
INFLUENCING EXPLORATION IN ACTOR-CRITIC REINFORCEMENT

LEARNING ALGORITHMS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Andrew Richard Gough

June 2018

c© 2018

Andrew Richard Gough

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Influencing Exploration in Actor-Critic Re-

inforcement Learning Algorithms

AUTHOR: Andrew Richard Gough

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Seng, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Maria Pantoja, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Influencing Exploration in Actor-Critic Reinforcement Learning Algorithms

Andrew Richard Gough

Reinforcement Learning (RL) is a subset of machine learning primarily concerned

with goal-directed learning and optimal decision making. RL agents learn based on

a reward signal discovered from trial and error in complex, uncertain environments

with the goal of maximizing positive reward signals. RL approaches need to scale up

as they are applied to more complex environments with extremely large state spaces.

Inefficient exploration methods cannot sufficiently explore complex environments in

a reasonable amount of time, and optimal policies will be unrealized resulting in RL

agents failing to solve an environment

This thesis proposes a novel variant of the Actor-Advantage Critic (A2C) algo-

rithm. The variant is validated against two state-of-the-art RL algorithms, Deep

Q-Network (DQN) and A2C, across six Atari 2600 games of varying difficulty. The

experimental results are competitive with state-of-the-art and achieve lower variance

and quicker learning speed. Additionally, the thesis introduces a metric to objectively

quantify the difficulty of any Markovian environment with respect to the exploratory

capacity of RL agents.

iv

ACKNOWLEDGMENTS

Thanks to:

• Dr. Kurfess, a truly special professor, advisor, and friend. Without his guid-

ance, passion for AI, and great humor this thesis work would not have been

possible.

• Dr. Pantoja and Dr. Seng for their advice and direction, especially regarding

my ignorance of hardware requirements in the Fall.

• The Cal Poly Computer Science Department for enabling me to do the best

work of my life and transform as a person.

• Tedd Akdag, the sys-admin for our department who I credit for my newly

acquired system administrator skills.

• Julie Workman, whose encouragement and love for programming kept me in

the major freshman year.

• My girlfriend Camille Posard, for her unwavering love, support, and gracefully

handling the ups and downs of (thesis) life.

• Last but not least, my parents, family, and friends; I have endless gratitude for

the village who raised me and built the foundation upon which I stand.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem . 3

1.3 Contributions . 4

1.4 Thesis Outline . 4

2 Background . 5

2.1 Markov Decision Process . 5

2.2 Reinforcement Learning . 6

2.2.1 Origins of Reinforcement Learning 7

2.2.2 Reinforcement Learning Framework 7

2.3 Classic Reinforcement Learning Approaches 10

2.3.1 Overview . 11

2.3.2 Value Based Methods . 11

2.3.3 Policy Based Methods . 14

2.3.4 Actor-Critic Methods . 16

2.4 Neural Networks . 17

2.4.1 Origins . 17

2.4.2 Usage and Intuition . 18

2.4.3 Concepts . 18

2.5 Deep Reinforcement Learning with Atari 20

2.5.1 Motivation and Deep Learning 20

2.5.2 Atari Learning Environment 22

2.6 Modern Reinforcement Learning Methods 25

2.6.1 Deep Q-Network . 25

2.6.2 Asynchronous Actor Advantage Critic 28

3 Related Works . 33

vi

3.1 Efficient Exploration in Reinforcement Learning 33

3.2 Parameter Space Exploration Methods for A3C and DQN 34

3.3 Directed Diversity Driven Exploration for A2C 35

4 Implementation . 37

4.1 Tools and Infrastructure . 37

4.1.1 OpenAI Gym . 37

4.1.2 OpenAI Baselines . 38

4.2 Design and Implementation of Novel Algorithm Modifications 39

4.2.1 Design . 39

4.2.2 Implementation . 40

4.3 Exploration Difficulty Metric . 42

5 Validation . 44

5.1 Experimental Framework . 44

5.1.1 Selected Environments . 44

5.1.2 Experimental Conditions . 46

5.1.3 Algorithms and Hyperparameters 47

5.2 Results and Analysis . 49

5.2.1 Space Invaders . 50

5.2.2 Pong . 54

5.2.3 Ms. Pacman . 57

5.2.4 Q*Bert . 60

5.2.5 Freeway . 62

5.2.6 Montezuma’s Revenge . 63

6 Conclusion and Future Works . 64

BIBLIOGRAPHY . 66

APPENDICES

.0.1 Q*Bert . 71

.0.2 Montezuma’s Revenge . 71

vii

LIST OF TABLES

Table Page

2.1 Description of RL Methods . 11

5.1 Atari EDM Summary . 49

5.2 Results Summary . 51

viii

LIST OF FIGURES

Figure Page

2.1 Diagram of a Markov Decision Process 5

2.2 Neural network architecture used in TD-Gammon 13

2.3 The structure of a biological neuron 17

2.4 The artificial neuron model . 19

2.5 Typical multi-layered feed-forward network [18] 20

2.6 Visualizing a 3-dimensional error surface when training a neural net-
work . 21

2.7 Reinforcement learning loop using the Atari console 24

2.8 Visualization of DQN neural network architecture [30] 26

2.9 Visualization of learned q-values for Pong (y-axis on graph corre-
sponds to value estimate) [30] . 27

2.10 Results summary of DQN vs. human level performances across 49
Atari games [30] . 31

2.11 The architecture of the A3C algorithm 32

3.1 Visualization of action space vs. parameter space exploration [34] . 34

5.1 Exploration Taxonomy of Atari Environments [6] 45

5.2 Space Invaders: Random policy with variance 51

5.3 Space Invaders: DQN with variance 52

5.4 Space Invaders: A2C policy with variance 52

5.5 Space Invaders: Random (blue) vs. DQN (yellow) vs. A2C (green) 53

5.6 Space Invaders: Random (blue) vs. A2C (green) vs. A2C Annealing
(red) . 53

5.7 Pong: Random policy with variance 54

5.8 Pong: DQN with variance . 55

5.9 Pong: A2C policy with variance . 55

5.10 Pong: A2C-Annealing policy with variance 56

5.11 Pong: Random (blue) vs. DQN (yellow) vs. A2C (green) 56

5.12 Pong: Random (blue) vs. A2C (green) vs. A2C Annealing (red) . . 57

ix

5.13 Ms. Pacman: Random policy with variance 57

5.14 Ms. Pacman: DQN with variance 58

5.15 Ms. Pacman: A2C policy with variance 58

5.16 Ms. Pacman: Random (blue) vs. DQN (yellow) vs. A2C (green) . . 59

5.17 Ms. Pacman: Random (blue) vs. A2C (green) vs. A2C Annealing
(red) . 60

5.18 Q*bert: Random policy with variance 60

5.19 Q*bert: DQN with variance . 61

5.20 Q*bert: A2C policy with variance 61

5.21 Q*bert: Random (blue) vs. DQN (yellow) vs. A2C (green) 62

5.22 Q*bert: Random (blue) vs. A2C (green) vs. A2C Annealing (red) . 63

.1 Player View of Space Invaders . 72

.2 Player View of Pong . 73

.3 Player View of Ms. Pacman . 74

.4 Player View of Q*Bert . 75

.5 Player View of Freeway . 76

.6 Player View of Montezuma’s Revenge 77

.7 Freeway: Random policy with variance 78

.8 Freeway: DQN with variance . 78

.9 Freeway: A2C policy with variance 78

.10 Freeway: Random (blue) vs. DQN (yellow) vs. A2C (green) 78

.11 Freeway: Random (blue) vs. A2C (green) vs. A2C Annealing (red) 79

.12 Montezuma’s Revenge: Random policy with variance 79

.13 Montezuma’s Revenge: DQN with variance 79

.14 Montezuma’s Revenge: A2C policy with variance 79

x

Chapter 1

INTRODUCTION

1.1 Motivation

A precursor to general artificial intelligence is the construction of systems that are

equipped with generalized learning mechanisms and the capability to develop optimal

decision making strategies. Reinforcement Learning (RL) is a subset of machine

learning primarily concerned with goal-directed learning and optimal decision making

[30, 39]. The field is largely inspired by psychology and neuroscience where it is

believed that biological learning is positively reinforced by rewards of dopamine [10]

in the brain, or negatively reinforced by sending painful signals to the brain [35].

Therefore, RL agents learn based on a reward signal discovered from trial and error

in complex, uncertain environments with the goal of maximizing positive reward

signals.

Often times, a good example can help build the foundations of a solid mental

model. For an intuitive and familiar example, consider Phil, a man about to prepare

breakfast. Closely examined, even this apparently mundane activity reveals a com-

plex web of conditional behavior and interlocking goal-subgoal relationships: walking

to the cupboard, opening it, selecting a cereal box, then reaching for, grasping, and

retrieving the box. Other complex, tuned, interactive sequences of behavior are re-

quired to obtain a bowl, spoon, and milk jug. Each step involves a series of eye

movements to obtain information and to guide reaching and locomotion. Rapid judg-

ments are continually made about how to carry the objects or whether it is better to

ferry some of them to the dining table before obtaining others. Each step is guided

by goals, such as grasping a spoon or getting to the refrigerator, and is in service

1

of other goals, such as having the spoon to eat with once the cereal is prepared and

ultimately obtaining nourishment. Whether he is aware of it or not, Phil is accessing

information about the state of his body that determines his nutritional needs, level

of hunger, and food preferences.

Regarding optimal decision making, the human brain performs fairly well despite

handling a firehose of sensorimotor information. These RL agent brains can theoret-

ically consider all of this sensorimotor information with ease and flawlessly execute

the next ideal action without hesitation. Where these agents lack is the ability to

efficiently explore unknown state spaces and factor in long-term vs. short-term re-

wards. State-of-the-art approaches stand no chance against increasingly complex

environments if they are utilizing inefficient exploration methods [6].

Historically, RL required a lot of abstraction and simplification of environments

in order for an agent to engage with the environment in a reasonable amount of

time. Due to these simplified, dumbed down environments, RL was not considered

a practical method to solving complex optimization problems. Thanks to recent

advances in computer vision and deep neural networks as function approximators,

end-to-end model-free RL based on purely visual input has been realized [29, 30].

End-to-end reinforcement learning is the process of going from direct observation

of an environment, to direct predictions of optimal actions, and looping until the

problem is solved or the max time steps are achieved, with minimal pre and post

processing of the problem. Model free means that the agent has no preconception

of the dynamics or physics of the environment it is operating in. If we were to

compare end-to-end RL to human flight with the Wright Brothers, the schematic

for the plane was proved by Deepmind [29] in 2013 introducing a cutting edge RL

algorithm utilizing a convolutional neural network architecture to process and play

Atari games purely from raw visual data. It could take off and get some air down the

runway, but for the most part would come bumping back down after a brief flight.

2

By 2015 super human performance [30] was achieved across a majority of the Atari

Learning Environment (ALE) [7] games. This new, enhanced plane design could

hold its own and lift off the runway in many different situations, varying weather /

varying environments proving that an end-to-end RL agent can compete with humans

in increasingly complex environments.

1.2 Problem

The fundamental trade-off between exploration and exploitation is arguably the most

important problem within the field, demanding research for efficient exploration capa-

bilities. When an agent learns to control a new, unknown environment, two opposing

objectives need to be combined. First, in order to identify a (sub-)optimal controller,

the environment must be sufficiently explored. The second objective is utilizing the

experience gained during learning to maximize potential future reward, or minimize

the cost of learning (in terms of negative reward). Thus for efficient learning, actions

should be generated such that a) the environment is explored and b) pain is avoided.

This quintessential balance between exploration and exploitation demands efficient

exploration capabilities, maximizing the effect of learning while minimizing the costs

of exploration and learning time.

Despite major advances in the field, exploration strategies have had little innova-

tion as strategies developed [42] in the early 1990s are still considered state-of-the-art

in production code [13]. For environments where the state space is relatively tame

and rewards are somewhat constant, undirected exploration methods are surprisingly

effective, but can be improved upon. RL approaches need to scale up as they are

being applied to more complex environments with extremely large state spaces [45].

Inefficient exploration methods cannot sufficiently explore these environments in a

reasonable amount of time, and optimal policies will be unrealized resulting in RL

3

agents failing to solve an environment or converging on local optima.

1.3 Contributions

My contributions include:

• A comprehensive examination of state-of-the-art RL algorithms, Deep Q-Network

(DQN) and Actor-Advantage Critic (A2C) in a modern Atari 2600 reinforce-

ment learning benchmark.

• Design, implementation, and validation of a novel variant of the A2C algorithm.

• A proposed Exploration Difficulty Metric (EDM) to objectively quantify the

difficulty of RL environments with respect to the exploratory capacity of RL

agents.

1.4 Thesis Outline

This document will first introduce the topic, problem, and contributions of this the-

sis project in Chapter 1. Then it will cover the relevant background information

in Chapter 2 to help readers become familiar with RL in an accelerated fashion. In

Chapter 3, related works will be introduced and I will distinguish between the similar-

ities and differences of their works and mine. Chapter 4 will explain design decisions

and describe the specific software implementation details of a novel modification to

A2C while also introducing the Exploration Difficulty Metric. Chapter 5 explains

how experiments are conducted, what metrics are considered, and provides analysis

to determine the value of my work. Finally, future work and a conclusion analyzing

the impact of my work are discussed in Chapter 6.

4

Chapter 2

BACKGROUND

2.1 Markov Decision Process

In order for an autonomous agent to learn, it must act on its own accord and un-

derstand the consequences of its actions. For this to be possible, it must be able

to sense the state of its environment, and affect that environment through a set of

actions. Goals or rewards provide context to these actions from which to learn and

it is the relationship between actions and rewards which must be learned. Sutton

and Barto [39] claim that a Markov Decision Process (MDP) must be able to capture

and represent three aspects of an environment - state, action, and reward. Formally,

an MDP is a mathematical framework for modeling any sequential decision making

process [3]. In this framework, actions influence not just immediate rewards, but also

subsequent states and future rewards. Reinforcement learning utilizes this framework

to define the interactions between a learning agent and its environment.

Figure 2.1: Diagram of a Markov Decision Process

Finite MDP’s model stochastic, discrete-time and finite action space control prob-

5

lems [8]. An MDP is a 4-tuple entity represented below:

M = 〈A, S, P,R(s, a)〉

Where A is a set of legal actions available to the agent. This set is assumed to be

finite, and that all actions are available to the agent at each state. P is a function that

defines the probability of transitioning to state s0 after action a is taken when the

agent is in state s. Because of the Markov property, the probability of a transition

to state s0 only depends on the prior state and action made. The function R(s,

a) determines the probability of receiving reward r after choosing action a in state s.

More specifically, the agent and environment interact at each of a sequence of discrete

time steps, t = 0, 1, 2, 3 ... At each time step t, the agent receives some representation

of the environment state, St S, and on that basis selects an action, At A(s). One

time step later, as a consequence of the selected action, the agent receives a numerical

reward Rt+1 R and finds itself in a new state St+1. The agent’s interactions with

the MDP give rise to a sequence or trajectory that begins like this: S0, A0, R1, S1,

A1, R2, S2, A2, R3,.... MDP’s are intended to represent the essential features of any

artificial intelligence problem. For the rest of this paper each environment will be

modeled as a finite MDP.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a computational approach to understanding and au-

tomating goal-directed learning and decision making [39]. To understand RL it is

helpful to understand the fields that study optimal decision making and contribute

to solving it. The following sections will discuss the origins of RL and formally de-

scribe the framework in which RL solves Markov Decision Processes.

6

2.2.1 Origins of Reinforcement Learning

RL is an attempt to solve the science of optimal decision making. Unsurprisingly,

many fields of science contribute to the study of optimal decision making and tackle

the same problems that RL hopes to solve. In life, there are often many solutions to

a problem, the challenging task is finding the optimal solution to a problem. General

engineering for centuries has studied optimal control policies for control of locomotion

systems and robotics. Neuroscientists study optimal decision making through study-

ing the brain and the examination of chemical interactions that form reward systems

driving human motivation. Psychology comes into play with the idea of classical

conditioning, Pavlov’s dogs, and the idea that reinforcing behaviors drives learning

in biological systems. Mathematics influences the field in terms of optimization and

operations research. Finally economics touches on the topic of decision making with

game theory, decision theory, and bounded rationality. RL researchers examine all of

these fields and take inspiration to implementation when designing new algorithms,

with the ultimate goal of solving intelligence.

2.2.2 Reinforcement Learning Framework

There are several major distinctions between reinforcement learning and other ma-

chine learning paradigms. First, most successful machine learning applications to

date have required large amounts of hand-labeled training data. Second is that there

is no supervisor, only a reward signal. RL algorithms must be able to learn from

a scalar reward signal that is frequently sparse and noisy. Third, feedback is not

guaranteed to be instantaneous and is often delayed. Your data set is not a fixed

entity divided into training and test, an RL dataset is a dynamic system that your

agent is creating through interaction and those actions influence the data it receives.

The data is sequential in nature. Additionally, a daunting challenge for RL agents

7

to learn a successful control policy is that they are often interacting with stochastic

problems and learning non-stationary probability distributions.

Components of an RL System

Beyond the agent and the environment definitions of the Markov Decision Process,

there are four main sub-elements of a reinforcement learning system.

• Policy: an agent’s behavior function, how it selects actions to take

• Reward Signal: a scalar feedback signal from the environment indicating how

rewarding a given state is

• Value Function: an agent’s estimate of how good a state or an action is to take

• Model: an agent’s internal representation of an environment; this component is

optional, the algorithms examined in this thesis do not contain a model and are

referred to as model-free RL algorithms

A policy defines the learning agent’s way of behaving at a given moment. Essen-

tially a policy is a mapping from perceived states of the environment to actions to

be taken from that state. It corresponds to what in psychology would be called a set

of stimulus-response rules or associations. In some cases the policy may be a simple

function or lookup table, whereas in others it may involve extensive computation such

as a search process. The policy is the core of a reinforcement learning agent in the

sense that it alone is sufficient to determine behavior. In general, policies may be

stochastic.

A reward signal defines the goal in a reinforcement learning problem. On each

time step, the environment sends to the reinforcement learning agent a single, scalar

number called the reward. The agent’s primary objective is to maximize net reward it

8

receives over the course of its lifetime. The reward signal defines what is considered

good and bad in a given environment. In a biological system, we might think of

rewards as similarities to pleasure and pain. They are the immediate and defining

features of the problem faced by the agent. The reward signal dictates how an agent

will learn and adapt to a problem. It is the primary basis for altering the policy,

for example if an action selected by the policy is followed by low or negative reward,

then the policy may change to select a different action given that state in the future.

When designing an environment for a reinforcement learning agent, it is particularly

challenging to engineer the reward system and reward signals in a way such that the

agent can generalize as much as possible and not follow a human-biased strategy for

solving the environment. In general, reward signals are stochastic functions of the

state of the environment and the set of actions available to the agent.

Where a reward signal dictates what is good in the immediate sense, the agent’s

value function estimates what is good in the long run. Essentially, the value of a state

is the total amount of reward an agent can expect to accumulate in the future starting

with the current state. Whereas rewards determine the immediate desirability of

environmental states, values indicate a long-term prediction of future desirability of

states from the current state. For example, a given state may always yield a low

immediate reward but still have a high value because it is generally followed by other

states that are associated with high rewards. Or the reverse could be true, indicating

that an agent is on a possibly harmful trajectory given the current state. To circle

back to human psychology, positive rewards are comparable to immediate pleasure

and negative rewards are comparable to immediate pain. Whereas values correspond

to a more refined and farsighted judgment of how pleased or displeased we are with

our current state. Without rewards there could be no values, and the sole purpose of

estimating values and learning a value function is to obtain more reward. However,

value estimates are what most heavily influence strategy and decision making. Policy

9

is often based on value judgments, it is better to choose actions that bring about

the highest value states, not the highest reward, because these actions often generate

the largest amount of reward for an agent in the long run. As you can imagine, it

is much harder to determine values than it is to determine rewards. Rewards are

given directly to the agent from an environment where values must be estimated and

updated from sequences of observations that an agent makes over the duration of

its lifetime. The most important component of practically all reinforcement learning

algorithms is the efficient learning and estimation of its value function.

Finally, an element of some reinforcement learning systems is a model of the

environment. The model is an internal representation of the environment built by

the agent that mimics the behavior of an environment. More generally, it enables

inferences to be made about how the environment will behave. For example, given a

state and action, the model attempts to predict the future state and future reward

resulting in the execution of the action. Models are used to help in future planning, or

how the agent will decide on a course of action by predicting future states before they

are actually realized. The class of reinforcement learning methods that use models are

called model-based methods, as opposed to simpler, lighter weight model-free methods

that explicitly learn through trial-and-error. Reinforcement learning methods vary

from low-level trial-and-error learning agents to high-level predictive planning.

2.3 Classic Reinforcement Learning Approaches

Ultimately, all reinforcement learning algorithms can be categorized as Value-Based,

Policy-Based, or a combination of the two, in the family of Actor-Critic methods.

10

2.3.1 Overview

Value based approaches attempt to predict and learn the value of being in a certain

state which in turn influences the policy towards high value states or actions. Policy

based approaches attempt to directly predict and learn the optimal policy, or the

optimal action to take given a state. Both approaches have the same desired end

result, providing an agent that can optimally perform within the environment it was

trained in.

Matrix of RL Components and Methods

Value-Based Policy-Based Actor-Critic

Policy Epsilon-greedy Learned Learned

Value Function Learned None Learned

Model Model-free Model-free Model-free

Table 2.1: Description of RL Methods

2.3.2 Value Based Methods

At a high level, value-based RL methods aim to learn an accurate value function for a

given environment. Two prominent and relevant methods detailed below, Temporal

Difference Learning and Q-Learning both rely on predictions of value to solve prob-

lems. Both methods have demonstrated success in various applications and prove

that agents based solely on the predictions of future value are viable.

11

Temporal Difference Learning

In 1988 Richard Sutton, the grandfather of RL, introduced Temporal Difference (TD)

learning [38] as a form for machine learning agents to solve complex sequential tasks

via learning a value function. Temporal difference learning utilizes a function estima-

tion V(S) which takes as a parameter the current state, and outputs the value of that

state. This function is updated over time and uses TD error to update its predic-

tions. TD learning differs from Monte-Carlo and supervised learning methods in that

it ’learns’ or ’bootstraps’ itself from every single prediction made at each time-step.

For example, in TD-Gammon [41] a neural network was used to predict the value

function, or probability of winning in each state and selected actions based off that

prediction, this implementation of TD learning was competitive with the best human

players in the world. Figure 2.2 describes the neural network architecture used in

TD-Gammon.

TD learning is only relevant in multi-step prediction problems, not for use in one

step or classification problems. You may think this is a limitation, but most of every-

thing we do as humans is a multi-step prediction and can be modeled as a Markov

Decision Process. TD learning makes repeated predictions about a long term out-

come, you can use TD learning in long term problems for example in predicting stock

prices, considering every day as each event happens, updating your predictions daily.

Predictions are made against discounted views of the future. Richard Sutton believes

that learning to predict is the only scalable type of learning, this type of learning

for generalized multi-step prediction problems may also be key to understanding how

humans and biological systems learn.

12

Figure 2.2: Neural network architecture used in TD-Gammon

Q-Learning

In 1992 Watkins et al. [46] introduced Q-Learning. A form of TD learning, that

extended the value function from V(S) to Q(S, A), for a given policy. Where S is the

current state, and A is a possible action, the result of the Q(S,A) (Q-value call) for

that specific state-action combo represents the estimated value yielded from taking

that action from that state. The simplest implementation of Q-learning is in a tabular

form, having a Q-table hold every state-action combo possible in the environment,

and over time this table is updated to become more accurate.

The Q-learning algorithm can be summarized as

initialize s0

for t = 1, 2, 3 . . .

choose an action at, let’s say ε-greedy w.r.t. Q

execute at

Q(st, at) = (1− αt)Q(st, at) + αt [R(st, at, st+1) + γmaxaQ(st+1, a)]

(2.1)

13

The α value is the discount on future rewards, after executing an action, the algorithm

updates the Q-table and uses the α value to very slightly discount future reward versus

immediate reward, and have that change over time.

Instead of using solely a state-value estimation to guide a policy, Q-learning utilizes

state-action-value estimations, to determine which possible action will yield the most

long term value given the current state. Q-learning also updates itself differently

than TD-learning in that the update is based off argmax(Q(s’,a’) where a’ is iterated

through every action of the legal set of actions possible. So the Q-value of the previous

state-action combo is updated based off the maximum possible Q-value of the new

state. Q-learning is an off-policy learning method, whereas traditional TD-learning

is an on-policy learning method.

2.3.3 Policy Based Methods

Prior to policy based methods we focused on value based methods. These value

based methods, TD-learning and Q-learning approximate the value of being in a

certain state (TD-learning) or estimates the action-value of taking an action and

using those values to determine action selection (Q-learning). On the other hand,

policy based methods directly learn a policy [40], which is a probability distribution

over all possible actions with respect to the current state. This enables algorithms to

select actions directly without referencing an estimated value function.

Concepts

Policy based methods have their advantages and disadvantages. Situationally, policy

based approaches may be more computationally efficient; for example in Pong it is

easier to know if the paddle should move up or down based on the state or knowing

the ball’s position rather than computing the q-values of going up and down based

14

on that state. Another advantage is that policy based methods have stronger con-

vergence properties [40]. Meaning that they are guaranteed to converge at least to

a local optimum. The nature of selecting actions based on a probability distribu-

tion is highly effective in high-dimensional or continuous action spaces where it could

be computationally intensive or intractable to compute every q-value for continuous

actions such as angular positioning vs. discrete action possibilities (ex. up, down,

left, right). Policy methods can also learn stochastic policies more easily due to the

learned policy probability distribution. Some disadvantages are that policy gradient

methods take small, smooth steps towards a better policy, so they generally require

much more data to converge on an optimal policy. Evaluating a policy is typically

sample inefficient and has higher variance than value based methods.

Policy Gradient

In 2000, Richard Sutton returned once more with a paper detailing the first successful

policy based reinforcement learning algorithm, the Policy Gradient. Sutton et al.

[40] proposed an alternative to value based methods in which the policy is explicitly

represented by its own function approximator. This approximator is independent

of the value function, and is updated according to the gradient of expected reward

with respect to the policy parameters. For example, let θ denote the vector of policy

parameters and let ρ denote the performance of the corresponding policy (e.g., the

average reward per step). Then in the policy gradient approach, the policy parameters

are updated approximately proportional to the gradient:

∆θ ≈ α∂ρ/∂θ

Where α is a positive-definite step size. If the above can be achieved then θ can

usually be assured to converge to a locally optimal policy in the performance mea-

15

sure ρ. Unlike in value-based approaches, small changes here in θ can only cause

small changes in the policy and in the state-visitation distribution. This paper fore-

shadows and predicts the marriage of neural network function approximation and

reinforcement learning.

2.3.4 Actor-Critic Methods

Actor-critic based algorithms [21] learn both policies and value functions. The actor

is the component that learns the policy function, and the critic is the component

that learns the value function. The critic uses a TD-learning algorithm to learn the

state-value function for the actor’s current policy. The value function allows the critic

to critique the actor’s action choices by sending δ (TD-errors) to the actor. The TD-

error, δ can be considered a surprise measure of the algorithm, how off its predictions

end up being from the truth. A positive δ means that the action was good, because

it led to a state with a better-than-expected value. A negative δ means that the

action was bad because it led to a state with worse-than-expected value. Based on

this feedback, the actor can continually update its policy more effectively than with

just policy based information.

By combining both value and policy functions the actor-critic methods get the

best of both worlds. The learned value function, the critic helps update the actor’s

policy parameters in a direction of continuous performance improvement. While the

learned policy function, the actor is a policy-gradient based method, and brings with

it the desirable convergence properties of policy based methods. The two components

combined deliver faster convergence due to variance reduction when compared to

purely policy based methods.

16

2.4 Neural Networks

The following sections will discuss neural networks and the role they play in powering

deep reinforcement learning.

2.4.1 Origins

Despite renewed popularity, neural networks are not new ideas. The concepts date

back to the early 1940s [26, 33]. Recent advances in hardware and data availability

have enabled neural nets to reach their full potential and produce state of the art

results in fields such as computer vision [22, 27, 36] speech recognition [12, 16] and

machine translation [5, 11]. Since then, neural net applications have continued to

advance the state of the art in fields ranging from reinforcement learning [29, 30] to

data center cooling optimization [15] leading to a 40% reduction in energy bills.

Figure 2.3: The structure of a biological neuron

Artificial neural networks are loosely inspired by our own biological systems [18].

Neurons, the main components of our central nervous systems, are cells specialized

for processing and transmitting information utilizing electrical and chemical signals.

17

Neurons typically have a cell body, dendrites, and a single axon. Dendrites are the

structures that branch from the cell body to receive input from other neurons. The

axon is a channel that carries the neuron’s output to other neurons. The neuron’s

output is dictated by a sequence of electrical pulses called action potentials that flow

across the axon. These action potentials can also be referred to as activations. The

synapse is a structure located at the end of an axon that mediates the communication

of one neuron to another. The synapses ”fire” when the action potential along the

axon is large enough.

2.4.2 Usage and Intuition

Intuitively, one can think of neural networks as generalized ”black box” function

approximators. They can make simple predictions, like whether or not a hot dog

is in an image, or very complex predictions like predicting optimal policies for deep

reinforcement learning agents.

2.4.3 Concepts

The artificial neuron is the basic building block of a neural network. Figure 2.4

displays an artificial neuron. They represent a single computational element that

takes in inputs, computes a weighted sum of the inputs, and passes that weighted

sum to an activation function. Dependent on the activation function the neuron will

output some value, often times a step function or a sigmoid function will be used to

normalize the output between [-1, 1].

Networks are often represented by at least three layers. First is the input layer,

where the input is fed into the network. The last layer is the output layer, where

the final result or prediction of the network lies. In between the input and output

layers can be any number of hidden layers, that serve as transformations in the

18

Figure 2.4: The artificial neuron model

computational graph of the network. If the data flows from input to the output layer,

it is considered a feed-forward neural network. Figure 2.5 shows a multi-layered feed-

forward network. If there are nodes that send data to previous layers, it is considered

a recursive neural network.

Critical components of any neural network are the loss function, and back prop-

agation algorithm. The loss function computes how ’off’ a prediction was from some

oracle, or truth value, or what the true prediction should have been. The back propa-

gation algorithm updates all the internal weights of the neural network with the goal

of reducing future loss, thus improving accuracy of the network. Back propagation

algorithms are generally based on gradient descent methods. Gradient descent is eas-

ily understood in 2 dimensions, it utilizes a normal derivative to find the steepest

direction to descend in order to achieve a local min or max given the parameters.

In 3 dimensions, the goal of training a network is to find the minimum error with

respect to the 3 dimensions. You can visualize the state space as a surface in which

the neural network is trying to alter the three parameters to find a local min or max

in the error surface. In higher dimensional space, multi-variable calculus takes the

19

Figure 2.5: Typical multi-layered feed-forward network [18]

derivative of a vector (a matrix filled with the partial derivatives of that vector) to

compute the gradient of that vector. And then uses that gradient to steer potentially

hundreds of thousands of parameters all in a desired direction. Without updating

the internal weights of the network, a neural net would be nothing more than a fancy

way to perform matrix multiplications, and no learning would occur.

2.5 Deep Reinforcement Learning with Atari

The following sections discuss how deep learning and the Atari 2600 console helped

reinforcement learning overcome serious limitations and elevated the field with super-

human level performance in a complex environment.

2.5.1 Motivation and Deep Learning

A long-standing challenge for RL researchers is scaling up methods to solve real-

world problems. Two major obstacles stand in the way, first is that the real world

20

Figure 2.6: Visualizing a 3-dimensional error surface when training a neu-
ral network

is immensely complex and real world problems often require human manipulation

to become ”RL friendly”. Second, the agent’s hunger for training data is nearly

insatiable and that data can often be difficult or expensive to attain. Neural net-

works as function approximators in deep RL help enable and scale RL approaches

to increasingly complex problems. Tabular implementations of classical methods fail

in arbitrarily large state spaces. For example, in Starcraft 2 [45] the player selects

actions among a combinatorial space of approximately 108 possibilities (depending

on the game resolution), using a point-and-click interface. If the state space is large

enough, you cannot expect to converge on an optimal policy or optimal value function

even with infinite time and computer memory. Rather than push tabular methods

and computer memory to the limits, the field shifted to approximating good enough

solutions with the application of deep neural networks.

Successful RL applications of the past have relied on abstracted features and

dimensionality reduction creating a sandbox-like environment [9, 31]. For example,

21

in most classical control problems such as Cartpole or Hillclimber the environment is

boiled down to a few features, such as angle of the pole, coordinates of the cart, height

and slope of the cart. Environments of that nature are so handcrafted and thus will

rarely appear in the real world, and often are used to criticize the applicability of RL.

Some of the earliest successful applications of RL had relied on carefully handcrafted

sets of features based on human knowledge and intuition about a specific problem

in order to be solved. Until recent advances in deep learning, RL mainly relied on

problem specific engineering.

In 2013, for the first time ever Deepmind and Mnih et al. [29] demonstrated

that a convolutional neural network can enable a generalized learning algorithm to

successfully play Atari games and learn optimal control policies directly from raw

video data in complex RL environments. This paper was groundbreaking and paved

the path for deep reinforcement learning. The network was not provided with any

game specific information or hand crafted visual features and had no knowledge of

the internal state of the emulator. It learned from nothing but raw video input,

reward signals, and a set of possible actions, just as a human player would. Even

more impressive is that the network architecture and all hyperparameters used for

training were kept constant across all five selected Atari games.

2.5.2 Atari Learning Environment

The Atari 2600, released in 1977 was the first mass-marketed video game console that

brought the gaming revolution from the arcade into the homes of everyday consumers

[7]. The Atari console introduced some of the most iconic video games of the era such

as Pong, Space Invaders, Asteroids, and Breakout. The platform provided a total of 49

Atari 2600 games that varied in goals, complexity, controls, and aesthetics. Although

modern video games are far more complex, Atari games are still interesting and fun

22

for human players. Diversity within the games provide challenging environments for

both humans and reinforcement learning agents to master. In early 2013 Bellemare

et al. [7] produced the Atari learning Environment (ALE) introducing a challenging

benchmark composed of the Atari 2600 games. This benchmark has since stood

as tool to evaluate the general competency and learning efficacy of generalized AI

algorithms. The ALE serves as an emulator for the Atari collection giving agents

access to raw sensory information, frames of 210 x 160 pixels rendered at 60hz. A

possible set of 18 actions mapped to each action a human could perform on the

physical controller. The ALE also grants access to the score, or reward of each game.

The ALE transformed Atari from a warm and distant memory, to a hot research test-

bed for designing and testing artificially intelligent algorithms that could generalize

across the wide range of problems and environment offered. The benchmark presents

significant research challenges for reinforcement learning, model learning, model-based

planning, imitation learning, transfer learning, and intrinsic motivation.

For the first time ever end-to-end reinforcement learning directly from raw visual

data became possible. The ALE provides machine learning agents with the infras-

tructure to operate and observe Atari games directly from pixels. By framing each

game as an MDP, reinforcement learning techniques can be applied to solve these

environments and produce agents capable of super-human performance. This sort of

benchmark and learning infrastructure meant that an RL system did not need to rely

on human designed features to fit a tabular form, the systems themselves became

general learning platforms similar to how biological humans would interact with the

game.

In addition, the benchmark also helped solve the data hunger of RL algorithms.

In real time, humans can process 60 frames per second (FPS) relatively well (Atari

system is a 210 x 160 RGB video at 60 hz (1 hz = 1 FPS)). Within a simulated gaming

environment, users can increase the render rate, or FPS up to 6000 (dependent on

23

Figure 2.7: Reinforcement learning loop using the Atari console

their hardware of course). The max FPS of the ALE enables algorithms to play an

unfathomable amount of games in a small amount of time. For example, it is not

uncommon for an RL experiment to run for 200 million frames [30] or an equivalent

38.58 days of non-stop human experience playing the game. Considering an 8 hour

day work week, it would take a human 308.64 working days, or just under 62 working

weeks to complete such a task.

To summarize, scaling up RL algorithms to more complex tasks has been a long

standing challenge for researchers. Thanks to simulated environments and deep learn-

ing, the variety and complexity of solvable RL environments has grown from text

based games, to simple board games and control problems, to complex board games

involving long term strategy. In recent years, RL algorithms are achieving super hu-

24

man performance in complex video games, playing as a human would utilizing raw

video output, without requiring hand-crafted feature manipulation. A majority of

these advances can be attributed to increased hardware power enabling lightning fast

simulated environments and deep learning.

2.6 Modern Reinforcement Learning Methods

2.6.1 Deep Q-Network

The Deep Q-Network (DQN) [29] paved the way as the first massively successful

combination of deep neural networks trained on raw visual data and reinforcement

learning. It achieved super-human performance [30] on a large fraction of the games

in the ALE. Figure 2.10 details the performance of DQN compared to the best linear

learning models, with a demarcation of where DQN achieves human-level and greater

performance. DQN not only attained superior results to any related works, but

achieved unprecedented generality and robustness in terms of its architecture. At

a high-level, DQN extends Q-learning beyond a tabular representation (a massive

matrix containing every state and action combination with its estimated reward) to a

convolutional neural network architecture used to approximate the state-action values

over the set of possible actions in Atari.

Implementation

The first step is a minor pre-processing step applied to the raw frames. Working

directly with raw Atari 2600 frames, 210 x 160 pixel images with a possible 128 color

combination palette is extremely demanding in terms of computational and memory

requirements. Thus, there is a pre-processing step applied to these frames aimed to

reduce dimensionality. The frames are grayscaled and reduced to an 84 x 84 pixel

25

frame.

The exact architecture of the model is shown below in Figure 2.8:

Figure 2.8: Visualization of DQN neural network architecture [30]

The actual inputs to the network consist of a concatenation of 4 subsequent frames

[29], this procedure is necessary in order to maintain and convey spatial and temporal

dependencies. For example, in Pong the agent needs to know the direction and

velocity of the projectile. The first layer of the network convolves 32 filters of 8

by 8 with stride 4 and applies a rectified nonlinearity activation function [19, 32].

The second layer convolves the previous layers input with 64 filters of 4 x 4 with

stride 2, followed by another rectified nonlinearlity. This is followed again by a third

convolutional layer that convolves 64 filters of 3 x 3 with stride 1 followed by another

rectified nonlinearity activation function. The final hidden layer is a fully connected

layer of 512 rectifier units. The output layer is a fully-connected linear layer with a

single output unit for each valid action for that environment. The number of valid

actions per environment in ALE range from 4 to 18.

26

They performed experiments on 49 Atari 2600 games. A different copy of the

network was trained on each game, with the identical architecture, learning algorithm,

and hyperparameter settings, showing that their approach was robust enough to work

on a variety of games. The agent had access to only the visual images as input, the

game-specific score, and the number of actions with no correspondence to what they

do, for example the agent was not told that action 1 was mapped to up on the

controller. The final piece of information the agent had access to was a life count

if applicable for that environment. As the magnitude of rewards vary greatly from

game to game, Mnih et al. [30] found it necessary to clip the rewards from -1 to

1, leaving 0 rewards unchanged. Clipping the rewards limited the scale of the error

derivatives and made it possible to use the same learning rate across all games.

Figure 2.9: Visualization of learned q-values for Pong (y-axis on graph
corresponds to value estimate) [30]

Figure 2.9 shows a visualization of the learned q-values for four different states

of Pong. You can see in state 1 the agent believes that all three actions will yield

reward, with moving down being slightly more rewarding, so it selects that action.

In state 2 the agent predicts that going up will yield positive reward, where a no-

operation or going down will yield negative reward. Based off the prediction in state

2, the agent moves up, and in state 3 the prediction is again that moving up will

27

yield positive value. The agent also seems to be aware that hitting the ball with the

sharpest edge of the paddle will send the ball flying with the greatest velocity, further

increasing its chance to score. In the fourth state, the agent knows that any of the

three possible actions will yield a full positive reward of 1.0 because the ball is beyond

the opponent’s paddle.

Key Features of DQN

DQN relies on two important features to stabilize the learning process.

First, to alleviate the problems of correlated data and non-stationary distributions,

Deepmind utilized an experience replay mechanism [24] which randomly samples in-

teractions from its history to learn from, instead of learning on-line in real time. This

decorrelation of learning and interaction smooths the training distribution over the

history of past interactions, essential to stabilizing the learning of DQN. Learning

doesnt begin until the replay buffer is filled with at least 50,000 randomly selected

actions. Deepmind’s implementation stores the last 1M experience tuples (s, a, r, s) in

the replay buffer at any given moment, with a first in first out replacement schedule.

Second, the learning network is different from the target network. This means

that the network making decisions of what actions to take next can be considered

a frozen, or check-pointed version of the learning network. The target network is

updated once every 10,000 training steps. The reasoning behind this feature is that if

the target network was constantly updated, the agent could end up ’chasing its own

tail’ so to speak.

2.6.2 Asynchronous Actor Advantage Critic

Following the success of 2015’s super-human agent DQN, Minh’s team at Deepmind

went back to the drawing board to see if they could improve those results with a

28

new approach. In 2016 Minh et al. [28] implemented a series of asynchronous rein-

forcement learning algorithms in attempts to outperform DQN. The most prominent

algorithm to come out of this was the Asynchronous Actor Advantage Critic (A3C).

This method is an asynchronous version of the actor-critic RL approach mentioned in

Chapter 2.3.4. A3C surpassed the state of the art on the Atari domain while training

for half the time on a single multi-core CPU instead of on a GPU. A3C also succeeded

in continuous motor control RL environments whereas previous value based methods

struggled.

Note that I will be using A2C later on in my thesis paper, which removes the

Asynchronous part from A3C. OpenAI proved that a synchronous version of the

Actor-Advantage Critic approach configured for a GPU provided equivalent perfor-

mance in a shorter amount of run time.

Implementation

The overall architecture of the algorithm is visualized in Figure 2.10. The core ideas

of A3C is that there is a global network, and there are workers. Each worker interacts

with its own environment. Each worker has their own network that estimates both

a value function and a policy. Recall a policy is a probability distribution over all

actions for a given state. The pre-processing and first few layers of the network are

identical to DQN. However, instead of a Q-value prediction for each possible action

at the end of the network, there are two new layers added to the network. First is

the policy layer that has a softmax output for the policy. Second is a value layer that

consists of one linear output for the value function. In their paper, each worker is

run on a separate processor thread. So there should be no more workers than threads

on a given CPU. However, the optimal amount of workers as decided by the team at

Deepmind is 16.

29

Every 1,000 time-steps, the global network examines each worker and computes

the gradient of that workers network. These gradients are used to update the global

network in a way that considers the optimal direction of all workers in the population.

The new global network parameters are then copied by all workers in the population

getting everyone back on the same page. This cycle continues until the end of training.

Unlike DQN where a single agent represented by a single neural network interacts

with a single environment, A3C uses multiple worker agents which each have their

own set of network parameters. Since each agent interacts with its own copy of

the environment, this provides a more robust strategy that a single agent network.

Additionally, since the agents are using the value functions (the critic) to update the

policy (the actor) the performance of the network is improved more intelligently than

traditional policy gradient methods or value based methods alone.

30

Figure 2.10: Results summary of DQN vs. human level performances
across 49 Atari games [30]

31

Figure 2.11: The architecture of the A3C algorithm

32

Chapter 3

RELATED WORKS

The key aspect of this chapter is to highlight related works in the field of Reinforce-

ment Learning, specifically focusing on works that influence exploratory behavior

within RL algorithms. For each paper, I will describe the differences between their

works and mine, and mention any cross-over between theories.

3.1 Efficient Exploration in Reinforcement Learning

In 1992 Sebastian Thrun [42] released the paper Efficient Exploration in Reinforce-

ment Learning. His paper was the first to distinguish between two families of ex-

ploration strategies: undirected and directed exploration. Thrun evaluated the role

of exploration in active learning and described several strategies in depth for explo-

ration in finite, discrete, reinforcement learning environments. The paper addresses

the issues of efficient exploration in a reinforcement learning framework. Thrun in-

vestigates several exploration techniques still as relevant today as they were in 1992.

Undirected exploration utilizes no exploration specific knowledge and ensures ex-

ploration by combining randomness into action selection, whereas directed exploration

relies on knowledge about the learning process itself. The computational costs of undi-

rected exploratory methods are often slim to none, whereas directed exploration can

end up demanding substantial compute resources and can be very difficult to gener-

alize across environments. Thrun extensively studies exploration within Q-learning

and value based algorithms, and heavily favors directed exploration in action space.

Although inspired by his work, my work differs in that I focus on exploration within

policy based methods and primarily try to maximize the effectiveness of undirected

33

exploration.

3.2 Parameter Space Exploration Methods for A3C and DQN

Figure 3.1: Visualization of action space vs. parameter space exploration
[34]

Both Deepmind [14] and OpenAI [34] released papers on February of 2018 intro-

ducing versions of A3C and DQN that rely on parametric noise added to the weights

of their neural networks for exploration rather than conventional action-space explo-

ration methods. The variants essentially add learned noise to the weights for each

layer of their neural networks, leaving biases independent. This noise is added with

the intention of positively influencing exploration. This direction of research is similar

34

to mine in the sense that they are utilizing undirected exploration to expose agents

to novel states but differs in the sense that they are targeting parameter space in-

stead of action space. The Deepmind paper evaluated the performance of Noisy Net

on 57 Atari games against the performance of epsilon-greedy DQN and vanilla A3C.

The performance of Noisy-Net-A3C against vanilla A3C was mediocre, with only a

handful of games having significant performance increases and a few games resulting

in a significant decrease in performance. Nonetheless, both papers introduced novel

parameter space exploration methods for A3C and DQN in the Atari domain.

3.3 Directed Diversity Driven Exploration for A2C

Hong, et al. [17] of the National Tsing Hua University in Taiwan released Diversity

Driven Exploration for Deep Reinforcement Learning in February of 2018. These

researchers utilize information theory to encourage exploration in A2C. This paper is

most similar to my research in terms of goals and experimental framework, but their

implementation took a directed exploration approach rather than undirected. The

main objective of their work is to encourage an agent to explore different behaviors

during training. The authors modify the loss function of A2C to take into account the

distance of the last five policies. Recall, that a policy is a probability distribution over

all possible actions representing the likelihood of selecting a particular action. The

authors use Kullback-Leibler divergence, which is a measure of how one probability

distribution diverges from another [20]. Using KL divergence one can estimate the

distance between two probability distributions, in this case (policy represented by π)

π and π′ are the distributions in question. The loss function modification encourages

agents to update π with gradients towards directions such that π diverges from the

previous five policies. The modification resulted in several positive qualities includ-

ing more efficient learning curves to difficult Atari games and the ability to escape

35

deceptive local optima. Most importantly, their agent proactively sought out new

policies, increasing the opportunity to visit novel states even in the absence of reward

signals from its environment. The paper concludes with experimental results on six

Atari 2600 games, including three games I experiment with: Freeway, Montezumas

Revenge, and Q*Bert. The results of the experiments compare DQN, A2C, Noisy

Net, and diverse-A2C show that the their A2C modifications outperform both vanilla

A2C and the Noisy-Net [14] paper detailed above.

36

Chapter 4

IMPLEMENTATION

This chapter is organized in the following sections where I will discuss:

(i) Tools and infrastructure that were critical to the foundation of my research.

(ii) Discussion of design decisions for modifying A2C and the specific software im-

plementation details associated with my novel variant, Annealing-A2C.

(iii) An introduction to the exploration difficulty metric (EDM) to help classify

environments based on exploratory challenges that they pose for RL algorithms.

4.1 Tools and Infrastructure

This section will discuss two of OpenAI’s open source projects, Gym and Baselines.

Both projects greatly empowered my research and the infrastructure provided enabled

me to stand on the shoulders of giants. Thanks to these projects I was able to focus on

experimentation and implementation of new algorithms and did not have to reinvent

the wheel while doing so.

4.1.1 OpenAI Gym

OpenAI Gym [9] is an open source project that is simultaneously an infrastructure

platform and a collection of reinforcement learning environments. Ranging from the

Atari 2600 games, to classic control problems, to complex 3-d robotics simulators,

there are hundreds of different RL environments to choose from. All Gym environ-

ments have a standardized API enabling the plug and play of one algorithm across any

37

environment within the Gym. The origins of OpenAI Gym come largely out of frus-

tration. RL has a long history, but until recent advances in deep learning, it required

lots of problem-specific engineering. Deepmind’s 2013 and 2015 Atari results [29, 30]

Pieter Abbeel’s robotics work [2, 23], and AlphaGo [37] all used generalized deep RL

algorithms which all made minimal assumptions about their environment, and thus

can be applied in other environments. The problem was that very few RL environ-

ments were plug and play so to speak. RL is very general, encompassing all problems

that involve making a sequence of decisions: for example, controlling a robot’s motors

so that it is able to run and jump, making business decisions like pricing and inven-

tory management, or playing video games and board games. However, RL research

is often slow and disorganized due to the decentralization and inconsistency between

benchmarks and papers.

In supervised learning, progress had been driven by large labeled datasets like

ImageNet [22]. In RL, the closest equivalent would be a large and diverse collection

of environments. Prior to OpenAI Gym the existing open-source collections of RL

environments lacked variety, and were often difficult to even set up and use. Addi-

tionally, the lack of standardization across environments used in publications led to

anger in the community over inability to reproduce results. Subtle differences in the

problem definition, such as the reward function or the set of actions, can drastically

alter a tasks difficulty. This issue makes it difficult to reproduce published research

and compare results from different papers that use decentralized environments.

4.1.2 OpenAI Baselines

OpenAI Baselines [13] is a set of high-quality implementations of reinforcement learn-

ing algorithms. Following in suit with OpenAI’s open-source nature, an open-source

repository contains all of these implementations. A common place for implementa-

38

tions make it easier for the research community to replicate, refine, and identify new

ideas. It also helps by leaning on the community to create new algorithms and catch

bugs in existing ones, as well as confirming and reproducing state-of-the-art exper-

iments. The amount of support that I was able to receive from the forums of this

github project was paramount to my success in this thesis project.

4.2 Design and Implementation of Novel Algorithm Modifications

4.2.1 Design

Intuitively, contemplating exploration as a human, it is apparent that a diverse set of

people working together on a new task can result in efficient discovery and learning

of a problems state space. Within a human workforce, there would be little to no

innovation if everyone had identical upbringings, educations, and experiences. For

example, if you put ten humans into ten individual copies of a maze, each with the

exact same upbringings and problem solving strategies, how effectively or differently

would they explore the maze? These beliefs influenced my design of a population-

based, diversity-driven exploration strategy in action-space. Thus, A2C seemed best

suited for this experimental research due to the population of workers each interacting

with their own environment. One appeal of actor-critic methods is their explicit

separation of policy and value function parameters, which leads to a richer behavior

space. This very separation, however, often leads to deficient exploratory behavior.

Current research influencing exploration within actor-critic methods lies primarily

in parameter space noise, and adding entropy to its policy to try shake the model

out of local optima. As of conducting this research and writing the paper, I have

yet to see any attempts influencing exploration in A2C with action-space strategies.

Vanilla A2C selects actions via sampling a probability distribution in a greedy manner,

rarely selecting low probability actions. Thus greedily explores a state space which

39

can lead to sub-optimal performance, and inefficient learning curves. My goal is to

modify the A2C algorithm via action-space exploration such that more states are

experienced by the model in an aggressive fashion. Through exposure to as many

states as possible early on in training, the value function and policy function should

theoretically discover reward surfaces earlier, thus improving performance and sample

efficiency. Annealing epsilon-greedy, naive yet practical, has produced state-of-the-

art results in DQN [30] and multi-armed-bandit [42] problems. Adding an annealing

epsilon value to encourage exploration in an element-wise (per worker) fashion versus

a batch (total population) randomization was the direction taken to maximize diverse

experiences within the workers respective environments.

4.2.2 Implementation

At a high level, the implementation put in place an aggressive exploration phase for

A2C, with an epsilon value starting at 100% and annealing to 0% over the first 5% of

training. At 11M time-steps per experiment, this value anneals to zero at the 550K

time-step mark. Two main components implemented these modifications.

1. A linear scheduler for an arbitrary point of training to stop exploration

2. Modification of the Runner class function: run()

The A2C implementation uses a class Run which facilitates the interactions be-

tween the actor-learners and the gym environments. Essentially, the class executes

actions on the environments and receives resulting rewards and new observations.

Additionally, run() resets an environment if a terminal signal has been received. The

function loops for five iterations, called a mini-batch, storing all data generated by

the 16 actor-learners in the mini-batch. This data is used by the model later for

learning and ultimately increases model accuracy.

There are two primary steps in this process, the predictions for each agent and

40

the execution of those predictions. My modification adds a third procedure to this

process in between the prediction and execution stages. All three steps are detailed

below.

Prediction Stage

The primary function within the Run class, run(), begins by passing the model a

vector of observations. This observation vector holds 16 current observations (each

observation is 4 concatenated frames of 84 x 84 pixels). This vector is passed to the

global A2C network to produce policy and value predictions for those states. The

output received is a vector of length 16 containing the action predictions and value

predictions for each agent. The actions are then used in the execution step whereas

the values are stored for learning after the batch is complete.

Exploration Stage

Before training, a variable explorationEnd is initialized to an integer that corresponds

with 5% of training. In the standardized experiments for A2C used in this paper,

that value is 550,000.

In training, if the current step-count is less than explorationEnd, then the explo-

ration phase kicks in. The exploration phase consists of a loop iterating through each

index of the action prediction vector. For each action, a random number is generated

between 0 and 99. If that number is less than the current epsilon value, that action is

replaced by a random integer within the range of legal actions in that environment.

Else, the initial action prediction remains the same. This added exploration phase

does not threaten the stability of A2C’s ability to learn, because the action vector is

intercepted and if the actions are changed, that change is reflected throughout the

execution and learning process of the algorithm.

41

Execution Stage

The actions generated, whether following the policy function prediction, or hijacked

and set in the exploration phase, are finally executed on their respective environments.

The execution of actions return three vectors (vector length based on number of agents

in population): new observations, resulting rewards, and termination signals for each

environment. This process is repeated for the duration of the mini-batch and at the

end of the run() function the algorithm begins the learning process on the data yielded

from the mini-batch.

4.3 Exploration Difficulty Metric

The Atari environments available for reinforcement learning algorithms range vastly

in difficulty. Bellemare et al. [6] roughly classified the games in a taxonomy based

on exploration difficulty. I propose the exploration difficulty metric (EDM) to quan-

tify exactly how difficult the Atari environments are. The metric needs a set of

episodes computed by running a completely random policy on an environment for

1M timesteps. The metric is expressed by the simple equation below, as a ratio of

non-zero reward episodes, over the total amount of episodes from the set.

edm = count(nonZeroRewardEpisodes)/(count(totalEpisodes)

The ratio gives researchers an idea of exactly how difficult reward is to find via

undirected (random) exploration. The metric can also be extended beyond the Atari

environments. Any reinforcement learning environment has the potential for a ran-

dom policy to interact, thus enabling EDM to be computed for any environment which

is posed as an RL environment. Essentially, EDM suggests how sparse or constant

reward is found in an environment via purely random action selection. This informa-

42

tion can help provide researchers with insight as to what exploration strategies may

work better than others in that environment.

43

Chapter 5

VALIDATION

This section answers the following questions:

(i) Can a quantifiable measure indicate how difficult an Atari game is for reinforce-

ment learning with respect to exploration?

(ii) How does DQN compare to A2C in terms of overall performance, sample effi-

ciency, and variance/stability?

(iii) Does my proposed Annealing-A2C improve upon vanilla A2C with respect to

overall performance, sample efficiency, and variance?

5.1 Experimental Framework

The following sections will explain my experimental framework. First, I explain the

reasoning behind the selection of six Atari 2600 games for experimentation. Second, I

describe the conditions and hardware that powered the experiments. Finally, for the

sake of reproducibility I detail the three algorithms (DQN, A2C, and Annealing-A2C)

exact architectures and hyperparameter values used for experimentation.

5.1.1 Selected Environments

The Atari Learning Environment provides a robust set of games to play. I selected

a set of games ranging from easy to hard difficulty according to the taxonomy [6]

of Atari games, loosely categorized on exploration difficulty. The figure below shows

Bellemare’s taxonomy.

44

Figure 5.1: Exploration Taxonomy of Atari Environments [6]

The first two games selected, Space Invaders and Pong, are categorized as

easy, or human optimal. The games under this label have relatively constant rewards

throughout the duration of the game, making them fairly easy and solvable for RL

with basic exploration strategies.

The third and fourth games to test, Ms. Pac-Man and Q*Bert, fall under

hard exploration, with dense rewards. This means that reward signals are grouped

together, and when an agent realizes these rewards they are massive in comparison

to the rest of the reward signals within that environment.

The final set of games selected, Freeway and Montezumas Revenge are clas-

sified as hard exploration environments with sparse reward. A sparse reward envi-

ronment means that the agent may play the game for tens of thousands of timesteps

without receiving a non-zero reward. As is the case with Montezumas Revenge, an

infamous game that is the focus of many exploration research efforts. Sparse reward

problems are the most challenging environments within the ALE because of the in-

herent difficulty RL agents face when crediting sequences of actions to rewards are so

far and few in between. As a result, no super-human performance has been achieved

45

on these games.

5.1.2 Experimental Conditions

The following sections detail the hardware used in experimentation and overall ex-

periment requirements.

Hardware

The Cal Poly Massively Parallel Accelerated Computing (MPAC) Lab machines were

utilized for these experiments. There are 37 machines available in this lab, the hard-

ware capabilities of each machine is listed below.

• CPU: 28 cores, Intel Xeon CPU E5-2695 v3 @ 2.30GHz

• Memory: 32 GB memory, 66 GB swap

• GPU: GeForce GTX 980, 4 GB memory, 2048 cuda cores

Experimental Requirements

The DQN experiments ran for 10M timesteps each, producing 40M frames. The

duration of these experiments lasted 28 hours on this hardware setup.

The A2C experiments ran for 11M timesteps each, producing 44M frames. The

duration of these experiments lasted 2 hours on this hardware setup.

Both algorithms completely consumed GPU memory. The CPU core usage sat

between 30 and 40 percent for all 28 cores, and DQN consumed 99% of RAM while

A2C consumed very little RAM.

46

5.1.3 Algorithms and Hyperparameters

DQN

Each experiment runs on the aforementioned hardware with the following architec-

ture. For the Atari experiments, the network architecture as described in Mnih et

al. (2015) is used. This consists of 3 convolutional layers (32 filters of size 8 x 8

and stride 4, 64 filters of size 4 x 4 and stride 2, 64 filters of size 3 x 3 and stride 1)

followed by 1 fully connected hidden layer with 512 units followed by a linear output

layer with one unit for each action. Rectified linear unit (ReLU) activation functions

are used in each layer, while layer normalization (Ba et al., 2016) is used in the fully

connected part of the network. For observations, each frame is down-sampled to 84

84 pixels, after which it is converted to grayscale. The actual observation to the

network consists of a concatenation of 4 subsequent frames. This setup is identical

to what is described by Mnih et al. (2015).

Hyperparameters differ slightly to Mnih 2015, as those would cause RAM to ex-

plode. The target networks are updated every 1000 timesteps. The Q-value network

is trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of

(0.0001) and a batch size of 32. The replay buffer holds up to 50,000 state transi-

tions. Epsilon is linearly annealed from 10% to 1% over the first 1M time-steps. In

all cases 50,000 random actions are performed to collect initial data for the replay

buffer before training starts. Lamdba is set to 0.99, and rewards are clipped to be in

[-1, 1], additionally the gradients for the output layer of Q are clipped to be within

[-1, 1].

47

A2C

Each experiment runs on the aforementioned hardware with the following architecture

and hyperparameters.

The A2C algorithm uses 16 actor-learner agents running on a single machine.

Each agent has their own environment to interact with, each seeded sequentially

increasing by 1 starting from 0. The experiments use the same input preprocessing

as Mnih et al. 2015. Each frame is down-sampled from 160 x 210 pixels to 84 x

84 pixels, after which it is converted to grayscale. The actual inputs to the network

consist of a concatenation of 4 subsequent frames. The agents utilize a shared network

architecture as described in Mnih et al. (2016). This consists of 3 convolutional layers

(32 filters of size 8 x 8 and stride 4, 64 filters of size 4 x 4 and stride 2, 64 filters of size

3 x 3 and stride 1) followed by 1 fully connected hidden layer with 512 units followed

by a linear output layer with one unit for each possible action for that environment

(min 4, max 18). ReLUs are used in each layer, while layer normalization (Ba et al.,

2016) is used in the fully connected part of the network.

Any cross-over hyperparameters with DQN are kept the same as listed above for

A2C with one exception. The learning rate is fixed at (0.001).

Annealing-A2C

The architecture of Annealing-A2C is identical to A2C. The hyperparameters are kept

the same as vanilla A2C listed above. However, a new hyperparameter is introduced

to each actor-learner agent, epsilon. This value is initially set to 100% and linearly

annealed to 0% over the first 5% of training, in this case at 550,000 time-steps.

48

5.2 Results and Analysis

This section contains graphs and analysis of the experiments conducted. For each

environment, four algorithms were run, a completely random agent, a DQN agent, an

A2C agent, and my Diverse-Annealing-A2C variant. The graphs for each experiment

display episode rewards on the y-axis and display time-steps on the x-axis maxing out

at 11M time-steps. Each point on the graph corresponds to a single episode generated

by the agent at that particular time-step.

Exploration Difficulty Metric

Prior to observing the results of the algorithms across the games, refer to Table

5.1 for the computations of the Exploration Difficulty Metric for each game. A quick

glance at this table can indicate how difficult each environment is from an exploratory

perspective.

Final Average Reward Agent-Environment Matrix

Environment EDM Score

Space Invaders 99.78%

Pong 100%

Ms. Pacman 99.86%

Q*Bert 93.25%

Freeway 0.0027%

Montezuma 0.0031%

Table 5.1: Atari EDM Summary

The scores for both Space Invaders and Pong are at or are very close to 100% which

49

tells us that for virtually every episode generated by a random policy, we are receiving

more or less a constant reward signal. This score signifies that a simple or naive

exploration strategy is sufficient to explore and learn within that environment. These

scores are also consistent with the performance on agents on those two environments

as shown below. The score for Ms. Pacman is slightly misleading, because Ms.

Pacman is a ’dense’ reward game meaning that if you clear the whole level, then a

huge reward bonus is applied. The EDM score of Ms. Pacman is too high because

of the very small constant rewards obtained by eating a tiny node in the maze. The

score of Q*Bert indicates that a fair amount of episodes (almost 7%) resulted in

absolutely zero reward, which makes sense because the agent can only score a 0 point

game if it jumps off the edge of the map in the beginning of the game. Freeway and

Montezuma, both games have extremely sparse reward signals and the EDM score

shows just that. Out of thousands of episodes played with a random policy only a

few yielded non-zero rewards. As scores stray further south of 100% the complexity

of the state-space and difficulty of that environment increase exponentially.

Atari Results

Refer to Table 5.2 for a summary of all examined algorithms final performance in

each environment.

5.2.1 Space Invaders

Space Invaders is a game that involves control of a space ship that can move laterally

across the bottom of the screen, and can fire projectiles upwards with the goal of

destroying enemy ships. There are opponent space ships that fly in a formation

across the screen laterally, getting closer to the player controlled ship over time. The

50

Final Average Reward Agent-Environment Matrix

Environment Random DQN A2C Annealing

Space Invaders 144.97 595.10 680.16 714.43

Pong -20.30 -5.59 20.28 19.93

Ms. Pacman 239.97 1701.37 2078.69 2002.88

Q*Bert 156.15 484.51 5669.59 6747.15

Freeway 0 9.09 0 0

Montezuma 0 0 0 0

Table 5.2: Results Summary

game ends when the player runs out of ships (3 lives total). Refer to the appendix

for a screen shot showing the player view of Space Invaders.

Figure 5.2 shows an agent with a random policy, the line through the plot indicates

the agent’s average performance. The random agent finished training with an average

reward per episode of 144.97. This plot indicates that Space Invaders has a somewhat

constant reward signal easily discoverable by random exploration.

Figure 5.2: Space Invaders: Random policy with variance

Figure 5.3 shows the DQN agent’s performance in Space Invaders. A notable point

in this graph is after the 6M time-step mark there is a significant failure in policy,

51

this is most likely due to a very poor target network update. It is able to recover but

variance around the average is high, keeping the final average performance down at

595.10.

Figure 5.3: Space Invaders: DQN with variance

Figure 5.4 shows A2C’s performance in Space Invaders. The learning curve of

A2C vs. DQN is much slower and steadier. No apparent failures in policy, and over

time the agents in the population are able to attain very high reward games between

1000 and 2000 reward. This indicates that the agent was not finished learning and if

left to run longer would have yielded a stronger final performance. The agent finished

with an average episode reward of 680.16 significantly beating DQN.

Figure 5.4: Space Invaders: A2C policy with variance

52

Figure 5.5 is a comparison of the random agent (blue), DQN (yellow) and A2C

(green). DQN is able to achieve a better performance quicker than A2C but struggles

in the long run due to a policy failure. A2C has a strong and consistent learning

curve, however requires more time initially to hone in on a rewarding policy.

Figure 5.5: Space Invaders: Random (blue) vs. DQN (yellow) vs. A2C
(green)

Figure 5.6 is a comparison of the random agent (blue), A2C (green) and Annealing-

A2C (red). The learning curve of vanilla and my variant are very similar here,

and I think this can be attributed to the constant reward signal of Space Invaders,

thus Space Invaders can be solved with very little exploratory activity. However,

Annealing-A2C has a higher peak performance and ends with a slightly stronger final

performance of 714.43 over A2C’s 680.16.

Figure 5.6: Space Invaders: Random (blue) vs. A2C (green) vs. A2C
Annealing (red)

53

5.2.2 Pong

Pong is a game where the player controls a paddle that moves up and down on the

right side of the screen. There is an opponent paddle on the left side of the screen

with the same actions available as the player. The objective is to hit the ball on the

screen past the opponent paddle, first player to 21 points wins. Refer to the appendix

for a screen shot showing the player view of Pong.

Figure 5.7 shows an agent with a random policy playing Pong, the line through the

plot indicates the agent’s average performance. The random agent finished training

with an average reward per episode of -20.30. This displays the very cut and dry

reward structure of Pong.

Figure 5.7: Pong: Random policy with variance

Figure 5.8 shows the performance of a DQN agent playing Pong. The notable

part of this graph is the extreme variance that DQN has throughout training. Even

at the end of training the graph is full of scores ranging from -21 to 20. So it can still

completely lose a game without scoring but can also win a game. The final average

reward for DQN in Pong was -5.59, indicating that there are still more losses than

wins for the agent. It was unable to converge on a solution for Pong in 10M timesteps.

54

Figure 5.8: Pong: DQN with variance

Figure 5.9 shows the performance of A2C playing Pong. The agent successfully

converged on a solution just before the 8M time-step mark. Aside from the medium

to high degree of variance, this is close to an ideal learning curve. The agent finished

with a final performance of 20.28, indicating that virtually every game can be won at

the end of training.

Figure 5.9: Pong: A2C policy with variance

Figure 5.10 shows the performance of Annealing-A2C playing Pong. Two things

are very promising about this graph. First is that the agent converges on a solution

just after 6M time-steps, much earlier than vanilla A2C. Second is that the variance is

much tighter than the vanilla version. I believe this is due to the aggressive exploration

of state-space in the annealing exploratory period. Pong has a relatively small state-

space and the tight learning curve indicates that the agent efficiently explored that

space.

55

Figure 5.10: Pong: A2C-Annealing policy with variance

Figure 5.11 is a comparison of the random agent (blue), DQN (yellow) and A2C

(green). A2C is clearly the dominant method for solving Pong. If the hardware

available had the capabilities to use Deepmind’s hyperparameters for DQN it would

have stood a better chance.

Figure 5.11: Pong: Random (blue) vs. DQN (yellow) vs. A2C (green)

Figure 5.12 is a comparison of the random agent (blue), A2C (green) and Annealing-

A2C (red). This graph highlights the more efficient learning curve of Annealing-A2C

over vanilla A2C and indicates that the annealing period increases sample efficiency

of the method.

56

Figure 5.12: Pong: Random (blue) vs. A2C (green) vs. A2C Annealing
(red)

5.2.3 Ms. Pacman

Ms. Pacman is a game that is essentially a copy of the famous arcade game Pacman.

The player controls a character (Ms. Pacman) from a top down view through a maze.

In the maze there are enemies that will try to eat Ms. Pacman. Trails of coins are

spread throughout the maze and Ms. Pacman must eat all the coins to clear the

level. The game ends when the player loses all three lives. Refer to the appendix for

a screen shot showing the player view of Ms. Pacman.

Figure 5.13 shows an agent with a random policy playing Ms. Pacman, the line

through the plot indicates the agent’s average performance. The random agent fin-

ished training with an average reward per episode of 239.97. The agent was able to

obtain small constant reward, but failed to realize the dense reward signals hidden

deeper in state space of Ms. Pacman.

Figure 5.13: Ms. Pacman: Random policy with variance

57

Figure 5.14 shows the learning curve of DQN in Ms. Pacman. DQN as in the

previous games displays pretty nasty variance, with episodes scoring incredibly low

late in the training process. Thus the agent finishes below both A2C and Annealing-

A2C with a final performance of 1701.37.

Figure 5.14: Ms. Pacman: DQN with variance

Figure 5.15 shows the learning curve of A2C in Ms. Pacman. An alarming trend

occurs after 8M time-steps where average performance starts to decrease. This could

be due to a variety of reasons but it indicates that the algorithm lacked the exploratory

capability to avoid that performance dip. The final performance ended at 2078.69.

Figure 5.15: Ms. Pacman: A2C policy with variance

58

Figure 5.16 is a comparison of the random agent (blue), DQN (yellow) and A2C

(green). Consistent with previous experiments, A2C has a much slower but steadier

learning curve than DQN, aside from the policy failure at 8M time-steps.

Figure 5.16: Ms. Pacman: Random (blue) vs. DQN (yellow) vs. A2C
(green)

Figure 5.17 is a comparison of the random agent (blue), A2C (green) and Annealing-

A2C (red). Consistent with other previous experiments, the Annealing-A2C variant

was able to learn quicker than vanilla A2C. It avoided the policy failure that A2C

faced and achieved higher peak performances than the vanilla version. However,

at the very end of training Annealing-A2C finished with a 2002.88 average reward

where A2C finished at 2078.69 overtaking the annealing variant. This overtaking and

plateauing of performance by the Annealing-A2C agent could have been due to a

lack of late game exploratory action, preventing it from clearing the Ms. Pacman

maze. It could also be attributed to oscillating around the natural plateau given the

hyperparameters of the algorithm.

59

Figure 5.17: Ms. Pacman: Random (blue) vs. A2C (green) vs. A2C
Annealing (red)

5.2.4 Q*Bert

Q*Bert is a game where a player controls a character in a unique environment. Each

game starts with your character at the top of a pyramid structure, the objective is to

jump onto each platform of the structure without falling off or getting eaten by an

enemy that follows the player character. There is no ’safety rail’ keeping the player

within the structure and is free to jump off the structure ending the game at any

point. Refer to the appendix for a screen shot showing the player view of Q*Bert.

Figure 5.18 shows an agent with a random policy playing Q*Bert, the line through

the plot indicates the agent’s average performance. Q*Bert is a dense reward game

and it appears that the random agent failed to find any dense reward. Thus, the

random agent finished training with an average reward per episode of 156.15.

Figure 5.18: Q*bert: Random policy with variance

60

Figure 5.19 shows a DQN agent playing Q*Bert. What is interesting is that the

learning curve shows that dense reward was found early in training around 1M time-

steps but the experiences were not utilized moving forward. Perhaps the experience

replay buffer was sampled in a way that the agent never learned from the few im-

portant reward yielding episodes. Ultimately the relatively flat average reward line

indicates that the agent failed to learn anything in this environment, and ended with

a final performance of just above the random policy with 484.51.

Figure 5.19: Q*bert: DQN with variance

Figure 5.20 shows the A2C agent playing Q*Bert. This graph shows the ’step-

ladder’ like dense reward structure of the environment. As the dense rewards are

discovered, the algorithm trends upwards until all agents are performing at that level.

Figure 5.20: Q*bert: A2C policy with variance

61

Figure 5.21 is a comparison of the random agent (blue), DQN (yellow) and A2C

(green) in the Q*Bert environment. This graph shows that DQN failed to learn

entirely, and that A2C had a fairly rough time holding onto a good policy, as indicated

by the severe drops in average reward around 7M time-steps and 9M time-steps.

Figure 5.21: Q*bert: Random (blue) vs. DQN (yellow) vs. A2C (green)

Figure .11 is a comparison of the random agent (blue), A2C (green) and Annealing-

A2C (red). This graph indicates that the annealing variant benefits from an ex-

ploratory phase that prevents policy failure. In Q*Bert agents can jump off the ledge

of the environment ending the episode and resulting in very little reward. This in-

dicates that the annealing exploratory phase may have exposed the policy and value

functions to these pitfalls and resulted in avoiding harmful situations. Ultimately,

Annealing-A2C ended with higher peak performances and an overall performance of

6747.15 over A2C 5669.59. The annealing variant had its greatest success here in a

challenging dense reward environment.

5.2.5 Freeway

Freeway is a game which depicts a busy freeway with cars constantly driving across

each lane. The player controls a character that must attempt to cross the road, re-

62

Figure 5.22: Q*bert: Random (blue) vs. A2C (green) vs. A2C Annealing
(red)

ceiving a reward for successfully crossing the road. The game was allegedly developed

at the same time as Frogger, an eerily similar concept. The main difference in Q*Bert

to Frogger is that cars do not kill your character, a collision just sends the character

back a few lanes. Refer to the appendix for a screen shot showing the player view of

Freeway.

Graphs for Freeway to be included in Appendix, no relevant data concerning my

algorithm validation, notable that only DQN was able to learn Freeway, which agrees

with other paper results.

5.2.6 Montezuma’s Revenge

Montezuma’s Revenge is the most challenging game of the six in terms of state space

and goals. The player controls an explorer who must navigate from room to room

by getting to the far side of the current screen. The explorer may travel for many

rooms without yielding any reward. There are many perilous obstacles in each room

that may kill the explorer ending the episode. Refer to the appendix for a screen shot

showing the player view of the first room in Montezuma’s Revenge.

Graphs for Montezuma’s Revenge to be included in Appendix, no relevant data

concerning my algorithm validation, no algorithms were able to learn this environ-

ment, confirms itself as the most challenging environment in the Atari domain.

63

Chapter 6

CONCLUSION AND FUTURE WORKS

I hope that my systematic experimentation of DQN and A2C prove helpful in edu-

cating and demonstrating to others the strengths and weaknesses of both algorithms

across a variety of Atari environments. Starting out in this field, I grew frustrated

with the lack of comparison studies like this that were reproducible. Therefore, an

intention throughout this thesis project was to make my work as transparent and

reproducible as possible and I have all experimental data and associated commands

used to run them and create graphs available on my github repository [link]. In addi-

tion to a transparent and reproducible github repository for the project, I wanted to

contribute to a problem I noticed in the field. This led to the development of a quan-

tifiable measure to describe an environments difficulty with respect to exploration,

the Exploration Difficulty Metric (EDM). The EDM proved to be both an objective

and meaningful measure supported by the success or failure of learning by DQN and

A2C in the Atari environments quantified. Its inherent generality makes it extensible

to any RL environment, for which I hope the metric can aid future researchers when

studying and classifying RL environments

In conclusion, my Annealing-A2C variant hijacks the policy of A2C and exposes

the algorithm to states that it would otherwise not visit. This effect is amplified

with a population of 16 workers on their own trajectories thanks to an aggressive

exploratory period in the first 5% of training. This phase enables the value function

and policy approximation to learn more efficiently as shown in the results section

above. The annealing variant didnt have a massive impact on final performance, but

it had a notable impact on sample efficiency and was able to achieve peak performance

quicker than the original algorithm. An inherent benefit of exploration with a popu-

64

lation is that the individuals within the population are able to try out many different

directions. Once one or a few directions are found to be promising, the algorithm

can push all workers in the promising direction, a possibility beyond the scope of

single-agent algorithms. This work is not conclusively stating that population based

methods (A2C) are hands down better than single agent methods (DQN) but offer

more possibilities in regards to exploration. Thus, this work does demonstrate the

benefits of diverse, exploratory populations for deep reinforcement learning. This

work also proves that action-space exploration for actor-critic methods is worthwhile

for consideration in future research.

65

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of

reinforcement learning to aerobatic helicopter flight. In Advances in neural

information processing systems, pages 1–8, 2007.

[3] J. H. Andreae and P. M. Cashin. A learning machine with monologue.

International Journal of Man-Machine Studies, 1(1):1–20, 1969.

[4] J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate. A bayesian

sampling approach to exploration in reinforcement learning. In Proceedings of

the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages

19–26. AUAI Press, 2009.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[6] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and

R. Munos. Unifying count-based exploration and intrinsic motivation. In

Advances in Neural Information Processing Systems, pages 1471–1479, 2016.

[7] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47:253–279, 2013.

[8] R. Bellman and R. Kalaba. Dynamic programming and modern control.

Academic Press, 1992.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba. Openai gym, 2016.

66

http://www.github.com/CalPoly

[10] E. S. Bromberg-Martin, M. Matsumoto, and O. Hikosaka. Dopamine in

motivational control: rewarding, aversive, and alerting. Neuron, 68(5):815–834,

2010.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[12] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition. IEEE

Transactions on audio, speech, and language processing, 20(1):30–42, 2012.

[13] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,

J. Schulman, S. Sidor, and Y. Wu. Openai baselines.

https://github.com/openai/baselines, 2017.

[14] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,

R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks

for exploration. CoRR, abs/1706.10295, 2017.

[15] J. Gao and R. Jamidar. Machine learning applications for data center

optimization. Google White Paper, 2014.

[16] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep

recurrent neural networks. In Acoustics, speech and signal processing (icassp),

2013 ieee international conference on, pages 6645–6649. IEEE, 2013.

[17] Z. Hong, T. Shann, S. Su, Y. Chang, and C. Lee. Diversity-driven exploration

strategy for deep reinforcement learning. CoRR, abs/1802.04564, 2018.

67

https://github.com/openai/baselines

[18] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A

tutorial. Computer, 29(3):31–44, 1996.

[19] K. Jarrett, K. Kavukcuoglu, Y. LeCun, et al. What is the best multi-stage

architecture for object recognition? In Computer Vision, 2009 IEEE 12th

International Conference on, pages 2146–2153. IEEE, 2009.

[20] J. M. Joyce. Kullback-leibler divergence. In International Encyclopedia of

Statistical Science, pages 720–722. Springer, 2011.

[21] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014, 2000.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[23] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep

visuomotor policies. The Journal of Machine Learning Research,

17(1):1334–1373, 2016.

[24] L.-J. Lin. Reinforcement learning for robots using neural networks. Technical

report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[25] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and

M. Bowling. Revisiting the arcade learning environment: Evaluation protocols

and open problems for general agents. arXiv preprint arXiv:1709.06009, 2017.

[26] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[27] V. Mnih. Machine learning for aerial image labeling. PhD thesis, University of

Toronto (Canada), 2013.

68

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning.

In International Conference on Machine Learning, pages 1928–1937, 2016.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602, 2013.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level

control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[31] J. Moody and M. Saffell. Learning to trade via direct reinforcement. IEEE

transactions on neural Networks, 12(4):875–889, 2001.

[32] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine

learning (ICML-10), pages 807–814, 2010.

[33] W. Pitts. Some observations on the simple neuron circuit. The bulletin of

mathematical biophysics, 4(3):121–129, Sep 1942.

[34] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,

T. Asfour, P. Abbeel, and M. Andrychowicz. Parameter space noise for

exploration. CoRR, abs/1706.01905, 2017.

[35] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction

and reward. Science, 275(5306):1593–1599, 1997.

[36] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection

with unsupervised multi-stage feature learning. In Computer Vision and

69

Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3626–3633.

IEEE, 2013.

[37] D. Silver and D. Hassabis. Alphago: Mastering the ancient game of go with

machine learning. Research Blog, 2016.

[38] R. S. Sutton. Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44, 1988.

[39] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. The

MIT Press, 2012.

[40] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient

methods for reinforcement learning with function approximation. In Advances

in neural information processing systems, pages 1057–1063, 2000.

[41] G. Tesauro. Td-gammon: A self-teaching backgammon program. In

Applications of Neural Networks, pages 267–285. Springer, 1995.

[42] S. B. Thrun. Efficient exploration in reinforcement learning. 1992.

[43] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based

control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pages 5026–5033. IEEE, 2012.

[44] M. Tokic. Adaptive ε-greedy exploration in reinforcement learning based on

value differences. In Annual Conference on Artificial Intelligence, pages

203–210. Springer, 2010.

[45] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,

A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al. Starcraft ii: a new

challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

70

[46] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.

.0.1 Q*Bert

.0.2 Montezuma’s Revenge

71

Figure .1: Player View of Space Invaders

72

Figure .2: Player View of Pong

73

Figure .3: Player View of Ms. Pacman

74

Figure .4: Player View of Q*Bert

75

Figure .5: Player View of Freeway

76

Figure .6: Player View of Montezuma’s Revenge

77

Figure .7: Freeway: Random policy with variance

Figure .8: Freeway: DQN with variance

Figure .9: Freeway: A2C policy with variance

Figure .10: Freeway: Random (blue) vs. DQN (yellow) vs. A2C (green)

78

Figure .11: Freeway: Random (blue) vs. A2C (green) vs. A2C Annealing
(red)

Figure .12: Montezuma’s Revenge: Random policy with variance

Figure .13: Montezuma’s Revenge: DQN with variance

Figure .14: Montezuma’s Revenge: A2C policy with variance

79

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Problem
	Contributions
	Thesis Outline

	Background
	Markov Decision Process
	Reinforcement Learning
	Origins of Reinforcement Learning
	Reinforcement Learning Framework

	Classic Reinforcement Learning Approaches
	Overview
	Value Based Methods
	Policy Based Methods
	Actor-Critic Methods

	Neural Networks
	Origins
	Usage and Intuition
	Concepts

	Deep Reinforcement Learning with Atari
	Motivation and Deep Learning
	Atari Learning Environment

	Modern Reinforcement Learning Methods
	Deep Q-Network
	Asynchronous Actor Advantage Critic

	Related Works
	Efficient Exploration in Reinforcement Learning
	Parameter Space Exploration Methods for A3C and DQN
	Directed Diversity Driven Exploration for A2C

	Implementation
	Tools and Infrastructure
	OpenAI Gym
	OpenAI Baselines

	Design and Implementation of Novel Algorithm Modifications
	Design
	Implementation

	Exploration Difficulty Metric

	Validation
	Experimental Framework
	Selected Environments
	Experimental Conditions
	Algorithms and Hyperparameters

	Results and Analysis
	Space Invaders
	Pong
	Ms. Pacman
	Q*Bert
	Freeway
	Montezuma's Revenge

	Conclusion and Future Works
	BIBLIOGRAPHY
	Q*Bert
	Montezuma's Revenge

