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ABSTRACT 
 

In-Situ Defect Detection using Acoustic Vibration Monitoring for Additive 

Manufacturing Processes 

Ali Harake 

 

The world of additive manufacturing revolves around speed and repeatability. Inherently, 
the process of 3D printing is plagued with variability that fluctuates with every material 
and parameter modification. Without proper qualification standards, processes can never 
become stable enough to produce parts that may be used in aerospace, medical, and 
construction industries. These industries rely on high quality metrics in order to protect 
the lives of those who may benefit from them. To establish trust in a process, all points of 
variation must be controlled and accounted for every part produced. In instances where 
even the best process controls are enacted, there still may be situational unknowns that 
can cause detrimental defects, often on micron scales. 

Through in-situ monitoring techniques, such as visual or acoustic monitoring, a 
secondary level of quality assessment can be performed. This type of real time 
monitoring solution can be used in a variety of ways to help reduce scrap rate, increase 
overall quality, and improve the mechanical characteristics of a newly developing 
material. In this proposal, a goal was set to develop a system that can be a low-cost 
alternative to a comparable acoustic monitoring system. This design is meant to be a low 
fidelity concept that can alert a user of any potential anomalies within a build by 
detecting spikes in acoustic emissions. 

The overall success of this experiment is set on two conditions. First, the new low-cost 
system should be mountable on various types of machines. Second, this system should 
demonstrate some level of equivalency to a similar system. These two situations were 
successfully met as the system was able to provide indications of anomalies present 
within a build. The system was calibrated and tuned to be able to measure signals on a 
SLM 125 running 316L powder. Minor modifications to the code and system can make it 
adaptable to different types of equipment such as CNC’s, bandsaws, casting processes, 
and other advanced manufacturing equipment. The model can be attenuated to support 
higher or lower frequencies as well as different types of acoustic sensors, which 
demonstrates the vast potential that this system can provide for detecting different types 
of defects. 

Keywords: Additive manufacturing, In-situ monitoring, Acoustic vibration 
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1. Introduction 
 

Additive manufacturing (AM) is an ever-growing field with opportunities that 

reach beyond our known world. Materials have evolved to compete with current wrought 

products and the influence fueling this growth can be spread across most industries. 3D 

printing is much more than growing prototypes and tools; it has expanded to couple 

strength with unique and complex designs to create parts with optimal strength to weight 

ratios.  

One of the most critical issues encountered in complex geometries and optimized 

parts is the potential for defects within the microstructure of the part. Defects are often 

discovered during post-inspection or during sudden failure of a part during operation. 

This is quite costly, not only from a monetary standpoint, but also from a time 

perspective. The opportunities to catch potential critical failure defects are crucial to 

the success of AM in future industries, such as mass transit, space exploration, and 

commercial aviation. Current defect detection protocol takes place post-print and requires 

trained eyes coupled with costly equipment. This process can be nearly eliminated with 

the introduction of an in-process monitoring solution that is able to parse and process the 

data to create a timeline of potential defect development. With further work, this 

technique can grow to encompass many different types of machines and materials. From 

previous students at Cal Poly, there are initial studies and data that will support my 

current project, where the main focus is on the collection and interpretation of the data as 

it comes out of the sensors through the utilization of a low-cost alternative to image 

processing. 
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1.1 Problem Description 
 

In-situ defect detection is a challenging and costly process that can be unreliable 

without proper calibration and in-depth testing. As commercial manufacturing begins to 

adopt the productivity of AM, more complex and unique shapes will be desired and the 

need for automated monitoring will grow. The universal goal of any in-situ monitoring 

system is to create a fool-proof system that can accurately analyze and alert a user of 

potential defects present during part production. The goal of this thesis project is to 

achieve creating this fool-proof system within reasonable accuracy and cost. By utilizing 

pre-existing acoustic and accelerometer data present on Cal Poly’s SLM 125, the aim is 

to develop a system that can correctly interpret the acoustic data emitted by the machine 

and interpret it into user friendly visual models.  

With the massive amount of data that can be generated by these types of sensors, 

the main challenge is the accuracy of the visual models and their ability to aid the user in 

understanding the current conditions of the print. The obvious answer may be to use a 

powerful computer that has this capability, but the overall goal of the project is to be able 

to import the technology to any industry by ensuring utility by most types of available 

computer systems on/off network. Successful implementation of this technology requires 

a product that is low cost, easy to set up, and modular for different printer systems and 

materials.  
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1.2 Background 

1.2.1 Additive Manufacturing 

 The world of AM has grown to encompass much more than the term “3D 

Printing” can even begin to describe. AM is the next revolutionary technology that will 

disrupt how we look upon construction, aerospace, medicine, and the future. As the 

technology has evolved, the complexity of parts has progressed exponentially. 

Components are increasingly becoming vital for critical infrastructure, such as HVAC, 

aerospace, and life systems. 

 To begin to fully appreciate what AM can accomplish, it is crucial to first 

understand the entire process behind producing a part. First, there will be need for a 

printed part, whether it is for efficiency’s sake or that specific part cannot be produced by 

any other means. The operator must start by producing a 3D part file utilizing a design 

software. The operator will then need to convert this file into a stereolithography file 

(STL). The STL file is composed of surface level triangles of chosen resolution, that can 

be imported and interpreted across most software packages. Once the STL file is created, 

the operator will need to import the file into the selected “slicing” software, which can be 

machine-specific. This software is now responsible for separating the file into many 

different layers as well as defining the parameters for the build, such as orientation, 

resolution, support, and power. Once the file is complete it can now be transferred over to 

the machine to begin printing. To maintain consistency, all the work covered in this thesis 

is focused on defining the process for a Powder Bed Fusion (PBF) machine, specifically 

in the metal printing genre. A PBF machine utilizes one or more energy sources to melt 
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metallic powder together to effectively grow parts. An example of the process can be 

seen in Figure 1.1 (TWI-Global 2022). 

  

Figure 1.1: Simplified PBF printing process 

1.2.2 Defects 
 

 One of the major issues in AM is the potential for defects to be present within a 

grown part. Defects can range in size from the micro to macro scale and are defined as an 

imperfection in the microstructure of a printed part. Most imperfections can be seen on 

the surface and are not usually the main concern; some of the important types of defects 

that can cause catastrophic failure include warpage, microcracking, voids, and layer 

delamination. With the slightest deviation from the ideal parameter for a given material, a 

defect is possible and depending on the severity of the deviation can greatly affect the 

type and size of the flaw. A good explanation of potential defects and their presumed 

causes can be seen in Table 1.1 and Figure 1.2 (Everton et al. 2016; Wang, 2019). By 

current inspection methods, defects are not detected until after a part has been completed 

and pulled from the build plate. This process can waste valuable time, money, and effort 

for a nonconforming part. 
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Table 1.1: Most common LPBF defects 

 

 

Figure 1.2: Ishikawa process input/output diagram 
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 Cracks and warpage are two of the more visible defects that can be categorized in 

an AM part. Warpage can come about in a multitude of ways on a part or even on a build 

plate. Most often, warpage can happen between the interface of a part and the build plate. 

The edges of a part may appear to peel away from the plate as the part cools, ultimately 

causing damage to the recoater. Cracks can occur when a large area of a part is cooling. 

The shrinkage rate can become so great that the lower segments of the part may begin to 

shear. An overview of different in-situ process sensing approaches can be seen in Table 

1.2 which also explains the different types of defects that can be detected (McCann et al., 

2021). Ideally, there will be an audible ping when a part cracks that the sensor can pick 

up during the print. If a part warps and begins to collide with the recoater, a rhythmic 

ping should be heard when the recoater makes passes to spread powder. Unfortunately, 

these defects cannot be seen during most prints as the parts are submerged in powder. 

Since these issues happen while a part is cooling, the part is usually too deep in powder 

for traditional photo analysis software to pick up. The next best method is listening to the 

high frequency pings that these anomalies can create and trying to categorize those for 

different materials and machines.   
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Table 1.2: Overview of in-situ process sensing approaches in PBF 

 

 

1.2.3 Cal Poly SLM 125 Overview 
 
 At California Polytechnic State University – San Luis Obispo, or Cal Poly for 

short, the Industrial Engineering department operates and maintains a SLM Solutions 125 

HL, shown in Figure 1.3. This machine was donated to Cal Poly by Lawrence Livermore 

National Lab in 2017 and its primary purpose is to aid research and senior projects. The 

SLM 125 features a 125mm x 125mm x 125mm build envelope, which is enclosed in an 

airtight, argon purged chamber during builds. As seen in Figure 1.4, the build chamber 

features a powder recoater in the +Y direction that recoats powder after each layer by 

moving in the -Y direction and then back to its home position (Swartz, 2019). The build 

plate moves down with each new layer to accommodate for the parts’ growth while the 

argon continuously flows in a laminar fashion across the X axis throughout the build. The 

build plate can also be set to heat up to a max temperature of 200 °C by the operator 

depending on what is being printed. Through the SLM software all the print settings can 

be monitored and output through a .csv file. The printing media that is used is stainless 
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steel 316L powder from SLM solutions. It is loaded into a top hopper approximately 

22kg at a time and is recycled through an in-house sieving unit. There is a laser unit that 

provides the heat source for melting the powder. This laser can reach a maximum power 

of 400 W. To create a perfect part, many parameters may need to be manipulated and set 

during each build. These parameters may include: laser power, layer height, build plate 

temp, scan speed, fill pattern, hatching distance, etc. Another important feature of this 

printer is the camera within the build chamber. This camera is normally used to analyze 

the powder coverage across the build plate by taking pictures after the recoater has 

moved and just before the laser begins to scan. These images are saved after each build 

and can be used for outside analysis such as defect or error analysis during a build. 

 

Figure 1.3: SLM solutions 125 HL at Cal Poly 
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Figure 1.4: SLM 125 build chamber with build coordinate system and gas flow direction 

1.3 Current State 
 

The current state of in-situ defect detection is growing rapidly. In the past few 

years, OEM’s have begun to implement and develop monitoring equipment that can be 

utilized inside of the build chamber of their machines. Most of the products that are 

offered today are based solely on the use of optical imagery analysis, which has its own 

unique benefits and challenges. Visual systems rely on expensive cameras and processors 

that can interpret large amounts of images quickly. The amount of data being stored can 

become an issue in terms of storage and analysis which also contributes to the overall 

cost of the system. However, visual systems do provide great illustrations of exactly what 

is happening during a build. These cameras can be optimized to pick up temperatures to 

map hot spots as well as track different trajectory of ejecta occurring during laser scans. 
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A few OEM manufacturers that currently produce in-situ monitoring type systems 

include: Concept Laser (QM), EOS (EOSTATE), Renishaw (InfiniAM), and SLM 

(Additive Quality). A sample GUI of SLM’s version can be seen in Figure 1.5, which 

illustrates a user-friendly visual system that determines anomalies (EOS, 2021). These 

systems vary in effectiveness and cost; however, they are built to integrate with their 

respective OEM. There are obvious drawbacks to using a system tied exclusively to one 

machine OEM, with one being differing quality and data provided with each system. An 

alternative to using an OEM system is to integrate a machine agnostic system developed 

by outside companies. A few currently on the market that are advertised toward universal 

implementation include: Plasmo (Deepobserver), Open Additive (AMSense), and Sigma 

Labs (PrintRite3D). These systems are adaptable to different types of machine setups and 

processes while keeping a universal data processing algorithm. The benefits of this model 

can range from large cost savings to simplified systems that can work with a multitude of 

industries. 

 

Figure 1.5: SLM in-situ image analysis 
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1.4 Literature Review 
 

A comprehensive investigation was conducted on various similar topics within both 

industry and the academic realm. The papers that were examined pertain to systems that 

conduct acoustic, optical, and statistical analysis of additively manufactured parts and the 

defects generated during build. 

The collection of data that currently takes place on the SLM 125 includes 

accelerometer and acoustic emission information. Acoustic emission (AE) is the radiation 

of acoustic waves in solids when a material undergoes irreversible changes in its 

structure. This phenomenon is quite unique, and the frequency of acoustic waves can be 

correlated to the type of material being used. This type of data collection can easily and 

quickly determine defects such as warpage, delamination, and cracking. Quantitative 

information about temporal-local behavior has been found to explain the signal from 

features in the surface, which shows that it is a good signal analysis technique 

(Sadowsky, 1994). However, the data can be quite noisy and require a large sample size 

coupled with automated data interpretation to develop usable models. In an article by 

Shevchik et al., acoustic signals were collected and separated into different groups that 

could be easily fed into a neural network for processing and training (Shevchik, 2018). 

The type of data that can be collected and processed using acoustic sensors is small, 

manageable, and easily scalable to improve resolution. There have been many 

innovations in applying active and/or passive AE sensors to monitor AM processes. 

Using convolutional neural networks to interpret the data which has led to patent 

applications for their future uses (Shevchik et. Al, 2019). The possibilities of utilizing AE 
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for data interpretation are only just beginning to be understood for use in AM processes. 

A simple setup of acoustic monitoring set up on LPBF machine can be seen in Figure 1.6 

(Shevchik et al., 2019). 

 

Figure 1.6: Basic setup of acoustic monitoring on a LPBF machine 
 

 In one study, AE was used during the lifetime of an AM part and the results 

demonstrated that it was possible to localize the main areas of discrepancy much more 

reliably and quickly than traditional methods (Strantza et al., 2017). By introducing AE 

technology earlier, an engineer is more likely to catch issues at a much cheaper phase of 

the overall AM process and increase overall throughput of part manufacturing. Neural 

networks are a unique technique that can be coupled with many processes to predict and 

detect useful information. They are currently being used throughout many industries to 

sift through data to predict the proper parameters necessary to produce specific types of 

parts under different loading conditions (Koeppe et al., 2018). Developing a single one-
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size-fits all neural network is not reasonable or possible with the current technological 

boom of AM. With such knowledge, a neural net must be positioned to assist the user in a 

variety of ways. One way that machine learning (ML) could be used is to develop a 

feedback control to assist in adjusting input voltages, such as in experiments conducted 

using liquid metal jet printing (Wang et al., 2018). As ML continues to expand into more 

technological areas, there may someday be whole systems that are capable of running 

autonomously, adapting and growing to the surrounding conditions to protect, develop, 

and expand. 

Another type of in-situ monitoring technique that is becoming increasing popular 

is the use of optical imagery and thermal tomography. By incorporating at least one 

camera into the build process, a user can track important periods of time within a build 

and correlate potential defects to visual snapshots. A diagram of an optical imagery 

camera setup on a PBF machine can be seen in Figure 1.7 (Li et al., 2018). For increased 

throughput and traceability, being able to track and maintain a record of all parts printed 

as well as their exact as-printed image is quite valuable. In an article by Craeghs et al. 

(2012), the researchers illustrate the benefits of presenting the melt pool visuals by 

'mapping' the melt pool data in space, on the X-Y plane. Visual interpretation of data is 

quite useful for the engineer as it provides easy to read maps of where a defect may exist 

and how big this potential defect may be. To couple visual data interpretation with live 

feedback would take an immensely powerful system/processing power as the data being 

output by a visual feed cannot be compressed while still maintaining its resolution. One 

challenge to utilizing optical imaging for in-situ monitoring is assuming that the 

calibration of your sensors is accurate in reference to non-contact temperature monitoring 
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(Grasso & Colosimo, 2017). Without proper calibration and testing, the data cannot be 

trusted and becomes overall useless to the user. There are many checks and balances that 

must be incorporated into the in-situ process to allow for some level of confidence in 

each batch of data taken.  

 

 

Figure 1.7: Diagram of in-situ monitoring using optical imagery for PBF Process  

 

With all the data being produced from the user’s preferred choice of in-situ 

monitoring solution, data management becomes difficult. Data interpretation and 

manipulation go hand-in-hand with the data management side of in-situ monitoring. All 

the sensors, cameras, and programs can produce terabytes of data that must be quickly 

interpreted and viewed. There are many solutions to this problem, with one of the main 
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ones being ML and artificial intelligence (AI). There are many different types of ML 

techniques, and these can be adopted to track and alert as certain issues arise during the 

AM process. One type of ML technique is properly named unsupervised ML, which can 

be used to characterize the geometric accuracy of a part by examining the point cloud 

data from a particular build (Zhu et al., 2020). An example of the potential of point cloud 

datapoints is shown in Figure 1.8, which demonstrates the level of detail that can be seen 

with a limited number of data points that correlate an image into a 3D figure (Grans, 

2020). Allowing a system to characterize accuracy of parts unassisted is a true testament 

to the potential future of in-situ as well as data analytics. The real potential in ML is the 

ability to continuously learn and develop by incorporating AI. Another type of ML 

technique is supervised learning. This type of learning relies on a labeled set of training 

data, which provides examples of input values and the correct corresponding outputs 

(Razvi et al., 2019). This is the approach that most users take as it can be much faster and 

can be conducted with a smaller sample size of data. Renken et al. (2017) showed that an 

adapted self-learning program was successful in transferring information back and forth 

to continuously self-learn. Allowing a program to continually learn and develop is 

extremely important in the world of in-situ monitoring and AM. It needs to be able to 

keep up with the ever-growing field while maintaining a high level of accuracy and 

dependability.  



 

16 

  

Figure 1.8: Point cloud data points example 

 

ML and AI can take place over a variety of platforms whether it be local or cloud 

based. Many systems benefit from the flexibility of operating on the cloud because it can 

be accessed from remote areas; however, military customers prefer to keep local servers 

inaccessible by the outside world. Each technique comes with its own benefits and 

through online process monitoring there appears to be a valid approach to utilize multiple 

servers to detect anomalies in real time even with large datasets (Khanzadeh et al., 2018). 

Using a cluster of servers, the data can be processed in real time. This is a great 

improvement to current techniques which require truncating the information so that it can 

be processed in a timely fashion. As AM becomes more data-intensive, the growth 

projected directly benefits the future of innovation through the increased knowledge in 

the design for AM (Ko et al., 2020). Expanding the AM potential to more designers, 

engineers, and non-technical collaborators is overall very beneficial to the resilience and 
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growth of AM. Zhang et al. (2017) were able to develop process maps that could 

introduce roughness into a powder layer that offsets the uneven temperature distribution 

of a build. With innovations like these, the possibilities are endless for what can be 

achieved using AM technology enhancements. 

For an in-situ process to be most useful, it must have easy-to-interpret results, 

quick and manageable results allowing for live feedback, and low maintenance/cheap 

equipment that can be used universally on different machines. To truly reach a point 

where in-situ monitoring can be seen as revolutionary, a system would also need to 

develop an optimal scan strategy on a layer-by-layer approach using pre-existing data 

essentially predicting the optimal parameters for any type of future build (Carter et al., 

2014). 

1.5 Acoustic Sensors 
 

During the research phase, a few options were considered in terms of acoustic 

sensors. Acoustics can be classified as the study of sound, including its production, 

transmission, and effects. There are many factors that can affect what type of sound or 

frequency a sensor is able to register. The basis of this experiment depends on the idea 

that when a defect occurs a distinct ping or frequency change is present. Some 

considerations that ultimately impacted the final decision in sensor choice were cost, 

effectiveness, availability, and difficulty of setup. There are a few types of sensors that 

were explored including: condenser, dynamic, piezoelectric, and electret acoustic sensors. 

  Condenser microphones operate on an electrostatic principle, using charged 

metal plates to help generate sound. (Tsing, 2020) These microphones depend on sound 
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waves hitting a diaphragm, and capacitance is formed when the distance between the two 

plates changes. This variation in spacing can be used to generate an electrical signal 

corresponding to the sound produced. A diagram depicting the basic workings of a 

condenser sensor can be seen in Figure 1.9 (“Condenser Microphone”, 2022). Condensers 

are beneficial because they register flat and wide ranges of frequencies and have a petite 

design. However, these sensors are more complex than traditional sensors and tend to be 

affected by differing temperatures and humidity. In summary, condenser microphones are 

more expensive and do not operate well in situations of high sound pressures; thus, they 

are not the best choice for this experiment. 

 

Figure 1.9: Diagram showing how a diaphragm and backplate create a capacitor 
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Dynamic microphones are the most common type of microphone technology. 

They consist of a thin metallic diaphragm that is attached to a coil of wire. As the 

diaphragm vibrates the coil a magnet produces a magnetic field that generates the 

electrical signal in correspondence to the sound produced. A diagram illustrating the 

inner workings of a dynamic style microphone can be seen in Figure 1.10 (“Dynamic 

Microphones”, 2022). This type of microphone is rugged and able to handle high sound 

pressure levels while providing good sound quality. Unfortunately, this type of sensor 

consists of a heavy diaphragm as well as a limiting design due to the wire coil that 

constrains the frequency response of the microphone. Due to the limits imposed by this 

type of sensor in conjunction with its limits on high-frequency content it was not chosen 

for this project. 

 

Figure 1.10: Diagram showing the inner workings of a dynamic microphone 

 

 Piezoelectric sensors work by measuring a voltage across a piezoelectric element 

generated by an applied pressure. When a force is applied to a piezoelectric diaphragm, a 

voltage proportional to the pressure is created. A visualization of the inner workings of a 
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piezoelectric sensor can be seen Figure 1.11 (Avnet, 2021). This pressure can take the 

form of sound waves, force, pressure, and frequencies. These types of sensors are good at 

measuring small changes in pressure, even in high pressure situations. A downside is that 

these sensors are limited to operating below temperatures of 120°C. Also, the high 

impedance output of this type of sensor means that the circuit is sensitive to noise caused 

by poor connections, movement, and RF interference. For these reasons, this type of 

sensor was strongly considered but was not chosen for this design. 

  

Figure 1.11: Inner workings of a piezoelectric sensor 

  

Electret microphones utilize a diaphragm that has a fixed surface charge spaced 

close to a conductive plate. This close distance creates a capacitor within the air gap; as 

the voltage across the capacitor varies, the value of capacitance changes due to the 

pressure waves created by the sound moving across the electret diaphragm. Since there is 

a static charge embedded within an electret, this type of sensor eliminates the need for a 
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polarizing voltage to operate successfully. A diagram of this type of sensor and the inner 

workings is shown in Figure 1.12 (ECM, 2021). Electret condenser microphones are most 

commonly found in telephones, global positioning systems (GPS), and hearing aids. They 

can be used for high frequency acoustic measuring, while maintaining a high caliber of 

protection from elements like dust and moisture. This is ideal for the current parameters 

of our experiment, so the chosen sensor for this project was an electret condenser 

microphone. The chosen sensor was a Devmo LM393 module, as seen in Figure 1.13. 

  

Figure 1.12: Electret condenser microphone inner workings 

 

 

Figure 1.13: Devmo LM393 electret sensor module 
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1.6 Analysis Methodology 

To begin, the analysis acoustic data was first collected along with the 

corresponding images taken during the build. The electret condenser setup recorded 

signal data that had to be converted into understandable frequencies. This was done using 

a Fast Fourier Transform (FFT) technique within the Arduino controller. With the 

acoustic data collected, the data was processed through a python script and organized 

through placement into a stable array as well as generated into a visual graph.  This quick 

interpretation yielded potential areas of concern that could be addressed. The goal is to be 

able to correlate these anomalies with the image data taken with the internal SLM 

camera. If these areas can show situations of defect starting points, then it can be further 

investigated through sectioning or visual inspection.  

FFT is an important analysis tool that assists in the conversion of a signal from 

the electret condenser to a spectral component that provides the frequency of the 

wavelengths in the air. The reason that FFT was used instead of the standard Fourier 

transform is due to the fact that FFT is fast while maintaining both efficiency and 

accuracy. In mathematical terms, the FFT reduces the number of computations needed for 

a problem of size Y from X(Y^2) to X(YlogY). (Warhammer et al., 2007) Since FFT can 

do everything a normal discrete Fourier transform can with greater efficiency and speed, 

FFT was chosen to be used to convert the input signal into comprehensible frequencies 

that can be processed quickly. For the simplicity of this experiment, time domain 

measurements were taken using the acoustic sensor and actively converted into frequency 

domain measurements by using the FFT process. The peak frequency was then taken and 

plotted on a graph to determine anomalies within a build. 
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2. Experimental Setup and Design 
 

2.1 Design and Build of Experimental Setup 
 

 The data collection portion of this experiment relies on a constant feed of data 

pulled from a sound sensor and ultimately relayed back to a processing device. This 

sound sensor to processing device interface is crucial to develop a proper system of data 

analysis tools. The goal of the project is to be able to produce a defect detection device 

using readily available products at affordable prices. The benefits to having such a low-

cost system could outweigh the decrease in accuracy from using low-cost parts. 

2.1.1 Arduino Design and Layout 
  

 The current design incorporates the use of an Arduino Mega 2560 coupled with a 

Devmo LM393 electret sensor connected together using male to female jumper wires. A 

Fritzing diagram can be seen in Figure 2.1, which illustrates the necessary inputs from the 

Arduino that the sensor needs. In order for the sensor to output data through the A0 

analog connection, it requires a 5v input and a grounding wire to operate properly. The 

sensor is activated through code within the Arduino. The code will be explained in more 

detail in section 2. The two components are housed in separate 3D printed enclosures 

which will then be mounted onto the SLM 125. These two components can be seen 

together in Figure 2.2. These components collect the data and process it, it is then fed into 

a Raspberry Pi which organizes the data and then uploads it to a OneDrive folder where it 

is then ready for processing. 
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Figure 2.1: Fritzing diagram of Devmo sound sensor to Arduino connection 

 

Figure 2.2: Arduino Mega 2560 signal converter connected to Devmo sound sensor 
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2.1.2 Raspberry Pi Build + Integration 
 

 The data collection and organization portion of this experiment is handled by a 

Raspberry Pi 3. This device is a low cost, miniature computer that can be connected to 

Wi-Fi or ethernet. The versatility that this connectivity provides opens up the possibilities 

for companies to keep their information internal to their servers or visible to the open 

web. The reason for connecting the Arduino to a Raspberry Pi is to both create a smaller 

footprint for the device as well as enable the Arduino to solely focus on deciphering the 

data, while the Raspberry Pi can handle the majority of the processing/interpretation. The 

Raspberry Pi is secured in a 3D printed enclosure and connected to Arduino using a USB 

A to USB B connector. The 3 main components (Arduino, Sensor, and Raspberry Pi) can 

be seen in Figure 2.3. These three components are then mounted onto the additive 

machine of choice in a position that is close enough to the build chamber to pick up the 

different frequencies that may occur during the build. 

 

Figure 2.3: Arduino (Left), Devmo sound sensor (Middle), and Raspberry Pi (Right) 
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2.1.3 Setup Onto SLM 125 
  
 The sound sensor assembly is attached to the SLM 125 using Velcro strips so that 

it can be removed for updates or maintenance. Each piece is secured in a strategic 

location that will not interfere with the operation of the machine nor any doors that may 

need to be opened periodically. The wires are temporarily taped to prevent any potential 

to be accidentally pulled. Figure 2.4 shows the location of the sound sensor and the 

accompanying Arduino. This location is the closest to the build chamber while still being 

outside of the chamber, in an ideal situation the sensor would be within the chamber and 

away from outside noise pollution. Some fine tuning will be necessary to create an 

average ambient noise frequency, in order for the sensor to be able to detect anomalies. 

Figure 2.5 illustrates the chosen mounting position for the Raspberry Pi on the topside of 

the machine. In Figure 2.6 the monitor setup can be seen off to the side of the machine. 

These components connected in series make up the entirety of the monitoring system. 

 

Figure 2.4: Image showing mounting positions of sound sensor and Arduino 

Devmo Sound Sensor 

Arduino Mega 2560 
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Figure 2.5: Image showing mounting location of Raspberry Pi (Top side of SLM 125) 

 

 

Figure 2.6: Monitor setup to visually analyze data and interface with Raspberry Pi 

 

Raspberry Pi 
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2.2 Software Setup of Sensor 
 

 An important part of this experiment is developing the architecture for the sensor 

to be able to record the frequencies and then process the data to determine the current 

state of the build. The sound sensor is activated by the Arduino and a script is run to take 

a certain number of signal samples and then pick the peak value to report back to the 

serial monitor. This peak value is converted into a recognizable frequency value that can 

analyzed further. The Arduino code utilizes the FFT previously discussed by 

incorporating premade Arduino libraries. A sample of the code for the Arduino can be 

seen in Figure 2.7, while the entirety of the code can be seen in Appendix A. 

 

Figure 2.7: Snippet of Arduino code that converts the signal into an understandable 
frequency 
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 The Arduino and sound sensor both rely on the Raspberry Pi for their source of 

power and thus are ultimately controlled by the powering on and off of the Raspberry Pi. 

The miniature computer handles the data logging portion of the project as it pulls the data 

in real time from the serial monitor of the Arduino. The program that runs concurrently is 

called PuTTY and a snapshot of the parameters that can be modified can be seen in 

Figure 2.8. The current process collects data and creates a .CSV file with the log file 

name corresponding to the date and time that the build was occuring. This format will 

assist in the future organizational structure development of the data and help to maintain 

a simple methodology of nomenclature. 

 

Figure 2.8: Datalogger that pulls all information output from the Arduino's serial monitor 
in real time 
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2.3 Cost Comparison of Systems 
 

 When comparing the different systems that exist in the field of in-situ monitoring, 

cost and applicability of data are two of the main factors that we assess. There are other 

factors that should also be taken into consideration such as compatibility within the given 

system and effective autonomy of the system to alert and divert potential issues. There 

are currently many competitors emerging in this new field of monitoring, with most 

stemming from SLS machine producers (OEMs), as seen in Table 2.1. (Everton 2016) 

Costs can stem from 30k for a light lean system with minimal data capture capabilities to 

over 150k for a full-fledged data capture system with cameras and appropriate softwares 

that can detect anomalies and issues within a build. Unfortunately these systems are not 

fully proven out yet and as they continue to advance there will need to be a significant 

amount of testing and development done on the consumer side to gain full confidence. 

Table 2.1 Existing commercial AM in-situ monitoring systems 
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 The goal of this experiment is to produce a hardware solution that can provide a 

simple, yet effective insight into the overall quality of a build. By being a keeping the 

cost significantly lower than an original OEM solution, the potential ROI can be easily 

justified. With a sensor package that is simple to use, compact in nature, and universal 

among machines the possibilities can evolve with time and additional technology. The 

hardware cost for this experiment can be seen in Table 2.2. 

Table 2.2 Cost Analysis for acoustic vibration setup 

 

 In conjunction with a senior project conducted in 2017, a variety of sensors and a 

data acquisition module were procured to aide in the collection and monitoring of 

anomalies within the build chamber during a highly sensitive build. These sensors and 

module equated to over $7500 and their cost breakdown can be seen in Figure 2.9. When 

comparing the parts purchased in 2017 with the parts used in this build, it is apparent that 

the quality of parts is comparable to the price point at which these items are at. In short, 

the accelerometers and sound sensors have a higher degree of confidence and fidelity 

when compared to parts purchased from Amazon. With further testing, this proves true as 
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these sensors are meant to collect data at a considerably higher sensitivity and accuracy. 

The purpose of this comparison is not to disprove the necessity for parts of this price 

point, but to attempt to replicate the results at a potentially lower confidence level by a 

system that may roughly end up costing 2% of the closest mid-range competitor. 

Although this may seem unnecessary for a company spending potentially millions of 

dollars on these types of products, the future application within a wider consumer base 

makes this product viable. 

 

Figure 2.9: Sensors/DAQ equipment purchased for a previous experiment to measure 
anomalies within the build chamber (Coria 2017) 

2.4 Test Coupon Design and Print Parameters 
 

 This trial primarily focuses on using a variety of different coupons while 

maintaining parameter setups to gain a wide range of data that can be analyzed. The test 

coupons that were printed ranged from FDM calibration builds, thin-walled pressure 

vessels, and tensile coupons. The parameters that were used for the experiments stayed 

the primarily the same throughout the builds, apart from Build 3 (thin-walled pressure 

vessels). A summary of the chess parameters can be seen in Table 2.3. By preserving a 

uniform parameter set, the baseline accuracy could be established as the prints proved to 
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be stable. Once a stable enough dataset was developed, the opportunities for further 

expansion upon the capabilities of the system could be possible. 

Table 2.3 Chess print parameters used in printing coupons for the majority of this 
experiment 

 

2.5 Original Testing Plan and Pivot 
 
 Originally, there was a planned design of experiments which incorporated a 

modified test coupon originally designed for a previous project. This coupon can be seen 

in Figure 2.10 and was designed to fail by cracking at the outlined red areas. The failure 

would be induced by a lack of efficient heat transfer due to the drastic diameter change. 

This failure would be catastrophic for the part and would produce an audible sound that 

would be picked up the sensors. The height of this failure could be controlled, and a test 

plan could be developed to correlate the failure with any triggers from the sensors. As 
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such, with a proper training algorithm a machine learning approach could be taken to 

properly teach a system what anomalies could look like. Unfortunately, this means that 

after each build the potential for damage to the machine was significantly higher than 

normal operation. The lack of control in how damaging these builds could have required 

us to pivot towards a safer approach to preserve the machine’s quality and decrease the 

chance of taking the machine down for maintenance. 

 

Figure 2.10: Modified DOE coupon, designed to fail at red outlined areas 
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3. Coupon Builds and Data Collection Analysis 

 

The coupons designed and built during this experiment consisted of student 

projects and calibration builds. Builds 1-6 can be seen below along with a brief 

description of their purpose, which may help to outline the design considerations taken to 

create these parts. Overall, the printer faced a few minor setbacks and delays due to 

maintenance issues and reduced usage during the COVID-19 pandemic. As a result, the 

data was collected over the course of several months. 

 

3.1 Build 1 and Build 2 
 

The first two builds consisted of test parts for a research project being conducted. 

These initial builds were used to test the hardware/software for functionality and, as a 

result, minimal data was collected during these trials. The hardware worked well in its 

current orientation and settings; the code was calibrated to work with the stable noise 

environment that is created during a standard print. As these were initial test prints, there 

were no pictures taken of the builds; however, there was data collected which is 

presented in Figure 3.1 and Figure 3.2. This data was collected after tuning to the ambient 

room sound. The frequency hovers between 1750 and 2250 hz; however, this does not 

indicate the true frequency of the ambient environment as this is an estimate that has been 

collected by the sound sensor and was not fully calibrated to proper frequency 

recognition. Though, this does not impact the experiment as the main goal is to detect a 

frequency disturbance and can still be done even if the frequencies are not tuned exactly.        
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Figure 3.1: Build 1 frequency vs. print time plot (11-03-2021) 

 

 

Figure 3.2: Build 2 frequency vs. print time plot (12-15-2021) 

 

This preliminary data shows promising results as the system appears to identify 

deviation from the ambient decibel conditions surrounding a standard print. Although 

there are no images to support these anomalies, the frequency response from Build 1 and 
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Build 2 demonstrate that it is possible to isolate some type of natural sound, whether it is 

caused by the print or some outside variable, requires further validation and testing.  

Using the Anderson-Darling normality test, seen in Figure 3.3 and Figure 3.4, we 

can reject the null hypothesis (p<0.005), therefore, the data is not normally distributed. A 

1-sample sign nonparametric test was then conducted to estimate the median of the 

population (Figure 3.5). According the 1-sample sign test, we are 95% confident that the 

median frequency falls between 1897 and 1909 Hz, any values that are more than 3 

standard deviations from the median are significantly different. The same pattern is found 

in the statistical analysis of Build 2. These experiments yielded preliminary anomalous 

readings that may correlate to significant events within the build. Frequencies that exist 

above the original ambient measurements may indicate defects within the build. 

However, more data is required to fully confirm this 

 

Figure 3.3: Descriptive statistical analysis for homemade system using Minitab - Build 1 
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Figure 3.4: Descriptive statistical analysis for homemade system using Minitab - 
Build 2 

 

 

Figure 3.5: 1 sample sign test using Minitab - Build 1 
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3.2 Build 3 
 

 Build 3 began as a starter build to build momentum for the print team as we began 

the quarter. The goal was to print a few items that were not particularly complicated, but 

still valuable in the context of building confidence in operation of the machine and 

verification of the parameters and material. This build consisted of standard “benchy” 

FDM stress test parts, orthogonally designed rings, and two AM welding flat coupons. 

The print was optimized to minimize difficult to reach internal support structures (Figure 

3.6). From the figure below, the quality of the finished build appears good, with minimal 

discoloration and/or warpage. The sensor data was collected parallel to the removal of the 

build and was processed into a scatter plot (Figure 3.7). The sound sensor appears to pick 

up some sort of disturbance during the beginning of the build, which is indicated by the 

jumps in frequency values in what appears to be systematic increments. This timing 

roughly correlates to the rake’s movement between sessions. 

 
Figure 3.6: Completed Build 3 with parts on build plate (Welding coupons, rings, and 

benchys)  
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Figure 3.7: Build 3 frequency vs. print time lot (01-20-2022) 

When the parts were examined, there were some visible adhesion issues between 

the welding coupons and the support structures at the edge of the part. This can be seen 

more clearly in Figure 3.8, and may indicate some issues with heat dissipation from the 

part to the build plate or a lack of powder in the mating surface between the part and 

support. Another potential hypothesis for edge separation is the lack of support structures 

present on the curvature of the part.  

 
Figure 3.8: Enhanced image of welding coupons, emphasizing the delamination between 

the part and support structures 
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 Upon further examination of the processed build file, it was determined that the 

file had overlapped STL files, causing the software to overexpose the support layers 

during the first 25 layers. This resulted in a buildup of material in a few areas. The 

original overlapped parts were corrected early in the print, but this initial correction did 

not seem to prevent issues as the parts grew in the Z-direction. Figure 3.9 shows this 

issue during the first few layers of the build; the streaks were later determined to be the 

main cause of the part’s delamination. These physical observations led to a deeper 

analysis of the data provided by the acoustic sensor during the first 50 layers. The 

zoomed in version of the above plot can be seen in Figure 3.10. Initially it appears as 

though there is a consistent ping that occurs at similar intervals. These intervals occur 

every 40 seconds and likely correspond to the movement of the rake across the build 

platform. An interesting situation happens after several minutes as it appears that the 

sound disappears and then reappears. This can be attributed to a few possibilities as the 

introduction of powder flowability may contribute to a decrease in the amount of powder 

across the raised areas which would cause them to not interact with the rake. After the 

first few layers, the issue was corrected on the software and the program resumed without 

the overlapping support structures. This fixed the interference issue but continued to 

leave streaks in the powder as the rubber rake had already been sufficiently damaged. 
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Figure 3.9: Image of the first few layers of build 3 in which the support structures in front 
of the welding coupons were overexposed due to an issue in preprocessing 

 

 

Figure 3.10: Build 3 frequency vs. print time zoomed in during 0-8 minutes (01-20-22) 
 
 By examining the frequency response of build 3, it can be inferred that there were 

a few anomalies that were recorded during the first few minutes of the build (Figure 

3.10). From the initial normality test, it is clear the data is not normally distributed 

(p<0.005), resulting in rejection of the null hypothesis (Figure 3.11). The nonparametric 

test provides a basis for the median of this data set within the 95 % confidence interval of 



 

43 

1891-1893 Hz (Figure 3.12). These values do not necessarily correlate to defects 

generated within the build but do open up the potential for further focused analysis into 

the layers where these acoustics were recorded. This evaluation provides a compelling 

argument for a proper process that can produce results in a repeatable fashion across 

different builds.   

 

Figure 3.11: Descriptive statistical analysis for homemade system using Minitab - Build 3 

 

Figure 3.12: 1 sample sign test using Minitab - Build 3 
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3.3 Build 4 
 

 Build 4 consisted of several iterations of a thin walled pressure vessel. These 

vessels were designed to test the minimum wall thickness required to prevent leakage of 

air through the body of the part. As can be seen in Figure 3.13, the vessels were aligned 

in a staggered formation to prevent overpressure of the rake during powder spread. For 

the most part, the test specimens appear to be uniform in color and build. Upon further 

inspection, it can be seen that the intersection between the main body and the topmost 

hex mating surface shows signs of discoloration or lack of proper heat dissipation. This 

discoloration can potentially be a sign of delamination at this intersection, which could 

allow for leakage. The zoomed in image showing the discoloration up close can be seen 

in Figure 3.14. These parts took approximately 16 hours to print, during which data was 

collected using the sound sensor setup. The compiled data appears to provide some 

potential insight on the timing of anomalies that occurred and their correlation to the 

timing of the layers of interest. 

 
Figure 3.13: Build 4 thin-walled pressure vessels test coupons 
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Figure 3.14: Zoomed in image on intersection between hex and main body showing 
discoloration and potential leak points 

 From the plot in Figure 3.15, there appear to be some irregularities at the 

beginning and at the end of the build. There is also a single trigger ¾ of the way through 

the build. This single irregularity was inspected further and deemed inconclusive as there 

were no visible surface defects on the parts, nor were there singular leakage issues that 

could be pinpointed to this layer. The sections that appear to have issues happen between 

0-9 minutes and 830-860 minutes. By zooming in on these two time periods, it can be 

seen that there are definitive frequency fluctuations at these slice layers. 

 During the first 9 minutes of Build 4, a significant frequency change was recorded 

3 separate times. These spikes in frequency could have been the result of potential cracks 

or breaks within the support layers in the first 20 layers (Figure 3.16). This can be 

common within the early layers depending on the support type chosen or the asymmetry 

of the powder distribution process. Another potential reason for these spikes could be that 

students or techs were in the room during this time and created metal on metal noise 



 

46 

which would be picked up by the sensor. This could be anything from removing parts off 

previous build plates or simply dropping items on the table. One of the main drawbacks 

to having the printer in an accessible space is the potential for noise pollution from the 

surrounding lab environment. Upon further inspection, it was noted that there were no 

issues within the support layers of this build. 

 Within the 830-860 minute timespan there are substantially more spikes in 

frequency. This series of events appears to correlate to the transition period between main 

body and the hex threaded section. In Figure 3.17, the signals seem to have some 

methodical rhythm as though they trigger in conjunction with the rake moving back and 

forth. A theory in correlation with this observation is that the laser is creating a slightly 

raised surface that is coming into contact with the recoater on the forward and reverse 

passes. This could be due to the lack of heat dissipation due to the large change in mass 

from the thin wall to the full thickness hex threaded area. The timing of this change in 

frequency correlates with the anomaly found on the parts, however, coincidence cannot 

be ruled out as a possibility. 

 

Figure 3.15: Build 4 frequency vs. print time plot (02-22-22) 
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Figure 3.16: Build 4 frequency vs. print time zoomed in during 0-9 minutes (02-22-22) 

 

Figure 3.17: Build 4 frequency vs. print time zoomed in during 830-860 minutes (02-22-
22) 

 

 The statistical analysis for Build 4 yielded similar results as the previous build; 

however, the distribution of data in this build began to represent more of a bimodal 

shape, as seen in Figure 3.18. Multiple peaks in distributions of frequency began to 

appear as builds became longer in length, as illustrated in future datasets. This 

phenomena could be due to multiple reasons, but one theory is that these peaks 

correspond to diameter changes during a build and the resulting stress relief that occurs 

naturally as these boundary layers cool. This hypothesis corresponds with the acoustic 

data that was collected near the layers that a significant change in diameter was present. 
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Figure 3.18: Descriptive statistical analysis for homemade system using Minitab - Build 4 

3.4 Build 5 

 Build 5 involved producing standard ASTM Dogbone Tensile coupons at a 45° 

angle so that they could be tested in house. These coupons were used to determine the 

different downskin parameters that could be used. As such, they have no support 

structures within the main body of the coupon (smaller diameter middle section), as seen 

in Figure 3.19. These parts were unique in that on the surface they did not appear to have 

any visible defects or issues. The visual inspection deemed that these parts were 

satisfactory and may not have encountered any anomalous events during the build. 

According to the acoustic analysis there appeared to be a few events that were flagged for 

changes from baseline behavior. This analysis includes images gathered during the build 

as well as the acoustic data collected by the sensor system. 
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Figure 3.19: Build 5 tensile coupons printed at a 45° angle 

 

 The acoustic monitor was able to pick up distinct alerts at 3 separate time 

intervals from 0-27 minutes, 53-83 minutes, and 1397-1430 minutes. These intervals can 

be seen collectively in Figure 3.20 and correspond to layers 0-62, 113-177, and 2884-

2954, respectively. These layers were pulled from the print log files by correlating the 

times with the layer height in the log. This method was also used to pull the images of the 

build, so that they could be compared with the acoustic analysis. Within these intervals, 

there are many potentials for an alarm to be raised as there could have been internal 

stresses, support structure movement, or crackage.  
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Figure 3.20: Build 5 frequency vs. print time plot (02-24-22) 

When the plot was zoomed in to focus on the interval of 0-27 minutes, pictured in 

Figure 3.21, a few interesting points were observed. For one, the first few minutes 

seemed to have elicited a notable frequency response. These first few signals were most 

likely due to the initial exposure burn on the platen. These initial exposure burns are done 

to create a solid foundation for the parts to adhere properly and are often done with little 

powder on the bed, as seen in Figure 3.22. This limited powder creates a higher pitched 

noise than a regular powder-filled burn would and could explain the alerts generated 

during the first few minutes. Beginning around layer 17, a noticeable change in the 

appearance of the lasered images appears. As shown in Figure 3.23, seemingly sharp 

protrusions and darker shadows behind the parts start to appear. These protrusions are 

usually linked with damaging the recoater blade due to their height and naturally pointed 

structure. After a few layers, a visible line began to form on the left side of the build 

plate. Figure 3.24 outlines the streak formation in line with the third and fourth part from 

the right side of the plate. These streaks can lead to overall part failure as they increase in 
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size and spread throughout the recoater blade. It is apparent that the recoater has been 

damaged and will need to be replaced (Figure 3.25). 

 

Figure 3.21: Build 5 frequency vs. print time zoomed in during 0-27 minutes (02-24-22) 

 

Figure 3.22: Build 5, Layer 5 Initial exposure burn with limited powder on bed 
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Figure 3.23: Build 5, Layer 17 sharp protrusions present creating shadows behind them 

 

Figure 3.24: Build 5, Layer 36 first signs of rake deterioration with streak appearing 
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Figure 3.25: Damaged rubber recoater blade indicated by the lines filled with powder 

 

 Another interval that triggered a few responses was between the times of 53-83 

minutes equating to layers 113-177. These layers were during the actual build of the parts 

with some sections still building support structures. From Figure 3.26, it can be deduced 

that there were a few notable pings that were registered within the software. When 

coupled with the images taken during this time, there are noticeable streaks that appear 

throughout the build plate, as seen in Figure 3.27. These streaks could have triggered 

some frequency response if an elongated support structure caused damage to the recoater 

blade and the underlying metal. In Figure 3.28, a few sections are highlighted to illustrate 

their change in height compared to the surrounding areas. These spots appear to be higher 

since they cast a faint shadow behind them on the powder. This intriguing phenomena is 

difficult to replicate as over time it sometimes self corrects these issues, potentially due to 

the particle grain distribution and natural flowability around the parts.  
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Figure 3.26: Build 5 frequency vs. print time zoomed in during 53-83 minutes (02-24-22) 

 

 

Figure 3.27: Build 5, Layer 131 multiple streaks present outlined in red showing 
locations that the recoated blade has been damaged 
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Figure 3.28: Build 5, Layer 153 distinct protrusions present near areas of streaking 

 

 The final period that was of notable interest occurred between 1397-1430 

minutes. This particular section alerted more frequently than the previous segments and 

can be seen in Figure 3.29. By comparing the images taken, it was recorded that there 

were obvious signs of streaking on the build plate. These streaks were visible without 

much image enhancement in lighting or contrast. The image in Figure 3.30 highlights the 

various sized streaks as well as the shiny dots of what appears to be fused material 

projecting out of the powder layer. These dots most likely perpetuated the continual 

destruction of the recoater blade, as seen in Figure 3.25 previously.  

 Overall, this build seemed to complete properly without any visible surface 

defects or issues. From the side profile seen in Figure 3.31, minor discoloration can be 

seen from the transitionary section between the upper radius and lower main body 

section. This is to be expected  as the part goes from a larger mass to a smaller cross 

sectional area. The dissipation of heat can cause discoloration and, in this case, the 

discoloration is minor.  
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Figure 3.29: Build 5 frequency vs. print time zoomed in during 1397-1430 minutes (02-
24-22) 

 

 

Figure 3.30: Build 5, Layer 2289 evident streaking and melted material protrusion from 
build plate 
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Figure 3.31: Side shot of Build 5 highlighting quality of build with minor discoloration at 
overhang 

 

 Statistical analysis was performed on Build 5’s frequency response data. The 

resulting summary in Figure 3.33 helps solidify the interpretation of statisically 

significant events being recorded by the system. The continued twin peak data set can be 

seen well within this build and also correlates to the theory of stress relief during changes 

in diameter within the build. The frequency values that are above the standard deviation 

appear to be spread across a frequency range of 300 Hz. This may signify that there are 

different types of events occuring at these separate frequencies and it could be possible to 

dissect the parts and learn more from the internal microstructure correlating to the layers 

where these events took place.  
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Figure 3.32: Descriptive statistical analysis for homemade system - Build 5 using Minitab 

 

3.5 Build 6 

 It was deemed beneficial to the project to establish a baseline using a separate, 

independent acoustic monitoring system. The Kistler Lab-Amp 5165A4 system was 

chosen by a senior project group for an earlier project and has been mounted on the SLM 

125 base plate in a strategic location seen in Figure 3.33. This system can provide very 

high sample rates (625 kSps) at input frequencies of up to 100 kHz. This system 

incorporates a Piezotron AE sensor as well as multiple accelerometers and has a built in 

data acquistion setup with real time statistics capabilities. Overall, this system is ideal for 

this type of data collection; however, the price tag makes this product an investment 

rather than a quick check solution.  
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Figure 3.33: Kistler DAQ system (Left), Mounting location under build plate for 
accelerometers and sound monitor (Right) 

 

Build 6 was a repeat build using the same file as Build 3, excluding the welding 

coupons and the overlapped part files. This file was chosen as it previously printed well 

and was overall a short build that demonstrated many different stress tests for the LPBF 

process. The completed build can be seen in Figure 3.34 and illustrates the unique shapes 

and challenges that can be studied. After the parts were removed from the build plate it 

was observed that the benchys had major sagging issues on the unsupported overhangs 

(Figure 3.35). The intentional exclusion of support structures was intended to ease 

removal and turnover of the parts on the plate. The benchys were built on a 45° angle, but 

unfortunately this was not enough to maintain optimal part quality. This defect is 

particularly interesting as it is not something that the acoustic sensors would normally 

have the ability to detect. Unfortunately, with the setup used, it is unclear whether the 

sensors were able to distinctly identify the defect propagation using AE alone. 
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Figure 3.34: Build 6 benchys and rings comparison with Kistler System (3-14-22) 

 

 

Figure 3.35: Picture of overhang failure on non-supported roof 
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Looking at the sensor plot in Figure 3.36, only a few instances are flagged for 

anomalous behavior. The first happens around 42 minutes and correlates with layers 91 

and 92. This is near the top of the main support layers and may be an indication of 

support issues. This was compared with the Kistler data; however, it was inconclusive in 

determining if there was a similar response due to the noise present (Figure 3.37). As for 

the other two points that were also flagged in the original system, the Kistler Lab Amp 

also produced acceleration values that were higher than normal in those sections, but it 

cannot be attributed to detection of an anomaly due to the present noise within the 

sensitivity data. It is hard to compare the fidelity of the original system in this scenario, 

but it does show promise that the homemade system was able to pick up data points that 

are significantly different as compared to the competitor system. This could be due to 

lack of proper calibration of the Kistler system or the higher sensitivity response causing 

noise to be picked up much more easily. The two datasets that were collected occurred at 

373 and 380 minutes, which corresponded to layers 790/791 and layers 812/813, 

respectively. These layers appear to be around the overhang issue that was seen in the 

previous images. To further validate the information gathered from the sound sensors, the 

in-situ images were pulled for this build and cross referenced with the time stamps of 

these points of interest. 
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Figure 3.36: Build 6 frequency vs. print time plot (03-14-22) 

 

Figure 3.37: Build 6 sensitivity vs. print time plot (03-14-22) 

As the acoustic data was compared to the images taken, a few critical anomalies 

were detected within the build. Starting off with Figure 3.38, this image was taken near 

the beginning of the build. This issue was not picked up by the acoustic sensors, but it 

was noticed when examining the images post-build. There is obvious streaking occurring 

and what appears to be solidified material extending above the powder layer, indicating 

impending damage to the recoater blade. The first noticeable acoustic event occurred at 

layers 91 and 92 and can be seen in Figure 3.39. In these images, there are multiple 

streaks present which appear to be causing deep troughs on the powder bed. This is also 

true in Figure 3.40, which displays layers 790 and 791 during the 373rd minute of the 

build. The next point is interesting in nature as it appears as though the streaking begins 
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to minimize and even out, as seen in Figure 3.41. This is recorded in the sensor system by 

reading a lower frequency ping for these particular layers.  

 

Figure 3.38: Build 6, Layer 47 prominent streaking visible in the middle of build plate 

 

 

Figure 3.39: Build 6, Layers 91 and 92 illustrating streaking in multiple areas of the build 
as well as material protrusions from the powder 
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Figure 3.40: Build 6. Layers 790 and 791 streaks are more uniform in size and spread out 
throughout the build, there appears to be more areas of material protrusion 

 

 

 

Figure 3.41: Build 6, Layers 812-813 minor anomaly detected, these layers appear to be 
the lower end of the benchy roof 
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The Kistler data was first converted into a frequency response so that it could be 

properly compared with the homemade system’s original output. The frequencies for 

Build 6 were analyzed in Minitab to compare the descriptive statistics of the datasets 

from both the homemade and industrial systems, seen in Figure 3.42 and Figure 3.43. The 

frequency response for the Kistler system appears to be riddled with noise, which makes 

it difficult to draw meaningful conclusions from the statistical analysis. Nevertheless, the 

data was still analyzed, and since both datasets were not normally distributed, a Mann-

Whitney nonparametric test was done to compare the differences between these 

independent datasets (Figure 3.44). The median for the Kistler system was 50 Hz and the 

median for the homemade system was 1931 Hz. Significant data outliers were found in 

both systems but at different frequency values. The data collected from the Kistler system 

suggests that the true frequency values were at least a magnitude lower than the values 

calculated by the homemade system. Although the homemade system may not be 

outputting the correct frequency values, this could be due to lack of proper tuning of the 

built-in potentiometer or calculation errors within the code.  
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Figure 3.42: Descriptive statistical analysis for homemade system - Build 6 using Minitab 

 

Figure 3.43: Descriptive statistical analysis for Kistler system - Build 6 using Minitab 
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Figure 3.44: Mann-Whitney nonparametric test - Build 6 using Minitab 
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4. Defect Detection Analysis 
 

4.1 Calibration Builds 
  

 To begin collecting viable data, a baseline was needed to establish the acoustics 

within the room during operation. The initial calibration builds helped to develop a 

baseline for the acoustics in the room. Although the accuracy of the system was still 

unknown, the baseline calibration builds helped shape the continued improvement of the 

system and its necessary user options. With the data generated, a reasonable baseline 

standard frequency was established between 1750-2100 Hz during normal operating 

procedures. Slight deviations were observed while things were being moved around in 

the room and when metal objects were struck together in the nearby vicinity. By 

understanding the operational conditions of a particular room, a system similar to this can 

be calibrated and tuned to minimize the range of frequencies that are analyzed and to 

improve the capability of the hardware.   

4.2 Acoustic Analysis 
 

 After a build was completed, the acoustic data was collected and uploaded to a 

cloud server. This server has the potential to be automated to pull the data and run it 

through an analysis algorithm that would notice any anomalies within the build and be 

able to alert the user in real time. Currently, this is beyond the scope of this project and 

therefore has not been fully implemented. However, the current acoustic analysis was 

optimally completed by using excel macros that can take data and prepopulate it into a 

form that creates a visual graph. 
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  To compare the Kistler data to the Arduino signal processing, the data needed to 

be processed using Discrete Fourier transform. This was accomplished using an Excel 

plugin that enabled handling of large datasets. The resulting frequencies were then 

plotted using Minitab to generate the frequency response plot seen in Figure 4.1, which 

was representative of the response provided by the Kistler system. From the chart, a main 

peak can be seen at a value near zero indicating no significant frequency response for a 

majority of the build. Another peak is also present at a value near 60-75 Hz, which may 

indicate the natural resting frequency of the SLM printer. The frequencies registered by 

the Kistler system were much lower than the homemade system and it can be presumed 

that the homemade system was not fully calibrated to proper frequency. Instead, it was 

baselined with the standard potentiometer settings provided by the Devmo supplier.  

 

Figure 4.1: Frequency response plot using Discrete Fourier Transform analysis 
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Once the data was processed a statistical analysis was performed to determine the 

significance of the data differences in acoustic frequency values. As the data was 

processed in Minitab, its p-value, shape, and standard deviation were evaluated for 

statistical significance, patterns, and similarities, respectively. The p-value (p<0.005) for 

each analysis was found to be statistically significant, which means that the data was not 

normally distributed, so a nonparametric analysis was conducted. The standard deviation 

remained very similar within the builds on the homemade system between 90-110 Hz, 

while the Kistler system’s standard deviation was near 56 Hz. The flagged anomalies 

were each at least 3 standard deviations higher in frequency than the baseline. These 

values were found to have some correlation with layer count at which an anomaly 

occurred, but not necessarily the exact layer that it was first seen. Unfortunately, this does 

not yield a successful detection because the inability to accurately pinpoint a potential 

defect leaves much to be understood. A correlation analysis was performed between the 

Kistler system and the homemade system. Although the data was visually similar, the 

magnitude difference resulted in no linear correlation between the two systems. 

Therefore, a comparable baseline could not be established without more tuning of the 

original system so that it may correlate to the Kistler product properly.  
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4.3 Image Analysis 
 

 Along with the acoustic data collected, a few builds had images taken throughout 

the 3D printing process. These images were used to confirm the accuracy of any anomaly 

detections alerted by the sensor system. This two-factor point of reference increases 

confidence in the data being recorded. The image analysis methodology can be 

automated and optimized; however, in this experiment it was only used as a complement 

to the acoustic data collection. The in-situ images helped to provide an in-depth visual of 

the build plate as the anomalies were being detected, which significantly aided in the 

interpretation of the data post-build.  

4.4 Experimental Setup Evaluation  
 

 The design of the experimental hardware considered the many complexities of a 

laser bed fusion machine; however, there were many complications that were 

unavoidable. Although the ambient room noise level was expected, the overall location of 

the machine allowed outside noise pollution to potentially interfere with the experiment. 

There were also many drawbacks to not fully automating the system; for example, it 

would collect data well past the build end time, which required further processing to trim 

the data back down to within the limitations of the build. Overall, the homemade sensor 

system operated well near the door, and its location did not interfere with the printer’s 

normal operating procedures. 
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 5. Conclusion 
5.1 Analysis Summary 
  

By comparing the different analysis methodologies conducted, a difference was 

found between the homemade and purchased system. This differentiation is due to the 

fidelity of the purchased system, as it was much more sensitive in detecting the slightest 

changes in frequency. However, they could not be compared on their effectiveness in 

detecting anomalies. The homemade system was able to detect potential anomalies within 

a build, but since the Kistler system has a much finer resolution, it detected more noise. 

When first analyzing the frequency responses of the builds, the Kistler data did not 

appear to have a significant peak past 0 Hz. Upon further investigation, a peak could be 

seen near the 60 Hz range, indicating that this could be a possible baseline value that 

correlates with the electrical frequency of the SLM. Overall, the other builds 

demonstrated multiple peaks within their statistical analysis, which may coincide with 

electrical ambient noise, the movement of the recoater blade, the initialization of the 

laser, or background noise pertaining to the location of the sensors. The FFT analysis is a 

breakthrough in signal processing and allows in-situ monitoring to become feasible on a 

larger scale. The real time processing of data can functionally be done on a small scale 

using a homemade system. However, the Kistler system requires much more back end 

processing power which may deter the effectiveness of the increased overall fidelity of 

this system.  
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5.2 Future Recommendations 
 

Any good experiment should be continuously improved upon and adapted for 

different use cases. This system was designed with continuous improvement in mind 

through the use of off-the-shelf equipment and parts. The open-source code is simple to 

manipulate and calibrate. Future iterations of this experiment would benefit from adding 

different types of sensors, changing mounting locations, and incorporating machine 

learning. 

First off, the system can be improved by using higher quality microphones or 

increasing the number of sensors available to take data during the build. By increasing 

the number of sensors, the chance of detecting anomalies increases, but the complexity of 

the system also increases. Incorporating a variety of different sensors, such as vapor, 

vibration, or spectrometry, may also increase analysis potential which could be beneficial 

to the overall understanding of the parts being produced. A decision would need to be 

made to determine whether the added complexity would be beneficial to the consumer 

and how it can be automated to self-regulate and calibrate each sensor. 

Secondly, there could be improvements to how the sensors are mounted to the 

machine. They currently sit on the outside of the machine and are limited in their 

operation potential due to the obstruction of a door between the build chamber and the 

sensor. If there could be a way to mount the sensors inside of the build chamber through 

wireless methods while still maintaining the precision required to detect issues within a 

build, this would be great improvement to this system. 
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Finally, the incorporation of neural network or machine learning approaches 

would greatly increase the speed and fidelity of this overall process. To do this properly, 

first a baseline of good and bad parts each with examples of acceptable and 

nonacceptable defects needs to be created. To do this, a single part incorporating many 

different types of defects at different levels will need to be developed. After gathering 

data from multiple builds (25-50), an algorithm can be trained to decipher between 

allowable and rejectable defects. Future studies could attempt to incorporate feed forward 

or feedback modification of the build to correct potential issues during a build or apply 

corrective actions to fix an impeding issue.  

5.3 Conclusion 
 

This experiment provided a large amount of insight into the different nuances of 

in-situ monitoring techniques. Currently, the standard does not exist for this new and 

emerging technology. Therefore, there will continue to be advancements and growth in 

this field. For an industry to continue to create and innovate, they will need to grow and 

adapt to processes that also learn and grow with them. Cost-effective solutions may not 

be necessary in equipment used in multi-million-dollar operations, but as they begin to 

trickle down into the consumer field, there will be a need for more affordable, modular 

systems for defect detection. The emphasis of this project was to develop a user-friendly, 

cost-effective alternative to image analysis methods that can be adaptable for a multitude 

of technologies and equipment. To be viable in a large-scale consumer base, the 

technology must not only be cost-effective, but also modular to fit the continued 

advancements in the small-scale machinery. Steps were taken to create a system that can 
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function on a much more complex machine as well as transfer to a smaller, less complex 

device. 

One of the main findings from this experiment was that AE monitoring 

technology appears to be more fitting for situations of monitoring qualitative 

characteristics, such as surface quality and roughness, as opposed to image analysis. It 

can be deduced that when a build was operating smoothly, the sensors maintained a 

baseline frequency range, which correlated with a good quality surface roughness. For 

situations in which high fidelity and confidence is required in a build, there are much 

better alternatives such as thermal and optical tomography. The main drawbacks to these 

systems continue to be the large amount of data produced and their overall costs. If a 

simple system is required for quick validation or immediate operator alerts, the 

aforementioned sensor suite can be modified to fit many different types of applications 

not only in the additive manufacturing industry, but also in most other manufacturing 

settings. 
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Appendix A. Arduino Code 
/* 
File/Sketch Name: AudioFrequencyDetectorV2.0 
 
Version No.: v2.0 Created September 6, 2021 
  
Description:  This code/sketch makes displays the approximate frequency of the loudest 
sound detected by a sound detection module. For this project, the analog output from the 
sound module detector sends the analog audio signal detected to A0 of the Arduino Uno. 
The analog signal is sampled and quantized(digitized). A Fast Fourier Transform (FFT) is 
then performed on the digitized data. The FFT converts the digital data from the 
approximate discrete-time domain result. The maximum frequency of the approximate 
discrete-time domain result is then determined and displayed via the Arduino IDE Serial 
Monitor. 
 
Preface: The arduinoFFT.h library needs to be added to the Arduino IDE before 
compiling and uploading this script/sketch to an Arduino. 
 
*/ 
 
#include "arduinoFFT.h" 
  
#define SAMPLES 128            //SAMPLES-pt FFT. Must be a base 2 number. 
#define SAMPLING_FREQUENCY 4000 //Ts = Based on Nyquist, must be 2 times the 
highest expected frequency. 
 
 
  
arduinoFFT FFT = arduinoFFT(); 
  
unsigned int samplingPeriod; 
unsigned long microSeconds; 
unsigned long myTime; 
 
double vReal[SAMPLES]; //create vector of size SAMPLES to hold real values 
double vImag[SAMPLES]; //create vector of size SAMPLES to hold imaginary values 
  
void setup()  
{ 
    Serial.begin(115200); //Baud rate for the Serial Monitor 
    samplingPeriod = round(1000000*(1.0/SAMPLING_FREQUENCY)); //Period in 
microseconds 
     
} 
void loop()  
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{   
    /*Sample SAMPLES times*/ 
    for(int i=0; i<SAMPLES; i++) 
    { 
        microSeconds = micros();    //Returns the number of microseconds since the 
Arduino board began running the current script.  
      
        vReal[i] = analogRead(0);//Reads the value from analog pin 0 (A0), quantize it and 
save it as a real term. 
        vImag[i] = 0; //Makes imaginary term 0 always 
 
        /*remaining wait time between samples if necessary*/ 
        while(micros() < (microSeconds + samplingPeriod)) 
        { 
         
        } 
    } 
  
    /*Perform FFT on samples*/ 
    FFT.Windowing(vReal, SAMPLES, FFT_WIN_TYP_HAMMING, 
FFT_FORWARD); 
    FFT.Compute(vReal, vImag, SAMPLES, FFT_FORWARD); 
    FFT.ComplexToMagnitude(vReal, vImag, SAMPLES); 
 
    /*Find peak frequency and print peak*/ 
    double peak = FFT.MajorPeak(vReal, SAMPLES, SAMPLING_FREQUENCY); 
     
        //Print out the most dominant frequency. 
    myTime = millis(); 
    Serial.print("Time:"); 
    Serial.print(myTime); 
    Serial.print(":"); 
    Serial.print("Freq:");   
    Serial.println(peak);  



84 

 

Appendix B. Full Size Images of Frequency Plots 
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