
OUT-OF-CORE GPU PATH TRACING ON LARGE INSTANCED SCENES VIA

GEOMETRY STREAMING

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jeremy Berchtold

June 2022

© 2022

Jeremy Berchtold

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Out-of-Core GPU Path Tracing on Large

Instanced Scenes via Geometry Streaming

AUTHOR: Jeremy Berchtold

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: Zoë Wood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Maria Pantoja, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Chris Lupo, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Out-of-Core GPU Path Tracing on Large Instanced Scenes via Geometry Streaming

Jeremy Berchtold

We present a technique for out-of-core GPU path tracing of arbitrarily large scenes

that is compatible with hardware-accelerated ray-tracing. Our technique improves

upon previous works by subdividing the scene spatially into streamable chunks that

are loaded using a priority system that maximizes ray throughput and minimizes

GPU memory usage. This allows for arbitrarily large scaling of scene complexity.

Our system required under 19 minutes to render a solid color version of Disney’s

Moana Island scene (39.3 million instances, 261.1 million unique quads, and 82.4

billion instanced quads [30]) at a resolution of 1024x429 and 1024spp on an RTX

5000 (24GB memory total, 22GB used, 13GB geometry cache, with the remainder

for temporary buffers and storage). As a scalability test, our system rendered 26

Moana Island scenes without multi-level instancing (1.02 billion instances, 2.14 trillion

instanced quads, ∼230GB if all resident) in under 1h:28m. Compared to state-of-the-

art hardware-accelerated renders of the Moana Island scene, our system can render

larger scenes on a single GPU. Our system is faster than the previous out-of-core

approach [12] and is able to render larger scenes than previous in-core approaches

given the same memory constraints [32, 27]

iv

ACKNOWLEDGMENTS

Thanks to:

• My mom, for always supporting and encouraging my learning

• Zoë Wood, for great advising and mentoring both on technical and logistical

problems

• David Hart and Mark Leone, for their incredibly helpful advice both on high-

level ideation as well as detailed optimizations

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Rendering . 4

2.2 GPU Compute . 6

2.2.1 Optimizing GPU Performance 6

2.2.2 RTX and OptiX . 7

2.2.3 Streaming . 7

3 Related Work . 9

4 Algorithm . 13

4.1 Scene Partitioning . 13

4.2 Raytracing Pipeline and Streaming 15

4.3 Asset Loading . 18

4.4 Asset Cache . 19

4.5 Re-tracing of Overlapping Chunks . 20

5 Supporting Implementation Details . 23

5.1 System Overview . 23

5.2 OptiX Kernel . 23

5.3 CUDA Kernels . 24

5.4 Memory Management . 25

vi

6 Results . 27

6.1 Moana Island Scene . 28

6.2 26x Moana Island Scene . 28

6.3 Asset Cache Effectiveness . 29

6.4 Straggling Path Cut-off . 31

7 Conclusions & Future Work . 35

REFERENCES . 38

vii

LIST OF TABLES

Table Page

5.1 OptiX raytracing entrypoint functions [15] 24

6.1 Render time versus non-converged pixels remaining in the rendered
image . 34

viii

LIST OF FIGURES

Figure Page

2.1 A rendered scene. Left: 3D geometry data. Right: Final image.
Scene credit: Alex Treviño [25] . 4

2.2 Scene rendered with an earlier version of our system using texture
streaming. Scene credit: NVIDIA [19] 8

4.1 An example of a toy scene, recursively divided until the instance
count reaches a given threshold . 14

4.2 Empty chunks are discarded . 14

4.3 Overview of ray tracing pipeline . 15

4.4 Ray buffer operations . 17

4.5 Re-tracing method: Ray hit . 21

4.6 Re-tracing method: Ray miss . 22

6.1 Moana Island scene. 39.3 million instances. 1024spp, 1024x429.
18m:33s . 28

6.2 26x Moana Island test scene. No multi-level instancing. 1.02 billion
instances. ∼230GB memory usage if all resident at once. 1024spp,
1024x429. 1h:27m:10s . 29

6.3 Visualization of rays traced per chunk 30

6.4 Visualization of chunk loads . 31

6.5 26x Moana Island scene. Total render 1h:27:10s. 15m:23s partition-
ing, 1h:11m:47s rendering . 32

6.6 26x Moana Island scene. Stopped early and displayed with the rays
that had already terminated within the first 5 minutes of the render
stage . 32

6.7 FLIP image comparison between full render and progress at 5 min-
utes. See Figures 6.5, 6.6 . 33

ix

Chapter 1

INTRODUCTION

In recent years, rendering has become increasingly photo-realistic, with many renders

being nearly indistinguishable from a photo. However, this detail comes at a perfor-

mance cost. It can take minutes or hours to render a single frame on complex scenes.

Traditionally, complex renders are performed on powerful CPU systems with a large

amount of memory. Recently, GPU hardware-accelerated raytracing has greatly de-

creased render times, making GPUs a viable option for some scenes [5]. However,

despite advances, GPU rendering is not yet practical for large production scenes.

Production scenes can contain billions of polygons and millions of instances, and con-

tinue to grow in size [20]. Even with instancing, which is using multiple copies of the

same 3D mesh, scenes use many gigabytes just for the geometry data. Furthermore,

texture data sets are huge, limiting the amount of GPU memory available for geome-

try. Out-of-core rendering is crucial for final-frame rendering in computer animation

and visual effects. Therefore, we propose a method for geometry streaming of large,

heavily-instanced scenes that is compatible with hardware-accelerated raytracing.

Our method addresses two main obstacles in the use of hardware-accelerated raytrac-

ing:

• The memory requirements of the scene exceeding the memory of the GPU

• Efficiently using in-memory acceleration structures supported by hardware-

accelerated raytracing

1

Efficient raytracing cannot operate on the raw geometry data itself, and instead re-

quires the use of acceleration structures, such as bounding volume hierarchies (BVHs)

in the OptiX raytracing framework [15]. OptiX is a library provided by NVIDIA for

utilizing raytracing cores on modern GPUs [15]. However, these acceleration struc-

tures can be costly to build. It is not practical to rebuild a monolithic acceleration

structure as geometry is streamed in and out of core. Instead we use multi-level

acceleration structures to minimize re-building costs when streaming.

Given these constraints, we refine the challenges for our approach and our proposed

solution as the following:

• How can the scene be divided into partitions small enough to individually fit

into GPU memory? Solution: Our algorithm divides the scene into chunks (of

instanced geometry) small enough to fit into GPU memory.

• How can re-building of accelerations structures be minimized? Solution: Our

algorithm loads chunks as needed with a priority-based system using ray heuris-

tics, to keep frequently used chunks resident.

To test our system, we ran benchmarks on the Moana Island scene, a publicly avail-

able scene released by Disney that contains 82.4 billion total quads and 39.3 million

instances [20, 30]. The scene depicts a lush island island from Disney’s Moana with

many detailed bushes, trees, and shells scattered across the shores and mountain

peaks.

This paper presents our algorithm that takes advantage of hardware accelerated ren-

dering and includes the following contributions:

• A method of streaming instanced geometry to a single GPU

2

• An accompanying method for partitioning the scene

• Benchmark data for our system on the Moana Island scene, and a proof of

concept rendering of 26-times duplicated Moana Island test scene.

3

Chapter 2

BACKGROUND

2.1 Rendering

Figure 2.1: A rendered scene. Left: 3D geometry data. Right: Final
image. Scene credit: Alex Treviño [25]

Rendering is the process of converting 3D geometry into a 2D image. This process

involves determining which geometry is visible within the 2D image, and shading the

geometry with the appropriate lighting. There are several methods for rendering,

each with varying speed and quality trade-offs. See Figure 2.1 for a visualization of

the raw geometry data and the rendered results.

There are a few common rendering techniques, with different performance and image

quality trade-offs [6].

4

• Rasterization is fast and typically used in games and typically uses a local

lighting model such as the Phong model, but more realistic lighting requires

more advanced algorithms and data structures.

• With Raytracing, individual rays of light are traced throughout the scene.

This allows for more accurate shadows and reflections, but is typically slower

than rasterization. Raytracing in games usually on casts a few rays per pixel

per frame to keep steady frame rates.

• Path Tracing is a type of raytracing in which many light paths are traced

throughout the scene. These paths can bounce multiple times, allowing for

indirect lighting. Additionally, many paths are sent through the same pixel and

are randomly scattered according to the physically-based material models.

Additionally, there are a few other rendering concepts that are important to under-

standing our paper.

• The Rendering Equation defines how most light is reflected for every surface

point, given the incoming light distribution and surface material properties [1].

• Monte Carlo Sampling is a technique for randomly sampling a distribution

that is difficult or impossible to solve analytical [2].

• Acceleration Structures are hierarchical structures, such as bounding volume

hierarchies (BVHs), used to traverse geometry data faster when tracing rays [17].

• Instanced Rendering uses one copy of mesh geometry data and renders it

many times with different transformations to allow for complex geometry with

far less memory usage [26]. This is commonly used for rocks and leaves.

5

2.2 GPU Compute

GPU architecture is fundamentally different from CPU architecture. The goal of

CPUs is to run a handful of very fast cores to achieve high performance. On the other

hand, GPUs rely on using thousands of cores. While each individual core is slower,

GPUs can acheive much higher performance when the work executed in parallel.

For example, graphics processing tasks often involve the same computation run over

millions of pixels, making it an ideal use case for GPUs [4]. Additionally, GPUs have

much stricter memory requirements. CPU system memory can be swapped out and

expanded as needed, whereas GPUs have limited memory that is soldered directly to

the device. This makes memory a precious resource when writing software for GPUs.

2.2.1 Optimizing GPU Performance

The difference in architecture from CPUs also means different strategies must be

used when optimizing GPU code. The following summarizes the key methods to

maximizing GPU performance.

• Maximize the number of active threads. To ensure optimal performance,

keep the GPU fed with work so it is not idle.

• Minimize branching and incoherent memory accesses. GPU threads

are organized in groups of 32 called warps. Branching causes warp divergence,

causing threads to stall. Incoherent memory accesses hurt cache performance.

• Minimize global synchronization. GPUs are highly parallel and perform

best when queued up with enough work. Synchronization operations stall the

GPU and limit the speed at which it can perform work.

6

• Minimize the memory transfer between the CPU and GPU. Memory

transfers over the CPU and GPU occur over a PCIe memory bus which is

comparatively very slow.

Maximizing the number of active threads and minimizing memory transfers are the

most important aspects for our project as it deals with out-of-core methods that

involve many memory transfers.

2.2.2 RTX and OptiX

Recent generations of GPUs have support for hardware-accelerated raytracing. This

provides a fast hardware implementation for common ray traversal operations and

acceleration structure building. This is much faster than software approaches for

many scenes. OptiX is a library for utilizing hardware-accelerated raytracing [15].

2.2.3 Streaming

Video streaming has become increasingly popular. The core principle being, data is

only sent to the user when requested. Rendering systems can use a similar streaming

concept. Instead of sending all the data to the GPU at the start of the render, the

GPU can request only what is necessary. This saves precious GPU memory and can

save on load time as well. Existing systems such as Redshift use streaming with

textures [24]. Instead of loading all textures at once, texture tiles are only sent when

requested by ray intersections, and only at the requested mip levels. At the start

of this project, our system supported texture streaming using the Demand Loading

library [15]. See Figure 2.2. Due to time constraints, we were not able to integrate

texture streaming into the final Moana Island render due to Disney’s Ptex per-face

texture format [21], but we plan to support it in the future.

7

Figure 2.2: Scene rendered with an earlier version of our system using
texture streaming. Scene credit: NVIDIA [19]

8

Chapter 3

RELATED WORK

Software implementations of raytracing on GPUs are not new. However, recently

GPUs have been designed to contain dedicated hardware for raytracing. Hardware-

accelerated raytracing is much faster than software implementations, and is the focus

of this paper [3, 5].

Production scenes have always been large and have grown over time, demanding out

of core methods to address rendering their large scale geometry [14, 23, 31]. For

example, in 2014 a scene from Guardians of the Galaxy contained 1.2 billion unique

triangles and used 30 GB of memory using the Arnold path tracer [10].

Recently, there have been several attempts to render one specific large scale scene as

representative of these large scenes. Specifically, there has been exciting recent work

on rendering the Disney Moana Island scene, which contains 39.3 million instances,

261.1 million unique quads, and 82.4 billion instanced quads [30, 27, 32, 12, 13].

Wald was able to load and render the Moana Island scene in its entirety on an RTX

8000 (48GB VRAM) [27]. This implementation is capable of rendering the Moana

Island scene at a resolution of 2560x1080 at 25 frames per second, using progressive

refinement with the image converging in just a couple seconds. Additionally, this

work publicly provides data wrangling and file format utilities for interacting with the

Moana Island scene. The pbrtParser library, created in part for this work, supports

a much faster binary format for loading this scene [28]. This library and format is

used by our implementation before converting to a custom format with chunk data.

Wald’s work is similar to ours in that the goal is to render the Moana Island scene.

9

However, our approach is distinct because we target GPUs with less memory, only

24GB versus 48GB, and scale to more complex scenes.

Zellman et al. partitioned the scene using various partitioning methods [32]. The most

important insight from this paper for our application was that better partitioning can

be achieved by combining spatial and data density metrics. The target application

for the Zellman et. al. work was a distributed or multi-GPU system. As a result,

ray transfers were an important metric that was minimized. There are similarities

in the partitioning schemes; however our approach optimizes for geometry streaming

instead of ray transfers. Ray transfers do not affect performance as much when both

partitions are resident on the same GPU, and are therefore less of a concern for our

application.

Hellmuth was able to render the Moana Island scene on an RTX 2070 (8GB VRAM).

This was achieved by first partitioning the scene by mesh type. For each mesh,

the geometry and accompanying instances are loaded. The rays are then traced

through the loaded geometry. The next mesh is then loaded and traced. This process

was repeated until all rays had finished. This technique uses hardware-accelerated

raytracing and was able to render the Moana Island scene at a resolution of 1024x429

with 1024spp in 5h:10m [12]. Hellmuth’s system also loads geometry dynamically

to handle larger scenes; however our method is distinct because we use additional

memory to track ray heuristics for loading assets using a priority based system.

Jaroš et al. implemented a path tracer capable of rendering the Moana Island scene,

partitioning across multiple GPUs [13]. The paper targets an NVIDIA DGX-2 server,

containing 16 Tesla V100 GPUs. The system uses CUDA Unified Memory, a form

of virtual memory management, to address the data across the multiple GPUs [11].

The implementation described in the Jaroš et al. paper was able to render the Moana

Island scene at a resolution of 5120x2560 with 1000spp in 3m:1s [13]. While there are

10

some similarities, our approach focuses on a single GPU with hardware-accelerated

raytracing. Our method uses streaming to address the fact that hardware-accelerated

raytracing does not support CUDA Unified Memory.

One key difference in our method compared to previous out-of-core approaches is that

we prioritize loading of partitions to maximize overall ray throughput. Our system

first traces rays through a top-level structure of partition bounding boxes. Then a

histogram containing counts of rays intersecting each partition is calculated on the

GPU. The partitions are then sorted by priority using the ray counts, with a bias

towards already resident partitions. Once the most important partitions are loaded,

the relevant rays are traced through the loaded geometry. This continues until all

rays terminate.

Other GPU approaches use small pages and sort rays to achieve cache hits, but still

evaluate all rays in the ray buffer every pass [9]. Instead, we allow rays intersecting

less requested geometry to be stalled until other more coherent rays are processed.

This allows our system to wait to load geometry until enough rays are requesting it,

ensuring there is enough work to achieve adequate GPU utilization. This is especially

helpful for larger partitions which are more costly to load. Instead of a traditional

cache that pages in smaller regions at once [9, 29], we instead divide the scene into

larger partitions and prioritize which to load before each tracing step.

We need larger geometry partitions to efficiently utilize hardware ray tracing. Com-

pared to a software BVH implementation, we have limited flexibility. We cannot

modify the BVH build and trace to insert custom logic or paging since it is im-

plemented in hardware. Additionally, the BVH layout is internal to the hardware

and driver so we cannot modify it. Therefore, we partition at a larger scale to still

have optimized BVH build and trace times on the hardware, but insert an additional

top-level BVH to determine which geometry to load. Previous approaches that use

11

fine-grain page-level caches would not be able to fully utilize hardware-acceleration

for BVH building or tracing [9, 29, 18, 16].

Previous CPU approaches do include some priority-based loading, being the use of 8

priority buckets in Wald et al. and cost and benefit estimates for voxel scheduling in

Pharr et al. [29, 18]. However, given that our work runs on a GPU, we use different

methods. On modern GPUs, calculating ray counts per partition is a fast operation,

and is even faster with larger and fewer partitions. Therefore, we utilize exact ray

counts per partition into our priority-based loading scheme. Furthermore, to fully

utilize the GPU, we load multiple chunks at once, then partition the ray buffer to

run one large raytracing launch. Compared to a CPU system, our GPU needs this

increased workload per step to ensure the GPU is not idle. Additionally, data transfers

from system memory to GPU memory are very costly. Therefore, we minimize the

data we send, using 48 bytes per 3x4 matrix instance transform and raw vertex and

index buffers for triangle meshes. This saves memory bandwidth which saves overall

time because the hardware BVH build is very fast and the BVHs are usually 3x the

memory usage of the raw vertex and index buffers.

12

Chapter 4

ALGORITHM

Our approach to rendering large scenes that do not fit in GPU memory while taking

advantage of hardware-accelerated raytracing, is composed of two stages: scene par-

titioning and the raytracing pipeline. Scene partitioning involves dividing the scene

into chunks that fit into GPU memory. The raytracing pipeline includes the calcula-

tion of which chunks are most beneficial to stream, streaming the chunks, and tracing

the rays through the loaded geometry. We describe these phases in more detail here.

Our benchmark scenes exceed the memory of our current GPU. We used the Moana

Island scene, as well as a modified version of the scene with 26x the number of

instances (∼230GB of GPU memory if all resident) [20]. This greatly exceeds our

test GPU, the RTX A5000 with 24GB of memory.

4.1 Scene Partitioning

Our approach is intended for scenes that exceed the memory of the GPU and thus

cannot all be loaded at once. Our method addresses this problem by dividing the

scene spatially into chunks that can be loaded independently. First, the axis-aligned

bounding box of the entire scene is calculated. Then this bounding box is subdivided

into eight smaller bounding boxes. This process is repeated recursively until each

bounding box contains less than a fixed-value of instances. See Figures 4.1, 4.2 for

an example diagram of scene partitioning. This allows for more detailed regions of

the scene to contain more chunks while less detailed areas contain fewer chunks. As

13

a result, all chunks have roughly the same memory requirements. Chunks containing

no instances are discarded.

Figure 4.1: An example of a toy scene, recursively divided until the
instance count reaches a given threshold

Figure 4.2: Empty chunks are discarded

Chunks are stored as a list of instance transforms per mesh ID. The chunk also has

a list of dependencies, including the meshes it references, that need to be loaded

along with the chunk. This method works well for most cases, however, for highly

complex individual meshes this can cause challenges. Any meshes requiring more

than 250 MB, (14 unique meshes, 421 instances in the Moana Island scene), are kept

in their own individual bounding box (non-axis aligned in world space). Our methods

14

to handle these potentially overlapping boxes are handled in a re-tracing step. See

Section 4.5 for details.

4.2 Raytracing Pipeline and Streaming

Once the scene has been partitioned into chunks we are ready to render with streaming

support to manage geometry resident on the GPU. Well managed streaming of the

geometry is the core contribution of our method. The main goals of our streaming

method are:

• Minimize chunk loads and evictions to reduce data transfer overhead

• Maximize the number of rays that can be evaluated at once, allowing for higher

GPU utilization

Figure 4.3: Overview of ray tracing pipeline

The raytracing pipeline starts with an uninitialized ray buffer for each pixel in the

framebuffer. The algorithm then proceeds as follows:

1. Initialize the rays

2. Trace rays for a single wavefront step

3. Stream chunks based on priority system

15

4. Partition the rays by tagged asset residency

5. Repeat steps 2-4

To initialize the ray buffer, rays are initialized starting from the camera. For each

pixel in the framebuffer, a ray is generated in a random direction through the pixel.

All rays are explicitly tagged with no chunk dependency, to indicate they should be

traced through all the chunk bounding boxes.

Rays are then traced through the chunk bounding boxes or the loaded chunks, de-

pending on the ray’s tag. Rays are traced one bounce at a time using a wavefront

approach, and there are further re-tracing steps for overlapping chunks or ray misses

within a chunk. See Section 4.5 for details on the re-tracing process.

The chunks are streamed using a priority system. The priority of chunks is deter-

mined using the function P (A) = 256n if the chunk is resident, or P (A) = n for

non-resident assets, where n is the number of rays intersecting the chunk bounding

box. Resident chunks are assigned higher priority because it is more efficient to trace

rays through a chunk that has already been loaded. However, resident chunks are not

always preferred, as a non-resident chunk with many rays hitting it could be more

important to load. See Figure 4.4 for a diagram of the ray buffer operations.

Ray counts per asset are determined by using a histogram count on the GPU. The

counts are then sent to the host for the calculation of priorities. For our benchmark

of the Moana Island scene, the number of assets is less than 1,500 thus a CPU sort

is not a bottleneck. However, the number of active rays may be much larger, for

example, the best performance on the Moana Island scene used over 2 million active

rays. Therefore, it is essential to calculate the ray counts per asset on the GPU.

16

Figure 4.4: Ray buffer operations

Chunks are loaded starting with the highest priority chunk. Chunks are evicted

starting with the lowest priority chunk. Chunk loading stops when the available

memory is full. While iterating over the chunks in order of decreasing priority, if

there is a significant decrease in priority, P (Ccurrent) <
P (Cprevious)

10
, chunk loading is

stopped early to prevent stalling for low-priority chunks.

Rays are partitioned by the residency of their tagged asset. Rays tagged with chunk

bounding box or material tags are currently treated as always resident because the

17

memory requirements of those assets are very small. The end result is the ray buffer

containing all rays tagged with resident assets contiguous in memory at the start

of the ray buffer. The next trace step operates only on this portion of the buffer

because rays intersected with non-resident chunks cannot be traced at the moment.

Over time, the rays hitting the highest priority chunks will all be terminated, allowing

for loading of lower priority chunks and evaluation of all rays. As an added benefit,

waiting longer for lower priority chunks allows for more rays to hit the chunk. This

gives the system more rays to process, at the same cost of a single chunk, therefore

improving performance.

When a ray hits the environment or reaches the maximum bounce count, the ray

is terminated. The color is accumulated into a pixel buffer. If the pixel has not

reached the target sample count, a new ray is started from the camera to replace the

terminated ray. Otherwise, the pixel value is written to the final image buffer.

All raytracing uses OptiX 7.4 [15]. Ray buffer histogram counts, sorting and filtering

use the CUB library [8]. Starting the rays, re-starting the rays, and writing the

terminated ray color values out to the framebuffer use custom CUDA kernels.

4.3 Asset Loading

When an asset (chunk or mesh) is requested, our system first checks if the asset is

already resident in GPU memory, in which case the request is already fulfilled.

Otherwise, the asset must be built. This process is divided into two stages: preparing

the OptiX build input, and building the acceleration structure.

Chunks: First, all the meshes referenced by this chunk are loaded. Then, for each

mesh referenced by the chunk, a list of affine transforms (3x4 matrix) is sent to the

18

GPU and space is allocated for the chunk build input (which contains a buffer of

OptixInstances). PCIe bandwidth is saved by using a smaller representation for the

transforms, and then expanding on device because each OptixInstance is 80 bytes,

while our affine transforms are 48 bytes each [15]. A CUDA kernel is used to expand

each transform into an OptixInstance, which includes populating the mesh accelera-

tion structure handle and the shader-binding table (SBT) offset for the instance.

Meshes: The vertex and index buffers are transferred to the device for the build

input. Additionally, any applicable attribute buffers for the mesh are transferred as

well (e.g. normals, texture coordinates).

Once the build input has been created, the OptiX API is used to build and compact

the acceleration structure. This requires additional temporary space in GPU memory,

so the system allocates extra space to leave sufficient memory available for build

operations. Pre-built acceleration structures are not cached to host memory because

the acceleration structure is multiple times larger than the build input. This improves

the speed of memory transfers. Additionally, for chunks, the acceleration structure

must be rebuilt regardless because the meshes may be in different locations in device

memory since the last time the chunk was built.

4.4 Asset Cache

The algorithm relies on an asset cache to manage which assets are resident in GPU

memory. For our method, we use an asset cache that is a fixed size, smaller than the

total memory available on the GPU because extra space is needed for ray buffers and

temporary buffers for OptiX builds. The asset cache handles loading and eviction of

chunks and meshes given the requests from the raytracing pipeline.

19

Loading Assets: To load assets, the asset cache first checks if there is enough memory

available in the cache. Each asset’s memory usage can be estimated with an upper

bound using the OptiX API. This estimate is later corrected with the exact memory

usage of the asset after it is built. For chunks, acceleration structures for the refer-

enced meshes are built first as the chunk must reference their acceleration structure

handles.

Evicting Assets: If there is not enough space in the cache, chunks are evicted, starting

with the lowest priority chunks. A reference count is kept to track the number of

resident chunks referencing a mesh. When evicting a chunk, the meshes referenced

can only be evicted if the reference count reaches zero.

For all memory allocations, this project uses the Rapids Memory Manager library.

The sub-allocators provided by this library reduce the number of cudaMalloc and

cudaFree calls, which avoids overhead from expensive memory allocations and frees.

4.5 Re-tracing of Overlapping Chunks

The inclusion of large meshes (greater than 250 MB) into a normal axis aligned

chunk has the potential for inefficient streaming. This is due to the fact that axis-

aligned chunks will be hit by intersecting rays that may miss the large mesh. For

highly complex meshes, our algorithm isolates the large individual assets into tighter

individual bounding boxes to optimize loading these large assets on the GPU for cases

when they are more likely hit. As a result of this optimization, chunk bounding boxes

can overlap. To solve for the correct intersection, a re-tracing approach that uses a

step wise traversal of chunks is used. See Figures 4.5, 4.6.

1. Start with nearT = 0 and hitT = ∞, for a given ray

20

Figure 4.5: Re-tracing method: Ray hit

2. Trace to find the nearest chunk bounding box intersection with a t-value in the

interval [nearT, 0)

3. When the chunk is loaded, trace the associated geometry. If there is a hit and

t < hitT , update hitT := t

4. Repeat steps 2-3 until hitT > nearT

The ray origin may be inside one or more chunk bounding boxes. In this case, our

approach first traces through all bounding boxes that contain the ray origin, recording

the smallest t-value as hitT . Then it proceeds normally.

21

Figure 4.6: Re-tracing method: Ray miss

22

Chapter 5

SUPPORTING IMPLEMENTATION DETAILS

5.1 System Overview

This project uses a mix of CPU code (C++) and CUDA. CUDA is an extension of

the C++ language for GPU programming. To run code on the GPU, the CPU calls

a CUDA kernel function with varying dimensions of the work. For example, a kernel

that processes each pixel in an image may be launched with the width and height

of the image as the work dimensions. These dimensions are divided into block and

grid dimensions for sub-grouping of the work. OptiX kernels are a subset of compiled

CUDA code with special entry point functions for raytracing operations and events.

Additionally, this project uses the CUB library built on top of CUDA for optimized

general operations such as histogram counts and buffer partitioning.

5.2 OptiX Kernel

An OptiX kernel has several entrypoint functions.

OptiX supports hardware-acclerated raytracing of in-memory acceleration structures.

Our project leverages OptiX for hardware acceleration, but uses custom intersection

programs to stall the rays when intersecting unloaded chunk bounding boxes. See

Table 5.1 for explanations of each entrypoint function type.

23

Table 5.1: OptiX raytracing entrypoint functions [15]
Function Purpose Execution Event

Ray Generation Launching rays
Every thread in
launch dimensions

Closest Hit Evaluating intersections
Every closest hit
from ray launches

Any Hit
Evaluating intersections,
including determining light
occlusion

Every hit from ray
launches

Intersection
Intersection test for custom
primitives

Every ray launch
on custom primi-
tives

5.3 CUDA Kernels

We use CUDA kernels for all other GPU operations that do require hardware-accelerated

raytracing.

To save memory bandwidth, we send raw transforms stored as 3x4 float matrices (48

bytes each) for each instance. However, for OptiX to build an instance acceleration

structure IAS, it requires the data to be packed in an 80-byte OptixInstance struct

which includes the 3x4 matrix transform as well as a reference the instance’s accel-

eration structure. Therefore, we allocate space for a buffer of OptixInstance structs

and launch CUDA kernels to expand all the transforms efficiently into corresponding

structs. This conversion to OptixInstances must occur every re-load of a chunk be-

cause the referenced mesh geometry acceleration structures may have been relocated

since the last load. Performing this on the GPU rather than the CPU will also save

compute time in addition to memory bandwidth.

Additionally, we use a mix of CUDA and CUB (a library on top of CUDA) for our

general ray buffer operations. We use a custom CUDA kernel to initially populate the

ray buffer with rays starting from the camera. Then we use a CUB histogram count

24

to count the rays intersecting each chunk bounding box. Next, chunks are loaded

using a combination of CPU priority logic and the building of acceleration structures

outlined above. Then, we use CUB to partition the ray buffer so the start of the

ray buffer contains a contiguous array of rays all intersecting resident chunks. The

main ray tracing using our OptiX kernel is performed next. After the rays have been

traced an additional step, we use a CUDA kernel to write-out terminated rays to an

image buffer and replace them with new rays from the camera if the pixel has not yet

converged. Next, we use CUB to filter out any leftover terminated rays for converged

pixels so we don’t perform unnecessary work.

5.4 Memory Management

We use the Rapids Memory Manager (RMM) library for our GPU memory manage-

ment. RMM provides an abstraction above raw memory management with ’cudaMal-

loc’ and ’cudaFree’ (similar to ’malloc’ and ’free’).

The down-side of ’cudaMalloc’ and ’cudaFree’ is that it requires a full GPU synchro-

nization, which can be very costly. RMM supports sub-allocators which use a single

call to ‘cudaMalloc‘ to pre-allocate a memory pool. When memory allocations are

requested, this large pool is divided into smaller regions without requiring a full GPU

synchronization.

Sub-allocators can be much faster because of fewer full GPU synchronizations. How-

ever, our use case can cause sub-allocators to be severely fragmented. Our system

has many large allocations for geometry, but relatively few small allocations. Our

small temporary storage buffers can be pre-allocated. In our use case, sub-allocators

often required more geometry to be evicted than strictly necessary because of mem-

ory fragmentation. As a result, the direct ’cudaMalloc’ and ’cudaFree’ performed

25

better than the sub-allocators used (pool and arena), despite the synchronization

overhead. For example, our system rendered the Moana Island scene in 18m:33s with

the standard ’cudaMalloc’ and ’cudaFree’. However, due to increased eviction due

to fragmentation, the pooled sub-allocator rendered the scene in 22m:39s. Although

each allocation was faster, the increased eviction slowed the system slightly. These

results may be different on a GPU with more memory available so we have left both

raw ’cudaMalloc’ and sub-allocators supported in our system.

In addition to using RMM, we use a custom class for managing GPU memory alloca-

tions. Our ’DevicePtr’ class follows the RAII (Resource Acquisition Is Initialization)

pattern. When we create a ’DevicePtr’ the requested memory is allocated. When the

’DevicePtr’ goes out of scope the memory is freed. We also wrap ’DevicePtr’ in C++

smart pointers when necessary to transfer or share ownership.

26

Chapter 6

RESULTS

We have presented our system to render scenes that exceed the memory of the GPU.

Our method divides the scene spatially into chunks that can be loaded independently

and then streams those chunks to the GPU, minimizing chunk loads and evictions,

to prevent memory transfer stalls and maximizing the number of rays that can be

evaluated at once, allowing for higher GPU utilization.

Our system was able to render Disney’s Moana Island scene in under 21 minutes,

and a 26 times larger Moana Island scene in under 1h:28m. All renders use the

following parameters: 1024x429 pixel resolution, 1024spp, with a maximum of 5 ray

bounces. All materials are diffuse, and there is a solid color assigned to each mesh.

Curves were not supported in this implementation, but only account for about 5%

of the scene data (all instance counts and scene size estimates in this paper do not

include curves) [20]. Our 26x Moana Island stress test shows that our system would

be capable of rendering the extra curve geometry of a single Moana Island scene.

All timings were performed on a system using an RTX A5000 (24GB VRAM, 22GB

used, 13GB asset cache, with the remainder for temporary build storage and ray

buffers). The test system also used an Intel i9-10900K @ 3.70GHz and 64 GB DDR4-

3200 MHz RAM.

27

Figure 6.1: Moana Island scene. 39.3 million instances. 1024spp,
1024x429. 18m:33s

6.1 Moana Island Scene

Disney’s Moana Island scene contains 39.3 million instances, 261.1 million unique

quads, and 82.4 billion instanced quads [30]. Our system was able to render this

scene in 18:33s minutes. See Figure 6.1 for an image of the rendered Moana Island

scene.

6.2 26x Moana Island Scene

As a stress test, a larger scene was created that contained 26 duplicate Moana Island

scenes, without multi-level instancing. The scene contained over 1.02 billion instances,

2.14 trillion instanced quads, and would require ∼230GB of GPU memory if entirely

resident. The number 26 was chosen to reach 1 billion instances, but is not an inherent

limit in our system. See Figure 6.2 for our render of the 26x Moana Island scene.

The system rendered this scene in 1h:27:10s. The scene partitioning completed in

15m:23s. The raytracing and streaming completed in 1h:11m:47s. The focus of this

28

Figure 6.2: 26x Moana Island test scene. No multi-level instancing. 1.02
billion instances. ∼230GB memory usage if all resident at once. 1024spp,
1024x429. 1h:27m:10s

work was on the raytracing throughput, and the current partitioning implementation

is a single-threaded CPU version. Additional system memory and a multi-threaded

implementation would increase performance for the scene partitioning stage of the

algorithm.

6.3 Asset Cache Effectiveness

To verify the effectiveness of our asset cache, we recorded the number of loads per

chunk and the total number of rays traced through each chunk.

For each chunk, we measured the rays traced through the chunk and the number

of times the chunk was loaded into the cache. Overall, partitions with more ray

intersections were loaded less frequently, showing our system effectively prioritizes

important partitions. For example, in the 26x Moana Island test scene, the most

requested chunk was loaded 114 times and 300,874,269 rays were traced within it

over the full render. There were 2,231 occluded partitions that were never loaded

out of 8,048 total. The most loaded chunk was loaded 980 times and 5,816,734 rays

29

were traced within it. Ideally, every chunk would be only loaded once. However,

with a scene nearly 10 times the memory of the GPU (230GB scene vs. 24GB

GPU memory), and many rays only become available after multiple bounces, some

partitions must be loaded more than once. These metrics show that our system is

working correctly and prioritizing loading partitions for higher overall ray throughput.

Additionally, we visualized this output. Each box represents an axis-aligned bound-

ing box of a chunk. Smaller boxes indicate denser geometry due to our adaptive

partitioning scheme.

Figure 6.3: Visualization of rays traced per chunk

30

Figure 6.4: Visualization of chunk loads

As shown in Figures 6.3, 6.4, the regions of high ray throughput are roughly inverse to

the regions with high load counts. This verifies that our system is working correctly

and effectively prioritizing keeping important chunks in memory to ensure overall

higher ray throughput of the entire system.

6.4 Straggling Path Cut-off

At the start of the render the ray buffer contains many coherent rays intersecting

similar spatial regions. As the render progresses, the ray buffer becomes increasingly

31

divergent. This is mitigated by stalling rays until the priority of a chunk is high

enough which increases coherency. However, at the end of the render all rays must be

processed, so diverging rays will eventually need to be processed. This is a problem

in raytracing in general because of incoherent memory accesses, but is even more of

an issue for out-of-core approaches.

Figure 6.5: 26x Moana Island scene. Total render 1h:27:10s. 15m:23s
partitioning, 1h:11m:47s rendering

Figure 6.6: 26x Moana Island scene. Stopped early and displayed with
the rays that had already terminated within the first 5 minutes of the
render stage

32

Figure 6.7: FLIP image comparison between full render and progress at
5 minutes. See Figures 6.5, 6.6

The 26x Moana Island render completed in 1h:11m:47s in the render stage (not in-

cluding scene partitioning). In the first 5 minutes, 27,985,156 out of 28,114,9441

pixels have converged, leaving only 129,788 pixels remaining. See Figures 6.5, 6.6,

and Figure 6.7 for an image comparison to the final render.

As shown in Table 6.1, our system is able to very quickly render many rays when the

ray buffer is large. However, as the number of active rays decreases, our system slows

down because it needs to load more chunks, each with fewer rays. This is a problem

with particularly dense areas of geometry. In the case of the 26x Moana Island scene,

there are millions of triangles rendered within a single pixel. This shows that for the

bulk of the image, we are rendering efficiently. However, very dense regions take a

disproportionate amount of time to render with respect to their final contribution to

the image. In future work we propose an LOD-based approach to mitigate this.

1The final rendered image has a resolution of 1024x429 but is rendering at 8x scale in each
dimension to give the GPU more work. This allows 64 samples per pixel to be active at once which
increases work done while each chunk is loaded.

33

Table 6.1: Render time versus non-converged pixels remaining in the ren-
dered image

Time Pixels Left
0m 28,114,944
5m 129,788
10m 61,655
15m 36,875
20m 24,832
25m 16,787
30m 11,611
35m 8,379
40m 6,054
45m 4,221
50m 2,990
55m 1,991
1h 1,067
1h:5m 356
1h:11m:47m 0

This analysis is for performance analysis only. Using the cut-off is biased and would

produce too much noise in a final render. Instead, an unbiased approach to straggling

ray cut-off is proposed as future work.

34

Chapter 7

CONCLUSIONS & FUTURE WORK

Hardware-accelerated raytracing is able to massively speed up rendering [3, 5]. How-

ever, production scenes continue to grow in complexity, outstripping the memory

capacity of most GPUs. Geometry streaming is vital for production quality render-

ing of large scenes.

We presented an out-of-core rendering method capable of rendering arbitrarily large

scenes on a single GPU using hardware-accelerated raytracing and geometry stream-

ing.

There are a few major aspects we would like to focus on in future work:

• More advanced material models and sampling.

• Texture streaming.

• Chunk-based LODs.

• Unbiased straggling path cut-off.

First, we would like to make our system more usable for final production renders.

We decided to focus on the main out-of-core approach for this paper due to time

constraints, but would like to expand our feature set to match existing path tracers

in the future. For simplicity of implementation, we used a simple diffuse Lambert

BRDF and an environment light. In the future, we would like to implement the Disney

material model and more light types, along with multiple importance sampling.

35

Second, we would like to implement texture streaming. Texture streaming already

exists in several production renderers [24]. Texture streaming is similar to our ge-

ometry demand loading system. The Demand Loading library [15] is an open source

implementation compatible with OptiX and is likely what we will use in the future.

Third, we would like to optimize regions of dense sub-pixel geometry. There are

millions of triangles per pixel in some regions. This detail is not necessary in the

final image. Several triangles per pixel should be sufficient. Therefore, and level-of-

detail (LOD) solution would be useful here. However, it is not as simple as it seems.

Existing level-of-detail approaches work on a single triangle mesh. In our case, the

bulk of the memory usage does not come from raw triangle data, but instead the

vast number of instance transforms. Simplyfing instances is a much more complex

problem because you can not just remove small instances. Many small instances, such

as grass or leaves, can combine to form a dense volume.

One idea to solve this issue is to use a voxel-based level-of-detail approach. Compared

to more exact mesh decimation approaches, a rougher voxel re-meshing could be suf-

ficient and would be fast since it is easier to parallelize. Normally, mesh decimation

approaches, such as edge decimation [7], are preferred since they produce more vi-

sually accurate results. However, with millions of triangles per pixel a rough voxel

approximation may be unnoticeable. The voxel mesh could only have thousands of

triangles, using very little memory, but may still be sufficient since thousands of tri-

angles per pixel is still fairly dense. Furthermore, at this ratio of triangles to pixels,

using per-vertex attributes instead of baked textures may be sufficient for the level-

of-detail approximation. Normals, roughness, and other material parameters could

be stored and averaged while rasterizing each polygon to voxels. When averaging,

varying normals for a voxel would contribute to a higher roughness value, because

at this scale high-density normals are essentially microfacets in a roughness model.

36

A similar idea of converting normal information to roughness when zoomed out has

been pursued in the cited blog post [22]. A stochastic approach to swap between

level-of-detail approximations and the real geometry could help improve temporal

coherence. Overall, level-of-detail approximations could greatly speed up the render

and help mitigate the memory pressure of ray divergence.

Lastly, an unbiased variant of the straggling path cut-off could help save time. Russian

roulette sampling randomly terminates rays based on their luminance and overall

contribution to the image. This introduces noise but saves overall computation time.

A similar approach for straggling path cut-off could be to randomly terminate rays

based on their expected memory cost for processing. This could introduce much

more noise as we do not have the guarantee that these rays will contribute little to

the final image as we do with Russian roulette. But if we sample randomly, and

when the sample is not terminated we weight it accordingly, it still could help save

computation time.

37

REFERENCES

[1] Nefi Alarcon. Ray Tracing Essentials Part 6: The Rendering Equation. en-US.

Apr. 2020. url: https://developer.nvidia.com/blog/ray- tracing- essentials-

part-6-the-rendering-equation/ (visited on 06/04/2022).

[2] Jason Brownlee. A Gentle Introduction to Monte Carlo Sampling for Probability.

en-US. Nov. 2019. url: https ://machinelearningmastery.com/monte- carlo-

sampling-for-probability/ (visited on 06/04/2022).

[3] John Burgess. “RTX on—The NVIDIA Turing GPU”. In: IEEE Micro 40.2

(Mar. 2020). Conference Name: IEEE Micro, pp. 36–44. issn: 1937-4143. doi:

10.1109/MM.2020.2971677.

[4] Brian Caulfield. CPU vs GPU: What’s the difference? en-US. Dec. 2009. url:

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-

cpu-and-a-gpu/ (visited on 06/04/2022).

[5] Brian Caulfield.What’s the Difference Between Hardware- and Software-Accelerated

Ray Tracing? en-US. June 2019. url: https://blogs.nvidia.com/blog/2019/

06/07/whats-the-difference-between-hardware-and-software-accelerated-ray-

tracing/ (visited on 04/15/2022).

[6] Brian Caulfiend. What’s the Difference Between Ray Tracing, Rasterization?

en-US. Mar. 2018. url: https://blogs.nvidia.com/blog/2018/03/19/whats-

difference-between-ray-tracing-rasterization/ (visited on 06/04/2022).

[7] CGAL 5.4 - Triangulated Surface Mesh Simplification: User Manual. url: https:

/ / doc . cgal . org / latest / Surface mesh simplification / index . html#Chapter

Triangulated Surface Mesh Simplification (visited on 06/04/2022).

38

https://developer.nvidia.com/blog/ray-tracing-essentials-part-6-the-rendering-equation/
https://developer.nvidia.com/blog/ray-tracing-essentials-part-6-the-rendering-equation/
https://machinelearningmastery.com/monte-carlo-sampling-for-probability/
https://machinelearningmastery.com/monte-carlo-sampling-for-probability/
https://doi.org/10.1109/MM.2020.2971677
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2019/06/07/whats-the-difference-between-hardware-and-software-accelerated-ray-tracing/
https://blogs.nvidia.com/blog/2019/06/07/whats-the-difference-between-hardware-and-software-accelerated-ray-tracing/
https://blogs.nvidia.com/blog/2019/06/07/whats-the-difference-between-hardware-and-software-accelerated-ray-tracing/
https://blogs.nvidia.com/blog/2018/03/19/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/2018/03/19/whats-difference-between-ray-tracing-rasterization/
https://doc.cgal.org/latest/Surface_mesh_simplification/index.html#Chapter_Triangulated_Surface_Mesh_Simplification
https://doc.cgal.org/latest/Surface_mesh_simplification/index.html#Chapter_Triangulated_Surface_Mesh_Simplification
https://doc.cgal.org/latest/Surface_mesh_simplification/index.html#Chapter_Triangulated_Surface_Mesh_Simplification

[8] CUB: Main Page. url: https://nvlabs.github.io/cub/index.html (visited on

04/15/2022).

[9] Kirill Garanzha et al. “Out-of-core GPU ray tracing of complex scenes”. In:

ACM SIGGRAPH 2011 Talks. SIGGRAPH ’11. New York, NY, USA: Associ-

ation for Computing Machinery, Aug. 2011, p. 1. isbn: 978-1-4503-0974-5. doi:

10.1145/2037826.2037854. url: https://doi .org/10.1145/2037826.2037854

(visited on 06/03/2022).

[10] Iliyan Georgiev et al. “Arnold: A Brute-Force Production Path Tracer”. In:

ACM Transactions on Graphics 37.3 (Aug. 2018), 32:1–32:12. issn: 0730-0301.

doi: 10 . 1145/3182160. url: http : / /doi . org /10 . 1145/3182160 (visited on

06/10/2022).

[11] Mark Harris. Unified Memory for CUDA Beginners. en-US. June 2017. url:

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/ (visited

on 04/15/2022).

[12] Chris Hellmuth. Render blog · by Chris Hellmuth. Oct. 2020. url: https ://

www.render-blog.com/ (visited on 04/07/2022).

[13] Milan Jaroš et al. “GPU Accelerated Path Tracing of Massive Scenes”. In:

ACM Transactions on Graphics 40.2 (Apr. 2021), 16:1–16:17. issn: 0730-0301.

doi: 10 .1145/3447807. url: https ://doi .org/10 .1145/3447807 (visited on

04/15/2022).

[14] Janne Kontkanen, Eric Tabellion, and Ryan S. Overbeck. “Coherent Out-of-

Core Point-Based Global Illumination”. In: Computer Graphics Forum (2011).

issn: 1467-8659. doi: 10.1111/j.1467-8659.2011.01995.x.

[15] NVIDIA OptiX 7.4. url: https://raytracing-docs.nvidia.com/optix7/index.

html (visited on 04/15/2022).

39

https://nvlabs.github.io/cub/index.html
https://doi.org/10.1145/2037826.2037854
https://doi.org/10.1145/2037826.2037854
https://doi.org/10.1145/3182160
http://doi.org/10.1145/3182160
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.render-blog.com/
https://www.render-blog.com/
https://doi.org/10.1145/3447807
https://doi.org/10.1145/3447807
https://doi.org/10.1111/j.1467-8659.2011.01995.x
https://raytracing-docs.nvidia.com/optix7/index.html
https://raytracing-docs.nvidia.com/optix7/index.html

[16] Matt Pharr and Pat Hanrahan. “Geometry Caching for Ray-Tracing Displace-

ment Maps”. en. In: Rendering Techniques ’96. Ed. by Xavier Pueyo and Peter

Schröder. Eurographics. Vienna: Springer, 1996, pp. 31–40. isbn: 978-3-7091-

7484-5. doi: 10.1007/978-3-7091-7484-5 4.

[17] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Bounding Volume Hierar-

chies. url: https://www.pbr-book.org/3ed-2018/Primitives and Intersection

Acceleration/Bounding Volume Hierarchies (visited on 06/04/2022).

[18] Matt Pharr et al. “Rendering complex scenes with memory-coherent ray trac-

ing”. en. In: Proceedings of the 24th annual conference on Computer graphics

and interactive techniques - SIGGRAPH ’97. Not Known: ACM Press, 1997,

pp. 101–108. isbn: 978-0-89791-896-1. doi: 10.1145/258734.258791. url: http:

//portal.acm.org/citation.cfm?doid=258734.258791 (visited on 06/03/2022).

[19] Pixar Universal Scene Description (USD). en-US. July 2019. url: https ://

developer.nvidia.com/usd (visited on 06/04/2022).

[20] Heather Pritchett and Rasmus Tamstorf. Walt Disney Animation Studios -

Moana Island Scene. en. 2018. url: https://disneyanimation.com/resources/

moana-island-scene/ (visited on 04/15/2022).

[21] Ptex. url: http://ptex.us/ (visited on 06/04/2022).

[22] Roughness mip maps based on normal maps? en. Sept. 2018. url: https ://

kosmonautblog.wordpress.com/2018/09/17/roughness-mip-maps-based-on-

normal-maps/ (visited on 06/10/2022).

[23] R. Schregle, L.O. Grobe, and S. Wittkopf. “An out-of-core photon mapping

approach to daylight coefficients”. In: Journal of Building Performance Simu-

lation 9.6 (2016), pp. 620–632. doi: 10.1080/19401493.2016.1177116. eprint:

https://doi.org/10.1080/19401493.2016.1177116. url: https://doi.org/10.

1080/19401493.2016.1177116.

40

https://doi.org/10.1007/978-3-7091-7484-5_4
https://www.pbr-book.org/3ed-2018/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies
https://www.pbr-book.org/3ed-2018/Primitives_and_Intersection_Acceleration/Bounding_Volume_Hierarchies
https://doi.org/10.1145/258734.258791
http://portal.acm.org/citation.cfm?doid=258734.258791
http://portal.acm.org/citation.cfm?doid=258734.258791
https://developer.nvidia.com/usd
https://developer.nvidia.com/usd
https://disneyanimation.com/resources/moana-island-scene/
https://disneyanimation.com/resources/moana-island-scene/
http://ptex.us/
https://kosmonautblog.wordpress.com/2018/09/17/roughness-mip-maps-based-on-normal-maps/
https://kosmonautblog.wordpress.com/2018/09/17/roughness-mip-maps-based-on-normal-maps/
https://kosmonautblog.wordpress.com/2018/09/17/roughness-mip-maps-based-on-normal-maps/
https://doi.org/10.1080/19401493.2016.1177116
https://doi.org/10.1080/19401493.2016.1177116
https://doi.org/10.1080/19401493.2016.1177116
https://doi.org/10.1080/19401493.2016.1177116

[24] The world’s first fully GPU-accelerated, biased renderer — Redshift. . . en. url:

https://www.maxon.net/en/redshift/features (visited on 06/04/2022).

[25] Alex Treviño. The Junk Shop. en. Nov. 2019. url: https://cloud.blender.org/

p/gallery/5dd6d7044441651fa3decb56 (visited on 06/04/2022).

[26] Tutorial 33 - Instanced Rendering. url: https : / /www . ogldev . org /www/

tutorial33/tutorial33.html (visited on 06/04/2022).

[27] Ingo Wald. “The Elephant on RTX” – First Light. (or: “Ray Tracing Disney’s

Moana Island using RTX, OptiX, and OWL”). en. Oct. 2020. url: https://

ingowald.blog/2020/10/26/moana-on-rtx-first-light/ (visited on 04/07/2022).

[28] Ingo Wald. Ingowald/PBRT-parser: A simple parser for the PBRT file format.

url: https://github.com/ingowald/pbrt-parser/tree/master.

[29] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. “An interactive out-of-

core rendering framework for visualizing massively complex models”. In: ACM

SIGGRAPH 2005 Courses. SIGGRAPH ’05. New York, NY, USA: Association

for Computing Machinery, July 2005, 17–es. isbn: 978-1-4503-7833-8. doi: 10.

1145/1198555.1198756. url: https://doi.org/10.1145/1198555.1198756 (visited

on 06/03/2022).

[30] Ingo Wald et al. “Digesting the Elephant – Experiences with Interactive Produc-

tion Quality Path Tracing of the Moana Island Scene”. In: arXiv:2001.02620

[cs] (Jan. 2020). arXiv: 2001.02620. url: http://arxiv.org/abs/2001.02620

(visited on 03/08/2022).

[31] Rui Wang et al. “GPU-Based out-of-Core Many-Lights Rendering”. In: ACM

Trans. Graph. 32.6 (Nov. 2013). issn: 0730-0301. doi: 10.1145/2508363.2508413.

url: https://doi.org/10.1145/2508363.2508413.

41

https://www.maxon.net/en/redshift/features
https://cloud.blender.org/p/gallery/5dd6d7044441651fa3decb56
https://cloud.blender.org/p/gallery/5dd6d7044441651fa3decb56
https://www.ogldev.org/www/tutorial33/tutorial33.html
https://www.ogldev.org/www/tutorial33/tutorial33.html
https://ingowald.blog/2020/10/26/moana-on-rtx-first-light/
https://ingowald.blog/2020/10/26/moana-on-rtx-first-light/
https://github.com/ingowald/pbrt-parser/tree/master
https://doi.org/10.1145/1198555.1198756
https://doi.org/10.1145/1198555.1198756
https://doi.org/10.1145/1198555.1198756
http://arxiv.org/abs/2001.02620
https://doi.org/10.1145/2508363.2508413
https://doi.org/10.1145/2508363.2508413

[32] Stefan Zellmann et al. “Finding Efficient Spatial Distributions for Massively

Instanced 3-d Models”. In: Eurographics Symposium on Parallel Graphics and

Visualization. Ed. by Steffen Frey, Jian Huang, and Filip Sadlo. The Eurograph-

ics Association, 2020. isbn: 978-3-03868-107-6. doi: 10.2312/pgv.20201070.

42

https://doi.org/10.2312/pgv.20201070

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Rendering
	2.2 GPU Compute
	2.2.1 Optimizing GPU Performance
	2.2.2 RTX and OptiX
	2.2.3 Streaming

	3 Related Work
	4 Algorithm
	4.1 Scene Partitioning
	4.2 Raytracing Pipeline and Streaming
	4.3 Asset Loading
	4.4 Asset Cache
	4.5 Re-tracing of Overlapping Chunks

	5 Supporting Implementation Details
	5.1 System Overview
	5.2 OptiX Kernel
	5.3 CUDA Kernels
	5.4 Memory Management

	6 Results
	6.1 Moana Island Scene
	6.2 26x Moana Island Scene
	6.3 Asset Cache Effectiveness
	6.4 Straggling Path Cut-off

	7 Conclusions & Future Work
	REFERENCES

