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ABSTRACT

Dynamical Systems and Matching Symmetry in β-Expansions

Karl Zieber

Symbolic dynamics, and in particular β-expansions, are a ubiquitous tool in

studying more complicated dynamical systems. Applications include number the-

ory, fractals [11], information theory, and data storage [1].

In this thesis we will explore the basics of dynamical systems with a spe-

cial focus on topological dynamics. We then examine symbolic dynamics and

β-transformations through the lens of sequence spaces. We discuss observations

from recent literature about how matching (the property that the itinerary of 0

and 1 coincide after some number of iterations) is linked to when Tβ,α generates a

subshift of finite type. We prove the set of α in the parameter space for which Tβ,α

exhibits matching is symmetric and analyze some examples where the symmetry

is both apparent and useful in finding a dense set of α for which Tβ,α generates a

subshift of finite type.
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CHAPTER 1: PRELIMINARIES

The study of dynamical systems can be traced back to Poincaré and his work

on the three-body problem [7]. Though Poincaré was not the first to explore

the motion of several bodies in space, he established some of the techniques that

have become ubiquitous in the study of modern dynamical systems, including his

famous recurrence theorem. Today, dynamical systems is an active field of mathe-

matical research that draws upon many different fields of mathematics, including

differential geometry, measure theory, topology, and group theory, though the fun-

damental question still remains: how does a system, under a fixed set of rules,

behave over long periods of time?

1.1 Basic Definitions

At the most fundamental level, a dynamical system is a set X coupled with a map

f : X → X (1.1)

We are primarily interested in dynamical systems where X has some additional

structure and f has certain restrictions. The most common set-ups are:

• Topological dynamics: X is a topological space and f is a continuous

map.

• Ergodic theory: X is a measure space and f is a measurable function.

• Differentiable dynamics: X is a manifold and f is a differentiable map.

• Metric dynamics: X is a metric space and f is an isometry.
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The study of dynamical systems is concerned primarily with the behavior of points

in X when considered under the family of maps {fn : X → X}, where fn denotes

the n-fold composition fn = f ◦ · · ·◦f of f . We let f 0 denote the identity function

I on X. If f is invertible, we let f−n = f−1 ◦ · · · ◦ f−1. Note that fn+m = fn ◦ fm

and so if f is invertible the family of maps forms a group under composition.

If our family is indexed by N or Z as above we have a discrete-time dynamical

system. However, we can also index our family {f t : X → X} with t ∈ R or

t ∈ R+
0 for a continuous-time dynamical system, which is still a semigroup under

composition. Note that in this case f t does not necessarily denote composition

but instead corresponds to the member of the family described by the parameter

t. In the case where t ∈ R, we typically refer to the system as a flow, and as a

semiflow if t ∈ R+
0 . The index set is usually clear from context and is explicitly

defined otherwise.

In mathematics it is often helpful to consider when two objects are effectively

"the same." In our context, two systems (X, f) and (Y, g) are said to be equivalent

if there exists a surjective map π : Y → X, called a semiconjugacy, such that

f t ◦ π = π ◦ gt for all t. That is, the following diagram commutes:

Y Y

X X

π

gt

π

f t

If π is invertible, it is referred to simply as a conjugacy. In this way, properties

of one system can be studied by understanding a different and possibly simpler

conjugate system.

2



Now if we consider an arbitrary but fixed x ∈ X we can define the following:

Definition 1.1.1. (Orbit)

For x ∈ X, the positive semiorbit of x, denoted O+
f (x), is the set of all points

f t(x) for some t ≥ 0. Symbolically:

O+
f (x) =

⋃
t≥0

f t(x)

Similarly, the negative semiorbit of x is O−
f (x) =

⋃
t≤0 f

t(x), and together

these form the orbit of x:

Of (x) = O+
f (x) ∪ O−

f (x) =
⋃
t

f t(x)

Usually, f is clear from context and the orbit is denoted simply as O(x).

A point x ∈ X is a periodic point if fn·t(x) = (f t ◦ · · · ◦ f t)(x) = x for some t

and for all n ∈ N; equivalently, f t(x) = x for some t. In the special case where

f t(x) = x for all t, then x is a fixed point of the system. On the other hand, a point

x is called eventually periodic if there exists some r such that f r(x) is periodic. It

is worth mentioning that in an invertible system all eventually periodic points are

periodic, but if f is not invertible, you can have eventually periodic points that

are not periodic (see example 1.2.4).

1.2 Basic Examples

Many of the introductory texts on dynamical systems begin their discussion with

examples that illustrate key concepts of the theory. In the interest of acquainting

3



ourselves with these systems, we shall uphold this tradition and examine some

basic examples.

Example 1.2.1. (Rotations of the Unit Circle) Let X = S1 denote the unit

circle, i.e., S1 = [0, 1]/ ∼, where ∼ identifies 0 and 1. When working in S1, we

use the following metric:

d(x, y) = min{|x− y|, 1− |x− y|}

Our map f will be the rotation map Rα : S1 → S1 defined by

Rα(x) = x+ α mod 1

Rα rotates the point x around the unit circle by a distance of 2πα. Iterating Rα

gives us Rt
α(x) = x + tα mod 1. Note that, if α is rational, then every x ∈ S1 is

periodic. To see why, let α = p
q

with p, q ∈ Z and note that

Rq
α(x) = x+ qα mod 1 = x+ p mod 1 = x mod 1 = x

The case where α is irrational is far more interesting. In fact, if α is irrational,

then the positive semiorbit of any x ∈ S1 is dense in S1. To see why, first note

that no point is periodic when α is irrational, as otherwise there would exist some

n ∈ N such that Rn
α(x) = x + nα mod 1 = x, i.e., nα ∈ Z. Now, let ε > 0 be

arbitrary, and divide S1 into
⌈
1
ε

⌉
equal parts (so each part has length at most ε).

By the Pigeonhole Principle, there must exist m,n ∈ Z with m < n such that

Rn
α(x) and Rm

α (x) fall into the same
⌈
1
ε

⌉
-section. That is, Rn−m

α (x) represents a

4



x

Rα(x)

R2
α(x)

R3
α(x)

R4
α(x)

R5
α(x)

Figure 1.1: Circle Rotations. The red dots divide S1 into 6 parts, and the
blue dots represent points in O+(x).

rotation by less than ε. Since we can generate a rotation by less than any arbitrary

ε, we can bring any point x ∈ S1 within ε of any other point y ∈ S1.

Figure 1.1 illustrates this idea when ε = 1
6
, α = π

12
, x = 1

4
. In this case,

inspection tells us we can take m = 0 and n = 4.

Example 1.2.2. (Hyperbolic Toral Automorphisms - Arnold’s Cat Map)

If we consider R2, we can construct the torus T2 by placing the points (x, y) ∈ R2

under the following equivalence:

(x, y) ∼ (x+ 1, y) ∼ (x, y + 1)

which, among other things, has the effect of identifying all points of the form

(n,m) ∈ Z× Z.

Similarly, we can take the matrix

A =

2 1

1 1

 : R2 → R2

5



Figure 1.2: Torus Glueing. The blue dots are points in Z × Z, which are all
identified. The red sides of the unit square are glued, matching the direction of the
arrows. The green sides are similarly glued and we produce the torus T2.

and redefine it on T2 as

A

x
y

 =

(2x+ y) mod 1

(x+ y) mod 1


Here, A : T2 → T2 is the hyperbolic toral automorphism–colloquially referred to

as "Arnold’s cat map", after the image that Vladimir Arnold first demonstrated

the map’s effect on. [
2 1
1 1

]
mod 1

Figure 1.3: Arnold’s Cat Map on the Unit Square. A visualization of
Arnold’s Cat Map on the unit square.

The eigenvalues of A are λ = 3+
√
5

2
> 1 and 1

λ
< 1 with eigenvectors vλ =

⟨1+
√
5

2
, 1⟩ and v1/λ = ⟨1−

√
5

2
, 1⟩ respectively. A expands by a factor of λ along lines

parallel to vλ and A contracts by a factor of λ along lines parallel to v1/λ. Thus,

we call the family of lines parallel to vλ the set of unstable foliations, which we

denote W u, with a particular foliation through x ∈ T2 denoted as W u(x). For the

6



Figure 1.4: Arnold’s Cat Map Example. An image of a cat under Arnold’s
Cat Map, from left to right: base image, 1 iteration, 2 iterations, 128 iterations.
It can be shown, on a discrete set such as pixels in an image, that Arnold’s Cat
Map is periodic [4]. For code, see Appendix A.

family of lines parallel to v1/λ we have the stable foliations denoted similarly as

W s.

Proposition 1.2.3.

If α = (x0, y0) has rational coordinates, α is a periodic point of A.

Proof. Since x0, y0 ∈ Q, let x0 = p
k

and y0 = q
k

be the fraction representations of

x0, y0 over a common denominator, with p, q, k ∈ Z. Note that a point of this

form, when sent through A, becomes:

A

x0
y0

 =

(2 p
k
+ q

k
) mod 1

( p
k
+ q

k
) mod 1

 =

2p+q
k

− n

p+q
k

−m

 =

2p+q−nk
k

p+q−mk
k



where n =
⌊
2p+q
k

⌋
and m =

⌊
p+q
k

⌋
. Thus any point of the form

(
p
k
, q
k

)
is sent to

another point of the form
(

p′

k
, q

′

k

)
, and there are at most k2 points of this form in

the unit square. Thus, A is permuting these k2 points (since A has det ̸= 0 and

thus is injective) and thus these points must be periodic.

Now, by the density of the rationals in R, points in the unit square of the form

(x0, y0) ∈ Q × Q are dense in the torus. Thus periodic points are dense in the

torus as well.
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Figure 1.5: Zeno in Arnold’s Cat Map. Another example of Arnold’s cat
map for the first 2 iterations, featuring Zeno laying in a sunbeam. Image courtesy
of Leah Hoogstra.

Example 1.2.4. (Quadratic Maps) So far, the dynamical systems we’ve

looked at have been linear; let’s consider a nonlinear case. The classic example is

the quadratic map, which is the system (R, qb) where qb : R → R is defined as

qb(x) = −bx(x− 1)

where b > 0. Since, for x ∈ R\[0, 1], qb(x) → ∞, as x → ±∞, our interest lies in

[0, 1], the region between the roots, and thus truly on the system ([0, 1], qb). We

also restrict 0 ≤ b ≤ 4 so the vertex of the parabola is underneath y = 1 and

qb : [0, 1] → [0, 1] is an interval map of the form 1.1. However, if 4 < b, then there

is a section in the middle that is mapped outside [0, 1], in particular, the interval

(
1

2
−
√

1

4
− 1

b
,
1

2
−
√

1

4
− 1

b

)

is sent to
(
1, b

4

]
.

8



y = 1 y = 1

(
1
2
−
√

1
12

, 1
2
+
√

1
12

)

Figure 1.6: Quadratic Map Examples. On the left, b = 2. On the right,
b = 6.

To compute where iterates go under successive applications of qb we use what’s

called a cobweb diagram. To construct one, we graph our quadratic map and the

line y = x on the same coordinate grid. Then, draw a vertical line from our

starting point, x, on the x-axis to the quadratic graph. Then draw a horizontal

line from the quadratic graph to the y = x line. Draw another vertical line back

to the quadratic function, and repeat. See figure 1.7.

9



x x

x q3(x) x

x q23(x) x

Figure 1.7: Cobweb Diagram Construction. An example of the construction
of a cobweb diagram using q3 and x = 1

4
.

Cobweb diagrams are useful because they allow us to visualize the behavior

of points under iteration by qb. By examining some cobweb diagrams, we can

uncover some ways of classifying points based on their behavior.

10



Definition 1.2.5. (Attracting Point)

A fixed point x of a dynamical system (f,X) is an attracting point if it has

a neighborhood U such that the closure, which we will denote U , is compact,

f(U) ⊆ U , and
⋂

t≥0 f
t(U) = {x}. Similarly, a point x is repelling if it has a

neighborhood U such that U is compact, f(U) ⊇ U , and
⋂

t≥0 f
−t(U) = {x}.

x

Figure 1.8: An Example of an Attracting Point. An example of an attract-
ing point.

For example, if we consider q2 and x = 3
4
, we can see that the orbit of the point

goes to 1
2

(see figure 1.8). It turns out the fixed points of qb are 0 and 1− 1
b
.

If b < 1 then 0 is an attracting point, and if b > 1 it is a repelling point.

Meanwhile, if b ∈ (1, 3), 1 − 1
b

is an attracting point and if b ̸∈ [1, 3] then 1 − 1
b

is a repelling point. For an attracting point, the neighborhood U is referred to

as a "trapping region." However, to be consistent with the literature that we will

explore in section 4, we use a modified definition.

Definition 1.2.6. (Trapping Region)

Let (X, f) be a dynamical system. A compact set Y ⊆ X is a trapping region

of f if f t(Y ) ⊆ Y for all t ≥ 0.

Quadratic maps, in addition to hyperbolic toral automorphisms (example 1.2.2),

are one of the introductory examples of chaotic maps. That is, quadratic maps

11



are sensitive to small perturbations in initial conditions (starting input value x).

While not a focus of this thesis, chaos theory is an important sub-field in dynam-

ical systems that explicitly focuses on the long-term, global behavior of a system.

Today, chaos not only attracts interest from mathematicians but is also of interest

to physicists, biologists, and economists [3].

12



CHAPTER 2: TOPOLOGICAL DYNAMICS

Topological dynamics has been successful in generating invariants that help classify

and quantify the behavior of systems, which has made it a main approach to

dynamics. In addition to having analogues in ergodic theory, these invariants

have applications and implications in mathematical physics, information theory,

and chaos.

Throughout this section, we will assume our spaces have the following proper-

ties:

• Locally compact: for every point x ∈ X there exists an open set U and a

compact set K such that x ∈ U ⊆ K.

• Metrizable: there exists a metric on X.

• Second countable: our topology on X has a countable basis.

2.1 Limit Sets and Recurrence

In dynamical systems, we’re often concerned with the long-time behavior of the

system. Limit sets are an attempt to capture that long-time behavior local to

a point, and this understanding can be generalized to say things about global

behavior.

First, recall that a topological dynamical system is a topological space X cou-

pled with a continuous map f : X → X. We will be primarily concerned with

discrete-time topological dynamical systems, but many of the results here gener-

alize to continuous-time systems. In this context, a semiconjugacy π : X → Y

between systems is a continuous map.

13



Definition 2.1.1. (ω-Limit Point, Limit Set)

Let f : X → X be a topological dynamical system with x, y ∈ X. We say y

is an ω-limit point of x if there is a sequence {nk}k∈N ⊆ N such that nk → ∞

where

lim
nk→∞

fnk(x) = y (2.1)

We call the set of all such y’s the ω-limit set of x, which we denote ω(x).

Definition 2.1.2. (α-Limit Point, Limit Set)

If f is invertible, an α-limit point, call it y, is similarly defined as

lim
nk→∞

f−nk(x) = y

with the α-limit set denoted as α(x).

Since the ω-limit converges it equals its limit superior and we can use the set-

theoretic definition of the limit superior to write the ω-limit set out as an actual

set.

ω(x) =
⋂
n∈N

⋃
k≥n

{fk(x)} and similarly α(x) =
⋂
n∈N

⋃
k≥n

{f−k(x)}

Here we require the closure of the unioned sets because we are not guaranteed

that our topological space, X, is complete. Also notice the definition is set up so

that

ω(x) ⊆ O+(x) and α(x) ⊆ O−(x)

is also true, though the reverse subset inclusions may not hold.

14



Proposition 2.1.3.

The α- and ω-limit sets of a point are closed invariant sets.

Proof. Let y be an element in the ω-limit set of x ∈ X. Note

f(y) = f

(
lim

nk→∞
fnk(x)

)
equation 2.1

= lim
nk→∞

f(fnk(x)) since f is continuous

= lim
nk→∞

fnk+1(x)

And thus f(y) is also an ω-limit point of x and the ω-limit set of x is invariant.

To show it is closed, let z be a limit point of the ω-limit set. Then there exists

a sequence {yj} such that yj → z as j → ∞ and yj = limmk→∞ fmk(x). Thus,

for any arbitrary ε > 0, there exists some yj ∈ B(z, ε
3
) and there exists some

fmk(x) ∈ B(yj,
ε
3
). Thus fmk(x) ∈ B(yj, ε). We can form a sequence of fmk(x)’s

that converge to z in this manner. Therefore z is in the ω-limit set and the ω-limit

set is closed. The argument for the α-limit set is similar.

The natural question to ask is when is x in its own ω-limit set?

Definition 2.1.4. (Recurrent Point)

A point x ∈ X is (positively) recurrent if x ∈ ω(x). We denote the set of all

recurrent points of the system (X, f) as R(f).

Notably, any periodic point is recurrent, since we can simply take our index

set under the limit to be {nk}k∈N = {n · t ∈ N | fn·t(x) = x}. Similar logic shows

15



any eventually periodic point is also recurrent. Furthermore, the set of recurrent

points R(f) is f -invariant, since for any x ∈ R(f):

f(x) = f( lim
nk→∞

fnk(x)) = lim
nk→∞

fnk+1(x) ∈ R(f)

by the continuity of f .

Example 2.1.5. Recall example 1.2.2, the hyperbolic toral automorphism. Since

all periodic points are recurrent and periodic points are dense in T2 (by Proposi-

tion 1.2.4), R(A) is dense in the torus as well. So, if we consider an open ball B

about some point x in T2, there is some rational point r ∈ T2 within B that has

some orbit point that falls within this ball. So if we start close to any x ∈ T2, we

can find a point down the line that is close to x again.

This observation about the hyperbolic toral automorphism generalizes to the

following definition.

Definition 2.1.6. (Non-Wandering Point)

A point x ∈ X is non-wandering if for any neighborhood U of x and for any

N ∈ N there exists n > N such that fn(U) ∩ U ̸= ∅. We denote the set of all

non-wandering points as NW(f).

Non-wandering points are a generalization of recurrence, so to speak. In fact,

the next proposition confirms that any recurrent point is also a non-wandering

point.

Proposition 2.1.7.

The set of non-wandering points is closed, is f -invariant, and contains ω(x)

and α(x) for all x ∈ X.
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To prove this result we require a lemma about the image of set intersections.

Lemma 2.1.8.

For some sets A and B

f(A ∩B) ⊆ f(A) ∩ f(B)

Proof. Let x ∈ f(A∩B). Then there is some y ∈ A∩B such that f(y) = x and note

y ∈ A and y ∈ B. Thus f(y) ∈ f(A) and f(y) ∈ f(B), hence x ∈ f(A)∩f(B).

Now for the main result:

Proof. Let x ∈ NW(f) and let U be some neighborhood of x. To show that NW(f)

is f -invariant, consider f(x). Let V be an arbitrary neighborhood of f(x). Since

f is continuous, the preimage f−1(V ) is a neighborhood of x. Thus there exists

some n ∈ N such that fn(f−1(V )) ∩ f−1(V ) ̸= ∅. Therefore

∅ ≠ f(fn(f−1(V )) ∩ f−1(V )) ⊆ f(fn(f−1(V ))) ∩ f(f−1(V )) = fn(V ) ∩ V

Thus f(x) ∈ NW(f) and NW(f) is f -invariant.

To show NW(f) is closed, let z be a limit point of NW(f). Let xi → z as

i→ ∞ where xi ∈ NW(f) for all i ∈ N. Let U be an arbitrary neighborhood of z

and note U must contain

{xi | i > k for some k ∈ N}
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I.e., U is a neighborhood for some xi in the sequence. Thus, there exists some

n ∈ N such that fn(U) ∩ U ̸= ∅, since xi is a non-wandering point. Since U was

an arbitrary neighborhood of z, z ∈ NW(f) as well.

Lastly, we will show ω(x) ⊆ NW(f). The proof for α(x) is similar. Let

y ∈ ω(x), which implies there is a sequence {nk}∞k=1 ⊆ N such that nk → ∞ and

fnk(x) → y. Letting U be an arbitrary neighborhood of y, this implies there exists

an nk such that fnk(x) ∈ U . Let nj be such that

fnj ∈ B(y, d(y, fnk(x)))

which exists by the above as well. Let m = nj − nk and note fnj(x) ∈ fm(U) (by

applying the continuity of fm to the fact that fnk(x) ∈ U) and fnj(x) ∈ U (by

construction). Thus fm(U) ∩ U ̸= ∅, and y ∈ NW(f).

Corollary 2.1.9.

For a dynamical system (X, f), R(f) ⊆ NW(f).

Example 2.1.10. This corollary implies that every point of T2 under the hyper-

bolic toral automorphism is a non-wandering point, which confirms our informal

discussion.

2.2 Minimal Sets

For this section we assume our topological space X is compact.

Sets that have to do with the long-term local behavior in a system, such as

ω(x) and R(f), are closed and forward f -invariant. Closed, nonempty, forward
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f -invariant sets are a natural way to study the anatomy of a dynamical system.

Following this line of inquiry we make the following definition:

Definition 2.2.1. (Minimal Set)

Let X be compact. We say a set Y ⊆ X is minimal if it is closed, nonempty,

and forward f -invariant and contains no proper subset that is also closed,

nonempty, and forward f -invariant.

Searching for minimal sets manually would be madness. However, it turns out

that such sets are intimately linked with a set we are already familiar with.

Proposition 2.2.2.

Let (X, f) be a dynamical system. Supposing that X is compact and f :

X → X is continuous, Y ⊆ X is minimal if and only if ω(y) = Y for every

y ∈ Y .

Proof. (⇒) Suppose Y ⊆ X is minimal and let y ∈ Y . Since Y is forward f -

invariant, fn(y) ∈ Y for all n ∈ N and since Y is also closed, any x ∈ ω(y) is also

in Y (since x = limnk→∞ fnk(y)). Thus ω(y) ⊆ Y . Since Y is minimal and ω(y) is

a closed, nonempty, forward f -invariant set, it must be the case that ω(y) = Y .

(⇐) Assume ω(y) = Y for all y ∈ Y . By Proposition 2.1.3, Y must be closed,

non-empty, and forward f -invariant. It remains to show that no proper subset

can also have all of these properties. Let A ⊆ Y be a proper, closed, non-empty,

and forward f -invariant set and let a ∈ A. Then fn(a) ∈ A for all n ∈ N (since

A is forward f -invariant) and thus limnk→∞ fnk(a) ∈ A for all {nk}∞k=1 ⊆ N (since

A is closed). So ω(a) ⊆ A and, since a ∈ A ⊆ Y , ω(a) = Y ⊇ A as well. So

A = ω(a) = Y and Y is minimal.
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Example 2.2.3. Recall example 1.2.1, rotations of the unit circle. Under an

irrational rotation Rα, the forward orbit of every x ∈ S1 is dense in S1. So

ω(x) = O+(x) = S1

and so the circle is a minimal set under Rα. The minimality of S1 implies that

every point in S1 is nonwandering (since ω(x) ⊆ NW(Rα) by Proposition 2.1.7)

and recurrent.

Perhaps density of orbits is enough to guarantee minimality? The following

proposition confirms this.

Proposition 2.2.4.

Let (X, f) be a dynamical system. Supposing that X is compact and f :

X → X is continuous, Y is minimal if and only if the forward orbit of every

point in Y is dense in Y .

Proof. (⇒) Suppose Y ⊆ X is minimal and let y ∈ Y . To show O+(y) is dense

in Y , it is enough to show Y = O+(y). Since Y is minimal, we already have

Y = ω(y) ⊆ O+(y) by Proposition 2.2.2. To show the reverse inclusion, let

x ∈ O+(y). Thus

x = lim
k→∞

fnk(y)

Either nk → ∞ or nk ̸→ ∞. If nk → ∞, x ∈ ω(y) = Y . If nk ̸→ ∞, then

x = f i(y) for some i ∈ N and since Y is forward-invariant we have x ∈ Y . In

either case, x ∈ Y and Y = O+(y).

(⇐) Suppose O+(y) ⊆ Y is dense in Y for any y ∈ Y . Let z ∈ Y and

{fnk(y)}∞k=1 be the natural sequence of elements of O+(y) that converges to z.
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Note we can force nk → ∞ and this immediately implies z ∈ ω(y) and so Y ⊆ ω(y).

Since Y is compact, and hence closed, and it contains the forward orbit of any

y ∈ Y , ω(y) ⊆ Y . That is, for any y, ω(y) = Y and Proposition 2.2.2 implies Y is

minimal.

Together, Proposition 2.2.2 and Proposition 2.2.4 imply that the forward orbit

of every y ∈ ω(x) is dense in ω(x) and any set satisfying this criterion of dense

orbits must be an ω-limit set. That is, if X is a minimal system, then ω(x) =

O+(x) for all x ∈ X.

2.3 Transitivity and Mixing

Minimality and the density of forward orbits are closely linked for compact spaces.

What if we were to remove the requirement that X be compact and focus on

the orbit of a single point? In pursuit of generalization, we make the following

definition:

Definition 2.3.1. (Topologically Transitive)

A topological dynamical system f : X → X is said to be topologically transitive

if there is some point x ∈ X whose forward orbit is dense in X.

When working with compactness and the density of every forward orbit, the

minimal sets were the bridge that allowed us to link dense orbits and ω-limit sets

together. Under weaker hypotheses we get an analogous connection.

Proposition 2.3.2.

If X has no isolated points and the forward orbit of x is dense in X then

ω(x) = X.
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Proof. Let z ∈ X. Since O+(x) = X we can make a sequence {nk}k∈N such that

z = lim
k→∞

fnk(x)

since there are no isolated points, we can guarantee that nk → ∞ by considering

successively smaller ε-balls about z. Thus z ∈ ω(x), and ω(x) = X.

It turns out that we can conclude a system is topologically transitive if we

can say something about the way any two open sets intersect under successive

applications of f . However, in order to prove the result, we require the Baire

Category Theorem.

Theorem 2.3.3. (Baire Category Theorem)

Let X be a locally compact Hausdorff space. Then for each countable collec-

tion of open dense sets U1, U2, . . ., their intersection
⋂

n∈N Unis dense.

Proposition 2.3.4.

Let f : X → X be a continuous map of a locally compact Hausdorff space

X. Suppose for any two non-empty open sets U and V there is n ∈ N such

that fn(U) ∩ V ̸= ∅. Then f is topologically transitive.

Proof. Let U ⊆ X be an arbitrary open set. By our hypothesis,

⋃
n∈N

f−n(U)

22



must be dense in X, since it intersects nontrivially with every open set V . Let

{Ui} be a countable basis for the topology of X and consider the countable family

of open dense sets {
⋃

n∈N f
−n(Ui)}. By the Baire Category Theorem

Y =
⋂
i

⋃
n∈N

f−n(Ui)

is dense in X. If we have y ∈ Y , note there must be some ni ∈ N such that

y ∈ f−ni(Ui), i.e. fn(y) ∈ Ui, by the construction of y. Since {Ui} is a countable

basis for X, the forward orbit of y is dense in X.

It turns out that the converse is not true; topological transitivity does not

imply that for any two non-empty open sets U and V there is n ∈ N such that

fn(U)∩V ̸= ∅. We can exploit this more restrictive property to define topologically

mixing.

Definition 2.3.5. (Topologically Mixing)

A topological dynamical system f : X → X is topologically mixing if for any

two non-empty open sets U and V there is N ∈ N such that fn(U) ∩ V ̸= ∅

for all n ≥ N .

Note that Proposition 2.3.4 tells us topologically mixing implies topologically

transitive. However, one of our examples demonstrates that the converse is not

true.

Example 2.3.6. Recall the irrational rotations of S1 (example 1.2.1). The ir-

rational rotations are minimal, and therefore topologically transitive by Proposi-

tion 2.2.4. However, the irrational rotations are not topologically mixing.
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To see why, let x, y ∈ S1 with x ̸= y. Suppose d(x, y) = 4δ for the appropriate

δ > 0. By construction of δ, the open balls B(x, δ) and B(y, δ) do not intersect, i.e.,

B(x, δ)∩B(y, δ) = ∅. Let V be some open ball of radius δ
2
. Seeking a contradiction,

assume Rα is topologically mixing. Then there exist nx, ny ∈ N such that for all

k > nx and j > ny, Rk
α(V ) ∩ B(x, δ) ̸= ∅ and Rj

α(V ) ∩ B(y, δ) ̸= ∅. Letting

n = max{nx, ny}, for all m > n, Rm
α (V ) ∩ B(x, δ) ̸= ∅ and Rm

α (V ) ∩ B(y, δ) ̸= ∅

as well. Let x0, y0 ∈ S1 be such that Rm
α (x0) ∈ Rm

α (V ) ∩ B(x, δ) and Rm
α (y0) ∈

Rm
α (V ) ∩B(y, δ). Note that this implies x0, y0 ∈ V and

d(x, y) ≤ d(x,Rm
α (x0)) + d(Rm

α (x0), R
m
α (y0)) + d(Rm

α (y0), y) triangle ineq.

= d(x,Rm
α (x0)) + d(x0, y0) + d(Rm

α (y0), y) Rα an isometry

≤ d(x,Rm
α (x0)) + δ + d(Rm

α (y0), y) x0, y0 ∈ V

≤ δ + δ + δ = 3δ Rm
α (x0) ∈ B(x, δ),

Rm
α (y0) ∈ B(y, δ)

impossible, as d(x, y) = 4δ.

2.4 Entropy

Topological entropy is, loosely speaking, a measure of complexity. It tracks the

asymptotic, exponential growth rate of distinguishable orbits in the system so

systems with entropy 0 do not experience more complexity, i.e., more orbits, as

time goes on while systems with positive entropy do.

Throughout this section, we assume (X, d) is a compact metric space and

f : X → X is a continuous function. When we say "distinguishable orbits," we
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mean how far apart (outside ε) the first n iterates of some points x and y are to

each other. Naturally, we codify distance with a metric

dn(x, y) = max
0≤k≤n−1

d(fk(x), fk(y))

Here, dn tracks the furthest away x and y get under the first n − 1 iterates of f .

This will be our tool for distinguishing orbits.

There are three pathways to computing topological entropy; all turn out to

yield equivalent definitions. Each of the following definitions represents one of

those pathways. For all definitions, let ε > 0 be fixed.

Definition 2.4.1. ((n, ε)-Spanning Set)

A subset A ⊆ X is an (n, ε)-spanning set if for every x ∈ X there is a y ∈ A

such that dn(x, y) < ε. Let span(n, ε, f) denote the minimum cardinality of

an (n, ε)-spanning set.

Definition 2.4.2. ((n, ε)-Separated Set)

A subset A ⊆ X is an (n, ε)-separated set if any two distinct points x, y ∈ A

are at least ε apart under dn, i.e., dn(x, y) ≥ ε. Let sep(n, ε, f) denote the

maximum cardinality of an (n, ε)-separated set.

Definition 2.4.3. ((n, ε)-Cover)

A cover A of X is an (n, ε)-cover if all sets A ∈ A have dn-radius less than ε.

Let cov(n, ε, f) denote the minimum cardinality of such a cover.

At first blush, these ideas seem distinct. However, there is a common thread:

if we have an (n, ε)-spanning set A then we can form an (n, ε)-cover by taking the
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X X X

Figure 2.1: span, sep, and cov Depictions. These are not strictly accurate
depictions; here, we illustrate the idea behind span, sep, and cov with simpler ε-
balls (i.e., when n = 1). Let X be the boundary of the red set pictured above. In
the leftmost image, the blue dots are a spanning set of X with ε-radii about each
point to confirm the set is indeed spanning. In the middle image, the blue dots
represent the separated set with ε-radii about each point to confirm the set is indeed
separated. In the rightmost image, the blue sets represent a cover of X by sets of
radius less than ε.

open ε-balls about each point in A. Similarly, we can take a cover A and fit each set

in the cover inside ε-balls centered at points in X and those center points become

our spanning set. Meanwhile, if we fit as many points into an (n, ε)-separated set

as possible, the ε-balls "cluster together" and under the limiting process ε → 0+

this cluster of balls becomes indistinguishable from a cover and thus a spanning

set as well. We shall see that this limiting process will indeed be involved in the

definition entropy.

Analogy is not the only link between span, sep, and cov. The next lemma

formalizes their relationship.
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Lemma 2.4.4.

Let X be some compact metric space and f : X → X a continuous map.

Then

cov(n, 2ε, f) ≤ span(n, ε, f) ≤ sep(n, ε, f) ≤ cov(n, ε, f)

Proof. To demonstrate cov(n, 2ε, f) ≤ span(n, ε, f), let A be an (n, ε)-spanning

set of minimum cardinality. Then the set of open balls of radius ε centered at

points in A cover X. Let 0 < ε′ < ε and note, by compactness, there is a cover of

open balls of radius ε′ centered at the points in A. The diameter of these balls is

2ε′ < 2ε, and so cov(n, 2ε, f) ≤ span(n, ε, f).

To demonstrate span(n, ε, f) ≤ sep(n, ε, f), let B be a (n, ε)-separated set

of maximum cardinality. For any x ∈ X\B and every y ∈ B, the inequality

ε ≤ dn(x, y) cannot hold by the maximality of B. That is, for all x ∈ X, there is

a y in B such that dn(x, y) < ε. This means B must also be an (n, ε)-spanning

set. Thus

span(n, ε, f) ≤ |B| = sep(n, ε, f)

To prove the last inequality, again let B be a (n, ε)-separated set of maximum

cardinality and let C be an (n, ε)-cover of X with minimum cardinality. Seeking

a contradiction, suppose |B| > |C|. Then there is some set in C that has more

than one element from B, by the Pigeonhole Principle. Therefore there exists a

set c ∈ C of dn-diameter less than ε that contains at least two points from B,

impossible as B is an (n, ε)-separated set. Thus the last inequality holds.
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Since X is compact, cov(n, ε, f) is finite. Therefore, we can define

hε(f) = lim sup
n→∞

1

n
log(cov(n, ε, f))

where we require the limit superior to guarantee convergence. As ε decreases,

cov(n, ε, f) increases monotonically, and so

lim
ε→0+

hε(f)

exists (or is ∞). This limit is the topological entropy of f .

Definition 2.4.5. (Topological Entropy)

The topological entropy of f , denoted h(f), is the limit

h(f) = lim
ε→0+

lim sup
n→∞

1

n
log(cov(n, ε, f))

Theorem 2.4.6.

cov, sep, and span all define the same topological entropy. That is,

h(f) = lim
ε→0+

lim sup
n→∞

1

n
log(cov(n, ε, f)) (2.2)

= lim
ε→0+

lim sup
n→∞

1

n
log(sep(n, ε, f)) (2.3)

= lim
ε→0+

lim sup
n→∞

1

n
log(span(n, ε, f)) (2.4)
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Proof. First we shall demonstrate that lim supn→∞
1
n
log(cov(n, ε, f)) is finite. Let

U have dm-diameter less than ε and let V have dn-diameter less than ε. Note that

fm+n(U ∩ f−m(V )) ⊆ fm+n(U) ∩ fn(V )

and so U ∩ f−m(V ) has dm+n-diameter less than ε. Therefore any (n+m, ε) cover

of minimum cardinality can be formed from combining sets from (n, ε) and (m, ε)

covers of minimum cardinality. That is,

cov(n+m, ε, f) ≤ cov(n, ε, f) · cov(m, ε, f)

Thus

log(cov(n+m, ε, f)) ≤ log(cov(n, ε, f)) + log(cov(m, ε, f))

that is, the sequence log(cov(n, ε, f)) is subadditive. By Fekete’s Subadditive

Lemma [5], the limit lim supn→∞
1
n
log(cov(n, ε, f)) converges to a finite limit as

n→ ∞.

Lemma 2.4.4 implies the desired result as ε→ 0+.

Example 2.4.7. The entropy of the hyperbolic toral automorphism (exam-

ple 1.2.2) is h(A) = log |λ|.

Example 2.4.8. The entropy of an irrational circle rotation (example 1.2.1)

is 0. To see why, recall that the irrational circle rotation Rα is an isometry,

and so dn = d. So as n → ∞ log(cov(n, ε, f)) does not depend on n and

lim supn→∞
1
n
log(cov(n, ε, f)) = 0. This result holds in general for all isometries.
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Topological entropy is useful because it acts as an invariant for dynamical

systems. The next result makes this more formal.

Lemma 2.4.9.

The topological entropy of a continuous map f : X → X is invariant with

respect to the metric generating the topology on X.

Proof. Let d and d′ be two metrics on X. For ε > 0, define δε = sup{d′(x, y) |

d(x, y) ≤ ε}. If U is some set with d-diameter less than ε, then it will have d′-

diameter less than δε. So, letting cov and cov′ correspond to d and d′ respectively

cov′(n, δε, f) ≤ cov(n, ε, f)

Since X is compact, δε → 0 as ε → 0 (since the supremum is achieved and to

d(x, y) = 0 implies d′(x, y) = 0). Thus we have

lim
δε→0+

lim
n→∞

1

n
log(cov′(n, δε, f)) ≤ lim

ε→0+
lim
n→∞

1

n
log(cov(n, ε, f))

Swapping the roles of d and d′ gives the reverse inequality, thus the entropy must

be the same.

Theorem 2.4.10.

Topological entropy is invariant under topological conjugacy.

Proof. Suppose f : X → X and g : Y → Y are topologically conjugate systems

with conjugacy π : Y → X. If we let dX be a metric on X and a, b ∈ Y , then

dY (a, b) = dX(π(a), π(b)) defines a metric on Y . By (Lemma 2.4.9), the topological
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entropy of g calculated using dY is the same as using the native topology on Y

and, since π is an isometry in this case, it follows that h(f) = h(g).

The following proposition outlines some basic properties of topological entropy.

The proof for these facts can be found in [1].

Proposition 2.4.11.

Let f : X → X be a continuous map on a compact metric space X and let

g : Y → Y be a continuous map on a compact metric space Y . Then

1. h(fm) = m · h(f) for m ∈ N.

2. If f is invertible, then h(f−1) = h(f). Consequently, h(fm) = |m| · h(f)

for m ∈ Z.

3. If Ai, i = 1, ..., k are closed, forward f -invariant subsets of X whose

union is all of X, then

h(f) = max
1≤i≤k

h(f |Ai
)

4. h(f × g) = h(f) + h(g).

5. If g is a factor of f , then h(f) ≥ h(g).

A homeomorphism f is said to be expansive with expansiveness constant δ > 0

if for any two distinct points x, y ∈ X there is some n ∈ Z such that d(fn(x), fn(y)) ≥

δ. We can actually use expansiveness to calculate entropy via the following propo-

sition.
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Proposition 2.4.12.

Let (X, d) be a compact metric space and f : X → X an expansive homeo-

morphism with expansiveness constant δ. Then h(f) = hε(f) for any ε < δ.

Proof. Fix γ and ε where 0 < γ < ε < δ. Since X is compact, so is the set

A = {(x, y) ∈ X2 | d(x, y) ≥ γ}. Since x ̸= y, for each such (x, y) there is some

n ∈ Z such that d(fn(x), fn(y)) > δ > ε. Let k be the supremum of all such |n|

and note k ≤ ∞ by the compactness of A (form a open cover with sets of the form

Xn = {(x, y) ∈ X2 | d(fn(x), fn(y)) ≥ δ} and take a finite subcover). Thus if S is

an (n, γ)-separated set then f−k(S) is (n+ 2k, ε)-separated. Lemma 2.4.4 implies

hε(f) ≤ hγ(f). By monotonicity of cov, hε(f) ≥ hγ(f) and so hε(f) = hγ(f).

As a consequence of this proposition and Lemma 2.4.4 any expansive map f

has the property that, for ε sufficiently small,

h(f) = hε(f) = lim sup
n→∞

1

n
log(cov(n, ε, f)) = lim sup

n→∞

1

n
log(sep(n, ε, f))
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CHAPTER 3: SYMBOLIC DYNAMICS

Symbolic dynamics first appeared, in a prototypical fashion, at the very end of the

19th century when Jacques Hadamard was studying geodesic flows on negatively

curved surfaces [6]. Several decades later, symbolic dynamics became a field of

interest in its own right and interest was heightened by the development of infor-

mation theory and mathematical communication theory as pioneered by Claude

Shannon [12].

I0 I1

x

Rα(x)

R2
α(x)

R3
α(x)

R4
α(x)

R5
α(x)

Figure 3.1: Circle Rotations
Itinerary. A depiction of x’s itinerary
up to k = 5.

There are several approaches to

symbolic dynamics but the classical

viewpoint (as taken by Hadamard) is

by starting with a dynamical system

and considering the itinerary or coding

of a point x as it moves through our

space under f . Let us consider a rela-

tively straightforward example: the ir-

rational rotations of the unit circle (ex-

ample 1.2.1). Divide the circle into two halves: I0 = [0, 1
2
) and I1 = [1

2
, 1). For

each iteration of Rα, we will record whether the point falls into I0 or I1 with a 0

or a 1, respectively. Via this process, we form a binary sequence x0x1x2... where:

xk =


0 if Rk

α(x) ∈ I0

1 if Rk
α(x) ∈ I1
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For example, if we take α = π
12

and x = 0.25, the first few entries in our sequence

are 011001..., as illustrated above. We have a natural map acting on these se-

quences as a space: Rα itself. If we apply Rα to x first and consider the itinerary

of Rα(x) under Rα, we get 11001..., i.e., the sequence shifted over to the left by

one entry. From this example, we have uncovered the two basic building blocks of

symbolic dynamics–sequences and the shift operator.

3.1 Shifts

We did not need to use just 0 and 1 for our sequences. For some m ∈ N, we call

Am = {1, 2, ...,m} the alphabet of our sequence space and elements of the alphabet

are referred to as symbols. With our symbols, we can create finite sequences

called words. However, we are also quite interested in infinite sequences. We let

Σ+
m = AN0

m denote the set of all infinite (one-sided) sequences formed from our

alphabet, and similarly we let Σm = AZ
m denote the set of all infinite two-sided

sequences.

Now, Σm is our set X. Our map is the shift operator, σ : Σm → Σm, defined as

...x−2, x−1, x0, x1, x2, ...
σ7→ ...x−1, x0, x1, x2, x3, ...

or, for σ : Σ+
m → Σ+

m:

x0, x1, x2, ...
σ7→ x1, x2, x3, ...

That is, σ shifts everything to the left one spot: σ(x)i = xi+1. The systems (Σm, σ)

and (Σ+
m, σ) are referred to as the full two-sided shift and the full one-sided shift,

respectively.
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Shift space has a product topology (the topology is inherited from the topology

on our alphabet Am). The basis of this topology is cylinders, defined as

Cn1,...,nk
j1,...,jk

= {x = (xl) | xni
= ji, 1 ≤ i ≤ k}

Each cylinder is the set of sequences that have a particular value in a particular

slot. For example,

(7, 1,1,2, 3,5, 8, ...) ∈ C3,4,6
1,2,5 = {x = (xl) | x3 = 1, x4 = 2, x6 = 5}

Note that the preimage of a cylinder under σ is still a cylinder

σ−1(Cn1,...,nk
j1,...,jk

) = Cn1+1,...,nk+1
j1,...,jk

and so σ is a continuous map. On the full two-sided shift space, σ is 1-1 and onto

and the inverse map, the right shift, is continuous as well, so σ is a homeomorphism

on Σm. In addition to a topology, we have a metric:

d(x, y) = 2−k where k = min{|i| | xi ̸= yi}

Colloquially, two sequences are close together if they only start to differ far from

the 0th slot. Open balls under this metric are cylinders, specifically,

B(x, 2−k) = C−k,−k+1,...,k−1,k
x−k,x−k+1,...,xk−1,xk

and so the topology and the metric coincide.
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Proposition 3.1.1.

The periodic points of (Σm, σ) are dense in Σm under the product topology.

Proof. Since open balls are cylinders, consider an arbitrary open ball

B(x, 2−k) = C−k,−k+1,...,k−1,k
x−k,x−k+1,...,xk−1,xk

Let p = (..., x−k, x−k+1, ..., xk−1, xk, ...) be the sequence that repeats x−k, x−k+1, ..., xk−1, xk,

with x0 = x in the zeroth spot. Under a shift by 2k places, p is fixed, so σ2k(p) = p,

hence p is periodic. Note p ∈ C−k,−k+1,...,k−1,k
x−k,x−k+1,...,xk−1,xk

by design and, since the cylinder

was arbitrary, any open set has a periodic point.

The following proposition will help us compute the entropy of certain maps on

Σm.

Proposition 3.1.2.

The full one-sided and the full two-sided shifts are both expansive with

expansiveness constant 1.

Proof. Let x, y ∈ Σ+
m be distinct. Let k be such that d(x, y) = 2−k. So, for all i <

k, xi = yi. Note σk(x)0 = xk and σk(y)0 = yk, thus d(σk(x), σk(y)) = 2−k+k = 1.

The proof for Σm works similarly, with k − 1 possibly replaced with −k + 1.

3.2 Subshifts

For the remainder of this section, we will be focused on Σm. Just as in topological

dynamics, we are interested in subsets of Σm that are closed and shift-invariant.

This motivates the following definition:
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Definition 3.2.1. (Subshift)

A subshift of a shift space (Σm, σ) is a subset X ⊆ Σm that is closed and

σ-invariant.

Example 3.2.2. Let m = 2 and consider the subset X of Σm defined as

X = {x = (xi = i mod 2), y = (yi = i+ 1 mod 2)}

That is, X is the set of the two sequences that alternate between 0 and 1 in

each slot. Since σ(x) = y and σ(y) = x, X is a subshift. The word "shift" is

thrown around a lot in symbolic dynamics and this example is meant to serve as

a reminder that a shift is a map while a subshift is a set.

Example 3.2.3. Let x ∈ Σm be some fixed sequence. Then O(x) is a subshift of

Σm, since it is clearly closed and σ-invariant by construction.

Conjugacy between subshifts (and between shift spaces in general) is given the

name code. Letting X ⊆ Σm and Y ⊆ Σn be subshifts, a code c : X → Y is a

continuous map such that the usual commutativity σ ◦ c = c ◦ σ holds. Note that

Σm is always a compact space (since the farthest apart two points can be is 1)

and so if c is bijective we have a topological conjugacy as well.

Having learned about topological dynamics, we may be interested to compute

the entropy of the shift space. To that end, let Wn(X) be the set of all words

of length n that appear in a subshift X. As is the usual convention, let |Wn(X)|

denote the cardinality of this set.
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Proposition 3.2.4.

Let X ⊆ Σm be a subshift. Then the topological entropy of σ|X is

h(σ|X) = lim
n→∞

1

n
log |Wn(X)|

Proof. By Proposition 3.1.2, σ (and therefore σ|X) is expansive and Proposi-

tion 2.4.12 implies that, for ε sufficiently small,

h(σ|X) = lim sup
n→∞

1

n
log(sep(n, ε, f))

I claim that sep(n, ε, f) = |Wn(X)|. To see why, let 1 > ε > 0. Define xw to be

a sequence in X such that the word w occurs starting at the 0th position (such

a xw exists since X is shift invariant). Let C = {xw | w ∈ Wn(X)}. I claim

C is an (n, ε)-separated set of maximum cardinality. Note that, for any distinct

w, u ∈ Wn(X), xw and xu must differ in some position 0 ≤ i ≤ n. Thus

dn(xw, xu) = max
0≤k≤n−1

d((σ|X)k(xw), (σ|X)k(xu)) = 1 > ε

So this is indeed an (n, ε)-separated set. This separated set has cardinality

|Wn(X)| and is the biggest such set since if we add one more element to C

then we will match up with some xw in slots 0, 1, ..., n − 1, some f(xu) in slots

−1, 0, 1, ..., n− 2, and so on.
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3.3 SFTs and Sofic Shifts

Since a subshift X ⊆ Σm is a closed set, its complement XC ⊆ Σm is open and,

by our topology, is the union of at most a countable number of cylinders. Since

X is invariant under σ and its inverse, Σm\X must be as well; for any cylinder

C = Cn1,...,nk
j1,...,jk

in Σm\X and for any n ∈ Z, σn(C) ⊆ Σm\X.

Fix a cylinder C = Cn1,...,nk
j1,...,jk

in this complement and consider the set of words

of the form

w = (j1, x0, ..., xi, j2, xi+1, ..., xn, jk) ∈ Wn(C)

where the x’s are arbitrary elements of our alphabet A and each ji is in the nth
i

slot. For example

C4,5,8
3,1,2 → F = {(3, 1, x1, x2, 2) | x1, x2 ∈ A}

If our alphabet is A = {1, 2, 3} then

F = {(3, 1, 1, 1, 2), (3, 1, 1, 2, 2), (3, 1, 1, 3, 2),

(3, 1, 2, 1, 2), (3, 1, 2, 2, 2), (3, 1, 2, 3, 2),

(3, 1, 3, 1, 2), (3, 1, 3, 2, 2), (3, 1, 3, 3, 2)}

By design, any sequence containing any word in F starting at the 4th entry in

the sequence is contained in C4,5,8
3,1,2 ⊆ Σm\X. Shift invariance tells us that any

sequence containing any of these words starting at any point in the sequence is
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also in Σm\X. Every cylinder C ⊆ Σm\X has a finite set of words FC of this form

associated to it, and so

F =
⋃

C is a cylinder
and C ⊆ Σm\X

FC

is countable. We call F the list of forbidden words of X, since if a word is in F ,

any sequence containing that word must be in Σm\X and thus cannot appear in

X itself. We are forbidden from allowing any sequence with a word w ∈ F to

appear in X.

Example 3.3.1. Σm is a subshift of itself and F = ∅.

Example 3.3.2. Let A = {0, 1} and let F = {(0)}. Then X = {(..., 1, 1, 1, ...)}

since the only allowable entry is 1.

Furthermore, any sequence in Σm\X must have one of these forbidden words

since it has to be in one of those cylinders. We can thus conclude that a subshift

X is completely determined by its list of forbidden words, which allows us to make

the following definition.

Definition 3.3.3. (Subshift of Finite Type)

If a subshift X has a list of forbidden words F that is finite, then X is a

subshift of finite type, usually abbreviated as SFT.

Example 3.3.4. The system in example 3.3.2 is a subshift of finite type, since

|F| = 1.

Subshifts of finite type are closely related to directed graphs and their corre-

sponding adjacency matrices, which makes them more tractable than other dy-

namical systems. Consequently, subshifts of finite type have been of particular
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interest to dynamical systems research as a tool for understanding less transpar-

ent problems. In fact, Hadamard’s original work was with a subshift of finite type

[6].

2

1 3

Figure 3.2: An Example of a Fi-
nite Directed Graph. An example
of a finite directed graph.

Seeking to understand this connection,

let Γ be a finite directed graph on vertices

v1, ..., vm. These vertices correspond to the

letters in our alphabet A = {1, ...,m}. We

can view sequences as infinite walks in our

directed graph and we call the resulting

space the vertex shift space, denoted ΣΓ.

If all possible edges are in place we have Σm; if some are missing we obtain a

subshift X ⊆ Σm. Let AΓ be the adjacency matrix for our graph with entries

of the form axi,xj
. A word x = (xi) is said to be allowed (i.e., not forbidden) if

axi,xi+1
̸= 0 for all i.

Example 3.3.5. If we let Γ be the digraph pictured above, then our adjacency

matrix is

AΓ =


1 1 0

0 0 1

0 1 0


Here, our allowed and forbidden words of length 1, 2, and 3 are
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Length Allowed Words Forbidden Words

1 (1), (2), (3) None.

2 (1, 1), (1, 2), (2, 3), (3, 2) (2, 1), (2, 2), (3, 3), (1, 3), (3, 1)

3 (1, 1, 1), (1, 1, 2), (1, 2, 3), (2, 3, 2), (3, 2, 3) No new words.*

(*): All forbidden words of length 3 have a forbidden word of length 2 as a com-

ponent.

Here, |F| = 5, and so we do indeed have an induced subshift of finite type.

In fact, all forbidden words of a finite directed graph can be build from a finite

number of forbidden words of length 2, each representing a missing edge in the

directed graph.

Making this relationship between subshifts of finite type and vertex shift sys-

tems more formal:

Proposition 3.3.6.

Every subshift of finite type is isomorphic to a vertex shift.

Proof. Let X be a subshift of finite type with forbidden words length k + 1 or

smaller. Recalling that Wk(X) is the set of all words in X of length k, form the

directed graph Γ with vertices the elements of Wk(X) and a directed edge from

vertex (x1, ..., xk) to vertex (y1, ..., yk) if

(x1, ..., xk, yk) = (x1, y1, ..., yk) ∈ Wk+1(X) (3.1)

Let ΣΓ denote the shift space of the directed graph. I claim the code c : X → ΣΓ

defined as c(x)i = xi, ..., xi+k−1 gives an isomorphism from X to the vertex shift
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space. To see why, first note that c is clearly injective, and c is also onto since

any arbitrary sequence in ΣΓ, call it γ = (..., x0, x1, x2, ...) = (xi) is produced by

applying c to x = (..., x0, xk, x2k, ...) = (xi). Lastly, c commutes with σ since

c(σ(..., x0︸︷︷︸
0

, x1, x2, ...)) = c(..., x1︸︷︷︸
0

, x2, x3, ...)

= (..., x1︸︷︷︸
0

, x2, ..., xk, x2, x3, ..., xk+1, ...)

= σ(..., x0︸︷︷︸
0

, x1, ..., xk−1, x1, x2, ..., xk, ...) (⋆)

= σ(c(..., x0︸︷︷︸
0

, x1, x2, ...))

Where the 0th place is indicated for clarity and (⋆) follows from the fact that

vertices in the shift space are indexed by words of length k and so the shift operator

shifts by k letter-entries by the definition of adjacency in our graph (equation 3.1).

For example, let X ⊆ Σ3 and let F = {(1), (2, 2, 3)}. Then k = 2 and Γ is:

3,2 3,3

2,3 2,2

Figure 3.3: Digraph of Γ. Our digraph Γ for our example.

In this example, we could have c(3, 2, 3, 3, 2, ...) = (3, 2, 2, 3, 3, 3, 3, 2, ...).

Corollary 3.3.7.

Every subshift of finite type is isomorphic to an edge shift space and every

edge shift space is isomorphic to a subshift of finite type.
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Now we can comfortably claim that subshifts of finite type and vertex shift

spaces on finite directed graphs are inexorably linked: every subshift of finite type

is a vertex shift space and every vertex shift space is a subshift of finite type. The

following proposition shows how viewing SFT’s as finite directed graphs can yield

nice results.

Proposition 3.3.8.

Let X be a subshift of finite type. The number of fixed points of (X, σ) is

tr(AΓ), where AΓ is the adjacency matrix of the associated directed graph.

Proof. Note that fixed points of (X, σ) are x ∈ Σm such that σ(x) = x; that is,

the constant sequences. The allowed constant sequences in X are precisely the

ones that have a path from their corresponding vertex to back to itself. These are

in a one-to-one correspondence with the entries along the diagonal of AΓ, and this

tr(AΓ) is indeed the number of fixed points.

Example 3.3.9. Reconsidering example 3.3.5, the trace of AΓ is 1, and indeed

the only fixed element is the infinite sequence of all 1’s: (..., 1, 1, 1, ...).

Definition 3.3.10. (Sofic Shift)

A sofic shift is a factor of a shift of finite type. That is, given subshifts

X, Y ⊆ Σm where X is a subshift of finite type, Y is a sofic shift if there exists

an injective code c : Y → X such that c ◦ σ = σ ◦ c.

Y X Σm

Y X Σm

c

σ

i

σ σ

c i
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One way to think about sofic shifts is as finite, labeled, directed graphs like

subshifts of finite type, but the vertices of a sofic shift graph are not required to

have unique labels.

Example 3.3.11. The classic example of a sofic shift is the even system due to

Benjamin Weiss [13]. It is usually presented as an edge shift system:

u v

1

1

0

Figure 3.4: A Presentation of the Even Shift. A presentation of the even
shift.

Here, a sequence is generated by a walk along the edges. For example,

(0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, ...) ∈ X

Note that only even-length strings of consecutive 1’s can appear, hence the name.
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CHAPTER 4: β-EXPANSIONS

As is mentioned in the previous section, symbolic dynamics were originally in-

troduced to simplify larger systems. But which symbolic systems are useful? A

subclass of symbolic systems, called β-expansions, have applications to fractals

and number theory [10], as well as coding theory [9].

A β-expansion is also called a "non-integer base of enumeration," i.e., an al-

ternative to an integer-based enumeration like base-10 or base-2. In order to

understand the mechanics of β-expansions, we will first examine traditional base-

2 expansions using the tools that will be helpful to us later. We can view digital

expansions as itineraries of a dynamical system, similar to the introductory ex-

ample in section 3. The system we use is the interval [0, 1] coupled with the map

f : [0, 1] → [0, 1] defined as

f(x) =


2x if x < 1

2

2x− 1 otherwise

To build our itinerary, we partition our unit interval [0, 1] into [0, 1
2
) and [1

2
, 1]. If

our point lands in [0, 1
2
) we get a 0 in the expansion and if it lands in [1

2
, 1] we

get a 1. That is, letting X be the set of all possible sequences found in this way,

define the itinerary map τ : [0, 1] → X ⊆ Σ+
2 as

τ(x) = (ω0(x), ω1(x), ...)
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where ωi is defined as

ωi(x) =


0 if f i(x) < 1

2

1 otherwise

For example, if we expand 0.15 in this way, our cobweb diagram looks like:

Figure 4.1: Base-2 Transformation. In this system, 0.15 is an eventually
periodic point with period 4. The cycle is indicated in blue.

So our sequence is (ω0, ω1, ...) = (0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, ...). We can

make this a genuine digital expansion by projecting from the space of possible

sequences X ⊆ Σ+
2 to [0, 1] via the map π defined as

π(ω0, ω1, ...) =
∞∑
i=0

ωi2
−i−1

In a base-2 enumeration, this gives us the binary expansion of 0.15 as 0.001001100110011....

Tying all our maps together, we have the following commutative diagram:

X X

[0, 1] [0, 1]

π

σ

πτ

f

τ

These ideas generalize to when we expand about some arbitrary number β, rather

than just 2.
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4.1 General β-Expansions

When specifying a β-expansion, we actually have two parameters: β, which can

be thought of as our "dilation" parameter, and an α, which will be our translation

parameter. We usually restrict β ∈ (1, 2) and α ∈ [0, 2−β]. Our maps, which will

be analogous to our f above, will be

T±
β,α :

[
−α
β − 1

,
1− α

β − 1

]
→
[

−α
β − 1

,
1− α

β − 1

]

defined as

T+
β,α(x) =


βx+ α if x < p

βx+ α− 1 otherwise

T−
β,α(x) =


βx+ α if x ≤ p

βx+ α− 1 otherwise

where our cut-off point is p = 1−α
β

. These are called our β-transformations. Notice

the difference between the "+" and "−" maps is the inequality, where the "+" map

has a < and the "−" map has a ≤. In our initial example, f = T+
2,0. Some more

examples of these maps are the "greedy" and "lazy" β-transformations, which are

denoted Gβ and Lβ respectively, and are defined as

Gβ :

[
0,

1

β − 1

]
→
[
0,

1

β − 1

]

Gβ(x) = T+
β,0(x) =


βx if x < 1

β

βx− 1 otherwise

48



and

Lβ :

[
β − 2

β − 1
, 1

]
→
[
β − 2

β − 1
, 1

]

Lβ(x) = T−
β,2−β(x) =


βx+ 2− β if x ≤ 1− 1

β

βx+ 1− β otherwise

Example 4.1.1. For the following, let β = 7
4
. Note this implies 1

β−1
= 4

3
and

β−2
β−1

= −1
3
, and so the greedy and lazy transformations are defined onG 7

4
:
[
0, 4

3

]
→[

0, 4
3

]
and L 7

4
:
[
−1

3
, 1
]
→
[
−1

3
, 1
]

as

G 7
4
(x) = T+

7
4
,0
(x) =


7
4
x if x < 4

7

7
4
x− 1 otherwise

L 7
4
(x) = T−

7
4
,− 1

4

(x) =


7
4
x+ 1

4
if x ≤ 3

7

7
4
x− 3

4
otherwise
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4
3

4
3

4
7 1

−1
3

3
7

Figure 4.2: Greedy and Lazy Transformations. We have the greedy (left)
and lazy (right) expansions depicted. The gray square represents the domain of
the respective systems. The red square represents the trapping region.

Proposition 4.1.2.

The interval [0, 1] is a trapping region for any β-transformation T±
β,α.

Proof. Let x ∈ [0, 1]. If x = p = 1−α
β

, then T+
β,α(x) = β

(
1−α
β

)
+ α − 1 = 0 and

T−
β,α(x) = β

(
1−α
β

)
+ α = 1, both of which are in [0, 1]. If 0 ≤ x < p = 1−α

β
, then

0 ≤ α ≤ βx+ α < 1

If p = 1−α
β

< x ≤ 1, then

0 < βx+ α− 1 ≤ β + α− 1

and since α ∈ [0, 2− β], α + β − 1 ≤ 1.
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Figure 4.3: Trapping Regions for Greedy and Lazy Transformations.
Looking at the previous example (example 4.1.1), our trapping regions look this for
the greedy (left) and lazy (right) β-transformations.

4.2 β-Shifts

The next step is to look at the itinerary of a point under these transformations.

To that end, just as we did before, we define the expansion maps τ±β,α(x) as

τ±β,α(x) :

[
−α
β − 1

,
1− α

β − 1

]
→ Σ+

2

τ±β,α(x) = (ω±
0 (x), ω

±
1 (x), ...)

where each ω±
i is defined as

ω+
i (x) =


0 if (T+

β,α)
i(x) < p

1 otherwise

ω−
i (x) =


0 if (T−

β,α)
i(x) ≤ p

1 otherwise

Again, our cut-off point is p = 1−α
β

. Note that the image of τ+β,α(x) and τ−β,α(x)

will be some subsets of Σ+
2 ; call them Ω+

β,α and Ω−
β,α, respectively, and set Ωβ,α =

Ω+
β,α ∪ Ω−

β,α.

Proposition 4.2.1.

Ωβ,α is a subshift of Σ+
2 . That is, it is closed and forward-shift invariant.
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Proof. First, note that Ωβ,α is forward-shift invariant since

σ(τ±β,α(x)) = (ω±
1 (x), ω

±
2 (x), ...) = τ±β,α(T

±
β,α(x))

and T±
β,α(x) ∈

[
−α
β−1

, 1−α
β−1

]
. To show Ωβ,α is closed, let (ai)j ∈ Ωβ,α be a sequence

of sequences in Ωβ,α. Note

lim
j→∞

(ai)j = lim
j→∞

(ω(aj)0, ω(aj)1, ...)

= lim
j→∞

τ±β,α(aj)

If xj ̸→ p, then we’re done, since τ±β,α is continuous away from p. If xj → p, then

τ±β,α(xj) → τ+β,α(p) = (0, 0, 0, ...) or τ±β,α(xj) → τ−β,α(p) = (1, 1, 1, ...). In either case,

the limit point is in Ωα,β.

Similar to our prototypical example at the beginning of this section, there is

a projection map πβ,α : Ωβ,α →
[

−α
β−1

, 1−α
β−1

]
that operates as a left-inverse to τ±β,α

defined by

πβ,α(ω0, ω1, ...) =
α

1− β
+

∞∑
i=0

ωiβ
−i−1

Again we can construct the following commutative diagram:

Ωβ,α Ωβ,α

[
−α
β−1

, 1−α
β−1

] [
−α
β−1

, 1−α
β−1

]πβ,α

σ

πβ,ατ±β,α

T±
β,α

τ±β,α
(4.1)
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The fact that this diagram commutes follows from the definition of the maps, see

[8] for more details. Note as well that the systems (Ω±
β,α, σ) and

([
−α
β−1

, 1−α
β−1

]
, T±

β,α

)
are topologically conjugate.

4.3 Kneading Invariants and Matching

Since SFT’s are of interest in symbolic dynamics, it is natural to ask when Ωβ,α

is an SFT. There is a characterization of such Ωβ,α spaces in terms of its kneading

invariants.

Definition 4.3.1. (Kneading Invariants)

Let β ∈ (1, 2) and α ∈ [0, 2− β]. We call τ+β,α(p) and τ−β,α(p), the itineraries of

the cut-off point, the upper and lower kneading invariant of Ωβ,α, respectively.

The following theorem is due to Ito and Takahashi [8] and explains how knead-

ing invariants and SFTs are connected.

Theorem 4.3.2.

For β ∈ (1, 2) and α ∈ [0, 2− β], the subshift Ωβ,α is a subshift of finite type

if and only if σ(τ+β,α(p)) and σ(τ−β,α(p)) are both periodic.

Since (Ωβ,α, σ) and ([0, 1], T±
β,α) are topologically conjugate, if T+

β,α(p) and

T−
β,α(p) are both periodic then so are σ(τ+β,α(p)) and σ(τ−β,α(p)), so when trying

to show Ωβ,α is a subshift of finite type it is usually easier to demonstrate that

T+
β,α(p) and T−

β,α(p) are both periodic. Note that

T+
β,α(p) = β

(
1− α

β

)
+ α− 1 = 0 and T−

β,α(p) = β

(
1− α

β

)
+ α = 1
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and so in studying the periodicity of T+
β,α(p) and T−

β,α(p), we often consider the

equivalent periodicity of 0 and 1 under successive applications of T±
β,α. Sometimes,

after some n iterations, (T+
β,α)

n(0) and (T−
β,α)

n(1) will coincide; when that occurs,

the periodicity of 0 and 1 are intimately linked. The next definition seeks to

formalize this.

Definition 4.3.3. (Matching)

If there is some n ∈ N such that (T+
β,α)

n(0) = (T−
β,α)

n(1), then the systems

([0, 1], T+
β,α) and ([0, 1], T−

β,α) are said to experience matching. The smallest

such n where this equality holds is referred to as the matching exponent.

Note that other contexts allow unequal matching exponents and define match-

ing equivalently as (T+
β,α)

n(0) = (T−
β,α)

k(1) for n, k ∈ N.

Figure 4.4: Matching Example. If we let β be the golden ratio and α = 0.1,
then matching occurs at n = 2.

Matching has recently attracted attention in the study of iterated piecewise

maps and has been used to perform entropy calculations and find invariant mea-

sures. Our interest in matching is summarized in the following theorem. This idea

appears in [11] but is formalized here.
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Theorem 4.3.4.

Suppose ([0, 1], T+
β,α) and ([0, 1], T−

β,α) experience matching. Then τ+β,α(p) is

periodic if and only if τ−β,α(p) is periodic.

Note that we’re proving that τ+β,α(p) is periodic if and only if τ−β,α(p) is periodic,

and the fact that σ(τ+β,α(p)) is periodic if and only if σ(τ−β,α(p)) is periodic follows

immediately.

Proof. We will show periodicity of τ−β,α(p) implies τ+β,α(p) is periodic; the other

direction follows almost identically.

By the commutative diagram (4.1), periodicity of τ−β,α(p) implies that p is

periodic under T−
β,α. That is, for some n ∈ N, (T−

β,α)
n(p) = p. Let n be the minimal

n such that this occurs. Now let k be the matching exponent and let j ∈ N be

the minimal natural number such that j · n > k. Since T+
β,α

and T−
β,α coincide

everywhere on [0, 1] except at p, (T+
β,α

)i(0) = (T−
β,α)

i(1) for i ∈ {k, ..., j · n − 1}.

We have

(T+
β,α)

j·n(p) = (T+
β,α)

j·n−1(0)

= (T−
β,α)

j·n−1(1) by matching

= (T−
β,α)

j·n(p)

= p by periodicity

Thus (T+
β,α)

j·n(p) = p, so p is periodic under T+
β,α. Thus τ+β,α(p) is periodic.

Now, instead of confirming that both σ(τ+β,α(p)) and σ(τ−β,α(p)) are both peri-

odic, it is enough to check one and confirm matching. Fixing a β, the proof of
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theorem 1 in [11] demonstrates that the α for which τ+β,α(p) is periodic is dense

in the interval [0, 2 − β]. Thus, if we can show matching occurs for α in some

subinterval of [0, 2 − β], we can conclude that the set of α for which Ωβ,α is a

subshift of finite type is dense in that subinterval. We will see examples of this in

the next sections.

4.4 Matching Symmetry

The plastic number, commonly denoted as ρ, is the unique real solution to x3 =

x+ 1. It has exact value

ρ =
3

√
9 +

√
69

18
+

3

√
9−

√
69

18
≈ 1.32471...

Proposition 4.4.1. [Zieber]

Let β be the plastic number. Then for α in the subintervals

[
0,

2− β2

1 + β + β2 + β3

)
and

(
β2 + β + 1

1 + β + β2 + β3
, 2− β

]

Tβ,α experiences matching, and thus the α for which Ωβ,α is a subshift of finite

type is dense in these subintervals.

Proof. We will first demonstrate that for any α in the first interval,

τ+β,α(0) = (0, 0, 0, 0, 0, ...) and τ−β,α(1) = (1, 0, 0, 0, 1, ...)
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We begin with the left equality. Note 0 < 1−α
β

(since 1 ≤ 2−β ≤ α), so ω+
0 (0) = 0.

This implies the first iterate is of the form α.

For ω+
1 (0), note

(β + 1)α < (β + 1)
2− β2

1 + β + β2 + β3
= 0.0889776... < 1

thus (β + 1)α < 1 and α < p, so ω+
1 (0) = 0. This implies the second iterate is of

the form α(1 + β).

For ω+
2 (0), note

α(1 + β) · β +α = α(1 + β + β2) < (1 + β + β2)
2− β2

1 + β + β2 + β3
= 0.156145... < 1

thus α(1 + β) · β + α < 1 and α(1 + β) < p, so ω+
2 (0) = 0. This implies the third

iterate is of the form α(1 + β + β2).

For ω+
3 (0), note

α(1 + β + β2) · β + α = α(1 + β + β2 + β3)

< (1 + β + β2 + β3)
2− β2

1 + β + β2 + β3

= 0.245122... < 1

thus α(1 + β + β2) · β + α < 1 and α(1 + β + β2) < p, so ω+
3 (0) = 0. This implies

the fourth iterate is of the form α(1 + β + β2 + β3) = α(2 + 2β + β2).

For ω+
4 (0), note

α(2 + 2β + β2) · β + α = α(1 + 2β + 2β2 + β3)
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< (1 + 2β + 2β2 + β3)
2− β2

1 + β + β2 + β3

= 0.362993... < 1

thus α(2+2β+β2) ·β+α < 1 and α(2+2β+β2) < p, so ω+
4 (0) = 0. This implies

the fifth iterate is of the form α(2 + 2β + β2)β + α = α(2 + 3β + 2β2).

Now we will demonstrate the right equality. Note 1 > 1−α
β

(since β > 1 >

1− α), so ω−
0 (1) = 1. This implies the first iterate is of the form α + β − 1.

For ω−
1 (1), note

β(α+β−1)+α = α(β+1)−β+β2 < (β+1)
2− β2

1 + β + β2 + β3
−β+β2 = 0.519137... < 1

thus β(α + β − 1) + α < 1 and α + β − 1 < p, so ω−
1 (1) = 0. This implies the

second iterate is of the form α(β + 1)− β + β2.

For ω−
2 (1), note

β(α(β + 1)− β + β2) + α = α(β2 + β + 1)− β2 + β3

< (β2 + β + 1)
2− β2

1 + β + β2 + β3
− β2 + β3

= 0.725985... < 1

thus β(α(β +1)− β + β2) +α < 1 and α(β +1)− β + β2 < p, so ω−
2 (1) = 0. This

implies the third iterate is of the form α(β2 + β + 1)− β2 + β3 = α(β2 + β + 1) +

1 + β − β2.
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For ω−
3 (1), note

β(α(β2 + β + 1) + 1 + β − β2) + α = α(β3 + β2 + β + 1) + β + β2 − β3

= α(β2 + 2β + 2)− 1 + β2

< (β2 + 2β + 2)
2− β2

1 + β + β2 + β3
− 1 + β2

= 1

Note the strict equality here–thus the interval in the proposition statement is

the maximal interval for which the itineraries are of the desired form. Therefore

β(α(β2+β+1)+1+β−β2)+α < 1 and α(β2+β+1)+1+β−β2 < p, so ω−
3 (1) = 0.

This implies the fourth iterate is of the form β(α(β2 + β + 1)+ 1+ β − β2) + α =

α(β2 + 2β + 2)− 1 + β2.

Lastly, for ω−
4 (1), note

β(α(β2 + 2β + 2)− 1 + β2) + α = α(β3 + 2β2 + 2β + 1)− β + β3

= α(2β2 + 3β + 2) + 1

> 1

thus β(α(β2+2β+2)−1+β2)+α > 1 and α(β2+2β+2)−1+β2 > p, so ω−
4 (1) = 1.

This implies the fifth iterate is of the form β(α(β2 + 2β + 2)− 1 + β2) + α− 1 =

α(2β2 + 3β + 2).

The fifth iterates of 0 and 1 are both α(2β2 + 3β + 2), and so

(T+
β,α)

4(0) = (T−
β,α)

4(1)
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and we have matching. The computations for showing matching occurs in(
β2+β+1

β3+β2+β+1
, β − 2

]
run similarly.

Notice that these computations involve a significant number of polynomials of

β with integer coefficients. Hence it is natural to investigate other values of β that

are algebraic over Z. Indeed we can show similar results for other β ∈ (1, 2); in

particular, the largest real solution of x3 = x2+1, known as the supergolden ratio

ψ, and the largest real solution of x5 = x4 + x2 + 1. For context, the supergolden

ratio has exact form

ψ =
1 + 3

√
29+3

√
93

2
+ 3

√
29−3

√
93

2

3
≈ 1.46557...

while the largest real solution to x5 = x4 + x2 + 1 is approximately 1.570147.

Proposition 4.4.2. [Zieber]

Let β be the supergolden ratio. Then for α in the subintervals

[
0,

1

β3 + β2 + β + 1

)
and

(
β2 + 1

β3 + β2 + β + 1
, 2− β

]

Tβ,α experiences matching, and thus the α for which Ωβ,α is a subshift of finite

type is dense in these subintervals.
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Proposition 4.4.3. [Zieber]

Let β be the largest real solution to x5 = x4 + x2 + 1. Then for α in the

subintervals

[
0,

1

1 + β + β2 + β3 + β4 + β5

)
and

(
β4 + β2 + 1

1 + β + β2 + β3 + β4 + β5
, 2− β

]

Tβ,α experiences matching, and thus the α for which Ωβ,α is a subshift of finite

type is dense in these subintervals.

This property that there are intervals of matching for relatively small and large

α is not common to all Tβ,α. For β = 1.5, there is no matching for a significant

interval of small α in the first 20 iterations (see figure 4.13).

However, there is another generalization that can be made. Notice that in

each case we have symmetry; in fact, the two intervals in each pair are the same

length. This observation is generalized in the following theorem, which is probably

folklore.

Theorem 4.4.4. [Zieber]

Tβ,α experiences matching if and only if Tβ,2−β−α experiences matching. That

is, the set of α ∈ [0, 2 − β] for which Tβ,α experiences matching is symmetric

about the midpoint 1− β
2
.

Before we prove the result, we require the following lemma.
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Lemma 4.4.5.

(T+
β,α)

n(x) = 1− (T−
β,2−β−α)

n(1−x) and (T−
β,α)

n(x) = 1− (T+
β,2−β−α)

n(1−x)

for all n ∈ N.

Proof. We will prove the left equality, and the right equality follows by swapping

the roles of ≤ and <.

We proceed by induction. For the base case (n = 1):

1− T−
β,2−β−α(1− x) =


1− (β(1− x) + 2− β − α) 1− x ≤ 1− 1−α

β

1− (β(1− x) + 2− β − α− 1) 1− x > 1− 1−α
β

=


βx+ α− 1 x ≥ 1−α

β

βx+ α x < 1−α
β

= T+
β,α(x)

Suppose the result holds for 1 ≤ k ≤ n. Note

(T+
β,α)

n(x) = 1− (T−
β,2−β−α)

n(1− x)

T+
β,α((T

+
β,α)

n(x)) = 1− T−
β,2−β−α(1− (1− (T−

β,2−β−α)
n(1− x)))

(T+
β,α)

n+1(x) = 1− T−
β,2−β−α((T

−
β,2−β−α)

n(1− x))

(T+
β,α)

n+1(x) = 1− (T−
β,2−β−α)

n+1(1− x)

and so the identity holds.

62



Now, for the proof of the main theorem:

Proof. For the forwards direction, suppose Tβ,α experiences matching with match-

ing exponent n. Then

1− (T−
β,2−β−α)

n(1) = (T+
β,α)

n(0)

= (T−
β,α)

n(1)

= 1− (T+
β,2−β−α)

n(0)

So (T−
β,2−β−α)

n(1) = (T+
β,2−β−α)

n(0), thus Tβ,2−β−α experiences matching. This

logic is reversible, and so reverse direction holds as well.

4.5 Methods

One of the main tools in finding examples of symmetric matching was a dynamic

cobweb diagram built in Mathematica. We were able to dynamically adjust β, α,

and the number of iterations and see the effect on the trajectories of 0 and 1.
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Figure 4.5: Dynamic Cobweb Module Stills. Some stills of the dynamic
cobweb module.

This tool allowed us to investigate particular values of β and confirm that,

when adjusting α, matching occurs in intervals. For the code, see Appendix B.

The other main tool that we developed was a "matching chart", which is a

graph created by sampling α ∈ [0, 2−β] and checking the first N iterations to see

if matching occurs. For example, the matching chart for the supergolden ratio is:
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Figure 4.6: Supergolden Ratio Matching Chart. Matching chart for the
supergolden ratio.

The horizontal axis is the α axis and the vertical axis is the number of iterations

it took to match. So the horizontal line at 3 on the left indicates that matching

occurred after 2 iterations for values of α ∈ [0,∼ 0.13). Red points at the top

indicate that, for that α, no match was found in the first N = 25 iterations. This

matching chart for the supergolden ratio clearly reflects the matching symmetry

we proved in Theorem 4.4.4 (note that the chart will not be perfectly symmetrical

since we are not sampling symmetrically). Similarly, we have the matching chart

for the plastic number and the largest real solution to x5 = x4 + x2 + 1 below.
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Figure 4.7: Plastic Number Matching Chart. Matching chart for the plastic
number.

Figure 4.8: Quintic Root Matching Chart. Matching chart for the largest
real solution to x5 = x4 + x2 + 1.

Additionally, it was shown in [2] that for β equal to the golden ratio Tβ,α

experiences matching for all α. This is confirmed by the matching chart for the

golden ratio.
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Figure 4.9: Golden Ratio Matching Chart. Matching chart for the golden
ratio.

The golden ratio is an example of a multinacci number, the largest solution to

xn = xn−1+xn−2+· · ·+x+1. In [11], it was shown that the N th multinacci number

experiences matching at step N for all α. For the 3rd, 4th, and 5th multinacci

numbers, we have numerical confirmation.

Figure 4.10: Third Multinacci Number Matching Chart. Matching chart
for the third multinacci number.
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Figure 4.11: Fourth Multinacci Number Matching Chart. Matching chart
for the fourth multinacci number.

Figure 4.12: Fifth Multinacci Number Matching Chart. Matching chart
for the fifth multinacci number.

For the code used to generate these charts, see Appendix C.
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Figure 4.13: β = 1.5 Matching Chart. Here, we confirm that there is no
apparent matching for β = 1.5.

4.6 Future Work

Several questions arose during our investigations that have not yet been fully

explored. For example, much of the literature (including this thesis) has focused

on fixing a β and investigating which values of α produce matching (or an SFT).

It would be equally interesting to instead fix α and see which β produce matching.

By considering the dynamic cobweb diagrams, it seems probable that the following

conjecture is true.

Conjecture 4.6.1.

For a fixed 0 < α < 1, the β such that Tβ,α experiences matching is dense in

(1, 2− α).

Additionally, all of the examples in section 4.4 are Pisot numbers: real algebraic

numbers greater than 1 whose Galois conjugates have moduli all strictly less than

1. Results about algebraic numbers and how they produce matching and subshifts
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of finite type have been largely restricted to Pisot numbers since they have nice

properties. Salem numbers are similar to Pisot numbers, but with a twist. They

are real algebraic numbers whose Galois conjugates have moduli less than or equal

to 1 and at least one conjugate root with modulus equal to 1. Results on how Tβ,α

behaves when β is strictly a Salem number are sparse. Below is a matching graph

for a Salem number:

Figure 4.14: Salem Number Matching Chart. Here, β is the largest real
root of Lehmer’s polynomial, which is P (x) = x10+x9−x7−x6−x5−x4−x3+x+1.
Matching at smaller exponents for rational α seems much more sparse with Salem
numbers than with Pisot numbers.
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APPENDIX A: CODE FOR ARNOLD’S CAT MAP

1 import os , sys

2

3 from PIL import Image

4 from PIL . Image import open as load_pic , new as new_pic

5

6 de f main ( path , i t e r a t i o n s , keep_al l=False , name="arnold_cat

−{name}−{index } . png" ) :

7 """

8 Params

9 path : s t r

10 path to photograph

11 i t e r a t i o n s : i n t

12 number o f i t e r a t i o n s to compute

13 name : s t r

14 f o rmattab le s t r i n g to use as template f o r f i l e

names

15 """

16 t i t l e = os . path . s p l i t e x t ( os . path . s p l i t ( path ) [ 1 ] ) [ 0 ]

17 counter = 0

18 whi le counter < i t e r a t i o n s :

19 with Image . open ( path ) as image :

20 pr in t ( type ( image ) )
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21 width = 256

22 he ight = 256

23 dim = ( width , he ight )

24 with new_pic (mode="RGB" , s i z e=dim) as canvas :

25 f o r x in range ( width ) :

26 f o r y in range ( he ight ) :

27 nx = (2 ∗ x + y) % width

28 ny = (x + y) % he ight

29

30 canvas . pu tp ix e l ( ( nx , height−ny−1) ,

image . g e t p i x e l ( ( x , height−y−1) ) )

31

32 i f counter > 0 and not keep_al l :

33 os . remove ( path )

34 counter += 1

35 pr in t ( counter , end="\ r " )

36 path = name . format (name=t i t l e , index=counter )

37 canvas . save ( path )

38

39 r e turn canvas

40

41

42 i f __name__ == "__main__" :

43 path = input ( "Enter the path to an image : \ n\ t " )
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44 whi le not os . path . e x i s t s ( path ) :

45 path = input ( "Couldn ’ t f i nd your chosen image ,

p l e a s e t ry again : \ n\ t " )

46 r e s u l t = main ( path , 2)

47 r e s u l t . show ( )

Listing A.1: This code is in Python and for other implementations requires you

adjust the width and height be the number of pixels width-wise an height-wise

your image has (see lines 21 and 22). Special thanks to Cameron Klig for assistance

with debugging.
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APPENDIX B: DYNAMIC COBWEB DIAGRAMS CODE

1 T[x_, beta_, alpha_] := Piecewise[{{beta∗x + alpha, x < (1 − alpha)/beta}, {

beta∗x + alpha − 1, (1 − alpha)/beta <= x}}] Options[CobwebPlot] =

Join[{CobStyle −> Automatic}, Options[Graphics]];

2 CobwebPlot0[f_, b_?NumericQ, a_?NumericQ, n_, xrange : {xmin_, xmax_},

opts : OptionsPattern[]] := Module[{cob, x, g1, coor}, f2[x_] := f[x, b, a];

3 cob = NestList[f2, 0, n ]; (∗Change middle input for different initialized

point∗)

4 coor = Partition[ Riffle [cob, cob], 2, 1];

5 coor [[1, 2]] = 0;

6 cobstyle = OptionValue[CobwebPlot, CobStyle];

7 cobstyle = If[ cobstyle === Automatic, Red, cobstyle];

8 g1 = Graphics[{cobstyle, Line[coor ]}];

9 Show[{Plot[f2[x ], {x, −1, 2}, PlotStyle −> {{Thick, Black}, Black}], g1},

FilterRules[{opts}, Options[Graphics ]]]]

10 CobwebPlot1[f_, b_?NumericQ, a_?NumericQ, n_, xrange : {xmin_, xmax_},

opts : OptionsPattern[]] := Module[{cob, x, g1, coor}, f2[x_] := f[x, b, a];

11 cob = NestList[f2, 1, n ]; (∗Change middle input for different initialized

point∗)

12 coor = Partition[ Riffle [cob, cob], 2, 1];

13 coor [[1, 2]] = 0;

14 cobstyle = OptionValue[CobwebPlot, CobStyle];

15 cobstyle = If[ cobstyle === Automatic, Blue, cobstyle];

16 g1 = Graphics[{cobstyle, Line[coor ]}];
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17 Show[{Plot[f2[x ], {x, −1, 2}, PlotStyle −> {{Thick, Black}, Black}], g1},

FilterRules[{opts}, Options[Graphics ]]]]

18 Manipulate[Show[ Graphics[{EdgeForm[Thin], White, Rectangle[]}],

CobwebPlot1[T[#, b, a] &, b, a, iterations, {−1, 2}, PlotRange −> {

Automatic, {−1, 2}}, Frame −> True, Axes −> False,

19 CobStyle −> Blue, PlotRangePadding −> None],

20 CobwebPlot0[T[#, b, a] &, b, a, iterations , {−1, 2},

21 PlotRange −> {Automatic, {−1, 2}}, Frame −> True, Axes −> False,

22 CobStyle −> Red, PlotRangePadding −> None]],

23 {b, 1.0001, 2, 0.00001, AnimationRate −> 0.0004},

24 {a, 0.0001, 2 − b, 0.00001, AnimationRate −> 0.0004},

25 { iterations , 1, 20, 1}, ContentSize −> {500, 500}]
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APPENDIX C: MATCHING CHARTS CODE

1 (∗Base functions and iterations , iterationslimit specified ∗)

2 T[x_,beta_,alpha_]:= Piecewise[{{beta∗x+alpha,x<(1−alpha)/beta},{beta∗x+

alpha−1,(1−alpha)/beta<=x}}]

3 t [x_]:=T[x,\[Beta],\[Alpha]]

4 Omega[x_]:=If[x<(1−\[Alpha])/\[Beta],0,1]

5 iterationslimit =20;

6 iterations =iterationslimit +2;

7 itinerary [x_]:=Map[Omega,NestList[t, x,iterations]](∗tau map∗)

8

9 (∗Code for matching graph of plastic number∗)

10 Clear[a,b,\[Alpha],\[Beta] ]

11 \[Beta] = 1/3 (27/2−(3 Sqrt[69])/2)^(1/3)+(1/2 (9+Sqrt[69]))^(1/3)/3^(2/3);

12 plotlistmatching={};

13 plotlistnomatching ={};

14 For[\[Alpha]=0.00005,

15 \[Alpha]<=2−\[Beta],

16 \[Alpha]=\[Alpha]+0.00005,

17 For[x1=a;

18 x2=b+a−1;

19 i=0,

20 i <= iterationslimit ,

21 i++,
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22 x1=If[ itinerary [−\[Alpha ]][[ i+1]]==0,Expand[b∗x1+a]/.b^3−>b +1 ,

Expand[b∗x1+a−1]/.b^3−>b +1 ];

23 x2=If[ itinerary [\[Beta]−\[Alpha]−1][[i+1]]==0,Expand[b∗x2+a]/.b^3−>b

+1,Expand[b∗x2+a−1]/.b^3−>b +1];

24 If [Expand[x1]==Expand[x2],AppendTo[plotlistmatching,{\[Alpha],i+1}]];If[

Expand[x1]==Expand[x2],Break[]];

25 If [ i==iterationslimit,AppendTo[plotlistnomatching,{\[Alpha],

iterationslimit+1}]&&AppendTo[plotlistmatching,{\[Alpha],iterationslimit

+1}]]]]

26 Show[ListLinePlot[plotlistmatching,PlotRange−>All],ListPlot[

plotlistnomatching,PlotStyle−>{Red,PointSize[0.003]}]]

27

28 (∗Code for matching graph of golden ratio∗)

29 Clear[a,b,\[Alpha],\[Beta] ]

30 \[Beta] = GoldenRatio;

31 plotlistmatching={};

32 plotlistnomatching ={};

33 For[\[Alpha] =0.001,

34 \[Alpha]<=2−\[Beta],

35 \[Alpha]=\[Alpha]+0.001,

36 For[x1=a;

37 x2=b+a−1;

38 i=0,

39 i <= iterationslimit ,
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40 i++,

41 x1=If[ itinerary [\[Alpha ]][[ i+1]]==0,Expand[b∗x1+a]/.b^2−>b +1 ,

Expand[b∗x1+a−1]/.b^2−>b +1 ];

42 x2=If[ itinerary [\[Beta]+\[Alpha]−1][[i+1]]==0,Expand[b∗x2+a]/.b^2−>b

+1,Expand[b∗x2+a−1]/.b^2−>b +1];

43 If [Expand[x1]==Expand[x2],AppendTo[plotlistmatching,{\[Alpha],i+2}]];

44 If [Expand[x1]==Expand[x2],Break[]];

45 If [ i==iterationslimit,AppendTo[plotlistnomatching,{\[Alpha],

iterationslimit+2}]&&AppendTo[plotlistmatching,{\[Alpha],iterationslimit

+2}]]]]

46 Show[ListLinePlot[plotlistmatching,PlotRange−>All],ListPlot[

plotlistnomatching,PlotStyle−>{Red,PointSize[0.003]}]]

47

48 (∗Code for matching graph of root of quintic∗)

49 Clear[a,b,\[Alpha],\[Beta] ]

50 \[Beta] = 1.5701473121960543629;

51 plotlistmatching={};

52 plotlistnomatching ={};

53 For[\[Alpha] =0.001,

54 \[Alpha]<=2−\[Beta],

55 \[Alpha]=\[Alpha]+0.0001,

56 For[x1=a;

57 x2=b+a−1;

58 i=0,
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59 i <= iterationslimit ,

60 i++,

61 x1=If[ itinerary [\[Alpha ]][[ i+1]]==0,Expand[b∗x1+a]/.b^5−>b^4+b^2+1

,Expand[b∗x1+a−1]/.b^5−>b^4+b^2+1 ];

62 x2=If[ itinerary [\[Beta]+\[Alpha]−1][[i+1]]==0,Expand[b∗x2+a]/.b^5−>b

^4+b^2+1,Expand[b∗x2+a−1]/.b^5−>b^4+b^2+1];

63 If [Expand[x1]==Expand[x2],AppendTo[plotlistmatching,{\[Alpha],i+2}]];If[

Expand[x1]==Expand[x2],Break[]];

64 If [ i==iterationslimit,AppendTo[plotlistnomatching,{\[Alpha],

iterationslimit+2}]&&AppendTo[plotlistmatching,{\[Alpha],iterationslimit

+2}]]]]

65 Show[ListLinePlot[plotlistmatching,PlotRange−>All],ListPlot[

plotlistnomatching,PlotStyle−>{Red,PointSize[0.003]}]]

66

67 (∗Code for matching graph of supergolden ratio∗)

68 Clear[a,b,\[Alpha],\[Beta] ]

69 \[Beta] = 1/3 (1+(29/2−(3 Sqrt[93])/2)^(1/3)+(1/2 (29+3 Sqrt[93]))^(1/3));

70 plotlistmatching={};

71 plotlistnomatching ={};

72 For[\[Alpha] =0.0001,

73 \[Alpha]<=2−\[Beta],

74 \[Alpha]=\[Alpha]+0.0001,

75 For[x1=a;

76 x2=b+a−1;
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77 i=0,

78 i <= iterationslimit ,

79 i++,

80 x1=If[ itinerary [\[Alpha ]][[ i+1]]==0,Expand[b∗x1+a]/.b^3−>b^2+1 ,

Expand[b∗x1+a−1]/.b^3−>b^2+1 ];

81 x2=If[ itinerary [\[Beta]+\[Alpha]−1][[i+1]]==0,Expand[b∗x2+a]/.b^3−>b

^2+1,Expand[b∗x2+a−1]/.b^3−>b^2+1];

82 If [Expand[x1]==Expand[x2],AppendTo[plotlistmatching,{\[Alpha],i+2}]];

83 If [Expand[x1]==Expand[x2],Break[]];If[i==iterationslimit,AppendTo[

plotlistnomatching,{\[Alpha],iterationslimit+2}]&&AppendTo[

plotlistmatching,{\[Alpha],iterationslimit+2}]]]]

84 Show[ListLinePlot[plotlistmatching,PlotRange−>All],ListPlot[

plotlistnomatching,PlotStyle−>{Red,PointSize[0.003]}]]
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