
AN ANALYSIS OF CAMERA CONFIGURATIONS AND DEPTH ESTIMATION 

ALGORITHMS FOR TRIPLE-CAMERA COMPUTER VISION SYSTEMS 

A Thesis 

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Electrical Engineering 

by 

Jared Peter-Contesse 

December 2021 



© 2021 

Jared Peter-Contesse 

ALL RIGHTS RESERVED 

ii 



COMMITTEE MEMBERSHIP 

TITLE: An Analysis of Camera Configurations and 

Depth Estimation Algorithms for Triple-

Camera Computer Vision Systems 

AUTHOR: Jared Peter-Contesse 

DATE SUBMITTED: December 2021 

COMMITTEE CHAIR: Andrew Danowitz, Ph.D. 

Associate Professor of Electrical Engineering 

COMMITTEE MEMBER: Jane Zhang, Ph.D. 

Professor of Electrical Engineering 

COMMITTEE MEMBER: Lynne Slivovsky, Ph.D. 

Computer Engineering Department Chair 

iii 



ABSTRACT 

An Analysis of Camera Configurations and Depth Estimation Algorithms for 

Triple-Camera Computer Vision Systems 

Jared Peter-Contesse 

The ability to accurately map and localize relevant objects surrounding a vehicle is an 

important task for autonomous vehicle systems. Currently, many of the environmen-

tal mapping approaches rely on the expensive LiDAR sensor. Researchers have been 

attempting to transition to cheaper sensors like the camera, but so far, the mapping 

accuracy of single-camera and dual-camera systems has not matched the accuracy of 

LiDAR systems. This thesis examines depth estimation algorithms and camera con-

figurations of a triple-camera system to determine if sensor data from an additional 

perspective will improve the accuracy of camera-based systems. Using a synthetic 

dataset, the performance of a selection of stereo depth estimation algorithms is com-

pared to the performance of two triple-camera depth estimation algorithms: disparity 

fusion and cost fusion. The cost fusion algorithm in both a multi-baseline and multi-

axis triple-camera configuration outperformed the environmental mapping accuracy 

of non-CNN algorithms in a two-camera configuration. 
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Chapter 1 

INTRODUCTION 

Autonomous vehicle technology has been a major research topic for many years. 

Attempts were made as far back as 1984 to create a vehicle that would be able to 

drive autonomously, with Carnegie-Mellon’s Navlab that could drive very slowly along 

a winding road. The limitation of the vehicle at that time was the computational 

power of the hardware running the image processing and control algorithms [5]. With 

ever increasing advances in sensor technology, computer hardware performance, and 

more recently, machine learning, the push to develop autonomous driving tech has 

ramped up. 

There are four major tasks that autonomous vehicle systems need to complete. These 

include environment analysis, vehicle localization, path planning, and vehicle con-

trol [6]. This thesis focuses on the environment analysis component of autonomous 

vehicles. An understanding of the vehicle’s surrounding is necessary for a vehicle to 

travel along roads, follow traffic laws, and avoid collisions with pedestrians, cyclists, 

and other vehicles. Environmental analysis is commonly achieved by creating an ac-

curate map of the surroundings and locating important objects and features in the 

map [6]. Approaches to mapping vary significantly depending on the type of sensor 

used to capture data of the environment. Common sensors include radar, ultrasonic 

distance, LiDAR, and various types of cameras (RGB, Infrared, light field, etc) [6]. 

Some approaches rely on a single type of sensor while a majority use multiple differ-

ent types in tandem to improve accuracy and increase reliability [7]. The process of 

combining data from different sources to produce an output with more accurate or 

useful information is known as sensor fusion [8]. 
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This thesis explores one approach to sensor fusion called stereo vision and its appli-

cations for autonomous vehicles. Stereo vision is the process of gathering 3D infor-

mation of a scene from 2D images captured from different perspectives [3]. In the 

simplest case, depth can be perceived from two images captured by cameras displaced 

horizontally, in a process similar to the human vision system. However there is no 

limit on the number or relative positioning of cameras used to capture an environ-

ment. Multi-camera systems show promise in improving computer vision applications 

over two-camera systems by providing additional data to the computer vision algo-

rithms [9]. 

1.1 Motivation 

The inspiration and basis for this thesis came in part from work by a research group 

at Cornell University working on what they called Pseudo-LiDAR for 3D object de-

tection [10]. This team saw that the leading 3D object detection methods were 

dominated by those that used data captured by a LiDAR sensor. LiDAR sensors are 

expensive, especially in comparison to sensors like the camera, which limit their abil-

ity to be used in consumer autonomous vehicles [11]. Consequently, researchers have 

attempted to develop image-based algorithms for autonomous vehicle tasks. How-

ever, the accuracy of image-based 3D object detection is currently significantly lower 

than LiDAR methods. The Psuedo-LiDAR team’s proposal was to convert data cap-

tured by non-LiDAR sensors into ”LiDAR form,” which could be fed into the best 

LiDAR 3D Object Detection algorithms. They found that this approach achieved a 

significant 3D Object Detection accuracy improvement over the existing image-based 

algorithms, but was still less accurate than the cutting-edge LiDAR algorithms. 
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1.2 Objectives 

This thesis examines an approach for improving the accuracy of image-based depth 

estimation. An increase in the accuracy of depth estimation should improve the 

accuracy of 3D Object Detection and Localization when the enhanced depth estimator 

is included in the Pseudo-LiDAR pipeline. Since a majority of the image-based depth 

estimation research has been focused on monocular (single image) or binocular (two 

image) systems, this thesis will examine the feasibility of using a trinocular (three 

image) system to improve depth estimation. Adding an additional camera to the 

camera system may be able to increase the accuracy of image-based depth estimation 

enough to eliminate the need for LiDAR. 

This thesis makes the following contributions: 

1. Demonstration of a platform for creating virtual datasets of specific computer 

vision autonomous vehicle tasks. 

2. Quantitative and qualitative analysis of the performance of various depth esti-

mation algorithms when using the virtual dataset 

3. A performance comparison of various depth estimation algorithms 

4. A performance comparison between two-image and three-image depth estima-

tion systems 
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Chapter 2 

RELATED WORK 

The inspiration for this thesis came from the Pseudo-LiDAR research and extension 

of their work, Pseudo-LiDAR++, conducted by a Cornell University team. 

Figure 2.1: Point cloud representation of LiDAR data from the KITTI 
dataset [1] 

2.1 Relevant Concepts 

This section briefly describes the concepts and terminology necessary to understand 

the results of their research. These topics are LiDAR, the KITTI dataset and bench-

marks, and the 3D Object Detection Benchmark. 
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2.1.1 LiDAR 

Light Detection and Ranging, commonly known as LiDAR, is a sensor that has seen 

significant interest for 3D mapping due to its ability to produce highly precise mea-

surements. The LiDAR sensor emits pulses of light and times how long it takes for 

light beams to bounce off objects and return back to the sensor. Knowledge of how 

fast light travels through the air can be used to determine distance using the time-

of-flight principle [12]. A LiDAR sensor with 360-degree rotating lasers is commonly 

mounted on the top of autonomous vehicles to provide mapping of the vehicle’s full 

surroundings. These sensors produce a highly accurate 3D point cloud at frequencies 

of 5-20Hz. The main issue with LiDAR is that sensors with a high resolution are 

extremely expensive [11]. LiDAR is the most commonly used sensor for autonomous 

vehicles but LiDAR hardware is the most expensive component of these systems [10]. 

An important thing to note about LiDAR is that the sensors produce data in the 

form of a 3D point cloud. An example of a point cloud is shown in Figure 2.1. 

2.1.2 The KITTI Dataset 

The KITTI dataset is one of the most popular datasets used for autonomous driving 

research. The KITTI group recorded 6 hours of real traffic scenarios using a variety of 

sensors mounted on a vehicle including LiDAR, color and grayscale stereo cameras, 

IMU measurements, and high precision GPS. The KITTI dataset is also available 

under a Creative Commons License to download and use [1]. To promote research in 

vision recognition systems, the group also created a series of benchmarks for specific 

computer vision tasks such as depth mapping, scene flow evaluation, object detection, 

and multi-object tracking [13]. The benchmarks were created by selecting a subset 

of the larger KITTI dataset and generating ground truth data (true measurements) 
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for each of the tasks. Evaluation metrics measuring the performance of algorithms in 

comparison to ground truth are used to rank and compare algorithms on the KITTI 

leaderboard [14]. The Pseudo-LiDAR project uses a KITTI benchmark to evaluate 

the performance of their algorithm. 

2.1.3 KITTI 3D Object Detection Benchmark 

The vision recognition task that the pseudo-LiDAR team attempted was 3D Object 

Detection. For this task, the goal is to generate 3D bounding boxes around all vehicles, 

bicycles, and pedestrians in the view of the front facing cameras. The KITTI 3D 

Object Detection benchmark contains raw images, point clouds, and ground-truth 

data labeled with the type and bounding box location of relevant objects [13]. The 

benchmark evaluates performance by calculating two metrics: Average Precision (AP) 

and bounding box overlap. Average Precision evaluates how well the algorithm can 

detect and classify objects in the image, while bounding box overlap evaluates how 

close an objects predicted bounding box is to its ground truth location [15]. 

2.2 Pseudo-LiDAR 

The research in the original Pseudo-Lidar paper began by examining existing 3D 

object detection algorithms on the KITTI leaderboard. The team noticed that the 

leading approaches were dominated by LiDAR with the best algorithms achieving 

Average Precision percentages on the benchmarks of about 73%. The best image-only 

algorithms achieved a mere 10% AP [10]. The Pseudo-LiDAR team notes that image-

based depth estimation is inherently less accurate than LiDAR, but that inaccuracy 

should not account for such a large difference in 3D Object Detection performance 

between the two approaches. 
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The Pseudo-LiDAR team found that the cause for the performance gap between 

image-based approaches and LiDAR was that image-based approaches represented 

depth data in a way that makes it difficult for machine learning algorithms to do 3D 

Object detection. The LiDAR signal is represented as 3D point-clouds. In this data 

representation, apparent object sizes are invariant to depth. Using a camera, object 

size does vary based on depth and objects appear smaller in the resulting image (cap-

tured by less pixels) the further away they are from the sensor. 2D convolutional 

networks applied over the image/depth map can have a difficult time classifying ob-

jects that can be of varying sizes. The team converted the output of image-based 

depth estimation algorithms into point-cloud representations, which they call Pseudo-

LiDAR, and found that they could significantly increase the accuracy of 3D object 

detection by leveraging existing LiDAR-based 3D object detection pipelines. Their 

custom pipeline was able to achieve an Average Precision of 45.3% on the KITTI 

3D Object Detection benchmark, which was an improvement of 350% over existing 

image-based approaches [10]. 

Figure 2.2: The Pseudo-LiDAR 3D object detection pipeline 

Although the performance improvement was significant, this approach is still behind 

the state-of-the-art LiDAR algorithms [16, 17]. The team noted two reasons for the 

discrepancy: low resolution images and the lower accuracy of image-based depth 

estimation, especially at far distances. 
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2.3 Psuedo-LiDAR++ 

Pseudo-LiDAR++ was an extension of Pseudo-LiDAR to determine why the perfor-

mance in 3D Object Detection and Localization of Pseudo-LiDAR was lower than 

when using LiDAR point clouds. The team found that the higher 3D object detec-

tion error stemmed from the inherent higher error in the image-based depth esti-

mation [18]. Two approaches were attempted in order to improve the accuracy of 

image-based depth estimation. In the first approach, the team modified an existing 

convolutional neural network depth estimation algorithm to make the algorithm more 

sensitive to areas in the image that were further away during training. This improved 

the accuracy of the Pseudo-LiDAR 3D object detection pipeline by about 10% over 

the original Pseudo-LiDAR implementation [18]. The second approach tested to see 

if a sparse LiDAR (4 beams rather than 64-128 beams) could be used to de-bias the 

image-based depth estimators. Sparse LiDAR sensors are significantly cheaper and 

are just as accurate as dense sensors but produce a lower resolution point-cloud. The 

team developed a sensor fusion algorithm that could combine the sparse but accurate 

LiDAR point-cloud with the dense but inaccurate, image-based point-cloud. This 

sensor fusion approach was able to achieve a 37% performance improvement over 

the original Pseudo-LiDAR algorithm. At distances less than 30m, Pseudo-LiDAR 

performed comparably to state-of-the-art LiDAR. However, the accuracy of Pseudo-

LiDAR began to fall off at distances greater than 30 meters [18]. 

8 



y 

X 
p 

/ 

image plane 

y 

f .. z 
image plane 

Chapter 3 

BACKGROUND 

This chapter provides background information in order to better understand the al-

gorithms discussed later. 

3.1 Camera Modeling 

The camera is an essential component for computer vision systems. A mathematical 

model is necessary to understand how this sensor interacts with the world. The most 

common and most simplistic way of modeling a digital camera is the pinhole model. 

This model describes how points in the 3D world are mapped onto a 2D plane through 

the projection of light through a “pinhole” onto an image plane. 

3.1.1 Intrinsic Parameters 

The formal pinhole model can be constructed from the geometry of Figure 3.1. 

Figure 3.1: Geometry of the pinhole model [2] 
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The derived equations for the projection of a 3D point P = (X, Y, Z) onto a 2D image 

plane p = (x, y) are shown below in Equation 3.1. 

X Y 
x = f 

Z 
and y = f 

Z 
(3.1) 

In order to make solving the system of equations easier, the projection equations are 

commonly converted into matrix form. The transformation matrix from 3D space to 

a 2D image plane is shown below in Equation 3.2. 

⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

X 

Y 

Z 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(3.2) 

0 ⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎣ 

fx s cx 0 

0 fy cy 0 

x ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
0 y 

z 0 0 1 0 
1 

In this particular camera model, some additional camera parameters are included to 

account for a non-ideal camera [2]. fx and fy represent the focal length ratios in the 

vertical and horizontal axis, cx and cy are the offsets of the principal point p from the 

camera center in the vertical and horizontal axis, s represents the skew distortion of 

non-rectangular pixels in a camera, and the euclidean coordinates p = (x, y) can be 
0 0 

found using x = x
z and y = y

z . This matrix can be decomposed even further into 

Equation 3.3. 

⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ X 

Y 

Z 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= K 

� � 

I3x3 03x1 

⎢⎢⎢⎢⎢⎢⎢⎣ 

X 

Y 

Z 

⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(3.3) 

0 ⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎣ 

fx s cx 

0 fy cy 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

1 0 0 0 

0 1 0 0 

x ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
0 y 

z 0 0 1 0 0 1 0 
1 1 
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The matrix K, commonly known as the camera calibration matrix, contains the in-

trinsic parameters of the camera. This matrix transforms a set of 3D coordinates 

referenced from the center of the camera to the 2D image plane. These parameters 

can be determined by referencing the camera’s datasheet or, more commonly, by a 

method called camera calibration which is discussed in Section 3.2. 

3.1.2 Extrinsic Parameters 

So far, the mapping of 3D coordinates to the image plane has been performed from 

the perspective of the camera. If information about the 3D world is given in another 

coordinate system, then an additional transformation is required to convert the exter-

nal reference systems points to the camera reference system. This mapping consists 

of two transformations: rotation and translation. 

Figure 3.2: Transformation between the world and camera coordinate 
frames 

ˆ The transformation describing the mapping from the external reference system P = 

(X,ˆ Ŷ , Ẑ) to the camera reference system P = (X, Y, Z) can be represented using nine 

parameters for rotation and three parameters for translation in the following matrix 

form [19]: 
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⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ X̂ X̂ 
X r11 r12 r13 t1 ⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

Ŷ 

Ẑ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

� � 

R3x3 t3x1 

⎢⎢⎢⎢⎢⎢⎢⎣ 

Ŷ 

Ẑ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(3.4) 

⎢⎢⎢⎢⎣ 
Y 

⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎣ 
r21 r22 r23 t2 

Z r31 r32 r33 t3 
1 1 

Combing the intrinsic and extrinsic mappings produces the following equation that 

maps points in the external reference system P̂ = (X,ˆ Ŷ , Ẑ) to points on the cameras 

image frame p = (x, y). 

⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 

X̂ 

Ŷ 

Ẑ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= K 

� � 

R3x3 t3x1 

⎢⎢⎢⎢⎢⎢⎢⎣ 

X̂ 

Ŷ 

Ẑ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(3.5) 

0 ⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎣ 

fx s cx 

0 fy cy 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

t1 ⎢⎢⎢⎢⎣ 

x r11 r12 r13 ⎥⎥⎥⎥⎦ 
0 t2 y r21 r22 r23 

z 0 0 1 r31 r32 r33 t3 
1 1 

3.1.3 Lens Distortion 

The pinhole model is an idealized approximation which ignores the fact that most 

cameras have lenses. Lenses can cause the mapping between the camera reference 

systems and image plane to become distorted. The two major types of lens distortions 

are radial distortion and tangential distortion [20]. Radial distortion causes straight 

lines to appear curved. The traditional model for representing radial distortion is a 

non-linear equation where r is the distance from the point to the distortion center [3]. 

xdistorted = x(1 + k1r 2 + k2r 4 + k3r 6) 
(3.6) 

2 4 ydistorted = y(1 + k1r + k2r + k3r 6) 
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With the coefficients k1, k2, and k3 describing the radial distortion. 

Similarly, tangential distortion causes objects in some regions of the image to look 

nearer than expected. This is caused by the lens not being perfectly parallel to the 

image plane. A similar model to radial distortion is commonly used [3]. 

xdistorted = x + [2p1xy + p2(r 2 + 2x 2)] 
(3.7) 

ydistorted = y + [p1(r 2 + 2y 2) + 2p2xy] 

With the coefficients p1 and p2 describing the tangential distortion. 

3.2 Camera Calibration 

There are five intrinsic camera parameters, six extrinsic camera parameters, and five 

lens distortion parameters that all describe the mapping from the 3D world to the 

2D image plane. It is difficult to analytically determine these parameters, so the 

common method is to measure them in a process called camera calibration. Since we 

have models describing the system, all we need are a set of inputs and outputs that 

could be used to solve for these internal parameters. The common technique is to 

take pictures of a known object at various angles. The pictures and knowledge about 

the 3D real world points of the object allow us to work backwards to determine the 

camera parameters [3]. Computer Vision API’s, like MATLAB’s Camera Calibration 

Toolbox [21] and OpenCV’s Camera Calibration functions [22], use a chessboard as 

the pattern for calibration which was a technique proposed by Zhengyou Zhang in 

his original camera calibration paper [23]. Knowledge about the size of the squares 

on a chessboard and how they appear in the series of images is used to solve for all 

the camera parameters [22]. 
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Figure 3.3: Examples of grayscale chessboard calibration images 

At this stage, exact models describing how a point in the 3D world will be mapped 

onto the 2D image plane of a camera have been determined. This knowledge is 

essential for stereo rectification which is discussed in Section 3.3.2. 

3.3 Stereo Vision 

A camera’s process of translating an objects 3D coordinates onto a 2D plane is a well 

defined model, however, determining 3D coordinates from a single 2D image is an 

impossible task because depth information is lost during projection. In Figure 3.4, 

point p in the left image can correspond to any 3D point P along the line extending 

from the camera center (C ) through point p. To determine the true location of 

that point on the line, a different perspective is required. The process of extracting 

3D depth information from a scene using multiple 2D images is known as Stereo 

Vision [24]. 
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Figure 3.4: Epipolar geometry of a two image system 

3.3.1 Epipolar Geometry 

To find the depth of a 3D point from the perspective of one of the images, a number 

of geometric relations must be determined. This geometry is known as Epipolar 

Geometry [25]. A diagram showing the relationship between two arbitrary image 

planes and a point P in 3D space is shown in Figure 3.4. An important thing to note 

from this diagram is that line extending from the left cameras center (C ) through 

point p projects a line onto the right image plane. This line is known as the epipolar 

line and every point in the left image plane has a corresponding epipolar line in the 

right image plane. If the geometric relationship between the two image systems is 

known, and we were searching for the point corresponding to point p in the right 

image plane, we only need to search along the epipolar line in the right image plane 

rather than the entire image. If the points corresponding to the 3D point are known 

in both the left and right image planes, then the exact 3D location of that point can 

be determined through triangulation. 
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3.3.2 Stereo Rectification 

If the locations of the image planes are arbitrary, then the geometries to determine 

the epipolar lines and perform triangulation will not be consistent for all camera 

systems. To simplify the geometries for stereo vision, an algorithm known as Stereo 

Rectification projects each image onto a common image plane. 

Figure 3.5: Stereo rectification geometry [3] 

This significantly simplifies the geometry of stereo vision because this causes the 

epipolar lines to be parallel to the x-axis of the image plane. For digital images, 

the epipolar line for a point in one image will be the corresponding row in the other 

image. This will make the stereo depth estimation algorithms, discussed in a later 

section, faster and more reliable. 

The first step in the stereo rectification process is to remove the lens distortions. 

This is done by mapping all the distorted pixels to their corresponding undistorted 

locations according to Equations 3.6 and 3.7 discussed previously. 
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The next step is to project the undistorted images onto a common plane. The equa-

tions used by MATLAB’s Camera Calibration Toolbox [21] and OpenCV’s Camera 

Calibration functions [22] to map points onto a common plane are Equations 3.8 and 

3.9 [19]. 
f 0 pl = Rrectpl (3.8) 
z0 

f 0 pr = 0 RRrectpr (3.9) 
z 

pl is a point in the left image plane with its corresponding point pl 
0 on the common 

plane. The rotation matrix Rrect, built from the extrinsic translation parameters 

between the two camera reference frames determined during camera calibration, and 

a scaling factor 
z
f where f is the focal length and z0 is the z-coordinate of the 0 , 

common plane, perform the translation of points from the left image plane to the 

common plane. 

For the points in the right image plane p0 r, an additional transformation has to be 

performed to align the right image plane with the left image plane before performing 

the mapping to the new common plane. This matrix R is the rotation matrix found 

during camera calibration. 

After rectification, the resulting images are usually oddly shaped and contain regions 

with unknown pixel values near the edges. The last stage of the stereo rectification 

algorithm is to crop these irregularities out and find a rectangular region that covers 

as much of both of the images as possible. Figure 3.6 shows a summary diagram of 

the rectification process. 
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Figure 3.6: Main steps of stereo rectification 
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3.3.3 Stereo Geometry 

The process of rectification aligns the two image planes and makes the geometry of 

stereo vision significantly simpler as shown in Figure 3.7. 

Figure 3.7: Stereo camera geometry of a rectified stereo camera set 

If point P = (X, Y, X), defined in the reference system of the left camera, is projected 

onto the image coordinates (x1, y1) in the left image and (x2, y2) in the right image, 

relative to the center of each camera image plane, then the exact location of P can 

be determined in 3D space. Z can be found using a simple ratio of similar triangles. 

In this figure, b is the distance between the two camera centers which is known as the 

baseline, f is the focal length of the cameras, and the difference d = x1 − x2 is known 

as disparity, which represents the relative offset in the location of the projection on 

the two image planes. Note that the units of disparity is pixels. 

Z f 
= (3.10) 

b d 
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bf 
Z = (3.11) 

d 

Equation 3.11 is the essential equation for stereo vision because it defines how to 

determine depth from disparity. The inverse relationship between depth and disparity 

causes points with projections that have a large disparity to be closer, while points 

with a smaller disparity are further away. The depth Z, along with ratios of similar 

triangles can be used to determine the other 3D coordinates of P as well. 

Z 
X = x1 (3.12) 

f 

Z 
Y = y1 (3.13) 

f 

The goal of Stereo Vision is to determine the 3D location of points using a set of 

images. The geometric derivation demonstrated that this goal can be achieved by 

finding the correct projection of that point in each camera and then the disparity 

can be used to determine the points exact location. That point is measured from the 

perspective of one of the cameras in the camera stereo system, which is known as 

the reference camera. All measurements are calculated from the perspective of the 

reference camera. The next section discusses how to determine a matching point in 

two offset images. 

3.3.4 Stereo Depth Estimation 

Stereo depth estimation is performed by stereo matching algorithms. These algo-

rithms take rectified images as input and perform pixel matching and calculation of 

20 



disparities. The output of these algorithms is a 2D array of disparities, called a dis-

parity map, where each array element contains an estimated disparity for a pixel in 

the reference image to the image pair. 

Stereo depth estimation algorithms are characterized into either local, global, or semi-

global methods [3]. Local stereo algorithms select a small section of the reference 

image and attempt to match it with sections of the other images. This approach is 

based on the assumption that pixels in the matching neighborhood will be similar 

regardless of the perspective [26]. How similar the matching neighborhoods are to 

each other is determined by a cost function. The location on the search space with 

the minimum cost is determined to be the matched pixel. 

Global methods seek to minimize a energy function that is defined over all pixels in 

image. Given a set of images and a disparity map, the energy function returns a 

single value defining how well a disparity map matches pixels between the images. 

Since all pixels are accounted for in this function, this method is less sensitive to noise 

than local methods [27]. Global methods provide better results than local methods 

but come at a significantly higher computational cost because it is very difficult to 

minimize a function with so many possible parameters (W idth × Height parameters). 

Semi-global methods attempt to find the middle-ground between algorithm perfor-

mance and computational complexity. These methods attempt to minimize a global 

energy function, similar to global methods, but have techniques to avoid solving the 

minimization of the energy function across the entire image. Semi-global methods are 

the most popular method for stereo matching. Most semi-global methods are based 

off of the original semi-global algorithm, Semi-Global Matching (SGM) [28]. 

Recently, machine-learning based methods have begun to explore using convolutional 

neural networks (CNN) to perform stereo matching. Architectures like the Pyramid 
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Stereo Matching Network (PSMNet) [29] and Group-wise Correlation Stereo Network 

(GWCNet) [30] are used in the top performing image-based algorithms on the KITTI 

leaderboards. 

In summary, stereo vision is the process of determining 3D information from a set 

of images using stereo calibration, rectification, and matching. Figure 3.8 shows the 

high level diagram of a Stereo Vision systems. 

Figure 3.8: Flowchart summarizing the main steps of Stereo Vision 

Disparity maps are often converted into depth maps through Equation 3.11, where 

each element in the depth map holds depth information in a unit like meters. The 

data in this form is more useful for applications like autonomous vehicles. Since this 

conversion is computationally simple, disparity map and depth map are terms that 

are used interchangeably to describe the output of stereo estimation algorithms. 
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Chapter 4 

METHODOLOGY 

The motivation for this thesis came from the Pseudo-LiDAR research group who 

found that image-based depth estimation could be used as a replacement for LiDAR 

sensor data for 3D Object Detection and Localization algorithms. The issue was that 

the image-based 3D Object Detection and Localization (Pseudo-LiDAR) had worse 

performance than state-of-the-art LiDAR 3D Object Detection and Localization, no-

tably due to the lower accuracy of image-based depth estimation, especially at long 

distances. Pseudo-LiDAR++ improved the accuracy of image-based depth estima-

tion by fusing sparse LiDAR sensor data with the image-based depth estimation data. 

This thesis aims to examine if an additional camera is able to improve the accuracy 

of image-based depth estimators over traditional two-camera stereo vision methods. 

4.1 Camera Configurations 

Many three-camera configurations are possible. To determine which configurations 

has the best chance of improving depth estimation algorithms, further analysis is 

necessary. The first step in this process is examining existing stereo camera systems. 

4.1.1 Analysis of the accuracy of image-based depth estimators 

Understanding the parameters that effect the accuracy of stereo depth estimators are 

crucial to determining how to improve the accuracy of these systems. Looking at the 

camera model, only a discrete number of points can be mapped onto the cameras 
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image plane, because the camera sensor has a limited resolution. Pixels can only 

capture a single intensity over a certain area. Figure 4.1 shows multiple “cameras” 

looking at a point in space. 

Figure 4.1: Field of view of pixels from multiple camera perspectives look-
ing at a point P in space 

The cone coming from the optical center of the cameras demonstrates how the area 

that a single pixel captures increases as the distance from the image plane increases. 

The area that the cones overlap illustrate the possible true location of the point P that 

was detected by each camera in a stereo camera system. Figure 4.1 is significantly 

exaggerated, but demonstrates that distance estimation by a camera is inherently 

limited by the physical limitations of the camera sensor. This is why the accuracy of 

stereo camera depth estimation may never reach the accuracy of LiDAR systems. 

The precision of a stereo system is called depth resolution, and refers to the theo-

retical limit for how accurately a stereo vision system can estimate depth given the 

specifications of the stereo camera system [31]. Equation 4.1 defines the relationship 
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between the resolution of the camera and the depth error ΔZ . 

Z2 

ΔZ = Δpx (4.1) 
fb 

Depth error refers to the accuracy with which a stereo vision system can estimate 

changes in the depth of a surface and is a way to measure depth resolution. In 

Equation 4.1, Δpx is the length of a pixel in the horizontal direction, Z is the depth 

of an object measured in the cameras coordinate system, f is the focal length of the 

camera, and b is the baseline of the stereo camera system. From this equation it 

can be determined that depth error ΔZ has an inverse relation to the baseline. As 

the baseline of a stereo system increases (the distance between the centers of the two 

cameras) the depth error decreases, or the accuracy of the stereo system increases. 

Other parameters, such as focal length and camera resolution, have a relationship 

to depth error as well, but are much more difficult to control in the stereo camera 

system because they are parameters within the cameras themselves. 

The problem with just increasing the baseline in an attempt to reduce depth error is 

that large baselines can cause more occlusions and discontinuities (Parts of objects 

that are not visible from all perspectives) which reduces the accuracy of the stereo 

matching algorithms [19]. In addition, research with real stereo vision systems have 

shown that, in general, shorter baselines perform better when objects are at closer 

distances, whereas longer baselines perform better when objects are at greater dis-

tances [32]. The idea is that adding an additional camera with a larger baseline to the 

stereo camera set would improve the accuracy of the depth estimation, particularly 

at large distances, while maintaining the accuracy of the short baseline. 
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4.1.2 Mixed-Axis Camera Placement 

Studies indicate that the orientation of the stereo cameras matters when detecting 

certain features in images. A horizontal camera pair is superior than a vertical camera 

pair at detecting vertical structures in images, while the opposite is true for horizon-

tal structures [33]. Since autonomous vehicles are driving on roads containing many 

different types of objects, it may be beneficial to have a stereo pair configured in 

the vertical direction that could better detect horizontal structures. A depth estima-

tion algorithm that can exploit both the vertical baseline stereo setup’s accuracy of 

horizontal structures with the horizontal baseline stereo setup’s accuracy of vertical 

structures may be able to significantly improve depth estimation accuracy. 

Figure 4.2: Diagram of camera configurations used. (a) Traditional stereo, 
(b) Multi-baseline stereo, and (c) Multi-axis stereo 

4.1.3 Proposed Camera Configurations 

Rather than placing the three cameras in an arbitrary fashion, there may be some 

benefit to configuring cameras at multiple baselines, to benefit from the combination 

of short and wide baseline stereo, or along perpendicular axis, to benefit from the 

improved detection of structures in multiple directions. The multi-baseline setup is 
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aligned on a single axis, while the mixed-axis setup have camera pairs aligned per-

pendicular to each other. These camera configurations simplify the geometry which 

makes the stereo matching algorithms easier to implement. The camera configurations 

shown in Figure 4.2 are the ones used in this thesis. 

4.2 Data Collection 

The Pseudo-LiDAR and Pseudo-LiDAR++ research team used the images, LiDAR 

point-clouds, and ground truth data from the KITTI dataset and benchmarks to 

test their proposed algorithms. Since the team used algorithms that just required 

stereo images and some sparse LiDAR data, KITTI provides the ideal platform to 

perform their research. However, the raw KITTI data was collected with a single 

fixed stereo camera rig meaning that multi-camera depth estimation research cannot 

be performed using this dataset. This leaves three options: capturing data with a 

custom test rig, finding an existing dataset other than KITTI, or using a simulation 

to create the necessary data for the research. 

4.2.1 CARLA 

Because of time constraints, complexity, cost associated with capturing data, and 

lack of other viable datasets, this project uses simulation. After some experimenta-

tion with different simulation environments, the simulator CARLA (Car Learning to 

Act) was selected [4]. CARLA is an open-source simulator, developed on the Unreal 

Engine, designed specifically for training, prototyping, and developing autonomous 

driving models. CARLA was created to be used as an environment to test fully au-

tonomous vehicle models that have path planning and vehicle control algorithms. The 

developers and artists working on the project created custom maps of urban and rural 
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driving environments. These environments contain many unique buildings, vehicles, 

and pedestrians that try to make the simulator as realistic as possible. The maps 

contain various driving scenarios with working traffic signals and automatic vehicle 

and human AI that traverse the roads and sidewalks during simulation. An example 

of one of the streets in a CARLA map is shown in Figure 4.3. 

Figure 4.3: One of the populated streets in Town 2 of the CARLA simu-
lator [4] 

Using a Python or C++ API, objects can be created and controlled in the CARLA 

simulated environment. One of the most important features in the CARLA API is 

the ability to create and attach different sensors to vehicles in the environment. All 

of the sensors commonly used in autonomous vehicle systems like LiDAR, radar, and 

different types of cameras have virtual counterparts in the CARLA simulator that 

can gather data from the simulated environment. 
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4.2.1.1 Pros and Cons of using a Simulator 

One of the benefits of using a simulator is the ability to completely control the environ-

ment. The placement of objects, lighting, weather, and landscape can be controlled 

and modified relatively easily. New features and props can be easily updated and 

integrated. 

For this thesis, having complete control over the specifications and positions of the 

cameras was important for gathering data. As discussed previously, camera calibra-

tion and rectification is a significant aspect of stereo depth estimation algorithms. In 

this simulator, all parameters for camera calibration can be retrieved and set through 

the simulator. Additionally the goal of stereo rectification is to align all images onto 

the same plane, if the cameras are positioned correctly in the simulator, the stereo 

rectification process does not need to be performed because the images will already 

be aligned. These luxuries are not available in real world conditions because of inher-

ent inaccuracies of camera parameters and the impossibility of positioning cameras 

perfectly. 

Another benefit is that simulators can measure ground truth data perfectly. In the 

case of depth estimation, CARLA has a virtual sensor that can save the current depth 

to every point in the environment in an image format. This data is the perfect depth 

map for the scene and can be used to analyze the performance of depth estimation 

algorithms. For datasets that use real data, like the KITTI dataset, the ground truth 

is typically manually generated and annotated containing inaccuracies and skewed 

performance statistics based on the biases of the annotator [13]. 

The main downside of simulators is that they are models of the true system and do 

not contain all of the factors involved. Although the props and maps of CARLA are 

relatively realistic, they are noticeably different than a real environment. The perfor-

29 



mance of the depth estimation algorithms when using images generated in CARLA 

may not match with the performance of these algorithms when using images of real 

scenes. 

4.2.2 CARLA Custom Environment 

The first step in generating the dataset used to test the depth estimation algorithms 

is to create a custom environment in CARLA. The goal of this environment was to 

contain a couple large objects that would be easy to examine when analyzing the 

performance of the depth estimation algorithms. For this reason, two vehicles, a 

large column, traffic lights, the road, ground, and sky are the only objects in this 

scene. The two cars were placed at different distances from the stereo camera array, 

one at 20m and the other 35m away. A large column is also located 35m away to 

provide a shape in the background. The vehicles were chosen as the main objects 

in the scene because the specific application of depth estimation in this thesis is 

object localization for autonomous vehicles. An example image captured from the 

perspective of the reference camera is shown in Figure 4.4. 

Figure 4.4: Image of the CARLA custom environment captured from the 
perspective of the reference camera 
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4.2.3 CARLA City Environment 

Next one of the prebuilt CARLA maps was used to create a realistic city scene. One 

of the 5-way intersections in a CARLA town was selected that contained medium 

and large sized buildings, a large overpass, foliage in one of the street blocks, and a 

number of street lights and traffic signals. The prebuilt CARLA maps do not contain 

any vehicles or pedestrians which were added to this intersection. The environment 

that was created from this map contained twelve vehicles and three pedestrians. The 

goal of this environment was to provide a more realistic scene than the Custom 

environment. The images captured in this environment are more similar to those 

encountered on a real street. 

Figure 4.5: Image of the CARLA city environment captured from the 
perspective of the reference camera 

In the two environments, a series of 1382x512 pixel images and ground truth data were 

captured using CARLA’s virtual sensors in the three different camera configurations 

diagrammed in Figure 4.2. This specific image resolution was chosen because the 

images in the KITTI dataset were of this dimension. The reference camera for each 

of the camera configurations was located in the same exact spot, 1.6 meters above the 

road surface (the height of a typical vehicle) and all the images captured fall on the 
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same image plane which is facing in the direction a typical car would be driving in. 

The placement of the cameras around the reference camera is based on the diagram 

in Figure 4.2. The traditional stereo configuration has a baseline of 0.5 meters, the 

multi-baseline configuration has a short baseline of 0.5 meters and a long baseline 

of 1 meter, and the multi-axis configuration has a horizontal baseline of 0.5m and a 

vertical baseline of 0.5 meters. 

The images generated from these two environments were the main focus for this 

thesis, however to validate the results across a wider range of data, 8 additional sets 

of images were captured. The additional set of images was captured using the same 

camera configuration as the Custom and City environments, but of different scenes 

in the CARLA simulator. 

4.3 Stereo Matching Algorithms 

Using the synthetic images generated from the CARLA environments, the next step 

is to perform stereo matching. Stereo matching algorithms create disparity maps that 

can be used to determine depth of all the points in the reference image. To provide 

a reference point for the performance of triple-camera algorithms, stereo algorithms 

were run on the images generated from the traditional stereo rig. The algorithm that 

will be examined in depth is called Semi-Global Matching (SGM). 

4.3.1 Semi-Global Matching 

SGM was an algorithm proposed by Hirschmuller to solve the stereo matching problem 

by combining the benefits of both local and global stereo matching methods [28]. This 

approach combines fast computation of pixel matching and approximating a global 
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2D smoothing constraint by combining many 1D constraints. Similar to the global 

methods, SGM attempts to minimize an energy function E(D) of the disparity image 

D. 

X X X 
E(D) = (C(p, Dp)) + P1I(|Dp − Dq| = 1) + P2I(|Dp − Dq| > 1) (4.2) 

p q∈Np q∈Np 

p is a pixel in the reference image and Dp is the disparity for that pixel. q is a 

pixel in the stereo image pair and Dq is the disparity for that pixel. C(p, d) defines 

the matching cost function and P1 and P2 define penalties that smooth the output 

disparity map. If a nearby disparity is different by one, the penalty P1 is added to 

the cost. If a nearby disparity is different by more than one, the larger penalty P2 is 

added. The process of producing a disparity map that minimizes this energy function 

to produce the best possible result can be separated into four steps: matching cost 

computation, cost aggregation, disparity optimization, and disparity refinement [3]. 

4.3.1.1 Matching Cost Computation 

The matching cost computation is a way to determine how well a pixel in the stereo 

pair matches a pixel in the reference image. The cost C(p, d) can be defined in many 

ways but overall a larger cost means that the pixels under scrutiny are less likely to be 

a correct match. Sum of Absolute Difference (SAD) and Sum of Squared Difference 

(SSD) are some of the simplest cost functions [3]. 

CSAD(p, d) = |iref (p) − ioff (p − d)| (4.3) 

CSSD(p, d) = (iref (p) − ioff (p − d))2 (4.4) 
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The cost metric used by the original SGM algorithm is the hamming distance (count 

of the number of different bits in two bit strings) between bit strings calculated from 

the census transform of each image. The census transform calculates a census string 

for each pixel in an image which describes the surroundings of that pixels. Given a 

pixel at location i, j with intensity g(i, j), the census string is defined 

C(i, j) = [ ... , H(g(i + lv, j + lh) − g(i, j)), ... ] 

with − 0.5(wv − 1) ≤ lv ≤ 0.5(wv − 1) (4.5) 

and − 0.5(wh − 1) ≤ lh ≤ 0.5(wh − 1) 

where wh and wv are the horizontal and vertical window sizes and the heavyside 

function H(x) is given by 

⎧ ⎪⎨ 0, if x < 0. 
H(x) = ⎪⎩ 1, otherwise. 

(4.6) 

The matching cost between a pixel in the reference image and a pixel in the stereo 

pair is then computed from each of the census transformed images. 

C(i, j, dh) = Δhamming(Cref (i, j), Coff (i, j + dh)) (4.7) 

For each pixel in the reference image, a cost is calculated for each pixel along the 

epipolar line in the stereo image pair. The output is a 3D array where the third 

dimension holds all the costs calculated for that specific reference pixel. 
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4.3.1.2 Cost Aggregation 

At this point, each pixel has a whole list of possible disparities that have a cost 

associated with them. Finding the disparities that minimize the energy function, 

defined in Equation 4.2, across the entire image, with smoothing constraints P1 and 

P2, is actually a NP-complete problem [28]. To simplify this problem, the solution 

proposed in SGM was to perform optimizations along many 1D paths around the 

pixel to approximate a global minimization. 

Figure 4.6: The 8 paths used to aggregate costs up to a pixel p and the 
minimum cost path through pixels x, y up to p 

The aggregated (smoothed) cost S(p, d) for pixel p at disparity d is calculated by 

summing the costs of all 1D minimum cost paths that end in pixel p and disparity d. 

X 
S(p, d) = Lr(p, d) (4.8) 

r 

In equation 4.8, Lr(p, d) defines the sum of the minimum cost path to pixel p and 

disparity d from direction r. The output at the cost aggregation stage is still a 3D 

array, but instead of costs, the third dimension holds the new aggregated costs. 
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4.3.1.3 Disparity Selection 

The next step is selecting the disparity with the minimum cost. This involves search-

ing through the third dimension and selecting the index that contains the minimum 

value. The map of disparity values produced is the solution to minimizing the energy 

function from Equation 4.2 using a “semi-global” method. 

4.3.1.4 Disparity Refinement 

The output of the disparity selection stage is a 2D array of disparity values called 

a disparity map. These disparity values are integers, usually ranging from 0-64, 

which causes the output depth map to have distinct levels of depth rather than 

a continuous curve. To get smoother disparity values to better fit the continuous 

geometry of the real world, a method known as sub-pixel approximation can be used 

to produce decimal disparities. One common sub-pixel approximation method is 

parabolic approximation that finds the minimum of a parabola fitted to the costs 

around the selected best disparity [34]. The local extrema of a parabolic function 

f(x) = Ax2 + Bx + C (4.9) 

is found by differentiating the parabolic function and setting the output to zero. 

dy 
= 2Ax + b = 0 

dx (4.10) −B 
x = 

2A 

Given a minimum cost c0 at disparity d0 and costs c+ and c− located at d+ = d + 1 

and d− = d − 1 respectively, where the disparities sit on the x-axis and the corre-

sponding costs sit on the y-axis, the sub-pixel approximated disparity can be found by 
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substituting each point into Equation 4.9. The math can be simplified by offsetting 

all disparities by making d0 = 0. The offset can be added at the end of the sub-pixel 

approximation to get the actual estimated disparity. 

c− = A − B + C 

c0 = C (4.11) 

c+ = A + B + C 

Equation 4.11 shows the costs in terms of the parabolic function parameters. When 

the cost equations are substituted into Equation 4.10 and simplified, an equation for 

the sub-pixel approximated disparity given the three cost values is formed (Equation 

4.12). 
c+ − c− 

dsub = (4.12) 
4c0 − 2(c+ + c−) 

Since d0 was already determined to be the location of the minimum, dsub is also 

guaranteed to be the location of a minimum. This approximation finds a more refined 

disparity using the shape of the costs surrounding the minimum cost. This process 

is replicated for all minimum costs in the image. Many other disparity refinement 

techniques exist [35, 36], and currently disparity refinement is a active research area 

for computer vision. 

Figure 4.7: Flowchart illustrating the main steps of the SGM algorithm 
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Figure 4.7 shows the pathway that a pair of images takes to produce a disparity 

map using the SGM algorithm. The output of SGM is a refined 2D disparity map 

containing decimal disparities calculated between a reference image and its stereo 

pair. 

4.4 Triple-Camera Matching Algorithms 

Determining depth from a set of three images is a significantly less researched topic 

than two camera stereo vision. In two camera stereo, depth is determined by finding 

matching pixels between a reference image and a stereo image pair. In three camera 

systems there are now two images to match pixels to a reference image. The ap-

proaches for adding and combining this information to improve the matching output 

vary significantly. Some methods attempt to combine the output disparity maps by 

considering the system as just two stereo systems with different baselines. Other 

methods try to use the information gleaned from the two stereo systems in order 

to create a better cost map that can produces a better disparity match. The thesis 

examines both types of approaches which are called disparity fusion and cost fusion. 

4.4.1 Disparity Fusion 

Disparity fusion is the simplest approach to triple-camera matching algorithms. Given 

a reference camera and two other cameras offset by baselines b1 and b2, simply compute 

disparity maps for each extra camera and combine the disparity maps together. In the 

original SGM paper, this was the approach proposed for multi-camera matching [28]. 

The only complication is that the computed disparity maps can be in reference to 

different baselines, which means that the disparities have to be normalized to some 

common baseline. The equation offered in the original SGM paper is a weighted mean 
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of all disparities within one pixel of the median disparity. In a triple camera system 

with only two calculated disparities per pixel, this just becomes a weighted mean. 

D1(x, y) + D2(x, y) 
Dfused(x, y) = (4.13) 

b1 + b2 

Using Equation 4.13, the resulting disparity map will have their disparities correspond 

to a stereo vision system that has a baseline of 1 (in whatever units the original 

baselines were measured in). 

The benefits of this approach is that it is simple, easy to implement, and any existing 

stereo matching algorithm can be used to compute the disparity maps for either pair. 

The biggest drawback is that the computation time of this approach is more than 

double traditional stereo because the algorithms must be run for each stereo pair and 

then combined after. Algorithm computation time is an important factor to consider 

for any autonomous vehicle task because autonomous vehicles need to be able to react 

to environmental changes in real time. 

4.4.2 Cost Fusion 

Cost fusion is a triple-camera matching approach designed specifically for algorithms 

that use costs to determine disparities. These algorithms attempt to fuse information 

from the two perspectives before the computation of disparities. Since minimum cost 

is what determines what disparity is selected, having a more accurate cost curve 

will hopefully select a better disparity. As an example, Figure 4.8 shows matching 

cost curves (Map 1 and Map 2) calculated for a single pixel in the reference image 

to two different image pairs. The minimum cost is located at significantly different 

disparities for each of the individual cost curves (about 25px for Map 1 and and 

62px for Map 2), meaning that different disparities would be selected depending on 
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which cost curve was used. Using disparity fusion, the resulting disparity would 

be the mean of the individual disparities (43.5px for disparity fusion), which is far 

from either of the individual disparities. Using cost fusion, the matching cost curve 

confirms with Map 1 that the minimum cost is located at a disparity of 25 pixels. By 

fusing cost information, the selected minimum cost will likely be more accurate than 

just averaging individual disparities. 

Figure 4.8: Example of individual and fused matching cost curves of a 
single pixel in the cost fusion step of the SGM algorithm 

For the SGM algorithm, combining the cost curves can occur either before or after 

cost aggregation. Papers argue for both fusing it before [33] and fusing after [37]. 

The benefit for performing fusion before is that cost aggregation only needs to be 

performed once, which is the most computationally intensive part of the algorithm. 

This thesis tests both cost fusion methods. 
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(a) Cost fusion before aggregation 

(b) Cost fusion after aggregation 

Figure 4.9: Flowcharts of the two multi-baseline cost fusion algorithms 
showcasing modifications of the SGM algorithm 

Cost fusion can be performed by just adding associated costs in a manner shown in 

Equation 4.14. Since the minimum value of this cost function is all that matters, no 

cost normalization is necessary. 

Cf (x, y, ds) = Cs(x, y, ds) + Cw(x, y, awsds) (4.14) 

In Equation 4.14, Cs(x, y, ds) is the cost of pixel (x,y) at disparity ds of the short 

baseline stereo pair. The wide baseline cost is computed by multiplying the disparity 

by a scaling factor aws because its baseline is different and has to be normalized to 

the units of the short baseline. The scaling factor aws is simply the ratio of the short 

and wide baseline distances. 
bw 

aws = (4.15) 
bs 
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Cost fusion produces a cost map with disparities in reference to the short baseline. 

A similar cost fusion function and an inverted scaling factor can be used to produce 

disparities in reference to the wide baseline. If the scaling factor aws produces steps 

that are not integers (costs are only available at integer disparities), then the cost 

can be interpolated to non-integer disparity values in a similar process to disparity 

refinement described in section 4.3.1.4. Another method for cost interpolation is cubic 

Hermite splines [33]. This method fits a piecewise cubic polynomial to the cost curve 

rather than just a parabolic function. 

Different baseline widths also cause issues with the size of the cost maps. A wider 

baseline will cause a larger disparity and thus need a larger disparity search space. 

As an example, if the wide baseline is twice the distance of the short baseline, the 

scaling factor will be 2. This means that every other disparity in the wide baseline 

set will be used, and to match every disparity in the short baseline map, costs need 

to be computed for double the number of disparities in the wide baseline cost map. 

4.4.3 Extension to Multi-axis stereo systems 

One of the camera configurations that is examined in this thesis is the multi-axis 

stereo configuration. Previous sections about matching algorithms, cost fusion, and 

disparity fusion were only considering scenarios where cameras were aligned along a 

single axis. In vertical stereo systems, the epipolar lines in the image pair are vertical. 

To make the lines align with the horizontal pair, both the reference image and vertical 

pair are rotated by 90◦ . This allows the matching algorithms to compute disparity 

based on the assumption that the epipolar lines are row-aligned. For disparity fusion 

the process is exactly the same, except the disparity maps have to be rotated back 

90◦ before fusion. The equations for cost fusion are also identical to those for multi-
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baseline fusion. 

Cf (x, y, dh) = Ch(x, y, dh) + Cv(x, y, ahvdh) (4.16) 

Where the subscript h denotes the horizontal pair and the subscript v denotes the 

vertical pair. The scaling factor is still a ratio of the baselines. 

bv 
ahv = (4.17) 

bh 

Similar to multi-baseline cost fusion, cost fusion for multi-axis configurations can 

be performed before and after cost aggregation. Figure 4.10 shows the pathway 

that three images captured by a multi-axis camera configuration take to produce a 

disparity map using cost fusion before aggregation. The rotation of the images and 

cost matrices is the only difference to the multi-baseline cost fusion algorithm (Figure 

4.9). 

Figure 4.10: Flowchart of the multi-axis cost fusion before aggregation 
algorithm showcasing a modification of the SGM algorithm 

4.5 Depth Map Evaluation 

The performance of a depth estimation algorithm is typically measured depending 

on what application it is used for. Some depth estimation algorithms may impose 

significant smoothing on the output depth map which can decrease the number of 

43 



falsely matched pixels, but may filter out important details. Other algorithms may 

be more accurate across the entire depth map but have difficulties with regions like 

flat surfaces [38]. Different applications require different metrics to determine how 

successful each depth algorithms is. Because the specific goal of this thesis is to 

improve the accuracy of the depth map generated, some quantitative depth metrics 

evaluating the accuracy of each point in the depth map need to selected. Since the 

application for this thesis is 3D object detection and localization, some qualitative 

metrics determining how well a disparity map describes the shapes of objects will also 

be employed. 

4.5.1 Quantitative Metrics 

Quantitative metrics use measured data to evaluate the performance of depth maps. 

Quantitative methods offer the advantage of being objective against human-related 

biasing [38]. Metrics to estimate the accuracy of depth maps fit into two categories: 

those that compute error from a disparity map, and those that compute error from 

depth maps. One thing to note about error metrics is that they return a measure of 

the amount of error which means that the best performing depth maps will have the 

lowest error metric. 

4.5.1.1 Disparity Error Metrics 

Disparity metrics measure how well an estimated disparity map matches the ground 

truth disparity map. The most common metric is Bad Matched Pixels, and is the 

most straightforward approach to defining error in disparity maps. 

Bad Matched Pixels (BMP) is a metric that compares the difference in disparity 

between the estimated and ground truth maps. If the difference is greater than some 
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threshold δ, it is considered a ”badly matched” pixel. 

⎧ ⎪⎨1, if |DGT (x, y) − Dest(x, y)| > δ 
�(x, y) = (4.18) ⎪⎩0, otherwise. 

where DGT is the ground truth disparity and Dest is the estimated disparity. The 

threshold parameter is typically either 1, 2, or 3 pixels which denotes how close the 

disparities must be to regard the estimated disparity as a correct match. The BMP 

metric can therefore be calculated with Equation 4.19. 

X 1 
BMP = �(x, y) (4.19) 

N 
x,y 

where N is the number of pixels in the image. The BMP metric measures the per-

centage of pixels in the image that are ”badly matched”. The issue with this metric 

is that the absolute error of the pixels are not considered. A disparity map can have 

a good BMP score with a small number of very significant errors. These significant 

errors could cause issues with 3D reconstruction and results later in the pipeline, even 

though the depth map received a good BMP score [2]. 

Bad Matched Pixels Relative Error (BMPRE) attempts to fix this issue by 

considering the relative error as well [39]. For all the pixels that were incorrectly 

matched according to the threshold parameter, the absolute difference is calculated. 

Since it is more difficult to accurately estimate larger disparities than smaller dis-

parities, the absolute difference is normalized by the ground truth disparity. This 

makes the error scale relative to the depth triangulation rather than the absolute 

difference [2]. The relative difference error for each pixel is defined in the following 
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⎪
⎪

⎪
⎪

way to avoid division by zero 

⎧ ⎪ |DGT (x,y)−Dest(x,y)| ⎨ , if Dest(x, y) > 0 
Dest(x,y) 

τ(x, y) = (4.20) ⎪⎩0, otherwise. 

BMPRE can be calculated in a similar manner to BMP by adding the relative error 

if the pixel is incorrectly matched according to the threshold parameter δ. 

⎧ ⎪ X⎨τ(x, y), if |DGT (x, y) − Dest(x, y)| > δ 
BMP RE = (4.21) ⎪ x,y ⎩0, otherwise. 

BMPRE allows for a deeper understanding of the accuracy of disparity maps by 

considering error magnitude as well. A larger BMPRE metric means that the disparity 

maps contain more relative difference. BMP is still the most prevalent metric for 

comparing matching algorithms, and in this thesis both metrics are used. 

4.5.1.2 Depth Error Metrics 

Depth metrics measure the performance of a depth map given a ground truth depth 

map. Framing the problem in terms of depth can make the magnitude of the metrics 

be easier to understand because the units are a known physical quantity. 

Mean Absolute Error (MAE) is one of the simplest error metrics to determine 

the magnitude of difference between two points. The formula for the mean absolute 

error can be found simply with 

X 1 
MAE = |DGT (x, y) − Dest(x, y)| (4.22) 

n 
x,y 
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which determines how far, on average, the estimated depth of a pixel is from its true 

location. 

Mean Squared Error (MSE) measures the squared difference between the esti-

mated and ground truth depth values. MSE is the second moment of the error and 

thus includes variance in its measurements. This means that a large difference be-

tween the estimated and true values will have a more significant impact on the error 

than smaller differences. MSE can be found using Equation 4.23. 

X 
MSE =

1 
(DGT (x, y) − Dest(x, y))

2 (4.23) 
n 

x,y 

A challenge with depth metrics is that there is no way to distinguish whether or not 

there are a large number of small errors or a small number of large errors. This 

information can be determined from BMP, which is why all these metrics are used in 

tandem to get a better picture of the accuracy of the depth estimation algorithms. 

4.5.2 Qualitative Metrics 

Qualitative metrics are metrics that do not depend on formulas or measurements. 

They instead depend on subjective properties determined by an observer [40]. For 

depth estimation algorithms this usually involves examining either the estimated dis-

parity map or depth map in a visual form, looking for problem areas. Depth or 

disparity maps can be expressed as a grayscale image by normalizing all the depths 

or disparities between 0 and 255. In a disparity map, small depths will be lighter 

pixels while large depths will be darker pixels. The inverse is true for a depth map 

because depth has an inverse relationship to disparity. These images can be compared 
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to the visualized versions of ground truth data. An example of a grayscale disparity 

map is shown in Figure 4.11. 

Figure 4.11: Ground truth disparity map visualized in grayscale 

Another way to visualize the output of depth estimation algorithms is in point-cloud 

form. In this thesis point-cloud form is the data representation that is input into the 

pipeline for 3D object detection and localization. Point-cloud form also allows visual-

izing the data from multiple perspectives which can be better when determining how 

well certain objects are depicted in a depth map. Point-clouds are three dimensional 

data that require 3D rendering software to display on a computer. Images of the 

3D rendered point-clouds are shown in this thesis. An example of the ground truth 

point-cloud from the CARLA custom scene is shown in Figure 4.12. The points in 

the point-clouds for this thesis are all black except for the points corresponding to 

the two vehicles which are red. Since vehicles are the most important features in the 

scene, the points corresponding to the vehicles are under the most scrutiny. 
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Figure 4.12: Ground truth depth map visualized in point-cloud form 
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Chapter 5 

RESULTS 

The evaluation of triple-camera depth estimation was split into three sections based 

on the three camera configurations: Traditional Stereo, Multi-baseline stereo, and 

Multi-axis stereo. For each of the camera configurations, quantitative and qualitative 

metrics were determined from the depth and disparity maps generated by each algo-

rithm when using images captured of the two environments. Metrics were calculated 

across the entire depth and disparity maps and over specific regions in the depth and 

disparity maps. When using images of the CARLA custom environment, the region 

of pixels containing the near and far vehicles and depths in 10-meter intervals from 0 

to 150 meters were examined. When using images of the CARLA city environment, 

metrics were only calculated across the entire depth and disparity maps. 

5.1 Traditional Stereo 

The purpose of evaluating a traditional stereo configuration was to determine the 

baseline performance of common stereo algorithms on the new synthetic image dataset. 

Five different stereo algorithms were used: OpenCV’s StereoBM [41], OpenCV’s 

StereoSGBM [41], PSMNet [29], GWCNet [30], and a custom implementation of 

the SGM algorithm discussed previously. 

OpenCV’s StereoBM algorithm is an implementation of Konolige’s block matching 

algorithm which is a local method that matches blocks of pixels using area correlation 

[42]. OpenCV’s StereoSGBM algorithm is OpenCV’s version of SGM discussed in this 

thesis, but rather than working at the pixel level, cost is computed per block [41]. 
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A block size of 5 was selected and cost aggregation was performed in 8 directions 

similar to the custom implementation of SGM. Both OpenCV algorithms were post-

filtered using OpenCV’s WLS filter which uses a grayscale image to align the disparity 

map edges and propagate disparity values to occluded regions [41]. In contrast, 

PSMNet [29] and GWCNet [30] are both convolutional neural networks (CNN) that 

perform stereo matching. Both algorithms were created and trained on the KITTI 

dataset and are among the top performing stereo matching algorithms on the KITTI 

leaderboards. PSMNet was one of the algorithms used in the original Psuedo-Lidar 

paper for depth estimation. A pretrained version (trained on the KITTI 2015 dataset) 

of each model was used to perform stereo matching on the new dataset. Note that 

because these models were trained using an entirely different dataset, this study does 

not determine their true performance and is only used as a comparison tool for the 

other models. 

5.1.1 Short Baseline 

The first configuration tested was a stereo camera rig with a baseline of 0.5 meters. 

In Figure 4.2 this corresponds to configuration (a) which captures images from the 

reference and center cameras. Each algorithm was used to generate a disparity map 

and this disparity map was normalized and converted into a grayscale image. These 

disparity maps along with the ground truth disparity are shown in Figure 5.1. 

The first thing to notice about these disparity map representations is that the BM 

and SGBM algorithms have black areas in the far-left side of their depth maps. These 

regions are implemented as invalid regions in the respective algorithms. Otherwise, 

the big takeaway from these images is that the CNN matching algorithms (PSMNet 

and GWCNet) produce very smooth disparity maps, but fail to differentiate objects 

located far away from the background. PSMNet makes the edges of the pillar wavy, 
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(a) Ground Truth (b) BM 

(c) SGBM (d) PSMNet 

(e) GWCNet (f) Custom SGM 

Figure 5.1: Disparity maps generated using various algorithms in a short 
baseline camera configuration 

while there are artifacts in the sky in the GWCNet disparity map. In contrast, the 

non-CNN algorithms (BM, SGBM, and Custom SGM) produce many edges in their 

disparity maps, which makes sense because these methods focus on matching specific 

regions to other regions, and edges are some of the easiest regions to match. These 

algorithms struggle with flat regions like the road that have very little texture and 

make it difficult to determine a match given a points surroundings. It seems like the 

CNN algorithms have ”learned” about the flat gradient of the road in their training 

which is one of the notable problem areas in the non-CNN algorithm disparity maps. 

Next, quantitative metrics for each algorithm were calculated from the disparity maps 

and ground truth data. First, the metrics calculated across entire disparity maps are 
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analyzed. Table 5.1 and Table 5.2 show the BMP and BMPRE metrics across the 

entire disparity map. 

Table 5.1: BMP values across entire disparity maps generated by different 
algorithms in a short baseline camera configuration 

BMP 
Algorithm δ=3px δ=2px δ=1px 
BM 0.475 0.597 0.745 
SGBM 0.372 0.458 0.596 
PSMNet 0.035 0.115 0.405 
GWCNet 0.042 0.067 0.129 
Custom SGM 0.648 0.732 0.844 

Note that the BMP values range from 0 to 1 and as the threshold δ increases, BMP 

decreases. This is expected because BMP calculates the percentage of pixels over 

a certain threshold and as that threshold increases, the number of pixels above can 

only ever decrease. This means that a lower BMP value is better, and noticeably 

the two CNN algorithms significantly outperform the non-CNN algorithms. This is 

likely because these algorithms perform significantly better on the road area which 

constitutes most of the pixels in the image. 

Table 5.2: BMPRE values across entire disparity maps generated by dif-
ferent algorithms in a short baseline camera configuration 

BMPRE 
Algorithm δ=3px δ=2px δ=1px 
BM 
SGBM 
PSMNet 
GWCNet 
Custom SGM 

1,108,368 
941,552 
12,290 
13,880 
79,048 

1,111,279 
944,229 
18,737 
16,839 
83,099 

1,113,580 
946,488 
26,245 
19,188 
86,350 

This same trend is reflected in the BMPRE values, where the CNN algorithms are an 

order of magnitude lower than the non-CNN algorithms. One observation is that the 

Custom SGM algorithm has a significantly lower BMPRE than the other non-CNN 

algorithms while at the same time having a slightly higher BMP. This means that 
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Distance from Camera 

--BM 
--SGBM 

GwcNet 

--PSMNet 

-+- Custom SGM 

Custom SGM has a large number of small errors, while the algorithms BM and SGBM 

have a smaller number of errors, but these errors are considerably larger. 

Next, the metrics for each depth map were determined for various distances from the 

stereo camera setup. Figure 5.2 shows how each algorithm performed over regions 

located various distances from the stereo camera setup. 

Figure 5.2: Comparison of MAE values from depth maps generated by 
different algorithms in a short baseline camera configuration at various 
10m intervals 

In this plot, the MAE increases as the distance from the camera increases, which is 

expected because depth error is proportional to the square of the distance as noted in 

Equation 4.1. The CNN algorithms are smoother than the non-CNN algorithms and 

perform better at smaller distances, but are worse at distances greater than 100m. 

The plot for the metric MSE showed similar results to MAE (Figure 5.3). Smaller 

distances showed a more pronounced difference with MSE than MAE, but the overall 

shape of the plots was similar except for a bump occurring at the 100-110m range in 

SGBM. 
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Figure 5.3: Comparison of MSE values from depth maps generated by 
different algorithms in a short baseline camera configuration at various 
10m intervals 

The final regions examined were the near and far vehicles. The purpose was to 

examine how these algorithms performed around specific objects of interest. The plot 

in Figure 5.4 compares the MAE between each vehicle for each algorithm. 

Figure 5.4: Comparison of MAE values from depth maps generated by 
different algorithms in a short baseline camera configuration of the near 
and far vehicles 

In this plot, the CNN algorithms do not significantly outperform the others. This is 

likely because vehicles contain many edges and features that can be locally matched 

which the non-CNN algorithms excel with. Also, in all algorithms except SGBM, the 
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error for the near vehicle region is higher than the far vehicle region. This is consistent 

with the results from the range of distance plots which found that as distance from 

the stereo camera setup increases, the depth error also increases. 

Figure 5.5: Comparison of BMP (δ=3px) values from disparity maps gen-
erated by different algorithms in a short baseline camera configuration of 
the near and far vehicles 

The BMP metrics show a slightly different result. The relatively large absolute error 

seen for the SGBM, GWCNet, and PSMNet algorithms actually results in a zero 

BMP (δ=3px) percentage. This means that all the estimated disparities are within 

3px of the true disparity however on average they are far enough away to cause a large 

absolute error. Therefore a combination of metrics should be used to truly evaluate 

the performance of stereo matching algorithms. Despite this, BMP is commonly the 

only metric used. 

Moving to qualitative metrics, the point-cloud representations of the depth maps for 

each algorithm are shown in Figure 5.6. Like the disparity maps, the CNN-based 

algorithms (PSMNet and GWCNet) produce a smoother point-cloud which is more 

in-line with the ground truth point-cloud, especially for regions like the ground and 

road. CNN-based algorithms struggle with objects located far away like the column 

which has very uneven texture in the point-cloud representation which should be 
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smooth. Additionally, CNN-based algorithms seem to have a depth limit which is 

shown as the large wall in the background of the point-clouds. This wall occurred at 

about a depth of 60 meters from the camera setup for both PSMNet and GWCNet 

and no objects beyond this limit are represented. 

(a) Ground Truth (b) BM 

(c) SGBM (d) PSMNet 

(e) GWCNet (f) Custom SGM 

Figure 5.6: Point-cloud representation of the depth maps generated using 
various algorithms in a short baseline camera configuration 
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All the Non-CNN based algorithms had similar point-clouds to each other. These 

algorithms struggle with areas like the ground and road because they have very little 

texture for the algorithms to match points across the images. For objects like the 

vehicles and the column that have many unique edges, matching is significantly easier. 

For some algorithms, there are red points (Points corresponding to the vehicle in the 

image) in the point-cloud that stretch far past their ground truth location. Those 

points are outliers that cause an increase in BMP for those algorithms. 

5.1.2 Wide Baseline 

The next camera configuration tested was a stereo camera rig with a baseline of 1 

meter. This is double the baseline of the short baseline stereo setup. As noted in 

section 4.1, increasing the baseline should improve the accuracy of depth estimation 

algorithm because depth error has an inverse relationship with baseline length. How-

ever, large baselines can cause more occlusions and discontinuities in the resulting 

images which reduce the accuracy of matching algorithms. 

Figure 5.7: Comparison of MAE values from depth maps generated by the 
custom SGM algorithm in a wide baseline camera configuration at various 
10m intervals 

58 



0.18 

0.16 

0.14 

~ 0.12 

~ 0.1 

~ 
°ii 0.08 
:I 
;a 0.06 

:!a: 
0.04 

0.02 

[ 

BM SGBM 

120-,------------------~ 

100 

80 

Distance from Camera 

Gw:Net PSMNet Custom SGM 

0.5 

0.45 

0.4 

! 0.35 

~ 0.3 

■ Short Baseline ~ 0.25 

■ YIKJeBaseline ~ 
:/ 0.2 

i 0.15 

0.1 

0.05 

BM 

--- PSMNet (Shon Baseline) 

-- PSMNet (Wide Baseline) 

■ Short Baseline 

■ ~ Baseline 

SGBM GIM::Net PSMNet Custom SGM 

Figure 5.7 shows a comparison of the performance of the custom SGM algorithm for 

both the short and baseline systems over a range of distances. For this algorithm, the 

performance does not differ significantly between the short and wide baselines. Only 

at the extremes (small and large distances) there are any significant differences. 

Figure 5.8: Comparison of MAE values from depth maps generated by 
PSMNet in a wide baseline camera configuration at various 10m intervals 

In contrast, Figure 5.8 shows a noticeable difference in the performance of the PSMNet 

algorithm for the short and wide baselines. At smaller distances, the MAE is larger 

for the wide baseline meaning that the short baseline has better performance. After 

a turning point at around 70m, the opposite is true. 

(a) Near Vehicle (b) Far Vehicle 

Figure 5.9: Comparison of MAE between short and wide baseline camera 
configurations from depth maps generated by different algorithms 
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Looking specifically at the vehicle regions in the depth maps, it is interesting to see 

that the wide baseline configuration had a higher BMP (Figure 5.10) but at the same 

time a lower MAE (Figure 5.9) in comparison to the short baseline configuration. 

This means that the short baseline configuration had more exact matches, but overall 

had a larger average difference for each pixel in the depth map. Ignoring baseline, 

the MAE for the far vehicle is higher than the near vehicle for all algorithms, but 

the opposite is true for BMP metric where the far vehicle has the lowest error for all 

algorithms. 

(a) Near Vehicle (b) Far Vehicle 

Figure 5.10: Comparison of BMP (δ = 1) between short and wide baseline 
camera configurations from disparity maps generated by different algo-
rithms 

The point-clouds generated by the algorithms in the wide baseline configuration over-

all are very similar to the point-clouds generated by the algorithms in the short 

baseline configuration. However there are some differences. In the Custom SGM 

point-cloud, there are large holes in the ground in the regions closest to the camera. 

As the baseline increases, the disparity for the closer points can increase significantly. 

A matched pixel can have a disparity so large that it is out of range of the possible 

disparities checked ensuring that an incorrect disparity is chosen. The wide baseline 

configuration is poor at depth estimation for small distance but can detect the traffic 

lights located about 150 meters away which was the first algorithm to do so. 
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(a) PSMNet (b) Custom SGM 

Figure 5.11: Point-cloud representations of the depth maps generated us-
ing various algorithms in a wide baseline camera configuration 

Another takeaway is that the PSMNet algorithm depicts the shape of the vehicle well 

in the point-cloud, but the BMP value for both vehicles is almost one meaning that 

most of the pixels are off by at least one pixel. This means that PSMNet is good at 

describing the shapes in the images but struggles to accurately localize the points in 

the shape. This is likely due to the model being trained on a different dataset. 

Overall, it is difficult to determine if a larger baseline improves the accuracy of stereo 

vision systems. At smaller distances, a short baseline is better, while at larger dis-

tances, a wider baseline is better. Next, the combination of the short and wide 

baseline configurations is examined. 

5.2 Multi-Baseline Stereo 

The next configuration investigated was the multi-baseline stereo configuration. In 

Figure 4.2 this corresponds to configuration (b) which uses images captured from a 

reference camera and two other cameras (center and right cameras) along a horizontal 

axis. Using the camera positions from both the short and wide baseline traditional 

stereo setups, this section analyzes if a combination of the stereo systems into a triple 
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camera system has improved performance. Both disparity fusion and cost fusion 

methods are examined. 

5.2.1 Disparity Fusion 

With a short baseline length of 0.5m and a wide baseline length of 1m, the disparity 

fusion equation becomes 

D1(x, y) + D2(x, y) 
Dfused(x, y) = (5.1) 

1.5 

where D1 and D2 are the calculated disparities from the short baseline systems and 

wide baseline systems respectively. The benefit of disparity fusion is that any tradi-

tional stereo matching algorithm can be used. For this test, the SGBM, PSMNet, and 

Custom SGM algorithms were selected from the five algorithms examined previously. 

(a) Ground Truth (b) SGBM 

(c) PSMNet (d) Custom SGM 

Figure 5.12: Disparity maps generated using disparity fusion for various 
algorithms in a multi-baseline camera configuration 

The grayscale representation of the disparity fusion maps shown in Figure 5.12 are 

very similar to the traditional stereo configuration maps shown in Figure 5.1. One 
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difference is that the disparity fusion maps have patches of disparity regions signif-

icantly different than the surrounding areas when these areas should be continuous. 

This is most obvious in the SGBM algorithm disparity map in the areas closest to the 

stereo camera. This likely happens because the wide baseline configuration has the 

highest error when matching regions located closest to the camera and the fusion of 

both disparities causes the wide baseline errors to propagate to the output disparity 

map. 

Since this method performs a weighted mean of the disparities, it is expected that 

the fusion performance will fall somewhere in between the performance of the short 

and wide baseline stereo system. Looking at the plots for the three algorithms over a 

range of distances (Figures 5.13-5.15), this prediction held true. The mean absolute 

difference of the fusion algorithm falls at about the average between the short and 

wide baseline configurations. It is always better than the worst performing baseline 

length but worse than the best performing baseline length. 

Figure 5.13: Comparison of MAE between disparity fusion and traditional 
stereo configurations for the algorithm SGBM at various 10m intervals 
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Figure 5.14: Comparison of MAE between disparity fusion and traditional 
stereo configurations for the algorithm PSMNet at various 10m intervals 

Figure 5.15: Comparison of MAE between disparity fusion and traditional 
stereo configurations for the algorithm Custom SGM at various 10m in-
tervals 

What is interesting, however, is that the BMP for the vehicles in the fusion map 

is higher than both the short and wide baseline disparity maps. This may be due 

to the issue discussed previously where errors in a disparity map may cause a good 

prediction in the other disparity map to be averaged into a bad prediction in the 

disparity fusion map. 
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Figure 5.16: Comparison of BMP between disparity fusion and traditional 
stereo configurations for the algorithm SGBM of the two vehicles 

Figure 5.17: Comparison of BMP between disparity fusion and traditional 
stereo configurations for the algorithm PSMNet of the two vehicles 

Figure 5.18: Comparison of BMP between disparity fusion and traditional 
stereo configurations for the algorithm Custom SGM of the two vehicles 
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The point-cloud representations of the depth maps are very similar to the traditional 

stereo configuration point-clouds. The point-clouds generated by SGBM and Custom 

SGM were able to incorporate features from the wide baseline configuration like the 

traffic lights, but at the same time included unwanted features like the holes in the 

ground in regions closest to the cameras. 

(a) Ground Truth (b) SGBM 

(c) PSMNet (d) Custom SGM 

Figure 5.19: Point-cloud representations of depth maps generated with 
disparity fusion using various algorithms in a multi-baseline stereo config-
uration 
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5.2.1.1 Multi-Algorithm Disparity Fusion 

One of the benefits of disparity fusion is that any algorithm can be used to produce 

the disparity map for either baseline configuration. Disparity maps from different 

algorithms can be fused together. The next investigation examines the feasibility 

of fusing a disparity map from a CNN algorithm with a disparity map from a non-

CNN algorithm. For this experiment, the disparity map generated by the algorithm 

GWCNet in the short baseline camera configuration and the disparity map generated 

by the algorithm Custom SGM in the wide baseline camera configuration were chosen 

as the two inputs to disparity fusion. 

(a) Ground Truth (b) GWCNet (short baseline) 

(c) Custom SGM (wide baseline) (d) Disparity Fusion (GWCNet and Custom 
SGM) 

Figure 5.20: Comparison between disparity maps generated by algorithms 
in a traditional camera configuration and disparity maps generated by 
disparity fusion 

Looking at the disparity fusion map of the GWCNet and Custom SGM algorithms, 

features from both depth maps are integrated into the result. The sharper edges 

from the Custom SGM disparity map, and the artifacts in the sky from the GWCNet 

disparity map are the most noticeable. Overall, the GWCNet disparity map smoothed 
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out the rough edges of the Custom SGM disparity map which makes it look more 

similar to the ground truth disparity map. 

Figure 5.21: Comparison of MAE between disparity fusion and traditional 
stereo configurations at various 10m intervals 

The metrics of the fused depth map are consistent with the results from the other 

disparity fusion depth maps. Both the MAE and BMP values for the fusion disparity 

maps fall between the metrics of the individual disparity maps. 

Figure 5.22: Comparison of BMP between disparity fusion and traditional 
stereo configurations for the near and far vehicles 

The point-cloud representation of the fusion depth map shows a similar story to the 

grayscale disparity maps, where both the sharp edges around objects from the Cus-
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tom SGM disparity map and the smooth gradient of the ground from the GWCNet 

disparity map are incorporated together. The difficulties that the wide baseline Cus-

tom SGM algorithm had with matching in non-textured regions, especially at the 

smallest distances, were smoothed over by the GWCNet algorithm. At the same, 

GWCNet struggled with objects that had sharp edges like the streetlights and large 

column which became clearer in the disparity fusion point-cloud. 

(a) Ground Truth (b) GWCNet (short baseline) 

(c) Custom SGM (wide baseline) (d) Disparity Fusion 

Figure 5.23: Comparison of point-clouds generated from traditional stereo 
algorithms and disparity fusion 

Fusing CNN-based algorithms with their non-CNN counterpart does seem to provide 

a benefit to the overall disparity map, by combining the smoothness of textureless 

regions of the CNN algorithms with the sharp edges around objects of the non-CNN 

algorithms. 
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5.2.2 Cost Fusion 

The final method tested for multi-baseline depth estimation was cost fusion. Since 

cost fusion is an approach designed specifically for algorithms that use costs to de-

termine disparities, only the custom SGM algorithm can be modified to support cost 

fusion. Additionally, because cost fusion can be performed at two different points in 

the SGM algorithm, both methods of cost fusion are examined. 

(a) Ground Truth (b) Original Custom SGM (short baseline) 

(c) Cost Fusion before Cost Aggregation (d) Cost Fusion after Cost Aggregation 

Figure 5.24: Disparity maps generated using cost fusion in a multi-baseline 
camera configuration 

The grayscale representations of the cost fusion maps are very similar to the original 

SGM algorithm disparity map. This makes sense because the basic structure of the 

algorithm remains the same except that additional information is integrated during 

the cost fusion step. 

Looking at Figure 5.25, both cost fusion approaches closely follow the lowest mean 

absolute difference across all distances which contrasts with disparity fusion which 

just followed the average between the short and wide baseline configurations. 
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Figure 5.25: Comparison of MAE between cost fusion and traditional 
stereo configurations for the algorithm Custom SGM at various 10m in-
tervals 

Using disparity fusion, BMP was higher than both the short and wide baseline stereo 

configurations. With cost fusion, both fusion before aggregation and fusion after 

aggregation algorithms had BMP values for the two vehicles the same or lower than 

the best performing stereo configuration. 

Figure 5.26: Comparison of BMP between cost fusion and traditional 
stereo configurations for the algorithm Custom SGM of the near and far 
vehicles 

Very similar results can be seen in the BMPRE plot for the two vehicles as well. Cost 

fusion for a multi-baseline configuration had a slight performance improvement over 

the best performing individual stereo configurations. 
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Figure 5.27: Comparison of BMPRE between cost fusion and traditional 
stereo configurations for the algorithm Custom SGM of the near and far 
vehicles 

The point-cloud representations of the cost fusion depth maps do not differ signifi-

cantly from the original Custom SGM algorithm in the short baseline configuration. 

Cost fusion still struggles with regions having little texture like the road. 

(a) Ground Truth (b) Custom SGM (short baseline) 

(c) Cost Fusion (Before Aggregation) (d) Cost Fusion (After Aggregation) 

Figure 5.28: Comparison of point-clouds generated using cost fusion for a 
multi-baseline camera configuration 
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In comparison to both traditional stereo configurations and disparity fusion for the 

algorithm Custom SGM, cost fusion performs on par or slightly better in terms of 

the accuracy of the resulting depth and disparity maps. Looking at the MAE plot 

in Figure 5.29, both cost fusion before and after aggregation are the best performing 

algorithms over the entire depth range. 

Figure 5.29: Comparison of MAE between fusion methods and traditional 
stereo in multi-baseline camera configurations at various 10m intervals 

Specifically looking at the vehicles in the scene, the MAE for either cost fusion method 

was at least 13% lower for the near vehicle, and at least 5% better for the far vehicle 

than the other methods. 

Figure 5.30: Comparison of MAE between fusion methods and traditional 
stereo in multi-baseline camera configurations of the near and far vehicles 
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5.3 Multi-axis Stereo 

The final configuration investigated was the multi-axis stereo configuration. In Figure 

4.2 this corresponds to configuration (c) which uses images captured from a reference 

camera, a camera positioned horizontally (center camera), and another camera po-

sitioned vertically (top camera) from the perspective of the reference camera. This 

section analyses if the combination of a vertical and horizontal stereo system into a 

triple-camera system improves performance over traditional stereo configurations and 

the multi-baseline configuration. Like the multi-baseline configuration, both disparity 

fusion and cost fusion methods are examined. 

5.3.1 Disparity Fusion 

Since the horizontal and vertical baselines are the same length of 0.5m, the disparity 

fusion equation becomes a sum of disparities. 

Dfused(x, y) = D1(x, y) + D2(x, y) (5.2) 

D1 and D2 are the calculated disparities from the horizontal baseline systems and 

vertical baseline systems respectively. Note that this equation makes the disparities 

in the fused disparity map in reference to a system with a baseline of 1m rather than 

the 0.5m baseline of the two input disparity maps. 

The grayscale representation of the traditional configurations and multi-axis disparity 

fused disparity maps do not show significant differences. The main thing to note is 

that along the bottom of the vertical disparity map is a dark region which does 

not match the ground truth grayscale representation. This region is not visible in the 

vertical camera pair which means that it is impossible to match pixels to the reference 
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(a) Ground Truth (b) Custom SGM (horizontal) 

(c) Custom SGM (vertical) (d) Disparity Fusion 

Figure 5.31: Comparison between traditional stereo configuration dispar-
ity maps and the multi-axis disparity fusion disparity map 

image. The actual values of the disparities in this region are best guesses but should be 

regarded as invalid because it is impossible to determine correct disparities. This same 

problem is apparent in the horizontal disparity map to the left although the region 

is not as noticeable. The Custom SGM matching algorithm could be implemented in 

such a way that these regions are invalidated, like in the BM and SGBM algorithms. 

These regions are only ignored during the calculation of performance metrics. Invalid 

regions from both the horizontal and vertical maps appear in the disparity fusion 

map. 

Similar to the other disparity fusion maps, the performance of the multi-axis disparity 

fusion map falls in-between the performance of the two individual disparity maps 

when looking at the MAE over various 10m intervals (Figure 5.32). One interesting 

aspect is that the vertical baseline performs better as the distance from the camera 

increases in comparison to the horizontal baseline system even though the actual 

baseline distances are equal. This is likely because the vertical camera has a higher 

perspective than the cameras along the horizontal axis. 
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Figure 5.32: Comparison of MAE between disparity fusion and traditional 
stereo in a multi-axis configuration at various 10m intervals 

The same trend occurs for the disparity fusion map around the regions of the two 

vehicles as well (Figure 5.33). The vertical stereo configuration has a significantly 

higher BMPRE than the horizontal axis configuration for the two vehicles. 

Figure 5.33: Comparison of BMPRE between disparity fusion and tradi-
tional stereo in a multi-axis configuration of the near and far vehicles 

Even though the baselines of the vertical and horizontal camera configurations are 

equal, there is a difference in the ability to accurately perceive the depth of objects. 

This was expected because different orientations of the stereo camera systems were 
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expected to detect structures in images differently. It is interesting that a horizontal 

stereo configuration is more accurate than a vertical configuration for detecting depth 

of vehicles. 

5.3.2 Cost Fusion 

Using the cost fusion method of fusion, the grayscale representations of the disparity 

maps show little difference to the traditional stereo configurations (shown in Appendix 

A). The plot of MAE over a range of distances shows a similar story to cost fusion for 

multi-baseline systems, where the cost fusion methods follow or have an error lower 

than the best performing traditional stereo configuration. 

Figure 5.34: Comparison of MAE between cost fusion and traditional 
stereo in a multi-axis configuration at various 10m intervals 

Looking at the two vehicles, rather than cost fusion having a lower BMPRE than the 

best traditional stereo configuration in the multi-baseline configuration, the BMPRE 

plot for multi-axis cost fusion looks more similar to disparity fusion. The cost fusion 

methods fall at about the midpoint between the two traditional configurations for each 

distance. This indicates that multi-axis cost fusion may not be an effective method 

for triple-camera depth estimation. Additionally, the error for performing fusion after 
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Figure 5.35: Comparison of BMPRE between cost fusion and traditional 
stereo in a multi-axis configuration of the near and far vehicles 

cost aggregation is lower than when performing fusion before cost aggregation. This 

large of a difference between cost fusion before and after aggregation was not seen in 

multi-baseline cost fusion. 

Comparing tradition stereo to the fusion methods for the multi-axis configuration, 

overall, both cost fusion methods perform better across all distances. The decreased 

Figure 5.36: Comparison of MAE between fusion methods and traditional 
stereo in multi-axis camera configurations at various 10m intervals 

error of the traditional vertical camera system over the horizontal system at large 

distances seems to have contributed to improved accuracy for the fusion methods. 
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In contrast, examining the areas in the depth maps where the vehicles are located, the 

cost fusion methods have a much higher BMPRE than the Custom SGM algorithm 

in the horizontal configuration. This seems to be caused by a high BMPRE from the 

Custom SGM algorithm in the vertical stereo configuration. 

Figure 5.37: Comparison of BMPRE between disparity fusion, cost fusion, 
and traditional stereo in multi-axis camera configurations of the near and 
far vehicles 

Overall, a multi-axis stereo configuration does benefit from the unique perspective of 

the vertical camera at long ranges, but does not seem to improve the depth accuracy 

for shorter distances where important objects in the environment are located. 
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5.4 Multi-Baseline vs Multi-Axis 

Comparing the multi-baseline and multi-axis triple camera configurations shows simi-

lar relationships to what was discovered in earlier sections. Since both multi-baseline 

and multi-axis configurations share a stereo camera pair, most of the performance 

difference between the two configurations depends on the performance of the other 

stereo pair. This is especially evident with the disparity fusion method whose per-

formance was essentially the mean of the performance of the two individual stereo 

pairs. 

Figure 5.38: Comparison of MAE for disparity fusion disparity maps be-
tween multi-axis and multi-axis camera configurations at various 10m in-
tervals 

Multi-axis disparity fusion has a lower MAE at distances greater than about 70m 

which corresponds to the improved performance of the vertical stereo pair in compar-

ison to the wide baseline stereo pair at the larger distances. 

Similarly, when examining the vehicles in the scene, the vertical stereo configuration 

had a higher BMPRE than the wide baseline configuration which resulted in a larger 

BMPRE for the multi-axis disparity fusion than the multi-baseline disparity fusion 
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Figure 5.39: Comparison of BMPRE for disparity fusion disparity maps 
between multi-axis and multi-axis camera configurations of the near and 
far vehicles 

(Figure 5.39). The areas where the individual disparity maps had low error, the 

resulting disparity fused maps also had low error. 

Figure 5.40: Comparison of MAE for cost fusion between multi-axis and 
multi-axis camera configurations at various 10m intervals 

This same relationship also occurs even in the cost fusion disparity maps. The multi-

axis and multi-baseline cost fusion methods have relatively the same MAE for dis-

tances up until about 70m, when the multi-axis cost fusion begins to outperform the 

multi-baseline cost fusion. 

Examining the vehicles, multi-baseline cost fusion has significantly lower BMPRE 

than the multi-axis cost fusion. Even though cost fusion overall has higher accuracy 
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Figure 5.41: Comparison of BMPRE for cost fusion disparity maps be-
tween multi-axis and multi-axis camera configurations of the near and far 
vehicles 

than disparity fusion when comparing algorithms in a single configuration, there still 

is a relationship between the accuracy of the individual stereo pair and the accuracy 

of cost fusion. 

Overall, the fusion methods in the multi-axis camera configuration have lower error 

across most of the depth range than fusion methods in the multi-baseline camera 

configuration. Looking at just the vehicles in the scene, the opposite is true. 

5.5 City Environment Dataset 

In the next comparison between all the algorithms and camera configurations, metrics 

were computed for the depth and disparity maps (excluding invalid regions) generated 

by each algorithm and camera configuration using images from the CARLA city 

environment. Additionally, a selection of the grayscale representations of disparity 

maps generated by the algorithms of the CARLA city scene are shown in Figure 5.42. 

The characteristics of these grayscale disparity maps are like those displayed in pre-

vious sections. Even though there are significantly more objects and texture in this 
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(a) Ground Truth (b) BM (short baseline) 

(c) GWCNet (short baseline) (d) Custom SGM (vertical baseline) 

(e) Disparity Fusion (multi-axis) (f) Cost Fusion after aggregation (multi-baseline) 

Figure 5.42: Disparity maps generated by a selection of algorithms and 
camera configurations of the CARLA city environment 

environment, the smoothness of the GWCNet algorithm over the traditional algo-

rithm is still obvious. For the closest distances in the disparity maps, specifically 

the bottom right corner, it is evident that the traditional algorithms and fusion algo-

rithms struggle to match pixels. At the same time, the structures of the objects and 

features in the background of the GWCNet are not as clear as in the other algorithms. 

This likely means that the trend of the CNN-based algorithms performing better at 

closer distances but worse at longer distances remains true in the new environment. 

Examining the BMP metrics across the entire disparity map for all algorithms in 

Table 5.3, a couple things are noticeable. Across the short, wide, and vertical baseline 

stereo configurations the algorithm GWCNet has by far the lowest BMP. The BMP 

metrics for GWCNet in the short baseline configuration are 68% (δ = 3px), 66% 
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(δ = 2px), and 30% (δ = 1px) lower than the next best algorithm in the short 

baseline configuration and 33% (δ = 3px), 58% (δ = 2px), and 40% (δ = 1px) lower 

than the next best algorithm in the wide baseline configuration. As one of the top 

algorithms on the KITTI leaderboards this result was unsurprising. 

Table 5.3: BMP values of disparity maps generated by different algorithms 
using images of the CARLA City Environment 

Algorithm 
Camera 
Configuration 

BMP 
δ=3px δ=2px δ=1px 

BM short baseline 0.289 0.353 0.461 
SGBM short baseline 0.206 0.271 0.376 
PSMNet short baseline 0.142 0.380 0.777 
GWCNet short baseline 0.045 0.092 0.264 
Custom SGM short baseline 0.233 0.302 0.422 
BM wide baseline 0.466 0.507 0.565 
SGBM wide baseline 0.421 0.472 0.541 
PSMNet wide baseline 0.145 0.341 0.728 
GWCNet wide baseline 0.096 0.143 0.322 
Custom SGM wide baseline 0.498 0.551 0.631 
Custom SGM vertical baseline 0.253 0.314 0.410 
Disparity Fusion (Custom SGM) 
Cost Fusion (before aggregation) 
Cost Fusion (after aggregation) 

multi-baseline 
multi-baseline 
multi-baseline 

0.512 
0.219 
0.216 

0.565 
0.287 
0.287 

0.635 
0.406 
0.407 

Disparity Fusion (Custom SGM) 
Cost Fusion (before aggregation) 
Cost Fusion (after aggregation) 

multi-axis 
multi-axis 
multi-axis 

0.375 
0.203 
0.206 

0.447 
0.262 
0.266 

0.555 
0.368 
0.373 

Disparity Fusion 
(GWCNet and Custom SGM) 

multi-baseline 0.484 0.556 0.690 

Examining the performance of the fusion methods for the metric BMP, cost fusion in 

a triple-camera configuration is an improvement over all two-camera configurations 

for the Custom SGM algorithm. Cost fusion after cost aggregation in a multi-baseline 

camera configuration had BMP metrics 7.3% (δ = 3px), 4.9% (δ = 2px), and 3.6% 

(δ = 1px) lower than the Custom SGM algorithm in the short and wide baseline 

camera configurations. Similarly, cost fusion before cost aggregation in a multi-axis 

camera configuration had BMP metrics 13% (δ = 3px), 13% (δ = 2px), and 10% 
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(δ = 1px) lower than the Custom SGM algorithm in the short and vertical baseline 

camera configurations. 

In contrast, the disparity fusion methods do not show any decrease in BMP over the 

Custom SGM algorithm in any of the traditional stereo configurations even when a 

Custom SGM depth map was combined with the best performing depth map (GWC-

Net in a short baseline configuration). 

Table 5.4: BMPRE values of disparity maps generated by different algo-
rithms using images of the CARLA City Environment 

Algorithm 
Camera 
Configuration 

BMPRE 
δ=3px δ=2px δ=1px 

BM short baseline 3,106,980 3,112,623 3,118,804 
SGBM short baseline 2,427,069 2,432,517 2,438,839 
PSMNet short baseline 85,898 127,559 154,422 
GWCNet short baseline 31,746 44,901 64,607 
Custom SGM short baseline 66,837 73,234 81,411 
BM wide baseline 1,745,200 1,747,728 1,749,994 
SGBM wide baseline 1,311,484 1,314,070 1,316,818 
PSMNet wide baseline 51,566 68,178 86,588 
GWCNet wide baseline 33,734 36,793 43,569 
Custom SGM wide baseline 134,390 138,367 142,551 
Custom SGM vertical baseline 87,760 93,340 98,447 
Disparity Fusion 
(Custom SGM) 
Cost Fusion 

multi-baseline 111,755 115,752 119,196 

(before aggregation) 
Cost Fusion 

multi-baseline 48,707 55,413 63,324 

(after aggregation) 
multi-baseline 47,154 54,059 62,176 

Disparity Fusion 
(Custom SGM) 
Cost Fusion 

multi-axis 82,914 87,335 91,363 

(before aggregation) 
Cost Fusion 

multi-axis 38,946 43,934 50,179 

(after aggregation) 
multi-axis 41,349 46,390 52,797 

Disparity Fusion 
(GWCNet and Custom SGM) 

multi-baseline 100,914 107,209 115,572 
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Examining the BMPRE metric confirms that GWCNet is the best performing algo-

rithm in both the short and wide baseline configurations. The BMPRE metrics for 

GWCNet in the short baseline configuration are 53% (δ = 3px), 39% (δ = 2px), 

and 21% (δ = 1px) lower than the next best algorithm in the short baseline con-

figuration and 35% (δ = 3px), 46% (δ = 2px), and 50% (δ = 1px) lower than the 

next best algorithm in the wide baseline configuration. Additionally, contrary to the 

relatively low BMP metrics of the BM and SGBM algorithms, the BMPRE metrics 

for these algorithms in the short and wide baseline configurations are at minimum 

an order of magnitude larger than the other algorithms. This means that when the 

BM and SGBM algorithms incorrectly match a pixel, they miss by a large amount in 

comparison to the other algorithms. 

The cost fusion algorithms have the next lowest BMPRE metrics across the entire 

disparity maps. These algorithms show improvement in lowering BMPRE over the 

short, wide, and vertical baseline Custom SGM algorithms. Cost fusion after cost 

aggregation in a multi-baseline camera configuration had BMPRE metrics 29% (δ = 

3px), 26% (δ = 2px), and 24% (δ = 1px) lower than the Custom SGM algorithm in 

the short and wide baseline camera configurations. Similarly, cost fusion before cost 

aggregation in a multi-axis camera configuration had BMP metrics 42% (δ = 3px), 

40% (δ = 2px), and 38% (δ = 1px) lower than the Custom SGM algorithm in the 

short and vertical baseline camera configurations. There are greater improvements in 

the BMPRE metric for cost fusion than the BMP metric because a decrease in BMP 

directly causes a decrease in BMPRE while not all BMPRE decreases cause decreases 

in BMP. 

Similarly to BMP, disparity fusion methods do not show any decrease in BMPRE 

over the Custom SGM algorithm in any of the traditional stereo configurations. The 
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disparity fusion methods have about double the BMPRE than the cost fusion meth-

ods. 

Table 5.5: MAE and MSE values of depth maps generated by different 
algorithms using images of the CARLA City Environment 

Algorithm 
Camera 
Configuration 

MAE (m) MSE (m) 

BM short baseline 5.804 12.378 
SGBM short baseline 4.740 15.800 
PSMNet short baseline 10.783 18.778 
GWCNet short baseline 6.395 13.533 
Custom SGM short baseline 4.863 10.391 
BM wide baseline 6.753 13.210 
SGBM wide baseline 6.718 18.291 
PSMNet wide baseline 6.495 12.197 
GWCNet wide baseline 3.835 9.296 
Custom SGM wide baseline 9.671 16.736 
Custom SGM vertical baseline 5.037 10.580 
Disparity Fusion 
(Custom SGM) 
Cost Fusion 

multi-baseline 5.992 10.113 

(before aggregation) 
Cost Fusion 

multi-baseline 4.364 9.515 

(after aggregation) 
multi-baseline 4.148 9.233 

Disparity Fusion 
(Custom SGM) 
Cost Fusion 

multi-axis 4.943 10.070 

(before aggregation) 
Cost Fusion 

multi-axis 3.764 7.975 

(after aggregation) 
multi-axis 3.735 7.966 

Disparity Fusion 
(GWCNet and Custom SGM) 

multi-baseline 6.494 10.433 

Looking across the depth maps generated for each algorithm, the cost fusion method 

has lower depth error metrics than most of the algorithms in any configurations. This 

was not the case with the disparity error metrics where the GWCNet and PSMNet 

significantly outperformed the other algorithms. 
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The GWCNet algorithm in the wide baseline configuration still has a low MAE and 

MSE in comparison to the other algorithms, but the multi-axis cost fusion after 

aggregation algorithm has the lowest depth error overall. The multi-axis cost fusion 

after aggregation is only slightly lower than GWCNet and has a MAE 23% lower and 

MSE 23% lower than the Custom SGM algorithm in the short baseline configuration. 

The GWCNet algorithm not performing as well with depth metrics is likely because 

GWCNet struggles with matching in areas furthest away from the camera and a pixel 

difference in a disparity estimation of a faraway object has a much larger impact on the 

depth error than a pixel difference in a disparity estimation of a close object (because 

of the inverse relationship between depth and disparity). Since all the algorithms 

perform better than GWCNet at longer distances, the difference in error between 

GWCNet and the other algorithms was decreased. 

In summary, the GWCNet algorithm overall had the lowest error across all the error 

metrics for the CARLA city environment. Cost fusion methods performed comparably 

to GWCNet, and saw a decrease in error over the Custom SGM algorithm in all stereo 

configurations. The disparity fusion methods, similar to previous analysis, had error 

rates fall between the performance of the two input disparity maps. 

5.6 Eight Additional Datasets 

In order to validate the depth and disparity map accuracy improvements of the fusion 

methods across a wider range of data, the Custom SGM in a short baseline configu-

ration, Multi-axis Disparity Fusion, Multi-axis Cost Fusion before aggregation, and 

Multi-baseline Cost Fusion before aggregation algorithms were run on an additional 

8 datasets generated from the CARLA simulator. Depth metrics MAE and MSE, 

and disparity metrics BMP (δ=1px) and BMPRE (δ=1px) were computed from the 
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generated depth maps and disparity maps respectively. These metrics and a sample 

image from each dataset are shown below in Figures 5.43-5.46. 

Algorithm MAE MSE BMP BMPRE 
Custom SGM 3.36 11.10 0.397 49,609 
Multi-axis Disparity Fusion 3.05 10.51 0.395 44,433 
Multi-axis Cost Fusion 2.77 10.13 0.355 37,867 
Multi-baseline Cost Fusion 3.27 10.29 0.360 49,000 

Algorithm MAE MSE BMP BMPRE 
Custom SGM 6.20 21.19 0.487 88,852 
Multi-axis Disparity Fusion 5.93 20.08 0.484 89,342 
Multi-axis Cost Fusion 5.54 18.87 0.461 84,182 
Multi-baseline Cost Fusion 5.78 19.21 0.482 86,317 

Figure 5.43: Error metrics of depth and disparity maps generated by fusion 
algorithms of a CARLA City Street Environment and a CARLA Rural 
Farm Environment 
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Algorithm MAE MSE BMP BMPRE 
Custom SGM 5.93 18.35 0.429 94,625 
Multi-axis Disparity Fusion 5.74 17.74 0.421 89,643 
Multi-axis Cost Fusion 5.68 17.70 0.411 88,581 
Multi-baseline Cost Fusion 5.94 18.08 0.420 90,018 

Algorithm MAE MSE BMP BMPRE 
Custom SGM 4.18 15.34 0.574 70,612 
Multi-axis Disparity Fusion 3.99 14.79 0.570 66,575 
Multi-axis Cost Fusion 3.49 14.26 0.500 53,528 
Multi-baseline Cost Fusion 3.79 14.80 0.555 58,720 

Figure 5.44: Error metrics of depth and disparity maps generated by fusion 
algorithms of a CARLA Forest Road Environment and a CARLA Freeway 
Environment 
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Algorithm MAE MSE BMP BMPRE 
Custom SGM 6.51 23.85 0.628 122,785 
Multi-axis Disparity Fusion 6.37 23.75 0.614 115,547 
Multi-axis Cost Fusion 6.05 23.22 0.576 108,574 
Multi-baseline Cost Fusion 6.41 23.74 0.626 120,899 

Algorithm MAE MSE BMP BMPRE 
Custom SGM 5.04 13.51 0.563 98,953 
Multi-axis Disparity Fusion 4.97 12.19 0.620 108,839 
Multi-axis Cost Fusion 3.54 11.29 0.506 79,715 
Multi-baseline Cost Fusion 5.22 13.80 0.555 90,844 

Figure 5.45: Error metrics of depth and disparity maps generated by fusion 
algorithms of a CARLA Rain Environment and a CARLA Gas Station 
Environment 
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Algorithm MAE MSE BMP BMPRE 
Custom SGM 7.95 20.66 0.489 64,158 
Multi-axis Disparity Fusion 7.82 19.19 0.488 63,138 
Multi-axis Cost Fusion 7.88 18.89 0.458 58,674 
Multi-baseline Cost Fusion 7.96 19.20 0.487 63.858 

Algorithm MAE MSE BMP BMPRE 
Custom SGM 4.86 17.35 0.589 86,002 
Multi-axis Disparity Fusion 4.83 17.30 0.591 89,088 
Multi-axis Cost Fusion 4.69 17.10 0.572 85,322 
Multi-baseline Cost Fusion 4.81 17.32 0.587 86,185 

Figure 5.46: Error metrics of depth and disparity maps generated by fu-
sion algorithms of a CARLA Parking Lot Environment and a CARLA 
Neighborhood Environment 
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Note that for all these 8 datsets, both Disparity Fusion and Cost Fusion algorithms in 

any camera configuration showed depth and disparity estimation improvements over 

just the traditional Custom SGM algorithm in a short baseline camera configuration. 

Additionally, Multi-axis Cost Fusion had the lowest error metrics among the fusion 

algorithms. 

5.7 Computational Performance 

Table 5.6 shows the runtime and peak memory usage of various depth estimation 

algorithms during the processing of a single set of images. These algorithms were 

implemented in Python 3.8 and ran on an Intel Core i7 8565U processor with 16GB 

of RAM. 

Table 5.6: Computational Performance Comparison of the Custom SGM 
algorithm and fusion algorithms 

Algorithm Runtime (sec) 
Peak Memory 
Usage (MB) 

Custom SGM 
Disparity Fusion 
Cost Fusion 
(before aggregation) 
Cost Fusion 
(after aggregation) 

391.78 
1,286.37 

640.75 

1,022.19 

3,818.4 
9,519.6 

4,844.6 

8,472.3 

Reviewing the runtime statistics, as expected, all fusion algorithms had longer run-

times than the Custom SGM algorithm due to the added processing needed for the 

additional image. The longest runtime was the disparity fusion algorithm, which ran 

for 3.3 times longer than the Custom SGM algorithm. The runtime being over twice 

as long was expected because disparity fusion computes the Custom SGM algorithm 

twice and then calculates a weighted mean between corresponding elements in the 

produced disparity maps. In contrast, the cost fusion algorithms, which fuse infor-

mation from each perspective much earlier in the process and avoid computing steps 
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in the algorithm more than once, have runtimes that are lower than disparity fusion. 

Cost Fusion before aggregation and Cost Fusion after aggregation had runtimes 1.6 

and 2.6 times longer than the Custom SGM algorithm respectively. 

Cost Fusion methods only differ in where cost fusion is performed (before and after 

cost aggregation). The almost 400 second longer runtime of cost fusion after cost 

aggregation than cost fusion before cost aggregation is caused by needing to compute 

cost aggregation an additional time than cost fusion before cost aggregation. 

Peak memory usage of each algorithm follows a similar pattern with disparity fusion 

peaking at a value 2.5 times that of the Custom SGM algorithm while cost fusion 

before aggregation and cost fusion after aggregation peaked at values 1.3 and 2.2 

times larger than Custom SGM respectively. 

In summary, disparity fusion performs the greatest number of duplicate steps which 

caused the algorithm to have the highest runtime and largest peak memory usage. 

Cost fusion before aggregation had the least number of duplicate steps to the Custom 

SGM algorithm which resulted in the lowest runtime and smallest peak memory 

usage in comparison to the other fusion algorithms. Additionally, the large difference 

in runtime and peak memory usage between the cost fusion algorithms demonstrates 

that cost aggregation is the most performance and memory intensive step of the 

Custom SGM algorithm. 

94 



Chapter 6 

CONCLUSION 

The goal of this thesis was to determine if a triple-camera configuration would be able 

to improve the accuracy of image-based depth estimation. Since there were no existing 

datasets that fulfilled all the requirements for this research, a dataset was built from 

images and ground truth data captured of environments created in the open-source 

simulator CARLA. The images in the dataset were fed into different stereo matching 

algorithms which produced estimated depth maps of the environment. Using ground 

truth data, each depth map was evaluated for accuracy by computing four metrics, 

BMP, BMPRE, MAE, and MSE, over the entire depth map and over specific regions 

in the depth map. These metrics were used to compare the accuracy of the depth 

maps to each other. 

6.1 Findings 

This thesis examined the accuracy of the algorithms BM, SGBM, GWCNet, PSMNet, 

and Custom SGM in short and wide baseline camera configurations to compare to 

the accuracy of the disparity fusion and cost fusion methods in multi-axis and multi-

baseline camera configurations. The following are some of the discoveries from this 

research. 

The accuracy of the depth maps in a wide baseline configuration was lower than 

the accuracy of depth maps in a short baseline configuration, across all algorithms. 

The purpose of the wider baseline was to improve the accuracy of depth estimation 

for objects located far away because baseline length has an inverse relationship with 
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depth error. There is an accuracy improvement for objects located more than 100m 

away, but a majority of the important objects are located closer than 100m, which 

means that overall, the depth maps generated from the wide baseline configuration 

have worse accuracy. As noted previously, a larger baseline can have more occlusions 

and discontinuities in the resulting images which makes matching of pixels more 

difficult. The wide baseline length chosen in this thesis was 1 meter which may 

have been too large for this application. A deeper investigation into how varying 

baseline length impacts accuracy, especially for the multi-baseline and multi-axis 

camera configurations, is an area I see future research opportunities in. 

GWCNet was the algorithm with the highest depth map accuracy overall, especially 

for the BMP and BMPRE metrics. Both CNN-based algorithms (PSMNet and GWC-

Net) performed significantly better around non-textured regions than the traditional 

algorithms which was most obvious in the visual representations of the depth maps. 

This was why the CNN-based algorithms had a higher accuracy than the traditional 

methods overall. These algorithms seem to understand general features that are con-

tained in images captured from the perspective of a vehicle driving (like the road) 

and use this knowledge to match pixels that may not be very similar because of their 

global understanding. Because GWCNet was trained on real images from the KITTI 

dataset, I would expect the accuracy to be even higher if trained using images from 

the CARLA environment. 

Disparity fusion performed as expected, with the accuracy of the fused depth map 

falling at about the average of the two input depth maps. The idea with disparity 

fusion was that high accuracy areas in one depth map could be combined with high 

accuracy areas of another depth map. However, since there is no way to determine 

a highly accurate region (without ground truth) and the combination is a weighted 

mean, disparity fusion also combines the low accuracy regions into the resulting depth 
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map. Across the entire depth map, the accuracy may be more consistent, but there 

seems to be no improvement in accuracy overall with disparity fusion. 

Both cost fusion in the multi-axis and multi-baseline camera configurations had im-

proved accuracy over the Custom SGM algorithm in the traditional stereo configura-

tions. This is the most significant result of this thesis because it shows that accuracy 

can be improved by adding an additional camera. Both the multi-axis and multi-

baseline configurations saw an accuracy improvement which indicates that it is more 

than just a specific configuration that caused the performance improvement. How-

ever, the accuracy metrics of cost fusion still fall slightly behind the performance of 

the GWCNet algorithm. Qualitatively, the visual representations of the GWCNet 

depth maps also appear much more like the real world than the cost fusion depth 

maps. So, although the triple camera cost fusion Custom SGM algorithm shows an 

improvement in accuracy, it is still behind the cutting-edge depth estimators (Which 

are mostly CNN algorithms). Since there are promising results by adding an addi-

tional camera to traditional stereo matching algorithms, it would be interesting to see 

if an additional camera would improve the accuracy of a CNN-based depth estimation 

algorithm. 

The final discovery was that the difference in accuracy by performing cost fusion 

before or after cost aggregation was very small. This is important because cost 

fusion after cost aggregation must compute cost aggregation twice while cost fusion 

before cost aggregation only computes cost aggregation once. Cost aggregation is 

the most performance intensive part of the Custom SGM algorithm and in order to 

make triple camera depth estimation algorithms feasible in an autonomous vehicle 

application their performance must be as good or better than existing algorithms. 

The current implementation of Custom SGM (including cost fusion) is not optimized 
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for performance and further work is necessary to determine if multi-axis or multi-

baseline cost fusion can be optimized enough to run on real-time video. 

6.2 Future Work 

Since the idea for this research stemmed from papers that were examining methods 

to improve the performance of the 3D object detection and localization algorithms, 

the next step is plugging the depth estimation algorithms into the 3D object detec-

tion pipelines to evaluate and compare their performance to each other. In order to 

have ground truth data to evaluate 3D object detection performance, the type and 

bounding-box location of objects in the environment will also need to be captured 

when generating images, a feature that is already available in the CARLA simulator. 

Another algorithm/camera configuration that could be analyzed is the combination 

of the multi-axis and multi-baseline systems into a 4-camera system. A modification 

of the cost fusion algorithm that could fuse costs from three sources rather than 

two would be relatively simple. Additionally, all the necessary images to perform an 

analysis already exist within the current synthetic dataset. 

However, I believe that the most promising research opportunity is designing and 

training a machine learning depth estimator that uses three images from either a 

multi-axis or multi-baseline camera configuration to generate a depth map. Most of 

the current state-of-the-art depth estimators are machine learning algorithms, and 

this trend does not seem to be diminishing. At this time, I do not know of any 

research into this area. The biggest issue is that there are no datasets large enough 

to train and test a triple-camera machine learning depth estimation algorithm. This 

paper demonstrates that the simulator CARLA could be useful for generating a large 

set of life-like images at a low cost. 
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APPENDICES 

Appendix A 

ADDITIONAL RESULTS 

Figures for some additional quantitative and qualitative metrics not shown in the 

Results chapter can be found in this appendix. 

A.1 Traditional Stereo 

(a) δ=3px (b) δ=1px 

Figure A.1: BMP values from disparity maps generated by different algo-
rithms at various 10m intervals 
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Figure A.2: BMPRE values from disparity maps generated by different 
algorithms at various 10m intervals 

(a) δ=3px (b) δ=1px 

Figure A.3: Comparison of BMPRE values from disparity maps generated 
by different algorithms in a short baseline camera configuration at various 
10m intervals 

Figure A.4: Comparison of MSE values from depth maps generated by 
different algorithms in a short baseline camera configuration of the near 
and far vehicles 
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Figure A.5: Comparison of MSE values from depth maps generated by 
different algorithms in a wide baseline camera configuration of the near 
and far vehicles 

Figure A.6: Comparison of MAE values from depth maps generated by 
different algorithms in a wide baseline camera configuration of the near 
and far vehicles 
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different algorithms in a wide baseline camera configuration at various 
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A.2 Multi-Baseline Stereo 

Figure A.8: Comparison of BMPRE between disparity fusion in a multi-
baseline configuration and traditional stereo for the algorithm SGBM of 
the near and far vehicles 
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Figure A.9: Comparison of BMP between disparity fusion in a multi-
baseline configuration and traditional stereo for the algorithm SGBM at 
various 10m intervals 

Figure A.10: Comparison of BMPRE between disparity fusion in a multi-
baseline configuration and traditional stereo of the algorithm PSMNet of 
the near and far vehicles 
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Figure A.11: Comparison of BMP between disparity fusion in a multi-
baseline configuration and traditional stereo for the algorithm PSMNet at 
various 10m intervals 

Figure A.12: Comparison of MSE between disparity fusion and traditional 
stereo configurations for the algorithm SGBM at various 10m intervals 
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Figure A.14: Comparison of MSE between disparity fusion and traditional 
stereo configurations for the algorithm Custom SGM at various 10m in-
tervals 
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Figure A.15: Comparison of BMP between fusion methods and traditional 
stereo in a multi-baseline configuration of the near and far vehicles 

Figure A.16: Comparison of MAE between fusion methods in a multi-
baseline configuration and traditional stereo for the algorithm Custom 
SGM at various 10m intervals 
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A.3 Multi-axis Stereo 
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Figure A.17: Comparison between traditional stereo configuration dispar-
ity maps and the multi-axis cost fusion disparity map 

Figure A.18: Comparison of BMP between fusion methods and traditional 
stereo in a multi-axis configuration of the near and far vehicles 
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Figure A.19: Comparison of BMPRE between fusion methods and tradi-
tional stereo in a multi-axis configuration of the near and far vehicles 

Figure A.20: Comparison of MAE between fusion methods and traditional 
stereo in a multi-axis camera configurations of the near and far vehicles 
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A.4 Multi-Baseline vs Multi-Axis 

Figure A.21: Comparison of BMP for cost fusion disparity maps between 
multi-axis and multi-axis camera configurations of the near and far vehicles 

(a) Ground Truth (b) Custom SGM (short baseline) 

(c) Custom SGM (wide baseline) (d) Custom SGM (vertical baseline) 

(e) Disparity Fusion (multi-baseline) (f) Disparity Fusion (multi-axis) 

Figure A.22: Comparison between disparity maps generated by Custom 
SGM in traditional camera configurations and disparity maps generated 
by disparity fusion of the CARLA city environment 
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(a) Multi-Baseline (before aggregation) (b) Multi-Axis (before aggregation) 

(c) Multi-Baseline (after aggregation) (d) Multi-Axis (after aggregation) 

Figure A.23: Comparison of cost fusion methods in different camera con-
figurations of the CARLA city environment 
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