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ABSTRACT

Specialized Named Entity Recognition for Breast Cancer Subtyping

Grif Hawblitzel

The amount of data and analysis being published and archived in the biomedical

research community is more than can feasibly be sifted through manually, which limits

the information an individual or small group can synthesize and integrate into their

own research. This presents an opportunity for using automated methods, including

Natural Language Processing (NLP), to extract important information from text on

various topics. Named Entity Recognition (NER), is one way to automate knowledge

extraction of raw text. NER is defined as the task of identifying named entities from

text using labels such as people, dates, locations, diseases, and proteins. There are

several NLP tools that are designed for entity recognition, but rely on large established

corpus for training data. Biomedical research has the potential to guide diagnostic and

therapeutic decisions, yet the overwhelming density of publications acts as a barrier to

getting these results into a clinical setting. An exceptional example of this is the field

of breast cancer biology where over 2 million people are diagnosed worldwide every

year and billions of dollars are spent on research. Breast cancer biology literature and

research relies on a highly specific domain with unique language and vocabulary, and

therefore requires specialized NLP tools which can generate biologically meaningful

results. This thesis presents a novel annotation tool, that is optimized for quickly

creating training data for spaCy pipelines as well as exploring the viability of said data

for analyzing papers with automated processing. Custom pipelines trained on these

annotations are shown to be able to recognize custom entities at levels comparable

to large corpus based recognition.
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Chapter 1

INTRODUCTION

Breast cancer is a heterogeneous disease in which several etiologies can result in

varying manifestations of disease in patients[32]. Molecular classification using gene

expression and traditional pathology-driven techniques has classified breast cancer

into the following five distinct molecular subtypes: luminal A, luminal B, HER-2

enriched, basal-like (triple-negative), and normal [50]. Among the subtypes, there are

differences in disease progression, tissue origin, and treatment that result in prognostic

significance [39][46]. The ability to clinically diagnose the subtypes as soon as possible

in the identification process can help clinicians in defining prognosis and treatment

strategies, to improve patient care outcomes [6]. Breast cancer is one of the most

researched diseases in the world. In order to synthesize research for new developments,

there is a demand for tools that can autonomously extract knowledge from biological

literature.

One such tool is ScispaCy. ScispaCy is an open-source Python-based natural lan-

guage processing (NLP) pipeline that is designed to analyze biomedical and scientific

literature. This package contains the general Python-based spaCy models that use

advanced NLP [24][37]. Along with the scispaCy library, there exists several pre-

trained models for analyzing biological papers. Primarily, there is the pre-trained

“en ner bionlp13cg md” model which is a spaCy named entity recognition (NER)

model trained on the BIONLP13CG corpus which is specific for cancer genetics [3].

NER is a type of NLP that identifies and categorizes named entities from text such as

scientific literature. Named entities that are classified by the en ner bionlp13cg md

model include cancer, gene, tissue, cell, etc.
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BERN2 is another NER model that uses a neural network and is specifically built for

biomedical literature [45]. BERN2 was designed for any research paper that could be

on Pubmed. BERN2 works by using cached annotations if possible, and if not uses a

neural network NER model combined with rule based modelling to find entities. The

classes of named entities BERN2 can extract include chemicals, disease, gene, and

cell type or line.

Other tools exist for presenting extracted knowledge in new forms. KGen is a pipeline

that designs knowledge graphs in a semi-automatic manner for unstructured biomedi-

cal literature that uses NLP and ontology linking [41]. KGen will graphically represent

the knowledge extracted from the papers. A KGen graph, of the form KG = (V,E),

are generated by extracting Resource Description (RDF) triples from the text. An

RDF triple, or semantic triple, represents a core relationship with a subject, predi-

cate, and object (s, p, o), as is common in simple English language sentences. The

graph is constructed by taking a set of triples, and adding them to the graphs where

nodes are oriented in the form subject -¿ object. This yields the following graph:

E = (p1, p2, . . . , pn)

V = (s1, s2, . . . , sn, o1, o2, . . . , on)

tn = (sn, pn, on)

KG = (V,E) = (t1, t2, . . . , tn)

Ultimately, some of these subjects, objects, and predicates can be linked to an on-

tology. An ontology is defined as a domain of concepts, attributes, and relations.

This gives an “Ontology-linked Knowledge graph”. Linking a knowledge graph to an
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established ontology can provide valuable context and background to a knowledge

graph.

One of the major problems is that research done in breast cancer is highly technical

and specific. General entity recognition models may not have the correct vocabulary

or training necessary to recognize the entities that a research may be looking for.

This paper aims to evaluate current work and other related methods for autonomously

analyzing biological papers, most specifically in how the results may contribute to the

research of breast cancer subtyping. After evaluating the state of current tools, sev-

eral contributions and improvements will be introduced that aim to improve process

of creating custom NER models with specific entities, for specific research. These

contributions will be evaluated on how well they extract knowledge from papers and

the potential for application with regard to specific bio-informatics problems.

3



Chapter 2

BACKGROUND

As a function of the information revolution in the last few decades, there has also

been a rapid increase in the availability of data in the bioinformatics space [28]. This

has changed how medical research and treatment are administered. Especially since

the mapping of the human genome, one of the highest areas of interest is that of

genomic research. However, the methods with which we process the huge amounts of

data are still evolving.

Figure 2.1: A breakdown of the bioinformatics field [28]
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While not all inclusive, much of the work can be narrowed down into the follow-

ing fields: “genomics, proteomics, microarrays, systems biology, evolution and text

mining,” [28] and can be shown in the figure 2.1.

Genomics have been a part of breast cancer research for over 100 years. French

surgeon Paul Broca first established that breast cancer may be hereditary in 1866,

by analyzing the occurrence of 10 cases in 24 women of his wife’s family [48]. Further

identification of the BRCA1 gene culminated in BRCA1 and then BRCA2, getting

successfuly cloned in the 1990’s. It is estimated that up to 10% of breast cancer cases

are hereditary, and with BRCA1, the onset of cancer appears two decades earlier

[35]. The merging of 21st century computing power and the large amounts of medical

research is one of the ways new developments can be made in breast cancer research

and other medical fields.

Further work is necessary to fully understand and cure breast cancer. While breast

cancer itself is widely studied, the relapse of breast cancer is not studied as well,

despite being strongly associated with breast cancer mortality [1]. Furthermore, none

of the three major American cancer registries record information on recurrence. Sev-

eral approaches have been attempted to predict recurrence in breast cancer patients,

including KDD, SEMMA and more. For feature selection, approaches varied between

manual selection by medical experts, and others using feature selection algorithms.

Some approaches focused largely on clinical data such as age, tumor size and stage,

ER and HER2 status, and menopausal status. However, the accuracy varied widely.

Common issues to this problem were lack of data, an imbalance of data, feature se-

lection, interpret-ability, and an inability to evaluate success. Doctors are expected

to explain diagnoses and medical decisions to patients, other doctors, and adminis-

trators. Artificial intelligence strategies can be difficult to explain, and if a physician
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cannot explain a diagnosis, then the method will never be excepted by the medical

community[1].

2.1 Machine Learning in Bioinformatics

So far, numerous machine learning methods have been applied to cancer data, with

promise in the classification results. Figure 2.2 shows a survey of core machine learn-

ing algorithms applied to a data-set for cancer classification[21]. The results show

shockingly good accuracy, and unlock much of what will be discussed on this paper,

they did not attempt to reduce dimmensionality, which may suggest over-fitting.

Figure 2.2: A general survey of ML technique performance [21]
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2.1.1 Feature Selection

When it comes to processing transcriptomic data, an ongoing issue is feature selec-

tion. With base pairs in a human in the millions, efficient algorithms that can find

the most powerful of features are necessary for practical use of the vast amounts of

information. One train of thought with feature selection is that most methods fall

under 3 categories[10]. Filter methods focuses on the characteristics of individual

genes and there relation to the target for classification. Filter methods tend to ignore

more complicated relations but is relatively easy to use. Wrapper methods, generally

considered to be more effective, is based around optimizing algorithm performance, by

using an initial set of genes and augmenting it to learn the optimal number. The em-

bedded method is similar to wrapper methods, but can combine multiple algorithms

for feature selections[10].

One such way that feature selection can be done is a stacked auto encoder. An

auto encoder is an unsupervised neural network the works at dimension reduction

by deconstructing data and attempting to reassemble it, therefore identifying the

minimal set of features necessary to do so. A stacked auto encoder works similarly,

but by using multiple encoders in sequence. This helps improve dimension reduction

for data sets with highly complex relationships.

One direct application of a stacked auto encoder was an attempt to predict cancer sub-

types utilizing both genomic data as well as alternative splicing (AS) data. Alternative

splicing is when alternate combinations of exons are joined together in the final stage

of transcription, allowing multiple messenger RNA to be produced from a single gene.

Studies have shown AS to be correlated with cancer development in the human body,

which means that it has potential to be a strong predictor of cancer sub-types. This

study used a stacked auto encoder on both gene and alternative splicing data for

7



feature selection, before using an auto encoder on the combination of the two in

order to predict cancer sub-type. This approach is illustrated in 2.3.

Figure 2.3: Stacked Auto Encoder Model [16]

This method outperformed PCA in terms of feature selection.

Another proposed method of feature selection is particle swarm optimization (PSO)[10].

In PSO, a group of candidate solutions referred to as particles navigate the search

space by taking into account both local optimal position as well as global optimal

position. One study combined this with C4.5 algorithm to perform gene selection[10].

In this method, the particle represents a subset of genes, where locations can be used

to represent performance of the subset there. C4.5 is a decision tree algorithm known

for efficiency in classification. C4.5 is used to evaluate performance of the candidate

solution. This method reached 97% accuracy when applied to clinical studies. An-
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other study combined PSO with synthetic minority oversampling technique to predict

5 year survivability[47]. Synthetic minority oversampling technique (SMOTE) is an

approach for working with imbalanced data by created synthetic instances of the mi-

nority classification, in order to reduce the imbalance in the data. The new instances

are created using a k-nearest-neighbors approach. In cancer data, many more pa-

tients today survive than do not, which creates a data imbalance. This results in low

accuracy when it comes to predicting which patients will not survive. The study used

several classifiers to compare accuracy of their model. There was mixed results, but

the C5 classifier showed strong improvement using the hybrid model.

Another model combined minimum redundancy maximum relevance (MRMR) and

cuckoo optimization algorithm (COA-HS) in two stages to narrow down the gene

pool[14]. MRMR is a filter method that tries to select genes with the highest correla-

tion to the target (maximum relevance) but with the least correlation to each other

(minimum redundancy). COA is a method in which a ”nests” are analyzed for there

probability of an ”egg” surviving in it. In this insance an egg represents a potential

solution, and overtime, only the optimal solutions will remain in the nests. Harmony

search (HS) is a musically inspired optimization method utilized as well. The re-

sults from MRMR are fed to a hybrid COA-HS search, and the results outperformed

other methods for datasets on several types of cancer, including leukemia, prostate,

lymphoma and colon cancer.

Automated methods reduce friction, but in these cases, fail to factor in valuable expert

knowledge and current research, in the next section, the process of implementing

expert knowledge will be discussed.
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2.1.2 Knowledge Extraction

With the problem of feature selection, one factor that may improve selection is use of

the vast amounts of medical research that has already been done in the relevant fields.

As mentioned above, using medical expert or general prior knowledge is one of several

ways to work on feature selection. One study established that injecting knowledge

into machine learning models increased accuracy of cancer sub-type classification.

Figure 2.4: A model of the cycle of knowledge extraction. [5]

By injecting knowledge from another paper, which identified three genes of inter-

est (ESR1, ERBB2/HER2, AURKA) for identifying four different cancer sub-types

(basal-like, HER2-enriched, luminal A, and luminal B). They then created a graph

using k-nearest-neighbors where patients share an edge if they are of the same sub-

type and are k-nearest-neighbors by distance using those three genes. By combining
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this knowledge graph with output from a deep learning neural network, the accuracy

of the model increased from 75% to 80% [5].

This process of identifying valuable information in literature and applying it to bioin-

formatics models is a process that can be improved on. A primary motivation of

this paper is to improve on this process by removing friction from the knowledge ex-

traction process, and make for more effective extraction of relevant information from

biological papers.

2.1.3 Knowledge Graphs

These results introduce another part of the puzzle for potential research. Knowledge

graphs, meaning using a graph based data model has numerous upsides. A graph

based architecture can illustrate complex relations, while maintaining flexibility[20].

In the field of bioinformatics, this model has several specific benefits. Knowledge

graphs flexibility not only makes them more accepting of the rapidly growing and

changing field of bioinformatics, but also makes it easier to merge the existing data,

which is represented in numerous schema[18]. Graphs make it possible to represent

ontologies and vocabularies, as well as executing complex queries with little compu-

tational expense[18]. A proposed use of a knowledge graph model is described by one

paper as a digital library framework. This model would serve the ”needs of users

(societies), provide information services (scenarios), organize information in usable

ways (structure), present information in useful ways (spaces), and communicate in-

formation with users (streams)”[18]. This structure has several layers. The data layer

may represent numerous formats covering several different knowledge bases. The pro-

cessing layer performs preprocessing necessary for the data’s eventual merging. This

yields the third layer, the knowledge graph. The graph itself has data organization

nodes, and instances of those nodes. The fourth and fifth layer represent applications

11



and there users that could be built on this knowledge graph. This paper created a

prototype with a couple datasets, but introduced potential future work in introducing

additional datasets.

Figure 2.5: Knowledge Graph Model [16]

Knowledge graphs have also been used for predicting clinical outcomes. The paper

used a knowledge graph to synthesis knowledge from several data sources, including

CNA, methylation, gene expression, and miRNA. It used this information to try and

predict three clinical outcomes[25]. Early or late stage, low or high grade, and short-

term vs long-term survival (with 3 years being the benchmark). Edges in the graph

were representative of similarities for two patients who have similar stats with regard

to the above data sources. The study ultimately showed improvements in accuracy

when integrating assorted data sources together.
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The work in extracting knowledge to a knowledge graph may also include using nat-

ural language processing to analyze existing medical literature. Here, the knowl-

edge graph utilizes semantic representations of medical knowledge. This research has

great potential in making unseen connections between multiple sources of informa-

tion. The SemRep system is a rule based program that tags medical entities from

text from PubMed. It uses natural language processing methods such as part of

speech tagging and named entity recognition. The paper furthermore incorporates

quantitative metrics to identify the strength of relations found between nodes on the

knowledge graph[11]. Disease specific information is used to identify more specific

relationships.The overall method involved extracting literature on a subject and from

that extracting the semantic associations. Then they normalized the information and

injected the concept-specific embeddings. Then built the knowledge graph using the

information, that came out as a representation of related concepts. Figure 2.6 show

the model for this method[11].

Figure 2.6: Knowledge Graph utilizing NLP techniques to extract knowledge [16]
[11]
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Overall knowledge graphs can be a valuable way to both visualize extracted knowledge

as well as a valuable data science tool for applying extracted knowledge. An improved

entity recognition model could create improved knowledge graphs that have great

value to researchers.

2.1.4 Other Methods

Another study sought to use machine learning to analyze the relation of the combined

information of miRNA and lncRNA to breast cancer and neoplasm scenarios [17]. A

neoplasm is an abnormal growth similar to cancer. The combine the data sets, the

lncRNA (which is the longer of the two) was sequence aligned to the miRNA. Feature

selection was done using k-mers and energy folding values, among others. One class

SVM was then used to identify outliers, whose output was then fed to supervised

decision tree and SVM models.
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Figure 2.7: SVM Performance Analysis[52]

This approach achieved extremely good accuracy, which verifies the potential of com-

bining some of our new bioinformatics data to yield improvements in model perfor-

mance.

For pancreatic cancer, 3 genes of interest are MUC1, MUC2, and MUC4[52]. Several

models have been attempted to classify prognosis of pancreatic cancer using these

genes. A classic SVM classifier and two varieties of neural networks. Support vector

machine (SVM) models are based on creating a plane or several planes of varying

dimmensionality to try and graphically separate different labels. Neural nets were

15



used from the nnet package, with a further model being a neural net that utilizes the

multinomial log linear model using the multinom function, which is an expression for

regression models. Both models had good results with regard to mapping prognosis as

survival rate after a variable amount of months. This study included both neoplastic

and nonneoplastic samples. A cell is neoplastic is if it has been transformed beyond

its ability to perform normal body processes. The results for this study can be seen

above.

Ultimately the methods above fail to utilize the vast body of research available re-

garding breast cancer, except by largely manual efforts. This paper will look to

create a method for which researchers may use in order to get better results in the

bioinformatic study of breast cancer and other diseases.
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Chapter 3

METHODS

3.1 Comparitive Analysis

The performance of several tools, namely ScispaCy, BERN2 and KGEN were investi-

gated for their ability to extract information relative to the breast cancer subtyping

problem. We initially selected two biological questions relating to breast cancer re-

search and aimed to see how well these tools extract information relative to these

questions from breast cancer subtyping papers.

1. Blows et al. found that low TP53 mutation frequency in luminal A (12%) and a

higher frequency in luminal B (29%) cancers [9]. Have other researchers found

the interesting change in mutation rate in TP53 between luminal A and luminal

B?

2. Koboldt et al. found a luminal expression signature of ESR1, GATA3, FOXA1,

XBP1 and MYB [26]. Have other researchers found similar signatures?

This approach was modelled to simulate how these tools might be used by biologists

seeking information specific to a particular field of research. The papers used to test

these methods on were chosen by biologist, on the basis of there relevance to breast

cancer, primarily those that dealt with genomics in breast cancer subtyping. That is

to say, the papers had immediate relevance to the questions above.The papers were

annotated to provide a baseline to compare the NER efforts of ScispaCy and BERN2

with an example of which is shown in figure 3.1.
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Figure 3.1: An example of a manually annotated paper [26]

3.2 Annotations For Specific Problems

Reliance on large, established data sets reduces the capability of existing NLP tools

to be applied to more specific problems. The creation of these corpus are at the same

time too tall a task to be done for every niche topic using existing tools. To train

a spaCy pipeline, sets of annotations are necessary. An annotation looks like the

following:

(”We identified two novel protein-expression-defined subgroups, possibly produced

by stromal/microenvironmental elements, and integrated analyses identified specific

signalling pathways dominant in each molecular subtype including a

HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the
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HER2-enriched expression subtype.”, ”entities”:

[(24,60,”Subtype”),(231,250,”Subtype”),(251,275,”Subtype”),(276,334,”Subtype”)])

The use of string indices to pinpoint the entities makes the creation of these anno-

tations tedious if done manually. When factoring in the desire for a large number of

samples for a training set of data, this can be an extremely laborious task.

Our initial work is focused on improvement on an existing tool, the helps to expedite

this process. The spaCy annotation tool from agate team begins with several good

features[2].

• Custom labels for entities

• Assign labels by highlighting (calculates indices automatically)

• Formats annotations automatically

Figure 3.2: The Annotation Tool [2]
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These are notable improvements on doing the annotations manually. Assigning labels

by highlighting is the primary feature, as it makes assigning names to entities easy.

However, there are also drawbacks. The only way to input text is to paste text

into the tool. Furthermore, the text needs to be formatted with new lines for each

sentence, requiring manual preprocessing. Likewise, the only way to get the data out

is to copy and paste out the completed annotations. In addition, the labels start at a

clean slate every load of the tool, which makes inconsistency a risk, especially when

doing collaborative research.

The new version of the annotation tool contains several new features. The focus of

these features is to removing friction from this process. The software can automat-

ically preload an abstract into the annotation tool using URL parameters for any

pubmed ID for which the abstract is publicly available. This performs the necessary

preprocessing of the text in order to prepare it for annotation. For example, the

URL [host]/spacyannotation/?pubmedID=33248227 preloads a paper into the tool

with the text processed to prepare it for annotation.

Figure 3.3: The input text box from the annotation tool[19]

This is the abstract from the paper Reshaping preoperative treatment of pancreatic

cancer in the era of precision medicine. 33248227 is the pubmed ID for this paper.
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For any paper whose abstract is publically available, this URL parameter will load

the abstract into the tool for annotation.

Another method was used for developing the test corpus. A group of files can be

preloaded into the tool and accessed using a different URL parameter. With a collec-

tion of texts, you can quickly cycle through annotating papers. Using python scipts,

a folder with text files containing text can be prepared to be annotated. The URL

[host]/spacyannotation/?paper=n will load these papers into the tool where n is an

index from 1 to the number of papers in the folder. This method was used for creating

the training data.

These methods have several advantages over copy and paste as input. First, this

manages some of the prepossessing that might otherwise need to be done manually,

most notably by separating the text by sentence. Secondly, the use of URL parameters

makes for permanent URLs, meaning a link or links can be shared to collaborate on

annotating text. As volume is relevant when building the training data, being able

to collaborate is critical. The tool also can be adjusted to have preset labels, which

adds consistency to a collaborative effort. Having all partners using the exact same

labels adds to the cohesiveness of the resulting dataset.

For both of these methods, the tool will save the results of sessions in order to build

a single group of annotations. Another addition we have is the ability to save the

formatted annotations as a .txt file, instead of copying and pasting the results.
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Figure 3.4: Annotation Tool Flow Chart

The end goal is to make creating a data set quickly and cooperatively in order to

train named entity recognition pipelines for specific uses. For the training corpus, we

created annotations for the abstracts of 25 papers, representing over 250 sentences.

The papers were selected by members of the Bioinformatics Research Group (BIRG)

for relation to breast cancer subtyping.
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3.3 Custom NER Performance Analysis

For the purposes of comparison, in one run we chose the same labels as another NER

model, BERN2 [45]. Advanced Biomedical Entity Recognition and Normalization

(BERN2). BERN2 utilizes a multi task neural network model, and showed good

results in identifying 9 types of entities.

• Gene

• Disease

• Chemical

• Species

• Mutation

• Cell Line

• Cell Type

• DNA
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• RNA

BERN2 used several models to identify entities of these types with fairly good results.

It attempted both a neural network as well as a rules based approach, and ultimately

utilizes a hybrid approach that can identify entities up over 90% at a time. The afore-

mentioned labels are also a very appropriate for our topic, breast cancer subtyping.

The papers selected by BIRG were annotated by several members for these labels.

Figure 3.5: BERN2 Flow Chart[45]

To compare performance, we discussed both the overall accuracy and the accuracy

with regard to each label individually. This will provide a comprehensive look at the

comparative performance of our entity recognition model. In addition we calculated

precision, recall, and f1 score. These values are calculated from the classification

measures of true positive, false positive, false negative, true negative.

• True Positive (TP): Predicted Positive and was Positive

• False Positive (FP): Predicted Positive but was Negative

• False Negative (FN): Predicted Negative but was Positive

• True Negative (TN): Predicted Negative and was Negative
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The values above, once accounted for in the results derived from the experiment, can

be used to calculate the following.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
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Chapter 4

RESULTS

4.1 Comparitive Analysis

In the initial investigation we manually compared two leading entity extraction meth-

ods: ScispaCy and BERN2. The results of this analysis are shown in Figure 4.1. We

observe that both methods correctly identify genes and that BERN2 incorrectly clas-

sifies subtype, while ScispaCy omits it. We also observe a misidentification of gata3

and cdh1, and finally, we note that ScispaCy does not identity luminal A.

Similar results are observed for Question 2. The sentences that originates this ques-

tion is ”One of the most dominant features is high mRNA and protein expression of

the luminal expression signature, which contains ESR1, GATA3, FOXA1, XBP1 and

MYB; the luminal/ER+ cluster also contained the largest number of significantly mu-

tated genes.” For this sentence, our analysis showed that both ScispaCy and BERN2

identified the genes, BERN2 incorrectly classifies the subtype, ScispaCy omits the

subtype, and ScispaCy misidentifies luminal and ER+ as genes.

Figure 4.1: Named entity extraction results for Question 2 shown for (A) ScispaCy
and (B) BERN2.
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4.2 Annotations For Specific Problems

The tool can ultimately be used by utilizing npm live-server [https://github.com/GrifH/spacyannotation].

Running the command live-server in the directory of the tool will launch the tool as a

locally hosted webpage. From, here the url http://127.0.0.1:8080/?pubmedID=33248227

automatically loads the abstract from the paper Reshaping preoperative treatment

of pancreatic cancer in the era of precision medicine. From here annotating is very

easy.

Table 4.1: Annotation Tool Comparison[2][19]

Features Agate-Team Tool New Tool
Copy/Paste Input ✓ ✓
Pubmed ID Input ✓
File Load Input ✓
Permanent URL ✓
Permanent Labels ✓
Copy/Paste Output ✓ ✓

File Download Output ✓
File Load Input ✓

Biologists using the tool have reported that the tool has greatly reduced the time

it takes to annotate biological papers, especially with the pre-load tool from the

command line. While a large magnitude of papers still need to be researched for an-

notating, this tool makes the annotating process itself more efficient. The permanent

urls make annotating easier in terms of distributing and sharing work.

For analyzing these results, it is difficult to pin down a baseline, especially in the

early stage of this research. Future work on this should focus on both subjective and

objective analysis of the effectiveness of this tool for creating annotations, as well as
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the utility of those annotations. If they can be used to create specific use data sets

for natural language processing applications, then the utility of this tool is validated

to a higher degree.

4.3 Custom NER Performance Analysis

For the actual performance of the annotations the overall recognition was analyzed.

This was measured by looking at if an entity was annotated, was any entity recognized

by spaCy or BERN2. This would not punish an incorrect labelling if a label was called

for. In this matter, initial results yielded approximately 65% overall accuracy for the

custom spaCy NER model. Compared to the 80% BERN2 accuracy, our result was

notably worse. However, given the relatively small sample size represented by the

corpus, this is an encouraging result. The true gain relative to our goals come when

looking at individual labels, as will be observed below.

The tables below describe results from our retrained spaCy Model and that of BERN2.

These labels include both ones common to BERN2 but also ones unique to our prob-

lem, subtype and gene product, treatments and tests, although not all of these labels

occurred very often. The most common, as one might imagine, were disease, subtype

and gene. This is because most of the papers selected were focused on these topics,

and less so necessarily on treatments, symptoms or other cancer adjacent topics.

First, table 4.2 performance from BERN2 on our testing set.
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Table 4.2: BERN2 Results[45]

Class Precision Recall F1 Accuracy
Disease 0.96 0.47 0.63 0.46
Gene 0.67 0.85 0.74 0.59

Chemical 0.25 1 0.4 0.25
DNA 0.42 1 0.6 0.43
RNA 1 1 1 1

Cell Type 0.8 1 0.89 0.8
Cell Line 0.09 1 0.16 0.09
Mutation N/A N/A N/A N/A
Species 1 1 1.0 1
Overall 0.68 0.69 0.68 0.52

Looking at this table, the results seem very poor, especially relative to the quoted

80% from above. This was because of subtypes, an element critical to our specific

problem, were most often classified incorrectly as cell line’s or genes as opposed to a

disease, which is where they hypothetically should be within the constraints of these

labels. Take the following as an example:

Figure 4.2: BERN2 Example[45]

For any number of reasons, subtypes were often classified incorrectly. In this example,

this list of subtypes, clearly prefaced as subtypes in the text, are miss labelled as cell

lines. This is not only generally incorrect, but specifically unproductive within the

framework of our specific research into breast cancer subtypes.

Our own method produced the following results for some common labels and some of

our own:
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Table 4.3: Custom NER Results

Class Precision Recall F1 Accuracy
Disease 0.89 0.73 0.8 0.67
Subtype 0.88 0.73 0.8 0.67
Gene 0.81 0.65 0.72 0.56

Gene Product 0.33 0.083 0.13 0.07
DNA 0 0 0 0
RNA 1 1 1.0 1

Cell Type 0 0 0 1
Cell Line* N/A N/A N/A N/A
Mutation* N/A N/A N/A N/A
Species* N/A N/A N/A N/A
Chemical* N/A N/A N/A N/A
Treatment 1 1 1.0 1
Receptor 0.83 1 0.91 0.83
Test 1 0.8 0.89 0.8

Overall 0.86 0.66 0.37 0.59

* Our annotating team did not annotate any labels of these types, so performance
data on these is non-applicable.

While the accuracy ratings in this table are underwhelming, a positive result is that

it learned unique labels such as subtype, and established good precision and some

degree of accuracy. Compared to the BERN2 results, this is about as accurate, and

the performance was superior in the categories most relevant to use, specifically,

diseases and subtypes. Genes were recognized with similar accuracy, although gene

product (proteins) struggled considerably. Given that BERN2 most often mislabelled

subtypes as diseases and genes, being able to recognize subtypes without damaging

performance to other diseases and genes is a very good result.
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Chapter 5

CONCLUSIONS AND DISCUSSION

Experiments with existing tools yielded lackluster results. The entity recognition

was not able to clue in entities that were particular to the breast cancer subtyping

problem. As a first step towards improving on this problem, one would have to

create a new dataset. Spacy, and by extension KGen, are trained on an existing

corpus that have been annotated to show spacy what entities and labels to look for.

Making these annotations is a tedious and slow process, and numerous papers must

be annotated for any degree of training to be effective. To this end, we have improved

an existing annotation tool to improve scalability, and create a tool that can be used

to quickly annotate papers and build new datasets and evaluated the effectiveness of

these custom annotations[2]. These experiments have established the possibility of

tackling specific problems by novel named entity recognition models. While larger

corpus will long have an advantage in broad topics, the models ability to pick up

labels from just the training data with some degree of accuracy shows this method

can be applied to specific topics, something that can be of great use for researchers.

Research being done at higher institutions is often technical enough that broad topic

recognition may not be as valuable as a specific search for named entities. The

overhead of making the annotations and training the model are largely trivial in

the scope of long term research, and with some future work, may make significant

contributions to medical research.

The problem can be summarized as two problems, the search for information and

the synthesis of it. The search for relevant information is still largely done manually,
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as it was for the contributions of this paper. The contribution of this paper will

ultimately be a larger part of the latter problem, synthesis. Previous applications in

bioinformatics have been discussed in this paper already, but one that was focused

on was KGen.

KGen, a knowledge graph generator, generates triples of subject, predicate, and ob-

ject to create a graph, with subject and object being vertices, and the predicate as

an edge[41]. KGen can integrate components from spaCy pipelines. KGen uses Scis-

paCy as its default NER models. KGen attempts to use ScispaCy to link entities to

an ontology, a database of biomedical information. The potential for well-founded

knowledge graphs makes integration with the work in this paper a natural next step.

Linking entities to each other and to important background for the entities is a valu-

able method of synthesizing critical information together. Our custom model can be

added to KGen and function in terms of graph creation. However it does not cre-

ate any ontological links when utilizing the custom NER model. The default model,

unfortunately yeilded similar results for our breast cancer subtyping. KGen graphs

also tend to be ineffective at linking biomedical entities, as NER is only a part of

their pipeline for ontology linking. Their own paper reported good results for ontol-

ogy linking. Projects like KGen, in combination with more specific NER work like

this paper, can be a part of both problems above, search and synthesis. Effective

graph creation taking NER into consideration, can be an effective way of extract-

ing information from papers, and effective ontology creation can provide depth and

understanding for these graphs.

The experiments here had several limitations. The annotations used to create this

NER model were created by students in the BIRG research group, there was inevitably

a degree of human error. This is also a factor when evaluating the performance of

the models above. The process of loading papers in for annotation is also currently
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used only for PubMed and only for abstracts that are publically available. There are

other databases that could be integrated for a more robust experience.
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APPENDICES

Appendix A

DATA SOURCES

A.1 Comprehensive molecular portraits of human breast tumours

We analysed primary breast cancers by genomic DNA copy number arrays, DNA

methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and

reverse-phase protein arrays. Our ability to integrate information across platforms

provided key insights into previously defined gene expression subtypes and demon-

strated the existence of four main breast cancer classes when combining data from

five platforms, each of which shows significant molecular heterogeneity. Somatic mu-

tations in only three genes (TP53, PIK3CA and GATA3) occurred at ¿ 10% inci-

dence across all breast cancers; however, there were numerous subtype-associated

and novel gene mutations including the enrichment of specific mutations in GATA3,

PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-

expression-defined subgroups, possibly produced by stromal/microenvironmental el-

ements, and integrated analyses identified specific signalling pathways dominant in

each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated

EGFR signature within the HER2-enriched expression subtype. Comparison of basal-

like breast tumours with high-grade serous ovarian tumours showed many molecular

commonalities, indicating a related aetiology and similar therapeutic opportunities.

The biological finding of the four main breast cancer subtypes caused by different

subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the
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clinically observable plasticity and heterogeneity occurs within, and not across, these

major biological subtypes of breast cancer[26].

A.2 Subtyping of breast cancer by immunohistochemistry to investigate a relation-

ship between subtype and short and long term survival: a collaborative analysis

of data for 10,159 cases from 12 studies

We pooled data from more than 10,000 cases of invasive breast cancer from 12 studies

that had collected information on hormone receptor status, human epidermal growth

factor receptor-2 (HER2) status, and at least one basal marker (cytokeratin [CK]5/6

or epidermal growth factor receptor [EGFR]) together with survival time data. Tu-

mours were classified as luminal and nonluminal tumours according to hormone re-

ceptor expression. These two groups were further subdivided according to expression

of HER2, and finally, the luminal and nonluminal HER2-negative tumours were cat-

egorised according to expression of basal markers. Changes in mortality rates over

time differed by subtype. In women with luminal HER2-negative subtypes, mortality

rates were constant over time, whereas mortality rates associated with the luminal

HER2-positive and nonluminal subtypes tended to peak within 5 y of diagnosis and

then decline over time. In the first 5 y after diagnosis the nonluminal tumours were

associated with a poorer prognosis, but over longer follow-up times the prognosis

was poorer in the luminal subtypes, with the worst prognosis at 15 y being in the

luminal HER2-positive tumours. Basal marker expression distinguished the HER2-

negative luminal and nonluminal tumours into different subtypes. These patterns

were independent of any systemic adjuvant therapy[9].
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A.3 Breast Cancer Consensus Subtypes: A system for subtyping breast cancer tu-

mors based on gene expression

Breast cancer is heterogeneous in prognoses and drug responses. To organize breast

cancers by gene expression independent of statistical methodology, we identified the

Breast Cancer Consensus Subtypes (BCCS) as the consensus groupings of six different

subtyping methods. Our classification software identified seven BCCS subtypes in a

study cohort of publicly available data (n = 5950) including METABRIC, TCGA-

BRCA, and data assayed by Affymetrix arrays. All samples were fresh-frozen from

primary tumors. The estrogen receptor-positive (ER+) BCCS subtypes were: PCS1

(18%) good prognosis, stromal infiltration; PCS2 (15%) poor prognosis, highly prolif-

erative; PCS3 (13%) poor prognosis, highly proliferative, activated IFN-gamma sig-

naling, cytotoxic lymphocyte infiltration, high tumor mutation burden; PCS4 (18%)

good prognosis, hormone response genes highly expressed. The ER- BCCS sub-

types were: NCS1 (11%) basal; NCS2 (10%) elevated androgen response; NCS3 (5%)

cytotoxic lymphocyte infiltration; unclassified tumors (9%). HER2+ tumors were

heterogeneous with respect to BCCS[22].

A.4 Deep learning generates custom-made logistic regression models for explaining

how breast cancer subtypes are classified

Breast cancer is the most frequently found cancer in women and the one most often

subjected to genetic analysis. Nonetheless, it has been causing the largest number

of women’s cancer-related deaths. PAM50, the intrinsic subtype assay for breast

cancer, is beneficial for diagnosis but does not explain each subtype’s mechanism.

Deep learning can predict the subtypes from genetic information more accurately

than conventional statistical methods. However, the previous studies did not directly
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use deep learning to examine which genes associate with the subtypes. To reveal the

mechanisms embedded in the PAM50 subtypes, we developed an explainable deep

learning model called a point-wise linear model, which uses meta-learning to generate

a custom-made logistic regression for each sample. We developed an explainable deep

learning model called a point-wise linear model, which uses meta-learning to generate

a custom-made logistic regression for each sample. Logistic regression is familiar to

physicians, and we can use it to analyze which genes are important for prediction.

The custom-made logistic regression models generated by the point-wise linear model

used the specific genes selected in other subtypes compared to the conventional logistic

regression model: the overlap ratio is less than twenty percent. Analyzing the point-

wise linear model’s inner state, we found that the point-wise linear model used genes

relevant to the cell cycle-related pathways[42].

A.5 The androgen receptor as a surrogate marker for molecular apocrine breast

cancer subtyping

The Androgen Receptor (AR) is a potential prognostic marker and therapeutic tar-

get in breast cancer. We evaluated AR protein expression in high-risk breast cancer

treated in the adjuvant setting. Tumors were subtyped into luminal (ER+/Pg+-

/AR+-), molecular apocrine (MAC, [ER-/PgR-/AR+]) and hormone receptor neg-

ative carcinomas (HR-negative, [ER-/PgR-/AR-]). Subtyping was evaluated with

respect to prognosis and to taxane therapy. High histologic grade (p ¡ 0.001) and

increased proliferation (p = 0.001) more often appeared in MAC and HR-negative

than in luminal tumors. Patients with MAC had outcome comparable to the lu-

minal group, while patients with HR-negative disease had increased risk for relapse

and death. MAC outcome was favorable upon taxane-containing treatment; this re-

mained significant upon multivariate analysis for overall survival (HR 0.31, 95%CI
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0.13-0.74, interaction p = 0.035) and as a trend for time to relapse (p = 0.15). In

conclusion, AR-related subtyping of breast cancer may be prognostic and serve for

selecting optimal treatment combinations[27].

A.6 Proteomic profiling of extracellular vesicles allows for human breast cancer sub-

typing

Extracellular vesicles (EVs) are a potential source of disease-associated biomarkers

for diagnosis. In breast cancer, comprehensive analyses of EVs could yield robust

and reliable subtype-specific biomarkers that are still critically needed to improve

diagnostic routines and clinical outcome. Here, we show that proteome profiles of

EVs secreted by different breast cancer cell lines are highly indicative of their re-

spective molecular subtypes, even more so than the proteome changes within the

cancer cells. Moreover, we detected molecular evidence for subtype-specific biolog-

ical processes and molecular pathways, hyperphosphorylated receptors and kinases

in connection with the disease, and compiled a set of protein signatures that closely

reflect the associated clinical pathophysiology. These unique features revealed in our

work, replicated in clinical material, collectively demonstrate the potential of secreted

EVs to differentiate between breast cancer subtypes and show the prospect of their

use as non-invasive liquid biopsies for diagnosis and management of breast cancer

patients[40].

A.7 PAM50 breast cancer subtyping by RT-qPCR and concordance with standard

clinical molecular markers

Many methodologies have been used in research to identify the intrinsic subtypes of

breast cancer commonly known as Luminal A, Luminal B, HER2-Enriched (HER2-E)
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and Basal-like. The PAM50 gene set is often used for gene expression-based subtyping;

however, surrogate subtyping using panels of immunohistochemical (IHC) markers are

still widely used clinically. Discrepancies between these methods may lead to differ-

ent treatment decisions. We used the PAM50 RT-qPCR assay to expression profile

814 tumors from the GEICAM/9906 phase III clinical trial that enrolled women with

locally advanced primary invasive breast cancer. All samples were scored at a single

site by IHC for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu

(HER2) protein expression. Equivocal HER2 cases were confirmed by chromogenic

in situ hybridization (CISH). Single gene scores by IHC/CISH were compared with

RT-qPCR continuous gene expression values and intrinsic subtype assignment by the

PAM50. High, medium, and low expression for ESR1, PGR, ERBB2, and prolifera-

tion were selected using quartile cut-points from the continuous RT-qPCR data across

the PAM50 subtype assignments. ESR1, PGR, and ERBB2 gene expression had high

agreement with established binary IHC cut-points (area under the curve (AUC) ¿=

0.9). Estrogen receptor positivity by IHC was strongly associated with Luminal (A

and B) subtypes (92%), but only 75% of ER negative tumors were classified into the

HER2-E and Basal-like subtypes. Luminal A tumors more frequently expressed PR

than Luminal B (94% vs 74%) and Luminal A tumors were less likely to have high

proliferation (11% vs 77%). Seventy-seven percent (30/39) of ER-/HER2+ tumors

by IHC were classified as the HER2-E subtype. Triple negative tumors were mainly

comprised of Basal-like (57%) and HER2-E (30%) subtypes. Single gene scoring for

ESR1, PGR, and ERBB2 was more prognostic than the corresponding IHC markers

as shown in a multivariate analysis. The standard immunohistochemical panel for

breast cancer (ER, PR, and HER2) does not adequately identify the PAM50 gene

expression subtypes. Although there is high agreement between biomarker scoring by

protein immunohistochemistry and gene expression, the gene expression determina-

tions for ESR1 and ERBB2 status was more prognostic[8].
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A.8 Meta-analysis of gene expression profiles in breast cancer: toward a unified

understanding of breast cancer subtyping and prognosis signatures

Introduction Breast cancer subtyping and prognosis have been studied extensively

by gene expression profiling, resulting in disparate signatures with little overlap in

their constituent genes. Although a previous study demonstrated a prognostic con-

cordance among gene expression signatures, it was limited to only one dataset and did

not fully elucidate how the different genes were related to one another nor did it exam-

ine the contribution of well-known biological processes of breast cancer tumorigenesis

to their prognostic performance.To address the above issues and to further validate

these initial findings, we performed the largest meta-analysis of publicly available

breast cancer gene expression and clinical data, which are comprised of 2,833 breast

tumors. Gene coexpression modules of three key biological processes in breast cancer

(namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dis-

sect the role of constituent genes of nine prognostic signatures.Using a meta-analytical

approach, we consolidated the signatures associated with ER signaling, ERBB2 am-

plification, and proliferation. Previously published expression-based nomenclature of

breast cancer ’intrinsic’ subtypes can be mapped to the three modules, namely, the

ER.sup.-.sup./HER2.sup.- .sup.(basal-like), the HER2.sup.+ .sup.(HER2-like), and

the low- and high-proliferation ER.sup.+.sup./HER2.sup.- .sup.subtypes (luminal A

and B). We showed that all nine prognostic signatures exhibited a similar prognos-

tic performance in the entire dataset. Their prognostic abilities are due mostly to

the detection of proliferation activity. Although ER.sup.- .sup.status (basal-like) and

ERBB2.sup.+ .sup.expression status correspond to bad outcome, they seem to act

through elevated expression of proliferation genes and thus contain only indirect infor-

mation about prognosis. Clinical variables measuring the extent of tumor progression,

such as tumor size and nodal status, still add independent prognostic information to
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proliferation genes. This meta-analysis unifies various results of previous gene expres-

sion studies in breast cancer. It reveals connections between traditional prognostic

factors, expression-based subtyping, and prognostic signatures, highlighting the im-

portant role of proliferation in breast cancer prognosis[49].

A.9 Performance of three-biomarker immunohistochemistry for intrinsic breast can-

cer subtyping in the AMBER consortium

Background: Classification of breast cancer into intrinsic subtypes has clinical and

epidemiologic importance. To examine accuracy of IHC-based methods for identify-

ing intrinsic subtypes, a three-biomarker IHC panel was compared with the clinical

record and RNA-based intrinsic (PAM50) subtypes. Automated scoring of estrogen

receptor (ER), progesterone receptor (PR), and HER2 was performed on IHC-stained

tissue microarrays comprising 1,920 cases from the African American Breast Cancer

Epidemiology and Risk (AMBER) consortium. Multiple cores (1-6/case) were col-

lapsed to classify cases, and automated scoring was compared with the clinical record

and to RNA-based subtyping. Automated analysis of the three-biomarker IHC panel

produced high agreement with the clinical record (93% for ER and HER2, and 88%

for PR). Cases with low tumor cellularity and smaller core size had reduced agreement

with the clinical record. IHC-based definitions had high agreement with the clinical

record regardless of hormone receptor positivity threshold (1% vs. 10%), but a 10%

threshold produced highest agreement with RNA-based intrinsic subtypes. Using a

10% threshold, IHC-based definitions identified the basal-like intrinsic subtype with

high sensitivity (86%), although sensitivity was lower for luminal A, luminal B, and

HER2-enriched subtypes (76%, 40%, and 37%, respectively). Three-biomarker IHC-

based subtyping has reasonable accuracy for distinguishing basal-like from nonbasal-

like, although additional biomarkers are required for accurate classification of luminal
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A, luminal B, and HER2-enriched cancers. Epidemiologic studies relying on three-

biomarker IHC status for subtype classification should use caution when distinguish-

ing luminal A from luminal B and when interpreting findings for HER2-enriched

cancers[4].

A.10 Concordance of clinical and molecular breast cancer subtyping in the context

of preoperative chemotherapy response

ER, PR and HER2 status in breast cancer are important markers for the selection

of drug therapy. By immunohistochemistry (IHC), three major breast cancer sub-

types can be distinguished: Triple negative (TNIHC), [HER2+.sub.IHC] and [Lumi-

nal.sub.IHC] ([ER+.sub.IHC]/[HER2-.sub.IHC]). By using the intrinsic gene set de-

fined by Hu et al. five molecular subtypes ([Basal.sub.mRNA], [HER2+.sub.mRNA],

Luminal [A.sub.mRNA], Luminal [B.sub.mRNA] and Normal-[like.sub.mRNA]) can

be defined. We studied the concordance between analogous subtypes and their pre-

diction of response to neoadjuvant chemotherapy. We classified 195 breast tumors

by both IHC and mRNA expression analysis of patients who received neoadjuvant

treatment at the Netherlands Cancer institute for Stage II–III breast cancer between

2000 and 2007. The pathological complete remission (pCR) rate was used to assess

chemotherapy response. The IHC and molecular subtypes showed high concordance

with the exception of the [HER2+.sub.IHC] group. 60% of the [HER2+.sub.IHC] tu-

mors were not classified as [HER2+.sub.mRNA]. The [HER2+.sub.IHC]/Luminal A

or BmRNA group had a low response rate to a trastuzumab-chemotherapy combina-

tion with a pCR rate of 8%, while the [HER2+.sub.mRNA] group had a pCR rate of

54%. The Luminal [A.sub.mRNA] and Luminal [B.sub.mRNA] groups showed sim-

ilar degrees of response to chemotherapy. Neither the PR status nor the endocrine

responsiveness index subdivided the [ER+.sub.IHC] tumors accurately into Lumi-
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nal [A.sub.mRNA] and Luminal [B.sub.mRNA] groups. Molecular subtyping sug-

gests the existence of a [HER2+.sub.IHC]/[Luminal.sub.mRNA] group that responds

poorly to trastuzumab-based chemotherapy. For [Luminal.sub.IHC] and triple [neg-

ative.sub.IHC] tumors, further subdivision into molecular subgroups does not offer a

clear advantage in treatment selection[12].

A.11 New strategies for triple-negative breast cancer—deciphering the heterogeneity

Triple-negative breast cancer (TNBC) is a heterogeneous disease; gene expression

analyses recently identified 6 distinct TNBC subtypes, each of which displays a unique

biology. Exploring novel approaches for the treatment of these subtypes is critical,

especially because the median survival for women with metastatic TNBC is less than

12 months, and virtually all women with metastatic TNBC ultimately will die of

their disease despite systemic therapy. To date, not a single targeted therapy has

been approved for the treatment of TNBC, and cytotoxic chemotherapy remains

the standard treatment. In this review, the authors discuss recent developments in

subtyping TNBC and the current and upcoming therapeutic strategies being explored

in an attempt to target TNBC[33].

A.12 Breast cancer subtyping by immunohistochemistry and histological grade out-

performs breast cancer intrinsic subtypes in predicting neoadjuvant chemother-

apy response

Intrinsic subtypes are widely accepted for the classification of breast cancer. Lacking

gene expression data, surrogate classifications based on immunohistochemistry (IHC)

have been proposed. A recent St. Gallen consensus meeting recommends to use this

surrogate intrinsic subtypes for predicting adjuvant chemotherapy resistance, imply-
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ing that Surrogate Luminal A breast cancers should only receive endocrine therapy.

In this study we assessed both gene expression based intrinsic subtypes as well as sur-

rogate intrinsic subtypes regarding their power to predict neoadjuvant chemotherapy

benefit. Single institution data of 560 breast cancer patients were reviewed. Gene

expression data was available for 247 patients. Subtypes were determined on the

basis of IHC, Ki67, histological grade, endocrine responsiveness, and gene expression,

and were correlated with chemotherapy response and recurrence-free survival. In

ER+/HER2- tumors, a high histological grade was the best predictor for chemother-

apy benefit, both in terms of pCR (p = 0.004) and recurrence-free survival (p =

0.002). The gene expression based and surrogate intrinsic subtype based on Ki67 had

no predictive or prognostic value in ER+/HER2- tumors. Histological grade, ER,

PR, and HER2 were the best predictive factors for chemotherapy response in breast

cancer. We propose to continue the conventional use of these markers[29].

A.13 The detection of ESR1/PGR/ERBB2 mRNA levels by RT-QPCR: a better

approach for subtyping breast cancer and predicting prognosis

The molecular classification of breast cancer mainly focuses on ER, PR, and HER2

status detected by immunohistochemistry (IHC) analysis. To explore the clinical

value of breast cancer classification based on gene-based diagnosis of the triple mark-

ers, we measured ESR1, PGR, and ERBB2 mRNA levels in 294 breast cancer pa-

tients by reverse transcription quantitative polymerase chain reaction (RT-QPCR),

and examined their correlation with ER, PR, and HER2 status detected by IHC.

We observed a significant positive correlation between the mRNA levels of the triple

markers and their protein status (ESR1 vs. ER, Spearman’s [rho] = 0.527, P = 2.3 x

[10.sup.-22]; PGR vs. PR, Spearman’s [rho] = 0.631, P = 5.1 x [10.sup.-34]; ERBB2

vs. HER2, Spearman’s [rho] = 0.439, P = 3.0 x [10.sup.-15]). Furthermore, the sub-
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types determined by mRNA levels of the triple markers were significantly correlated

to the subtypes determined based on their protein status (Spearman’s [rho] = 0.342,

P = 2.0 x [10.sup.-8]). Kaplan-Meier analysis showed that the subtypes determined

by mRNA levels of the triple-marker could predict the disease-free survival (DFS) in

breast cancer patients. Multivariate analysis showed that the predictive value of DFS

could be confirmed for the subtypes determined by mRNA levels of the triple markers

(HR = 2.285, P = 0.008) but not for those determined by their protein status. Taken

together, our results suggest that the detection of ESR1/PGR/ERBB2 mRNA levels

by RT-QPCR is a better approach for subtyping breast cancer and predicting the

prognosis[13].

A.14 Triple-negative breast cancer molecular subtyping and treatment progress

Triple-negative breast cancer (TNBC), a specific subtype of breast cancer that does

not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal

growth factor receptor 2 (HER-2), has clinical features that include high invasiveness,

high metastatic potential, proneness to relapse, and poor prognosis. Because TNBC

tumors lack ER, PR, and HER2 expression, they are not sensitive to endocrine ther-

apy or HER2 treatment, and standardized TNBC treatment regimens are still lacking.

Therefore, development of new TNBC treatment strategies has become an urgent clin-

ical need. By summarizing existing treatment regimens, therapeutic drugs, and their

efficacy for different TNBC subtypes and reviewing some new preclinical studies and

targeted treatment regimens for TNBC, this paper aims to provide new ideas for

TNBC treatment[51].
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A.15 Comparison of breast cancer surrogate subtyping using a closed-system RT-

qPCR breast cancer assay and immunohistochemistry on 100 core needle biop-

sies with matching surgical specimens

Routine clinical management of breast cancer (BC) currently depends on surrogate

subtypes according to estrogen- (ER) and progesterone (PR) receptor, Ki-67, and

HER2-status. However, there has been growing demand for reduced immunohisto-

chemistry (IHC) turnaround times. The Xpert[R] Breast Cancer STRAT4* Assay

(STRAT4)*, a standardized test for ESR1/PGR/MKi67/ERBB2 mRNA biomarker

assessment, takes less than 2 hours. Here, we compared the concordance between

the STRAT4 and IHC/SISH, thereby evaluating the effect of method choice on surro-

gate subtype assessment and adjuvant treatment decisions.In total, 100 formalin-fixed

paraffin-embedded core needle biopsy (CNB) samples and matching surgical speci-

mens for 98 patients with primary invasive BC were evaluated using the STRAT4

assay. The concordance between STRAT4 and IHC was calculated for individual

markers for the CNB and surgical specimens. In addition, we investigated whether

changes in surrogate BC subtyping based on the STRAT4 results would change ad-

juvant treatment recommendations. The overall percent agreement (OPA) between

STRAT4 and IHC/SISH ranged between 76 and 99% for the different biomarkers.

Concordance for all four biomarkers in the surgical specimens and CNBs was only

66 and 57%, respectively. In total, 74% of surgical specimens were concordant for

subtype, regardless of the method used. IHC- and STRAT4-based subtyping for the

surgical specimen were shown to be discordant for 25/98 patients and 18/25 patients

would theoretically have been recommended a different adjuvant treatment, primarily

receiving more chemotherapy and trastuzumab. A comparison of data from IHC/in

situ hybridization and STRAT4 demonstrated that subsequent changes in surrogate
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subtyping for the surgical specimen may theoretically result in more adjuvant treat-

ment given, primarily with chemotherapy and trastuzumab[23].

A.16 Molecular subtyping of breast cancer: opportunities for new therapeutic ap-

proaches

Evidence is accumulating that breast cancer is not one disease but many separate

diseases. DNA microarray-based gene expression profiling has demonstrated sub-

types with distinct phenotypic features and clinical responses. Prominent among

the new subtypes is basal-like breast cancer, one of the intrinsic subtypes defined

by negativity for the estrogen, progesterone, and HER2/neu receptors and positivity

for cytokeratins-5/6. Focusing on basal-like breast cancer, we discuss how molecular

technologies provide new chemotherapy targets, optimising treatment whilst spar-

ing patients from unnecessary toxicity. Clinical trials are needed that incorporate

long-term follow-up of patients with well-characterised tumour markers. Whilst the

absence of an obvious dominant oncogene driving basal-like breast cancer and the

lack of specific therapeutic agents are serious stumbling blocks, this review will high-

light several promising therapeutic candidates currently under evaluation. Thus, new

molecular technologies should provide a fundamental foundation for better under-

standing breast and other cancers which may be exploited to save lives[36]. (Part of

a Multi-author Review)

A.17 Bayesian tensor factorization-drive breast cancer subtyping by integrating multi-

omics data

Breast cancer is a highly heterogeneous disease. Subtyping the disease and identifying

the genomic features driving these subtypes are critical for precision oncology for
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breast cancer. This study focuses on developing a new computational approach for

breast cancer subtyping. We proposed to use Bayesian tensor factorization (BTF)

to integrate multi-omics data of breast cancer, which include expression profiles of

RNA-sequencing, copy number variation, and DNA methylation measured on 762

breast cancer patients from The Cancer Genome Atlas. We applied a consensus

clustering approach to identify breast cancer subtypes using the factorized latent

features by BTF. Subtype-specific survival patterns of the breast cancer patients

were evaluated using Kaplan-Meier (KM) estimators. The proposed approach was

compared with other state-of-the-art approaches for cancer subtyping. The BTF-

subtyping analysis identified 17 optimized latent components, which were used to

reveal six major breast cancer subtypes. Out of all different approaches, only the

proposed approach showed distinct survival patterns (p ¡ 0.05). Statistical tests also

showed that the identified clusters have statistically significant distributions. Our

results showed that the proposed approach is a promising strategy to efficiently use

publicly available multi-omics data to identify breast cancer subtypes[31].

A.18 Identification of cell-free circulating microRNAs for the detection of early

breast cancer and molecular subtyping

Early detection is crucial for achieving a reduction in breast cancer mortality. Anal-

ysis of circulating cell-free microRNAs present in the serum of cancer patients has

emerged as a promising new noninvasive biomarker for early detection of tumors and

for predicting their molecular classifications. The rationale for this study was to iden-

tify subtype-specific molecular profiles of cell-free microRNAs for early detection of

breast cancer in serum. Fifty-four early-stage breast cancers with 27 age-matched con-

trols were selected for circulating microRNAs evaluation in the serum. The 54 cases

were molecularly classified (luminal A, luminal B, luminal B Her2 positive, Her-2,
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triple negative). NanoString platform was used for digital detection and quantitation

of 800 tagged microRNA probes and comparing the overall differences in serum mi-

croRNA expression from breast cancer cases with controls. We identified the 42 most

significant (P [less than or equal to] 0.05,1.5-fold) differentially expressed circulating

microRNAs in each molecular subtype for further study. Of these microRNAs, 19

were significantly differentially expressed in patients presenting with luminal A, eight

in the luminal B, ten in luminal B HER 2 positive, and four in the HER2 enriched

subtype. AUC is high with suitable sensitivity and specificity For the triple negative

subtype miR-25-3p had the best accuracy Predictive analysis of the mRNA targets

suggests they encode proteins involved in molecular pathways such as cell adhesion,

migration, and proliferation. This study identified subtype-specific molecular profiles

of cell-free microRNAs suitable for early detection of breast cancer selected by com-

parison to the microRNA profile in serum for female controls without apparent risk of

breast cancer. This molecular profile should be validated using larger cohort studies

to confirm the potential of these miRNA for future use as early detection biomarkers

that could avoid unnecessary biopsy in patients with a suspicion of breast cancer[43].

A.19 Heterogeneity of triple-negative breast cancer: histologic subtyping to inform

the outcome

This study assesses outcome in terms of disease-free survival (DFS) and overall sur-

vival (OS) of special types of triple-negative breast cancer (TNBC). We identified

8801 women with first primary nonmetastatic breast cancer operated on at the Euro-

pean Institute of Oncology between 1997 and 2005. Of these patients, 781 consecutive

patients with immunohistochemically defined TNBC were selected for the analyses.

We explored patterns of recurrence by histologic type. Median follow-up was 5.7 years

(range 0-13 years). The 5-year DFS was 77% for TNBC, 68% for human epidermal
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growth factor receptor 2 (HER2)-positive breast cancer, and 84% and 95% for lu-

minal B and luminal A breast cancer, respectively. From 781 TNBC subtypes, 693

cases (89%) were classified as ductal not otherwise specified (NOS) (invasive ductal

carcinoma [IDC]), 29 were classified as apocrine (3.7%), 18 (2.3%) were classified as

lobular, 10 (1.2%) were classified as adenoid cystic, and 10 (1.2%) were classified

as metaplastic. Five-year DFS and OS were 77% and 84% for patients with ductal

carcinoma, 56% and 89% for patients with metaplastic carcinoma, and both 5-year

DFS and OS were 100% for patients with adenoid cystic and medullary carcinomas,

respectively. Distinct prognostic implications may derive from the specific histotype

of TNBC. The identification of these special types has a significant clinical utility and

should be considered in therapeutic algorithms[34].

A.20 An aptamer-based probe for molecular subtyping of breast cancer

Molecular subtyping of breast cancer is of considerable interest owing to its poten-

tial for personalized therapy and prognosis. However, current methodologies cannot

be used for precise subtyping, thereby posing a challenge in clinical practice. The

aim of the present study is to develop a cell-specific single-stranded DNA (ssDNA)

aptamer-based fluorescence probe for molecular subtyping of breast cancer. Cell-

SELEX method was utilized to select DNA aptamers. Flow cytometry and confocal

microscopy were used to study the specificity, binding affinity, temperature effect on

the binding ability and target type analysis of the aptamers. In vitro and in vivo

fluorescence imaging were used to distinguish the molecular subtypes of breast cancer

cells, tissue sections and tumor-bearing mice. Six SK-BR-3 breast cancer cell-specific

ssDNA aptamers were evolved after successive in vitro selection over 21 rounds by

Cell-SELEX. The Kd values of the selected aptamers were all in the low-nanomolar

range, among which aptamer sk6 showed the lowest Kd of 0.61 +/- 0.14 nM. Then,
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a truncated aptamer-based probe, sk6Ea, with only 53 nt and high specificity and

binding affinity to the target cells was obtained. This aptamer-based probe was able

to 1) differentiate SK-BR-3, MDA-MB-231, and MCF-7 breast cancer cells, as well

as distinguish breast cancer cells from MCF-10A normal human mammary epithelial

cells; 2) distinguish HER2-enriched breast cancer tissues from Luminal A, Luminal

B, triple-negative breast cancer tissues, and adjacent normal breast tissues (ANBTs)

in vitro; and 3) distinguish xenografts of SK-BR-3 tumor-bearing mice from those

of MDA-MB-231 and MCF-7 tumor-bearing mice within 30 min in vivo. The re-

sults suggest that the aptamer-based probe is a powerful tool for fast and highly

sensitive subtyping of breast cancer both in vitro and in vivo and is also very promis-

ing for the identification, diagnosis, and targeted therapy of breast cancer molecular

subtypes[30].

A.21 St Gallen 2015 subtyping of luminal breast cancers: impact of different Ki67-

based proliferation assessment methods

Ki67 has been proposed as prognostic proliferation marker in luminal breast cancer

(BC), but little is known on the influence of Ki67 assessment methods on subtyping

into luminal A- and B-like tumors. Our aim was to study the influence of different

Ki67-labeling index (Ki67-LI) assessment methods on the proportion of BCs classified

as luminal A-like. 280 early BCs were subtyped according to the St Gallen 2015 def-

initions into 71 % luminal (HER2 negative), 6 % luminal B-like (HER2 positive), 13

% triple negative, 1 % HER2 positive (nonluminal), and 9 % special type. Digitized

whole slides were counted manually on the screen. We used nine defined counting

methods to assess the Ki67-LI (including the International Ki67 in Breast Cancer

Working Group recommendations), and compared the resulting medians and the pro-

portions of cancers classified as luminal A-like according to the formerly used cut-off
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¡20 %. Methods assessing hot spots and tumor periphery resulted in significantly

higher Ki67-LI medians than those measuring an average proliferation (27.45 % vs

16.96 %, p ¡ 0.0001). Substantially lower median Ki67-LI were found when assessing

1020 compared to counting 100, 200, 300 cells (17.65 vs 33%, vs 28 %, vs 24.33 %,

respectively; p ¡ 0.0001), or 510 cells (20.59 %, p = 0.019). Applying a standard

Ki67-LI cut-off ¡20 % to define low proliferation for all methods, the proportion of

luminal A-like cancers varied between 13 and 44 %. The proportion of BCs classified

as luminal A-like is highly influenced by the Ki67-LI assessment method. As a conse-

quence, the selection of a specific Ki67-LI assessment method may have a direct effect

on the proportion of patients considered having low-risk disease and thus influence

therapeutic decision making. This calls for a standardized assessment method[15].

A.22 Molecular Subtyping of Triple Negative Breast Cancer (TNBC): An approach

to improving treatment response and survival outcome

Molecular subtyping of triple-negative breast cancers (TNBCs) via gene expression

profiling is essential for understanding the molecular essence of this heterogeneous

disease and for guiding individualized treatment. We aim to devise a clinically prac-

tical method based on immunohistochemistry (IHC) for the molecular subtyping of

TNBCs. By analyzing the RNA sequencing data on TNBCs from Fudan University

Shanghai Cancer Center (FUSCC) (n = 360) and The Cancer Genome Atlas data

set (n = 158), we determined markers that can identify specific molecular subtypes.

We performed immunohistochemical staining on tumor sections of 210 TNBCs from

FUSCC, established an IHC-based classifier, and applied it to another two cohorts (n

= 183 and 214). We selected androgen receptor (AR), CD8, FOXC1, and DCLK1 as

immunohistochemical markers and classified TNBCs into five subtypes based on the

staining results: (a) IHC-based luminal androgen receptor (IHC-LAR; AR-positive
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[+]), (b) IHC-based immunomodulatory (IHC-IM; AR-negative [-], CD8+), (c) IHC-

based basal-like immune-suppressed (IHC-BLIS; AR-, CD8-, FOXC1+), (d) IHC-

based mesenchymal (IHC-MES; AR-, CD8-, FOXC1-, DCLK1+), and (e) IHC-based

unclassifiable (AR-, CD8-, FOXC1-, DCLK1-). The k statistic indicated substan-

tial agreement between the IHC-based classification and mRNA-based classification.

Multivariate survival analysis suggested that our IHC-based classification was an in-

dependent prognostic factor for relapse-free survival. Transcriptomic data and patho-

logical observations implied potential treatment strategies for different subtypes. The

IHC-LAR subtype showed relative activation of HER2 pathway. The IHC-IM subtype

tended to exhibit an immune-inflamed phenotype characterized by the infiltration of

CD8+ T cells into tumor parenchyma. The IHC-BLIS subtype showed high expression

of a VEGF signature. The IHC-MES subtype displayed activation of JAK/STAT3

signaling pathway. We developed an IHC-based approach to classify TNBCs into

molecular subtypes. This IHC-based classification can provide additional informa-

tion for prognostic evaluation. It allows for subgrouping of TNBC patients in clinical

trials and evaluating the efficacy of targeted therapies within certain subtypes[38].

A.23 Development of an absolute assignment predictor for triple-negative breast

cancer subtyping using machine learning approaches

Triple-negative breast cancer (TNBC) heterogeneity represents one of the main obsta-

cles to precision medicine for this disease. Recent concordant transcriptomics studies

have shown that TNBC could be divided into at least three subtypes with potential

therapeutic implications. Although a few studies have been conducted to predict

TNBC subtype using transcriptomics data, the subtyping was partially sensitive and

limited by batch effect and dependence on a given dataset, which may penalize the

switch to routine diagnostic testing. Therefore, we sought to build an absolute predic-

61



tor (i.e., intra-patient diagnosis) based on machine learning algorithms with a limited

number of probes. To that end, we started by introducing probe binary comparison

for each patient (indicators). We based the predictive analysis on this transformed

data. Probe selection was first involved combining both filter and wrapper meth-

ods for variable selection using cross-validation. We tested three prediction models

(random forest, gradient boosting [GB], and extreme gradient boosting) using this

optimal subset of indicators as inputs. Nested cross-validation consistently allowed

us to choose the best model. The results showed that the fifty selected indicators

highlighted the biological characteristics associated with each TNBC subtype. The

GB based on this subset of indicators performs better than other models[7].

A.24 The impact of breast cancer biological subtyping on tumor size assessment

by ultrasound and mammography-a retrospective multicenter cohort study of

6543 primary breast cancer patients

Mammography and ultrasound are the gold standard imaging techniques for preopera-

tive assessment and for monitoring the efficacy of neoadjuvant chemotherapy in breast

cancer. Maximum accuracy in predicting pathological tumor size non-invasively is

critical for individualized therapy and surgical planning. We therefore aimed to as-

sess the accuracy of tumor size measurement by ultrasound and mammography in

a multicentered health services research study. We retrospectively analyzed data

from 6543 patients with unifocal, unilateral primary breast cancer. The maximum

tumor diameter was measured by ultrasound and/or mammographic imaging. All

measurements were compared to final tumor diameter determined by postoperative

histopathological examination. We compared the precision of each imaging method

across different patient subgroups as well as the method-specific accuracy in each

patient subgroup. Overall, the correlation with histology was 0.61 for mammography
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and 0.60 for ultrasound. Both correlations were higher in pT2 cancers than in pT1 and

pT3. Ultrasound as well as mammography revealed a significantly higher correlation

with histology in invasive ductal compared to lobular cancers (p ¡ 0.01). For invasive

lobular cancers, the mammography showed better correlation with histology than ul-

trasound (p = 0.01), whereas there was no such advantage for invasive ductal cancers.

Ultrasound was significantly superior for HR negative cancers (p ¡ 0.001). HER2/neu

positive cancers were also more precisely assessed by ultrasound (p ¡ 0.001). The size

of HER2/neu negative cancers could be more accurately predicted by mammography

(p ¡ 0.001). This multicentered health services research approach demonstrates that

predicting tumor size by mammography and ultrasound provides accurate results.

Biological tumor features do, however, affect the diagnostic precision[44].
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