
COMPARING LEARNED REPRESENTATIONS BETWEEN UNPRUNED AND

PRUNED DEEP CONVOLUTIONAL NEURAL NETWORKS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Parker Mitchell

June 2022

© 2022

Parker Mitchell

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Comparing Learned Representations Be-

tween Unpruned and Pruned Deep Convo-

lutional Neural Networks

AUTHOR: Parker Mitchell

DATE SUBMITTED: June 2022

COMMITTEE CHAIR: John Seng, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Maria Pantoja, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Stephen Beard, Ph.D.

Professor of Computer Engineering

iii

ABSTRACT

Comparing Learned Representations Between Unpruned and Pruned Deep

Convolutional Neural Networks

Parker Mitchell

While deep neural networks have shown impressive performance in computer vision

tasks, natural language processing, and other domains, the sizes and inference times

of these models can often prevent them from being used on resource-constrained

systems. Furthermore, as these networks grow larger in size and complexity, it can

become even harder to understand the learned representations of the input data

that these networks form through training. These issues of growing network size,

increasing complexity and runtime, and ambiguity in the understanding of internal

representations serve as guiding points for this work.

In this thesis, we create a neural network that is capable of predicting up to three

path waypoints given an input image. This network will be used in conjunction with

other networks to help guide an autonomous robotic vehicle. Since this neural net-

work will be deployed to an embedded system, it is important that our network is

efficient. As such, we use a network compression technique known as L1 norm prun-

ing to reduce the size of the network and speed up the inference time, while retaining

similar loss. Furthermore, we investigate the effects that pruning has on the internal

learned representations of models by comparing unpruned and pruned network lay-

ers using projection weighted canonical correlation analysis (PWCCA). Our results

show that for deep convolutional neural networks (CNN), PWCCA similarity scores

between early convolutional layers start low and then gradually increase towards the

final layers of the network, with some peaks in the intermediate layers. We also show

that for our deep CNN, linear layers at the end of the network also exhibit very high

iv

similarity, serving to guide the dissimilar representations from intermediate convo-

lutional layers to a common representation that yields similar network performance

between unpruned and pruned networks.

v

ACKNOWLEDGMENTS

Thanks to:

• Dr. John Seng, for inspiring this work and supporting me through this research.

• Dr. Maria Pantoja and Dr. Stephen Beard, for teaching me so much and for

being on my committee.

• My family, who loved and supported me every step of the way.

• Christopher Siu, for being a great friend and mentor throughout my time at

Cal Poly.

• My friends, who were always there for me.

vi

TABLE OF CONTENTS

Page

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

2 Background . 5

2.1 Deep Learning . 5

2.1.1 Convolutional Neural Networks 7

2.2 Transfer Learning . 8

2.2.1 Adjusting Model Structure for Transfer Learning 9

2.2.2 Fine-Tuning Pretrained Models 10

2.3 Neural Network Pruning . 11

2.3.1 Unstructured Pruning . 12

2.3.2 Structured Pruning . 14

2.4 Alternative Neural Network Compression Techniques 15

2.4.1 Network Quantization . 15

2.4.2 Knowledge Distillation . 16

2.5 Autonomous Robot Navigation . 17

3 Related Work . 19

3.1 Pruning with Machine Learning Frameworks 19

3.2 Comparing Neural Networks . 21

3.2.1 Canonical Correlation Analysis 22

3.2.2 Singular Vector Canonical Correlation Analysis 25

3.2.3 Projection Weighted Canonical Correlation Analysis 26

vii

3.3 Comparing Unpruned and Pruned Neural Networks 28

4 Implementation . 30

4.1 Data Collection and Processing . 30

4.1.1 Data Collection . 31

4.1.2 Data Labeling and Partitioning 32

4.2 Models . 36

4.2.1 EffficientNet . 36

4.2.2 Transfer Learning with EfficientNet 37

4.3 Model Training . 39

5 Experimental Design . 41

5.1 Experiments and Metrics to Evaluate Model Performance 41

5.2 Pruning Neural Networks and Measuring Performance 42

5.3 Experiments to Compare Unpruned and Pruned Neural Networks Us-
ing PWCCA . 44

5.4 Test and Development Environment 45

6 Results and Analysis . 46

6.1 Unpruned Model Performance . 46

6.2 Comparing Unpruned and Pruned Networks Using PWCCA 50

6.3 Limitations . 57

6.3.1 Investigating Loss and Dataset Limitations 57

7 Conclusions . 62

8 Future Work . 64

8.1 Dataset Growth . 64

8.2 Investigating the Role of Certain Layers within Similarity 65

8.3 Comparing Deep Neural Networks with other Similarity Metrics . . . 66

viii

BIBLIOGRAPHY . 67

ix

LIST OF FIGURES

Figure Page

1.1 Image displaying goal of our neural network, that is, predicting the
path waypoints (represented by the blue dots) in an input image. . 3

2.1 Simple CNN Architecture [34] . 8

2.2 Learning CNN Filters - Visualized [41] 9

2.3 Illustration of how transfer learning works [17] 11

2.4 Visualizing the difference between unstructured and structured prun-
ing [32] . 15

2.5 Knowledge Distillation Process Flow [12] 17

3.1 The stages of model compression via pruning [6] 20

3.2 Model speedup with NNI [29] . 22

3.3 Calculating Canonical Variates [28] 25

4.1 Driveable Environment - Outlined in Green [11] 31

4.2 Driveable Environment - Satellite Outline with Terrain [11] 32

4.3 An Input Image to the Neural Network 33

4.4 Waypoint Pathways . 34

4.5 EZLabeler User Interface . 35

4.6 Example of model input and output. The model takes in an image,
and predicts where the waypoints in the image are. The output is a
tensor containing three pairs of predicted waypoint coordinates. . . 38

4.7 Pre and post augmented training images. Top left is pre-augmented,
and top right is its corresponding augmented image. Bottom left
is pre-augmented, and bottom right is its corresponding augmented
image. Transformations such as random section dropout and random
shadows can be observed. 40

x

6.1 Example waypoint coordinate predictions. Red dots represent the
actual labeled waypoints, while blue dots represent the model pre-
dictions. 47

6.2 Plot of model sparsity on the x-axis versus L1 loss value on the y-axis.
A sparsity value of 0 represents the unpruned model, while a higher
sparsity represents a model that has been pruned more aggressively. 49

6.3 Plot of model sparsity on the x-axis versus waypoint count accuracy
on the y-axis. 50

6.4 Plot of model sparsity on the x-axis versus mean inference time in
milliseconds on the y-axis. Inference time is averaged across 300 runs
over a 16 data point batch size. 51

6.5 Plot of model sparsity on the x-axis versus model size on the y-axis. 52

6.6 Plot of model sparsity on the x-axis versus total number of model
parameters on the y-axis. 53

6.7 Plots of layer type on the x-axis and mean PWCCA score on the
y-axis. A layer type of “C” denotes a convolutional layer, while a
layer type of “L” denotes a linear layer. Layers on the x-axis are
listed in order of their position in the neural network. 57

6.8 Examples of test set images with low L1 loss from our unpruned
network. Red dots indicate the actual labeled waypoints, while blue
dots indicate the predicted waypoints from our model. 58

6.9 Examples of test set images high low L1 loss from our unpruned
network. Red dots indicate the actual labeled waypoints, while blue
dots indicate the predicted waypoints from our model. 58

6.10 Bar chart of average L1 loss for each waypoint dataset formed from
the test dataset. The waypoint count dataset is on the x-axis, and
the average L1 loss for each dataset is on the y-axis. 59

6.11 Histograms of L1 loss over each waypoint dataset on the x-axis and
count of images with that loss on the y-axis. 61

xi

Chapter 1

INTRODUCTION

In recent years, deep neural networks (DNNs) have achieved outstanding performance

in a myriad of domains and tasks, including natural language processing, image recog-

nition, entertainment, and more [22, 46]. To create models that perform better, the

general trend has been to make such networks deeper and wider by adding more layers

and more parameters in each layer, respectively. However, as these networks become

more complex, they often take longer to run when making predictions and incur larger

storage costs. This increased complexity makes it harder to run such networks on

devices that do not have adequate computing power, such as IoT, mobile, and edge

devices. Furthermore, as networks become more complex and increase in parameter

count, it can be even harder to understand the internal representations that these

networks are learning.

As a result of the increasing complexity of these networks, neural network compres-

sion techniques have become increasingly important in order to reduce the number

of parameters of such networks, in turn reducing their inference time and storage

requirements. One such way to compress neural networks is through pruning, where

parameters of the network are “pruned”, or removed, to reduce overall network size

and time to execute, while retaining similar network loss and/or accuracy. Pruning

is an important technique that can compress even very large models into smaller and

more manageable sizes with faster speeds, allowing them to be distributed to resource-

constrained devices. Neural network pruning has been established since the 1980s

[15, 31, 18], but has seen even more research in recent years due to ever-increasing

network complexity.

1

However, while pruning techniques have been gaining more attention over the last sev-

eral years, there is still much research to be done concerning the comparison between

pruned and unpruned network representations. Recent studies have primarily focused

on deciphering the internal representations within individual networks [48, 4], while

some have focused on comparing representations across different networks [37, 30].

The latter cases use a statistical technique known as Canonical Correlation Analysis

(CCA) to compare respective layers in each network and compute a measure of the

similarity between those layers. In this way, they are able to gain insights about the

learning dynamics of deep convolutional neural networks and recurrent neural net-

works. At a high-level, this technique enables researchers to look into the similarities

of the representations that neural networks learn through training. Applying this

technique to compare unpruned and pruned networks could offer valuable insights

into the effects that pruning has on the learned representations of networks after

fine-tuning.

In this thesis, we seek to develop a neural network with multi-output prediction

capabilities to predict path waypoint coordinates for an autonomous robotic vehicle.

For our network, we use a pretrained lightweight variant of EfficientNet as our base

model, and modify the end of the network to perform waypoint coordinate regression

[44]. This network outputs one-to-three pairs of (x, y) coordinates indicating the

model’s predicted waypoint positions. Using this network, we attempt to compress it

by pruning it to various degrees in an effort to speed up the network’s inference time

and reduce storage costs. Ultimately, we want our model to be able to accurately

predict these waypoints when given an input image, visualized in Figure 1.1. As this

neural network will be guiding a robot’s navigation in real-time, it is important that

it is fast so that it provides guidance information when the robot needs it. Finally, we

further the work of Ansuini et al. to compare and investigate the similarities between

the learned representations of unpruned and pruned networks using a variant of CCA

2

Figure 1.1: Image displaying goal of our neural network, that is,
predicting the path waypoints (represented by the blue dots) in an input

image.

known as Projection Weighted Canonical Correlation Analysis (PWCCA) [2]. To the

best of our knowledge there is no publication that performs an extensive layer-by-layer

analysis of pruned and unpruned deep neural networks using PWCCA.

In summary, the main contributions of this thesis are:

• Modification of a state-of-the-art machine learning network to enable it to make

high-quality path waypoint predictions when given an input image.

• A performance analysis of a range of compressions of this network via neural

network pruning, using Microsoft’s Neural Network Intelligence toolkit [29].

• The first layer-by-layer analysis of the unpruned and pruned networks using

PWCCA, to give more insight into the representational similarities between

these networks.

3

The remainder of this thesis will give background information regarding deep learn-

ing, neural network pruning, other network compression techniques, and autonomous

robot navigation in brief in chapter 2. In chapter 3, we will cover how modern machine

learning frameworks implement pruning techniques, as well as discuss using CCA and

its variants to compare different neural network representations. Chapter 4 will dis-

cuss the collection and processing of our waypoint dataset, as well as details about

our model implementation. Chapter 5 will outline the structure and techniques of

our proposed experiments, with results and analyses being discussed in chapter 6. In

chapter 7 will present our conclusions, and in chapter 8 we will end with a discussion

of future work.

4

Chapter 2

BACKGROUND

In recent years, deep neural networks have achieved outstanding performance in a

myriad of domains and tasks, ranging from computer vision to natural language pro-

cessing to entertainment and more. However, while these networks further develop

and become more complex to advance the state of the art, their storage footprint and

computational complexity also increase greatly. On top of this, as we try to move ma-

chine learning models to IoT and edge devices, as well as reduce our carbon footprint,

there is an ever growing need to compress these neural networks into manageable and

distributable sizes [33]. As a result of such increasing complexity and model size,

methods have been developed to compress the size of neural networks and to speed

up inference times and shrink models to more manageable sizes. This section seeks to

give background about what deep neural networks and convolutional neural networks

are, why neural networks need to be compressed, and the main techniques that are

being researched and developed to achieve such compression. Additionally, as part of

this thesis focuses on building a neural network for an autonomous robot, we briefly

discuss autonomous robot navigation and its uses.

2.1 Deep Learning

While neural networks are not new to the world of machine learning (ML) and ar-

tificial intelligence (AI), the use of deep neural networks (DNNs), with many inter-

mediate hidden layers, are relatively new due to advances in technology and faster

algorithms that allow these networks to learn [23, 39]. Prior to deep learning (DL),

5

conventional machine learning required that a system be engineered to carefully ex-

tract and internally represent relevant features from the raw input data. For images,

this would require mapping pixel values into meaningful representations that a ma-

chine learning system could work with and learn from. Not only does this require a

large amount of specific fine-tuning of the model, but also a great deal of domain-

specific knowledge and expertise to be able to define what the relevant features are

and how to model them for any given situation. Deep learning has alleviated many

of these issues, as one of the most important aspects of deep learning is that it does

not require features to be hand engineered. Deep learning enables the discovery and

learning of features from the data itself by adjusting its internal learnable parameters,

without human intervention.

In supervised deep learning, input data has a known correct label. The deep learning

model produces an output of what it thinks is the correct label, and uses a cost or loss

function to see how far off its prediction was from the correct label. This loss function

is used to adjust the deep learning model’s internal parameters, usually referred to

as weights, in order to achieve a greater accuracy when predicting solutions. By

computing the gradient of the loss function with respect to the learnable weights

within the model, this system can determine how much the loss will go up or down

if the weight is slightly altered, a method known as gradient descent. The process of

going back through the model and updating these weights is called backpropagation.

Iteratively feeding data to the model, computing the loss of the model’s prediction,

and updating the weights accordingly with backpropagation allows one to train a

model to achieve high accuracy on a domain specific task.

Deep learning now permeates many different domains and industries due to its un-

bounded learning potential. However, one of the most prominent uses of deep learning

is for computer vision tasks, such as object classification and pattern recognition.

6

2.1.1 Convolutional Neural Networks

Convolutional neural networks, also called CNNs or ConvNets, are a type of deep

learning neural networks that excel in solving complex computer vision tasks [34, 7].

CNNs employ many of the same techniques as other neural networks, but have more

image-specific features built into their architecture to allow them to handle these

difficult computer vision problems.

The architecture of CNNs often include many different types of layers (as visualized

by Figure 2.1(, but typically consist of the following components:

• An input layer, to take in the pixel values of an input image.

• A convolutional layer that uses low-dimensional filters (also called kernels)

that convolve across the input data’s height and width, taking the dot product

of the filter and input. This produces a 2D activation map of that filter, which

is later used to predict class scores for the output.

• A pooling layer to downsample results from the convolutional layers along the

spatial dimensionality (height and width) of the input.

• One to many fully-connected layers to produce class scores from the activa-

tion maps generated by the convolutional layers.

Aptly named “convolutional neural networks”, CNNs are able to learn the filters in

the convolutional layers to identify key patterns within images. Early filters detect

basic features like edges and lines, while intermediate filters are able to recognize

more complex patterns, like textures and shapes. Towards the end, the final filters

are able to detect whole objects, as outlined in Figure 2.2.

7

Figure 2.1: Simple CNN Architecture [34]

2.2 Transfer Learning

As neural networks increase in size and complexity, the time and data required to

sufficiently train these networks also greatly increases. When more layers, neurons,

and weights are added to network architectures, the number of operations are usually

increased, and thus require more time to compute. However, these deeper and larger

neural networks are often worth the time and effort spent training because of their

ever-increasing accuracies and performance. This dilemma is not a new issue to the

field, and luckily is partially alleviated through the use of a machine learning technique

called transfer learning.

Transfer learning allows us to utilize the knowledge that a neural network model has

learned previously to new learning tasks and domains [47]. There are several different

approaches to transfer learning, but one of the most successful and widely used at the

moment is model-based transfer learning, specifically through the use of pretraining.

With pretraining, deep neural networks are first trained on a sufficient amount of

8

Figure 2.2: Learning CNN Filters - Visualized [41]

source data, which can be different from the eventual target data. After training on

the source data, the model is then potentially adjusted or altered, and then retrained,

or “fine-tuned”, on the new target data. The model alterations and fine-tuning are

quite important, and are further discussed below.

2.2.1 Adjusting Model Structure for Transfer Learning

As noted earlier, when using transfer learning with pretraining, the model structure

may be altered or adjusted to meet the demands of the new learning task. For

instance, if the original learning task was to classify images as either cats or dogs,

then the model’s output might consist of a two-dimensional vector containing the

class probabilities for a cat and a dog, based on the input image. However, the

new learning task could be quite different from the original learning task, such as the

classification of dolphin images versus whale images. Even further, the new task could

change from a classification problem to a regression problem, or to another form. The

9

work done in this thesis uses transfer learning to adjust a model originally used for

image classification to perform a regression task. Transfer learning facilitates this

knowledge transfer very well, and provides great flexibility for changing the domain

and learning task for neural network models.

2.2.2 Fine-Tuning Pretrained Models

When fine-tuning the new model, there is the option to fix or freeze certain param-

eters, such as weights and filters, so that during when the model is being retrained

those parameters are not adjusted, and remain the same as in the originally-trained

model. This is useful if certain parameters are not expected to change very much

when fine-tuning on the target data, allas it allows time and resources to be saved by

not having to retrain/compute those parameters.

This freezing of parameters can be particularly valuable in convolutional neural net-

works, as it has been shown that the layers of these networks tend to learn in a

general-to-specific fashion. That is, the earlier layers of the network are more general

learners, learning low-level notions of edges, shapes, and textures, while the later

layers of the network are more specific learners, and are able to identify high-level

features that are specific to the input data. Figure 2.3 illustrates these concepts with

an example of two models. We have some model A (the top model), that is trained

on input A for task A. Then with transfer learning, we can make a new model that

leverages model A’s learned knowledge named model B, which operates on input B

for task B. If model B does not need to relearn the very general things that are picked

up in the earlier layers from model A’s pretraining, then we can freeze the weights of

the first two layers as shown, and only update the later weights with backpropagation

when fine-tuning. Additionally, we may change the structure of the network to fit

our learning task’s needs, as seen on the right-hand side of networks A and B.

10

Figure 2.3: Illustration of how transfer learning works [17]

2.3 Neural Network Pruning

Pruning is a neural network compression technique that aims to remove components

of the network to reduce its size, while preserving a similar accuracy [5]. Pruning

methods for neural networks emerged in the late 1980s [15, 31, 18], with increased

efforts in recent years as deep learning has taken off and network complexity has

greatly increased.

Across the majority of pruning techniques, there are several key aspects that are

common. The first is scoring [5]. Scoring, also referred to as ranking, is the way that

parameters are evaluated for pruning. Different pruning techniques may use different

parameters to judge which parts of the network to prune. Some techniques may score

parameters based on their absolute values, activations, gradients, or other parameters.

Additionally, parameters may be scored locally (e.g. per layer or block), or globally

11

across the whole network. The next aspect of pruning is scheduling. Scheduling de-

termines the amount to prune within the network at each time step. Some pruning

techniques are one-shot, and prune all at once, while others are iterative, and prune

across multiple time-steps. Other functions may also be introduced to prune at dif-

ferent rates, dictated by said function. For reference, this thesis focuses on one-shot

pruning and its effects. The final aspect that is common across most pruning tech-

niques is fine-tuning. This includes methods that continue to train the network after

pruning. When retraining, most approaches either use the weights that were present

before pruning, or reinitialize the network’s weights and then continue to train.

As noted previously, this thesis focuses on and investigates the effects of one-shot

pruning. With one-shot pruning, techniques generally adhere to a similar step-by-

step approach: 1) train the network to completion, 2) prune unimportant parameters,

and 3) retrain the network to fine-tune parameters [13]. Typically, the first and third

stages of this process are similar among different pruning implementations. However,

the second stage is where the variation within pruning techniques emerges, and will

make up most of the work and discussion in this thesis. Traditionally, there are several

ways to compress a neural network, but the two most relevant pruning methods

include unstructured pruning and structured pruning.

2.3.1 Unstructured Pruning

The first technique is unstructured pruning, sometimes also referred to as magnitude-

based pruning (MBP). With this approach, if a weight in the network has a small

value, or a value below some predefined threshold value, then the weight is pruned.

Hence, this pruning method is unstructured because it does not take into account

any relationship between weights that are pruned. In practice, this is done by setting

those weights to zero, effectively creating a sparse network. The reasoning behind

12

this is that if a weight in the network is low, then that often means it has little

effect on the output. If the effect is so small, then the weight can be set to zero,

effectively removing that weight from the network. This can reduce both memory

and computation, as the weight can be removed, and forward passes and updates via

backpropagation no longer have to consider that weight.

In practice, there are several different nuances in how unstructured pruning can be

implemented. One way is removing all weights in the network that are less than some

threshold. This has the potential to create a very sparse network if the threshold is

high enough, as there could be many weights that are actually below that. Another

way is to prune a percentage of weights. This could be done by either pruning a

percentage of the lowest weights in the network, or a percentage of the lowest weights

in the network that do not meet some threshold. Finally, all of this pruning can

be done in a layer-wise or global fashion. In terms of layer-wise, we would decide

on some pruning method listed prior (e.g. percentage under threshold) and prune

that layer accordingly. Then, we would move onto the next layer and prune the

same way. A global pruning approach would prune the whole network (irrespective of

layers), taking all weights into account equally to find the lowest weights or percentage

of weights. While choosing between layer-wise and global unstructured pruning is

sometimes problem dependent, it has been found that pruning a percentage of the

smallest weights globally generally results in the best performance [40]. This prevents

the unnecessary pruning of weights in layers just to meet some layer-wise quota, and

better prunes small weights that are actually not as important to the inference of the

model.

13

2.3.2 Structured Pruning

The second technique is structured pruning, also commonly referred to as node prun-

ing. Structured pruning is concerned with removing a larger part of a neural network,

like a neuron or filter, thus altering the structure of the network. Sometimes when

using unstructured pruning of weights, the network can become overly sparse in some

areas. In such cases, even though the number of parameters has been reduced, compu-

tational costs may not have actually been reduced, as it takes more effort to calculate

with such irregular sparsity [24]. While there are libraries for sparse computation that

can handle this, structured pruning provides an alternative pruning solution that does

not require the use of sparse computational libraries.

Structured pruning is particularly prevalent when pruning convolution neural net-

works (CNNs). In this context, filters that have little effect on the output accuracy

are identified and are removed along with their feature maps, greatly reducing com-

putational costs. This approach does not introduce sparsity into the network, because

when a neuron or filter is removed, all ingoing and outgoing connections of that neuron

are removed, not just specific individual weights. The difference between unstructured

and structured pruning can be visualized in Figure 2.4 [32]. Unstructured pruning is

shown on the left-hand side, where we can see how connections that have been pruned

are grayed-out. Structured pruning is shown on the right-hand side, where we can see

that entire nodes (which could be neurons, filters, or other structural components)

have been pruned, along with their corresponding connections.

In a more general sense, node pruning can be employed on deep neural networks by

measuring the contribution of a node with respect to some cost or objective function,

somewhat akin to backpropagation [3]. By evaluating a node’s contribution to this

14

Figure 2.4: Visualizing the difference between unstructured and
structured pruning [32]

objective function, we can prune nodes that have small effects on it, and keep nodes

that more greatly impact it.

2.4 Alternative Neural Network Compression Techniques

While network pruning remains one of the most common compression techniques, in

recent years there has been much research around alternative methods to compress

neural networks. These new methods have seen great success, allowing neural net-

works to run faster and take up less space, and even spawning hybrid compression

approaches for better performance. These other notable compression techniques in-

clude quantization and knowledge distillation, and will be discussed in the following

sections.

2.4.1 Network Quantization

With network quantization, the goal is to compress the model without removing any

parameters. The way this is done relies on the way we store the data. Quantization

15

aims to use a reduced number of bits to represent the values in the network [33]. In

most networks trained on the GPU, values are stored in a 32-bit floating point (FP-

32) format. Other common types are 16-bit floating point (FP-16), also called “half-

precision”, and 16-bit integer (INT-16). Quantization approximates the computations

that are performed by creating smaller adaptive ranges for the original values to lie

in, reducing the total numerical space they exist in and clipping those too far outside

those ranges.

Quantization research and implementation centers around reducing memory footprint

and accelerating inference by lowering the precision of the network. This is done by

scaling down the representations to INT-8, INT-4, INT-2, and even 1 bit represen-

tations of the original data. From a memory perspective, if the original network is

operating in FP-32, and it is quantized down to INT-8, the result is an immediate

4x reduction in size. If floating point calculations and a bit more precision were still

needed then FP-16 could be used, still resulting in a 2x reduction in size compared

to the original network. As such, there has been much research around quantization

in recent years.

2.4.2 Knowledge Distillation

Knowledge distillation is a compression technique that seeks to learn a smaller “stu-

dent” model from a larger “teacher” model [12]. This approach is inspired by how hu-

man beings learn, where a larger, more knowledgeable teacher model helps a smaller,

less knowledgeable model learn what is necessary for their particular task, typically

in a more succinct network structure. A simple visualization of knowledge distillation

can be seen in Figure 2.5.

16

Figure 2.5: Knowledge Distillation Process Flow [12]

In practice, knowledge distillation usually follows a two stage process: 1) train the

larger teacher model on a set of training data, and 2) use the teaching model to “ex-

tract knowledge in the form of logits or the intermediate features”, then used to train

the student model during distillation. The actual distillation of knowledge can be

done using several different algorithms. A simple yet effective way to transfer knowl-

edge is just to have the student model directly match the knowledge representation

contained by the teacher model. In recent practice, this has been done with GANs for

adversarial distillation, with multiple teacher models, and even with graphs to learn

and model intra-data relationships. These are just a few of many different distillation

techniques, but serve to show the breadth of this compression technique.

2.5 Autonomous Robot Navigation

As technology has gotten more performant and electronics have gotten less expensive,

the interest and development of autonomous robots has greatly increased. Through

the use of machine learning, neural networks are empowering robots to navigate their

environments and perform complex tasks, often without any human intervention.

17

At a high-level, autonomous navigation for robots can be broken down into several

distinct steps: 1) have the robot create a map of its environment, 2) have the robot

localize, that is, find itself in its environmental map, and 3) have the robot use the

map to plan and take actions to achieve its goal [16].

To create such maps and have the data needed to make certain decisions, autonomous

robots are typically equipped with several sensors to take in the information around

them. Common sensors used for these robots include Lidar, Sonar, Radar, and Cam-

eras [19]. For this thesis, the eventual robot that our neural network will be used on

will be collecting and processing data via a front-facing camera. Cameras are well-

suited for dynamic environments due to their high sampling rate, sampling 30 frames

of image data per second, if not more. In many autonomous robotic navigation se-

tups, including ours, data is passed from the camera to the neural network, where it

is transformed and processed to produce outputs that the robot can make decisions

based off of. In our case, our neural network will be predicting the waypoint coor-

dinates of each image, and making decisions about which waypoint to drive towards

based on its end-goal.

18

Chapter 3

RELATED WORK

In this chapter, we discuss how most modern deep learning frameworks approach

neural network pruning. We then describe recent research surrounding the comparison

of neural network representations and the techniques used to do so. Finally, we discuss

how these comparison techniques have been used to compare pruned and unpruned

neural networks.

3.1 Pruning with Machine Learning Frameworks

Today, there exist a plethora of machine learning frameworks that allow researchers

and developers to quickly design and deploy effective neural networks for a variety

of tasks. Some of the most popular frameworks at the time of writing this include

TensorFlow, Keras, and PyTorch [1, 8, 36]. These frameworks make it relatively

simple and intuitive to rapidly prototype machine learning models for research or

commercial use, and offer many different options for model compression.

Both TensorFlow (and to an extent Keras, which is built on top of TensorFlow) and

PyTorch support model quantization and model pruning to help reduce model size

and decrease model latency when performing inference. Focusing on pruning, these

frameworks will typically change the pruned weights to zero, or apply a mask over

the model that effectively zeroes the weights, creating a sparse model. Once pruned,

size reductions can be seen by actually compressing a model with a technique such

as gzip. Since there are typically more frequent sequences of zeros in the model’s

parameters after applying these pruning methods, compression algorithms like gzip

19

Figure 3.1: The stages of model compression via pruning [6]

often allow for greater compression than when compressing an unpruned/unmasked

model.

However, most of these frameworks do not actually reduce the model size or speed

up inference times after applying the built-in pruning methods they provide. Instead,

they only theoretically reduce the model size and inference time by masking or zeroing

out parameters, as mentioned previously. To achieve practical performance gains

when using these pruning techniques often requires the use of specialized hardware

and/or software accelerators following the pruning to take advantage of the masking

or zeroing of these parameters [6]. Figure 3.1 helps outline this by showing most of

the stages of model compression using pruning. In (a), we start with a dense model,

where the circles represent neurons and the lines represent parameters. In (b), we

see the initial stages of pruning, with the pruned neurons represented by the dotted

circles. Most machine learning frameworks will only reach stage (b), masking out

the pruned neurons in the network but not actually removing neurons or weights. In

practice, it is much more desirable to reach stage (c), where the masked parameters

are actually removed from the network and/or sparse data structures are used to

reduce the model size.

While these frameworks do not explicitly support practical performance gains via

pruning, other libraries and toolkits do exist that can actually prune, compress, and

20

speedup neural network models. One such toolkit is Microsoft’s Neural Network

Intelligence (NNI) toolkit [29]. NNI enables developers and researchers to perform

neural architecture search, automate feature engineering, tune hyperparameters, and

most prevalent to this work, it allows them to compress neural network models. NNI

supports a myriad of pruning algorithms, ranging from one-shot to iterative and from

unstructured (which they call “fine-grained”) to structured (which they call “coarse-

grained”). NNI also supports real model speedup and size reductions by using the

masks generated during model pruning. They do so by computing the model graph

for the PyTorch model, and then replacing the pruned layers from the mask with

smaller layers for coarse-grained masks, or with sparse kernels for fine-grained masks.

A minimal example of NNI pruning and speedup can be seen in Figure 3.2. In this

diagram, they start with a sample weight matrix from a neural network and apply

pruning to generate a mask for the matrix. After this mask is produced, they perform

an element-wise multiplication between the mask and the original weight matrix to

find out which cells should be considered after pruning, zeroing out all other cells.

This sparse matrix is then passed to NNI’s model speedup software to actually change

and reduce the dimensions of the new matrix, resulting in a smaller pruned weight

matrix.

3.2 Comparing Neural Networks

One field of deep learning research that has seen more interest lately is that of neu-

ral network comparison. Researchers have been increasingly more interested in the

different learned representations that neural networks form when trained, and how

those representations evolve over time and compare to one another [37, 30]. As a

result of this interest, several techniques have emerged to evaluate the similarity of

these representations between neural networks.

21

Figure 3.2: Model speedup with NNI [29]

3.2.1 Canonical Correlation Analysis

In 1936, Harold Hotelling published the paper “Relations Between Two Sets of Vari-

ates”, in which he proposed a technique called Canonical Correlation Analysis (CCA)

to measure the associations between two multivariate sets of vectors [14, 42]. As an

example, consider variables that are related to exercise and health. We can measure

variables related to exercise, such as the magnitude of weight lifted in a weighted

squat, how fast someone runs a mile, etc. We can also measure variables that are

related to overall health, like heart rate, blood pressure, and more. While these are

different types of variables, we may want to further investigate their relationships

and see how associated they are. CCA gives us the ability to investigate the relation-

ship between these two sets of variables, and serves as a powerful tool for comparing

multivariate vectors.

CCA is motivated by the need to summarize these relationships of sets into a smaller

dimensionality, so that the number of statistical values needed to interpret are smaller

and manageable. Consider two sets of variables, with the first having p dimensions

22

and the second having q dimensions. If we wanted to create scatter plots using all

combinations of variables from both sets to better visualize potential relations between

these sets, we would end up with pq plots. Similarly, if we wanted to compute

all correlations between variables from the first and second set, we would have pq

correlations. This may be manageable to observe and interpret when pq is small, but

when pq grows large these tasks can become very difficult. CCA summarizes these

relationships into fewer values while still retaining the most important information

about the relationships between the sets.

Mathematically, canonical correlation analysis starts with two sets of variables X and

Y, with p and q variables respectively. For convenience, the set X is chosen such that

p ≤ q. Then, for each set X and Y, a set of linear combinations of its variables is

created; call them U and V. Within U, each example will be a linear combination

of the p X variables, while in V, each example will be a linear combination of the

q Y variables. Each member of U is then paired with a member of V, forming

canonical variate pairs. As p ≤ q, there are p canonical variate pairs. CCA then aims

to find linear combinations of the variables such that the correlations between the

members of each canonical variate pair are maximized. To do so, we calculate the

variance for each variable Ui in the set U, as well as the variance for each variable Vj

in the set V. Once these values are computed, we are able to compute the canonical

correlation for each canonical variate pair. For the ith canonical variate pair, (Ui, Vi),

we compute the canonical correlation by calculating the correlation between Ui and

Vi. This correlation is what CCA aims to maximize.

To better understand canonical correlation analysis, Mehrabyan gives an algebraic

visualization of CCA, see in Figure 3.3 [28]. First, we start with our sets of variables:

23

X = (X1, X2, ..., Xp)

Y = (Y1, Y2, ..., Yq)

(3.1)

We then create a pair of canonical variates, which are linear combinations of the

variables in the two sets:

CV1X = a1X1 + a2X2 + ... + apXp

CV1Y = b1Y1 + b2Y2 + ... + bqYq

(3.2)

The coefficients to these variables are weights chosen by CCA such that the correlation

between these two canonical variates is maximized. Figure 3.3 helps visualize this by

starting on the edges with our variables, then working inwards, creating our canonical

variates from our variable sets. Then we further work inwards in the diagram by

calculating the correlation between those canonical variates. Once the first canonical

correlation is computed, CCA then moves onto the next pair of canonical variates, but

with a new constraint. This constraint is that these new variates are perpendicular to

the previous variates and that they are uncorrelated to the previous variates. Since

we have p variables in the first set and q variables in the second set, we compute

min(p, q) canonical correlations to work with, allowing us to compare similarity with

CCA now.

24

Figure 3.3: Calculating Canonical Variates [28]

3.2.2 Singular Vector Canonical Correlation Analysis

Raghu et al. propose Singular Vector Canonical Correlation Analysis (SVCCA),

a new technique for analyzing the deep representations that neural networks learn

through training [37]. SVCCA combines Singular Value Decomposition (SVD) and

Canonical Correlation Analysis (CCA) to measure the correlations between these

learned representations. In order to compare two neural networks, the authors had to

decide on the representation of a neuron. They define the representation of a neuron

to be a vector of its activations in response to a set of inputs. Further, they define

a layer in a network to be the “set of neuron [activation] vectors contained within

that layer”, where the activation vectors span some subspace. This formalism of the

representation of a neuron and a layer allows the authors to apply SVD and CCA to

neural network layers and gain powerful insights into their similarities and more.

The reason why SVD is used alongside CCA here is to help reduce noise. Singular

Value Decomposition allows us to reduce the dimensionality of a subspace (i.e. a

layer) spanned by its vectors (i.e. neuron activations), taking only the most important

directions into account. By taking only the most important directions–the directions

25

that “explain 99% of variance in the subspace”–SVCCA is able to cut down on noise,

which is typically composed of those low variance directions. Once SVD finds the

most important directions, the authors apply CCA to the new reduced subspaces,

finding linear transforming the new subspaces so that they are maximally correlated.

The authors’ main findings give insights into the dynamics of how neural networks

learn. Their results reinforce the idea that, in general, learning happens bottom-up,

meaning that the layers closest to the input seem to “solidify their final representa-

tions” earlier than layers later in the network. However, the exception to this is the

layers closest to the output, as they found that those layers solidify their final repre-

sentations early on as well. This insight inspired a new training technique that they

call “Freeze Training”, wherein lower layers are progressively frozen, only updating

the higher layers as time goes on since the lower layers converge to their final rep-

resentations faster. They showed that this novel technique can decrease the number

of floating-point operations when training, making it a more efficient model training

approach.

3.2.3 Projection Weighted Canonical Correlation Analysis

Building off of [37], Morcos et al. use CCA to further investigate the learned repre-

sentations of neural networks [30]. In their work, they find that SVCCA can have

trouble when trying to distinguish between the actual signal and noise in the repre-

sentation of a neural network. Furthermore, in the SVCCA approach, the authors

used the mean correlation coefficient of two layers to represent their similarity, im-

plying that all of the correlation vectors are of equal importance when representing

a layer. However, Morcos et al. note that deep neural networks have been shown

to not rely on the full dimensionality of a layer to form their representations. As a

26

result of this, SVCCA will typically underestimate the similarity measures between

two neural network representations.

To address the potential issues with SVCCA, Morcos et al. propose to replace the

mean with a weighted mean, where canonical correlations of greater importance to

the neural network’s representation are weighted more than less important canonical

correlations. They achieve this using a method called projection weighting to deter-

mine said weights. First, they compute the CCA vectors for a layer. Formally, they

define a layer L1 to have vectors of its neuron activations in the form of [z1, . . . , za],

and CCA vectors in the form [h1, . . . , hc]. They then compute how much each CCA

vector contributes to the original output.This is done for each CCA vector, hi, by

taking the sum of the absolute value of the inner product between the CCA vector

and each neuron activation zj, over all j :

ãi =
∑
j

| < hi, zj > | (3.3)

Once they have computed how much each CCA vector is accountable for the original

output, they normalize those sets to get weights ai such that
∑

i ai = 1. With these

normalized weights, they calculate the projection weighted CCA distances with:

d(L1, L2) = 1 −
c∑

i=1

aip
(i) (3.4)

Not only do the authors propose projection weighted canonical correlation analysis

(PWCCA) as a novel method for comparing neural network representations, they also

use it to generate new insights about the learning properties for generalizing versus

memorizing networks, wider versus deeper networks, and recurrent neural networks

(RNNs). They found that groups of networks that generalize tend to converge to more

27

similar representations than groups of networks that memorize. They also discovered

that wider networks (i.e. networks that have more neurons in layers) tend to converge

to more similar representations than narrower networks (i.e. networks that have

less neurons in each layer, but many more layers) do when learning. Finally, they

build off of [37]’s work that suggests that residual neural networks and convolutional

neural networks learn bottom-up by examining if RNNs convey this same property.

Consistent with [37]’s results, the authors find that RNNs also exhibit bottom-up

learning convergence properties.

3.3 Comparing Unpruned and Pruned Neural Networks

The research described in the previous sections outline several techniques used to com-

pare neural network representations. In these works, the authors measure similarity

on different networks in different contexts. Some of their experiments are performed

on the same network at different points during the training process compared to the

final network to gain insights about the dynamics of learning. Other experiments

compare two networks with the same architecture but different parameter initializa-

tions. However, there has been little research concerning the application of these

similarity indexes to compare pruned and unpruned neural networks.

To our knowledge, the only other work focusing on comparing the similarities of

pruned and unpruned neural networks using one of these techniques was carried out

by Ansuini et al. [2]. In their work, the authors compare each hidden layer between

a pruned and unpruned network by applying SVCCA to the activation vectors from

their respective layers. In their experiments, they prune networks using an iterative

pruning method called iterative magnitude pruning (IMP) [10], which works by in-

crementally pruning away the parameters with the lowest magnitudes over several

28

iterations, until some target sparity is achieved. They employ this technique on min-

imal convolutional neural network architecture inspired by VGGNet core, where they

stack blocks composed of 2 to 4 convolutional layers, followed by a max-pooling layer,

eventually leading to a fully-connected layer before the output. While they perform

their experiments using increasing amounts of these convolutional blocks, the deepest

network they test with contains no more than 14 layers.

In their results they find that pruned and unpruned convolutional neural networks

exhibit high similarity in earlier layers while the intermediate layers exhibit much

lower similarity. However, they also saw that the fully-connected layers at the end had

high similarity. They feel that this suggests that fully-connected layers help to pivot

the pruned models to establish somewhat similar performance and representations

as the unpruned models, even though the intermediate layers of the pruned models

conveyed different learned representations when compared to the unpruned models.

29

Chapter 4

IMPLEMENTATION

In this chapter, we discuss the collection and processing of our waypoint dataset, the

implementation of our waypoint neural network, and the pruning of said network.

Furthermore, we discuss the parameters used within our model, and detail how we

trained the network.

4.1 Data Collection and Processing

As this thesis regards one research component of a larger project, the data used within

this thesis is specific to the aforementioned project’s domain. The project at hand

is waypoint prediction for an autonomous Star Wars robot. This entails creating

a neural network to predict where the robot should be headed. More specifically,

given an input image (a frame from the robot’s video feed), our neural network will

output up to 3 (x, y) coordinate pairs representing the waypoint predictions for that

frame. At the moment, the environment in which the robot will be driving is the

concrete pathways in the quad between Cal Poly’s Bonderson Center and Building

192-Engineering IV. This environment is shown in Figure 4.1, where the driveable

space is outlined in green, and in Figure 4.2, where the driveable space is the gray

concrete paths between the buildings. As such, the data used to train this waypoint

prediction network consists of images of those concrete pathways, as shown in Figure

4.3. Since we are predicting waypoints on an image, we want our model to be able

to find the (x, y) coordinates of a waypoint on an image. Thus, this is a regression

30

Figure 4.1: Driveable Environment - Outlined in Green [11]

problem, where our model seeks to improve when predicting these (x, y) waypoints

based on ground-truth labels.

4.1.1 Data Collection

When starting this thesis, there was no prior waypoint data that could be leveraged

for the Engineering IV/Bonderson quad. As such, a significant amount of time was

spent collecting, processing, and labeling waypoint data that could be used to train

our model. This was a laborious process, and warranted the creation of several scripts

and tools to help.

31

Figure 4.2: Driveable Environment - Satellite Outline with Terrain [11]

The first step in the data collection process was to record video footage of the Engi-

neering IV/Bonderson quad. For the sake of our model, we only concerned ourselves

with the concrete pathways, as shown in Figure 4.4. As such, we collected video

footage walking around those pathways from different angles to ensure we were col-

lecting representative data. From there, we wrote a Python script to grab one frame

from the video every second, resize that frame to an image that is 640 pixels wide

by 360 pixels tall to match the input dimensions of our model, and save the resized

frame as a JPEG image. Each frame is saved to a local directory to then be labeled,

which will be discussed in the next section.

4.1.2 Data Labeling and Partitioning

In order for our model to be able to predict accurate path waypoints given an image,

our inputs must be clearly labeled. In this context, a label for a waypoint is an (x,

32

Figure 4.3: An Input Image to the Neural Network

y) coordinate on the image representing the pixel location of that waypoint. It is

imperative that these labels are as consistent as possible, meaning that two similar

images have similarly labeled waypoints. Since waypoint prediction is a regression

problem, there is no exact correct output, that is, there is no perfect (x, y) coordinate

that represents a waypoint. As such, we need to do our best to label waypoints as

consistently and accurately as we can. By doing so, our model should be able to learn

what features in the input images make up a waypoint by seeing multiple consistent

examples, enabling it to make predictions and improve upon its mistakes. Through

this continuous process, our model will be able to generalize better when handling

new images.

To ensure that waypoints on images were consistently labeled, we proposed a small

set of labeling rules to more objectively guide the labeling process. The proposed

rules are as follows:

33

Figure 4.4: Waypoint Pathways

• Waypoints must be within the top 75% of the image (stated in another way,

waypoints must be above the bottom 25% of the image)

• If there is a fork within the middle 50% of the image, mark all individual

waypoints

• If there are more than 3 waypoints in the image, place a single waypoint between

the farthest waypoints

While these rules exist to help objectify the labeling process, some images may not

always perfectly align with such structure. As such, liberties were taken in the labeling

process to handle these oddities, while still making a conscious effort to label them

as consistently as the rest.

In order to efficiently label the frames collected from the data collection stage, we

created a tool in Python called EZLabeler. EZLabeler works by taking in a path

to a directory of unlabeled images, then allows the user to click on different parts

34

Figure 4.5: EZLabeler User Interface

of the image, capturing the (x, y) cursor position and marking that as a waypoint

label. The user is able to select between 1-3 waypoints. Once the waypoints are

selected and the user is done labeling an image, EZLabeler encodes the waypoint

coordinates into the filename of the image for later processing. For example, if an

image was originally named “frame1.jpeg”, and a user labeled two waypoints on the

image at (123, 225) and (439, 304), then the waypoints would be encoded into the

new filename as “frame1 123 225 439 304 0 0.jpeg”. The values are all separated by

underscores, and nil waypoints are signified with zeros. Figure 4.5 shows an example

of what EZLabeler looks like to the user. As you can see, the waypoints are indicated

by red dots drawn onto the image. Additionally, there are two horizontal lines drawn

onto the image to assist with the labeling rules mentioned earlier, where the top 25%

of the image is above the blue line and the bottom 25% of the image is below the red

line.

35

In total, we collected and labeled approximately 4,500 images to train the model

with, randomly partitioned into a 80% / 10% / 10% split for training, validation, and

testing purposes, respectively.

4.2 Models

When designing our model, we wanted to ensure that it was efficient even prior to

pruning. It was important that our model be able to perform fast inference, as it

would be running on an embedded system in the future. As such, the EfficientNet

[44] architecture looked very promising, and became the base architecture that was

decided upon.

4.2.1 EffficientNet

EfficientNet is a deep convolutional neural network architecture (also referred to as

a ConvNet or CNN) that emerged in 2020 from a team at Google Brain as a result

of the need for a more accurate and performant CNN architecture. The authors note

how many CNNs are developed with a fixed resource budget in mind, and then later

scaled up to be more performant as necessary. When scaling a model up, previous

popular techniques would usually only scale the model up by its depth (i.e. adding

more layers) or width (i.e. adding more neurons to each layer), and somewhat less

commonly by image resolution. However, the authors of EfficientNet found that by

uniformly scaling all dimensions of the model–depth, width, and image resolution–the

effectiveness of scaling up ConvNets greatly increased, allowing EfficientNet to achieve

“state-of-the-art 84.3% top-1 accuracy on ImageNet” upon its inception. Not only

did EfficientNet achieve state-of-the-art, but it did so while being 6.1x faster and

having 8.4x fewer parameters.

36

Due to EfficientNet’s impressive speed and performance, it was a clear choice to serve

as the base architecture for our model.

4.2.2 Transfer Learning with EfficientNet

The authors of EfficientNet released a whole family of EfficientNet model architectures

and weights for open-source use, with the most accurate and largest variant being

EfficientNet-B7. While EfficientNet-B7 was still 8.4x smaller than the previous best

state of the art model (GPipe), the model was still too large for our needs, with over

66 million parameters in total. As such, we chose a pretrained lightweight variant of

EfficientNet aptly named “EfficientNet-lite0”, bringing the parameter count down to

around 3.6 million parameters [45].

Since our network’s task is to perform waypoint regression on images, we altered

the base network architecture to fit our needs. The original EfficientNet architecture

was trained to perform image classification on ImageNet, classifying images into 1000

different classes. As such, the base architecture’s output layer is a fully-connected

layer that outputs 1000 class probabilities. To fit our needs, we altered the final layer

of the network to output 6 values, representing the normalized pixel coordinates of

3 waypoint (x, y) pairs. So, the every 2 outputs are the normalized x and y values

for their corresponding waypoints. In this way, our model no longer performs image

classification, but rather regression to predict the waypoint coordinates for a given

input image. Before the output layer, we also added two fully-connected layers, each

with 200 neurons, so that our model could gain better insights from the activations

passed from the preceding convolutional layers.

It’s worth noting that we experimented with slightly different model architectures

before deciding on the one described above. At first, we evaluated the model per-

37

Figure 4.6: Example of model input and output. The model takes in an
image, and predicts where the waypoints in the image are. The output is

a tensor containing three pairs of predicted waypoint coordinates.

formance without any fully-connected layers before the 6 output nodes. We also

investigated the performance when using only 1 and 2 fully-connected layers with 50

neurons, 500 neurons, and 1000 neurons each. In these cases, we found that model

performance was not as high as when using 2 fully-connected layers with 200 neurons

each leading into the 6 output nodes. Furthermore, we tried using a small variant

of EfficientNet version 2, the next generation of EfficientNet models. In this case,

model performance was close to our final model’s performance, but was not better,

even while using roughly 4x the number of parameters as our model. As such, we

finalized our architecture to be the one described above, using 2 fully-connected lay-

ers with 200 neurons each leading into the 6 output nodes. Figure 4.6 conveys the

model inference pipeline, showing the inputs and outputs. As seen in this figure, the

input is an image and the output is a tensor consisting of three pairs of predicted

waypoint coordinates. If any of these pairs are zero, then that means there is one

less waypoint. For example, the output tensor in Figure 4.6 is [67, 42, 289, 33, 0, 0],

meaning that the first waypoint is at X1 = 67, Y1 = 42, the second waypoint is at

X2 = 289, Y2 = 33, and since the third pair consists of two zeros, then there is no

third waypoint.

38

4.3 Model Training

We trained our model in PyTorch using roughly 4,500 hand-gathered and labeled

images. As modern neural networks often require large amounts of data to train on,

we used data augmentation to increase the size of our dataset, and help our model

generalize better. Data augmentation is a common machine learning where various

image transformations are applied to the original dataset to create an altered image,

with similar qualities as the original. Some of the transformations we applied include

random brightness contrast, gaussian noise, motion blur, random shadows, perspec-

tive transformations, and random dropout of image sections. Figure 4.7 displays

examples of some of these transformations, along with the pre-augmented image for

comparison. These augmentations can create different, and sometimes slightly noisy

images, which when applied to our neural network training can help the model see a

wider variety of images and generalize better.

In terms of model training, we will start by discussing our model’s hyperparameters.

For our optimizer, we used PyTorch’s AdamW optimizer, an adaptive gradient algo-

rithm based on the popular Adam optimizer that decouples the optimizer’s weight

decay regularization from L2 regularization, improving Adam’s generalization per-

formance [26]. We used this optimizer to train our model over 150 epochs, using a

learning rate of 0.001 and a batch size of 16. We use L1 loss for our loss function,

measuring the mean absolute error between the normalized waypoint coordinate la-

bels and the network’s predicted waypoint coordinates. Additionally, we used a cosine

annealing learning rate scheduler, which starts off with a high learning rate, rapidly

lowers it to some minimum value, and then is rapidly increased again, maintaining

this cycle until training is completed.

39

Figure 4.7: Pre and post augmented training images. Top left is
pre-augmented, and top right is its corresponding augmented image.
Bottom left is pre-augmented, and bottom right is its corresponding

augmented image. Transformations such as random section dropout and
random shadows can be observed.

40

Chapter 5

EXPERIMENTAL DESIGN

In this chapter, we discuss the design and structure of our experiments in order to

determine our model’s performance. Furthermore we talk about the design of our

pruning experiments to compress our model and decrease inference time. Finally, we

discuss our approach to comparing unpruned and pruned network representational

similarity using projection weighted canonical correlation analysis (PWCCA).

5.1 Experiments and Metrics to Evaluate Model Performance

The primary metric we use to evaluate our model’s performance is L1 loss. The L1

loss measures the mean absolute error between two values, where a lower number

represents less error and is more indicative of a better model. This function is used

during training as our loss function, and serves as a valuable metric to determine

how the trained model performs on the test dataset. We use L1 loss as a measure

of performance because we are performing waypoint coordinate regression, thus we

cannot measure the accuracy of our model as there are no objective classes categories

that we can predict. In addition to L1 loss, we use several other metrics to measure

our model’s performance once it is trained. These include waypoint count accuracy,

model inference time, and total model size.

The waypoint count accuracy is a measure of the percentage of times that the number

of waypoints from our model prediction match the number of labeled waypoints. For

example, if an image is labeled to have two waypoints, but our model predicted three

waypoints, we would not count this as a match. However, if the model did correctly

41

predict that there were two waypoints, then we would consider this a match and have

it contribute to the total waypoint count accuracy. To calculate the total waypoint

count accuracy, we sum the number of correct matches and divide by the total number

of test images to compute a total percentage.

Other important metrics to measure are the model inference time and total size of the

model. Since we are trying to optimize our model to run on a resource-constrained

device, we want to take note of how fast the model can perform inference on images,

and how large the model is. To measure inference time, we pass a batch of 16 data

points through the model and average the total inference time across 300 repeated

runs. To measure model size, we measure the size that the model file takes up on

disk.

To get these measurements, we first train our model for 150 epochs on our training and

validation datasets of 3,658 and 457 images respectively. To measure L1 loss, we pass

our testing dataset of 458 images through our model and compute the loss between

the labeled waypoint coordinates and our model’s predicted waypoint coordinates

using PyTorch’s L1 loss function. Similarly for waypoint count accuracy, we compare

the number of labeled waypoints in each test set image and compare that to the

number of waypoints predicted by our model to compute the total waypoint count

accuracy. For inference time, the process is as described previously, averaging the

inference times of the trained model over 300 runs on a batch size of 16 data points.

5.2 Pruning Neural Networks and Measuring Performance

Using the training procedure outlined in Section 4.3, we train a neural network using

the training and validation dataset for 100 epochs, generating a base model to serve

as the foundation for our pruning. Once we have the base model, we use Microsoft’s

42

Neural Network Intelligence (NNI) toolkit to perform our model pruning and speedup

[29]. NNI offers a variety of different pruners ranging from structured to unstructured,

but the vast majority of the pruners are structured pruners.

As EfficientNet is a deep convolutional neural network, we decided to use the L1

norm pruner for our network pruning experiments. In vector terms, the L1 norm is

the sum of the absolute value of a vector’s components. That is, if we had a vector

of the form v = (3, 2), then v’s L1 norm would be |3|+ |2| = 5. The L1 norm is also

sometimes referred to as the Manhattan distance. In the context of pruning, the L1

norm pruner was introduced by Li et al. as an effective technique for pruning filters in

convolutional neural networks [24]. This pruner calculates the relative importance of a

filter in each layer by computing the sum of its absolute weights, which is equivalent

to its L1 norm. This also gives a measure of the average magnitude of its kernel

weights. The authors note that this is useful, as “filters with smaller kernel weights

tend to produce feature maps with weak activations” making them prime candidates

for pruning. NNI’s implementation of this pruner works on both convolutional and

linear layers, using the L1 norm of the weight by rows in the linear layers to serve as

the pruning metric.

Using the L1 norm pruner, we pruned the base model saved at different pruning

sparsities to create seven pruned models. The sparsities we pruned at were in 10%

increments, ranging from 10% to 70%. A higher percentage represents a more aggres-

sive round of pruning. After creating the pruning mask using NNI’s pruner, we used

NNI’s model speedup library to compress the model structure based on the mask. Af-

ter pruning and speeding up, we fine-tune each model by following the same training

regimen from Section 4.3, but only training for 50 epochs this time. Once the pruning

and fine-tuning is finished, we resume training our base model for an additional 50

epochs so that all models have been trained for 150 total epochs.

43

To measure the performance of our pruned models, we use the same measurements

as described above in Section 5.1. That is, we measure the L1 loss, waypoint count

accuracy, pruned inference time, and the pruned model size. By comparing these

measurements to the measurements of the unpruned model, we can see how higher

pruning sparisties may impact model performance metrics. Additionally, this com-

parison allows us to investigate the tradeoffs between a more compressed model versus

potentially higher loss due to a reduction in parameters.

5.3 Experiments to Compare Unpruned and Pruned Neural Networks

Using PWCCA

Following the release of two papers discussing the comparison of learning dynamics

and representational similarities between different models using canonical correlation

analysis (CCA) and projection weighted canonical correlation analysis (PWCCA), the

authors published their implementations of these methods, as described in Section 3.2,

under Google’s open-source GitHub [37, 30]. Before using these libraries though, we

had to do some upfront processing to get model activations and ensure they were in

the correct format so that we could compute the PWCCA values.

To gather model activations, we first registered forward hooks on all of the layers that

we were interested in comparing. Forward hooks are simply a tool in PyTorch that

allow a command to be executed whenever a forward or backward pass is executed on

the model. Once we registered these hooks, we performed standard inference on the

model over 1,500 randomly sampled training set data points to gather our activations.

Note that this sampling is seeded, so each run of PWCCA between the unpruned and

pruned networks will see the same data. We then stored each set of activations along

with the layer name which they came from for further processing.

44

In this thesis, we are only interested in comparing the linear and convolutional layers

between unpruned and pruned networks. As such, we only collect the activations

from those layer types. Once we have gathered those activations, we need them to

have shape (number of neurons, number of datapoints). Naturally, the activations

retrieved from linear layers will have this shape. However, the activations gathered

from convolutional layers will be of shape (number of datapoints, number of channels,

height, width). Since parameters are shared across the spatial dimensions (height

and width), we can flatten these dimensions into the number of datapoints, allowing

us to compare the similarities of two convolutional layers by comparing across their

channels. To do so, we reshape the activations into the form (number of datapoints

x height x width, number of channels). From here, we can use the aforementioned

libraries to compute the mean PWCCA between layers. Once the activations have

been reshaped, we compare each pruned model against our unpruned model by cal-

culating the mean PWCCA score for every convolutional and linear layer over the

activations dataset. For visualization purposes, we then plot those values in layer-wise

order based on the model structure.

5.4 Test and Development Environment

All development, experiments, and testing were conducted on a workstation with a

AMD Ryzen Threadripper 3990X 64-Core Processor CPU, running with a 3.5GHz

clock speed. The GPU used on this workstation was an NVIDIA RTX A6000, with

48GB of GDDR6 memory.

45

Chapter 6

RESULTS AND ANALYSIS

This chapter discusses the results of the experiments laid out in chapter 5. We start

by covering the results of our unpruned model performance. Next, we investigate the

results of pruning our base model and measuring the performance of those pruned net-

works. After that, we discuss the results of comparing unpruned and pruned networks

layer-by-layer using projection weighted canonical correlation analysis (PWCCA). Fi-

nally, we conclude with a discussion around some of the limitations regarding our

implementation and experimental design.

6.1 Unpruned Model Performance

Based on the experiments laid out in chapter 5, we measured the performance of

our model based on its L1 loss, waypoint count accuracy, inference time, and model

size. Starting with arguably the most important metric, our unpruned model (also

referred to as our “base” model) exhibited an L1 loss 0.0637 over our testing dataset,

averaged across 20 runs with an input batch size of 16 data points at a time. Another

way of interpreting this value is to say that across our entire test set, our model’s

predicted coordinate waypoints were within 7% of the actual coordinate waypoints.

Figure 6.1 shows several example predictions, where the red dots indicate the actual

labeled waypoints and the blue dots show the model’s predicted waypoints. In the

first image, the model’s predictions are quite close to the labeled waypoints. However,

sometimes the model falls short and does not always correctly predict the waypoint,

as shown by the prediction in the second image.

46

Figure 6.1: Example waypoint coordinate predictions. Red dots
represent the actual labeled waypoints, while blue dots represent the

model predictions.

For the waypoint count accuracy, our model achieves a 60.26% accuracy on the testing

dataset, meaning that roughly 60% of the time the number of waypoints predicted by

the model match the number of actual waypoints in the image. As noted in chapter

5, this metric only considers the number of waypoints in the image, and takes no

regard for the position of these waypoints (which is covered by the L1 loss metric).

This metric can be useful in a broad range of applications where there is a need to

know the count of waypoints in an image, and so a higher accuracy bodes well for a

model.

The unpruned model’s inference time for a batch size of 16 data points was measured

to be 22.48 milliseconds, averaged across 300 runs. In regards to the model’s size, our

base model has a total model size of 15MB, with a total of 3,668,614 parameters.

After training our base model, we pruned the convolutional and linear layers of the

model at varying percentages to create 7 additional models, ranging in 10% increments

from 10% pruned to 70% pruned. After pruning, we trained each of them again for

50 epochs to fine-tune them. As noted previously, a higher percentage indicates more

pruning, creating a more sparse model. After pruning, we measured their performance

using the same metrics used to evaluate the base model.

47

Starting with L1 loss, we expected the loss to increase as the sparsity increased.

Our reasoning behind this was that if a model has less parameters, its ability to learn

complex features diminishes. This proved true, demonstrated by the loss plot for each

sparsity shown in Figure 6.2. In this plot, we can see that the average loss for the

10%, 20%, and 30% pruned models is actually quite similar to the unpruned model’s

average loss, and then the loss steadily increases at a greater rate for the subsequent

models. One hypothesis for this can be explained due to the over-parameterization of

our initial model. As we are leveraging a pretrained model with transfer learning, the

model initially has many parameters that may not be relevant to our data, making it

over-parameterized for our use-cases. As such, these parameters could have had such

little impact on the output, that pruning them did not affect the total loss very much

at all. However, once the pruning became more aggressive around the 40% sparsity

mark, more important parameters might have started to be pruned away, therefore

increasing the average L1 loss of subsequent models.

Next, we evaluate the pruned models based on their waypoint count accuracy. We

expected the waypoint count accuracy to decrease as model sparsity increased, but

what we found through our experiments differed slightly. As shown in Figure 6.3, the

waypoint count accuracy actually increased as model sparsity increased for a time,

peaking at an accuracy of 71.83% for the 20% pruned model. After 20% pruning,

the models still achieve a relatively high waypoint count accuracy around at the 30%

pruning mark, with a steady accuracy dropoff after that. The final 70% pruned model

exhibits a waypoint count accuracy of 49.78%. Interestingly, we also see that the 70%

pruned model’s waypoint count accuracy was about 2% higher than the 60% pruned

model’s waypoint count accuracy, which was 47.60%.

Moving onto model inference time, we see a fairly linear decay as expected, shown in

Figure 6.4. As model sparsity increases, mean inference time over a batch size of 16

48

Figure 6.2: Plot of model sparsity on the x-axis versus L1 loss value on
the y-axis. A sparsity value of 0 represents the unpruned model, while a

higher sparsity represents a model that has been pruned more
aggressively.

data points seems to linearly drop, starting at 22.48 milliseconds for the unpruned

model and ending at 3.51 milliseconds for the 70% pruned model. Intuitively this

makes sense, as we are pruning the linear and convolutional layers of each model lin-

early in 10% increments, so we expect a roughly linear decay in model inference time.

Numerically, each additional 10% pruning that was applied to the model reduced the

inference time by about 3 milliseconds. Taking into account figures 6.2 and 6.4, we

can see that a model that has had 30% of its convolutional and linear layer parame-

ters pruned away can achieve a very similar loss while performing inference at 12.74

milliseconds, almost 10 milliseconds faster than the base model. Models pruned past

30% can achieve even faster inference, but at the cost of a slightly greater loss.

Measuring the unpruned and pruned model sizes, we also see a fairly linear decay of

size as model sparsity increases, as shown in Figure 6.5. Again, this makes sense as

we are pruning each successive model at a linear rate. Figure 6.6 reinforces this by

49

Figure 6.3: Plot of model sparsity on the x-axis versus waypoint count
accuracy on the y-axis.

following the same trend, showing how the total parameter count decreases linearly

as model sparsity increases.

6.2 Comparing Unpruned and Pruned Networks Using PWCCA

Once we trained our base model and produced our pruned models, we set out to

investigate the similarities between the learned representations of our unpruned and

pruned networks. As outlined in section 5.3, we first collected all of the convolutional

and linear layer activations across 1,500 test images for each model. Then, for each

pruned model, we computed the PWCCA scores for each convolution and linear layer

between the unpruned and pruned model, as seen in Figure 6.7. For reference, these

figures plot the layer type (either convolutional or linear, denoted by “C” and “L”

respectively) in order through the network on the x-axis, and the mean PWCCA score

on the y-axis.

50

Figure 6.4: Plot of model sparsity on the x-axis versus mean inference
time in milliseconds on the y-axis. Inference time is averaged across 300

runs over a 16 data point batch size.

From our results, we recognize several distinct trends. First, we are able to notice

a general decline in the peaks and valleys of PWCCA scores as pruning increases.

Looking at the PWCCA plots for the 10% and 20% pruned models, we notice very

large spikes in PWCCA similarity in the convolutional layers. These spikes seem

to primarily occur in the network’s pointwise linear projection (PWL) layers, which

occur at the end of Inverted Residual (IR) blocks. Inverted residual blocks were

proposed by Sandler et al. in 2019 as a novel layer module [38]. Inverted residual

blocks work by expanding the block input into a high-dimensional representation,

performing a lightweight depth-wise separable convolution on that representation, and

then using a linear convolution (also known as a pointwise convolution, or pointwise

linear projection) to project the features back to a low-dimensional representation.

We hypothesize that the expansion and compression/projection of these features due

to the inverted residual block is guiding the representations of the both the unpruned

and pruned activations to be very similar, but a further study into this would be

51

Figure 6.5: Plot of model sparsity on the x-axis versus model size on the
y-axis.

needed to fully understand the relationship between them. Additionally, we see that

as the model is pruned more and more, the PWCCA similarities for these PWL layers

decrease.

The second trend we notice is that in all cases the activations from the unpruned

and pruned networks show a general progressive trend upwards in similarity as we

progress along the layers. This is best visualized in networks that are more heavily

pruned, where we can see a very subtle increase in similarity as we move along roughly

the first 75% of the layers, and then a more notable increase in the last quarter of

the layers, spiking with very high mean PWCCA scores at the final linear layers.

In general, we can see how pruning networks produce different learned layer represen-

tations when compared to the unpruned network they were based off of, even when

fine-tuned on the same dataset. This occurs even when pruning rates are small, as

seen for the 10% pruned model in Figure 6.7. This reinforces the findings of Ansuini

52

Figure 6.6: Plot of model sparsity on the x-axis versus total number of
model parameters on the y-axis.

et al., where they find this to be the case when comparing networks using SVCCA,

even for much smaller models [2]. This suggests that the effects of pruning cause

pruned networks to learn a different representation of the dataset when compared to

the representation learned by their unpruned counterpart. We also notice that in all

plots, the linear layers at the end exhibit very high mean PWCCA similarity scores.

This is also consistent with the findings of Ansuini et al., where they suggest that

as the intermediate layers approach the final linear layers, the network is seemingly

forced to guide the earlier representations from the convolutional layers to a common

representation for the linear layers. In this sense, they refer to the final linear layers

as “pivot points” that create common representations of the input data, leading to

similar outputs that attribute to the similar accuracies between the unpruned and

pruned networks. This concept of linear layers acting as pivots is a powerful notion,

as it allows for different representations of the data in earlier layers between networks,

53

so long as the linear layers can guide the representations to be similar towards the

end of the network.

54

55

56

Figure 6.7: Plots of layer type on the x-axis and mean PWCCA score on
the y-axis. A layer type of “C” denotes a convolutional layer, while a

layer type of “L” denotes a linear layer. Layers on the x-axis are listed in
order of their position in the neural network.

6.3 Limitations

Throughout the development of our neural network and research into the similarities

between unpruned and pruned networks, there were a few limitations that will be

discussed regarding the dataset used to train the model and the pruning techniques

that were used to produce our pruned models. These limitations will be discussed in

this section.

6.3.1 Investigating Loss and Dataset Limitations

When investigating the loss of our model, we first started by looking at images from

the testing dataset that our model performed very well on, and images that our model

performed poorly on. To do so, we manually looked at several images with the lowest

57

Figure 6.8: Examples of test set images with low L1 loss from our
unpruned network. Red dots indicate the actual labeled waypoints, while

blue dots indicate the predicted waypoints from our model.

Figure 6.9: Examples of test set images high low L1 loss from our
unpruned network. Red dots indicate the actual labeled waypoints, while

blue dots indicate the predicted waypoints from our model.

losses and several images with the highest loss across our test dataset. Figure 6.8

shows examples of images with the lowest loss, with the red dots representing the

actual labeled waypoints and blue dots representing predicted waypoints from our

model. From our observations, images with the lowest loss were typically images that

only had one labeled waypoint, where it was very clear and objective to see where

the waypoint was. Figure 6.9 shows examples of images with the highest loss, which

usually consisted of two to three-waypoint images.

Based on some of the above observations, and since the input images could contain

one, two, or three waypoints, we also wanted to investigate how our base model was

performing on each type of input image. To do this, we partitioned the test dataset

by waypoint count, where all images with one labeled waypoint coordinate would be

58

Figure 6.10: Bar chart of average L1 loss for each waypoint dataset
formed from the test dataset. The waypoint count dataset is on the
x-axis, and the average L1 loss for each dataset is on the y-axis.

one dataset, and so on for images with two and three waypoint counts. Then, we

computed the average L1 loss over each waypoint-count dataset. Using these values,

we plotted a bar chart of the waypoint count versus the average L1 loss over all

images with that waypoint count from the test dataset, shown by Figure 6.10. What

we found was that our model performed worse when faced with input images that

had more labeled waypoints. While starting with relatively low loss on one-waypoint

images, the loss gradually increased when evaluated over the two-waypoint images,

and increased even more on the three-waypoint images. This is likely due to the

difficulty of the regression problem increasing. With only one waypoint the model

must only predict a single location, whereas finding multiple waypoints in an image

accurately can be much more difficult.

In addition to the difficulty of the problem increasing as the number of waypoints

needing to be predicted increases, the distribution of the dataset likely partially at-

59

tributed to the higher loss on multi-waypoint images. The test dataset consists of

199 one-waypoint images, 174 two-waypoint images, and 85 three-waypoint images.

Additionally, the training dataset consists of 1543 one-waypoint images, 1512 two-

waypoint images, and 603 three-waypoint images, and the validation dataset consists

of 194 one-waypoint images, 180 two-waypoint images, and 83 three-waypoint im-

ages. From these counts, we can see that there are less three-waypoint images in the

datasets than there are one and two waypoint images. This could partially explain

why the loss for the three-waypoint images is higher. However, it is also worth noting

that there are an almost equal number of one and two-waypoint images, yet the loss

for two-waypoint images is still higher than the loss for one-waypoint images. This

potentially reinforces the idea that as the model must predict more waypoints, the

difficulty of the regression problem increases, resulting in increased loss.

To better see the loss for one, two, and three-waypoint images, and to reinforce the

above observations, we also plotted histograms for each of the waypoint datasets, as

seen in Figure 6.11. Here, we plotted the L1 loss in 0.05 increments on the x-axis, and

the number of images with those loss values on the y-axis. Here we can also see that

the vast majority of one-waypoint images exhibit very low L1 loss, most being under

0.05. The average loss for all the one-waypoint images was 0.016. Similarly, many of

the two-waypoint images also have loss below 0.05, but contain several more higher

loss images, with a max image loss of 0.369, and an average loss of 0.075. Finally, we

see that the three-waypoint images seem to have more images in the higher loss bins,

with a max image loss of 0.351 and an average loss of 0.142. We believe that having

more three-waypoint images would be beneficial and would help decrease the overall

loss of our model on three-waypoint images.

60

Figure 6.11: Histograms of L1 loss over each waypoint dataset on the
x-axis and count of images with that loss on the y-axis.

61

Chapter 7

CONCLUSIONS

In this thesis, we developed a neural network to predict the waypoint coordinates of

different paths given an input image, to later be used to help guide an autonomous

robotic vehicle. To ensure that this network was small enough and fast enough to run

on an embedded system, we used L1 Norm pruning to reduce the size and inference

time of the base network. Upon pruning our network at numerous different levels

of sparsity, we investigated the similarity of the learned representations of unpruned

and pruned deep neural networks using a statistical technique known as projection

weighted canonical correlation analysis (PWCCA).

For our base neural network, we created a network based off of a lightweight variant

of EfficientNet that was effective at predicting up to three distinct path waypoints

given an input image, achieving an average L1 loss value of 0.0637 [44]. This model

had a total model size of 15MB and took 22.48 milliseconds on average to perform

inference on a batch size of 16 data points. After pruning this model, we were able

to create numerous compressed models, with one of the most promising performing

the same inference 10 milliseconds faster and taking up one half of the size, while

still retaining near-identical loss. Furthermore, several of the pruned models operate

faster with fewer parameters, at the cost of a slight increase in loss.

Once our base network and unpruned networks were produced, we sought to fur-

ther the work of Ansuini et al. by investigating the similarity between pruned and

unpruned networks [2]. We did so by performing an in-depth layer-by-layer analy-

sis between our unpruned network and each pruned network, computing the mean

62

PWCCA similarity score for each convolutional and linear layer. Our results reinforce

some of the findings that Ansuini et al. showed for small convolutional networks us-

ing SVCCA; however in our case we showed that similar findings hold true for deep

neural networks when using PWCCA. Namely, these findings are that the linear lay-

ers at the end of the networks exhibit high similarity in the activations that these

layers produce over a target dataset. This suggests that for both shallow and deep

convolutional neural networks, linear layers may act as a “pivot” that guide the dif-

ferent representations from prior convolutional layers to a more similar representation

towards the end of the network, producing comparable network outputs and perfor-

mance. From our experiments, we also observe two new trends. The first is that the

PWCCA similarities between the layer activations of unpruned and pruned networks

are quite high for pointwise linear projection (PWL) layers, which occur at the end

of inverted residual blocks [38], but diminish as the network pruning becomes more

aggressive. Further study into this relationship between inverted residual block rep-

resentations and network pruning could be useful to better understand why this is

the close. The second trend we observed was that in all cases, there was a progressive

trend upwards in PWCCA similarity between unpruned and pruned networks as we

progressed along the layers, suggesting that as these networks get closer to their final

layers, their representations are guided to become more similar, potentially explaining

how unpruned and pruned networks are able to achieve similar performance when all

is said and done.

63

Chapter 8

FUTURE WORK

While ultimately we found our results and observations quite successful and insightful,

there are some aspects of this work that could be improved and expanded upon,

given ample time and resources. This chapter will discuss some of these potential

improvements and future efforts that can be done to further the work done in this

thesis.

8.1 Dataset Growth

As noted in section 6.4.1, we observed that it was harder for our model to predict as

accurately in the presence of images with more waypoints, suggesting that prediction

on more waypoints may have increased the difficulty of the problem. However, we also

had fewer examples of three-waypoint images within our dataset, which we believe

partially contributed to the higher loss for three-waypoint images with our model.

Further, we noted that even though our dataset contained an almost equal number of

examples for one and two-waypoint images, the average loss over two-waypoint images

was higher than that for one-waypoint images, potentially reinforcing this hypothesis

of problem difficulty. To help mitigate this issue, the most immediate step would

be to have more examples of three-waypoint images. While there are less naturally

occurring examples of three-waypoint paths in the geographical area of interest, future

additions to this dataset could more heavily focus on these areas to collect more of

these image types. Additionally, it could be worth investigating if scaling the number

of images with respect to the waypoint count would help the model achieve lower

64

loss on those images. By this, we mean doing something along the lines of collecting

X number of one-waypoint images, 2X number of two-waypoints images, and so on.

However, we must be careful with this technique, as it might cause the network to

overfit to the data with more waypoints, as there would be more examples of them

within the dataset.

8.2 Investigating the Role of Certain Layers within Similarity

During our in-depth layer-by-layer analysis between our unpruned network and each

pruned network, we noticed several interesting results that could incur future re-

search. The first was the high PWCCA similarity spikes between the unpruned and

pruned network activations from pointwise linear projection (PWL) layers that occur

at the end of inverted residual blocks [38]. While these spikes in similarity decrease as

the pruned networks become more sparse, it could be worth investigating why these

spikes are occurring regardless, and the potential relationship between the expansion

and compression/projection of features as a result of the inverted residual block and

a more similar representation between pruned and unpruned networks. The other

observation we noticed was that linear layers towards the end of deep convolutional

neural networks act as pivots that guide the dissimilar representations produced from

earlier convolutional layers towards a more similar representation that results in sim-

ilar model results and performance. This reinforced similar findings of linear layers

acting as pivots for shallow CNNs using SVCCA by Ansuini et al., though we showed

that it also held true for deep CNNs using PWCCA [2]. However, it could also be

worth investigating if the presence of linear layers earlier in a deep CNN also produce

similar representations of the data, or if this only holds true for linear layers at the

end of the network.

65

8.3 Comparing Deep Neural Networks with other Similarity Metrics

While our results unpruned and pruned neural networks using PWCCA as a mea-

sure of similarity, other similarity metrics for network layers exist. As discussed in

section 3.2, normal canonical correlation analysis (CCA) and singular vector canon-

ical correlation analysis (SVCCA) serve as other metrics that, to the best of our

knowledge, have not been used to investigate the similarities between unpruned and

pruned network layers. Another similarity metric that shows promise is centered ker-

nel alignment (CKA), proposed by Kornblith et al. in 2019 [20]. Further work could

use one or all of these techniques to reinforce the results found through PWCCA, and

potentially offer new insights about these similarities that PWCCA may not address.

66

BIBLIOGRAPHY

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,

J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software available from

tensorflow.org.

[2] A. Ansuini, E. Medvet, F. A. Pellegrino, and M. Zullich. On the similarity

between hidden layers of pruned and unpruned convolutional neural

networks. In ICPRAM, 2020.

[3] M. Augasta and T. Kathirvalavakumar. Pruning algorithms of neural networks

— a comparative study. Central European Journal of Computer Science,

3:105–115, 09 2013.

[4] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection:

Quantifying interpretability of deep visual representations. CoRR,

abs/1704.05796, 2017.

[5] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V. Guttag. What is the state

of neural network pruning? CoRR, abs/2003.03033, 2020.

[6] A. Bragagnolo and C. A. Barbano. Simplify: A python library for optimizing

pruned neural networks. SoftwareX, 17:100907, 2022.

67

[7] N. Chandra. Node classification on relational graphs using deep-rgcns. Feb

2021.

[8] F. Chollet et al. Keras, 2015.

[9] E. Dogan, H. F. Ugurdag, and H. Unlu. Deep compression for pytorch model

deployment on microcontrollers. CoRR, abs/2103.15972, 2021.

[10] J. Frankle and M. Carbin. The lottery ticket hypothesis: Training pruned

neural networks. CoRR, abs/1803.03635, 2018.

[11] Google. Monterey bay, Accessed Feb. 11, 2022. [Online].

[12] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey.

CoRR, abs/2006.05525, 2020.

[13] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and

connections for efficient neural networks. CoRR, abs/1506.02626, 2015.

[14] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321,

Dec 1936.

[15] S. A. Janowsky. Pruning versus clipping in neural networks. Phys. Rev. A,

39:6600–6603, Jun 1989.

[16] G. Kahn, P. Abbeel, and S. Levine. BADGR: an autonomous self-supervised

learning-based navigation system. CoRR, abs/2002.05700, 2020.

[17] V. Kamath, V. S, and V. Manjunath. Transferred fusion learning using skipped

networks. 11 2020.

[18] E. Karnin. A simple procedure for pruning back-propagation trained neural

networks. IEEE Transactions on Neural Networks, 1(2):239–242, 1990.

68

[19] J. Kerfs. Models for pedestrian trajectory prediction and navigation in

dynamic environments. 05 2017.

[20] S. Kornblith, M. Norouzi, H. Lee, and G. E. Hinton. Similarity of neural

network representations revisited. CoRR, abs/1905.00414, 2019.

[21] P. Koutsovasilis and M. Beitelschmidt. Comparison of model reduction

techniques for large mechanical systems. Multibody System Dynamics,

20(2):111–128, 2008.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou,

and K. Weinberger, editors, Advances in Neural Information Processing

Systems, volume 25. Curran Associates, Inc., 2012.

[23] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 05

2015.

[24] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for

efficient convnets. CoRR, abs/1608.08710, 2016.

[25] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A survey of deep

neural network architectures and their applications. Neurocomputing,

234:11–26, 2017.

[26] I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam.

CoRR, abs/1711.05101, 2017.

[27] A. Marchisio, M. A. Hanif, M. Martina, and M. Shafique. Prunet: Class-blind

pruning method for deep neural networks. In 2018 International Joint

Conference on Neural Networks (IJCNN), pages 1–8, 2018.

69

[28] L. Mehrabyan. Understanding how schools work with canonical correlation

analysis, Mar 2020.

[29] Microsoft. Neural Network Intelligence, 1 2021.

[30] A. S. Morcos, M. Raghu, and S. Bengio. Insights on representational similarity

in neural networks with canonical correlation, 2018.

[31] M. C. MOZER and P. SMOLENSKY. Using relevance to reduce network size

automatically. Connection Science, 1(1):3–16, 1989.

[32] ODSCCommunity. What is pruning in machine learning?, 2020.

[33] J. O’Neill. An overview of neural network compression. CoRR, abs/2006.03669,

2020.

[34] K. O’Shea and R. Nash. An introduction to convolutional neural networks.

CoRR, abs/1511.08458, 2015.

[35] M. Paganini and J. Forde. Streamlining tensor and network pruning in pytorch.

arXiv preprint arXiv:2004.13770, 2020.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,

Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,

J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems 32, pages 8024–8035. Curran Associates,

Inc., 2019.

70

[37] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector

canonical correlation analysis for deep learning dynamics and

interpretability, 2017.

[38] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Inverted

residuals and linear bottlenecks: Mobile networks for classification,

detection and segmentation. CoRR, abs/1801.04381, 2018.

[39] I. H. Sarker. Deep learning: A comprehensive overview on techniques,

taxonomy, applications and research directions. SN Computer Science,

2(6):420, Nov 2021.

[40] A. See, M. Luong, and C. D. Manning. Compression of neural machine

translation models via pruning. CoRR, abs/1606.09274, 2016.

[41] C. Siegel, J. Daily, and A. Vishnu. Adaptive neuron apoptosis for accelerating

deep learning on large scale systems. CoRR, abs/1610.00790, 2016.

[42] P. S. Statistics. Lesson 13: Canonical correlation analysis.

[43] C. M. J. Tan and M. Motani. DropNet: Reducing neural network complexity

via iterative pruning. In H. D. III and A. Singh, editors, Proceedings of the

37th International Conference on Machine Learning, volume 119 of

Proceedings of Machine Learning Research, pages 9356–9366. PMLR, 13–18

Jul 2020.

[44] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. CoRR, abs/1905.11946, 2019.

[45] R. Wightman. Pytorch image models.

https://github.com/rwightman/pytorch-image-models, 2019.

71

[46] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,

 Lukasz Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,

G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,

O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s neural machine

translation system: Bridging the gap between human and machine

translation. CoRR, abs/1609.08144, 2016.

[47] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan. Transfer Learning. Cambridge

University Press, 2020.

[48] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional

networks. CoRR, abs/1311.2901, 2013.

72

	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Deep Learning
	2.1.1 Convolutional Neural Networks

	2.2 Transfer Learning
	2.2.1 Adjusting Model Structure for Transfer Learning
	2.2.2 Fine-Tuning Pretrained Models

	2.3 Neural Network Pruning
	2.3.1 Unstructured Pruning
	2.3.2 Structured Pruning

	2.4 Alternative Neural Network Compression Techniques
	2.4.1 Network Quantization
	2.4.2 Knowledge Distillation

	2.5 Autonomous Robot Navigation

	3 Related Work
	3.1 Pruning with Machine Learning Frameworks
	3.2 Comparing Neural Networks
	3.2.1 Canonical Correlation Analysis
	3.2.2 Singular Vector Canonical Correlation Analysis
	3.2.3 Projection Weighted Canonical Correlation Analysis

	3.3 Comparing Unpruned and Pruned Neural Networks

	4 Implementation
	4.1 Data Collection and Processing
	4.1.1 Data Collection
	4.1.2 Data Labeling and Partitioning

	4.2 Models
	4.2.1 EffficientNet
	4.2.2 Transfer Learning with EfficientNet

	4.3 Model Training

	5 Experimental Design
	5.1 Experiments and Metrics to Evaluate Model Performance
	5.2 Pruning Neural Networks and Measuring Performance
	5.3 Experiments to Compare Unpruned and Pruned Neural Networks Using PWCCA
	5.4 Test and Development Environment

	6 Results and Analysis
	6.1 Unpruned Model Performance
	6.2 Comparing Unpruned and Pruned Networks Using PWCCA
	6.3 Limitations
	6.3.1 Investigating Loss and Dataset Limitations

	7 Conclusions
	8 Future Work
	8.1 Dataset Growth
	8.2 Investigating the Role of Certain Layers within Similarity
	8.3 Comparing Deep Neural Networks with other Similarity Metrics

	BIBLIOGRAPHY

