
MUSIC VISUALIZATION USING SOURCE SEPARATED STEREOPHONIC

MUSIC

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Engineering in Electrical Engineering

by

Hannah Chookaszian

June 2022

© 2022

Hannah Chookaszian

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Music Visualization Using Source Sepa-

rated Stereophonic Music

AUTHOR: Hannah Chookaszian

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: Wayne Pilkington, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Jane Zhang, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Dennis Sun, Ph.D.

Professor of Statistics

iii

ABSTRACT

Music Visualization Using Source Separated Stereophonic Music

Hannah Chookaszian

This thesis introduces a music visualization system for stereophonic source separated

music. Music visualization systems are a popular way to represent information from

audio signals through computer graphics. Visualization can help people better un-

derstand music and its complex and interacting elements. This music visualization

system extracts pitch, panning, and loudness features from source separated audio

files to create the visual. Most state-of-the art visualization systems develop their

visual representation of the music from either the fully mixed final song recording,

where all of the instruments and vocals are combined into one file, or from the digital

audio workstation (DAW) data containing multiple independent recordings of indi-

vidual audio sources. Original source recordings are not always readily available to

the public so music source separation (MSS) can be used to obtain estimated versions

of the audio source files. This thesis surveys different approaches to MSS and music

visualization as well as introduces a new music visualization system specifically for

source separated music.

iv

ACKNOWLEDGMENTS

Thanks to:

• Professor Pilkington, for the idea for this thesis and helping me throughout this

process

• My parents, for always supporting my endeavors

• Andrew Guenther, for uploading this template

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF CODE LISTINGS . xiii

CHAPTER

1 Introduction . 1

1.1 Statement of Problem . 1

1.2 List of Terms . 2

1.3 Purpose of Study . 2

2 Background . 3

2.1 Stereophonic vs. Monophonic Audio 3

2.2 Music Representation . 4

2.3 Music Source Separation . 8

2.3.1 Spectrogram Domain Methods 9

2.3.1.1 MMDenseLSTM . 10

2.3.1.2 Parallel Stacked Hourglass Network 12

2.3.1.3 Spec2Spec . 13

2.3.1.4 Open-Unmix . 14

2.3.2 Waveform Domain Methods 15

2.3.2.1 Conv-TasNet . 16

2.3.2.2 Demucs . 17

2.3.3 Hybrid Domain Methods . 18

2.3.3.1 Bridging Networks 18

vi

2.3.3.2 Hybrid Demucs . 20

2.4 Source Panning Parameter Estimation 21

2.4.1 Constant Power Panning Law 23

2.5 Pitch Detection . 23

2.5.1 Pitch Ranges . 23

2.5.2 Pitch Detection Algorithms 24

2.5.2.1 Autocorrelation Method 24

2.5.2.2 Square Difference Function 25

2.5.2.3 Average Magnitude Difference Function 25

2.5.2.4 Cepstrum Method 26

2.6 Loudness . 27

2.7 Music Visualization . 27

2.7.1 Music and Color . 28

3 Investigation . 30

3.1 Goals . 30

3.2 Constraints and Assumptions . 31

3.3 Investigation of Music Source Separation Techniques 31

3.3.1 Signal-to-Distortion Ratio . 31

3.3.2 MUSDB18 Dataset . 32

3.3.3 Music Source Separation Preprocessing and Training 32

3.3.4 Music Source Separation Comparison 34

3.4 Investigation of Pitch Detection Techniques 36

3.4.1 Averaging Channels . 36

3.4.2 MDB-melody-synth Dataset 36

3.4.3 Applying a Window Function 36

vii

3.4.4 Autocorrelation . 37

3.4.5 Average Magnitude Difference Function 40

3.4.6 Square Difference Function . 42

3.4.7 Pitch Detection Comparison 44

4 Approach . 46

4.1 System Overview . 46

4.2 Music File Formats . 47

4.2.1 Sampling Rates . 47

4.3 Music Source Separation . 48

4.3.1 Pretrained Neural Networks 48

4.3.2 Retraining Networks . 48

4.4 Pitch Detection . 49

4.5 Localization . 52

4.6 Loudness Approximation . 53

4.7 Visualization . 53

4.7.1 Visualization Colors . 54

4.7.2 Video File Types . 54

5 Results . 56

5.1 Music Source Separation . 56

5.1.1 Performing Source Separation Using a Pretrained
Neural Network . 57

5.2 Visualization . 57

5.2.1 Creating a Visualization . 61

6 Conclusions . 62

6.1 Future Work . 63

viii

BIBLIOGRAPHY . 64

APPENDICES

A CODE APPENDIX . 70

B VISUALS APPENDIX . 71

ix

LIST OF TABLES

Table Page

3.1 Summary of Music Source Separation Technique Metrics 35

3.2 Summary of Pitch Detection Technique Metrics 45

x

LIST OF FIGURES

Figure Page

2.1 Waveform With a Frequency of 4 Hz [1] 5

2.2 Equal Loudness Contours [1] . 6

2.3 Envelope of a Sustained Musical Note 7

2.4 Spectrogram (time-frequency plot) of Waveform in Figure 2.3 . . . 8

2.5 DenseNet Architecture [2] . 11

2.6 MMDenseLSTM Architecture [3] 11

2.7 Parallel Stacked Hourglass Network Architecture [4] 13

2.8 Spec2Spec Architecture [5] . 13

2.9 Open-Unmix Architecture [6] . 14

2.10 Conv-TasNet Architecture [7] . 16

2.11 Demucs Architecture [8] . 17

2.12 Example of appended layers [9] . 19

2.13 Hybrid Demucs Architecture [10] 20

2.14 Phantom Image Illustration [11] . 22

2.15 Example of Two Waveforms of a Stero Audio Sample 27

3.1 Channel 1 Spectrogram . 33

3.2 Channel 2 Spectrogram . 33

3.3 Hamming Window With W=2048 37

3.4 Audio With and Without Hamming Window Applied 38

3.5 Autocorrelation Code Flowchart . 39

3.6 Autocorrelation of Audio Window 40

xi

3.7 AMDF Code Flowchart . 41

3.8 AMDF of Audio Window . 42

3.9 SDF Code Flowchart . 43

3.10 SDF of Audio Window . 44

4.1 System Overview . 46

4.2 Visualizer Overview for One File 47

4.3 Autocorrelation Result With > 50% Silence 50

4.4 Zoomed Version of Figure 4.3 . 50

4.5 Filtered vs Unfiltered Autocorrelation Results 51

4.6 Zoomed Version of Figure 4.5 . 52

4.7 Original Visualization Sketch . 54

5.1 Color Selection For Visualization 58

5.2 Frame from Visualization . 58

5.3 Frame from Visualization . 59

5.4 Frame from Visualization With High Vocals 60

5.5 Frame from Visualization With Only ”other” Source Playing 60

5.6 Frame from Visualization With ”vocals” Source Not Playing 61

xii

LIST OF CODE LISTINGS

Listing Page

5.1 Calling Demucs in Terminal Example 57

5.2 Creating a Visualization . 61

xiii

Chapter 1

INTRODUCTION

1.1 Statement of Problem

Music information retrieval (MIR) and music visualization systems have been a topic

of research for many years in the audio processing community [12]. Visualization

approaches have improved over time by focusing on different relevant features in a

musical performance and meaningful ways to represent them. Most state-of-the art

visualization systems develop their visual representation of the music from either the

fully mixed final song recording, where all of the instruments and vocals are combined

into one file, or from the digital audio workstation (DAW) data containing multiple

independent recordings of individual audio sources. While eaiser to implement, visu-

alization systems based on DAW data are quite limiting because the original DAW

files for music, especially popular music, is often unavailable to the public. This is

unfortunate since independently rendering each music source and their changes in

volume, pitch, and timbre can help create an effective visualization to enhance the

listener’s understanding of how different musical elements in a song are interating to

create the full subjective experience of a song. Using music source separation (MSS),

the primary sources that create a song from the more readily available mixed song

files can be obtained for any piece of music. Introducing MSS into a music visual-

ization project creates an end-to-end system that visualizes information before the

mixing occurs.

1

1.2 List of Terms

Digital signals processing, music source separation, music information retrieval, music

information visualization.

1.3 Purpose of Study

Although many different music visualization methods have been introduced in the

past years, many do not offer visualization of individual sources without the original

DAW information. This study looks at using music source separation and its subse-

quent source tracks to make a unique and customizable music visualization system.

2

Chapter 2

BACKGROUND

2.1 Stereophonic vs. Monophonic Audio

Monophonic (mono) audio is a type of audio recording that utilizes one waveform or

channel to reproduce all the sounds in the recording. This one channel is then played

across however many speakers the listener chooses to use. Mono audio signals are

highly correlated because all instruments in the mix are played over the same channel.

Stereophonic (stereo) audio is another type of audio which has been popular since the

1950s, and remains the dominant format for music recording and distribution. Stereo

audio uses two channels played in parallel to create the illusion of spatial sound. This

requires two or more speakers with each speaker playing the music information from

one channel. When listening to stereo recordings, directional sounds are perceived

across the horizontal plane in front of the listener with the ideal location for listening

being in the middle of the two speakers.

Stereo audio can be produced by recording a source with two microphones or stereo

panning a single source recording track in post-processing. Stereo panning creates the

illusion of the sound coming from a certain place on the horizontal plane. The direc-

tion that the sound is perceived to arrive from is called the phantom image. Stereo

panning can be created through level changes or delays in the different channels.

Level based panning involves creating differences in channel amplitudes by attenuat-

ing one channel. The phantom image shifts towards the opposite channel that the

attenuation is applied to. Delay based panning is created by adding a delay to one

channel of the audio which will shift the image away from the side that has the delay

3

[11]. Stereo panning takes advantage of how our brains subconsciously determine a

sound source’s location based on amplitude and arrival time difference in the same

sounds detected by our two ears.

2.2 Music Representation

It is important to understand the different ways to represent music in order to perform

music source separation and visualization. Music can be represented in the form of a

musical score on paper, an electronic instrument through Musical Instrument Digital

Interface (MIDI), or as an acoustic sound wave. Performance and recording of music

results in sounds which are transmitted through the air and received as pressure

oscillations. The transmission, receptions, and reproduction of sounds that lie within

the amplitude and frequency limits of human hearing is called audio.

Since this thesis focuses on recorded music, the main representation of music will

be through acoustic sound waves or audio. Audio signals are able to completely

encode all the information necessary to reproduce a piece of music, but information

such as pitch and onset times are not explicitly provided. Musical audio signals are

also typically a mixture of different instruments and voices which are overlaid. This

mixture that is present in audio signals makes processing more difficult because the

individual instruments are highly correlated; as they are following the same rhythm

patterns and playing notes with the same or harmonically-related frequencies.

When evaluating an audio representation, it is very important to understand the

properties associated with audio signals. The frequency, pitch, dynamics, intensity,

loudness, and timbre can all be examined in an audio representation. Frequency and

pitch are closely related in pure tones because the frequency can be matched exactly

4

to a pitch. The frequency can be measured in Hertz (Hz) and is equal to the reciprocal

of the period. Figure 2.1 shows the important features of a waveform.

In complex and highly correlated mixtures, the relation between frequency and pitch is

much more complicated and therefore it is useful to separate mixtures into individual

sources. Even with separation, the source waveforms are still complex and the sound

from a musical source will not be a pure tone. The musical tone heard in a song is

a superposition of multiple pure tones which each have their own frequency. These

different sinusoids which are mixed together are referred to as partials. The lowest

partial present in a waveform is called the fundamental frequency and this frequency

determines the musical pitch of the sound.

Figure 2.1: Waveform With a Frequency of 4 Hz [1]

Dynamics is a general term to describe the volume and musical symbols associated

with that volume. In audio, dynamics is related to the loudness of the audio signal.

The loudness is a measure of both the sound intensity and sound power. The intensity

is defined in watts (W) and denotes the sound power per unit area while the sound

power denotes the energy per unit time from the sound source. It is important to

note that loudness can be affected by different factors such as the duration of the

sound, the person listening, and the frequency of the sound. Generally, the perceived

loudness of a sound is different depending on the individual and age can factor into

this because of the change in human ear sensitivity over time. Additionally, longer

sounds are perceived louder than sounds that last less time and higher frequencies

5

are perceived to be louder than lower frequencies. The perceived loudness of pure

tones can be seen on the equal loudness contours in Figure 2.2. The unit phon is

used which is a normalized unit for the intensity level, measured in dB with respect

to tones at 1 kHz.

Figure 2.2: Equal Loudness Contours [1]

The timbre of a sound is the quality of the sound or the tone ”color”. Timbre is

what allows humans to distinguish between different sources or different instruments

playing the same musical pitch. Timbre can be difficult to derive because of its vague

definition, but the partial frequencies and envelope of a musical note can be used to

quantify the timbre of a sound. Figure 2.3 shows the envelope (in red) for a single

musical note. The labels for attack (A), sustain (S), decay (D), and release (R) are

also labeled on this diagram. These quantities measured from an envelope can be

used to distinguish the timbre of a sound.

6

Figure 2.3: Envelope of a Sustained Musical Note

Audio representations can be shown as waveforms (pressure-time plots) in the time

domain or can be shown in the frequency domain as time-frequency plots, also known

as spectrograms. Figure 2.1 shows how air pressure deviations can be shown graph-

ically as waves when related to time. At the destination, which could be a micro-

phone or a listener, the wave is received and transformed into sound. The deviations

in air pressure are created through compression and rarefaction which creates the

alternating pressure that is recognized as waves. Spectrograms are a time-frequency

representation commonly used in music analysis. The spectrogram is found by tak-

ing the short time Fourier transform (STFT) over multiple periods of the signal and

then representing the frequency, time, and phase information in a plot. The vertical

axis represents time and the horizontal axis represents frequency and is often plotted

using a logarithmic representation [1]. The spectrogram for the musical note shown

7

in Figure 2.3 is shown in Figure 2.4. The spectrogram shows that most of the power

in the signal is contained at the center samples and remains at lower frequencies. In

Figure 2.4, the equally-spaced vertical bars represent the harmonic frequencies of the

partials making up the sound; also giving rise to its particular timbre.

Figure 2.4: Spectrogram (time-frequency plot) of Waveform in Figure 2.3

2.3 Music Source Separation

Music source separation (MSS) is the technique for separating a piece of recorded

music, which has high levels of correlation between sources, into the separate sources.

Most current methods separate the music into drums, bass, vocals, and other sources.

These four categories are common because most music source separation datasets use

stems which are divided into these categories. The MUSDB18 dataset, for example,

8

has 150 songs which are provided in encoded MPEG4 files and can be separated

into these four stems [13]. Approaches to MSS generally choose one type of audio

representation for separation, although some state-of-the-art methods are now using

both waveform and spectrogram representations of audio. The next few sections will

discuss cutting edge approaches to music source separation for spectrogram domain,

waveform domain, and hybrid methods. In more recent years, the highest performing

MSS methods use deep learning to create a neural network which can accurately

predict and separate the sources. For the four source categories, there will be four

neural networks trained, one for each source.

2.3.1 Spectrogram Domain Methods

Spectrogram (time-frequency) domain methods for music source separation use the

STFT to convert waveforms into the spectrogram domain for the entire mixture and

try to predict the output spectrograms for each of the sources. The predictions for

the output spectrograms are derived from features on the input spectrograms and

masks are created to produce the output spectrograms. Spectrograms have a few

characteristics that make them a good candidate for the basis of source separation.

First, time-frequency representations contain multiple time-frequency bins and have

a property called sparsity. Sparsity dicatates that only a small number of time-

frequency bins have significant amplitude which leads to the phenomenon of disjoint

orthogonality. Disjoint orthogonality defines a small probability that two independent

sources have significant amplitude in the same bin. Therefore spectrograms can be

very useful for source separation because each source will likely be contained within

its own set of time-frequency bins. Second, the structure of spectrograms can help in

source separation by looking at repetitions and harmonicity [14]. Prediction of the

output spectrograms has been approached using Gaussian Modeling [15] [16], non-

9

negative factorization [17] [18] [19] , kernel additive modeling [20], and combinations.

In recent years, deep learning and neural network approaches have shown significant

improvements over these earlier approaches. The following sections outline some of

the state-of-the-art deep learning approaches and highlight key structural features.

2.3.1.1 MMDenseLSTM

MMDenseLSTM is a neural network model for music source separation that retains

a small model size while achieving high accuracy. Deep neural networks have been

shown to improve source separation but with large numbers of time frequency (TF)

bins in spectrograms, these models expand quickly and take longer to train. This

particular model operates on spectrograms and uses a 4096 window size for the STFT.

The model blends two existing systems: MMDenseNet and Long Short-Term Memory

(LSTM); and Takahashi et al [3] demonstrates that the combination outperforms both

of the individual systems.

The MMDenseNet network is a multi-scale, multi-band structure where each fre-

quency band is linked to a single convolutional neural network (CNN) in addition to

a full-band CNN. This takes advantage of the fact that spectrograms have different

local structures depending on the band of frequencies considered. The basis for each

single CNN is the DenseNet architecture which performs well for image classification

[2]. The multiple feature re-weight (MFR) DenseNet is shown in Figure 2.5.

This network is expanded to multiple scales in order to perform well for source sep-

aration by applying a dense block at multiple scales which is done by downsampling

the output progressively and then upsampling until the original resolution is recov-

ered. MDenseNet is then expanded to multiple frequency bands to account for the

fact that spectrogram local structures correspond to the frequency band. This means

10

Figure 2.5: DenseNet Architecture [2]

the input is split into frequency bands and an MDenseNet structure is applied to each

band.

Figure 2.6: MMDenseLSTM Architecture [3]

The LSTM block is inserted in the upsampling path directly after the block with the

smallest dimensionality. LSTM networks are a type of recurrent neural network that

works well for temporal modeling, but has limitations related to underlying factors

of variation within the input [21]. This placement of the LSTM is beneficial because

the MMDense blocks are effective at modeling the local structures and the LSTM is

effective at modeling the global structure. By placing the LSTM block at the point

where the dimensionality is the lowest, the structure maintains a small model size

while still having the fully-connected benefits provided by LSTM blocks. Figure 2.6

11

shows the structure for the MMDenseLSTM neural network and an example of an

input and output spectrogram [3].

2.3.1.2 Parallel Stacked Hourglass Network

Another state-of-the-art neural network architecture for music source separation in

the spectrogram domain is the parallel stacked hourglass network (PSHN). This spe-

cific architecture was constructed with traditional music in mind, which usually has

fewer instruments. This model is a fully convolutional multi-scale network which gen-

erates time-frequency masks based on features learned from the input spectrogram.

The overall architecture can be broken down into three parallel hourglass networks

which are separated by frequency band. The networks are shown in Figure 2.7 and

are separated into the upper band stacked hourglass network (UBSHN), full band

stacked hourglass network (FBSHN), and lower band stacked hourglass network (LB-

SHN). The stacked hourglass networks are made up of hourglass modules which use a

top-down bottom-up approach to extract multi-scale features. The modules have five

downsampling operations followed by five upsampling operations which use nearest-

neighbor interpolation. The modules are stacked and they create a network which also

includes intermediate predictions. Intermediate predictions estimate masks between

hourglass modules and therefore a separate loss function is required for each predic-

tion. This means that each hourglass network requires four loss functions to find the

final mask prediction. When tested on two popular datasets for traditional music,

DSD100 and MIR-1K, the PSHN architecture performs comparably with state-of-

the-art methods. This network especially performed well in singing voice separation

because of its tailoring towards a low number of sources in the separation problem

[4].

12

Figure 2.7: Parallel Stacked Hourglass Network Architecture [4]

2.3.1.3 Spec2Spec

The Spec2Spec neural network structure was inspired by methods that successfully

used generative adversarial networks (GANs) for speech enhancement and singing

voice separation. It is based on the idea that GANs are useful for domain translations.

The fundamental concept behind a GAN is that it is composed of a generator which

finds an estimated output and a discriminator which takes the estimated output and

the ground truth data to adjust the weights. [5] considers MSS as a domain translation

because it is a translation between two spectrogram domains, the total spectrogram

and the separated spectrograms.

Figure 2.8: Spec2Spec Architecture [5]

13

In this structure, the generator is made of an encoder and decoder which are both

composed of convolutional layers. There is a skip connection between the encoder and

decoder stages which allows different levels of feature extraction during encoding and

the reuse of these features in decoding. Each layer in the generator uses Leaky ReLU

as the activation function and has a set of batch normalization. The discriminator

step has convolutional layers with Leaky ReLU also, but does not have an activation

on the output. Since there is no nonlinear function on the output, the output is a

matrix. This network was tested on the DSD100 dataset, which is a dataset of 100

songs split into 50 for training and 50 for testing, and it performed similarly to state-

of-the-art methods in terms of signal-to-distortion ratio and other common metrics

[5]. The architecture for Spec2Spec is shown in Figure 2.8.

2.3.1.4 Open-Unmix

Figure 2.9: Open-Unmix Architecture [6]

Figure 2.9 shows Open-Unmix (UMX) which is an open source project for MSS that

aims to make state-of-the-art MSS techniques available to all researchers. This project

is an open source tool that is simple to extend, not packaged, and hackable. UMX is

also reproducible through shared code, use of pre-trained models, and testing. The

structure of the network is a bidirectional LSTM and when tested on the MUSDB18

dataset, the network performs at state-of-the-art levels [6]. UMX offers two different

14

preprocessing pipelines for the neural network. The first pipeline computes the STFT

on the fly which takes more processing for each set of training iterations (epoch). The

second pipeline option is to precompute the magnitude spectrograms and input them

directly into the neural network. This second option is ideal because the overall

training of the architecture will take less time.

2.3.2 Waveform Domain Methods

Time-frequency domain methods for source separation have been used more widely

than waveform domain methods. This is because there are multiple advantages to

using spectrograms for source separation. Spectrograms have properties such as the

sparsity and structure that can make the challenge of source separation much easier,

but at the cost of computation [14]. Converting to the spectrogram domain requires

taking the STFT before separation and then performing the inverse STFT (ISTFT)

after separation. Since this takes up computational power, finding a way to per-

form source separation directly on the waveform is a particularly interesting problem

for researchers. In addition to saving on computational power, operating directly on

the waveform avoids any loss of information in reconstructing the waveforms from the

spectrograms of separated sources. Up until recently, waveform domain methods have

not performed comparably with spectrogram domain methods, but more recent de-

velopments in using deep learning for separation in the waveform domain, have made

systems that are comparable to state-of-the-art MSS methods. Waveform domain

methods work by exchanging the STFT step that is found in spectrogram domain

methods, with a feature extraction step. After the feature extraction, the waveform

is sent into the neural network and processing is done directly on the waveform [7].

15

2.3.2.1 Conv-TasNet

Conv-TasNet (convolutional time-domain audio separation network) is one of the

most widely recognized state-of-the-art speech separation systems and one of the

first waveform domain systems to outperform spectrogram domain methods. Conv-

TasNet is based on LSTM-TasNet which uses a TasNet and LSTM network in series.

The structure of a TasNet network is a convolutional encoder-decoder architecture

where the encoder has a non-negativity constraint on the output and the decoder

is a linear decoder that inverts the encoder output to obtain a sound waveform.

The overall architecture of this system uses three stages: encoder, separation, and

decoder. Conv-TasNet takes a different approach than an LSTM-TasNet because it

uses 1-D convolutional blocks for the separation step instead of an LSTM network.

Using 1-D convolutional blocks allows for parallel processing and therefore better

speed and a smaller model size. Conv-TasNet was tested and trained on a speech

separation dataset and when compared with spectrogram domain methods, it often

outperformed. Although this system is not a MSS specific system, it is the basis for

the state-of-the-art waveform domain methods [7].

Figure 2.10: Conv-TasNet Architecture [7]

16

2.3.2.2 Demucs

The Demucs architecture for source separation in the waveform domain is one of the

first MSS approaches in the waveform domain that performs similarly to or outper-

forms spectrogram domain methods. This architecture is inspired by music synthesis

rather than masking methods that are employed on spectrogram domain methods.

The architecture, which is shown in Figure 2.11, is based on Conv-TasNet. Demucs

was developed by adapting Conv-TasNet for stereophonic MSS. This was done by

feeding the music sources into the network in eight second clips because Conv-TasNet

was designed for only small segments of audio. The network was also expanded by

Figure 2.11: Demucs Architecture [8]

increasing the kernel size of the convolutional encoder-decoder and increasing the

number of channels. Demucs also uses an LSTM network for the separation step and

includes skip connections. The encoder is made of L stacked convolutional blocks

which contain an input with ReLU activation on the output followed by a convolu-

tion with a gated linear unit activation. The decoder works to inverse the encoder

17

to bring back the sound waveforms. In reconstructing the individual waveforms, the

skip connection is very helpful because it provides phase information from the original

signal. The skip connections are connections from the encoder to decoder steps with

the same indices. Demucs was evaluated on the MUSDB18 dataset and it was able

to perform with state-of-the-art results. Demucs outperformed spectrogram domain

methods in the bass and drums categories [8].

2.3.3 Hybrid Domain Methods

In addition to spectrogram domain and waveform domain methods, another major

category in MSS is hybrid approaches. Hybrid methods make use of both spectro-

grams and the original waveforms and are often able to outperform methods in the

individual domains.

2.3.3.1 Bridging Networks

Bridging networks address two major issues that appear in many MSS approaches.

The first being that most methods only consider the time domain or frequency domain

versions of the original waveform, but not both. Using both gives more information

to the neural network and therefore results in better source estimations. The second

issue is that many methods do not consider mutual influence in the output sources

because the loss functions are applied independently to each source.

In [9] Sawata et al. propose two new loss functions, multi-domain loss and combina-

tion loss, in order to address common issues. The multi-domain loss appends either

a STFT or ISTFT layer after the neural network during training and then calculates

the loss before and after that layer. This loss is shown in Figure 2.12 below. The extra

layer is only appended during training. The loss is calculated by taking the mean

18

squared error (MSE) loss between the ground truth spectrogram and the estimated

spectrogram in the frequency domain and adding it with a scaled signal to distortion

ratio in the time domain. The scaling factor used for this approach was α = 10.

Figure 2.12: Example of appended layers [9]

Combination loss considers the relationship among the output sources by producing

output spectrograms for combinations of the output sources. This means two or

more estimated spectrograms can be combined to try and find correlated errors from

leakage. If two sources contain leakage from the same source, the common loss will

be easier to identify by combining the output masks.

These new loss functions were tested on the Open-Unmix architecture during training.

Since the loss functions proposed only need to be added during training, they can

be useful for any MSS deep learning architecture. In addition to adding the loss

function, this approach also proposed adding bridging networks to the Open-Unmix

architecture. This is done by connecting the paths to cross each source’s network

and applying an averaging operator. With these additions, the proposed network is

called CrossNet Open-Unmix. When tested on the MusDB18 dataset, the CrossNet

outperformed the results from the initial Open-Unmix network [9].

19

2.3.3.2 Hybrid Demucs

Hybrid Demucs is an expansion upon the original Demucs architecture which performs

separation using the frequency and time domain [10]. This architecture consists of a

temporal branch, spectral branch, and shared layers. The temporal branch performs

waveform processing similar to the Demucs architecture. The spectral branch uses the

STFT to convert to a spectrogram and then uses the same number of convolutional

layers as the temporal branch to downsample the spectrogram into one frequency

bin. The spectral layer does this through frequency-wise convolution and division

of the number of frequency bins with every layer. After both branches have been

downsampled in their encoder steps, they are summed and passed through an encoder

and decoder layer which produces outputs for both branches. Finally, both outputs

Figure 2.13: Hybrid Demucs Architecture [10]

are passed through their respective decoder layers and the ISTFT is performed on

20

the spectral branch to obtain the final source waveforms. The architecture for Hybrid

Demucs is shown in Figure 2.13.

This network was tested against other networks and it outperformed other networks

in the drums and bass sources, while still performing at state-of-the-art levels for

vocals and the ”other” category [10].

2.4 Source Panning Parameter Estimation

An important step in creating the visualization from the separated sources is esti-

mating the panning parameter of the source to find its relative horizontal location.

In many MSS applications that do not utilize deep learning, source panning parame-

ter estimation can be helpful for approximating and separating the sources [22] [23].

Source panning parameter estimation can also be helpful post-separation for visual-

ization purposes. Using source panning parameter estimation for visualizations can

help to recreate the phantom image that listeners hear in stereo music recordings.

Figure 2.14 shows where the placement of the phantom image will fall if the left

and right speakers are at equal volume levels and the listener is in the middle of the

horizontal plane. If the listener moves from the center of the horizontal plane, the

phantom image will also move in that direction. When estimating the source panning

parameter, the listener is assumed to be in the center of the horizontal plane.

In many DAW applications, the panning is applied using a panning potentiometer

which can adjust the panning for the source from left to right. The potentiometer

has panning locations from 0 to 180 degrees which respectively aligns with hard left

panning to hard right panning. When a panning potentiometer is used, the sine/cosine

law is applied to the right and left channels in order to shift the phantom image of the

21

Figure 2.14: Phantom Image Illustration [11]

music. The equations for finding the right and left channel signals in the creation of

stereo audio are shown in Equation 2.1 and Equation 2.2 respectively where w stands

for the panning potentiometer location.

Left Signal = cos(w) ∗ Input Signal (2.1)

Right Signal = sin(w) ∗ Input Signal (2.2)

Rearranging these equations, the panning potentiometer location can be found with

Equation 2.3. This equation assumes constant acoustic power across the two channels

[22] [11].

θ = arctan

(
Right Signal

Left Signal

)
(2.3)

22

2.4.1 Constant Power Panning Law

In order to derive Equation 2.3, the constant power law is assumed. The constant

power law says that in audio, the total power of the channels does not change as

the panning parameter is varied. The constant power panning law assures that the

perceived volume of the listener stays consistent regardless of panning [24].

2.5 Pitch Detection

Pitch detection is a large area of study in the field of MIR. The pitch or fundamental

frequency is the rate at which an instrument or vocal chords vibrates. The pitch of an

instrument or singing voice is a quality which reflects the highness or lowness of that

sound’s frequency; and utilizes a critical feature for creating meaningful visualizations

to augment the understanding and experience of music.

2.5.1 Pitch Ranges

Typically, the fundamental frequency of male voices will range from 55 Hz to 131 Hz

and female voices will range from 170 Hz to 262 Hz. Instruments have a much larger

fundamental frequency range which can go from 16 Hz all the way to 4 kHz. Overall,

most fundamental frequencies will fall in the range of 50 Hz to 1000 Hz so these are

the frequencies that are typically focused on for musical pitch detection algorithms

[25].

23

2.5.2 Pitch Detection Algorithms

Pitch detection is widely considered a thoroughly investigated problem in the field

of MIR so there are many different solutions for pitch detection. This thesis will

cover some of the most popular pitch detection algorithms and highlight their key

differences.

2.5.2.1 Autocorrelation Method

The autocorrelation method for pitch detection is a very popular and accurate algo-

rithm. The autocorrelation method has been studied for years and is included in most

comparative studies such as in [26] [27] [28]. This method cross correlates the signal

with itself for a frame of samples and examines the resulting peaks. Autocorrelation

is a two-sided function so the result from the cross correlation will range from -W

to W, with W being the window length. The global maximum will always be in the

center at n = 0 (zero lag between the signal and itself) and additional local maxima

will appear at multiples of the signal’s period. The distance to the first maxima from

the zero-lag center represents the fundamental period of the signal and the inverse

of this value is the fundamental frequency that defines the pitch. Picking the correct

peak from the autocorrelation results can often be difficult, so many methods use a

threshold to eliminate extra peaks from noise [29]. The function for computing auto-

correlation is shown in Equation 2.4. W is the window length and the autocorrelation

is computed by multiplying the signal by a shifted version of itself. The results are

then summed to get the autocorrelation value at that index.

r[n] =
W∑
n=0

x[n]x[n+W] W = 0, 1, 2, ...,W (2.4)

24

2.5.2.2 Square Difference Function

The square difference function (SDF) algorithm uses the characteristic of music signals

that if a signal is pseudo-periodic, any two adjacent periods of the waveform will be

similar in shape so shifting the signal by one period should result in the peaks lining

up. After the peaks are in line the difference between the peaks can be taken to

find the fundamental periods. However, since music signals can have negative values,

taking the square of the difference will ensure only non-negative values are added to

the sum. For each window that the function is applied to, the first local minima is

found and used as the fundamental period [28]. The equation for SDF is shown in

Equation 2.5. Each version of the signal is subtracted by a circularly shifted version

of itself and squared. Then each window is summed to find the SDF value.

r[n] =
W∑
n=0

(x[n]− x[n−W])2 W = 0, 1, 2, ...,W (2.5)

2.5.2.3 Average Magnitude Difference Function

The average magnitude difference function (AMDF) [30] follows the same idea that the

square difference function does except instead of taking the square of the difference,

this function takes the absolute value of the difference. This results in similar pitch

values but has a less harsh penalty for when the peaks do not line up perfectly. This

function also uses the local minima to find the fundamental period of the signal [27].

Equation 2.6 shows the AMDF. Each time the window is shifted the signal and the

shifted version are subtracted and the absolute value is taken. The AMDF value for

25

each index is the average of the values from the subtraction.

r[n] =
1

W

W∑
n=0

|x[n]− x[n−W]| W = 0, 1, 2, ...,W (2.6)

2.5.2.4 Cepstrum Method

The Cepstrum method for pitch detection [31] is a frequency domain approach to pitch

detection which is focused on detection for voiced speech. We can assume that most

voiced speech sounds are convolved with a vocal tract filter so this algorithm is often

used in speech processing applications [29]. This method tends to be very accurate

but is more computationally expensive because it requires the Fourier transform to be

taken. This algorithm works by moving the signal to the Fourier domain by taking the

Fast Fourier Transform (FFT). The FFT is then converted to a logarithmic scale and

converted back to the time domain using the inverse Fast Fourier Transform (iFFT).

This Cepstrum in the time domain will have peaks corresponding to the fundamental

period of the signal and these peaks are used to find the fundamental frequency [29].

Equations 2.7, 2.8, and 2.9 show the calculation for the Cepstrum. H is the vocal tract

filter and S is the original signal, both in the frequency domain. These are multiplied

together and then the log is applied to find the Cepstrum. This will produce multiple

small peaks spaced along the frequency axis and they will occur at multiples of the

fundamental frequency.

X(f) = S(f)H(f) (2.7)

log(X(f)) = log(S(f)H(f)) (2.8)

log(X(f)) = log(S(f)) + log(H(f)) (2.9)

26

2.6 Loudness

Loudness is a perceptual concept which is influenced by frequency. Listeners tend

to hear higher frequencies as louder and lower frequencies as quieter when at equal

loudness [24]. This is demonstrated by the equal loudness contours shown in Figure

2.2. In applications which read in the audio, the amplitude is normalized in the range

of -1 to 1. The amplitude can be used as a reference for how loud the source will

sound to the listener. An example of the right and left sides of an audio sample are

shown in Figure 2.15.

Figure 2.15: Example of Two Waveforms of a Stero Audio Sample

2.7 Music Visualization

Music visualization uses computer graphics to represent a musical performance. Many

approaches for music visualization use the original score or performance information to

27

create a visualization [32]. Visualization allows users to understand patterns within

music and extract further understanding of a musical piece. Music visualization

techniques can be broken up by the type of input data that is used for the system.

Techniques will either take the MIDI information, audio signal, or other inputs [12].

Since this thesis is concerned with recorded audio, the input that this research is

focused on is stereo audio signal input. The MIDI input requires information from

the digital audio workstation which is not always available to users. In addition

to the type of input, music visualizations also choose some features to focus on for

the visualization. These features can include but are not limited to: pitch, timbre,

structure, harmony, panning, melody, and mood. These features can be translated

into visualizations through different techniques that use color, shapes, line graphs,

and other visual aids to deepen the understanding of the music [12]. Pitch detection,

panning parameter estimation, and loudness were outlined in sections above and can

be used for the basis of a visualization. The section below will explore the relationships

between music with color.

2.7.1 Music and Color

The relationship between color and music has been theorized about since early human

history. In ancient Greece the colors of the rainbow were associated with different

musical notes [12]. One of the most commonly referenced phenomenon that explores

the relationship between music and color is music-color synesthesia. Music-color

synesthesia is a condition where the listener hears a color along with hearing the

sound [33]. However, people with or without synesthesia still tend to associate certain

parts of music with visual or spatial experiences. One connection between music and

color is linked with emotion. Emotion can be connected to both music and color and

studies have shown that these close connections can cause associations between music

28

and color in non-synesthetes [33]. In general, higher pitches tend to be associated

lighter colors while lower pitches tend to be associated with darker colors. In an

experiment on music-color associations for nonsynesthetes, participants were asked

to choose colors based on a musical piece and the results show a correlation between

music, color, and emotion [34]. Some approaches to colored musical visualizations

associate specific notes with different colors, while others use color to represent a

combination of tones [12].

29

Chapter 3

INVESTIGATION

Many different types of music visualization systems have been proposed with different

input types, processing of the signals, and visualization styles. This project aims to

incorporate state-of-the-art music source separation techniques into a music visual-

ization system in order to produce visualizations that can summarize how key musical

elements combine into a holistic experience of a song. Most music visualization sys-

tems that decompose the different music sources of a song into parts have access

to the digital audio workstation files. However, this project aims for an end-to-end

visualization that allows users to work with any song and visualize it.

This chapter will describe the goals, constraints, and assumptions of the project. The

chapter will also go into the investigation that was conducted into the different signals

processing techniques that were considered for the project.

3.1 Goals

The goals of this project were defined and used to guide the creation of the music

visualization system. The goals for this project are as follows:

1. The system must be end-to-end so that a user can input a song and a visualization

will be produced.

2. The source separation must be accurate in order to inform the pitch detection

properly.

30

3. The pitch detection algorithm must be robust and able to accurately predict the

pitch even in the presence of noise.

4. The source localization technique must align with the correct panning parameters.

5. The visualization should help increase user understanding of music, particularly

how pitch, panning, and loudness affect a song.

3.2 Constraints and Assumptions

A few constraints and assumptions were made to create the overall visualization sys-

tem. The main constraint was maintaining a reasonable processing time for rendering

a video for a full-length song. Since music source separation and video rendering can

each require large amounts of time to complete, the total processing time should be

kept at a minimum to make the system more useable. There were also a few assump-

tions made to inform the pitch detection and localization techniques. The localiza-

tion technique assumes that the audio was panned between channels using a panning

potentiometer, so that the horizontal source location is determined by amplitude

difference between channels rather than arrival time differences. The pitch detec-

tion algorithm does not account for any frequencies above 1000 Hz, since note pitch

fundamental frequencies for instruments and singing voices fall below this threshold.

3.3 Investigation of Music Source Separation Techniques

3.3.1 Signal-to-Distortion Ratio

Signal to distortion ratio (SDR) is the most commonly used metric to evaluate music

source separation networks. The equation for signal distortion ratio is shown in

31

Equation 3.1. Here, s(n) denotes the original signal and ŝ(n) denotes the separated

signal. Where s(n)-ŝ(n) is the error from all types of distortion including interference,

noise, and artifacts. A small constant ϵ is also added to avoid zero divisions.

SDR = 10 log10

∑
n ||s(n)||2 + ϵ∑

n ||s(n)− ŝ(n)||2 + ϵ
(3.1)

The signal to distortion ratio can be calculated using test data for each source that

the source separation network separates.

3.3.2 MUSDB18 Dataset

The MUSDB18 [13] dataset consists of 150 full length tracks along with their isolated

sources. The isolated sources are separated into four groups: vocals, bass, drums,

and other. All of the signals from this dataset are stereophonic mixtures and have a

sampling rate of 44.1 kHz which is typical for audio signals. The MUSDB18 dataset

is made of compressed stems which need to be decoded for use. There are multiple

parsers provided on the MUSDB18 website to decode and iterate over the dataset.

3.3.3 Music Source Separation Preprocessing and Training

For spectrogram and hybrid domain MSS methods, the main preprocessing step for

the neural network is computing the STFT spectrograms. For stereophonic MSS

methods, this means computing the individual spectrograms for both channels of the

audio. It is helpful to precompute all the spectrograms before beginning training

in order to reduce the required computing power during training. Figure 3.1 and

Figure 3.2 show the spectrograms for each channel of the same example song from

the MUSDB18 dataset.

32

Figure 3.1: Channel 1 Spectrogram

Figure 3.2: Channel 2 Spectrogram

For spectrogram domain MSS methods, the input into the network is typically both

spectrograms of the two audio channels. The network produces a mask that can

be applied to the magnitude spectrum to isolate each source’s contribution to the

33

spectrum. Each mask is first initialized and the network is then trained to try and

create a mask that will isolate the correct spectrogram for all examples from one

source class. The spectrograms that are output from the network are applied to the

spectrogram magnitudes, and converted back to the time domain using inverse STFTs

computed from the masked magnitude spectrograms and the phase information from

the original (non-separated) spectrogram.

3.3.4 Music Source Separation Comparison

The Signal Separation Evaluation Campaign (SiSEC) has been comparing state-of-

the-art MSS systems since 2008 [35]. SiSEC regularly reports on the progress in

the source separation community and last published its findings in 2018. The Music

Demixing (MDX) Challenge 2021 [36] is the follow up to the SiSEC in the profession-

ally produced music (MUS) separation task. SiSEC 2018 and the MDX challenge use

the MUSDB18 dataset for comparison although they vary in their selection of met-

rics for evaluation. The SiSEC uses signal-to-distortion ratio (SDR), signal-to-artifact

ratio (SAR), signal-to-interference ratio (SIR), and image-to-spatial distortion ratio

(ISR) from the BSS Eval toolbox [37]. The MDX challenge only uses SDR for evalu-

ation of the state-of-the-art methods. In the MDX challenge, the individual source’s

SDRs are averaged to find the overall song SDR. Since SDR includes all types of

distortion, it is the most general metric for comparing MSS approaches.

Table 3.1 above summarizes the SDR values for the techniques discussed in the lit-

erature review section of this thesis. These values were obtained from reports in the

academic papers describing each of these architectures. The SDRsong values were

calculated by averaging the four sources values. When comparing different state-of-

the-art architectures for MSS, the Hybrid Demucs approach shows the best SDR in

34

Table 3.1: Summary of Music Source Separation Technique Metrics

Method Training Set SDRsong SDRbass SDRdrums SDRother SDRvocals

MMDLSTM MUSDB18 5.42 5.19 6.62 4.93 4.94
PSHN DSD100 3.78 2.35 4.52 2.55 5.70

Open-Unmix MUSDB18 5.325 5.23 5.73 4.02 6.32
Demucs MUSDB18 6.7575 7.01 6.86 5.19 7.97

H-Demucs MUSDB18 7.33 8.12 8.04 5.19 7.97

every category. The SDR is an important consideration for this project because too

much distortion can cause the pitch detection algorithm to produce erratic results.

In addition to examining SDR, some other important metrics to consider are model

size and training time. Source separation models in the spectrogram domain require

more preprocessing because the STFT needs to be performed on the inputs. Hy-

brid domain methods also have very large model sizes because they utilize multiple

branches (both spectrogram and waveform processing).

Without a powerful Graphics Processing Unit (GPU) available, training times can be

quite long, so using a pre-trained neural network is ideal. Additionally, models for

MSS need to be trained for each source, which means training the model and saving

the final weights four times. In [8], the training times for a few of the state-of-the-art

MSS neural networks are compared. This study used a GPU for training and found

that open-unmix takes about 0.2 seconds per training batch and demucs takes 1.4

seconds per training batch. In a comparative study on neural networks trained on

standard CPUs and GPUs [38], it was found that GPUs consistently complete training

faster than CPUs. In some cases from this study, the GPU performed training four

to five times faster than the CPU.

35

3.4 Investigation of Pitch Detection Techniques

3.4.1 Averaging Channels

Since the input to this project is a stereophonic music file and the algorithms that

were implemented require one channel of information, the channels of the stereo-

phonic recordings are averaged at each sample. These single-channeled versions of

the recordings are used for all the pitch detection in this thesis.

3.4.2 MDB-melody-synth Dataset

The MDB-melody-synth dataset [39] consists of 65 full length songs in which the

melody track has be re-synthesized to contain perfect fundamental frequency (f0)

annotation. The dataset consists of three folders containing the original mix, resyn-

thesized mix, and the annotations for the resynthesized mix. This dataset is ideal for

testing automatic pitch detection methods because the accuracy can be checked with

the annotations.

3.4.3 Applying a Window Function

For each pitch detection method, the audio is split up into segments the size of the

window defined by the user. Since these audio segments contain a large set of samples,

the hop size between one segment and the next is less than the window size in order

to have some overlap and avoid missing information. The most important part of this

window is the center, so applying a windowing function can help eliminate some of

the less important information from the window and reduce edge effects and spectral

leakage. Figure 3.3 shows a Hamming window of length 2048.

36

Figure 3.3: Hamming Window With W=2048

Applying the Hamming window function to the audio segment results in tapering of

the audio. An example of the audio with and without the window function is shown

in Figure 3.4. This demonstrates how the window function emphasizes the center

part of the sampled audio. The original audio waveform is shown in orange and the

windowed waveform is shown in blue.

3.4.4 Autocorrelation

The autocorrelation method for pitch detection was implemented in MATLAB. The

general flow diagram for this algorithm is shown in Figure 3.5. First, the song is seg-

mented into sections with the length equal to the chosen window size. Each segment

has a window function applied to it and then the autocorrelation is performed. After

37

Figure 3.4: Audio With and Without Hamming Window Applied

the autocorrelation is performed, the index of the first peak is found and the funda-

mental frequency is calculated with this from the index of this first peak relative to

the zero-lag position. The equations for finding the fundamental frequency are shown

in Equation 3.2 and Equation 3.3.

Fundamental Period T =
Autocorrelation Peak Index (samples)

Sampling Rate (samples/sec)
(3.2)

Fundamental Frequency f0 =
1

T
(3.3)

Figure 3.6 shows the result of the autocorrelation function for one window of the

audio. The autocorrelation function is two-sided, so the first peak is picked from

those occuring after zero lag and the center peak is ignored. In this case, the first

peak is at index 178 so the fundamental frequency can be found as shown in Equation

38

Figure 3.5: Autocorrelation Code Flowchart

3.4. The pointer is then increased by the hop size which is usually half of the window

size in order to have 50 percent overlap. This process is continued until the end of

the audio has been reached. It is important to note that the window size affects the

minimum fundamental frequency that can be found. Since the window size determines

the largest possible index in the autocorrelation, the smallest fundamental frequency

possible is the sampling rate divided by the window size. If the window size is 2048,

the lowest fundamental frequency that can be found is 44100
2048

= 21.5332 Hz. This is a

sufficiently low frequency for music pitch detection because humans can only detect

frequencies from about 20 Hz - 20 kHz [40].

39

Figure 3.6: Autocorrelation of Audio Window

For this audio sample the sampling frequency is 44100 Hz, which is a typical sampling

frequency for music.

Fundamental Frequency =
Sampling Frequency

Index of First Peak
=

44100Hz

178
= 247.7528 Hz

(3.4)

3.4.5 Average Magnitude Difference Function

The average magnitude difference function (AMDF) was also implemented in MAT-

LAB and tested on the same audio segment as the autocorrelation function. For the

implementation, the difference is calculated between the original windowed segment

40

and the circular shifted version of that windowed segment. The flowchart for the

AMDF is shown in Figure 3.7.

Figure 3.7: AMDF Code Flowchart

For the AMDF and SDF approaches the first local minimum is chosen for the index

because these algorithms are checking for when the error between the periodic signals

is the lowest. When tested on the same audio segment, the same index for the first

local minimum was found for the autocorrelation, AMDF, and SDF approaches; and

these matches the first peak index when the autocorrelation method was used. Figure

3.8 shows the result of applying the AMDF to one window. Equation 3.5 shows the

calculation of the fundamental frequency for the AMDF result shown in Figure 3.8.

41

Figure 3.8: AMDF of Audio Window

Fundamental Frequency =
Sampling Frequency

Index of First Peak
=

44100Hz

178
= 247.7528 Hz

(3.5)

3.4.6 Square Difference Function

The square difference function (SDF) was implemented in MATLAB on the same

audio segment as the other pitch detection algorithms shown above. This function is

very similar to AMDF, but differences in the audio and its shifted version are more

penalized. This can be seen in Figure 3.10 because the local minimums reach much

lower values than in the AMDF implementation. This can be good for more periodic

signals, but can have negative effects on less periodic signals because the local minima

for less periodic signals will be less distinct. The flowchart for the SDF algorithm is

42

shown in Figure 3.9 and is very similar to the AMDF implementation with the main

difference being taking the square of the difference.

Figure 3.9: SDF Code Flowchart

Figure 3.10 shows the result of the square difference function on the same audio

segment. The same first local minimum index is found in this implementation as in

the the previous ones and the calculation for the fundamental frequency is shown in

Equation 3.6.

Fundamental Frequency =
Sampling Frequency

Index of First Peak
=

44100Hz

178
= 247.7528 Hz

(3.6)

43

Figure 3.10: SDF of Audio Window

3.4.7 Pitch Detection Comparison

All three pitch detection algorithms that were implemented were tested on the MDB

Melody Synth Dataset and the results are shown in the Table 3.2. The metrics were

found by testing each algorithm on every song in the resynthesized part of the Melody

Synth Dataset and then taking the average value. The algorithms were also tested

for the amount of time to process one three minute duration song. The results show

that the autocorrelation approach takes the least amount of time and achieves the

highest accuracy.

44

Table 3.2: Summary of Pitch Detection Technique Metrics
Metric Autocorrelation AMDF SDF

Average Percent Error 19.197% 27.3162% 30.8701%
Average Mean Absolute Error 31.7619 50.5618 58.7203

Average RMS Error 327.1112 265.4312 289.1156
Average MS Error 1.8264e+05 9.6700e+04 1.1102e+05
Run time (1 song) 2.315 s 14.791 s 15.251 s

45

Chapter 4

APPROACH

This chapter discusses the specific approach to creating the proposed music visual-

ization system. The following sections will also discuss all considerations made and

limitations encountered when deciding on methods for each element of the project.

4.1 System Overview

The overall music visualization system is shown in Figure 4.1. The input to the

system is a music file and the output is a visual of that music file. In between the

input and output, MSS and visualization creation occur.

Figure 4.1: System Overview

The visualizer step for one file is also broken down further in Figure 4.2 which shows

the processes performed on each separated file. The visualizer takes in all four sepa-

rated source music files and processes them at the same time. Each file is broken up

into segments and the segments are iterated through. For each segment, the pitch,

46

panning parameter, and average loudness is found and these metrics are used to cre-

ate a visualization frame. The frame found from the segment of music is then added

to the video file and the visualizer checks if the end of the audio has been reached.

The output of the visualizer is the 1000x1000 pixels visualization video file.

Figure 4.2: Visualizer Overview for One File

4.2 Music File Formats

Music file formats can be broken up into lossless and lossy file types. The most

popular lossless audio formats are AIF and WAV files. The most common lossy audio

format is MP3 because it maintains a good quality of sound while having a small

file size [41]. For most open source MSS applications, the input accepts any type of

music file format and outputs WAV files.

4.2.1 Sampling Rates

Every digital audio file has a sampling rate associated with the recording. Files

produced with DAWs are often sampled at 44.1 kHz or 48 kHz. This project assumes

a sampling rate of 44.1 kHz because this sampling rate is used for the output of the

MSS network.

47

4.3 Music Source Separation

For the MSS part of the project, multiple methods for obtaining separated source

files were attempted. The following sections outline the two main approaches for the

MSS problem and highlights some of the pros and cons of each method. Based on the

comparisons done in Section 3 of this thesis, the Hybrid Demucs method was chosen

for the MSS tool because of its high SDR values across the different categories.

4.3.1 Pretrained Neural Networks

Many of the state-of-the-art approaches to MSS are open source projects which pro-

vide researchers with pretrained deep neural networks. Having access to the weights

from a pretrained neural network is advantageous for multiple reasons. The main ad-

vantage is that state-of-the-art results can be achieved without the large amounts of

processing power necessary to train a large and accurate neural network. Open source

solutions also come with wrappers which will define and perform the preprocessing

steps to the neural network. Each open source approach requires users to download

the wrappers and dependencies, but these can be avoided by using cloud computing

solutions such as Google Colab.

4.3.2 Retraining Networks

Another option that was considered for the MSS portion was retraining a state-of-

the-art neural network with new parameters. The main problem posed by this option

is the need for considerable computing power. Training neural networks on GPUs

can decrease the training time significantly; but without those resources, the revised

neural network will take much longer to train and may not be able to achieve the same

48

results. Using open source projects provides access to a neural network trained by

high powered computers and without those training resources, retraining the network

will likely not yield state-of-the-art results.

4.4 Pitch Detection

For the pitch detection of each separated source, the stereophonic channels were

averaged into a monophonic waveform. The pitch detection algorithm chosen for the

final implementation was the autocorrelation algorithm with a window size of 2048.

This was chosen for its high accuracy and low processing time. Some modifications

were made to the algorithm to improve the accuracy. For the pitch detection algorithm

to be accurate, some checks needed to be added to throw out inaccurate results from

bad segments of audio. The first such issue arises when the audio segment is silent

for more than half of the window time. This caused the autocorrelation result to be

very noisy and the peaks selected were often incorrect, resulting in overly high pitch

frequency estimates. Figure 4.3 shows the result of performing autocorrelation on a

signal that is silent for more than half of the samples. The autocorrelation signal has

a large amount of noise on it and this results in the incorrect peak being chosen.

Figure 4.4 shows a zoomed in view of the waveform shown in Figure 4.3. The labels

demonstrate the actual index that should be picked for the pitch detection (index

= 128) and the first peak caused by noise (index = 5). In order to avoid incorrect

peak picking from silent segments, the pitches resulting from these segments are set

to zero.

Removing audio segments with more than 50% silence helped to eliminate some major

outliers in the pitch detection algorithm, but some other outliers were still present.

Some of the autocorrelation results were very far from the annotated value because of

49

Figure 4.3: Autocorrelation Result With > 50% Silence

Figure 4.4: Zoomed Version of Figure 4.3

noise not caused by silence. These outliers were handled by adding a one-dimensional

20th order median filter to the autocorrelation results. The order of the filter was

50

chosen empirically through testing erroneous and normal autocorrelations with differ-

ent median filter lengths. An example of a waveform that would produce an incorrect

pitch estimation with a median filter applied is shown in Figure 4.5.

Figure 4.5: Filtered vs Unfiltered Autocorrelation Results

Figure 4.6 shows the center and first peaks zoomed in. This demonstrates how having

noise in the autocorrelation can result in incorrect peaks being picked for the pitch

estimate. In this case, without the median filter the first peak will be at index 5

which would result in a pitch of 44100
5

= 8820Hz. 8820 Hz is well out of the range of

instruments that would be in a typical mix for a song. In fact, fundamental frequencies

above 8 kHz are often considered extended high frequencies and are used primarily

to test for hearing loss [42]. With the median filter applied, the first peak will be at

index 153 so the pitch estimation will be 44100
153

= 288.2353Hz. This pitch is much

more reasonable so the median filter was an effective solution for eliminating outliers.

51

Figure 4.6: Zoomed Version of Figure 4.5

4.5 Localization

The localization algorithm discussed in Section 2.4 was implemented to predict the

panning parameters for the different audio files. In order avoid the location estimation

from moving erratically, the following adjustments were made. The first adjustment

assumes that the panning parameter does not change as often as other characteristics

such as pitch. The window size of the panning parameter estimation was set to 10240

samples which checks the location every five pitch windows. The second adjustment

was made to fit the localization values to the visualization. Since the output visu-

alization video is 1000x1000 pixels and the localization parameter ranges from 0-180

degrees, the localization angle values were re-mapped to image pixel positions in the

range 0 to 1000.

52

4.6 Loudness Approximation

Approximating the loudness for each track in the song consisted of summing the

absolute values of the channels. This assumes that the constant power panning law is

applied to the stereophonic mixture. The absolute value of the left and right channels

will be relative to the total power [24]. This provides the visualization with a good

quantitative representation of the loudness.

4.7 Visualization

The visualization was implemented using the results from the pitch detection, local-

ization, and loudness approximation for each of the tracks resulting from the MSS.

The original sketch for the visualization idea is shown in Figure 4.7. The placement of

each dot on the x-axis is defined by its panning parameter estimation and the y-axis

location is defined by the pitch. The diameter of the circles are adjusted based on

the loudness during that frame.

The visualization was compiled in MATLAB [43] using a blank black 1000x1000 image

and the InsertShape function. Each frame is made by taking the current pitches,

location, and loudness and translating these parameters to shapes. The audio is read

in using the audioRead function in MATLAB and it is important to note that this

function normalizes the audio between -1 and 1. As a result of this, when the average

loudness for each frame is computed, the values are very small compared to the scale

of the video. To remedy this, the average loudness in each frame is multiplied by 500.

The frame rate chosen for the project is 30 frames per second (fps).

53

Figure 4.7: Original Visualization Sketch

4.7.1 Visualization Colors

In order to incorporate some of the research on music and color, the visualization

allows users to pick the color of each of the sources. This allows users to have their

visualization tailored to how they interpret music and color. The visualization also

changes the shades of the colors to be slightly darker as the pitches get lower.

4.7.2 Video File Types

Using MATLAB also imposed some limitations on the file types. In order to create

a video from scratch on MATLAB, you have to use the VideoWriter function which

allows you to create a video by defining each frame in the video. The biggest issue

with this function is that it does not allow the user to add audio into the file. The

workaround in MATLAB for this issue is to use the VideoFileWriter function on the

54

already created video to add in the audio for each frame. This incurs unnecessary

additional processing time and power but is the only workaround available at this

time. The project was implemented on an Apple Macbook computer which meant

there were some limitations for file types that could be used. The VideoFileWriter

function allows users to output videos in AVI, MPEG4, or MJ2 format. On Apple

computers, MPEG4 is the ideal output type because it does not require any additional

downloads to play the video files. Unfortunately, the only way to write audio to a

file on MATLAB is to use an AVI file. The system outputs an AVI file, which

requires additional software downloads for Apple users to view the final product.

The workaround for this is using Handbrake [44] which is an open source tool for

video transcoding. This can be used to convert from AVI to MPEG4 files.

55

Chapter 5

RESULTS

This chapter will discuss the results from implementing the approach from Chapter

4 and outlines how the system can be used.

5.1 Music Source Separation

The MSS problem was approached two different ways: using a pretrained network

and training a predefined network. Using the pretrained neural network gave state-

of-the-art results in just a few minutes. When running the neural network on a CPU,

the source separation can execute in the same time as the length of the song for each

source.

Retraining a predefined neural network was also attempted, but could not be com-

pleted due to long training times. The training for a vocals neural network was

initiated with the intention of running for 300 epochs or until a low error was found.

The program was predicting around 300 hours of training time after just two epochs.

In an attempt to reduce the training time, the learning rate was increased from 0.001

to 0.1 and the number of epochs was decreased to 150. Even with these changes, the

training time on a CPU was still hundreds of hours and was not realistic for the scope

of this project.

56

5.1.1 Performing Source Separation Using a Pretrained

Neural Network

In order to perform source separation using a pretrained neural network, the user

needs to have the dependencies for the specific framework which are usually outlined

in the code repository. Once this is downloaded, the system can be called from a

terminal window. With Hybrid Demucs and all the dependencies installed, the user

can simply call Demucs from terminal followed by the mixture to be separated as

shown in Listing 5.1.

1 demucs "/Users/hannahchookaszian/MATLAB/Thesis/MUS/train/A Classic

Education - NightOwl/mixture.wav"

Listing 5.1: Calling Demucs in Terminal Example

5.2 Visualization

The visualization was put together in MATLAB and the results are best viewed in

video format. For this results section, some individual frames will be presented below.

Each visualization can be customized by changing the colors used to represent the

different source classes. Figure 5.1 shows the window that will appear to allow the

user to select the colors for the visualization.

The colors also get darker as the fundamental frequency decreases. Note that the

drums remain centered for every visualization because the pitches change very dras-

tically from frame to frame.

Figure 5.2 shows one frame from a visualization. From this frame, the user can see

that the vocals and bass are panned to the left while the ”other” source is panned

57

Figure 5.1: Color Selection For Visualization

Figure 5.2: Frame from Visualization

to the right. The pitches are also relatively low at this point in the song because the

colors are a slightly darker shade and the y-axis locations are low.

58

Figure 5.3: Frame from Visualization

Figure 5.3 shows another frame from the visualization of the same song. In this frame,

the drums and other sources are louder because their diameters are larger. The vocals

are also panned further to the right on the horizontal plane. Figure 5.4 shows a frame

from the visualization of the same song where the vocals are higher. At this point in

the song the fundamental frequency of the vocals is higher, so the circle representing

the vocals is moved up higher on the vertical axis.

It should also be mentioned that if a source is not present in the mix at an interval of

time it will not be in the visualization at that time. For example, Figure 5.5 shows a

frame from a visualization where only the ”other” source is contributing to the overall

mix. In this case the bass, drums, and vocals sources are not in the song at this time

and therefore do not appear in the visualization at this time.

Figure 5.6 shows a frame from a visualization where the song does not have any vocals

at that time.

59

Figure 5.4: Frame from Visualization With High Vocals

Figure 5.5: Frame from Visualization With Only ”other” Source Playing

Each visualization takes slightly longer than the length of the song to compile. For

instance, for a 5 minute 10 seconds song, the visualization took 390.768 seconds (6

minutes 30 seconds) to compile. The first attempt at the visualization required over

60

Figure 5.6: Frame from Visualization With ”vocals” Source Not Playing

30 hours to compile so this was an improvement over that, but this time can still be

improved further.

5.2.1 Creating a Visualization

Note that creating the visualization requires MATLAB to be downloaded. The func-

tion to run the visualization is called ”new visualization.m” and it requires the file

path for the mixture file (the same file that was separated) and the name of the

output file. The function assumes that the sources were separated using the Hybrid

Demucs source separation and will get the source files from the output of Demucs.

The function shown in Listing 5.2 should be run in MATLAB.

1 new_visualization ("/ Users/hannahchookaszian/MATLAB/Thesis/MUS/train/

A Classic Education - NightOwl/mixture.wav", "output ")

Listing 5.2: Creating a Visualization

61

Chapter 6

CONCLUSIONS

The goal of this thesis was to create a music visualization system which could take in

any song file and create a representation of the different sources within it. Overall,

the project was successful in creating a framework that can be used for visualizing

any desired stereophonic recording. This thesis focused on using MSS and its outputs

to create a unique visualization.

This thesis also reviewed different MSS methods and provides useful information

on how MSS neural networks are architected. This thesis gave an example of how

MSS can be used and explained in more detail what the inputs and outputs of MSS

networks are. Complicated neural networks can often be black boxes and this thesis

attempted to explain their structures and how they are trained.

One of the lessons learned from this thesis is the importance of comparing different

methods and approaches for both computing power and time involved in the process-

ing. One of the main issues that arose during this project was a lack of sufficient

computing power. Using remote computing power can be extremely helpful in these

situations and could have helped speed up training the MSS. Trying different pitch

detection methods also proved to be very helpful because the time differences in the

algorithms were quite substantial.

Overall, this thesis took a unique approach to music visualization and surveyed MSS

techniques. It works to help users understand how different sources interact in a song

together to create a musical piece.

62

6.1 Future Work

Future work on this project could take many different directions because this thesis

covers many different topics. The first of which is creating a custom MSS method

for this visualization system and attempting to extract more sources from each song.

This project could also be expanded by changing the visualization and incorporating

more music information into the overall visual. Employing a more sophisticated

computer animation system than Matlab’s simple shape insertion function could also

produce a more elaborate and possibly more engaging visualization. The algorithm

to create the visualization could also be optimized to reduce the processing time

and the computing power needed. Since the project currently uses both Python and

MATLAB, converting the code to use only one language would be helpful to create a

single package for the system.

63

BIBLIOGRAPHY

[1] M. Müller, Fundamentals of Music Processing: Audio, Analysis, Algorithms,

Applications. Springer International Publishing, 2015.

[2] K. Zhang, Y. Guo, X. Wang, J. Yuan, and Q. Ding, “Multiple feature reweight

densenet for image classification,” IEEE Access, vol. 7, pp. 9872–9880, 2019.

[3] N. Takahashi, N. Goswami, and Y. Mitsufuji, “Mmdenselstm: An efficient

combination of convolutional and recurrent neural networks for audio

source separation,” 2018.

[4] B. Bhattarai, Y. R. Pandeya, and J. Lee, “Parallel stacked hourglass network

for music source separation,” IEEE Access, vol. 8, pp. 206016–206027, 2020.

[5] H.-S. Choi, J. Lee, and K. Lee, “Spec2spec: Towards the general framework of

music processing using generative adversarial networks,” Acoustical Science

and Technology, vol. 41, no. 1, pp. 160–165, 2020.

[6] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-unmix - a

reference implementation for music source separation,” Journal of Open

Source Software, vol. 4, no. 41, p. 1667, 2019.

[7] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time–frequency

magnitude masking for speech separation,” IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 27, pp. 1256–1266, aug 2019.

[8] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music source separation in

the waveform domain,” 2019.

64

[9] R. Sawata, S. Uhlich, S. Takahashi, and Y. Mitsufuji, “All for one and one for

all: Improving music separation by bridging networks,” in ICASSP 2021 -

2021 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 51–55, 2021.

[10] A. Défossez, “Hybrid spectrogram and waveform source separation,” 2021.

[11] A. Roginska and P. Geluso, Immersive Sound: The Art and Science of Binaural

and Multi-Channel Audio. Audio Engineering Society Presents, Taylor &

Francis, 2017.

[12] H. B. Lima, C. G. R. D. Santos, and B. S. Meiguins, “A survey of music

visualization techniques,” ACM Comput. Surv., vol. 54, jul 2021.

[13] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The

MUSDB18 corpus for music separation,” Dec. 2017.

[14] E. Vincent, T. Virtanen, and S. Gannot, Audio Source Separation and Speech

Enhancement. Wiley, 2018.

[15] S. Mirzaei, H. Van Hamme, and Y. Norouzi, “Under-determined reverberant

audio source separation using bayesian non-negative matrix factorization,”

Speech Communication, vol. 81, pp. 129–137, 2016. Phase-Aware Signal

Processing in Speech Communication.

[16] D. FitzGerald, A. Liutkus, and R. Badeau, “Projet — spatial audio separation

using projections,” in 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 36–40, 2016.

[17] A. Liutkus, D. Fitzgerald, and R. Badeau, “Cauchy nonnegative matrix

factorization,” in 2015 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), pp. 1–5, IEEE, 2015.

65

[18] J. Le Roux, J. R. Hershey, and F. Weninger, “Deep nmf for speech separation,”

in 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 66–70, 2015.

[19] Y. Mitsufuji, S. Koyama, and H. Saruwatari, “Multichannel blind source

separation based on non-negative tensor factorization in wavenumber

domain,” in 2016 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 56–60, 2016.

[20] A. Liutkus, D. Fitzgerald, Z. Rafii, B. Pardo, and L. Daudet, “Kernel additive

models for source separation,” IEEE Transactions on Signal Processing,

vol. 62, no. 16, pp. 4298–4310, 2014.

[21] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long

short-term memory, fully connected deep neural networks,” in 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 4580–4584, 2015.

[22] A. S. Master, Stereo music source separation via Bayesian modeling. PhD

thesis, 2006. Copyright - Database copyright ProQuest LLC; ProQuest

does not claim copyright in the individual underlying works; Last updated -

2021-09-28.

[23] J. M. Hjerrild and M. G. Christensen, “Estimation of source panning

parameters and segmentation of stereophonic mixtures,” in 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 426–430, 2018.

[24] “Loudness concepts and panning laws.”

[25] “Tech stuff - frequency ranges.”

66

[26] L. Rabiner, M. Cheng, A. Rosenberg, and C. McGonegal, “A comparative

performance study of several pitch detection algorithms,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 5,

pp. 399–418, 1976.

[27] P. S. Rao, S. Khoushikh, S. Ravishankar, R. A. Ananthkrishnan, and

K. Balachandra, “A comparative study of various pitch detection

algorithms,” in 2020 5th International Conference on Computing,

Communication and Security (ICCCS), pp. 1–6, 2020.

[28] C. P. Singh and T. K. Kumar, “Efficient pitch detection algorithms for pitched

musical instrument sounds: A comparative performance evaluation,” in

2014 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 1876–1880, 2014.

[29] P. McLeod, “Fast, accurate pitch detection tools for music analysis,” 2008.

[30] M. Ross, H. Shaffer, A. Cohen, R. Freudberg, and H. Manley, “Average

magnitude difference function pitch extractor,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 22, no. 5, pp. 353–362, 1974.

[31] A. M. Noll, “Cepstrum pitch determination,” The Journal of the Acoustical

Society of America, vol. 41, no. 2, pp. 293–309, 1967.

[32] R. Hiraga, F. Watanabe, and I. Fujishiro, “Music learning through

visualization,” pp. 101– 108, 02 2002.

[33] C. Curwen, “Music-colour synaesthesia: Concept, context and qualia,”

Consciousness and Cognition, vol. 61, pp. 94–106, 2018.

67

[34] S. E. Palmer, K. B. Schloss, Z. Xu, and L. R. Prado-León,

“Music–color associations are mediated by emotion,” Proceedings

of the National Academy of Sciences, vol. 110, no. 22, pp. 8836–8841, 2013.

[35] F.-R. Stöter, A. Liutkus, and N. Ito, “The 2018 signal separation evaluation

campaign,” in Latent Variable Analysis and Signal Separation: 14th

International Conference, LVA/ICA 2018, Surrey, UK, pp. 293–305, 2018.

[36] Y. Mitsufuji, G. Fabbro, S. Uhlich, F.-R. Stöter, A. Défossez, M. Kim,

W. Choi, C.-Y. Yu, and K.-W. Cheuk, “Music demixing challenge 2021,”

Frontiers in Signal Processing, vol. 1, jan 2022.

[37] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind

audio source separation,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[38] E. Buber and B. Diri, “Performance analysis and cpu vs gpu comparison for

deep learning,” pp. 1–6, 10 2018.

[39] J. Salamon, R. M. Bittner, J. Bonada, J. J. Bosch, E. Gómez Gutiérrez, and

J. P. Bello, “An analysis/synthesis framework for automatic f0 annotation

of multitrack datasets,” in Hu X, Cunningham SJ, Turnbull D, Duan Z.

ISMIR 2017 Proceedings of the 18th International Society for Music

Information Retrieval Conference; 2017 Oct 23-27; Suzhou,

China.[Suzhou]: ISMIR; 2017., International Society for Music Information

Retrieval (ISMIR), 2017.

[40] D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia, J. O.

McNamara, and S. Mark Williams, The Audible Spectrum. Sunderland,

MA: Sinauer Associates, 2001.

[41] J. Hass, “Chapter five: Digital audio.”

68

[42] L. L. Hunter, B. B. Monson, D. R. Moore, S. Dhar, B. A. Wright, K. J. Munro,

L. M. Zadeh, C. M. Blankenship, S. M. Stiepan, and J. H. Siegel,

“Extended high frequency hearing and speech perception implications in

adults and children,” Hearing research, vol. 397, pp. 107922–107922, Nov

2020. 32111404[pmid].

[43] MATLAB, 9.7.0.1190202 (R2022a). Natick, Massachusetts: The MathWorks

Inc., 2022.

[44] HandBrake, “Handbrake/handbrake: Handbrake’s main development

repository.”

[45] “Cal Poly Github.” http://www.github.com/CalPoly.

69

APPENDICES

Appendix A

CODE APPENDIX

The code for the visualization can be found in this GitHub Repository:

Link to Github Repository

70

https://github.com/hannahchook/thesis
https://github.com/hannahchook/thesis

Appendix B

VISUALS APPENDIX

A link to some of the visuals that have been created thus far can be found below:

Link to Visuals

71

https://drive.google.com/drive/folders/1aZEyqxgf4z_yv2kdHkMd_dmGbKA3Q6mF?usp=sharing

	=LIST OF TABLES
	=LIST OF FIGURES
	LIST OF CODE LISTINGS
	1 Introduction
	1.1 Statement of Problem
	1.2 List of Terms
	1.3 Purpose of Study

	2 Background
	2.1 Stereophonic vs. Monophonic Audio
	2.2 Music Representation
	2.3 Music Source Separation
	2.3.1 Spectrogram Domain Methods
	2.3.1.1 MMDenseLSTM
	2.3.1.2 Parallel Stacked Hourglass Network
	2.3.1.3 Spec2Spec
	2.3.1.4 Open-Unmix

	2.3.2 Waveform Domain Methods
	2.3.2.1 Conv-TasNet
	2.3.2.2 Demucs

	2.3.3 Hybrid Domain Methods
	2.3.3.1 Bridging Networks
	2.3.3.2 Hybrid Demucs

	2.4 Source Panning Parameter Estimation
	2.4.1 Constant Power Panning Law

	2.5 Pitch Detection
	2.5.1 Pitch Ranges
	2.5.2 Pitch Detection Algorithms
	2.5.2.1 Autocorrelation Method
	2.5.2.2 Square Difference Function
	2.5.2.3 Average Magnitude Difference Function
	2.5.2.4 Cepstrum Method

	2.6 Loudness
	2.7 Music Visualization
	2.7.1 Music and Color

	3 Investigation
	3.1 Goals
	3.2 Constraints and Assumptions
	3.3 Investigation of Music Source Separation Techniques
	3.3.1 Signal-to-Distortion Ratio
	3.3.2 MUSDB18 Dataset
	3.3.3 Music Source Separation Preprocessing and Training
	3.3.4 Music Source Separation Comparison

	3.4 Investigation of Pitch Detection Techniques
	3.4.1 Averaging Channels
	3.4.2 MDB-melody-synth Dataset
	3.4.3 Applying a Window Function
	3.4.4 Autocorrelation
	3.4.5 Average Magnitude Difference Function
	3.4.6 Square Difference Function
	3.4.7 Pitch Detection Comparison

	4 Approach
	4.1 System Overview
	4.2 Music File Formats
	4.2.1 Sampling Rates

	4.3 Music Source Separation
	4.3.1 Pretrained Neural Networks
	4.3.2 Retraining Networks

	4.4 Pitch Detection
	4.5 Localization
	4.6 Loudness Approximation
	4.7 Visualization
	4.7.1 Visualization Colors
	4.7.2 Video File Types

	5 Results
	5.1 Music Source Separation
	5.1.1 Performing Source Separation Using a Pretrained Neural Network

	5.2 Visualization
	5.2.1 Creating a Visualization

	6 Conclusions
	6.1 Future Work

	BIBLIOGRAPHY
	A CODE APPENDIX
	B VISUALS APPENDIX

