
A COURSE ON ADVANCED REAL-TIME EMBEDDED SYSTEMS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Krista Round

June 2022

© 2022

Krista Round

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A Course on Advanced Real-Time Embed-

ded Systems

AUTHOR: Krista Round

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: Andrew Danowtiz, Ph.D.

Associate Professor of Computer Engineering

COMMITTEE MEMBER: Joseph Callenes-Sloan, Ph.D.

Assistant Professor of Computer Engineering

COMMITTEE MEMBER: Fred DePiero, Ph.D.

Professor of Computer Engineering

iii

ABSTRACT

A Course on Advanced Real-Time Embedded Systems

Krista Round

This thesis discusses the development of an advanced real-time embedded systems

course offered at California Polytechnic State University, San Luis Obispo, which

aims to prepare students to design modern complex real-time embedded systems. It

describes the goals of the real-time embedded systems curriculum, which includes

an introductory and advanced course. Finally, this paper discusses the challenges

of creating a successful advanced real-time embedded systems course and proposes

changes to the current advanced real-time embedded systems course in response to

those challenges.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 What are Real-Time Embedded Systems? 3

2.2 Real Time Embedded Systems (CPE/EE 442) Course 3

2.3 Advanced Real Time Embedded Systems (CPE/EE 542) Course . . . 7

2.4 Course Material . 8

2.4.1 Raspberry Pi 3 and 4 . 9

2.4.2 Zync Z7 SoC Development Board 10

2.5 Cal Poly Quarters to Semesters Transition 10

2.6 ABET Accreditation . 11

3 LITERATURE REVIEW . 14

3.1 An Interdisciplinary Curriculum on Real-Time Embedded Systems . . 14

3.2 A Course on Advanced SOC FPGA in Embedded Systems 15

3.3 Conclusions from Literature Review 16

4 CURRICULUM . 18

4.1 Goals for Advanced Real Time Embedded Systems Course 18

4.2 Challenges of Creating and Teaching Advanced Real Time Embedded
Systems . 19

4.3 Approach for Course Structure and Material 19

4.4 Quarter-Long Project . 22

v

4.4.1 Project Requirements . 23

4.4.2 Project Deliverables . 23

4.5 Research Topic Presentation . 25

4.6 Course Topics . 26

4.6.1 Textbooks . 26

4.6.2 Lecture Material . 27

4.7 ABET Criteria . 29

4.7.1 Criteria for Accrediting Engineering Programs 30

4.7.2 Program Education Objectives 31

5 CONCLUSION AND FUTURE WORK 33

5.1 Conclusion . 33

5.2 Future Work . 34

APPENDICES

A Syllabus . 38

B Quarter-Long Project Description . 42

C Research Topic Presentation Description 46

D Week 1 Lecture Slides . 48

E Week 2 Lecture Slides . 57

F Week 3 Lecture Slides . 69

G Week 4 Lecture Slides . 86

H Week 5 Lecture Slides . 104

I Week 6 Lecture Slides . 123

J Week 7 Lecture Slides . 137

K Week 8 Lecture Slides . 154

L Week 9 Lecture Slides . 169

vi

LIST OF TABLES

Table Page

2.1 Real Time Embedded Systems Course Overview of Lecture and Lab
Schedule. 6

2.2 Current Advanced Real Time Embedded Systems Course Overview
of Lecture and Lab Schedule. 9

4.3 Proposed Advanced Real Time Embedded Systems Course Overview
of Lecture and Lab Schedule. 21

4.4 Proposed Advanced Real Time Embedded Systems Course Grading. 22

vii

LIST OF FIGURES

Figure Page

2.1 Color Image of Steam Engine and Image With Sobel Filter [10] [11] 7

viii

CHAPTER 1

INTRODUCTION

Real-time embedded systems (RTES) are used in antilock braking systems (ABS),

cruise control, and airbag control systems in cars, pacemakers, insulin pumps, home

security systems, and more [1] [2]. Applications for military and medical industries re-

quire fault-tolerant and safety-critical design [2]. Due to their adaptability, versatility,

and decreasing hardware costs, the market for real-time embedded systems continues

to grow. The embedded systems market, including real-time and non-real-time sys-

tems, was valued at about 100 billion USD in 2019 and is expected to grow to 160

billion USD by 2026. [3]. This growth is largely driven by increasing use of embedded

systems in smart homes, healthcare applications, wearable devices, and the automo-

tive and defense industries [3]. There has also been an increase in publications on

designing courses for real-time embedded systems, real-time operating systems, and

embedded systems courses in college, potentially indicating an increased interest in

offering these courses [4–8].

Often, real-time embedded systems courses focus on the theory of real-time operating

systems (RTOS), which leads to a gap in students’ theoretical understanding of soft-

ware topics and practical design and implementation skills [4]. Similarly, projects in

real-time embedded system courses are often focused on the theory and not on real-

world applications [5]: Students do not get to learn about the challenges of designing

the complex systems that are needed for modern commercial systems.

The California Polytechnic State University, San Luis Obispo (Cal Poly) computer

engineering department offers two courses on real-time embedded systems. The first

is an introductory course called Real-Time Embedded Systems and is offered as

1

EE/CPE 442. This class includes both important technical information for theo-

retical understanding of real-time embedded systems and projects that emphasize

practical design. The second is an advanced course called Advanced Real-Time Em-

bedded Systems and is offered as EE/CPE 542. EE/CPE 542 currently focuses on an

independent project, which is effective in teaching students about designing complex

real-time embedded systems, but lacks formal instruction in advanced technical and

theoretical information. This thesis discusses the development of a project-focused

course on real-time embedded systems proposed for EE/CPE 542 that will enable

students to confidently design complex real-time embedded systems.

2

CHAPTER 2

BACKGROUND

2.1 What are Real-Time Embedded Systems?

An embedded system is defined as a microprocessor system combined with mem-

ory, input/output (I/O) devices, and other mechanical and electrical peripherals [1].

Embedded systems generally perform a specific function as a part of a much larger

electrical and mechanical system [1]. For example, an embedded system that con-

trols an airbag system would be responsible for detecting a collision and inflating

the airbags. Embedded systems are often small, low-power, low-cost, and single-

functioned compared to general-purpose computers [1].

Real-time systems must compute and deliver correct results in a specified period. If

a true real-time system fails to deliver the results by the deadline, then the system’s

output is incorrect even if the results are correct [1]. Using the previous airbag system

example, if the car gets into a collision, the airbags must deploy within a certain period

to prevent the car occupants from serious injury. If the embedded system fails to meet

its hard deadline and the airbags deploy late, it has failed. An airbag is an example

of a real-time system and an embedded system.

2.2 Real Time Embedded Systems (CPE/EE 442) Course

The Advanced Real-Time Embedded Systems course proposed in this thesis relies on

the introductory course, Real Time Embedded Systems as a prerequisite. The first

real-time embedded systems course in Cal Poly’s two-course sequence is a four unit

3

(three units of lecture and one unit of lab) course designed to introduce students to

modern embedded systems theory, design, and implementation [9]. The goal of the

course is to introduce tools and coding techniques for high-performance embedded

systems. RTES is offered to fourth-year and Master’s level students, so students are

expected to be more responsible for their learning. This course focuses on teaching

students through labs and projects, with less emphasis on lectures, homework, and

exams.

RTES is generally offered Fall Quarter and is a ten-week course. The course meets

twice a week, where each class section is a three-hour combined lecture and lab period.

There are about 45 minutes of lectures per week, with the rest of the time in a class

dedicated to labs, tutorials, and projects. There are no exams or homework for the

course.

The course is available to advanced undergraduate electrical engineering, computer

engineering, and computer science students and to graduate electrical engineering

and computer science students and can be counted as a technical elective for all

aforementioned programs. Computer engineering and computer science students are

required to take an operating systems class and generally take it before RTES, while

most electrical engineering students haven’t taken an operating systems course. As

a result, computer science and computer engineering students are generally more

comfortable with the real-time operating systems topics in this course, which is helpful

for understanding real-time embedded systems. Since the course is offered to students

with different levels of programming experience, it needs to be flexible enough to be

engaging for all. The course offers three different project tracks that students can

follow for credit to accommodate these different backgrounds. The first option is the

lab track, where students work on predefined labs related to the lecture topic. The

labs build off each other, and each lab needs to be completed and working to move

4

on to the next lab. The second option is the teaching track, which requires students

to work ahead of the lab track to figure out how to implement the lab and design

a tutorial about the lab and concepts. These tutorials are published as a resource

for students on the lab track. Labs and tutorials are completed in small groups of

two to thee. The third track is the special project track, where students propose and

implement an RTES project over the quarter. Most students follow the lab track,

and the rest follow the tutorial track. No students have followed the special project

track.

Projects are completed with a Raspberry Pi 3 or 4 with the Raspberry Pi OS. The

Raspberry Pi was selected because it can run Linux, its hardware includes multiple

CPU cores with single instruction/multiple data (SIMD) support, and it is readily

available. Students are expected to purchase their devices, and each project group

needs one device. Students also need a virtual machine provided by the instructor

for one lab.

The labs and tutorials focus on implementing a Sobel filter for image edge detection

on a video. An example of the Sobel filter is shown in Figure 2.1. Students begin

the quarter by choosing a video and implementing a grayscale algorithm and a basic

Sobel filter in C applied to each frame. The rest of the labs for the quarter introduce

students to techniques to improve and measure the performance of the grayscale and

Sobel filter using multi-threading, single instruction/multiple data vectors, compiler

optimizations, and performance counters. The final project asks students to imple-

ment further grayscale and Sobel filter improvements to make it as fast as possible.

The schedule for the lectures and labs is shown in Table 2.1.

5

Table 2.1: Real Time Embedded Systems Course Overview of Lecture and
Lab Schedule.

Week Lecture Topic Lab Topic Tutorial Topic

Week 1
Introduction and
RTES background

Linux command line
prompts Makefile with GCC

Week 2
Gray scale and Sobel

filter
OpenCV installation

and makefile

OpenCV gray scale
and Sobel filter
implementation

Week 3 Multi-threading

OpenCV gray scale
and Sobel filter
implementation

Use multi-threading
with grayscale and

Sobel filter operations

Week 4

CPU inefficiencies
and single

instruction/multiple
data (SIMD)

Use multi-threading
with grayscale and

Sobel filter operations

Use Arm Neon SIMD
engines with

grayscale and Sobel
filter operations

Week 5
Compiler

optimization

Use Arm Neon SIMD
engines with

grayscale and Sobel
filter operations

Use hardware
performance counters

to measure
performance

Week 6 Week 5 lab Week 5 tutorial

Week 7

Use hardware
performance counters

to measure
performance

Final project

Week 8 Final project Final project

Week 9

Single
instruction/multiple
threads (SIMT)

Final project Final project

Week 10 Final presentation

6

Figure 2.1: Color Image of Steam Engine and Image With Sobel Filter
[10] [11]

2.3 Advanced Real Time Embedded Systems (CPE/EE 542) Course

Once students complete the introductory Real-Time Embedded Systems course, they

can choose to continue with the Advanced Real-Time Embedded Systems course. The

Advanced Real-Time Embedded Systems course proposed in this thesis is developed

based on the current course with modifications discussed in section 4. The Advanced

Real Time Embedded Systems course is a four unit (three units of lecture and one

unit of lab) course designed to be an advanced independent study of modern embed-

ded systems [9]. The course is almost entirely project-based and focuses heavily on

independent research. Advanced RTES is offered to those who completed RTES, and

it is generally offered during the Winter Quarter directly after RTES. The goal of the

course is for students to use the knowledge from the introductory RTES course and

perform an independent project to improve their understanding. This class meets

twice a week, where each class section is a three-hour combined lecture and lab pe-

riod. There are some lectures and one lab at the beginning of the quarter, and the

rest of the course is devoted to working on an individual or small group quarter-long

project. There are no exams or homework for this course.

7

The quarter-long project is a student designed, led, and implemented project with

ten weeks allocated to completing it. The purpose is to teach students about develop-

ing software and low-level drivers to run in a Linux environment and how embedded

systems interact with external hardware blocks from a software, circuits, and archi-

tecture perspective. This project also exposes students to real-world challenges of

using resources on an embedded system and teaches them how to track down and fix

these errors. Finally, students must give a presentation and write a report about their

project. The project can be done on either a Raspberry Pi 3 or 4 or Zybo Z7 develop-

ment board. Criteria for the project are that it must use at least one non-processor

peripheral on the board, have a software program running on Linux that controls the

overall application, have a method to interact meaningfully with the outside world,

and be innovative or novel. The schedule for the course is shown in Table 2.2.

2.4 Course Material

The selection of an embedded system for EE/CPE 442 and EE/CPE 542 is based

on the goals of the real-time embedded systems courses and the labs and projects.

For the introductory course, EE/CPE 442, students need an embedded system that

they can implement the grayscale and Sobel filter on and implement the techniques

to improve and measure the performance of their filter. For the advanced course,

EE/CPE 542, a versatile embedded system is needed so students can implement

a variety of projects. The cost, accessibility, and available documentation for the

embedded system are also crucial for both courses. The embedded systems used in

the current version of EE/CPE 542 are also used in the proposed course.

8

Table 2.2: Current Advanced Real Time Embedded Systems Course
Overview of Lecture and Lab Schedule.

Week Lecture Topic Lab Topic

Week 1 Direct memory access (DMA) DMA

Week 2 Interface standards Project proposal

Week 3 Inter-process communication Project

Week 4 Project

Week 5 Midterm project report

Week 6 Project

Week 7 Project

Week 8 Project

Week 9 Project

Week 10
Final presentation and final

report

2.4.1 Raspberry Pi 3 and 4

The Raspberry Pi 3 and 4 are used for EE/CPE 442 and can be used for EE/CPE

542. It was selected because it has single instruction/multiple data (SIMD) vectors

for EE442, and it is readily available. Both versions of the Raspberry Pi have four

cores, which are used for the multi-threading lab [12].

The Raspberry Pi 4 has the Broadcom BCM2711 processor compared to the Rasp-

berry Pi 3, which has the Broadcom BCM2837 processor. The Broadcom BCM2711

processor has the ARM A72 core, which is faster. It also has a new GPU, the Video-

Core VI, with more features and quicker input/output. The Raspberry Pi 4 has the

9

option for more RAM and some updated connectors [12]. Although the Raspberry Pi

4 has better performance than the Raspberry Pi 3, the functionality is very similar

for this curriculum.

2.4.2 Zync Z7 SoC Development Board

The Zync Z7 Development board has the benefit of having both an ARM processor

and Field Programmable Gate Array (FPGA), which makes it better suited for inde-

pendent projects in CPE/EE 542 [13]. The Cortex-A9 processor has two cores [13].

The Zync Z7 is significantly more challenging to setup compared to the Raspberry

Pi as much of its configuration and development depends on the Vivado and Vitis

software provided Xilinx, which have a steep learning curve. Historically, students

who used the Zync Z7 in EE/CPE 542 have spent a significant amount of time trying

to get the board set up, which limited the complexity of the projects students were

able to complete during the quarter.

2.5 Cal Poly Quarters to Semesters Transition

The current structure of the real-time embedded systems curriculum, which consists

of the previously discussed EE/CPE 442 and EE/CPE 542 courses, fits Cal Poly’s

current quarter system. However, the California State University (CSU) Chancellor’s

Office and Cal Poly President Jeffrey Armstrong announced in Fall 2021 that Cal

Poly is transitioning from the quarter system to the semester system beginning in

the 2025-2026 school year [14]. The current quarter system consists of three, ten-

week quarters in Fall, Winter, and Spring. Some students choose to complete an

additional Summer quarter. The future semester system will consist of two 15-week

semesters in Fall and Spring and an optional summer term. Starting in the 2022-2023

10

school year, departments will begin mapping their current curriculum to a semester

system curriculum [14]. With the upcoming transition from quarters to semesters,

the real-time embedded systems curriculum will eventually need to be re-imagined for

the semester system. However, since the transition to the semester system is still in

early phases, the proposed Advanced RTES course is designed for the current quarter

system. Recommendations for making an RTES and Advanced RTES curriculum for

the semester system are discussed in the Future Work section.

2.6 ABET Accreditation

The Accreditation Board for Engineering and Technology Inc. (ABET) is an accred-

itation organization for applied and natural science, computing, engineering, and

engineering technology programs at post-secondary schools [15]. Accreditation in

The United States is voluntary. ABET accreditation performs a review process pe-

riodically to determine if an educational program meets defined standards of quality

[15]. Cal Poly’s Bachelors of Science program for electrical engineering has been

ABET-accredited continuously since 1969, and the Bachelor of Science for computer

engineering has been ABET-accredited continuously since 1995. The Masters of Sci-

ence program for electrical engineering at Cal Poly is not ABET-accredited [16].

As an electrical and computer engineering course, the Advanced Real-Time Embedded

Systems course should meet ABET accreditation standards of quality. The proposed

changes to EE/CPE 542 should meet the accreditation objectives outlined by ABET,

which will contribute to the accreditation of the electrical and computer engineering

departments. The accreditation objectives for engineering courses are described in

”Criteria for Accrediting Engineering Programs, 2021 – 2022” [17]. Criterion three,

”Student Outcomes”, defines course objectives that ABET requires programs to meet.

11

No one course needs to meet all seven objectives, but courses should meet some

objectives. The objectives are:

1. “an ability to identify, formulate, and solve complex engineering problems by

applying principles of engineering, science, and mathematics”

2. “an ability to apply engineering design to produce solutions that meet specified

needs with consideration of public health, safety, and welfare, as well as global,

cultural, social, environmental, and economic factors”

3. “an ability to communicate effectively with a range of audiences”

4. “an ability to recognize ethical and professional responsibilities in engineering

situations and make informed judgments, which must consider the impact of

engineering solutions in global, economic, environmental, and societal contexts”

5. “an ability to function effectively on a team whose members together provide

leadership, create a collaborative and inclusive environment, establish goals,

plan tasks, and meet objectives”

6. “an ability to develop and conduct appropriate experimentation, analyze and

interpret data, and use engineering judgment to draw conclusions”

7. “an ability to acquire and apply new knowledge as needed, using appropriate

learning strategies”

This course is designed to fulfill objectives one, four, and five.

Additionally, the Cal Poly electrical and computer engineering departments define

program education objectives that must be met for ABET accreditation [17]. The

electrical engineering objectives are to prepare graduates to:

12

1. “excel in the electrical engineering profession”

2. “embrace life-long learning as a necessary component to remain current in their

profession”

3. “pursue graduate degrees for enhanced skills and opportunities”

The computer engineering objectives are to:

1. “make positive contributions to society and the practice of computer engineer-

ing by applying foundational knowledge and the engineering process to solve

engineering problems”

2. “work in an individual or team environment in a socially responsible manner”

3. “engage in lifelong learning through continued professional development or grad-

uate studies”

4. “communicate effectively and demonstrate leadership”

This course is designed to fulfill the second and third electrical engineering program

education objectives and the third and fourth computer engineering program edu-

cation objectives. The specifics of how this course meets ABET’s and Cal Poly’s

objectives are in section 4.2.

13

CHAPTER 3

LITERATURE REVIEW

3.1 An Interdisciplinary Curriculum on Real-Time Embedded Systems

An example of a real-time embedded systems curriculum is discussed in ”An Inter-

disciplinary Curriculum on Real-Time Embedded Systems,” created at Kansas State

University [4]. The design and implementation of embedded systems requires knowl-

edge of computer science, electrical engineering, computer engineering, mechanical

engineering and more. Traditional embedded systems courses emphasize hardware

construction over software design [4]. The curriculum at Kansas State University

applies an interdisciplinary approach to teach students about hardware and software

integration. This curriculum aims to provide students with broad knowledge and in-

terdisciplinary skills to build complex embedded systems. This curriculum also seeks

to close the gap between students’ conceptual understanding of theory and practical

implementation by providing students with laboratory assignments similar to actual

implementations in the engineering industry.

This curriculum consists of four-semester long (15 weeks) courses intended to be

taught to advanced undergraduate students and early graduate students from com-

puter science and various engineering majors. The first course provides background

knowledge about real-time electronics and programming. The second course focuses

on implementing a simple real-time system to build a Controller Area Network (CAN),

which is used in industrial automation, automotive electronics, agriculture, and ma-

rine craft. The third course teaches traditional real-time embedded systems tech-

niques such as scheduling theory and project phases, including requirements, design,

14

implementation, and verification techniques. The fourth course is an interdisciplinary

team project where students design and implement a complete embedded system.

Students’ evaluation surveys showed the course performed well for course process,

student learning, and overall [4].

3.2 A Course on Advanced SOC FPGA in Embedded Systems

An example of an advanced embedded systems curriculum is discussed in ”A Course

on Advanced SOC FPGA in Embedded Systems” and was created at Oakland Uni-

versity [7]. This curriculum was designed to meet the industry demand for engineers

who can build complex embedded systems and use advanced field-programmable gate

arrays (FPGAs) for embedded systems. FPGAs are helpful for embedded systems

projects because they provide flexibility, faster development cycles, and high perfor-

mance. This curriculum aims to teach students how to program in hardware descrip-

tion language (VHDL) and C and how to design using an FPGA and microcontroller

core.

The curriculum consists of one semester-long course taught to senior undergraduate

computer engineering students and graduate students. Students complete small lab

projects and give a 15-minute presentation to the class about advanced topics in

embedded systems. These presentations expose students to the most advanced tech-

nology and applications. The students also benefit from learning how to perform a

literature search and teach themselves advanced topics.

The authors discuss some of the challenges of teaching an advanced embedded systems

course. One significant challenge is that textbooks do not cover the latest software

tools, standards, requirements, and hardware versions. Some system on a chip (SoC)

boards get revised annually, so information about the board provided by a textbook

15

may not be accurate a year after publication. As a result, some labs provided by

embedded systems textbooks may not work on new boards or with the latest version

of a vendor’s board-specific development software. The authors solve these issues by

making changes to the course annually. Before starting the course, the authors correct

software issues for labs and create notes on updated standards and requirements.

3.3 Conclusions from Literature Review

In the Kansas State University real-time embedded systems curriculum, the third

course teaches advanced real-time embedded systems topics, while the fourth course

is a team project. The authors report that students learned a lot from the first,

second, and third courses focused on theory and projects and did not report student

learning from the fourth course. As a result, our proposed Advanced Real-Time

Embedded Systems curriculum will include theoretical topics in the form of lectures

and a long student-designed project.

The paper from Oakland University provides a lot of insight into how to address

changes and advancements in embedded systems technology in a course. Students

are required to give a research presentation to the class about a current advanced

topic in embedded systems. Since the material students present changes annually,

the presentations keep the course updated with advanced technology. The authors

reported that the students were highly interested in these presentations and learned

more being taught by other students. Some students also benefited from the research

presentations because they helped guide them in finding a topic for their graduate

research. To keep the proposed course at Cal Poly up-to-date with current RTES

research, it will also include a research presentation about a current topic. This

16

research presentation assignment will ensure that the material in the proposed course

is relevant without the faculty having to redesign lectures annually.

The paper from Oakland University also discusses the importance of using an FPGA

for RTES research. Using an FPGA for the student-designed project allows the

projects to be flexible, have fast development cycles, and have high-performance.

Students who use a development board with an FPGA and a CPU, such as the Zybo

Z7, will also learn how to program in C and design using an FPGA and microcontroller

core. As a result, the Zybo Z7 board will continue to be encouraged for students to

use on their project in EE/CPE 542.

17

CHAPTER 4

CURRICULUM

4.1 Goals for Advanced Real Time Embedded Systems Course

The goal of the proposed Advanced Real Time Embedded System course is to allow

students to apply their background knowledge of embedded systems theory taught in

this curriculum in a large student-designed project. This project will focus on teach-

ing students advanced custom hardware/software interaction for high-performance

embedded systems.

This course is intended to be student lead. Although the course will include some

structured material, the goal is for students to be able to focus on their own advanced

embedded systems interests. Another goal of this course is to help students learn how

to overcome the real-world technical challenges, errors, and frustrations that come

with designing a complex system. Many of these challenges and problems are new

and require new methods for solving them. Students will be responsible for designing

and implementing their projects and finding the resources they need to fix any errors.

Finally, this course needs to meet the requirements and objectives set by the electri-

cal and computer engineering department and needs to meet some of the objectives

required for ABET accreditation. According to the Cal Poly electrical engineering

and computer engineering catalog, the course is an ”[a]dvanced study and applica-

tion of modern embedded systems” and includes topics such as ”[m]emory bandwidth

matching, clock-domain crossing, IP creation and verification, and student-led lec-

tures on modern System on Chip (SoC) design topics.” Finally, the course should

include ”[b]uilding a prototype embedded system” [9].

18

4.2 Challenges of Creating and Teaching Advanced Real Time Embedded

Systems

As commercial embedded systems become more complex and advanced, there is a

demand from universities and educators to design courses that include realistic and

complex projects. Meeting these expectations is challenging because students have a

variety of technical backgrounds, and courses have limited resources and time. These

challenges encourage courses to be designed with as much material, labs, projects, and

homework as possible to maximize the content covered in a course. However, increas-

ing the time requirements and expectations for the course also increases students’

stress levels [8]. As a result, this course’s first and most significant challenge is to

provide advanced lecture material and complex and realistic projects while preventing

student overload.

This course is open to students from various majors and for undergraduate and grad-

uate students. The challenge to this course is designing it so that the material and

structure are engaging and challenging for students who have a wide variety of techni-

cal backgrounds and different levels of research and independent project experience.

4.3 Approach for Course Structure and Material

To teach students about advanced real-time embedded systems topics, this class

will include weekly lectures on theoretical topics. This material follows the mate-

rial from EE/CPE 442 Real Time Embedded Systems but includes more advanced

topics needed to understand the basic of operating systems and how to use peripheral

devices. Lecture material is delivered with slides.

19

In its current incarnation, the Advanced RTES course includes a quarter-long inde-

pendent project where students design and implement a complex embedded system.

This quarter-long project gives students enough time to design and implement a

complex real-time embedded system of their choosing. Since the project is student-

designed, it is adaptable to an individual student’s or group’s skills and can be as

ambitious as they want. The hope is that this project will encourage students to try

ambitious projects that aren’t guaranteed to succeed in a low-pressure class where

they can focus on the learning instead of the project outcome.

Finally, this class will require students to give a short presentation to the class on

a current embedded systems topic or technology. This assignment keeps the course

up to date with recent research and technologies without requiring a course redesign

every year.

By adding lecture material and research presentations in addition to the quarter-long

project in the current version of EE/CPE 542, students will have more technical

knowledge that they can use in their project and the engineering industry. The

Advanced Real Time Embedded Systems schedule is shown in Table 4.3. The grading

rubric is shown in Table 4.4. The details of the topics, requirements, assignments,

and deadlines for all aspects of this course will be discussed in more detail next, and

the Syllabus for the course is in Appendix A.

20

Table 4.3: Proposed Advanced Real Time Embedded Systems Course
Overview of Lecture and Lab Schedule.

Week Tuesday Thursday

Week 1 Introduction

Develop project proposal,
approve research topic, and sign

up for presentation date

Week 2 RTOS background Project proposal due

Week 3 Task scheduling Student presentations

Week 4 Task scheduling Student presentations

Week 5 Resource management Student presentations

Week 6 Resource management
Student presentations and

midterm report due

Week 7 Inter-process communication Student presentations

Week 8 Buses Student presentations

Week 9 Board Input/Output Student presentations

Week 10
Final presentation, final report,

and journal due
Final presentation, final report,

and journal due

21

Table 4.4: Proposed Advanced Real Time Embedded Systems Course
Grading.

Category Weight (Percent)

Research presentation 10

Final project proposal 5

Final project midterm report 5

Final project high level application 20

Final project low level application 20

Final project demo and presentation 10

Final project journal 5

Final project report 15

Final project difficulty 10

4.4 Quarter-Long Project

The quarter-long project is the most significant aspect of the course. Students will

have ten weeks to develop an advanced real-time embedded systems project and

present it to the class at the end of the quarter. The project is intended to be open-

ended to encourage students to focus on their interests and be ambitious. The project

can be completed individually or in small groups of up to four. However, working in

small groups is highly encouraged to improve teamwork skills. In addition, students

who work on an independent project are encouraged to work on the project in class.

Working on the project in class is encouraged to facilitate collaboration with other

students who are working on a similar project with overlapping software and hardware

22

and to help with troubleshooting. In previous offerings of the course, most of students

chose to work in a group. The Quarter-Long Project Description is in Appendix B.

4.4.1 Project Requirements

The project must use one non-processor peripheral on the board or use external

hardware components connected over a serial bus. Using a non-processor peripheral

is essential for thoroughly learning about the complexities of embedded systems. The

project must also have the means to interact with the outside world, through a display

or otherwise.

The most important requirement for the project is that it is innovative and ambitious.

This project aims to provide students with the opportunity to invest a long time in

a complex project. There is less stress and pressure on the performance or success

of the project than there would be in the engineering industry, on a senior project,

or on a graduate thesis. As a result, students are encouraged to be ambitious even if

they are unsure that the project can be completed within the quarter. Goals for the

project can be renegotiated throughout the quarter.

4.4.2 Project Deliverables

Students begin formulating their projects on the first day of class when the project

is introduced. They have until the end of the second week of the course to develop

their project proposal and identify their project group. In the report, they must

include a one or more page proposal outlining the project’s significance or purpose,

the system they are planning to build, what hardware they think they will need,

what software modules they will construct, and objective goals for their project. As

previously mentioned, these goals can be renegotiated during the course. Still, the

23

project proposal is intended to make sure students have thoroughly thought through

the project before they begin implementation. They must also discuss the accessibility

of the project, including who will use the project and how they can design the project

to ensure it reaches a broad audience.

Students will also keep a journal of the work they are completing for the project.

For days that the students work on their project, they will record the approximate

time they spent on it, along with the work completed and any issues encountered.

Screenshots, pictures, website links, and diagrams showing their work, resources, and

issues are encouraged. This journal is informal and separate from their final report.

The purpose is for students to track their work to understand what aspects of the

project they’re spending the most time on. For group projects, the journal will also

help measure the effort of each group member. Finally, this journal will be helpful at

the end of the quarter when composing a final presentation and project. This journal

will be submitted at the end of the quarter.

At the end of week 6, students will submit a midterm report. This will include an

updated list of the hardware and software they are using. Students will also write

about their progress, including any technical challenges they have had to overcome

and any changes in their project scope and goals for the end of the quarter.

At the end of the quarter, students will submit a final report. Students can sub-

mit a formal final report, which includes information about their design process and

decisions, bill of materials, system architecture diagrams, measurable outcomes, etc.

Students also can create an instruction report for their final report. The instruction

report will teach others how to do the final project. Beyond including step-by-step

instructions for implementing the project, it must include context about why these

steps are necessary and what common issues others may encounter while following the

instruction report. Both the formal final report and instruction final report should

24

show awareness of why certain design decisions were made and why certain imple-

mentations did or didn’t work and include a discussion of the accessibility of the

project.

Finally, students will give a 20-minute final presentation during the last week of

class, outlining what their project accomplishes, what components they used, what

challenges they faced, and what resources they used. If students have a working

project, they should demo it to the class. At the end of the quarter, students will

have submitted a project proposal, midterm project report, final report, journal, and

presentation, all of which will be considered for the project’s final grade.

4.5 Research Topic Presentation

For the research topic presentation, students will choose a current topic in real-time

embedded systems that they are interested in and that is different from their quarter

project. Choosing a different topic from their project is intended to increase the

diversity of material covered in the course and avoid repetition. The presentation

can be completed individually or in small groups. The instructor must approve their

topic at the beginning of the quarter. Presentations will occur on Thursdays at the

beginning of class.

Students will then develop a 30-minute presentation about their topic. The presen-

tation must include background about the topic, including why it is significant and

what the current challenges and limitations are. They must also discuss recent ad-

vancements or changes related to the topic and any proposed future work. They are

encouraged to use various resources, but at least two of them must be recent techni-

cal published papers. After the presentation, there will be time for students to ask

25

questions related to the presentation. The Research Topic Presentation Description

is in Appendix C.

4.6 Course Topics

4.6.1 Textbooks

The current curriculum for EE/CPE 442 and EE/CPE 542 doesn’t use a textbook

for the course material. Providing students with a textbook is helpful for students

interested in learning more about the lecture material, and it is also a single consol-

idated source for reliable information. To limit the cost of the course for students

and improve accessibility, all selected textbooks are free through the Cal Poly library.

Three textbooks were used for lecture material information.

The first textbook is ”Real-Time Embedded Systems” by Jiacun Wang published

in 2017 [1]. This textbook includes introductory and advanced real-time embedded

systems topics, such as embedded systems hardware components, operating systems,

task scheduling, resource sharing and access control, practical issues, and more. Much

of the lecture material references this textbook.

The second textbook is ”Embedded Systems Architecture” by Tammy Noergaard

published in 2013 [18]. This textbook includes information about standard embedded

system board hardware such as board memory, board I/O, and board buses.

The third textbook is ”Multicore DSP” by Naim Dahnoun published in 2018 [19].

This textbook was specifically created for projects with the TMS320C66x system

on a chip (SoC), but it does include some general information about inter-process

communication that is relevant to real-time embedded systems.

26

4.6.2 Lecture Material

Lecture material for the entire course, which is in the form of slides, is included in

Appendices D through L. The first week of class will not have any technical course

material. On the first day of class, students will review the syllabus, required course

materials, quarter-project, and research topic presentation. Students will be provided

with the requirements, assignments, and deadlines for the project and presentation.

The remaining time on the first day and the second day of class will be for students

to join groups, begin formulating project ideas, work on their project proposal, begin

formulating their project idea, approve their project presentation with the instructor,

and sign up for a presentation date. By the end of week 1, students should have a

presentation idea approved and a presentation date selected.

The second week of class will include real-time operating system topics. The topics

will be mostly review for computer engineering and computer science students who

have taken an operating systems class. This material will be new for electrical en-

gineers who haven’t take an operating systems class. This lecture was included in

the course to help students unfamiliar with operating system components and termi-

nology. In addition, this lecture is important for those familiar with general-purpose

operating systems to understand the important differences between a general-purpose

and real-time operating system. Other important material in the lecture is process

and memory management, interrupts, clocks and timers, and examples of common

RTOSs.

The third and fourth weeks of class will discuss task scheduling. The scheduler

is an important component of all operating systems, so understanding its behavior

is crucial to understanding how to use a real-time embedded system. Since this

topic is so significant, two weeks will be allocated for it. This lecture focuses on

27

different scheduling algorithms. The two types of scheduling algorithms discussed

are uni-processor scheduling, which is scheduling tasks on a single processor, and

multi-processor scheduling, which is assigning tasks to a specific processor. The

lecture includes clock-driven scheduling, which is scheduling based on the time a task

needs to be completed, and priority-driven scheduling, which is scheduling based on

a priority the operating system assigns to each task. Examples of the algorithms are

also covered.

The fifth and sixth week of class will discuss resource management. In an embed-

ded system where resources such as memory and I/O units must be shared, resource

management can affect how quickly tasks are executed and can prevent tasks from

executing in time. As a result, understanding resource management is important for

making high-performance embedded systems. Two weeks are spent on this material.

The lecture covers different resource management protocols and shows how poor re-

source management can cause important tasks to miss their deadlines. Examples of

the protocols are also covered.

The seventh week of class will discuss inter-process communication. Inter-process

communication is necessary for exchanging information between different threads,

processes, and processors. Efficient inter-process communication increases bandwidth

and reduces latency, which is important for high-speed applications. The lecture

covers inter-process communication methods such as semaphores, shared files, shared

memory, message queues, pipes, and sockets. The lecture also covers the benefits and

drawbacks of different inter-process communication methods and different scenarios

where certain types of inter-process communication work better.

The topics from weeks two through seven are mainly operating systems topics. The

remainder of the course will focus on embedded systems hardware topics necessary

for communication with the outside world.

28

The eighth week of class will discuss embedded system buses. The lecture covers

different types of buses, what types of signals they carry, and their hardware structure.

The focus of the lecture is bus arbitration schemes, which are used when multiple

devices are connected to a bus to determine which device can control the bus. Finally,

the lecture covers bus performance and methods to improve bus performance.

The ninth week is the last week of instruction before final presentations during week

ten. The ninth week of class will discuss board I/O. Understanding board I/O is

necessary for connecting an embedded system with external devices. The quarter

project requires students to interact with the world in a meaningful way, so board

I/O will be important for many students who will likely use external hardware. The

lecture covers standard I/O hardware, serial, parallel, asynchronous, and synchronous

I/O, and I/O performance.

4.7 ABET Criteria

As discussed in the Background ABET Accreditation section, the electrical and

computer engineering departments at Cal Poly are ABET accredited and therefore,

courses in the electrical and computer engineering departments must meet certain

criteria [16]. These criteria are outlined by ABET in “Criteria for Accrediting Engi-

neering Programs, 2021-2022” and by the Cal Poly electrical and computer engineer-

ing departments through their program education objectives. This section discusses

how the proposed course previously outlined meets these objectives and how these

outcomes are documented.

29

4.7.1 Criteria for Accrediting Engineering Programs

The first criteria is “an ability to identify, formulate, and solve complex engineer-

ing problems by applying principles of engineering, science, and mathematics” [17].

Through the quarter-long project, students must design their system, create a system

diagram, and describe the design decisions they made. They must then implement

the design and show how they worked through any technical challenges. All of the

daily work is documented in the journal, and the entire system is included in a formal

report.

The second criteria is “an ability to function effectively on a team whose members

together provide leadership, create a collaborative and inclusive environment, estab-

lish goals, plan tasks, and meet objectives” [17]. Although the quarter-long project

and research topic presentation aren’t required to be completed in groups, students

are highly encouraged to do so, and most students chose to work in groups for the

project in past offerings of the course. Students who work in a group for the project

will need to work as a group to decide on their project and set objective goals for their

project, which will be included in their project proposal. Throughout the quarter,

if a group finds they cannot meet their initial goals, they have the option to decide

together to renegotiate their goals and submit them again during the midterm report

and final report. They must also demonstrate during their final report and demo how

their project meets their objectives. The journal that students also submit shows

the work done by group members, outlining how each member contributed to the

group’s overall work. Students who choose to work on the project independently are

still encouraged to collaborate with other people in the class who are working on a

similar project or with similar software or hardware. The goal of this is to create

an environment where students collaborate on ideas and solve problems together in

30

groups larger than their independent project group. The final project, journals, and

final presentations can be submitted to ABET to meet this objective.

The third criteria is “an ability to recognize ethical and professional responsibilities in

engineering situations and make informed judgments, which must consider the impact

of engineering solutions in global, economic, environmental, and societal contexts”

[17]. As a part of the project design process, students need to identify who will use

the project and how they are going to ensure it can reach a broad audience. This

requires students to assess the use and the societal impact of their project. The goal

is to encourage students to understand the impact their design choices have and to

take responsibility for making those design choices ethical. The accessibility analysis

is included in the project proposal and final report and can be submitted to ABET

to meet this objective.

4.7.2 Program Education Objectives

The first objective of the electrical engineering program education objectives is “em-

brace life-long learning as a necessary component to remain current in their pro-

fession” [20]. Similarly, the first objective of the computer engineering program

education objectives is ”engage in lifelong learning through continued professional

development or graduate studies” [21]. Two of the essential goals of this course are to

allow students to perform independent work on a real-time embedded systems topic

that interests them and to perform research on an advanced topic. Students will learn

how to identify and formulate a technical project, design and implement it, and write

a report about it. Through this process, they will hopefully improve their confidence

that they can complete ambitious and independent projects and be encouraged to

continue their research interests with graduate education. Even if graduate educa-

31

tion is not in their current interests, they will hopefully be encouraged to continue to

pursue their academic interests independently.

The second objective of the computer engineering program education objectives is for

students to “communicate effectively and demonstrate leadership” [21]. Students will

complete two separate presentations during this course, first on their research topic

and then their project. The research topic presentation aims to improve students’

skills by performing a literature search and presenting the current research along with

other sources. The project presentation seeks to improve students’ skills at presenting

their own designs and results clearly and concisely.

32

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis proposes changes to the current Advanced Real Time Embedded Sys-

tems course, EE/CPE 542. The proposed changes capture elements from similar

courses discussed in the Literature Review, section 3.3. Based on the paper from

the Kansas State University course, which showed the benefit of having both the-

oretical and project-based learning, our proposed Advanced Real-Time Embedded

Systems curriculum will include theoretical topics in the form of lectures and a long

student-designed project. The paper from Oakland University provides a lot of in-

sight into how to address changes and advancements in embedded systems technology

in a course by including a research topic presentation, which is also included in our

proposed course. The paper from Oakland University also discusses the importance of

using an FPGA for RTES research. As a result, the Zybo Z7 board will continue to be

encouraged for students to use on their project in EE/CPE 542. These modifications

also provide students with more resources, such as lectures and several textbooks. The

hope is that these changes will maintain the independent and student-focused aspects

of the course while adding more material that’s helpful for theoretical understanding

and expands students’ knowledge of current research. Hopefully, this proposed course

will enable students to confidently design complex real-time embedded systems.

33

5.2 Future Work

Given the upcoming transition from the quarter system to the semester system, the

real-time embedded system curriculum, consisting of EE/CPE 442 and EE/CPE 542

will need to be adjusted. However, departments will not begin mapping the cur-

rent curriculum to the adjusted semester curriculum until the 2022-2023 school year.

Hopefully, the electrical and computer engineering department will choose to keep the

real-time embedded systems curriculum to offer to students as an advanced under-

graduate and graduate elective. To change to the semester system EE/CPE 442 and

EE/CPE 542 could be combined into a single 15-week course. Although this would

reduce the total amount of time spent on the material, there would still be enough

time to cover all necessary topics. The first seven weeks of the course could cover

lectures and labs from EE/CPE 442 up until lab/tutorial 5, which covers performance

counters. The remainder of the quarter, eight weeks, could be spent on what is pro-

posed as the quarter-long project in EE/CPE 542. To ensure that as much time as

possible is spent on implementing the quarter-long project, students could begin for-

mulating it in the first seven weeks of the semester. The research topic presentations

could be spread throughout the entire semester. This structure would maintain the

goals and material from the current courses.

34

REFERENCES

[1] Jiacun Wang. Real-Time Embedded Systems. First Edition. John Wiley Sons,

Ltd, 2017. isbn: 9781119420712. doi: https://doi.org/10.1002/9781119420712.

[2] Jane Liu. Real-Time Systems. First Edition. Prentice Hall, 2000. isbn: 0130996513.

[3] Industry Trends. 2020. url: https://www.gminsights.com/industry-analysis/

embedded-system-market.

[4] Mitchell Neilsen. “An Interdisciplinary Curriculum On Real Time Embedded

Systems”. In: 2002 Annual Conference. 10.18260/1-2–10046. https://peer.asee.org/10046.

Montreal, Canada: ASEE Conferences, 2002.

[5] Nannan He and Han-Way Huang. “Use of FreeRTOS in Teaching Real-time Em-

bedded Systems Design Course”. In: 2014 ASEE Annual Conference & Expo-

sition. 10.18260/1-2–23240. https://peer.asee.org/23240. Indianapolis, Indiana:

ASEE Conferences, 2014.

[6] Henry Chaya. “An Embedded Systems Course Using The Oopic Microcon-

troller”. In: 2002 Annual Conference. 10.18260/1-2–10898. https://peer.asee.org/10898.

Montreal, Canada: ASEE Conferences, 2002.

[7] Subramaniam Ganesan and Fayadh Alenezi. “A course on Advanced SOC FPGA

in Embedded systems”. In: 2022 ASEE - North Central Section Conference.

https://peer.asee.org/39224. Pittsburgh, Pennsylvania: ASEE Conferences, 2022.

[8] J.W. Bruce and Ryan A. Taylor. “Using Information Gap Learning Techniques

in Embedded Systems Design Education”. In: 2017 ASEE Annual Conference &

Exposition. 10.18260/1-2–29078. https://peer.asee.org/29078. Columbus, Ohio:

ASEE Conferences, 2017.

35

https://doi.org/https://doi.org/10.1002/9781119420712
https://www.gminsights.com/industry-analysis/embedded-system-market
https://www.gminsights.com/industry-analysis/embedded-system-market

[9] 2021-2022 Catalog Electrical Engineering (EE). url: https://catalog.calpoly.

edu/coursesaz/ee/.

[10] A color picture of a steam engine. 2008. url: https://en.wikipedia.org/wiki/

Sobel operator.

[11] The Sobel operator applied to that image. 2008. url: https://en.wikipedia.org/

wiki/Sobel operator.

[12] Raspberry Pi Documentation: Processors. url: https://www.raspberrypi.com/

documentation/computers/processors.html.

[13] Zybo Z7 Reference Manual. url: https://digilent.com/reference/programmable-

logic/zybo-z7/reference-manual?redirect=1.

[14] Ashton McIntyre. Cal Poly, last CSU operating on a quarter system, announces

transition into semester system. 2021. url: https://www.ksby.com/news/local-

news/cal-poly-last-csu-operating-on-a-quarter-system-announces-transition-

into-semester-system.

[15] What is Accreditation? url: https://www.abet.org/accreditation/what- is-

accreditation/.

[16] Accredited Programs. url: https : / / amspub . abet . org / aps / name - search ?

searchType=institution.

[17] Criteria for Accrediting Engineering Programs, 2021 – 2022. url: https : / /

www.abet.org/accreditation/accreditation- criteria/criteria- for- accrediting-

engineering-programs-2021-2022/.

[18] Tammy Noergaard. Embedded Systems Architecture: A Comprehensive Guide

for Engineers and Programmers. Second Edition. Newnes, 2013. isbn: 978-0-

12-382196-6. doi: https://doi.org/10.1016/B978-0-12-382196-6.00016-9.

36

https://catalog.calpoly.edu/coursesaz/ee/
https://catalog.calpoly.edu/coursesaz/ee/
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://www.raspberrypi.com/documentation/computers/processors.html
https://www.raspberrypi.com/documentation/computers/processors.html
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual?redirect=1
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual?redirect=1
https://www.ksby.com/news/local-news/cal-poly-last-csu-operating-on-a-quarter-system-announces-transition-into-semester-system
https://www.ksby.com/news/local-news/cal-poly-last-csu-operating-on-a-quarter-system-announces-transition-into-semester-system
https://www.ksby.com/news/local-news/cal-poly-last-csu-operating-on-a-quarter-system-announces-transition-into-semester-system
https://www.abet.org/accreditation/what-is-accreditation/
https://www.abet.org/accreditation/what-is-accreditation/
https://amspub.abet.org/aps/name-search?searchType=institution
https://amspub.abet.org/aps/name-search?searchType=institution
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2021-2022/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2021-2022/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2021-2022/
https://doi.org/https://doi.org/10.1016/B978-0-12-382196-6.00016-9

[19] Naim Dahnoun. Multicore DSP: From Algorithms to Real-Time Implementa-

tion on the TMS320C66x SoC. First Edition. Wiley Publishing, 2018. isbn:

1119003822.

[20] Cal Poly Electrical Engineering ABET Accreditation. url: https://ee.calpoly.

edu/academics/abet.

[21] About Us. url: https://cpe.calpoly.edu/about/.

[22] Real-time Embedded System Design Graduate Certificate. url: https://catalog.

k-state.edu/preview program.php?catoid=2&poid=232.

[23] Automotive application guide: Driving the future of automotive electronics. url:

https : / /www . infineon . com/dgdl /Automotive Application Guide 2016 BR .

PDF?fileId=5546d461584d1a55015887056dff07ea.

[24] ASEE Peer. 2022. url: https://peer.asee.org.

37

https://ee.calpoly.edu/academics/abet
https://ee.calpoly.edu/academics/abet
https://cpe.calpoly.edu/about/
https://catalog.k-state.edu/preview_program.php?catoid=2&poid=232
https://catalog.k-state.edu/preview_program.php?catoid=2&poid=232
https://www.infineon.com/dgdl/Automotive_Application_Guide_2016_BR.PDF?fileId=5546d461584d1a55015887056dff07ea
https://www.infineon.com/dgdl/Automotive_Application_Guide_2016_BR.PDF?fileId=5546d461584d1a55015887056dff07ea
https://peer.asee.org

APPENDICES

Appendix A

SYLLABUS

38

EE/CPE 542 Advanced Real Time Embedded Systems

Course Description: Advanced study and application of modern embedded systems. Memory
bandwidth matching, clock-domain crossing, IP creation and verification, and student-led
lectures on modern System on Chip (SoC) design topics. Building a prototype embedded
system.

Prerequisites: EE/CPE 442

Textbook: Real-Time Embedded Systems by Jiacun Wang, 2017

Lecture Time:

Instructor:

Office Hours:

Learning by Participating
Courses are most successful when there is an active dialogue between the professor, your
classmates, and you. If you ever have a question in class, ask! If you have any non-private
questions outside of class and office hours, post to Piazza! If you think you know the answer to
another student’s question, don’t be afraid to respond! We want to foster a supportive and
collaborative learning environment, so disruptive in-class behavior or any personal attacks on
another student will result in you being asked to leave. I do not answer course-related questions
over email.

Collaboration
Collaboration and knowing when to ask for help are key parts of being a successful engineer. I
encourage you to discuss labs with your classmates. Your team may ask high-level questions or
debugging questions to other teams for labs. Sharing HDL, entire C functions, or write-up text is
not permitted. You also may not copy HDL or C from the internet unless explicitly permitted in
the assignment.

Grading:

Category Weight

Research presentation 10%

Final project proposal 5%

Final project midterm report 5%

Final project high-level application 20%

Final project low-level application 20%

Final project demo and presentation 10%

Final project journal 5%

Final project report 15%

Final project difficulty 10%

Course Topics
● RTOS kernels, interrupts, clocks, timers, memory management, and process

management
● Task scheduling
● Resource management
● Inter-process communication
● Buses
● Board I/O

Course Supplies
● Raspberry Pi 3 or 4 or Zybo Z7 development board
● Access to a Linux computing environment (VM, dual-boot, the Pi itself)

Success with Integrity
In accordance with Cal Poly’s Standards for Student Conduct, any determination of cheating,
plagiarism, or other academic dishonesty will at a minimum result in an “F” grade on the
assignment and a report to the OSRR.

ADA Accommodations
If you require special accommodations while taking this class, please discuss your needs with
me as soon as possible. Persons who wish to request disability-related accommodations should
also contact the Disability Resource Center in Building 124, Room 119. Phone: (805) 756-1395
or (805) 756-6266 (TTY). Office hours are Monday-Friday from 8:00 AM – 4:30 PM. Some
accommodations may take up to several weeks to arrange.

Diversity Statement
To build products, devices, and services that meet the needs of all stakeholders, it is imperative
that engineering design processes be influenced by a wide range of perspectives from people of
different cultural, religious, ethnic, gender, and racial identities and physical and learning
abilities. All of these perspectives must be treated with equal respect and consideration. To
foster a learning environment where this type of collaboration is possible, all students in this
class are required to treat each other with respect.

Further, to combat “designed for (people like) me” syndrome, all project final
reports/instructables should include a brief section on Accessibility, describing steps made to
ensure that your project would be usable by a wide range of individuals, and describing how the
design could be modified to be accessible to an even wider range of users.

Fine Print
These course policies are designed to create a fun and effective learning environment. With that
goal in mind, I reserve the right to modify course policies in a reasonable manner to improve the
course. If any aspect of the course is not working for you, please send me feedback!

Appendix B

QUARTER-LONG PROJECT DESCRIPTION

42

Skills
This assignment aims to help you practice the following skills that are important in
understanding how software and hardware work together in a computing system.

● Developing software to run in a Linux environment
● Understanding how a modern processor interacts with external hardware blocks from a

software, circuits, and architecture perspective
● Experiencing the real-world challenges of efficiently using resources on an SoC
● Tracking down and fixing errors in these systems
● Succinctly and completely communicating technical results

Knowledge
This assignment will also help you recognize why it’s important to follow best practices in
programming while giving you invaluable hands-on experience in working with low-level
software on complex SoC hardware. You will be able to use this knowledge to create novel
systems, understand the design challenges of using non-processor blocks in a system, and
become a valuable member of a computer-system design team.

Task
Your task is to propose, implement, document, and demonstrate an application of your choice
on your Raspberry Pi or Zybo board. The project can be completed individually or in small
groups with a maximum of four people.

Criteria for Success
Successful assignments will have the following characteristics:

● Use at least one non-processor peripheral connected over a serial bus on your
Raspberry Pi or Zybo (DMA engine, graphics processor, SPI interface, etc.)

● A means for your application to display results/transfer data/or otherwise interact
meaningfully with the outside world

● An innovative, novel, or otherwise comprehensive system worthy of being a quarter-long
project

○ Be ambitious! We can renegotiate the project scope throughout the class.
○ Anyone who gets a peer-reviewed publication or successful Kickstarter from their

project gets an A in the class!

Project Milestones
● Thursday of week 2: A 1-page written project proposal outlining what system you’re

planning to build, what VHDL module you will construct, the project goals, etc. Please
also consider and discuss the accessibility of the project. Who is going to use the
project? How can you ensure it reaches as broad of an audience as possible?

● Thursday of week 6: A midterm report and Bill of Materials
● Weekly in-class meetings.
● Last Day of Class

○ Final project presentations: During the last day of class, you’ll have the
opportunity to present your final project. The last day of class will be dedicated to
a final project showcase, where you’ll get to show off your work.

○ Final report: The final report is due on the last day of class. For the final report,
you will be writing an “instructable” or tutorial to teach others how you built your
system. Your final report must also include a section on “accessibility,” which
describes steps you took to ensure your project could be used by as broad an
audience as possible. This section should also include any potential
modifications that could be made to your design to make it more accessible. You
are highly encouraged to put this tutorial online at a place like instructables.com.

○ Journal: The journal is informal documentation of each individual's work on the
project, and you should complete it throughout the quarter.

Final Project Presentation

Create a presentation highlighting your quarter-long project. It may be up to 10 minutes in length
(although it doesn't need to be that long) and should explain:

1) Big Picture: What did you (try to) build and why? What is the significance of this project?

2) System architecture: What parts of the hardware do you use? For Pi: do you access any of
the on-chip accelerators? Do you use external components? For ZYNQ: did you add any
custom hardware?

3) Challenges: What challenges did you face, and (how) did you solve them?

4) System demo

Final Project Report

For this report, you have two options:

1) Create an Instructable

2) A traditional final report/design document

If you choose the Instructable option, your job will be to write a document that teaches others
how to make your project. Remember that an Instructable is more than just a simple recipe for
making your project; it shouldn't be limited to things like "Step 1:Install OpenCV using 'sudo apt
install opencv-dev,' Step 2: Download this included code, Step 3: Run it, Step 4: You're done."
Make sure to provide plenty of context for why readers should take different steps. Why do they
need OpenCV? What does your included code do? Etc. If you'd like, you can publish your
instructable at instructables.com and just provide me a link or printout here.

Please dispense with cover pages if you choose to do a more formal final report. They were
great in the era of physically printed and bound reports that lived on bookshelves, but in a digital

world, the filename takes the place of the cover page. Your report should document what you
built (or tried to build), system architecture, components needed, etc. (Especially for Zynq folks).
You should include information about your design process: what challenges did you run into,
and (how) did you overcome them? What other libraries did you consider/experiment with and
why did you abandon them? In a fast-moving, ever-changing field like embedded systems,
knowing why you did something and why other implementations don't work is as (more?)
important to document than how you built what you built.

Journal
Every day you work on the project, record approximate time spent working on the project, work
completed, and issues you encountered. This is an informal document that does not need any
formatting. Screenshots, links, raw data, diagrams, and resources are encouraged. For group
projects, each member should complete their journal.

Hand In

1) One of: your final report, your instructable, a link to your instructable published elsewhere,
your journal

2) The source code authored by your team.

3) (Optional) Updated demo video if different than the one in your final presentation

Appendix C

RESEARCH TOPIC PRESENTATION DESCRIPTION

46

Students will choose a current advanced topic in real-time embedded systems for the research
presentation and give a 30-minute presentation to the class. Presentations can be done
individually or in small groups and occur on Thursdays at the beginning of class. Please select a
topic different from what your quarter project is on and have the instructor approve it. The goal
for this assignment is for you to learn more about a research interest and to introduce the class
to a wide variety of current topics. In your presentation, please include:

● Background about the topic. Why is this topic significant? What are the current
challenges or limitations?

● What are recent advancements or changes related to the topic?
● What future work is proposed?
● Reference at least two recent technical published papers related to your topic

Appendix D

WEEK 1 LECTURE SLIDES

48

Introduction
Week 1

EE/CPE 442 and EE/CPE 542
● 442 introduced tools, high-performance coding techniques, and custom

HW/software interaction

○ Threads, CPU inefficiency, vectorization, compiler optimization, coding style, SIMT, performance

counters

● 542 introduces more advanced topics and is more focused on individual projects

Course Topics
● OS topics

○ Review topics about operating systems, including the differences between operating systems for

real-time and embedded purposes and general purpose

● Task scheduling

○ OS task management and scheduling for real-time systems

○ Single and multi-processor

○ Common task and processor scheduling algorithms

● Resource management

○ How to manage resource dependencies between tasks and processors

○ Resource management protocols

Course Topics
● Inter-process communication

○ How to perform communication between separate tasks and processes

○ Common communication methods

● Buses

○ Bus communication in an embedded system

○ Bus arbitration protocols

● Board I/O

○ Hardware and communication methods for performing input and output on an embedded system

● Final project presentations

Textbooks
● All textbooks available through the Cal Poly library

● Real-Time Embedded Systems by Jiacun Wang, 2017

○ Topics from this course include tasks scheduling, resource management, OS topics

○ Topics from 442 include intro to RTES and POSIX threads

● Embedded Systems Architecture by Tammy Noergaard, 2013

○ Topics from this course include board I/O and buses

● Multicore DSP by Naim Dahnoun, 2018

○ Topics from this course include inter-process communication

Quarter Long Project
● Work on an independent or group project over the entire quarter

● The project must:

○ Use at least one non-processor peripheral on your Raspberry Pi or Zybo

(DMA engine, graphics processor, SPI interface, etc.)

○ Have a software program running on Linux that controls your overall

application

○ Have a means for your application to display results/transfer data/or

otherwise interact meaningfully with the outside world

○ Be an innovative, novel, or otherwise comprehensive system worthy of being

a quarter-long project

● Project proposal due next Thursday

● See “Final Project Description” on Canvas for more details

Research Topic Presentation
● Choose a current topic in real-time embedded systems and give a presentation on

it

○ Please select something different from what you’re interested in doing your quarter project on

○ Once you have a topic, ask the instructor for approval

● Can be done individually or in small groups

● Presentations should include:

○ Background about the topic

○ Any recent advancements or changes

○ Future work

○ At least two technical published papers

To Do Today
● Start thinking about a topic for the research topic presentation

○ Sign up for a presentation date

● Start thinking about quarter-long projects and groups

○ Project proposal due next Thursday

Appendix E

WEEK 2 LECTURE SLIDES

57

Operating System
Week 2

General Purpose OS
● Software that manages hardware resources

● Makes the system more convenient to use

● Includes a kernel and performs functions such as process management, resource

management, interrupt management, and I/O management

● Includes an application programming interface (API) that enables applications to

communicate with hardware and software applications

Real Time Embedded System OS
● Embedded systems have limited

memory, so the kernel must be

smaller and have less functionality

(microkernel)

● Real-time systems require the timing

behavior of OS to be predictable

○ Must know execution time for OS services

● OS manages the timing and

scheduling of tasks

● OS must be fast with little overhead

Structure of a Microkernel

Microkernel
● Takes control from executing thread to perform a system call, do scheduling and

service times, and handle external interrupts

● A system call is a call to one of the API functions (e.g., create/suspend/destroy a

thread, create a timer, sleep timer)

● Includes a scheduler responsible for scheduling tasks to meet deadlines (discussed

later)

● Handle external interrupts from I/O

Process Management
● OS is responsible for starting, suspending, and terminating processes

● Processes can be single or multi-threaded

● Each thread requires the OS to allocate memory, create data structures, and copy

code

● Threads in the same process use the same address space, global and static

variables, code, and heap but have different statuses, program counters, registers,

and stacks

○ Threads require fewer resources than separate processes

● OS supports communication between different processes while they’re running

○ Inter-Process Communication (IPC) - covered later

Memory Management
● OS is responsible for all system memory in use

● Generally, only the OS has access to physical memory

○ Memory protection - use virtual memory to ensure separate processes run in their own address

space

● When a process starts, the OS allocates memory and loads the process’ executable

code and initialized data

● OS allocates memory during runtime from the heap (e.g., malloc in C)

Interrupts
● OSs are interrupt-driven

○ When an interrupt occurs, OS transfers control to the Interrupt Service Routine (ISR) to handle the

event

● Most modern OSs use split interrupt handling

● Immediate interrupt service

○ Device-dependent

○ Interrupt first assigned a priority

○ Kernel branches to interrupt handling code

○ Interrupt latency - responsiveness of the system to external events

● Scheduled interrupt handling routine

○ Completes interrupt handling

○ Interrupt handling scheduled for execution with other tasks based on priority

Clocks and Timers
● A precise periodic counter is a hardware clock

● Periodic interrupts from the hardware clock update the kernel’s software clock

○ Interrupts every ~100s us to 10s ms

○ Software clock used by threads

● The timer queue stores the expiration times of timers associated with each clock

● Real-time systems often have multiple clocks for different purposes

● Threads and processes can have their own timers bound to a specific clock with an

expiration time

● Timer error due to the frequency of hardware clock interrupts and due to the time

spent processing timer events

Clocks and Timers
● The release time of a task may be late due to rescheduling and delays from the

time it takes to create a timer

● Periodic tasks are not truly periodic

○ e.g., a loop with a periodic task of 10 ms

○ If the 1st instance of the loop is delayed and finishes after 10 ms, it will block the 2nd instance of

the loop

Examples of RTOS for Embedded Systems
● FreeRTOS

○ Open-source

○ Popular

○ Simple to use

● Zephyr

○ Open-source

○ Secure

○ Simple to use

○ Lots of support

● VxWorks

○ Commercial

○ More safety and security certification, used in defense, medical, and energy industries

Resources
J. Wang, Real-Time Embedded Systems. Hoboken, NJ, USA: Wiley, 2017.

“FreeRTOS Real Time Operating System for Microcontrollers,” FreeRTOS,

10-Mar-2022. [Online]. Available: https://www.freertos.org/. [Accessed: 29-Apr-2022].

Wind River. [Online]. Available: https://www.windriver.com/. [Accessed: 29-Apr-2022].

Zephyr Project, 22-Feb-2022. [Online]. Available: https://www.zephyrproject.org/.

[Accessed: 29-Apr-2022].

Appendix F

WEEK 3 LECTURE SLIDES

69

Task Scheduling
Week 3

Tasks
● RTOS kernel has a scheduler that allocates and schedules tasks

● Task - a unit of work scheduled for execution on the CPU

○ Release time - the time the task becomes available for execution

○ Deadline - the time execution must be completed by

○ Relative deadline - the deadline relative to the release time

○ Execution time - the time it takes for a task to execute when it executes alone and with all required

resources

○ Response time - the time from a task being released to its execution completing

Types of Deadlines
● Hard - the task must be completed by a specific time

○ if the deadline is missed, the system fails, or the task has no use

○ Example: when a collision is detected, a cards airbags must deploy within 60 ms

● Soft - the task should be completed by a specific time

○ if the deadline is missed, there aren’t any disastrous results, and the task still has some use

○ Example: after a debit card is inserted, the ATM should prompt the user for a PIN within 1 s

Task States
● Running - the state when the task is executing

○ Only one task can run on a processor at a time

● Ready - a task can’t execute because another task is running

○ Has all other resources except the processor

● Blocked - a task is waiting for a time or external event to occur

○ Not available for scheduling

Task States
● New tasks are placed in the ready state queue and scheduled for execution based

on their priority

● When the highest priority task is dispatched for execution, it shifts to the running

state

● A task in the running state can be preempted (suspended) by a higher priority

task and placed in the ready queue

● Running task can be moved to a blocked state (e.g., due to memory access issues)

Precedence
● Defines execution order of 2+ tasks

● Shows data and control dependencies among tasks

● Use a graph to show precedence

Preemptivity
● Which task the processor is executing can change during runtime while a task is

executing

● e.g., the scheduler may suspend the execution of a task for a more urgent task to

run

○ The original task resumes once the more urgent task completes

● A task is preemptable if it can resume its execution from the point of interruption

● A task is non-preemptable if it must execute without interruption

● A task is partially preemptive if only a section of the task is non-preemptable, but

the rest of the task is preemptable

Multiprocessor Task Assignment
● Multiprocessor scheduling - tasks are assigned to processors, then perform

uniprocessor scheduling for tasks on each processor

● Redo task allocation or scheduling if the schedule is infeasible

● All of the following algorithms are for uniprocessor scheduling

Clock Driven Scheduling
● Scheduling decisions are made at specific time instants

○ Either random or periodic time points

● Works for deterministic systems - tasks have hard deadlines, and task parameters

don’t change

● Can be computed and stored before runtime

○ Saves runtime scheduling and overhead

Clock Driven Scheduling - Periodic Tasks
● Repeated once a period

○ Have a hard deadline

● Consider 3 tasks to be completed in 12 time units

○ T1: deadline = 4, execution time = 1, 1 instance

○ T2: deadline = 6, execution time = 1, 2 instances

○ T3: deadline = 12, execution time = 2, 1 instance

● How can all tasks be scheduled between 0 and 12 time units?

● Scheduling can be performed at random time intervals

Structured Clock Driven Scheduling
● Scheduling decisions made at periodic times

○ Periodic scheduling creates intervals called frames

● Scheduling decisions made at the beginning of the frame

● Frames need to be big enough to allow all tasks to complete execution

○ At least one full frame between the arrival of a task instance and its deadline

● Can slice larger tasks into smaller ones to allow them to complete within one

frame

Clock Driven Scheduling - Aperiodic Tasks
● One-shot tasks caused by external events

○ No deadline or soft-deadline

● Scheduled to fit in idle spots (slack) between periodic tasks

● Slack stealing - delay the execution of periodic tasks so aperiodic tasks can

execute earlier

Periodic tasks scheduled for execution

Periodic and aperiodic tasks scheduled for

execution with slack stealing

Clock Driven Scheduling - Sporadic Tasks
● Event-driven and have an unknown arrival time

○ Have a hard deadline

● Release time, execution time, and deadline aren’t known in advance

○ No way to guarantee they meet their deadline

● Scheduler tests if it can schedule a sporadic task and meet its deadline

○ Rejects task if it fails

Clock Driven Scheduling
● Place all aperiodic tasks in the aperiodic queue and all sporadic tasks in the

priority queue

○ Priority queue - tasks with the earliest deadline are at the head of the queue

Round-Robin Approach
● First-in-first-service (FIFS) queue that stores all tasks in the ready state

● The task at the head of the queue is removed, and it executes during a short time

slice

● If a task doesn’t finish execution in the time slice, its placed at the tail of the FIFS

queue

● May cause tasks to miss their deadlines

● Weighted round-robin - higher priority tasks get longer time slices

Resources
J. Wang, Real-Time Embedded Systems. Hoboken, NJ, USA: Wiley, 2017.

Appendix G

WEEK 4 LECTURE SLIDES

86

Task Scheduling
Week 4

Priority-Driven Scheduling
● Scheduling decisions made when a new task is released or completed

● Scheduling is done at run-time

○ Doesn’t require information about release and execution times before run-time

○ Required for systems whose workload is unpredictable

● Priority is assigned to each task

Priority-Driven Scheduling - Rate Monotonic (RM) Algorithm
● Assign priority to tasks based on their period

○ Shorter period = high priority

● If a task is released and the processor is idle, it executes the task

● If there’s another task running, it compares the priority of the two tasks

● If the new task’s priority is higher, then it preempts the running task and executes

Priority-Driven Scheduling - RM Algorithm Example
● Consider 3 tasks

○ T1: deadline = 4, execution time = 1, highest priority

○ T2: deadline = 5, execution time = 1, middle priority

○ T3: deadline = 10, execution time = 3, lowest priority

○ All tasks complete in time

T3 cannot execute when T1 or T2 is unfinished

T1 preempts T3 at time 4 and 12

Priority-Driven Scheduling - RM Algorithm Example
● Consider 3 tasks

○ T1: deadline = 4, execution time = 1, highest priority

○ T2: deadline = 5, execution time = 2

○ T3: deadline = 10, execution time = 3.1

○ Task 3 misses its deadline at 10 because it doesn’t have time to execute when tasks 1 and 2 are idle

T3 cannot execute when T1 or T2 is unfinished

T1 preempts T3 at time 4 and 8

T2 preempts T3 at time 10

T3 still has 0.1 execution time left at its deadline

Deadline Monotonic Algorithm
● Assigns priorities to tasks based on their relative deadlines

○ Shorter relative deadline = higher priority

Earliest Deadline First (EDF)
● Assigns priority to tasks based on their absolute deadline

○ Earlier absolute deadline = higher priority

● Priority decided at runtime

● Optimal scheduling algorithm - if a set of tasks has a feasible schedule, EDF can

produce a feasible schedule

EDF Example
T2 preempts T1 at time 2 because it has an earlier

deadline

T4 preempts T3 at time 5 because it has an earlier

deadline

Priority Driven Scheduling - Sporadic Tasks
● Sporadic tasks have a minimum interarrival time between any two instances of

the task

● Sporadic tasks can be treated as periodic tasks with a period equal to interarrival

time

● Can use a polling server similar to aperiodic tasks

● Perform an acceptance test to check if the task will meet the deadline before

scheduling it

Priority Driven Scheduling - Aperiodic Tasks
● Aperiodic tasks have the lowest priority

○ No guarantee of their response time

● Execute during slack times of periodic tasks

○ Slack stealing - delay the execution of periodic tasks so aperiodic tasks can execute earlier

○ Slack stealing is more complicated with priority-driven scheduling over clock-driven scheduling

because scheduling decisions are made at runtime

● Use a polling server

○ The polling server is treated as a periodic task and has priority based on its polling period

■ The polling period is the server’s execution time

○ When the polling server executes, it executes the task at the head of the queue

○ If no tasks are available for execution, the polling server suspends itself

Non-preemptivity
● A task or a portion of a task may be non-preemptable

○ A task may be running in a critical section

○ Preemption is too costly

● A non-preemptable task may block a higher priority task from executing

● Must be considered when testing the schedulability of a task

Self-Suspension
● Task can self-suspend if it’s waiting for an external operation to complete on

another processor

● Task loses processor and is placed in a blocked queue by the scheduler

● Can delay execution of lower priority tasks

Context Switches
● Context - data indicating execution status and stored in the task control block

(TCB)

○ TCB - a data structure that contains information about the execution of the task

● When a task is switched out of the CPU, its context must be stored

● When its switched back into the CPU, its context must be restored so it can

execute from the last point

● Can add context switch time to execution time of task instances

○ CS = max time for context switch

○ Without self-suspension, add 2CS to the execution time of each task

○ With self-suspension, add 2(k+1)CS to execution time, where k is the number of self-suspensions

Processor Assignment
● All previous algorithms were for uniprocessor

● For multiprocessors, the tasks must first be assigned to a processor before

uniprocessor scheduling can occur

● When assigning tasks to processors, we need to consider task execution times,

communication costs between tasks, and placement of resources

Bin-Packing Algorithms
● Doesn’t take communication costs into consideration

● Put tasks on a finite number of processors such that the number of processors is

minimized

○ Leave some processor space for the execution of aperiodic and sporadic tasks

First-Fit Algorithm
● Processes tasks in random order

● Places task on the first processor that can accommodate the task

● If there’s no available processor, it adds the task to a new one

● This algorithm uses less than twice the optimal number of processors given a set

of tasks

● First-fit decreasing algorithm - tasks are first sorted in decreasing order of

utilization (execution time/period)

Resources
J. Wang, Real-Time Embedded Systems. Hoboken, NJ, USA: Wiley, 2017.

Appendix H

WEEK 5 LECTURE SLIDES

104

Resource Management
Week 5

Purpose of Resource Management
● Tasks have resource dependencies among them

● Previous scheduling algorithms ignored resource dependencies between tasks

● Shared resources don’t allow simultaneous access

● Common resources that must be shared are data structures, variables, main

memory, files, registers, and I/O units

Clock vs Priority Driven Scheduling
● Clock-driven systems don’t have scheduling issues due to shared resources

○ The scheduler can schedule tasks to keep data serialized

● Priority-driven systems are affected by shared resources

○ Resource management applies to priority-driven systems

Resource Locking
● When a task requests to use a resource, it locks that resource and unlocks it when

it’s done with the resource

● Lock request fails if the scheduler doesn’t grant resources to the task

○ The task becomes blocked and losses the processor

○ Removed from the ready queue and stays blocked until the scheduler grants resources

○ Becomes unblocked and is moved to the ready task queue

Priority Inversion
● When a higher and lower priority task share a resource and the lower priority task

is using the shared resource

● The higher priority task must wait for the lower priority task to finish

● Priority inversion - a lower priority task is running while a higher priority task is

waiting

○ Bounded - as long as the lower priority task doesn’t take too long, the higher priority task can still

meet its deadline

Priority Inversion
● If a medium priority task without a shared resource is released it will preempt a

lower priority task

● The low priority task must wait for the medium priority task to finish

○ The high priority task must wait for the medium and low priority task to finish

● If a second medium priority task preempts the first medium priority task, it can

create a chain of waiting tasks

● Unbounded priority inversion - high priority task is blocked due to resource

access and miss its deadline

Priority Inversion
● Unbounded priority inversion

● Low priority task locks resource S,

and medium priority task

preempts it

● The high priority task must wait

for medium and low priority tasks

to finish to access resource S and

execute

● The high priority task may miss its

deadline

Deadlock
● State where no tasks make progress due to accessing shared resources

● Happens when:

○ A task exclusively holds one or more resources

○ A task holds a resource while waiting for another resource

○ Resources aren’t preemptable

○ Circular chain of tasks where each task is waiting for a resource held by the next task in the circle

■ e.g., consider tasks T1, T2, and T3, T1 needs T2’s resources, T2 needs T3’s resources, T3 needs

T1 resources

Deadlock
● Low priority task locks resource A

● High priority task preempts low

priority task and locks resource B

● High priority task tries to lock

resource A but is blocked

● Low priority task executes and tries

to lock resource B but is blocked

● Both tasks are blocked, and neither

can execute

Resource Access Control Protocols
● Needed to regulate access to shared resources

● Needed to handle priority inversion and deadlocks caused by resource sharing

○ Can prevent deadlocks

○ Can’t remove all priority inversion but can decrease the blocking time of high priority tasks

● Set of rules that determine when requests for resources are granted and how tasks

requiring shared resources are scheduled

Non-preemptive Critical Section Protocol
● Unbounded priority inversion significantly hurts applications

○ The goal is to prevent unbounded priority inversion

● When a task lacks a resource, it executes at a higher priority that’s higher than the

priority of other tasks until it unlocks the resource

○ Task can’t be preempted when it holds a resource

○ Prevents circular waiting

● A higher priority task can only be locked once (by a lower priority task that it

shares a resource with)

Non-preemptive Critical Section Protocol
● Simple and easy to implement

● Don’t need prior knowledge of resource requirements of tasks

● Eliminates unbounded priority inversion and deadlocks

● Doesn’t reduce bounded priority inversion

Priority Inheritance Protocol
● Eliminates unbounded priority inversion but not deadlocks

○ Doesn’t eliminate circular waiting for resources

● When a lower priority task blocks a higher priority task, it inherits the priority of

the blocked higher priority task

○ Task returns to original priority after releasing its resource

● Assigned priority - priority assigned by the scheduling algorithm

● Current priority - priority inherited from another task

Priority Inheritance Protocol
● Ready tasks are scheduled according to their current priorities

○ The current priority is the same as a task’s assigned priority unless it’s using a shared resource

● When a task locks a resource,

○ If the resource is free, then it’s allocated to the task ,and the lock is successful

○ If the resource isn’t free, then the lock is denied, and the task is blocked

● When a lower priority task blocks a higher priority, it inherits the current priority

of the blocked higher priority task until it unlocks the resource

● A task can be blocked by many lower priority tasks, causing the first task to miss

its deadline

● A task can be blocked by a lower priority task that it has no resource conflict with

Priority Inheritance Protocol
● T1 is highest priority, T5 is lowest

priority

● T5 locks resource A at time 1

● T4 preempts T5, then T3 preempts T4,

then T2 preempts T3

● T2 attempts to lock resource A at time 5

○ T2 is blocked by T5

○ T5 inherits T2’s priority and executes

● T1 preempts T5 at time 6

Priority Inheritance Protocol
● T1 attempts to lock resource A at time 7

○ T1 is blocked by T5

○ T5 inherits T1’s priority

● T5 unlocks resource A

○ Current priority decreases to assigned

priority

● T1 preempts T5 and is granted A

● T1 unlocks resource A and completes

execution

● T2, then T3, then T5 complete

execution

Priority Inheritance Protocol
● Prevents unbounded priority inversion

because T3 doesn’t preempt T5

● T1 and T2 are blocked by T5 due to

resource sharing

Resources
J. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2009.

J. Wang, Real-Time Embedded Systems. Hoboken, NJ, USA: Wiley, 2017.

Appendix I

WEEK 6 LECTURE SLIDES

123

Resource Management
Week 6

Priority Ceiling Protocol
● Similar to priority inheritance protocol

● Avoids unbounded priority inversion

● Helps avoid deadlocks but doesn’t prevent them

● Assumes resource requirement of tasks is known before execution

● Associates each resource with a priority ceiling

○ Priority ceiling - highest priority of all tasks that might use that resource

● Request for a resource is only successful if the priority ceiling of the new resource

is higher than any preempted resources

Priority Ceiling Protocol
● A task’s current priority is its assigned priority unless it’s blocking a higher

priority task

● System’s priority ceiling - highest priority ceiling of all resources in use

● When a task requests a resource

○ If the resource isn’t free, the lock is denied, and the task is blocked

○ If the current priority is higher than the system’s priority ceiling, then the lock is successful

○ If the current priority is lower than or equal to the system’s priority ceiling, the lock is success if the

task is the task holding the resource whose priority ceiling is equal to the system’s priority ceiling

■ If not, the lock is denied, and the task is blocked

● When a lower priority task blocks a higher priority task, it inherits the current

priority of the blocked task until it unlocks the resource

Priority Ceiling Protocol
● Priority ceiling for resource X = 2

● Priority ceiling for resource Y = 1

● T5 locks resource X at time 1

● T5 is preempted by T4, T4 is preempted

by T3, T3 is preempted by T2

● T2 requests resource Y at time 5

○ Priority of T2 is less than the priority ceiling

so T2 is blocked by T5

○ T5 has a current priority of 2

● T1 preempts T5

Priority Ceiling Protocol
● T1 requests resource X at time 7

○ Blocked by T5

○ T5 has a current priority of 1

● T5 unlocks X and T1 is unblocked

● T1 unlocks X

● T2 executes and requests resource X

○ T2’s priority equals the priority ceiling

○ T2 locks resource X

● T2, T3, and T5 complete execution

Priority Ceiling Protocol
● Worst case blocking time is the time that a lower priority task has a resource

locked

● Doesn’t block tasks that don’t use shared resources

Stack-Sharing Priority Ceiling Protocol
● Simplifies priority ceiling protocol

● No unbounded priority inversion

● No deadlocks

● No chained blocking

● Uses stack sharing among tasks to reduce overhead due to context switches

○ Normally each task has its own runtime stack to store local variables and return addresses

● Executing task is on top of the stack

○ Task removed from the stack when it completes execution

Stack-Sharing Priority Ceiling Protocol
● Need to make sure that an executing task doesn’t get blocked due to shared

resources

○ That would automatically lead to deadlock because executing task can’t be removed from the top of

the stack

○ Blocking can only occur when a task is first released

● The system’s ceiling priority is updated each time a resource is allocated or freed

● After a task is released, its blocked from executing until its assigned priority is

greater than the system’s ceiling priority

● When a task requests a resource, it’s allocated the resource

Stack-Sharing Priority Ceiling Protocol
● T5 is released and it executes

● T5 locks resource X

○ System’s ceiling priority is updated to 1

● T4 and T3 are released and blocked by

T5

● T5 unlocks X at time 4

○ System’s ceiling priority is updated to 0

● T2 is released and preempts T5

● T2 locks resource Y

○ System’s ceiling priority is updated to 2

Stack-Sharing Priority Ceiling Protocol
● T1 preempts T2

● T1 locks resource X

○ System’s ceiling priority is updated to 1

● T1 unlocks resource X and completes

execution

○ System’s ceiling priority is updated to 2

● T2 executes and locks resource X

○ System’s ceiling priority for X is updated to 1

● T2 unlocks resources X and Y and

completes execution

○ System’s ceiling priority is updated to 0

Stack-Sharing Priority Ceiling Protocol
● T3 has the highest priority and

completes execution

● T4 has the highest priority and

completes execution

● T5 completes execution

Resource Contention with Aperiodic Tasks
● Modify aperiodic and sporadic scheduling algorithms

● The polling server is non-preemptable when the aperiodic task has a locked

resource

○ Task can run past scheduled execution time for polling server

● If the task ran beyond the polling server period, the overrun time is subtracted

from the next instance of the polling server

Resources
J. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2009.

J. Wang, Real-Time Embedded Systems. Hoboken, NJ, USA: Wiley, 2017.

Appendix J

WEEK 7 LECTURE SLIDES

137

Inter-Process Communication
Week 7

Purpose of Inter-Process Communication
● Need to exchange data between threads and synchronize them

● Real-time applications need high bandwidth and low latency

● Used for data sharing between processes on a single core or different cores

Semaphore
● Counting semaphore - stores a value initialized to 0 that can be incremented

● Binary semaphore - special case semaphore that stores 0 or 1

● Mutex - stores a 0 or 1

○ Only one task or process can acquire the mutex

Shared File
● Most basic method

● Can share large amounts of data

● File access is slow

● The sender creates and writes to a file, and the receiver reads from the same file

● Can create a race condition if the file isn’t locked

● The sender needs an exclusive lock so only that process can access the file until it

unlocked

● The receiver needs a lock so the file can’t be edited while it’s reading

Shared Memory
● Fast and simple communication mechanism

○ Minimizes processing and storage overhead

● All cores have access to device memory

● Senders and receivers can communicate by exchanging pointers

○ The sender writes data to a specific memory location, notifies the receiver, and sends the data

pointer to the receiver

○ The receiver can access memory and notifies the sender when it’s finished with data

● Only uses load and store instructions

○ Doesn’t require OS

● Need synchronization mechanism to make sure processors don’t overwrite data

○ Semaphore

Shared Memory
● Using shared memory can lead to priority inversion, where a low priority task

blocks a high priority task because the low priority task is accessing shared

memory

Message Queue
● The sender writes a message to a message queue, and the receiver reads from the

queue

● Doesn’t require synchronization

● Easy to manage with lots of processors

● Multiple queues can be used for different data types

Unnamed Pipes
● For communication between parent and children processes

○ Can’t use for unrelated processes

● One process writes to the pipe, and the other reads from it

○ One file is used to write into and another to read from

● The pipe disappears once it’s closed or if either of the processes terminates

● One-way communication

○ Need two pipes for bi-directional communication

● Has little overhead

Unnamed Pipe Commands
● System call to create an unnamed pipe, fd are file descriptors for reading and

writing

int pipe(int fd[2]);

● Write to the pipe by specifying file descriptor, data, and size of data

write(fd[1], “Hello!”, 7);

● Read from the pipe by specifying file descriptor, buffer, and size of data

read(fd[0], buf, 7);

Named Pipes
● Similar to an unnamed pipe but has a file name that’s stored in memory and can

be accessed by different processes

● Can be used for related or unrelated processes

● Bi-directional communication

● Still exists if one of the processes is terminated

○ Has to be explicitly deleted

IPC Socket
● Bi-directional communication

● IPC sockets use the kernel to support communication between a client and server

● Two processes communicating each have a socket

● A socket address is a network address with a port number

● One process acts as the server and the other as the client

○ The server listens to a specific port and waits for client’s request

○ Accepts connection from the client socket

● Processes can communicate until the channel is closed on either end

Stream Socket
● Requires servant and client to establish a connection first

● Data transmitted in a stream of bytes

● Sequenced - data packets are received in the order they’re sent

● Unduplicated - data packets aren’t duplicated

● Doesn’t keep records of data sent

● Can handle large amounts of data

● Reliable data transfer

Stream Socket Creation
● The server creates a socket, binds a

name to it, and displays the port

number

● The client creates a socket and

requests a connection to the server

● The server accepts, and the client and

server begin communication

Datagram Socket
● Not guaranteed to be sequenced or unduplicated

● Keeps records of data sent

● Less overhead than streaming sockets

● Unreliable - data can fail to arrive

○ More reliable for local networks, less reliable over the internet

● Doesn’t require explicit connection

○ Each packet is individually addressed to the socket address

○ Packets can be sent on different routes

● Works better for record-oriented data

Datagram Socket
● The server creates a socket and binds

a name to it

● The client creates a socket

● The server and client can send

information to each other use each

other’s addresses

Resources
A. De George, “Memory-Mapped Files,” Memory-Mapped Files | Microsoft Docs, 15-Sep-2021. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files. [Accessed: 27-Apr-2022].

M. Kalin April 15, “Inter-process communication in linux: Shared storage,” Opensource.com, 15-Apr-2019. [Online]. Available:

https://opensource.com/article/19/4/interprocess-communication-linux-storage. [Accessed: 27-Apr-2022].

M. Kalin April 16, “Inter-process communication in linux: Using pipes and message queues,” Opensource.com, 16-Apr-2019. [Online].

Available: https://opensource.com/article/19/4/interprocess-communication-linux-channels. [Accessed: 27-Apr-2022].

M. Kalin April 17, “Inter-process communication in linux: Sockets and signals,” Opensource.com, 17-Apr-2019. [Online]. Available:

https://opensource.com/article/19/4/interprocess-communication-linux-networking. [Accessed: 27-Apr-2022].

N. Dahnoun, Multicore DSP. Hoboken, NJ: Wiley, 2018.

T. Whitney, “Windows Sockets: Datagram sockets,” Microsoft Docs, 08-Aug-2021. [Online]. Available:

https://docs.microsoft.com/en-us/cpp/mfc/windows-sockets-datagram-sockets?view=msvc-170. [Accessed: 27-Apr-2022].

T. Whitney, “Windows Sockets: Stream Sockets,” Microsoft Docs, 03-Aug-2021. [Online]. Available:

https://docs.microsoft.com/en-us/cpp/mfc/windows-sockets-stream-sockets?view=msvc-170. [Accessed: 27-Apr-2022].

Appendix K

WEEK 8 LECTURE SLIDES

154

Buses
Week 8

Use for Buses
● A bus is a collection of wires carrying data signals,

addresses, and control signals

● All major components that make up an embedded

board (processors, I/O, memory) are connected via

buses

● Bridges connect buses and carry information from

one bus to another

○ Needed for boards with multiple buses that need to

intercommunicate

Types of Buses
● System bus - connect external main memory and caches to the main CPU

○ Short, high speed, and custom

● Backplane bus - also connect external main memory and caches to main CPU and

I/O

○ Not as fast as a system bus

● I/O bus - connects remaining components on board to the main CPU, each other,

and I/O

○ Standardized

○ Can be short and high speed or long and slow, depending on the protocol used

○ Can handle interrupt request signals

Types of Buses
● Expandable - additional components can be plugged into the board and can

communicate over the bus to other components

○ e.g., USB, PCI, SCSI

○ More flexible

○ More expensive to implement

○ Board performance can be negatively impacted by adding too many components onto the

expandable bus

● Non-expandable - additional components can’t be plugged into the board

○ e.g., I2C, DIB, VME

Bus Arbitration
● Buses need protocols that define how devices gain access to the bus, use the bus,

and the signals associated with various bus lines

● Main device - the device that initiates a bus transaction

● Secondary device - device that can only gain access to a bus in response to a main

device’s request

● Only one main and one secondary can communicate over the bus at any given

time

Bus Arbitration
● When there’s only one main component and all other components are secondary,

no arbitration is needed

● Need arbitrator when there’s more than one main device

○ The arbitrator determines which main device gets control of the bus

● Arbitrators can grant a bus to the main device until the main device is finished

with its transmission, or the arbitrator can preempt devices in the middle of a

transmission

Dynamic Central Parallel Bus Arbitration
● The arbitrator is centrally located and connected to all main devices

● Mains granted access based on first-in-first-out (FIFO) or priority-based system

● For FIFO, there’s a possibility of a single main device maintaining control of the

bus and never completing

Centralized Serial Bus Arbitration
● Arbitrator connects to all main devices, and all main devices are connected in

series

● The first main device in the chain is granted the bus and passes it to the next in

the chain if the bus is no longer needed

Distributed Self-Selection Bus Arbitration
● No central arbitrator or additional circuitry

● Mains share priority information to determine if a higher priority main is

requesting the bus

● Remove arbitration lines and see if there’s a collision on the bus

Bus Timing Scheme
● Synchronous bus - includes clock signal along with data, address, and other

control information

○ All devices run at the same clock rate, and data is transmitted either on rising or falling edge

○ Faster clock for shorter buses and slower clock for longer buses

● Asynchronous bus - doesn’t include clock signal but transmits other signals for

request and acknowledgement

○ More complicated

○ The length of the bus and the number of components communicating over the bus doesn’t matter

Handshake
● Rules that a device needs to follow to complete a transaction (read or write)

○ Varies for different busses

● Generally, handshakes follow a similar process:

○ The main device requests a transaction

○ The secondary device responds with an acknowledgement

○ Address for data involved in the transaction is exchanged

○ Data exchange happens

Bus Performance
● Measured by bandwidth - the amount of data a bus can transfer for a given length

of time

○ Affected by physical design and associated protocols

● A simpler handshake increases bandwidth

● Shorter buses, fewer connected devices, and more data lines increase the speed of

the bus and increase the bandwidth

○ More data lines increases the cost of the board

● Delays in transmission due to handshaking, bus traffic, and different clock

frequencies

Bus Width
● Number of data bits a bus can transmit in a given transaction

● To transmit 32 bits of data over a bus with a bus width of 8, then the data needs to

be sent in 4 different transmissions

Resources
T. Noergaard, Embedded Systems Architecture Oxford, UK: Elsevier Science &

Technology, 2012.

Appendix L

WEEK 9 LECTURE SLIDES

169

Board I/O
Week 9

Background
● Output devices receive data from I/O components and display it in some manner

● Input devices transmit data to board I/O components

● Board I/O impacts the system’s throughput, execution time, and response time

● Almost any electronic system can be connected to an embedded board and act as

an I/O device

I/O Hardware
● Transmission medium - wireless or wired medium connecting I/O device to board

for data communication

● Communication port - what transmission medium connects to on the board or

what receives the wireless signal

● Communication interface - manages data communication between CPU and I/O

devices

○ Responsible for encoding/decoding data

I/O Hardware
● I/O controller - secondary processor that manages I/O device

● I/O bus - the connection between board I/O and main processor

● The main processor integrated I/O

Serial I/O
● Data is stored, transferred, and received one bit at a time

● Includes a serial port and serial interface

● Serial interface manages data transmission/reception between CPU and I/O device

○ Buffers to store and encode/decode data

Simplex Serial I/O
● Data can only be transmitted/received in one direction

Half-Duplex Serial I/O
● Data can be transmitted/received in either direction, but only one direction at a

time

Full-Duplex Serial I/O
● Data can be transmitted/received in either direction simultaneously

Asynchronous Serial I/O
● Intermittent data stream at irregular intervals

● Data is stored and modified in the transmission buffer

● The serial interface creates packets of data

● Packets are then put into frames to be transmitted

○ A frame is a packet with a start bit at the beginning and a stop bit at the end

○ May also include parity bit for error checking

● The communication channel is idle between transmitting frames

● The receiver receives the start bit and starts shifting in bits to receive buffer until

it reaches the stop bit

○ The data rate of receiving/transmitting has to be synchronized between serial interfaces

○ Receiving and transmitting devices have their own clock

Asynchronous Serial I/O

Synchronous Serial I/O
● Continuous data stream at regular regulated by the CPU clock

● No start and stop bits and no idle period

● Data rates for receiving and transmitting must be in sync

○ Synchronized off of a common clock

Parallel I/O
● Transfer data in multiple bits simultaneously

● Includes parallel port and parallel interface

● Parallel interface manages data transmission/reception between CPU and I/O

device

○ Decodes/encodes data bits

● Can do simplex, half-duplex, and full-duplex transmission

● Can transmit data synchronously and asynchronously

I/O Performance
● Data rates of I/O devices and the speed of the main processor can vary

significantly

○ If the I/O device is much slower than the main processor, then the I/O device may miss data from

the processor

○ Need to synchronize speed of I/O device and main processor

● How the I/O device and main processor communicate affects performance

○ Having an I/O controller frees space on the main processor

○ Whether the communication is interrupt-driven, polled, or memory-mapped

Measure I/O Performance
● Throughput - the maximum amount of bytes per second that can be processed

○ The lowest throughput device drives the performance of the whole system

● Execution time - the time it takes to process all data

● response/delay time - the amount of time between a request to process data and

the time the component begins processing

Resources
T. Noergaard, Embedded Systems Architecture Oxford, UK: Elsevier Science &

Technology, 2012.

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	2 BACKGROUND
	2.1 What are Real-Time Embedded Systems?
	2.2 Real Time Embedded Systems (CPE/EE 442) Course
	2.3 Advanced Real Time Embedded Systems (CPE/EE 542) Course
	2.4 Course Material
	2.4.1 Raspberry Pi 3 and 4
	2.4.2 Zync Z7 SoC Development Board

	2.5 Cal Poly Quarters to Semesters Transition
	2.6 ABET Accreditation

	3 LITERATURE REVIEW
	3.1 An Interdisciplinary Curriculum on Real-Time Embedded Systems
	3.2 A Course on Advanced SOC FPGA in Embedded Systems
	3.3 Conclusions from Literature Review

	4 CURRICULUM
	4.1 Goals for Advanced Real Time Embedded Systems Course
	4.2 Challenges of Creating and Teaching Advanced Real Time Embedded Systems
	4.3 Approach for Course Structure and Material
	4.4 Quarter-Long Project
	4.4.1 Project Requirements
	4.4.2 Project Deliverables

	4.5 Research Topic Presentation
	4.6 Course Topics
	4.6.1 Textbooks
	4.6.2 Lecture Material

	4.7 ABET Criteria
	4.7.1 Criteria for Accrediting Engineering Programs
	4.7.2 Program Education Objectives

	5 CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Future Work

	A Syllabus
	B Quarter-Long Project Description
	C Research Topic Presentation Description
	D Week 1 Lecture Slides
	E Week 2 Lecture Slides
	F Week 3 Lecture Slides
	G Week 4 Lecture Slides
	H Week 5 Lecture Slides
	I Week 6 Lecture Slides
	J Week 7 Lecture Slides
	K Week 8 Lecture Slides
	L Week 9 Lecture Slides

