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ABSTRACT

A Network Analysis of COVID-19 in the United States

Joseph McGuire

Through methods in network theory and time-series analysis, we will analyze the spread of

COVID-19 in the United States by determining trends in state-by-state daily cases through

a network construction. Previous researchers have found frameworks for approximating

the spread of the COVID-19 pandemic and identifying potential rises in cases by a net-

work construction based on correlation of cases between regions [1]. Applying this network

construction we determine how this network and its structure act as a predictor for overall

COVID-19 cases in the United States by preforming a trend analysis on a variety of network

statistics and US COVID-19 cases.
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Chapter 1

INTRODUCTION

SARS-CoV-2 is a coronavirus variant that was first detected in a small group of patients in

Wuhan, China in December of 2019, this virus being responsible for the COVID-19 disease.

The subsequent national and international spread of COVID-19 has lead to the first world-

wide pandemic in the 21st-century and upheaval of many social norms and practices held

prior to the pandemic. At the time of writing, May 2022, the number of COVID-19 cases

reported world-wide has hit 525 million with the death count reaching 6.2 million, but

even with over 213 million vaccines distributed the COVID-19 virus continues to spread

in complex geographical patterns around the world [3]. This has only increased with the

relaxation of travel restrictions and the re-opening of borders.

The focus of this thesis is analyzing COVID-19 through the lens of networks in order

to discern trends between jurisdictions that are revealed by a network construction based

on COVID-19 cases in the United States. Promising results have been found that suggest

such a network construction may be a good indicators and visualizations of COVID-19’s

geospatial spread through the course of the pandemic [1, 4]. In this thesis we conduct a

thorough analysis of this network model whose network statistics may be a good indicator

of the rise in COVID-19 cases, analyze the temporal evolution of the community structure

resulting from this construction, and propose a network informed regression model based

on this dynamical network. The python libraries pandas [5], seaborn [6], and altair [7] were

used to generate all the plots seen in this thesis; for time-series analysis statsmodels [8] and

scikit-learn [9] were used extensively; for network generation and analysis - networkx [10];

and for community detection - cdlib was used [11].

The outline of this thesis is as follows: Chapter 2 will act as an introduction to network

theory, Chapter 3 will be an introduction to community detection methods, Chapter 4 will

be an introduction to time-series analysis and time-series models, Chapter 5 will discuss the

processing of the data for the project, Chapter 6 will discuss the network construction, cover

the centrality analysis preformed on this network for prediction of COVID-19 in the US, a

network informed model for COVID-19 in the US, as well community detection applied to

this network, and Chapter 7 will conclude.
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Chapter 2

NETWORK THEORY

2.1 Graph Theory Foundations

A graph, or network, gives us a natural way of understanding relationships between objects

in sets. A graph relates a set of objects back to themselves via some relation, that then

defines the edges of the network.

Definition 2.1. Let V be a set and E be a set, where E ⊂ {{v, w} : v, w ∈ V }. We say

that G = (V,E) is an un-directed simple network on the vertex (node) set V with an

edge (connection) set E.

Equivalently, we can also define E ⊂ V ×V as a relation on V , where (u, v) ∈ E if and

only if uEv with an additional requirement of symmetry:

If (u, v) ∈ E, then (v, u) ∈ E.

The first definition of an edge set E is notationally convenient, while the second defini-

tion will allow for a simpler generalization of the concept to a non-symmetric case.

In Figure 2.1 is a un-directed simple graph with node set V = {0, 1, 2} and edge set

E = {{0, 1}, {1, 2}, {0, 2}}.

Figure 2.1: An undirected simple graph.
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Figure 2.2: The Zachary Karate Club Network.

There are a number of different constraints and modifications that we can put on graphs,

in particular, on the edge set E that will make sense for a number of different scenarios.

However simple graphs are useful in describing a variety of situations, because of their links

to symmetric relations. We’ll see in the next example that one of the best studied graphs

in network theory is a simple graph.

Example 2.2. A PhD student, Wayne Zachary, followed the interactions of the members

of a Karate club over the course of 3 years (1970 - 1972) [12]. Over this span, there was

a conflict in the club, resulting in two administrators ‘Mr. Hi’ and ‘John A’ (pseudonyms)

that split the group into two rival karate clubs (think ‘Karate Kid’). The graph is created by

treating each individual as a node, and then every edge is a social connection between two

members of the club. The result being the graph in Figure 2.2.

An informative feature of a network is the total number of connections a single node

has. In Example 2.2, the number of connections that a node has tells us how connected

that the node is, and thus how connected the person that node is representing. Formally,

this is the notion of the degree of a node and, as with most topics in mathematics, there is

a natural and elegant link from this to linear algebra.

3



Definition 2.3. Let G = (V,E) be a graph. For v ∈ V ,

deg(v) = # of edges connected to v

is the degree of node v.

Definition 2.4. Let G = (V,E) be a graph with |V | = n. Define the degree sequence to

be the decreasing sequence

(deg(v1),deg(v2), . . . ,deg(vn)) with deg(vi) ≤ deg(vi+1) ∀i.

The labeling of v1, . . . , vn maybe done arbitrarily to fit the inequality requirement above.

Example 2.5. In Figure 2.1,

deg(0) = deg(1) = deg(2) = 2.

In the Zachary Karate Club example (2.2),

deg(16) = deg(15) = deg(20) = deg(22) = 2 deg(11) = 1.

Definition 2.6. Let G = (V,E) be a graph with |V | = n ∈ Z+. We define the n×n matrix

A by

Aij =


1 if i and j share an edge

0 otherwise

.

This is called the adjacency matrix for the graph G.

Example 2.7. The adjacency matrix for Figure 2.1 will be

A =


0 1 1

1 0 1

1 1 0

 .

4



Theorem 2.8. Let G = (V,E) be a simple graph. If i ∈ V is a node, then:

deg(i) =
∑
j

Aj,i

and

Ai,j = Aj,i.

Proof. The result follows immediately from Definitions 2.3 and 2.6.

If we relax the constraint that the adjacency matrix needs to be symmetric the result

will be a ‘directed’ graph. Directed, in that now the relationship that an edge in E describes

is no longer required to be reciprocal.

Definition 2.9. Let V be a set and E ⊂ V × V . G = (V,E) is a directed graph or

di-graph.

To distinguish between simple and directed graphs, arrows are used for directed graphs

edges. The edge (0, 1) would represented by the arrow starting at 0 and landing at 1.

Definition 2.10. Let G = (V,E) be a di-graph. For v ∈ V , define

degO(v) = # of edges pointing out of v,

degI(v) = # of edges pointing in to v,

to be the out-degree and in-degree of v, respectively.

Notice that as there are no additional requirements on directed graphs as compared to

simple graphs, the edge set can be non-symmetric.

Example 2.11. The adjacency matrix of the graph given in Figure 2.3 is


0 1 0

1 0 1

0 0 0

 .

5



Figure 2.3: A directed graph.

This matrix has eigenvalues −1, 0, 1 with associated eigenvectors of [−1, 1, 0]T , [−1, 0, 1]T ,

[1, 1, 0]T . Notice that [−1, 1, 0]T [−1, 0, 1] = 1 ̸= 0, so these are not pair-wise orthogonal; a

property we lose because the matrix is no longer symmetric.

In many real world applications edges are not created equally; for example, the connec-

tions in a friend group might be weaker or stronger based on the quality of that friendship.

So to model this, we introduce a generalization of both a simple and directed graph.

Definition 2.12. Let V be a set and E ⊂ {(u, v, w) : u, v ∈ V,w ∈ R}. The graph

G = (V,E) is called a weighted graph.

The value w for an edge u → v is called the weight of that edge pair. If the graph (V,E

weights is un-directed, then G is an un-directed weighted graph. Similarly, if (V,E) is

directed, then G is a directed weighted graph.

Example 2.13. Let G = (V,E) be a weighted di-graph with self-loops with adjacency matrix

A =



0 0 1 0

0 0 0 0

0 9 0 0

3 0 2 3


. (2.1)

The visualization of this is in Figure 2.4.

This is an example of a graph with edges such as (4, 4, 3) for 4 ∈ V and, in general,

these are called graphs with self-loops.
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Figure 2.4: A weighted directed graph with self-loops.

Figure 2.5: A walk of (4, 1, 3, 0). Visited nodes are colored green and traversed
edges are red and thicker than other edges.

Definition 2.14. On a graph G = (V,E), a walk, or path, of length m on V is a sequence

(v1, . . . , vm),

where vi+1 is jointed by an edge to vi for all i ∈ {1, . . . ,m− 1}.

Definition 2.15. A graph G is connected if

for all u, v ∈ V there exists a walk between u and v.

A graph that isn’t connected is disconnected; that is, there are two nodes u, v ∈ V such

that there is no paths between them.
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Figure 2.6: An example of a disconnected graph.

Figure 2.7: An example of a connected graph
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Figure 2.8: An example of a bipartite graph

Let V be an edge set. G = (V,E) is a multi-graph if E is a multi-set (meaning multiple

instances of an element are allowed; e.g. {(1, 2), (1, 2), (1, 3), (3, 1), (3, 1)} is a multi-set). Let

U and V be distinct sets such that U ∩ V = ∅. Then G = (U ∪ V,E) is a bipartite graph

if E ⊂ U × V . That is, any edge in E must go between an element of U and an element

of V (it can’t link two elements of U or two elements of of V ). Example can be seen in

Figure 2.8.

2.2 Stochastic Block Models

Definition 2.16. Let V be a set, C = {C1, . . . , Cr} be a partition of V , and P be an r × r

matrix such that

Pi,j ∈ [0, 1] Pi,j = Pj,i ∀i, j ∈ {1, . . . , r}.

An element of C is called a community and S = (V,C, P ) is a stochastic block model (SBM).

From S, we generate a simple graph G = (V,E) by generating E with our matrix P .

For all vertices v ∈ Ci and w ∈ Cj , there is a probability of Pi,j that (v, w) ∈ E.

• In the case where i = j, Pi,i determines the internal connections of the community Ci;

these are all of the edges that are between two members of the same community.

• In the case where i ̸= j, Pi,j determines the external connections between communities

Ci and Cj ; these are the connections joining the two communities.
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We can allow Pi,j ̸= Pj,i for some i, j ∈ {1, . . . , r}, however, we must drop the requirement

that the generated graph be simple.

Example 2.17. • Figure 2.9 is a graph generated by the SBM with

V = {0, . . . , 29} C1 = {0, . . . , 9}, C2 = {10, . . . , 19}, C3 = {20, . . . , 29}

and

Pi,j = 0.5 for all i, j ∈ V.

This is an example of an Erdos-Reyni model. These satisfy

Pi,j = p for all i, j ∈ V.

Erdos-Reyni models are often used to generate random graphs, which act as a proba-

bility distribution over graphs.

• Figure 2.10 has a graph generated by the SBM with

V = {0, . . . , 29} C1 = {0, . . . , 9}, C2 = {10, . . . , 19}, C3 = {20, . . . , 29}

and

Pi,j = 0.75 (i = j), Pi,j = 0.05 (i ̸= j).

This is an example of a planted partition model. These SBM’s satisfy

Pi,j =


p if i = j

q if i ̸= j

for some values p, q ∈ [0, 1].

Note the very strong ‘clustering’ in this graph; this is caused by p >> q.

Example 2.18. We return to the example of the famous Zachary Karate Club. In this

example, we see natural communities arising in the group. Namely, the communities centered

around ‘Mr. Hi’ (Node 0) and the communities centered around ‘John A’ (Node 33), colored

in Figure 2.11.
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Figure 2.9: A graph generated by an Erdos-Reyni model.

Figure 2.10: A graph generated by a planted partition model.
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Figure 2.11: The Zachary Karate Club communities.

In a variety of social, biological, and physical situations identifying these communities

has significant benefits.

• In sociology, there is the concept of homophily, which is the phenomenon of people with

similar interests/roles/gender/age tending to establish connections. As a consequence,

many social networks will naturally exhibit community structure.

• In social networks, determining communities can provide a powerful tool for marketing

and recommendation algorithms; people in the same community are more likely to be

friends or like the same things [13].

• In neuroscience, community structure in brain networks are being investigated for

treatment of epilepsy [14]. Furthermore, variations in community structure is inform-

ing neuroimaging. [15]

• In pharmacology, community structure in protein-protein interaction networks helps

reveal potential drug discoveries and treatment plans [16].

Definition 2.19. Let G = (V,E) be a graph. Assume G was generated by an SBM, S =

(V, P,C). Community detection is the process of recovering the partition C.

As we discuss community detection in this thesis, our goal is to find a partition C that

gives the strongest possible clustering behavior such as we see in the Zachary Karate Club

example (Figure 2.11) or as in the planted partition model (Figure 2.10).
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2.3 Community Structure

In this section we define the ‘clustering’ behavior in graphs. We’ll restrict our discussion

to undirected and unweighted graph. This ‘clustering ’ behavior is strongest when given a

graph G = (V,E) and a partition C of V , if Ci, Cj ∈ C with v ∈ Ci and w ∈ Cj then

• if i = j, then w and v are likely to be connected by an edge;

• if i ̸= j, then w and v are not likely to be connected by an edge.

So to formalize this, we’ll compare this to the so-called null model assumption.

Assumption 2.20. A randomly and uniformly generated graph has no community struc-

ture.

That is, a graph generated by an Erdos-Reyni model has no community structure.

Definition 2.21. A null model for a simple graph G = (V,E), with |V | = n and |E| = m,

is a multi-graph G′ = (V,E′), defined by:

1. For each edge, (v, w) ∈ E, cut the edge in half, so we now have 2m ‘dangling’ stubs.

2. Reconnect the stubs by randomly and uniformly pairing two stubs together and joining

the stubs to form an edge; store the edge in E′.

Theorem 2.22. Let G′ = (V,E′) be the null model of G = (V,E). Then G′ and G have

the same degree sequence and

|E| = |E′|.

Proof. Let G = (V,E) with v being a node in G. We’ll show the result by going through

the construction of G′.

If v has degree k, then v has k adjacent edges. Now create the stubs attached to v:

there will be precisely k stubs attached to v. Take a stub from v: there are 2|E| − 1 choices

of other stubs to attach to since the stub can’t connect to itself but it can connect to any

other stub created in the null model. If the stub attaches to another stub of v, then this

creates a self loop and that is a connection. If the stub attaches to a stub not attached to

v, then this is a new connection for v. We do this k times for all nodes v ∈ V and we have
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G′ = (V,E′), the null model for G. By construction, the degree of v has not changed and

since this is true for any v ∈ V , the degree sequence of G is the same as the degree sequence

of G′.

The intuition is that a graph generated by a Erdos-Reyni model has no clustering

behavior: the entire graph is one big cluster. So this null model acts as a null hypothesis

for our community testing.

To summarize the assumptions we’ve made so far:

Assumption 2.23.

1. Graphs with community structure are generated by a stochastic block model.

2. Two nodes are much more likely to be connected inside a community than out.

And with Assumption 2.20:

3. A null model of a graph has no community structure.

Lemma 2.24. Let G′ = (V,E′) be the null model of G = (V,E), where |E| = |E′| = m and

v, w ∈ V . Define I
(v,w)
i = 1 if v and w are paired by a stub i = 1, . . . , kv. Then

p(I
(v,w)
i = 1) =

kw
2m− 1

.

Proof. Let G′ = (V,E′) be the null model of G = (V,E), where |E| = |E′| = m and

v, w ∈ V . Define I
(v,w)
i = 1 if v and w are paired by a stub i = 1, . . . , kv. For the stubs

starting at v, there are a total of 2m−1 choices, since stubs can’t connect to themselves but

they can connect to any other stub in the network. These number 2m by their construction

in the null model. Out of those choices there are kw many stubs that will connect v to w

and hence make I
(v,w)
i = 1. Thus

p(I
(v,w)
i = 1) =

kw
2m− 1

.
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Theorem 2.25. Let G′ = (V,E′) be the null model of G = (V,E), where |E| = |E′| = m

and v, w ∈ V . Then

E[ # of edges between v and w ] =
kwkv
2m− 1

.

Proof. Let G′ = (V,E′) be the null model of G = (V,E), where |E| = |E′| = m and

v, w ∈ V . Note that

# of edges between v and w =

kw∑
i=1

I
(v,w)
i ,

so that

E[ # of edges between v and w ] = E

[
kv∑
i=1

I
(v,w)
i

]

=

kw∑
i=1

E[I
(v,w)
i ]

=

kw∑
i=1

kv
2m− 1

=
kwkv
2m− 1

,

where we used the linearity of E[·] in the second equality.

For large networks, where |E| = m >> 1, it is typical to just approximate this expected

value as

kwkv
2m

.

Therefore, this gives us an average number of links between two nodes v and w in a null

model.

Definition 2.26. For a graph G = (V,E) with a partition C on V , define the modularity

of G by the partition C to be

Q(G,C) =
1

2m

∑
i

∑
j

(
Ai,j −

kikj
2m

)
δ(Ci, Cj) δ(Ci, Cj) =


1 if Ci = Cj

0 otherwise
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• If Q(G,C) ≤ 0, then partition C gives no community structure at all, it might as well

have been completely randomly generated.

• If Q(G,C) > 0, then the graph and partition exhibit community structure.

Modularity will be used as the working definition of community structure, and we’ll add

this on to our list of assumptions for community detection:

Assumption 2.27.

1. Graphs with community structure are generated by stochastic block models.

2. Two nodes are much more likely to be connected inside a community than out.

3. A null model of a graph has no community structure.

4. Community structure will correspond to a graph with high modularity.

With Assumptions 2.27 our task of community detection can then be formulated as a

maximization problem:

argmax
C

Q(G,C) = argmax
C

1

2m

∑
i

∑
j

(
Ai,j −

kikj
2m

)
δ(Ci, Cj)

A random brute force method is not practicable in most cases: even in the case of finding

two communities C1 and C2 of equal size (|C1| = N1, |C2| = N2 where N1 = N2 =
N

2
), we

have

N !

(N1!)2

total possible partitions. Using Stirling’s approximation,

N !

(N1!)2
∼ exp

(
(N + 1) ln(2)− 1

2
ln(N)

)
N → ∞.

Thus even for a reasonably small graph (N = 100) with these assumptions, there are

approximately 1029 total partitions of this graph [17].

So we need smart algorithms to find these partitions in a computationally efficient

manner, as in real world networks it’s not uncommon to see networks with the number of
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nodes exceeding 106. In the case of Facebook or other social media networks, the number

of nodes might exceed 109 (as of 2021 Facebook has 2.91 billion users).

It has been shown that finding a global maximum for modularity is an NP-complete

problem [18]. So all the algorithms that we’ll be discussing in the next section for the task

of community detection can only lead to local maximuma of modularity.

2.4 Centrality Measures

In this section, we’ll define a number of commonly used network statistics. The following

texts were used for these definitions: [17, 19, 20].

We already discussed several basic structural features of networks, such as degree and

connectedness. However, one thing these features fail to capture is the topological impor-

tance of nodes to the overall network. For example, in the case of the Zachary Karate Club

on Figure 2.2, we may ask which nodes are most important for communication between the

two groups? Or which nodes are possible leaders in the group? To answer these questions

we introduce the concept of centrality to networks.

Definition 2.28. Let G = (V,E) be a network with node v ∈ V . The degree centrality

of v is

1

|V |
deg(v).

Degree centrality simply measures the importance of a node by how connected a node

is in a network.

Definition 2.29. Let G = (V,E) be a network with node v. The closeness centrality of

v is

gv =
1∑

C

∑
{v,w∈C:v ̸=w}

|V | − 1

|C| − 1
lv,w

,

where li,j is the length of the shortest path between v and w, and C is a connected component

of G.
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Note that this measure is defined for disconnected networks. It is the reciprocal of the

average distance from v to any node in G, so the further v is from other nodes, the larger

the denominator, and so the smaller gv is. This measures the importance of a node by how

close to all other nodes that node is [21].

Definition 2.30. Let G = (V,E) and v ∈ V . The betweennness centrality of v is

1(|V−1|
2

) ∑
h,j∈V

σhj(i)

σhj

where C is a connected component of G, σhj is the number of total shortest paths between

nodes h and j, σhj(i) is the number of total shortest paths between nodes h and j that go

through i, and
(|V |−1

2

)
is the number of total paths that can go through node i [22].

This is easily extended to edges to examine the importance of an edge to a networks

communications [23].

Definition 2.31. Let G = (V,E) and e ∈ E. The edge-betweennness centrality of e is

1(|V−1|
2

) ∑
h,j∈V

σhj(e)

σhj

where C is a connected component of G, σhj is the number of total shortest paths between

nodes h and j, σhj(e) is the number of total shortest paths between nodes h and j that go

through the edge e, and
(|V |−1

2

)
is the number of total paths that can go through node i [22].

Definition 2.32. Let G = (V,E) be a network and v ∈ V . The harmonic centrality of

v is

∑
{u∈V :u ̸=v}

1

lv,w

where lv,w is the length of the shortest path between v, w. If v and w are not connected by

a path, then we let lv,w = ∞ and
1

lv,w
= 0.

Notice this is similar to, but not equal to, the definition of closeness centrality [24]. This

centrality differs from closeness, in that we’re summing over the reciprocals of the shortest

path lengths and not taking the reciprocals of the sum of the shortest path lengths, the effect

being that the measure can now easily handle disconnected graphs if we use the convention

of letting lv,w = ∞.
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Definition 2.33. Let G = (V,E) be a network and v ∈ V . The sub-graph centrality of

v is

(
eA
)
v,v

=

∞∑
k=0

Ak
v,v

k!

where A is the adjacency matrix of G.

Using the fact that Ak
v,w counts the number of paths from v to w of length k, this is

the sum over all possible lengths of paths that begin and end at v. Under this centrality, a

node is important if it has many paths back to itself, capturing path importance of v to the

overall graph G [25].

Definition 2.34. Let G = (V,E) be a network and v ∈ V . Let H = (V ′, E′) ⊆ G be a

subgraph of G. Then the k-core induced by H is

{v ∈ V : degH(v) ≥ k}, (2.2)

where degH(v) is the degree of v in the subgraph H. The core-number of a node v is the

smallest k for which v meets the requirement of (2.2).

That is, the k-core induced by H on G is the sub-graph of H that contains all nodes

with degree greater than or equal to k. In social-media analysis, this measure has been used

as an extension of the concept of density for determining the structure of graphs and O(|E|)

algorithms have been implemented for this in the python package networkx [26, 27, 10].

Finally, the following measure is defined on a graph, rather than a node.

Definition 2.35. Let G = (V,E) be a network. The S-metric of G is

∑
(u,v)∈E

d(u)d(v). (2.3)

The S-metric, as defined in [28], is a measure of the hub-and-spoke nature of a graph;

graphs with many nodes (d(v) >> 1) connected to many highly connected nodes (d(u) >> 1)

will maximize the S-metric.
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Chapter 3

COMMUNITY DETECTION

In this section, we’ll describe a number of the community detection algorithms used to find

community structure in the network produced, as described in Networks by Mark Newman

[20].

3.1 The Louvain Algorithm

In this subsection, we’ll discuss one of the most widely used community detection algorithms

called the Louvain Algorithm [29].

The goal of the Louvain algorithm and many other community detection algorithms is

to maximize the modularity of a network by finding a local optimal community partition C

[30, 31].

Definition 3.1. Let G = (V,E,W ) be a simple weighted graph and C be part of a partition

of V . We define

Σin =
∑
i∈C

∑
j∈C

Ai,j

as total number of edges that land inside the community,

Σtot =
∑
i∈C

ki

as the total number of edges in a community, including those between a node in the commu-

nity and a node in another community,

Σout = Σtot − Σin

as the total number of edges starting in C and landing outside of C, and

ki,in =
∑
j∈C

Ai,j +
∑
i∈C

Ai,j
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as the number of edges a node has that land in C.

Algorithm 3.2 (The Louvain Algorithm).

Let G = (V,E) be a simple weighted graph.

Phase 1

1. Assign an initial guess of community structure of G:

C = {C1, . . . , Cr}.

A typical guess is that each node is a community; i.e. if V = {vi}Ni=1, then Ci = {vi}

for all i = 1, . . . , N .

2. Start with a random community. For each v ∈ V with v ∈ Ci move v → Cj (for some

Cj that neighbors v) and calculate the change in modularity ∆Qi→j(v). We want to

calculate each term of

∆Qi→j(v) = ∆Qi→{v}(v) + ∆Q{v}→j(v),

that is, the modularity from moving v from Ci to Cj is the same as making an inter-

mediate step of moving v to its own community {v}.

We’ll prove these steps rigorously below.

We’ll show that

∆Qi→j(v) =

[
Σin + 2ki,in

2m
−
(
Σtot + ki

2m

)2
]

−

[
Σin

2m
−
(
Σtot

2m

)2

−
(

ki
2m

)2
]
.

For each node v, choose Cj such that

C∗ = argmax
j

∆Qi→j(v),

that is, pick the community Cj that maximizes the increase in modularity.

3. Form the new partition C ′ by moving v to C∗.
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If the quantity in the previous step is ∆Qi→j(v) ≤ 0 (we lose or don’t gain any

modularity by moving v), then we don’t move v.

4. Repeat (1-3) for all v ∈ V until no modularity can be gained.

Phase 2

1. Construct the new graph G′ by taking Cp ∈ C, for each p ∈ {1, . . . , r} and assign a

self-loop to Cp with weight

w(Cp, Cp) =
∑
v∈Cp

kv,in.

Then for each pair Ci, Cj ∈ C assign an edge with weight

w(Ci, Cj) =
∑

of edges starting in Ci and ending in Cj .

2. Repeat Phase 1 with the new graph G′.

Note that the result of this algorithm will be a local maximum attained by the ‘greedy’

gathering of modularity by each community.

Lemma 3.3. Let G = (V,E,W ) be a simple weighted graph with node partition C =

{C1, . . . , Cr}. Then the modularity is

Q(G,C) =
Σin

2m
−
(
Σtot

2m

)2

.

Proof.

Q(G,C) =
1

2m

∑
i

∑
j

(
Ai,j −

kikj
2m

)
δ(Ci, Cj)

=
1

2m

∑
i

∑
j

Ai,jδ(Ci, Cj)−
1

2m

∑
i

∑
j

kikj
2m

δ(Ci, Cj)

=
Σin

2m
− 1

4m2

(∑
i

ki

)∑
j

kj


=

1

2m
Σin −

(
Σtot

2m

)2

.
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Theorem 3.4. Let G = (V,E,W ) be a simple weighted graph with node partition C =

{C1, ..., Cr}. Suppose v ∈ V and Cp ∈ C. Then

∆Q{v}→p(v) =

[
Σin + ki,in

2m
−
(
Σtot + ki

2m

)2
]
−

[
Σin

2m
−
(
Σtot

2m

)2

−
(

ki
2m

)2
]
.

Proof. By definition, this is

∆Qp→{v}(v) = QAfter −QBefore,

where QAfter is the modularity after we place v in Cp, and QBefore is before this occurs

and v is in its own isolated community {v}.

We have that

QBefore =

[
Σin

2m
−
(
Σtot

2m

)2
]
+

[
0−

(
ki
2

)2
]

which is the sum of the modularity of the graph without the community {v} and the mod-

ularity of the isolated community {v}.

Then

QAfter =

[
Σin + ki,in

2m
−
(
Σtot + ki

2m

)2
]

so that

∆Q{v}→p(v) =

[
Σin + ki,in

2m
−
(
Σtot + ki

2m

)2
]
−

[
Σin

2m
−
(
Σtot

2m

)2

−
(

ki
2m

)2
]
.

Example 3.5. Let’s use this with the Zachary Karate Club network:

• The original graph is in Figure 3.1.

• Phase 1’s result is Figure 3.2.

• Phase 2’s result is Figure 3.3.
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Figure 3.1: The Zachary Karate club network

Figure 3.2: Phase 1 of the Louvain Algorithm on the Zachary Karate Club
Network
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Figure 3.3: Phase 2 of the Louvain Algorithm on the Zachary Karate Club
Network

3.2 Classical Spectral Clustering

As we’ve seen with the Louvain algorithm, the problem of community detection can be

a difficult problem. One way to tackle the problem of community detection is to find a

mapping

f : G → Rm

for some small m ∈ Z+, analyze the problem in Rm, then map the solution back to the

graph G.

The advantage of this is that clustering in continuous spaces such as Rm is a well stud-

ied area; there exist dozens of techniques in unsupervised machine learning that tackle this

problem [32]. The tricky problem we have to solve before we can leverage this machin-

ery against community detection, is that we need the map f : G → Rm to decide what

information about the graph G we need to preserve.

Definition 3.6. Given a weighted simple graph G = (V,E,W ), define the Laplacian

matrix of G to be

L = [Di,j −Wi,j ]i,j ,
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where W is the weighted adjacency matrix of G and D is the diagonal degree matrix of G:

Di,j =


∑
j

wi,j if i = j

0 otherwise

.

The Laplacian matrix both encodes degree information of the graph, as well as the

adjacency matrix of the graph (since Wi,i = 0 for graphs without self-loops). So the diagonal

entries will always tell us the degree of a node, while the off-diagonal entries tell us about

the connections between nodes.

The properties of the Laplacian matrix are well-studied in spectral graph theory [33].

Theorem 3.7. Let G be a simple graph and L be the Laplacian of the graph. Then

1. L is positive semi-definite and symmetric;

2. 0 is an eigenvalue of L with eigenvector 1 (the vector of all 1’s).

Proof. Let G = (V,E) be a simple graph, so the Laplacian matrix is defined by

L = [Di,j −Ai,j ]i,j ,

where A is the adjacency matrix of G and D is the diagonal degree matrix of G:

Di,j =


deg(i) if i = j

0 otherwise

.

1. Since L = D − A, and both A and D are symmetric for simple graphs, we have that

L is symmetric.

And now we’ll show that L is positive semi-definite, but first we need to show there

is a matrix B such that L = BBT . Define the incidence matrix of the graph G to
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be the |V | × |E| matrix given by

Bv,(vi,vj) =


1 if v = vi

−1 if v = vj

0 otherwise

.

Then we have

(BBT )i,j =
∑
k

BT
i,kBk,j

=
∑
k

Bk,iBk,j .

If i = j, this is

(BTB)i,i =
∑
k

B2
k,i

= deg(i),

and if i ̸= j, then

(BTB)i,j =
∑
k

Bk,iBk,j .

Notice that whenever Bk,i = 1, that is k is the ‘beginning’ point of an edge, then

Bk,j = 0, unless (i, j) ∈ E where Bk,iBk,j = −1. Hence

(BTB)i,j = −Ai,j ,

and so BTB = BBT = D −A = L.

So then, let x ∈ R|V | and hence

xTLx = xTBBTx

= (BTx)T (BTx)

= ∥BTx∥2 ≥ 0.

Thus L is positive semi-definite.
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2. Finally, let 1 ∈ R|V | be the vector of all one’s. Then consider the following:

L1i =
∑
j

Li,j

=
∑
j

Di,j −Ai,j

= Di,i −
∑
j

Ai,j

= deg(i)− deg(i)

= 0.

So that L1 = 01, and so 0 is an eigenvalue of L with eigenvector 1.

We relate community detection back to the Laplacian by posing community detection

as a problem of finding a cut that minimizes the number of edges it passes through.

Definition 3.8 (Cut & Cut Size). Let G = (V,E,W ) be a simple weighted graph and let

l be a cut on the edges of G; i.e l ⊂ E that defines a partition A ∪ B = V , A ∩ B = ∅. Let

X,Y ⊆ V .

For any X,Y , define the weight between X and Y as

w(X,Y ) =
∑

i∈X,j∈Y

wi,j ,

and the normalized cut size between X and Y as

ncut(X,Y ) =
w(X,Y )

w(X,V )
+

w(X,Y )

w(Y, V )
.

Note that ncut(X,Y ) is normalized so that 0 ≤ ncut ≤ 2.

The following theorem relates the eigenvector of this matrix L to a suitable map G →

Rm.

Theorem 3.9. Let G = (V,E) be a simple graph.
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Figure 3.4: A cut equalling {(2, 6), (4, 6)} and defines a partition A = {6} and
B = V \ {6}.

Suppose V = A ∪B is a partition of V , with |A| = |B| where A ∩B = ∅. Define

y =


1 if i ∈ A

−b if i ∈ B

, b =
k

1− k
, k =

deg(A)

deg(V )
.

Then

min
(A,B)

ncut(A,B)

is equivalent to


min
y

yTLy

yTDy

yTD1 = 0,

where 1 is the vector of all 1’s [34].

We note that if D is a diagonal matrix, D = diag{d1, . . . , dM}, then for α ∈ R, Dα =

diag{dα1 , . . . , dαM}.

To solve 
miny

yTLy

yTDy

yTD1 = 0
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we are going to transform this problem into


minz

zTBz

zT z

zT z0 = 0

, B = D−1/2LD−1/2

where z = D1/2y and z0 = D1/21. This new matrix B = D−1/2LD−1/2 is called the

normalized Laplacian. The reason for this transformation is that we can now pose this

as an eigenvalue problem:

Bz = λz ⇐⇒ zTBz = λzT z ⇐⇒ λ =
zTBz

zT z

and the condition

zT z0 = 0

ensures that z is orthogonal to the eigenvector z0. Then this is the minimization problem


minz

zTBz

zT z

zT z0 = 0

,

with the eigenvalues of B satisfying λ0 = 0 < λ1 < . . .. The minimization problem is solved

by the eigenvector with eigenvalue λ1 ̸= 0 [34].

This method then can be generalized to k-cuts in a number of different ways, outlined

in [34]. The general algorithm for spectral clustering is then given below.

Algorithm 3.10 (Spectral Clustering for Graphs).

Let G = (V,E) be a simple weighted graph with |V | = n.

1. Calculate the Laplacian for G, L.

2. Find the first k eigenvalues of L and their corresponding eigenvectors.

3. Form a matrix U where the column vectors of U are the k-eigenvectors of L; U is

n× k.

4. For each i = 1, . . . , n:

• Map the node i ∈ V to the row vector vi ∈ Rk obtained from U .
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Figure 3.5: The graph we’ll be preforming spectral clustering on.

Figure 3.6: The eigenvectors of the normalized Laplacian of the graph in Fig-
ure 3.5 with cluster labels {0, 1}.

5. Use K-means clustering or other clustering algorithms in Rk to find clustering.

6. Map cluster membership in Rk back to the graph G.

Example 3.11. Let’s take a planted partition model with inter-community probability p = 1

and an intra-community probability q = 0.1 with two communities of equal size and a vertex

set of size 20; that is, nodes inside the same community must be connected and nodes from

the two different communities have a one-in-ten chance of being linked. The graph can be

seen in Figure 3.5. Choosing just the two smallest non-zero eigenvectors of the Laplacian for

G, and using 2-means clustering we end up with Figure 3.6. Finally, we map this clustering

back to our graph we end up with Figure 3.7.

Spectral clustering is also applied to problems of clustering in Rn as a dimensional

reduction method, where a mapping is found from Rn → G, where G is typically a graph

defined by a similarity function in Rn, (e.g. f(x, y;σ) = exp

(
−∥x− y∥2

2σ

)
is a common

choice). Then a second map G → Rm is found with m ≤ n. So spectral clustering can also
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Figure 3.7: The result of spectral clustering on the graph 3.5, the modularity
of this clustering is approx 0.4.

be used a dimensional reduction technique where we map data in Rn → G → Rm where

m ≤ n.

3.3 K-Means Clustering

We’ll briefly describeK-means clustering in this subsection, as used in the spectral clustering

algorithm. Let X be a data set X = {x(i)}Ni=1 such that x(i) ∈ Rm for each i = 1, . . . , N . K-

means clustering deals with the problem of finding clusters of densely packed groups in this

data set. This is a topic in unsupervised machine learning ;supervised machine learning deals

with prediction of a target variable usually denoted y(i) for each x(i), while unsupervised

machine learning has no target variables for the data points x(i). This algorithm is sometimes

referred to as Lloyd’s algorithm or naive k-means [35].

Algorithm 3.12. Let k ∈ N be fixed.

1. Partition your data set into k-groups, S1, . . . , Sk.

2. For each i = 1, . . . , k:

Calculate the mean vector for Si, denoted m(i); that is

m(i) =
1

|Si|
∑

x(j)∈Si

x(j)
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Figure 3.8: K-means ran with k = 2.

3. For each x(i), i = 1, . . . , k:

Assign each x(i) to the set Sj∗ where j∗ = 1, . . . , k and

j∗ = argmin
j

∥x(i) −m(j)∥22

4. Repeat steps until in previous step no change occurs.

Example 3.13. We generate a random data set X = {x(i)}1000i=1 where x(i) ∈ R2 for each

i = 1, . . . , 1000 using a uniform distribution on [0, 1]× [0, 1]. One half of the data is kept in

the rectangle [0, 1]× [0, 1], the other half is shifted diagonally to be contained in [1, 2]× [1, 2].

We run K-means with k = 2 using the Python library sklearn and we end up with the

result seen in Figure 3.8.
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Chapter 4

TIME-SERIES ANALYSIS

In this chapter, we’ll cover some basic definitions and terms used in time-series data analysis

all leading to the definition of ‘cross-correlation’ as a measure of statistical significance in the

trends that are often seen in time-series data. The definitions and explanation included come

from the “Forecasting: Principles and Practice” by R. Hyndman and G. Athanasopoulos [2]

as well as “Time-Series Analysis: With Applications in R” by J. Cryer and J. Chan [36].

4.1 Stationary Time-Series

A time-series is a data set where the data points have an inherent ordering to them, namely

time. COVID-19 cases, temperature, and stock market prices are examples of time-series.

These differ from regular data sets, in that ordering in the data matters and values are

potentially dependent on previous values but not future values. Time-series can behave

extremely irregularly and chaotically, so we’ll discuss some methods of how to find trends

in time-series data as well as how to forecast or predict future values in a time-series. In

particular, we’ll discuss the importance of normally distributed time-series.

Definition 4.1. A time-series {Xt : t ∈ {1, . . . , T}} is said to be stationary if

Xt, Xt+1, . . . , Xt+k

has the same distribution for all t ∈ {1, . . . , T} and k ∈ Z+.

Example 4.2. Defining a time-series by Xt ∼ N (0, σ2) for all t, this is known as a white-

noise process. That is, at each time step we’re sampling from a normal distribution

N (0, σ2) with zero-mean and σ2 variance. This has a probability-density function given by

f(x) =
1√
2σ2π

exp

(
− x2

2σ2

)
, (4.1)

where σ2 is the variance of the random-variable.
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Figure 4.1: A white-noise process with mean zero and unit variance.

Illustrating this below, we take σ2 = 1 and construct a white-noise process with 1000

data points. First looking at the overall mean and variance in Figure 4.1, we see that this

is approximately 0 and 1, respectively, as expected. We now partition this data set into 4

equally sized subsets and we plot the distribution of the overall process in Figure 4.3, as well

as the distributions of the four subsets in Figures 4.4, 4.5, 4.6, 4.7. Observe that there is

some differences in the distributions of the subsets, but these are minor perturbations around

the probability density function in (4.1). Looking now at the means and variances over four

subsets of the white-noise process, each 250 time-steps in width, we see that the mean and

variance does differ but only slightly. This would be satisfactorily called a stationary process.

When data is not stationary, one culprit that is typically behind it is there is a clear

increasing or decreasing trend in the data. We’ll explore this through an example, as well

as address how to transform the data to be stationary.

Example 4.3. Let Xt = t+ϵt where ϵ ∼ N (0, 1); that is Xt is following a linear trend. This

is called a white-noise process with drift. In Figure 4.8 we see that both the variance

and the mean are increasing with time – they are far from constant.

However after preforming a backwards-difference on Xt,

∆Xt = Xt −Xt−1,
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Figure 4.2: White-process with subset means and variance.

Figure 4.3: Distribution of white-noise process.

Figure 4.4: Distribution of white-noise process, subset one.
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Figure 4.5: Distribution of white-noise process, subset two.

Figure 4.6: Distribution of white-noise process, subset three.

Figure 4.7: Distribution of white-noise process, subset four.
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Figure 4.8: White-Noise process with trend.

Figure 4.9: Backwards differenced white-noise process with trend.

the differencing evens out the variance and mean as can be seen in Figure 4.9. Differenc-

ing makes quite the difference, both the mean and variance eventually even out over time.

Enough for this to be considered a stationary series.

4.2 Auto-Regression and Moving Average Models

As to how we can model time-series data, there are classical four methods we’ll discuss here:

moving-average models, auto-regressive models, auto-regressive integrated moving average

models, then finally the seasonal auto-regressive integrated moving average model.

Definition 4.4. Let {Yt : t = 1, . . . , T} be a time-series. The back-shift or lag operator

is defined as

LnYt = Yt−n L0 = I

for all n ∈ Z+. The time-series Yt−n is said to have lag n.
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Similarly the forward-shift or lead operator is defined as

FnYt = Yt+n F 0 = I,

for all n ∈ Z+. The time-series Yt+n is said to be have lead of n.

Example 4.5. Let Yt = (1, 2, 3), then

LYt = Yt−1

= (2, 3, 0)

FYt = Yt+1

= (0, 1, 2).

Notice that we can define differencing in terms of lag operators

∆Yt = Yt − Yt−1

= Yt − LYt

= (1− L)Yt

where 1 is treated as the identity operator on Yt, i.e 1Yt = Yt.

Definition 4.6. Let {Yt : t = 1, . . . , T} be a time-series. An auto-regressive model of

order p on Yt is defined to be

ŷt = ˆat−1yt−1 + . . .+ ˆat−pyt−p + ϵt, = (at−1L+ . . .+ at−pL
p)yt (4.2)

where ϵt ∼ N(0, σ2). This model is denoted AR(p) and

ϕ(L) = at−1L+ . . .+ at−pL
p

is the lag-polynomial.

With an auto-regressive model we attempt to estimate future values of the time-series

by the previous p values of the time-series.
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Notice that the auto-regressive model of order p gives us a recurrence relation, that is,

we’re assuming that yt is a linear combination of {yt−1, . . . , yt−p}. One way to analyze the

stationarity of yt is through an auto-regressive process, known as the augmented Dickey-

Fuller test or the ADF test [37]. A simple form of this test is known as the Dickey-Fuller

test, and starts with a regression where we assume that yt is modeled by the previous entry

in the time-series plus some trend

yt = ρyt−1 + βt+ c+ ϕ∆yt−1 + ϵt ϵt ∼ N (0, σ2).

If ρ = 0 then this becomes ∆yt = ϵt. The ADF test then has the following hypotheses:

N0 : ρ = 1

NA : ρ ̸= 1,

that is, the null-hypothesis is ρ = 1, and the alternative hypothesis is that ρ ̸= 1. If the null

hypothesis is true, then

yt − yt−1 = βt+ c+ ϕ∆yt−1 + ϵt (4.3)

∆yt −∆yt−1 = βt+ c+ ϵt (4.4)

∆2yt = βt+ c+ ϵt, (4.5)

that is, the time-series is non-stationary and yt is said to have a unit root. This is because

yt must be differenced twice to transform it to a stationary series, and even then it may not

be a strictly stationary series if β ̸= 0, so one more difference may be required. The full

ADF test generalizes this to a larger order auto-regression

yt = ρyt−1 + c+ βt+

k∑
s=1

ϕs∆yt−s,

where yt−s are lagged versions of yt. The full ADF test adjusts for possible spurious conclu-

sions if yt is auto-correlated, while still testing for the presence of a unit root. That is, the

presence of a unit root implies a process is not stationary so if our p-value satisfies p < α,

then with (1− α)% confidence we can say that yt is not stationary. We will commonly use

values of α = 0.1 in this thesis.
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Similarly the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test will be used for testing

stationarity [38]. Similar to the ADF test, this test looks for the stationarity of a time-series

about a possible trend. That is, the KPSS tests for

yt = βt+ c+ ϵt ϵ ∼ N (0, σ2).

However, this differs from the ADF test in that the null hypothesis and alternative hypothesis

are

• N0 : yt is stationary

• NA : yt is not stationary.

Both these tests will be used for testing for stationarity in time-series.

Definition 4.7. Let {yt : t = 1, . . . , T} be a stationary time-series. A moving-average

model of yt of order q is of the form

yt = µt + ϵt−1θt−1 + . . .+ ϵt−qθt−q

= µt + (θt−1L+ . . .+ θt−qL
q)θt

where µt is the average function for the time-series and ϵi ∼ N (0, σ2) for all i. This is

model is denoted MA(q).

Moving-average models are typically more difficult to fit to a time-series. We’ll explore

a simple example in Example 4.8.

Example 4.8. To actually calculate a moving-average model, we’ll show there is a con-

nection from an AR(1) model to an MA(∞) . Using this connection, we’ll discover when

exactly an MA(1) model can be calculable.

Assume that yt is a stationary time-series and follows an AR(1) model

yt = ϕ1yt−1 + ϵt.
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Using this we can write

yt = ϕ1(ϕ1yt−2 + ϵt−1) + ϵt

= ϕ2
1yt−2 + ϕ1ϵt−1 + ϵt

= ϕ2
1(ϕ1yt−3 + ϵt−2) + ϕ1ϵt−1 + ϵt

...

yt =

∞∑
i=1

ϕi
1ϵt−i + ϵt.

For this power-series to converge we must have |ϕ1| < 1 [2]. Similar arguments can show

that this is the case for any AR(p)-model.

For an MA(1) model we can arrive at a similar result

yt = θ1ϵt−1 + ϵt

ϵt = yt − θ1ϵt−1

so that

yt = θ1(yt−1 − θ1ϵt−2) + ϵt

= θ1yt−1 − θ21ϵt−2 + ϵt

= θ1yt−1 − θ21(yt−2 − ϵt−3) + ϵt

...

=

∞∑
i=1

(−1)i−1θi1yt−i + ϵt.

If this power-series converges, then we say that the MA(1) model is invertible. This is the

calculation used for MA(q) models in practice.

Combining both differencing to account for non-stationary data, the AR(p) and MA(q)

models give us the robust method for modeling time-series.

Definition 4.9. Let {yt : t = 1, .., T} be a time-series, possibly non-stationary. The Auto-

regressive Integrated Moving Average (ARIMA) model of order (p, d, q) is defined
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as

∆dyt = c+ ϕ1∆
dyt−1 + . . .+ ϕp∆

dyt−p + θ1ϵt−1 + . . .+ θqϵt−q + ϵt

∆dyt = c+ ϕ(L)∆dyt + θ(L)ϵt + ϵt

(1− L)dyt = c+ ϕ(L)(1− L)dyt + (θ(L) + 1)ϵt.

This can be written as

(1− ϕ(L))(1− L)dyt = c+ (θ(L) + 1)ϵt

where ∆dyt = (1 − L)dyt, ϕ(L) is the lag-polynomial for the auto-regressive model, θ(L) is

the lag-polynomial of the moving-average model, and ϵt ∼ N (0, σ2) for t ∈ {1, . . . , T}.

This is a combination of the auto-regressive and moving average models preformed on

a difference-stationary time-series.

One component we haven’t spoken of so far with time-series that vary with some sort of

seasonal behavior. For example a time-series of average temperature would exhibit strong

seasonal behavior. Other time-series such as daily revenue for a clothing company might

also exhibit this seasonal behavior, but also possibly an overall trend upwards or downwards

depending on the success of the company. To account for this formally, we must decompose

our time-series into different components. We can attempt to decompose a time-series yt

into four components

1. Trend: Long-term behaviour such as an overall increase or decrease.

2. Seasonal: Fluctuations that occur on a regular or semi-regular frequency, such as

seasons in a temperature time-series.

3. Cyclic: Fluctuations, such as a rise and fall, that do not occur on a regular frequency.

4. Residual: Random effect or noise.

Suppose that xt is a time-series. An additive decomposition is finding seasonal St, trend

Tt, cyclic Ct and residuals Rt components such that

xt = St + Tt + Ct +Rt.
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With ARIMA(p,d,q) models, the base assumption of the model is that the data can be differ-

enced to become stationary using first-order differences only; that is ∆yt = yt−yt−1,∆
2yt =

(yt − yt−1) − (yt−1 − yt−2) = yt − 2yt−1 + yt−2, . . . will become stationary after enough

differences. This is not necessarily the case with the data that exhibits a strong seasonal

component [2]. To account for this, we modify the ARIMA model by accounting for seasonal

differencing.

Definition 4.10. Let {yt : t = 1, . . . , T} be a time-series, possibly non-stationary. The

Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model of order

(p, d, q)(P,D,Q)m is defined as

(1− ϕ(L))(1− Φ(Lm))(1− L)d(1− Lm)Dyt =

c+ (θ(L) + 1)(Θ(Lm) + 1)ϵt

where Φ(Lm),Θ(Lm) are the seasonal-lag polynomials of order P and Q, respectively.

SARIMA (p, d, q)(P,D,Q)m models offer a robust approach to modeling time-series,

but only attempts to model yt with lagged versions of itself. To account for other possible

explanatory variables we introduce a time-series model that account for explaining variables

other than yt [39].

Definition 4.11. Let {yt : t = 1, . . . , T} be a time-series, possibly non-stationary. The

Seasonal Auto-Regressive Integrated Moving Average with Exogenous Variables

(SARIMAX) model of order (p, d, q)(P,D,Q)m is defined as

(1− ϕ(L))(1− Φ(Lm))(1− L)d(1− Lm)Dyt = (4.6)

c+ (θ(L) + 1)(Θ(Lm) + 1)ϵt + η(L)Xt (4.7)

where η(L) is the lag-polynomial of our exogenous variables Xt. If the above model lacks the

seasonal polynomials Φ(Lm),Θ(Lm), this is a ARIMAX model.

The SARIMAX offers the support of explanatory, or exogenous, variables to assist in the

forecasting of future values of yt. However, often with SARIMA or SARIMAX models, to

fit the seasonal-order of the model (P,D,Q)m this increases the dimension of the parameter

space being searched which leads to computational challenges [40]. To circumvent this
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problem, we can instead fit a Fourier series to the seasonal component of time-series

S(t) =

N∑
k=1

ak cos

(
2πkt

m

)
+ βk sin

(
2πkt

m

)

and treat this as an exogenous variable for the time-series yt. With the Fast-Fourier trans-

form this can be done very quickly and eliminates searching over the parameter space for

(P,D,Q)m, with fixed m [41].

4.3 Causality and Cross-Correlation

The process of determining whether two time-series are interrelated is quite an important

and complex task, but quite an important process when determining exogenous variables

for a SARIMAX model. An even more complex problem is determining if one time-series

predicts another time-series. The underlying question that we seek to ask is: does a time-

series Xt and Yt have a ‘cause-and-effect’ relationship? In this section, we’ll discuss two

such metrics that can assist in this analysis.

The first such measure of a ‘causal’ relationship between two time-series that we’ll

discuss is that of Granger causality [42]. Granger causality attempts to find any relationship

between time-series Xt and Yt, such that Xt can help in the prediction of Yt; formally,

Granger causality attempts an AR-model of the following form:

Yt = a1Yt−1 + . . .+ apYt−p + b1Xt−1 + . . .+ bqXt−q + ϵt.

From here an F-value is calculated for the coefficients {bi : i ∈ {1, . . . , q}} and if the F-value

is above some critical value, then we say that Xt G-causes Yt [42]. While the name ‘Granger

causality’ might imply we’re capturing causality with this measure, we are simply capturing

predictive power. Granger causality gives us an idea of how Xt influences Yt in the sense of

modeling the two time-series. There are well documented problems with Granger causality,

especially in the case where both Xt and Yt are found to ‘G-cause’ each other, but it still is

a primary tool in multi-variate time-series analysis for a first pass at feature selection.

To evaluate these regressions a common measure used in time-series analysis is the

Bayesian Information Criterion (BIC), or Schwarz Information Criterion, defined below.
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Definition 4.12. Let M be a model under consideration. The Bayesian Information

Criterion (BIC) is defined to be

BIC = −2 ln(L̂) + k ln(n)

where L̂ is the likelihood function of the model p(x|θ̂,M), θ̂ are the parameters associated

with M , k is the number of parameters of M , and n is the size of the data set.

A more familiar approach can be obtained through a simple correlation of Xt and left-

shifted Yt, Yt+τ , this is cross-correlation.

Definition 4.13. Let {xt : t = 1, . . . , T} and {yt : t = 1, . . . , T} be two stationary time-

series. The cross-correlation function between xt and yt is defined by

ρxy(τ) =

T∑
i=1

yi+τxi√
V ar(xT )

√
V ar(yT )

,

where yt+τ is a lead on yt, and we define ym = 0 if either m < 0 or m > T.

For the denominator to standardize the cross-covariance, this necessitates that the data

is stationary. If it is not, then this normalization will not remain constant and we lose

the fact that ρxy(τ) ∈ [−1, 1] along with the interpretation of ρxy(τ) as a true correlation

measure between xt and yt+τ . Moreover, a number of papers in a variety of fields point

out the dangers of using cross-correlation when using time-series on two time-series that are

significantly auto-correlated when conducting a trend-analysis [43, 44, 45, 46, 47]. To adjust

for this, we utilize the method outlined in [48], described below.

Algorithm 4.14.

1. Fit an SARIMA model to xt and yt using auto_arima.

2. For the model with the lowest BIC between xt and yt, store the residuals. Without loss

of generality, suppose this is the SARIMA model fitted to yt:

(1− ϕ(L))(1− Φ(Lm))(1− L)d(1− Lm)Dyt = c+ (θ(L) + 1)(Θ(Lm) + 1)ϵt (4.8)

3. Store the residuals of (4.8) as ŷt, such that ŷt ∼ N (0, σ2) for all t.
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4. Use the model 4.8 to filter xt and store the result as x̂t

(1− ϕ(L))(1− Φ(Lm))(1− L)d(1− Lm)Dxt =

c+ (θ(L) + 1)(Θ(Lm) + 1)ϵt.

The last step should have the effect of reducing x̂t ∼ N (0, σ2) for all t. The intention of

this algorithm in trend-analysis is to erase any spurious correlation that may be occurring

because of auto-correlation by filtering the two time-series through a SARIMA model, thus

reducing the two series to white-noise but still retaining characteristics of the original series.

Code for this in python is provided in Appendix A.
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Chapter 5

PREPROCESSING

In this chapter, we’ll describe the source of the data used in this thesis, how it was obtained,

how it was cleaned, and how missing or incoherent values were replaced.

5.1 Description of Data

The data used was obtained from the Center of Disease Control of the United States of

America (CDC), and in particular the “United States COVID-19 Cases and Deaths by

State over Time” data set was used [49]. This data is updated twice daily and covers

the jurisdictions of all 55 US states, territories, and commonwealths, 3 freely associated

states (Federated States of Micronesia, Republic of Marshall Islands, and Republic of Palau)

as well as Washington D.C., with a total of 60 reporting jurisdictions; New York City is

treated as its own jurisdiction. The time covered by the data set goes from 2020-01-21

to 2022-04-17, the day the first confirmed COVID-19 case was found in the US, to the

present. This is an aggregated data set determined by cases and deaths reported to the

CDC, adjustments do appear retroactively in cases and deaths. However, any adjustments

for a day are retroactively included in that days counts.

This data is collected by the CDC through the National Notifiable Diseases Surveillance

System (NNDSS), which acts as a common reporting system for US jurisdictions on COVID-

19 cases and deaths. The cases reported to the NNDSS include confirmed and probable cases,

although probable cases were not included in the analysis. The reporting mechanisms for

cases of COVID-19 by jurisdictions to the NNDSS is typically done by reporting the date

that this case information was reported to the health department, however some jurisdictions

report the date of submission to the NNDSS as the case date. Furthermore, 17 reporting

jurisdictions use a combination of the previous methods as well as approximate date of

diagnosis or first positive test as well. The reporting mechanisms for deaths related to

COVID-19 via NNDSS are done in a similar fashion; that is, using the reporting date as the

date submitted to NNDSS. Florida is the only jurisdiction that reports the date of death

of a patient as the recorded date to the NNDSS. Additionally reporting on Saturdays and
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Figure 5.1: Total percentage of covid-19 cases by weekday

Sundays tend to be somewhat sparser than weekdays because of the reporting mechanisms,

as can be seen in Figure 5.1. Due to this inconsistency, our analysis will be preformed on

a 7-day moving average of new cases in jurisdictions, similar to studies in [50]. This has

the effect of smoothing out the curve. While this might have an effect on the time-series

analysis, this adjusts for non-reporting on weekends and holidays. The occasional negative

values for new cases are interpolated as we’ll discuss in the next section; this is done before

a moving average is applied to the time-series.

We’ll go through the columns used and not used in the analysis, and why certain columns

were chosen over others. This data contains 15 columns and is downloaded via the CDC’s

Socrata web interface in a ‘.csv’ file format. Theses columns include:

• ‘state’: the reporting jurisdiction abbreviation; this is used as the ID for the reporting

jurisdiction.

• ‘submission date’: the reporting jurisdiction’s reporting date. This is the date that

the jurisdiction’s health department collected the information or this was reported

by the health department to the CDC (note: a number of jurisdictions attempt to
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combine this date with the actual date of a confirmed laboratory cases or diagnosis.

However, no jurisdiction reports solely on the date of diagnosis or confirmed laboratory

case). This was used as the date ID for COVID-19 cases and deaths.

• ‘tot cases’: the cumulative number of confirmed and probable cases going back to the

beginning of the data set to the submission date. This data was not consistent among

jurisdictions and not used in analysis.

• ‘new case’: total number of confirmed new COVID-19 cases in the reporting jurisdic-

tion on the submission date. This was used as the daily count of COVID-19 cases in

the analysis.

• ‘conf cases’, ‘prob cases’, ‘pnew case’:

‘conf cases’ and ‘prob cases’ were cumulative counts of confirmed and probable cases

of COVID-19 for the submission date. These column was dropped in the analysis,

as the values given were often negative or empty. Similarly, pnew case accounted

for probable new cases of COVID-19 in the reporting jurisdiction and was summarily

dropped from the analysis due to the irregularity of the data.

• ‘tot death’: cumulative number of confirmed and probable deaths related to COVID-

19 for the reporting jurisdiction; because of the inclusion of probable deaths this was

not used in the analysis.

• ‘new death’: total number of confirmed deaths related to COVID-19 for the reporting

jurisdiction for a given day. This column was used in the analysis because of the lack

of missing values and the integrity of the reporting.

• ‘conf death’, ‘prob death’, ‘pnew death’: ‘conf death’ and ′prob death′ were cumula-

tive counts of confirmed and probable deaths, respectively. However because of large

number of missing values in both columns these were not included in the analysis.

Similarly, ‘prob death’ was also dropped because of inconsistent reporting.

• ‘created at’: marked the date that the data was made available on the CDC website.

This was deemed as not being useful, and not included in the analysis.

• ‘consent cases’, ‘consent deaths’: aggregation descriptions on how tot cases, tot death

were aggregated. If these were true, then total cases/deaths included probable and

confirmed cases/deaths; otherwise they did not.
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To summarize, only columns ‘state’, ‘submission date’, ‘new case’, and ‘new death’ were

analyzed due to all values being present and their nature of counting only confirmed cases

and deaths. Despite the inconsistencies in the reporting of confirmed COVID-19 cases and

deaths, this data was chosen over other similar data sets because of the directness of the

reporting, the relative lack of data smoothing and cleaning, and the daily updates.

These characteristics meant that a meaningful time-series analysis could be preformed

on this data as opposed to other data sets that typically smoothed the data or aggregated

by month or week. Aggregation by jurisdiction was decided as it allowed for a more complex

graph structure that might have been too computationally complex when done on the basis

of counties.

5.2 Interpolation

Some inconsistencies in the data, such as negative case numbers and obvious adjustments

in the cumulative COVID-19 cases and deaths, were observed. In this section we’ll discuss

how these challenges were addressed. Counts and total number of negative cases can be

seen in Figures 5.2 and 5.3, respectively. After applying a 7-day rolling average to the data

Xt =
1

7

6∑
τ=0

Xτ

a number of data points remained negative. To address this issue, we removed these negative

data points and interpolated them back based on SARIMA(p, d, q)(P,D,Q)m model fit to

the data. Additionally, because of the nature of the correlations to be covered in later

chapters, it was important to have complete data for each jurisdiction under consideration.

Based on a review of time-series interpolation [2, 51], the measure of fitness was chosen

to be the Bayesian Information Criterion. Fitting our model, we will seek to minimize BIC

with respect to the parameters to fit. In this case, M = SARIMA(p, d, q)(P,D,Q)m and

(p, d, q)(P,D,Q)m are the hyper-parameters that we’re seeking to optimize over. Based on

observations that were seen in the data (before applying a rolling average), we found that
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Figure 5.2: The occurrences of negative case counts by state.

Figure 5.3: Total number of negative cases reported by state.
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the data typically presented a periodicity of m = 7. Since our goal is minimize the BIC

argmin
L̂,k

{
−2 ln(L̂) + k ln(n)

}
,

the objective will be to maximize ln(L̂) while minimizing ln(n)k; this is a form of maximum-

likelihood estimation, since maximizing ln(L̂) is equivalent to maximizing L̂. The ln(n)k-

term acts as a penalization or regularization term for the model, as this disincentives an

overly complex model with a large number of parameters; to minimize k ln(n), keep the

number of parameters to a minimum. We’ll be using BIC in a number of capacities in this

thesis. Here we will be applying it to the testing region for our interpolation model.

Finally, to keep the values positive for the forecasting the following transformation was

applied to the data: for each data point x, evaluate

f(x) = log(x+ 2).

Then to smooth the variance and mean we use the box-cox transformation

h(x) =
xλ − 1

λ
,

where λ is a parameter chosen to maximize the log-likelihood function of the data set.

Since log(x + 2) > 0 for x ≥ 0, the forecasts will be strictly non-negative; note the

‘+2’ accounts for issues forecasting a series where Xt = 0 for all t, which occurs for series

that are all zero after the log transformation. For model-selection, that is the choice of

(p, d, q)(P,D,Q)7, we use the auto_arima function to fit the models in the pmdarima python

package [52].

The models selected and their associated BIC on the data can be seen in Table 5.2 and

an example for the state of Nebraska (NE) can be seen in Figure 5.4
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Figure 5.4: Interpolation around a set of points for Nebraska

Table 5.1: Interpolation Model and their resulting BIC’s.

state model BIC

0 GU SARIMAX(1, 2, 4)x(1, 0, [1], 7) 3374.799
1 HI SARIMAX(1, 2, 4)x(1, 0, [1], 7) 3199.651
2 IA SARIMAX(5, 2, 0)x(2, 0, [1, 2], 7) 3387.325
3 ID SARIMAX(5, 2, 0)x(2, 0, [1, 2], 7) 3470.185
4 IL SARIMAX(3, 2, 4)x(1, 0, [1], 7) 3899.843
5 IN SARIMAX(5, 2, 0)x(2, 0, [1, 2], 7) 3945.753
6 CA SARIMAX(1, 1, 2)x(2, 0, [1], 7) 874.103
7 CO SARIMAX(1, 1, 2)x(2, 0, [1], 7) 903.312
8 CT SARIMAX(1, 1, 2)x(2, 0, [1], 7) 885.835
9 DC SARIMAX(1, 1, 2)x(2, 0, [1], 7) 849.445
10 DE SARIMAX(1, 1, 2)x(2, 0, [1], 7) 919.596
11 FL SARIMAX(1, 1, 3)x(1, 0, [1], 7) 1131.854
12 GA SARIMAX(3, 1, 2)x(1, 0, [1], 7) 1165.020
13 MO SARIMAX(1, 1, 4)x(1, 0, [1, 2], 7) 4278.864
14 MP SARIMAX(1, 1, 4)x(1, 0, [1], 7) 2099.196
15 MS SARIMAX(1, 1, 3)x(1, 0, [1], 7) 1364.323
16 MT SARIMAX(1, 1, 3)x(1, 0, [1, 2], 7) 1380.815
17 NC SARIMAX(3, 1, 2)x(1, 0, [1], 7) 1483.792
18 ND SARIMAX(1, 1, 3)x(1, 0, [1], 7) 2151.554
19 NE SARIMAX(1, 1, 3)x(1, 0, [1], 7) 2416.559
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Chapter 6

A NETWORK MODEL OF COVID-19

First outlined in [1] a network theoretic analysis of COVID-19 based on running correlations

between new cases in jurisdictions in China was proposed, then this was applied to an

international level between countries. This was done by calculating a Pearson-r correlation

coefficient on a 14-day rolling window of the back-differenced data: Xt :=
√
Xt−

√
Xt−1. A

network was constructed by treating the provinces as nodes and if the correlation coefficient

was greater than 0.5 for a 14 day interval, then theses states were joined by an edge. Let

Xi,t and Xj,t be the number of COVID-19 cases in states i, j, respectively, at time t, then

let

ri,j(t; τ) =

∑τ−1
t=0 Xi,tXj,t√

Var[Xi]Var[Xj ]

be the Pearson-r correlation coefficient between {Xi,t−k}τk=0 and {Xj,t−k}τk=0. We define

the adjacency matrix of G to be

Ai,j =


1 if ri,j(t; τ) ≥ r

0 otherwise

(6.1)

for some α ≥ 0.

Variants of this approach have been adapted and used to analyze a variety of differ-

ing topics related to COVID-19 [1, 53, 54, 4]. Authors have found that certain topologi-

cal features might be good indicators of pandemic risk and financial risk associated with

COVID-19 [1, 4]. To that end, we’ll consider a number of different configurations of this

networks with differing values of τ and r and see to what extent network statistics can give

us an insight on possible rises in COVID-19 cases. In particular, we’ll seek to address the

question: can this network help in the prediction of COVID-19 cases in the United States?
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6.1 Centrality Analysis

Constructing the network similar to that used in [1] with jurisdictions in the United States,

we set τ = 14 and r = 0.5 with the data backwards differenced and transformed for station-

arity, Xt :=
√
Xt −

√
Xt−1, we define the adjacency matrix as given in (6.1).

In this section, we’ll study the cross-correlation between network statistics and overall

trends in COVID-19 in the US for a number of different network configurations, with the

goal being to obtain a network construction that acts as a reliable indicator of national and

state-wide COVID-19 trends. We address the questions

• Do network statistics hold additional information about COVID-19 surges?

• What is the optimal configuration of the network for the purposes of predicting possible

spikes in COVID-19?

We use a 95% confidence interval for statistical significance of our cross-correlation co-

efficients. For the entire pandemic this is ±1.96√
T

≈ ±0.06. We construct a variety of

networks for τ = 14, 30, 90, r = 0.5, 0.9, p = 0, 0.5, 1, where p is the order of differencing

Xt := Xp
t −Xp

t−1, the results can be seen in Figures C.1 through C.18. The node size and

color are proportional to the nodes sub-graph centrality, with the edge widths proportional

to their betweenness centrality. A sample video can be seen in the video at [55] for network

configuration p = 1, τ = 90, r = 0.9.

With many of the r = 0.5, at different points in the pandemic the graph becomes very

connected and dense. With such a low threshold value, network statistics are unlikely to

give good patterns of COVID-19 spread as these networks are largely homogeneous, similar

to an Erdos-Reyni model. So the result that few r = 0.5 statistics appear to be significantly

correlated with overall COVID-19 cases in the United States is unsurprising, Figure 6.1. On

the other hand, as might be expected, the threshold value of r = 0.9 causes the network to

become sparse in most scenarios allowing for more dynamic network statistics. As can be

seen in Figure 6.2.

These top preforming metrics have good predictive power as determined by cross-

correlation. Notably the model configuration of p = 1, r = 0.9 and window = 90 seems

to suit itself well to short-lag correlations meaning that this network configurations and net-
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Figure 6.1: Mean sub-graph centrality ccf coefficients with US Cases versus
CCF lag, r = 0.5

Figure 6.2: Mean sub-graph centrality ccf coefficients with US Cases versus
CCF lag, r = 0.9
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Figure 6.3: S-Metric ccf coefficients with US Cases verse CCF lag, r = 0.9

Figure 6.4: Mean core number ccf coefficients with US Cases verse CCF lag,
r = 0.9
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work statistics could be good candidates for visualizing the geographical spread of COVID-19

in the US, Figures 6.4 6.3 6.2. Our analysis suggest that

• Mean sub-graph centrality, the s-metric, and mean core number have the strongest

cross-correlation coefficients with US COVID-19 cases

• The model configuration of p = 1, τ = 90, r = 0.9 consistently shows significant cross-

correlation with US COVID-19 cases at lag 0 for a variety of network statistics

• Tolerance values of r = 0.5 have weak correlation compared to network statistics with

r = 0.9

6.2 Network Informed Time-Series Model

Using the network construction in the previous section, we propose a network-informed

model for COVID-19 cases in the United States, Figure 6.5. By taking four top preforming

statistics outlined in Section 6.1, average core number, s-metric, average sub-graph central-

ity, and average harmonic centrality (largest clique size was excluded due to time constraint),

we’ll explore in what circumstances these can assist in the forecasting of overall COVID-19

cases in the United States. The time-series of these data points can be seen in Figures 6.7

and 6.8.

Let G(t) be our network construction at time t and yt be overall COVID-19 cases in

the US. We propose a SARIMAX model of the form

(1− ϕ(L))(1− Φ(Lm))(1− L)d(1− Lm)Dyi,t =

c+ (θ(L) + 1)(Θ(Lm) + 1)ϵi,t + η(L)Xi,t

where Xi,t are network statistics and Fourier-features. In this approach we considered a

combination of different exogenous variables based on the network structure:

• The average sub-graph centrality of G(t)

• The average harmonic centrality of G(t)

• The average core number of G(t)

• The s-metric of G(t).
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Figure 6.5: New Cases of COVID-19 in US.

As a baseline of comparison, we’ll be comparing the results of this SARIMAX model with

that of a SARIMA model, both fitted using the auto_arima function from the pmdarima

library [52].

We compare the test set errors for 8 time steps over the course of the pandemic, testing a

number of configurations of the network construction with varying values for α, p, training

window T , and forecast/test window h. We test the SARIMAX method only with one

statistic at a time to gauge the effectiveness of each variable in COVID-19 forecasting. In

addition, for error analysis we use a time-series training and test split as described in Figure

6.9, for training/test windows: {(14, 1), (14, 3), (30, 1), (30, 7), (90, 7), (90, 14)}.

We plot the root-mean squared error (RMSE) on the test set against time-steps (t = 0

is 01/22/2020 and t = 816 is 04/17/2022),

RMSE =

√√√√ 1

h

h∑
i=1

(ŷi − yi)2,

where ŷ is the predicted value of y and y is the actual value on the test set.
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Figure 6.6: New Cases of COVID-19 in US, with major events.

61



Figure 6.7: Network Statistics with r = 0.5

Figure 6.8: Network Statistics with r = 0.9
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Figure 6.9: Time-series cross-validation scheme, image courtesy of [2].
Orange are Testing Sets, Blue are Training Sets.

For a majority of the network configurations we saw that with network statistics, the

SARIMAXmodel outperform the baseline SARIMAmodel for time steps t = 300, 700, which

correspond to the Alpha and Omicron surges in COVID-19 cases in the US. Suggesting that

with accurate network statistics a SARIMAX model can help in the prediction of COVID-19

cases during large spikes in COVID-19, Figures D.10 D.8 D.11.

The statistic with the consistently worse performance is sub-graph centrality, this is

counter to our hypothesis that sub-graph centrality’s large cross-correlation may indicate

better predictions with a SARIMAX model for COVID-19 in the US. It should be noted that

the SARIMAX model relies on predictions for the network statistics, as the test set is perfect

information for the network statistics. This means that a reliable model for these network

statistics is required, so either a time-series model or network model must be developed for

the network statistics to be utilized in this method for the SARIMAX model.

6.3 Community Detection with COVID-19

By the graph construction outlined at the beginning of this chapter, the edges of our network

encode the similarity of COVID-19 trends from state to state. This encodes no explicit

information about causal relationships, although may act as a proxy for such relationships.

The graphical information that we retrieve from these networks tell us characteristics of

the topology of the graph, and thus of COVID-19 trend similarities in the US. Thus it

is natural that clusters in this graph coincide with regions of high inter-connectivity with

respect to their trends in COVID-19, and hence the policies in one jurisdiction may work

well in another jurisdiction. Hence the task of community detection in these networks may
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Figure 6.10: The Time-Series of Modularity of G(t) with Louvain Algorithm,
r = 0.5

well lend itself to determining common response regions when responding to outbreaks or

surges of COVID-19.

Before we apply community detection to these networks we test to see how the mod-

ularities of these graphs correspond to overall COVID-19 cases in the US; that is, do dips

or spikes in the modularity correspond to overall spikes or dips in COVID-19? We will test

this hypothesis with one such community detection algorithm outlined in Chapter 3, the

Louvain algorithm.

Comparing the modularities obtained from the Louvain algorithm with new cases in the

US we get the ccf-coefficients for lags, i.e ccfXY (τ), where X is modularity and Y is new

cases of COVID-19 in US (with order-p differencing) in Figures 6.12 and 6.13.

The cross-correlation coefficients for r = 0.5 are almost all below levels of statistical

significance. This may be due to the fact that the networks with this threshold value

typically display low levels of modularity, as seen in Figure 6.10. This in turn may be due to

the fact that the graph is amalgamating into one large cluster for small r = 0.5. In Figures

E.1, E.2, E.3 we plot the top three communities by size. The density is noticeable, as many

of these graphs have only one or two communities. We see sparser behavior for graphs with

similar configurations, Figures E.4, E.5, E.6.
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Figure 6.11: The Time-Series of Modularity of G(t) with Louvain Algorithm,
r = 0.9

Figure 6.12: The Cross-Correlation Coefficients for r = 0.5 versus CCF lag
Blue and orange lines are the 95% confidence intervals for statistical significance
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Figure 6.13: The Cross-Correlation Coefficients for r = 0.9 versus CCF lag
Blue and orange lines are the 95% confidence intervals for statistical significance

For the tolerance level of r = 0.9, modularity shows higher levels of cross-correlation,

with many peaks occurring for a differencing-order of p = 0.5 and the largest peak occurring

with the network configuration p = 0.5, α = 0.9, window = 14. We see this in Figure 6.11,

with the spike around t = 700, corresponding to the spike in Omicron cases in the United

States, with a major dip around t = 400 just after the drop in new cases after the first wave

of vaccines began to be dispersed. In this configuration the increases in community structure

under partitions obtained via the Louvain algorithm may lead as indicators of predictions

of spikes in COVID-19 cases in the United States. Additionally, there’s one considerable

peak at 0 lag with the network configuration of p = 1.0.α = 0.9, window = 90. Indicating

that this configuration’s modularity may also be an immediate indicator of the decrease of

COVID-19 in the US; that is, decreases in modularity are correlated to spikes in COVID-19.
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Chapter 7

CONCLUSION AND FURTHER RESEARCH

We have conducted a through analysis of the network construction given by the adjacency

matrix defined in Equation 6.1, as well as lay out a framework for a rigorous analysis of

centrality measurements and time-series models informed by network statistics via cross-

correlation. The three questions we asked with our analysis were:

1. Are network statistics correlated with COVID-19 cases in the United State?

2. Can this network help in the prediction of COVID-19 cases?

3. What is the optimal configuration of the network for the purposes of predicting possible

spikes in COVID-19?

Through our analysis we can make the following conclusions

1. Mean sub-graph centrality, mean core number, and the s-metric showed the strongest

cross-correlations with COVID-19 cases for the following network configurations:

• p = 1, τ = 90, α = 0.9 at lags 0 and 7

• p = 0, τ = 14, α = 0.9 at lags 13 and 27

• p = 1, τ = 90, α = 0.9 at lags 0 and 2

respectively.

2. Comparing a SARIMA model to a SARIMAX model with network statistics as ex-

ogenous variables, the SARIMAX model out-preformed the SARIMA model at large

spikes in COVID-19 cases in the US. Namely the SARIMAX model preformed bet-

ter than the SARIMA model at times t = 300, 700, corresponding to the Alpha and

Omicron variant surges of COVID-19. Indicating the SARIMAX model with network

statistics may assist in the prediction of large spikes in COVID-19.

3. We saw the best improvement for the following configurations:

• p = 1, α = 0.9, (Train, Test) = (30, 1)
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• p = 1, α = 0.5, (Train, Test) = (30, 7)

• p = 1, α = 0.9, (Train, Test) = (30, 7)

With the results from Section 6.2, it’s hopeful that a deeper network construction of COVID-

19 trends can help in facilitating simple and fast time-series models for COVID-19, as well as

unveil possible structure in the spread of the virus as suggested in Section 6.3. The advan-

tages of this network construction allow for fast and easily understandable representations

of COVID-19’s spread and geographical distribution, as well as facilitating better decision

making as determined by the clusters of the network. Additional fuzzy or other community

detection algorithms could be employed to improve the accuracy of community detection in

this network.

The network centrality’s have proven effective in helping with the predictions of SARIMA

models through inclusion via a SARIMAX model given perfect network information. How-

ever, the assumption of perfect information is quite a large one. Any deployment of this

model would require the forecasting or prediction of future network structures, a non-trivial

task as can be seen from the dynamic behavior of many of these statistics.

Possible solutions to this exist in applying a SARIMA or other time-series model to the

time-series of these network statistics, possibly a SARIMAX model with other exogenous

variables, as well as a link prediction algorithm. In this vein of link prediction, the networks

we have analyzed in this thesis are generally sparse networks (|V | ∼ |E|) with many link

deletions occurring during the time-span covered. This means that a robust link prediction

algorithm would need to account for new links being generated as well as links being deleted

(i.e jurisdictions trends lining up and trends diverging, respectively). Additionally, intro-

ducing a variety of node and edge attributes may allow for a deeper network representation

of COVID-19, possibly using the software Neo4j or python library PyTorch.

The sample sizes for our parameter spaces p, τ, α were relatively small due to com-

putational limitations. We suggest that a further analysis of these parameter spaces be

conducted. Expanding the options for p to include log(·) and other transformations may

allow for better performance. An analysis of the network construction for weighted and
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possibly signed adjacency matrices would also provide a richer network for analysis; that is:

Ai,j(t) =


1 if rij(t) ≥ α

−1 if rij(t) ≤ −α

0 otherwise

.

Similarly, a weighted network given by

Ai,j = rij

could allow for a weighted network analysis of COVID-19. The inclusion of a network con-

struction based on cross-correlation could facilitate multivariate time-series model selection

based on the matrix

Ai,j(t; τ) =


1 if CCFi,j(t) ≥ α

−1 if CCFi,j(t) ≤ −α

0 otherwise

.

This could lead to a deeper study of the geographical spread of COVID-19, as this adjacency

matrix would necessitate a directed graph, as the CCF is not symmetric.

An important factor that we did not include in our study is the inclusion of demographic

variables in the model. A number of researchers have found that groups with lower levels

of food security, historical levels of inequality, and higher levels of historical discrimination

have suffered disproportionately during the pandemic [56, 57]. The incorporation of this

information into COVID-19 models and the analysis of how these communities are effected

by COVID-19 could lead to a stronger defense against endemic waves of COVID-19 in the

future.

In conclusion, networks provide a visualization and comprehension tool for very complex

behaviors and moreover they come with many important features that tell us the local and

global structure of the phenomena being modeled. Networks applied to COVID-19 have the

potential of revealing new information about the geographic spread o f COVID-19 and in

our decision making around COVID-19. The further analysis of this network configuration

and other pandemic networks has deep potential and offers a font of knowledge for discovery.
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APPENDICES

Appendix A

CODE

def pre_whiten(input_1, input_2):

import numpy as np

import pmdarima as pmd

import statsmodels.api as ts

## Input : Two data sets (input_1, input_2)##

## Output : Pre-whitened versions of (input_1, input_2) ##

## Check to see if data has to be pre-whitened ##

if check_auto(input_1, input_2):

## Copy the data ##

data = [input_1, input_2]

## Calculate the number of differences

## (first-order and seasonal with period 7) to become stationary ##

## This saves on computation time for the SARIMA model fit ##

diffs = [pmd.arima.utils.ndiffs(data[0], alpha = 0.1),

pmd.arima.utils.ndiffs(data[1], alpha = 0.1)]

sdiffs = [pmd.arima.utils.nsdiffs(data[0], m = 7),

pmd.arima.utils.nsdiffs(data[1], m = 7)]

## Dummy variable ##

differenced = [input_1, input_2]

## Preform the necessary differencing ##

## Seasonal Differencing ##

if sdiffs[0] > 0:

differenced[0] = pmd.arima.utils.diff(differenced[0],

lag = 7, differences = sdiffs[0])

if sdiffs[1] > 0:

differenced[1] = pmd.arima.utils.diff(differenced[1],

lag = 7, differences = sdiffs[1])

## Non-Seasonal Differencing ##

if diffs[0] > 0:

differenced[0] = pmd.arima.utils.diff(differenced[0],

differences = diffs[0])

if diffs[1] > 0:

differenced[1] = pmd.arima.utils.diff(differenced[1],

differences = diffs[1])

## fit 2 models, and choose the better one out of the two, based on BIC ##

models = [pmd.AutoARIMA(m = 7, d = 0, D = 0,

information_criterion = ’bic’, alpha = 0.1,

method = ’nm’,

maxiter = 20).fit(differenced[0]).model_ ,

pmd.AutoARIMA(m = 7, d = 0, D = 0,

information_criterion = ’bic’, alpha = 0.1,
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method = ’nm’,

maxiter = 20).fit(differenced[1]).model_]

optimal = np.argmin([models[0].bic(), models[1].bic()])

# filter the second model using the more successful model

filter = int(abs(optimal - 1))

model = models[optimal]

## Difference to the same order as optimal model ##

seasonal_diff_filter = data[filter]

diff_filter = data[filter]

## difference the data to be filtered to the

## same order as the optimal data ##

if sdiffs[optimal] > 0:

diff_filter = pmd.arima.utils.diff(diff_filter,

lag = 7, differences = sdiffs[optimal])

if diffs[optimal] > 0:

diff_filter = pmd.arima.utils.diff(diff_filter,

differences = diffs[optimal])

## Extract the lag-polynomials from the SARIMA model ##

ar_poly = model.arima_res_.polynomial_ar

sar_poly = model.arima_res_.polynomial_seasonal_ar

combined_ar = np.polymul(ar_poly, sar_poly)

ma_poly = model.arima_res_.polynomial_ma

sma_poly = model.arima_res_.polynomial_seasonal_ma

combined_ma = np.polymul(ma_poly, sma_poly)

## Use the arma_innovations filter to filter

## the data using the above polynomials ##

innovations = ts.tsa.innovations.arma_innovations(diff_filter,

ar_params = -combined_ar[1:],

ma_params = combined_ma[1:])[0]

## Set the data to the right values ##

data[optimal] = models[optimal].resid()

data[filter] = innovations

return data

else:

return [input_1, input_2]

def build_adj(data,column,r = 0.5, weighted = False,

differencing = 0, two_sided = False,

window = 14, expanding = False):

## Input

## data(pandas data frame) = pandas data frame to

## build an adjacency matrix for, X_t

## column(string, column name from data) = the column

## of the data frame we wish to construct our network for

## r(float) = the cut-off value for the adjacency matrix

## differencing(float) = the order of differencing we wish

## to impose on X_t := X_t^{p} - X_{t - 1}^{p}

## two_sided(Boolean) = whether to use an absolute-value for

## the correlation tolerance
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## window(int) = the rolling window on which we’re calculating correlations

## expanding(Boolean) = whether to using an expanding verses rolling

## window for the adjacency matrix

## Output

## A(numpy_array, shape = (N,N,T)) = The adjacency matrix for G(t),

## where N is the number of states, T is the number of time-steps

import numpy as np

import scipy as sci

## Define Variables

df = data.copy(deep = True)

N = df.state.unique().size

T = df.submission_date.unique().size

A = np.zeros(shape = (N,N,T))

## Loop through each state

for i in range(0,N):

## Loop through each state, up to i

for j in range(0,i):

## If differencing == 0, then do now differencing

if differencing == 0:

df_i = df[df[’state’] ==

df[’state’].iloc[i]].set_index(’submission_date’)

df_j = df[df[’state’] ==

df[’state’].iloc[j]].set_index(’submission_date’)

## Else if, differencing ==

## int, then repeat first-order differencing that many times

elif differencing.is_integer():

df_i = df[df[’state’]

== df[’state’].iloc[i]].set_index(’submission_date’)

df_j = df[df[’state’]

== df[’state’].iloc[j]].set_index(’submission_date’)

for d in range(int(differencing)):

df_i.loc[:, column] = df_i[column].diff().fillna(0)

df_j.loc[:, column] = df_j[column].diff().fillna(0)

## Else, apply the operation X_t := X_{t}^p - X_{t-1}^p

else:

df_i = df[df[’state’]

== df[’state’].iloc[i]].set_index(’submission_date’)

df_j = df[df[’state’]

== df[’state’].iloc[j]].set_index(’submission_date’)

df_i.loc[:, column] = df_i[column].apply(lambda row: row**(differencing))

df_j.loc[:, column] = df_j[column].apply(lambda row: row**(differencing))

df_i.loc[:, column] = df_i[column].diff().fillna(0)

df_j.loc[:, column] = df_j[column].diff().fillna(0)

## If not expanding, then use a rolling window for correlations

if (not expanding):

corr = df_i[column].rolling(window).corr(df_j[column])

## Else, apply a expanding filter to the data

else:

corr = df_i[column].expanding().corr(df_j[column])

## Loop through each time-step, k

for k in range(0,T):

## If two_sided == True,

## then apply absolute value and
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## create edge if it’s greater than tolerance,

## otherwise it’s 0

if two_sided:

if np.abs(corr.iloc[k]) >= r:

A[i,j,k] = corr.iloc[k]

## If weighted == False, then just edge weight to 1

if not weighted:

A[i,j,k] = 1

else:

A[i,j,k] = 0

## Else, just apply for positive correlations

else:

if corr.iloc[k] >= r:

A[i,j,k] = corr.iloc[k]

if not weighted:

A[i,j,k] = 1

else:

A[i,j,k] = 0

## Return the (N,N,T) numpy-array

return A
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Appendix B

CROSS-CORRELATION RESULTS
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Figure B.1: Mean harmonic centrality ccf coefficients with US Cases versus
CCF lag, r = 0.5

Figure B.2: Mean harmonic centrality ccf coefficients with US Cases versus
CCF lag, r = 0.9
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Figure B.3: Mean sub-graph centrality ccf coefficients with US Cases versus
CCF lag, r = 0.5

Figure B.4: Mean sub-graph centrality ccf coefficients with US Cases versus
CCF lag, r = 0.9
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Figure B.5: Largest clique size ccf coefficients with US Cases versus CCF lag,
r = 0.5

Figure B.6: Largest clique size ccf coefficients with US Cases versus CCF lag,
r = 0.9
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Figure B.7: S-Metric ccf coefficients with US Cases versus CCF lag, r = 0.5

Figure B.8: S-Metric ccf coefficients with US Cases versus CCF lag, r = 0.9
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Figure B.9: Mean core number ccf coefficients with US Cases versus CCF lag,
r = 0.5

Figure B.10: Mean core number ccf coefficients with US Cases versus CCF lag,
r = 0.9
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Appendix C

NETWORK GRAPHS
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Figure C.1: p = 0.0, tau = 14, r = 0.5
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Figure C.2: p = 0.0, tau = 14, r = 0.9
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Figure C.3: p = 0.5, tau = 14, r = 0.5
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Figure C.4: p = 0.5, tau = 14, r = 0.9
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Figure C.5: p = 1.0, tau = 14, r = 0.5
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Figure C.6: p = 1.0, tau = 14, r = 0.9
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Figure C.7: p = 0.0, tau = 30, r = 0.5
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Figure C.8: p = 0.0, tau = 30, r = 0.9
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Figure C.9: p = 0.5, tau = 30, r = 0.5
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Figure C.10: p = 0.5, tau = 30, r = 0.9

96



Figure C.11: p = 1.0, tau = 30, r = 0.5

97



Figure C.12: p = 1.0, tau = 30, r = 0.9
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Figure C.13: p = 0.0, tau = 90, r = 0.5
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Figure C.14: p = 0.0, tau = 90, r = 0.9

100



Figure C.15: p = 0.5, tau = 90, r = 0.5
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Figure C.16: p = 0.5, tau = 90, r = 0.9
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Figure C.17: p = 1.0, tau = 90, r = 0.5
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Figure C.18: p = 1.0, tau = 90, r = 0.9
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Appendix D

MODEL TEST ERROR
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Figure D.1: Diff. = 0.0, Tolerance = 0.5, (Train, Test) = (14,1)

Figure D.2: Diff. = 0.5, Tolerance = 0.5, (Train, Test) = (14,1)
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Figure D.3: Diff. = 1.0, Tolerance = 0.5, (Train, Test) = (14,1)

Figure D.4: Diff. = 0.0, Tolerance = 0.9, (Train, Test) = (14,1)
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Figure D.5: Diff. = 0.5, Tolerance = 0.9, (Train, Test) = (14,1)

Figure D.6: Diff. = 1.0, Tolerance = 0.9, (Train, Test) = (14,1)
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Figure D.7: Diff. = 0.5, Tolerance = 0.5, (Train, Test) = (14,3)

Figure D.8: Diff. = 1.0, Tolerance = 0.9, (Train, Test) = (30,1)
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Figure D.9: Diff. = 1.0, Tolerance = 0.5, (Train, Test) = (30,1)

Figure D.10: Diff. = 1.0, Tolerance = 0.5, (Train, Test) = (30,7)
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Figure D.11: Diff. = 1.0, Tolerance = 0.9, (Train, Test) = (30,7)

Figure D.12: Diff. = 0.5, Tolerance = 0.5, (Train, Test) = (30,7)
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Figure D.13: Diff. = 1.0, Tolerance = 0.5, (Train, Test) = (90,7)

Figure D.14: Diff. = 1.0, Tolerance = 0.9, (Train, Test) = (90,14)
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Appendix E

COMMUNITY DETECTION RESULTS
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Figure E.1: Top 3 Communities, p = 0.0, tau = 14, r = 0.5,t = 2021-09-13

Figure E.2: Only 1 community, p = 0.0, tau = 30, r = 0.5, t = 2020-08-09
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Figure E.3: Only 1 Community, p = 0.0, tau = 30, r = 0.5,t = 2021-09-13

Figure E.4: Top 3 Communities, p = 0.0, tau = 14, r = 0.9,t = 2021-09-13
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Figure E.5: Top 3 Communities, p = 0.0, tau = 30, r = 0.9,t = 2020-08-09

Figure E.6: Top 3 Communities, p = 0.0, tau = 30, r = 0.9,t = 2021-09-13
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