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ABSTRACT 

Neural Network Based Diagnosis of Breast Cancer Using the BreakHis Dataset 

Ross Dalke 

 

 Breast cancer is the most common type of cancer in the world, and it is the second deadliest 

cancer for females. In the fight against breast cancer, early detection plays a large role in saving 

people’s lives. In this work, an image classifier is designed to diagnose breast tumors as benign or 

malignant. The classifier is designed with a neural network and trained on the BreakHis dataset. 

After creating the initial design, a variety of methods are used to try to improve the performance of 

the classifier. These methods include preprocessing, increasing the number of training epochs, 

changing network architecture, and data augmentation. Preprocessing includes changing image 

resolution and trying grayscale images rather than RGB. The tested network architectures include 

VGG16, ResNet50, and a custom structure. The final algorithm creates 50 classifier models and 

keeps the best one. Classifier designs are primarily judged on the classification accuracies of their 

best model and their median model. Designs are also judged on how consistently they produce their 

highest performing models. The final classifier design has a median accuracy of 93.62% and best 

accuracy of 96.35%. Of the 50 models generated, 46 of them performed with over 85% accuracy. 

The final classifier design is compared to the works of two groups of researchers who created 

similar classifiers for the same dataset. This will show that the classifier performs at the same level 

or better than the classifiers designed by other researchers. The classifier achieves similar 

performance to the classifier made by the first group of researchers and performs better than the 

classifier from the second. Finally, the learned lessons and future steps are discussed. 

 

Keywords: Breast cancer, BreakHis dataset, Histopathological images, Convolutional neural 

network, Deep learning, Medical imaging, Breast cancer recognition 
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CHAPTER 1. INTRODUCTION 

1.1 Problem Statement 

Breast cancer is the most common type of cancer globally, accounting for 12% of newly 

identified cancers each year. Of those cases, 85% of patients have no family history of breast 

cancer. In the U.S., around 1 in 8 females and 1 in 833 males will develop invasive breast cancer 

over their lifetime. While technology has improved our ability to detect and diagnose breast cancer 

more effectively, it is still killing a tragic number of people. For females in the US, breast cancer 

has the second highest death rate of all other cancers; it is projected that breast cancer will kill over 

43,000 of them in 2022 [1].  

Humans have known about breast cancer and have been trying to treat it since at least 3,000 

to 2,500 B.C.E. Back then, breast cancer was typically diagnosed through surgery or post-mortem 

autopsy. It was not until the mid 19th century that more modern methods of breast cancer detection 

started forming. In 1847, the invention of the microscope led to advances in the field of 

histopathology: the study of tissues related to disease [2]. Microscopy allowed for a more detailed 

look at the cells within different types of tumors, making it possible to diagnose them more 

accurately. Later, in 1895, the first X-ray was taken, which would eventually lead to the use of 

mammograms for a non-invasive method for imaging cancer. These technological advances made 

it much more possible to detect cancer in earlier stages and study its development. 

There are now many modalities used for breast cancer imaging and detection. They include, 

mammography, ultrasound, thermography, MRI, positron emission tomography (PET) scans, CT 

scans, excisional biopsy, etc. While many of these methods are very good at identifying where a 

tumor exists, they are not as useful when it comes to making a diagnosis of how dangerous the 

tumor is. In the field of histopathology, samples from excisional biopsies are used to take 

microscopic images of tumor cross sections for diagnosis. Since the microscopic images are taken 

directly from a tumor and provide a lot of detail, they are extremely useful for differentiating types 

of tumors and their severity. 
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Though there have been many advancements in the detection, diagnosis and treatment of 

breast cancer, it is still the second deadliest cancer for females. Fortunately, these advancements 

have made it so that deaths from breast cancer have decreased by 1% per year from 2013 to 2018 

[1]. Early detection and diagnosis of breast cancer is crucial for the survival of patients. When 

breast cancer is detected and properly diagnosed at an early stage, the patient’s five year relative 

survival rate is 93% [3]. With evidence that a proper diagnosis can drastically reduce the chance of 

death due to breast cancer, it is important that diagnosis algorithms, such as image classifiers, 

continue to improve their accuracy so that the death rates keep dropping. If early detection and 

diagnosis technologies continue to improve, dying from breast cancer could become a thing of the 

past. This paper discusses the design of an image classifier that aims to improve the accuracy of 

early diagnosis of breast cancer so that more lives can be saved. 

1.2 Purpose of Study 

 The purpose of this work is to develop an image classifier that is capable of diagnosing 

breast tumors as benign or malignant. The classifier uses labeled histopathological images taken 

from excisional biopsies because they are the most informative image type for classifying tissues. 

The Breast Cancer Histopathological Image Classification (BreakHis) dataset [4] was designed 

exactly with this purpose in mind, so it is used for this project. The dataset was created in 2016, so 

it is fairly recent.  

Since there is an abundance of data in the BreakHis dataset, the classifier is designed with 

convolutional neural networks. The project focuses on improving the initial classifier design so that 

it achieves a higher classification accuracy. This involves studying how image resolution and 

changing images to grayscale affect the classification accuracy. This work also studies how the 

number of training epochs influences the performance of the final model. Several neural network 

architectures including VGG16, ResNet50 and custom architectures are compared to see which 

structure improves the classifier. Finally, a data augmentation method is investigated to see if it can 

improve the classification accuracy. 
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The project does not focus on image segmentation or tumor detection. Segmentation is 

typically performed to extract the location of a tumor from an image. Since the images are tissue 

samples taken directly from a tumor, the segmentation step is not necessary. 

The final classifier is compared to the results of two other groups of researchers that created 

similar classifiers using the same dataset. The learned lessons and next steps are discussed in the 

final chapters of this report. It is hoped that this study will provide information to other researchers 

exploring neural network structures or working with the BreakHis dataset. Specifically, it should 

help them determine the best way to develop an algorithm for breast cancer classification. Ideally, 

this work will contribute to the next 1% decrease in breast cancer’s death rate. 

  



4 
 

CHAPTER 2. BACKGROUND 

2.1 Breast Cancer 

 Tumors have two main classifications: benign or malignant. Benign tumors are 

characterized by distinct, smooth, regular borders. They do not spread to other areas of the body, 

so they are considered to be safe when found in breast tissue. Malignant tumors tend to have 

irregular borders and grow faster than benign tumors, sometimes spreading to other parts of the 

body and invading nearby tissue [5].  

The BreakHis dataset (described further in Chapter 2.2) has eight subclassifications to 

describe more specific tumor diagnoses. Benign tumors include adenosis, fibroadenoma, phyllodes 

tumor and tubular adenoma. Malignant tumors (breast cancer) include ductal carcinoma, invasive 

lobular carcinoma, mucinous carcinoma, and papillary carcinoma.  

Benign tumors are shown in Figure 2.1.1. Adenosis (Figure 2.1.1 a) is when the lobules 

(milk-producing glands) become enlarged and more plentiful. This is a benign condition that has 

low likelihood of becoming malignant [6]. Fibroadenomas (Figure 2.1.1 b) are benign tumors that 

consist of glandular and stromal (connective) tissues. These benign tumors are more common than 

the other benign cases [7]. Phyllodes tumors (Figure 2.1.1 c) are typically benign, but about 1 in 4 

cases will be malignant [8]. Since malignant phyllodes tumors are made within the connective 

tissues of the breast, rather than the milk ducts, they are classified as a cancer of connective tissues 

(sarcoma) instead of breast cancer [9]. Since phyllodes tumors are very rare, most likely benign, 

and less deadly than breast cancer, they are classified as benign in this dataset. The last type of 

benign tumor in the dataset is tubular adenoma or pure adenoma (Figure 2.1.1 d). These are rare 

tumors that are characterized to have microscopic tubular structures that don’t vary much in size 

[10].  
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Figure 2.1.1: Benign Samples from BreakHis dataset: a) Adenosis, b) Fibroadenomas,  

c) Phyllodes Tumor, d) Tubular Adenoma 

 

Malignant tumors are shown in Figure 2.1.2. Ductal carcinoma (Figure 2.1.2 e) is the most 

common type of breast cancer; about 80% of invasive breast cancers in females and 90% in males 

are invasive carcinoma. This type of breast cancer starts in the cells that line the milk ducts 

[11].  The next most common type of breast cancer is lobular carcinoma (Figure 2.1.2 f), which is 

cancer that has leaked through the lobule and invaded the tissues of the breast. This accounts for 

about 10% of breast cancers [12]. Mucinous Carcinoma (Figure 2.1.2 g) is a rare subcategory of 

invasive ductal carcinoma. The tumor is a cluster of abnormal cells that seem to ‘float’ in pools of 

mucin [13]. Papillary Carcinoma (Figure 2.1.2 h) is the most rare type of invasive ductal breast 

cancer: accounting for fewer than 1% of all breast cancers. This carcinoma is characterized by 

“finger-like projections, or papules,” that can be seen under a microscope [14]. 
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Figure 2.1.2: Malignant Samples from BreakHis dataset: e) Ductal Carcinoma, f) Lobular 

Carcinoma, g) Mucinous Carcinoma, h) Papillary Carcinoma 

 

 Breast cancer is common and very dangerous. As of 2021, breast cancer was the most 

common type of cancer globally, accounting for 12% of newly identified cancers each year. Of 

those cases, 85% of them have no family history of breast cancer. In the U.S., around 1 in 8 females 

and 1 in 833 males will develop invasive breast cancer over their lifetime. For females in the US, 

breast cancer has the second highest death rate of all other cancers; it is projected that breast cancer 

will kill over 43,000 of them in 2022 [1]. 

2.2 BreakHis Dataset Description 

 The Breast Cancer Histopathological Image Classification (BreakHis) dataset—built by 

the Pathological Anatomy and Cytopathology Laboratory in Parana, Brazil—is used for this 

project. Histopathology is the study of diseases of the tissues; histopathological images are 

microscopic images of tissues that can be examined to help diagnose tissue diseases and 

abnormalities [15]. For this dataset in particular, the tissue samples (like the one in Figure 2.2.1 

[16]) were taken from suspicious lumps or bumps in breast tissue and imaged with a microscope.  
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Figure 2.2.1: Histopathological Image from BreakHis Dataset [16] 

The BreakHis dataset has professional annotations that label each tissue sample as ‘Benign’ 

or ‘Malignant’ tissue. The dataset also has eight subclassifications to describe more specific 

diagnoses, shown in Figure 2.2.2.  Benign tumors include adenosis (a), fibroadenoma (b), 

phyllodes tumor (c) and tubular adenoma (d). Malignant tumors (breast cancer) include ductal 

carcinoma (e), invasive lobular carcinoma (f), mucinous carcinoma (g), and papillary carcinoma 

(h). These were defined in Chapter 2.1. 

 

Figure 2.2.2: Examples from BreakHis dataset 
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 The tissue samples were collected from 82 patients. Varying magnifications were used for 

imaging the samples, including 40X, 100X, 200X and 400X. There are 2,480 benign samples and 

5,429 malignant samples for a total of 7,909 images. Table 2.2.1 breaks down the BreakHis 

structure in more detail. Each image has a resolution of 700x460 pixels with 3-channel RGB and 

8-bit resolution for each color channel [16]. 

Table 2.2.1: BreakHis 1.0 Structure [4] 

 

 The main folder structure [16] for the BreakHis Dataset is shown in Figure 2.2.3a. Under 

each main classification folder (benign or malignant), the sub folders are split into the 

corresponding subclassifications. For example, the benign folder contains the samples for adenosis, 

fibroadenoma, phyllodes tumor, and tubular adenoma, as shown in Figure 2.2.3b. The SOB file is 

there because all samples were collected using the SOB method, also known as partial mastectomy 

or excisional biopsy. Each subclassification has folders for each patient, and further separates these 

samples into the magnification factors used for imaging. Figure 2.2.3c shows that the Adenosis 

subclass has 4 patients and separates the images into folders based on magnification factor. This 

effectively sorts the images by binary classification, collection method (all SOB), 

subclassifications, patient, and magnification. 



9 
 

 

 

 

a) Main folder structure b) Subclassifications for Benign c) Patient and Magnification 

Figure 2.2.3: BreakHis Dataset Folder Structure 

2.3 Limitations of the BreakHis Dataset 

 One downside with this dataset is that it uses histopathological images. This means that 

any classifiers built using this data will require biopsies to test patients. Since taking these images 

involves scraping tissues from lumps in or on breasts, the procedure can be very invasive. Other 

imaging techniques that can be used for breast cancer are far less invasive. For example, 

ultrasounds, mammograms and MRI don’t require tissue samples to be removed from the patient 

[17].  

 Another downside is that it requires prior knowledge of where the lump is in the breast. If 

the lump is small or deep in the tissue, it may be more difficult to find. It is likely that another form 

of imaging, such as an x-ray, will be needed to find the correct location of the tumor before taking 

the sample. In that case, it would be convenient if the classifier worked with the same imaging type 

that is used to find the lump.  

 The dataset is also imbalanced [18], meaning that there are differing numbers of samples 

belonging to each class. Benign samples are only 31.36% of the total dataset whereas malignant 

samples make up the remaining 68.64%. A classifier trained with this data will be biased towards 

predicting a malignant label because of this imbalance. This may be desirable, depending on if it is 
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worse to return false positives or false negatives. However, this makes it harder to implement a 

classifier with no bias.  

2.4 Advantages of the BreakHis Dataset 

 Since histopathological images are taken directly from areas of interest, it isn’t necessary 

to perform segmentation and feature extraction before classification. Typically, segmentation is 

performed to detect where the potential tumor is, but this is not necessary for this dataset. Since 

segmentation does not need to be performed, it makes designing the classifier much simpler. 

Allowing for a smaller scope makes it so the project can delve further into the classifier design. 

Using histopathological images also makes it so that all of the data in the image is used for 

classification instead of just the segmented section. Figure 2.4.1, shows that the lump in a 

mammogram is a very small portion of the image; a classifier would not have as much data to work 

with if it used a mammogram. Using histopathological images makes it so that the classification 

process is simpler and more data can be used for making classification decisions. 

 

Figure 2.4.1: Example of a Mammogram with a tumor [19] 

2.5 Comparing Deep Learning and Traditional Computer Vision 

 In “Deep Learning vs. Traditional Computer Vision,” by Niall O’ Mahony et al. [20], the 

authors explore the advantages and disadvantages of deep learning (DL) compared to traditional 

computer vision (CV) techniques. The paper also defines terms related to deep learning, problems 

that are solved by deep learning, and problems not suited for deep learning 
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Deep learning is a type of machine learning that heavily relies on artificial neural networks 

(ANNs), which were inspired by the neurons in the human brain. Each neuron is a computing cell 

that performs a simple operation and sends information to surrounding neurons. Through these 

interactions, the neural network can make decisions. By adding more layers of neurons, more 

intricate connections can be made, allowing for complex decisions to be made. In image processing, 

deep learning is used to solve difficult problems like image colorization, classification, 

segmentation, and detection. 

Using deep learning algorithms to solve these issues has made it so that better results can 

be achieved. Another advantage is that the neural networks and models are retrainable for use in 

other datasets. Traditional computer vision techniques are less flexible, so they need more work 

from the engineers in order to work with another dataset. For example, assume that there is a model 

that successfully classifies images as a handwritten “0” or “1” and it needs to be adapted so that the 

algorithm classifies images as either “cat” or “dog.” With a traditional algorithm, this adaptation 

would require an engineer to perform feature analysis on the images of cats and dogs to figure out 

which features to use. The program would then have to be changed to extract these features. With 

a deep learning algorithm, the dataset could be swapped out and the model retrained. There would 

be no extra steps like feature analysis for the engineer. When there are more classes involved, 

feature analysis becomes more burdensome, so it makes the classical algorithms harder to develop. 

Mahony et al. provides Figure 2.5.1 to show the difference between traditional computer 

vision workflow and deep learning workflow. Since the deep learning algorithm figures out the 

underlying patterns of features that are useful for classification, it removes the manual feature 

extraction that has to be done for traditional methods. For a deep learning model to work with new 

data, the model just has to be retrained with the new dataset. 
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Figure 2.5.1: (a) Traditional Computer Vision workflow vs. (b) Deep Learning workflow [20] 

 While deep learning has many benefits, it can sometimes be overkill for certain projects. 

For example, if a classification problem can be solved by analyzing just a few features, it does not 

require a computationally intense algorithm to solve the issue. Traditional methods are capable of 

solving complicated problems in fewer lines of code, less cost, and much more efficiently than deep 

learning. Deep learning is considered very computationally intense and it requires a lot of time for 

training. It is often considered the brute force solution to computer vision because of its lack of 

elegance when compared to traditional methods. Deep learning algorithms are only viable when 

there is a need to analyze very large amounts of data in order to make a difficult decision.  

 Another issue with deep learning is that it is hard to tell how it came to a decision. Unlike 

traditional techniques, there isn’t a way to know what features are being considered. It is also 

extremely difficult to manually tweak parameters because of the complex inter-relationships 

between hundreds or thousands of nodes. The black-box nature of deep learning makes it difficult 

to tweak performance, which is an issue for trying to fix issues like over-fitting. It is much easier 

to troubleshoot a traditional model because it has full transparency. 

 Mahony et al. concludes that deep learning has made a lot of traditional methods of 

computer vision irrelevant, but some traditional techniques are still useful for when deep learning 

is considered overkill. The authors also note that knowing only deep learning methods will greatly 
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restrain the kinds of solutions that can be made for solving computer vision problems. Whether or 

not deep learning is applied comes down to how complicated the decision is, how much computing 

power and time is available, and how much data is available for training. 

2.6 Conclusions from Background 

Even though breast cancer mostly only affects females, it is the most common type of 

cancer. For females, it has the second highest death rate of all cancers. Studies have shown that 

improvements in early detection have been able to decrease the death rate even as cases of breast 

cancer increase.  

 In order to decrease the number of deaths due to breast cancer, it is important that computer 

vision algorithms are made to diagnose breast cancer. After reading the paper by Niall O’ Mahony 

et al., deep learning should be used for this project for several reasons. The BreakHis dataset has 

over 7,909 samples, so there is a large amount of data available for training the neural network. 

The diagnosis of cancer is complex: it’s easier to make a neural network do the feature mapping 

and classification than it would be to design a traditional computer vision algorithm. With access 

to a remote server, there is easy access to large amounts of computing power, which is needed for 

deep learning. The project was performed over the course of an academic year, so there was not 

much of a time constraint. Most importantly, the higher performance achieved by the deep learning 

models is preferred for a diagnosis that could be the difference between life and death. The 

flexibility of neural network structures is another important factor, as this will allow others to build 

off of the results of this project, even if they are using a different dataset. 
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CHAPTER 3. LITERATURE REVIEW 

3.1 Exploring the Effects of Neural Network Structures on Classifier Performance 

 In “Breast Cancer Classification from Histopathological Images with Inception Recurrent 

Residual Convolutional Neural Network,” by Md Zahangir Alom et al. [21], the authors test their 

neural network structure against other deep learning structures. The BreakHis dataset is one of two 

histopathological datasets that are being used to test the performance of the classifier. In the paper, 

the authors describe their neural network, data augmentations, and results. They also compare 

testing accuracy differences for multi-class and binary classification. 

 The authors’ goal was to create a deep convolutional neural network (DCNN) that 

combines the strengths of the Inception Network (Inception-v4), the Residual Network (ResNet), 

and the Recurrent Convolutional Neural Network (RCNN). The resulting network is called the 

Inception Recurrent Residual Convolutional Neural Network (IRRCNN) model. 

 Using the BreakHis dataset, they split the data into training, validation and testing datasets. 

For the training dataset, the samples were used to create more training samples. They did this by 

creating 21 copies of each image and applying augmentations like rotation, shift, shear, zooming, 

and flipping to each image to create an augmented training dataset that was 22 times as large as the 

original training dataset. Noise was also added in some parts of the images to help reduce the 

likelihood of overfitting the data. Figure 3.1.1 shows examples of the augmented images compared 

to the original images. 
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Figure 3.1.1: Four Example Images with Corresponding Augmented Images [21] 

 The validation dataset was used for an unbiased evaluation of how well the model 

performed as it was being trained. Typically, the entire training set is passed through the model in 

a fitting stage, this is defined as 1 epoch. The validation set is then passed through the model for an 

unbiased test of how well the model is currently classifying data. As more epochs are run, the 

classification rates for the training data and validation data should both increase, showing that the 

model is improving. However, if the validation data stops improving, it could mean that the model 

is overfitting the training data. Overfitting the model would make it so that the classifier does not 

classify new data as well, decreasing the performance. It is also possible that the model converges 

to a classification rate, so training over more epochs will not improve the results and waste time. 

For this paper, the authors showed the testing and validation accuracies over 150 epochs. Figure 

3.1.2 shows that validation and testing accuracies eventually converged, but there was an 

unexpected degradation to the accuracy around 50 epochs.  
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Figure 3.1.2: Training and Validation Accuracy for Multi-class IRRCNN Classifier at Different 

Magnification Factors [21] 

 After training the model using varying structures, the test dataset was used to get the 

performance for each magnification. The IRRCNN model was also trained without the augmented 

data to show the improvements made by adding more data. To make a final diagnosis for a patient, 

the diagnosis for each of the patient’s samples was taken into account. By diagnosing patients using 

all of the samples taken from them, the patient-level accuracy was calculated. The multi-class 

classifier results are shown in Table 3.1.1 and the binary classifier results are shown in Table 3.1.2. 

In both cases, the IRRCNN structure out-performed all of the other structures that it was tested 

against, achieving an image-level classification rate around 95 to 97% on average. The binary 

classifier performed slightly better than the multi-class classifier. Adding augmented data to the 

training set improved the results of the IRRCNN by roughly 1% to 1.5%. 
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Table 3.1.1: Breast Cancer Classification Results for Multi-Class [21] 

 

Table 3.1.2: Breast Cancer Classification Results for Binary Classification [21] 

 

 For the BreakHis dataset, the authors concluded that their work achieves 1.05% and 0.55% 

improvement in average performance against the highest accuracies reported for image and patient 

level analysis in their sources. For the other dataset, they achieved 100% testing performance by 

using a winner takes all method to produce the final results per patient. 

3.2 Binary vs Multicategory Classification and Limitations of BreakHis Dataset 

 In “BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, 

survey and insights,” by Yassir Benhammou et al. [18], the authors explored the strengths and 

limitations of the BreakHis dataset. They covered common issues with datasets and discussed the 

structure and organization of the BreakHis dataset. The authors explored the results of designing 
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classifiers based on magnification dependence/independence as well as multi-category/binary 

classification. 

The dataset has two main categories (benign/malignant), eight subcategories, and images 

of varying magnifications (40X, 100X, 200X, 400X). This means that many different types of 

classifications can be made. The authors analyzed Magnification-Specific Binary (MSB), 

Magnification-Independent Binary (MIB), Magnification-Specific Multi-category (MSM) and 

Magnification-Independent Multi-category (MIM) classifications. They decided that 

Magnification-Independent Multi-category (MIM) classifications provide the most information to 

practitioners, so most of their testing used MIM classification. 

 According to the authors, one of the issues of the BreakHis dataset is data imbalance. Since 

there are more malignant samples than benign, it makes it so that the classifier is biased towards 

making a malignant diagnosis. There are also imbalances between all of the subcategories for both 

benign and malignant. Ideally, there would be an equal amount of samples taken for every 

subcategory, which would make the decision unbiased for choosing one class over the other. 

 The other issue in the BreakHis dataset is label noise. For the patient with ID 13412, some 

of the images contain both ductal carcinoma and lobular carcinoma. This makes it so that the image 

appears in both subcategories. This can confuse the model during a multi-category classification 

task as it tries to establish the difference between the two subcategories. 

 To try to solve the data imbalance, they decided to add augmented data to the training data. 

Ideally, more benign images would be added to the training dataset so that the data would become 

more balanced. The final augmentations used were random rotation (Rot), random flip (Flip), and 

stain normalization (SN). As shown in Table 3.2.1, most of the improvements were obtained by 

just rotating and flipping. 
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Table 3.2.1: The Results of Each Stage of MIB and MIM Model [18] 

 

 From this data, the authors concluded that the dataset is not ready to be used for MIM 

applications. However, the MIB classifier worked well. The best way to improve the dataset would 

be to balance the data and add more labels so that it makes it easier to merge with other datasets. 

This paper also showed the importance of adding augmented data, and showed that simple 

augmentations such as rotation and flipping are enough to see significant improvements. 

3.3 Conclusions from Literature Review 

 The paper by Md Zahangir Alom et al. has the greatest impact on the design of the deep 

learning algorithm. The results showed that binary classification performed slightly better than the 

multi-class classifier. This was also backed in the paper by Yassir Benhammou et al., which showed 

much greater performance by the binary classifier. Though binary classification loses some 

valuable information for making a diagnosis for the subclasses, the simpler design and higher 

classification accuracy are the most important factors for this project.  

Alom et al. also showed that creating 21 new images using data augmentation could 

improve the accuracies achieved by a small amount. However, it is important to note that there is 

no rule of thumb for how many augmented images to create. Since increasing the size of the training 

set will cause longer run times, this project experiments with smaller augmented datasets. For 

example, augmentations increase the amount of training data by 20% instead of 2200%. This will 

show other researchers which approach is better, so that they have a better idea of what to do in 

their own designs. The data augmentation suggested by Yassir Benhammou et al. are easier to 

implement than the augmentation presented by Alom et al.. The simpler augmentations consist of 

just rotation and flipping, and achieve similar improvements in performance from just those 
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changes. To keep it simple, rotation and flipping are the only augmentations made to the training 

dataset for this project. 

The results from Alom et al. also provide references for “good” classifiers; it seems that 

classifiers performing with upper 80’s or lower 90’s are good classifiers, whereas everything above 

that is a great classifier. While it is possible to create a classifier with accuracy in the upper 90’s, it 

probably takes very complicated structures such as the IRRCNN structures to be built. Exploring 

and implementing all of these structures would take a lot of time. In order to allow more time to 

explore more aspects of deep learning, fewer structures are used in this project. Another important 

lesson that Alom et al. teaches is that the number of training epochs plays a big role in the 

performance of the classifier. It is important to test over many epochs to achieve high accuracy, but 

only so long as the validation accuracy keeps improving.  
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CHAPTER 4. CLASSIFIER DESIGN 

4.1 Acquiring and Preprocessing Data 

 The first step in building the classifier is downloading the dataset that is used for training 

and testing the model. TensorFlow Core’s tutorial on loading and preprocessing images with keras 

[22] is used for guidance in this process. Code Block 4.1.1 shows how the data is downloaded and 

the datapath is defined. When Docker (a tool used for installing the libraries and running scripts on 

the server) closes, it deletes any folders that aren’t associated with the main folder. Unfortunately, 

the keras get_file method shown below will automatically save the dataset to a temporary folder 

outside of the main folder. So anytime that Docker is closed or the server is disconnected, it will 

delete the data folder. This means that everytime Docker is initially opened after logging off the 

server, it has to redownload the data folder. So the get_data function is written so that it will check 

if the temporary folder exists. If it does, then the data is already downloaded and the datapath is 

returned. Otherwise, the file path will be created and the BreakHis dataset will be downloaded. 

def get_data(): 

    # Check if path exists 
    path = "/tmp/.keras/datasets" 

    if not os.path.isdir(path): 

         

        # Create the dataset path in the Docker container 
        os.makedirs(path) 

 

        # Define Dataset url (Download Link) 
        dataset_url = "http://www.inf.ufpr.br/vri/databases/BreaKHis_v1.tar.gz" 

 

 
        # Download data and define directory path 

        data_dir = tf.keras.utils.get_file(fname=None, origin=dataset_url, untar=True) 

        data_dir = pathlib.Path(data_dir)/'histology_slides/breast/' 

 
    # Data is already downloaded. Define Path 

    else: 

        print('\nData Directory Exists\n') 
        data_dir = '/tmp/.keras/datasets/BreaKHis_v1/histology_slides/breast' 

 

    return data_dir 

Code Block 4.1.1: Downloads BreakHis Dataset 
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 Now that data is temporarily stored on the server, the dataset is accessed with the 

image_dataset_from_directory method from keras, as shown in Code Block 4.1.2. This method 

creates a dataset with class labels based on the folders found under the data directory defined earlier. 

Since the goal is binary classification, the data directory opens the “breast” folder, which has access 

to the “Benign” and “Malignant” folders. This returns a TensorFlow Dataset object that has all of 

the images and their associated labels: 0 for a benign sample and 1 for a malignant sample. 

# Access dataset from directory. 

ds = tf.keras.utils.image_dataset_from_directory( 

    data_dir, 
    color_mode = "rgb", 

    seed=123, 

    image_size=(700, 460), 
    batch_size=32, 

    shuffle=True) 

Code Block 4.1.2: Returns an Object Containing the Dataset 

It is important to note that this method is also responsible for preprocessing the whole 

dataset. For example, changing the color_mode parameter from “rgb” to “grayscale” converts all 

of the images from 3 channel RGB to 1 channel grayscale. This is also where all images can be 

rescaled. Since the images are 700x460, this is the initial size used because it maximizes the amount 

of data available per image. Since the data is well organized in the folder structure, it is important 

to shuffle the data. This makes it so that the model is more properly exposed to all classes and 

subclasses during training and testing. If the dataset is not shuffled, it would be detrimental to the 

performance of the classifier. A seed is provided so that the data is consistently shuffled every time. 

According to Jason Brownlee [23], another important parameter for the dataset is the batch 

size, which has an effect on how the model is trained. The first step in training is using the current 

state of the model to make a prediction for the class label of an image. That prediction is then 

compared to the true label values using a loss function as an estimate of the error gradient. The 

error gradient is used to update the model weights to improve the model and the process is repeated. 

This process is also known as the stochastic gradient descent optimization algorithm. The error 
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gradient is a statistical estimate, so using a larger set, or batch, of training samples per estimate will 

represent the error gradient more accurately. With a better estimate, it is more likely that the weight 

adjustments made will improve the model. In practice, smaller batch sizes are used because it 

reduces the amount of space needed in memory. Typically, a batch size of 32 is a good default 

value [23]; this is also the default parameter value given by keras. 

 The next step in preprocessing the data is partitioning the dataset into three smaller datasets, 

as shown in Code Block 4.1.3. The training dataset is the largest of the three because it is used for 

training the model. The test set is used for an unbiased evaluation of the final model’s performance. 

The validation set is used for “unbiased” evaluation at the end of each training epoch. This 

evaluation is also used to tune the model’s hyper parameters between epochs. Hyperparameters are 

values that affect training, but cannot be changed during training. So with more uses, the model 

will slowly become slightly biased towards the validation set [24]. Aside from tuning hyper 

parameters, the validation set is also used for assessing if the model is overfitting the training data 

or if the model stops improving. A train:validate:test ratio of 80:10:10 is used. 

def get_dataset_partitions(ds,ds_size,train_spl=0.8,aug_spl=0,val_spl=0.1,test_spl=0.1): 

     

    # Check that spl values sum to 1. 

    assert (train_spl + test_spl + val_spl) == 1 
     

    # spl the data: 80% training, 10% Validation, 10% testing 

    val_ds = ds.take(val_size) 
    test_ds = ds.skip(val_size).take(val_size) 

    train_ds = ds.skip(val_size).skip(val_size) 

     
    return train_ds, val_ds, test_ds 

Code Block 4.1.3: Partitions Dataset into Training, Validation, and Testing Dataset 

4.2 Defining and Training the Model 

 Now that the data is split into training, validation and testing datasets, the model can be 

defined using keras. The initial model (shown in Code Block 4.2.1) comes from the TensorFlow 

Core tutorial [22] that shows how to train a model after creating the dataset.  
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# Example from https://www.tensorflow.org/tutorials/load_data/images 
def define_model(): 

 

    '''Create model (Original)''' 

    model = tf.keras.Sequential([ 
        tf.keras.layers.Rescaling(1./255), 

        tf.keras.layers.Conv2D(32, 3, activation='relu'), 

        tf.keras.layers.MaxPooling2D(), 
        tf.keras.layers.Conv2D(32, 3, activation='relu'), 

        tf.keras.layers.MaxPooling2D(), 

        tf.keras.layers.Conv2D(32, 3, activation='relu'), 
        tf.keras.layers.MaxPooling2D(), 

        tf.keras.layers.Flatten(), 

        tf.keras.layers.Dense(128, activation='relu'), 

        tf.keras.layers.Dense(2) 
    ]) 

     

    '''Compile the Model''' 
    model.compile( 

        optimizer='adam', 

        loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), 
        metrics=['accuracy']) 

 

    return model 

Code Block 4.2.1: Defining and Compiling Model 

The model has a layer for rescaling the magnitude of the image data to be within a range 

of [0, 1] instead of [0,255]. This is a way of normalizing the data so that calculations do not grow 

out of that range. This is followed by three convolutional blocks with a max pooling layer for each 

of them. The convolutional block uses 32 filters, which means that this layer outputs 32 feature 

maps. These feature maps are the result of convolving the 2D input image with smaller 2D kernels. 

Feature maps might contain information such as vertical/horizontal edges, curves, flat areas, etc., 

but it is more likely that the features are more abstract than these examples. The kernel size is set 

to 3, meaning that a 3x3 (minimum size) kernel will be used in the convolution. After defining the 

feature maps, they are used as the input to a max pooling layer, which simplifies the representation 

of the feature map. As shown in Figure 4.2.1, it does this by selecting the max element from the 

section of the image that is covered by the max pooling filter [25]. Max pooling filter size is 2x2 

by default.  
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Figure 4.2.1: Max Pooling Example [25] 

 The simplified feature maps are then used as input for a flattening layer. The flattening 

layer converts the 2D feature maps into a single linear vector. The first dense (or fully connected) 

layer receives the vector and uses every point in the vector as input to a layer of 128 neurons. Each 

neuron computes a calculation with the inputs. The final dense layer uses all of the 128 nodes from 

the previous layer to calculate the output layer, which is only 2 nodes. The value contained by each 

node will be related to the probabilistic strength that the original image belonged to the class 

represented by that node. A similar structure with the same components is shown in Figure 4.2.2 

for reference. 

 
Figure 4.2.2: Visual for Convolutional, Pooling, Flattening, and Fully Connected Layers [26] 

 The compile method uses three parameters. The first parameter is the optimizer, which was 

chosen to be the Adaptive Moment Estimation (Adam) Optimizer. Adam is an optimization 

technique for gradient descent that combines the ‘gradient descent with momentum’ and Root Mean 

Square Propagation (RMSP) algorithms [27]. Adam combines and builds upon the strengths of 
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these optimizers to create an algorithm that is efficient in both time and memory. The loss function 

can also be specified for the compiler. The loss function is used to calculate the error gradient for 

gradient descent. For binary classification, cross entropy is often used for the loss function. Sparse 

categorical cross entropy is typically used for applications where there are multiple labels per image 

[28], but it can also be used in this case despite only having one label. The metrics parameter 

determines the metrics that are returned from the model during training and testing. For this project, 

the accuracy will be tracked so that the performance of the model can be observed. 

 Keras made it so that training the model is very simple. As shown in Code Block 4.2.2, 

the model is trained by fitting the training data to the model over several epochs. For now, the 

training data is run through the model three times. After each epoch, the validation set will be used 

to give an estimate on the performance of the classifier and tweak hyper parameters to improve the 

performance. The fit method returns a history of any metrics and loss values that were calculated 

during training and validation. This makes it so that accuracy and loss can be plotted over epochs. 

def train(model,train_ds,val_ds): 

    start = time.time() 
 

    # Fit data to model using 3 epochs 

    history = model.fit( 

        train_ds, 
        validation_data=val_ds, 

        epochs=3 

    ) 
     

    # Display the time that it took to train the model 

    end = time.time() 
    training_time = end-start 

    print("\nTraining took:%0.2f" %training_time,"seconds\n") 

 

    return model, history, training_time 

Code Block 4.2.2: Training the Model 

4.3 Predicting Class Labels and Assessing Predictions 

 Now that the model is trained, it can be used to predict the class labels for the test dataset. 

Code Block 4.3.1 shows how true class labels and predicted labels are collected. Since the test 
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dataset is broken into batches, the test dataset has to be made into an iterable object so that the 

images and true labels from each batch can be accessed easily. This also allows for an exact copy 

of the dataset to be made, which will be useful in Chapter 4.4. For each batch, the true labels are 

collected and appended into a single array. The model is then used to predict the labels for the 

corresponding images.  

def predict_labels(model,test_ds): 
 

    # Initialize Lists 

    labels = [] 

    pred_labels = [] 
 

 

    # Make the test dataset an iterable object 
    test_ds = iter(test_ds) 

 

    # For each batch, append labels to both the true label array and predicted label array 
    for images, temp_labels in test_ds: 

         

        # Collect True Data Labels 

        temp_labels = tf.constant(temp_labels).numpy() 
        labels.extend(temp_labels) 

 

 
        # Collect Prediction Labels 

        prediction = model.predict(images,batch_size=32) 

        temp_pred_labels = prediction.argmax(axis=-1) 

        pred_labels.extend(temp_pred_labels) 
 

    return labels, pred_labels 

Code Block 4.3.1: Collects True Class Labels and Predicted Labels 

 By comparing each predicted label against the true labels, the number of true positives, 

true negatives, false positives, and false negatives can be determined. The function in Code Block 

4.3.2 shows how these metrics, along with the accuracy rate, are calculated. It is possible to use 

keras’ evaluation method to predict the labels and perform these calculations, but it is difficult to 

confirm that the predicted labels actually closely matched the true labels. Though not shown, tests 

were performed to show that the evaluation accuracy metric matches the accuracy metric calculated 
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below. Figure 4.3.1 shows that the prediction labels and true labels nearly match for a test batch. 

This proves that the classifier is making reasonable predictions based on the images. 

def calculate_metrics(labels, pred_labels): 
    TP = 0 

    TN = 0 

    FP = 0 
    FN = 0 

 

    total = len(labels) 
    # Count for Confusion Matrix 

    for i in range(total): 

        if labels[i] == 1 and pred_labels[i] == 1: 

            TP += 1     # True Positive 
        elif labels[i] == 0 and pred_labels[i] == 0: 

            TN += 1     # True Negative 

        elif labels[i] == 0 and pred_labels[i] == 1: 
            FP += 1     # False Positive 

        elif labels[i] == 1 and pred_labels[i] == 0: 

            FN += 1     # False Negative 
 

    # Calculate Accuracy and return results 

    accuracy = (TN + TP)/total 

    return [accuracy, TP/total, TN/total, FP/total, FN/total] 

Code Block 4.3.2: Calculates Accuracy and Metrics Based on True Labels and Predicted Labels 

 

Figure 4.3.1: True Labels and Predicted Labels for the Same Test Batch 

4.4 Stochastic Modeling 

 Up to this point, a model has been defined, trained, and used to predict labels for the test 

dataset. Performance metrics were calculated from the predicted labels. In other words, a functional 

model is complete.  

The process of training the model has some random processes involved, so the quality of 

models trained with the same data will vary. In theory, once a model is trained, using the same test 

dataset should be deterministic: using the same model on the same test data should always return 
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the same labels. Code Block 4.4.1 was used to confirm that the testing results are consistent when 

using the same model. A lesson learned from this experiment is that the test dataset has to be copied 

each iteration to be reused. Otherwise, the data would be rebatched, leading to slightly varying 

results. 

# Define model 

model = define_model() 

 
# Train the Model 

model, history, training_time = train(model, train_ds, val_ds) 

 

# Test model 50 times to show that it is deterministic 
results = [] 

test_ds_copy = iter(test_ds) 

num_iterations = 50 
for i in range(num_iterations): 

        

    # Create copy of the datasets so that it can be reused 
    test_ds, test_ds_copy = itertools.tee(test_ds_copy) 

         

    # Extract True Labels from dataset and Predict Labels from images 

    true_labels, predicted_labels = predict_labels(model,test_ds) 
         

    # Calculates TP, TN, FP, FN and total accuracy 

    results = calculate_metrics(true_labels, predicted_labels) 
    accuracy = results[1] 

 

    print(accuracy) 

Code Block 4.4.1: Used to Confirm that the Testing Accuracy Is Deterministic 

 Making copies of the test dataset removes some of the randomness of the overall process. 

Another way that randomness is reduced is confirming that the datasets are consistently split from 

the original dataset. Back in Chapter 4.1, a seed was provided when shuffling the data. This makes 

it so that the training, validation and testing datasets always have the same images in them.  

 Now the only stochastic process involved in the algorithm is training. Training is non-

deterministic because the dataset is shuffled after each epoch and again if retrained. Also, the initial 

weights for the model are randomized. The stochastic nature of the model before being trained can 

actually be a strength, so making the training process deterministic would not necessarily be an 

improvement to the classifier. For example, shuffling the training set between epochs is used to 
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prevent overfitting. Randomizing the initial weights for training is used to make sure that each 

neuron is performing its own calculation, otherwise known as breaking the symmetry [29].  

 Since a single classifier design has variability in the models that it produces, it is important 

to record the distribution, range, mean and median of the accuracy produced from multiple models. 

Code Block 4.4.2 shows how 50 models are defined, trained, and tested to collect data for a single 

classifier. If the classification rate of a model is higher than the previous best, the model will be 

stored. The best performing model will be saved and returned. This makes it so that the return value 

of the algorithm is the best performing model from all of the runs. The accuracy of the best 

performing model and median performing model are the main metrics used to compare different 

classifier designs. The true positive, true negative, false positive, and false negative counts (in 

percentage) will be kept for analysis of the final model. The average training time and testing time 

will also be collected for comparing different classifiers.  

def main(): 
 

    '''Collect and Preprocess Data''' 

    # Download Data and return directory that contains the data 
    data_dir = get_data() 

     

    # Preprocess Data (Data Augmentation and datasplit splits) 

    train_ds, val_ds, test_ds = preprocess_data(data_dir,aug_split = 0) 
     

    # Make the test_dataset an iterable object 

    test_ds_copy = iter(test_ds) 
 

    '''Retrain and Test Model Many Times''' 

    results = [] 
    best_accuracy = 0 

    num_iterations = 50 

    for i in range(num_iterations): 

         
        # Create copy of the datasets so that it can be reused 

        test_ds, test_ds_copy = itertools.tee(test_ds_copy) 

 
        # Define and Train the Model 

        model = define_model() 

        model, history, training_time = train(model, train_ds, val_ds) 
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        # Extract True Labels from dataset and Predict Labels from images 
        true_labels, predicted_labels = predict_labels(model,test_ds) 

         

        # Calculates TP, TN, FP, FN and total accuracy 

        results.append(calculate_metrics(true_labels, predicted_labels)) 
 

        # Keep track of the best performing model.  

        if results[i][0] > best_accuracy: 
            best_accuracy = results[i][0] 

            best_model = model 

            best_history = history 
 

    # Return the best model 

    return best_model 

Code Block 4.4.2: Main Function. Trains and Tests 50 Models and Returns the Best One 

4.5 Baseline Results 

 The baseline classifier design has now been fully defined. It currently uses 3 training 

epochs, images with 700x460 pixel resolution and 3 channel RGB, an architecture from the 

TensorFlow Core tutorial [22] (will be referred to as Model 1.0), and  no data augmentations. All 

of these factors make the training and performance of this model unique, so all of these parameters 

will be changed to try to improve the final results. The processing time depends on computer 

hardware, which is described in A.3. 

Table 4.5.1 shows the baseline results. In future adaptations, the goal will be to try to 

improve the classifier accuracy from this baseline.  Figure 4.5.1 shows the accuracy distribution 

for the current classifier. The distribution shows that the higher performing models occur more 

often than poorly performing models. The best performing model achieves an accuracy of 88.67%. 

In future classifiers, it would be better if the mean and median accuracies increased so that there is 

a higher likelihood that the models perform very well. The standard deviation on the model 

accuracy is very high. Ideally, the standard deviation would be less than 2%, so decreasing the 

variance is another goal for future classifiers. 
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Table 4.5.1: Results for Model 1.0 

Structure Model 1.0 

Modifications None 

Accuracy (%) 82.91 ± 5.65 

Median Accuracy (%) 84.57 

Accuracy Range (%) [69.14, 88.67] 

TP (%) 62.87 ± 5.32 

TN (%) 20.03 ± 7.82 

FP (%) 10.83 ± 7.82 

FN (%) 6.27 ± 5.32 

Avg. Training Time (s) 81.98 ± 1.55 

Avg. Testing Time (s) 6.96 ± 0.23 

Total Time (s) 4455.16 

 
Figure 4.5.1: Accuracy Distribution for Model 1.0 
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4.6 General Modifications 

 There should be modifications that can be made to improve a classifier with any structure. 

This section will attempt to make general modifications that increase the classification accuracy of 

any classifier. These changes involve changing image resolution, number of epochs, and color 

channels. 

In order to run the first test, it took 4,455 seconds, or 74 minutes and 15 seconds. In an 

effort to save time, the images in the dataset are going to be rescaled from 700x460 pixels to 

256x256 pixels. This resolution is the default size parameter for extracting the dataset with keras 

image_dataset_from_directory method, so that is why it was chosen. Table 4.6.1 shows the results 

from decreasing the resolution. Instead of using 50 iterations, this test performed 150 iterations and 

only took 2,888 seconds, or 48 minutes and 8 seconds. Using 150 iterations for this test made the 

distribution of the classifier’s performance more accurate. This was also done to prove the 

significance that the resolution plays for time efficiency. If performed for just 50 iterations, it would 

have taken roughly 16 minutes. With lower resolution, the classifier performed significantly better 

on average. The standard deviation of the data is still higher than desired. The best case improved 

by 0.78%, which is not significant, but still an improvement. The median improved by 2.41%. The 

distribution in Figure 4.6.1 shows that the best performing models have a high chance of occurring. 

It also shows that the lowest case (58.2%) is an outlier. It is possible that the larger features in the 

images were more important for classifying the tissues. By lowering the resolution, the smallest 

features in the image were likely removed, which could explain the improved performance. Moving 

forward, 256x256 pixel resolution will continue to be used. 
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Table 4.6.1: Results from Reducing Image Resolution (Model 1.0) 

Structure Model 1.0  Model 1.0  

Modifications None 256x256  
pixel resolution 

Number of Runs 50 (Standard) 150 

Accuracy (%) 82.91 ± 5.65 85.18 ± 4.79 

Median Accuracy (%) 84.57 86.98 

Accuracy Range (%) [69.14, 88.67] [58.2, 89.45] 

TP (%) 62.87 ± 5.32 62.85 ± 5.58 

TN (%) 20.03 ± 7.82 22.33 ± 5.18 

FP (%) 10.83 ± 7.82 8.53 ± 5.18 

FN (%) 6.27 ± 5.32 6.29 ± 5.58 

Avg. Training Time (s) 81.98 ± 1.55 15.76 ± 0.44 

Avg. Testing Time (s) 6.96 ± 0.23 3.44 ± 0.16 

Total Time (s) 4455.16 2887.76 

 

 
Figure 4.6.1: Accuracy Distribution for Model 1.0 with Image Resolution 256x256 
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 In the paper by Md Zahangir Alom et al. [21], the authors wrote about the effects of 

increasing the number of epochs used for training. They showed that classifiers can perform poorly 

for the first few epochs, but they should continue to improve until they are overfitting. The classifier 

that the authors were using seemed to stop improving much beyond 20 epochs, but it did not 

degrade beyond that point. Since the current classifier only trains models over three epochs, the 

next test will use 25 epochs.  

 As shown in Table 4.6.2, increasing the number of epochs improves the average accuracy 

by 5.44% and the median accuracy by 3.97%. The best model performs with 94.4% accuracy 

(4.95% increase), but it occurs infrequently (see Figure 4.6.2) compared to the best models from 

using only 3 epochs. Using more epochs means that the training data was fed through the model 

more times than before, so it took much longer than before to run this test. On average, training a 

single model took about 124 seconds rather than 16 seconds. If the resolution wasn’t already 

reduced, it would have taken much longer. Using more epochs will make it so that different 

architectures and modifications will be more easily comparable. It is possible that an architecture 

will learn more slowly than another or that a model has poor initialization weights. So it is more 

fair to make comparisons after many epochs than it is after just a few. Additionally, using just a 

few epochs has higher variance, so using more epochs should help get more consistent results. In 

general, this change is intended to improve the performance of any classifier that is defined later. 
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Table 4.6.2: Results from Increasing Number of Epochs (Model 1.0) 

Structure Model 1.0 Model 1.0 

Modifications 256x256, 
3 epochs 

256x256, 
25 epochs 

Number of Runs 150 50 (Standard) 

Accuracy (%) 85.18 ± 4.79 90.62 ± 1.90 

Median Accuracy (%) 86.98 90.95 

Accuracy Range (%) [58.2, 89.45] [83.85, 94.40] 

TP (%) 62.85 ± 5.58 64.42 ± 1.79 

TN (%) 22.33 ± 5.18 26.20 ± 2.14 

FP (%) 8.53 ± 5.18 4.66 ± 2.14 

FN (%) 6.29 ± 5.58 4.72 ± 1.79 

Avg. Training Time (s) 15.76 ± 0.44 123.56 ± 1.27 

Avg. Testing Time (s) 3.44 ± 0.16 3.45 ± 0.19 

Total Time (s) 2887.76 6358.04 

 

Figure 4.6.2: Accuracy Distribution for Model 1.0 Trained Over 25 Epochs 

 The last modification that will be made to try to improve all architectures is changing the 

number of color channels. Currently, the images are 3 channel RGB. For other image processing 
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techniques, it can sometimes be advantageous to convert to a single color channel (grayscale). 

Grayscale is useful when the classification is based on pixel intensity or feature shapes rather than 

color. It is similar to performing stain normalization like in the paper from Yassir Benhammou et 

al.  

The results from performing classification with grayscale images are shown in Table 4.6.3 

and Figure 4.6.3. Changing the images to grayscale significantly degraded the performance of the 

classifier. The mean, median, and best accuracies are worse than the baseline classifier design. 

Moving forward, grayscale will not be used. The final version of a classifier defined with Model 

1.0 uses 256x256 pixel resolution, 25 epochs, and 3 channel RGB. These changes will be used for 

all classifier designs moving forward. 

Table 4.6.3: Results from Converting to Grayscale (Model 1.0) 

Structure Model 1.0 Model 1.0 

Modification RGB Grayscale 

Accuracy (%) 90.62 ± 1.90 77.21 ± 4.54 

Median Accuracy (%) 90.95 78.39 

Accuracy Range (%) [83.85, 94.40] [68.10, 83.85] 

TP (%) 64.42 ± 1.79 60.73 ± 3.97 

TN (%) 26.20 ± 2.14 16.47 ± 5.51 

FP (%) 4.66 ± 2.14 14.39 ± 5.51 

FN (%) 4.72 ± 1.79 8.41 ± 3.97 

Avg. Training Time (s) 123.56 ± 1.27 105.60 ± 1.05 

Avg. Testing Time (s) 3.45 ± 0.19 3.15 ± 0.16 

Total Time (s) 6358.04 6056.84 
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Figure 4.6.3: Accuracy Distribution for Model 1.0 Using Grayscale Images 

4.7 Neural Network Structure Exploration 

 Most of the improvements to the classifier should be dependent on the neural network 

architecture used. This section will explore VGG16 and ResNet50 architectures as well as a custom 

architecture based on the existing Model 1.0.  

4.7.1 VGG16 

 VGG is an older structure that is still used in some neural network projects for comparison 

to past models. So it is the first architecture to be tested against Model 1.0. VGG16 (structure shown 

in Figure 4.7.1.1) was identified as the best performing VGG model on the ImageNet dataset [30], 

so now it will be used on the BreakHis dataset to see how it performs. VGG16 works best when 

images are 224x224, so the image resolution will be further reduced to be used for this structure.  
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Figure 4.7.1.1: VGG16 Architecture [30] 

The results for VGG16 are shown in Table 4.7.1.1 and Figure 4.7.1.2. While the best 

classifier model performed very well (94.4%), the accuracy distribution shows that it is very 

unlikely to occur. In fact, 39 of the 50 tests resulted in models that only had an accuracy of 69.14%. 

It should also be noted that the false positives and true positives accounted for over 90% of all 

guesses. In other words, the classifier is guessing that almost all of the test images are malignant, 

so most of the models generated are worthless.  

Table 4.7.1.1: Results Comparing Model 1.0, VGG16 

Structure Model 1.0 VGG16 

Accuracy (%) 90.62 ± 1.90 73.04 ± 7.64 

Median Accuracy (%) 90.95 69.14 

Accuracy Range (%) [83.85, 94.40] [69.14, 94.40] 

TP (%) 64.42 ± 1.79 68.26 ± 1.86 

TN (%) 26.20 ± 2.14 4.78  ± 9.30 

FP (%) 4.66 ± 2.14 26.08 ± 9.30 

FN (%) 4.72 ± 1.79 0.88 ± 1.86 

Avg. Training Time (s) 123.56 ± 1.27 743.79 ± 3.93 

Avg. Testing Time (s) 3.45 ± 0.19 4.45 ± 0.12 

Total Time (s) 6358.04 37540.91 
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Figure 4.7.1.2: Accuracy Distribution for VGG16 Architecture 

 Upon further investigation, the VGG16 structure requires specific preprocessing of the 

images before training or testing the model. The preprocessing involves converting the input 

images from RGB to BGR and zero-centering each color channel based on the average pixel color. 

Unfortunately, preprocessing the images for VGG16 did not use the similar methods to other 

augmentations made later on. Since fixing this issue was not simple, there was not enough time to 

fix the issue and retest VGG16. VGG16 will not be the final model used. 

4.7.2 ResNet50 

 The residual neural network (ResNet) was designed by Kaiming He et al. [31] and was 

used to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2015. It was 

designed with Residual Learning building blocks (see Figure 4.7.2.1) that are designed to overlay 

the feature maps onto previous layers of feature map or the original image. The weight layers are 

convolutional layers with relu activation functions. Using this building block is comparable to 

sharpening an image before further processing. Continuing with this analogy: by filtering the 

image, an edge map can be created, and by adding the edge map back to the image, sharper images 

can be made. This makes it so that the features are less abstracted between layers, so there will be 

some reference to the original image or previous blocks to use. Using these building blocks reduces 
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the issue of vanishing/exploding gradients (where the values become too small/large after many 

layers). This allows for deeper networks that do not significantly increase time complexity.  

 

Figure 4.7.2.1: Residual Learning: a Building Block [31] 

 ResNet50 is a version of ResNet that is 50 layers deep. For this experiment, the ResNet50 

architecture is used to show how it compares to the Model 1.0 structure. The ResNet50 architecture 

has a parameter for defining pre-trained weights for the initial model, so separate tests will be run 

for random initialization and pre-trained weights. The pre-trained weights are the weights that 

resulted in the best results for the ImageNet dataset. 

 Table 4.7.2.1 shows how ResNet50 compares to Model 1.0. Regardless of the weight 

initialization method, ResNet50 varied greatly compared to Model 1.0. The median models also 

perform worse than the median for Model 1.0. Figures 4.7.2.2 and 4.7.2.3 show the distribution of 

accuracies for ResNet50 with and without pre-trained weights. This shows that models that were 

initialized with pre-trained weights are much more likely to create better models. It is likely that 

the pre-trained weights helped the classifier avoid local minimums in the gradient descent process. 

pre-trained weights should be used for weight initialization rather than random initialization. 
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Table 4.7.2.1: Results Comparing Model 1.0 and ResNet50 

Structure Model 1.0 ResNet50 ResNet50 

Initialization Weights Random Random ImageNet 

Accuracy (%) 90.62 ± 1.90 63.11 ± 20.81 79.46 ± 13.83 

Median Accuracy (%) 90.95 65.82 82.75 

Accuracy Range (%) [83.85, 94.40] [30.86, 90.89] [35.42, 95.83] 

TP (%) 64.42 ± 1.79 38.30 ± 25.29 54.51 ± 15.84 

TN (%) 26.20 ± 2.14 24.81 ± 8.46 24.95 ± 8.51 

FP (%) 4.66 ± 2.14 6.05 ± 8.46 5.91 ± 8.51 

FN (%) 4.72 ± 1.79 30.84 ± 25.29 14.63 ± 15.84 

Avg. Training Time (s) 123.56 ± 1.27 576.55 ± 18.66 569.45 ± 4.05 

Avg. Testing Time (s) 3.45 ± 0.19 5.27 ± 0.35 5.16 ± 0.19 

Total Time (s) 6358.04 29168.60 28844.59 

 

 
Figure 4.7.2.2: Accuracy Distribution for Randomly Initialized ResNet50 Architecture 
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Figure 4.7.2.3: Accuracy Distribution for pre-trained ResNet50 Architecture  

While the classifier with pre-trained weights and ResNet50 structure results in some very 

poor performing models, it also achieves the best model that has been seen so far (95.83% 

accuracy). Recall, Model 1.0 had few instances of the model working at the highest accuracy, but 

in most instances the models were at least performing above 88%. Model 1.0 is more likely to 

perform well if given few chances to train, but the ResNet50 model had the best performing model 

overall. For future testing, Model 1.0 will be used because ResNet50 is highly variable and takes a 

long time to train. 

4.7.3 Custom Design 

 This section explores how simple modifications to the original architecture (Model 1.0) 

can affect the performance of the classifier. The number of layers, nodes per layer, and types of 

layers will be the parameters that are tweaked to make these changes. The model variants will be 

very shallow networks. Since the VGG16 and ResNet50 architectures are more complex, testing 

with a more shallow network can illuminate the importance of architecture depth. It could also 

reveal more about the complexity required in diagnosing cancer using neural networks. 

 The first architecture modification (Model 1.1) experiments with removing two of the three 

convolutional layers and pooling layers. For reference, Model 1.0 and Models 1.1 are shown in 

Code Block 4.3.7.1. The hope is that the neural network will perform analysis on less complicated 
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features. It is possible that simpler features are better able to characterize the classes than more 

complicated and abstracted ones.  

'''Model 1.0''' 
model = tf.keras.Sequential([ 

    tf.keras.layers.Rescaling(1./255), 

    tf.keras.layers.Conv2D(32, 3, activation='relu'), 
    tf.keras.layers.MaxPooling2D(), 

    tf.keras.layers.Conv2D(32, 3, activation='relu'), 

    tf.keras.layers.MaxPooling2D(), 
    tf.keras.layers.Conv2D(32, 3, activation='relu'), 

    tf.keras.layers.MaxPooling2D(), 

    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dense(128, activation='relu'), 
    tf.keras.layers.Dense(2)]) 

'''Model 1.1''' 

model = tf.keras.Sequential([ 
    tf.keras.layers.Rescaling(1./255), 

    tf.keras.layers.Conv2D(32, 3, activation='relu'), 

    tf.keras.layers.MaxPooling2D(), 
    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dense(128, activation='relu'), 

    tf.keras.layers.Dense(2)]) 

Code Block 4.7.3.1: Model 1.0 (Top), Model 1.1 (Bottom) 

 Removing convolutional layers improved the results in general. The mean, median and best 

models performed better with Model 1.1 than with Model 1.0. Removing the layers did not change 

the average training time significantly. The only issue with Model 1.1 is that the accuracies are 

distributed across a wider range than Model 1.0. Fortunately, according to the distribution shown 

in Figure 4.7.3.1, most of the models performed with high accuracy. So it is likely that if trained 

only once, the model returned would likely perform at a rate higher than 90%. Model 1.1 returned 

the best model so far, with an accuracy of 96.35%. From this experiment, it can be proposed that 

the images can be classified based on simpler features.  
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Table 4.7.3.1: Results Comparing Model 1.0 and Model 1.1 

Structure Model 1.0 Model 1.1 

Accuracy (%) 90.62 ± 1.90 92.16 ± 4.38 

Median Accuracy (%) 90.95 93.62 

Accuracy Range (%) [83.85, 94.40] [71.48, 96.35] 

TP (%) 64.42 ± 1.79 65.65 ± 2.08 

TN (%) 26.20 ± 2.14 26.51 ± 3.84 

FP (%) 4.66 ± 2.14 4.35 ± 3.84 

FN (%) 4.72 ± 1.79 3.49 ± 2.08 

Avg. Training Time (s) 123.56 ± 1.27 123.79 ± 1.95 

Avg. Testing Time (s) 3.45 ± 0.19 3.50 ± 0.12 

Total Time (s) 6358.04 6372.14 

 
Figure 4.7.3.1: Accuracy Distribution for Model 1.1 Architecture 

 From Model 1.1, Model 1.2 was created. The only difference is that the flattening layer 

feeds into a larger dense layer: increased from 128 nodes to 256. The thought behind this is that 

doubling the number of calculations performed in the dense layer will double the amount of 

information used in the final decision. Unfortunately, the increased number of nodes did not affect 
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the results significantly (see Figure 4.7.3.2). The distribution of accuracy (Figure 4.7.3.2) does not 

show significant changes between the models. Based purely on the difference in training time, 

Model 1.2 will not be used to further develop the classifier.  

Table 4.7.3.2: Results Comparing Model 1.1 and Model 1.2 

Structure Model 1.1 Model 1.2 

Accuracy (%) 92.16 ± 4.38 92.13 ± 4.81 

Median Accuracy (%) 93.62 93.55 

Accuracy Range (%) [71.48, 96.35] [73.83, 95.83] 

TP (%) 65.65 ± 2.08 66.01 ± 2.02 

TN (%) 26.51 ± 3.84 26.12 ± 5.40 

FP (%) 4.35 ± 3.84 4.73 ± 5.40 

FN (%) 3.49 ± 2.08 3.14 ± 2.02 

Avg. Training Time (s) 123.79 ± 1.95 153.64 ± 11.71 

Avg. Testing Time (s) 3.50 ± 0.12 3.63 ± 0.23 

Total Time (s) 6372.14 7871.10 

 

Figure 4.7.3.2: Accuracy Distribution for Model 1.2 Architecture 

 Model 1.3 is another alteration made from Model 1.1. Instead of changing the number of 

layers or number of nodes, Model 1.3 doubles the amount of filters used in the convolutional layer. 
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This will result in 64 feature maps that can be analyzed rather than 32. Though increasing the 

number of feature maps increased the amount of data passed through the rest of the structure, it did 

not seem to provide more useful information. Table 4.7.3.3 shows that Model 1.1 and 1.3 worked 

about the same. The distribution for Model 1.3 (Figure 4.7.3.3) is similar to the distribution for 

Model 1.1, but higher performing models occurred slightly more frequently for Model 1.3. Since 

the algorithm picks the best model from all 50, Model 1.1 will continue to be used because it 

achieved the best performing model. It also takes less time to train. 

Table 4.7.3.3: Results Comparing Model 1.1 and Model 1.3 

Structure Model 1.1 Model 1.3 

Accuracy (%) 92.16 ± 4.38 92.00 ± 5.17 

Median Accuracy (%) 93.62 93.42 

Accuracy Range (%) [71.48, 96.35] [63.02, 95.31] 

TP (%) 65.65 ± 2.08 64.89 ± 5.10 

TN (%) 26.51 ± 3.84 64.89 ± 5.10 

FP (%) 4.35 ± 3.84 3.75 ± 2.90 

FN (%) 3.49 ± 2.08 4.25 ± 5.10 

Avg. Training Time (s) 123.79 ± 1.95 173.22 ± 2.31 

Avg. Testing Time (s) 3.50 ± 0.12 3.37 ± 0.17 

Total Time (s) 6372.14 8837.20 
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Figure 4.7.3.3: Accuracy Distribution for Model 1.3 Architecture 

 The final alteration of the original model will be Model 1.4, which is also building off of 

Model 1.1. For this model, there is an additional layer between the max pooling layer and the 

flattening layer (shown in Code Block 4.7.3.2). The dropout layer is designed to drop (set to 0) a 

percentage amount of values from each image during training [32]. So after the feature maps are 

pooled, 20% of the values are randomly selected and set to 0 before being sent to the flattening 

layer. This is similar to adding noise to a training set: it prevents overfitting because the data will 

not be exactly the same images each time. Between epochs, different pixels will be set to zero, 

making the training images unique every epoch. This strategy is often applied to datasets with small 

amounts of data so that the training set is more diversified. 

'''Model 1.4''' 

model = tf.keras.Sequential([ 
    tf.keras.layers.Rescaling(1./255), 

    tf.keras.layers.Conv2D(32, 3, activation='relu'), 

    tf.keras.layers.MaxPooling2D(), 

    tf.keras.layers.Dropout(0.2), 
    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dense(128, activation='relu'), 

    tf.keras.layers.Dense(2)]) 

Code Block 4.7.3.2: Model 1.4 
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 Including the dropout layer seemed to make the classifier vary less, while not changing the 

average performance. Table 4.7.3.4 shows that the structures performed similarly, but Model 1.1 

tends to work slightly better in general. More importantly, Figure 4.7.3.4 shows that the accuracy 

distribution for Model 1.4 only has a few instances where the models perform at the highest level. 

Since Model 1.4 cannot be used to consistently achieve models with high accuracy, it will not be 

the structure that is used when moving forward.  

Table 4.7.3.4: Results Comparing Model 1.1 and Model 1.4 

Structure Model 1.1 Model 1.4 

Accuracy (%) 92.16 ± 4.38 92.12 ± 2.44 

Median Accuracy (%) 93.62 92.77 

Accuracy Range (%) [71.48, 96.35] [82.94, 95.70] 

TP (%) 65.65 ± 2.08 65.53 ± 2.25 

TN (%) 26.51 ± 3.84 26.59 ± 2.31 

FP (%) 4.35 ± 3.84 4.27 ± 2.31 

FN (%) 3.49 ± 2.08 3.61 ± 2.25 

Avg. Training Time (s) 123.79 ± 1.95 130.50 ± 1.58 

Avg. Testing Time (s) 3.50 ± 0.12 3.47 ± 0.17 

Total Time (s) 6372.14 6706.43 
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Figure 4.7.3.4: Accuracy Distribution for Model 1.4 Architecture 

4.7.4 Neural Network Structure Conclusion 

 Model 1.1 produces the highest classification accuracy. It was able to achieve a model that 

correctly classified 96.35% of the test samples. Structures for Models 1.2, 1.3 and 1.4 also perform 

at similar levels and have a high likelihood of returning high performing models. ResNet50 had 

models that performed with high accuracy, but also had some of the worst models seen. The high 

variability of the ResNet structure in this use case made it undesirable. However, it should be noted 

that using pre-trained weights for this structure can improve the performance when compared to 

random initialization. Due to inconsistent bin sizing and ranges for the accuracy distribution plots, 

it is hard to tell exactly how some of the models compare to each other. Since Model 1.1 returned 

the best model and consistently resulted in other high performing models, it will be the structure 

that is used in future sections.  

 Based on the high performance of simple structures, it seems that shallow networks could 

be enough to classify the BreakHis dataset. Features that can be easily extracted from the first layer 
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were enough to perform very well. It seems plausible that classical image processing techniques 

could have been used to achieve similar classification rates for this dataset. 

Unfortunately, the issue of preprocessing was not solved for VGG16. If given more time, 

a solution would have been found. However, VGG16 is an older network and would probably not 

work as well as a more recent architecture. So it seems unlikely that VGG16 would have been able 

to improve the classification rate anyway. 

4.8 Data Augmentation 

 The final step in designing the classifier is adding augmented data. By increasing the 

amount of training samples available during training, it is possible to reduce the chance of 

overfitting the model to the data. As discussed in Chapters 3.1 and 3.2, other researchers have 

been able to use data augmentation as a last step in improving their classifiers. Alom et al. made 

21 augmented copies of each sample from the training dataset [21]. Increasing the size of the 

training set will increase the time that it takes to train the classifier, so it was decided that a smaller 

amount of data will be used for augmentation to see if it improves the results.  

The first step in augmentation is copying data from the training set. This process is 

performed when the dataset is partitioned, as shown in Code Block 4.8.1. Since there are fewer 

samples being augmented, it is possible to split the data to retain the same train:validate:test ratio 

of 80:10:10. More accurately, the data will be pulled from the dataset such that the ratio 

(train+augmented):validate:test = 80:10:10. To make sure that the ratio is maintained, the test and 

validation sets must take more samples from the original dataset. For example, if the augmentation 

split is 20%, that means it will augment 20% of the training data. The training data and augmented 

data should be 80% of the total, so the total dataset expands by a factor of (1 + 0.8*0.2) = 1.16. The 

testing and validation sets will each be 10% of this expanded size. This value is used for extracting 

the correct number of samples for the testing and validation sets, and the leftover will be the training 

set. The augmented data will be a copy of a subset of the training data. Prior to augmentation, the 
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batch ratio was 200:24:24. After partitioning with augmented data, the batch ratio is 231:28:28. 

This confirms that the ratio was maintained and the data size increased. 

def get_dataset_partitions(ds, train_split=0.8, aug_split=0, val_split=0.1, test_split=0.1): 
 

    # Expanded size accounts for adding the augmented data points 

    expanded_size = 1 + train_split*aug_split 
    val_size = int(val_split * expanded_size * len(ds)) 

 

# Partition Data 
    val_ds = ds.take(val_size) 

    test_ds = ds.skip(val_size).take(val_size) 

    train_ds = ds.skip(val_size).skip(val_size) 

 
    # Only perform augmentation if the range is valid 

    if aug_split > 0 and aug_split <=1: 

        # Define the size of each split based on the dataset size and the splits 
        aug_size = int(train_split * len(ds) * aug_split) 

        aug_ds = ds.skip(val_size).skip(val_size).take(aug_size) 

    else: 
        aug_ds = None 

     

    return train_ds, val_ds, test_ds, aug_ds 

Code Block 4.8.1: Partitions Dataset into Training, Augmented, Validation, and Testing Dataset 

 At this point, the augmented dataset is still just copies of some training samples. As 

discussed before, rotating and flipping the samples makes them unique enough to reuse. Rotation 

and random flipping are applied to the data, as shown in Code Block 4.8.2. The rotation 

consistently flips the images 126°, but there is not a simple way to make the flipping consistent. 

The rotation should be enough to make the images different from the training samples, so random 

flipping does not need to occur consistently. Flipping will be horizontal, vertical, both, or neither. 

Since only one augmented image will be made per training sample, there is no risk of repeating 

augmented images. The augmentations are applied in parallel, which significantly reduces the time 

that it took to train the augmented section of the dataset. Flipping can only happen in 4 directions 

and rotation is fixed, so there are only 4 augmentations possible (shown in Figure 4.8.1), but all of 

them will be different from the original. After performing the augmentation, the augmented data 

will be added to the training set.  
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def augment_data(train_ds,aug_ds): 
 

    # Defines random rotation and flip 

    rot_and_flip_aug = tf.keras.Sequential([ 

        tf.keras.layers.RandomFlip("horizontal_and_vertical",seed=123), 
        tf.keras.layers.RandomRotation(factor=(.35,.35),seed=123)]) 

 

    # Applies rotation and flip to the data.      
    AUTOTUNE = tf.data.AUTOTUNE 

    aug_ds = aug_ds.map( 

        lambda x, y: (rot_and_flip_aug(x, training=True), y),num_parallel_calls=AUTOTUNE) 
 

    # Append the augmented data to the training data 

    train_ds = train_ds.concatenate(aug_ds) 

 
    return train_ds 

Code Block 4.8.2: Performs Augmentation 

 

      

       

Figure 4.8.1: Original Image and Possible Augmentations 

When using augmented data for training Model 1.1, it made it perform worse. See Table 

4.8.1 for comparison to Model 1.1 without augmented data and Figure 4.8.2 for the accuracy 

distribution. The mean, median, and best performing model all decreased for the classifier trained 

with the augmented data. 
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Table 4.8.1: Results Comparing Model 1.1 With and Without Augmented Training Data 

Structure Model 1.1 Model 1.1 (Augmented) 

Accuracy (%) 92.16 ± 4.38 88.17 ± 4.17 

Median Accuracy (%) 93.62 89.29 

Accuracy Range (%) [71.48, 96.35] [67.97, 92.75] 

TP (%) 65.65 ± 2.08 62.21 ± 3.20 

TN (%) 26.51 ± 3.84 25.96 ± 4.92 

FP (%) 4.35 ± 3.84 6.07 ± 4.92 

FN (%) 3.49 ± 2.08 5.75 ± 3.20 

Avg. Training Time (s) 123.79 ± 1.95 163.17 ± 2.29 

Avg. Testing Time (s) 3.50 ± 0.12 4.11 ± 0.23 

Total Time (s) 6372.14 8373.00 

 

Figure 4.8.2: Accuracy Distribution for Model 1.1 With Augmented Training Data 

There are a few ways that the augmentation algorithm could have been improved. When 

designing the augmentation portion of the program, it was designed to maintain the 

train:test:validation ratio. Since the validation and testing datasets had to come directly from the 
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original, it limited how much data could be added to the training set while maintaining the ratio. 

Instead, 20% of the original samples should have been set aside for validation and testing, then the 

remaining 80% would have been used to make many copies of augmented data. It would change 

the ratio, but there would still be enough data for testing and validation.  

Another factor that limited the augmentation is that it only had four possible combinations. 

Ideally, many copies of the same image could be used to make several unique images. This could 

be done by either making a more complicated rule for determining the amount of rotation and 

flipping to apply, or by adding more augmentation options such as shift, shear, zoom, or stain 

normalization. This would allow the training dataset to grow immensely, and it would likely 

improve the results.  

Due to time constraints, these issues could not be addressed. Rather than maintaining the 

ratio, focusing on increasing the training dataset size would probably have been a better solution. 

4.9 Final Results 

 Once a viable classifier design was made, general modifications were made to improve the 

results. The modifications include reducing the resolution from 700x460 to 256x256 and increasing 

the number of training epochs from 3 to 25. The next step was testing multiple architectures to find 

the highest performing one. Unfortunately, VGG16 did not function correctly because the 

preprocessing was not defined properly. ResNet50 worked well some of the time, but the quality 

of models returned from this structure varied greatly. Using pre-trained weights instead of 

randomly initialized weights improved the results greatly, but ResNet50 still did not work as well 

as the custom structures. The custom structures worked well in general, but the best structure was 

Model 1.1. Model 1.1 reduced the number of convolutional and pooling layers from 3 to 1 so that 

it made decisions based on simpler feature maps. Adding augmentation to the data did not improve 

the classifier, but it might have helped if more samples were added.  

 Table 4.9.1 shows the baseline results and the final results. The average model for the final 

classifier performs 9.25% better than the original. The median model works 9.05% better than the 
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median model of the original model. The best model from the final classifier performed with 

96.35% accuracy, which is 7.68% better than the best model from the original classifier. The final 

classifier only takes a little over 2 minutes to train, which is relatively fast compared to ResNet50 

or other structures. 

Table 4.9.1: Results Comparing the Original Model 1.0 and Final Model 1.1 

Structure Original Final 

Accuracy (%) 82.91 ± 5.65 92.16 ± 4.38 

Median Accuracy (%) 84.57 93.62 

Accuracy Range (%) [69.14, 88.67] [71.48, 96.35] 

TP (%) 62.87 ± 5.32 65.65 ± 2.08 

TN (%) 20.03 ± 7.82 26.51 ± 3.84 

FP (%) 10.83 ± 7.82 4.35 ± 3.84 

FN (%) 6.27 ± 5.32 3.49 ± 2.08 

Avg. Training Time (s) 81.98 ± 1.55 123.79 ± 1.95 

Avg. Testing Time (s) 6.96 ± 0.23 3.50 ± 0.12 

Total Time (s) 4455.16 6372.14 

 The quality of the models generated from the final classifier varies less than the original 

classifier. Figure 4.9.1 shows the distribution of accuracies for both classifiers. The final classifier 

design tends to output high end models more consistently than the original classifier design. Though 

the final criteria mostly comes down to the best model, it is also important that the best model is 

easily replicable.  
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Figure 4.9.1: Accuracy Distributions for Original Model 1.0 (Left) and Model 1.1 (Right) 

The confusion matrix is shown in Table 4.9.2. Due to the imbalance in the dataset, the 

classifier has a slight bias towards predicting a sample as malignant. This bias seems to be true, 

because there is a higher number of false positives than there is for false negatives despite having 

fewer negative samples. The false negative rate is 5.05% and the false positive rate is 14.10%. This 

means that the classifier is much more likely to misdiagnose benign samples. 

Table 4.9.2: Confusion Matrix for Model 1.1 (Final Model) 

 
Malignant Sample Benign Sample 

Predicted Malignant TP: 65.65% FP: 4.35% 

Predicted Benign FN: 3.49% TN: 26.51% 
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CHAPTER 5. DISCUSSION OF RESULTS 

The final classifier from this report achieves an average accuracy rate of (92.16 ± 4.38)%. 

Yassir Benhammou et al. created a binary classifier with an average accuracy of (88.9 ± 2.5)%. 

Both of these classifiers are Magnification Invariant Binary (MIB) classifiers, so they are 

performing the same classification between Benign and Malignant samples from the same dataset. 

This means that the developed classifier had a higher average accuracy than the classifier designed 

by this group of researchers. The developed classifier had larger variance than the classifier 

designed by Benhammou et al., which is not ideal. However, assuming that the best model of 50 is 

kept—much like the algorithm in this paper—then the best performance of their classifier is 

unlikely to be as high as the best model (96.35%) in this paper. It should also be noted that 

Benhaummou et al. were successful in implementing augmentations that improved their results. If 

the augmentation algorithm for this project were fixed, it likely would have led to a higher 

performance of the average classifier. 

Unlike the classifiers in this paper or in the paper by Benhammou et al., the performances 

of the classifiers in Alom et al.’s paper are separated by the magnification factor (Table 5.1). This 

makes it a bit more difficult to compare the performances between the classifiers. However, looking 

at the IRRCNN’s average performances for each magnification factor, they tend to range from 

about 95% to 97%. Though their average is much higher, the classifier developed in this work had 

models working in this range. This is significant because the IRRCNN structure is much more 

complicated than the Model 1.1 structure. This shows that using a much simpler structure can still 

return models that perform at very high levels. Again, improving the augmentation would have 

benefitted the final results. Alom et al. augmented 21 new images for every image in the training 

set. If that were done properly for the developed classifier, it could have raised the average to more 

comparable levels. 
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Table 5.1: Breast Cancer Classification Results for Binary Classification (Alom et al. [21]) 

 

As discussed in Chapter 4.9, the average model had a false negative rate of 5.05% and a 

false positive rate of 14.10%. Though only the best model is returned, this still highlights a potential 

issue of this classifier. Since there is an imbalance in the dataset and augmentation was not used to 

balance it out, most classifiers designs will have a bias towards diagnosing benign cancer as 

malignant. In this case, 14.10% of the images will be classified as malignant when there is nothing 

wrong with them. The simplest way to fix this is by balancing the dataset. By adding more 

augmentations for benign samples, the training set can be balanced.  
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CHAPTER 6. CONCLUSION 

The final classifier design produces models that correctly diagnose benign and malignant 

breast cancer with up to 96.35% accuracy. Of the 50 models generated for testing, only 4 did not 

exceed 85% accuracy and over 20 models achieved accuracies above 93%. Compared to classifier 

designs by other researchers, the classifier developed in this work performed well. The final 

classifier design returned models that had a higher average accuracy than similar classifiers 

designed by Benhammou et al. And the best models were comparable to those from a more modern 

and complicated classifier design like IRRCNN that was designed by Alom et al.  

Compared to pathologists, the classifier also performs with high accuracy. There are not 

many studies on the misdiagnosis rate of breast cancer, but it is speculated that breast cancer is 

misdiagnosed by pathologists anywhere from 5% to 28% of the time [33]. This does not apply to 

histopathological samples or the BreakHis dataset specifically, but it still gives a reference for the 

quality of breast cancer classification by pathologists.  

One of the lessons learned from this project is that larger features are more important than 

smaller features for diagnosing breast cancer with the BreakHis dataset. When reducing the 

resolution, smaller features are lost while larger features remain. After reducing the resolution of 

all of the images, the classifier began performing with higher accuracies and it significantly 

improved the training time.  

This paper also shows that using a simple neural network structure can be highly effective 

in diagnosing breast cancer from histopathological images. The final structure used for the classifier 

was the shallowest network of any of the architectures tested, but it had the highest performing 

models. Since the final classifier used fewer convolutional layers, the features used for analysis 

were simpler as well. This information shows that it is plausible that a classical computer vision 

classifier could have performed at a similar caliber. However, it is also important to note that the 

features being analyzed are more abstract than ones that would be used in classical computer vision. 
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Since picking features for a classical classifier may not be a simple task, it is probably preferable 

that a neural network is used for the classifier. 

Another lesson learned is that choosing the right network architecture and proper number 

of training epochs has the most impact on the performance of the classifier. Being able to train for 

more cycles helps create the classifiers with the highest accuracy, so one of the goals of the 

architecture is to reduce the chance of overtraining. Data augmentation can also play a large role in 

this process, but it requires far more samples than were implemented in this project. 

An additional factor for the success of a network architecture is whether or not pre-trained 

weights are available. Though the ResNet50 architecture was not used as the final structure for the 

classifier, an important lesson was learned about weight initialization. Testing the ResNet50 

structure with random initialization and with pre-trained weights demonstrated that there is an 

advantage to using pre-trained weights for model initialization. Using pre-trained weights improves 

the average performance of the classifier and increases the proportion of models that achieve higher 

accuracies. When using a well established structure, pre-trained weights should be used for 

initialization, if they are available. 

The most important takeaway is that the developed classifier is a viable design that is 

capable of diagnosing breast cancer in its early stages.  The classifier has a relatively simple 

structure that allows for a short training period but still provides accurate classification. Acquiring 

a proper diagnosis at an early stage is an important step in improving the survivability of breast 

cancer. This classifier can be used as a way to help decrease the death rate of breast cancer. 

Hopefully, this paper will provide guidance to other researchers with similar goals, and the 

classifier will help save people’s lives.  
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CHAPTER 7. NEXT STEPS 

Due to the limit on time and the many directions that this project could have grown, there 

are many steps that can be taken to improve the classifier algorithm in the future.  

The first set of improvements would help the performance analysis of a classifier. Since 

the BreakHis dataset is well organized and broken into separate categories, it is possible to group 

all images from the same patient. Using the separate diagnoses of each image, a prediction can be 

made on a patient level in addition to an image level. By collecting more data from a patient, a 

better diagnosis can be made. Md Zahangir Alom et al. used a winner-takes-all method to correctly 

diagnose 100% of their test patients [21]. This was performed on a different dataset, but it could 

still be applied to the BreakHis dataset. 

Since the training process is stochastic, a higher number of samples would have helped the 

accuracy distribution plots. If the number of models trained and tested increased from 50 to 100, 

smaller bins could have been used on the histogram, leading to a more accurate representation of 

the distribution. Since there were only 10 bins and large variations in data, there were some plots 

that could be deceiving. For example, Figure 7.1 shows the accuracy distribution for Model 1.1; 

there is a sample somewhere in the range of 79% to 83%, but it doesn’t show exactly where. By 

keeping a fixed x-axis for each histogram and using more bins, the resolution of the distribution 

could have been increased. Having 100 bins spread from 0% to 100% would make it much easier 

to compare plots.  
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Figure 7.1: Accuracy Distribution for Model 1.1 Architecture 

Another improvement for analysis would have been plotting the accuracy and loss over the 

number of epochs used while training. When training the model, the accuracy and loss per epoch 

was stored in a variable called “history;” after the best model was found, the history was used to 

plot the accuracy and loss over the epochs. Unfortunately, the training and testing metrics had 

stochastic properties. So the plots were difficult to read and unreliable (See Figure 6.2). A simple 

fix would have been to average the accuracy and loss across all of the models instead of using just 

the best model. That would have made the plots smoother and more informative. Unfortunately, 

due to time restriction, this was never implemented. 

 
Figure 7.2: Model Loss During Training (Model 1.0) 
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The next set of improvements would improve the overall performance of the classifier 

itself. In Figure 7.2, the validation loss begins degrading around epoch 10. Training shouldn’t 

continue if the validation loss or accuracy stops improving or starts degrading. When compiling 

the model with keras, it’s possible to define callbacks; code was written to test the callbacks (Code 

Block 7.1), but it wasn’t used because of lack of time. The goal of callbacks is to keep the weights 

from the epoch that performed the best. The Early Stopping callback monitors a metric or loss 

function of choice and will stop training if the monitored value begins to drop. It has a parameter 

for patience. Patience determines how many iterations the model can train without making an 

improvement. If the model stops learning properly, it will stop training and return the model that 

had the best weights for classifying. The Model Checkpoint callback is more general. But for this 

use case, it monitors the validation accuracy and saves the weights that achieved the max validation 

accuracy. The weights are saved to an h5 file and can be reloaded into the model from the temp 

folder that is generated. Again, the code for the callbacks has not been fully tested, and only one 

can be used at a time for now. 

'''Fit data to model using 25 epochs and early stopping''' 

# Early Stopping Call back will stop training if the model  

# hasn't decreased the validation loss in the last 5 epochs. 

# If it stops early, it will restore the weights that had the minimum loss. 
earlystopping = tf.keras.callbacks.EarlyStopping( 

    monitor ="val_loss",  

    mode ="min",  
    patience = 5,  

    restore_best_weights = True) 

 
# Fit Training Data to Model (Train Data) 

history = model.fit( 

    train_ds, 

    validation_data=val_ds,         
    epochs=25, 

    callbacks =[earlystopping] 

) 

'''Fit data to model using 25 epochs and Model Checkpoint''' 

# Create the checkpoint path in the Docker container 

if not os.path.isdir(path): 
    os.makedirs(path) 
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# Saves the best model  

model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( 

    Filepath = path +'checkpoint.h5', 

    save_weights_only=True, 
    monitor='val_accuracy', 

    mode='max', 

    save_best_only=True) 
 

# Fit Training Data to Model (Train Data) 

history = model.fit( 
    train_ds, 

    validation_data=val_ds,         

    epochs=25, 

    callbacks =[model_checkpoint_callback] 
) 

 

# Reload best weights from the file 
model.load_weights(path + 'checkpoint.h5') 

Code Block 7.1: Early Stopping Callback (Top), Model Checkpoint Callback (Bottom) 

As discussed in Chapter 4.8, the augmentations that were made did not improve the 

results. In theory, training with more data should have improved the average classifier's 

performance. With the way that augmentations were performed, only a small amount of new images 

could be added to the training data. Ideally, many images would have been added per training 

sample, rather than just one image for some of the training samples. Limiting the data to always fit 

the train:validate:test ratio of 0.8:0.1:0.1 was a mistake. It should have been initially extracted from 

the dataset in that ratio, but adding augmentation should have changed the ratio significantly. 

Another issue with the augmentation algorithm is that it was limited in the number of ways that it 

could augment an image. Only 4 extra images could result from the current method. The rotation 

and flipping should have been based on a function of the number of augmentations. For example, 

if adding 2 images per training set, the first could rotate 120 degrees and the second 240 degrees. 

Allowing for more complex augmentations allows for more unique images to be generated.  

To fix the imbalance issue, more augmentations could have been used on the benign 

samples. Since there are 2480 benign samples and 5429 malignant samples, creating twice as many 

augmentations for benign samples than for malignant samples would improve the balance. 
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Increasing the number of augmentations would likely improve the performance, and balancing the 

data would make it less biased towards classifying images as malignant.  

If it is not preferable for false positive and false negative rates to match, it might also be 

possible to incorporate risk when defining the threshold between classes. This idea stems from the 

classical approach of Bayesian Risk. This would allow for adjustments to be made based on which 

classification mistake is more preferable. It might be that it is more preferable for the classifier to 

mistake benign samples as malignant than it is for it to mistake malignant as benign. It is difficult 

to determine which mistake is more costly because it might have ethical considerations. So this 

probably would not be implemented, but it could be.  

Since the dataset is shuffled before being partitioned into training, validation and testing, 

some of the samples taken from a single patient will end up in each of the datasets. This means that 

samples taken from a single tumor can end up in both the training and testing sets. There might be 

a difference in magnification, or it might be a different section of the same tumor, but this means 

that the data is biasing the classifier. A potential fix to this is separating the training, validation and 

testing by patient rather than grouping randomly shuffled images into the datasets. So for example, 

80% of patients could be used for training, making it so that those same patients will not appear in 

the test set.  

Problems arise when trying to implement this strategy. For example, there are some cancers 

that are more rare than others. So it might be that only a few patients have papillary carcinoma. So 

the classifier will have a lack of exposure to this subclass and struggle to classify it. Even when 

using binary classification, having a lack of exposure to any of the subclasses during training could 

make the classifier struggle to correctly identify them as benign or malignant. Another special case 

are patients with multiple tumors belonging to separate sub-categories. When trying to implement 

this change, it might just be that the BreakHis dataset is not well suited for separating by patients. 

It is still an interesting and worthwhile experiment to conduct, as this could help remove bias from 

the classifier. 
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Another improvement to be made would be adapting the model to work for multi-category 

classification, not just binary. If the multi-category classification is able to achieve similar levels 

of accuracy as binary classification, then it provides more information to doctors about the specific 

type of tumor that the patient has. If it does not work as well as binary classification, it can still be 

used after binary classification to provide relevant information to the doctors. This change could 

help pathologists report the status of malignancy, as well as the proper course of action for treatment 

options and expected outcomes. Expanding the classifier to work for an arbitrary number of classes 

and multiple labels would be the ultimate goal, as this would improve the diagnosis and make it 

much easier to adapt for other purposes. 

An interesting special case for classifying sub-categories is the phyllodes tumor. As 

mentioned in Chapter 2.1, about 1 in 4 phyllodes tumors are malignant [8]. The BreakHis dataset 

labels this as benign because it is less common and not technically breast cancer. It is considered a 

cancer of the connective tissues (sarcoma), which is not as deadly as breast cancer. Still, it is 

important that this cancer is caught in the screening process because it can be lethal. This is another 

case where multi-category classification would be useful for the pathologist. Otherwise, the 

malignant phyllodes tumors would pass unnoticed. 

A final improvement to this report would be to return to VGG16 and finish the 

preprocessing for the algorithm. This is not a high priority because VGG16 is considered an older 

algorithm, so it probably would not perform as well as ResNet50 or other algorithms that could be 

implemented. Finishing the work for VGG16 would improve the completeness of the report and 

could give other researchers insight to which algorithms work best for the BreakHis dataset. A 

higher priority might be to implement more modern structures like IRRCNN to see their 

effectiveness or ways that they can be improved.  
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APPENDICES 

A.1 Documentation for Researchers 

When starting this project, a lot of work involved figuring out how to set up the coding 

environment and learning how to use tools such as Docker and the remote server. Since this process 

was very time consuming, it made it so that there was less time to dive into the project itself. To 

make it so that future researchers have an easier time getting started, a document was created on 

Google Drive that includes information on how to set up the coding environment, use docker, create 

bash files and start designing a classifier. It also includes useful links that were needed for 

installation, information, tutorials, and troubleshooting. The document can be accessed with the 

following link: https://tinyurl.com/2p8z692p  

A.2 GitHub Link 

 All of the code used in this project can be found here: https://github.com/rdalke/Thesis  

A.3 Computer Specifications 

 The time that the classifier takes to perform a task is dependent on the computer being 

used. This project used Cal Poly’s Computer Science department’s f35 server. The server has a 

total of 775 GB of RAM, 256 logical processor cores (CPU model AMD EPYC 7742 64-core), and 

two Nvidia Tesla V100s. Students that have permissions for this computer are typically allowed 5 

GB. However, for projects that require more space, 10 GB can be allotted to a single student. This 

is a very powerful computer, so training and testing times are relatively short compared to using a 

personal computer.  
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