
SPACECRAFT TRAJECTORY OPTIMIZATION SUITE: FLY-BYS WITH

IMPULSIVE THRUST ENGINES (STOPS-FLITE)

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Aaron Hogan Li

June 2022

© 2022

Aaron Hogan Li

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Spacecraft Trajectory Optimization Suite:

Fly-bys with Impulsive Thrust Engines

(STOpS-FLITE)

AUTHOR: Aaron Hogan Li

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: Kira Abercromby, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER: Eric Mehiel, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER: Paul Choboter, Ph.D.

Professor of Mathematics

COMMITTEE MEMBER: Timothy Fitzgerald, M.S.

Aerospace Engineer

iii

ABSTRACT

Spacecraft Trajectory Optimization Suite: Fly-bys with Impulsive Thrust Engines

(STOpS-FLITE)

Aaron Hogan Li

Spacecraft trajectory optimization is a near-infinite problem space with a wide

variety of models and optimizers. As trajectory complexity increases, so too must

the capabilities of modern optimizers. Common objective cost functions for these

optimizers include the propellant utilized by the spacecraft and the time the spacecraft

spends in flight. One effective method of minimizing these costs is the utilization of

one or multiple gravity assists. Due to the phenomenon known as the Oberth effect,

fuel burned at a high velocity results in a larger change in orbital energy than fuel

burned at a low velocity. Since a spacecraft is flying fastest at the periapsis of its orbit,

application of impulsive thrust at this closest approach is demonstrably capable of

generating a greater change in orbital energy than at any other location in a trajectory.

Harnessing this extra energy in order to lower relevant cost functions requires the

modeling of these “powered flybys” or “powered gravity assists” (PGAs) within an

interplanetary trajectory optimizer. This paper will discuss the use and modification

of the Spacecraft Trajectory Optimization Suite, an optimizer built on evolutionary

algorithms and the island model paradigm from the Parallel Global Multi-Objective

Optimizer (PaGMO). This variant of STOpS enhances the STOpS library of tools

with the capability of modeling and optimizing single and multiple powered gravity

assist trajectories. Due to its functionality as a tool to optimize powered flybys, this

variant of STOpS is named the Spacecraft Trajectory Optimization Suite - Flybys

with Impulsive Thrust Engines (STOpS-FLITE).

In three test scenarios, the PGA algorithm was able to converge to comparable or

superior solutions to the unpowered gravity assist (uPGA) modeling used in previous

iv

STOpS versions, while providing extra options of trades between time of flight and

propellant burned. Further, the PGA algorithm was able to find trajectories utilizing

a PGA where uPGA trajectories were impossible due to limitations on time of flight

and flyby altitude. Finally, STOpS-FLITE was able to converge to a uPGA trajectory

when it was the most optimal solution, suggesting the algorithm does include and

properly considers the uPGA case within its search space.

v

ACKNOWLEDGMENTS

I could write a hundred pages about the people who’ve helped me to this point, but

I only have this one. Special thanks to:

• Dr. Kira Abercromby, for being my advisor, in undergraduate and graduate

school, but also in life. I could never have made it through this major these last

5 years without her support and advice.

• Sam Westrick and Natalia Cieply, for being my greatest supporters in my

aerospace endeavors. They will be graduating alongside me with Master’s de-

grees of their own and will always be a lovely reminder of how lucky I am be a

Cal Poly student, because they were, too.

• Lauren Dennen, for being there for me at my absolute best and my absolute

worst. Her love and honesty brightens and guides my life just as certainly as

the Sun and stars.

• Rachel Neil, for believing in me in all things, especially when I don’t believe

in myself. Her kindness and patience is as boundless as the Universe itself and

will surely support me for a long time to come, in success and in failure.

• My mom and dad, for teaching me the value of education, for passing down a

lifelong love of learning, and for sacrificing their dreams and homeland so that

I could have a chance at achieving my dreams and finding my home.

For all of us who call ourselves the children of planet Earth, may our empathy one

day match our curiosity, our tenacity, our hope, and the vastness of the Universe,

that our children may truly be deserving of living amongst the stars our ancestors

worshipped as the realm of the gods.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Orbital Mechanics & Interplanetary Trajectories 2

1.2.1 Lambert’s Problem . 3

1.2.2 Gravity Assists . 4

2 POWERED GRAVITY ASSISTS . 8

2.1 Oberth Effect . 8

2.2 Powered Gravity Assist Literature . 10

2.3 Applied Powered Gravity Assists . 19

3 SPACECRAFT TRAJECTORY OPTIMIZERS 22

3.1 Commonly Used Spacecraft Trajectory Optimizers 23

3.2 Spacecraft Trajectory Optimization Suite (STOpS) 25

3.2.1 STOpS Optimization Scheme 25

3.2.2 Island Model Paradigm . 26

3.2.3 Genetic Algorithm . 28

3.2.4 Differential Evolution . 29

3.2.5 Particle Swarm Optimization 31

3.2.6 Ant Colony Optimization . 32

3.2.7 History of the Spacecraft Trajectory Optimization Suite 33

vii

4 POWERED GRAVITY ASSIST MODEL AND ALGORITHM 36

4.1 Required Inputs . 36

4.2 Definition of Incoming Hyperbolic Orbit 37

4.3 Application of Thrust . 40

4.4 Calculation of Outgoing Exit Velocity 42

5 VALIDATION . 47

6 IMPLEMENTATION . 53

6.1 STOpS Pre-Existing Architecture . 53

6.2 Implementation of the Powered Gravity Assist Algorithm 55

7 RESULTS . 60

7.1 Test Scenario 1: Earth-Jupiter-Saturn (EJS) Trajectory 61

7.1.1 Description . 61

7.1.2 Control Case . 63

7.1.3 PGA Case . 64

7.1.4 Missed Launch Window . 70

7.2 Test Scenario 2: Earth-Mars-Venus-Mercury (EMVM) Trajectory . . 72

7.2.1 Description . 72

7.2.2 Control Case . 74

7.2.3 PGA Case . 76

7.3 Test Scenario 3: Mariner 10 (Earth-Venus-Mercury) 82

8 CONCLUSION . 88

8.1 Summary . 88

8.2 Future Work . 89

BIBLIOGRAPHY . 92

viii

APPENDICES

A User Guide . 97

ix

LIST OF TABLES

Table Page

2.1 Maximum ∆Emax [11] . 15

3.1 JPL Trajectory Tools [23] . 23

3.2 Current Variants of STOpS . 34

5.1 Prado Model Example Parameters [12] 47

5.2 3D Model Example Parameters . 50

6.1 PGA Algorithm Limits . 56

7.1 EJS Trajectory Cost Functions . 61

7.2 EJS Trajectory Limits . 62

7.3 EJS uPGA Results . 63

7.4 EJS PGA Results . 65

7.5 EJS Trajectory Detail Comparison 69

7.6 EJS Missed Launch Window PGA 71

7.7 EMVM Trajectory Cost Functions 73

7.8 EMVM PGA Trajectory Limits . 73

7.9 EMVM uPGA Trajectory Limits 74

7.10 EMVM uPGA Results . 74

7.11 EMVM PGA Results . 76

7.12 EMVM PGA Application . 77

7.13 Mariner 10 PGA Trajectory Limits 83

7.14 Mariner 10 Trajectory Cost Functions 83

x

7.15 Mariner 10 STOpS-FLITE Solution 83

7.16 Mariner 10 Comparison (STOpS-FLITE Average vs. Actual) 86

xi

LIST OF FIGURES

Figure Page

1.1 Example Solution to Lambert’s Problem [5] 4

1.2 Leading Side vs. Trailing Side Gravity Assist [2] 6

2.1 Circular Orbit Impulsive Escape Maneuvers [10] 9

2.2 Standard Gravity Assist Diagram [12] 11

2.3 Powered Gravity Assist Diagram [12] 12

2.4 Example Capture/Collision Region [12] 13

2.5 3D Powered Gravity Assist Diagram [13] 16

2.6 Multi-Impulse PSB Comparison [14] 18

3.1 Example Island Model Topologies [22] 27

4.1 Sun Centered Planet Fixed Frame 38

4.2 Planet Centered Sun Fixed Frame 39

4.3 Orbital Plane A Frame . 41

4.4 Orbital Plane B Frame . 43

4.5 Post-PGA Orbit in OPB . 45

5.1 Change in Heliocentric Velocity [12] 48

5.2 Change in Orbital Energy [12] . 48

5.3 Change in Heliocentric Velocity (Prado) 49

5.4 Change in Orbital Energy (Prado) 49

5.5 Change in Heliocentric Velocity (3D) 51

5.6 Change in Orbital Energy (3D) . 51

xii

6.1 STOpS Block Diagram . 55

6.2 STOpS-FLITE Block Diagram . 59

7.1 Earth-Jupiter-Saturn uPGA Trajectory 64

7.2 Earth-Jupiter-Saturn PGA Trajectory 66

7.3 EJS Jovian Flyby (OPA Frame) . 67

7.4 Earth-Mars-Venus-Mercury uPGA Trajectory 75

7.5 Earth-Mars-Venus-Mercury PGA Trajectory 78

7.6 EMVM Martian Flyby (OPA Frame) 79

7.7 EMVM Venusian Flyby (OPA Frame) 80

7.8 Mariner 10 Actual Trajectory [35] 82

7.9 Mariner 10 STOpS-FLITE Trajectory 84

7.10 Mariner 10 STOpS-FLITE Venusian Flyby (OPA Frame) 85

A.1 STOpS-FLITE Block Diagram . 98

xiii

Chapter 1

INTRODUCTION

1.1 Problem Statement

Powered gravity assists represent a small part of the interplanetary trajectory

optimization toolbox. Advances in modeling and simulation as well as technological

developments like electric propulsion have vastly improved mission design capabili-

ties. While electric propulsion and similar advancements in spacecraft engine systems

have resulted in significant gains in the ability of spacecraft to produce changes in

velocity (δv) themselves, modeling and simulation improvements have allowed the de-

sign of missions that take advantage of δv gains from gravity assists. Most missions

utilize a ballistic gravity assist, one in which no thrust is applied by the spacecraft

engine during the gravity assist. Ballistic gravity assists are the simplest modeling of

gravity assists, and many different expansions of this case exist such as aerogravity

assists, tethered gravity assists, and powered gravity assists, the topic of this paper.

Powered gravity assists (PGAs) take advantage of the Oberth effect to increase the

δv effect beyond that of the ballistic gravity assist. The Oberth effect is the physical

phenomenon in which fuel utilized inside a gravitational well is more effective than

the same fuel utilized outside the gravitational well [1]. This paper will limit its scope

to covering specifically impulsive thrust powered gravity assists. Though some lit-

erature discusses continuous/low thrust powered gravity assist analysis, the Oberth

effect is more noticeable with impulsive/high thrust systems. Thus, this paper will

analyze the effectiveness of gravity assists amplified by impulsive, high thrust engines.

While studies of PGAs typically consider their effect on maximum energy transfer,

1

few discussions of their applicability to interplanetary trajectory optimizations have

been published, leading to this study on their functionality as a tool to decrease

relevant mission parameters like time of flight or δv. The Spacecraft Trajectory Op-

timization Suite (STOpS), first developed at California Polytechnic State University,

San Luis Obispo in 2015 with multiple expansions in the years since, serves as the

backbone of this study. STOpS utilizes metaheuristic evolutionary algorithms and

shares solutions between them to find the global optimum of an interplanetary trajec-

tory with regards to multiple parameters. By modifying the gravity assist modeling

of STOpS, a study of PGA applicability to interplanetary trajectory optimization

can be conducted. Because of its PGA capabilities, this variant of STOpS is named

the Spacecraft Trajectory Optimization Suite - Flybys with Impulsive Thrust En-

gines (STOpS-FLITE). STOpS-FLITE optimizes trajectories using the island model

paradigm and the algorithms from the original version, with the added capability of

performing PGAs within the sphere of influence of planetary bodies.

1.2 Orbital Mechanics & Interplanetary Trajectories

The design of spacecraft trajectories is an important factor in the design of space-

craft themselves [2, 3]. Better optimization of an orbital path reduces required fuel

(δv) or decreases time of flight (TOF), among other improvements to a spacecraft’s

mission [4]. These trajectories are limited by the laws of physics, specifically those of

orbital mechanics.

Within the world of orbital mechanics, all bodies travel in paths defined by conic

sections with one of the foci at the celestial body being orbited, be they circles,

ellipses, parabolas, or hyperbolas. For example, the planets of the solar system are

in orbits that are nearly circular around the Sun. These are often simplified to being

2

truly circular for the sake of mathematical simplicity. For a spacecraft to travel

between planets, it travels on an elliptical path, with one of the foci of that ellipse

being centered on the Sun. A common way to model this maneuver is by solving

Lambert’s problem.

1.2.1 Lambert’s Problem

Solutions to Lambert’s problem are a popular and well understood way of numer-

ically calculating required δv’s for orbital maneuvers [2]. While many formulations of

solutions to Lambert’s problem exist, all at least require the following inputs: the po-

sition vector of the spacecraft before departure, the position vector of the spacecraft

at arrival, a time of flight, and the gravitational parameter (µ) of the body around

which the spacecraft is orbiting. With these inputs, a Lambert’s problem solver can

obtain the velocity vector at departure to put the spacecraft on a trajectory to reach

the arrival position given that specific time of flight. Lambert’s solvers also provide

the velocity vector of the spacecraft on arrival to the second position. By comparing

these two velocity vectors to the velocity vectors of the spacecraft in their original

orbits, the δv of the maneuver can be calculated. The velocity of the spacecraft in

their original orbits are typically considered to be identical to that of the planet from

which they depart or at which they arrive. An example solution of Lambert’s problem

is presented below in Figure 1.1.

3

Figure 1.1: Example Solution to Lambert’s Problem [5]

Robust versions of the Lambert’s solver can account for a spacecraft going the

“long way” (i.e. the direction in which the traversed angle is greater than 180 degrees)

or performing multiple revolutions to arrive at its end position. One of these solvers

is the Izzo-Gooding formulation, which is the one primarily utilized by STOpS. Other

formulations are also included, but need to be called specifically by the user to be

utilized. Izzo-Gooding is a compromise between computational speed and numerical

accuracy, and its robustness led to its widespread usage.

1.2.2 Gravity Assists

Many missions have used gravity assist maneuvers around a planet or other ce-

lestial body by utilizing the gravity of said celestial body to achieve some change

in velocity [2, 6]. A gravity assist is a maneuver that uses the gravitational pull of

a celestial body to change the velocity vector of a spacecraft on an interplanetary

trajectory. With a ballistic gravity assist, only the direction of this velocity vector

4

changes. The other expansions of the ballistic gravity assist mentioned previously

may also change the magnitude of the velocity vector. In literature, gravity assists

may also be found referred to as a “swing-by” or “fly-by”. Within this paper, these

terms will be considered interchangeable.

Gravity assists are most often considered to be ballistic, where any thrust ma-

neuvers of the interplanetary trajectory is considered to be performed outside the

sphere of influence (SOI). The SOI is a region around a celestial body in which the

gravitational force of the planet overcomes that of the Sun and becomes the domi-

nant force on an object, such as a spacecraft. Once a spacecraft arrives at the SOI

of a planet, the gravity of the planet begins to be the dominant force on the space-

craft, overpowering that of the Sun. Within the SOI, the only force acting upon the

spacecraft is considered to be the gravitational pull of the planet (unless orbital per-

turbations like N-body effects, drag, and solar radiation pressure are also considered).

The gravitational pull of the Sun is considered to be acting upon both planet and

spacecraft equally, and thus, can be excluded mathematically when considering the

ballistic gravity assist. Before entering the SOI of a celestial body, the spacecraft is on

a ballistic path described by a conic section relative to the heliocentric frame [2]. The

difference between the spacecraft’s velocity from the solution to Lambert’s problem

and the planet’s velocity is the spacecraft’s v∞. If this velocity is smaller than the

escape velocity (the velocity required for an object to escape the gravitational pull

of the flyby body), the spacecraft will be captured into an elliptical orbit about the

planet and will not leave the SOI. However, capture into an orbit around a planet

will typically require a thrust maneuver to lower the velocity of the spacecraft, since

most spacecraft arrive at the SOI of a planet with a v∞ greater than the vesc (the

velocity required to escape the gravitational pull of the planet). If the v∞ of a space-

craft is greater than the vesc, then the spacecraft will be in a parabolic or hyperbolic

path around the planet. Once the spacecraft passes through the edge of the SOI, a

5

switch can be made made, from the heliocentric frame to a planetary frame. This is

a common change of frame to make as the planet is now the attracting body at the

center of the system. Within this planet-centered frame, a spacecraft can either fly in

front of a planet (relative to its direction of travel) or fly behind a planet. These are

referred to as leading and trailing side flybys, respectively, and are shown in Fig. 1.2.

Gravity assists are modeled with a parabolic or hyperbolic arc within the celestial

body reference frame. These arcs are then linked to elliptical arcs in the heliocentric

frame to model the full interplanetary trajectory, in what is known as the “patched

conic” approximation. These elliptical and hyperbolic arcs link up at the edge of the

SOI. The patched conic approximation sacrifices some accuracy in exchange for much

greater computational speed.

Figure 1.2: Leading Side vs. Trailing Side Gravity Assist [2]

As seen from Figure 1.2, the benefit of a ballistic flyby is in changing the direction

of the spacecraft relative to the heliocentric frame, resulting in a “free” change in

velocity due to a change in direction, rather than in magnitude [2]. It is important

to note that conservation of angular momentum of the spacecraft-planet system is

still satisfied since the spacecraft also pulls on the planet, though the much larger

6

mass of the planet means its change in velocity is negligible [7]. The exact change

in velocity of the spacecraft (i.e. δv) can be calculated directly from the hyperbolic

excess velocity when the spacecraft crosses into the SOI of the planet, the planetary

heliocentric velocity (Vplanet) and gravitational parameter (µ), and the angle (δ) and

radius (rp) of closest approach in a planetary frame [2]. Depending on which side

of the planet the spacecraft passes, the spacecraft will either lose heliocentric energy

(leading side flyby) or gain heliocentric energy (trailing side flyby).

With this basic breakdown of classical orbital mechanics, the next chapter will

focus more specifically on the Oberth effect and its usefulness in performing powered

gravity assists. For further information on basic orbital mechanics, the author refers

the interested reader to Orbital Mechanics for Engineering Students by Howard D.

Curtis, Fundamentals of Astrodynamics and Applications by David A. Vallado, and

Orbital Mechanics by Vladimir A. Chobotov [2, 3, 8].

7

Chapter 2

POWERED GRAVITY ASSISTS

2.1 Oberth Effect

The Oberth effect was first described and applied in theory to spacecraft in 1927 by

its namesake, Hermann Oberth. Oberth postulated that at high speeds, a spacecraft’s

fuel can be utilized more effectively since it will have both the chemical energy stored

within it and the kinetic energy of the system as a whole. The chemical energy of the

fuel remains the same and therefore the force it can apply is the same. At high speeds,

the spacecraft gains an increased amount of kinetic energy for the same amount of

fuel. Energy is still conserved for the whole system, despite the apparent “free” gain

in kinetic energy for the spacecraft itself. This is because the fuel from a spacecraft

traveling at high speeds has less energy after being burned and exhausted compared

to the same fuel exhausted from the same spacecraft traveling at a lower speed.

While the Oberth effect can be studied with low-thrust systems, it is typically

taken advantage of with high-thrust, impulsive maneuvers at closest approach [9]. Due

to the relationship between velocity and position in orbital mechanics, the spacecraft

spends very little time close to the planet with a high velocity, thus systems that can

apply a large amount of energy in a short period of time (i.e. impulsive thrust) are

more effective at taking advantage of the Oberth effect. Oberth and Edelbaum proved

that exiting a circular orbit was most optimal with regards to fuel usage (and even

TOF, at times) with a two- or three-impulse maneuver that brings the spacecraft

closer to the body to take advantage of the Oberth effect [10]. This is shown in

8

Figure 2.1 with: a single-impulse direct escape maneuver (left), a two-impulse Oberth

maneuver (center), and a three-impulse Edelbaum maneuver (right) [10].

Figure 2.1: Circular Orbit Impulsive Escape Maneuvers [10]

Compared to the circular escape trajectory, hyperbolic and parabolic orbits have

greater velocities with the same periapsis, suggesting an even more potent potential

to use the Oberth effect to change orbital energy. Thus, a powered gravity assist that

is modeled as an impulsive thrust applied at periapsis during a hyperbolic flyby could

net significant gains in orbital energy compared to performing the same thrust before

or after entering the sphere of influence. Since orbital energy is rarely a mission

parameter to be maximized or minimized in and of itself, the modeling of these

powered gravity assists with regards to a interplanetary trajectory optimization is

the focus of this thesis.

A burn at periapsis is typically the most optimal in terms of δv, as well as po-

tentially netting significant gains in TOF [9]. Impulsive maneuvers at periapsis of an

ellipse are thus shown to be the most efficient in terms of transferring energy with

the same amount of rocket fuel; in addition, it is seen that the higher the apoapsis

altitude, the higher the periapsis speed, thus the greater the efficiency of the Oberth

effect [10]. The natural extension of this idea into parabolic and hyperbolic orbits

therefore suggests that a higher v∞ on arrival into a celestial body’s SOI leads to a

9

higher velocity at periapsis (vp) and thus a greater Oberth effect, though the increase

in efficiency may be counteracted by the δv required to reach this higher v∞ in the

first place [11]. The position of greatest efficiency for impulsive maneuvers being at

periapsis is backed up by Silva et al. in their discussion of Oberth effects around

the Moon, as maximum variation of energy (∆Emax) is found when the angle of the

position vector of the impulsive maneuver relative to the periapsis vector is equal to

zero [11].

2.2 Powered Gravity Assist Literature

One of the earliest papers on powered gravity assists was written by Antonio

Fernando Bertachini de Almeida Prado in 1996. “Powered Swingby” compared three

types of gravity assists:

• standard (i.e. unpowered) gravity assist using the two-body patched conic ap-

proximation

• powered gravity assist using the two-body patched conic approximation

• powered gravity assist using the restricted three-body problem

To begin, Prado simplifies the system to a 2D case. Prado then defines two celestial

bodies to be the primaries. The first is the celestial body about which the second

orbits. For example, in the Sun-Earth system, the first primary (M1) is the Sun and

the second primary (M2) is the Earth. Finally, Prado sets the following assumptions

for each of the three cases:

1. impulse is applied at periapsis

10

2. impulse changes velocity of the spacecraft instantaneously

3. motion is planar everywhere

The standard gravity assist was defined to provide a comparison to the powered

gravity assists. Prado defined this maneuver with three independent parameters: 1)

v∞−, the scalar magnitude of the velocity approaching the celestial body or vp, the

scalar magnitude of the spacecraft at periapsis (either can be calculated from the

other, if necessary); 2) rp, the distance between the spacecraft and the center of the

celestial body during the closest approach (the periapsis radius of the trajectory);

and 3) ψ, the angle of approach (the angle between the periapse line and the line that

connects the two primaries). These variable definitions are shown in Fig.2.2:

Figure 2.2: Standard Gravity Assist Diagram [12]

The A and B points are chosen to indicate the location at which the gravity of

the M2 overtakes that of M1 (the edge of the SOI). Note that δ here is the angle

between the hyperbolic asymptote and a line that is 90 degrees from the radius of

periapse in the orbital plane. Some literature will instead define the turn angle as the

angle between the hyperbolic asymptote and the radius of periapse itself; however,

for the duration of this paper, any turn angle labeled δ will be defined the way it

11

was described in Prado (i.e. as shown in Fig. 2.2). This gravity assist maneuver

then had a thrust applied as the spacecraft exits the SOI, which is then compared

to a PGA with the same thrust applied at periapsis. For the PGA formulation, two

additional variables are set: 1) δv, the scalar magnitude of the thrust applied at the

periapsis and 2) α, the angle between the velocity of the spacecraft at periapsis and

the direction of the thrust applied, with positive being defined away from the planet.

With all of these vectors set, the exit v∞ (v∞+) can be calculated through relatively

simple orbital mechanical and geometric relationships. These variables are all shown

in Figure 2.31:

Figure 2.3: Powered Gravity Assist Diagram [12]

The main result of Prado’s paper is the discovery that maximum transfer of ve-

locity and energy occur when α ≊ −20◦. When α = 0◦, there is the greatest direct

transfer of velocity to the spacecraft, but Prado conjectured that when α ≊ −20◦ the

loss of velocity transfer due to the non-tangential component of the δv is overcome

1This figure is reproduced directly from Prado. Analysis of the formulas and geometry shows
that the δ angle is incorrect and should be the δ angle as defined the standard gravity assist
diagram rather than the angle labeled here.

12

by the gain of velocity due to a closer approach to M2. This maximum change in

energy or velocity could be up to 5% larger than the α = 0◦ case. As such, a PGA

optimizer must be able to model a non-tangential velocity change to account for this

to achieve ∆Emax [12]. The exact value for an optimal α depends on the exact case.

Further, Prado discovered that in the majority of cases, the PGA was superior to an

unpowered gravity assist with an impulse applied after, at the edge of the SOI, though

this is not always true. Another interesting result is that at certain combinations of

α and δv, the spacecraft is either captured into an elliptical orbit or collides with M2.

This is true when α is close to 180◦ or −180◦. The α at which capture or collision

occurs also getting smaller in size as δv increases. These trends are shown in Fig.

2.4, which is a contour plot of the ∆E from a specific powered flyby about the Moon:

Figure 2.4: Example Capture/Collision Region [12]

The analysis of the same problem using the restricted three-body problem is an-

other important aspect of Prado’s paper. As with all restricted three-body problems,

there is no analytical solution, so numerical integration solved this formulation of the

13

PGA maneuver. The change in energy and angular momentum were then compared

to those from the two-body approximation. Prado concluded that with thrust angles

between −90◦ < α < 90◦, the difference in ∆v between the two-body and restricted

three-body problem are less than 0.1 km/s, with the error growing larger as α strays

further from this range. The maximum errors remain below 10% regardless of the

α and δv values. Errors between the two formulations also decrease as δv increases.

This analysis suggests that the two-body approximation tends to be acceptable, which

fueled the decision to use that approximation in the algorithm used in STOpS.

This paper served as the basis of the PGA algorithm for STOpS. The variables

defining r⃗p and δ⃗v were retained, along with the definition of the x-axis of the reference

frame. Other than the use of these definitions, the PGA algorithm for STOpS was

modified heavily to expand to 3D, in order to model changes to target celestial bodies

with different inclinations. Specifically, two new angles were added to define r⃗p and

δ⃗v directions both in plane and out of plane. However, by setting these two new

angles to 0, validation could be performed by setting the remaining variables equal

to those used in the test cases presented in this paper. Those validation test cases

and their resulting ∆E and ∆V graphs are shown in the Validation chapter.

With co-authors Silva and Winter, Prado expanded on the work of “Powered

Swingby [12]” in the 2013 paper “Powered Swing-by Maneuvers around the Moon”.

The variable definitions of Prado (1996) (specifically the restricted three-body prob-

lem formulation) were used and solved numerically. Silva et al. came to the same

conclusions as Prado did alone when it came to the optimal angle to perform thrust

if ∆Emax is desired. A selection of the numeric results for a lunar flyby with a rp of

1.1 times the Moon’s radius, a δv of 2 km/s, and thrust applied at periapsis is shown

in Table 2.1:

14

Table 2.1: Maximum ∆Emax [11]
ψ ∆Emax α
90◦ 5.6036 0.0◦

180◦ 3.8303 -6.5◦

225◦ 6.0703 -27.3◦

270◦ 8.6913 -22.0◦

315◦ 10.2319 -10.2◦

As shown, the actual α angle to achieve ∆Emax is dependent on the approach

angle. Ultimately, however, ∆E is a means to an end and is typically a measure of

the capability of the maneuver to change other parameters such as δv or TOF that

are more relevant to the mission. In fact, Silva et al. noted that when targeting

another body, it was often necessary to sacrifice ∆Emax for a smaller ∆E in exchange

for the correct exit v∞ direction [11]. If performing multiple powered gravity assist

(MPGA) optimization, non-tangential impulsive thrust maneuvers can also help select

the correct trajectory for the next segment of the flight. Finally, the decision to

perform the thrust at periapsis for all the cases shown in Table 2.1 backed the same

decision in the algorithm later developed for STOpS-FLITE.

While Silva et al. used the 2D model from Prado (1996), Prado and co-author

de Felipe were able to expand into three-dimensions in “An analytical study of the

powered swing-by to perform orbital maneuvers,” [13]. The addition of another angle

(i.e. β, defined as the smallest angle from the radius of perigee vector to the X-

Y plane, as shown in Figure 2.5) increases the complexity of the problem, but also

allows for some interesting optimization options, especially if an inclination change

is desired. Note that the α angle utilized here is the same as the ψ angle from the

previous two papers discussed.

15

Figure 2.5: 3D Powered Gravity Assist Diagram [13]

The analytic equations were developed with only one angle defining the direction

of thrust (γ). This angle was defined from the vector of the velocity at periapsis

and out of the orbital plane. With this definition, the in plane angle cannot be set.

This was considered acceptable since the paper was focused on using PGAs to change

heliocentric energy or heliocentric velocity with inclination changes. This formulation

would not work if utilized to target a specific exit v∞, as desired by this paper.

Analytic solutions were generated for specifically the non-powered flyby from the

patched conics approximation to calculate variations in velocity, angular momentum,

and inclination after the swing-by, before a numerical verification via the restricted

three-body problem was done, confirming errors of less than 1% for each of the pa-

rameters. The error between analytic and numerical solutions were below 1% for the

powered fly-by modeling. With a small impulse, the variations in velocity, angular

16

momentum, and inclination are close to linear with respect to the variables δvx and

δvy, which suggested to Prado et al. that the optimal efficiency maneuver is obtained

when impulses are applied along the X or Y axis [13].

Qi and de Ruiter’s paper “Powered Swing-By with Continuous Thrust” primar-

ily focused on the implementation of impulsive thrust maneuvers in order to set a

preliminary guess for their implementation of continuous thrust within the SOI [14].

Rather than the circular restricted three-body problem, they used the planar elliptic

restricted Rather than using the SOI as the region in which the planet’s gravity over-

takes that of the Sun, they use the “circular neighborhood”. This is a region defined

by a radius R in Eq. 2.1:

R =
RSOI

2a
(2.1)

where RSOI is the radius of the SOI and a is the semi-major axis of the planet’s

elliptical orbit about the Sun. Given that a is always greater than 1, R is always

smaller than RSOI . Qi and de Ruiter considered any continuous thrust to be a series

of discrete optimal one-impulse powered swing-by segments. To initialize a guess for

the optimal trajectory, Qi and de Ruiter begin with a single impulsive thrust applied

at the edge of this circular neighborhood (i.e. when the spacecraft’s position vector

relative to the planet has a magnitude less than R). Note that this is well within

the SOI, but also not performed at the periapsis. This was then expanded to a two

impulse PGA in which the first impulse occurs at the edge of the circular neighborhood

as before and the second impulse occurs somewhere before the spacecraft exits the

circular neighborhood. Finally, the two impulse PGA was expanded to a continuous

thrust maneuver. These are shown in Fig. 2.6:

17

Figure 2.6: Multi-Impulse PSB Comparison [14]

The most notable discovery from Qi and de Ruiter’s work that is relevant to this

thesis is the fact that when the maximum thrust applied is greater than 0.003 m/s2, a

two-impulse maneuver can generate much greater energy gains than the corresponding

one-impulse maneuver. This is likely because the first impulse is usually towards the

planet (as shown in Fig. 2.6), resulting in a smaller radius of periapsis, thus an

increase in velocity at periapsis and Oberth effect [14]. The second thrust is typically

adding velocity (and thus energy) near or at periapsis. According to Qi and de Ruiter,

these two impulse PGA can also be more efficient in changing orbital energy than an

equivalent continuous PGA. Note that from an orbital mechanics standpoint, 0.003

m/s2 is an incredibly small thrust, especially if considering an impulsive thrust. It

was partly due to this paper that the PGA algorithm in STOpS allows for thrust to

18

be applied at the edge of the SOI (either just before entering or just after exiting the

SOI). By doing so, it may be able to reduce the total δv of a maneuver.

2.3 Applied Powered Gravity Assists

The papers discussed above represent a small subset of the literature on the topic

of PGAs. Specifically, those papers focused on the effectiveness of a PGA on either

∆V and/or ∆E. This means that they were not specific to use for interplanetary

trajectory optimization. While considering these changes is important, maximizing

them is not typically of benefit to the mission in and of themselves. The following

papers instead focus on the use of PGAs to target specific trajectories, rather than

simply maximizing heliocentric velocity or heliocentric energy.

Piñeros et al. combined PGA modeling with aerogravity assist (AGA) modeling

to consider powered aerogravity assists (PAGAs) [15]. The work presented by Piñeros

et al. largely focused on the modeling of AGAs, utilizing PGA modeling to account

for drag losses to maintain, rather than change, total energy. Piñeros et al. were able

to create generalized graphs based on a wide variety of magnitudes and directions of

impulsive thrust. At certain higher magnitudes of δv, the impulsive thrust maneuver

overshadowed the AGAs while lower magnitudes resulted in the opposite relationship,

thus potentially allowing their PAGA optimizer to do AGAs or PGAs separately by

setting lift-to-drag ratios (L/D) to 0 or δv of the impulsive thrust to 0. Piñeros et

al. specifically pointed out that the impulsive thrust maneuver could be used to force

∆E to 0 in scenarios where atmospheric study by science instruments onboard the

spacecraft were desired but changes in orbital energy were not. Because of the great

variance between planetary atmospheres, the optimal L/D is very different between

planets. As such, there are a large number of papers considering AGAs around

19

different planets, each with the same use of PGAs to maintain orbital energy through

the atmosphere. While technically applying PGAs, these papers make the assumption

that the thrust applied only maintains the same orbital energy. The thrust maneuver

itself is not modeled beyond this assumption, but these papers deserve mention as

interplanetary trajectory optimizers that utilize PGAs.

Ceriotti’s PhD dissertation on multiple gravity assist (MGA) optimization touches

briefly on powered fly-bys [16]. Comparisons were made to the Satellite Tour Design

Program (STOUR) variants developed by Sims et al. and the mission-direct trajec-

tory optimization program (MDTOP), both of which are capable of modeling PGAs.

Ceriotti pointed out that changes in orbital parameters from PGAs are sensitive to

the application of δv, since the real maneuver is not truly instantaneous, which can

cause significant deviation from expected results. To match with the desired exit v∞,

a tangential maneuver is explored first, as it is often easiest to perform and typically

most effective. However, Ceriotti suggests it is not always possible due to periapsis

altitude restrictions of actual missions, thus a modeling of non-tangential maneuvers

is also included to match the incoming and exiting v∞, which are calculated sepa-

rately in Ceriotti’s work. In their discussion of the benefits and drawbacks of powered

fly-bys, it is noted by Ceriotti that while there are many orbital advantages in terms

of δv, there are also significant challenges and constraints in performing these maneu-

vers in the operations phase, citing the Cassini mission as an example. Thus, Ceriotti

treats powered fly-bys as a necessary, but undesirable, tool to correct inequalities in

the incoming and exiting v∞. Nevertheless, Ceriotti was able to successfully model

these and validate them against expected results from STOUR and MDTOP.

Finally, STOpS itself does not model PGAs, but applies a penalty δv for several

conditions [17, 18]. Specifically, it applies a thrust at the edge of the SOI if the v∞ into

and out of the SOI generated by the Lambert’s problem and planet velocities do not

20

match. This is similar to the comparison case used by Prado (1996) in that it is a two-

step maneuver (i.e. the gravity assist is performed and then a thrust is applied). Once

that penalty δv has been applied, STOpS checks if the spacecraft would collide with

the planet or fly through its atmosphere on this trajectory. If it would have, it applies

another penalty δv dependent on how low the flyby altitude was. This was meant

to simulate the cost of a PGA to avoid these conditions without actually calculating

the required PGA trajectory. While an acceptable compromise for previous versions

of STOpS, STOpS-FLITE would show that this penalty δv tends to be smaller than

the actual δv of the required PGA when fully modeled and calculated.

One mission that has already flown with a powered gravity assist is the Cassini

mission [19]. However, it utilized a continuous burn of 96 minutes to slow down enough

to be captured by Saturn’s gravity, thus it is not well modeled with an impulsive thrust

maneuver. Most other missions use their engines outside the SOI in order to target

a specific ballistic flyby.

21

Chapter 3

SPACECRAFT TRAJECTORY OPTIMIZERS

Spacecraft trajectory optimization is a problem space with a near-infinite number

of solutions which can often be incredibly difficult or mathematically impossible to

solve for analytically [4]. All optimization tools require a way to analyze if a solution

is the optimal one, namely a cost function. For spacecraft trajectory optimizers, the

most common cost functions are to reduce δv or time of flight. These two are almost

always included, although cost functions are incredibly mission dependent. Other

relevant cost functions may account for the mission designers desiring as close a flyby

as possible for scientific reasons or maximizing heliocentric energy or velocity to leave

the solar system.

Even from one celestial body to another, a multitude of paths can be generated

depending on a number of characteristics, including but not limited to: spacecraft

capabilities, date of departure and arrival, and timing of thrust maneuvers [4]. The

wide variety of variables to optimize has led to the development of a number of

numerical methods, ranging from systems based on Pontryagin’s principle developed

in 1956 to more modern techniques such as biogeography-based optimization, which

was first applied to spacecraft trajectory optimization in 2017 [20, 21]. Performing

gravity assists increases the number of parameters which must be optimized, thus

increasing the size of the problem space and the computational cost of optimizing the

trajectory with numerical methods [17].

Traditional interplanetary trajectory optimization programs typically use classical

approaches to the trajectory optimization problem, of which there are a wide variety of

22

categories and subcategories. Direct and indirect methods, single/multiple shooting

and collocation methods, and linearized and nonlinear programming methods are

just some of the techniques and systems used. Modern interplanetary trajectory

optimization programs often rely on the usage of metaheuristic algorithms, such as

evolutionary or swarm-intelligence algorithms. Hybridization (the use of multiple

different algorithms which are allowed to share their solutions with each other in

order to converge to the optimal solution) can minimize the weaknesses of any of

these algorithms and is the basis for many modern spacecraft trajectory optimizers

[17, 22].

3.1 Commonly Used Spacecraft Trajectory Optimizers

A variety of orbital trajectory optimizers have been developed for government and

corporate use. NASA’s Jet Propulsion Laboratory (JPL) has created a number of

these which were condensed into the following table (Table 3.1) by Sheehan. Two

additions briefly mentioned in the rest of Sheehan’s work were also added to this table

[23, 24, 25].

Table 3.1: JPL Trajectory Tools [23]

Name Description

MALTO Mission Analysis Low-Thrust Optimization
Mystic Optimization of trajectory/entire missions

Copernicus Generalized spacecraft trajectory design and optimization scheme
OTIS Optimal Trajectory by Implicit Simulation
SNAP Spacecraft N-body Analysis Program

CHEBYTOP Chebyshev (Polynomial) Trajectory Optimization Program
VARITOP Variational Calculus Trajectory Optimization Program
SEPTOP Solar Electric Propulsion Trajectory Optimization Program (VARITOP-based)
NEWSEP Newer version of SEPTOP

Sail Solar sail optimization (VARITOP-based)
STOUR Satellite Tour Design Program
GALLOP Gravity-Assist Low Thrust Local Optimization Program

23

While these tools are effective at their strong suits, they are not all publicly

available [24, 25]. MALTO, Copernicus, VARITOP and its variants, STOUR-LTGA,

and GALLOP are all limited to NASA employees and universities with contractual

affiliations to NASA, while Mystic is further limited to only NASA employees [23, 26,

27]. OTIS and SNAP are nominally available to anybody in government, academia,

and industry, but are subject to export control regulations [23]. Finally, CHEBYTOP,

the only truly publicly available software from Table 3.1, was last updated in the mid-

1970s, is a combination of Excel and FORTRAN, and is the weakest of the tools in

terms of accuracy [23].

Some tools developed outside of JPL are free, including General Mission Analysis

Tool (GMAT), Java Astrodynamics Toolkit (JAT) [28], Skipping Stone [29], Parallel

Global Multiobjective Optimizer (PaGMO) [30], and Python Global Multiobjective

Optimizer (PyGMO) [30]. PaGMO and PyGMO are designed to be general applica-

tion tools and require major modification to be applied to a orbital trajectory scenario

[30]. Skipping Stone has important limitations to TOF, spacecraft mass, and number

of gravity assists (which is capped at four) [29]. JAT is a combination of multiple

individual functions that can be used to analyze missions [28]. It requires signifi-

cant manipulation of the code base to be applicable to a specific trajectory problem

[17, 28]. GMAT is similarly built for general mission design and includes an incred-

ibly wide variety of capabilities, requiring significant understanding of the software

to modify it to a specific trajectory optimization scenario. While a large number of

other optimization tools exist, most are prohibitively costly, limited by government,

academic, and/or corporate affiliation, or not directly applied to spacecraft trajectory

optimization [24, 25].

24

3.2 Spacecraft Trajectory Optimization Suite (STOpS)

The Spacecraft Trajectory Optimization Suite (STOpS) was originally developed

at California Polytechnic State University, San Luis Obispo to optimize orbital paths

for spacecraft [17]. Specifically, it was designed to model and optimize multiple gravity

assist trajectories, given a set of planets to use for gravity assists. Different variants

of STOpS utilize different input variables to optimize, depending on their focus, but

all require at minimum the ranges for departure time from the first planet and the

time of flights for each leg [17, 18, 23, 22, 31, 32]. Multiple cost functions are built

in to STOpS, with the most commonly used being time of flight, departure δv, and

flyby penalty δv, though many more are included or can be added. STOpS was built

on the island model paradigm adapted from the PaGMO and PyGMO with multiple

metaheuristic algorithms forming the islands [17, 22]. STOpS uses this system to

find the optimal value for each of the variables from the input to minimize the cost

functions used [17, 22]. The island model paradigm and the algorithms used to

accomplish this will be discussed in the following sections.

3.2.1 STOpS Optimization Scheme

STOpS is a collection of four optimization algorithms, combined within an is-

land model paradigm [17, 22, 18]. These optimization algorithms are stochastic

metaheuristic methods (genetic algorithm, differential evolution, particle swarm op-

timization, and ant colony algorithm) used to converge to a final optimized solution

[17, 22, 18]. These algorithms are not sensitive to initial guesses as they start with a

random input and evolve from there, making them well-suited to problem spaces like

spacecraft trajectory optimization which may not have an obvious place to initialize

searching.

25

3.2.2 Island Model Paradigm

STOpS utilizes an island model paradigm originally based on the one found in

PaGMO [17]. The island model paradigm in STOpS allows multiple algorithms (to

be discussed in the following section) to run simultaneously, then share and compare

their solutions for the next iteration. This allows the different algorithms to converge

more quickly, as each one can share its strengths while getting its own weaknesses

mitigated by the others’ strengths. Thus, the different algorithms feed off each others’

strengths and overcome each others’ weaknesses.

Each of the algorithms is an “island” within the island model paradigm. The

way in which these islands are connected and which islands share information with

which is called a “topology” or an “archipelago”. Different topologies may be more

effective in solving different problems. The sharing of solutions themselves is called

“migration” and how often migrations occur is called the “migration policy”. Each

island can select certain solutions to be allowed to migrate to other island(s) through

its own selection policy. Once these have been selected to migrate, the island(s)

with which these solutions have been shared can decide whether to accept or deny

these solutions as part of its replacement policy. Effective migration policies allow for

improved convergence rates and decreased computational time. Policies that do not

allow for enough sharing means that a well-performing algorithm can not properly

share its strength, while too much sharing slows down the whole program, defeating

the purpose of the island model paradigm. Good topology selection is difficult to

achieve without some knowledge of the problem space. It may be most effective to

run each algorithm alone first. A more informed decision can then be made on which

algorithms to include in the final topology and how to connect them. Some examples

of topologies utilized in literature can be found below in Figure 3.1:

26

Figure 3.1: Example Island Model Topologies [22]

Migration policy is often divided into two options: synchronous and asynchronous.

As its name suggests, synchronous migration policy means that all migrations occur at

the same time (for this reason, this policy may also be referred to as a “simultaneous

migration policy”). For this to occur, every algorithm must have run to completion,

thus, an island model paradigm utilizing synchronous migration policy will run as

slowly as the slowest algorithm. Once the slowest algorithm has obtained its solu-

tions, connected islands will share, compare, and accept or reject solutions based on

their selection and replacement policies [17, 22]. On the other hand, asynchronous

migration policy allows each island to run as quickly as it can, without the need to

wait for other islands. Asynchronous migration is further divided into sharer-driven

and receiver-driven asynchronous migration. In the sharer-driven policy, as soon as

an island finishes running, it sends its solutions to the islands connected to it. The

receiving island then takes the solutions based on its replacement policy. If two is-

lands are connected and one is much slower than the other, the slower one could be

rendered useless as it will never finish running and thus never be able to share its

solutions. Receiver-driven policy allows the algorithm to complete running before it

takes in solutions, but depending on topology, certain islands could still be rendered

27

useless. Thus, despite being slower, synchronous migration policy is better, assuming

that each algorithm included in the topology adds something of value.

Selection policy dictates which and how many solutions get shared. This policy

can be random selection, natural selection, or weighted probabilities. Replacement

policy dictates which and how many solutions replace solutions at the receiving is-

land. Similar to selection policy, this can include random replacement, best solution

replacement, or weighted probability/threshold replacement. Another possibility is

for an island to only keep solutions that are better than those generated by itself.

3.2.3 Genetic Algorithm

The first evolutionary algorithm to be discussed herein is the genetic algorithm

(GA). GA is a form of biomimicry which applies Darwin’s theory of natural selection

to converge to an optimal solution. An initial set of possible solutions (a “population”)

is generated randomly. These solutions are represented as a vector of variables. If

a solution’s cost is too great, it is not allowed to generate “offspring” for the next

round. Those solutions with acceptable costs are selected to “mate”. The selection

process is what decides if a solution has an acceptable or unacceptable cost.

A wide variety of selection processes exist including, but not limited to: tour-

nament method, natural selection, rank weight random, cost weight random, and

thresholding. Tournament method divides the generation method into groups of a

size specified by the user. Within each group, the lowest cost solution is allowed

to mate. Natural selection ranks all the solutions from best to worst, with a user

specified number of solutions from the top being allowed to mate until the popula-

tion is back to the original size. Rank weight random and cost weight random are

considered roulette selection methods. Solutions are given selection probabilities pro-

28

portional either to their rank or cost, respectively, with better solutions having higher

probabilities. These are then selected from based on their selection probability for the

mating process. Finally, thresholding allows all solutions above a certain threshold

to progress to the mating process, but requires some user knowledge as to what the

cost should be to be used properly.

The mating process mixes two good solutions from the current generation into

one solution to move on to the next generation. During mating, mutations may

occur, which creates solutions which were neither present in the previous generation

nor offspring of two solutions in the previous generation. Mutation ensures that

the algorithm does not converge too quickly to a local optimum. The mating process

continues until a new generation of potential solutions of the same size as the previous

generation is created. This process could continue forever, but it is limited either by

a user-specified tolerance or a user-specified number of generations. Through the

selection and mating processes, the GA converges towards an optimal solution.

From STOpS-PY forward, the GA also implements elitism, automatically allowing

the best solution(s) to automatically survive to the next generation. These members

are still part of the mating pool, but a user-specified number of solutions pass through

to the next generation unchanged.

For further information and a more detailed description of GA and how it is

implemented in STOpS, refer to the works by Fitzgerald and Graef [17, 22].

3.2.4 Differential Evolution

Like GA, differential evolution (DE) is an evolutionary algorithm, utilizing the

current population to create the next generation, with each solution being represented

29

as a vector of variables. The main differences are in how solutions are selected to

progress and how the next generation is created.

DE creates new generations through processes called mutation (not to be confused

with mutation in GA) and recombination. The solutions of the next generation are

created by combining multiple different parent solutions from the current generation,

as shown in Equation 3.1. The DE algorithm creates a difference vector by sub-

tracting two vectors (x⃗r1 and x⃗r2) in the current generation. This difference vector

is multiplied by a scaling factor (F) before being added to another vector from the

current generation called the root vector (x⃗r0). The resulting vector (V⃗i) is called the

mutant vector.

V⃗i = x⃗r0 + F (x⃗r1 − x⃗r2) (3.1)

After each mutant vector is formed, a trial vector is generated. The ith trial

vector takes its trait from either the ith mutant vector or the ith current generation

member in a process called recombination. After recombination, the DE algorithm

will have created twice as many trial solutions as there were parent solutions. This

new population is then pared down through a selection process. The same selection

processes used in GA are used for DE, with the goal of reducing this new population

down to its original size. This process continues until a user-specified tolerance is met

or a user-specified number of generations is reached. Like with GA, from STOpS-PY

forward, the DE implements elitism, automatically allowing the best solution(s) to

automatically survive to the next generation. These elite solutions are still included

in the pool for mutation, but also move on to the next generation unchanged.

For further information and a more detailed description of DE and how it is

implemented in STOpS, refer to the works by Fitzgerald and Graef [17, 22].

30

3.2.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is a swarm-intelligence algorithm. Unlike

evolutionary algorithms, swarm-intelligence algorithms do not create new generations,

but rather the population members change parameter values over time to explore the

search space. PSOs are another form of biomimicry that search for solutions in the

same way that bees search for flowers and pollen. As before, solutions are represented

by a vector of length n, with n being the number of variables being optimized. For

the purposes of STOpS, the idea of a “hive” for each bee to start from and return

to is unnecessary, thus each bee starts at a random location. Each bee (or particle,

hence PSO) has a position represented in n-dimensional space, with some velocity

also of length n. Each particle starts with a random initial velocity and as time

progresses, these particles move about the search space to find solutions. Particles

will communicate with each other to utilize swarm-intelligence to converge to an

optimal solution. When considering the ith particle, the particles which are providing

information to it are called informants. Each particle is given a confidence in its

own velocity (c1), confidence in the best location it has discovered itself (c2), and the

best location received from an informant (c3). The ith particle has position xi and

velocity vi, while the best location it has discovered is designated pi and the best

location discovered by an informant is designated gi. The relationship between these

is demonstrated by Equation 3.2 and the position of the ith particle in the next time

step is provided by Equation 3.3.

v⃗i = c1v⃗i + c2(p⃗i − x⃗i) + c3(g⃗i − x⃗i) (3.2)

x⃗ t+1
i = x⃗ t

i + v⃗ t
i (3.3)

31

The number of particles which communicate with each other is carefully selected.

If too many particles communicate, the best solution found thus far will dominate,

leading to premature convergence. Meanwhile, too little communication leads to a

search method which is too random to lead to proper convergence. Thus, the number

of informants for each particle needs to be small enough to promote a sufficient

exploration of the search space, but large enough that convergence can be achieved.

For further information and a more detailed description of PSO and how it is

implemented in STOpS, refer to the works by Fitzgerald and Graef [17, 22].

3.2.6 Ant Colony Optimization

The final optimization algorithm used by STOpS is ant colony optimization (ACO).

It is occasionally abbreviated ACA for ant colony algorithm. The two terms are used

interchangeably within this paper. Another example of biomimetic swarm-based in-

telligence, ACO simulates how ants optimize their paths between their nest and food.

Ants communicate through the deposition of a chemical called pheromone, which

evaporates over time. On a path which is determined to have a good outcome, an

ant will lay down more pheromone. On a path which is determined to have a bad

outcome, an ant will lay down less pheromone. A path with higher pheromone levels

leads to a later ant having a higher probability of following it. Thus, the best trails

will eventually build up a large number of pheromone while the worse trails will have

their pheromone dissolve away over time. When the ACO reaches an end condition

(typically, a number of iterations), one path will have the most pheromone, making

it the most optimal solution to the given problem.

ACO is most often considered as a solver for the traveling salesperson problem

(TSP), where each destination the ant travels to is called a city or node. In a tradi-

32

tional TSP, ants randomly travel to an initial node before then visiting every other

node and returning to the node at which they started. Based on the efficiency of the

tour, ants change the amount of pheromone at each node. In ACO, simulated ants

know how far away each node is and can only visit each node once, unlike real ants.

A traditional TSP is not the best representation of spacecraft trajectories, as they

are typically one-way rather than round-trip. Each ant travels from the first planet

to the last, altering their pheromone levels based on the costs associated with each of

the paths. As with the other optimization algorithms, there are settings which need

be carefully balanced. Here, it is the evaporation rate and pheromone matrices which

can greatly affect premature convergence or failure to converge. If the pheromone

evaporates too quickly the ants will explore the search too randomly, while too much

pheromone being deposited along a path will result in premature convergence to that

path.

For further information and a more detailed description of ACO and how it is

implemented in STOpS, refer to the works by Fitzgerald and Rockett [17, 18].

3.2.7 History of the Spacecraft Trajectory Optimization Suite

The original version of STOpS (STOpS-1) did not model the SOI of each of the

planets; rather, it bent the incoming approach vector by the angle expected from a

gravity assist of a specific altitude [17]. STOpS-1 was effective at finding comparable

solutions to problems solved in historic missions [17]. Despite not modeling the SOI,

STOpS-1 still converged to the same optimal trajectory for missions which employed

multiple gravity assists such as Voyager 1 [17]. Other versions of STOpS expanded

to model these SOIs, but continued to perform thrust maneuvers solely outside of

them [23, 22]. While the optimal point to perform these maneuvers can be outside

33

the SOI, past missions have shown this is not always true [19]. Sheehan’s work

(STOpS-LT) added low thrust modeling capabilities but was limited to applying

the thrust during the interplanetary segments of a planetary transfer, thus avoiding

the need to model thrust maneuvers within the SOI [23]. Malloy’s work (STOpS-

MGALT) implemented the multiple gravity assist capability to STOpS-LT, while

adding a monotonic basin hopping algorithm as an optimization island [31]. STOpS-

MGALT again used a point-mass assumption for the planets, removing the need to

model the SOIs [31]. The last of the STOpS variants in MATLAB was Woods’s

work which added environmental perturbation modeling to STOpS-1 [32]. Graef’s

work (STOpS-PY) converted STOpS from MATLAB into Python, in keeping with

the ultimate goal of providing STOpS to the public, as Python is freely available

and generally runs quicker than MATLAB [22]. STOpS-PY removed the gravity

assist capability to implement a B-plane targeting and thrust correction maneuver

(TCM) capability [22]. STOpS-PY and STOpS-MGALT both modeled the SOIs

of the planets, but neither had an option to conduct thrust maneuvers within these

SOIs [22, 31]. Finally, Rockett’s work (STOpS-DSM) focused on modeling deep space

maneuvers (DSMs), which by definition can not occur within an SOI [18]. The two

newest variants of STOpS were created in 2022, including the one described by this

paper (STOpS-FLITE) and a variant which looks to implement pseudostate theory

(STOpS-PSI). All of these variants are tabulated below (in chronological order) in

Table 3.2:

Table 3.2: Current Variants of STOpS
Name Author Language Purpose

STOpS-1 [17] Tim Fitzgerald MATLAB Original
STOpS-LT [23] Shane Sheehan MATLAB Low Thrust
STOpS-EP [32] Eric Woods MATLAB Environmental Perturbation

STOpS-MGALT [31] Michael Malloy MATLAB Multiple gravity assist + low thrust
STOpS-PY [22] Jared Graef Python B-plane + thrust correction maneuvers
STOpS-DSM [18] Elliott Rockett Python Deep space maneuvers
STOpS-PSI [33] Dominick Bologna Python Pseudostate theory
STOpS-FLITE Aaron Li Python Impulsive thrust fly-bys

34

The best version to use is dependent on the mission. For example, a mission using

low thrust systems would be best optimized with STOpS-LT or STOpS-MGALT. Note

that while each version is built from the previous, not every one has the capabilities

of the previous versions. Since STOpS-FLITE is designed to study PGAs only, it

does not include STOpS-PY or STOpS-DSM’s capabilities to model thrust correction

maneuvers or deep space maneuvers without significant modification to the code base.

It is also important to mention Doughty’s work on automated flyby sequences

using STOpS. Though not a variant of STOpS on its own, the findings presented

within that work provide context for the continued use of fixed orbit flyby sequences.

STOpS requires a defined planetary body sequence [17, 22]. This leads to a constant

length set of design variables. Automating this process means exploring a much larger

search space, since an optimal trajectory could require any number of flybys. Early

in the design of spacecraft trajectories, this system could find an optimal solution not

considered by mission designers or guide mission designers when the optimal flyby

sequence is not easy to find without a priori knowledge. The Hybrid Optimal Control

Problem (HOCP) was utilized to compare performance within a variable size design

space (VSDS). Unfortunately, the HOCP was incredibly computationally expensive,

even with only a single evolutionary algorithm, which would become an even greater

problem with the multiple optimization algorithms utilized in almost every variant

of STOpS. A Hidden Gene Algorithm was implemented which improved the com-

putation time. Ultimately, the conclusion drawn was that even with tight variable

bounds, the system requires the user to either have some knowledge of the desired

solution (defeating the main purpose of automating the flyby sequence) or commit to

extensive and time-consuming testing and manipulation of the input variables. For

more information on the methodology and other findings, the interested reader is re-

ferred to Doughty’s thesis “Interplanetary Trajectory Optimization with Automated

Fly-by Sequences” [34].

35

Chapter 4

POWERED GRAVITY ASSIST MODEL AND ALGORITHM

The powered gravity assist model generated for STOpS takes large portions of

Prado’s work in “Powered Swingby” and adds elements of the other works discussed

in the Powered Gravity Assists chapter. Primarily, the additions help expand Prado’s

formulation into three dimensions and adjust the algorithm to be more robust in

searching for optimal trajectories.

4.1 Required Inputs

The algorithm developed for STOpS-FLITE utilizes the same variables defined

in “Powered Swingby” (rp, v∞A, ψ, α, and δv), while adding two new variables to

represent the out of plane angles (ϕ and β). These variables are listed below:

• v∞A
1 = scalar magnitude of velocity of spacecraft relative to planet when en-

tering the sphere of influence

• rpA = scalar magnitude of radius of periapsis

• ψ = angle between x-axis of PCSF frame and projection of r⃗p on to x-y plane

of PCSF frame

• ϕ = angle between projection of r⃗p on to x-y plane of PCSF frame and r⃗p

• α = angle between y-axis of OPA frame and projection of δ⃗v on to x’-y’ plane

of OPA frame

1Subscripts A and B will be used to differentiate parameters relating to the spacecraft trajectory
before the impulsive thrust is applied (A) and after the impulsive thrust is applied (B).

36

• β = angle between projection of δ⃗v on to x’-y’ plane of OPA frame and δ⃗v

• δv = scalar magnitude of thrust applied at periapse

The frames and axes mentioned in these parameter definitions will be explained

and defined in the following paragraphs. v∞A can be calculated from a specific v⃗∞A

from the heliocentric inertial frame, which is given by the Lambert’s problem utilized

by STOpS. rp, ψ, ϕ α, β, and δv are randomly selected by STOpS as part of the

population being optimized.

4.2 Definition of Incoming Hyperbolic Orbit

STOpS propagates interplanetary trajectories in the ICRS frame. This is an excel-

lent frame for the heliocentric elliptic segments of the patched-conics approximation,

but not a helpful frame for PGAs. Thus, a rotation to a frame named the sun centered

planet fixed (SCPF) is performed. The SCPF frame is a reference frame centered on

the Sun (interchangeable with M1 within this paper), with the x-axis of said frame

fixed to the center of mass of the planet that is being utilized for the gravity assist,

the y-axis directed along the velocity of the planet (assuming the planet is traveling

in a circular orbit), and the z-axis completing the 3D reference frame through the

right hand rule. Note that this is nearly identical to the frame described in “Powered

Swingby”. However, rather than setting the center of the frame to be the barycenter

of the Sun-planet system, the Sun’s center is set as the origin of this reference frame.

Setting the barycenter as the origin of the reference frame is more common with three-

body assumptions. Since this algorithm will utilize the two-body assumption, this is

not necessary. Ultimately, the definition of the x-axis here is the main similarity to

Prado’s work. This definition is the same, regardless of if the frame originates on the

Sun’s center or the system barycenter. This frame is shown in Fig. 4.1:

37

Figure 4.1: Sun Centered Planet Fixed Frame

The planet centered sun fixed frame (PCSF frame) is a direct shift of origin from

the sun centered planet fixed frame (SCPF frame). The PCSF frame simply moves

the center of this frame to the planet in question, with the x-axis defined as from

M2 directly away from M1, the y-axis directed along the velocity of the planet, and

the z-axis completing the 3D reference frame through the right hand rule once again.

The PCSF frame is also utilized in Prado’s work as the frame in which gravity assists

are performed when a two-body assumption is utilized. This frame is shown in Fig.

4.2:

38

Figure 4.2: Planet Centered Sun Fixed Frame

A parameter of this orbit needs to be calculated from the inputs using Eq. 4.1:

the velocity at periapsis (vpA)

vpA =

√
v2∞A +

2µ2

rpA
(4.1)

where v∞A is the magnitude of the velocity vector as the spacecraft enters the sphere

of influence and µ2 is the gravitational parameter of M2.

For comparison later, v⃗∞A will also need to be calculated. This can be done by

finding the turn angle δA with Eq. 4.2, and combining with the ψ and ϕ angles to

find the vector, given the magnitude from the inputs. Recall the definition of the

39

turn angle δ (i.e. δA and δB, in this algorithm) from the Powered Gravity Assists

chapter. Simply by rotating the x-axis of the PCSF frame by these angles, the unit

vector v⃗∞A

||v⃗∞A|| can be found, which can then be multiplied by the magnitude of v⃗∞A to

give the final v⃗∞A. Thus, all that is needed to be calculated is δB before the rotation

matrices are applied to the x-axis. A new variable, τ is also defined by Eq. 4.3 to

simplify the rotation. τ represents the angle between the radius of periapsis vector

and the hyperbolic asymptote of the spacecraft approach vector, represented by v⃗∞A.

δA = sin−1

(
1

1 +
rpAV 2

∞A

µ2

)
(4.2)

τ =
π

2
− δA (4.3)

Then, the rotation matrices can be applied, resulting in Eq. 4.4:

v⃗∞A = Rz(τ)Ry(−ϕ)Rz(ψ)


1

0

0

 v∞A = (4.4)

Multiplying out Eq. 4.4 results in Eq. 4.5:

v⃗∞A =


− sin(ψ) sin(τ) + cos(ϕ) cos(ψ) cos(τ)

sin(ψ) cos(τ) + cos(ϕ) cos(ψ) sin(τ)

cos(ψ) sin(ϕ)

 v∞A (4.5)

4.3 Application of Thrust

In the PCSF frame, the radius of periapsis of the incoming hyperbolic orbit can

be defined by the magnitude of periapsis radius and the angles ψ and ϕ. These values

40

can also be obtained from a specific incoming V⃗∞, if necessary. A third reference

frame is defined, which will be called the OPA frame (short for orbital plane A). It

is centered on the spacecraft, with the x’-axis pointed directly away from M2, the

y’-axis directed along the spacecraft velocity vector, and the z’-axis completing the

right hand rule (by definition, this is the direction of the angular momentum vector

h⃗A). This frame is shown in blue on Fig. 4.2 as well as in greater detail in Fig. 4.3

Figure 4.3: Orbital Plane A Frame

Here, the velocity before the thrust is applied is v⃗pA. The thrust δv is applied

at the radius of periapsis of the orbit from before the thrust is applied, though it is

shown attached to the end of v⃗pA for the sake of showing the relationship between

v⃗pA, v⃗pB, and δ⃗v. δ⃗v is defined in this frame by δv, α, and β. In this frame vpA is

41

directly along the y-axis, resulting in the following definition of v⃗pA in Eq. 4.6:

v⃗pA =


0

vpA

0

 (4.6)

Analyzing the geometry of Figure 4.3 gives Eq. 4.7:

v⃗pB =


0

vpA

0

+


cos(β) sin(α)

cos(β) cos(α)

sin(β)

 δv =


δv(cos(β) sin(α))

vpA + δv(cos(β) cos(α))

δv(sin(β))

 (4.7)

4.4 Calculation of Outgoing Exit Velocity

The magnitude of v⃗pB is required for the calculation of v⃗∞B and is simply the

norm of v⃗pB. The magnitude of the velocity of the spacecraft as it exits the sphere

of influence can then be calculated, though the vector direction will take further

calculation. This calculation is accomplished through Eq. 4.8:

v∞B =

√
v2pB − 2µ2

rpA
(4.8)

With the thrust applied, the spacecraft is in a new orbit, one in which the radius

of periapsis from before the thrust applied is no longer the radius of periapsis of the

new orbit (except in the case of α and β equaling 0 or 180). A new frame to define

this new orbital plane is used to make calculations easier to conceptualize. This

frame is designated OPB, in keeping with the subscript nomenclature defined before.

The OPB frame is defined with the x”-axis aligned with the x’-axis from the OPA

frame, the z”-axis along the direction of the angular momentum vector h⃗B of the new

42

orbit, and the y”-axis completing the right hand rule. h⃗B is calculated from the cross

product of r⃗pA and v⃗pA, as shown in Eq 4.9. Because of this, the z”-axis will always

be in the x’-y’ plane from OPA, as h⃗B must be orthogonal to r⃗pA.

h⃗B = r⃗pA × v⃗pB (4.9)

Plugging in what is known about these values, Eq. 4.9 becomes Eq. 4.10

h⃗B =


rpA

0

0

×


δv(cos(β) sin(α))

vpA + δv(cos(β) cos(α))

δv(sin(β))

 =


0

−δv(rpA)(sin(β))

(rpA)(vpA + δv(cos(α) cos(β)))


(4.10)

Figure 4.4: Orbital Plane B Frame

43

Several parameters can be found in the orbital frame to assist in the calculation

of the direction of v⃗∞B. These parameters are labeled in Figure 4.5. Specifically,

the angle between the current position of the spacecraft and the periapsis position

(f0) needs to be calculated. In the pursuit of that goal, several parameters must be

calculated first, using Eqs. 4.11, 4.12, and 4.13:

PB =
h2B
µ2

(4.11)

aB =
µ2

v2∞B

(4.12)

eB =

√
1 +

PB

aB
(4.13)

where PB is the semi-latus rectum, aB is the semi-major axis, and eB is the eccentricity

of the post-thrust hyperbola.

With these parameters calculated, f0 is calculated using Eq. 4.14:

f0 = cos−1

(
1

eB

P

rpA
− 1

)
(4.14)

The OPB frame, by definition, has its x”-y” plane in the orbital plane of the post-

PGA orbit. Thus, the post-thrust orbit can be considered to be solely in the x”-y”

plane in this frame, as shown in Figure 4.5:

44

Figure 4.5: Post-PGA Orbit in OPB

The goal is to obtain v⃗∞B from given parameters, so the x”-axis undergoes a

rotation of γ about the z”-axis to give the direction of v⃗∞B in OPB. After calculating

fLIM (the angle between the radius of periapsis vector and the direction of v⃗∞B in

OPB) using Eq. 4.15, γ can be calculated through Eq. 4.16. Note that in a ballistic

gravity assist that fLIM is the same as the angle between

fLIM = cos−1

(
− 1

eB

)
(4.15)

γ = −f0 + fLIM (4.16)

45

Once again using the x-axis as a starting point, the unit vector v⃗∞B

||v⃗∞B || can be attained

through several rotation matrices, similar to the process used for v⃗∞A

||v⃗∞A|| . As with that

unit vector, it can be multiplied by the magnitude to obtain the final vector v⃗∞B.

This set of rotation matrices is shown in Eq. 4.17:

v⃗∞B = Rz(γ)Rx(−θ)Ry(−ϕ)Rz(ψ)


1

0

0

 v∞B (4.17)

Multiplying out Eq. 4.17 results in Eq. 4.18:

v⃗∞B =


(cos(ψ)(cos(γ) cos(ϕ)− sin(γ) sin(ϕ) sin(θ))− cos(θ) sin(γ) sin(ψ))

(cos(ψ)(sin(γ) cos(ϕ) + cos(γ) sin(ϕ) sin(θ)) + cos(θ) cos(γ) sin(ψ))

cos(ψ) cos(θ) sin(ϕ)− sin(ψ) sin(θ)

 v∞B

(4.18)

Thus, the algorithm provides the single output v⃗∞B:

• v⃗∞B = vector of the velocity of the spacecraft relative to planet when exiting

the sphere of influence, in the PCSF frame.

46

Chapter 5

VALIDATION

The PGA algorithm built for STOpS was based primarily on the 2D model devel-

oped by Prado in 1996, with significant changes to accommodate the third dimension

[12]. Thus, the results presented in Prado were used as the validation when out of

plane angles of the 3D algorithm were set to zero.

Prado displayed two test cases in their paper, both with the spacecraft performing

a flyby around the Moon as M2 with the Earth as the M1 [12]. One of those test

cases will be displayed below, utilizing the following parameters in Table 5.1:

Table 5.1: Prado Model Example Parameters [12]

Parameter Value Units

µ1 4900 km3/s2

µ2 398600 km3/s2

V2 1.02 km/s
V∞− 1 km/s
δv 0 to 4 km/s
ψ 270 deg
α -150 to 150 deg

From that paper, the following graphs (Fig. 5.1 and Fig. 5.2) were pulled for ∆V

and ∆E, using the parameters tabulated above. Prado noted and showed in their

paper that specific combinations of extreme angles of alpha (i.e. α ⪆ 150 and α ⪅

150) and δv resulted in capture or collision with the flyby body. Those regions are

represented by the blank region outside of the trapezoid formed by the dotted line.

47

Figure 5.1: Change in Heliocentric Velocity [12]

Figure 5.2: Change in Orbital Energy [12]

48

The algorithm generated by Prado was converted over to a Python model in order

to verify future 3D variations of the formulation. Using this model with the same

parameters set as before, the following graphs were generated for ∆v (Fig. 5.3) and

∆E (Fig. 5.4). The capture and collision regions were not marked off since the region

plotted was made smaller to focus on the region of maximum ∆V and ∆E.

Figure 5.3: Change in Heliocentric Velocity (Prado)

Figure 5.4: Change in Orbital Energy (Prado)

49

A few important behaviors can be seen as a result of Fig. 5.1 and Fig. 5.2. First,

the in-plane thrust angle does not equal zero when maximum ∆v for a given δv is

desired. In this particular scenario, Prado noted that the angle for maximum ∆v was

approximately -20 degrees, denoted with the red dotted line. For this scenario, the

∆E followed a similar pattern of behavior. Finally, the spikes in ∆v in the 100 degree

to 150 degree range of Fig. 5.3 are a behavior of the model and orbital mechanics,

not breakdowns of the numerical solution to the problem, and thus should exist in

the 3D model as well.

Note that the Prado model does not use the out of plane angles as it is a 2D

model. For comparison, the 3D model had those out of plane angles (i.e. β and ϕ)

defined as 0. As a result, the parameters being fed into the 3D model are listed in

Table 5.2:

Table 5.2: 3D Model Example Parameters

Parameter Value Units

µ1 4900 km3/s2

µ2 398600 km3/s2

V2 1.02 km/s
V∞− 1 km/s
δv 0 to 4 km/s
ψ 270 deg
ϕ 0 deg
α -150 to 150 deg
β 0 deg

With these variables set and identical to the Prado model (other than the inclusion

of the out of plane angles), Fig. 5.5 and Fig. 5.6 (to be compared to Fig. 5.3

and Fig.5.4) were generated. Once again, the capture and collision regions were

not marked off since the region plotted was made smaller to focus on the region of

maximum ∆V and ∆E.

50

Figure 5.5: Change in Heliocentric Velocity (3D)

Figure 5.6: Change in Orbital Energy (3D)

The generated models were also validated against the other test case presented

in the paper, in which ψ was set to 90◦. The parameters tabulated above were also

varied (except for the out of plane angles) to perform validation between the Prado

model and the 3D model. In every case tested, the ∆V and ∆E values matched

exactly.

51

While Prado’s algorithm was entirely done with scalars, the transition to three

dimensions required the utilization of multiple 3D rotation matrices and the repre-

sentation of several values as vectors. The behaviors listed previously all show up

in the newly generated figures. Multiple different sets of parameters were run, with

the general behaviors and the values of ∆V and ∆E at each point always matching

between the Prado model and the 3D model. The 3D model also was judged to have

correctly implemented the rotations for the out of plane angles as modifications to

these rotation matrices resulted in significant deviations/errors in comparison to the

corresponding figure generated by the Prado model. Thus, the author concludes that

the 3D model was properly generated and verified against the Prado model.

52

Chapter 6

IMPLEMENTATION

6.1 STOpS Pre-Existing Architecture

STOpS optimizes interplanetary trajectories with a Lambert’s solver. For a mis-

sion that departs from a planet, performs one flyby, and arrives at another planet,

STOpS will optimize three variables for an unpowered flyby. These are departure

time, the time of flight to the flyby, and the time of flight to the final arrival. In-

creasing the number of flybys increases the number of variables that STOpS needs

to optimize by one for each flyby, as it adds another flight leg. Thus, the number of

variables required for STOpS to optimize unpowered flybys is equal to the number of

flybys plus two, for the departure and arrival planets.

STOpS treats every flyby as a potential penalty. This penalty is calculated in

a function within STOpS called flyby penalty. The formulation utilized in previous

STOpS variants assumes that some specific r⃗p will result in the outgoing v∞ vector

being matched perfectly in direction (if not magnitude), without specifically calculat-

ing this r⃗p. This assumption is valid if the the planet is treated as a point mass and

thus any radius of periapsis can be targeted to result in any turn angle. The flyby

penalty then checks if the magnitudes of the incoming and outgoing v∞ are equal. If

they are not, it subtracts the two magnitudes, since the targeted radius of periapsis

and turn angle are assumed to have matched up the directions perfectly. This is

considered to be the δv added as the spacecraft exits the SOI required to achieve

this particular flyby. Over time, STOpS will typically manipulate the variables it

can adjust (i.e. the TOFs) so that this flyby penalty will be as low as possible, typ-

53

ically optimizing to a flyby in which the required δv is smaller than a magnitude of

10−5, which is essentially a ballistic gravity assist. Due to the point mass assumption,

further checks were implemented to ensure that the spacecraft does not fly through

the atmosphere of the planet or collide with the planet itself. These solutions are

penalized with increases in the δv related to how low the periapsis altitude is. If the

flyby is within the atmosphere of a planet, it is penalized according to Eq. 6.1:

δvPEN =
Ratm

rp
− 1 (6.1)

where Ratm is the radius of the planet’s atmosphere and rp is the spacecraft’s radius

of periapsis. If the flyby would collide with the planet, it is penalized according to

Eq. 6.2

δvPEN =
3Rbody

rp
(6.2)

where Rbody is the planetary radius. These flyby penalties were adapted by Fitzgerald

from the flyby penalties described by Curtis in Orbital Mechanics for Engineering Stu-

dents [2]. Within the architecture, these are meant to simulate the δv cost of doing

a powered gravity assist to avoid this low flyby. Testing and comparison against the

PGA algorithm has found that the magnitude of these penalties are often smaller

than the required δv to perform a PGA to avoid colliding with the planet or entering

the planet’s atmosphere. If these penalties for radii of periapse that are too small

do not occur, then the flyby penalty function could be considered to be a uPGA

algorithm and the architecture could be displayed in block diagram form as in Figure

6.1. Note that, as mentioned in the Spacecraft Trajectory Optimizers chapter, each

of the evolutionary algorithms runs to completion before sharing its best solution to

the island model paradigm, which then distributes the best solution per its migration

policies.

54

Figure 6.1: STOpS Block Diagram

6.2 Implementation of the Powered Gravity Assist Algorithm

With the addition of the PGA algorithm previously discussed, the number of

variables that STOpS needs to optimize increases by six per flyby. These are, in

order of storage within the STOpS-FLITE architecture: radius of periapsis of flyby

(rp), in plane rp angle (ψ), out of plane rp angle (ϕ), thrust applied at periapsis (δv),

in plane thrust angle (α), and out of plane thrust angle (β). Thus, for the same

mission with one flyby mentioned previously, the number of required variables goes

from three for an unpowered flyby optimization to nine for a powered flyby.

STOpS-FLITE first optimizes the v∞ into and out of the sphere of influence from

the TOF optimization via Lambert’s discussed above. The PGA algorithm will then

define a trajectory using the variables discussed previously and compare the v∞ vec-

tors into and out of the SOI. STOpS-FLITE subtracts these vectors from each other

to obtain a thrust maneuver required at the edge of the SOI when entering and when

55

exiting the SOI to properly fly this trajectory. In order to properly explore the search

space of the potential PGA trajectories, limits are imposed, as shown in Table 6.1:

Table 6.1: PGA Algorithm Limits

Variable Lower Limit Upper Limit Units

rp Atmosphere Radius SOI Radius km
ψ -180 180 deg
ϕ 0 180 deg
δv 0 4 km/s
α -180 180 deg
β -90 90 deg

The angles are limited in order to properly explore any periapsis or thrust direc-

tion. The δv can be adjusted depending on spacecraft capabilities and were initialized

to these values due to the magnitude of δv’s from converged solutions in previous ver-

sions of STOpS. Finally, the radius of periapse has a lower limit of the atmospheric

radius in order to avoid flybys through the atmosphere. The upper limit ensures the

spacecraft actually enters the sphere of influence.

From this, it can be seen that the population of variables to optimize gets drasti-

cally larger as the number of flybys increase. With no flybys, STOpS only needs to

optimize two variables, time of departure (TOD) and TOF from the departure planet

to the arrival planet. The time of departure is stored as a Julian date, while the

time of flight is stored in days. STOpS-FLITE stores these as a population vector as

shown: [
TOD TOF1

]
Adding even a single flyby into STOpS-FLITE adds another seven variables as there

are now the six variables to define the powered gravity assist as well as a new TOF for

the new leg. STOpS-FLITE stores the population vector for a single flyby trajectory

56

as: [
TOD TOF1 TOF2 rp1 ψ1 ϕ1 δv1 α1 β1

]
This storage system expands naturally to any number of flybys. Assuming there are

n flybys, there will be 7n+ 2 variables, with the first n+ 2 variables being TOD and

TOF(s) and the remaining variables defining the PGA variables for each flyby.

With a traditional δv cost function, STOpS-FLITE will attempt to minimize the

differences in incoming and outgoing v∞ as well as the δv applied at the periapsis.

Once the optimization is complete, this will result in δv’s at the edge of the SOI

(typically on the order of 10−2 km/s on entry to the SOI and as high as ≈ 1 km/s on

exit from the SOI). The δv applied at periapsis can vary greatly, from 0 km/s when

the PGA algorithm converges to an unpowered gravity assist to the upper limit set

within the STOpS-FLITE architecture. This is heavily dependent on the mission,

and these dependencies will be discussed in the following Results section. To let the

mission designer minimize the δv at the edge of the SOI (as they are a result of

mismatched v∞s from the Lambert’s and PGA algorithms), separate weights can be

provided to STOpS for the flyby penalty δv and the δv from the applied thrust of

the PGA. Both are included within the cost function for flyby penalties, but it takes

in two weights: one for the flyby penalty as a whole and one specific to the PGA δv.

The second is a multiplier of the first and serves as a cost modifier specifically for the

thrust applied at periapsis. Thus, STOpS can penalize mismatched v∞s more than

PGA thrust applied. For example, if the departure δv has a weight of 2, the weights

for the total flyby penalty and PGA δv might be 4 and 0.5. This penalizes the edge of

SOI thrust maneuvers with a weight multiplier of 4, but considers the effective weight

of the PGA δv to be 2, equal to that of the departure δv. In this way, the mission

designer can choose whether or not only applying thrust at periapsis is an important

condition to require.

57

One significant change from STOpS-DSM that is important to note is the exclusion

of the Ant Colony Algorithm (ACA). It was previously implemented by Rockett for

use with DSMs [18]. Testing with the PGA-adapted version of the ACA found that

it did not improve convergence to an optimized solution for PGA trajectories but

still increased the computational cost of STOpS as a whole. ACA is typically used

when a problem can be considered in terms of “nodes” and “paths”. ACA has great

effectiveness in optimizing problems that can be considered as the best paths to reach

all nodes, such as the traveling salesperson problem and the formulation of the DSM

optimization problem used in STOpS-DSM. Within the STOpS-DSM formulation,

the planets utilized for gravity assists are considered the nodes. Since the PGA

algorithm affects only the modeling of the gravity assist at each planet, it changes the

cost function at each node rather than along each path. Thus, the ACA is considered

to be non-optimal for this formulation of the PGA trajectory optimization. As such,

the other three optimization algorithms were considered to be capable of converging

to an optimized solution without the inclusion of the ACA.

With all of these changes, the new block diagram is shown in Figure 6.2. Within

this diagram, the blocks which were removed are colored in red (i.e. the ACO block),

those which were modified are colored in yellow (i.e. the cost weights, mission limits,

final cost, and evaluation information blocks), and the blocks which were added are

colored in green (i.e. the PGA algorithm block). The cost weights, mission limits,

and final cost only have small adjustments, to account for the new variables and cost

multipliers with the PGA algorithm. The evaluation information was expanded in

order to provide the user with more information related to the PGA thrust application

and trajectory, as well as the corresponding uPGA, at the end of the optimization

process. It is for this reason that the uPGA algorithm remains, in order to generate

the evaluation information to output, but does not connect to or affect the final cost.

58

The overall structure largely remains the same, as the FLITE addition is exactly that,

simply an extension of the original STOpS architecture.

Figure 6.2: STOpS-FLITE Block Diagram

59

Chapter 7

RESULTS

As mentioned previously, this paper analyzes the effectiveness of gravity assists

amplified by impulsive thrust engines, specifically to their functionality as a tool to

decrease relevant mission parameters like time of flight or δv. In order to make this

comparison, each of the following test cases will first discuss the same trajectory opti-

mized by STOpS1 without PGAs and then compare this control trajectory to that of

STOpS-FLITE. This trajectory will be called the unpowered gravity assist (uPGA)

trajectory. Each of the solutions presented is the average of at minimum five solutions

to which STOpS or STOpS-FLITE converged. Due to the stochastic nature of the

evolutionary algorithms used by STOpS, optimal trajectories can be slightly different

from each other. For the most part, these differences are negligible. By requiring at

least five solutions to average, non-optimal solutions from premature convergence are

excluded. This scenario was rare, but is still possible. Typically, they can be avoided

with large generation sizes (for GA/DE) or large swarm sizes (PSO), as well as in-

creasing the number of migrations. The generation sizes were left at the standards

selected by Fitzgerald and Graef, and the interested reader is referred to those works

to see the reasoning behind those selections [17, 22]. The migration numbers utilized

depended on the complexity of the problem. For single flyby missions, there are nine

variables to optimize. Typically, after ten migrations, the cost function changes by

less than 1%. Increasing the number of migrations does not significantly change the

converged solution or the cost function value. Adding another flyby adds another

1Throughout this segment, STOpS will refer to a variant of STOpS without PGAs included,
to differentiate from STOpS-FLITE. Unless otherwise noted, this will be STOpS-DSM with
DSMs turned off, as that was the version on which STOpS-FLITE was built.

60

seven variables to optimize, thus requiring more migrations. Testing until the cost

function changes by less than 1% provides a reasonable number of migrations for any

specific trajectory. Finally, after a rough estimate of the most optimal time to per-

form the flybys are known, the window narrowing mentioned in the Implementation

chapter can be performed. Through window narrowing, sufficient migrations, and the

averaging of multiple solutions, converged solutions can be reasonably considered to

be the optimal solution.

7.1 Test Scenario 1: Earth-Jupiter-Saturn (EJS) Trajectory

7.1.1 Description

The first test case to be considered was a single flyby mission departing Earth,

performing a powered gravity assist at Jupiter, and arriving at Saturn. This mission

is meant to be similar to the Voyager missions in purpose, which is to say that

capture at Saturn is not a targeted condition. The Voyager missions themselves were

not utilized due to their complexity and their use of DSMs, which would necessitate

DSM modeling to be accurately modeled. This scenario is simply meant to show the

effectiveness of the PGA at either reducing TOF or δv. With these objectives stated,

the cost functions considered for this scenario are simply departure δv, flyby penalty,

flyby δv, and TOF. These cost functions are shown with their weights in Table 7.1:

Table 7.1: EJS Trajectory Cost Functions

Cost Function Weight Units

Departure δv 1 km/s
Flyby Penalty (PGA δv) 2 (0.5) km/s

TOF 0.01 days

61

Note that the weight in the parentheses of the flyby penalty cost function is the

cost modifier described in the Implementation chapter. These weights resulted in

thrust maneuvers at the edge of the SOI being relatively small (i.e.< 0.2 km/s, in

this case) compared to the departure and PGA δv’s. The TOF weighting is low in

order to scale the TOF cost function so as to not dominate the cost function. In this

scenario, the TOFs of each leg are on the order of magnitude of hundreds of days. By

multiplying this TOF value by 0.01, it is on the same order of magnitude as the δv

cost functions (≈ 100 to 101). The chosen limits for each member of the population

are shown in Table 7.2. Note that when STOpS is used as opposed to STOpS-FLITE,

the population limits are solely the first three rows. STOpS was adjusted to have the

flyby penalty cost set to infinity if the spacecraft had to fly through the atmosphere or

flew into the planet. This was because in previous versions of STOpS, flyby penalties

for these scenarios were meant to simulate the cost of a PGA to avoid these scenarios.

If a spacecraft were to fly through the atmosphere or into the planet, the resulting

damage would be considered to cause mission failure, thus the decision to set flyby

penalties to infinity in these cases to force STOpS to only consider uPGA trajectories.

While all STOpS variants store the starting date limits as Julian dates and angles as

radians, they have been converted to calendar dates and degrees, respectively, in the

following tables for readability.

Table 7.2: EJS Trajectory Limits

Parameter Lower Limit Upper Limit Units

TOD 09/01/1977 9/10/1977 Date
TOF1 450 650 days
TOF2 700 750 days
rp 69911 48200000 km
ψ -180 180 deg
ϕ -90 90 deg
δv 0 5 km/s
α -180 180 deg
β -90 90 deg

62

7.1.2 Control Case

First, STOpS is used to model this trajectory with PGAs turned off. This result

is the best case scenario converged to by STOpS using only ballistic gravity assists

and thrust maneuvers at the edge of the SOI. The results of five of these solutions

is tabulated in Table 7.3, along with the δv cost function values and total cost, with

the trajectory itself plotted in Fig. 7.1.

Table 7.3: EJS uPGA Results
Parameter Lowest Highest Average Units

TOD 09/02/1977 09/03/1977 09/03/1977 Date
TOF1 648.123 648.366 648.220 days
TOF2 734.185 734.244 734.207 days
δvLaunch 9.664 9.673 9.665 km/s

δvFlybyPenalty 0 0 0 km/s
TotalCost 22.917 23.225 23.469 N/A

Note that these values are expressed to the third digit after the decimal point so

that comparisons between small differences between solutions which converge to a

small window can be made. In reality, some of these values may be more accurate

a spacecraft is capable of targeting or accomplishing, especially when it comes to

pointing the spacecraft at the correct angles for thrust at periapse, the burning the

correct amount of fuel to achieve the δv, or targeting the exact position of the radius

of periapse.

The plots of the interplanetary trajectory generated by STOpS are in the ICRS

frame. Figures are generated looking down on the X-Y plane of that frame, which

leads to the circular orbits of the planets occasionally appearing elliptical and/or off

center from the origin.

63

Figure 7.1: Earth-Jupiter-Saturn uPGA Trajectory

This trajectory takes a total of 1382.4 days, departing September 2nd, 1977 and

arriving almost exactly between June 15th and June 16th, 1981 and using a total of

9.665 km/s of δv. Note that the final cost is a combination of both δv cost and time of

flight cost, thus it has no units. This sets the baseline for comparison to the powered

gravity assists results.

7.1.3 PGA Case

With this baseline uPGA trajectory set, STOpS-FLITE is now run with the pa-

rameters listed above. In order to keep the tables comparable to the uPGA table, the

flyby penalties listed for the PGA cases are the δv’s applied at the edge of the SOI.

The δv applied at periapsis is still included in the total cost function. The parameters

64

defining this solution set are defined in Table 7.4, along with relevant cost functions

and trajectory details:

Table 7.4: EJS PGA Results
Parameter Lowest Highest Average Units

TOD 09/06/1977 09/07/1977 09/07/1977 Date
TOF1 495.268 498.409 496.567 days
TOF2 699.297 713.632 704.407 days
rp 600151 607430 602126 km
ψ 167.361 167.590 167.476 deg
ϕ 7.974 8.160 8.058 deg
δv 1.450 1.593 1.515 km/s
α 179.832 180.000 179.914 deg
β 0.211 4.810 1.875 deg

δvLaunch 10.836 10.873 10.857 km/s
δvFlybyPenalty 0.053 0.259 0.159 km/s

Cost 24.662 24.781 24.700 N/A

The PGA trajectory utilizes a total of 1.674 km/s of δv in flight after launch in

exchange for a TOF decrease of nearly 6 months compared to the uPGA trajectory.

Whether or not this is an acceptable trade is up to the mission designer to choose.

Good cost weights can help the mission designer let STOpS converge to the optimal

solution for their particular considerations, but without prior knowledge, tests can be

run using default weights and adjusted accordingly. The PGA trajectory is shown in

Fig. 7.2, while the flyby itself is plotted in Fig. 7.3.

65

Figure 7.2: Earth-Jupiter-Saturn PGA Trajectory

The low β angle means that there is very little inclination change due to the δv

applied at periapse. The thrust is mostly pointed in the direction opposite the velocity

at periapse, effectively slowing the spacecraft at periapse. In doing so, the spacecraft

changes its post-thrust turn angle and its speed. Since the trajectory is propagated

the same amount of time backwards from periapse for the pre-thrust segment and

forwards from periapse for the post-thrust segment (for the purposes of plotting),

this slower speed is evidenced by the shorter post-thrust segment.

66

Figure 7.3: EJS Jovian Flyby (OPA Frame)

Note that this plot (and all of the flyby plots within this paper) is meant to

show the flyby maneuver near the planet, so it is zoomed in on the area around the

planet, rather than plotting to the edge of the SOI. If the trajectory was propagated

to the edge of the SOI, the plot would simply appear as two line segments, and the

hyperbolic nature of the flyby would be difficult to see as the curved segment would

be much smaller than the much larger, nearly linear segments of the hyperbola as it

approaches the asymptote. The marker for the planet is meant to show the location

of the center of the reference frame, and the size of the marker is not scaled to the

size of the planet. Furthermore, the marker is placed on top of the plotted path in

each subplot regardless of if the spacecraft travels behind or in front of the planet.

67

The time of departure shifts forward four days, and due to the significantly de-

creased time of flight to Jupiter, the arrival date at Jupiter is earlier than in the

uPGA case. This is the majority of the decrease in TOF and is accounted for by the

higher departure δv. If the launch vehicle is still capable of applying this δv, this

increase is not particularly important. The second leg accounts for about 30 days of

the total decrease in TOF. Nevertheless, the PGA allows the spacecraft to target this

trajectory when previously it was incapable of doing so. Thus, even though there is

only a small decrease in TOF after the PGA, the total TOF decrease is still partially

attributable to the execution of a PGA. The PGA algorithm also converges to an α

angle of almost exactly 180 degrees. This means the spacecraft is thrusting directly

opposing the direction of the periapsis velocity. This sharpens the angle of the flyby

significantly, which is visually apparent in Fig. 7.2 compared to Fig. 7.1. There are

values of the out of plane angles ϕ and β close to, but not exactly equal to 0. These

are likely a result of the differences in inclination between the orbits of Earth, Jupiter,

and Saturn. Slightly larger thrust maneuvers for proper targeting are also required

at the edge of the SOI in the PGA case. Finally, the radius of periapsis is the same

before and after the thrust. This is because the thrust is directed exactly opposing

the periapsis velocity, which means that the periapsis location does not shift (i.e.

f0 ≈ 0), but the periapsis velocity does. The smaller periapsis velocity with the same

periapsis radius leads to a sharper turn angle as the eccentricity of the hyperbola

decreases.

68

Table 7.5: EJS Trajectory Detail Comparison

Parameter uPGA PGA Units

Total TOF 1382.427 1200.974 days
Equivalent uPGA Periapse 600000 466901 km

Lowest Periapse 600000 602126 km
Thrust Maneuver Altitude N/A 602126 km

In Flight δv 0 1.674 km/s
Total δv 9.665 12.531 km/s
Arrival v∞ 11.788 13.473 km/s

As seen here, there are trades between TOF and in flight δv across these three

cases. The uPGA has lower in flight δv (as well as lower total δv, as it has a lower

launch δv) required, but has a higher TOF. Meanwhile, the PGA uses more δv and

decreases the TOF by about 6 months. Another interesting point to note is how

close each of the trajectories of the Jovian atmospheric radius of 600000 km. With

an uPGA, the optimal trajectory skims the Jovian atmosphere at periapsis, while

the PGA trajectory could provide some tolerance for errors in the δv provided at

launch or at the entrance to the SOI. the PGA trajectory provides over 2000 km of

error tolerance at periapsis, and because the thrust is directly opposing the velocity

at periapsis, it does not come any closer to the planet. Convergence to thrust angles

that are not exactly 180 degrees also suggest some robustness against thrust point-

ing errors. Currently, no version of STOpS models spacecraft attitude dynamics or

account for potential errors in thrust application or direction, so this was not able to

be included as a relevant cost function. Finally, the arrival v∞ at Saturn is lowest

for the uPGA case. This makes sense as the PGA trajectory is using more δv overall

than the uPGA case. This extra δv leads to extra heliocentric velocity, leading to

a greater v∞ at Saturn, which could be beneficial in leaving the Solar System, if a

69

Voyager-like mission was desired2. Further, the capability to perform a PGA (such as

burning any remaining fuel) at Saturn to increase this heliocentric energy even further

would provide an even better maximum heliocentric energy for this mission than an

equivalent uPGA. Also of note is the fact that the PGA case has only a slightly higher

total cost than the uPGA scenario. This suggests that with these weightings, the two

missions are considered almost equally optimal. Further, the uPGA case considers a

highly idealized gravity assist, while the PGA algorithm provides an actual radius of

periapse to target.

7.1.4 Missed Launch Window

Assuming the maximum flight time for this spacecraft is the 1450 days that rep-

resent the sum of the maximum limit of TOF1 and TOF2, a scenario in which the

early September launch window is missed is considered. In order to do this, the end

date for launch consideration was initially shifted to December 31st, 1977 to open

up options to STOpS without allowing for a launch in the next full rotation of the

planets. Next, the start date for launch consideration was shifted towards the end

of the year until STOpS was unable to converge to a solution. STOpS was able to

converge to increasingly δv heavy solutions until October 13th, 1977, at which point

all trajectories would have required the spacecraft fly through the Jovian atmosphere

in order to stay under the maximum flight time limit. This was considered to be a

failure state for the mission (i.e. flying through the atmosphere results in the flyby

penalty being set to infinity), resulting in a failure for STOpS to converge. Meanwhile,

STOpS-FLITE was able to converge to a solution defined by the variables displayed

in Table 7.6:

2While a heliocentric energy cost function could be utilized, PGAs introduce such a wide variety
of potential heliocentric energies post-PGA that they span multiple orders of magnitude, making
them difficult to scale properly to not be dominated/dominate other cost functions.

70

Table 7.6: EJS Missed Launch Window PGA
Parameter Lowest Highest Average Units

TOD 10/14/1977 10/14/1977 10/14/1977 Date
TOF1 471.411 473.400 472.321 days
TOF2 709.407 715.055 712.223 days
rp 600270 602626 601177 km
ψ 167.194 167.420 167.293 deg
ϕ 8.375 8.766 8.535 deg
δv 1.486 1.535 1.505 km/s
α 179.880 180.000 179.969 deg
β 0.211 5.446 3.143 deg

δvLaunch 15.660 15.677 15.670 km/s
δvFlybyPenalty 0.057 0.133 0.098 km/s

Cost 29.188 29.246 29.217 N/A

In comparison to the regular launch date trajectory, the missed launch date tra-

jectory is visually very similar. The approach angles ψ and ϕ are within 2 degrees, as

are the thrust pointing angles. The biggest change is the much shorter TOF1, which

is a result of the much higher δv at launch. This results in a lower total TOF, though

the 50% greater launch δv is considered to be a less optimal solution, as shown by

the significantly higher cost function value. Nevertheless, this is an improvement over

STOpS being completely unable to find a trajectory that does not fly through the

Jovian atmosphere after October 13th, 1977. Here, the margin between the periapse

radius of the PGA is cut in half compared to the regular launch date trajectory, but

it remains at a good value to provide some factor of safety against targeting and ma-

neuver errors. The in flight δv value of 1.598 km/s is lower than that of the regular

launch date trajectory.

In summary, STOpS-FLITE is capable of converging to optimal solutions within

the problem space of a single PGA trajectory. Specifically, the PGA algorithm grants

the mission designer an option between a trajectory with lower TOF and a higher

δv requirement or vice versa. By modifying the cost weights, a mission designer can

71

choose how important preserving fuel is compared to reducing time of flight. In the

event of a missed launch window, STOpS-FLITE is still able to converge to a solution

where STOpS was unable to do so. Thus, PGAs prove effective as a tool to increase

robustness and provide opportunities where none would have otherwise existed.

7.2 Test Scenario 2: Earth-Mars-Venus-Mercury (EMVM) Trajectory

7.2.1 Description

To consider the possibilities of the multiple PGA (MPGA) trajectory, a mission

was considered involving an Earth departure in the mid-2040s followed by PGAs at

Mars and Venus before arriving at Mercury. The scenario was first optimized using

STOpS-FLITE, before being run in STOpS to consider the equivalent uPGA trajec-

tory. The uPGA trajectory proved to be largely infeasible due to massive required

δv’s to avoid flybys through the Martian and Venusian atmospheres or through the

planets themselves. In addition, the uPGA trajectory converged to by STOpS re-

sulted in a significantly larger TOFs. As such, this trajectory is also considered to be

proof of the hypothesis that the usage of PGAs creates possibilities for trajectories

when traditional uPGA trajectories are simply impossible.

The cost functions for this trajectory were adjusted to penalize δv less, as the

windows for TOF are now larger. This means that extremely high TOFs with ex-

tremely low δv were dominating the solution set when using the previously used cost

weighting. As a result, the δv-related cost functions were lowered until more consis-

tent TOFs were achieved with slightly larger δv’s. These cost functions and weights

are described in Table 7.7:

72

Table 7.7: EMVM Trajectory Cost Functions

Cost Function Weight Units

Departure δv 1 km/s
Flyby Penalty (PGA δv) 2 (0.5) km/s

TOF 0.01 days

The limits for the uPGA and PGA trajectories were slightly different from each

other, as the PGA trajectory converged to a relatively small TOF for the first leg of

the trajectory that the uPGA trajectory was unable to match. STOpS was unable to

converge to a uPGA trajectory at all within this TOF window without flying through

either the atmosphere or the body of one or both flyby planets. As a result, larger

windows for each of the TOF-related variables were considered by STOpS to allow

convergence. This is tabulated in Tables 7.8 and 7.9. Note that the limits for the

angles describing the PGA as well as the δv applied at periapsis are the same for both

the Martian and Venusian PGA.

Table 7.8: EMVM PGA Trajectory Limits

Parameter PGA Lower Limit PGA Upper Limit Units

TOD 01/01/2043 12/31/2043 Date
TOF1 210 250 days
TOF2 230 270 days
TOF3 60 100 days
rp1 3390 577000 km
rp2 69911 48200000 km
ψ -180 180 deg
ϕ -90 90 deg
δv 0 5 km/s
α -180 180 deg
β -90 90 deg

73

Table 7.9: EMVM uPGA Trajectory Limits

Parameter Lower Limit Upper Limit Units

TOD 01/01/2043 12/31/2043 Date
TOF1 210 750 days
TOF2 50 300 days
TOF3 20 200 days

7.2.2 Control Case

For this scenario, the uPGA trajectory was considered after the PGA trajectory.

This was done in order to show some of the trajectories converged to by STOpS-

FLITE are impossible for STOpS to converge to without entering planetary atmo-

spheres or colliding with planetary bodies. In these conditions, the cost function

of the flyby penalty was set to infinity. In this case, this was shown to be true,

with STOpS unable to converge to a uPGA trajectory in the original TOF1 window

given. In order to have something to compare to, the TOF1 window was widened

until STOpS was able to converge to a solution. This solution, while valid from an or-

bital mechanics perspective, requires incredibly high amounts of δv and higher TOFs

than the equivalent PGA trajectory. The parameters for this solution are listed in

Table 7.10:

Table 7.10: EMVM uPGA Results
Parameter Lowest Highest Average Units

TOD 11/21/2043 11/22/2043 11/21/2043 Date
TOF1 749.871 750.000 749.997 days
TOF2 86.215 87.030 86.980 days
TOF3 47.112 47.598 47.201 days
δvLaunch 30.225 30.782 30.356 km/s

δvFlyby1Penalty 7.008 7.231 7.200 km/s
δvFlyby2Penalty 12.442 12.824 12.699 km/s
Total Cost 76.741 78.660 77.010 N/A

74

This set of parameters was clearly still incredibly costly, as evidenced by the high

cost function. Plotting the trajectory (in Fig. 7.4) also shows that this trajectory

sends the spacecraft far outside of Earth’s orbit due to the incredibly high TOF1.

Figure 7.4: Earth-Mars-Venus-Mercury uPGA Trajectory

In fact, this TOF1 was the edge of the limits for TOF1, but increasing it further

would simply allow it to deviate from the comparison PGA trajectory even further,

while smaller values of TOF1 result in flybys through the Martian atmosphere. Even

with the relatively small atmospheric radii of the inner planets (compared with the

Jovian atmosphere used in the previous test scenario), STOpS was unable to converge

to a trajectory that had a lower cost function than the PGA case. Specifically, the

values for each of the δv cost functions were abnormally high, requiring high launch

δv and high corrective δv’s to match up v∞’s properly. Even if this trajectory is

valid from an orbital mechanics standpoint, it is likely impossible to perform given

75

current propulsion system technology. Without a PGA, this mission either need to

shift its launch window to another year or have the capability to perform these large

δv maneuvers.

7.2.3 PGA Case

With PGAs, the mission trajectory converged to a solution with much lower δv’s

and TOF. First, consider the same variables as displayed previously in the uPGA

results (namely all of those that are not directly related to the PGA application) as

shown in Table 7.11:

Table 7.11: EMVM PGA Results
Parameter Lowest Highest Average Units

TOD 12/09/2043 12/24/2043 12/18/2043 Date
TOF1 230.598 240.543 237.696 days
TOF2 247.876 254.464 251.488 days
TOF3 67.958 72.139 69.881 days
δvLaunch 3.388 4.332 3.874 km/s

δvFlyby1Penalty 0.991 1.716 1.309 km/s
δvFlyby2Penalty 1.825 2.548 2.047 km/s
Total Cost 20.483 21.357 20.968 N/A

Note the much lower total cost, a result of the significantly lower δv penalties and

launch δv. In particular, the launch δv is an order of magnitude smaller, and the

total flyby penalties are a third of the those of the uPGA case. Though TOF2 and

TOF3 are larger than in the uPGA case, the much smaller TOF1 makes up for them,

leading to a net decrease in TOF relative to the uPGA case. Even with the PGA

δv’s, the total δv of this trajectory is lower than the total δv of the uPGA trajectory.

Next, consider the variables relating to the actual application of the PGAs in the

Martian and Venusian SOIs in Table 7.12:

76

Table 7.12: EMVM PGA Application

Parameter Lowest Highest Average Units

rp1 413314 552461 490335 km
ψ1 -27.101 -20.627 -24.465 deg
ϕ1 0.859 2.922 2.234 deg
δv1 4.233 4.805 4.564 km/s
α1 -5.157 5.672 -0.516 deg
β1 13.694 35.982 21.715 deg
rp2 6390 6463 6433 km
ψ2 -129.603 -117.514 -124.217 deg
ϕ2 80.100 89.381 84.855 deg
δv2 0.087 0.527 0.227 km/s
α2 13.579 180.000 143.526 deg
β2 43.316 87.090 64.802 deg

Several things are important to note from Table 7.12. Despite the wide range of

periapse radii for the Martian flyby, the ψ and ϕ angles are very similar, suggesting

that the optimal approach to this flyby is more dependent on approach angle than

flyby radius. This is likely because the very large δv applied during this maneuver,

combined with the relatively small gravitational parameter of Mars, means that most

of the work of this PGA is done by the applied δv, rather than the gravity assist

itself. This δv value of 4.735 km/s is close to the δv limiter, but STOpS-FLITE did

not converge to a value of exactly 5 km/s, thus this limiter value is not considered

to be hindering the convergence to an even more optimal (i.e. lower cost) solution.

Meanwhile, in the Venusian flyby, the range of the radii of periapsis is very small.

This flyby similarly has consistent approach angles, but a widely ranging δv2, α2, and

β2. This suggests that this flyby has the opposite relationship from the Martian flyby,

in that most of the work is done by the gravity assist rather than the δv applied. In

fact, when the pre-thrust and post-thrust periapses during the Venusian flyby are

considered, they never change by more than 0.01 km, with the periapsis position shift

always less than 0.1 degrees. This is likely because the pre-thrust periapsis velocity is

77

already incredibly high due to the close flyby that the small thrust applied in plane is

indistinguishable from no thrust at all. This also explains the wide range of α2, as the

applied δv affects the periapsis shift or post-thrust periapsis very little regardless of

which direction the thrust is applied. However, the more consistent β2 angle suggests

that the δv applied is being used to assist in the inclination change to target Venus,

but even then the range is much wider than it was for β1. Ultimately, since the final

cost functions are in a very small window, the wider range of converged values for

the second PGA suggest that it is heavily affected by even small changes to TOF and

approach angle from the previous PGA, but ultimately result in a roughly equally

optimal solution. Finally, there are flyby penalties greater than 1 km/s at both flybys.

This suggests that there is some amount of the change in v∞ at both flybys that is

more efficient to perform at the edge of the SOI than at periapse, due to the nature

of this specific trajectory. This trajectory is plotted in Fig. 7.5:

Figure 7.5: Earth-Mars-Venus-Mercury PGA Trajectory

78

Though difficult to see from Fig. 7.5, there is an inclination difference between

the orbits of Mercury and Venus of 3.6 degrees, which is the reason for the high ϕ

value at the Venusian flyby. The β angle at the Venusian flyby is also large, but as

mentioned previously, the spacecraft is flying so fast at periapse in this flyby that the

thrust applied is negligible in comparison. Compare this to the Martian flyby, which

needs to account for the inclination difference between Venus and Mars (1.5 degrees).

Here, the ϕ angle is under 5 degrees, but the majority of the work of this PGA is done

by the δv applied. This explains the high β angle, as the inclination change is more

a result of the δv of the PGA rather than the gravity assist itself. These inclination

changes are more visible in the plots of the flybys themselves, as shown in Figs. 7.6

and 7.7. Specifically, the Y’-Z’ plane subplots show how much greater the inclination

change from the thrust applied is at the Martian flyby than at the Venusian flyby.

Figure 7.6: EMVM Martian Flyby (OPA Frame)

79

Figure 7.7: EMVM Venusian Flyby (OPA Frame)

Note the much sharper angle of the Martian flyby due to the much greater δv

applied at periapsis, though a small inclination change is visible in the Venusian

flyby. Because these plots are in the OPA frame, the inclination change shown in

the Y’-Z’ plane subplot is only the inclination change from δv applied at periapsis.

In generating graphs, the pre-thrust and post-thrust trajectories were propagated

backwards and forwards, respectively, for the same duration. The Martian flyby

adds a significant δv at periapse, which is evident in the much larger post-thrust

travel distance with the same propagation time. The high δv applied at periapse and

the high flyby radius (which means the periapse velocity is relatively low) lead to a

larger relative change in δv from this maneuver than in the Venusian flyby. The high

flyby radius also results in a very small turn angle, which explains how straight the

80

trajectory appears in most of the subplots. At the Venusian flyby, the spacecraft is

traveling at a much higher velocity, thus even a thrust maneuver of equal magnitude

would result in a smaller percentage change in the δv at periapsis, and thus a smaller

change visually in the trajectory. Specifically, the Martian flyby has a pre-thrust

periapse velocity of approximately 3.76 km/s, meaning the δv applied at periapse of

4.56 km/s is larger than the pre-thrust periapse velocity. Meanwhile, the Venusian

flyby has a pre-thrust periapse velocity of approximately 13.09 km/s, meaning the

δv applied at periapse of 0.23 km/s is two orders of magnitudes smaller than the

pre-thrust periapse velocity. The relatively small δv at periapse in the Venusian flyby

results in a largely symmetric in plane trajectory, with a small inclination change

accomplished by the δv.

In summary, this scenario is evidence that the PGA algorithm implemented in

STOpS has the ability to converge to solutions where either the majority of the δv

of the PGA is performed at periapsis or the majority of the δv is performed outside

the SOI. This is confirmation of the hypothesis drawn from Qi and de Ruiter’s work

which suggested that, at times, a combination of thrust maneuvers inside and outside

of the SOI would be superior to maneuver a single thrust maneuver. This scenario

also demonstrates that STOpS-FLITE is capable of converging to low cost MPGA

trajectories where STOpS either finds a uPGA trajectory with higher cost or is simply

unable to converge to a solution at all. Thus, PGA modeling is demonstrably superior

to uPGA modeling in some cases, especially when specific start dates or TOFs are

desired.

81

7.3 Test Scenario 3: Mariner 10 (Earth-Venus-Mercury)

Lastly, a scenario in which STOpS-FLITE should converge to either a uPGA or a

very small PGA is considered. For this, Mariner 10’s mission from Earth to Mercury

via a Venusian flyby was selected. While this mission did utilize 3 TCMs, it did not

have a PGA. No control case was run with STOpS as ultimately, it should provide

the same answer. The expected result for this trajectory is for STOpS-FLITE to

converge to a δv at periapsis of close to 0 with minimal flyby penalties. The final

trajectory should be visually similar to the trajectory actually flown by Mariner 10,

shown in Fig. 7.8:

Figure 7.8: Mariner 10 Actual Trajectory [35]

Since the actual mission dates are known, the TOF windows are kept small in order

to let STOpS-FLITE search the problem space fully with fewer migrations. Thus,

the mission parameters provided to STOpS-FLITE are presented in Table 7.13. The

limits are a five day window on either side of the actual launch date and a five day

window in which the actual flyby and arrival dates sit. In order to discourage STOpS-

82

FLITE from using PGAs to recreate the effect of the TCMs, the flyby penalty cost

function was given a higher weight than in previous scenarios, as shown in Table 7.14.

Table 7.13: Mariner 10 PGA Trajectory Limits

Parameter PGA Lower Limit PGA Upper Limit Units

TOD 11/01/1973 11/10/1973 Date
TOF1 90 95 days
TOF2 47 52 days
rp1 6052 616000 km
ψ -180 180 deg
ϕ -90 90 deg
δv 0 5 km/s
α -180 180 deg
β -90 90 deg

Table 7.14: Mariner 10 Trajectory Cost Functions

Cost Function Weight Units

Departure δv 1 km/s
Flyby Penalty (PGA δv) 4 (0.5) km/s

TOF 0.01 days

Using these parameters, an accurate model of the Mariner 10 mission was defined.

The parameters defining this solution set in STOpS-FLITE are shown in Table 7.15:

Table 7.15: Mariner 10 STOpS-FLITE Solution

Parameter Lowest Highest Average Units

TOD 11/03/1973 11/06/1973 11/04/1973 Date
TOF1 91.103 93.262 92.446 days
TOF2 48.117 50.010 48.969 days
rp 9706 10390 10123 km
ψ 26.353 29.021 28.034 deg
ϕ 35.640 37.635 36.666 deg
δv 0.000 0.000 0.000 km/s
α -118.647 79.392 -61.224 deg
β 0.000 28.647 7.997 deg

δvLaunch 4.302 4.375 4.323 km/s
δvFlybyPenalty 0.154 0.357 0.271 km/s

Cost 10.650 11.565 11.142 N/A

83

From Table 7.15, it is clear that STOpS-FLITE was able to converge to a uPGA

when it is the most optimal choice. While the α and β angles have extremely wide

ranges, it is important to note that the δv of 0 means these angles have no effect on

the trajectory. Thus, STOpS-FLITE will simply output whichever angles happened

to be correlated with the solution set that was most optimal in the other variables,

as the angles no longer affect the final cost. The δv ranged from values on the order

of 10−4 to true 0 within the population vector of the solution set. Similarly, all the

variables related to the flyby itself (not the thrust maneuver) converged to within

a small range, other than the single outlier of the November 6th, 1977 launch date

which represents the largest deviation in the first seven variables. Launch δv was

very consistent as well, with some greater variance in the flyby penalty δv, with total

costs all within 1 of each other. This solution is plotted in Fig. :

Figure 7.9: Mariner 10 STOpS-FLITE Trajectory

84

The PGA flyby with a δv at periapsis of 0 km/s is identical both visually and

mathematically to a uPGA, thus the plot of its trajectory is symmetric about the

plane defined by the radius of periapsis and angular momentum vectors (i.e. the x”-z”

plane of the OPB frame). This is visually evident in Fig. 7.10:

Figure 7.10: Mariner 10 STOpS-FLITE Venusian Flyby (OPA Frame)

Compared with Mariner 10’s actual trajectory, the converged solution of STOpS-

FLITE is very similar visually, once the difference in reference frame between Figs.

7.8 and 7.9 is recognized. The actual mission dates are within a day of the STOpS-

FLITE solution (other than the final arrival time) and the actual flyby radius is within

2000 km of that of the STOpS-FLITE solution. These are compared in Table 7.16.

The TOFs were converted to dates to compare to the actual mission dates of flyby

(DOFB) and date of arrival (DOA).

85

Table 7.16: Mariner 10 Comparison (STOpS-FLITE Average vs. Actual)

Parameter STOpS-FLITE Actual Units

TOD 11/04/1973 11/03/1973 Date
DOFB 02/05/1974 02/05/1974 days
DOA 03/25/1974 03/29/1974 days
rp 10123 11819 km

The difference in launch date and arrival date are likely a result of the lack of

TCMs and the difference in radius of periapse. However, the flyby itself is almost

exactly the correct time, coming within 2 hours of the actual mission flyby date and

time. In addition, while not modeled here, Mariner 10 would go on to perform a

triple flyby of Mercury, after its first arrival at Mercury. Thus, there may be some

differences from the STOpS-FLITE optimal solution in the actual mission to set up

for those flybys.

Lessons learned during implementation and testing include the requirement to

narrow TOD and TOF windows to properly encourage convergence to a good solution.

Since the PGA-related angles need to span the entire 3D space, they cannot be

narrowed. Similarly, unless there is a priori knowledge about the optimal radius of

periapse, the rp value must span the range from the planet’s atmospheric radius to

the edge of the planet’s SOI. The δv limiter for the thrust applied at periapse can be

adjusted based on the spacecraft, so its range will be dependent on what the thrusters

on board the spacecraft can provide. Thus, the biggest way a mission designer can

help STOpS-FLITE to converge consistently to an optimal solution is to run a large

number of tests with wide ranges for TOD and TOFs, but narrow them once a general

idea of where the optimal location in the search space is. In future, a local search

algorithm may assist in reducing the need for this window narrowing.

86

In summary, STOpS-FLITE is capable of converging to a true uPGA trajectory (or

close enough that a uPGA model would result in little to no difference) when it is the

most optimal solution. Proper weighting can assist in this, and as such the mission

designer can adjust the weights according to their specific needs. Ultimately, the

optimal solution will be highly dependent on these weighting selections, so a proper

understanding of what the mission requirements and objectives are is necessary to

properly select these weights, along with sufficient testing.

87

Chapter 8

CONCLUSION

8.1 Summary

STOpS-FLITE is shown to converge to a wide variety of trajectories using PGA

modeling. It is capable of converging to single and multiple flyby missions, as well

as PGA and uPGA trajectories, depending on the scenario. PGA modeling allows

STOpS-FLITE to generate more options in terms of trades between δv and TOF, turn

a mission that was impossible with uPGAs into a possible PGA trajectory, account for

a missed launch window, and/or perform thrust maneuvers both at the edge of the SOI

and at the location of closest approach. All of these present a mission designer more

options and the freedom to perform trade studies on the effectiveness of a PGA for

their specific mission. Proper selection of cost weights, sufficient migration numbers,

and the narrowing of TOF windows in comparison to STOpS were key factors in

increasing convergence to optimal solutions. In addition, the ability to perform thrusts

at the periapse allows a trajectory to converge to a solution with a larger room for

error in flyby periapse radius when a uPGA trajectory converges to a flyby that

exactly matches the atmospheric radius of the planet. Convergence to a small window

of thrust angles and thrust magnitude also suggests some robustness against thrust

application errors, as well. Though these PGAs did not always maximize change in

orbital energy, the small sacrifices in that parameter were used to generate significant

and relevant decreases in δv, TOF or both. STOpS-FLITE was able to converge to

solutions that were comparable or more optimal than the equivalent uPGA trajectory

in two hypothetical scenarios, while also converging properly to a uPGA trajectory

88

matching the one flown by Mariner 10. In sum, PGA modeling is another tool in

the STOpS toolbox as a modern interplanetary trajectory optimization tool which

provides mission designers with options to consider and potentially select.

8.2 Future Work

STOpS has significant room for growth in order to consider the expansive problem

that is spacecraft trajectory optimization. A few examples of potential work moving

forward are presented in this section.

There are a few ways in which STOpS-FLITE and its implementation of PGAs

could be expanded. First, making the algorithm more robust to allow for the thrust

to be applied anywhere rather than at periapsis or at the edge of the SOI could lead

to some interesting results. While periapsis may be the best location to burn in order

to achieve ∆Emax, other locations for burns may be better for targeting a specific exit

trajectory. The natural expansion of that would be performing continuous thrust

maneuvers within the SOI, as algorithms like the one in Qi and Ruiter approximate

continuous thrust as multiple small impulsive impulses to set an initial guess for the

correct thrust direction and timings [14]. This could allow for modeling of both im-

pulsive and continuous thrust maneuvers from chemical or electric propulsion. Along

with this, a model of planetary atmospheres could allow for the implementation of

aerobraking as a “continuous thrust” maneuver or follow the works of Piñeros et al.

to consider aerogravity assists [15]. Expanding to implement a three-body or n-body

modeling of the PGA may also net interesting results, and some literature in those

assumptions within studies of PGAs for orbital energy change exist already. Finally,

a future variant of STOpS could also allow the user to choose an orbit around a planet

to target with thrust maneuver(s) within the SOI.

89

Beyond simple expansions of the PGAs, there are other areas in which STOpS

could explore new regions of the spacecraft trajectory optimization problem space

or improve its convergence to optimal solutions. For example, Rockett postulated

that integrating a process in which the TOF windows are progressively narrowed and

adding a local search system once the window is small enough could allow convergence

to an even more optimal solution. An automated narrowing algorithm could also

solve the issues of split convergence from the first test case in the Results chapter.

By defining a “basin”, a local search system such as an NLP solver could quickly

converge to the best option in the basin. Other improvements suggested by multiple

previous STOpS theses include the addition of celestial bodies that are not planets,

such as asteroids, moons, or even interstellar objects. This would allow for modeling

of missions which visited these celestial bodies and provide even more options for

gravity assists. Resonant flybys and orbital synodic periods are also not currently

modeled and may provide new ways for STOpS to reduce a trajectory’s cost. This

could help find optimal trajectories for future missions using planetary orbital position

history and trends. Attitude dynamics modeling could allow for STOpS to explore

potential errors in thruster pointing or thrust application, potentially leading to more

robust trajectories which can achieve their objectives with some margin of safety.

More grandiose options for improving the optimization scheme in STOpS (agnostic

of the application to spacecraft trajectories) is true multi-objective optimization, tra-

jectory pruning, or the addition of another metaheuristic algorithm. Multi-objective

optimization could improve the way that STOpS considers different trajectories and

their benefits and flaws, especially in search spaces as large as the one presented by

the PGA formulation used in STOpS-FLITE. Trajectory pruning was also suggested

by previous STOpS theses to improve convergence times and avoid going down non-

optimal paths. The addition of another metaheuristic algorithm may not be beneficial

in and of itself, but as Rockett showed with the implementation of ACAs, it could be

90

useful for specific orbital trajectory optimization problems. STOpS could also benefit

from improvements to code efficiency to reduce their required computation time.

Finally, there are the features of MATLAB variants of STOpS that have yet to

be included in Python variants of STOpS. There is yet to be a version of STOpS

in Python that can optimize low thrust trajectories or account for environmental

perturbations. These are important and relevant considerations for any modern in-

terplanetary trajectory optimizer, with both significant literature to work from and

significant room to expand with future work. Lastly, the greatest change to user

friendliness is the loss of the GUI from STOpS-1. The creation and implementa-

tion of one could help future users and coders of STOpS greatly in visualizing and

understanding the outputs of STOpS.

91

BIBLIOGRAPHY

[1] H. Oberth, Ways to Spaceflight. Agence Tunisienne de Public-Relations, 1970.

[2] H. D. Curtis, Orbital Mechanics for Engineering Students.

Butterworth-Heinemann, 2013.

[3] D. A. Vallado and W. D. McClain, Fundamentals of Astrodynamics and

Applications, 4th edition. Microcosm Press/Springer, 2013.

[4] A. Shirazi, C. Josu, and J. Lozano, “Spacecraft Trajectory Optimization: A

review of Models, Objectives, Approaches and Solutions,” Progress in

Aerospace Sciences, 2018. https://doi.org/10.1016/j.paerosci.2018.07.007.

[5] D. Conte and D. Spencer, “Targeting the Martian Moons via Direct Insertion

into Mars’ Orbit,” 08 2015.

[6] R. A. Brourke, “The Celestial Mechanics of Gravity Assist,” tech. rep.,

University of Texas, Austin, 1988. https://doi.org/10.2514/6.1988-4220.

[7] National Aeronautics and Space Administration, “Basics of Spaceflight: Section

1: Environment, Chapter 4: Trajectories.”

https://solarsystem.nasa.gov/basics/chapter4-1/.

[8] V. A. Chobotov, Orbital Mechanics. American Institute of Aeronautics and

Astronautics, 2002.

[9] P. R. Blanco and C. E. Mungan, “Rocket Propulsion, Classical Relativity, and

the Oberth Effect,” The Physics Teacher, vol. 57, no. 17, 2019.

https://doi.org/10.1119/1.5126818.

92

[10] P. R. Blanco and C. E. Mungan, “High-speed escape from a circular orbit,”

American Journal of Physics, vol. 89, no. 72, 2021.

https://doi.org/10.1119/10.0001956.

[11] A. F. Silva, A. F. B. A. Prado, and O. C. Winter, “Powered Swing-By

Maneuvers around the Moon,” Journal of Physics: Conference Series,

vol. 465, no. 1, 2013. http://dx.doi.org/10.1088/1742-6596/465/1/012001.

[12] A. F. B. d. A. Prado, “Powered Swingby,” Journal of Guidance, Control, and

Dynamics, vol. 19, no. 5, 1996.

[13] A. F. B. A. Prado and G. de Felipe, “An analytical study of the powered

swing-by to perform orbital maneuvers,” Advances in Space Research,

vol. 40, no. 1, 2007. https://doi.org/10.1016/j.asr.2007.04.098.

[14] Y. Qi and A. de Ruiter, “Powered Swing-by with Continuous Thrust,” Journal

of Guidance, Control, and Dynamics, vol. 43, no. 1, 2020.

https://arc.aiaa.org/doi/pdf/10.2514/1.G004358.

[15] J. O. M. Piñeros and A. F. B. d. A. Prado, “Powered aero-gravity-assist

maneuvers considering lift and drag around the Earth,” Astroyphysics and

Space Science, vol. 362, no. 120, 2017.

https://doi.org/10.1007/s10509-017-3097-9.

[16] M. Ceriotti, Global optimisation of multiple gravity assist trajectories. PhD

thesis, University of Glasgow, 2010. https://theses.gla.ac.uk/2003/.

[17] T. J. Fitzgerald, “Spacecraft Trajectory Optimization Suite (STOpS):

Optimization of Multiple Gravity Assist Spacecraft Trajectories Using

Modern Optimization Techniques,” Master’s thesis, California Polytechnic

State University, San Luis Obispo, 2015.

https://doi.org/10.15368/theses.2015.154.

93

[18] E. Rockett, “Spacecraft Trajectory Optimization Suite (STOpS): Optimization

of Spacecraft Trajectories Using Deep Space Maneuvers (DSMs) and Ant

Colony Algorithms (ACO),” Master’s thesis, California Polytechnic State

University, San Luis Obispo, 2021.

[19] European Space Agency, “Cassini-Huygens: Approach and Arrival at Saturn.”

https://sci.esa.int/web/cassini-huygens/-/34955-approach-and-arrival.

[20] I. M. Ross, A Primer on Pontryagin’s Principle in Optimal Control: Second

Edition. Collegiate Publishers, 2015.

[21] J. Gao, L. Liu, and Y. Wang, “Spacecraft orbit design based on intelligent

optimization,” International Conference on Advanced Robotics and

Mechatronics, 2017. https://doi.org/10.1109/ICARM.2017.8273244.

[22] J. Graef, “B-Plane Targeting with the Spacecraft Trajectory Optimization

Suite,” Master’s thesis, California Polytechnic State University, San Luis

Obispo, 2020. https://digitalcommons.calpoly.edu/theses/2251.

[23] S. Sheehan, “Spacecraft Trajectory Optimization Suite (STOpS): Optimization

of Low-Thrust Interplanetary Spacecraft Trajectories Using Modern

Optimization Techniques,” Master’s thesis, California Polytechnic State

University, San Luis Obispo, 2017. https://doi.org/10.15368/theses.2017.82.

[24] L. D. Kos, T. Polsgrove, R. C. Hopkins, D. Thomas, and J. A. Sims, “Overview

of the Development for a Suite of Low-Thrust Trajectory Analysis Tools,”

tech. rep., National Aeronautics and Space Administration, 2006.

https://doi.org/10.2514/6.2006-6743.

[25] T. Polsgrove, L. Kos, and R. Hopkins, “Comparison of Performance Predictions

for New Low-Thrust Trajectory Tools,” tech. rep., National Aeronautics

and Space Administration, 2006. https://doi.org/10.2514/6.2006-6742.

94

[26] Recent Improvements to the Copernicus Trajectory Design and Optimization

System, 2012. https://ntrs.nasa.gov/citations/20120001856.

[27] D. Morante, M. S. Rivo, and M. Soler, “A Survey on Low-Thrust Trajectory

Optimization Approaches,” tech. rep., Multidisciplinary Digital Publishing

Institute, 2021. https://doi.org/10.3390/aerospace8030088.

[28] “Java Astrodynamics Toolkit (JAT).”

https://opensource.gsfc.nasa.gov/projects/JAT/.

[29] R. P. Oldenhuis, “Trajectory Optimization of a Mission to the Solar Bow Shock

and Minor Planets,” Master’s thesis, Delft University of Technology, 2010.

[30] D. Izzo, “Parallel Global Multiobjective Optimizer (PaGMO).”

https://github.com/esa/pagmo.

[31] M. G. Malloy, “Spacecraft Trajectory Optimization Suite (STOpS): Design and

Optimization of Multiple Gravity-Assist Low-Thrust (MGALT)

Trajectories Using Modern Optimization Techniques,” Master’s thesis,

California Polytechnic State University, San Luis Obispo, 2020.

https://digitalcommons.calpoly.edu/theses/2247.

[32] E. Woods, “Orbital Optimization of Interplanetary Trajectories with

Environmental Perturbations,” Master’s thesis, California Polytechnic State

University, San Luis Obispo, 2018. https://doi.org/10.15368/theses.2018.64.

[33] D. Bologna, “Spacecraft Trajectory Optimization Suite: Preliminary Design of

Interplanetary Trajectories Using Pseudostate Theory,” Master’s thesis,

California Polytechnic State University, San Luis Obispo, 2022.

95

[34] E. Doughty, “Interplanetary Trajectory Optimization with Automated Fly-by

Sequences,” Master’s thesis, California Polytechnic State University, San

Luis Obispo, 2020.

[35] Jet Propulsion Laboratory, “Mariner venus-mercury 1973 final report,” Report

33-374, California Institute of Technology, 1976.

http://ser.sese.asu.edu/M10/M10 PDF/TM33-7 3.PDF.

96

APPENDICES

Appendix A

USER GUIDE

A.1 Code Base

The STOpS-FLITE code consists of two segments: main.py and STOpS FLITEvF-

inal.py. The main file simply has the call to run STOpS-FLITE, along with the

indicator of which mission should be run, the number of migrations to utilize, and

some lines of code to make Spyder (the preferred IDE for STOpS variants in Python)

create a noise signal when all migrations are complete. The STOpS FLITEvFinal file

houses all of the functions used by STOpS-FLITE, as well as some vestigial code from

STOpS-PY and STOpS-DSM. The folder including both of these files also includes

function files for all of the sub-functions used within all previous Python variants of

STOpS, so that they can be referenced or re-implemented if needed.

A.2 Inputs

The inputs of STOpS-FLITE can be loosely categorized into two types: cost

weights and mission limits. For ease of reference, the block diagram displayed in

the Implementation chapter is reprinted here in Figure A.1. Recall that most of the

architecture remains from previous STOpS variants with very few changes, the most

significant of which were the removal of ACO and the addition of the PGA algorithm.

97

Figure A.1: STOpS-FLITE Block Diagram

The easiest way to adjust these is to either modify an existing “Preset Mission”

or creating a new one. These can be found starting on Line 48 of the final STOpS-

FLITE code or by searching for class presets(). If modifying a mission, one simply

needs to adjust the cost options within one of the three defined missions and then

call that mission to run from Line 6 of the main.py file. If a new one is created, it

must be defined within class presets() with a new name, as well as being added to

the Mission Dissection and Definition segment which begins on Line 288 of the final

STOpS-FLITE code.

Cost weights can be found in each of the standard missions under the moniker

“Cost Options”. Cost weights are the multiplicative weight attached to each of the

chosen mission objectives. For example, a cost weight of 2 applied to the launch

δv means that the value for the launch δv will be multiplied by 2 in the final cost.

The application of thrust within the PGA algorithm has two stacking multipliers,

one from the flyby penalty as a whole and one specifically for the thrust applied at

periapse. This allows the user to specify different weights for the thrusts at the edge

98

of the SOI and at periapse. Since the thrusts at the edge of the SOI are used to

match up the v∞’s from the Lambert’s solver and the PGA algorithm, they can be

considered to corrective thrusts, though they may also be part of an optimal solution

per Qi and de Ruiter’s work [14]. From testing, the weighting never precluded edge

of SOI thrusts or periapse thrusts, but rather changed how much of the thrust was

applied at each location (i.e. a higher weight on the periapse thrust would push more

of the thrust to the edge of the SOI). Since the periapse thrusts were preferred when

testing for convergence to a PGA, they were typically weighted at half the weight

of the overall flyby penalty weight. Thus, the periapse thrusts were multiplied by

a weight that was half the value of the edge of SOI thrusts. The remainder of the

δv weights were selected to match the periapse thrust weights. For example, if the

overall flyby penalty weight was 2, and the periapse thrust weight modifier was 0.5,

then the remaining δv weights were set to 1 to match the final weight on the periapse

thrust cost. TOF cost weights were selected to put the TOF costs to be on the same

order as the δ costs. Thus, if the total TOF was in the order of hundreds of days, then

the TOF cost multiplier is selected to be 0.01, as δv is usually between 1 and 10 km/s

for a trajectory. This can be adjusted after some initial testing. Finally, the flyby

altitude penalties and heliocentric velocity cost options should also be adjusted to be

on the same magnitude as the other costs being used. However, the PGA algorithm

can drastically change both of these within the same mission, and thus they can have

values which span multiple orders of magnitude, making it difficult to choose proper

weights.

Mission limits can be found in two segments of the code. Those related to the

planet flyby order and the TOFs to be fed into the Lambert’s solver are found at the

top of each of the standard missions. Within the “Start” category, the planet to start

at, as well as the window for time of departure can be selected. The “Waypoints”

category stores a vector representing the planets to be used for gravity assists. It

99

also contains a vector representing the lower limits of the TOF windows and one

representing the upper limits of the TOF windows. For example, for standard()

(the mission corresponding to the EJS trajectory), the “Waypoints” planet vector

is [5], which sets Jupiter as the gravity assist planet. The “Shortest Trans-Time”

array is [450,700] and the “Largest Trans-Time” array is [650,750], representing

the TOF1 window of 450 to 650 days and the TOF2 window of 700 to 750 days.

Finally, “End” stores solely a number corresponding to the arrival planet. The other

mission limits are those corresponding to the PGA algorithm, and can be found in

the read inputs(mission) function on Line 2375 of the final STOpS-FLITE code. The

angles α, β, ϕ, and ψ are defined to allow the PGA algorithm to fully explore any

direction of thrust/location of radius of periapse, and therefore should not be modified

without a valid reason. Similarly, the radius of periapse window is defined between

the atmospheric radius and the SOI radius so as to make sure the spacecraft does get

affected by the planet’s gravity while also not entering the atmosphere, and therefore

should not be adjusted without a valid reason. This leaves the δv limiter, which

should be modified if STOpS-FLITE converges to a solution at the upper limit of

the δv window (as it likely needs more δv to reach the true optimum) or if there is

sufficient knowledge of the spacecraft’s propulsion system.

A.3 Outputs

The outputs fall into two segments as well. The first is the best population

member. Within the Variable Explorer of Spyder (the preferred IDE for all STOpS

variants in Python), this can be found under data → Heliocentric → pop. The other

is evaluation information, which is a catch-all term for any information regarding the

optimal solution that is valuable to the user. These can be found in mission → Eval

Info. The evaluation information in STOpS-FLITE is listed below:

100

• Arrive dV: δv magnitude required to capture at the arrival planet [1x1, km/s]

• Entry/Exit dV (PGA): v∞ vectors ([1x3]) in the OPA frame1 stored together

in the following order: v∞ into the SOI from the Lambert’s solver, v∞ into the

SOI from the PGA algorithm, v∞ out of the SOI from the Lambert’s solver,

and v∞ out of the SOI from the PGA algorithm [1x12n2, km/s]

• Entry/Exit dV (uPGA): v∞ magnitudes into and out of the SOI, as well as

an indicator of if the flyby enters the atmosphere/collides with the planet. This

indicator has a value of 1 if the spacecraft is not in the atmosphere, 2 if the

spacecraft is in the atmosphere but does not collide with the planet, and 3 if

the spacecraft collides with the planet. [1x3n, km/s & count]

• Flyby Altitude 1 (PGA): Magnitude of pre-thrust radius periapse [1x1, km]

• Flyby Altitude 2 (PGA): Magnitude of post-thrust radius periapse [1x1, km]

• Flyby Altitude (uPGA): Magnitude of the radius periapse of equivalent

uPGA if using the uPGA algorithm (ignores cost) [1x1, km]

• Flyby dV: Total δv achieved by flyby [1xn, km/s]

• Flyby Penalty (PGA): Magnitude of the edge of SOI thrusts from the PGA

algorithm [1xn, km/s]

• Flyby Penalty (uPGA): Magnitude of the edge of SOI thrusts from the

uPGA algorithm (this will typically Inf to indicate the spacecraft flew through

the atmosphere or into the planet) [1xn, km/s]

• Helio: Heliocentric energy at end of trajectory [1x1, km2/s2]

1All vectors are stored in the OPA frame unless otherwise noted

2n = number of flybys

101

• Leave dV: δv magnitude required at launch for first leg of trajectory [1x1,

km/s]

• Periapse Shift: Magnitude of f0 (periapse shift as a result of thrust) [1xn,

radians]

• Periapse Velocity (Post-thrust): Vector of periapse velocity after thrust is

applied [3xn, km/s]

• Periapse Velocity (Pre-thrust): Vector of periapse velocity before thrust is

applied (note that since this is in the OPA frame, it will be purely in the y’-axis)

[3xn, km/s]

• Print: Command for STOpS-FLITE to print evaluation information to the

console [1x1, boolean]

• TOFs: Time of flights for each leg [n+1, days]

• Trajectory JDs: Julian dates of departure, flybys, and arrival [n+2, days]

Some of these are also population members and therefore are included in Eval

Info in order to be more easily printed to the console. The remainder of these are

calculated inside the flyby penalty() function or within the main cost function.

102

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Problem Statement
	1.2 Orbital Mechanics & Interplanetary Trajectories
	1.2.1 Lambert's Problem
	1.2.2 Gravity Assists

	2 POWERED GRAVITY ASSISTS
	2.1 Oberth Effect
	2.2 Powered Gravity Assist Literature
	2.3 Applied Powered Gravity Assists

	3 SPACECRAFT TRAJECTORY OPTIMIZERS
	3.1 Commonly Used Spacecraft Trajectory Optimizers
	3.2 Spacecraft Trajectory Optimization Suite (STOpS)
	3.2.1 STOpS Optimization Scheme
	3.2.2 Island Model Paradigm
	3.2.3 Genetic Algorithm
	3.2.4 Differential Evolution
	3.2.5 Particle Swarm Optimization
	3.2.6 Ant Colony Optimization
	3.2.7 History of the Spacecraft Trajectory Optimization Suite

	4 POWERED GRAVITY ASSIST MODEL AND ALGORITHM
	4.1 Required Inputs
	4.2 Definition of Incoming Hyperbolic Orbit
	4.3 Application of Thrust
	4.4 Calculation of Outgoing Exit Velocity

	5 VALIDATION
	6 IMPLEMENTATION
	6.1 STOpS Pre-Existing Architecture
	6.2 Implementation of the Powered Gravity Assist Algorithm

	7 RESULTS
	7.1 Test Scenario 1: Earth-Jupiter-Saturn (EJS) Trajectory
	7.1.1 Description
	7.1.2 Control Case
	7.1.3 PGA Case
	7.1.4 Missed Launch Window

	7.2 Test Scenario 2: Earth-Mars-Venus-Mercury (EMVM) Trajectory
	7.2.1 Description
	7.2.2 Control Case
	7.2.3 PGA Case

	7.3 Test Scenario 3: Mariner 10 (Earth-Venus-Mercury)

	8 CONCLUSION
	8.1 Summary
	8.2 Future Work

	BIBLIOGRAPHY
	A User Guide

