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ABSTRACT

Wildfire Risk Assessment Using Convolutional Neural Networks And MODIS

Climate Data

Sean Nesbit

Wildfires burn millions of acres of land each year leading to the destruction of homes

and wildland ecosystems while costing governments billions in funding. As climate

change intensifies drought volatility across the Western United States, wildfires are

likely to become increasingly severe. Wildfire risk assessment and hazard maps are

currently employed by fire services, but can often be outdated. This paper introduces

an image-based dataset using climate and wildfire data from NASA’s Moderate Res-

olution Imaging Spectroradiometer (MODIS). The dataset consists of 32 climate and

topographical layers captured across 0.1 ◦ by 0.1 ◦ tiled regions in California and

Nevada between 2015 and 2020, associated with whether the region later saw a wild-

fire incident. We trained a convolutional neural network (CNN) with the generated

dataset to predict whether a region will see a wildfire incident given the climate

data of that region. Convolutional neural networks are able to find spatial patterns

in their multi-dimensional inputs, providing an additional layer of inference when

compared to logistic regression (LR) or artificial neural network (ANN) models. To

further understand feature importance, we performed an ablation study, concluding

that vegetation products, fire history, water content, and evapotranspiration prod-

ucts resulted in increases in model performance, while land information products did

not. While the novel convolutional neural network model did not show a large im-

provement over previous models, it retained the highest holistic measures such as

area under the curve and average precision, indicating it is still a strong competitor

to existing models. This introduction of the convolutional neural network approach
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expands the wealth of knowledge for the prediction of wildfire incidents and proves

the usefulness of the novel, image-based dataset.
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Chapter 1

INTRODUCTION

1.1 Motivation

In California, the 2020 wildfire season burned 4.2 million acres of land [1] and threat-

ened over 2 million homes [2]. The Legislative Analyst’s Office estimated a total

CalFire spending budget of approximately $2.5 billion, more than tripling their bud-

get since 2005 [3]. New estimates for total wildfire damages from California’s 2018

wildfire season cost the economy an amount estimated at upwards of $148 billion [4].

With increasing volatility regarding drought conditions due to climate change [5],

California has struggled to manage increasingly active fire regimes.

Changing global climate trends threaten the natural cycles in our forests. Westerling

showed how since 1970, spring seasons have been increasingly earlier in the year

and noted that early spring seasons result in an increase in large-fire frequency [6].

The team observed a strong inverse correlation between snow-melt measured via

streamflow gauges and wildfire severity. Importantly, the earlier spring snow-melt

started, the more severe and numerous the wildfires would be during the summer.

The team also found that warm spring and summer temperatures were often followed

by drier, less precipitous winters. Other researchers have simulated temperature

scenarios given a spectrum of estimates for emissions data, resulting in end-of-century

temperature outcomes between +1.5◦C and +4.5◦C [7]. These findings, compounded

by increasing drought severity [5] and volatility in yearly precipitation [8], suggest

wildfires will continue to pose a growing challenge facing California.
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Traditional wildfire risk assessment largely relies on maps drawn by government agen-

cies such as the United States Forest Service. However, with the emergence of new and

robust classification methods, increased research efforts have gone into developing risk

assessment models using publicly available data. Combined with the rapidly growing

amount of historical data available online, new opportunities are being afforded to

redefine how wildfire risk assessment is approached. Specifically, various neural net-

work designs such as convolutional neural networks remain a largely untapped area

of study.

1.2 Design

In this thesis, we introduce and analyze a new approach for wildfire risk prediction.

The approach utilizes a convolutional neural network that interprets climate satellite

imagery retrieved with Google Earth Engine, with the images primarily acquired from

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra

and Aqua satellites. The satellites produce near-real-time images which are free to

the public, providing a wealth of invaluable data about the climate of our world. The

neural network then generates a risk assessment for the given geospatial area using

the corresponding climate images. The network can be given current climate images

of a region and will estimate the wildfire risk, enabling it to be deployed as a real-time

predictor of wildfire risk.

Previous research attempts in the field of wildfire risk assessment have minimally

addressed the use of convolutional neural networks as an option for processing climate

data. The subset of research articles that use MODIS data to predict wildfire risk

often uses logistic regression, decision trees, and neural network types such as artificial

neural networks. We believe that utilizing convolutional neural networks is necessary
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to advance the research space from strictly using tabular climate data to using images

that can provide a more nuanced and spatial representation of an area. The primary

difference is that images can represent the climate using a two-dimensional space

that traditional logistic regression and artificial neural networks cannot. This adds

an additional layer of information for the network to process that may allow it to

better find patterns in the causes of wildfires.

There did not appear to be a dataset that organizes geospatial images containing

multiple climate products with wildfire burn labels. The first step of this research

was to use the Google Earth Engine and MODIS to collect a wide array of climate

product images commonly associated with wildfires. This generates a novel dataset

to train a network on to find the inherent differences between areas that burned

and areas that did not burn depending on the climate data given. This data and

its collection methods may also be used for future reproductions of the work in this

paper and for further research in the interdisciplinary study of machine learning and

environmental science.
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Chapter 2

BACKGROUND

2.1 Wildfires

A wildfire is the unplanned or unintentional burning of any wildland area. Wildfires

can be a combination of ground fires, surface fires, and crown fires. Ground fires burn

subsurface material such as roots, peat, coal, or other combustible organic matter.

Ground fires can spread underneath large areas, erupting into surface fires [9]. Surface

fires burn brush and other small plants above the soil. As surface fires grow they can

reach up through the canopy and ignite the tops of treas. Crown fires are fires that

spread across the canopy, quickly jumping from tree to tree as the wind pushes burning

material across the treetops with high velocity [10]. This spread is compounded with

surface fire updrafts forcing burning material up from the forest floor, continuously

igniting the canopy, while burning debris falls down to ignite unburned areas on the

ground [11].

The biophysical drivers of wildfire, or ignition factors, play an important role in when

and how an area will burn. Characteristics such as vegetative combustibility, fuel

availability, and moisture content affect an area’s ability to ignite. Fuel moisture

content and the dryness of an area are primarily a product of climate information

such as temperature, humidity, and precipitation, making moisture content a prime

target in risk analysis. These biophysical factors have a significant effect on naturally

caused wildfires but are slightly less important in determining outcomes for human-

caused wildfires [12].
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Wildfire ignition can be broadly categorized as either naturally caused or human-

caused. Previous research suggests human-caused wildfires account for 60% of all

land area burned by fires, with only 8% of the land being burned by events such

as lighting. Additionally, human-caused wildfires make up 85% of the total global

number of wildfires, with the ecoregion of Mediterranean California (MC) seeing

human-caused fires represent 97% of the region’s wildfires [13].

2.1.1 Mitigation Techniques

One of the primary tactics to reduce wildfire damage is through firefighting and

mitigation techniques. Wildfire prevention, prediction, and suppression are three

segments of firefighting that are critical to minimizing the devastating effects of wild-

fires.

2.1.1.1 Wildfire Prevention

One method of preventing wildfire spread is limiting its ability to ignite and grow.

Firefighting agencies and forest services employ various forest management techniques

to reduce the severity and area of a wildfire. A primary objective of the US Forest

Service is to promote “healthy forests” by reducing highly combustible fuel and pro-

moting climax and old-growth species [14]. Brush removal, or thinning from below, is

the most common form of reducing combustible material. Material can be removed

in a variety of ways such as controlled burns or mechanical treatments like mowing,

scattering, mastication, and lopping. Forest management often includes developing

barren fire roads to act as breaks in the forest to prevent larger wildfires from spread-

ing too quickly [15]. These fire roads also enable access to more remote locations

of the forest for easier management. The various federal and state forestry manage-
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ment services also ensure that they are not disrupting the biological diversity of the

ecosystem, making the task of forest management incredibly difficult. This also in-

cludes reforestation efforts in areas harmed by wildfire and excessive logging. These

actions allow forestry management services to support the health of our forests while

providing sustainable approaches to reducing wildfires.

2.1.1.2 Wildfire Prediction

Even with mitigation efforts, wildfire ignition may still occur. A powerful tool in

the firefighting arsenal is the ability to predict where fires may occur and the risk

they pose. Fire prediction and risk forecasting is a critical sub-field of firefighting

where forestry management services use weather, climate, fuels, and personnel assets

to estimate risks of given areas as well as the services’ preparedness to fight wildfires

in different regions [16]. Understanding how risk levels determine the number of

resources allocated to different areas covered by the fire service. Resources distributed

according to risk assessments can impact response time and give firefighters the best

chance to prevent the spread of devastating fires.

Traditional implementations of wildfire risk assessment calculate risk by using a com-

bination of various hazards that increase the probability of wildfires. Hazards include

weather, topography, sunlight exposure, vegetation, fuel, and crown fire potential [17].

Risk is also dependent on the Wildland Urban Interface (WUI), which is the area of

land where an undeveloped wildland begins to blend with housing and other human

structures. These areas and the people occupying them become the most threatened

when wildfires occur, therefore understanding risk is critical for safety.
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2.1.1.3 Wildfire Suppression

In the event of a wildfire, firefighters must be able to quickly respond to fires in order

to have the best chance of containing and extinguishing the fire. Fire spotting, or

fire recognition, is a task that firefighting agencies must employ to rapidly detect

and confirm wildfires. Large amounts of research are currently being done to provide

modern, state-of-the-art image recognition software to these agencies which will help

them respond quickly. Computer vision algorithms and neural networks can accu-

rately detect these wildfires with minimal interaction, which is ideal for surveying

large amounts of forests remotely. Developments like the use of mounted cameras on

fire-watch towers employ these algorithms to detect wildfires many kilometers away

with true-positive rates up to 99.7% and true-negative rates up to 99.8% [18]. These

modern approaches are enabling firefighters to rapidly and robustly detect wildfires.

Detection, however, is only the first step in suppressing a wildfire. Once the crews are

on-site, they must determine the appropriate methods of attacking the wildfire. The

Incident Commander will direct various personnel to begin either indirect attacks or

direct attacks. Indirect attacks focus on creating barriers that the fire cannot cross.

Primarily this will be accomplished by creating firelines by wetting combustible ma-

terial, clearing material, or burning material in a controlled manner. Fire retardants

may also be dispensed to prevent combustion from occurring. While indirect attacks

can provide an enormously beneficial defense, fires may still cross firelines due to

falling trees, floating embers, or changing wind directions. The Incident Commander

may also have crews begin direct attacks. Direct attacks focus on cooling down the

fire by dumping water or fire retardant from helicopters and air tankers. Ground

crews also establish anchor points near the fire front, clearing combustible material

and even removing trees, while spraying the fire from the ground [19]. Once a wild-
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Figure 2.1: United States Department of Agriculture Forestry Service
Wildfire Hazard Potential (2020) - Classifications Map

fire has been successfully suppressed, firefighting crews must “mop up” the area by

extinguishing remaining embers and confirming there are no subsurface fires.

2.2 Traditional Wildfire Prediction Methods

2.2.1 United States Forest Service

Every year the United States Forest Service releases its Wildfire Hazard Potential

(WHP) map, Figure 2.1. This map covers the United States with a resolution of

270 meters, classifying the wildfire hazard potential into continuous values, which

are often represented as five risk categories: very low, low, moderate, high, and very

high [20]. This map, while not inherently a “risk” map, is intended to provide insight

into where vegetation is likely to cause intense wildfires and where wildfire prevention

methods such as brush removal should be targeted.
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The Wildfire Hazard Potential map is derived from geospatial datasets such as LAND-

FIRE, with the Large Fires Simulator (FSim) quantifying the scores. LANDFIRE

is a dataset developed by the U.S. Fire Service and U.S. Department of the Interior

which provides geospatial data on vegetation, combustible fuel, fire regimes, and to-

pographical information across the United States [21]. The U.S. Forest Service uses

these products in the Large Fires Simulator to generate the annualized, 270 m res-

olution Wildfire Hazard Potential map. FSim is able to simulate the growth and

behavior of hundreds of thousands of wildfires producing a hazard index for each

location. FSim is also able to depict the effects of various suppression techniques as

well as the effects of various wildfire durations and sizes. This enables FSim to calcu-

late burn probabilities and burn intensities which impact the susceptibility of homes,

habitats, and watersheds [22]. While FSim is able to accept weather conditions, the

U.S. Forest Service does not include weather predictions as inputs in its annualized

Wildfire Hazard Potential map, as it is neither a risk map nor a near-real-time hazard

map. The resultant Wildfire Hazard Potential map can then be used by the various

federal and state forest services to plan and execute their prevention activities.

2.2.2 CalFire

In California, CalFire similarly develops its own Fire Hazard Severity Zones map, as

seen in Figure 2.2, using very similar techniques to U.S. Forest Service. The Fire

Hazard Severity Zones maps designate hazard scores for state and local responsibility

areas. Hazard scores are generated by taking into account factors such as fire his-

tory, combustible fuel, estimated flame lengths, terrain, typical weather, and floating

ember potential. However, CalFire’s Fire Hazard Severity Zone maps were last up-

dated between 2007 and 2010, leaving much to be improved on with changing climate

patterns and modern hazard and threat analysis methods.
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(a) State Responsibility Map (b) Local Responsibility Map

Figure 2.2: CalFire Fire Hazard Severity Zones Map - California (2007)

2.3 Classification

Classification algorithms are a form of problem-solving algorithms where data is

grouped into a number of distinct categories called classes. These algorithms may

be designed by hand or trained using machine learning and take an input and math-

ematically apply it across the classification function. This produces a result denoting

the class the data is predicted to represent. A common type of classification algorithm

is binary classification. Binary classifiers will determine if the input is in the positive

or negative class. This is useful for the myriad of problems that can be shaped into

simple yes or no questions [23]. Classification can occur in any N-dimensional space,

with N representing the number of input features, dividing the space into regions that

represent the positive and negative classes.

10



2.3.1 Logistic Regression

One of the most recognized classification algorithms is Logistic Regression. Logistic

regression attempts to fit a sigmoid function to a set of data in order to classify the

data into distinct classes [24]. The s-shaped sigmoid function outputs a continuous

value between 0 and 1, representing the negative and positive classes respectively.

This output is said to be “probability-like,” indicating that while it is not a true

probability, it does represent the model’s confidence. The closer the value is to 1,

the more likely – or confidently – the value belongs to the positive class. Similarly,

the closer the value is to 0, the more likely the value belongs to the negative class.

Values near 0.5 signify that the model is not confident about the input’s class. This

makes logistic regression a powerful classification algorithm for a wide variety of

problems. However, logistic regression struggles with higher dimensional data [25].

As the number of features in a dataset grows, the problem becomes increasingly non-

linear, making it harder for logistic regression to capture the multicollinearity between

the features.

2.3.2 Decision Trees

Decision trees are a type of classifier that relies on cascading rules to determine the

class label. Decision trees are incredibly powerful as they employ a training concept

called Information Gain [26]. Information gain is the measure of change in entropy

or the change in a tree’s orderedness. The less entropy – or more ordered – a tree

is, the more accurate a prediction will be. This allows the tree to determine which

sets of decisions result in the best overall predictive capability. However, like logistic

regression, as we increase the number of features, decision trees have a harder time

determining the splits that reduce entropy.
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2.3.3 Gradient Boosting

Decision trees with gradient boosting are an incredible example of a dimension-

resistant model. Gradient boosted trees operate by training trees on the successes and

failures of the prior tree. It combines weak learners into strong learners through en-

semble learning. Each time a tree is generated, a loss function is applied to determine

which decisions were the most correct, and which were the most incorrect. Weights of

the incorrect decisions are then changed to attempt to lower the loss. Through suc-

cessive iterations, this grows the tree into a strong learner [27]. Because of this ability

to iteratively generate stronger decision trees, gradient boosting has been incredibly

successful and consistently takes top spots in data science applications.

2.3.4 Neural Networks

Outside of logistic regression, Artificial Neural Networks – or ANNs – are one of the

most common classification algorithms for wildfire risk prediction. Artificial neural

networks are a biology-inspired system that attempts to mimic the basic function

of the neurons in our brain. These networks are comprised of nodes that form a

layer, and many layers forming a network. A given layer takes input values from

the previous layer and outputs values to the next layer, transforming the data using

weights and biases attached to each node. As data feeds forward across the network,

these transformation operations are performed, outputting a value or set of values

on the other end of the network. Depending on the output activation function, this

output can be treated as a class probability [28].

Learning occurs as the data then moves backwards across the network, with gradient

descent attempting to determine which weights to augment [29]. This process is

highly similar to the trimming of synapses in our brain that allows us to form optimal
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pathways. The more a network is trained, the more the weights and biases in the

network will begin to correctly predict the class.

Artificial neural networks have taken the world by storm as computing power grows

and continued research advances their development. These classifiers are versatile

and powerful and are applied liberally across research papers as the new baseline for

machine learning algorithms.

2.3.4.1 Forward Propagation

Neural networks operate in two stages: forward propagation and backward propa-

gation. Forward propagation is the prediction stage where inputs are converted to

outputs. No learning occurs in this stage, the output is merely a product of the input

and the current weights and biases in the network.

When an input value is passed into the network, the value is applied against a node.

This node aggregates and sums all received inputs. The aggregate sum is then mul-

tiplied by the node’s weight and the node’s bias is added. Weights and biases are

trainable parameters and are used to modify values as they flow forward through the

network. The node then applies this result to the activation function. An activation

function helps the model learn complex patterns by determining when to pass a value

to the next neuron, and what the scale of the passed value should be. The output is

then given as input to the next layer. Each node can output its results to many nodes,

similar to how a biological neuron in the brain can attach to many other neurons.

This process continues for each hidden layer within the network [30].

As values flow forward through the network, they are modified and scaled, until

the final layer is reached. The amount of nodes in the final layer is equivalent to

the number of output classes desired. If a numerical or continuous value is being
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predicted, a linear activation function enables the network to predict a continuous

result. For classification problems, softmax, tanh, or sigmoid are often used to predict

discrete classes [31]. Softmax, for example, shows a “probability-like” confidence,

illustrating which class the network believes the input is most likely to represent.

2.3.4.2 Backward Propagation

Backward propagation is the learning stage when training occurs in the network.

After values have flowed forward through the network during forward propagation,

the weights and biases must be updated depending on how correct the network’s

answers were to the truth.

Backward propagation starts at the output layer of the network and works its way

back to the start. A loss function is applied to the predicted value to measure how

far off the network was from predicting the true value. The network then employs

gradient descent, an iterative optimization algorithm [29], to determine how far the

weights and biases should be nudged in order to decrease the value of the loss func-

tion. This iterative stepping ensures that the network eventually converges at a local

minimum. This is applied to every layer to slowly update the parameters within the

network. Ideally, after each backward propagation stage, the network gets closer to

predicting the correct value for any given input [32].

2.3.4.3 Dropout & Regularization

A common fault of neural networks is their tendency to overfit. When training a

network, the weights and biases are updated according to the input data. This

causes the network to predict previously seen data with incredible accuracy, however,

any unseen data often fails to reach desired accuracies. As a model overfits, the
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hyperplane dividing the features becomes increasingly higher-dimensional, signaling

that the model is memorizing the data points explicitly rather than learning the

implicit patterns [33]. One way to approach reducing the problem of overfitting

is to expand the dataset to be larger and more representative of the intended use.

Architecturally, dropout and regularizers are two of the most used techniques to

reduce the effects of overfitting. The process of generalization by restricting a model’s

constraints and discouraging complexity is known as regularization.

Dropout is a regularization technique that attempts to mimic the robustness of en-

semble learning. Dropout layers can be added to the model architecture and will

deactivate neurons during the training phases. These dropout layers slow down the

learning of the model and force the network to develop new pathways to yield results.

This effectively creates a “new model” during each pass, simulating an ensemble

learning model [34].

Regularizers are mathematical operations applied to the cost function to reduce over-

fitting. L1 or Least Absolute Shrinkage and Selection Operator regression acts as a

feature selector by reducing the weight on unimportant features to zero [35]. L1 re-

gression adds a sum of the absolute value of the weights to the cost function. Because

this is a non-differentiable piecewise function, it is often slower computationally than

L2 regularization. L2 or Ridge regularization instead uses a square of the sum of

weights to penalize the cost function and reduce the weights of unimportant features

to near zero [36]. L2 is more computationally efficient than L1 as it can be solved

using matrix operations, a fundamental piece of neural network math. Both regular-

ization techniques prove useful in reducing the overfitting of machine learning models

with each being selected for use on a case-by-case basis.
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2.4 Convolutional Neural Networks

In recent years, convolutional neural networks have taken the spotlight through their

widespread use in visual classification problems and computer vision applications [37],

[38], popularized by the success of AlexNet in the 2012 ImageNet Large Scale Visual

Recognition Challenge [39]. These networks play a pivotal role in the processing of

images, from networks that can classify types of food [40] to networks helping doctors

detect melanoma [41].

Convolutional neural networks are distinctly different from previous classification al-

gorithms as they operate on images and capture the image’s spatial information,

rather than one-dimensional vectors of data, [42]. Convolutional neural networks ap-

ply a sliding window filter, referred to as a kernel, to an image. This kernel acts as

a feature extractor for the image, determining which combination of patterns results

in an important feature. Convolutional layers output another similarly sized image

with areas of discriminative information highlighted as larger values. Pooling layers

step across the convolutional layer’s output image and chooses pixels to include or

ignore in the pooling layer’s output depending on the pooling layer’s function. The

most common pooling function is MaxPooling which takes the highest value out of a

given area and outputs it to the next layer. For classification problems, the image is

often fed through multiple convolutional layers and pooling layers to eventually reach

a fully-connected neural network that outputs the class probabilities.

This combination of convolving an image and downsampling is the basic structure of a

convolutional neural network. Once the image is sufficiently small, it can be flattened

into a vector and applied to a fully connected neural network (FCNN), and output

into a class confidence value. A loss function is applied and the data backpropagates

using gradient descent, and the weights, biases, and kernels are updated. As this
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process continues, kernels emerge that are able to extract the most relevant features

for the desired task, and the weights of the FCNN are able to convert the flattened

vector of relevant features into an increasingly accurate confidence value.

2.5 Satellite Imagery

In 1990, the United States Congress passed the Global Change Research Act [43]

which introduced the Global Change Research Program, a program dedicated to

studying the changes in our global environment and measuring their effects on so-

ciety. NASA’s Earth Observing System (EOS) contributes to the Global Change

Research Program through its fleet of active satellites. With the data collected by

these satellites, NASA and scientists around the world can study the impacts of cli-

mate change and develop models to predict future effects.

EOS satellites extend across a variety of temporal and spatial resolutions which pro-

vides NASA with incredible real-time data. Spatial resolutions define the area of

observation. For example, an instrument on a satellite may capture images at a

resolution of 250 m, meaning each pixel represents a 250 m by 250 m area. Spa-

tial resolutions may also be measured in degrees (e.g. 0.5◦), indicating the latitude

and longitude area per pixel. Satellite-based instruments also incorporate a temporal

resolution. Temporal resolutions define the time between observing the same area

twice. Referring to our example, the instrument may collect an observation above

the same geographic area once per day, indicating our instrument has a 250m 1-Day

spatiotemporal resolution.
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2.5.1 Moderate Resolution Imaging Spectroradiometer (MODIS)

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument

aboard the Terra and Aqua EOS satellites. The instrument captures light radiated

from Earth as 36 spectral bands, ranging from 0.4 µm to 14.4 µm in wavelength.

MODIS is able to record these spectral bands in 250 m, 500 m, and 1 km resolu-

tions depending on the band. MODIS collects data 24/7, sending the images back

to NASA in near-real-time. Both Terra and Aqua are positioned in geocentric, sun-

synchronous, polar orbits. Terra orbits South to North during its sun-side transit,

crossing the equator at 10:30 AM on each orbit. Aqua orbits North to South during

its sun-side transit and crosses the equator at 1:30 PM on each orbit [44]. Together,

they provide valuable daily snapshots of the entire Earth.

MODIS has a wide variety of products, including surface reflectance, albedo, temper-

ature, leaf cover, vegetation, land cover, thermal anomalies, and others. These daily

products enable researchers to study the long-term trends in the Earth’s climate.

Retrospective studies using MODIS products have the ability to correlate human or

natural events with changes in the climate, while prospective studies can use the vast

archive of historical data to predict future trends and shifts in the climate.

2.5.2 Google Earth Engine

Google Earth Engine is a research tool available for academic use, providing re-

searchers with API access to petabytes worth of satellite and geospatial data. This

data is compiled into massive catalogs stretching back decades, containing image

suites like Landsat, Sentinel, MODIS, and others. Google Earth Engine harnesses

Google’s cloud computing infrastructure to provide rapid computation on large amounts

of data.
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Google Earth Engine has an online code editor where scripts can be built and run, out-

putting results to either a console or overlaid on an interactive world map. Datasets

can be extracted from Earth Engine Snippets. These snippets reference Earth En-

gine Images or Earth Engine Image Collections. Each Image or Image Collection has

one or many bands which represent the individual data layers on the image. Once a

dataset has been retrieved, the user can filter the data, reduce and aggregate the data,

apply geographical bounding boxes to the data, and a myriad of other operations.

Google Earth Engine also supports a Python library that wraps its API, making all

of Google Earth Engine accessible from Python scripts and notebooks.
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Chapter 3

RELATED WORKS

Various classification algorithms have had success at utilizing climate data as a pre-

dictor for forest fire risk. These classification algorithms are the fundamental building

blocks in creating a modern, scalable solution to wildfire risk assessment. In this sec-

tion, we introduce a few of the most significant research papers in the field, highlight

the classification algorithm they used, and discuss the conclusions while noting what

lessons can be learned. Through this, we aim to illustrate a sample of the research

occurring in this field that impacted the design of this thesis’s methods.

3.0.1 Logistic Regression

In the 2016 paper “Learning to predict forest fires with different data mining tech-

niques” by Stojanova et al. [45], a team of researchers from Slovenia and Macedonia

designed a dataset to predict wildfires in three regions of Slovenia. The team used

satellite data from ALADIN, MODIS, and LANDSAT, as well as elevation and to-

pographical data. The researchers broke these regions down into 1 km by 1km tiles

with an 18-day window to collect data and determine whether a fire occurred. The

dataset measured between 129 and 159 products depending on the region, including

gross primary production, meteorological data, precipitation, wind, solar radiation,

evapotranspiration, humidity, canopy cover height, and more. The team then used

five different algorithms, including logistic regression, to classify the data by whether

a fire occurred in the area or not. While the logistic regression did not beat any of

the other algorithms in any of the three regions, it had a strong accuracy of 77%,

83%, and 84% and recall score of 56%, 85%, and 85% for the three regions. These
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regression accuracies were only between 1% and 4% off from the strongest classifiers

in each of the regions. The researchers, however, were unable to discern which of the

myriad of features played the most important role, leaving significant feature analysis

to be completed in future works. The study demonstrates just how effective a simple

regression model can be in comparison to stronger models.

The paper highlights several important factors. First, the breadth of products used

in the dataset likely capture a wide array of climate and topographical scenarios that

may be linked to wildfires. Having such a wide breadth of features ensures there

are plenty of patterns for the algorithms to discover. Second, the logistic regression

model is shown to be a strong competitor to other more advanced algorithms such as

bagging and boosting algorithms.

3.0.2 Decision Trees and Feature Importance

In the paper “Fire Prediction Based on CatBoost Algorithm” by Zhou et al. [46], a

team of researchers analyzed climate, geographical, and human features to determine

forest fire risk. The team first uses a feature selection method based on Gradient

Boosting Decision Trees, finding that land surface temperature was the strongest

predictor of wildfires, followed by infrared index, distance from roads, wind speeds,

topographical elevation data, and vegetative index, with the rest of the features trail-

ing significantly behind. The team then used Principal Component Analysis (PCA) to

modify the dataset to maximize the variance between important features and reduce

the weight of unimportant features [47]. These steps reduced the feature set by 13

features while keeping 99% of the information power of the dataset. The paper goes

on to use gradient boosting to grow trees sequentially using the classification error

of the previous tree to inform the next tree on how to predict the revised residuals.

This process can yield incredibly accurate results. The researchers saw such success,
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demonstrating an accuracy of 83% and precision of 82%. These results illustrate the

powerful ability of binary classifiers and gradient boosted decision trees.

The feature importance table which described the importance index of wildfire impact

factors is incredibly valuable. Many of the wildfire impact factors listed such as land

surface temperature, elevation, vegetative index, and water vapor pressure (being

related to humidity) are retrieved for the MODIS dataset generated in this thesis.

3.0.3 Artificial Neural Networks

Many wildfire prediction papers have used artificial neural networks to predict risk

assessment. One paper published in 2009 by Maeda et al. titled “Predicting forest

fire in the Brazilian Amazon using MODIS imagery and artificial neural networks”

[48] paved the way for researchers attempting to classify wildfire occurrences given

historical climate data from MODIS. The researchers used the Normalized Difference

Vegetation Index (NDVI) 16-day composite images for two weeks in April, two weeks

in May, and one week in August as data vectors to be analyzed by the network in

order to predict wildfires. They tested nine artificial neural network architectures

that used one input layer, one hidden layer, and one output layer, testing a hidden

layer neuron count of 4, 6, 8, 10, 12, 14, 16, 18, and 20. These networks were then

tested on five geographical situations, such as areas that burned one year and not

the next, areas that burned and converted to agricultural areas the next, etc. The

team concluded with accuracies in the various situations ranging from 78% to 87%,

determining the 14-neuron hidden layer to output the smallest mean-squared-error

when classifying forest fires.

Several years later, the 2012 paper “Application of artificial neural networks and

logistic regression to the prediction of forest fire danger in Galicia using MODIS data”
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by Bisquert et al. attempted a similar neural network-based approach to wildfire

prediction [49]. The paper solidifies the usefulness of artificial neural networks in

out-competing other algorithms such as logistic regression. Using an ablation study,

the researchers were also able to analyze which features of MODIS data were most

important in determining whether a fire would occur. The study found that the

artificial neural network produced the highest accuracy and precision with the input

combinations of fire history, land surface temperature, and period of the year. The

model was able to correctly predict whether a fire occurred with 76% accuracy and

had a precision score of 66%.

Artificial neural networks are continuously proven to be effective when determining

wildfires across a variety of datasets. This strong performance makes a good baseline

to compare future models against. Additionally, the feature analysis completed in the

2012 paper paves the way for continued refinement of MODIS datasets for wildfire

prediction use.

3.0.4 Convolutional Neural Networks

One of the only papers discussing convolutional neural networks and their applica-

tion to wildfire risk assessment using MODIS data is the 2021 paper “Forest Fire Risk

Prediction from Satellite Data with Convolutional Neural Network” by Santopaolo et

al. [50]. The paper examined several features, including normalized difference veg-

etation index, normalized difference water index, accumulated rainfall, land surface

temperature, land cover type, elevation, as well as the previous year’s fire mask. The

team used a spatial resolution of 1 km and a temporal resolution of eight days. The

model was comprised of six convolutional layers with a 3x3 kernel and ReLU activa-

tion function with each layer being followed by a 2x2 stride max-pooling layer. The

final layer output an image using the sigmoid activation function. This predicted
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image represented an estimated fire mask. To validate the results, the researchers

used the pixel-wise mean-squared error to determine loss. The researchers analyzed

two geographic locations, the island of Sicily and the Los Angeles Area. While the

overall results appear very good, the model performed much more effectively in the

Los Angeles area. The researchers theorize that this is due to Sicily’s lack of vege-

tative area which was a driving feature in the model. The model operating on Sicily

resulted in a loss of 0.7, whereas the loss for the Los Angeles area is 0.002.

This paper is foundational in defining the research space of neural network-developed

fire masks. The authors found a clear and convincing approach to building high-

resolution fire masks. The strong link between land cover, elevation, vegetative index,

and wildfire risk was yet again proven by these findings. While the predictive fire mask

approach is very useful for precision mapping of potential wildfires, a classification

approach is still necessary in order to create a broader, region-based risk map.
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Chapter 4

SYSTEM DESIGN

4.1 Problem Definition

The classifiers discussed above have significant importance to this research. Many of

the listed studies paved the way in determining the most significant MODIS features

to help predict wildfire risk. They demonstrate the viability of a host of different

classification algorithms in tackling the growing problem of wildfires. Through all of

the previous research, we still believed there were gaps to fill. We focused on expand-

ing the breadth of wildfire prediction research occurring around convolutional neural

networks, as Santapolo’s [50] approach to wildfire prediction utilizing convolutional

neural networks was one of the very few making headways in wildfire risk assessment.

We took key features from this paper and extrapolated the area of interest to all of

California, rather than the Los Angeles area, and train the network to be more resilient

to differences in vegetation indices by expanding the MODIS products. Additionally,

we trained the model output to a class probability rather than a raster as the intention

is to estimate region-based wildfire risk rather than estimate a burned area mask. The

goal is that this would generalize better, allowing the model to be used broadly as a

wildfire predictor.

4.1.1 Convolutional Neural Network Advantages

The decision to utilize convolutional neural networks stems from their unique ability

to detect patterns in two-dimensional space. As discussed previously, wildfires are
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largely a product of their physical environment, therefore the representation of each

climate feature as a two-dimensional environment allows for the relationships and pat-

terns within the region to be examined. Non-convolutional classification algorithms

are unable to achieve these benefits, therefore, convolutional neural networks enable

us to reach conclusions that have not been found through previous research.

4.1.2 Goals

There are three primary goals of this research. The first is to build a dataset of multi-

layered climate images, labeled by whether a burn has occurred in the imaged region

during the following weeks after the climate data was recorded. No previous research

attempt appeared to utilize a dataset with such expansive climate and topographical

images, offering a new perspective on this task. This addresses shortcomings in

previous research attempts where less encompassing datasets are used. Additionally,

the ability to generate datasets for future reproduction efforts is critical, therefore

we released the dataset creation code which can be found linked in Appendix A.

This dataset creation code can then be used to validate the findings in this study or

can be used to generate datasets in other geographic locations for wildfire prediction

attempts outside of this area of study.

The second goal is to generate a never-before-seen model which utilizes a convolutional

neural network to predict whether a wildfire will occur in an area given this specific

set of climate information. The model will output a confidence value that can be

associated with either a positive (burned) or negative (unburned) prediction. The

closer the confidence value is to the label, the higher the “risk” of the predicted

label. Together, these two objectives will provide useful information for furthering

the research surrounding wildfire prediction.
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The third and final goal is to determine which features are most important to the

dataset by performing an ablation study. This study would place similar features

into groups which are then successively removed from the dataset. The effect of

removing these groups from the dataset will give us an indication of whether the

features helped or hindered the overall performance. Through this study, we can help

determine which climate features may warrant use in future studies.

4.2 Tile Building

Before any climate data was retrieved, we determined how the data should be rep-

resented. Since convolutional neural networks accept statically sized images as their

inputs, it can be asserted that the images collected must all be of equal sizes. This

means the intended area of study must be divided into uniformly sized tiles. However,

because the spherical surface of the Earth must be projected onto a two-dimensional

plane, there will be mild stretching effects in order to fit the regions into flat images.

Moreover, since longitudinal lines are relatively closer together towards the Earth’s

poles, the farther the tile is from the equator, the less relative area will be collected

inside those tiles.

For simplicity and consistency in representing geographic areas, boundaries will use

the geographic coordinate system (longitude and latitude) to define the area of study.

Each tile’s side length will be 0.1◦ in order to capture a small yet informative area.

If the tile side length was too small, we risk losing the two-dimensional patterns of

the land area studied, and if the side length was too large, it will not be useful in

determining precise locations where a wildfire is likely to occur. The side length of

0.1◦ allows for enough topographical information per tile while still being discrete
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enough to provide useful, fine-grained results on where forest service efforts should

be directed.

4.2.1 Spatiotemporal Region of Interest

Previous studies have analyzed the geographic regions of Galatia [49], Sicily, Los

Angeles [50], Slovenia [45], and many other areas impacted by seasonal wildfires.

Given the recent increase in attention to California’s wildfires, this dataset represents

only California and Nevada. There appears to be no other major study utilizing

MODIS climate data for wildfire prediction in this area, making this a pioneering

study for both the novelty of the dataset, as well as the application of the convolutional

neural network.

The bounding box stretches from 32.8◦N, 124.2◦W to 42.0◦N, 114.4◦W. These co-

ordinates define the southwestern and northeastern points respectively. This region

entirely captures the state of California and, due to California’s shape, almost cap-

tures the entirety of Nevada. Given the decided side length of 0.1◦, we conclude that

there will be 92 tiles east-west, and 98 tiles north-south yielding 9016 total tiles. A

tile can then be solely represented by the coordinates of its southeastern corner, as

it is known that the side length will extend 0.1◦to the north and west. For reference,

each of these 0.1◦x0.1◦tiles is approximately 9.9 km wide by 11.1 km tall at their

widest in the southern-most tiles, and 8.3 km wide by 11.1 km tall at their narrowest

in the northern-most tiles, or roughly 100 km2. This size allows there to be sufficient

climate information in each tile, while simultaneously representing enough locations

to provide targeted, regional wildfire risk information.

For the temporal resolution, we collected data from California’s peak fire season.

Since the majority of wildfires, often including the largest wildfires, occur during
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peak wildfire season, it best represents the most critical time to predict wildfires [51].

Additionally, restricting the climate data to a tighter range of months may help pre-

vent potential underfitting due to large differences in the climate data between winter

months and summer months. California’s wildfire season ranges from approximately

early summer through the beginning of fall, therefore the months of July through Oc-

tober were collected when building the dataset. The wildfire seasons of 2015 through

2020 were sampled to produce a dataset most similar to California’s current climate.

4.2.2 Filtering Unnecessary Tiles

Due to California’s shape, the bounding box selected covers areas of the Pacific Ocean.

As wildfires do not occur over the ocean, these tiles should be removed from consid-

eration. Eliminating the unnecessary tiles will help reduce the size of the dataset and

may help boost model performance by removing trivial data that can skew weights

unexpectedly.

In order to identify desirable tiles, we must determine whether a tile is a “land

tile” or a “water tile.” The MODIS Water Mask product is a global mask utilizing

the Shuttle Radar Topography Mission’s Water Body dataset and 250 m resolution

MODIS data. Using Google Earth Engine, we retrieved the mask information for each

of the 9016 generated tiles. The water mask is an Earth Engine Image consisting of

1’s where a pixel is water and 0’s where the pixel is land. Given a tile’s bounding box

coordinate, we can generate statistics about the region using Google Earth Engine’s

ee.Image.ReduceRegion() function. This function accepts the water mask image, the

region of interest, and a reducer. To quickly determine the proportion of the region

that is water, we can pass the ee.Reducer.mean() reducer operation to determine the

average pixel value over the region. Therefore, the examined region will reduce to a

value between 0 and 1, representing the proportion of water a region contains.
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Figure 4.1: Land (green) and water (blue) tiles over the San Francisco Bay
Area

The dataset creation tool automatically saves a newline-separated file of tile coor-

dinates and water proportions. A default threshold of 50% water was selected to

eliminate a tile. Thus, all tiles with less than 50% water are considered valid land

tiles. This reduces the number of tiles from 9016 to 6910 tiles, or approximately

a 23% decrease in tiles. Strictly land tiles are used during the rest of the dataset

creation. Land tiles and water tiles can be seen in Figure 4.1, highlighting areas such

as oceans, lakes, and bays that will be excluded from the dataset.

4.2.3 Determining Wildfire History

Once the desired tiles were selected by the Water Mask product, we labeled the land

tiles with whether they were observed to contain a wildfire or not contain a wildfire

during a given time frame. The dates ranging from July through October of 2015

through 2020 were divided into one-week intervals. July through October generates 18

one-week intervals, multiplied over six years resulting in 108 date intervals. Applying
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Figure 4.2: Fire history of Northern California where recent fires are more
opaque (2015-2020)

these 108 date intervals to the 6910 tiles yields almost 750,000 unique possible data

points.

The MODIS Thermal Anomalies & Fire product is a global, daily, 1 km resolution

mask that provides an image of the Earth where the wildfires are estimated to have

occurred over a time frame. The mask consists of pixels of value 0 or 1, representing

whether there was not or was a wildfire. Reducing a region with ee.Reducer.sum()

returns the total number of pixels within the area that were estimated to contain a

wildfire at some point during the time frame measured. Should an area contain a

number of wildfire pixels greater than a set tolerance threshold, the area is deemed

to have burned. Since there is no research regarding appropriate threshold pixel

values for estimating wildfires as opposed to other types of fires such as building

fires or bonfires, we selected a threshold greater than 0 pixels to constitute a wildfire

incident.

31



In order to make the data transferable and expandable, we store each of the 108 date

intervals in their own JSON files. Each file contains a two-dimensional dictionary

where the keys are strings of the longitude and latitude coordinates of the south-

western corner of the tile, the values are null or a string of the date interval (e.g.

json[”-117.6”][”33.9”] = ”2015-07-01”), and the files are named with their date inter-

val (e.g. firedata-YYYY-mm-dd.json). With this information, fire data JSON files

can be trivially combined into a large, singular dictionary. The combined dictionary

contains the same keys with the values being represented as lists of dates when a fire

occurred on that tile. A tiled map of wildfire history weighted by recency can be seen

in Figure 4.2. In this image, wildfire incidents that are more recent are more opaque.

Tiles are also stacked cumulatively if a wildfire occurred on that tile multiple times.

This creates an interesting visualization of wildfires as a product of both recency and

frequency.

4.3 Dataset Creation

Before data collection began, we decided how an individual data point would be

stored. Convolutional neural networks accept image-like formats. Each piece of data

must have a static width, height, and depth. Width and height define the area of the

image, while the third dimension, depth, defines the channels of an image. Normally,

the channels of an image are RGB, representing the red, green, and blue channels.

However, convolutional neural networks can accept any static depth. This opens

the door for a unique use case where the depth component of the data is distinct

climate bands over the same land area, rather than color channels making up the

image. Thus, the width and height components encompass the 0.1◦ by 0.1◦ tile, and

the depth will define the individual climate layers across that geospatial area. This
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enables there to be many climate, topographical, and historical images packed into a

single piece of data.

Each layer is a 64 px by 64 px image, with each pixel being stored as a single byte.

This yields exactly 4 kilobytes per layer. There will be 32 unique climate layers

which will be discussed below. Therefore, each data point is 64 kilobytes. Given

that there are roughly 750,000 data points, the size of the entire dataset would be

approximately 98 gigabytes. Due to its prevalence in data science and compatibility

with Keras, NumPy will be used to format and save each data point. Data points will

be stored based on their class label. After retrieving and stacking the climate layers,

the multi-channel image will be stored as a three-dimensional .npy file. These files

are binary files that reduce the storage overhead and provide fast read capabilities

through the NumPy library.

4.3.1 Climate Layers

There are ten Google Earth engine snippets that comprise the 32 climate, topograph-

ical, and historical bands. These layers provide insight into the climate of the region

during the date interval examined. Since the date interval associated with the class

label indicates the date that there either was a wildfire or was not a wildfire, climate

data must be collected across a date range prior. This has two main benefits: first, it

prevents the existence of a wildfire from altering the climate conditions, and second,

it enables the climate data to signal a future wildfire event. Because several of the

products in Table 4.1 have a temporal resolution of 16 days, a date range of 17 days

was selected to fully capture the array of selected bands and will begin 17 days before

the start of the Thermal Anomaly & Fire detection window.
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Table 4.1: Dataset products by name, snippet, band codes, and spatiotem-
poral resolution

Climate, Topological, and Historical Products
Product
Name

Google Earth Engine
Snippet

Band Code Resolution

Land Surface
Temperature

MODIS/006/MOD11A2 [’LST Day 1km’] 1km 8-Day

Leaf Area In-
dex

MODIS/006/MCD15A3H [’Fpar’, ’Lai’] 500m 4-Day

Gross Pri-
mary Produc-
tivity

MODIS/006/MOD17A2H [’Gpp’] 500m 8-Day

Evapo-
transpiration

MODIS/006/MOD16A2 [’ET’, ’LE’,
’PET’, ’PLE’]

250m 16-Day

Vegetation
Index

MODIS/006/MOD13Q1 [’EVI’] 250m 16-Day

Land Cover MODIS/006/MCD12Q1 [’LC Type1 (0-
16)’]

500m Yearly

Vapor NCEP RE/surface wv [’pr wtr’] 2.5◦ 6-Hr
Elevation CGIAR/SRTM90 V4 [’elevation’] 90m
Precipitation UCSB-CHG/CHIRPS/

DAILY
[’precipitation’] 0.5◦ Daily

— 6-Month
Summed

Fire History FIRMS [’T21’] 1km near-
real-time —
0-1yr, 1-5yr,
5-10yr

To download the data, each product is first filtered to the climate date window. For

most products, this results in an ee.ImageCollection object. ImageCollections requires

an aggregate operation to reduce them to a single ee.Image. The median() aggregator

takes the median pixel value of all Images in the ImageCollection across the filtered

range and reduces them to a single Image. Each band is then scaled to 0-255 using the

min and max band values found on the product’s description page. The image is then

downloaded as a 64x64 png by retrieving the thumbnail image using Google Earth

Engine’s ee.Image.getThumbURL(). The returned image, a multi-channel png, must

be converted to a single-channel, gray-scale image using OpenCV’s cv.cvtColor().
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Figure 4.3: An example of a burned multi-channel climate image separated
into their distinct climate layers

This results in the desired 64x64x1 image that can be stacked on the other climate

layers to create the 32-channel final image.

Several products require slightly more derivation to generate the desired layers. Pre-

cipitation data is collected across the previous six months leading up to the start of

the burn date. Each pixel value in the region is averaged across the entire window

and scaled from 0-255. The layer is then downloaded and converted to gray-scale like

the other climate layers. This process captures a snapshot of the potential moisture

content of the soil and vegetation. From this, the model can make inferences about

the patterns and relationships between the spring and early summer rains and the

potential for wildfire.

Additionally, three fire history layers are defined. These layers use the same Thermal

Anomalies & Fire product that is used to generate the class labels. These fire history

layers are analyzed across varying windows of the ten previous years. The first layer

measures whether a wildfire occurred in the one year leading up to the class label

date interval. The second layer measures whether a wildfire occurred during the date
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window spanning from five years prior to one year prior. The third fire history layer

measures whether a wildfire occurred during the date window spanning from ten years

prior to five years prior. If a wildfire is detected during any of these windows, the

entire layer is filled with 1s, if there is no wildfire detected, the layer is filled with

0s. The goal of these layers is to enable the model to determine whether the area is

prone to recurring wildfires, whether the area has burned recently and therefore may

be unlikely to burn again soon, or whether an area has not burned indicating it may

not be prone to burning.

An example of a burned image is shown in Figure 4.3, with each layer being displayed

individually. Due to how Python’s Matplotlib displays images, some layers may

appear blank, but do contain climate data. Matplotlib will set the minimum value

of the image as the darkest color. For example, precipitation can only have 4 unique

values due to its spatial resolution, this causes the lowest value, regardless of the true

numeric value, to be a dark segment of the displayed image. Additionally, 1yr, 5yr,

and 10yr fire history bands contain either a 0 (black) if there was no wildfire during

that period, or a 1 (yellow) if there was a wildfire during that period. The 17 land

cover type layers are binary representations of where that land cover occurs over the

region.

4.3.2 Burned vs Unburned Split

When retrieving a thumbnail image through Google Earth Engine’s API, there is

a slight processing time while the URL is generated. There is also a delay while

fetching the image from the URL. Due to there being nearly 750,000 data points and

16 product retrievals per data point, there are approximately 12 million calls to the

Google Earth Engine API. This significantly slows down the data collection process,

presenting a large bottleneck.
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Downloading data points by naively sampling the set of possible tiles and date inter-

vals results in a lopsided dataset, with the proportion of burned to unburned data

being approximately 1:99. Instead, data was downloaded by first separating the

burned tiles from the unburned tiles and sampling each set equally. This generates

burned class data more quickly than naively sampling. This also produces a dataset

that has a 1:1 split, allowing the model to have more burned data to train. Data can

be downloaded equally from each class until the desired size of the dataset is reached,

or the positive class is entirely sampled. In our case, we downloaded approximately

6000 examples, 3000 from each class. We also downloaded an additional 100 positive

examples and 10,000 negative examples to form the testing dataset. This allows us

to test on real-world conditions with the correct data balance.

4.4 Convolutional Neural Network Architecture

Due to the established size of the data, developing the architecture for the neural

network was fairly straightforward. The model is based on the VGG16 architecture

developed by Karen Simonyan and Andrew Zisserman for the 2014 ImageNet Large

Scale Visual Recognition Challenge (ILSVRC). The network (as seen in Figure 4.4)

uses five blocks, the first two blocks repeat two 3x3 convolutional layers and a 3x3

max-pooling layer, and the final three blocks repeat three 3x3 convolutional layers

and a 3x3 max pooling layer, all followed by a flattening layer and two fully-connected

dense layers.

Because VGG16 was designed to classify 1000 classes, it does not perform well on

this binary classification task. Therefore, a smaller model had to be designed to

accommodate the data. This model, shown in Figure 4.5, is based on the VGG16

architecture and employs a similar five-block approach. This smaller model, however,
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Figure 4.4: Visualization of the VGG16 convolutional neural network ar-
chitecture

does not use double convolutional layers like VGG16, and also includes two dropout

layers to reduce overfitting. Each block is a 3x3 convolutional layer followed by a

max-pooling layer, with the two dropout layers positioned after the second and fourth

blocks. The model finishes with a flattening layer and two dense layers, outputting

the confidence in the two classes.

The ReLU activation function is used on all convolutional layers to mitigate vanishing

gradients as well as decrease training time. The convolutional layers use 32, 64, 128,

128, and 256 filters respectively. This enables the model to first identify the patterns

in the input layers, then apply more abstract concepts to the emergent patterns. By

increasing the number of filters, the network can recognize the growing number of

possibilities and differences in the data. Then, the network is flattened into a fully-

connected neural network and outputs the prediction through a softmax activation

function. Softmax is chosen as the output activation function because it provides the

“probability-like” distribution for the network’s prediction. In total, this results in

839,906 trainable parameters within the model.
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Figure 4.5: Visualization of the utilized convolutional neural network ar-
chitecture
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Chapter 5

RESULTS

5.1 Evaluation Criteria

To define the results of the model, Accuracy, Loss, F1-Score, Precision, and Recall, as

well as various graphical derivatives, will be used as the primary performance metrics

for evaluation. It is important to look at multiple metrics, as accuracy does not paint

a complete picture of the model’s performance.

True positives are the number of times the model correctly identified the positive class.

True negatives are the number of times the model correctly identified the negative

class. False positives are the number of times the model incorrectly predicts the

input to be in the positive class. False negatives are the number of times the model

incorrectly predicts the input to be in the negative class. These four values can be

used to create F1-score, precision, and recall, which help unlock more information

about how the model performs.

Accuracy is normally the first metric analyzed as it is, in many cases, a good predictor

of how correct the model is. Accuracy tells us what proportion of all predictions were

of the correct class. Accuracy is defined as:

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives

However, accuracy does not indicate where a model may be insufficient. Thus, preci-

sion and recall are used to further determine how the model is performing. Precision

is the measure of how correct a model is in its positive predictions. Precision is a
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useful metric to analyze when the cost of a false positive is high. Imagine the case

where fingerprint matching software is used in crime analysis. If the software incor-

rectly matches two fingerprints, it may lead to an innocent person being wrongfully

accused or convicted of a crime. In such a case, high precision is critical to ensuring

that positive predictions only occur when the value is in fact positive. Minimizing

the false positives rate maximizes the precision score. Precision is defined as:

Precision =
True Positives

True Positives + False Positives
=

True Positives

Total Predicted Positives

However, should the model almost never predict the positive class unless it was ab-

solutely certain, one may be erroneously led to believe the model is performing well.

In actuality, it may be the case that the model is incorrectly selecting the negative

class the majority of the time to increase precision. While this may be optimal in

the previous example, we can imagine the case where a doctor is trying to identify

people with a highly contagious sickness. There is a very large cost if the doctor

incorrectly predicts the patient was healthy, or a negative case, when the patient was

actually sick, or a positive case, as the sickness could harm the individual without

treatment and rapidly spread to many more people. The recall score represents the

proportion of true positives predicted compared to the total number of true positives.

Minimizing the number of false negatives maximizes the recall score. Recall is defined

as:

Recall =
True Positives

True Positives + False Negatives
=

True Positives

Total Actual Positives

Since both of these scores are needed to have an accurate view of a model’s per-

formance, a third metric is used to combine precision and recall into a single score.

The F1-score can be used as a representation of the overall power of a model. The

F1-score is defined as:
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F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

In wildfire risk assessment, recall is a more important metric than precision. False

negatives are extremely harmful when predicting if an area is likely to burn, therefore a

high recall score is the first objective. Should an area be incorrectly thought to be safe

from wildfires, lives, homes, and fragile ecosystems may be lost due to slow response

times, preparedness, and equipment allocations. However, if an area is incorrectly

thought to be at risk to burn but does not burn, minimal value is lost. Therefore, the

model’s recall score will be primarily examined with respect to acceptable accuracy,

precision, and F1-score.

5.2 Base Results

The convolutional neural network was trained with the novel satellite image dataset.

This dataset contained 6,000 images with each image being comprised of the 32 cli-

mate channels. 3,000 images were from the positive burned class, and 3,000 images

were from the negative unburned class. This results in a 50% class-based split, differ-

ing vastly from the true distribution where the unburned class represents roughly 99%

of the examples and the burned class is roughly 1% of the examples. Therefore, the

dataset had to be rebalanced in order to aid the network in discovering the patterns

of both classes.

Separately, 100 positive class images and 10,000 negative class images were collected

for use in a test dataset to evaluate the model through various performance metrics.

This resulted in a test set that is similar to the true proportion of positive and negative

data found in the real world. We augmented the training set by rotating the images

by 90◦, 180◦, and 270◦. This resulting dataset was then also copied and vertically
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Table 5.1: Convolutional neural network model performance metrics on
the novel image-based climate dataset

Performance Metrics - Base CNN

Accuracy F1-Score Precision Recall

0.734 0.056 0.029 0.800

flipped, yielding an eight times increase in the amount of data, or 48,000 total images.

We use a 20% validation split for training, leaving the model with 38,400 images to

train on.

The network was trained across 50 epochs, with the highest scoring validation accu-

racy model being selected. Figure 5.1 depicts the model’s validation accuracy and

validation loss during training. The model’s accuracy jumps above 70% after the

first epoch and slowly climbs a few percent higher throughout the next 25 epochs,

indicating the model quickly made inferences about the difference between the classes

and was then able to find slightly more nuanced patterns.

The validation loss drops to about 0.5 before completely leveling off, while the training

loss dives to about 0.25, with their divergence indicating the model begins to overfit

to the training data during the second half of training. To help the model make more

minute adjustments as training progressed, the learning rate was reduced each time

the loss plateaued for four epochs. This leads the model to slow down any drastic

changes and settle into a comfortable validation accuracy and loss.

Table 5.1 shows the performance metrics achieved by the model. Notably, the model

produces a recall score of 0.800, indicating that it identified 80% of all positive cases

in the testing set. The model results in a precision score of 0.029, indicating that of

all positive predictions, 2.9% of them were true positives. These recall and precision

scores result in an F1-score of 0.056, illustrating the overall power of the model.
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(a) Accuracy

(b) Loss

Figure 5.1: Convolutional neural network model accuracy and loss over
the 50 epochs of training
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Figure 5.2: Convolutional neural network model Receiver Operating Char-
acteristic curve

Performance metrics can be also represented as a Receiver Operating Characteristic

(ROC) curve. ROC curves define the relationship between the model’s false positive

rate against the true positive rate at various decision thresholds. Ideally, the ROC

curve hugs the top left corner of the graph and gives the largest area under the curve.

This would signify that the model has a very high true positive rate while maintaining

a low false positive rate. Most classification models tend to fall somewhere between

the top left corner of the graph and the identity line bisecting the graph. Models

can be compared both visually to determine where the ideal true positive and false

positive points are, and numerically by comparing the value for the area under the

curve.

Figure 5.2 graphs the convolutional neural network’s Receiver Operating Characteris-

tic curve. The curve boasts an area under the curve (AUC) score of 0.832, indicating

the model has a good discriminative ability between true positives and false positives.

In addition to Receiver Operating Characteristic curves, the Precision-Recall curve

can be used to plot the precision scores against the recall score as the decision thresh-
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Figure 5.3: Convolutional neural network model Precision-Recall curve

old changes. Precision-Recall curves are another way to view the performance of a

model in a slightly different way than ROC curves. Where ROC curves allude to pre-

cision and recall through their representation of true positive rate and false positive

rate, Precision-Recall curves directly depict the two performance scores. Figure 5.3

shows this curve for the proposed convolutional neural network model. The closer the

curve is to the top right corner, the better a model is performing as it is able to score

both high precision and a high recall. Across all recall values, the precision-recall

curve generates an average precision score of 0.051. This precision is slightly higher

than the precision score measured for the base performance as the average precision

is raised by the model’s higher precision at the lower recall values.

5.3 Tuning Recall

As mentioned previously, the recall score depicts the model’s ability to capture the

positive class. A higher recall score indicates that the model is classifying a larger

proportion of these positive examples. As depicted in the Precision-Recall curve, we
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Table 5.2: Performance metrics of the convolutional neural network model
when the recall score is tuned to 0.900

Performance Metrics - Recall Tuned to 0.900

Accuracy F1-Score Precision Recall

0.517 0.036 0.018 0.900

can modify the confidence threshold at which the model predicts the positive class.

This causes a trade-off between precision and recall. As we increase the recall value,

we decrease the precision.

A firefighting agency or forest service might request the performance metrics of the

model when capturing a specific percentage of the positive class. An example of this

would be an agency that wants a model that is able to predict 90% of all wildfires.

The agency would then determine the success of the model through the F1-score and

precision. In this example, we can tune the recall score to 0.900 by modifying the

classification threshold and analyzing the resulting performance metrics. Table 5.2

shows the performance of the model at this static recall score. The accuracy of the

model drops to 51.7% indicating that a smaller proportion of all predictions belong

to the correct class. The precision score also drops to 0.018, signaling that of all the

positive predictions, only 1.8% of them are true positives. The F1-score also decreases

to 0.036, indicating that overall the model is weaker at predicting the positive class

at this tuned recall score.

5.4 Comparison Results

To prove the model’s effectiveness we compare this new convolutional neural network

approach to previous research. We utilize the methods architecture of Bisquert [49]
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where the researchers applied both a logistic regression model and an artificial neural

network model to predict wildfire risk in Galacia, Spain. The study used MODIS

data, comprising of features like fire history, enhanced vegetation index, land sur-

face temperature, period of the year, as well as several combined features to predict

whether an area was at risk to burn. As mentioned by Santopaolo in their compari-

son of wildfires in Sicily and Los Angeles, the geographical region of study plays an

important part in determining wildfire prediction performance [50]. Therefore, we

are unable to directly compare our results to other research attempts as they analyze

different regions.

To compare previous models to the convolutional neural network approach, the pre-

vious models are applied to the new dataset. This both tests the validity of the novel

satellite image dataset and the power of the convolutional approach. First, a sim-

ple logistic regression model was developed that takes the 32 features as inputs and

outputs two classes using softmax. This logistic regression model contains 66 train-

able parameters. Additionally, four single-layer perceptron artificial neural network

models were designed. The study only provided that their artificial neural networks

had a single hidden layer, but did not discuss the number of neurons in that layer.

However, this may not be relevant as the number of inputs into the network will

differ from the original paper’s architecture, as this novel dataset does not contain

the same amount of inputs. This would then affect how the data is processed by the

network, resulting in an entirely different structure. The four artificial neural net-

works used in this comparison contain 32, 64, 128, and 256 nodes in the single hidden

layer respectively. This results in 1122, 2242, 4482, and 8962 trainable parameters

for the artificial neural networks. Using four different architectures provides a broad

approach that captures various network complexities.
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Table 5.3: Performance metrics of all comparison models and the convo-
lutional neural network model

Comparison Models Performance Metrics

Model Accuracy F1-Score Precision Recall

Logistic Regression 0.835 0.060 0.032 0.530

Artificial Neural Network 32
Neurons

0.975 0.046 0.037 0.060

Artificial Neural Network 64
Neurons

0.946 0.078 0.047 0.230

Artificial Neural Network 128
Neurons

0.960 0.069 0.045 0.150

Artificial Neural Network 256
Neurons

0.756 0.054 0.028 0.710

Convolutional Neural Network 0.734 0.056 0.029 0.800

Because each of the comparison models accepts a one-dimensional array as input in,

the satellite image dataset is flattened to fit this shape. Each image contains 32

two-dimensional climate layers stacked on top of each other and must be reduced

into an array of 32 floats. This can be trivially accomplished by taking the average

value for each two-dimensional climate layer. Since taking the average negates the

spatial resolution of the dataset, data augmentation was not applied to the logistic

regression and artificial neural network models. Original, flipped, or rotated images

would result in identical examples when taking the average of the two-dimensional

space. This flattened data is then used to train each of the comparison models.

The relevant performance metrics for all models discussed in this section can be found

in Table 5.3. When looking at accuracy alone, it appears that the 32-neuron artificial

neural network has the highest accuracy at 97.5%. However, because we utilize the

real-world, imbalanced dataset, it may be trivial for the models to retain a high

accuracy by strictly picking the negative class. Given the approximately 1% positive

case rate in the testing dataset, should the model pick the negative class on every
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Figure 5.4: Bar chart of the performance metrics of all comparison models
and the convolutional neural network model
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prediction, the model would achieve a roughly 99% accuracy. Therefore, it is more

useful to look at the relative F1-scores which combine precision and recall, telling us

which model has the highest overall power in predicting the positive class.

When looking at F1-score, we can see that the 64-neuron model has the highest

F1-score at 0.078, generated from a precision of 0.047 and recall of 0.230. This

indicates that the 64-neuron artificial neural network is able to identify 23% of the

positive examples in the testing dataset with each positive prediction made by the

model having a 4.7% likelihood of being a true positive. The convolutional neural

network has the fourth-highest F1-score at 0.056. The convolutional neural network

has a precision score of 0.029 and recall of 0.800, indicating that the network is able

to identify 80% of the positive examples in the testing dataset with each positive

prediction made by the model having a 2.9% likelihood of being a true positive.

These results are also depicted visually in Figure 5.4.

Figure 5.5 shows the ROC curve and Precision-Recall curve for the five comparison

models and the new convolutional neural network model. The convolutional neural

network scores the highest area under the curve, beating out the 256-neuron artificial

neural network by 1.7%, and the 64-neuron neural network by 3.9%. We can see

that in the lower false positive rates the convolutional neural network produces a

slightly higher true positive rate than the other models. As the false positive rate

increases, the models roughly equal out. This increased performance in the lower

false positive rates helps bolster the overall holistic score of the area under the curve

when compared to the other models.

This analysis is reflected in the Precision-Recall curve with the convolutional neural

network scoring the highest average precision across all recall values at a score of

0.051. This is 0.9% higher than the 128-neuron model and 1.3% higher than the 64
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(a) Receiver Operating Characteristic curve

(b) Precision-Recall curve

Figure 5.5: Comparison models performance metric curves

52



Table 5.4: Performance metrics of all comparison models and the convo-
lutional neural network model when the recall score is tuned to 0.900

Comparison Models Performance Metrics - Recall Tuned to 0.900

Model Accuracy F1-Score Precision Recall

Logistic Regression 0.455 0.032 0.016 0.900

Artificial Neural Network 32
Neurons

0.471 0.033 0.017 0.900

Artificial Neural Network 64
Neurons

0.503 0.035 0.018 0.900

Artificial Neural Network 128
Neurons

0.498 0.034 0.017 0.900

Artificial Neural Network 256
Neurons

0.516 0.035 0.018 0.900

Convolutional Neural Network 0.517 0.036 0.018 0.900

and 32-neuron models. We can see that the convolutional neural network performs

betters than the other models at some of the lower recall scores, such as the recall

values between 0.1 and 0.2, indicating the convolutional neural network is better

at classifying positive classes confidently at these lower recall scores. As the recall

score increases the models begin to converge, indicating similar precision performance,

especially after the recall score of 0.8.

We also compare the results when tuning the recall score of each model to 90%.

This would illustrate the performance of each model in the hypothetical scenario

mentioned above. The agency could then pick which model performed best and

suited their wildfire prediction need. The results of this scenario are shown in Table

5.4. With the recall scores tuned to 0.900, the models all perform roughly the same.

The highest F1-score is the convolutional neural network at 0.036, however, this is

only 0.1% higher than the 64 and 256-neuron models, and at most 0.3% higher than

the logistic regression model, suggesting that at this recall score there is minimal
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Figure 5.6: Bar chart of the performance metrics of all comparison models
and the convolutional neural network model when the recall score is tuned
to 0.900
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difference between the models’ ability to correctly predict the positive class. These

results are also depicted visually in Figure 5.6.

Overall, the convolutional neural network underperforms compared to various other

models when inspecting the base performance on the 50% class confidence threshold.

When analyzing the receiver operating characteristic and precision-recall curves, the

convolutional neural network outperforms the other models, retaining a higher area

under the curve and average precision. This indicates the model has slightly stronger

holistic scores than the other comparison models. Finally, the convolutional neu-

ral network marginally outperforms the other models when tuning the recall score,

however, this difference is negligible and does not signify any meaningful difference

between the models.

Once again, it is important to note that these models are tested using the real-world

proportion of positive to negative data of approximately 1% positive to 99% negative.

When we define the testing set to use a 50% positive to 50% negative split of 100

positive and 100 negative examples, the results become less skewed towards the lower

precision values.

Table 5.5 shows the performance metrics on the 50% class confidence threshold for

each of the models when using the 50% positive to 50% negative example testing

set. While this testing set is not applicable to real-world conditions, it does help

us interpret how these models are performing. In this experiment, the convolutional

neural network yields the highest F1-score, at 0.762, as well as the highest recall

at 0.800, indicating that the model was able to find patterns in the data. This

demonstrates that the results seen in Table 5.3 and Table 5.4 are using some found

inference to predict the positive class, however, because the imbalance is so large,

false positives greatly distort the precision and F1-scores.
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Table 5.5: Performance metrics of all comparison models and the convolu-
tional neural network model when using a test set containing 50% positive
and 50% negative examples

Comparison Models Performance Metrics - 50:50 Testing Data

Model Accuracy F1-Score Precision Recall

Logistic Regression 0.670 0.616 0.736 0.530

Artificial Neural Network 32
Neurons

0.525 0.112 0.857 0.060

Artificial Neural Network 64
Neurons

0.605 0.368 0.920 0.230

Artificial Neural Network 128
Neurons

0.545 0.248 0.714 0.150

Artificial Neural Network 256
Neurons

0.720 0.717 0.724 0.710

Convolutional Neural Network 0.750 0.762 0.727 0.800

5.5 Feature Analysis

Because the dataset brings in so many new features, it is necessary to determine

which features have the largest effect on predicting wildfires. A simple ablation study

was conducted to successively remove groupings of similar layers and measure the

model’s performance metrics. The grouped layers can be seen in Table 5.6. Groups

are sorted in order of which group will be removed at each step. Evapotranspiration

is the first group to be removed in the ablation study, followed by land information,

water content, fire history, and finally vegetation.

Results are derived from the original convolutional neural network with no classifi-

cation threshold modification. Each of the ablation models was trained across 50

epochs, and the epoch with the highest validation accuracy was selected. Results of

the ablation study can be seen in Table 5.7.
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Figure 5.7: Bar chart of the feature analysis ablation study performance
metrics using the convolutional neural network model
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Table 5.6: Climate layer feature groups removed in the feature analysis
ablation study

Feature Groups For Ablation Study

Group Name Climate Layers

Evapotranspiration ET, LE, PET, PLE

Land Information LC Types, elevation

Water Content pr wtr, precipitation

Fire History 1yr, 5yr, 10yr

Vegetation Fpar, Lai, Gpp, EVI

Land Surface Temper-
ature

LST Day 1km

The five-group model scored the highest accuracy at 74.7%, 1.3% higher than the six-

group model’s 73.4%. However, the five-group model has a 0.6% lower F1-score,

indicating that the six-group model is overall more powerful than the five-group

model. This implies that evapotranspiration products are beneficial in predicting

where wildfires will occur.

There is a decrease in the accuracy (-1.1%) when removing land information products.

This results in the four-group model achieving an accuracy of 73.6%. The recall and

precision scores both increase slightly, with the F1-score of the four-group model

being 0.5% higher than the five-group model. This indicates that the removal of land

information products increases the overall power of the model when predicting the

positive class.

When removing water content products, both the accuracy and F1-score decrease,

indicating that products such as six-month summed precipitation and columnar water

vapor positively affect the model’s ability to predict wildfires. The three-group model

is overall less powerful than the four-group model across all metrics.
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Table 5.7: Feature analysis ablation study performance metrics using the
convolutional neural network model

Feature Analysis Ablation Study Performance Metrics Table

Group
Count

Groups Accuracy F1-Score Precision Recall

6
LST+Veg+Hist+
Wtr+Land+Evapo

0.734 0.056 0.029 0.800

5
LST+Veg+Hist+
Wtr+Land

0.747 0.050 0.026 0.670

4
LST+Veg+Hist+
Wtr

0.736 0.055 0.028 0.770

3
LST+Veg+Hist

0.722 0.051 0.026 0.750

2
LST+Veg

0.723 0.047 0.024 0.690

1
LST

0.990 0.000 0.000 0.000

There is a decrease in precision and recall resulting in a 0.4% decrease in F1-score

when removing fire history products. This two-group model performs worse than

the three-group model, indicating that fire history products are useful in determining

where a wildfire will occur.

Finally, when removing vegetation products, the one-group model of just land surface

temperature is unable to predict the positive class. The accuracy is 99% as the model

will only ever predict negative. With the imbalanced testing data, this results in a

99% accuracy, but also a score of 0 in F1-score, precision, and recall. These results

are also depicted visually in Figure 5.7.

Figure 5.8 shows the ROC and Precision-Recall curves for each of the models. The

six-group model scores the highest area under the curve at 83.2%. When removing

evapotranspiration products, the area under the curve drops to 77.5%. The three-

group and four-group models break above 80% area under the curve. The two-group
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(a) Receiver Operating Characteristic curve

(b) Precision-Recall curve

Figure 5.8: Feature analysis ablation study performance metric curves
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model containing just land surface temperature and vegetation products has an area

under the curve of 76.4%, while the one-group model becomes the identity line at

50% area under the curve. These results are consistent with the analysis from the

performance metrics table above.

These results are mirrored in the precision-recall curve with the six-group model

having the highest average precision, while the rest of the models follow the analysis

and traits described above.

Evapotranspiration products, water content products, history layers, and vegetation

products all result in increases in predictive ability. Land cover products cause a

decrease in predictive ability. The impact of land surface temperature could not be

determined as it was the last feature of the ablation study. Overall, it appears that

the six-group model is the most successful in predicting where wildfires will occur.
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Chapter 6

DISCUSSION

6.1 Summary

This paper has several major accomplishments which expand the breadth of research

surrounding wildfire risk modeling. The first accomplishment was developing an en-

tirely new image-based dataset that captured a comprehensive set of climate features.

The publicly available dataset creation tool (Appendix A) provides a simple way to

segment geographical areas which are then parseable by machine learning models.

This dataset creation tool manages the division and collection of climate data over

geographic and temporal areas. It stacks the collected climate layers into a single

three-dimensional image, splits the data into its respective burned and unburned

classes, and saves the geographic location and date information in the file name.

This creates an incredibly useful and expandable dataset that could even be applied

outside the scope of wildfire research.

The second accomplishment was developing a convolutional neural network model

that is novel to the research space. While the developed model was competitive

with the models proposed by previous approaches and wielded the highest holistic

measures such as area under the curve and average precision, it ultimately did not

outperform other models by meaningful amounts. Ideally, the network would have

been able to determine stronger spatial patterns within the image which could have

enhanced the predictive ability of the model. This lack of increase may have been

because there was not enough data that the model was trained on and expanding

the dataset could further boost the performance by finding more subtle patterns. It
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also may have been because there are simply minimal significant patterns in the two-

dimensional space that determines whether an area would burn. The analyzed tile

sizes were 0.1◦ by 0.1◦ or approximately 9 km by 9 km. This area may be too small to

discern more meaningful patterns. Increasing the area of each tile to capture broader

patterns would reduce the usefulness of small, granular results, causing a potential

trade-off between performance and resolution. However, the convolutional approach

is a distinctly unique attempt and warrants valid consideration for further studies

and applications.

Additionally, while the F1 and precision scores appear low, they are consistent with

the results measured by Gholami [52], where a team of researchers found average

precision values between 0.002 and 0.013 for the Nilgiris and Sathyamangalam regions

of India when testing on imbalanced data. The Uttara Kannada region had average

precision scores of 0.32 to 0.4 while testing on imbalanced data, again suggesting that

geographic location plays a large role in the performance of the model, as well as that

low precision values may be expected. This signifies that the results achieved in our

study are within the bounds of results produced by previous studies.

The final accomplishment was the dataset feature analysis using the developed con-

volutional neural network. This feature analysis consisted of an ablation study that

removed successive groupings of similar layers. This ablation study illustrated that

land cover information products like land cover type and elevation had an overall nega-

tive impact on the model’s performance. Evapotranspiration products, water content

products, and historical fire data appeared to give the model a boost in performance.

Vegetation data such as leaf area index (LAI), fraction of photosynthetically active

radiation (FPAR), gross primary product (GPP), and enhanced vegetative index

(EVI) demonstrated the largest increase in performance, indicating those products

are crucial predictors of wildfire. These findings may be useful in additional studies
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which can continue to refine the dataset and determine the set of optimal products

to include in wildfire detection.

6.2 Technical Challenges

6.2.1 The Dataset

One of the largest obstacles of this project was designing and downloading the dataset.

First, determining which layers should be included was an ever-growing task. At

countless turns, it seemed as though bringing in one additional layer may cover spe-

cific cases and boost performance, leading to the continuous pressure of feature-creep

around the dataset. Similar difficult design decisions also arose through determining

time-frames for how to retrieve the data. For instance, the decision to collect wildfire

data over one week versus two weeks, or collecting precipitation data across the pre-

vious 6 months, rather than beginning at a fixed date. These decisions accumulated

to steer the direction of the final dataset, resulting in a unique product that could

have been designed in countless other ways.

The second obstacle surrounding the dataset was the retrieval of the images in a fast,

reliable manner. Initially, a different third-party library was used to retrieve images,

however, it was significantly slower than the current approach and was extremely

limited in the products offered. A switch to Google Earth Engine was quickly made

in order to mitigate some of these issues arising. However, Google Earth Engine’s

Python API still didn’t offer ideal solutions for retrieving large quantities of images.

Data was collected using image thumbnail URLs, as the size of the images requested

was suitable to that endpoint. This endpoint is not traditionally intended to be used

for data collection purposes, so a better, more robust solution should be examined

for further replications. The thumbnail URLs also had to be individually processed
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for each climate layer across every tile, resulting in lots of small tasks which likely

wasted computing resources. Expanding the geographic area of the downloaded cli-

mate image and slicing it into tiles after downloading the image may result in faster

processing speeds.

6.2.2 The Network

Optimizing neural networks can be a very arduous task. Throughout this develop-

ment and research for this paper, the network was continuously tweaked to squeeze

out every last drop of performance. First, a network architecture had to be designed.

This was originally based on the VGG16 architecture, however, since VGG16 was de-

signed for 1000 classes, the size and depth were too large for this binary classification

problem. This leads to no material improvement over a true random approach. A

similar, yet smaller, design had to be employed. This design went through continu-

ous iterations of adding convolutional and max-pooling blocks, double convolutional

layers, and various dense layers. In the end, the design used in this thesis appeared

to be the best architecture, however, there are countless permutations that were left

untested.

In addition to testing dozens of model architectures, hyperparameters had to be tuned

to further optimize the model. This included filter size, filter stride, padding, number

of neurons in the dense layers, and more. The addition of overfitting prevention

mechanisms such as dropout layers and regularization were also tested to slow down

the model’s overfitting and allow the validation accuracy to climb. Altogether, there

was a large, constant effort to adjust the model to have the highest performance.
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6.3 Limitations

6.3.1 Lack Of Data

One of the main limitations of this research stemmed from the lack of data we ac-

quired in our limited time frame. We were unfortunately not able to produce actual

prediction maps due to not having a complete set of data over a given time frame.

Therefore, we could not compare our results directly to a wildfire or forest service’s

wildfire hazard, risk, or prediction map.

6.3.2 Data Imbalance

Additionally, the real dataset is imbalanced, with approximately 1% of the examples

belonging to the positive class and approximately 99% of examples belonging to

the negative class. This presents various problems when training and testing the

network. The network was trained using a 50% positive to 50% negative split as

this allows the network to best learn the patterns of the positive class. To test

the results of our model, we then used the imbalanced data. This shows how the

model performs in real-world situations. Because the imbalance is so large, having a

sufficient amount of data becomes difficult. We used only 100 positive examples which

required 10,000 negative examples to keep the correct balance of data. 100 positive

examples is a smaller amount than we ideally wanted in our testing set, but increasing

the number of positive examples causes the number of negative examples required

to increase dramatically. This imbalance also can lead to precision and F1-scores

dropping rapidly with each false positive. It is hard for the model to be extremely

precise when the imbalance is so large, as there are many more opportunities for false

positives than with an evenly balanced dataset.
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The data imbalance also prevents us from easily doing k-fold cross-validation. K-fold

cross-validation is not usually completed on imbalanced data as it makes learning

on the entire dataset difficult. Because of this imbalance, only one model for each

architecture is able to be trained. K-fold cross-validation attempt to account for

variance between model performance when trained on different segments of data.

Since we were unable to perform k-fold cross-validation, we may have a slight variance

in model performance due to the segment of data selected for training which may affect

the final results.

6.3.3 Ablation Permutations

Since our ablation study only measured one set of permutations, there may be slight

differences in feature group performance when changing the combinations measured.

Therefore, we are unable to determine with certainty whether the results of the ab-

lation study hold true in other feature group pairings. This is highlighted by the

one-group model where land surface temperature is alone not able to predict wild-

fires, however, we cannot say whether land surface temperature helped or hindered

performance in combination with other feature groups.

6.3.4 Data Leakage

Because there is both a spatial and temporal aspect to this data, there is potential

data leakage when randomly sampling the dataset for training. A geographic region

may be represented in the dataset many times over the 108 one-week intervals. Dur-

ing training, the model may learn patterns relating to that specific region’s climate

patterns, rather than the general climate patterns that occur. Therefore, there is an

argument that including the same region multiple times at different date intervals can
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cause the network not to generalize on the climate data. However, this can be viewed

as both a negative and a positive effect. From the negative viewpoint, the model

may be less able to generalize and consequently be unable to be applied to different

regions outside of California and Nevada. From the positive viewpoint, the model is

able to remember each region throughout the temporal aspect and can understand

the region-specific trends that cause wildfires. This enables the model to be more

highly specialized in the California and Nevada region.

In this research, we did not mask spatial regions to create the training and testing

dataset. Our primary goal is to allow the network to train as best as it can on every

region to produce the most accurate wildfire predictor for California and Nevada.

Future research may decide to use region masking to determine the effectiveness of

the model on unseen geographic areas.

6.3.5 Positive Labels

To define the positive and negative classes we utilize the MODIS Fire & Thermal

Anomalies product. This product is susceptible to producing false positives from

controlled burns, bonfires, or any other large fires that are not wildfires. This likely

results in these false positive labels making their way into the dataset. These false

positive labels may then be detracting from the network’s ability to predict and

find patterns relating to wildfires. Removing these instances would take large-scale,

manual labeling to verify each anomaly is a true wildfire incident.
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6.4 Future Works

6.4.1 Expanding The Dataset

As there are minimal papers utilizing convolutional neural networks and MODIS

images to predict wildfires, there is still an enormous amount of research left to do in

this area. Expanding the dataset to include the most valuable layers and capture the

most comprehensive array of climate patterns is likely one of the highest value next

steps that can be taken. There is a host of additional products that can be brought

into the dataset, as well as many other Google Earth Engine products from various

sources that can supplement the MODIS images. Including these additional layers

may allow the model to find new combinations of features that boost performance.

One of the most interesting and potentially useful groups of products would be Cali-

fornia’s Basin Characterization Model (BCM). The BCM aggregates various climate

inputs to measure runoff, recharge, evapotranspiration, and sublimation. These prod-

ucts play a major part in the hydrological cycles in the California region [53]. These

cycles determine climatic water deficit which helps define drought severity and its

effect on vegetation. The BCM contains historical and predictive monthly data at

270 m resolution, possibly providing a more in-depth and rigorous analysis of the

hydrology of the region than MODIS images can. While the BCM is not available

through Google Earth Engine, TerraClimate is and measures similar products such

as climatic water deficit. Either of these sources could provide additional value to the

dataset.

In our dataset, we utilize vegetation indices to attempt to model the fuel components

of a region. Dried or dead underbrush might not be represented in these indices.

Preliminary searches do not reveal any datasets that track underbrush density. We
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could create an alternative dataset to measure underbrush density by analyzing veg-

etation growth throughout the spring and determining the difference between the

summer months. This would measure the amount of vegetation that died or dried

out between the spring growth and the selected summer date. This dataset could

be used to measure spring season phenology, or the date at which spring starts. As

mentioned previously, Westerling showed earlier spring seasons are correlated with

larger and more numerous fires during the summer [6]. Measuring these two products

may provide more context into the spring conditions leading up to and impacting

wildfires.

6.4.2 Addressing Data Imbalance

One of the largest obstacles we faced was the imbalance of positive and negative

examples in our dataset. There are a several common techniques for addressing data

imbalance to help models perform better.

The technique employed in this research is to oversample the positive class. This

brings the distribution of positive and negative examples closer together. We utilized

3,000 positive examples and 3,000 negative examples which results in an even split for

training. With a more balanced training set, the model is able to learn the features of

the positive class better than when training on the purely imbalanced data. Future

works may try taking different distributions of positive and negative data to see which

has the best results. A study with splits of 1:99, 25:75, 50:50, 75:25, and 99:1 may

provide a good assortment of results to determine where the optimal distribution of

data lies. The testing set should remain as the 1:99 split as this allows us to see the

real application of the models.
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A technique that doesn’t involve changing the balance of the dataset is to change the

weighting of the loss function for the positive and negative class. By weighting the

loss for the positive class higher than the loss for the negative class, we can punish the

network more when misidentifying the positive class, forcing it to learn faster in order

to correct these mistakes. This would allow the model to train on the imbalanced

dataset without having to modify the distribution of data.

Finally, increasing the amount of data in the dataset would help bring in a larger

number of positive examples from which the network can find more patterns. This

would help the network become more confident in its positive predictions and therefore

help the overall performance of the model. Performing these three techniques in future

studies would provide useful insight into how best to approach the imbalance in this

dataset to optimize results.

6.4.3 Additional Ablation Permutations

A more comprehensive feature analysis also should be completed with an exhaus-

tive ablation study to determine which products were the most important and which

combination of products resulted in the highest performance. Additionally, further

analysis should be completed to determine whether the negative effects of evapotran-

spiration and water products as well as the positive effect of historical fire data and

land data are reproducible. This would prove to be a critical follow-up to validate

the utility of the dataset for future studies.

6.4.4 Other Dataset Uses

Moreover, dataset-focused studies could concentrate on the applicability of this dataset

to areas outside of the Western United States. Comparing the performance of dif-
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ferent geographical areas and climates may reveal strengths and weaknesses in the

model’s predictive ability across the globe.

The dataset can also be used for applications outside of the field of wildfire prediction.

MODIS data can be used for a myriad of climate-related tasks; the network may be

trivially tweaked to instead predict other features, or swapped out with other network

types to predict time-series data into the future.

This convolutional neural network approach should also continue to be tested to

confirm the findings in this paper. A study verifying the usefulness of several different

convolutional neural network architectures would shed more light on the feasibility of

this approach. Such an ancillary study may determine a more optimal architecture

for this dataset.

6.4.5 Generating Maps

Finally, because the primary objective of the study is to determine wildfire risk,

research that compares historical wildfire risk maps to wildfire risk maps generated

by the network would be an incredibly valuable validation study. Should the maps be

comparatively similar, the model would likely be a faster and easier way to rapidly

generate risk maps on a more frequent basis, requiring less work and oversight.

6.5 Closing Remarks

Overall, this study explored a wide breadth of research surrounding wildfire risk

assessment, MODIS climate data, feature importance, and convolutional neural net-

works, and it opens the door to many new research opportunities. While the novel

convolutional neural network model did not show a compelling improvement over
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previous models, it expands the wealth of knowledge in this area and introduced the

convolutional neural network approach for the prediction of wildfire incidents.
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APPENDICES

Appendix A

DATASET CREATION TOOL

The code used in this thesis can be found in the public repository:

https://github.com/sfnesbit/Wildfire-Risk-Assessment

This includes notebooks for the following tasks:

• Dataset creation tools

• Data visualization tools

• Experiments

– Convolutional neural network

– Comparison models

– Feature analysis
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