyses, which not only achieves the bias-variance trade-off but

also generates a moderate-sized hold-out fold for validation. In general, one may select a

proper D-fold cross-validation based on the sample size and the severity of imbalance.

To solve for the β that minimizes Equation (2.4.2), we employ a quadratic approximation

which is similar to that in Simon et al. (2011). Let m = Xβ, where X = [x1, x2, . . . , xN ]T

is the design matrix, and ˙̀(β), ῭(β), `
′
(m), `

′′
(m) be the gradient and Hessian of the loss

function in Equation (2.4.1) with respect to β and m, respectively. Using a second-order

Taylor expansion centered at the initial value β̃, Equation (2.4.1) becomes:

`(β) ≈ `(β̃) + (β − β̃)T ˙̀(β̃) +
1

2
(β − β̃)T ῭(β)(β − β̃)

= `(β̃) + (Xβ − m̃)T `
′
(m) +

1

2
(Xβ − m̃)T `

′′
(m)(Xβ − m̃)

=
1

2
(z(m̃)−Xβ)T `

′′
(m̃)(z(m̃)−Xβ) + C(m̃, β̃)

where m̃ = Xβ̃, z(m̃) = m̃ − `′′(m̃)−1`
′
(m̃), and C(m̃, β̃) consist of all terms that do not

depend on β. Then, β̂ can be estimated by optimizing a penalized reweighted least squares:

β̂ = argmin
β

Lτ (β),

where

Lτ (β) =
1

2N
(z(m̃)−Xβ)T `

′′
(m̃)(z(m̃)−Xβ) + τ

G∑
g=1

√
pg||βg||2.

The objective function Lτ (β) consists of a quadratic term and the group lasso penalty.

The quadratic term can be viewed as squared errors in the estimated β̂ between the current

and previous iterations. As we aim to minimize Lτ (β), the estimator β̂ is viewed as an

solution with the least squared error to maximize the empirical AUC. Regarding the term of

group lasso penalty, it intrinsically ensures that only a subset of ”group” features are selected,

thus significantly reducing the model complexity. Each of {βg}g=1,...,G can be estimated

iteratively by the block coordinate descent algorithm presented by Yuan and Lin (2006).
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Specifically, to solve for the coefficients vector βq for the qth grouped feature, we first compute

the corresponding first derivative of Lτ (β) as:

∂Lτ (β)

∂βq
= − 1

N
XT
q `

′′
(m̃)

(
z(m̃)−

∑
g 6=q

Xgβg −Xqβq

)
+ τ
√
pqsq, (2.4.3)

where Xg and Xq are the data matrices corresponding to the gth and qth grouped features

respectively, pq is the group size of qth grouped feature, and

 sq = βq
||βq ||2 , if βq 6= 0

||sq||2 6 1, if βq = 0.

Next, by setting Equation (2.4.3) to zero, we can obtain β̂q. Specifically, when βq = 0,

we can get: ∥∥∥∥∥ 1

N
XT
q `

′′
(m̃)

(
z(m̃)−

∑
g 6=q

Xgβg

)∥∥∥∥∥
2

6 τ
√
pq, (2.4.4)

when βq 6= 0, it is easy to obtain:

β̂q =

[
1

N
XT
q `

′′
(m̃)Xq +

τ
√
pq

||βq||2
· I
]−1

·

[
1

N
XT
q `

′′
(m̃)

(
z(m̃)−

∑
g 6=q

Xgβg

)]
. (2.4.5)

Hence, cycling through each group of FPC scores, simultaneous variable selection and

model estimation can be achieved via the Algorithm 1.

Algorithm 1

Step 1. Initialize β̃, and compute m̃, `
′
(m̃), `

′′
(m̃), and z(m̃).

Step 2. For q = 1, ..., G, if Equation (2.4.4) holds, β̂q is set to 0; otherwise, β̂q is updated
using Equation (2.4.5).

Step 3. Set β̃ = β̂, and compute m̃, `
′
(m̃), `

′′
(m̃), and z(m̃).

Step 4. Repeat steps 2 - 3 until convergence.

It is worth mentioning that the proposed objective function is guaranteed to converge
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to the global minimum using the above algorithm when initialized with an arbitrary value

for β̃. The detailed convergence analysis has been thoroughly discussed by Tseng (2001).

To reduce the number of required iterations and increase the computational efficiency in

high-dimensional sparse settings, we suggest initializing β̃ with a vector of small values, such

as β̃ = (0.001, ..., 0.001) as we used in this study.

To regularize with the group lasso penalty, variable selection is conducted on the group

level. Specifically, each set of FPC scores simply represents each longitudinal biomarker.

Therefore, these scores extracted from a particular biomarker can be only all selected or all

dropped, depending on whether the associated biomarker is important or not to the model.

To speed up the computation, we employ a strategy called active-set convergence which

has been discussed by Krishnapuram et al. (2005), Meier et al. (2008) and Friedman et al.

(2010). Specifically, after the first cycle through G groups, the remaining iterations will be

restricted to the active-set which will be updated after each cycle. The entire process stops

after the active-set does not change.

2.5 Real applications

In this section, the classification performance of the proposed method is evaluated on three

datasets, one with a longitudinal data structure in high-dimensional setting, i.e., Alzheimer’s

disease data, one with a cross-sectional data structure in low-dimensional setting, i.e.,

Pima Indians diabetes data, and the other one with a longitudinal data structure in low-

dimensional setting, i.e., Phoneme data.

2.5.1 Alzheimer’s Disease data

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
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tomography (PET), other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Detailed information regarding the ADNI study and the complete

protocol can be found in Mueller et al. (2005) and Jack Jr et al. (2008). In the ADNI dataset,

participants are labeled with: cognitively normal (CN), MCI, or AD based on a series of

assessments at the initial visits. These are also their states at baseline. It is expected to

have repeated evaluations conducted subsequently at a six-month interval.

Most existing studies focused on predicting the conversion from MCI to AD for individuals

who were diagnosed as MCI at baseline. However, the conversion process could begin years

before the onset of symptoms. In our analysis, we focus on the development of a prognostic

model that can be used for early detection of AD among CN individuals. We select 267

subjects who are normal at baseline and have at least three visits. Among them, 30 subjects

progress to AD at a later time, denoted as AD, and 237 subjects remain as normal, denoted

as CN. The demographic information of those subjects is summarized in Table 2.1. It should

be noted that the longitudinal data are indeed irregularly observed among participants.

Specifically, each participant undergoes these assessments at different time points and has a

different number of visits. The distribution of number of visits is presented in Table 2.2.

Table 2.1: Demographic characteristics of selected subjects

Age (years) Gender (%)

Group n Mean Std. Dev Male Female

CN 237 74.5 5.6 52.7 47.3
AD 30 75.4 3.9 40.0 60.0

In the literature, biomarkers from different modalities have been utilized to investigate

the progression of AD. Brain abnormalities detected by MRI are considered to be valid

markers of AD and are widely used to predict the conversion from MCI to AD (Frisoni

et al., 2010; Zhang et al., 2016; Gavidia-Bovadilla et al., 2017; Huang et al., 2017; Long

et al., 2017). Fluorodeoxyglucose positron emission tomography (FDG-PET) is able to

provide the estimates of cerebral metabolic rates of glucose, thus revealing the pattern of
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Table 2.2: Distribution of number of visits

Number of subjects

Visits CN AD

3 68 2
4 100 4
5 13 3
6 10 5
7 13 2
8 14 4
9 10 7
10 9 3

Total 237 30

regional hypometabolism which is a prominent hallmark of AD (Mosconi, 2005; Li et al.,

2008; Langbaum et al., 2010; Biagioni and Galvin, 2011). Additionally, biomedical changes

in the brain are directly presented in the Cerebrospinal fluid (CSF). Hence, CSF-based

biomarkers are often employed to depict the pathological changes of AD (Mattsson et al.,

2009; Fjell et al., 2010; Niemantsverdriet et al., 2017; Lee et al., 2019).

Brain imaging data preprocessing

In this study, we mainly focus on biomarkers that are extracted from the MRI modality. All

of the 3D T1-weighted MRI images downloaded from the ADNI database for each subject

are processed using Freesurfer v6.0 which is an open-source software suite and freely avail-

able at FreeSurferWiki (https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). The

complete procedure used to preprocess the MRI data is summarized in Figure 2.1. The

longitudinal processing pipeline in Freesurfer consists of the following steps: spatial nor-

malization and intensity correction, Talairach registration, brain mask creation, subcortical

segmentation, surfaces reconstruction, and cortical atlas registration and parcellations. More

details about the processing framework can be found in the paper of Reuter et al. (2012).

There are 319 biomarkers in total generated by Freesurfer v6.0, with each corresponding to a

specific region of interest (ROI) in the brain. More specifically, these ROIs consist of cortical

volume, cortical thickness average, cortical surface area, and the volume estimates of a wide
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Figure 2.1: The procedure of preprocessing MRI data

range of subcortical structures (Fischl et al., 2002; Fischl, 2012).

Covariates and longitudinal biomarkers

In addition to those biomarkers extracted from the brain imaging data, we also include five

cognitive and functional scores which are closely associated with AD and popular in the

literature (Li et al., 2017; Li and Luo, 2019; Lin et al., 2020): Alzheimer’s Disease Assess-

ment Scale-Cognitive 13 items (ADAS-Cog 13), Mini Mental State Examination (MMSE),

Functional Assessment Questionnaire (FAQ), Rey Auditory Verbal Learning Tests (RAVLT

immediate score and RAVLT learning score). Besides that, other demographic and genetic

variables that might be predictive of AD conversion are also included: baseline age, gender,

and apolipoprotein E allele ε4 (APOE4). Figure 2.2 presents the longitudinal trajectories of

ADAS-Cog 13 for subjects used in this study, showing the sparse and irregular characteristics

of the ADNI dataset. The trends in the two plots suggest the potential of using ADAS-Cog

13 to identify AD patients among these normal subjects at baseline.

For the model training, the last visit data of each CN is excluded. But for AD patients,

we use the data before their first diagnosis of AD in order to train the model only based
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Figure 2.2: Longitudinal trajectories of ADAS-Cog 13 for cognitively normal subjects

on the data before progressing to AD. By this, our model is capable of identifying potential

AD patients before their next clinical visit. As an illustration, the data of a CN (or an AD)

participant that is used for model training is shown in Figure 2.3 with a red box.

For the model evaluation, the processed data are randomly split into training and test

subsets, comprising 70% and 30% of all instances respectively. A stratified sampling method

is employed to ensure that both subsets have the same imbalance ratio (Hyndman and

Athanasopoulos, 2018). To deal with these longitudinal biomarkers, the PACE algorithm

proposed by Yao et al. (2005) is applied to obtain the corresponding FPC scores which are

then used as predictors in our model. The tuning parameter in the proposed method is

selected by five-fold cross-validation using the empirical AUC as the criterion. For com-

parison purposes, logistic regression with L1 penalty and support vector machine (SVM)

with linear kernel are also conducted with this ADNI dataset. The results based on 500

Monte Carlo replicates are given in Table 2.3. It is worth noting that the class distribu-

tion is highly imbalanced in this ADNI dataset (i.e., CN=237, AD=30). Both penalized

logistic regression and SVM are biased towards the majority class, thus leading to the low

sensitivity of 36% and 44%, respectively. Moreover, it seems that SVM tends to overfit
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Figure 2.3: Clinical diagnosis of a CN subject or an AD patient over time. The red box
represents the data used for model training. The blue box represents the final diagnosis used
as the model outcome.

under the high-dimensional setting and performs poorly on the test data. However, our pro-

posed approach is capable of dealing with the case of class imbalance, and achieves superior

classification performance, especially in terms of sensitivity which is often considered as an

important measure in medical diagnosis. As shown in Table 2.3, the performance of the

proposed framework outperforms L1 logistic regression and linear SVM in terms of its AUC

and sensitivity (88% and 79%, respectively) with a slight compromise in specificity, which

indicates the superiority of our method for such a complex imbalanced dataset. Lastly, our

approach indicates that several biomarkers selected by group LASSO seem associated with

early detection of AD. For example, the biomarkers with high absolute value of coefficient

include: FAQ and ADAS in clinical scores; left and right postcentral gyrus, left precentral

gyrus in subcortical volumes; left postcentral gyrus, right medial orbitofrontal cortex, right

supramarginal gyrus, right pericalcarine cortex in cortical thicknesses. As a demonstration,

the selected subcortical volumes which are considered to be correlated with the progression

of AD are presented in Figure 2.4. Albeit interesting, more thorough investigations from the

view of neuroscience are strongly encouraged before coming to any further conclusions.
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Table 2.3: Classification results (S.E.) for ADNI data with L1 logistic, linear SVM and the
proposed method based on 500 Monte Carlo replicates

Proposed
L1 Logistic Linear SVM method

Training Set Sensitivity .601(.297) .999(.001) .946(.066)

(nh=166, nd=21) Specificity .999(.001) .999(.001) .973(.035)

Accuracy .956(.033) .999(.001) .970(.035)

AUC .918(.167) .999(.001) .976(.033)

Test Set Sensitivity .362(.199) .441(.154) .790(.145)

(nh=71, nd=9) Specificity .996(.008) .980(.015) .880(.094)

Accuracy .925(.022) .919(.023) .870(.084)

AUC .832(.147) .854(.068) .880(.091)

L1 Logistic: logistic regression with L1 penalty

Linear SVM: support vector machine with linear kernel
(nh, nd): number of subjects in the CN and AD groups respectively

Figure 2.4: Selected subcortical volumes in coronal view.
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2.5.2 Pima Indians Diabetes data

The data used in this analysis are from a study led by the National Institute of Diabetes

and Digestive and Kidney Diseases and publicly accessible from the UCI Machine Learning

Repository (https://archive.ics.uci.edu/ml/index.php). A subset of 768 subjects are chosen

from the Pima Indian population near Phoenix, Arizona, of which 268 were diagnosed with

diabetes, thus leading to an imbalanced class distribution. More details about this study and

the eligibility criteria of subjects can be found in the paper of Smith et al. (1988). It is noted

that all these subjects are females over 21 years old. To forecast the onset of diabetes, eight

variables which are found to be common risk factors for diabetes are used in this analysis,

including the number of pregnancies, plasma glucose concentration, diastolic blood pressure,

triceps skin fold thickness, serum insulin, body mass index (BMI), diabetes pedigree function

and age (Ma and Huang, 2007). The demographic information of subjects in this dataset is

summarized in Table 2.4.

Table 2.4: Demographic information of subjects in the diabetes dataset

Age (years)

Group n Range Mean Std. Dev

non-Diabetes 500 [21,81] 31.2 11.7
Diabetes 268 [21,70] 37.1 11.0

In our analysis, 70% of subjects are randomly selected as a training set and the remaining

30% are used as a test set. All of the continuous predictors are normalized with zero mean

and unit variance. The optimal tuning parameter in our model is determined by five-fold

cross-validation. To evaluate the classification performance, four widely used measures are

utilized, i.e., accuracy, sensitivity, specificity and AUC. Besides that, we include another

three metrics which are often employed in imbalanced classification, i.e., precision, G-mean

and F-measure (Yeh et al., 2016; Liu et al., 2020; Tanha et al., 2020). For the purpose of

comparison, the results of the proposed method, logistic regression and linear SVM based

on 500 Monte Carlo replicates are presented in Table 2.5.
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Table 2.5: Classification results (S.E.) for Pima Indians Diabetes data with logistic regres-
sion, linear SVM and the proposed method based on 500 Monte Carlo replicates

Logistic linear SVM Proposed

Training Set Sensitivity .581(.021) .574(.024) .750(.046)

(nh=350, nd=188) Specificity .886(.007) .889(.010) .758(.047)

Accuracy .779(.010) .779(.010) .755(.018)

AUC .841(.010) .840(.010) .812(.012)

Test Set Sensitivity .569(.050) .562(.048) .725(.072)

(nh=150, nd=80) Specificity .880(.028) .882(.026) .741(.057)

Accuracy .772(.022) .771(.022) .735(.027)

AUC .830(.023) .829(.022) .802(.027)

Logistic: logistic regression; linear SVM: support vector machine with linear kernel

(nh, nd): number of subjects in the non-diabetes and diabetes groups respectively

The accuracy and AUC of the three methods are close and comparable in both training

and test sets. However, the proposed method achieves a much higher sensitivity than lo-

gistic regression and SVM while retaining an adequate specificity. Moreover, the proposed

approach performs slightly better than the other two techniques in terms of F-measure and

G-mean, which indicates its strength in dealing with the class imbalance.

It should be noted that the proposed classification in Section 2.4 has been modified to

model this dataset. Due to the nature of cross-sectional data, there is no need to consider

the grouping structure among features. Consequently, we set all group sizes {pg}g=1,..,G in

the penalty term to one, where G denotes the total number of groups, i.e. the number of

features for this dataset.
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2.5.3 Phoneme data

In this section, we illustrate our method with the phoneme data which are formed by selecting

phonemes based on digitized speech from the Texas Instruments/Massachusetts Institute of

Technology (TIMIT) database (available at https://web.stanford.edu/∼hastie/ElemStatLearn).

This dataset consists of 4509 speech frames of 32 ms duration from continuous speech and

each frame represents one of five phonemes transcribed as follows: ‘sh’ as in ‘she’, ‘dcl’ as

in ‘dark’, ‘iy’ as the vowel in ‘she’, ‘aa’ as the vowel in ‘dark’, and ‘ao’ as the first vowel in

‘water’ (Hastie et al., 1995; Ferré and Villa, 2006; Shin, 2008; Delaigle and Hall, 2012). In

other words, the data used in our analysis only have one time-series predictor with 4509 ob-

servations for five classes. A log-periodogram which is frequently used to cast speech data in

a form suitable for speech recognition is then computed for each speech frame, thus forming

a functional profile of length 256.

In this analysis, a binary classification problem is considered. The proposed longitudinal

framework is applied to identifying whether a given speech frame is ‘aa’ or not. Figure 2.5

shows the curves of log-periodograms for 10 randomly selected speech frames from class ‘aa’

and ‘non-aa’ (i.e. ‘ao’, ‘dcl’, ‘iy’ and ‘sh’), respectively. There are 4509 log-periodograms in

this dataset, of which 695 are labeled as ‘aa’, thus leading to a classification with imbalanced

class distribution. Model is fitted on the training data which are randomly selected and

contain 70% of all instances, and then performance is assessed on the test data which con-

tain the remaining 30% of instances. The optimal tuning parameter is selected by five-fold

cross-validation using AUC as the criterion. Table 2.6 provides the classification results for

our method, logistic regression with L1 penalty and SVM with linear kernel based on 200

Monte Carlo replicates. The results of AUC and accuracy for three methods are very close

and comparable. However, our proposed framework outperforms L1 logistic regression and

linear SVM in terms of sensitivity with slight compromise in specificity, which indicates the

superiority of our method in imbalanced classification.
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Figure 2.5: Curves of log-periodograms for 10 randomly selected speech frames from class
‘aa’ and ‘non-aa’

Table 2.6: Classification results for Phoneme data with L1 Logistic, linear SVM and the
Proposed Method based on 200 Monte Carlo replicates

L1 Logistic linear SVM Proposed

Training Set
(nctrl = 2670, ncase = 487)

Sensitivity .595(.016) .608(.016) .907(.016)
Specificity .954(.002) .953(.003) .843(.016)
Accuracy .898(.003) .899(.003) .853(.012)
AUC .940(.002) .939(.002) .940(.002)

Test Set
(nctrl = 1144, ncase = 208)

Sensitivity .592(.032) .605(.031) .896(.025)
Specificity .954(.006) .952(.007) .842(.019)
Accuracy .898(.007) .899(.007) .851(.014)
AUC .940(.005) .939(.006) .939(.005)

L1 Logistic: logistic regression with L1 penalty; linear SVM: SVM with linear kernel

nctrl: number of observations for control; ncase: number of observations for case
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2.6 Simulation Study

In this section, we conduct extensive simulations to evaluate the performance of the proposed

method. Two data-generating schemes are considered: (1) class memberships are generated

by a logistic regression model; (2) class memberships are pre-determined by the belonging

group: health or disease. For each scheme, the classification performance is further assessed

under two settings: (i) a low-dimensional setting with n > p and (ii) a high-dimensional

setting with n < p.

Throughout all simulations, it is assumed that each subject has a longitudinal profile

with observations measured at seven different time points (i.e., t ∈ {0, 1, 2, 3, 4, 5, 6} and

t = 0 represents the baseline). We also perform other two popular methods (i.e., logistic

regression and support vector machine) at various levels of class imbalance for comparison

purposes.

2.6.1 Class memberships by a logistic regression model

In the first scheme, we generate class memberships using a logistic regression model. More

specifically, it is a two-stage process. In the first stage, we assume that the jth longitudinal

predictor Uij(t) for the ith subject is generated by a linear model:

Uij(t) = γ0j + γ1jt+ γ2jt
2 + bij + εij(t), t ∈ {0, 1, 2, . . . , 6}

where the subject-specific random effect bij is generated from N(0, 1.3) and the measurement

error εij is generated from N(0, 1). In the second stage, we convert the longitudinal predictor

Uij(t) into a set of FPC scores using the FPCA approach, then denoted as xij. These sets of

FPC scores are indeed considered as features and then used in the subsequent classification

procedure. As we extract the FPC scores using the PACE algorithm, the number of principal

components is fixed at two, for simplicity, to override the required setting for PVE.
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Later, the class memberships are assigned through the following logistic regression model:

Yi =


1, if

[
1 + exp

{
− β0 −

∑
j x

T
ijβj
}]−1

> 0.5

0, if
[
1 + exp

{
− β0 −

∑
j x

T
ijβj
}]−1 ≤ 0.5,

where βj is the coefficient vector corresponding to the jth longitudinal predictor and β0 is

the intercept which can be adjusted to generate different levels of class imbalance. Typically,

the membership can be coded as ”health” if Yi = 0 and ”disease” if Yi = 1.

For our analysis, low and high dimensional settings are examined separately. For each

setting, 500 Monte Carlo replicates are simulated at each imbalance ratio. For each replicate,

the data of 600 subjects are generated. Among them, 300 subjects are used for model training

and the rest of 300 are used as a test data set for evaluation.

(i) Low-Dimensional Setting: Three (3) longitudinal predictors are simulated for each sub-

ject, where we set (γ01, γ11, γ21)T = (1.5,−0.25, 0.1)T , (γ02, γ12, γ22)T = (1,−0.2, 0.11)T ,

and (γ03, γ13, γ23)T = (2,−0.15, 0.09)T . To obtain class memberships using the above

logistic regression model, we let β1 = (−2, 1), β2 = (−1, 0.5), β3 = (1.5,−1). The

intercept β0 is given by different values ({−2.5,−3.5,−4.5}) to obtain the imbalance

ratio of {3.2, 5.3, 9.0}, respectively. The classification results are presented in Table 2.7.

In this setting, the performances of three methods are comparable in terms of AUC

and accuracy. However, regardless of training or testing, remarkable lower sensitivities

are observed in the methods of logistic regression and support vector machine as the

imbalance ratio increases, whereas the sensitivity declines slightly with the proposed

method.

(ii) High-Dimensional Setting: Five hundred (500) longitudinal predictors are simulated for

each subject, where the coefficients of {γρj}ρ=0,1,2 that correspond to the jth predictor
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Table 2.7: Classification results (S.E.) of L1 logistic regression, linear SVM and the proposed
method at various imbalance ratios in low-dimensional setting based on 500 Monte Carlo
replicates

Imbalance ratio nh/nd = 3.2 nh/nd = 4.9 nh/nd = 6.1

Logistic SVM Proposed Logistic SVM Proposed Logistic SVM Proposed

Training Sensitivity .689 .681 .873 .618 .594 .884 .548 .483 .896
(.061) (.071) (.035) (.081) (.100) (.039) (.108) (.156) (.041)

Specificity .941 .945 .856 .965 .970 .867 .981 .987 .882
(.013) (.015) (.034) (.009) (.012) (.034) (.007) (.008) (.038)

Accuracy .880 .882 .860 .910 .910 .870 .938 .937 .883
(.019) (.019) (.025) (.016) (.016) (.029) (.013) (.013) (.034)

AUC .933 .932 .932 .940 .937 .937 .948 .945 .945
(.016) (.016) (.016) (.017) (.018) (.017) (.017) (.019) (.018)

Test Sensitivity .672 .658 .833 .594 .564 .828 .507 .435 .819
(.065) (.071) (.059) (.087) (.097) (.074) (.111) (.147) (.087)

Specificity .933 .935 .840 .959 .964 .857 .975 .981 .871
(.021) (.021) (.039) (.015) (.016) (.037) (.012) (.013) (.040)

Accuracy .870 .869 .838 .900 .899 .852 .927 .925 .866
(.018) (.018) (.026) (.016) (.016) (.028) (.015) (.015) (.032)

AUC .923 .922 .921 .929 .927 .927 .934 .932 .931
(.017) (.018) (.018) (.019) (.019) (.020) (.020) (.020) (.021)

nh, nd: number of subjects in health and disease groups respectively; nh + nd = 300.

are generated randomly from truncated normal distributions (TN):

γ0j ∼ TN(1.5, 1) , γ0j ∈ [1, 2]

γ1j ∼ TN(−0.15, 1) , γ1j ∈ [−0.2,−0.1]

γ2j ∼ TN(0.11, 1) , γ2j ∈ [0.09, 0.13]

For simplicity, we assume that the first five predictors are significant, with each corre-

sponding βj specified as follows: β1 = (1.5,−0.5), β2 = (−1.2,−1.5), β3 = (−0.5, 1),

β4 = (0.5,−1), β5 = (−1.5, 1). The remaining 495 predictors are assumed to be in-

significant, thus having βj = (0, 0), j ∈ {6, ..., 500}. Similar to the low-dimensional

setting above, different levels of class imbalance (imbalance ratio = {3.2, 4.9, 6.1}) are

assessed by assigning different values ({−3,−4,−4.5}) for β0 correspondingly. The

simulation results are provided in Table 2.8. In this setting, the performance of the

proposed method is better than that of the other two approaches in terms of AUC
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Table 2.8: Classification results (S.E.) of logistic regression, linear SVM and the proposed
method at various imbalance ratios in high-dimensional setting based on 500 Monte Carlo
replicates

Imbalance ratio nh/nd = 3.2 nh/nd = 4.9 nh/nd = 6.1

Logistic SVM Proposed Logistic SVM Proposed Logistic SVM Proposed

Training Sensitivity .705 .999 .900 .659 .999 .905 .549 .999 .899
(.221) (.001) (.035) (.293) (.001) (.052) (.360) (.001) (.062)

Specificity .997 .999 .894 .999 .999 .891 .999 .999 .888
(.005) (.001) (.037) (.002) (.001) (.050) (.001) (.001) (.061)

Accuracy .928 .999 .896 .942 .999 .893 .938 .999 .889
(.053) (.001) (.032) (.049) (.001) (.047) (.049) (.001) (.058)

AUC .982 .999 .957 .982 .999 .952 .944 .999 .946
(.022) (.001) (.020) (.051) (.001) (.034) (.135) (.001) (.044)

Test Sensitivity .412 .221 .791 .262 .109 .724 .174 .063 .686
(.112) (.058) (.078) (.122) (.056) (.122) (.125) (.043) (.137)

Specificity .968 .901 .856 .982 .958 .860 .989 .977 .860
(.021) (.026) (.039) (.016) (.017) (.048) (.013) (.013) (.057)

Accuracy .836 .740 .841 .859 .813 .837 .874 .848 .835
(.025) (.023) (.031) (.021) (.020) (.037) (.019) (.018) (.044)

AUC .892 .645 .913 .876 .640 .889 .842 .635 .877
(.029) (.038) (.028) (.050) (.044) (.043) (.108) (.050) (.047)

nh, nd: number of subjects in the health and disease groups respectively; nh + nd = 300.

and sensitivity. It seems that logistic regression and support vector machine tend to

classify subjects into the majority class (i.e., the health group), thus resulting in low

sensitivity. However, the proposed method achieves a better sensitivity with a little

sacrifice of specificity and accuracy.

2.6.2 Class memberships by pre-determined health and disease

groups

Unlike the previous data-generating scheme, we generate class memberships without using

any model-based mechanisms. The longitudinal predictors are simulated for the health (H)

and disease (D) groups separately:

UH
rj (t) = µHj (t) + brj + εrj(t), t ∈ {0, 1, ..., 6}

UD
sj (t) = µDj (t) + bsj + εsj(t), t ∈ {0, 1, ..., 6}
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where µHj (t) and µDj (t) are the mean functions of the jth longitudinal predictor for the rth

health and the sth disease subject, respectively, brj and bsj are the subject-specific random

effects generated from N(0, 1.5). The random errors εsj(t) are generated from N(0, 1). The

PACE algorithm is applied to each predictor to extract the FPC scores which are further

used as features in the proposed method. By this data-generating scheme, class memberships

of all subjects are pre-determined, i.e., Y = 0 if health and Y = 1 if disease.

Under this scheme, we also consider low and high-dimensional settings. The classification

performances are also examined at different levels of class imbalance. Assuming a total

sample size of 300, different numbers of subjects are assigned to the health and disease groups

to generate various imbalance ratios. That is, (nh, nd) = {(225, 75), (257, 43), (270, 30)}

for the ratios of nh/nd = {3, 5.98, 9}. In each scenario, 500 Monte Carlo replicates are

simulated.

(i) Low-Dimensional Setting: Three (3) longitudinal predictors are simulated for each

of the subjects. For the health group, the mean µHj is assumed to be constant

across different time points. Specifically, we set: µH1 = (1, 1, 1, 1, 1, 1, 1)T , µH2 =

(2, 2, 2, 2, 2, 2, 2)T , µH3 = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5)T . For the disease group, we let

µDj =
{
γ0j + γ1jt+ γ2jt

2
}

, where t = 0, 1, ..., 6, to reflect the progression of the disease.

Three sets of {γρj}ρ=0,1,2 are specified as follows: (γ01, γ11, γ21)T = (1,−0.2, 0.08)T ,

(γ02, γ12, γ22)T = (2,−0.25, 0.07)T , and (γ03, γ13, γ23)T = (1.5,−0.15, 0.09)T .

(ii) High-Dimensional Setting: Five hundred (500) longitudinal predictors are simulated

for each subject. Among them, the last 475 predictors are considered insignificant and

the corresponding mean functions are assumed to be the same for both the health

and disease groups, i.e., µHj = µDj = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)T , j ∈ {26, ..., 500}.

For the first 25 predictors that are considered significant, their mean functions are

generated differently for health and disease groups. For the health group, the mean

µHj is assumed to be constant, i.e., µHj = (cHj , c
H
j , ..., c

H
j )T1×7, j ∈ {1, ..., 25}, where cHj
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is generated from a truncated normal distribution (TN):

cHj ∼ TN(0, 1), cHj ∈ [−1, 1]

For the disease group, we let µDj =
{
γ0j + γ1jt + γ2jt

2
}
t=0,1,...,6

, where the coefficients

{γρj}ρ=0,1,2 that correspond to the jth predictor are randomly selected, for each Monte

Carlo sample, from truncated normal distributions:

γ0j ∼ TN(0, 1) , γ0j ∈ [−1, 1]

γ1j ∼ TN(0, 1) , γ1j ∈ [−0.1, 0.1]

γ2j ∼ TN(0, 1) , γ2j ∈ [−0.01, 0.01]

The simulation results are given in Table 2.9 and 2.10. Even under this data-generating

mechanism, the proposed approach outperforms logistic regression and support vector ma-

chine across various levels of class imbalance in many perspectives, especially the good per-

formance in sensitivity regardless of being in low- or high-dimensional setting (see Table 2.9

and 2.10). When the class imbalance becomes more severe, the proposed method still can

achieve a high sensitivity whereas a substantial drop is observed in the other two methods. It

is worth mentioning that the AUCs of the proposed method are higher than those of logistic

regression and support vector machine in the high-dimensional setting, also coming along

with smaller standard errors. This result indeed indicates the stability of our approach in

high-dimensional settings.
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Table 2.9: Classification results (S.E.) with various sample sizes of health and disease groups
in low-dimensional setting based on 500 Monte Carlo replicates

Sample size (nh, nd) = (225, 75) (nh, nd) = (257, 43) (nh, nd) = (270, 30)

Logistic SVM Proposed Logistic SVM Proposed Logistic SVM Proposed

Training Sensitivity .774 .767 .895 .596 .555 .873 .454 .379 .852
(.097) (.108) (.049) (.205) (.250) (.071) (.226) (.278) (.086)

Specificity .954 .957 .894 .976 .982 .864 .985 .991 .846
(.014) (.015) (.045) (.008) (.010) (.074) (.007) (.008) (.080)

Accuracy .909 .909 .895 .922 .921 .866 .932 .930 .846
(.032) (.032) (.042) (.029) (.032) (.070) (.021) (.023) (.079)

AUC .953 .952 .951 .927 .919 .925 .906 .885 .902
(.033) (.035) (.034) (.064) (.081) (.064) (.076) (.110) (.077)

Test Sensitivity .751 .743 .865 .555 .511 .818 .416 .335 .780
(.099) (.108) (.059) (.198) (.235) (.095) (.214) (.254) (.119)

Specificity .949 .951 .882 .970 .976 .853 .981 .988 .837
(.017) (.016) (.048) (.012) (.014) (.075) (.010) (.011) (.080)

Accuracy .899 .898 .878 .911 .909 .848 .925 .922 .832
(.033) (.032) (.044) (.029) (.030) (.071) (.019) (.020) (.077)

AUC .945 .944 .945 .912 .907 .912 .889 .872 .889
(.037) (.038) (.037) (.066) (.079) (.068) (.079) (.109) (.080)

(nh, nd): number of subjects in the health and disease groups respectively; nh + nd = 300.

Table 2.10: Classification results (S.E.) with various sample sizes of health and disease
groups in high-dimensional setting based on 500 Monte Carlo replicates

Sample size (nh, nd) = (225, 75) (nh, nd) = (257, 43) (nh, nd) = (270, 30)

Logistic SVM Proposed Logistic SVM Proposed Logistic SVM Proposed

Training Sensitivity .825 .999 .927 .782 .999 .921 .395 .999 .911
(.121) (.001) (.033) (.234) (.001) (.039) (.369) (.001) (.053)

Specificity .992 .999 .924 .999 .999 .918 .999 .999 .904
(.007) (.001) (.032) (.001) (.001) (.035) (.001) (.001) (.053)

Accuracy .950 .999 .924 .968 .999 .918 .939 .999 .905
(.034) (.001) (.028) (.034) (.001) (.032) (.036) (.001) (.051)

AUC .987 .999 .972 .993 .999 .968 .842 .999 .956
(.013) (.001) (.015) (.024) (.001) (.019) (.224) (.001) (.034)

Test Sensitivity .657 .457 .861 .389 .192 .793 .131 .064 .709
(.063) (.056) (.053) (.113) (.056) (.076) (.121) (.047) (.113)

Specificity .967 .930 .892 .987 .981 .895 .997 .994 .885
(.015) (.016) (.031) (.009) (.008) (.037) (.004) (.005) (.054)

Accuracy .890 .812 .884 .901 .868 .881 .910 .901 .868
(.018) (.020) (.024) (.015) (.011) (.031) (.010) (.006) (.046)

AUC .947 .832 .951 .922 .807 .931 .777 .762 .897
(.016) (.029) (.017) (.032) (.037) (.026) (.183) (.049) (.042)

(nh, nd): number of subjects in the health and disease groups respectively; nh + nd = 300.

31



2.7 Discussion

In this work, we have developed a novel classification framework for imbalanced data under

longitudinal and high-dimensional structure. With the use of FPCA, a substantial dimen-

sion reduction has been achieved for the irregular and sparse longitudinal data, and no

distributional assumptions on biomarkers are needed. Unlike other traditional classification

methods, the proposed AUC-type classifier with univariate exponential loss function can well

and efficiently approximate the empirical AUC which is intrinsically robust against imbal-

ance, thus resulting in a great sensitivity without largely impairing the overall accuracy and

specificity. Coupled with the group lasso penalty, feature selection can be conducted within

the procedure of classification simultaneously.

As early detection of AD is a recognized health care priority in the United States (Ghaz-

arian et al., 2021), we can initially respond to this task by applying the proposed method

using the longitudinal brain imaging data together with clinical and cognitive measures. To

the best of our knowledge, this is the first study in the literature that focuses only on us-

ing the longitudinal MRI data to early identify AD patients among these individuals who

are diagnosed as normal at baseline. The proposed method not only can detect the at-risk

AD patients among these baseline normal-cognition participants but also can identify the

most significant biomarkers (such as brain regions) that are associated with the develop-

ment of AD, though biomarker discovery often requires further and deeper investigations.

The proposed method can handle longitudinal and high-dimensional imaging data; however,

in practice, the imaging data may not always be available for each individual. Because an

MRI scan typically is a more expensive procedure which may keep normal individuals from

doing the scan and further resulting in the lack of imaging data. But even without the

brain imaging data, the proposed method still can perform nicely as we have shown in the

low-dimensional settings. Apart from the longitudinal data, the proposed method without

FPC score extraction can be easily applied to cross-sectional imbalanced data.

The proposed method is mainly developed for imbalanced classification in longitudinal

and high-dimensional settings, but the feature extraction process via FPCA could be some-
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what time-consuming when the longitudinal data is dense or the total number of subjects

is large. This can be improved by employing other techniques of functional data analysis,

for example, the natural cubic spline which has been proven to be an easy-implemented and

efficient approach for both sparse longitudinal data and dense functional data (James et al.,

2000; James, 2002; James and Sugar, 2003). Besides that, the FPCA requires a pre-specified

number of basis functions, which might be critical for extracting the FPC scores. A simula-

tion was conducted to study how to determine the number of basis functions for FPCA and

how the number of basis functions impacts the imbalance classification. We suggest using

the minimal number of measurements among all subjects minus one as the number of basis

functions to ensure the FPC scores can be successfully obtained. It is also worth noting that

the feature extraction (i.e., FPC scores) by PACE can still be performed even when missing

values occur in the longitudinal profiles of subjects.

Finally, it is possible to extend our approach to incorporating other alternative surrogate

loss functions for the approximation of the empirical AUC, such as square loss and squared

hinge loss. Such an extension may potentially improve the classification performance and

reduce the computational burden. Besides that, the extension to data that are generated

from nonlinear spaces can make the proposed method more general. As one possible solution,

a kernelized transformation may be performed on the data prior to any statistical or machine

learning modeling. These extensions are indeed beyond the scope of this work and require

further investigations.
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Chapter 3

The proposed multi-class classification

framework

3.1 Motivating example: Human walking patterns

The extension of the proposed method in Chapter 2 to multi-class data is motivated by

the application of walking patterns for person recognition. It is generally assumed that

the human gait is a unique characteristic, thus providing critical and meaningful biometric

information for identification (Kim and Kim, 2017; Wan et al., 2018; Nambiar et al., 2019).

Typically, in the analysis of human walking patterns, the spatial-temporal gait data are often

recorded longitudinally with multiple cycles collected for individuals. Therefore, gait-based

person recognition can be viewed as a multi-class classification task. In other words, each

individual is considered as one class and the gait cycles collected from each one are repeated

observations. However, the number of gait cycles collected may vary across individuals,

which can cause the issue of imbalance in data. Additionally, gait data may be acquired in

high-dimensional settings, which further increases the difficulty of model estimation. It is

worth mentioning that the identification of rehabilitation via human walking data has also

been drawing attention in the literature (Baker, 2006; Horst et al., 2017). In this study,

we mainly focus on the task of person recognition and have not conducted rehabilitation
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research due to the lack of sufficient gait data of individuals being in different conditions,

for example, wearing ankle brace, knee brace or both.

Our goals in this study include: (1) transform the dense longitudinal/functional profiles

into summary measures, (2) develop an efficient and unified classification framework for

multi-class data, and (3) handle the issue of imbalance among classes. To achieve these

goals, we propose a two-stage approach for multi-class imbalanced data. In the first stage,

the techniques of natural cubic spline have been applied for feature extraction. As a result,

a significant reduction in the functional dimension is conducted. In the second stage, we

develop a novel exponential loss function which leads to an efficient optimization for the

model estimation. With the incorporation of group LASSO penalty, variable selection can

be performed simultaneously for all classes on the grouped level.

3.2 Natural cubic spline

To extract features from longitudinal/functional data, the natural cubic spline basis has been

widely used, thus leading to a considerable dimension reduction (James et al., 2000; James,

2002; James and Sugar, 2003). Suppose that f(Z) is a function on [a, b] with a sequence of

knots {ξi}i=1,...,λ which are defined as a < ξ1 < ξ2 < ... < ξλ < b. It generally requires three

conditions for such f to be a natural cubic spline: (1) f is a cubic polynomial on each of the

intervals {(a, ξ1), (ξ1, ξ2), ..., (ξλ−1, ξλ), (ξλ, b)}, (2) f is continuous up to the second derivative,

and (3) the second and third derivatives of f at both a and b are equal to zero. Typically,

the third condition which is also called the natural boundary constraints guarantees that f

is linear beyond the boundary knots a and b (Green and Silverman, 1993). A natural cubic

spline with K knots can be represented by K basis functions as follows (Hastie et al., 2009):

h1(Z) = 1, h2(Z) = Z, hk+2(Z) = ηk(Z)− ηK−1(Z), k = 1, ...,K − 2,

where

ηk(Z) =
(Z − ξk)3

+ − (Z − ξK)3
+

ξK − ξk
,
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and

(Z − ξk)+ =


Z − ξk, if Z − ξk > 0

0, otherwise.

Compared to other cubic splines such as the cubic B-spline, estimates generated from a nat-

ural cubic spline are more stable at the boundaries due to the boundary constraints (James

et al., 2013).

Assume that Uij(t) is the observed jth longitudinal biomarker of the ith subject with

t ∈ {1, ..., Ti}. Let {Sjv(t)}v=1,...,V be a set of known basis functions of Uij(t). Then Uij(t)

can be expressed as:

Uij(t) =
V∑
v=1

Sjv(t)αjv,

where {αjv}v=1,...,V is a set of spline coefficients corresponding to the jth biomarker, and V

is the dimension of expansion. The basis functions and V should be pre-specified before

applying the spline representation. For the choice of basis functions, several widely used

bases have been discussed (Ramsay and Silverman, 2006). For example, a Fourier basis is

often employed for data with a periodic structure. A spline basis such as a cubic spline

seems to be more appropriate for non-periodic data. In a natural cubic spline, V is usually

determined by the number of inner knots. Typically, the curve is more smooth and flexible

with more knots placed. A typical approach for determining the optimal value for V is to

try out different numbers of knots. Another commonly adopted approach is to select the

optimal V via cross-validation. In practice, a small value is often used for V , such as V = 2

or 3, to reduce the computational burden. Note that all the spline coefficients in this paper

are obtained by using the ns function from the R package splines, and V is determined

by setting a specific value for the degrees of freedom (df). With these extracted spline

coefficients, a classification procedure can then be applied.
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3.3 The proposed multi-class classification

Consider a training set {xi, yi}i=1,...,N , where xi is a p-dimensional vector consisting of all of

the spline coefficients extracted from longitudinal biomarkers via natural cubic spline, yi is

the corresponding multi-class label, i.e., yi ∈ {1, 2, ..., C} with C being the total number of

classes, and N denotes the total number of samples in this dataset. Motivated by the decision

function constructed for multi-class support vector machines (SVM) (Weston and Watkins,

1998), we propose a novel exponential loss function for the classification of multi-class data

as follows:

`(w) =
1

N

N∑
i=1

{∑
c 6=yi

e[−(xTi wyi−x
T
i wc)]

}
, c = 1, ..., C, (3.3.1)

where wyi and wc denote the vector of coefficients corresponding to the correct class of ith

sample and cth class, respectively, and w = [w1, w2, ..., wC ]T is a C × p matrix.

To address the issue of class imbalance under the multi-class scenario, we further propose

a simple class-based weight which can be easily integrated into Equation (3.3.1). Suppose

that the sample size of cth class is nc, it is easy to get N =
∑C

c=1 nc. Then the class-based

weight ψc corresponding to cth class can be computed as:

ψc =
N

Cnc
.

Therefore, the weight-adjusted exponential loss is defined as:

`∆(w) =
1

N

N∑
i=1

{∑
c 6=yi

e[−(xTi wyi−x
T
i wc−∆c)]

}
, (3.3.2)

where ∆c = ln(ψc).

Assume that both wyi and wc in Equation 3.3.2 are normalized (Liu et al., 2017; Wang

et al., 2018; Deng et al., 2019), i.e., ||wyi|| = ||wc|| = 1, the proposed loss function can be

rewritten as:

`(θ) =
1

N

N∑
i=1

{∑
c 6=yi

e[−||xi||(cosθyi−cosθc)+∆c]

}
, c = 1, ..., C,
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where θyi denotes the angle between xi and wyi , and θc denotes the angle between xi and wc.

It is easy to observe that minimizing `(θ) amounts to maximizing the angles between samples

from different classes, thus encouraging intra-class compactness and enlarging inter-class

separation. Hence, the minimization of Equation 3.3.2 is expected to separate distinct classes

from each other due to the equivalence of `(θ) and `∆(w) and optimize the classification

performance for multi-class data.

To avoid the computational challenges associated with the direct optimization of Equa-

tion (3.3.2), a partial quadratic approximation has been conducted by applying the partial

Newton steps (Friedman et al., 2010). Thus, the coefficient vectors {wc}c=1,...,C can be esti-

mated iteratively for a single class at a time by cycling through C classes. Specifically, for

a particular wk, let m = Xwk, where X = [x1, x2, ..., xN ]T is the design matrix, and ˙̀(wk),

῭(wk), `
′
(m), `

′′
(m) be the gradient and Hessian of the loss function in Equation (3.3.2) with

respect to wk and m, respectively. Using a second-order Taylor expansion centered at the

initial value w̃k, it is not difficult to show that:

`Q(wk) ≈
1

2
(z(m̃)−Xwk)T `

′′
(m̃)(z(m̃)−Xwk) + C(m̃, w̃k),

where m̃ = Xw̃k, z(m̃) = m̃ − `′′(m̃)−1`
′
(m̃), and C(m̃, w̃k) consist of the rest of the terms

that do not depend on wk.

As stated in the first stage of feature extraction, the longitudinal profile of a time-varying

biomarker can be summarized as a set of spline coefficients, which are further treated as

a grouped feature. To accommodate this grouping structure and conduct group-feature

selection, the group LASSO penalty (Yuan and Lin, 2006) has been incorporated and the

objective function is defined as:

Lτ (wk) =
1

2N
(z(m̃)−Xwk)T `

′′
(m̃)(z(m̃)−Xwk) + τ

G∑
g=1

√
pg||wkg ||2, (3.3.3)

where wkg is a vector of regression coefficients corresponding to the gth groupded feature,

pg denotes the number of spline coefficients within gth group which is used to adjust for the
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varying group sizes, G is the total number of groups, and || · ||2 represents the L2 norm.

It is worth noting that the tuning parameter τ is usually determined by a D-fold cross-

validation which involves the bias-variance trade-off. Specifically, a small D typically results

in large bias but small variance, whereas a large D results in small bias but large variance.

Considering the sample size of the minority class, a 5-fold cross-validation is often used to

choose the optimal value for τ .

To efficiently solve the penalized reweighted least squares in Equation (3.3.3), the block

coordinate descent algorithm is employed for optimization. Each vector of grouped coeffi-

cients, i.e., wkg , is estimated iteratively on the block level. Specifically, for the qth grouped

feature, the first derivative of Lτ (wk) with respect to wkq is computed as:

∂Lτ (wk)

∂wkq
= − 1

N
XT
q `

′′
(m̃)

(
z(m̃)−

∑
g 6=q

Xgwkg −Xqwkq

)
+ τ
√
pqsq, (3.3.4)

where Xg and Xq are the data matrices corresponding to the gth and qth grouped features,

respectively, pq is the group size of qth grouped feature, and


sq =

wkq

||wkq ||2
, if wkq 6= 0

||sq||2 6 1, if wkq = 0.

Hence, ŵkq can be easily obtained by setting Equation (3.3.4) to zero. To be more precise,

if wkq = 0, the following inequality holds:

∥∥∥∥∥ 1

N
XT
q `

′′
(m̃)

(
z(m̃)−

∑
g 6=q

Xgwkg

)∥∥∥∥∥
2

6 τ
√
pq, (3.3.5)

and if wkq 6= 0, it has a closed-form solution as follows:

ŵkq =

[
1

N
XT
q `

′′
(m̃)Xq +

τ
√
pq

||wkq ||2
· I
]−1

·

[
1

N
XT
q `

′′
(m̃)

(
z(m̃)−

∑
g 6=q

Xgwkg

)]
. (3.3.6)
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Algorithm 2 Inner loop for the estimation of wk

Step 1. Initialize w̃k, and compute m̃, `
′
(m̃), `

′′
(m̃), and z(m̃).

Step 2. For q = 1, ..., G, if Equation (3.3.5) holds, ŵkq is set to 0; otherwise, ŵkq is updated
using Equation (3.3.6).

Step 3. Set w̃k = ŵk, and compute m̃, `
′
(m̃), `

′′
(m̃), and z(m̃).

Step 4. Repeat steps 2 - 3 until convergence.

This optimization procedure requires two loops to search for the optimal solution path:

(1) for the outer loop, a partial quadratic approximation is applied to obtain `Q(wk) for

each k ∈ {1, ..., C}, and (2) for the inner loop, ŵk can be estimated efficiently by using

the Algorithm 2. To speed up the computation in the inner loop, a strategy called active-

set convergence (Krishnapuram et al., 2005; Meier et al., 2008; Friedman et al., 2010) has

been adopted. Specifically, an active-set is generated after the first cycle through G groups.

The remaining iterations are then restricted to this active-set which is updated after each

following cycle. The entire process stops when the active-set does not change.

The primary goal of the proposed optimization framework is to estimate the coefficients

vectors {wc}c=1,...,C which can be used to make predictions for the belonging class of unseen

data. Hence, given any new instance with a p-dimensional vector xnew, it will be classified

into the class which outputs the largest score ŵTc xnew. It is worth noting that this algorithm is

still applicable to binary case by simply setting C to two, despite that it is mainly developed

for multi-class (C ≥3) scenario.

3.4 Performance metrics for classification evaluation

A number of metrics have been developed and widely used to evaluate the performance of a

binary classifier. For example, accuracy and error rate are two popular measures for balanced

data. Additionally, to accommodate the imbalanced structure, some other metrics have been

employed, such as precision, recall, F1 score and G-mean. However, these measures are not

readily used for multi-class classification. In our study, we adopt the multi-class variants of
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those aforementioned metrics (Opitz and Burst, 2019; Grandini et al., 2020; Tanha et al.,

2020) for comparison purposes throughout all numerical analyses. Among them, the most

popular ones are macro-precision and macro-recall that are simply the arithmetic mean of

precision and recall for each of C classes, respectively:

macro-precision =

∑C
c=1 precisionc

C
,

macro-recall =

∑C
c=1 recallc
C

,

where precision = TP /(TP + FP) and recall = TP / (TP + FN). Note that TP, FP and

FN represent true positive, false positive and false negative, respectively.

Then the macro-F1 score is computed as the harmonic mean of macro-precision and

macro-recall:

macro-F1 score =
2×macro-precision×macro-recall

macro-precision−1 + macro-recall−1 .

Lastly, the G-mean can be computed as:

G-mean =

(
C∏
c=1

recallc

) 1
C

.

It should be noted that all these metrics proposed for multi-class classification have a range

from 0 to 1, and a higher value typically indicates a better performance.

3.5 Simulation Study

In this section, extensive simulations have been conducted to evaluate the performance of

the proposed multi-class framework. Typically, we consider two settings to generate data:

(i) a low-dimensional setting with n > p and (ii) a high-dimensional setting with n < p. For

each setting, we further assess the classification performance under two scenarios, i.e., the

labels across classes are either imbalanced or balanced. It is assumed through all simulations

that the longitudinal observations of each subject are measured at seven discrete time points
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(i.e., t ∈ {0, 1, 2, 3, 4, 5, 6} with t = 0 representing the baseline).

Basically, the data-generating scheme is a two-stage procedure. Longitudinal predictors

are simulated for each of the three classes (C1, C2 and C3) separately in the first stage:

UC1
ej (t) = µC1

j (t) + bej + εej(t), t ∈ {0, 1, ..., 6},

UC2
rj (t) = µC2

j (t) + brj + εrj(t), t ∈ {0, 1, ..., 6},

UC3
sj (t) = µC3

j (t) + bsj + εsj(t), t ∈ {0, 1, ..., 6},

where µC1
j (t), µC2

j (t) and µC3
j (t) are the mean functions of jth longitudinal predictor for each

class. The subject-specific random effects bej, brj and bsj correspond to the eth C1 subject,

rth C2 subject and sth C3 subject, respectively, and are all generated from N(0, 1.5). The

random errors εej(t), εrj(t) and εsj(t) are generated from N(0, 1). In the second stage,

each longitudinal profile is transformed into a set of spline coefficients using the techniques

of natural cubic spline. Then these sets of spline coefficients are combined and treated as

features which are further used in subsequent classification procedure. It is worth noting

that the number of inner knots is set to two during the process of feature extraction from

longitudinal predictors for simplicity.

In our analysis, regardless of being in low- or high-dimensional settings, the first 25 lon-

gitudinal predictors are considered significant for simplicity throughout all simulations and

the corresponding mean functions are generated separately for each of the three classes. For

class C1, the mean function µC1
j (t) is assumed to be constant, i.e. µC1

j = (φC1
j , φ

C1
j , ..., φ

C1
j )T1×7,

j ∈ {1, ..., 25}, where φC1
j is sampled from a truncated normal distribution (TN):

φC1
j ∼ TN(0, 1), φC1

j ∈ [−1, 1].

For class C2, let µC2
j =

{
γC2

0j + γC2
1j t + γC2

2j t2
}
t=0,1,...,6

, j ∈ {1, ..., 25}. The coefficients

{γC2
ρj }ρ=0,1,2 that are associated with the jth longitudinal predictor are randomly chosen
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from truncated normal distributions:

γC2
0j ∼ TN(0, 1) , γC2

0j ∈ [−1, 1],

γC2
1j ∼ TN(0, 1) , γC2

1j ∈ [−0.1, 0.1],

γC2
2j ∼ TN(0, 1) , γC2

2j ∈ [−0.01, 0.01].

For class C3, let µC3
j =

{
γC3

0j + γC3
1j t+ γC3

2j t
3
}
t=0,1,...,6

, j ∈ {1, ..., 25}, and the corresponding

coefficients {γC3
ρj }ρ=0,1,2 are generated from the truncated normal distributions:

γC3
0j ∼ TN(0, 1) , γC3

0j ∈ [−1, 1],

γC3
1j ∼ TN(0, 1) , γC3

1j ∈ [−0.1, 0.2],

γC3
2j ∼ TN(0, 1) , γC3

2j ∈ [0, 0.001].

As for the remaining insignificant predictors in each setting, we assume the mean functions to

be the same for all three classes, that is, µC1
j = µC2

j = µC3
j = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)T .

To evaluate the performance of the proposed method, high and low dimensional settings

are examined separately by assigning different numbers of longitudinal predictors. Specifi-

cally, we use values {250, 500} for high-dimensional setting and {50, 100} for low-dimensional

setting. For each setting, the number of subjects in each class is adjusted to generate imbal-

anced or balanced data structure. The sample sizes of three different classes for both training

and test data are set to (150, 90, 30) for imbalanced scenario and set to (100, 100, 100) for bal-

anced scenario. For comparison purposes, another three popular approaches, i.e., multi-class

support vector machines (SVM) (Fan et al., 2005), linear discriminant analysis (LDA) (Rip-

ley, 2007), and local mean-based k-nearest centroid neighbor (LMKNCN) (Gou et al., 2012),

have also been performed. In each scenario, 500 Monte Carlo replicates are simulated.
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3.5.1 High-dimensional setting

(i) Imbalanced data: The simulation results are provided in Table 3.1. It seems that

SVM tends to classify subjects into the most weighted majority class, thus failing to

generate macro precision and F1 score and yielding same G-mean, macro recall and

overall accuracy. For the state-of-the-art LMKNCN, severe overfitting leads to terrible

performances on test data. In addition, LDA has the same severe misclassification

problem as SVM and performs poorly when the dimensionality of data is ultra high (p =

1000). In contrast, our proposed approach is capable of dealing with the imbalanced

data structure and overfitting issue, and outperforms the other three methods in terms

of all five metrics on test data.

Table 3.1: Results (S.E.) of multi-class (C = 3) classification for imbalanced data under
high-dimensional settings based on 500 Monte Carlo replicates

Number of
longitudinal Proposed
features SVM LDA LMKNCN Method

500 p = 1000 Training G-Mean .000(.000) .591(.040) .999(.001) .858(.035)

Macro Recall .333(.001) .614(.031) .999(.001) .861(.035)

Macro Precision –† .680(.038) .999(.001) .784(.040)

Macro F1 Score –† .645(.032) .999(.001) .821(.037)

Overall accuracy .556(.001) .699(.023) .999(.001) .831(.037)

Test G-Mean .000(.000) .000(.001) .438(.077) .683(.068)

Macro Recall .333(.001) .384(.037) .420(.053) .702(.075)

Macro Precision –† –† .463(.118) .666(.064)

Macro F1 Score –† –† .202(.185) .688(.089)

Overall accuracy .556(.001) .578(.041) .570(.048) .731(.059)

250 p = 500 Training G-Mean .000(.000) .825(.032) .999(.001) .859(.044)

Macro Recall .333(.001) .828(.031) .999(.001) .862(.043)

Macro Precision –† .848(.029) .999(.001) .789(.050)

Macro F1 Score –† .838(.028) .999(.001) .824(.046)

Overall accuracy .556(.001) .851(.024) .999(.001) .832(.046)

Test G-Mean .000(.000) .466(.077) .466(.084) .692(.074)

Macro Recall .333(.001) .452(.063) .444(.058) .713(.081)

Macro Precision –† .484(.100) .498(.128) .674(.070)

Macro F1 Score –† .281(.190) .227(.190) .702(.095)

Overall accuracy .556(.001) .589(.060) .596(.057) .732(.066)

LMKNCN: local mean-based k-nearest centroid neighbor; p: number of transformed features in the simulated data; †: fail to generate.
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(ii) Balanced data: As shown in Table 3.2, unlike the imbalanced scenario under high-

dimensional setting, SVM successfully generates all five metrics, and its performances

on test data are much better than LMKNCN and LDA. Under this balanced data

structure, LMKNCN is still experiencing overfitting issue but the performances across

different metrics are relatively close to each other compared to the particularly low

macro F1 score under imbalanced structure. Moreover, our proposed approach still

outperforms the other three methods on test data and noticeable improvements have

also been observed compared to the imbalanced scenario.

Table 3.2: Results (S.E.) of multi-class (C = 3) classification for balanced data under
high-dimensional settings based on 500 Monte Carlo replicates

Number of
longitudinal Proposed
features SVM LDA LMKNCN Method

500 p = 1000 Training G-Mean .981(.011) .651(.023) .999(.001) .866(.040)

Macro Recall .981(.011) .652(.023) .999(.001) .867(.040)

Macro Precision .982(.010) .653(.023) .999(.001) .868(.040)

Macro F1 Score .982(.010) .652(.023) .999(.001) .867(.040)

Overall accuracy .981(.011) .652(.023) .999(.001) .867(.040)

Test G-Mean .621(.066) .459(.061) .459(.058) .755(.063)

Macro Recall .615(.066) .459(.061) .457(.057) .753(.063)

Macro Precision .628(.068) .460(.062) .460(.059) .757(.063)

Macro F1 Score .602(.072) .451(.062) .450(.058) .749(.063)

Overall accuracy .615(.066) .459(.061) .457(.057) .753(.063)

250 p = 500 Training G-Mean .943(.018) .851(.023) .999(.001) .877(.039)

Macro Recall .944(.018) .851(.023) .999(.001) .878(.039)

Macro Precision .946(.016) .852(.023) .999(.001) .878(.039)

Macro F1 Score .945(.017) .852(.023) .999(.001) .878(.039)

Overall accuracy .944(.018) .851(.023) .999(.001) .878(.039)

Test G-Mean .691(.059) .517(.061) .505(.054) .766(.054)

Macro Recall .685(.060) .516(.060) .503(.054) .764(.054)

Macro Precision .697(.060) .519(.062) .506(.055) .769(.054)

Macro F1 Score .675(.670) .509(.061) .497(.055) .761(.055)

Overall accuracy .685(.060) .516(.060) .503(.054) .764(.054)

LMKNCN: local mean-based k-nearest centroid neighbor; p: number of transformed features in the simulated data.
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3.5.2 Low-dimensional setting

(i) Imbalanced data: As shown in Table 3.3, overfitting still occurs in both LDA and

LMKNCN even under the low-dimensional setting. The imbalanced structure leads to

a relatively low macro F1 score in LMKNCN. Besides that, the severe misclassification

has not been improved in SVM under this scenario. The proposed method still outper-

forms the other three classifiers on test data and this low-dimensional setting results in

observable improvements across all five metrics compared to the performances of our

method in high-dimensional imbalanced setting.

Table 3.3: Results (S.E.) of multi-class (C = 3) classification for imbalanced data under
low-dimensional settings based on 500 Monte Carlo replicates

Number of
longitudinal Proposed
features SVM LDA LMKNCN Method

100 p = 200 Training G-Mean .000(.000) .999(.001) .999(.001) .887(.043)

Macro Recall .333(.001) .999(.001) .999(.001) .889(.043)

Macro Precision –† .999(.001) .999(.001) .822(.050)

Macro F1 Score –† .999(.001) .999(.001) .854(.046)

Overall accuracy .556(.001) .999(.001) .999(.001) .863(.044)

Test G-Mean .000(.000) .434(.063) .550(.084) .717(.065)

Macro Recall .333(.001) .442(.072) .508(.062) .736(.072)

Macro Precision –† .428(.057) .607(.129) .700(.063)

Macro F1 Score –† .424(.080) .347(.182) .724(.083)

Overall accuracy .556(.001) .459(.068) .658(.059) .760(.056)

50 p = 100 Training G-Mean .000(.000) .981(.013) .999(.001) .897(.047)

Macro Recall .333(.001) .982(.013) .999(.001) .899(.046)

Macro Precision –† .983(.012) .999(.001) .841(.062)

Macro F1 Score –† .982(.012) .999(.001) .869(.054)

Overall accuracy .556(.001) .982(.012) .999(.001) .876(.050)

Test G-Mean .000(.000) .607(.076) .618(.090) .743(.059)

Macro Recall .333(.001) .612(.079) .572(.073) .765(.063)

Macro Precision –† .603(.077) .678(.124) .724(.060)

Macro F1 Score –† .584(.110) .450(.183) .757(.069)

Overall accuracy .556(.001) .672(.064) .709(.057) .777(.053)

LMKNCN: local mean-based k-nearest centroid neighbor; p: number of transformed features in the simulated data; †: fail to generate.
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(ii) Balanced data: Under this low-dimensional balanced structure, the performances of

the proposed method and SVM are comparable whereas LDA and LMKNCN are still

suffering from the overfitting issue. The simulation results based on 500 Monte Carlo

replicates are given in Table 3.4.

Table 3.4: Results (S.E.) of multi-class (C = 3) classification for balanced data under
low-dimensional settings based on 500 Monte Carlo replicates

Number of
longitudinal Proposed
features SVM LDA LMKNCN Method

100 p = 200 Training G-Mean .881(.030) .999(.001) .999(.001) .876(.039)

Macro Recall .883(.029) .999(.001) .999(.001) .876(.039)

Macro Precision .888(.027) .999(.001) .999(.001) .877(.039)

Macro F1 Score .885(.028) .999(.001) .999(.001) .877(.039)

Overall accuracy .883(.029) .999(.001) .999(.001) .876(.039)

Test G-Mean .740(.061) .412(.058) .564(.061) .765(.055)

Macro Recall .734(.062) .410(.056) .563(.060) .762(.055)

Macro Precision .745(.061) .414(.060) .566(.061) .767(.055)

Macro F1 Score .726(.067) .392(.064) .557(.062) .758(.056)

Overall accuracy .734(.062) .410(.056) .563(.060) .762(.055)

50 p = 100 Training G-Mean .836(.051) .965(.020) .999(.001) .863(.058)

Macro Recall .840(.048) .965(.020) .999(.001) .864(.058)

Macro Precision .849(.043) .965(.020) .999(.001) .865(.057)

Macro F1 Score .844(.045) .965(.020) .999(.001) .845(.057)

Overall accuracy .840(.048) .965(.020) .999(.001) .864(.058)

Test G-Mean .763(.070) .651(.074) .643(.081) .755(.067)

Macro Recall .755(.071) .649(.074) .640(.080) .753(.067)

Macro Precision .770(.070) .653(.075) .645(.081) .758(.067)

Macro F1 Score .746(.077) .643(.075) .636(.081) .750(.068)

Overall accuracy .755(.071) .649(.074) .640(.080) .753(.067)

LMKNCN: local mean-based k-nearest centroid neighbor; p: number of transformed features in the simulated data.

3.6 Real applications

3.6.1 Human walking data

Data used in this analysis are from an exploratory study (Chang et al., 2020) which aimed

at differentiating gender by analysis of walking patterns. Sixty-one college-aged subjects (25
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females & 36 males) were asked to walk in a ten-foot path, turn around, and then walk back

to the original location, which is referred to as a complete gait cycle. Two Microsoft Kinect

cameras were used to create the 3D kinematic view of 25 joints from the human body and

record the walking pattern, i.e., the X, Y , and Z coordinates of all joints, from the front and

side view of each subject. More information regarding how the (x, y, z) coordinate space is

constructed and measured is available at https://www.microsoft.com/en-us/research/wp-co

ntent/uploads/2016/02/en-us-events-fs2011-jancke kinect programming.pdf. Figure 3.1 de-

picts the time-series gait profiles of five randomly selected subjects. As indicated by this

unpublished exploratory study, the performances of models with side-view data are almost

identical to those of the use of all data. Therefore, only the side-view data with all three

coordinates are included in our study for person recognition. In addition, we also observe

that different subjects may have varying numbers of recorded cycles, which leads to another

complication of data imbalance among multiple classes.
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Figure 3.1: Time-series gait profiles of five randomly selected subjects, i.e., ID = 9, 28, 41,
48 and 55, in terms of X, Y and Z coordinates across different trials.
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To deal with the dense longitudinal profiles of three coordinates from all 25 joints in the

gait data, the techniques of natural cubic spline are applied to obtain the corresponding

spline coefficients which are then used as cross-sectional features in subsequent classification

procedure. All these extracted coefficients are standardized with zero mean and unit variance.

For the model evaluation, one gait cycle is randomly selected from each of the 61 subjects

as test data, and the rest of cycles are used as training data. It should be noted that only

six gait cycles are available for some subjects, which is why we only use one cycle from each

subject in the test data, thus ensuring sufficient data for model training. The optimal tuning

parameter is determined by cross-validation in the model training stage. Because only one

gait cycle is used in the test data for each subject, it is impossible to calculate those metrics

employed earlier, such as G-mean and macro recall. For comparison purpose, the overall

accuracy, i.e., the proportion of correct identification out of 61 subjects, is only considered

as the performance metric for the test data. As shown in Table 3.5, the performances of all

four methods on training data are comparable. However, a significant drop is observed in

the overall accuracy for both SVM and LMKNCN in the test data, whereas our proposed

method and LDA retain exceptional and similar performances. It is worth mentioning that

the performance of LDA depends heavily on the estimation of population covariance matrix

and mean vectors, which becomes challenging in high-dimensional settings (Sifaou et al.,

2020). In this gait dataset, the mean differences in the overall walking patterns among

subjects are noticeable and the dimension of transformed data is relatively low, which is

why LDA achieves such a high overall accuracy for test data.

3.6.2 Alzheimer’s disease data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multi-site longitudinal study

whose primary goal has been to test whether a combination of different types of data, such

as serial magnetic resonance (MRI), positron tomography (PET), biological and genetic

biomarkers, and clinical assessments, can be used to track the progression and early predict

the conversion of Alzheimer’s disease (AD). In the ADNI database (adni.loni.usc.edu), each
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Table 3.5: Results (S.E.) of gait-based person recognition using 61 subjects (i.e. classes)
based on 500 Monte Carlo replicates

Proposed
SVM LDA LMKNCN Method

Training G-Mean .956(.010) .999(.001) .989(.004) .999(.001)

Macro Recall .964(.006) .999(.001) .990(.003) .999(.001)

Macro Precision .980(.004) .999(.001) .992(.003) .999(.001)

Macro F1 Score .972(.005) .999(.001) .991(.003) .999(.001)

Overall accuracy .968(.005) .999(.001) .990(.003) .999(.001)

Test Overall accuracy† .727(.048) .913(.033) .788(.047) .907(.036)

LMKNCN: local mean-based k-nearest centroid neighbor: †: calculated based on only one observation.

participant has a longitudinal profile with measurements conducted repeatedly at a six-month

interval. During each clinical visit, participants generally undergo a series of assessments and

are labeled with: cognitively normal (CN), mild cognitive impairment (MCI) or AD.

In our study, we mainly focus on subjects who are diagnosed as CN at baseline and

investigate the conversion process over time. In other words, it is of our interest to develop

a prognostic model which can be used for the early prediction of AD among CN subjects.

Meanwhile, both the stable and MCI-converted CN subjects can be monitored dynamically

and the prediction of whether the conversion will occur (i.e. CN converts to MCI or MCI con-

verts to AD) is updated whenever additional data become available. In this case, we perform

classification for three classes. Figure 3.2 shows the possible conversion processes of base-

line normal subjects and how training data are determined to achieve the goals mentioned

above. We select 319 subjects (CN: 237, MCI: 52 and AD: 30) who are diagnosed as normal

at baseline and each of them has at least three clinical visits. The demographic information

is summarised in Table 3.6. Besides that, the longitudinal data in the ADNI database are

irregularly and sparsely collected. More specifically, the assessments are generally conducted

at discrete time points which vary across participants, thus leading to different numbers of

visits among subjects. The distribution of the number of visits is given in Table 3.7.

In this analysis, different types of biomarkers and scores have been included in our model.

Due to the high association between the brain abnormalities detected by MRI and the pro-
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Figure 3.2: Clinical diagnosis of a CN subject, an MCI patient or an AD patient over time.
The dashed rectangle shows different conversion processes for MCI and AD patients, respec-
tively. The red box represents the data used for model training. The blue box represents
the final diagnosis used as the membership outcome.

gression of AD (Frisoni et al., 2010; Zhang et al., 2016; Gavidia-Bovadilla et al., 2017; Long

et al., 2017; Huang et al., 2017), we mainly focus on longitudinal biomarkers extracted from

the MRI modality. With the use of Freesurfer (v6.0.0, https://surfer.nmr.mgh.harvard.edu/

fswiki/FreeSurferWiki), a total number of 319 biomarkers are generated from various regions

of interest (ROI) in the brain. Moreover, another five popular cognitive and functional scores

are also used (Li et al., 2017; Lin et al., 2020): Functional Assessment Questionnaire (FAQ),

Mini Mental State Examination (MMSE), Alzheimer’s Disease Assessment Scale-Cognitive

13 items (ADAS-Cog 13), Rey Auditory Verbal Learning Tests (RAVLT immediate score and

RAVLT learning score). In addition to these longitudinal features, we also consider several

baseline demographic and genetic variables in the model: gender, age, and apolipoprotein E
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Table 3.6: Demographic characteristics of selected subjects

Age (years) Gender (%)

Group n Mean Std. Dev Male Female

CN 237 74.5 5.6 52.7 47.3
MCI 52 76.3 5.4 59.6 40.4
AD 30 75.4 3.9 40.0 60.0

Table 3.7: Distribution of number of visits

Number of subjects

Visits CN MCI AD

3 68 13 2
4 100 11 4
5 13 12 3
6 10 3 5
7 13 3 2
8 14 7 4
9 10 3 7
10 9 0 3

Total 237 52 30

allele ε4 (APOE4), which might be predictive of the conversion of MCI and AD. To illustrate

the irregular and sparse structure of the ADNI data, we use the ADAS-Cog 13 as an example

and present the longitudinal trajectories of CN subjects, MCI and AD patients in Figure 3.3.

The differences in the overall trends between three groups are easily observed, indicating the

potential of ADAS-Cog 13 in discriminating three distinct stages in the progression of AD.

For the model evaluation, 30% of subjects from each class are randomly selected as test

data, and the remaining subjects are used as training data. All the transformed features

from original longitudinal predictors by using natural cubic spline are standardized with zero

mean and unit variance. The tuning parameter τ in the penalty term is determined by a

5-fold cross-validation. The results over 500 Monte Carlo replicates are provided in Table

3.8. It seems that overfitting occurs to both LDA and LMKNCN and their corresponding

performances on test data are relatively poor. SVM still fails to output the macro precision
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Figure 3.3: Longitudinal trajectories of ADAS-Cog 13 for CN subjects, MCI and AD
patients.

and F1 score due to the imbalanced structure (CN: 237, MCI: 52 and AD: 30). However,

our proposed method is capable of dealing with the class imbalance and outperforms the

other three approaches under the high-dimensional setting, especially in terms of G-mean,

macro-recall and F1 score. As shown in Table 3.8, the proposed multi-class framework can

still achieve approximately 65% G-mean and 67% macro-recall, respectively, even for such

a complex imbalanced data, whereas LDA and LMKNCN only achieve 40+% G-mean and

53% macro-recall.

Table 3.8: Results (S.E.) of early detection of Alzheimer’s disease and prediction of con-
version of the other two stages using ADNI data based on 500 Monte Carlo replicates

Proposed
SVM LDA LMKNCN Method

Training G-Mean .000(.000) .951(.015) .999(.003) .727(.043)

Macro Recall .333(.001) .953(.014) .999(.003) .738(.038)

Macro Precision –† .975(.011) .999(.001) .658(.043)

Macro F1 Score –† .964(.011) .999(.002) .695(.040)

Overall accuracy .740(.001) .972(.009) .999(.001) .758(.027)

Test G-Mean .000(.000) .464(.097) .418(.084) .650(.045)

Macro Recall .333(.001) .538(.064) .528(.053) .668(.042)

Macro Precision –† .593(.072) .612(.080) .614(.044)

Macro F1 Score –† .563(.061) .565(.057) .639(.037)

Overall accuracy .735(.001) .714(.038) .752(.030) .723(.036)

LMKNCN: local mean-based k-nearest centroid neighbor; †: fail to generate.
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3.6.3 Leukemia data

The leukemia data were first described by Golub et al. (1999) and have been frequently

used in many microarray studies (Dudoit et al., 2002; Dettling and Bühlmann, 2003; Huang

and Zheng, 2006). The primary goal is to determine the leukemia phenotypes using gene

expression measurements which were obtained from Affymetrix high-density oligonucleotide

microarrays. The complete dataset is available at: https://hastie.su.domains/CASI files/

DATA/leukemia.html. Generally, there are two main types of leukemia, acute lymphoblastic

leukemia (ALL) and acute myeloid leukemia (AML). If a subject is diagnosed as ALL, further

assessments need to be conducted to determine whether it is T-cell or B-cell. Therefore,

three types of leukemia are considered in this study: AML, ALL-T and ALL-B. According

to the preprocessing procedure described by Dudoit et al. (2002), the log-transformation and

standardization have been applied to the original data. For our analysis, a total number of

72 patients (ALL-B: 38, ALL-T: 9 and AML:25) are included, with each containing 7129

human genes.

In implementing the proposed algorithm, the multi-class classification framework has

been slightly modified to accommodate the cross-sectional leukemia dataset. To be more

precise, the feature extraction step via natural cubic spline is skipped because no longitudinal

profiles are present. For the model evaluation, this dataset is randomly divided into training

and test subsets, each containing 70% and 30% of leukemia patients, respectively. The tuning

parameter is determined by a 3-fold cross-validation. As shown in Table 3.9, the proposed

method outperforms the other three competitive approaches regardless of which metric is

employed. SVM still fails to generate the macro precision and F1 score because it tends to

classify all subjects as ‘ALL-B’. Unlike its performance on Alzheimer’s disease data, LDA

performs poorly even on the training subset due to the ultra high-dimensionality of this

leukemia dataset. For the state-of-the-art LMKNCN, its performance on the test data is

also inferior to that of our proposed method.
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Table 3.9: Results (S.E.) of tumor types discrimination using Leukemia data based on 500
Monte Carlo replicates

Proposed
SVM LDA LMKNCN Method

Training G-Mean .000(.000) .762(.052) .999(.001) .999(.002)

Macro Recall .333(.001) .795(.041) .999(.001) .999(.002)

Macro Precision –† .926(.034) .999(.001) .999(.006)

Macro F1 Score –† .854(.034) .999(.001) .999(.004)

Overall accuracy .531(.001) .869(.024) .999(.001) .999(.004)

Test G-Mean .000(.000) .764(.115) .820(.099) .928(.057)

Macro Recall .333(.001) .778(.094) .838(.084) .932(.052)

Macro Precision –† .829(.039) .922(.036) .931(.048)

Macro F1 Score –† .802(.069) .876(.059) .931(.046)

Overall accuracy .522(.001) .836(.068) .873(.057) .924(.048)

LMKNCN: local mean-based k-nearest centroid neighbor; †: fail to generate.

3.7 Discussion

In this work, we have developed a novel classification framework for multi-class data with a

complex structure, such as functional/longitudinal measurements, high-dimensionality and

class imbalance. With the use of natural cubic spline, the dense longitudinal/functional data

can be efficiently characterized by a set of spline coefficients with a substantial dimensional

reduction. A novel exponential loss function coupled with group LASSO penalty is then

constructed to cast the multi-class classification task as one single optimization problem.

Additionally, a simple weight-adjusted margin can be easily incorporated into the proposed

loss function to address the issue of class imbalance. The proposed approach does not require

any distributional assumptions on biomarkers and is capable of performing feature selection

for all classes individually.

It is worth mentioning that natural cubic spline is not the only technique for extracting

features from longitudinal/functional data. When only few measurements, such as one or

two, are collected for certain subjects, it may not be feasible to transform those functional

profiles using natural cubic spline. Instead, functional principal component analysis (FPCA)

can be used to handle this issue. To accommodate the irregular and sparse longitudinal
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data, Yao et al. (2005) proposed the Principal Components Analysis through Conditional

Expectation (PACE) algorithm which uses pooled data to estimate the so-called functional

principal component (FPC) scores regardless of how many measurements exist for each

subject. Another complication with the use of natural cubic spline is that it generally

requires a pre-specified number of inner knots to apply natural cubic spline. A simulation

study has been conducted to investigate how the number of inner knots will impact the

classification performance. The results (not shown here) indicate that two inner knots will

be sufficient to characterize the over-time underlying associations in functional/longitudinal

profiles.
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Chapter 4

Conclusion and Discussion

In this dissertation, we propose two novel frameworks for the binary and multi-class classifi-

cation of complex imbalanced data. In the literature, existing classifiers generally assumed a

balanced class distribution which is often not true in biomedical research, especially in rare

disease screening and early diagnosis studies. Considering the random dropouts in longitudi-

nal studies and the high-dimensionality of big data in modern health research, classification

tasks under these complications become even more challenging.

In Chapter 2, we develop a nonparametric approach for the classification of imbalanced

data under a longitudinal and high-dimensional structure. The functional principal compo-

nent analysis is employed to handle the over-time associations within longitudinal profiles

and feature extraction is conducted separately for each biomarker. Then, an efficient and

easy-to-implement binary classifier is proposed to deal with the imbalanced labels between

two classes. Unlike other traditional methods, our approach does not require any distribu-

tional assumptions on biomarkers and is capable of performing model estimation and variable

selection simultaneously.

In Chapter 3, we further extend the proposed method to multi-class data. For feature

extraction, we adopt the natural cubic spline to avoid potential computational burden in-

duced by data density. The proposed approach avoids the construction of multiple binary

classifiers and casts the multi-class classification task as a single optimization problem. Be-
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sides that, the imbalance issue across different classes has been resolved by the integration

of weight-adjusted margins.

In our both methods, the longitudinal/functional data have to be characterized by some

techniques in functional data analysis. This step serves as an important rule in our ap-

proaches to reduce the longitudinal dimension of data. Two types of techniques have been

employed: (1) functional principal component analysis (FPCA) and (2) natural cubic spline

(NCS). Technically, FPCA uses pooled data to estimate the covariance and mean function

of underlying trajectories. Thus, the prediction of individual smooth trajectory can still be

made even if there only exists one or few measurements for a particular subject. However,

this estimating process might be time-consuming when the longitudinal data are dense or

the total number of subjects is large. In contrast, NCS provides an efficient solution for the

feature extraction from functional data. Once the basis functions are determined, a set of

spline coefficients can be easily estimated independently for each subject. One limitation

with NCS is that it generally requires more longitudinal measurements for spline coefficients

estimation. For comparison purpose, we have applied both the FPCA and NCS to the bi-

nary Alzheimer’s disease data and the numerical results are provided in Table C.1. It seems

that the overall performances of FPCA and NCS are close and comparable although NCS

achieves a slightly higher AUC on test data. This real data analysis indicates that either

FPCA or NCS can be applied for dimension reduction when sufficient data are available for

each subject. However, if only few measurements are available, such as one or two, NCS

generally fails and FPCA can be used instead.

It should be noted that few studies in the literature take advantage of the underlying asso-

ciations within longitudinal profiles for the early detection and classification tasks (Tomasko

et al., 1999;Marshall and Barón, 2000;De La Cruz-Mesia and Quintana, 2007;Arribas-Gil

et al., 2015). Most studies only use data at baseline or from the last visit. Nevertheless,

subtle changes may already occur in the over-time progression. Therefore, these features

summarised from the longitudinal data using above techniques are expected to be more

informative compared to the original features at baseline or from the last visit.

Moreover, the proposed weight-adjusted margin in Chapter 3 can address the issue of
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imbalance among classes to some extent and lead to an improved classification performance.

However, our proposed weights are somewhat simple and näıve. Other advanced weight ad-

justments can also be considered to improve the classification performance, which is beyond

the scope of this study.

It is also worth mentioning that our proposed binary classifier in Chapter 2 is intrinsi-

cally different from AdaBoost (Freund and Schapire, 1997) despite both of them adopt the

exponential loss function. AdaBoost is essentially a boosting algorithm which constructs a se-

quence of weak learners and continuously assigns updated weights to misclassified instances.

In contrast, we mainly use the univariate exponential loss to approximate the empirical

AUC in the objective function, thus leading to improved classification performances under

the highly skewed distribution between positive and negative classes.

Lastly, we further investigate the classification performance of our multi-class framework

with different numbers of classes. Two versions of gait data are used for this purpose: (1)

the original dataset with 42 college-aged subjects (i.e., C = 42) and (2) the same dataset

with additional 19 subjects (i.e., C = 61). As shown in Table B.1, minor improvements have

been observed for SVM, LDA, and LMKNCN using the smaller dataset with 42 subjects.

On the contrary, our proposed method has obtained a slightly lower overall accuracy with

this 42-subject dataset. It still requires additional simulation studies to investigate whether

higher numbers of classes will lead to better performances for our approach.
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Appendix A

Calculation of gradient and Hessian

A.1 The gradient and Hessian of univariate exponen-

tial loss

To compute the hessian of the loss function in Equation (2.4.1) with respect to m, i.e. `
′′
(m),

it generally requires O(N2) time complexity, thus leading to intensive computation especially

when N is large. According to the argument of Hastie and Tibshirani (1990), `
′′
(m) can be

replaced by a diagonal matrix with only the diagonal entries of `
′′
(m) because the optimal

β will remain a fixed point and the off diagonal entries are small compared to the diagonal

entries. Let m = Xβ = [m1,m2, ...,mN ]T , where mi = xTi β, and we have the loss function

defined as:

`(β) =
N∑
i=1

e−yix
T
i β.

Thus, it is easy to calculate the gradient as `
′
(m) = [`

′
(m)1, ..., `

′
(m)N ]T , where `

′
(m)i =

(−yi)e−yimi , and the diagonal entries of the hessian can be computed as

`
′′
(m)i,i = y2

i e
−yimi .

74



A.2 The gradient and Hessian of weight-adjusted multi-

class exponential loss

To implement the Algorithm 2, partial Newton steps have been employed to conduct partial

quadratic approximation to the proposed loss function (3.3.2) defined as follows:

`∆(w) =
1

N

N∑
i=1

{∑
c 6=yi

e[−(xTi wyi−x
T
i wc−∆c)]

}
.

Let m = Xwk = [m1, ...,mN ]T , where mi = xTi wk, it is not difficult to show that entries of

the gradient and diagonal entries of the hessian can be computed separately as follows:

`
′
(m)i =


−
∑

c 6=yi exp(xTi wc −mi + ∆c), if yi = k

exp(mi − xTi wyi + ∆c), if yi 6= k.

`
′′
(m)i,i =


∑

c6=yi exp(xTi wc −mi + ∆c), if yi = k

exp(mi − xTi wyi + ∆c), if yi 6= k.
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Appendix B

The proposed multi-class framework

with different numbers of classes

Table B.1: Results (S.E.) of gait-based person recognition using 42 or 61 subjects (i.e.
classes) based on 500 Monte Carlo replicates

Number of Proposed
subjects SVM LDA LMKNCN Method

42 Training G-Mean .977(.007) .999(.001) .996(.004) .998(.003)

Macro Recall .980(.006) .999(.001) .996(.004) .998(.003)

Macro Precision .990(.003) .999(.001) .997(.003) .999(.002)

Macro F1 Score .985(.004) .999(.001) .997(.003) .998(.002)

Overall accuracy .981(.005) .999(.001) .996(.004) .998(.002)

Test Overall accuracy† .764(.054) .936(.035) .814(.054) .869(.050)

61 Training G-Mean .956(.010) .999(.001) .989(.004) .999(.001)

Macro Recall .964(.006) .999(.001) .990(.003) .999(.001)

Macro Precision .980(.004) .999(.001) .992(.003) .999(.001)

Macro F1 Score .972(.005) .999(.001) .991(.003) .999(.001)

Overall accuracy .968(.005) .999(.001) .990(.003) .999(.001)

Test Overall accuracy† .727(.048) .913(.033) .788(.047) .907(.036)

LMKNCN: local mean-based k-nearest centroid neighbor; †: calculated based on only one observation.
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Appendix C

Comparison between FPCA and NCS

using binary Alzheimer’s disease data

Table C.1: Classification results (S.E.) of our proposed binary classifier on ADNI data over
500 Monte Carlo replicates using either FPCA or NCS for feature extraction

FPCA NCS

Training Set Sensitivity .946(.066) .908(.048)

(nh=166, nd=21) Specificity .973(.035) .909(.040)

Accuracy .970(.035) .909(.032)

AUC .976(.033) .960(.013)

Test Set Sensitivity .790(.145) .819(.127)

(nh=71, nd=9) Specificity .880(.094) .893(.047)

Accuracy .870(.084) .885(.040)

AUC .880(.091) .945(.036)

FPCA: functional principal component analysis; NCS: natural cubic spline
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