
RASM: COMPILING RACKET TO WEBASSEMBLY

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Grant Matejka

June 2022

© 2022

Grant Matejka

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Rasm: Compiling Racket to WebAssembly

AUTHOR: Grant Matejka

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: John Clements, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Stephen Beard, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Rasm: Compiling Racket to WebAssembly

Grant Matejka

WebAssembly is an instruction set designed for a stack based virtual machine, with

an emphasis on speed, portability and security. As the use cases for WebAssembly

grow, so does the desire to target WebAssembly in compilation. In this thesis we

present Rasm, a Racket to WebAssembly compiler that compiles a select subset of

the top forms of the Racket programming language to WebAssembly. We also present

our early findings in our work towards adding a WebAssembly backend to the Chez

Scheme compiler that is the backend of Racket. We address initial concerns and

roadblocks in adopting a WebAssembly backend and propose potential solutions and

patterns to address these concerns. Our work is the first serious effort to compile

Racket to WebAssembly, and we believe it will serve as a good aid in future efforts

of compiling high level languages to WebAssembly.

iv

ACKNOWLEDGMENTS

Thanks to:

• God, and my lord Jesus Christ for blessing me in this life and giving me hope

for the future.

• My wife for constantly encouraging me and having my back during the long

days.

• My family and parents for supporting my academic career.

• My advisor, Dr. John Clements, for helping me throughout this process.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

2 Related Work . 3

2.1 Compiling Racket to WebAssembly 3

2.2 Transpiling Racket . 3

2.2.1 Pycket . 3

2.2.2 RacketScript . 4

2.3 Compiling Languages to WebAssembly 5

2.3.1 Emscripten . 5

2.3.2 AssemblyScript . 5

3 WebAssembly . 7

3.1 Motivation for WebAssembly . 7

3.1.1 Early Efforts Toward Client Side Compute 7

3.1.2 JavaScript . 8

3.2 Language Specification of WebAssembly 9

3.2.1 Stack Machine . 9

3.2.2 Strict Static Typing . 11

3.2.3 High Level Control Flow . 12

3.2.4 Structured Branching . 13

3.3 WebAssembly Runtime . 15

vi

4 Racket . 17

4.1 Interesting Aspects of Racket . 17

4.2 Stages of Racket Compilation . 17

4.2.1 Fully Expanded Racket . 18

4.2.2 Linklets . 20

4.2.3 Chez Scheme Backend . 22

5 Compiling Racket . 23

5.1 From C to Chez Scheme . 23

5.2 Porting Chez Scheme to a New Platform 24

5.3 Nanopass Architecture . 24

5.3.1 Final Language . 25

5.3.2 Intermediate Language . 26

6 Concerns When Compiling Chez Scheme to WebAssembly 29

6.1 Existing Expectations . 29

6.2 Arbitrary Jumps . 30

6.2.1 The Relooper Algorithm . 30

6.2.2 Our Relooper Algorithm . 31

6.3 Calling Conventions . 43

6.4 Settling on Fully Expanded Programs 44

7 Implementation . 46

7.1 General Architecture . 46

7.1.1 Command Line Interface . 47

7.1.2 Expansion . 47

7.1.3 Supported Top Forms . 48

7.1.4 Compiler Passes . 48

vii

7.1.4.1 Generating unique identifiers 50

7.1.4.2 Lift lambdas . 50

7.1.4.3 Generate Initialization Function 51

7.1.4.4 Closure Conversion 52

7.1.4.5 Discover types . 52

7.2 Code Generation . 53

7.2.1 Representing Values . 53

7.2.1.1 Type Tags . 54

7.2.2 Applying Closures . 55

7.2.3 Standard Library . 55

7.3 JavaScript Host . 56

7.4 Using Rasm . 56

7.4.1 wat2wasm . 57

7.4.2 Instantiating a Module . 57

7.4.3 WebAssembly Memory Pointers and JavaScript Values 58

7.5 Validation . 59

7.5.1 Testing Framework . 59

7.5.2 Validation Programs . 61

8 Future Work . 62

8.1 Lack of Control Over the Stack . 62

8.2 Garbage Collection . 63

8.3 Debugging . 63

8.4 Control Flow and Registers . 64

9 Conclusion . 65

BIBLIOGRAPHY . 66

viii

APPENDICES

A Testing Framework . 72

B Validation Programs . 75

ix

LIST OF TABLES

Table Page

6.1 Native vs. Dispatch Performance Test Results Table 42

7.1 Type Tag Definitions . 54

x

LIST OF FIGURES

Figure Page

3.1 Example of WebAssembly’s Stack Machine Operations 10

3.2 Example of WebAssembly’s Types and Control Flow 12

3.3 Example of WebAssembly’s Branching Constructs 14

4.1 Racket Compilation Pipeline . 18

4.2 Example Racket Factorial Module . 18

4.3 Fully Expanded Racket Factorial Example 20

4.4 Linklets of Racket Factorial Example 21

5.1 Final Language of Racket Factorial Example 26

5.2 L7 Intermediate Language of Racket Factorial Example 28

6.1 Arbitrary Control Flow Example . 32

6.2 WebAssembly Code for Arbitrary Control Flow 33

6.3 Translating Conditional Control Flow to WebAssembly 34

6.4 Translating Looping Control Flow to WebAssembly 35

6.5 Native vs. Dispatch Performance Test Control Flow Graph 37

6.6 Performance Testing Lightweight Host File 38

6.7 Test A Using Native WebAssembly Control Flow 39

6.8 Test B Using Our Dispatch Pattern: Part 1 40

6.9 Test B Using Our Dispatch Pattern: Part 2 41

6.10 Native vs. Dispatch Performance Test Results Chart 42

7.1 Rasm Supported Grammar . 49

xi

7.2 Defining Racket Variable as Result of Expression 51

7.3 Defining WebAssembly Global Variable as Result of Expression 52

7.4 Example of Instantiating a Rasm Module 58

7.5 Rasm Test Case Example with Callback 60

7.6 Rasm Test Case Example . 61

xii

Chapter 1

INTRODUCTION

In this thesis I present my initial work and findings in compiling the Racket[27] pro-

gramming language to WebAssembly[6], or Wasm. I present and evaluate Rasm[37],

a Racket to WebAssembly compiler that supports a subset of the Racket language.

I also investigate what requirements and roadblocks presented themselves in our

early efforts of adding a WebAssembly backend to the currently existing Racket

backend[29], Chez Scheme compiler.

WebAssembly is now a W3C recommendation[22] and one of the four native languages

of the web[4]. This support and encouragement has driven the need to bring more

technologies into the WebAssembly ecosystem. WebAssembly is a lower level language

than the existing programming language of the web, JavaScript, and serves as a

target language to compile to. There is no other serious effort in attempting to target

WebAssembly from Racket and our contributions to this field is a minimum viable

product compiler[37] and some initial findings in adding a WebAssembly backend to

the Chez Scheme compiler that sits under Racket.

We also include an outline of our investigation into adding a WebAssembly backend

into the current Racket Chez Scheme backend, in which we acknowledge roadblocks

discovered in our research and propose solutions that will aid future efforts in adding

a WebAssembly backend to Racket.

In chapter 2, we discuss other efforts in compiling languages to WebAssembly, and

what other efforts have been made in compiling Racket specifically. We discuss early

1

efforts in compiling Racket to WebAssembly, but also more established efforts of

compiling Racket to Python and JavaScript.

In chapter 3, we will take a more in-depth look at WebAssembly. We will discuss

interesting aspects of WebAssembly and what sets it apart from more traditional

assembly languages.

Chapter 4 discusses the Racket programming language, what unique features the

language has to offer and what challenges the language presents when targeting Web-

Assembly as a compilation target.

Chapter 5 discusses the Chez Scheme Racket backend and what it looks like to compile

Racket to a new compilation target.

In chapter 6, we address our initial findings and roadblocks in adding a WebAssembly

backend to the Chez Scheme compiler. We go over how arbitrary jumping and the

function application structure in the Chez Scheme generated code do not fit well into

WebAssembly, and what mitigations we have come up with to address these concerns.

In chapter 7, we discuss the compiler we built and the details of the implementation.

We will discuss important areas of study we relied on in compiling Racket, techniques

for validating our compiler throughout development and what compromises had to

be made.

Due to the continually evolving WebAssembly environment, compiling languages to

WebAssembly changes very often and in the future work section we will share some

features and efforts that could aid in compiling other high level languages to Web-

Assembly.

2

Chapter 2

RELATED WORK

We will now discuss a project that aims to compile Racket to WebAssembly, and

identify, describe and discuss more established projects compiling Racket to Python

and JavaScript. We will then discuss some of the most mature projects compiling

other programming languages to WebAssembly.

2.1 Compiling Racket to WebAssembly

The only existing project in compiling Racket to WebAssembly is wacket[44]. How-

ever, it is not meant to be considered a functional compiler[31]. The compiler only

operates on arithmetic expressions, and the only supported operations are binary

arithmetic with 32 bit integers.

2.2 Transpiling Racket

While there has not been much effort in compiling Racket to WebAssembly, there

have been other projects that sought to compile Racket to other high level languages.

2.2.1 Pycket

The first project we will look at is Pycket[18][43]. It compiles Racket programs to

the Python programming language. The work here was highly influential to other

projects such as RacketScript and eventually Rasm.

3

Pycket is built upon the RPython[15] framework, which is a framework for implement-

ing dynamic languages in Python, and thus the generation of machine code does not

take place in the existing Racket stack, and the project relies on a separate backend

than the current Chez Scheme backend of Racket.

There are two modes in Pycket, OLD and NEW. The OLD mode translates fully

expanded Racket programs to a JSON abstract syntax tree, and then proceeds to

evaluate this AST in Python, while the NEW mode builds from Racket’s linklets.

2.2.2 RacketScript

The closest effort to our project is RacketScript[45], which compiles Racket to Java-

Script. In its existing implementation, RacketScript compiles fully expanded Racket

programs to JavaScript. However, due to the higher level nature of the JavaScript

programming language, RacketScript was able to lift higher level features of Racket

into JavaScript. Some features and structures of Racket were able to be reimple-

mented almost directly in JavaScript, while they would require extensive reworking

in a WebAssembly environment.

Examples of these structures include lists and list operations. WebAssembly has no

form of lists or arrays, so supporting this behavior requires an implementation from

scratch, while JavaScript supports lists and a plethora of other operations out of the

box. While RacketScript was able to translate nearly directly to these higher level

forms, we had to translate them over to much lower level constructs.

However, the success and community’s support of this project showed the clear desire

for bringing Racket to other environment, and specifically the web.

4

2.3 Compiling Languages to WebAssembly

There are many efforts and languages that desire to take advantage of the Web-

Assembly ecosystem, and in this section we will discuss some of the largest efforts in

compiling to WebAssembly.

2.3.1 Emscripten

Emscripten[47] is one of the most commonly used WebAssembly compilers. This

compiler is built upon the LLVM ecosystem and compiles C/C++ to WebAssembly,

and can even compile LLVM IR to WebAssembly. Support for the C/C++ standard

libraries is very good, and most portable programs can be compiled over to Web-

Assembly with minimal effort. This theoretically means that any language that can

compile to the LLVM IR can then be compiled to WebAssembly.

This compiler is used to port legacy code bases to WebAssembly. One such example

is AutoCAD, which has been compiled to WebAssembly[21], and is now available as a

web app. This application is much too computationally demanding to be built upon

JavaScript, but now, with WebAssembly, it has been ported over to the browser.

This project is built upon decades-old C/C++, has heavy computational needs, and

served as a great use case of both Emscripten and WebAssembly.

2.3.2 AssemblyScript

AssemblyScript[12] is a programming language designed to behave very similarly to

JavaScript and compile directly to WebAssembly. AssemblyScript has a custom

compiler and it relies on Binaryen[11], which is the compiler toolchain for Web-

5

Assembly that Emscripten relies on. AssemblyScript aims to operate as similarly

to Typescript[39], a typed superscript of JavaScript, while still compiling cleanly to

WebAssembly. The entire project was built with an emphasis on familiarity of existing

programming paradigms, with an emphasis on the compilation to wasm.

However, the AssemblyScript project is still missing some serious features that pro-

hibit some projects from adopting it. One example is AssemblyScript’s lack of support

for closures. The team says they are waiting for the function reference and garbage

collection WebAssembly proposals to be finished, but the lack of closure support is

one of AssemblyScript’s biggest weaknesses as JavaScript developers have come to

expect this functionality.

6

Chapter 3

WEBASSEMBLY

WebAssembly is an instruction set architecture, ISA, for a secure, stack-based vir-

tual machine. While WebAssembly was originally intended for the web, the team

recognized the importance of other embedding environments and has left the door

open for out of browser embeddings. We will now discuss the motivation surround-

ing the WebAssembly project, the language specification for WebAssembly and the

WebAssembly runtime.

3.1 Motivation for WebAssembly

WebAssembly is the latest effort in empowering developers on the web to incorpo-

rate complex client-side logic into their apps. Throughout the history of the web,

there have been many efforts with this same goal (e.g. Java Applets, Adobe Flash,

Microsoft’s ActiveX, Google’s Native Client), but for reasons we will discuss, these

projects have failed to satisfy this goal.

3.1.1 Early Efforts Toward Client Side Compute

One of the first efforts towards the goal of client side compute was Java Applets. Java

Applets were browser plug ins that, as the name suggests, were powered by Java. How-

ever, major difficulties arose for the technology as malware was rampant, which led

to questionable reliability, and these applets were memory hungry[35]. Java Applets

were relevant at a time when browsers and JavaScript were young and Java graph-

7

ical user interface, GUI, tooling sparse, so as the ecosystem attempted to mature,

JavaScript and Flash won out over Java Applets. Throughout this time JavaScript

continued to get a lot faster and optimizations for the technology continue to be

developed. Flash was the most successful effort before WebAssembly. Adobe Flash

support officially ended just recently[30]. Flash was a plug in created and owned by

Adobe that allowed multimedia content to be available in the browser. This technol-

ogy allowed many games and audio/visual streaming applications to finally come to

the web. Flash was plagued with frequent bugs, security flaws and malware uses[38]

and ultimately it was never allowed on the iPhone[32]. Other efforts include Google’s

native client[46] (NaCL) and Microsoft’s ActiveX. Native Client support ended in

2021[3] and only a subset of ActiveX features are available in a special configuration

of Microsoft’s Edge browser[2], for legacy web applications. Throughout the course

of all these projects, the JavaScript ecosystem has continued to grow and mature and

is currently the best option for front end web development.

3.1.2 JavaScript

According to the Stack Overflow developer survey, JavaScript is the most used pro-

gramming language, with 64.8% of developers using the language[5]. While JavaScript

has proven itself to be a useful programming language, it has had issues living up to

the consistent performance desires and flexibility of the developer community. Now

WebAssembly serves as an alternative. There are various performance advantages of

WebAssembly, such as smaller download sizes thanks to the bytecode format rather

than text[16], more consistent performance and lower level optimization abilities.

JavaScript is great at performing simple tasks and DOM manipulation, but for heavy

computations WebAssembly performs much better. WebAssembly is not meant to

replace JavaScript, but it allows developers to outsource any complex calculations to

8

a WebAssembly module in their JavaScript applications. There is a very well defined

and easily accessible WebAssembly API in the current JavaScript ecosystem, so de-

velopers can compile their projects to WebAssembly and easily integrate them into

their projects and the web ecosystem in general.

3.2 Language Specification of WebAssembly

In 2017, the minimum viable product for the WebAssembly API and binary format

was completed and every browser vendor had a WebAssembly runtime implemented.

WebAssembly at its core is a language specification. This language is in the form of a

bytecode, but also has a specified textual format where developers can hand code pro-

grams in an s-expression format. This language was specifically crafted around speed,

portability and security and was the fourth W3C recommended language that could

execute code in a browser[13]. The other languages are HTML, CSS and JavaScript.

There are many aspects of WebAssembly that make it very different from existing

assembly languages. Some of these aspects include WebAssembly’s stack machine

execution, strict static typing, high level control flow and structured branching.

3.2.1 Stack Machine

WebAssembly is a stack based runtime. This is a major difference between Web-

Assembly and other assembly type languages. All instructions of WebAssembly oper-

ate on or manipulate the stack. For example, a function like i32.add would pop two

values off the stack, and would expect both of the values to be of the i32 type. If the

type contract is broken, then an exception would occur when instantiating the Web-

Assembly module. The developer has very minimal control over the stack and only

has access to higher level stack operations in which values are popped from or pushed

9

onto the stack. Function calling conventions are provided by WebAssembly, and the

developer has no access to the call/return behavior of the code. While this is expected

in a stack machine environment, this is another aspect in which WebAssembly differs

from traditional assembly languages where developers have the freedom to manipulate

the calling conventions as they please.

There are no registers in WebAssembly, but rather there are global and local vari-

ables, as well as provided functions to get/set these variables. An example of a basic

WebAssembly module is shown in figure 3.1.

1 (module

2 (func $add
3 (param i32) (param i32)

4 (r e s u l t i 32)

5 l o c a l . get 0

6 l o c a l . get 1

7 i32 . add

8)

9

10 (func $ f our
11 (r e s u l t i 32)

12 i32 . const 2

13 i32 . const 2

14 c a l l $add
15)

16)

Figure 3.1: Example of WebAssembly’s Stack Machine Operations

Figure 3.1 is a simple WebAssembly module that defines two functions. The first

function, defined on line 2, is referred to as $add, and it takes in two parameters of

the i32 type and returns the result of adding them together. The second function,

defined on line 10, is referred to as $four, and it returns the result of two plus

10

two. Any function calling behavior must fit into these higher level constructs and we

have little control over the structure of the stack itself and we must rely on solely

pushing/popping values and calling functions.

3.2.2 Strict Static Typing

WebAssembly only has four data types. These types are integers and floats, with 32

and 64 bit variants of each. These are the only supported types and any more complex

data must be able to be represented in these forms. WebAssembly memory is an array

of bytes that is indexable with a 32 bit integer, because of this, we use i32 values as

pointers to objects in memory. When interacting with the host environment, any value

passed to a WebAssembly function must be of these types or converted to them, and

any returned value will of these numeric types. Our implementation of Rasm provides

helper functions to convert JavaScript values to these WebAssembly types and helper

functions to convert returned WebAssembly values to their JavaScript counterpart.

We will discuss these helper functions later in section 7.4.3. In WebAssembly every

variable needs to have a type identifier, every function needs to have types for every

parameter and a return type and every block has to have a type annotation for any

values at the top of the stack when the block begins and any final values left on the

stack. All of these types must be annotated at compile time, and if any type contract

is broken at the module’s instantiation, an exception will be thrown.

Figure 3.2 shows an example of a complete WebAssembly function with all proper

type annotations in the s-expression format of textual WebAssembly.

11

1 (module

2 (func $max

3 (param i32) (param i32)

4 (r e s u l t i 32)

5 (i f (r e s u l t i 32)

6 (i 32 . l t s

7 (l o c a l . get 0)

8 (l o c a l . get 1))

9 (then (l o c a l . get 1))

10 (e l s e (l o c a l . get 0)))

11)

12)

Figure 3.2: Example of WebAssembly’s Types and Control Flow

In this program we are comparing two parameters and returning the maximum pa-

rameter value. As you can see in this program, parameters are regarded and scoped as

local variables in a WebAssembly function, and you can dereference variables based on

their index or label. WebAssembly provides some basic arithmetic operations for each

data type and some operations have signed and unsigned variants where necessary, as

observed in our use of i32.lt_s, the signed 32 bit integer less than instruction. As

seen in the example above, WebAssembly also has specific instructions for handling

control flow.

3.2.3 High Level Control Flow

WebAssembly relies on a small set of control flow instructions that only allow for

structured control flow. The block structures of control flow are conditionals, blocks

and loops. Every block must be bracketed with an end instruction. We will discuss

the specifics of the block and loop forms in the next section. WebAssembly also has

12

a specific call and call indirect instructions for function calls. The returned values of

the call will be pushed onto the top of the stack. The call instruction takes a label to a

function to call, while the call indirect is used for calling function pointers, and relies

on an index into a predefined function table along with the function’s type to safely

call the function. Another interesting instruction is WebAssembly’s unreachable

instruction, which results in an exception if the instruction is ever reached. Due

to the fact WebAssembly has no specific trap instruction, developer can either use

unreachable to simulate trap in certain situations or use imported functions from

the host that throw an exception. In Rasm, we utilize unreachable to throw a

runtime exception in our provided standard library when a function is called with

incorrect parameter types. In total, the control flow instructions in WebAssembly

are call, call_indirect, return, if..else, block, loop, br and its variants and

unreachable, where unreachable can serve as a trap operation, but there is no

native WebAssembly support for interrupts or arbitrary branching.

3.2.4 Structured Branching

The only way to jump to specific blocks in WebAssembly is with the branch instruc-

tion, br. The WebAssembly branch instruction is very different from a traditional

branch instruction. A traditional branch is able to jump to arbitrary locations or la-

bels, but this is not the case in WebAssembly. In WebAssembly, developers can only

branch to blocks the instruction is nested under. The instruction takes as argument

either an integer of how many nested blocks to jump out of, or the label of a nesting

block that can then be popped out to.

Figure 3.3 is an example of this behavior. In this example, we label every block

with its index relative to the branch instruction at line 19. We also include the la-

bel, $LOOP, on the loop block, which can also be used to branch to the start of the

13

loop. It is important to note that we can only jump to blocks we are nested under.

For example, if we were to attempt to br $LOOP at line 4, our module would throw

an exception as we are not nested under any block with the label $LOOP at that point.

1 (module

2 (func (export ”ex ”)

3 (l o c a l i 32)

4 (l o c a l . s e t 0 (i 32 . const 1))

5 . ; ; b lock 2 r e l a t i v e to br i n s t r u c t i o n

6 (block

7 ; ; b lock 1 or $LOOP
8 (loop $LOOP
9 ; ; b lock 0

10 (i f

11 (l o c a l . get 0)

12 (then

13 ; ; decrement l o c a l v a r i a b l e

14 (l o c a l . s e t 0

15 (i 32 . sub

16 (l o c a l . get 0)

17 (i 32 . const 1)))

18 ; ; jump to beg inning o f loop

19 (br $LOOP)
20)

21 ; ; Jump to end o f b lock 2 above

22 ; ; This s e r v e s as a loop break

23 (e l s e (br 2)))

24)

25)

26)

27)

Figure 3.3: Example of WebAssembly’s Branching Constructs

14

Branching to a block/conditional jumps to the end of the block, while branching to

a loop jumps to the beginning of the loop. This allows for developers to recreate any

more complex control flow[20], in a more structured and secure way.

Some of the benefits of WebAssembly’s structured control flow are that modules’

validity are preserved, as arbitrary jumps are impossible and irreducible loops cannot

occur. An irreducible loop is a loop with multiple entry points to its body, and an

irreducible loop can be caused by arbitrary jumps or compiler optimizations. These

loops make instruction scheduling very difficult and operating under the possibility of

these loops requires some form of transformation[41]. Irreducible loops have been an

area of challenge for optimization in JIT compilers[24], and with structured control

flow, there is no way for an irreducible loop to occur in WebAssembly.

Due to WebAssembly being unable to jump to arbitrary locations or labels, this

structured control is a major difference between WebAssembly and more traditional

assembly languages, and this difference proves to be a major hurdle in compiling

languages to WebAssembly that we will discuss in more detail later.

3.3 WebAssembly Runtime

Due to the runtime nature of WebAssembly, Wasm applications are able to be dis-

tributed on any platform that supports a runtime. Every major browser vendor has

implemented a WebAssembly runtime, but also many non-browser embedding envi-

ronments exist. Throughout the development of this project, we relied on the Node.js

WebAssembly runtime, which is just one example of a non-browser WebAssembly run-

time. The expected runtime behavior is defined in the WebAssembly specification in

order to preserve the security promises of WebAssembly[6]. A WebAssembly runtime

is a secure sandbox, and any interaction with the host environment must be specif-

15

ically allowed and provided by the host. A WebAssembly module requests imports

from the host environment, and does not run with any special privileges. This allows

the developers and users to dictate how much of the system the module should have

access to. Along with this, any out of bounds memory access results in a trap. Thus,

the portability and security concerns of WebAssembly are addressed and fulfilled.

16

Chapter 4

RACKET

The Racket programming language is a modern Lisp language and a descendant of

Scheme[27]. Racket is unique for focusing on language oriented programming, and

has found its place commonly in classrooms and college curriculum[36][40].

4.1 Interesting Aspects of Racket

Racket aims to be a programming language for language oriented programming[28],

which has influenced Racket’s hygienic macro system and general extensibility. Some

extensibility features of the language include context sensitive and module level con-

trol over syntax. This allows for even the most basic aspects of the language (function

applications, variable reference, etc.) to be overridden and customized. This exten-

sibility combined with the hygienic macro system has allowed for a plethora of sister

languages to be developed. One of the greatest examples of the power of these systems

is Typed Racket, which is a statically typed sister language of Racket built utilizing

Racket’s macro system.

4.2 Stages of Racket Compilation

At the highest level, a Racket program has syntax very close to that of a Lisp/Scheme

program, with expressions nested in parenthesis to form s-expressions and the overall

program structure reflecting that of a tree. However, a Racket program can and will

then be transformed in many different formats when compiled. When compiling a

17

Racket module, the module gets translated into its fully expanded representation,

then converted into linklets, before eventually getting fed into the Chez Scheme back-

end pipeline. Figure 4.1 outlines this compilation process.

Figure 4.1: Racket Compilation Pipeline

For each phase of compilation we describe, we will show the transformation of the

simple factorial function shown in figure 4.2.

1 (module factorial racket

2 (define (factorial n)

3 (let fac ([n n])

4 (if (equal? 0 n)

5 1

6 (* n (fac (- n 1)))))))

Figure 4.2: Example Racket Factorial Module

4.2.1 Fully Expanded Racket

A fully expanded Racket program is a parsed Racket program that only contains

the top forms of the Racket programming language. A top form is the most basic

operation/structure of the language. At this form all macros uses are expanded away

and identifiers are paired with lexical information. This means that more complex

forms such as cond are resolved into its most basic forms, as in the case of cond, a

chain of if expressions. The most basic forms of the Racket programming language

capture behavior that is unique to each form and is not reproducible by combinations

18

of the other forms. Rasm compiles from fully expanded Racket programs and we

focus on building in support for each of Racket’s top forms.

The top forms of Racket that we are most interested in are module definitions, provide

statements and general expressions. There are some expressions Rasm currently does

not support, such as continuation marks, but Rasm supports the primary expressions

of the language such as; lambda, let-values, if, begin, etc. A full grammar of the

supported forms is outlined in figure 7.1.

The fully expanded transformation of figure 4.2 is shown in figure 4.3. As described

above, it is important to note what higher level structures have been transformed

into simpler forms, such as the named let, line 3 of figure 4.2, being represented by

a letrec-values defining the lambda assigned to the variable fac, on line 12 of

figure4.3.

19

1 (module factorial racket

2 (#% module-begin

3 (module configure-runtime ’#%kernel

4 (#% module-begin

5 (#% require

6 racket/runtime-config)

7 (#%app configure ’#f)))

8 (define-values

9 (factorial)

10 (lambda (n)

11 (#%app

12 (letrec-values (((fac)

13 (lambda (n)

14 (if (#%app

15 equal?

16 ’0

17 n)

18 ’1

19 (#%app

20 *

21 n

22 (#% app

23 fac

24 (#% app

25 -

26 n

27 ’1)))))))

28 fac)

29 n)))))

Figure 4.3: Fully Expanded Racket Factorial Example

4.2.2 Linklets

Linklets are the primary element of compilation and evaluation in Racket[14]. A

module is usually represented by many linklets, and the combination of linklets and

some metadata form a linklet bundle. A linklet is made up of variable definitions and

expressions, as well as export and import variable names. The linklet layer is below

the macro and syntax object layer and while the general structure of definitions in

the linklet layer is similar to that of fully expanded programs, there are some minor

20

differences between the forms. The primary advantage of compiling from linklets is

that it is a lower level than fully expanded Racket programs, there is no need for

lexical information and some front end optimizations have taken place (e.g. constant

folding).

Figure 4.4 shows the generated linklets from figure4.2. As you can see in figure4.4,

identifiers are given unique names and, in this instance, two linklets are generated,

which are then fed into the Chez Scheme Backend.

1 ;; Linklet 1

2 (linklet

3 ((. get-syntax-literal !) (. set-transformer !) (configure))

4 ()

5 (void) (configure #f) (void))

6
7 ;; Linklet 2

8 (linklet ((. get-syntax-literal !) (. set-transformer !))

9 (factorial)

10 (void)

11 (define-values (factorial)

12 (#% name

13 factorial

14 (lambda (n_1)

15 ((letrec-values

16 (((fac_2)

17 (#% name

18 fac

19 (lambda (n_3)

20 (if (equal? 0 n_3)

21 1

22 (* n_3 (fac_2 (- n_3 1))))))))

23 fac_2)

24 n_1))))

25 (void))

Figure 4.4: Linklets of Racket Factorial Example

21

4.2.3 Chez Scheme Backend

After linklets, a Racket program gets fed to the Chez Scheme backend to be compiled

to native machine code. In the next section, we will discuss the internals of this

backend and our initial findings in attempting to add a WebAssembly backend to the

Chez Scheme compiler.

22

Chapter 5

COMPILING RACKET

The standard Racket toolchain is now running on top of a Chez Scheme backend that

generates native, non-portable machine code. Throughout the course of this project,

we spent much of our time attempting to develop a WebAssembly backend for this

existing Chez Scheme backend of Racket. We will now reflect on the initial motivation

of adopting this backend, what adding a new backend to this compiler entails and

where in the compilation process WebAssembly may be the best fit.

5.1 From C to Chez Scheme

Racket began adopting the use of a Chez Scheme backend in 2017[29]. Chez Scheme

is a superset of the Scheme programming language[25] as described in R6RS[42]. The

team sought to transition over to Chez Scheme as they considered maintenance of

a Scheme codebase to be better than maintaining a very large C codebase of over

200K lines of code[29]. Due to the fact that Chez Scheme supports all of Racket in a

simpler form, and that the foundation of building the compiler had already been laid,

we sought to incorporate our own backend to compile Chez Scheme to WebAssembly.

This process revealed to us some difficulties that lie in adapting existing compiler

architectures and patterns to WebAssembly, and we have developed a few possible

solutions to address each concern.

23

5.2 Porting Chez Scheme to a New Platform

When porting Chez Scheme to a new platform, the two primary needs are compiling

the C runtime to the platform, and generating machine code for the platform from

the compiler.

In the case of WebAssembly, tools like Emscripten[47] are well developed, widely

used and reliable at compiling C. So the compilation of the runtime to WebAssembly

would not be a major concern. The majority of the difficulty arises when attempting

to generate WebAssembly binaries from the Chez Scheme compiler.

The code generation process relies on a machine type that represents the hardware

capabilities of the machine the user is compiling to. This machine type represents

basic information like name, thread capabilities, hardware platform (x86, x86 64,

AArch32, etc) and the host operating system. Due to the nature of WebAssembly

running in a virtual machine, not all of these aspects are initially of interest, but

could serve as differentiators between the various WebAssembly runtimes.

The WebAssembly code generation itself would be handled by a custom backend,

which is a single scheme file that is responsible for defining WebAssembly specific

aspects of the compilation process. In this file we would need to create three modules

that define the language’s registers (which are none for WebAssembly), primitive

operations and the assembler.

5.3 Nanopass Architecture

The Chez Scheme compiler is built upon a nanopass architecture[33]. The nanopass

architecture is a compiler framework developed by Kent Dybvig, and utilizes many

24

small passes and intermediate languages to process and compile languages. A pass

is supposed to be a simple and atomic-like action (generating unique variable names,

converting closures, etc) and converts one intermediate language to another. At the

end of the process, after all passes have been run, the result is a final language that

is expected by the Chez Scheme compiler, which then gets translated nearly directly

to machine code.

5.3.1 Final Language

The final language generated by the Chez Scheme compiler, before being compiled

into the machine specific binary, is much more like a traditional assembly language

than a higher level bytecode like WebAssembly. This language is referred to as L16 in

the backend and some of the forms of the language include jump, reg and mref. The

structure of the code is in basic blocks with arbitrary jumps between the blocks for

control flow and function calls. The combination of blocks and jumps proves to be a

challenge to transition to WebAssembly, as WebAssembly has no way to arbitrarily

jump between non-nested blocks. We will address these concerns in chapter 6, but

with all of this considered, the final generated language may not be the best fit to

translate to WebAssembly.

Figure 5.1 shows truncated segments of the final language generated by the Chez

Scheme backend for the example shown in figure 4.2. This final language would then

be translated into a machine specific, native, binary.

25

1 . . .

2

3 f a c :

4 dc l . 1 5 :

5 0 : mov %r8 , %ac0

6 3 : cmpi (imm 0) , %ac0

7 7 : bne l f . 1 9 (11)

8

9 . . .

10

11 134 : mov %rcx , %ac0

12 137 : jmp (d i sp 0 %s fp)

13 L f a i l . 1 4 :

14 141 : mov %ac0 , %r8

15 144 : movi (imm 4294967295) , %t s

16 154 : jmp %ts

17 156 : r e l o c a t i o n : (x86 64−jump 65

18 (l i b r a ry−code #(l i b s p e c ∗ 34842)))

19 L f a i l . 1 6 :

20 156 : mov %ac0 , %r8

21 159 : movi (imm 8) , %rd i

22 166 : mov %ac0 , (d i sp 8 %s fp)

23 170 : addi (imm 16) , %s fp

24

25 . . .

Figure 5.1: Final Language of Racket Factorial Example

5.3.2 Intermediate Language

The final language of the Chez Scheme nanopass architecture would not be the

most efficient language to translate to WebAssembly. The differences between Web-

Assembly and more traditional assembly languages are too great for a direct trans-

26

lation, but in our research we found an intermediate language that would translate

well to WebAssembly.

We hypothesized that the L7 intermediate language would be a suitable language to

compile to WebAssembly because at this stage initial optimizations have taken place,

anonymous lambdas have been assigned names and closures have been converted.

To add a new backend to the Chez Scheme compiler, we’d have to break out of the

nanopass pipeline at this stage and feed this representation to our custom backend

where we could then compile the L7 language to WebAssembly. Branching out of

the nanopass architecture is not the best case scenario, but it was a possibility we

observed after concluding subsequent passes would create more distance between the

generated language and WebAssembly.

Figure 5.2 shows the factorial example of figure 4.2 translated into the L7 interme-

diate language of the Chez Scheme backend. We only represent a truncated sample

of the generated language, specifically the definition of the factorial function itself.

It is important to note that at this time, lambdas have been converted to top level

case-lambdas, all identifiers have unique names, front end optimizations have taken

place and the code snippet in figure 5.2 would be nested inside of a (labels ...)

expression.

27

1 . . .

2 (#{ f a c t o r i a l dfk1dfudxm0lm8mzhkb9sqbi6−0}
3 (case−lambda

4 [c l au s e

5 (#{n dfk1dfudxm0lm8mzhkb9sqbi6−1})
6 #f

7 1

8 (c a l l

9 #{dc l dfk1dfudxm0lm8mzhkb9sqbi6−2}
10 #f

11 #{n dfk1dfudxm0lm8mzhkb9sqbi6 −1})]))
12 (#{ f a c dfk1dfudxm0lm8mzhkb9sqbi6−3}
13 (case−lambda

14 [c l au s e

15 (#{n dfk1dfudxm0lm8mzhkb9sqbi6−4})
16 #f

17 1

18 (i f (c a l l

19 #f

20 #[#{pr imre f a0x l t l r cpeygsahopkp lcn −2}
21 equal ? 591610 (2)]

22 ’0

23 #{n dfk1dfudxm0lm8mzhkb9sqbi6−4})
24 ’1

25 ; ; e l s e case

26 . . .)]))

27 . . .

Figure 5.2: L7 Intermediate Language of Racket Factorial Example

We did not investigate this path further, but we still believe this intermediate lan-

guage would serve well as a transition point to generate WebAssembly due to similar

language constructs.

28

Chapter 6

CONCERNS WHEN COMPILING CHEZ SCHEME TO WEBASSEMBLY

In our research we identified three concerns that prohibited our efforts in adding a

WebAssembly backend to the Chez Scheme compiler. These concerns include the

existing expectations of the compiler, reliance on arbitrary jumps and unique calling

conventions of the generated code.

6.1 Existing Expectations

When investigating the Chez Scheme compiler, many small expectations made it

difficult to approach and implement WebAssembly.

One expectation of the compiler is targeting a register based machine. This does not

translate well to WebAssembly as WebAssembly is a stack machine and has no regis-

ters. Mitigating this concern would either require adjusting this expectation or using

global/local variables to simulate registers in WebAssembly. An additional concern

was the structure in which code is generated in the final stages of the compiler. The

compiler currently builds the binary from the bottom up, but in WebAssembly in-

structions can be bracketed in between guards, which would require some adjustment

from the expected behavior.

As explained in the nanopass framework section, if we are to rely on the fully processed

code, then we would need to determine the best way to handle some forms instilled

by the process, such as register assignments. However, in the end there were other

29

concerns that restricted our efforts. These include basic block structure with arbitrary

jumps between them and the unique calling conventions of the generated scheme code.

6.2 Arbitrary Jumps

Traditional assembly languages rely on being able to jump to locations and labels at

their discretion. However, as we have discussed, this is not possible in WebAssembly.

Therefore, if we are taking a collection of basic blocks and jumps as input we must

determine a structure to replicate the expected behavior. One such structure that

is common and needed is what we describe as the dispatch pattern. The dispatch

pattern is nesting each basic block in one another and surrounding the entire structure

in a loop. For each iteration of the loop we can use a flag to determine which basic

block to branch to and then at the end of each block we branch back to the beginning

of the loop to repeat the process until a final return.

6.2.1 The Relooper Algorithm

In our exploration of translating complex control flows to the structured control flow

WebAssembly requires, it became clear to us that any efforts currently compiling

to WebAssembly would be forced to take an approach similar to what we described

above. Just as we suspected this had been the case. Specifically, Emscripten[47] had

developed what they call the Relooper algorithm that seems to operate very simi-

larly to our approach. Alon Zakai outlined this algorithm in his original Emscripten

paper[47] as well as specifically in a subsequent blog post[48]. The original context

of the algorithm was to compile C/C++ code into performant JavaScript code, so

this required utilizing JavaScript’s conditional and loop constructs to stay adequately

30

fast. The Relooper algorithm has since been adapted to target WebAssembly’s control

flow.

The Relooper algorithm[47][48][9] works by converting a control flow graph into a

‘loop with a switch statement’. However the original implementation as described

in the Emscripten paper[47] is much more elaborate. The algorithm is based on

classifying the blocks of a given control flow graph as either a simple block, loop

block or multiple block. A simple block is a block with an in edge and an out edge.

A loop block represents a loop’s control flow with two sub-blocks; an inner block and

an out edge to another block. The inner block captures the looping behavior and

when execution reaches the end of the block it will return to the beginning. Finally, a

multiple block represents any control flow that branches off into multiple blocks before

eventually rejoining. The Relooper algorithm then results in blocks arranged under

JavaScript’s expected high level control flow, rather than a collection of jumps/gotos.

This algorithm translates very well into the realm of WebAssembly, as we are in-

terested in reducing a complex control flow graph into a simple, structured control

flow. Every high level control flow operation that the algorithm initially targeted for

JavaScript is either directly supported in WebAssembly or it can be supported with

the native instructions.

6.2.2 Our Relooper Algorithm

We will now describe an algorithm we developed during our research and is similar to

the Relooper algorithm, but we are not confident it accurately represents the Relooper

algorithm’s behavior. As to avoid confusion with the official Relooper algorithm, we

will refer to our implementation as the dispatch algorithm.

31

In figure 6.1 and figure 6.2 we show how to translate an arbitrary control flow to

the dispatch pattern. In the WebAssembly code of figure 6.2, the innermost block is

where the branch to the next execution block will take place. A jump to a block will

take execution to the end of the block, and thus the actual code to be executed for

each block is found below the end of each nested block. We have thus commented

each block number in the section of where this code would be placed and we also

comment what possible values for the $next_block local variable could be.

We must rely on a pattern similar to the dispatch algorithm for arbitrary control flow,

but for recognizable control flow patterns, WebAssembly offers native solutions. In

figure 6.3 and figure 6.4 we show how both conditionals and loops would be supported

in native WebAssembly instructions and with the dispatch pattern respectively.

Figure 6.1: Arbitrary Control Flow Example

32

1 (loop $EXEC LOOP

2 (block

3 (block

4 (b lock

5 (b lock

6 (b lock

7 ; ; Dispatch to Next Block Here

8 ; ; With the b r t ab l e command we can

9 ; ; Jump to whichever b lock we need to next

10 l o c a l . get $next b lock

11 b r t ab l e 0 1 2 3

12)

13 ; ; Block 1

14 ; ; Set next block on cond i t i on

15 ; ; Can be block 2 or 3

16 l o c a l . s e t $next b lock

17 br $EXEC LOOP

18)

19 ; ; Block 2

20 ; ; Set next block on cond i t i on (2 or 3)

21 l o c a l . s e t $next b lock

22 br $EXEC LOOP

23)

24 ; ; Block 3

25 l o c a l . s e t $next b lock ; ; Has to be Block 1

26 br $EXEC LOOP

27)

28 ; ; Block 4

29 l o c a l . s e t $next b lock ; ; Has to be Block 3

30 br $EXEC LOOP

31)

32)

Figure 6.2: WebAssembly Code for Arbitrary Control Flow

33

Listing 6.1: Native WebAssembly
Conditional

(i f

; ; Block 1

(then

; ; Block 2

)

(e l s e

; ; Block 3

)

)

; ; Block 4

Listing 6.2: Dispatch Pattern Con-
ditional

(loop $EXEC LOOP

(block

(block

(block

(block

br $Next Block

)

; ; Block 1

; ; I n i t i a l Branch

br $EXEC LOOP

)

; ; Block 2

br $EXEC LOOP

)

; ; Block 3

br $EXEC LOOP

)

; ; Block 4

)

Figure 6.3: Translating Conditional Control Flow to WebAssembly

34

Listing 6.3: Native WebAssembly
Loop

(b lock

(loop

; ; Block 1

; ; Break on cond i t i on

b r i f 1

; ; Block 2

)

)

; ; Block 3

Listing 6.4: Dispatch Pattern Loop

(loop $EXEC LOOP

(block

(block

(block

br $next b lock

)

; ; Block 1

; ; I n i t i a l Branch

br 2

)

; ; Block 2

br 1

)

; ; Block 3

)

Figure 6.4: Translating Looping Control Flow to WebAssembly

35

An initial look makes one think there may be a hit to performance in using this

pattern, so we ran a few tests to determine if there was, and how much of a slowdown

developers can expect. We will now outline a small example with some performance

measurements measured with JavaScript’s native timing commands.

We measured the performance of a simple loop program in WebAssembly. For each

iteration of the loop we decrement a counter. If the counter is odd we subtract 3, and

if the counter is even we only subtract one. We implemented the program with native

constructs as well as with the dispatch pattern described above. We included some

simple calls to JavaScript from within the WebAssembly code to both demonstrate

importing host functionality, and to include some more complicated operations than

WebAssembly arithmetic instructions. These imports get passed to the WebAssembly

module as the second argument of the WebAssembly.instantiate command found

on line 12 of listing 6.6.

We ran the programs with a lightweight node.js host file to measure the execution

time of each WebAssembly program. While these measurements may not give us

the most accurate execution times, we are interested in their relative performance to

each other. For each input, we ran the exported WebAssembly function 10 times and

averaged the execution times.

Figure 6.5 shows the general control flow graph of the program we are comparing the

performance of.

Figure 6.6 is the host file we ran our measurements with, while figure 6.7 is the

program using native WebAssembly control flow instructions and figure 6.8/6.9 is the

same program utilizing our dispatch pattern.

36

Figure 6.5: Native vs. Dispatch Performance Test Control Flow Graph

37

1 const f s = r equ i r e (” f s ”) ;

2 const f i l enames = [” nat ive .wasm” , ” d i spatch .wasm”] ;

3 const count e r va lue s = [

4 10 000 000 , 20 000 000 , 40 000 000 , 60 000 000 ,

5 80 000 000 , 100 000 000 , 200 000 000 ,

6] ;

7 f i l enames . forEach ((fn) => {
8 const bytes = f s . readFi l eSync (fn) ;

9 WebAssembly . i n s t a n t i a t e (bytes , {
10 env : {
11 log : (i) => {} ,
12 subOne : (i) => i − 1 ,

13 subThree : (i) => i − 3 ,

14 } ,
15 }) . then ((obj) => {
16 count e r va lue s . forEach ((i) => {
17 l e t run t imes = [] ;

18 f o r (run = 0 ; run < 10 ; run++) {
19 const s t a r t = Date . now () ;

20 obj . i n s t anc e . export s . t e s t (i) ;

21 const stop = Date . now () ;

22 run t imes . push (stop − s t a r t) ;

23 }
24 const avg time = (

25 run t imes . reduce ((a , b) => a + b , 0)

26 / run t imes . l ength

27) . toFixed (3) ;

28 conso l e . l og (

29 ‘ ${ fn } (i = ${ i }) avg time : ${ avg time} ms

30 [${ i } , ${ avg time }] ‘
31) ;

32 }) ;
33 }) ;
34 }) ;

Figure 6.6: Performance Testing Lightweight Host File

38

1 (module

2 (import ”env” ” log ”

3 (func $ l og (param i32)))

4 (import ”env” ”subOne”

5 (func $subOne (param i32) (r e s u l t i 32)))

6 (import ”env” ”subThree”

7 (func $subThree (param i32) (r e s u l t i 32)))

8

9 (func $ t e s t (export ” t e s t ”) (param $ i i 32)

10 (b lock $BREAK
11 (loop $LOOP
12 (c a l l $ l og (l o c a l . get $ i))
13 (i 32 . eqz

14 (i 32 . g t s (l o c a l . get $ i) (i 32 . const 0)))

15 b r i f $BREAK
16 (i f

17 (i 32 . and (l o c a l . get $ i) (i 32 . const 1))

18 ; ; odd subt rac t 3

19 (then

20 (l o c a l . s e t $ i
21 (c a l l $subThree (l o c a l . get $ i))))
22 ; ; even subt rac t 1

23 (e l s e

24 (l o c a l . s e t $ i
25 (c a l l $subOne (l o c a l . get $ i)))))
26 br $LOOP
27)

28)

29)

30)

Figure 6.7: Test A Using Native WebAssembly Control Flow

39

1 (module

2 (import ”env” ” log ”

3 (func $ l og (param i32)))

4 (import ”env” ”subOne”

5 (func $subOne (param i32) (r e s u l t i 32)))

6 (import ”env” ”subThree”

7 (func $subThree (param i32) (r e s u l t i 32)))

8

9 (func $ t e s t (export ” t e s t ”) (param $ i i 32)

10 (l o c a l $next b lock i32)

11 (l o c a l . s e t $next b lock (i 32 . const 0))

12

13 (block $BREAK
14 (loop $EXEC LOOP

15 (block

16 (block

17 (block

18 (block

19 (block

20 (l o c a l . get $next b lock)

21 b r t ab l e 0 ; ; 0 −> Loop Test

22 1 ; ; 1 −> Condi t iona l Test

23 2 ; ; 2 −> True

24 3 ; ; 3 −> False

25 6 ; ; 4 −> Break

26)

27 (; Loop Test Block ;)

28 (c a l l $ l og (l o c a l . get $ i))

Figure 6.8: Test B Using Our Dispatch Pattern: Part 1

40

29 (l o c a l . s e t $next b lock

30 (i f (r e s u l t i 32)

31 (i 32 . g t s (l o c a l . get $ i) (i 32 . const 0))

32 (then (i 32 . const 1))

33 (e l s e (i 32 . const 4))))

34 br $EXEC LOOP

35)

36 (; Condi t iona l Test Block ;)

37 (l o c a l . s e t $next b lock

38 (i f (r e s u l t i 32)

39 (i 32 . and (l o c a l . get $ i) (i 32 . const 1))

40 (then (i 32 . const 2))

41 (e l s e (i 32 . const 3))))

42 br $EXEC LOOP

43)

44 (; Odd Block − Subtract 3 ;)

45 (l o c a l . s e t $ i
46 (c a l l $subThree (l o c a l . get $ i)))
47 (l o c a l . s e t $next b lock (i 32 . const 0))

48 br $EXEC LOOP

49)

50 (; Even Block − Subtract 1 ;)

51 (l o c a l . s e t $ i
52 (c a l l $subOne (l o c a l . get $ i)))
53 (l o c a l . s e t $next b lock (i 32 . const 0))

54 br $EXEC LOOP

55)

56)

57)

58)

59)

Figure 6.9: Test B Using Our Dispatch Pattern: Part 2

41

Table 6.1 and figure 6.10 show the results of our performance testing, with the aver-

age time over ten runs for each input value for both the native instructions and the

dispatch pattern. All execution time results were measured in milliseconds.

Table 6.1: Native vs. Dispatch Performance Test Results Table

Input Size 10M 20M 40M 60M 80M 100M 200M 400M
Native (ms) 105.9 212.3 419.2 627 834.9 1048.8 2135 4271.5
Dispatch (ms) 112 235.9 472.8 714.2 965.9 1213.5 2417.9 4750.1

Figure 6.10: Native vs. Dispatch Performance Test Results Chart

Based on this simple test, there was a clear performance advantage to relying on the

native instructions, rather than using the generic branching dispatch pattern. Our

calculations presented in table 6.1 show, on average, the dispatch pattern program

took 12.4% more time than the native instruction program to complete.

42

Another drawback of the dispatch pattern is hurting the readability of the textual

WebAssembly, in which hand tuned WebAssembly has a clear advantage over auto-

matically generated wasm.

An alternate approach to handling arbitrary control flow, would be to perform suffi-

cient static analysis of the control flow, in order to pick up on some higher level control

flow structures. We would be able to optimize for conditionals and simple loops, but

some of the more undefined control flow behavior we would have to rely on the pattern

described above. Luckily, Chez Scheme does not have any form of jumps/gotos, so if

we are able to integrate at the level before the jumps get injected, we could utilize

natively supported WebAssembly control flow structures such as conditionals, blocks

and loops.

6.3 Calling Conventions

In order to support the continuation operations of Racket, the code generated by the

Chez Scheme compiler does not use a traditional stack but rather a separate, heap-

allocated, linked list of stack segments[10]. This means that the generated code has

no form of call or return, but rather relies on jumps. Handling a function call includes

jumping to the function body and then placing the return value in an expected place

and jumping back to the caller’s location. This pattern does not mesh well into the

WebAssembly model, as the WebAssembly ISA has no arbitrary jump instruction,

and there is no way to make a call without pushing something onto the stack.

One possible remedy is that if we have access to all the source code at compile time,

we can treat all functions as a single large function containing all the basic blocks, and

the jumps between caller/callee can be handled with the dispatch pattern described

43

above. We could simulate register behavior with WebAssembly local/global variable

constructs and use variables as pseudo-registers.

Another approach could be to implement a trampolining system[17]. In a trampo-

line, functions return all necessary information to call subsequent functions, and the

code gets executed in a continuous loop with each iteration applying the function

information returned by the previous iteration. This can be implemented by relying

on a memory based continuation or function pointers, and trampolining would allow

us to call functions and recur without overloading the WebAssembly call stack. A

proper trampolining implementation would also help us avoid having to rely on tail

call optimizations[23], and could be implemented on top of our current system due

to how we implement all closures as objects in memory already, with all necessary

calling information.

6.4 Settling on Fully Expanded Programs

In the end, we did not have suitable time to add a WebAssembly backend to Chez

Scheme, but we believe our experience and advice is greatly beneficial for any efforts

moving forward, not only for Chez but for all languages seeking to compile to Web-

Assembly. We acknowledge that the current structure of the Chez Scheme compiler,

reliance on arbitrary jumps and the generated calling conventions all prohibit Web-

Assembly from being efficiently ported into the compiler. With further development

efforts and some of the patterns presented above, we believe WebAssembly could

someday serve as a good compilation target for Chez Scheme, and thus Racket.

Due to time constraints and the complexity of compiling Racket to WebAssembly, we

decided to write our own custom compiler to compile fully expanded racket programs

to WebAssembly. We resolved to compile from this stage due to the Chez Scheme

44

concerns outlined above, lack of familiarity of Racket’s linklet forms and general

usability of fully expanded Racket.

45

Chapter 7

IMPLEMENTATION

We present our proof of concept Racket to WebAssembly compiler. We rely on fully

expanded racket modules that we then compile to the WebAssembly textual represen-

tation. We also developed and provide a custom JavaScript host file that instantiates

the generated WebAssembly module and wraps the exported functions for easy use

in any context.

The full source code of our project can be found at our publicly hosted GitHub

repository[37].

7.1 General Architecture

The general structure of our compiler is as follows. Our compiler takes a file path as

a command line argument and loads in the file’s contents. We then rely on Racket’s

built in expansion procedure to expand the Racket program to its topmost forms.

The provided racket file either needs to have a top level module, a #lang racket

declaration or both. We then handle parsing the other top level forms from the syntax

object and generate an initial AST to feed into our compiler passes. We handle the

processing of the AST in a few passes, before we transform the intermediate form into

our final expected representation. The passes will be explained more in the following

section, but some general passes are generating unique identifiers and discovering

environmental bindings. After all the passes have resulted in a final form of the

program, we proceed to generating the textual WebAssembly. We rely on the s-

expression format of WebAssembly and map each of our expected structures to their

46

corresponding WebAssembly operations. We have also defined a very small standard

library of some basic Racket operations, reimplemented in WebAssembly.

7.1.1 Command Line Interface

Our compiler is in the form of a command line application that takes as input the

path of the Racket program to compile. We have provided a flag to enable dev mode,

which will also save the intermediate representations of the program in files under a

relative dev directory.

7.1.2 Expansion

We expand the provided file contents with the default Racket syntax reader. This

results in a syntax object that represents the program expanded to all of the top-

forms. The expanded program is a representation of the Racket program in the

simplest structures of the language.

A fully expanded racket program allows us to only need to compile the most basic

forms of Racket rather than having to parse every operation that is a combination of

the most basic. Most of the processing in the expansion phase is generating our first

intermediate form from the provided syntax object, as well as resolving any bound

identifiers in this phase, if a binding is known. We also process some initial data

types at this time. We resolve any constant data types by wrapping the values in an

identifying structure, such as Int or Float. We rely on code from the RacketScript

project[45] for parsing of the provide statements. Once we have fully converted the

expanded racket program to our expected format we pass the AST onto our nanopass

framework.

47

7.1.3 Supported Top Forms

At this time, we only support a subset of the top level forms. The most impactful

forms we do not support are any submodule, or module expanding forms. We also

do not support any syntax operations or continuation marks. Figure 7.1 defines the

grammar of the subset of Racket Rasm supports.

The module form found nested in the module-body-form is for handling #lang decla-

rations as modules defined under a #lang declaration are wrapped in another module

when expanded, and we sought to support this behavior. Racket developers frequently

rely upon the #lang declaration as well as simultaneously a (module ...) definition,

so as to improve usability, if a language declaration and a module definition is used,

we lift all of the submodule definitions into a top level module. This is the only form

of submodule we support, and we only support this behavior in this single instance.

7.1.4 Compiler Passes

Our compiler relies on a series of passes, inspired by the nanopass framework. We only

use one intermediate language, but a series of passes manipulate the language before

the final representation is generated. We first perform some basic static analysis to

verify that no top level definitions overshadow each other, as this is not allowed in

WebAssembly. Our compiler then performs the following passes: generating unique

identifiers, lift lambdas, generate initialization function, closure conversion and type

discovery.

48

top−level−form : := (module id module−path

(#%plain−module−begin

module−body−form . . .))

module−body−form : := module−top−level−form

| (#%prov ide raw−provide−spec . . .)

| (module id module−path

(#%plain−module−begin

expr . . .))

module−top−level−form : := expr

| (de f ine−va lues (id . . .) expr)

expr : := id

| (#%plain−lambda formal s expr . . . +)

| (case−lambda (formal s expr . . . +) . . .)

| (i f expr expr expr)

| (begin expr . . . +)

| (begin0 expr expr . . .)

| (l e t−va lue s ([(id . . .) expr] . . .)

expr . . . +)

| (l e t r e c−va lue s ([(id . . .) expr] . . .)

expr . . . +)

| (s e t ! id expr)

| (quote datum)

| (#%plain−app expr . . . +)

| (#%top . id)

| (#%var i ab l e− r e f e r en c e id)

| (#%var i ab l e− r e f e r en c e (#%top . id))

fo rmal s : := (id . . .)

| (id . . .+ . id)

| id

Figure 7.1: Rasm Supported Grammar

49

7.1.4.1 Generating unique identifiers

We rely on the first pass of the compiler to generate unique identifiers for each variable

in the original Racket program. When we encounter a let form the bound variables

overwrite any currently bound variable definitions. We capture this behavior by

generating unique identifiers for newly bound variables and replacing any occurrence

of the former identifier with the unique name. This allows us to not have to worry

about scoping rules at later stages of the compilation and the eventual WebAssembly

generation. WebAssembly has instructions for local variables so we can rely on this

with each of our unique id’s and the scoping will be handled automatically.

7.1.4.2 Lift lambdas

In this pass we want to recognize any lambda forms and raise them to top level func-

tions, while also collecting any environmental needs of the function. WebAssembly

has no recognition of anonymous functions, so we rely on generating a unique name

for the lambdas and replacing the lambda with the identifier. We then proceed to

determine which identifiers to expect to be provided in the environment. Since every

identifier is unique, we simply step through the module and capture every identi-

fier we have inherited a declaration for thus far. Since when we lift lambdas to top

level functions we recognize and attach a list of all defined identifiers in the environ-

ment, closure conversion is simply reorganizing the lambda to closer to the expected

WebAssembly form.

50

7.1.4.3 Generate Initialization Function

In WebAssembly any global variable must be declared with a constant value. Due

to this, we need to define an initialization function that is called at the instantiation

of the WebAssembly module. This function will then be responsible for initializing

global variables with their correct value. In this pass, we gather every top level

variable declaration and create the initialization function and combine each variable’s

initialization expression as the body.

WebAssembly requires that the start function to be called takes no parameters and

returns no values. The provided function is then automatically invoked after the

module’s ‘tables and memories have been initialized’[7], and thus before the values

for the global variables are needed.

A simple example would be the declaration of x in the Racket code in figure 7.2.

1 (d e f i n e x (+ 1 2))

Figure 7.2: Defining Racket Variable as Result of Expression

This is a contrived example and x could be set to 3 statically with constant folding,

but if we were to rely on a direct compilation of the expression we would have to use

the WebAssembly code shown in figure 7.3.

51

1 (module

2 (g l oba l $x (mut i32) (i 32 . const 0))

3

4 (func $ i n i t
5 (g l oba l . s e t $x
6 (i 32 . add (i 32 . const 1) (i 32 . const 2))))

7

8 (s t a r t $ i n i t)
9)

Figure 7.3: Defining WebAssembly Global Variable as Result of Expression

7.1.4.4 Closure Conversion

The result of this pass is our final representation of the program and every function is

represented as a closure with bound environment expectations/identifiers. We process

each form of our current representation and for each application we determine if we

are applying a function or the result of an expression. We call all functions indirectly,

but we wrap applications of expressions with an internal application function that will

retrieve the needed data from the applied closure. In this pass we also lift any locals of

a function. This means that we identify any local variables a function has and declare

them at the beginning of the function, as this is a requirement in WebAssembly. After

this pass, every function is represented as a closure and has a name, list of parameters,

list of expected environment parameters, list of local variables and a list of expressions

as the body of the closure.

7.1.4.5 Discover types

Our final pass is used to discover as many types for identifiers as possible. Most

types are unknowable statically, but the primary type we care about is if an identifier

52

is initialized to a lambda we lifted. If this is the case we state the identifier’s type

as the lambda’s name. We rely on this functionality because when we compile to

WebAssembly, if we attempt to apply a lambda that we have lifted, we must retrieve

the lambda’s index in the function table to correctly call said lambda.

7.2 Code Generation

Once all the passes have been completed, the final representation of the program gets

converted to WebAssembly. Very little computation takes place at this stage, and

most of the work is in representing objects and applying closures. Outside of these

two contexts, we simply register memory for our WebAssembly program, initialize

the function table and translate each of the expressions to their WebAssembly coun-

terpart. The function table is an indexable table of function pointers that is used

to call closures and unknown functions. In this stage, we also append our standard

library to the WebAssembly module.

7.2.1 Representing Values

Everything in the WebAssembly code we generate is a pointer, including integers

and floats. We can represent pointers in WebAssembly as 32 bit integers, as the full

memory address space is addressable in this size. When we encounter an integer or

float, we allocate space for the value, store the value and return the pointer to the

value. We do not support any version of garbage collection, so Rasm programs must

be able to stay within the WebAssembly memory bounds. We allocate a maximum of

16MB of memory for a Rasm module, but in some runtimes WebAssembly can have

access to up to 4GB of memory. We will discuss garbage collection in WebAssembly

in more detail in the future work section, section 8.2.

53

7.2.1.1 Type Tags

We rely on a type tag system in order to identify what types each object is at runtime.

We use the first byte pointed to by a pointer to represent what type an allocated object

is at runtime. We have tags for integers, floats, pairs and functions, which are the

only data types we support. More complicated data types can be represented as a

combination of these. For example, a list is simply a chain of pairs.

Table 7.1 describes each data type we generate and the corresponding runtime data

stored for each type.

Table 7.1: Type Tag Definitions

Data Type Byte 1 Bytes 2-5 Bytes 6-9
Integer 0 64 Bit Integer Value
Float 1 64 Bit Float Value

Function 2 Function Table Index Pointer to Environment Array
Pair 3 Pointer to First Value Pointer to Second Value

For integers and floats, we know the first byte is the type id, and the next 8 bytes

is the 64 bit value itself. Functions have the first byte the same as the others, and

the next 4 bytes is the address of the function in the function table, and the next 4

bytes are a pointer to a flat array of pointers to the environment variables. We can

represent the environment variables as a simple array and index into it, because we

know the environmental needs of closures at compile time, and can index in to the

array depending on the index of the parameter. For pairs, the first byte is the tag

and the next 4 bytes is the pointer to the first element and the next 4 bytes is the

pointer to the second element. We use a pointer to address 0 to represent null, and

all arrays are zero terminated.

54

7.2.2 Applying Closures

As stated above, we represent closures as objects in memory, so the primary effort

in applying closures is retrieving the function table index, determining the signature

of the function and retrieving the closure’s environment. To make it so we did not

need to determine every function’s signature at compile time, we have every function

take two parameters. The first is a pointer to the flat array of parameters and the

second to the captured environment. Since we know the parameter and environment

needs at compile time, we can create the array of values at runtime and index into

the statically known index to retrieve the runtime value. However, since we do rely

on WebAssembly’s local variables we need to initialize all the local variables with the

parameter values before we execute the function. With all of this together, we can

use WebAssembly’s call_indirect instruction to call our closure. The arguments

to this instruction are the type of the function we are applying, the function table

index of the function and the parameters needed by the function.

7.2.3 Standard Library

We have reimplemented some basic functions from the Racket standard library. It is

not a complete effort. However, reimplementing the standard library is not pivotal

to prove the validity of our approach. Any IO operations will have to be provided

by the host environment, and in WebAssembly we could either call them directly or

the standard library could wrap them. Currently, we import IO from our JavaScript

host environment for debug logging.

55

7.3 JavaScript Host

Along with our compiler, we provide a JavaScript host file that instantiates the Web-

Assembly module and wraps the module’s exports. All exports, including constant

values, are wrapped by JavaScript functions for retrieval and use. We wrap all Web-

Assembly exports, so the exports can be handled as the developer would expect in

a JavaScript setting while also providing enough flexibility. In particular we offer

four variations of every export. These variations are; jsTojs, jsTowasm, wasmTojs

and wasmTowasm. Every variation represents the function’s parameter types and re-

turn type. This means a jsTojs function will take JavaScript values as parameters

and return a JavaScript value as a result. Following, a wasmTojs function will take

WebAssembly values as parameters and return a JavaScript value as a result. Each

export is accessible under the property name the user wants to use. For example, if

there is an exported function add and the user wants to use the jsTowasm variant,

they would access it with wasm_module.rasm.jsTowasm.add(...).

A wrapper is necessary as we represent all WebAssembly values as pointers into

memory, and we will discuss converting between WebAssembly pointer and JavaScript

values in section 7.4.3. For any exported function that we can statically calculate

its number of parameters, we initialize the function object’s length property as the

number of arguments to the function, as would be expected in a normal WebAssembly

exported function.

7.4 Using Rasm

With the generated WebAssembly and the provided host file, a user can easily get

started with WebAssembly. All that is necessary for a developer to get started with

56

Rasm is using wat2wasm to convert the generated WebAssembly text to a binary,

passing the binary data into the provided rasm.instantiate function and then uti-

lizing the WebAssembly module however they please, with helper functions provided

to translate between WebAssembly and JavaScript values.

7.4.1 wat2wasm

Our compiler generates a textual form of WebAssembly. The translation of the textual

form to binary is one to one as each instruction is represented by a byte, rather than

a string of characters. To ease development, we rely on a third party tool called

wat2wasm from the wabt toolkit. This is a well established community toolkit and

very commonly used in the WebAssembly community. The wat2wasm tool is used to

generate a WebAssembly binary from a WebAssembly text file. The generated binary

can then be loaded into the JavaScript native instantiate function.

7.4.2 Instantiating a Module

In a JavaScript project using Rasm, all a user would need to do is require the Rasm

module and then instantiate the module with the rasm.instantiate function. The

instantiate method takes as argument the bytes of the wasm module to be instanti-

ated. The bytes can be retrieved using fs’s read file function. The Rasm instantiate

method returns a promise, due to the asynchronous nature of this operation, and

in the callback parameter the user can use the WebAssembly object however they

please.

An example use case below, figure 7.4, shows a user calling the exported function add

using the Rasm module.

57

1 const rasm = requ i r e (” . / rasm”) ;

2

3 rasm . i n s t a n t i a t e (module bytes)

4 . then ((obj) => {
5 obj . rasm . j sTo j s . add (1 , 2) ;

6 }) ;

Figure 7.4: Example of Instantiating a Rasm Module

7.4.3 WebAssembly Memory Pointers and JavaScript Values

When operating between WebAssembly and JavaScript, developers have to juggle

between WebAssembly memory pointers and JavaScript values. This proves to be

clunky and a hindrance, so as well as wrapping exported functions in a variety of

configurations, we have defined a few helper functions that translate between Web-

Assembly pointers and JavaScript values.

We have provided interfaces to translate a WebAssembly pointer into its correspond-

ing JavaScript counterpart. Supported return types at this point are BigInts, numbers

and closures. A Closure that gets returned from WebAssembly is wrapped in a Java-

Script function that calls the WebAssembly application function when evaluated, and

thus the returned closure behaves just as a JavaScript function would, but interacts

with WebAssembly as expected.

As well as provided functionality to translate WebAssembly pointers to JavaScript,

we provide operations for developers to translate JavaScript values to WebAssembly.

This is useful for calling WebAssembly functions from JavaScript when you need to

provide specific JavaScript arguments as parameters. We currently support trans-

lating numbers, BigInts and booleans to WebAssembly from JavaScript. We don’t

currently support translating JavaScript functions to WebAssembly supported clo-

58

sures. We feel this is not necessary at the moment, as it is still possible to pass

a WebAssembly closure pointer to a WebAssembly function, thus this captures the

passing functions as parameters use case.

7.5 Validation

We will now discuss our approach to validating the correctness of our compiler and

the behavior of the generated WebAssembly code.

Throughout the development of our compiler, we relied on test driven development.

With this we developed a custom testing framework that would host our Web-

Assembly module and assert the behavior of specified test cases throughout a series

of validation programs.

The structure of these tests were a series of Racket programs that we used to verify

each form was being compiled appropriately and the exported values/functions from

this program were correct.

7.5.1 Testing Framework

Due to the need to operate WebAssembly modules from within a host, we defined

a custom testing host file that would instantiate a Rasm module and execute a test

case based on JavaScript object specification.

WebAssembly functions can return results that are too complicated for a basic ex-

pected value comparison, so for each test case a user specifies a specific callback that

is used to retrieve the value we are testing against. This is shown above in listing 7.5

under the callback property of the test case.

59

As well as a callback, a user specifies a basename, description and expected value

for each test case. The basename represents the basename of the Racket validation

program we are testing, the description represents a description of what we are testing

and the expected field is the final expected JavaScript value produced by applying

the callback.

Figure 7.5 shows an example of how a user would specify a test case.

{
basename : ‘ r e tu rn func ’ ,

d e s c r i p t i o n :

‘ Test c a l l i n g a c l o s u r e that r e tu rn s a c l o s u r e ’ ,

c a l l b a ck :

(obj) => obj . rasm . toJS (obj . rasm . j sTo j s . func () (3)) ,

expected : 4 ,

}

Figure 7.5: Rasm Test Case Example with Callback

If a particular test case is not complex enough to need a callback, a user can rather

specify an export name and an array of parameters to pass to this export. If no

parameters are necessary, the property need not be defined. An example of a test

case specification with no callback is found in figure 7.6.

60

{
basename : ‘ a r i t hme t i c f un c s ’ ,

d e s c r i p t i o n : ‘ Test Bas ic Arithmet ic ’ ,

export : ‘ add1 ’ ,

params : [4 5 7 42] ,

expected : 45743 ,

}

Figure 7.6: Rasm Test Case Example

The source code for our testing framework is found in appendix A.

7.5.2 Validation Programs

In total we rely on over 40 Racket programs to ensure the general validity of our

compiler. Examples of these programs include basic nested arithmetic and closure

conversion, and were used to verify correct behavior and expected values, rather than

to verify performance of the generated code. A subset of these validation programs

are available in appendix B for reference, and all such programs are available publicly

on the GitHub repository[37].

61

Chapter 8

FUTURE WORK

There is still plenty of work remaining for Racket to fully compile to WebAssembly.

Some of the work is simply a matter of time, such as the implementation of the

standard library, but some of the work will require interesting solutions.

8.1 Lack of Control Over the Stack

One such area of concern in compiling to WebAssembly is having to manage the

call stack. WebAssembly is a stack machine, and the developer has very limited

control over the structure of the stack. This proves to be a hindrance when compiling

functional languages to WebAssembly, like Racket and Scheme.

There are a few ways to mitigate this concern. One mitigation would be to recognize

any control flows between functions where a function call is unnecessary and optimize

the operation into a loop. This is called tail calling[23], and is very important to allow

comparable performance to native Racket. There is currently a tail call proposal in

the works that would allow developers to optimize away unnecessary information and

only keep necessary call information. The only runtime that has support for tail

calling is Chrome, but it is under an experimental flag. Sadly, most other engines do

not see tail call support as a priority at this time. Eventually, with proper garbage

collection, we could even replicate the heap allocated continuation that Racket is built

with.

62

Another mitigation would be to implement a trampolining based system we described

in section 6.3. In a trampolining system, the generated code can simulate the stack

however needed, and the WebAssembly stack would never need to exceed a single

frame.

8.2 Garbage Collection

Another concern in compilation is having to manage memory. Memory in Web-

Assembly is a linear array of bytes, with no garbage collection. This means any

compiled code is responsible for making sure there is enough memory to execute the

desired program and that allocated objects are managed well. A garbage collection

proposal[8] is in the works and under active development, but until standardization,

developers need to build in some runtime around their generated code. This is es-

pecially important to compiling Racket, as Racket has a runtime that it relies upon

in normal execution. Potential solutions include either compiling the existing Racket

runtime, or building a custom WebAssembly runtime for Racket when the needed

proposals are at a stable state.

8.3 Debugging

There is currently very little support for debugging WebAssembly. Most developers’

current approach is to debug the source code of their program and hope the generated

WebAssembly is correct. This works well for simple projects, but as complexity grows,

this approach does not scale. This effect is exacerbated as the WebAssembly module

gets run in a host environment that adds another layer of abstraction and developers

are thus responsible for determining where problems arise in their projects. With

very little debugging support, developers are faced with a challenge of determining

63

the correctness of their source code, generated WebAssembly, WebAssembly host

environment interface and the eventual execution of the code. Better debugging tools

are in the works, but I believe the poor support around debugging WebAssembly is

currently holding back adoption and utilization of WebAssembly.

8.4 Control Flow and Registers

I believe one of the biggest hindrances in porting an existing language to Web-

Assembly is how different the WebAssembly control flow instructions are than current

architectures and patterns. The control flow of WebAssembly demands the use of our

described dispatch/relooper patterns for any complicated control flows or arbitrary

jumps. With these patterns performance is of concern, and time will tell if it can

truly scale to the needs of the users.

Along with this, WebAssembly has no form of registers. Some projects use Web-

Assembly’s local and global structures to simulate register use, and similar to the

dispatch pattern, this works for now, but, both of these workarounds are clearly not

taking advantage of the uniqueness of WebAssembly, and could ultimately hurt opti-

mization of the generated code. I believe more work needs to be done in translating

these expectations over to WebAssembly in a reliable and efficient way.

WebAssembly is a lofty project, with a lot of aspirations and a lot of work left. We

believe our work shows some of the potential of WebAssembly, while still acknowl-

edging that roadblocks exist for developers carrying over existing languages to the

platform. Our experience can serve as an example and we hope our advice can be of

value for future efforts.

64

Chapter 9

CONCLUSION

In this thesis we have presented our Racket to WebAssembly compiler. WebAssembly

has a standardized implementation in all major browsers, with runtimes existing in

many non-browser environments as well. We have done our part in bringing Racket

to this ecosystem. There are many aspects of WebAssembly that differentiate it from

a traditional assembly language, such as the host environment relationship, static

typing and structured control flow. Throughout the development of this compiler

we have discovered and addressed many concerns in compiling a modern functional

language to WebAssembly. We have also presented our initial findings in adding a

WebAssembly backend to the current Racket Chez Scheme backend. We acknowledge

the difficulty developers may encounter when porting an existing architecture to Web-

Assembly, and present solutions that seek to bridge the gap between WebAssembly

and other assembly language needs. We believe the work we have outlined here and

the solutions presented will be of value to future teams porting any programming

language to WebAssembly and hope to see full Racket compilation in the future.

65

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly.

[2] Frequently asked questions (faq) about edge in the enterprise.

https://docs.microsoft.com/en-us/deployedge/faqs-edge-in-the-enterprise.

Accessed on 05.13.2022.

[3] Native client. https://developer.chrome.com/docs/native-client/. Accessed on

05.13.2022.

[4] Roadmap. https://webassembly.org/roadmap/. Accessed on 05.24.2022.

[5] Stack overflow developer survey 2021.

https://insights.stackoverflow.com/survey/2021. Accessed on 05.01.2022.

[6] WebAssembly Core Specification. Accessed on 04.20.2022.

[7] WebAssembly Core Specification, Release 2.0. Accessed on 04.25.2022.

[8] WebAssembly Garbage Collection Specification.

https://github.com/WebAssembly/gc/. Accessed on 05.07.2022.

[9] Webassembly troubles part 2: Why do we need the relooper algorithm, again?

http://troubles.md/posts/why-do-we-need-the-relooper-algorithm-again/.

Accessed on 05.20.2022.

[10] Racket. https://github.com/racket/racket, 1997.

[11] Binaryen. https://github.com/WebAssembly/binaryen, 2015.

[12] Assemblyscript. https://github.com/AssemblyScript/assemblyscript, 2017.

66

http://www.github.com/CalPoly
https://docs.microsoft.com/en-us/deployedge/faqs-edge-in-the-enterprise
https://developer.chrome.com/docs/native-client/
https://webassembly.org/roadmap/
https://insights.stackoverflow.com/survey/2021
https://github.com/WebAssembly/gc/
http://troubles.md/posts/why-do-we-need-the-relooper-algorithm-again/
https://github.com/racket/racket
https://github.com/WebAssembly/binaryen
https://github.com/AssemblyScript/assemblyscript

[13] World wide web consortium (w3c) brings a new language to the web as

webassembly becomes a w3c recommendation, 2019.

[14] Linklets and the core compiler.

https://docs.racket-lang.org/reference/linklets.html, 2021.

[15] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpython: A step

towards reconciling dynamically and statically typed oo languages. In

Proceedings of the 2007 Symposium on Dynamic Languages, DLS ’07, page

53–64, New York, NY, USA, 2007. Association for Computing Machinery.

[16] S. Atapattu. Bringing you up to speed on how compiling webassembly is faster.

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/wasm/. Accessed

on 05.09.2022.

[17] H. G. Baker. Cons should not cons its arguments, part ii: Cheney on the m.t.a.

SIGPLAN Not., 30(9):17–20, sep 1995.

[18] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G. Siek, and

S. Tobin-Hochstadt. Pycket: A tracing jit for a functional language.

SIGPLAN Not., 50(9):22–34, aug 2015.

[19] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G. Siek, and

S. Tobin-Hochstadt. Pycket: A tracing jit for a functional language. In

Proceedings of the 20th ACM SIGPLAN International Conference on

Functional Programming, ICFP 2015, page 22–34, New York, NY, USA,

2015. Association for Computing Machinery.

[20] C. Böhm and G. Jacopini. Flow diagrams, turing machines and languages with

only two formation rules. Commun. ACM, 9(5):366–371, may 1966.

67

https://docs.racket-lang.org/reference/linklets.html
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/wasm/

[21] K. Cheung. Autocad & webassembly: Moving a 30 year code base to the web.

https://www.infoq.com/presentations/autocad-webassembly/, Sep 2018.

Accessed on 05.15.2022.

[22] B. Couriol. Webassembly 1.0 becomes a w3c recommendation and the fourth

language to run natively in browsers. https:

//www.infoq.com/news/2019/12/webassembly-w3c-recommendation/, Dec

2019. Accessed on 03.17.2022.

[23] S. K. Debray and T. A. Proebsting. Interprocedural control flow analysis of

first-order programs with tail-call optimization. ACM Trans. Program.

Lang. Syst., 19(4):568–585, jul 1997.

[24] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and

H. Mössenböck. An intermediate representation for speculative

optimizations in a dynamic compiler. In Proceedings of the 7th ACM

Workshop on Virtual Machines and Intermediate Languages, VMIL ’13,

page 1–10, New York, NY, USA, 2013. Association for Computing

Machinery.

[25] R. K. Dybvig. The development of chez scheme. In Proceedings of the Eleventh

ACM SIGPLAN International Conference on Functional Programming,

ICFP ’06, page 1–12, New York, NY, USA, 2006. Association for

Computing Machinery.

[26] R. K. Dybvig. The development of chez scheme. SIGPLAN Not., 41(9):1–12,

sep 2006.

[27] M. Felleisen, R. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay, J. Mccarthy,

and S. Tobin-Hochstadt. The racket manifesto. In T. Ball, R. Bodik,

B. Lerner, G. Morrisett, and S. Krishnamurthi, editors, 1st Summit on

68

https://www.infoq.com/presentations/autocad-webassembly/
https://www.infoq.com/news/2019/12/webassembly-w3c-recommendation/
https://www.infoq.com/news/2019/12/webassembly-w3c-recommendation/

Advances in Programming Languages, SNAPL 2015, Leibniz International

Proceedings in Informatics, LIPIcs, pages 113–128. Schloss Dagstuhl-

Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, May 2015.

[28] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay,

J. McCarthy, and S. Tobin-Hochstadt. A programmable programming

language. Commun. ACM, 61(3):62–71, feb 2018.

[29] M. Flatt, C. Derici, R. K. Dybvig, A. W. Keep, G. E. Massaccesi, S. Spall,

S. Tobin-Hochstadt, and J. Zeppieri. Rebuilding racket on chez scheme

(experience report). Proc. ACM Program. Lang., 3(ICFP), jul 2019.

[30] T. Fosmark and H. Arya. Update: Adobe flash player end of support on

december 31, 2020 - microsoft lifecycle. https://docs.microsoft.com/en-

us/lifecycle/announcements/update-adobe-flash-support#:∼:

text=Microsoftwillendsupportfor,andtheirotherindustrypartners., Sep 2020.

[31] jared83. Racket and webassembly #2015.

https://github.com/racket/racket/issues/2015, 2018. Accessed on

05.27.2022.

[32] S. Jobs. Thoughts on flash. Apple, Inc, 2010.

[33] A. W. Keep and R. K. Dybvig. A nanopass framework for commercial compiler

development. SIGPLAN Not., 48(9):343–350, sep 2013.

[34] A. W. Keep and R. K. Dybvig. A nanopass framework for commercial compiler

development. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming, ICFP ’13, page 343–350, New

York, NY, USA, 2013. Association for Computing Machinery.

69

https://docs.microsoft.com/en-us/lifecycle/announcements/update-adobe-flash-support#:~:text=Microsoft will end support for,and their other industry partners.
https://docs.microsoft.com/en-us/lifecycle/announcements/update-adobe-flash-support#:~:text=Microsoft will end support for,and their other industry partners.
https://docs.microsoft.com/en-us/lifecycle/announcements/update-adobe-flash-support#:~:text=Microsoft will end support for,and their other industry partners.
https://github.com/racket/racket/issues/2015

[35] s. klabnik. Is webassembly the return of java applets & flash?

https://steveklabnik.com/writing/is-webassembly-the-return-of-java-

applets-flash.

[36] D. Levy. Racket fun-ctional programming to elementary mathematic teachers.

05 2013.

[37] G. Matejka. Rasm. https://github.com/GrantMatejka/rasm, 2022.

[38] K. McElhearn. The history of adobe flash player: From multimedia to

malware, Dec 2020.

[39] Microsoft. Typescript. https://github.com/microsoft/TypeScript, 2014.

[40] T. Partanen, L. Mannila, and T. Poranen. Learning programming online: A

racket-course for elementary school teachers in finland. In Proceedings of

the 16th Koli Calling International Conference on Computing Education

Research, Koli Calling ’16, page 178–179, New York, NY, USA, 2016.

Association for Computing Machinery.

[41] G. Ramalingam. Identifying loops in almost linear time. ACM Trans. Program.

Lang. Syst., 21(2):175–188, mar 1999.

[42] M. Sperber, K. Dybvig, M. Flatt, A. V. Straaten, R. Findler, and J. Matthews.

Revised6 report on the algorithmic language scheme. Journal of Functional

Programming, 19(S1):1–301, 2009.

[43] S. Tobin-Hochstadt. Pycket. https://github.com/pycket/pycket, 2013.

[44] tsoding. wacket. https://github.com/tsoding/wacket, 2018.

[45] V. Yadav. Racketscript. https://github.com/racketscript/racketscript, 2016.

70

https://steveklabnik.com/writing/is-webassembly-the-return-of-java-applets-flash
https://steveklabnik.com/writing/is-webassembly-the-return-of-java-applets-flash
https://github.com/GrantMatejka/rasm
https://github.com/microsoft/TypeScript
https://github.com/pycket/pycket
https://github.com/tsoding/wacket
https://github.com/racketscript/racketscript

[46] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,

N. Narula, and N. Fullagar. Native client: A sandbox for portable,

untrusted x86 native code. pages 79–93, 2009.

[47] A. Zakai. Emscripten: An llvm-to-javascript compiler. In Proceedings of the

ACM International Conference Companion on Object Oriented

Programming Systems Languages and Applications Companion, OOPSLA

’11, page 301–312, New York, NY, USA, 2011. Association for Computing

Machinery.

[48] A. Zakai. Reloop all the blocks.

http://mozakai.blogspot.com/2012/05/reloop-all-blocks.html, May 2012.

Accessed on 05.20.2022.

71

http://mozakai.blogspot.com/2012/05/reloop-all-blocks.html

APPENDICES

Appendix A

TESTING FRAMEWORK

1 const f s = r equ i r e (” f s ”) ;

2 const exec = r equ i r e (” c h i l d p r o c e s s ”) . exec ;

3 const a s s e r t = r equ i r e (” a s s e r t ”) ;

4 const { t e s t c a s e s } = requ i r e (” . / t e s t c a s e s ”) ;

5 var wabt = r equ i r e (”wabt”) () ;

6 const rasm = requ i r e (” . / rasm”) ;

7

8 const my exec = (cmd , ca l l b a ck) => {
9 exec (cmd , (e r ro r , stdout , s t d e r r) => {
10 i f (e r r o r) {
11 conso l e . e r r o r (‘ e r r o r : ${ e r r o r . message } ‘) ;

12 re turn ;

13 }
14 i f (s t d e r r) {
15 conso l e . e r r o r (‘ s t d e r r : ${ s t d e r r } ‘) ;

16 re turn ;

17 }
18 i f (s tdout . tr im ()) {
19 conso l e . l og (‘ s tdout : ${ stdout } ‘) ;

20 }
21 ca l l b a ck () ;

22 }) ;
23 } ;
24

25 const my assert = (want , got , msg) => {
26 const e p s i l o n = 0 . 0 0 5 ;

27

28 a s s e r t . ok (want − ep s i l o n < got &&

72

29 want + ep s i l o n > got , msg) ;

30 } ;
31

32 const copy rasm = ‘ cp . . / rasm . j s . ‘ ;

33 const copy index = ‘ cp . . / example index . j s . ‘ ;

34 const make compiler = ‘ raco make . . / compi le r . rkt ‘ ;

35

36 my exec (‘ ${ copy rasm} && ${ copy index } && ${make compiler } ‘ ,
37 () =>

38 t e s t c a s e s . forEach ((t e s t) => {
39 const basename = t e s t . basename ;

40 const rkt path = ‘ . . / examples /${basename } . rkt ‘ ;

41

42 const c omp i l e f i l e =

43 ‘ racke t . . / compi le r . rkt ${ rkt path } ‘ ;

44

45 my exec (‘ ${ c omp i l e f i l e } ‘ , () => {
46 conso l e . l og (‘ Test Case : ${basename } ‘) ;

47

48 const inputWat = ‘ out/${basename } . wat ‘ ;
49 wabt . then ((wabt) => {
50 var wasmModule = wabt . parseWat (

51 inputWat ,

52 f s . r eadFi l eSync (inputWat , ” ut f8 ”)

53) ;

54

55 rasm . i n s t a n t i a t e (wasmModule . toBinary ({ }) . bu f f e r)
56 . then ((obj) => {
57 i f (t e s t . c a l l b a ck) {
58 const va l = t e s t . c a l l b a ck (obj) ;

59 my assert (t e s t . expected ,

60 val ,

61 t e s t . d e s c r i p t i o n) ;

62 } e l s e i f (t e s t . export) {
63 const params =

64 t e s t . params ? t e s t . params : [] ;

73

65 const va l =

66 obj . rasm . j sTo j s [t e s t . export] (. . . params) ;

67 my assert (

68 t e s t . expected ,

69 val ,

70 ‘ ${ t e s t . export } : ${ t e s t . d e s c r i p t i o n } ‘
71) ;

72 }
73 }) ;
74 }) ;
75 }) ;
76 })
77) ;

Listing A.1: Rasm Testing Framework

74

Appendix B

VALIDATION PROGRAMS

1 (module a r i thmet i c racke t

2 (prov ide a1 a2 a3 a4 a5)

3

4 (d e f i n e a1 (+ (/ 10 (∗ 1 .5 3)) (∗ 23 10)))

5 (d e f i n e (a2) (∗ (+ 12 (/ 12 4)) (− 25 10)))

6 (d e f i n e (a3 x) (∗ (+ x (/ 12 4)) (− 25 10)))

7 (d e f i n e (a4 x y) (∗ (+ 12 (/ y 4)) (− x 10)))

8 (d e f i n e (a5 x y z) (∗ (+ z (/ x 4)) (− y 10))))

Listing B.1: Test Program for Nested Arithmetic with Mixed Argument
Types

1 (module condtes t racke t

2 (prov ide mycond)

3

4 (d e f i n e mycond (lambda (x)

5 (cond

6 [(< x 0) 0]

7 [(< x 5) 1]

8 [(< x 10) 2]

9 [e l s e 3]))))

Listing B.2: Simple Conditional to Test cond Top Form

75

1 #lang racke t

2

3 (prov ide add−fact)

4

5 (d e f i n e (add−fact x y)

6 (l e t r e c ([f a c t (lambda (n)

7 (i f (equal ? 0 n) 1 (∗ n (f a c t (− n 1)))))])

8 (+ (f a c t x) (f a c t y))))

Listing B.3: Verifying Recursion with letrec Top Form

1 #lang racke t

2

3 (prov ide f a c t f a c t 2)

4

5 (d e f i n e Y (lambda (b)

6 ((lambda (f) (b (lambda (x) ((f f) x))))

7 (lambda (f) (b (lambda (x) ((f f) x)))))))

8

9 (d e f i n e (f a c t x)

10 ((Y (lambda (f a c t)

11 (lambda (n)

12 (i f (equal ? 0 n) 1 (∗ n (f a c t (− n 1))))))) x))

13

14

15 (d e f i n e f a c t 2

16 (Y (lambda (f a c t)

17 (lambda (n)

18 (i f (equal ? 0 n) 1 (∗ n (f a c t (− n 1))))))))

Listing B.4: Simple Y-Combinator to Verify Closure Handling

76

1 #lang racke t

2

3 (prov ide ycomb)

4

5 (d e f i n e (ycomb dc)

6 ((lambda {empty}
7 ((lambda { cons}
8 ((lambda {empty?}
9 ((lambda { f i r s t }
10 ((lambda { r e s t }
11 ((lambda {Y}
12 ((lambda { l ength }
13 ((lambda {addup}
14 (addup (cons 3 (cons 17 empty))))

15 (Y

16 (lambda

17 {addup}
18 (lambda { l }
19 (i f (empty? l)

20 0

21 (+ (f i r s t l)

22 (addup (r e s t l)))))))))

23 (Y

24 (lambda

25 { l ength }
26 (lambda { l }
27 (i f (empty? l)

28 0

29 (+ 1 (l ength (r e s t l)))))))

30))

31 ((lambda {x}
32 (lambda {y}
33 (y (lambda {z} (((x x) y) z)))))

34 (lambda {x}
35 (lambda {y}

77

36 (y (lambda {z} (((x x) y) z))))))))

37 (lambda { l } (l f a l s e))))

38 (lambda { l } (l t rue))))

39 (lambda { l } (equal ? l empty))))

40 (lambda {a b} (lambda { s e l e c t } (i f s e l e c t a b)))))

41 13)

42)

Listing B.5: Complex Lambda Calculus

78

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Related Work
	2.1 Compiling Racket to WebAssembly
	2.2 Transpiling Racket
	2.2.1 Pycket
	2.2.2 RacketScript

	2.3 Compiling Languages to WebAssembly
	2.3.1 Emscripten
	2.3.2 AssemblyScript

	3 WebAssembly
	3.1 Motivation for WebAssembly
	3.1.1 Early Efforts Toward Client Side Compute
	3.1.2 JavaScript

	3.2 Language Specification of WebAssembly
	3.2.1 Stack Machine
	3.2.2 Strict Static Typing
	3.2.3 High Level Control Flow
	3.2.4 Structured Branching

	3.3 WebAssembly Runtime

	4 Racket
	4.1 Interesting Aspects of Racket
	4.2 Stages of Racket Compilation
	4.2.1 Fully Expanded Racket
	4.2.2 Linklets
	4.2.3 Chez Scheme Backend

	5 Compiling Racket
	5.1 From C to Chez Scheme
	5.2 Porting Chez Scheme to a New Platform
	5.3 Nanopass Architecture
	5.3.1 Final Language
	5.3.2 Intermediate Language

	6 Concerns When Compiling Chez Scheme to WebAssembly
	6.1 Existing Expectations
	6.2 Arbitrary Jumps
	6.2.1 The Relooper Algorithm
	6.2.2 Our Relooper Algorithm

	6.3 Calling Conventions
	6.4 Settling on Fully Expanded Programs

	7 Implementation
	7.1 General Architecture
	7.1.1 Command Line Interface
	7.1.2 Expansion
	7.1.3 Supported Top Forms
	7.1.4 Compiler Passes
	7.1.4.1 Generating unique identifiers
	7.1.4.2 Lift lambdas
	7.1.4.3 Generate Initialization Function
	7.1.4.4 Closure Conversion
	7.1.4.5 Discover types

	7.2 Code Generation
	7.2.1 Representing Values
	7.2.1.1 Type Tags

	7.2.2 Applying Closures
	7.2.3 Standard Library

	7.3 JavaScript Host
	7.4 Using Rasm
	7.4.1 wat2wasm
	7.4.2 Instantiating a Module
	7.4.3 WebAssembly Memory Pointers and JavaScript Values

	7.5 Validation
	7.5.1 Testing Framework
	7.5.2 Validation Programs

	8 Future Work
	8.1 Lack of Control Over the Stack
	8.2 Garbage Collection
	8.3 Debugging
	8.4 Control Flow and Registers

	9 Conclusion
	BIBLIOGRAPHY
	A Testing Framework
	B Validation Programs

