
EXPLORING THE IMPACT OF COGNITIVE AWARENESS SCAFFOLDING

FOR DEBUGGING IN AN INTRODUCTORY COMPUTER SCIENCE

CLASS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jiwon Lee

June 2022

© 2022

Jiwon Lee

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Exploring the Impact of Cognitive

Awareness Scaffolding for Debugging

in an Introductory Computer Science

Class

AUTHOR: Jiwon Lee

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: Theresa Migler, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: Ayaan Kazerouni, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: Chris Siu

Lecturer of Computer Science

iii

ABSTRACT

Exploring the Impact of Cognitive Awareness Scaffolding for Debugging in an

Introductory Computer Science

Class

Jiwon Lee

Debugging is a significant part of programming. However, a lot of introductory pro-

gramming classes tend to focus on writing and reading code than on debugging. They

utilize programming assignments that are designed in ways such that students learn

debugging by completing these assignments which makes debugging more of an im-

plicit goal. In this thesis, we propose a cognitive awareness scaffolding in debugging

to help students self-regulate their debugging process. We validate its effectiveness

by conducting experiments with students in four sections of a Data Structures course,

which is one of the introductory computer science classes at California Polytechnic

State University, San Luis Obispo. In this form, students identified the debugging

stage, described the bugs in their own words, and tracked their attempts to fix them.

The exit survey responses that students filled out at the end of the quarter indi-

cate that students seemed to find the debugging form helpful with self-regulation in

debugging process. For further investigation, we attempt to measure students’ under-

standing of the bugs explained on the form. Additionally, we also discuss potential

improvements for the debugging form.

iv

ACKNOWLEDGMENTS

Thanks to:

• Dr. Theresa Migler for providing endless support and guidance, especially while

pivoting to new thesis.

• Dr. Ayaan Kazerouni for providing invaluable feedback, teaching me about

computing education, and being patient with me.

• Professor Chris Siu for teaching me how to program from day 1 and being

patient with me even though I make mistakes with autograder scripts.

• Professors Julie Workman and Paul Hatalsky for teaching me fundamentals of

computer science and supporting my thesis.

• My family for supporting me no matter what.

• My friends for amazing friendship and always making me laugh.

• Students in CSC 202 Spring22 for participating in this research and making this

thesis possible.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Motivation . 1

1.2 Primary Goal . 2

1.3 Research Questions . 3

1.4 Main Contribution . 4

2 Background . 5

2.1 Debugging . 5

2.1.1 Debugging Tools . 7

2.2 Metacognition . 7

2.2.1 Metacognition in Debugging 7

3 Related Works . 9

3.1 Programming, Problem Solving, and Self-Awareness: Effects of Ex-
plicit Guidance . 9

3.2 First Things First: Providing Metacognitive Scaffolding for Interpret-
ing Problem Prompts . 11

3.3 What Help Do Students Seek In TA Office Hours 12

4 Debugging Form . 15

4.1 Form Design . 15

4.1.1 Issue Category . 15

4.1.2 Issue Description . 16

vi

4.1.3 Previous Attempts . 17

4.1.4 Solved by Myself . 17

4.1.5 Asked Question . 17

5 Exit Survey . 18

5.1 Exit Survey Design . 18

5.1.1 Questions . 18

6 Experiment Design . 21

6.1 Course Context . 21

6.1.1 CSC 202: Data Structures . 22

6.1.2 Projects . 23

6.1.3 Auto-Grader . 23

6.2 Instructions . 24

6.3 Limitations . 25

7 Survey Analysis . 27

7.1 Statistics on Each Questions . 27

7.1.1 Question 1: Have you used this type of documentation method
in the past? . 28

7.1.2 Question 2: The debugging form helped me with verbalizing
the errors . 29

7.1.3 Question 3: The debugging form helped me with explaining the
debugging progress to instructors 29

7.1.4 Question 4: The debugging form helped me stay aware of my
debugging progress . 30

7.1.5 Question 5: I have solved at least one bug that I was going to
ask instructors about while filling out the debugging form . . . 31

7.1.6 Question 6: I feel more confident in approaching debugging
process because I learned and used the debugging forms 32

vii

7.1.7 Question 7: Do you see yourself utilizing this type of method
in future computer science classes 33

7.1.8 Question 8 (Optional): Please feel free to share any comments
in this section. Any positive/negative/neutral experience with
debugging form? . 34

7.2 Improvements . 35

7.2.1 Form Design . 36

7.2.2 Experiment Design . 36

8 Form Analysis . 38

8.1 Form Analysis Rubric . 38

8.1.1 Rubric Usage Example . 39

8.1.2 Results . 40

9 Threats to Validity . 42

9.1 Self-Selection Bias . 42

9.2 Limited Information . 42

9.3 Lack of Peer Review Process . 43

10 Conclusion . 44

10.1 Future Work . 44

BIBLIOGRAPHY . 46

viii

LIST OF TABLES

Table Page

7.1 Statistics of question 2, 3, 4, and 6 responses 33

8.1 Rubric for the form analysis . 39

8.2 Entry example for each level placement 40

ix

LIST OF FIGURES

Figure Page

3.1 Task performance of control and experimental group [1] 11

3.2 Design Recipe options [2] . 12

7.1 Pie chart of participants’ familiarity with documentation method in
debugging . 28

7.2 Column chart of responses about debugging form’s verbalization sup-
port . 29

7.3 Column chart of responses about debugging form’s explanation support 30

7.4 Column chart of responses about debugging form’s support for ac-
knowledgement of problem . 30

7.5 Pie chart of participants solving at least one bug that they were going
to ask instructor about . 31

7.6 Column chart of participants’ response about future use of the de-
bugging form . 32

7.7 Pie chart about participants’ willingness to use the debugging form
in the future . 33

8.1 Column chart of students’ Project 2, 3, and 4 debugging form level
placements . 40

8.2 Graph of average grade on each project 41

x

Chapter 1

INTRODUCTION

1.1 Motivation

I did not have any exposure to computer science until I came to Cal Poly. When I

took my first ever computer science class at Cal Poly, I was often frustrated. I still

remember myself often thinking “I have no idea why this code is not working” or

“I don’t know what I’m doing, I’m lost”. I had to quickly learn computer science

concepts and be able to apply them in programming assignments. The coding was

already challenging, and debugging made it more difficult. As a beginner, I saw so

many possibilities where my code could go wrong and I had to “guess” as a beginner

where it looked suspicious if I was lost. Of course, some errors could be easily fixed,

but the more complex the project was, the higher the chance for bugs. I went through

the cycle of introducing bugs and fixing them over and over in different classes. I

finally started to gain tips and tricks on how to approach bugs and fix them through

this trial and error. I remembered the pain of being lost as a beginner, and with such

skill, I wanted to help other students. This lead me to becoming a teaching assistant

(TA) for introductory computer science classes at Cal Poly.

During my TA experience at Cal Poly, I have answered countless questions about stu-

dents’ lab assignments, project assignments, and general computer science concepts.

Mainly I have helped students with debugging their lab or project assignments. In

my experience, students struggled the most with understanding or fixing the bugs.

A lot of their questions were “I do not know what is wrong” or “I do not know how

to fix this”. When I received such questions, I followed up with my own questions:

1

“What do you understand about this bug so far?” and “What have you tried to fix

this bug?”. These questions often led to the “aha” moment where they thought of an

approach they could take as they were verbalizing and explaining the answers to my

questions. Although sometimes students seemed a bit scattered with their hypothe-

ses, attempting to answer my questions appeared to be helpful with gathering their

thoughts.

One of my roles as TA was to guide students to understand the bugs and let them come

up with their own fixes rather than fixing bugs for the students. Asking questions

facilitated students’ learning rather than giving statements or instructions. Students

answering questions seemed to help with self-regulating initial steps of the debugging

process. These experiences inspired me to propose a documentation method to act as

cognitive awareness scaffolding. Cognitive awareness scaffolding is a support method

that helps promoting one’s cognitive awareness in problem-solving. The cognitive

awareness scaffolding we designed, debugging form, will be discussed in detail in

Chapter 4.

Additionally, despite the increase in demand for computer science education, intro-

ductory programming classes tend to focus on writing and reading code than on

debugging. Learning debugging is more of an implicit goal in the programming as-

signments. In students’ perspective, this could be seen as pressure to “pick up”

debugging skills as they write code. This was part of our motivation, to support

students in learning debugging.

1.2 Primary Goal

Students utilize different debugging methods [3, 4]. No matter what methods they

utilize, the crucial part of debugging is self-regulation. Self-regulation refers to the

2

ability to manage or control one’s own behaviour, emotions, work, learning, etc [5]. In

context of education, self-regulation lets students manage and organize their thoughts

in learning. In this thesis, we propose a documentation method to increase students’

cognitive awareness of the debugging process in introductory computer science classes.

We also validate its effectiveness by introducing this form to students and acquiring

students’ responses from an exit survey at the end of the school quarter. Proposing

our debugging form method is not meant to oppose or discredit current academic

practices of teaching in early computer science classes. Rather, we hope that this

method could help students self-regulate their debugging progress and potentially

have this method be integrated into existing introductory computer science classes if

proven to be helpful.

Additionally, although everyone has a different definition of “good programmer”,

being able to work together is often mentioned as one of the characteristics of “good

programmer” because, in the real world, software engineers work together. The key

to teamwork is delivering one’s thoughts effectively. They need to step out of their

“zone” and deliver their thoughts. When stepping out of that “zone”, they need to

know what to bring out from the “zone” and organize them to deliver it. We expect

our debugging form will help students put together their thoughts which will be a

valuable skill.

1.3 Research Questions

We want to learn about the impact of our debugging form as cognitive awareness scaf-

folding for debugging, focusing on students’ experiences. Our main research questions

are:

3

• Is this type of method known to students in introductory computer science

classes?

• Will it help students self-regulate their debugging process?

• Will it increase students’ confidence in approaching problems in debugging?

• Will students use this type of method in the future?

These questions were taken into consideration when the debugging form and exit

survey were designed, which will be discussed in detail in Chapter 4 and Chapter 5

respectively.

1.4 Main Contribution

Our main contributions to this thesis are the following:

• Design of debugging form as cognitive awareness scaffolding

• An experiment to validate the debugging form

• An attempt to measure students’ understanding of the bugs in the debugging

form

We designed the debugging form based on our thorough research about how to in-

crease metacognitive awareness in computer science education and my personal expe-

rience as a TA. We conducted experiments with students in an introductory computer

science class to learn about the impact of our debugging form. We validated its ef-

fectiveness by exit survey and our rubric to measure students’ understanding of the

bugs.

4

Chapter 2

BACKGROUND

2.1 Debugging

Debugging is a natural part of programming, followed after failure to execute the

code as the programmer intended to do so. While the time spent on debugging de-

pends on different factors such as the complexity of the program or the programmer’s

background, it is reasonable to say that debugging is a big part of the programming.

Most of the time, beginners lack the skills and experiences that experts gain over

time. No matter what field, we probably all remember the challenge we faced as

beginners. Debugging is not an exception. Experts gain experiences that help them

determine the approach they should take in debugging. However, debugging isn’t

something that programmers could easily master, if it is even something that can be

mastered at all. For example, interviews with 15 professional software engineers at

Microsoft showed that even professionals still do face challenges in debugging as well

[6]. Therefore, it is reasonable to assume that beginners have a harder time debugging

than experts do. Pea et al. noted that the major hurdle a novice programmer

must overcome is the major discrepancy between natural conversation and reading

or writing programs. The natural language “debugging” where the context or use of

other natural language devices, like asking back to help humans understand, is not

available for interaction between human and computer therefore creates disconnect

[7]. Furthermore, several studies suggest that the difference between novice and

expert programmers in debugging is the ability of problem comprehension [8, 9, 10].

For example, Gugerty and Olson observed that expert subjects were faster and more

5

successful at finding the bug in simple programs compared to novice subjects [8]. They

noted that their studies suggest “the primary reason for the experts’ superiority was

the ease with which they understood what the program does and is supposed to do”

which allowed them to quickly find and isolate the bug.

Additionally, debugging requires several skills at the same time. Katz and Anderson

observed that it is clear that debugging is not a single activity, but a set of activi-

ties where each component of which may be performed differently depending on the

situation [11]. Murphy et al. portrayed novice debuggers as new drivers since new

drivers “must learn to steer, accelerate, brake, etc. all at once” and “novice debug-

gers must apply many new skills simultaneously” [3]. Ducassé and Emde proposed a

classification of debugging knowledge though whole knowledge is not needed all the

time: knowledge of the intended program, knowledge of the actual program, under-

standing of the programming language, general programming expertise, knowledge

of the application domain, knowledge of bugs, and knowledge on debugging methods

[12].

The steps of debugging differ slightly by researchers, but the general idea can be

broken down into four steps: Understand, diagnose, locate, and correct [13, 11]. Once

a programmer realizes the program did not execute as they intended, they know a

bug or an equivalent error exists. Then they might start to build and check their

“hypotheses” or “theories” of what is the issue they are trying to debug. After the

diagnosis, the programmer tries to locate where the bug is happening in the code

and fix it. Programmers may go through this loop several times or introduce a new

bug while doing so. Any type of confusion could come in at any stage of debugging.

For example, a programmer might have successfully located a bug but does not know

how to fix it. Or a programmer might not know where the bug is even coming from.

They could utilize debugging tools to overcome the step they are stuck at.

6

2.1.1 Debugging Tools

The utilization of debugging tools depends on the domain of the problem, varying

from writing simple print statements to utilizing IDE debugger. There is no one-

size-fits-all tool for debugging, but rather a toolbox [6]. Layman et al. noted that

15 professional software engineers mentioned 16 distinct debugging tools varying ac-

cording to their application domain. Although students’ debugging domain is simpler

than professionals’, students also do apply reasonable strategies, more than one tech-

nique, to investigate bugs [3, 4]. However, both Murphy et al. and Mansur et al.

noted that some strategies were used ineffectively or inconsistently.

2.2 Metacognition

Although metacognition is defined in different ways by various researchers, it is com-

monly defined as the awareness and understanding of one’s thought processes [14].

In simpler words, it is “thinking about thinking”. It was first introduced by John

Flavell who defined it as “among other things, to the active monitoring and conse-

quent regulation and orchestration of [information processing activities] in relation to

the cognitive objects or data on which they bear, usually in service of some concrete

goal or objective” [15].

2.2.1 Metacognition in Debugging

Debugging, which is part of problem-solving in programming, could be intimidating

to beginners. Several studies suggest that support to promote metacognition helps

with problem-solving [16, 17, 18]. For example, Safari and Meskini noted that “the

results of the students’ performance in each problem solving component showed that

7

metacognitive approach to problem solving instruction significantly improved the ex-

perimental group’s performance” [16]. Such results suggest that metacognition plays

an essential role in self-regulating the process of problem solving. Therefore, we

wanted to design a support method that would promote metacognitive awareness in

debugging process.

8

Chapter 3

RELATED WORKS

Multiple studies have been done to see the effect of metacognition training in var-

ious areas. For example, Haller et al. and Kramarski and Mevarech mentioned

that metacognition helped in students’ learning or achievement in the area of read-

ing and mathematical reasoning, respectively [19, 20]. In this section, we focus on

metacognition-related research in the computer science field.

3.1 Programming, Problem Solving, and Self-Awareness: Effects of Ex-

plicit Guidance

Loksa et al. proposed a new approach to explicitly teach problem-solving skills con-

sisting of 1) explicit instruction on programming problem solving, 2) a method of

visualizing and monitoring progression through six problem-solving stages, 3) explicit

prompts for learners to reflect on their strategies when seeking help from instructors,

and 4) context-sensitive help embedded in a code editor [21]. The interventions were

made in the experimental group of the traditional web development camp where the

control group did not receive such interventions.

The first intervention was the 1-hour problem-solving lecture, given only to the exper-

imental group. This lecture included teaching the six programming problem-solving

stages. Then, the physical handout with the previously mentioned problem-solving

stages was provided as a second intervention so that campers could track the current

state of problem-solving. During the third intervention, upon receiving help from

instructors, campers were first asked to describe the problem in the question in de-

9

tail, what they have tried so far to fix it, and what problem-solving stage they are

in with it. The last intervention Idea Garden was implemented in a panel of the

Cloud9 IDE. Idea Garden helps programmers to consider new ideas when they are

stuck. With such interventions, researchers had predicted that the problem-solving

instruction would help campers be more aware of the strategies they used. The first

three interventions were applicable to our research context so we decided to replicate

them in a similar manner, which will be explained in details in later chapters.

Loksa et al. counted the number of end-of-day responses that described a specific

strategy other than asking an instructor for help. The researchers found that campers

in experimental group were more cognitively aware; they were significantly more

likely to write an explicit description of a problem strategy with significantly more

words. Researchers noted that the “difference in proportions of help request types was

not large” between control and experimental group but based on the request types,

the “campers in the experimental group were more likely to select a solution and

implement it independently, allowing them to progress to evaluation before requiring

help”. In terms of productivity, campers were assigned prescribed tasks and had self-

initiated tasks for their projects. Although campers have finished similar amounts

of prescribed tasks in the same amount of time in both groups, the experimental

group completed substantially more self-initiated tasks. Researchers noted that they

did not find a significant association between help requests and productivity in the

experimental group, meaning campers in the experimental group did not rely on the

helpers.

10

Figure 3.1: Task performance of control and experimental group [1]

3.2 First Things First: Providing Metacognitive Scaffolding for Inter-

preting Problem Prompts

Prather et al. conducted a controlled experiment to investigate a method that would

promote better metacognitive awareness and if it should be incorporated into Auto-

mated Assessment Tool (AAT) for better metacognitive training [1]. The students

in the experimental group were asked to solve a randomly generated test case imme-

diately after reading the problem prompt in a one-on-one session where researchers

observed them thinking out loud. Once they have passed the test case quiz, they were

allowed to start writing code.

Prather et al. found that students in the experimental group had a higher task

completion rate, a lower average time of completion, and a lower average of attempts

of completion.

Although it did not completely get rid of metacognitive difficulties, students in the

experimental group tended to show higher metacognitive skills and behaviors com-

pared to students in the control group, such as verbalizing the correct understanding

of the problem promptly. Based on feedback from students’ in experimental group,

researchers noted that understanding why the intervention took place seems to cor-

relate with success.

11

Figure 3.2: Design Recipe options [2]

3.3 What Help Do Students Seek In TA Office Hours

Ren et al. presented an approach to studying the technical component of insight into

what kinds of help students seek at Teaching Assistant (TA) office hours [2]. They

presented two forms that center around the Design Recipe (DR) [22], one for TAs to

fill out and another for students.

TAs were instructed to fill out an “exit survey” form after every student meeting.

They selected options for what the question is about, designed around the DR steps

as Figure 3.2 shows. Researchers adjusted and added more options to fit the course

context as DR steps were not sufficient.

TA chose multiple options from Figure 3.2 they discussed during the meeting. For

each option, they were given three points classification scale to capture the type of

help students needed: instruction (“how do I do ...”), clarification (“what is expected

for ...”), and verification (“could you check my work on ...”). The last question

12

asked how the student is performing on the assignment, though this was not further

discussed by the authors because it showed a low coefficient of variation.

Students who were attending TA office hours were given a variant of the TA form

where students simply chose the items they wanted to discuss. Unlike the TA form,

the student form did not include a classification scale due to concerns regarding time

spent filling out the form and its effect on student morale. Students filled out the

form when they signed up for the TA office hour slot and TA was able to view it on

the dashboard queue of the office hour. TA’s form was pre-populated with students’

chosen entries and the TA filled the form after helping the students.

Ren et al. calculated the Hamming distance between DR entries since they form an

equal-length bit-vector, and found that the average Hamming distance per assignment

decreased over time. However, students matching the TA’s entries were more mean-

ingful, not the other way around as TAs are more experts. Therefore, they calculated

a directed distance, the latest step on which the student and TA disagreed (positive

means TA helped a student with a later stage and negative means TA stopped with

an earlier stage). If Hamming distance was 0, they called it a match. They found

that the ratio of matches improved significantly over time. Although the authors did

not specifically mention the aspect of self-regulation, this might show that students

were able to monitor and assess their questions better over time.

The focus of this research was not aimed towards the metacognition area, their re-

search was applicable to our research since their method was integrated into normal

office hour settings, just like how we are trying to with our method. Ren et al. shared

some considerations in experiment method and design. For example, they mentioned

how they initially were considering students fill out the classifiers like TA does but

they decided not to because they wanted to “minimize the time spent filling out the

13

form” and were “concerned about the effect on students morale”. Such considerations

motivated us to view our method on students’ perspectives as well.

14

Chapter 4

DEBUGGING FORM

Essentially, we wanted the debugging form to act as a “conversation” between the

students and instructor, as if students are asking questions about debugging which

promotes metacognitive awareness. Murphy et al.’s suggestion was one of the inspi-

rational foundation in the debugging form design. They suggested that “debugging

instruction should incorporate these metacognitive factors, perhaps taking the form

of self-questions”. For example, they suggested “What else could I try?”, “Is this

too much to keep track of in my head?”, and “What are other possible sources of

the bug?”. We tried to design the debugging form in a way that students would ask

themselves such questions while filling out the form.

4.1 Form Design

Similar to the Design Recipe [22], a structured approach to problem-solving in six

steps, we created a five debugging stage for our form: Issue Category, Issue Descrip-

tion, Previous Attempts, Solved by Myself, and Asked Question.

4.1.1 Issue Category

The first part of debugging form is identifying which debugging stage students are

stuck at. This would let students think about the next action they need to take in

order to successfully debug instead of directly jumping into certain stage of debugging

without going through the previous stages.

15

Below are the debugging stage categorization we provide on our debugging form.

1. Understanding an error

2. Locating an error

3. Testing an error

4. Fixing an error

5. Auto-grader Feedback

6. Other

Additionally, we added a specific category called ”Auto-grader Feedback”. Students’

project code submissions are graded by an auto-grader where students receive feed-

back based on the run. Since the auto-grader error messages are one of the resources

students utilize in the course setting for debugging, we included this as one of the

categories. Details about the auto-grader are explained in Chapter 6.

4.1.2 Issue Description

This section is one of the most important sections of the debugging form. Students

were instructed to explain the error in their own words so that they could reflect on

their thoughts. Unlike simply copying the stack trace error message, describing it

in their own words promotes metacognitive awareness. In essence, this section asks

students to reflect on their thought processes on each debugging stage such as “What

does this error mean?” or “Where is the error happening?”.

16

4.1.3 Previous Attempts

This section is another important section of the form. Students are asked to document

what they have tried to solve the issue they identified in the previous sections “Issue

Category” and “Issue Description”. Students could list resources they utilized or

simply write down what modifications they made in their code. We wanted this

section to ask students “What have I tried?” and “What else could I try?”.

4.1.4 Solved by Myself

This section is straightforward where students check whether they solved the bug by

themselves or not.

4.1.5 Asked Question

This section is also straightforward where students check whether they asked the

question to the instructor about the particular bug or not.

17

Chapter 5

EXIT SURVEY

To validate the effectiveness of the debugging form, we created an exit survey.

5.1 Exit Survey Design

The exit survey was sent out at the end of the quarter to gain insights into their

experiences. The survey questions were designed to answer our research questions

and let participants share their experiences. Possible response types were the Likert

scale, Yes/No/Maybe, and free-response. In our survey, Likert scale response consists

of a 5-point scale where each point represents following: 1-Extremely Disagree, 2-

Somewhat Disagree, 3-Neutral, 4-Somewhat Agree, and 5-Extremely Agree.

5.1.1 Questions

Q1. Have you used this type of documentation method in the past?

(Yes/No)

Question 1 attempts to identify if students in introductory computer science class are

aware of this type of method to help with their debugging process.

Q2. The debugging form helped me with verbalizing the errors (Likert

Scale)

18

Question 2 attempts to identify the impact of debugging form on students’ ability to

verbalize the debugging progress including descriptions of the bugs and attempts to

solve them.

Q3. The debugging form helped me with explaining the debugging progress

to instructors (Likert Scale)

Question 3 attempts to identify the impact of debugging form on students’ ability to

explain the bugs to instructors since they have already written down their thought

processes on the form.

Q4. The debugging form helped me stay aware of my debugging progress

(Likert Scale)

Murphy et al. studied students’ debugging strategies and noted that “many unpro-

ductive activities appeared to stem from insufficient metacognition. Some students

did not recognize when they were stuck, thus they did not know to try a different ap-

proach” [3]. This shows that it is crucial to self-regulate the problem-solving progress.

Question 4 attempts to identify the impact of the debugging form on students’ ability

to monitor their debugging progress.

Q5. I have solved at least one bug that I was going to ask instructors

about while filling out the debugging form (Yes or No)

We noticed “aha” moment several times while helping students, where students realize

an approach they could take to fix the bug. Question 5 attempts to identify students’

independence, the “aha” moments before asking questions.

Q6. I feel more confident in approaching debugging process because I

learned and used the debugging forms (Likert Scale)

19

Several studies developed and validated self-efficacy measurement [23, 24]. Although

self-efficacy is out of the scope of our research, we believe it is still a valuable field

to explore. There are questionnaires with multiple questions that measure general

self-efficacy, but we wanted to specifically focus on the impact on confidence in ap-

proaching debugging. Although responses to question 6 cannot represent the whole

self-efficacy in debugging, it attempts to measure students’ confidence level.

Q7. Do you see yourself utilizing this type of method in future computer

science classes? (Yes/No)

Question 7 attempts to identify number of students who would utilize our method in

the future. We believe students’ willingness to use this method again is one of the

ways to validate its effectiveness.

Q8. Please feel free to share any comments in this section. Any posi-

tive/negative/neutral experience with debugging form? (Free Response)

Instructors and researchers did not receive any complaints from students. However, we

believe students are less likely to share negative feedback without anonymity during

the quarter. Therefore, we created question 8 to give students a chance to share their

thoughts anonymously.

20

Chapter 6

EXPERIMENT DESIGN

6.1 Course Context

The academic year at Cal Poly San Luis Obispo consists of three quarters: Fall,

Winter, and Spring. Each quarter consists of 10 weeks of instruction and an additional

finals week. Since most introductory courses are a sequence of prerequisites, students

take one computer science course each quarter until they finish the chain, after which

they can take technical elective courses. Although there isn’t a formal definition of

“introductory” courses, we consider the following four courses “introductory” at Cal

Poly SLO.

• CSC 123: Introduction to Computing

• CSC 101: Fundamentals of Computer Science

• CSC 202: Data Structures

• CSC 203: Project-Based Object-Oriented Programming and Design

Most computer science, software engineering, and computer engineering majors are

required to take these courses in sequence at Cal Poly SLO, although there are differ-

ent ways to fulfill them. Most computer science classes are composed of lecture and

laboratory sections. Students attend lectures first and then have a laboratory section

which serves as a teaching assistant or professor office hour where students can ask

questions or work on their own.

21

6.1.1 CSC 202: Data Structures

We have decided that CSC 202 is suitable for introducing our debugging form as

a cognitive awareness scaffolding. Students who are taking CSC 202 should have

experiences in programming, either through equivalent credit or taking prerequisite

programming courses. CSC 202 teaches data structures (in Python3 at the time when

this thesis was written) and the programming assignments require such knowledge to

complete them. There are two types of programming assignments in CSC 202: lab and

project. Labs are smaller programming assignments that require them to have a basic

understanding of the data structures concept they learned during the lecture. Projects

are larger programming assignments with more complex specifications. Therefore,

students were typically given more time to complete projects than labs.

For this research, the debugging form was introduced to students in four sections of

CSC 202. The sections were taught by two different instructors but with identical

course material with the same assignments and exams. One instructor taught one

section and the other instructor taught three sections. Students filled out the debug-

ging forms and voluntarily submitted them as a part of project submissions through

GitHub repositories, but did not submit the form for labs. Projects are larger and

more complex assignments which involve more coding and debugging, therefore we

decided projects are more suitable to observe the effectiveness of the debugging form.

The debugging forms were not graded and did not affect their grades negatively in

any way. However, students were offered 3% extra credit for each form per project,

but only if they had a minimum of two entries on the debugging form. Everyone

in the class was offered an opportunity to receive extra credit if they submitted a

qualifying debugging form for each project.

22

6.1.2 Projects

Projects in CSC 202 are intended to be greater length and more complex than labs.

Unlike labs where students are encouraged and allowed to work together, projects have

to be completed individually and no collaboration is allowed. Students submitted

their project code on their GitHub repositories and submissions were graded four

times per day on the day of the deadline. The credit was given based on the number

of test cases that students passed and scaled by which deadline the submission qualifies

for. Students were eligible to earn 105% of the credit the day before the due date

(only one midnight run), 100% on the due date, and 85%, 70%, 50% on the next class

day after each due date. Except for the 105% extra credit deadline, students had four

different days where their project code was graded. We collected the debugging forms

for following projects: project 2, 3a, 3b, and 4 where project 3 had two parts: a and b.

However, project 3 took code submissions for both parts in same GitHub repository,

causing some debugging forms for 3a being replaced by debugging forms for 3b. It was

almost impossible to track down when it was replaced therefore we excluded project

3a from the analysis. In the rest of this paper, project 3b will be referred as project 3.

Project 1 was excluded because the project specification was already released before

we got to introduce the debugging form. Project 5 was also excluded because the

submission deadline did not fit our timeline for analysis. However, survey responses

still reflect students’ experience of utilizing debugging form for up to 5 projects. Only

the analysis of debugging form and grades involve 3 forms.

6.1.3 Auto-Grader

The project assignments are graded by an auto-grader developed by Christopher Siu,

a lecturer at the Department of Computer Science and Software Engineering of Cal

23

Poly. Students submit project code on their GitHub repository and the auto-grader

pulls their submissions to run assignment test cases, assigns points based on the test

cases they passed, and provides feedback. There are two types of feedback: Coverage

and Traceback. First, the auto-grader tests the coverage of students’ test cases. If

students failed one of their tests or their tests did not cover 100% of their code, they

are informed about it in the feedback. Testing the coverage of students’ test cases

utilizes open source coverage.py [25]. Another part of the feedback is Traceback,

which can be caused by one of three different reasons: failed assertions, failed diff, and

timeout. Traceback is basically what students would have seen from their terminal

when they ran their code with certain tests on their machine.

6.2 Instructions

To help students familiarize themselves with the idea of the debugging form, we sug-

gested that it is a written version of what students would have explained to instructors

if they were to ask questions.

We asked students to fill out the debugging form during the debugging process of each

bug because we believe the support should be provided while they are debugging to

help with their thought process. Kapa also noted that learning environments which

supplies metacognitive support during the process of problem-solving are significantly

more effective than the learning environments that provide same support at the end

of the process or do not provide any metacognitive support [26].

Students were also instructed to fill out the debugging form for fixing “major” bugs.

We let them define what “major” means since we did not want to put too much

restriction on what they should be logging or not to be as unintrusive as possible.

24

Additionally, students were required to present specific entries from the debugging

form about the bug when they were asking instructors about it and if it requires

instructors to look at their code or error messages. Because at minimum, if students

have to ask instructors about the bug, that is “major”. However, we did not want to

discourage students to ask questions because they were required to present the form

to “prove” their attempt to solve the bugs when they do not know where to start.

Therefore, they were allowed to put previous attempts along the line of “Do not

know where to start” to not discourage them from asking questions. Having students

present the debugging form also acted as a “guard” to “observe” that students are

actually filling out the debugging form. This is one of the interventions designed by

Loksa et al. in a web development camp that we mentioned. Loksa et al. asked

students questions upon their help request where they asked students to describe

the details of the problem, what they have tried so far, and what problem-solving

stage they are in [21]. In our experiment, such questions were replaced by presenting

the debugging form. Our students were not required to present them when they

were asking questions on the class Piazza, since ideally writing a post should already

involve metacognition.

6.3 Limitations

It is important to recognize a few limitations of this experiment and the other factors

that we have omitted for this research.

• Just like any learning environment, students’ prior programming experiences

are different. As previously mentioned, there are different ways to fulfill the

“introductory” computer science courses at Cal Poly SLO. For example, one of

the common tracks is taking a sequence of CSC 123 → CSC 101 → CSC 202

25

or skipping CSC 123 and CSC 101 because they have AP Computer Science

or equivalent credit. However, the scope of this thesis is limited to proposing

and checking the validity of the debugging form, therefore we do not attempt

to gain individual student’s background information as part of the analysis. It

is expected that majority of students is taking CSC 123 → CSC 101 → CSC

202 sequence since Spring quarter is the “on-quarter” to take CSC 202. Mostly,

students with credit to skip prerequisite courses would have taken CSC 202

earlier than Spring quarter.

• As mentioned in section 6.2, students have the freedom to define what “major”

bug means. Although this was done to be as unintrusive as possible, it means

everyone has different definition of “major” bug to decide what to write on the

debugging form or not.

• Researchers were not able to monitor students filling out the form since the

work is done outside the classroom. This unmonitored system causes obvious

problems such as entry without a detailed description of the bug even though

students were instructed to put as many details as possible in their own words.

It increases chance of “slacking off”. This could have limited the effectiveness

of the debugging form activity, as we hypothesized that writing down the bug

details would promote metacognitive awareness.

• When we introduced the debugging form and the instructions to use it, we also

informed students about the potential benefits of the debugging form to moti-

vate them. Prather et al. noted that understanding why the intervention took

place seems to correlate with success among students in experimental group [1].

Therefore, us informing students about the potential benefit of the debugging

form may have caused bias toward their survey responses.

26

Chapter 7

SURVEY ANALYSIS

In this chapter, we provide data points of exit survey responses and analyze them

to answer our research questions. There were a total of 38 participants in the exit

survey. Out of 38 responses, we filtered out five responses. Two participants did not

give us consent and three participants mentioned they never used the debugging form

or never submitted it yet took the survey. Therefore, we ended up with 33 responses

for our analysis. Additionally out of the final 33 responses, two participants refused to

release their project grades. Those two responses are still included in the debugging

form and survey analysis but excluded in any project grades related analysis.

We had 4 questions that had Likert scale as response types. In Likert scale, the lower

scales mean negative response where it is closer to disagreeing with the question

statement. However, in the context of our survey questions, we want to note that

lower scale is closer to “neutral” rather than negative because disagreeing with our

question statement does not necessarily mean that debugging form was harmed them.

7.1 Statistics on Each Questions

In this section, we identify statistics on responses to each question.

27

7.1.1 Question 1: Have you used this type of documentation method in the

past?

Question 1 asked if participants have heard of this type of documentation method.

Out of 33 responses, 4 participants responded Yes (12%) and 29 participants re-

sponded No (88%). Figure 7.1 represents pie chart of the responses. Although our

debugging form type of documentation method seemed to be unknown among our

participants, we were surprised by number of participants who were aware of it given

they are in an introductory computer science class. It is possible that similar method

was taught in one of the prerequisite courses.

It depends on the instructors but explicitly teaching how to debug a program is not

part of the required curriculum. Moreover, it is not too long ago that metacognition

gained attention in problem-solving stages and it is only one of many support methods

that exist. Therefore this was not a particularly surprising result to us.

Yes

12%

No

88%

Figure 7.1: Pie chart of participants’ familiarity with documentation
method in debugging

28

7.1.2 Question 2: The debugging form helped me with verbalizing the errors

Question 2 asked about the impact of the debugging form on verbalization. Figure

7.2 presents the distribution of the responses. The mode and median were both 4,

being the highest out of a set of questions attempting to measure the impact of the

debugging form (questions 2, 3, and 4). Based on this result, participants seem to

find the debugging form activity helpful with verbalization of the debugging process.

Likert Scale

0

10

20

2

6 7

16

2R
es
p
on

se
C
ou

n
t

Extremely Disagree
Somewhat Disagree

Neutral
Somewhat Agree
Extremely Agree

Figure 7.2: Column chart of responses about debugging form’s verbaliza-
tion support

7.1.3 Question 3: The debugging form helped me with explaining the debug-

ging progress to instructors

Question 3 attempted to measure the impact of the debugging form on bug expla-

nation. Figure 7.3 presents the distribution of the responses. We expected the dis-

tribution to be similar to Question 2 because we imagined the verbalization ability

would be correlated with the explanation ability. However, the plots showed different

trends and we hypothesize that this might be because there were participants who

did not ask questions to instructors based on their debugging form entry. The ques-

tion specifically included wording “explaining the debugging progress to instructors”

and we believe this might have affected the responses. Nevertheless, we did not filter

29

out the responses by those participants because their responses could have been still

based on the situation of if they were to explain.

Likert Scale

0

10

20

3

9
7
10

4

R
es
p
on

se
C
ou

n
t

Extremely Disagree
Somewhat Disagree

Neutral
Somewhat Agree
Extremely Agree

Figure 7.3: Column chart of responses about debugging form’s explanation
support

7.1.4 Question 4: The debugging form helped me stay aware of my debugging

progress

Question 4 attempted to measure participants’ acknowledgment of debugging process;

in simpler words if participants are aware of what debugging stage they are in and

what they are trying to solve. Figure 7.4 presents the response distribution. We saw

a similar trend with Question 3’s responses with this question.

Likert Scale

0

10

20

1

9 8

12

3R
es
p
on

se
C
ou

n
t

Extremely Disagree
Somewhat Disagree

Neutral
Somewhat Agree
Extremely Agree

Figure 7.4: Column chart of responses about debugging form’s support
for acknowledgement of problem

30

7.1.5 Question 5: I have solved at least one bug that I was going to ask

instructors about while filling out the debugging form

Question 5 asked participants if they have solved at least one bug that they were going

to ask instructors about while filling out the debugging form. Out of 33 responses,

24 participants responded Yes (73%) and 9 participants responded No (27%). Figure

7.5 represents pie chart of the responses.

Yes

73%

No

27%

Figure 7.5: Pie chart of participants solving at least one bug that they
were going to ask instructor about

A significant number of participants indicated that they had solved at least one bug

that they were going to ask instructors while they were filling out the debugging form.

This might mean that the debugging form promoted independence in participants’

debugging processes.

Additionally, in my TA experience, there were times where the help queue was too

long that not every participant who needed help could get help during the labora-

tory section. If the debugging form helps with promoting independence and support

problem-solving, it would be extremely helpful to integrate such support into real

classroom settings.

31

This result also supports our motivation of this thesis that participants often get

“aha” moments as they are verbalizing the details about their debugging process of

the problem. Participant 26 said they “think that learning to understand the problem

that you are facing before you ask for help is very valuable”.

7.1.6 Question 6: I feel more confident in approaching debugging process be-

cause I learned and used the debugging forms

Question 6 asked participants if they feel more confident in approaching the debugging

process because they have learned and used debugging forms. Figure 7.6 presents the

distribution of the responses.

Likert Scale

0

10

20

3
6

13

7
4

R
es
p
on

se
C
ou

n
t

Extremely Disagree
Somewhat Disagree

Neutral
Somewhat Agree
Extremely Agree

Figure 7.6: Column chart of participants’ response about future use of the
debugging form

Although the mean is slightly higher than 3, both the median and mode were 3.

We believe there is so much more that is related to confidence in programming and

debugging and the debugging form cannot resolve all of potential causes.

Table 7.1 presents the summary of statistics (mean, mode, median, min, and max) of

Questions 2, 3, 4, and 6 which had Likert scale responses.

32

Table 7.1: Statistics of question 2, 3, 4, and 6 responses
Mean Min Max Mode Median

Question 2 3.30 1 5 4 4
Question 3 3.09 1 5 4 3
Question 4 3.21 1 5 4 3
Question 6 3.09 1 5 3 3

7.1.7 Question 7: Do you see yourself utilizing this type of method in future

computer science classes

Question 7 asked participants if they see themselves utilizing this type of documenta-

tion method in future computer science classes as a support in the debugging process.

Out of 33 responses, 9 participants responded Yes, 7 participants responded No, and

17 participants responded Maybe. Figure 7.7 represents pie chart of the responses.

Yes

27%

No

21%

Maybe

52%

Figure 7.7: Pie chart about participants’ willingness to use the debugging
form in the future

This suggests that around half of the participants are not sure about using the debug-

ging form in the future. Since everyone is different and there will not be one ultimate

method that works for everyone, it is expected to have participants who did not find

this method helpful. However, we believe 8 weeks without monitoring might have

been too short for participants to decide if this method will be helpful in their future

33

computer science classes because it is easy to “slack off” researcher is not observing

the participants.

Although the “subjective” responses, responses about what participants believe, might

suggest that participants did not benefit as much, the “objective” response being 74%

participants solving at least one bug without help that they thought they needed the

help for show significant impact of the debugging form.

7.1.8 Question 8 (Optional): Please feel free to share any comments in this

section. Any positive/negative/neutral experience with debugging form?

From the optional free response question, we identified two confusions participants

might have experienced.

We learned that some participants used the debugging form after they had completely

solved the bug. Participant 37 mentioned “The forms would be extremely helpful had

I used them during the debugging process. However, I used the forms after the fact”.

Additionally, participant 14 also mentioned “Most of the time when I was using the

debugging form, I had already solved the problem ages ago and was filling the form

out afterward”. We intended for participants to use the debugging form as they try

to solve the bugs. However, there seems to be a disconnection regarding when to use

debugging forms. This might explain participant 26’s comment, “I don’t feel like the

form did a good job of facilitating that as it broke up my thinking process by making

me fill out the form”. However, they did not specify when they have filled out the

form throughout the debugging process. Therefore, this disconnection might have

caused “side effect” due to such misunderstanding.

The provided options for “Issue Category” were steps of debugging we identified

through research. Our intention was for participants to identify where they are at

34

solving the bug, for example “I am trying to understand the error” or “I understand

the error but do not know how to fix it”. However, we received comments that

imply the “Issue Category” was expected to provide specific bug types as options.

Participant 6 commented “The Other category was sometimes intimidating because

I didn’t even know how to describe the error and if there were more options maybe

I would have been able to articulate my issue better”. However, identifying the

debugging step (what the column was meant for) and describing the bug in detail

are connected yet separate tasks in the debugging form. If participants wanted to

mention specific types of bugs, it would be the next column, “Issue Description”.

Participant 31 also said “More options for stuff like that in the 1-6 category other than

Other might help articulate exactly what’s wrong”. Based on these two participants’

comments, we identified the existing disconnection on tasks.

However, this gave us insights about how providing specific possible bug types could

have worked as a guide to identifying the bugs. Additionally, one of the tutoring

strategies as a TA was ensuring participants that bugs inevitably occur and are com-

mon to help with participants’ morale and self-efficacy. Based on the feedback, we

believe providing specific bug types upfront could ensure participants that the bugs

they are experiencing are expected and normal.

7.2 Improvements

Based on participants’ feedback, we identified potential improvements on the design

of the debugging form and the experiment.

35

7.2.1 Form Design

Instead of calling the first column “Issue Category”, we believe calling it “Debugging

Stage” would reduce participants’ confusion. Based on participants’ feedback, we

believe the word “Category” gave the impression of participants having to choose a

specific type of bug. Once such understanding is firm, we could explicitly instruct

participants to identify the previous debugging stage’s findings on issue description

which will show the evidence of understanding their status with current debugging.

Additionally, participant 26 noted that the debugging form “broke up my thinking

process by making me fill out the form”. We see that this is a potential issue for some

participants who find writing down the process difficult as it breaks their thought

process. One of potential solutions is integrating the online version of debugging

form embedded on IDE where user could indicate the start of debugging session and

let them explore specific code block. The session could log changes, user’s thoughts,

flow of debugging session, and more. This might decrease the pressure or hassle of

having to go back and forth with the debugging form and their code. Additional

research is required in this area.

7.2.2 Experiment Design

Unlike Loksa et al. who gave explicit instructions on programming problem-solving

stages in their study, we only briefly touched on stages of debugging when we gave

instructions on how to fill out the debugging form. Although the debugging form

had participants identify the debugging stages of each entry, they might have lacked

a fundamental understanding of them.

36

Furthermore, if the researcher is the instructor or TA, they certainly will be able

to do more observation on participants. This will decrease the disadvantage of not

being able to observe participants closely as interview-based research allows to yet

still integrate it into normal course settings.

37

Chapter 8

FORM ANALYSIS

Implementing a method to measure one’s metacognitive awareness is not straight-

forward. Jacobse and Harskamp suggested that the development of measurement

instruments be specifically shaped to fit certain domains due to the fairly domain-

specific nature of metacognition [27]. Therefore, we have created a tool to measure

metacognitive awareness in debugging. Aside from self-report survey results by stu-

dents’ perspective, we wanted to perform metacognitive awareness measurement on

how much we think students understood the bugs they logged on the debugging

form. However, it is possible that students did not put the full description of their

understanding on the debugging form. Therefore, students might have more or less

understanding of our measurement. It is important to note that we have limited in-

formation and our measurement is solely based on what students have written down

on the debugging form.

8.1 Form Analysis Rubric

We created a “rubric” to measure their understanding of their bugs. The rubric has

three levels where each level has to meet specific criteria to qualify for it. The level

was assigned on each entry of the debugging form. If each entry’s level was different,

we took the average and rounded it up. We chose to round up because the existence

of higher level shows that they are capable of understanding the bug at that level.

Table 8.1 presents which criterion needed to be qualified to be assigned each level.

38

Table 8.1: Rubric for the form analysis
Criteria Level 1 Level 2 Level 3

Mention basic information about the error ✓ ✓ ✓
Describe the faulty behavior of program at high level
language

✓ ✓

Describe the faulty behavior of program at low level
language and/or shows evidence of previous debugging
stage hypothesis

✓

Submissions qualified for level 1 understanding if the entry only mentioned the basic

error type of the bug and nothing else. To qualify for level 2 understanding, on top

of level 1’s qualifications, the entry must describe the faulty behavior of the program

in a high-level language. Level 3 implies the most advanced understanding of the

bug in our rubric. First, on top of level 2’s qualifications, the entry must explain the

faulty behavior of the program in a low-level language like specifying the code block

of the error or mentioning algorithms of the code. Additionally, showing the evidence

of previous debugging stages explicitly or implicitly (if applicable) was part of level

3’s criteria as well. We were a bit lenient with this category since each entry was at

different debugging stage therefore we cannot expect same amount of information to

be mentioned.

8.1.1 Rubric Usage Example

To better explain that qualifies for each level, we present Table 8.2 which shows entry

examples of each level. The examples are taken from the actual debugging forms

submitted by students.

39

Table 8.2: Entry example for each level placement
Example Level 1 Level 2 Level 3

Wrong output ✓
For the concordance functions, it would to print out the
entire line over and over instead of each word

✓

In postfix eval: Getting ValueError: could not convert
string to float even though I have a try/except to handle
this case. It also says During handling of the above ex-
ception, another exception occurred, followed by a Key-
Error: ’blah’

✓

8.1.2 Results

Figure 8.1 presents the results of measuring students’ metacognitive awareness using

our rubric.

Project 2 Project 3 Project 4
0

10

20

9

4

1211

15
13

11 12

5L
ev
el

C
ou

n
t Level 1
Level 2
Level 3

Figure 8.1: Column chart of students’ Project 2, 3, and 4 debugging form
level placements

We want to note that total number of the forms for each project is different because

10 students did not submit the debugging form for every project. Students who never

turned in the form were already filtered out in the beginning.

We did not necessarily expect students’ level placement over time would improve

because we did not provide a feedback on their debugging forms. We hypothesize that

if students were given feedback on each debugging form, their level placement might

have increased over time. We expected the level placement over time to stay at least

40

consistent. However, we observed that, based on our rubric, students’ understanding

of the bugs decreased from project 3 to project 4. We hypothesized that this trend

might be correlated with project difficulty and decided to look at average grade of

each project.

2 3 4
90

92

94

96

98

100

Project

G
ra
d
e
P
er
ce
n
ta
ge

(%
)

Average Grade

Figure 8.2: Graph of average grade on each project

Figure 8.2 presents the trend of average grade on each project. The average grade for

project 2, 3, and 4 were 92.39%, 98.26%, and 92.71% respectively. We want to note

that we did not observe individual or average grade until we placed every submission

into certain level to avoid any bias. We see a trend that the average grade increased

from project 2 to 3 but decreased from 3 to 4. This is similar to students’ level

placement trend where lower level decreased and higher level increased from project

2 to project 3 but reversed for from project 3 to project 4. We interpret this similarity

in trends as a correlation between average grades and students’ understanding of bugs;

students’ understanding seemed to decrease as the difficulty of project increase.

41

Chapter 9

THREATS TO VALIDITY

9.1 Self-Selection Bias

Self-selection bias refers to a distortion of an expected statistical result due to self-

selection of subjects [28]. Offering extra credit for submission of debugging forms

and voluntary participation in the exit survey were double-edged swords in this ex-

periment. Our intention of offering extra credit was to motivate students to use

debugging forms. Doing so could have brought balance to our sample between stu-

dents who were going to participate no matter what and those who would not plan

to. However, voluntary participation means students self-selected whether or not to

participate in the survey. Thus, our sample size got affected by it.

Additionally, students were eligible to take the survey only if they have submitted

at least one debugging form throughout the quarter. Therefore students’ responses

might not carry the same weight because number of the submitted debugging forms

differ by students.

9.2 Limited Information

Unlike similar studies where researchers were able to observe participants, we were

not able to do the same because of the nature of normal classroom setting where

students work on assignments at their own time. Therefore, our analysis relies on

what students have provided on the debugging form. Furthermore, we had average

42

70 students who turned in the debugging forms yet only half of them participated in

the survey.

9.3 Lack of Peer Review Process

All experiment design, survey questions, rubric, and level placements based on the

rubric were designed by one researcher. While peer review process is the ideal way

to perform such analysis or design, we did not have enough time and resource to

go through such process. Schraw noted that although it is relatively easy to collect

the data, it is far more challenging to implement a rubric to capture one’s thought

process in data [29]. To design reliable measurement tools, peer review process would

be crucial especially because metacognition is complex to measure.

43

Chapter 10

CONCLUSION

In this thesis, we developed a cognitive awareness scaffolding, debugging form, to

promote metacognitive awareness in debugging for students in introductory com-

puter science class. We validated its effectiveness through analysis of students’ sur-

vey responses, “measured” students’ metacognitive awareness on bugs, and proposed

improvements on the debugging form. We found that the debugging form seem to act

as meaningful support and help with verbalization in problem descriptions. Although

one specific method cannot completely resolve difficulties in debugging or support en-

tire debugging process, we argue that the debugging form has a high potential to be

integrated into real classroom setting to support students’ debugging process based

on our analysis.

10.1 Future Work

To further validate its effectiveness of the debugging form in introductory computer

science classes, the next step is to conduct an experiment with control and experi-

mental group under same material and instructor to compare the results between two

groups. We anticipate that students who are taking the course in the same quarter

to have “closest” programming background at least at Cal Poly SLO. With such en-

vironment set up, the only major difference between two groups would be providing

the debugging form as cognitive awareness scaffolding or not. We were not able to

conduct such experiment because one of the instructors who teach three sections let

students to come to any lecture or laboratory sections which makes it impossible for

44

the instructor to keep track of which student should be presenting the debugging form

entry when they are asking questions. Furthermore, we could not guarantee balance

between the number of students in each group since the participation was voluntary.

Additionally, like previously mentioned in the section 9.3, our research lacked peer

review process. In the future, everything we mentioned in section 9.3 should go

through peer review process to validate the design of methods and analysis using

such methods.

Finally, another research question to further investigate is “Is there correlation be-

tween assignment completion time and metacognitive awareness?”. We believe as-

signment completion time is another indicator of students’ performance along with

project grades, and investigating the correlation between students’ level of metacogni-

tive awareness and project completion time would provide insight on the importance

of metacognitive awareness in problem-solving as well.

45

BIBLIOGRAPHY

[1] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa,

Alani Peters, Zachary Albrecht, and Krista Masci. First things first:

Providing metacognitive scaffolding for interpreting problem prompts. In

Proceedings of the 50th ACM Technical Symposium on Computer Science

Education, SIGCSE ’19, page 531–537, New York, NY, USA, 2019.

Association for Computing Machinery.

[2] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler. What help do students

seek in ta office hours? In Proceedings of the 2019 ACM Conference on

International Computing Education Research, ICER ’19, page 41–49, New

York, NY, USA, 2019. Association for Computing Machinery.

[3] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda

Thomas, and Carol Zander. Debugging: The good, the bad, and the quirky

– a qualitative analysis of novices’ strategies. 40(1):163–167, mar 2008.

[4] Rifat Sabbir Mansur, Ayaan M. Kazerouni, Stephen H. Edwards, and

Clifford A. Shaffer. Exploring the bug investigation techniques of

intermediate student programmers. In Koli Calling ’20: Proceedings of the

20th Koli Calling International Conference on Computing Education

Research, Koli Calling ’20, New York, NY, USA, 2020. Association for

Computing Machinery.

[5] self-regulation, n.

[6] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert

Deline, and Gina Venolia. Debugging revisited: Toward understanding the

46

debugging needs of contemporary software developers. In 2013 ACM /

IEEE International Symposium on Empirical Software Engineering and

Measurement, pages 383–392, 2013.

[7] Roy D Pea, Elliot Soloway, and Jim C Spohrer. The buggy path to the

development of programming expertise. Focus on Learning Problems in

Mathematics, 9, 1987.

[8] L. Gugerty and G. Olson. Debugging by skilled and novice programmers.

SIGCHI Bull., 17(4):171–174, apr 1986.

[9] Iris Vessey. Expertise in debugging computer programs: An analysis of the

content of verbal protocols. IEEE Transactions on Systems, Man, and

Cybernetics, 16(5):621–637, 1986.

[10] Murthi Nanja and Curtis R Cook. An analysis of the on-line debugging

process. In Empirical studies of programmers: Second workshop, pages

172–184. Norwood, NJ: Ablex, 1987.

[11] Irvin R Katz and John R Anderson. Debugging: An analysis of bug-location

strategies. Human-Computer Interaction, 3(4):351–399, 1987.

[12] M. Ducassé and A.-M. Emde. A review of automated debugging systems:

Knowledge, strategies and techniques. In Proceedings of the 10th

International Conference on Software Engineering, ICSE ’88, page 162–171,

1988.

[13] Renée Mccauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth

Simon, Lynda Thomas, and Carol Zander. Debugging: A review of the

literature from an educational perspective. Computer Science Education,

18, 06 2008.

47

[14] metacognition, n.

[15] J H Flavell. Metacognitive aspects of problem solving. In L B Resnick, editor,

The Nature of Intelligence, pages 231–235. Earlbaum, Hillsdale, NJ, 1976.

[16] Yahya Safari and Habibeh Meskini. The effect of metacognitive instruction on

problem solving skills in iranian students of health sciences. Global Journal

of Health Science, 8(1):150–156, Jan 2016.

[17] Catherine Aurah, Setlhomo Koloi-Keaikitse, Calvin Isaacs, and Holmes Finch.

The role of metacognition in everyday problem solving among primary

students in kenya. problems of education in the 21st century, 30, 01 2011.

[18] Gökhan Özsoy and Ayşegül Ataman. The effect of metacognitive strategy

training on mathematical problem solving achievement. International

Electronic Journal of Elementary Education, 1(2):67–82, 2009.

[19] Eileen P. Haller, David A. Child, and Herbert J. Walberg. Can comprehension

be taught? a quantitative synthesis of “metacognitive” studies. Educational

Researcher, 17(9):5–8, 1988.

[20] Bracha Kramarski and Zemira R. Mevarech. Enhancing mathematical

reasoning in the classroom: The effects of cooperative learning and

metacognitive training. American Educational Research Journal,

40(1):281–310, 2003.

[21] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J.

Mendez, and Margaret M. Burnett. Programming, problem solving, and

self-awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems, CHI ’16, page

1449–1461, New York, NY, USA, 2016. Association for Computing

Machinery.

48

[22] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram

Krishnamurthi. How to design programs: an introduction to programming

and computing. MIT Press, 2018.

[23] Mark Sherer, James Maddux, Blaise Mercandante, STEVEN

PRENTICE-DUNN, Beth Jacobs, and Ronald Rogers. The self-efficacy

scale: Construction and validation. Psychological reports, 51:663–671, 10

1982.

[24] Gilad Chen, Stanley M. Gully, and Dov Eden. Validation of a new general

self-efficacy scale. Organizational Research Methods, 4(1):62–83, 2001.

[25] Ned Batchelder. Coverage.py.

[26] Esther Kapa. A metacognitive support during the process of problem solving in

a computerized environment. Educational Studies in Mathematics,

47(3):317–336, Sep 2001.

[27] Annemieke E. Jacobse and Egbert G. Harskamp. Towards efficient

measurement of metacognition in mathematical problem solving.

Metacognition and Learning, 7(2):133–149, Aug 2012.

[28] self-selection, n.

[29] Gregory Schraw2. Measuring self-regulation in computer-based learning

environments. Educational Psychologist, 45(4):258–266, 2010.

[30] Abdulaziz Alaboudi and Thomas D. LaToza. An exploratory study of

debugging episodes. arXiv:2105.02162 [cs], May 2021. arXiv: 2105.02162.

[31] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. An analysis of

patterns of debugging among novice computer science students. SIGCSE

Bull., 37(3):84–88, jun 2005.

49

[32] Anthony Robins, Patricia Haden, and Sandy Garner. Problem distributions in

a cs1 course. Conferences in Research and Practice in Information

Technology Series, 52, 01 2006.

[33] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri.

Identifying and correcting java programming errors for introductory

computer science students. volume 35, pages 153–156, 01 2003.

[34] response, n.

[35] Gregory Schraw and David Moshman. Metacognitive theories. Educational

Psychology Review, 7:351–371, 12 1995.

[36] L R Izzati and A Mahmudi. The influence of metacognition in mathematical

problem solving. Journal of Physics: Conference Series, 1097:012107, Sep

2018.

50

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation
	1.2 Primary Goal
	1.3 Research Questions
	1.4 Main Contribution

	2 Background
	2.1 Debugging
	2.1.1 Debugging Tools

	2.2 Metacognition
	2.2.1 Metacognition in Debugging

	3 Related Works
	3.1 Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance
	3.2 First Things First: Providing Metacognitive Scaffolding for Interpreting Problem Prompts
	3.3 What Help Do Students Seek In TA Office Hours

	4 Debugging Form
	4.1 Form Design
	4.1.1 Issue Category
	4.1.2 Issue Description
	4.1.3 Previous Attempts
	4.1.4 Solved by Myself
	4.1.5 Asked Question

	5 Exit Survey
	5.1 Exit Survey Design
	5.1.1 Questions

	6 Experiment Design
	6.1 Course Context
	6.1.1 CSC 202: Data Structures
	6.1.2 Projects
	6.1.3 Auto-Grader

	6.2 Instructions
	6.3 Limitations

	7 Survey Analysis
	7.1 Statistics on Each Questions
	7.1.1 Question 1: Have you used this type of documentation method in the past?
	7.1.2 Question 2: The debugging form helped me with verbalizing the errors
	7.1.3 Question 3: The debugging form helped me with explaining the debugging progress to instructors
	7.1.4 Question 4: The debugging form helped me stay aware of my debugging progress
	7.1.5 Question 5: I have solved at least one bug that I was going to ask instructors about while filling out the debugging form
	7.1.6 Question 6: I feel more confident in approaching debugging process because I learned and used the debugging forms
	7.1.7 Question 7: Do you see yourself utilizing this type of method in future computer science classes
	7.1.8 Question 8 (Optional): Please feel free to share any comments in this section. Any positive/negative/neutral experience with debugging form?

	7.2 Improvements
	7.2.1 Form Design
	7.2.2 Experiment Design

	8 Form Analysis
	8.1 Form Analysis Rubric
	8.1.1 Rubric Usage Example
	8.1.2 Results

	9 Threats to Validity
	9.1 Self-Selection Bias
	9.2 Limited Information
	9.3 Lack of Peer Review Process

	10 Conclusion
	10.1 Future Work

	BIBLIOGRAPHY

