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Abstract 

The areas of Computer Vision and Scientific Computing have witnessed rapid 

growth in the last decade with the fields of industrial robotics, automotive and healthcare 

acting as the primary vehicles for research and advancement. However, related research in 

other fields, such as agriculture, remains an understudied problem. This dissertation 

explores the application of Computer Vision and Scientific Computing in an agricultural 

domain known as High-throughput Phenotyping (HTP). HTP is the assessment of complex 

seed traits such as growth, development, tolerance, resistance, ecology, yield, and the 

measurement of parameters that form more complex traits.  

The dissertation makes the following contributions: The first contribution is the 

development of algorithms to estimate morphometric traits such as length, width, area, and 

seed kernel count using 3-D graphics and static image processing, and the extension of 

existing algorithms for the same.  

The second contribution is the development of lightweight frameworks to aid in 

synthetic image dataset creation and image cropping for deep neural networks in HTP. 

Deep neural networks require a plethora of training data to yield results of the highest 

quality. However, no such training datasets are readily available for HTP research, 

especially on seed kernels. The proposed synthetic image generation framework helps 

generate a profusion of training data at will to train neural networks from a meager samples 

of seed kernels. Besides requiring large quantities of data, deep neural networks require the 

input to be a certain size. However, not all available data are in the size required by the 



  

deep neural networks. The proposed image cropper helps to resize images without resulting 

in any distortion, thereby, making image data fit for consumption.  

The third contribution is the design and analysis of supervised and self-supervised 

neural network architectures trained on synthetic images to perform the tasks of seed kernel 

classification, counting and morphometry. In the area of supervised image classification, 

state-of-the-art neural network models of VGG-16, VGG-19 and ResNet-101 are 

investigated. A Simple framework for Contrastive Learning of visual Representations 

(SimCLR) [133], Momentum Contrast (MoCo) [55] and Bootstrap Your Own Latent 

(BYOL) [119] are leveraged for self-supervised image classification. The instance-based 

segmentation deep neural network models of Mask R-CNN and YOLO are utilized to 

perform the tasks of seed kernel classification, segmentation and counting. The results 

demonstrate the feasibility of deep neural networks for their respective tasks of 

classification and instance segmentation. In addition to estimating seed kernel count from 

static images, algorithms that aid in seed kernel counting from videos are proposed and 

analyzed. Proposed is an algorithm that creates a slit image which can be analyzed to 

estimate seed count. Upon the creation of the slit image, the video is no longer required to 

estimate seed count, thereby, significantly lowering the computational resources required 

for the estimation.  

The fourth contribution is the development of an end-to-end, automated image 

capture system for single seed kernel analysis. In addition to estimating length and width 

from 2-D images, the proposed system estimates the volume of a seed kernel from 2-D 

images using the technique of volume sculpting. The relative standard deviation of the 

results produced by the proposed technique is lower (better) than the relative standard 



  

deviation of the results produced by volumetric estimation using the ellipsoid slicing 

technique.  

The fifth contribution is the development of image processing algorithms to provide 

feature enhancements to mobile applications to improve upon on-site phenotyping 

capabilities. Algorithms for two features of high value namely, leaf angle estimation and 

fractional plant cover estimation are developed. The leaf angle estimation feature estimates 

the angle between stem and leaf for images captured using mobile phone cameras whereas 

fractional plant cover is to determine companion plants i.e., plants that are able to co-exist 

and mutually benefit.  

The proposed techniques, frameworks and findings lay a solid foundation for future 

Computer Vision and Scientific Computing research in the domain of agriculture. The 

contributions are significant since the dissertation not only proposes techniques, but also 

develops low-cost end-to-end frameworks to leverage the proposed techniques in a scalable 

fashion.  
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Abstract 

The areas of Computer Vision and Scientific Computing have witnessed rapid 

growth in the last decade with the fields of industrial robotics, automotive and healthcare 

acting as the primary vehicles for research and advancement. However, their research in 

other fields such as agriculture with abundant potential remains an understudied problem. 

The dissertation explores the potential of Computer Vision and Scientific Computing in an 

agricultural domain known as High-throughput Phenotyping (HTP). HTP is the assessment 

of complex seed traits such as growth, development, tolerance, resistance, ecology, yield, 

and the measurement of parameters that form more complex traits.  

The dissertation makes the following contributions: The first contribution is the 

development of algorithms to estimate morphometric traits such as length, width, area and 

seed kernel count using 3-D graphics and static image processing, and extension of the 

existing Watershed technique for the same.  

The second contribution is the development of light weight frameworks to aid in 

synthetic image dataset creation and image cropping for deep neural networks in HTP. 

Deep neural networks require a plethora of training data to yield results of the highest 

quality. However, no such training datasets are readily available for HTP research, 

especially on seed kernels. The proposed synthetic image generation framework helps 

generate a profusion of training data at will to train neural networks from a meager sample 

of seed kernels. Besides requiring a plethora of data, deep neural networks require the input 

to be a certain size. However, not all available data are in the size required by the deep 



  

neural networks. The proposed image cropper helps to resize images without resulting in 

any distortion, thereby, making image data fit for consumption.  

The third contribution is the design and analysis of supervised and self-supervised 

neural network architectures trained on synthetic images to perform the tasks of seed kernel 

classification, counting and morphometry. In the area of supervised image classification, 

the state-of-the-art neural network models of VGG-16, VGG-19 and ResNet-101 are 

investigated. A Simple framework for Contrastive Learning of visual Representations 

(SimCLR) [133], Momentum Contrast (MoCo) [51] and Bootstrap Your Own Latent 

(BYOL) [119] are leveraged for self-supervised image classification. The instance-based 

segmentation deep neural network models of Mask R-CNN and YOLO are utilized to 

perform the tasks of seed kernel classification, segmentation and counting. The results 

demonstrate the feasibility of deep neural networks for their respective tasks of 

classification and instance segmentation. In addition to estimating seed kernel count from 

static images, algorithms that aid in seed kernel counting from videos are proposed and 

analyzed. Proposed is an algorithm that creates a slit image which can be analyzed to 

estimate seed count. Upon the creation of the slit image, the video is no longer required to 

estimate seed count, thereby, significantly lowering the computational resources required 

for the estimation.  

The fourth contribution is the development of an end-to-end, automated image 

capture system for single seed kernel analysis. In addition to estimating length and width 

from 2-D images, the proposed system estimates the volume of a seed kernel from 2-D 

images using the technique of volume sculpting. The relative standard deviation of the 

results produced by the proposed technique is lower (better) than the relative standard 



  

deviation of the results produced by volumetric estimation using the ellipsoid slicing 

technique.  

The fifth contribution is the development of image processing algorithms to provide 

feature enhancements to mobile applications to improve upon on-site phenotyping 

capabilities. Algorithms for two features of high value namely, leaf angle estimation and 

fractional plant cover estimation are developed. The leaf angle estimation feature estimates 

the angle between stem and leaf for images captured using mobile phone cameras whereas 

fractional plant cover is to determine companion plants i.e., plants that are able to co-exist 

and mutually benefit.  

The proposed techniques, frameworks and findings lay a solid foundation for future 

Computer Vision and Scientific Computing research in the domain of agriculture. The 

contributions are significant since the dissertation not only proposes techniques, but also 

develops low-cost end-to-end frameworks to leverage the proposed techniques in a scalable 

fashion.  
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Chapter 1 - Introduction 

The origins of Artificial Intelligence (AI) date back to the 1950s when Alan Turing, 

a British mathematician envisioned a world in which computers could think and make 

decisions based on knowledge acquired. However, the bottleneck at the time was that 

computers could only execute instructions, but not store them. In other words, the concept 

of memory for computing systems wasn’t prevalent at the time. Over time, the concept of 

memory in computers has become so prevalent that it is taken for granted. With the 

explosive growth of memory and the computational ability of computers, modern day 

machines are put to the task of making educated decisions and predictions based on 

historical knowledge. The ability of machines to think and act like humans is termed 

‘Artificial Intelligence’. The applications of AI prevalent in the modern world are speech 

recognition, language translation and visual perception. The field of AI that deals with 

visual data is called ‘Computer Vision’. Computer Vision describes the computer’s ability 

to process, understand and infer from visual data similar to processing by humans gathering 

images from their eyes. The fact that machines are able to make sense of visual data means 

that the data in the form of images and videos can be analyzed. With the abundant 

availability of mobile cameras, a profusion of visual data is available in different domains 

across the board. As a result, computer vision has gained popularity amongst researchers 

in different fields such as industrial automation, healthcare, banking and automotive. The 

aspects of image processing and convolutional neural networks are great means to apply 

the idea of computer vision to images and videos to each of the fields mentioned. While 

computer vision research in the aforementioned fields has been prevalent, computer vision 

in the field of agriculture offers plenty of avenues for exploration. This dissertation 
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explores the idea of using Computer Vision for High-Throughput Phenotyping (HTP) in 

agriculture. The general paradigm of agriculture has its foundation in the ‘seed’. The 

analysis of the seed kernel, both genotype and phenotype, provides plant researchers with 

invaluable information in terms of seed behavior in different environmental conditions. 

The dissertation specifically focuses on the analysis of phenotypes, and not genotypes. The 

study of the morphological traits of a seed kernel provides information about its growth, 

development, yield, and resistance. The morphological traits of a seed kernel such as the 

length, width, area, volume, and density aid plant scientists in determining and evaluating 

the behavior of a seed in an ecosystem. The seed kernel length and width are manually 

measured using a caliper. However, the measurement is subjective to trial and individual 

on duty. To arrive at estimates that are agnostic of the individual conducting the 

experiment, image analysis techniques to estimate seed kernel length, width and area are 

proposed. The proposed image analysis techniques consider three important problems of 

image processing namely, image skewness, object clusters on image and unclear image 

background. The proposed techniques leverage low-cost 3-D printed physical components 

and backlit lightbox to counter the problems.  

While the proposed image processing techniques work well, available are state-of-

the-art deep neural network models meant for classification and instance segmentation. 

The use of deep neural network models in the field of HTP is still in a nascent state. Several 

pre-trained models trained on COCO and ImageNet datasets are available for use. Transfer 

learning comes into play when pre-trained models are employed on a custom dataset. The 

training of deep neural network models requires a large volume of training data to yield 

good results. However, the availability of seed kernel image datasets to train on the neural 
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networks is scarce. An alternative to real seed kernel image datasets is the use of synthetic 

image datasets. We propose a synthetic image generation framework that applies the 

principles of Domain Randomization to generate synthetic image datasets that can be used 

as training data for deep neural networks. The synthetic image generation framework 

generates synthetic images from a small sample of real seed kernel images. The framework 

augments each of the real seed kernels to generate the synthetic images. The user is offered 

flexibility in terms of the augmentations that are applied. The rotation, brightness and shear 

are the properties that are augmented by default. In addition to a large volume of data, 

another key requirement of deep neural networks is that the input be of a specific size. For 

instance, the neural network model of Oxford VGG-16 requires that the input image be of 

size 224 x 224 px. However, the training data at hand might not always be of that size. 

While resizing is an option, it usually leads to image distortion leading to loss of image 

quality. To ensure that the resizing results in an image without distortion, an image 

cropping tool using OpenCV-Python is developed. The tool helps to resize an image to a 

size of the user’s choice placing the object of interest at the center of the resized image. 

Such images lend themselves well to training on deep neural networks.  

Synthetic image generation is used to create synthetic image datasets on five types 

of seed kernels namely, canola, sorghum, soy, rough rice and wheat. The synthetic images 

are used to train deep neural network models meant for image classification. Within the 

realm of classification, supervised and self-supervised deep neural network architectures 

are trained and evaluated for their performance. In the space of supervised neural network 

models, the pre-trained architectures of Oxford’s VGG-16, VGG-19 and Microsoft’s 

ResNet-101 are used to build custom models trained on the synthetic image datasets. In the 
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space of self-supervised neural network models, the architectures of SimCLR, Momentum 

Contrast (MoCo) and Bootstrap Your Own Latent (BYOL) are used to train on the 

synthetic image datasets. The testing of the supervised and self-supervised models is 

performed on real seed kernel images but not synthetic images. In addition to classification 

models, state-of-the-art instance segmentation models are available that use the 

classification models such as ResNet-50 as backbones. Not only do the instance 

segmentation neural networks aid in classification, but they are also able to localize each 

of the objects within an image, unlike the classification models. Localization is done by 

plotting a bounding box around each of the objects detected within the image. As a result, 

an analysis over the localized image generated by the instance segmentation neural 

networks helps determine the object’s morphometry and count in the image. The instance 

segmentation models of Mask R-CNN and YOLO are used to perform instance 

segmentation on synthetic image datasets generated for each of the seed kernels. Once the 

seed kernels are segmented by the neural networks and bounding boxes are plotted, the 

images are analyzed using OpenCV to estimate the morphometry of each of the instances 

detected. Methods such as using the coordinates of the bounding box, plotting minimum 

area enclosing rectangle and ellipses aid in the estimation of seed kernel morphometry.  

Now that the seed kernel morphometry is computed, the count of seed kernels in 

the image is estimated as the number of bounding boxes plotted by the instance 

segmentation neural networks. The count depends heavily on the efficiency of the neural 

networks in the sense that any missed seed kernels result in an incorrect count. While the 

estimation of seed morphometry is directly tied to HTP, the count has applications in the 

seed packaging industry. Conventionally, seed packaging is done based on the weight of a 
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sample of seeds but not on the count of seeds within the seed sample. Since the weight of 

a random seed sample is influenced by factors such as moisture in the air, weight of the 

seed sample changes over time. Customers generally purchase seed samples expecting a 

certain number of seed kernels to be present in the package. Since the packages are made 

by weight but not seed kernel count, customers don’t end up with the exact number of seeds 

that they expect. Needless to mention the impact of environmental factors on the weight of 

the seed sample. To better meet the expectations of the customers, techniques to count the 

seed sample for packaging are developed. Seed counter machines are available in the 

market for prices ranging from $300 to $2000. However, not all packaging firms are able 

to afford the machines at such hefty prices. The availability of deep neural networks and 

image processing techniques aid in the formulation of low-cost seed counting techniques 

that aid the packaging industry. Proposed is a seed counting framework that estimates seed 

kernel count from a video captured using mobile devices. The video capture system is a 

low-cost setup that includes a 3d printed holder that holds a sled to allow seed kernels to 

roll down as they’re captured by the mobile device. The dissertation proposes two 

techniques to estimate seed count. The first technique is completely based on image 

processing and analysis using OpenCV whereas the second technique uses an instance 

segmentation deep neural network and modified Kalman filter.  

The estimation of seed morphometry techniques defined thus far estimate different 

parameters such as length, width, and area but one key parameter that is not estimated is 

volume. The reason is that volume computation requires much more than a single 2-D 

image. As a result, a single 2-D image is not sufficient to estimate volume. Conventional 

techniques for volume measurement include water displacement methods in which the seed 
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is submerged in container with water. The amount of water displaced from the container 

indicates the volume. The technique is prone to human error while also being tedious and 

time consuming. Typically, seed kernels absorb moisture when placed in ambient air. 

Likewise, seed kernels absorb water when dipped in water resulting in a change in seed 

volume and damage to the seed. As a result, the volume of the seed kernel is altered leading 

to discrepancy in the volume measurement. Another similar technique is bead displacement 

in which volume is measured by the displacement of beads placed in a container. The 

technique is error prone and tends to over-estimate the volume of the seed kernel. To 

counter the error in estimates, morphometry estimation techniques using image analysis 

are developed. The new technique builds on work by Cao and Neilsen [24], and estimates 

volume from a set of images captured at different angles. An automated image capture 

system that consists of a camera, stepper motor, LEDs and turntable is proposed to capture 

the images of the seed kernel from different angles. The technique of volume carving for 

3-D reconstruction is used to estimate the volume of the seed kernel. While volume carving 

is an existing technique, an end-to-end automated framework that uses volume carving for 

3-D reconstruction is not available. High accuracy in volume estimation is achieved using 

the framework.  

Data collection is a key aspect that helps advance emerging fields of research such 

as high-throughput phenotyping in agriculture. The availability of data helps scientists 

develop systems that are able to extract and analyze information from data to make defining 

discoveries. Techniques of the yesteryears required researchers to have a laboratory for 

research. However, the onset of mobile development shifted the paradigm toward on-site 

research wherein phenotyping applications run on modest mobile devices such as mobile 
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phones and tablets. One such application in the field of high-throughput phenotyping is 

Fieldbook, an Android application developed by the Poland Lab at Kansas State 

University, KS. The application is geared towards plant breeders and researchers who aim 

to collect, record and process information to better conduct field experiments. The 

application has the potential to cater to the needs of the larger research community in the 

domain of agriculture. To enhance the feature stack of the existing mobile applications, 

algorithms for two new features are proposed and developed. The first feature is leaf angle 

estimation wherein the angle between the stem and leaf of a given plant image is estimated 

using a combination of neural networks and image processing techniques. Plant studies 

[36] have shown that plants with upright leaf angles contribute to better hybrid plant 

varieties. However, the determination of leaf angle by manual means is tedious and subject 

to bias. Image processing tools such as ImageJ that consist of an angle estimation tool are 

able to estimate the leaf angle from images. While tools such as ImageJ provide a sense of 

reproducibility of results across different individuals, the problem of tedium still remains. 

The proposed algorithm for automated leaf angle estimation is perhaps one of the very few 

fully vetted algorithms in the realm. The second feature is percentage plant cover 

estimation on the field for the use case of companion planting. Companion planting refers 

the idea of growing multiple species of plants in close proximity so that they reap mutual 

benefits, such as improved crop yield, soil quality and pest control. The development of 

the algorithm is performed in conjunction with researchers from the Land Institute in 

Salina, KS whose goal is to grow different grasses together in close proximity to make 

discoveries pertinent to grasses that make good companions. The known techniques for 

plant cover estimation such as Daubenmire technique are ocular-based and therefore, 
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subject to bias. The proposed algorithm is able to estimate the amount of plant cover in 

metric units along with percentage measure. The literature survey conducted as part of the 

research shows no other application that estimates the amount of plant cover in metric units.  

 1.1 Contribution and Overview 

In summary, this dissertation focuses on pushing the boundaries of Computer 

Vision in the field of agriculture, primarily High-Throughput Phenotyping. The overview 

of each of the chapters of the dissertation is as follows: 

1. Chapter 2 proposes a low-cost, high-throughput technique for the estimation of 

seed kernel morphometry using 3-D printed components that is applicable to a 

wide variety of seeds. Elaborate analysis on the factors that impact the 

performance of the proposed algorithm is performed and results are presented.  

2. Chapter 3 investigates the use case of seed kernel morphometry estimation on 

different classes of neural networks such as supervised, self-supervised and 

instance segmentation models. The technique of domain randomization is 

applied to generate synthetic image datasets to train the neural networks. The 

results obtained demonstrate the feasibility of domain randomization for high-

throughput phenotyping. 

3. Chapter 4 proposes a near real-time seed kernel counting algorithm that aids in 

seed packaging. The idea is to track a group of seeds as they flow down a 

platform in a video and estimate the count of seeds. The technique of slit 

imaging is used to capture and count the seeds as they flow down the platform. 
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4. Chapter 5 describes the current iteration of the low-throughput seed kernel 

volume estimation framework. The framework in the current iteration consists 

of a user interface to capture input and the image capture is completely 

automated based on input received from the user.  

5. Chapter 6 proposes two algorithms to improve upon the feature stack of the 

mobile applications for high-throughput phenotyping. The first algorithm 

performs the task of estimating angles between leaf and stem from images. The 

second algorithm is to estimate the amount of plant cover within multiple 

bounded regions wherein the use case is to identify plants that are able to 

develop and co-exist in a given environment. Both algorithms are at the stage 

where they may be implemented as mobile and desktop applications.  

6. Chapter 7 sheds light on the image processing tools developed as part of each 

of the chapters of the dissertation. The tools are handy in terms of image 

segmentation and cropping. 
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Chapter 2 - Image Processing and 3-D Components for Seed 

Morphometry Estimation 

Image processing is defined as the analysis and augmentation of images to draw 

meaningful insights that lead to novel discovery. In other words, image processing helps 

to discover patterns and aspects in images that are otherwise not apparent. The applications 

of image processing are prevalent in industrial robotics, automotive and healthcare 

industries. The learnings from image processing applied in other industries serves as the 

basis for applications in the field of agriculture. Computer Vision relies on the inputs 

provided in terms of videos and images to make inferences and image processing 

complements computer vision by providing inputs that are feasible to infer upon. In 

addition to image processing, another field that has revolutionized the world in the last 

couple of decades is 3-D graphics. The 3-D models can be used to prototype complex 

models and conduct inexpensive experiments. For instance, in the field of construction and 

architecture, prototypes of large structures, such as buildings and dams, are constructed to 

study and evaluate the strength and aesthetics of the structures. Image processing coupled 

with 3-D graphics opens many unexplored opportunities in the domain of agriculture. This 

chapter explores the potential of the combination of Image Processing and 3-D graphics 

for High-throughput Phenotyping (HTP) of seeds. HTP of seeds, also known as Seed 

Phenotyping, is the comprehensive assessment of complex seed traits such as growth, 

development, tolerance, resistance, ecology, yield, and the measurement of parameters that 

form more complex traits [78]. HTP increases the accuracy of measurements while 

reducing costs through the application of automation, remote sensing, data integration, and 

experimental design. Multiple studies [116][105][184][68] emphasize the importance of 
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seed morphometric estimations in predicting the behavior of seeds in different 

environmental settings. The morphometric estimation of seed length, width, area and 

volume may be performed using tools such as Vernier caliper. However, such a procedure 

is time consuming and tedious resulting in low-throughput. A high-throughput and low-

cost solution to estimate seed morphometry is proposed using 2-D imagery and 3-D 

graphics. The goal of the work is to address some of the key problems in image processing 

namely, object skew on images, object clusters on images, poor image quality due to 

improperly lit backgrounds.  

The chapter proposes algorithms for seed morphometry estimation with the goal to 

address use cases such as seed kernel counting, length and width estimation, and area and 

perimeter estimation using OpenCV for static image processing and compares against the 

existing Android applications in the realm of seed morphometry estimation.  

2.1 Related Work 

The foundation for the algorithmic development using OpenCV is the Watershed 

algorithm, as discussed by F. Meyer and S. Beucher in the work, ‘The Morphological 

Approach to Segmentation: The Watershed Transformation’ [15]. The work discusses in 

detail the intricacies of the algorithm, including the tools, transformations, uses, and the 

application of watershed algorithm to images.  

Tanabata et al. proposed SmartGrain [164], a high-throughput phenotyping 

software tool to measure seed shape through image analysis. The tool uses a technique 

where outlines of seed kernels are automatically recognized from digital images and 

several seed shape parameters such as length, width, area, and perimeter length are 
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calculated. The software is validated on rice seed by employing quantitative trait locus 

(QTL) analysis. SmartGrain removes areas of awns and pedicels automatically from 

images as it processed them. 

What et al. proposed GrainScan [182], a low-cost, fast method for grain size and 

color measurements of seed kernels. The software tool identifies each seed kernel in an 

image independently and assigns them a unique color. In case of varieties such as wheat 

that have a crease at the bottom, the software is also able to identify the crease precisely 

and draw a line along it. 

Schrader et al. proposed LeafIT [150], an android application for the measurement 

of leaf area. Leaf traits are some of the most important traits because they describe key 

dimensions of a plant’s life history strategy. Furthermore, leaf area correlates with leaf 

chemical composition, photosynthetic rate, leaf longevity, and carbon investment. The 

application’s precision and accuracy are compared against commercial software tools such 

as WinFOLIA [185] which uses the Altman-Bland method wherein the results showed that 

results are similar to a high degree. 

Komyshev, et al. [71] proposed SeedCounter, a mobile application for grain 

phenotyping. The app analyses grain morphometry in cereals which is an important step in 

selecting new high-yielding plants. It was developed under the premise that manual 

assessment of parameters such as the number of grains per ear and grain size is laborious. 

The application was evaluated under six different light conditions and three mobile devices 

wherein the application demonstrated that the lighting has an impact on the outcomes. 
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 2.2 Mesh Algorithm 

The Mesh algorithm refers to the static image processing algorithm and framework 

including the 3D stand, 3D mesh, and lightbox, as shown in Figure 2.1. Each of the 

components has a specific use case. The algorithm solves multiple problems in the 

following ways: 

1. 3D Stand: The 3D stand solves the problem of skew that most image processing 

algorithms encounter. The stand ensures that the image capture device such as a 

phone is always parallel to the surface and directly above the seeds to be captured. 

This ensures the image is not skewed. The stand used for the experiment is 3d 

printed using a white filament with a height of 110 mm (11 cm). 

2. 3D Mesh: The 3D mesh addresses the problem of the object touching on images. 

The hexagonal boundaries act as barriers ensuring that the seeds do not touch each 

other. The mesh, printed using a white filament contains hexagons of side 5 mm. 

Meshes for different sized seeds can be easily produced. 

3. Lightbox: The lightbox ensures that the images which are captured have a bright 

background. A bright background makes it easier to identify the objects on the 

image and eliminate any noise such as tiny dirt particles that may be present on the 

image. 
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Figure 2.1: Components for Mesh Algorithm 

 

The algorithm can be generalized as a two-step process, described as follows: 

1. Detect the mesh on the image and estimate the morphometry. The hexagons within 

the mesh are saved as ground truth values. 

2. Detect the seeds on the image and use the estimated morphometry of the mesh to 

infer the size of the seeds. 

The key concepts that aid in the development of algorithms are RGB color space and HSV 

color space. Broadly, any color space is a mathematical model that describes colors as a 

list of numbers. RGB is one of the most common color spaces used in image processing 

[103]. 

RGB Color Space: RGB stands for Red, Green, Blue color space. The color space is 

defined by the numerical values assigned to the colors of red, green, and blue. For a 24-bit 

image, the values assigned for each color are stored using 8-bits for a range between 0 and 

255. In the context of the RGB color space, the colors of red, green, and blue are referred 

to as primary colors, and every other color is referred to as non-primary. All non-primary 

colors generated in the RGB color space are a result of the combination of the primary 
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colors in different intensities. Hence, the color space may be classified as an additive color 

space and is graphically described as shown in Figure 2.2. 

 

Figure 2.2: RGB Color Space [103] 

 

HSV Color Space: HSV refers to Hue, Saturation and Value which make up the 

coordinates for the color space as shown in Figure 2.3. It is a cylindrical color space where 

the radius represents Saturation, the vertical axis represents Value, and the angle represents 

Hue. Intuitively, Hue  

is the dominant color visible to an observer, Saturation is the amount of white light mixed 

with a hue and Value is the chromic notion of intensity. As Value decreases, the color gets 

Figure 2.3: HSV Color Space [37] 
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closer to black whereas the intensity of the color increases as Value increases[A1]. Each of 

Hue, Saturation, and Value have their own significance in the processing of images. Hue 

helps to classify the colors whereas Value determines the intensity of the color. Saturation 

is the property that determines the amount of white light mixed with hue. 

 2.2.1 Mesh Detection and Estimation using Pixel Color 

A key point worth reiterating here is that the filament used to build the mesh and 

the light emitted by the lightbox are white. From Figure 2.4, the mesh is merely a shade 

darker than the light emitted by the lightbox. 

1. For reproducibility, the mesh should have pixel values between 170 and 255 

for each color channel. 

2. Perform a median blur and apply Canny edge detection to detect the edges on 

the image. 

3. Detect the contours of the edges identified by Canny edge detection. 

4. (Observation/ Assumption) Find all contours which occupy an area greater than 

an individual hexagon of the mesh in pixels.  

Figure 2.4: Soy Seeds in a 3-D Grid 
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5. Compute the median area occupied by the mesh in pixels and consider it as the 

area occupied by each hexagon in the mesh. Likewise, compute the median 

perimeter of the mesh. 

A relationship between the number of pixels to the area in metric units is now 

established. The area of a hexagon in mm2 is given by  √
  𝑎   where 𝑎 is the length of 

a side of the hexagon in mm, and the perimeter is given by 6 ∗ 𝑎 .where a is the side of the 

hexagon in mm.  Figure 2.5 shows the different steps involved in the process of mesh 

detection. 

 

 2.2.2 Mesh Identification and Estimation using HSV Color Thresholding 

1. Convert the source image from RGB to HSV color space. 

2. Create a mask which identifies H, S and V values of a desired range[A2]. The values 

of H, S, and V need to be programmed since each of H, S, and V has its own 

significance in the context of image processing. Augmenting each of H, S and V 

includes or eliminates part of the image.  

3. Perform a bitwise-AND operation on the mask and the source image. 

4. Apply a Median blur followed by Canny edge detection.  

Figure 2.5: Mesh Detection using Pixel Color 
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Once the Canny edges of the image are identified, the process to estimate the mesh is the 

same as that described in steps 4 and 5 of section 2.2.2. Figure 2.6 shows the detection of 

the mesh from the input image. 

 

 2.2.3 Seed Detection and Estimation 

1. Apply binary thresholding on the source image to filter out all of the white pixels 

and retain only the black pixels, i.e., pixels that represent seeds on the image. 

2. Median blur the image and perform Canny edge detection on the image. 

3. Detect seeds on the image and compute the area occupied by each of the seed 

contours.  

4. (Seed Count) The number of contours deemed seeds is the estimated number of 

seeds on the image[A3]. 

5. (Area and Perimeter Estimation) The area of seeds in metric units is estimated 

by taking the median area occupied by the mesh’s hexagons in pixels and metric 

units as ground truth values, and scaling, i.e., 𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚  =

 (𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 ∗  ℎ𝑒𝑥𝑎𝑔𝑜𝑛 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚)/

 (𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑒𝑥𝑎𝑔𝑜𝑛 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠) . Likewise, a simple scaling is applied to 

obtain the average perimeter of the seeds in mm. 

Figure 2.6: Mesh Detection using HSV Thresholding 
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6. (Length and Width Estimation) The lengths and widths of each contour are 

estimated using minimum area rotated rectangles. Rectangles are fit to the contour 

samples. The longest axis returned is considered the length, while the shorter axis 

is the width. Besides, connecting the left-most to the right-most and top-most to the 

bottom-most points, and computing the length of the connecting lines is a means to 

estimate the length and width of the seeds[A4]. The orientation of the seed kernels 

has an impact on the estimation of length and width of the seed kernels. The 

orientation of the seed kernels can be derived as the minimum area rotated 

rectangles are plotted using the OpenCV function from the orientation of the sides 

of the rectangle. The knowledge of seed kernel orientation helps users identify the 

differences of length and width of seed kernels at different orientations.  

Figure 2.7 shows the seed counts, estimated seed areas in mm2, and length-width 

estimations in mm for a soy seed sample. 

 

As mentioned, the experiment is performed on six different types of seeds. The algorithm 

performs well consistently on five of the six types of seeds in question failing on white 

rice. The reason is that the light emitted by the lightbox is the same color as the seed of 

white rice. As a result, the algorithm fails to distinguish between the mesh and seeds. While 

the proposed algorithm still holds, a different experimental setup involving a contrasting 

Figure 2.7: Seed Morphometry (Image Zoomed In) 
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background is essential for white rice. The app in Python-OpenCV is available at 

https://github.com/VenkatMargapuri/MeshAlgorithm. 

 2.2.4 Morphometry Estimations on Different Mesh Types  

The algorithm is tested on three different geometries of meshes i.e., hexagon, triangle and 

rhombus with different infill rates and boundary thickness. Table 2.1 shows 

characteristics of the meshes used as part of the experiment[A5]. In table 2.1, the side 

refers to the side of each of the geometric shapes within the mesh whereas area refers to 

the area of the geometry with the given side. Infill rate indicates the fullness of the inside 

of a 3-D printed component. An infill rate of 0% indicates that the component is hollow 

whereas an infill rate of 100% indicates that the component is completely filled. 

Table 2.1: Geometry and Characteristics of the Meshes 

 

Mesh 
Geometry 

Side (mm) – Area(mm2) Infill Rates Thickness 

Hexagon 4 – 41.57, 5 - 64.95,6.5 – 
109.77  

18%, 15%, 12%, 
10%,8% 

5 mm, 1.5 mm, 0.5 
mm 

Rhombus 7.7 – 60.5, 6.3 – 40.5, 10.6 
– 112.5 

15%, 12%, 10% 5 mm, 0.5 mm 

Triangle 13 – 84.5, 10 – 50 10%, 12% 5 mm, 0.5 mm 

Figure 2.8: Seed Soy Sample Area Estimations 
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As the morphometry of the seeds is estimated on different mesh types, the observation is 

that the estimations are similar, although not exactly the same on all of the mesh types. 

The difference in the estimations is better explained in section 2.5. In order to 

demonstrate the performance of the algorithm, a sample of seven soy seeds is considered 

and estimated using different mesh types. The seeds laid on different meshes is shown in 

Figure 2.8 and the readings are as shown in Table 2.2. 

Table 2.2: Seed Area (mm2) Estimations for Seven Seed Sample of Soy 

2.3 No-Mesh Algorithm 

 The No-Mesh algorithm is a static image processing algorithm that does not use the 

3D printed mesh, unlike the algorithm discussed in Section 2.2 Instead, the algorithm 

leverages the popular Watershed Algorithm to segment seed clusters on images. The other 

components, 3D stand, and the lightbox are optional, but recommended to achieve the 

proper performance of the algorithm. The algorithm is explained as a three-step process, 

described as follows: 

1. Detect segmented seeds on the image i.e., seeds not in contact with other seeds 

on the image. 

2. Apply the Watershed Algorithm on the image and segment the seeds to perform 

morphometric estimations. 

Mesh 
Geometry 

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 

Hexagonal 32.45 28.92 35.74 33.59 30.06 29.14 29.93 

Rhombus 32.13 28.2 33.69 34.45 27.35 26.1 25.88 

Triangular 31.91 29.61 36.45 33.72 31.44 29.03 27.2 
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3. Estimate the morphometry of seeds using a ground truth object. 

 2.3.1 Detection of Segmented Seeds 

The detection of segmented seeds makes use of the interquartile range, convexity 

defects, and the convex hull. The Interquartile Range (IQR) is a measure of the middle 

50% of the values in a dataset. It is a proven mathematical technique that aids in the 

detection of outliers. In Figure 2.9, the IQR is 𝑄3 –  𝑄1. Q1 represents a quarter of the way 

through the list, and Q3 represents three-quarters of the way through the list. The IQR rule 

is that all values that are not between 𝑄1 –  1.5 𝑥 𝐼𝑄𝑅 and 𝑄3 +  1.5 𝑥 𝐼𝑄𝑅 are outliers. 

Convex hull and convexity defects: A convex object is one where none of the interior 

angles is greater than 180 degrees. The convex hull is a tight-fitting boundary around the 

object. As shown in Figure 2.10, the image on the left is convex. It has a convex hull that 

wraps entirely around the boundary, whereas the image on the right is not convex. The 

Figure 2.9: Interquartile Range Calculation [153] 



23 

 

convex hull does not wrap around correctly. The imperfections in the convex hull are 

known as convexity defects. 

 

1. Convert the image to grayscale and gaussian blur the image using a 3 𝑥 3 kernel. 

2. To threshold the seeds from the background, apply inverted binary Otsu 

thresholding on the image. 

3. Detect the contours of the seeds along with the area occupied by each of the 

contours. Also, find the convex hull of each of the seed contours.   

4. Detect a segmented seed by evaluating the convexity of a contour, i.e., 𝑖𝑓 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑜𝑢𝑟)/ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑣𝑒𝑥ℎ𝑢𝑙𝑙)  <=  3, the contour is identified as a 

potential segmented collection of seeds. 

5. Find the area occupied by each of the contours of the potential segmented seeds. 

6. Remove the outliers from the potential segmented seeds by applying the IQR rule 

for outliers, stated above. 

7. (Case for Touching Seeds) An edge case is that a few false positives might 

satisfy the step-four check. To eliminate them, filter any contours where the 

Figure 2.10: Convexity Defects [183] 
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center is relatively white, i.e., with an intensity of about 170 or higher. 

After segmentation, compute the morphometries, including the farthest point from the 

convex hull to the seed. Results are utilized further in section 2.3.2. The steps in the process 

of segmented seed detection are as shown in Figure 2.11. 

 

 2.3.2 Application of Watershed Algorithm  

The Watershed algorithm's application relies on the concepts of morphological 

operations, erosion, dilation, closing, and opening, shown in Figure 2.12. 

 

The principle behind morphological operations is the idea that ‘on a grayscale image, black 

(0) and white (255) pixels can be identified with good precision’. 

Figure 2.11: Detection of Segmented Seeds 

Figure 2.12: Morphological Operations 
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Erosion: Erosion is a means to pare the image. A kernel of any size is convolved across 

the image. If one of the pixels along the kernel is black, all pixels on the image with respect 

to the kernel, are set to black (0). 

Dilation: Dilation is a means to enhance the size of the image. A kernel is convolved across 

the image. If one of the pixels on the kernel is white, all pixels on the kernel are set to white 

(255). 

Opening: Opening is a means to eliminate noise from an image. It is an erosion followed 

by a dilation. 

Closing: Closing is a means to fill out the gaps in the image. It is a dilation followed by an 

erosion.  

 2.3.2.1 Pre-processing and Application of Watershed Algorithm[A6] 

Watershed algorithm is a popular image segmentation algorithm that has the ability 

to segment clustered objects in an image. In use cases such as this where counting objects 

in the image is one of the goals, object clustering leads to erroneous counts. Employing 

Watershed algorithm leverages different transforms of the original image for segmentation. 

The preliminary steps applied to the original image are explained as follows. 

1. Convert the image to grayscale and apply binary thresholding to the image. 

2. Perform a morphological opening to remove noise and a morphological closing 

to remove any holes in the image. 

3. (Background Identification) Sure background area on the image is identified 

by performing a dilation. 
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4. (Foreground Identification) Compute the distance transform on the image and 

apply a threshold on the distance transform. The threshold values depend on the 

image.  

5. (Unknown/ Border) The regions which are neither foreground nor background 

are the unknown/ border areas. They are computed by subtracting the foreground 

area from the background area. 

6. (Label Assignment) Assign labels to the identified foreground, background, and 

unknown areas. If using OpenCV, the cv.ConnectedComponents() function can 

be used for this purpose. It assigns 0 to the background and random numbers 

starting from 1 to the objects in the foreground. However, the Watershed 

algorithm assumes all regions with a value of 0 as unknown areas. To avoid this 

scenario, increment all values by one, so the background has a value of 1 and 

assign 0 to all pixels of the unknown area.  

7. Apply a gaussian blur to the image to reduce the inner contour noise and avoid 

over-segmentation. 

8. Apply the Watershed algorithm to the blurred image and capture the output 

markers. 

The pre-processing steps applied for the Watershed algorithm is as shown in Figure 

Figure 2.13: Preprocessing and Application of Watershed 
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2.13[A7]. 

 2.3.2.2 Image Segmentation Post-Watershed Application 

1. Draw the boundaries of the watershed segments on the markers produced by 

applying the Watershed algorithm (The Watershed algorithm denotes boundaries 

by -1). 

2. Change the boundary markings from -1 to background, i.e., 0. 

3. Invert the background and the foreground, i.e., set all 0's to 255's and the others 

to 0's, to identify boundaries in white since markers is a grayscale image. 

4. Find contours on markers that also return the hierarchy of the contours. 

Note: Contour hierarchy is an OpenCV concept. The hierarchy is a data structure 

that allows contours to access four different relative values, next contour, previous 

contour, first child, and parent contour.   

5. Use the hierarchy to find all contours which are not considered noise. Identify 

child contours larger than a quarter of the average segmented seed contour area 

and mark them as ‘parent’. 

 2.3.2.3 Counting Seeds[A8] 

Seeds in images are often overlapping or clustered; therefore, counting the number 

of seeds on the image is a tricky task. The segmentation performed by the Watershed 

algorithm is used for counting. The algorithm, however, provides two types of counting 

techniques, namely, area-based count and contour-based count. 
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Area-based Count: The area-based counting technique uses the average segmented seed 

areas to estimate the number of seeds in a given contour containing a cluster of seeds. For 

example, if the average pixel area of segmented seed contours is 10000 and the contour 

with a cluster of seeds has an area of 50000, the area based counting technique estimates 

the number of seeds in the cluster to be five. 

Contour-based Count: The contour-based counting technique uses the results computed 

in section 2.3.1, i.e., the mean (𝑆𝑆_𝑀𝑒𝑎𝑛), median (𝑆𝑆_𝑀𝑒𝑑𝑖𝑎𝑛), and standard deviation 

(𝑆𝑆_𝑆𝐷) of the segmented seeds. The count also makes use of the contour area (𝑃𝐶_𝐶𝐴), 

and the fixed-point depths (𝑃𝐶_𝐹𝑃𝐷) of the contours identified as ‘parent’ contours in 

section 3.2.2.2. The estimation of the seed count is defined as the following: 

𝐼𝑓 𝑀𝑒𝑎𝑛 (𝑃𝐶_𝐹𝑃𝐷)  >  𝑆𝑆_𝑀𝑒𝑑𝑖𝑎𝑛 +  3 ∗  𝑆𝑆_𝑆𝐷:  

 

𝑐𝑜𝑢𝑛𝑡 =  𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
𝑃𝐶

𝑆𝑆
 

𝐸𝑙𝑠𝑒: 𝑐𝑜𝑢𝑛𝑡 =  1 

The algorithm is used to count the number of seeds on images of different seeds. The results 

are shown below in Figure 2.14. 

 

 

 

 

 

Figure 2.14: Seed Count using No-Mesh Algorithm 
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As observed from the results, the algorithm performs well on the images of sorghum, soy, 

and wheat, where the range of estimated count is within the actual number of seeds on the 

image. However, on the seeds of canola and rough rice, the algorithm overcounts and 

undercounts, respectively. The results for white rice are not presented because the 

algorithm fails to detect the seeds precisely. Note that a change in the arrangement, be it 

the position or the orientation of seeds on the image, leads to the detection of different 

contours and might influence the seed count since it is entirely dependent upon the detected 

contours. 

 2.4.3 Seed Morphometry Estimation 

Unlike the Mesh algorithm, the No-Mesh algorithm has no ground truth value. 

Hence, the idea is to capture the image with objects of known morphometry and base the 

estimates on the ground truth. For this experiment, the penny, a US coin, is used. A total 

of four pennies are placed in each of the four corners of the lightbox when the image is 

captured. The pennies on the image are identified based on the size of the contour, i.e., the 

four most massive contours found on the image are assumed to be those of coins and 

circularity computed as 4 ∗ 𝑝𝑖 ∗ (𝑎𝑟𝑒𝑎/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 )  where area and perimeter are 

pertinent to the contour in question. sample of seven soy seeds whose areas (mm2) are 

Figure 2.15: Estimated Seed Areas in mm2 using Pennies 
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estimated using pennies is as shown in Figure 2.15. 

2.5 Analysis of Outcome Impacting Parameters 

Analysis on the impacts of parameters such as height of image capture, size of 

image and seed orientation is performed to recommend the best parameters for image 

capture. The observations are as follows. 

 2.5.1 Analysis of Outcome Impacting Parameters 

In order to study the impact of height and image size, three random samples of 

seven seeds are taken. 3 different heights of 11cm, 17cm and 21cm are the choice for image 

capture. The size of the images is varied between dimensions of 3456 x 4608 px and 1920 

x 1080 px. For this experiment, the heights of image capture are varied while image size is 

kept constant. The results observed for the three samples of seeds are similar. The results 

of one of the samples are shown in Tables 2.3 and 2.4 for reference. 

Table 2.3: Seed Areas with Varying Image Heights and Image Size of 3456 x 4608 px 

 

From the readings in Table 2.3, it can be inferred that the impact of height is minimal when 

the size of the image is 3456 x 4608 pixels (px[A9]). 

Image Height Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 

11cm 32.99 32.49 29.48 34.53 28.07 28.43 27.71 

17cm 33.04 32.84 29.71 32.18 27.98 28.16 27.97 

21cm 33.13 33.03 29.85 31.98 27.79 28.07 28.27 
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Table 2.4: Seed Areas with Varying Image Heights and Image Size of 1920 x 1080 px 

 

 

From the readings of the values in Table 2.4, it is inferred that the size of the image and 

the height of image capture have an inverse relationship[A10] i.e., the height of the image 

has minimal impact when the size of the image is large. Figure 2.16, which contains seeds 

and pennies on the image together help to reason the behavior. Green contours are supposed 

to be drawn only around seeds but when the height of image capture is 21 cm, the pennies 

also appear small enough that they are also considered seeds. 

Image Height Seed 1 Seed 2 Seed 3  Seed 4 Seed 5 Seed 6 Seed 7 

11cm 44.0 42.0 37.0 42.0 35.0 37.0 37.0 

17cm 41.0 36.0 37.0 35.0 31.0 35.0 32.0 

21cm 0 0 0 0 0 0 0 

Figure 2.16: Impact of Height of Image Capture on Estimation 
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 2.5.2 Analysis of Outcome Impacting Parameters 

The impact of seed orientation is investigated by using a sample of seven seeds laid 

on a mesh. The hypothesis behind investigating orientation is that the algorithm gives out 

different results depending upon the orientation of the seeds since it affects the detected 

contours which is ultimately the basis for the estimations. Turns out that the hypothesis is 

true and is explained further from observing Figure 2.17 which shows a sample of seven 

seeds each laid in a different orientation. 

 

As observed from the results in Table 2.5, the lengths and the widths of the seeds differ 

depending upon the orientation of the seeds. It could also impact the area estimations if 

they were based on the length and width of the seeds. 

Table 2.5: Lengths and Widths of Seeds in Different Orientations (Length - Width in 
mm) 

 

[A11] 

Orientation Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 

#1 7.44 - 5.96 6.85-6.17 6.38-6.15 6.62-6.16 6.06-5.9 6.14-5.87 6.36-5.68 

#2 7.19-6.15 6.76-6.1 6.39-6.18 6.56-6.23 6.04-5.85 6.11-5.85 6.56-5.53 

Figure 2.17: Impact of Seed Orientation on Estimation 
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 2.5.2 Analysis of Outcome Impacting Parameters 

The thickness of the mesh has a direct correlation to the portion of the seed that is 

overlaid by the mesh. The more the overlay, the higher the deviation of the estimated 

morphometry from the actual. Figure 2.18 shows an example where a sample of seven 

canola seeds are laid on a thicker hexagonal mesh (3 mm) and a thinner rhombus mesh (0.5 

mm) and Table 2.6 shows the area estimates for seed kernels placed within meshes of 

varying thickness. 

 

Table 2.6: Seed Areas using Meshes of Different Thickness (Area in mm2) 

 

The readings in Table 2.6 show that the estimates for seed areas are significantly different 

when using meshes of different thickness. The thicker mesh overlays more and hides more 

part of the seed compared to the thinner mesh which does not overlay as much. As a result, 

the contours detected are not the same even with all other parameters being the same, 

 Thickness Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 

3mm 1.57 1.82 1.33 2.29 1.5 1.36 1.15 

0.5mm 2.75 2.55 2.32 3.29 2.16 2.55 2.43 

Figure 2.18: Impact of Mesh Thickness on Estimation 
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causing the results between the two images to be deviant. For instance, consider the seed 

circled in red in Figure 2.18.  

The contours of the seed when placed on the thicker and lighter meshes are as shown in 

Figure 2.19. As observed, the thicker mesh results in a part of the seed being hidden 

yielding a partial contour. The impact of mesh thickness is felt more on seeds that are 

relatively smaller in size such as canola. 

 

 2.5.3 Comparison to Other Applications 

The areas estimated by the proposed algorithms are compared against the estimates 

of other applications. Seed Counter, LeafIT, SmartGrain, and a manual estimation 

performed using a vernier caliper are compared. A sample of seven soy seeds is used for 

the comparison. The reason for the soy seed sample is that some of the applications in 

consideration are built to estimate specific types of seeds and do not necessarily pick up 

0

20

40
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Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

Estimated Areas in mm2

Mesh No-Mesh LeafIT SmartGrain SeedCounter Manual

Figure 2.19: Detected Seed Contour on Thicker and Lighter Meshes 

Figure 2.20: Estimated Seed Areas in mm2 using pennies 
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seeds smaller or larger than a specific size. Soy is one of the seeds which is estimated by 

all of the applications in question and the results of estimation are shown in Figure 2.20. 

 From[A12] the results[A13]: 

1. Manual estimations using a vernier caliper are consistently lower than those 

provided by any of the applications and proposed algorithms. 

2. The results provided by the Mesh algorithm are most similar to those of the 

results provided by the android app, Seed Counter with the most considerable difference 

in estimates being two mm2 for seeds one, four, and seven. 

3. The results provided by the No-Mesh Algorithm are most similar to that of 

LeafIT’s, with the most considerable difference in estimations being three mm2. Not 

surprisingly, both algorithms use ground truth reference objects. The difference, though, is 

that LeafIT estimates morphometry of leaves, one at a time. In contrast, the No-Mesh 

algorithm estimates morphometry of seeds, multiple at a time. 

 2.6 Future Work and Conclusion 

The proposed algorithms are a formidable addition to the repertoire of image processing 

algorithms for seed kernel morphometry estimation. The algorithms demonstrate the 

estimation of seed morphometry using low-cost hardware components. While the 

algorithm is demonstrated on smaller seed varieties such as soy and canola, the 

performance of the algorithm on larger seed varieties such as cassava remains to be seen. 

A sturdy hardware setup that is shippable to customers that wish to leverage the technology 

is to be developed if the algorithms are to be widely adopted. The implementation of the 

algorithms as part of an android application, OneKK is currently in progress. The app helps 
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plant scientists leverage the power of the algorithms using handheld devices such as mobile 

phones and estimate seed morphometry of a large volume of seeds in a matter of seconds. 
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Chapter 3 - Deep Learning using Domain Randomization for 

Image-based High-throughput Phenotyping 

Computer Vision is a subset of Artificial Intelligence (AI) that aids computers in 

extracting meaningful information from different input sources such as images and videos. 

In other words, a human-like understanding and interpretation from input sources may be 

deemed Computer Vision. Deep Learning, a subset of the broader family of Machine 

Learning, is the idea of utilizing neural networks to learn from a set of data. The basic unit 

of a neural network is the perceptron which takes an input xi and outputs f(wTx + b) where 

w and b are the parameters controlled by a set of hyperparameters and f is a non-linear 

activation function. Several neurons are stacked together leading to a neural network. The 

use of Computer Vision and Deep Learning in High-Throughput Phenotyping provides 

invaluable knowledge to plant scientists in specific and farming community in general. 

Precisely, Seed Phenotyping is the area of High-Throughput Phenotyping that deals with 

the comprehensive assessment of complex seed traits such as growth, development, 

tolerance, resistance, ecology, yield, and the measurement of parameters that form more 

complex traits [78]. The goal of Seed Phenotyping is the analysis of seed quality using 

morphological traits, eventually aiding in Seed Certification. Seed Certification is a 

mechanism to ensure high quality of the seed and propagate materials of superior adapted 

crop varieties is the identification of seed type [172]. The state-of-the-art computer vision 

techniques rely on neural networks for tasks of visual perception such as image 

classification, object detection and object recognition. Chapter-3 investigates the 

performance of the state-of-the-art neural networks on synthetic image datasets generated 

for various types of seed kernels using a technique known as Domain Randomization. The 
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use of the technique enables plant scientists and enthusiasts to train neural networks 

without the availability of a profusion of training data, a key bottleneck that hinders the use 

of neural networks in the area of High-throughput Phenotyping. 

 3.1 Domain Randomization Framework for Synthetic Image Datasets 

In the field of AI in general and deep learning in specific, data is key to the 

development of models that are efficient and robust. However, the availability of data 

remains a key bottleneck in many domains, high-throughput phenotyping (HTP) included. 

In the area of HTP, one of the critical tasks is seed certification i.e., the process by which 

a state seed certifying agency gives official recognition to seeds produced of a cultivar or 

named variety under a limited generation system which ensures genetic purity, identity, 

and a given minimum level of quality. A key bottleneck with regards to using neural 

network models for HTP is the lack of quality image datasets that can be used to train the 

neural networks. As a result, HTP still lags behind in being able to leverage state-of-the-

art neural network models. None of the popular image datasets used to pre-train state-of-

the-art image classification and instance segmentation models such as ImageNet and 

COCO contain seed kernels of any variety as one of their classes. In order to generate 

quality image datasets to train the state-of-the-art neural networks, one could either capture 

a multitude of seed kernel images manually or leverage Domain Randomization. The 

capture of a profusion of imagery requires access to a plethora of seed kernels which is not 

always feasible, especially considering the growing number of citizen scientists who don’t 

always enjoy the luxury of a lab setting with resources available. Even for plant scientists 

who have access to resources, the capture of a large volume of images proves tedious and 

time consuming. Considering the aforementioned problems, an efficient way to create 
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datasets is to leverage Domain Randomization (DR), a technique that bridges the gap 

between simulation and real-world experiments. In the context of applying DR to HTP for 

neural networks, the idea is to generate synthetic images that resemble seed kernels in the 

real-world to train on the neural networks.  

 3.1.1 Related Work 

In the work done by Rozantsev, et. al [140], an approach to estimate the rendering 

parameters required to synthesize similar images given a coarse 3D model of the target 

object was proposed. The identified parameters could be reused to generate an unlimited 

number of training images of the object of interest in arbitrary 3D poses.  

Silva et. al [33] provide an approach to estimate soybean leaf defoliation using 

convolutional neural networks and synthetic images. The captured imagery is put through 

a pre-processing pipeline where the image is converted to grayscale and rotated to make 

the image rotation invariant. The rotated image is put through polygonal or circular 

defoliation i.e., multiple polygonal or circular areas of a certain dimension are cropped out 

of the image resulting in augmentation.  

Rahnemoonfar and Sheppard [132] use synthetic images for fruit counting using 

deep simulated learning. In order to generate the synthetic images, a blank image of size 

128 x 128 pixels is created followed by filling the entire image with green and brown circles 

to simulate the background and the tomato plant, which are later blurred by a Gaussian 

filter. Tomatoes of different sizes are created by drawing several circles of random size in 

red at random positions on the image.  
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 3.1.2 Procedure 

The synthetic image generation framework is developed for the seed kernel types of 

canola, rough rice, sorghum, soy, and wheat. In addition, synthetic images for the US 

Penny coin are also developed. The coin, in the current context, is used to generate images 

that the framework may use as the ground truth for the estimation of morphometry pertinent 

to each of the seed kernels. The framework involves three steps primarily: 

1. Acquisition of a sample of real images to be synthesized. 

2. Generation of synthetic images with desired foregrounds and backgrounds. 

3. Generation of image annotations for the neural networks to consume the synthetic 

images. 

 3.1.2.1 Image Acquisition 

Initially, the images for each of the seeds in the considered sample are required to be 

acquired. In order to develop the framework, 40 seeds are considered for each seed type of 

Figure 3.1: Image Capture of Sorghum Seed Kernels 
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which 25 are used for training/ validation and 15 for testing. For the coins, 10 pennies are 

considered of which seven are used for training and three for testing. Fewer pennies are 

selected since pennies are uniform as opposed to seed kernels that have random shapes. 

The images are captured using a Motorola Moto G6 mobile phone placed on a 3-D stand 

that holds the phone orthogonal to the ground so as to eliminate any skew that might result 

from holding the phone free-hand. For the background, a lightbox emitting white light is 

chosen. The resolution of the captured images is 3456 x 4608 px. Figure 3.1 shows the 

capture of the 25 seed sample of soy selected for training. Likewise, images of the others 

are captured. 

 3.1.2.2 Creation of Synthetic Images 

1. Capture images of each of the samples as shown in Figure 3.1 and extract out the 

seeds (or coins) on the image. Typically, the seeds (or coins) are the foreground on 

the image and are extracted by separating the alpha channel from the image. Such 

an extraction can be performed using tools such as Gimp or OpenCV GrabCut. For 

this work, Gimp is used.  

2. Select a canvas onto which the extracted samples can be laid. The canvas functions 

as the background of the image and it is recommended that a canvas that resembles 

the real-world test site be picked. If there are different test sites, it is best to have at 

least one image of each of the test sites.  

3. Now that foregrounds and backgrounds are available, select all samples belonging 

to a particular foreground and lay them on each of the backgrounds with varying 
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sizes and orientations. Other kinds of augmentation such as brightness are also be 

performed as needed. 

4. As the images are being created in step 3, concurrently create a black canvas and 

color each of the regions where the seed (or coin) is placed on the image. Use a 

unique color for each of the objects on the image so as to identify them later. 

Figure 3.2 shows the synthetic images of the seed kernels of canola, rough rice, 

sorghum, soy, and wheat, along with the US Penny coin.  

 

 3.1.2.3 Image Annotations 

In order for the neural networks to consume the images generated by the 

framework, the images are required to be annotated. Annotations are files that contain 

information about the image ID, boundary, class, area and any other characteristic of each 

of the objects in the image. Different neural networks consume annotations in different 

formats. For instance, Mask R-CNN consumes annotations in the COCO file format 

whereas YOLO consumes annotations in the TXT file format although either of them 

performs the task of instance segmentation. Currently, frameworks that convert annotations 

Figure 3.2: Sample of Seeds and Corresponding Masks for Synthetic Data Sets 
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in the COCO file format to TXT file format are available. However, a framework that auto-

generates the annotations in COCO file format alongside synthetic images is not available. 

Hence, the proposed framework auto-generates annotations in the COCO file format which 

may later be used as-is on Mask R-CNN or converted to a different file format such as TXT 

using an available translation framework.  

COCO Annotation Format 

The COCO annotation file is formatted in JSON and consists of five sections: 

1. Info 

2. Licenses 

3. Images 

4. Annotations 

5. Categories 

Info: The info section consists of basic information about a dataset and may comprise of 

any information that the user/ creator sees fit. Typically, information such as description, 

date, author and version are included. 

Licenses: The licenses section consists of licenses applicable to each of the images in the 

dataset. The author/ creator of an image dataset may choose to make their images open-

source under a specific license that the users are required to cite. Image ID, URL and the 

name of the license are the fields commonly present in the section. 

Images: The Images section consists of all the images in the dataset. The section primarily 

consists of the high-level information about each of the images such as name, image ID, 
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height, width and date of capture. The image IDs are required to be unique to the image for 

ease of identification. Note that information related to the labels, bounding boxes or 

segmentation is not present in the section. 

COCO has annotations meant for five different use cases: 

1. Object Detection 

2. Key Point Detection 

3. Stuff Segmentation 

4. Panoptic Segmentation 

5. Image Captioning 

The proposed framework aids in generating annotations for object detection wherein the 

purpose is to detect each of the objects belonging to a certain category in a given image. 

The object detection use case is required to have a list of categories and annotations to 

define each of the objects in the image. The categories section is intuitive and consists of 

each of the broader categories of objects in the image such as person, car, table, chair and 

so on. The annotations section contains a list of properties to define each of the objects 

belonging to every category on the image. The annotations section consists of the following 

properties as described below: 

1. Segmentations: The segmentations are a list of coordinates of polygons drawn 

around each of the objects in the image.  

2. Area: The area is measured in pixels and represents the area of the polygonal 

segmentation. 
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3. IsCrowd: The IsCrowd property specifies if the annotation refers a single object 

or a cluster of objects such as the crowd at a game. 

4. Image_ID: The Image_ID property refers to a specific image in the dataset. 

5. Bbox: The Bbox property specifies the coordinates of the bounding box around 

an object in the image. The format is [top left x, top left y, width, height]. 

6. Category ID: The category ID attributes a category from the list of categories 

defined in the categories section. 

7. Annotation ID: The annotation ID specifies a unique ID for each annotation.  

 3.2 Seed Kernel Counting and Morphometric Estimation using Domain 

Randomization and Transfer Learning 

In the area of computer vision, the topics of object detection and semantic 

segmentation lay the foundation for instance segmentation. Object detection refers to the 

task of detecting an object on an image and plotting a bounding box around the object 

whereas semantic segmentation refers to the task of associating each pixel of an image to 

a class label. All the instances that belong to a certain class are treated the same. Instance 

segmentation applies a layer of precision on top of semantic segmentation and 

distinguishes between each of the instances belonging to a certain class. For instance, 

assume an image that consists of two humans and two apples. When semantic segmentation 

is applied on the image, the humans and apples are identified distinctly but the two humans 

are considered the same entity. Likewise, the apples. However, when instance 

segmentation is applied, each of the humans is considered their own entity and likewise, 
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the apples. In other words, instance segmentation is the process of applying a distinct mask 

to each of the entities on the image and assigning each mask a class label. Applying the 

principle of instance segmentation to neural networks, the number of seed kernels on an 

image may be estimated. In addition, the morphometry of each of the detected seed kernels 

may be estimated by processing the mask drawn around each of the seed kernels. In order 

to apply instance segmentation, the state-of-the-art neural networks of YOLOv5 and Mask 

R-CNN are considered. 

 3.2.1 Related Work 

Toda et al. [170] applied synthetic image datasets to train instance segmentation 

neural networks for crop seed phenotyping. The model was trained on the seed kernels of 

rice, wheat, lettuce, and oat. The work demonstrated that utilizing synthetic data is a 

powerful method to alleviate human labor costs for deploying deep learning-based analysis 

in the agricultural domain.  

 Kuznichov et al. [75] proposed a technique named collage, an image analysis 

technique to augment data for leaf segmentation and counting tasks in Rosette plants. The 

idea is to create a set of segmented leaf images on a transparent background, a single leaf 

per image, using manual annotations or an automatic procedure. The single leaves are made 

to undergo different geometric transformations with random parameters in a fixed range 

and pasted in random locations over selected backgrounds. The application of the technique 

provides diverse datasets for training on neural networks.  

Tanabata et al. [164] proposed SmartGrain, a software tool to measure seed shape 

through image analysis. The software uses an image analysis method to reduce the time 
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taken in the preparation of seeds and in image capture. Outlines of seeds are automatically 

recognized from digital images, and several shape parameters, such as seed length, width, 

area, and perimeter length, are calculated. The software removes areas of awns and pedicels 

automatically, and several QTLs were detected for six shape parameters.  

Schrader [150] proposed LeafIT, an android application to measure leaf area. Leaf 

area is a key parameter with relevance for other traits such as specific leaf area, which in 

turn correlates with leaf chemical composition, photosynthetic rate, and carbon investment. 

The android application is free to use and runs on Android 4 or higher. The area 

measurements made by the applications are compared to the measurements made by 

WinFOLIA [185], a commercial software that uses the Altman-Bland method for 

measurements.  

Komyshev, et al. [71] proposed SeedCounter, a mobile application for grain 

phenotyping. The application solves the problem of grain phenotyping analysis using 

image processing. The application was evaluated under six different lighting conditions 

and three mobile devices at the time of development. The finding was that lighting had a 

significant impact on the outcomes produced by the application.  

3.2.2 YOLOv5 

You Only Look Once (YOLO) is one of the first object detection models that 

introduced the idea of combining bounding box prediction and object classification into a 

single network. The architecture got introduced as part of a framework called Darknet. 

YOLO has come out with timely iterations with the latest iteration being five. Each of the 

iterations, except the fifth iteration has architectural changes done to improve upon the 



48 

 

performance of the model. YOLOv5 consists of four different architectures, YOLOv5s, 

YOLOv5m, YOLOv5l and YOLOv5x. Each of the architectures differ in the number of 

neural network layers with 5s, 5m, 5l and 5x containing 283, 391, 499 and 607 layers 

respectively. All four of the official models made available are trained from scratch on the 

COCO dataset. YOLOv5 is a one-stage object detection framework that has fast inference 

and optimization for parallel computations. The architecture of YOLOv4 primarily consists 

of three components: 

1. Backbone 

2. Neck 

3. Head 

Backbone: The backbone of the object detector is a pre-trained neural network such as 

VGG-16, ResNet-50, CSPDarknet53 or ShuffleNet. The YOLOv5 model considers the use 

of a Focus layer [117] in a DenseNet coupled with Cross-Stage-Partial (CSP) connections, 

Figure 3.3: DenseNet Architecture [56] 
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and CSPDarknet53 for the backbone. DenseNet is made up of multiple dense blocks, as 

shown in Figure 3.3.  

The Focus layer provides the advantage of requiring reduced CUDA memory, increased 

forward propagation and backpropagation. A dense block contains multiple convolutional 

layers with each layer Hi composed of batch normalization, ReLU, and followed by 

convolution. Each layer Hi consumes as input the output of each of the previous layers as 

well as the original input. Each layer produces four feature maps i.e., the number of feature 

maps increases by four upon passing through a dense block. Each of the dense layers 

consists of a transition layer containing convolution and pooling layers. However, the 

DenseNet architecture is computationally expensive. Cross-Stage-Partial (CSP) 

Connections increase the computational efficiency of the convolution. Each layer Hi 

consumes as input the output of each of the previous layers as well as the original input. 

Each layer produces four feature maps i.e., the number of feature maps increases by four 

upon passing through a dense block. Each of the dense layers consists of a transition layer 

containing convolution and pooling layers. However, the DenseNet architecture is 

computationally expensive. Cross-Stage-Partial (CSP) Connections increase the 

computational efficiency of the design by separating the input feature maps of the 

DenseNet architecture into two parts. The first part xo
’ bypasses the dense block and 

becomes part of the input to the next transition layer whereas the second part xo
’’ passes 

through the dense block. The CSP connections along with Darknet-53 whose architecture 

is as shown in Figure 3.4 for feature extraction. 
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Neck: Object detection models insert additional layers between the backbone and head to 

collect feature maps from different stages. The neck typically consists of several bottom-

up paths and top-down paths. Examples include Feature Pyramid Network (FPN), Path 

Aggregation Network (PAN) and Bi-FPN. PAN is the choice of neck used in the current 

experiment. In conventional deep learning frameworks, each layer consumes input from 

Figure 3.4: CSPDarknet-53 [136] 

Figure 3.5: Path Aggregation Network [83] 
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the previous layer. The early layers in the network extract localized texture and pattern to 

build up the semantic information required by the later layers in the network. However, as 

the information is repeatedly convolved, the knowledge required to localize is lost. PAN is 

a kind of an architectural system that facilitates the availability of fine-grain information 

to the top layers in the network. Figure 3.5 shows an FPN with PAN. 

The bottom-up path, shown in Figure 3.5 (b), is augmented to make the information from 

lower layers percolate to the layers at the top. In a conventional FPN, the spatial 

information travels to the upper layers using the path shown by the red arrow in (a) whereas 

PAN introduces the path shown by the green arrow to percolate information. In the original 

implementation of PaNet, the current layer and information from previous layer are added 

together to form a new vector whereas in YOLOv4 implementation, a modified paradigm 

wherein a new vector is created by concatenating the input and vector from a previous 

layer. 

Head: The head of the object detector predicts classes and bounding boxes of objects. In 

case of a one-stage detector, the primary responsibility of the head is to perform dense 

prediction. The dense prediction is the final prediction which is composed of a vector 

containing the coordinates of the predicted bounding box (center, height, width), the 

confidence score of the prediction and label. The prediction is based on anchor boxes that 

help to predict objects of a certain aspect ratio and size. Multiple anchor boxes may be 

assigned to each of the grid cells of the image.  
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Figure 3.6 shows the detections made by YOLOv5 on the different entities that the model 

is trained. 

 3.2.2.1 Tiny YOLO 

The models created using YOLOv5 are too complex and large to deploy natively as mobile 

apps. Tiny-YOLO models are a variation of the YOLO models but are much smaller in 

comparison to the YOLO models. However, the models are not accurate as their bigger 

counterparts. For the purposes of this work, YOLOv4-Tiny is considered since it is closest 

to the YOLOv5 models at the time of experimentation. The average precision (AP) at 50% 

mask-IOU of YOLOv4-Tiny is 40.2% in comparison to YOLOv4’s 64.9% on the COCO 

data set. In exchange for accuracy, the speed of the models has a multifold increase. The 

Tiny-YOLOv4 achieves about 371 FPS during inference on a single GPU (GTX 1080 Ti) 

in comparison to YOLOv4’s 62 FPS on a single GPU (TeslaV100) on the Darknet 

framework and is about six times faster. While there is a significant decrease in the 

Figure 3.6: YOLOv5x Instance Detections on Clustered Seeds of (a) Canola (b) Rough 
Rice (c) Soy (d) Wheat (e) Sorghum 
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accuracy of the Tiny-YOLO models in comparison to YOLO models on the complex 

COCO data set, it is worth noting that Tiny-YOLO models function nearly as efficiently 

as the larger YOLO models when trained on custom data sets that are not as complex, like 

the ones in this work. A key difference between the larger models and Tiny-YOLOv4 is 

that the input image resolution of Tiny-YOLOv4 is 416 x416 px as opposed to the larger 

models’ 768 x768 px. 

 3.2.3 Mask R-CNN 

 3.2.3.1 Mask R-CNN Architecture 

The architecture of Mask R-CNN is explained further and is as shown in Figure 

3.7.   

 

The architecture of Mask R-CNN is divided into two stages. In the first stage, the network 

generates proposals about the regions where an object may be present based on the input 

image whereas the second stage predicts the class of the object, refines the bounding box 

and generates a mask at the pixel level of the object. The network consumes the input image 

and passes it through a CNN such as VGG-16, ResNet-50, and Inceptionv3. Typically, 

Figure 3.7: Mask R-CNN Architecture 
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CNN applies a series of convolutions on the input image to generate feature maps. The last 

stage of CNN is the fully connected layer that predicts the class of the image from the 

feature maps. However, in case on Mask R-CNN, the fully connected layer of the network 

is not leveraged. Instead, only the feature maps are collected as output and passed to the 

Region Proposal Network (RPN). RPN is a fully convolutional network that predicts the 

object bounds and “objectness” score at each position in a feature map. Objectness score 

refers to the likelihood of an object being present at a certain location. The architecture of 

RPN is shown below in Figure 3.8.  

 

In order to generate the proposals, the RPN slides a small network over the convolutional 

feature map that is output by the last convolutional layer (indicated as intermediate layer 

in Figure 3.8) of the CNN. The network uses n x n spatial window as input from the feature 

Figure 3.8: RPN Classifier, Regressor and Anchor Boxes [137] 
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map. Each sliding window is mapped to a lower dimensional feature. RPN has two 

components – classifier and regressor. 

Classifier determines the probability that a proposal contains the target object. Regressor 

regresses the coordinates of the proposal, so they are better refined and fit the target 

precisely. The key idea that aids the regressor and classifier is Anchor Boxes or Anchors. 

Anchors are a set of predefined locations and scales relative to the image, typically centered 

at the sliding window of the RPN. Binary ground-truth classes i.e., object and background, 

and bounding boxes are assigned to individual anchors according to a predefined 

Intersection-over-Union (IoU) score. In case of Mask R-CNN, anchors with three different 

aspect-ratios and three scales are proposed. Hence, a total of nine anchor boxes are present 

for each pixel of the image. Hence, there a W x H x K anchors in an image of width W, 

height H, and K anchors per pixel. The classifier and regressor are fully convolutional 

layers that typically apply 1 x 1 sized filters. The classifier is binary in the sense it merely 

predicts the presence of an object but not the class of the object. The regressor predicts the 

bounding box around the object detected by the classifier. Assuming an image of height H, 

width W, N classes of objects, and K anchors per pixel, the output of the classification head 

has the shape H x W x 2.K whereas that of the regression head is H x W x 4.K. The idea 

behind having multiple anchor boxes per pixel location is so that the network is able to 

predict multiple objects of different sizes per location. Finally, the loss function for RPN 

is given by L({pi}, {ti}) = (1/Ncls) x ΣLcls(pi, pi
*) + (λ/Nreg) x Σ pi

*Lreg(ti, ti
*) [125] where i 

is the index of anchor, p is the probability of being an object, t is the vector of four 

parameterized coordinates of predicted bounding box, * represents ground truth box, L for 

cls represents Log loss over two classes. p*with regression term in loss function counts if 
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and only if an object is identified, else, it is zero. Ncls and Nreg are normalizations. λ is set 

to a default value of 10 in order to scale classifier and regressor by a common factor. 

After the RPN is the ROI Align i.e., Region of Interest Align phase. ROI refers to a region 

proposed by the RPN that corresponds to the original image. ROI Align is a process that is 

put in place to improve upon the technique of ROI Pooling. The process of ROI Pooling is 

described first to better describe the process of ROI Align. The goal of ROI pooling (and 

ROI Align) is to convert the feature maps to a standard size, so they are able to be consumed 

by the fully connected layers (FC Layers shown in Figure 27). The process of ROI Pooling 

is explained using Figure 3.9 which shows the image of a wheat plant that is run through a 

CNN resulting in a convolved feature map. Assume that the size of the original image is 

800 x 800 px and the size of the ROI is 350 x 200 px. As the image is run through the CNN 

and convolutions are applied, consider that the resulting feature map is of dimensionality 

25 x 25 px i.e., a reduction of 32 times from the original size. Along with the size of image, 

the size of the ROI is also scaled down by 32 times which results in a size of 10.93 x 8 px. 

ROI Pooling applies quantization on the feature map as it consumes the feature map as 

input. Quantization is the process of constraining an input from a set of real values to a set 

of discrete values, such as integers. As quantization is applied, only the integral values are 

Figure 3.9: Original Image Convolved to Feature Map 
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considered as input for processing. In other words, ROI of 10 x 8 px is considered instead 

of 10.93 x 8 px. While 0.93 px might not seem like much of a displacement, it is important 

to realize that each pixel in the feature map corresponds to 32 pixels in the original image. 

As a result, portion of the ROI is lost as it is consumed as the input. In addition to loss of 

ROI in the input phase, information is also lost in the output as ROI Pooling attempts to 

alter the dimensionality of the feature maps. Assume the required output dimensionality of 

the feature map is 7 x 7 px. In order to convert a feature map of size 10 x 8 px to 7 x 7 px, 

ROI pooling gets the ratio of the width and height dimensions i.e., 10/7 and 8/7 

respectively. The results are 1.42 and 1.14 respectively, both float values. Once again, ROI 

Pooling applies quantization which considers only the integral value of the float numbers. 

A 1 x 1 filter is applied along the feature map to retrieve a 7 x7 output using either max 

pooling or average pooling. Max pooling refers to the technique of selecting the maximum 

value within the filter whereas average pooling refers to the technique of selecting the 

average of the values within the filter. It doesn’t matter in a 1 x 1 filter if max pooling or 

average pooling is applied. Since only seven rows and seven columns are in the output, 

three columns out of the ten rows and one row out of the eight is ignored, as shown in 

Figure 3.10. In summary, ROI pooling applies quantization twice, once during the mapping 

of image coordinates to feature map      

Figure 3.10: Quantized Feature Map using ROI Pooling 
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coordinates and again during the mapping of feature map coordinates to ROI Pooling 

output feature map. Overall, ROI Pooling is a lossy transformation wherein key features of 

the image are ignored in the process of quantization.  

ROI Align helps mitigate the pitfalls of ROI Pooling by eliminating the application of 

quantization for data pooling. Instead, it divides the ROI into a certain number of equal 

sized boxes and applies the process of bi-linear interpolation for data pooling as shown in 

Figure 3.11.  

 

Bi-linear interpolation is a technique for two-dimensional interpolation on a rectangle. It 

works under the assumption that the values of some unknown function at points that form 

a rectangle are known. In Figure 31, the four tuples formed by the cross-join of the two 

points (x1, y1) and (x2, y2) make up the vertices that form the rectangle. The values at (x1, 

y1), (x1, y2), (x2, y1) and (x2, y2) are Q11, Q12, Q21, and Q22 respectively. The point whose 

value is to be determined is (x, y) indicated by P.  The size of each box for bi-linear 

interpolation is determined by the size of the mapped ROI and size of the pooling layer. 

Figure 3.11: Bi-linear Interpolation 
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Assuming a pooling layer of size 7 x 7 as shown in Figure 3.12 and considering the feature 

map ROI shown in Figure 3.12 whose width and height are 10.93 x 8 respectively, the 

width and height of each box are 1.14 and 1.56 respectively.  

Four sampling points are created within each of the cells, one at the top-left, one at 

bottom-left, one at top-right and another at bottom-right of the cell. The relevant equation 

to derive the values for each of the points is as follows: 

Top-Left Point: 

𝑋 =  𝑋_𝑏𝑜𝑥 +  (𝑤𝑖𝑑𝑡ℎ/3)  ∗  1 

𝑌 =  𝑌_𝑏𝑜𝑥 +  (ℎ𝑒𝑖𝑔ℎ𝑡/3)  ∗  1 

Bottom-Left Point: 

𝑋 =  𝑋_𝑏𝑜𝑥 +  (𝑤𝑖𝑑𝑡ℎ/3)  ∗  1 

𝑌 =  𝑌_𝑏𝑜𝑥 +  (ℎ𝑒𝑖𝑔ℎ𝑡/3)  ∗  2 

Top-Right Point: 

𝑋 =  𝑋_𝑏𝑜𝑥 +  (𝑤𝑖𝑑𝑡ℎ/3)  ∗  2 

Figure 3.12: ROI Segmented into 7 x 7 Boxes 
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𝑌 =  𝑌_𝑏𝑜𝑥 +  (ℎ𝑒𝑖𝑔ℎ𝑡/3)  ∗  1 

Bottom-Right Point: 

𝑋 =  𝑋_𝑏𝑜𝑥 +  (𝑤𝑖𝑑𝑡ℎ/3)  ∗  2 

𝑌 =  𝑌_𝑏𝑜𝑥 +  (ℎ𝑒𝑖𝑔ℎ𝑡/3)  ∗  2 

Where X_box and Y_box indicate the x and y coordinates that belong to the top-left corner 

of the ROI. A point from the derived list of points is considered and connected to the middle 

of the closest neighboring cells, unless they are connected already. Figure 3.13 shows one 

segment from each of the segments of the 7 x 7 ROI grid wherein the segment overlaps six 

cells in the grid. As a hypothetical instance, the point (9.5, 10.5) is assumed to be one of 

the points from the derived list. Following the procedure described earlier, the point is 

connected to the midpoint of the closest neighboring cells. The values at each of the 

midpoints of the cells to the top-left, top-right, bottom-left, and bottom-right are assumed 

to be 0.1, 0.2, 0.7 and 1 respectively. Bi-linear interpolation is applied using the formula, 

𝑃 =  (𝑦2 –  𝑦)/ (𝑦2 –  𝑦1) ((𝑥2 –  𝑥)/ (𝑥2 –  𝑥1) 𝑥 𝑄11 +  (𝑥 –  𝑥1)/

 (𝑥2 –  𝑥1) 𝑥 𝑄21)  +  (𝑦 –  𝑦1)/ (𝑦2 –  𝑦1) ((𝑥2 –  𝑥)/ (𝑥2 –  𝑥1) 𝑥 𝑄12 +  (𝑥 –  𝑥1)/

Figure 3.13: Bi-linear Interpolation on a Grid Cell in ROI 
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 (𝑥2 –  𝑥1) 𝑥 𝑄22). Upon the computation of bi-linear interpolation values for the four 

sampling points in the segment, max pooling or average pooling is applied (as in ROI 

Pooling). Since each of the cells in the 7 x 7 grid is used, all the information within the 

ROI is leveraged. Warped features from the ROI Align phase are fed into the fully 

connected layers of the network. The network uses the bounding box regressor to predict 

the bounding box around the object, mask stage to plot the mask around the object and 

SoftMax layer to predict the class of the object that is detected by the network. 

 3.2.3.2 Mask R-CNN Implementation 

The Mask RCNN implementation used is the popular implementation by 

Matterport that runs on Tensorflow. Mask RCNN comes pretrained on 80 classes that 

belong to the COCO data set. For a majority of the applications, the default parameters 

shipped out by the Matterport implementation are good enough for object detection. 

However, for the object detection of the seeds and pennies, one key change that is made is 

the ‘anchor scales’ and ‘anchor ratios’ of the Region Proposal Network. Anchor scales and 

anchor ratios play a crucial role in instance detection. For instance, say the network is 

trained on canola with images of size 768 x 768 px. If the anchor scales were selected to 

be [32, 64] and anchor ratios, which are essentially aspect ratios, were [1, 2], four anchor 

boxes would be generated at each position with dimensions 32:32 px, ~22:44 px, 64:64 px, 

~90:45 px. However, from experimentation, it is observed that even the largest of canola 

seeds don’t occupy nearly as close to the smallest of the anchors 32:32 px (or 22:44 px). 

As a result, the network fails to train well yielding a higher overall loss and sloppy 

detection. In order to ensure this does not happen, different anchor scales and ratios are 

experimented with and the values of [2, 4, 16, 32, 64] and [1.5, 2, 3] are settled on for 
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anchor scales and ratios respectively. For this work, two different models are created using 

the pre-trained weights of COCO and ImageNet with the backbone of ResNet101 

architecture. While ImageNet is a data set that comprises of 1000 classes in comparison to 

COCO’s 80, it is worth noting that neither ImageNet nor COCO was trained on any kind 

of seeds originally. While the performance of both models is similar, there is one key 

fallacy that they possess pertinent to seed shape. Amongst the five seeds in question, the 

seeds of soy and sorghum are circular and similar in size on occasion. Likewise, wheat and 

rough rice, except that they are oblong in shape. As a consequence, both models tend to 

commonly mistake rough rice for wheat and vice-versa, and soy for sorghum and vice-

versa. The seeds of canola, although circular like soy and sorghum are significantly smaller 

in comparison leading to a lower error rate while detecting them. Figure 3.14 shows the 

detections of seeds on each of the images in question. While the classification of seeds may 

not be accurate, a point worth noting is that the instance segmentation performed by the 

networks is beneficial by itself because the majority of applications, desktop or mobile, are 

catered to work for a certain type of seed. As a result, classification of seeds isn’t as critical 

as instance segmentation. 

Figure 3.14: Mask RCNN Instance Detections on Different Seeds 
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 3.2.4 Results and Discussion 

The project starts off with work on Mask RCNN where the network, once with pre-

trained weights of COCO and another time with pre-trained weights of ImageNet, is trained 

on 31 images of soy where each image contains multiple (about 20 - 30) seeds. The images 

are manually annotated using Oxford’s VGG Annotator tool. Although the network trains 

well and achieves a decent loss of ~2, the performance of the model on the test data set is 

sub-par. It is after the experience that the use of domain randomization is employed. The 

trained models are tested on two test datasets, one that contains real-world images of seeds 

and another of synthesized seed images. One of the criticisms of the work by Toda et al. 

[170] is that the metric scores represented for the synthetic data set could be biased since 

the synthetic test data set is created using the same seed samples used for training. In order 

to test out the alternative, the synthetic test data set is created using different seed samples. 

Overall, 150 images of size 768 x 768 px (416 x 416 px for YOLO-Tinyv4) are created 

where each type of seed contains 15 synthetic images and 15 real-world images containing 

50 - 100 seeds. For the real-world test data set on each seed, about 5 of the images do not 

contain entities that touch each other but the remainder of the images do. The reason for 

such a setup is to observe the performance of the network on touching and non-touching 

entities. It is common knowledge that object detection networks struggle to perform well 

when entities on the image touch. The hypothesis is proven correct by both Mask RCNN 

and YOLO as the metric scores are significantly lower for images with touching entities in 

comparison to the ones that don’t. Similar behavior is observed on both the synthetic and 

real seed image test data sets. It is also worth pointing out that the networks perform 

phenomenally on images with only non-touching entities achieving recall and precision of 
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~1.0. It is also observed that the performance of the models on the real-world data sets is 

OK but not close to that of the performance on synthetic datasets that they are trained on.  

The metrics to evaluate the models are Recall and Average Precision (AP) which 

are the standard evaluation metrics for object detection and localization models such as 

Mask RCNN and YOLO. Recall is defined as the true-positive rate, or the ratio of true 

positives detected by the model to the total number of objects present. In object detection 

and localization networks, recall is generally defined over different thresholds of a 

parameter called Intersection-over-Union (IOU). For the purposes of the current work, 

recall is defined on the IOU of the bounding rectangles predicted by the network and the 

ground-truth bounding rectangles. The AP of each class is computed using IOU of masks 

predicted by the network and the ground-truth masks. As pointed out in the work by Toda 

et al. [170], the use of bounding rectangles is not an accurate measure since the rectangles 

are not the minimum area bounding rectangles and don’t tightly bind around the instances 

in the image. The use of IOU over masks helps alleviate the problem since the masks 

resemble the original instance to a higher degree as they represent the orientation of the 

instance in the image. 

The performance of the models along with pre-trained weights used to train the 

model on each of the networks is shown in Table 3.1. The image datasets used for training 

and testing contained seed kernels that are both clustered and segmented. 

Table 3.1: Performance of Models on Synthetic and Real Seed Datasets[A14] 

Seed Model Synthetic Data Set   Real Seed Data Set 
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 Network Weights Recall5

0 
AP5

0 
AP@[.5
: .95] 

Recall5

0 

AP5

0 

AP@[.5
: .95] 

Canola M-RCNN ImageN
et 

0.88 0.90 0.76 0.78 0.77 0.62 

M-RCNN  COCO 0.90 0.92 0.77 0.74 0.78 0.64 

YOLOv5
x 

COCO 0.92 0.94 0.80 0.81 0.77 0.65 

YOLO5l COCO 0.90 0.92 0.78 0.78 0.74 0.62 

YOLO5m COCO 0.89 0.88 0.74 0.71 0.73 0.62 

YOLO5s COCO 0.82 0.83 0.69 0.69 0.71 0.56 

T-
YOLOv4 

T-
YOLOv
4 

0.71 0.73 0.65 0.56 0.61 0.49 

Rough 

Rice 

M-RCNN ImageN
et 

0.90 0.91 0.79 0.85 0.74 0.61 

M-RCNN COCO 0.89 0.89 0.75 0.81 0.74 0.60 

YOLOv5
x 

COCO 0.94 0.97 0.82 0.83 0.81 0.68 

YOLO5l COCO 0.92 0.92 0.80 0.77 0.77 0.61 

YOLO5m COCO 0.90 0.90 0.76 0.72 0.73 0.58 

YOLO5s COCO 0.84 0.87 0.71 0.64 0.67 0.51 

T-
YOLOv4 

T-
YOLOv
4 

0.76 0.81 0.72 0.68 0.63 0.52 

Sorghu
m 

M-RCNN ImageN
et 

0.89 0.90 0.77 0.80 0.79 0.66 

M-RCNN COCO 0.87 0.89 0.75 0.78 0.80 0.67 

YOLOv5
x 

COCO 0.93 0.93 0.80 0.84 0.80 0.72 

YOLOv5l COCO 0.91 0.90 0.78 0.81 0.77 0.64 

YOLOv5
m 

COCO 0.89 0.88 0.75 0.74 0.72 0.60 
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YOLOv5s COCO 0.89 0.84 0.74 0.68 0.66 0.55 

T-
YOLOv4 

T-
YOLOv
4 

0.73 0.78 0.66 0.67 0.70 0.56 

Soy M-RCNN ImageN
et 

0.87 0.86 0.74 0.86 0.73 0.68 

M-RCNN COCO 0.88 0.89 0.76 0.84 0.76 0.63 

YOLOv5
x 

COCO 0.94 0.91 0.77 0.88 0.77 0.66 

YOLOv5l COCO 0.88 0.88 0.73 0.81 0.71 0.62 

YOLOv5
m 

COCO 0.87 0.88 0.71 0.82 0.66 0.63 

YOLOv5s COCO 0.83 0.81 0.65 0.74 0.64 0.53 

T-
YOLOv4 

T-
YOLOv
4 

0.81 0.84 0.69 0.76 0.77 0.63 

Wheat M-RCNN ImageN
et 

0.89 0.88 0.76 0.84 0.75 0.61 

M-RCNN COCO 0.89 0.86 0.74 0.81 0.71 0.64 

YOLOv5
x 

COCO 0.91 0.93 0.79 0.82 0.74 0.63 

YOLOv5l COCO 0.89 0.92 0.77 0.80 0.72 0.62 

YOLOv5
m 

COCO 0.86 0.90 0.75 0.82 0.67 0.58 

YOLOv5s COCO 0.81 0.82 0.71 0.76 0.66 0.57 

T-
YOLOv4 

T-
YOLOv
4 

0.73 0.77 0.61 0.61 0.65 0.51 

Recall50 – Recall values at the bounding box IOU threshold of 50%            AP50 – Average precision values at the mask IOU 

threshold of 50% AP@[.5:.95] – Mean of AP value from IOU of 50% to 90% with a step size of 5%                                                

T-YOLOv4 – Tiny-YOLOv4 
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From the results, it is observed: 

1. Although the synthetic test data set is created from seeds entirely different than those 

used for training, the metrics for recall and average precision are significantly higher 

for the synthetic data set in comparison to the real seed data set. 

2. The models trained on both the COCO and ImageNet for Mask R-CNN data sets 

produce similar results on both the synthetic and the real seed test data sets showing 

that both the pre-trained weights are as good as each other[A15]. 

3. Of the YOLO models, YOLO5x outperforms the others in both recall and average 

precision for each one of the seeds. It is inferred that the accuracy of the network is 

directly influenced by the number of layers in the network. 

4. In terms of the experiment, only synthetic images are used for training. However, all 

the synthetic images are generated from images of real seeds extracted using the 

proposed synthetic image generation framework. The number of real seeds used in the 

generation of synthetic images for each seed type is 30 to 40. The synthetic images are 

generated by putting the images of real seeds through different image augmentation 

procedures before pasting them on the desired canvas. Each synthetic image consists 

of 50 to 100 seeds whose count is assigned at random by the synthetic image generation 

framework. A large training dataset where each seed type consists of ~150 images are 

used for training. Based on the results on the test dataset, one might argue that more 

data is required. However, the training results are satisfactory considering the network 

exhibits good Recall and Precision on all the seed types. The scope for improvement 
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perhaps lies in the synthetic image generation framework wherein the seed kernels 

generated might need to reflect the real-world seeds more closely.  

The performance of Tiny-YOLOv4 lags behind the larger Mask R-CNN and YOLO 

models, except for YOLOv5s on occasion. In all fairness, it is not reasonable to compare 

it against the larger models considering it is smaller in size architecturally. However, it is 

worth reiterating that they are fit for mobile applications where the models are required to 

be compact. 

 3.2.5 Morphometry Estimation 

The focus of the work from this point shifts towards morphometric estimations of the 

detected seeds. As part of the morphometric measurements, a method which closely 

follows the No-Mesh algorithm described in chapter-2 and standards laid out by the 

International Seed Morphology Association, an organization that promotes research in the 

areas of seed morphology and identification, to estimate the length, width and area of each 

of the seeds along with the count of seeds on the image is proposed.  The proposed 

technique is dependent upon drawing smallest rotated rectangles around observed contours 

and works well on both Mask R-CNN and YOLO models for all of the seed types in 

question. The caveat is that the estimations are dependent solely upon the quality of 

instance detections made by the networks. In case the network doesn’t detect an instance 

or predicts contours incorrectly, which is not uncommon from the results shown in Table 

7, the estimates suffer a lack of accuracy. In order to estimate the morphometry i.e., the 

area, length and width of each of the seeds in question, the following strategy using 

OpenCV2 is proposed: 
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1. Capture an image with multiple US pennies. For this experiment, four pennies 

are used. It is important to have multiple pennies because it is observed from 

prior research that the position of the objects on the image impacts their 

perceived area. 

2. Input the image to the trained neural network model and detect the contours of 

each of the coins on the image and determine the average area of all of the 

detected coins in metric units. The computation of average area is performed 

by plotting a rectangle around each of the coin contours that are detected and 

applying the area of the rectangle in pixels to the area of the coin in mm2. It is 

known that the diameter of the US penny is 19.05 mm resulting in an area of 

284.87 mm2 approximating it as a circle. The coins detected and labeled using 

YOLOv5 are shown in Figure 3.15. 

3. (Length and Width Estimation) Likewise, on images with seeds, detect the 

contours around each of the seeds in the image and plot the smallest rotated 

rectangle that encloses each of the contours. The longer axis returned is deemed 

length and the shorter axis, width. 

4. (Area Estimation) The area of each of contours is given by a cross-

multiplication using the contour area of the detected seed in pixels, contour area 

Figure 3.15: Coin Detection by YOLO5x 
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of the penny in pixels and area of the penny in mm2 as 𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚2 = 

(𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ coin 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚2)/ (𝑚𝑒𝑑𝑖𝑎𝑛 coin 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠). 

Figure 3.16 shows the detected instances of sorghum seeds on Mask RCNN along with the 

smallest enclosing rectangles plotted for size estimation using OpenCV2. Likewise, Figure 

3.16 shows the detected instances of wheat amongst four pennies placed at each of the 

corners of the image. 

 

 3.2.6 Estimated Morphometry in Comparison to Other Applications 

The morphometric estimations made by the neural networks are compared against 

the estimations made mobile applications Leaf-IT and Seed Counter which are also in the 

realm of morphometry estimation. In addition, the estimates are compared against the 

estimations made by the Mesh algorithm and manual measurements using a vernier caliper. 

Soy is considered to evaluate for the reason that not all of the seed types in question are 

Figure 3.16: Size Estimation Operations on Sorghum Seeds on Mask R-CNN 
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able to be estimated by all of the applications in consideration. The areas estimated by each 

of them on a sample of seven soy seeds is as shown in Figure 3.17. Please note that the 

experiment is repeated on all of the applications with the seed maintained at the same 

orientation in order to cut out any bias due to orientation and that the seeds do not touch 

on the images. The type of mesh used for the application of the Mesh algorithm is 

hexagonal. The results show a high degree of cadence[A16] amongst the estimates made by 

each of the applications. It shows that the estimates made using neural network detections 

correlate to the applications that currently prevail[A17]. 

3.3 Seed Classification on Supervised Neural Networks 

Supervised Learning is the technique of training neural networks on labeled data to 

learn a mapping from an input to a certain output. The technique is popular in the realm of 

deep learning and is widely leveraged to train neural networks. While the technique may 

be applied to a neural network of any kind, the current work focuses on the application of 

supervised learning to convolutional neural networks (CNN) for the classification of seed 

kernels of different varieties. The CNNs considered for the experiment are the state-of-the-
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Figure 3.17: Seed Area Estimates using Morphometry Estimation Applications 
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art networks of Oxford’s VGG-16, VGG-16 and Microsoft’s ResNet-101. The 

architectures of the networks are described as follows: 

 3.3.1 VGG-16 

VGG-16 is a convolutional neural network developed by researchers Karen 

Simonyan and Andrew Zimmerman at the University of Oxford. The 16 in the VGG-16 

stands for the number of the layers that the architecture consists of. The model achieved 

92.7% top-5 test accuracy in ImageNet Large Scale Visual Recognition Challenge 

(ISLRVC) on ImageNet, a dataset that consists over 14 million images belonging to 1000 

classes. The model improved over AlexNet which was the state-of-the-art model at the 

time. The architecture comprises a stack of five convolutional layers followed by three 

fully connected layers, as shown in Figure 3.18. 

Figure 3.18: Layers of VGG-16 [168] 
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The input to the first convolutional layer is an RGB image of size 224 x 224 px. Each of 

the convolutional layers comprises a filter with a receptive field of 3 x 3. Max pooling 

layers are present after each of the convolutional layers to perform spatial pooling. Max 

pooling is performed over a 2 x 2-pixel window with a stride of 2. Of the three fully 

connected layers, the first two have a total of 4096 channels each, and the third dense layer 

has as many channels as the number of output categories that the network is expected to 

classify. The final layer is the softmax layer that outputs a probability of an image 

belonging to a certain class. ReLU is used as the activation function for each of the hidden 

layers. Figure 3.19 shows the feature map sizes of VGG-16. 

 

 

Figure 3.19: Architecture of VGG-16 [168] 
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 3.3.2 VGG-19 

The architecture of VGG-19's is similar to that of VGG-16's. The architecture comprises 

a total of 19 layers in comparison to VGG-16's 16. Like VGG-16, the architecture of VGG-

19 comprises a stack of five convolutional layers with max-pooling layers to reduce the 

spatial dimensions of the output volume. However, a total of 13 convolutional layers are 

observed in VGG-16 whereas 16 convolutional layers are present in VGG-19. The 

architecture follows VGG-16 in every other aspect.  

 3.3.3 ResNet-101 

The ResNet architecture relies on the idea of using a skip connection process that 

performs a convolution transformation F(X) on an incoming feature X and adds the result 

Figure 3.20: Skip Connection in ResNet Architecture 
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to the original feature X. Figure 3.20 shows a skip connection used in the ResNet 

architecture.  

The modified feature is then served as the input to the next layer. It primarily solves the 

problem of vanishing gradient i.e. the condition where the loss function shrinks to zero 

after repeated applications of the chain rule. It is generally the case when the network 

architectures are overly deep. With ResNets, the network learns the residual elements. 

There are two main designs of residual elements, skip connection and identity mapping 

[92]. The training of the residual network may be explained as learning the residual 

function Y = F(X) + X where the goal is to minimize F(X) so it reaches 0. Applying L2 

regularization or weight decay is a way to achieve F(X) = 0 since it incentivizes the network 

weights to be as small as possible. At that point, Y = X i.e. an identity mapping. As a result, 

the addition of more layers to the network does not hurt the performance of the network. 

In other words, the presence of multiple residual blocks in the network allows the structure 

of the residual network to be self-regulated through skip connections thereby achieving the 

deepening effect of the network [92].   

 3.3.4 Related Work 

The work by Toda et. al. [170] applies the technique of domain randomization to 

train Mask R-CNN, an instance segmentation neural network on a synthetic image dataset 

of 20 different cultivars belonging to barley, four cultivars of wheat, and one cultivar each 

of rice, oat and lettuce. The average precision (AP) values computed based on mask regions 

at the varying intersection over union (IoU) thresholds achieved comparable AP50 values 

of 96% and 95% for the synthetic and real-world datasets respectively.  
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Ward, Moghadam, and Hudson [179] conducted similar experiments to perform 

automated segmentation of individual leaves of a plant for high-throughput phenotyping. 

The proposed technique leveraged synthetic images of plants generated from real plant 

images. The Mask R-CNN architecture was trained with a combination of real and 

synthetic images of Arabidopsis plants. The proposed technique achieved a 90% leaf 

segmentation score on the A1 test set and outperformed the state-of-the-art approaches for 

the CVPPP Leaf Segmentation Challenge (LSC). 

Gulzar, Hamid, Soomro, Alwan and Journaux [47] developed a seed classification 

system for 14 different types of seeds employing the concept of transfer learning on a pre-

trained model of VGG-16. The results showed a classification accuracy of 99% on a test 

image dataset of 234 images. 

Buters, Belton, and Cross in [21] conducted experiments to perform seed and 

seedling detection and classification using unmanned aerial vehicles. The technique of 

object-based image analysis (OBIA) with eRecognition software used as part of the 

experiments. The results showed the feasibility of low-cost commercially available UAVs 

in monitoring ecological recovery. 

Coulibaly, Kamsu-Foguem, Kamissako, and Traore [31] proposed a deep learning 

technique with transfer learning in millet crop images using VGG-16. The goal of the study 

was to identify mildew disease in pearl millet. Fine-tuning was performed on a pre-trained 

model of VGG-16 by adding two fully connected layers and training the model on the 

image dataset. An accuracy of 95%, precision of 90.50%, recall of 94.5% and f1score of 

91.75%. 
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In the study conducted by Mukti and Biswas [110], transfer learning-based plant 

disease detection was performed using ResNet-50. The dataset included 38 different 

classes of plant leaf images where in 70295 training images and 17572 validation images 

were used. Fine-tuning was performed to enhance the performance of the ResNet-50 model 

that eventually yielded a training accuracy of 99.80%. 33 images belonging to the 38 

classes of leaves were used for testing. The proposed model yielded an accuracy of 100% 

on the test dataset. 

Muneer and Fati [111] proposed a deep learning technique to classify and recognize 

the desired herb from thousands of herbs using shape and texture features. The proposed 

system employed two classifiers, Support Vector Machine (SVM) and Deep Learning 

Neural Network (DLNN). The models were tested on a dataset containing 1000 herbs. The 

results showed that the SVM model achieved a recognition accuracy of 74.63% whereas 

the DLNN achieved 93% accuracy. Furthermore, the processing time was four seconds for 

SVM and five seconds for DLNN. 

A deep-learning classification system for identifying weeds using high-resolution 

UAV imagery was proposed by Bah, Dericquebourg, Hafiane, and Canals in [14]. The 

proposed system was applied to images of vegetables captured about 20m above the soil 

using a UAV. The results showed that weed detection was effective in different crop fields 

with overall precisions of 93%, 81%, and 69% obtained for beet, spinach, and bean 

respectively. 

Bristeau, Vissière, Callou and Petit [19] discuss the navigation and control 

technology embedded in the Parrot AR Drone. The article sheds light on the low-cost 
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inertial sensors, computer vision techniques, attitude and velocity estimation, and control 

architecture used in the UAV. 

 3.3.5 Experimental Setup 

Each of the neural network architectures is trained on synthetic images 

[A18]generated using the Domain Randomization framework described in section 3.1. One 

of the observations from chapter 2 is that the height of image capture impacts seed 

classification i.e., an object in question appears different from different heights as the field 

of view of the camera changes. In order to avoid the issue of misclassification due to height 

of image capture, the neural networks are trained on images captured from varying heights. 

However, the manual capture of images from different heights is a tedious and error prone. 

An image captured freehand results in skew since it is hard to hold one’s hand perfectly 

orthogonal to the ground. Also, from experimentation, it is realized that is more than a one-

person job. Hence, the use of an unmanned aerial vehicle (UAV) aka drone is considered 

to capture the images. 

 3.3.5.1 Parrot AR Drone 2.0 

The Parrot AR Drone 2.0 is a quadcopter manufactured by the French company 

Parrot SA. The drone uses a 3630 OMAP CPU, a processor that is based upon a 32-bit 

ARM cortex and runs with 1 GHz. The drone uses 4 brushless motors running at 28.5 

revolutions/minute which are controlled by an 8 MIPS AVR CPU on each motor controller. 

The drone has a front and a bottom camera to capture images and videos. The front camera 

provides an HD image resolution (720p-30fps) whereas the bottom camera provides 

QVGA (320 x 240) at 60fps. The drone may be controlled via a mobile application 
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supported on Android and iOS provided by Parrot SA. Besides the mobile app, the 

quadcopter has support for autonomous navigation through libraries supported in Robot 

Operating System (ROS) and nodeJS. It turns out that JavaScript is a good fit to control 

drones autonomously for the work since it is inherently event driven. The nodeJS library, 

node-ar-drone is leveraged to operate the drone autonomously in the breeding environment. 

While the node-ar-drone library provides a plethora of functions to operate the quadcopter, 

the ones used for the current work are take-off, land, spin, and video capture and stop. The 

behavior of the functions is self-intuitive from the names of the functions. The video 

captured by the drone is output in .h264 format when the video capture function of the 

node-ar-drone library is used. Videos in raw .h264 format don't carry rate information. 

However, different frames of the video are required to be extracted for the creation of 

synthetic images. As a work-around, the FFmpeg library is used to convert the video in 

.H264 format to .mp4 format rendering it conducive for frame extraction using the Python-

OpenCV framework.  The UAV is flown across a prototypical seed phenotyping 

environment where in a sample of each of the seed varieties is placed on a lightbox. Figure 

3.21 shows the Parrot AR Drone 2.0 flying across the prototypical seed phenotyping 

environment. 
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 3.3.5.2 Synthetic Image Dataset 

The seeds of canola, rough rice, sorghum, soy, and wheat are used as part of the 

experiment. 30 seeds belonging to each of the seed types in question i.e., canola, rough 

rice, sorghum, soy, and wheat are randomly selected from a large pool of available seeds 

belonging to each of the seed types and placed in the prototypical seed phenotyping 

environment. The Parrot AR Drone 2.0 is flown over the phenotyping environment 

autonomously and made to capture a video of the seeds as it moves across the seed 

phenotyping environment using its bottom camera. The drone is made to fly at three 

different heights of 0.3m, 0.5m, and 0.7m to capture three different videos. Four images of 

the white light-emitting lightbox are used as the canvas (background) for the synthetic 

images. While it is fair to assume that the lightbox looks the same across the board while 

emitting white light, it is not the case and minor discrepancies in the intensity are observed 

amongst lightboxes. As a result, using the images of different lightboxes ensures that minor 

discrepancies are captured during the creation of the synthetic dataset. Each of the videos 

Figure 3.21: Image Capture of Seeds in Phenotyping Environment using Parrot AR 
Drone 2.0 
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is processed using the Python-OpenCV framework described in section 3.1 to create 

synthetic images for each of the seeds in question. The synthetic images generated are of 

the size 224 x 224 x3 to match the input size for the neural networks used to train on the 

dataset. For each of the seeds, 1000 synthetic images are generated of which the images 

consist of 20 - 50 seeds each. The dataset is made diverse by the fact that the images consist 

of seeds captured from different heights i.e. the 1000 images of a single seed comprise 333 

images where the seeds are captured from a height of 0.3m, 333 images where the seeds 

are captured from a height of 0.5m and 334 images where the seeds are captured from a 

height of 0.7m. Overall, a total of 5000 images are generated amongst all of the seeds. One 

of the struggles in classifying multiple classes of seeds is the appearance of seeds at 

different heights. It is not an issue in cases where the images are captured from a fixed 

height. However, it is not always feasible whilst using drones since they are mobile and 

are influenced by environmental factors such as wind and obstacles. It is observed that a 

given seed appears smaller from larger heights and vice-versa. Owing to this, the training 

dataset consisting of all images from a fixed height may not be a representative sample of 

the real-world test set that the neural network might encounter. Hence, the drone is 

programmed to capture images from varying heights of 0.3m, 0.5m, and 0.7m to ensure 

that a real-world representative sample of seeds is obtained. Figure 3.22 shows the 

synthetic images generated for the seed types of canola, rough rice, sorghum, soy and 

wheat. 
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 3.3.6 Experiment and Results 

The three neural network architectures are imported from the canned architectures 

provided by Keras as part of their Applications module. The imported models are models 

pre-trained on the ImageNet dataset that comprises 1000 classes. The key idea behind the 

use of pre-trained models trained on ImageNet is that the notion of Transfer Learning may 

apply. Briefly, Transfer Learning is the ability of a neural network to apply the knowledge 

gained by training on a dataset to a different dataset where there is a presence of common 

domains between the source and target datasets. However, the ImageNet dataset does not 

consist of the five seeds or anything remotely similar that are of interest for the experiment. 

In cases where the source and target domains don't share domains, the sheer transfer of 

knowledge is usually unsuccessful and often results in poor performance. Since the neural 

network architectures are large, training the entire neural network from scratch requires an 

exorbitant amount of data. As a means to better train the network whilst preserving the 

learned features from the ImageNet dataset, the architecture of the neural networks is 

Figure 3.22: Top row shows real seeds captured by the UAV; Bottom row shows synthetic 
images generated by the DR Framework using the real seeds 
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augmented. As for augmented architectures, three Sequential models (one for each of 

VGG-16, VGG-19, and ResNet-101) are built from the imported models wherein all of the 

layers except the fully connected layers and softmax layer are copied to the Sequential 

models. The VGG models consist of three fully connected layers whereas ResNet-101 has 

one. Three fully connected layers are added to the Sequential models followed by a softmax 

layer for classification. All of the transferred layers from the pre-trained models are 

rendered frozen for training and only the three fully connected layers added to the model 

are trained. The dataset used for the experiment is the synthetic image dataset described in 

section 3.3.2.2. 80% of the dataset is used for training and 20% of the dataset is used for 

validation. Experiments with different hyperparameters are conducted in the training 

phase. Upon training each model with a different set of hyperparameters, the models that 

yield the best accuracy and loss are saved. The hyperparameters used for each of the best 

models are as shown in Table 3.2. 

Table 3.2: Hyperparameter Values for Training 

Hyperparameter VGG-16 VGG-19 ResNet-101 

Nodes per trained layer 512 512 1024 

Learning Rate 1 x e-3 1 x e-3 1 x e-2 

Learning Rate Decay 100 steps @0.96 100 steps @0.96 No Decay 

Dropout 0.4 0.5 0.5 

Batch Size 32 32 32 

Optimizer Adam SGD Adam 
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The training accuracies and losses of the best models for the fine-tuned neural networks 

are as shown in Figure 3.23. Overfitting is commonly observed across all three of the 

models. Overfitting refers to the situation where the neural network learns the training data 

too well to the point it does not generalize to other data during validation. The use of 

Dropout helped with reducing the overfitting of the models. However, it results in the 

validation accuracy being higher than training accuracy in parts[A19]. Overall, the validation 

accuracy for each of the fine-tuned models of VGG-16, VGG-19, and ResNet-101 at the 

end of the training phase is 96.43%, 90.03%, and 97.81% respectively. 

The images for the test dataset consist of 75 images containing 20 – 50 seeds of a certain 

seed type captured from varying heights. Overall, a test dataset consisting of 450 images 

is used to evaluate the performance of each of the networks. The results of evaluation based 

on the metrics of Accuracy, Precision, and Recall are as shown in Table 3.3. The metrics 

are briefly described below: 

Figure 3.23: Training and Validation Accuracies and Losses for Fine-tuned VGG-16, 
VGG-19 and ResNet-101 
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Accuracy: Accuracy is defined as the fraction of the samples in the dataset correctly 

classified by the classifier. It is given by (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)/

 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠). 

Precision: Precision is given by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠). 

Precision indicates the number of positives correctly classified by the classifier. 

Recall: Recall is defined as the True Positive Rate of a classifier and given 

by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) . Recall indicates the number 

of positives detected by the classifier of all the positives in the dataset. 

The results show that ResNet-101 lends itself best to the task of classification achieving an 

overall accuracy of 92% while VGG-16 and VGG-19 lag behind at 89% and 86% 

respectively. However,  

the performance of all of the models is sub-par in comparison to the accuracy on the 

validation set during training.  

 3.3.7 Ensemble Model 

Ensemble Learning refers to the generation and combination of multiple inducers 

to solve a machine learning task [144]. In an attempt to better the classification 

Figure 3.24: Workflow of Ensemble Model 
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performance, an ensemble whose predictions are based on the individual predictions made 

by each of the models is developed.  

Table 3.3: Evaluation Results on the Fine-Tuned Models of VGG-16, VGG-19, and 

ResNet-101 

The ensemble model works by summing the categorical softmax outputs of each of 

the models for a given sample. The prediction made by the model is the largest resultant 

categorical value. The workflow of the ensemble model is as shown in Figure 3.24 and the 

results obtained are as shown in table 3.4. The results show an improvement in overall 

accuracy to 94.6% showing a 2.6% improvement in accuracy compared to the best 

individual model of ResNet-101. Besides, a significant improvement in the precision and 

recall for each of the individual classes is also observed which indicates better quality of 

predictions. 

 

 VGG-16 VGG-19 ResNet-101 

 Accura
cy 

Precisi
on 

Reca
ll 

Accura
cy 

Precisi
on 

Reca
ll 

Accura
cy 

Precisi
on 

Reca
ll 

Canola 0.91 0.76 0.79 0.86 0.67 0.67 0.91 0.78 0.78 

Rough 
Rice 

0.91 0.78 0.78 0.90 0.77 0.80 0.93 0.81 0.87 

Sorghu
m 

0.90 0.70 0.77 0.75 0.66 0.60 0.91 0.78 0.77 

Soy 0.90 0.75 0.80 0.90 0.74 0.77 0.93 0.88 0.81 

Wheat 0.84 0.78 0.76 0.89 0.73 0.75 0.94 0.85 0.87 

Overal
l 

0.89   0.86   0.92   
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Table 3.4: Evaluation Results on Ensemble Model 

Seed Type Ensemble Model 

 Accuracy Precision Recall 

Canola 0.94 0.84 0.90 

Rough Rice 0.95 0.88 0.89 

Sorghum 0.94 0.91 0.82 

Soy 0.95 0.83 0.96 

Wheat 0.95 0.88 0.90 

Overall 0.94   

 3.4 Seed Classification on Self-Supervised Learning Frameworks 

Self-Supervised learning refers to the technique of training neural networks where the 

training data is labeled automatically [18]. Self- supervised learning consists of the traits 

of both supervised and unsupervised learnings. It is supervised in the sense that the model 

is still trained to learn a function from pairs of inputs and labeled outputs. It is unsupervised 

in the sense that the model learns without being provided with labels. Contrastive Self-

Supervised learning falls under the broader umbrella of self-supervised learning where the 

intuition is to learn the features of a dataset by a measure of distinctiveness. While labels 

are absent, the model learns the similarity between the datapoints in the dataset and groups 

them together. This process results in obtaining groups of similar datapoints, yielding in 

classification.  

Three frameworks namely, SimCLR, Momentum Contrast (MoCo) and Build Your 

Own Latent (BYOL) are used as part of the experiments. The architecture and working of 

each of the frameworks is as described further. 

A. SimCLR 
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SimCLR functions by maximizing the similarity measure between two augmented 

views obtained from the same image. The framework is described as a three-step process: 

1. Data Augmentation: Given an input image, two correlated views of the image are 

generated using three different transformations namely, random crop and resize, 

horizontal flip and color distortion involving jitter and grayscale conversion. This 

process helps in generating different views of the same image aiding the network in 

its ability to be transformation independent. 

2. Neural Network Encoder: The augmented images are put through an encoder such 

as ResNet-18 or ResNet-50 and vector encodings of the images are extracted.  

3. Projection Head: A neural network encoder such as ResNet-50 generates encodings 

that are 2048 dimensional. In order to reduce the dimensionality of the vector 

encodings, a multi-layer perceptron (MLP) with one hidden layer is used. The 

encodings in high dimensional space are mapped to 128-dimensional latent space 

upon which contrastive loss is applied. The activation function used in the MLP is 

ReLU. The architecture of SimCLR is as shown in Figure 3.25. 

Contrastive Loss: Given a set of augmented images that contains two correlated views for 

each of the images in the set, the contrastive loss functions aims to identify each pair of 

correlated views that belong to the same image. The vector encodings in 128-dimensional 

Figure 3.25: SimCLR Architecture 
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latent space are run through the contrastive loss function that takes similarity of the images 

into account. The similarity between two images is computed using a measure named 

Cosine Similarity. It is defined as 𝑠𝑖𝑚(𝑥, 𝑦) = (𝑥 𝑦)/|𝑥||𝑦|  where x and y are two 

different vector encodings. The contrastive loss function that takes cosine similarity into 

account is defined as: 

𝐿 , =  −𝑙𝑜𝑔
𝑒

,

∑ 𝑒
( , )

 

 

Z = {z1, z2, …, zk}∈ ℝk are output vectors from the projection head. In the event that two 

vectors are similar, the function yields a result of zero which is the optimal loss. τ is the 

temperature parameter used to scale the cosine similarities. Reference [14] found that the 

optimal temperature parameter helps the model learn from hard negatives. It is worth 

noting that the value of τ depends on the number of epochs and batch size during training. 

Given a batch of N images, the augmentation results in each image having two 

representations yielding a total of 2N augmented images. The positive pair is the pair of 

images that are a result of augmentation from the same image and every other pair in the 

set is considered a negative pair. The augmented image set consists of one positive pair 

and 2(N – 1) negative pairs. The framework relies on the presence of large models and 

batch sizes to achieve better accuracy. This requirement is also deemed a bottleneck for the 

framework because the increase in batch and model sizes have a direct impact on the 

number of computational resources required to train the network.  

B. MoCo 
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Momentum Contrast (MoCo) is a technique similar to SimCLR with the key 

improvement being that it eliminates the need for large models and batch sizes employed 

by SimCLR. There is one key difference that sets SimCLR and MoCo apart from each 

other; the use of two neural network encoders. MoCo functions on the principle of 

matching queries to keys where key and query refer to the encodings of an augmented 

image. As opposed to the idea of having a single neural network encoder in SimCLR, a 

second neural network encoder, similar to the first is introduced where one of them 

generates the encodings for the key and the other, query. MoCo constructs a dictionary 

built and operated as a queue that keeps a history of the encoded keys. The dictionary in 

turn, acts as the resource pool for positive and negative pairs of images. A positive pair 

refers to the instance where a query matches the key. Every other sample in the dictionary 

that doesn’t correspond to the query acts as a negative sample. One of the key challenges 

of the approach is that, learning the parameters of the key encoder requires calculating the 

gradients of each of the samples in the queue. The larger the number of samples, the greater 

the number of computational resources required. In order to address the issue, MoCo 

updates the key encoder with the momentum-based average of the query encoder. It is 

defined as 𝜃 ← 𝑚𝜃 + (1 − 𝑚)𝜃  where 𝜃  and 𝜃  are the parameters of key and query 

Figure 3.26: Momentum Contrast Architecture 
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encoders respectively, m is the momentum whose value is kept close to one. The 

architecture of MoCo is as shown in Figure 3.26. 

C. Bootstrap Your Own Latent (BYOL) 

BYOL is a technique similar to SimCLR and MoCo with one key difference.  BYOL 

does not take negative samples into account. Instead, BYOL focuses solely on ensuring 

that similar samples have similar representations. While it might not be apparent at first 

glance as to the reason it is significant, it is important to understand that BYOL avoids the 

collapsed representation problem without negative samples. Collapsed representation is the 

state wherein a network trained only on similar pairs learns a constant function since the 

loss output over similar pairs is always a constant, such as zero. No discriminative features 

are learnt rendering the network unfit for prediction on a test dataset or fine-tuning on a 

different dataset. The working of BYOL is described as follows: 

1. Target and Online Networks: Consider two encoders with the same architecture, 

generally ResNet-50, where in one of them is randomly initialized to be the ‘target’ 

network and another set to be trainable known as the ‘online’ network. 

2. Data Augmentation: Pass an input image ‘I’ through the data augmentation 

pipeline to generate two stochastically augmented views ‘I1’ and ‘I2’. 

3. Vector Encoding Extraction: Run the augmented views ‘I1’ and ‘I2’ through the 

‘target’ and ‘online’ networks respectively and extract the vector representations of 

the views 

4. Projection Head:  Use an MLP to reduce the vector encodings to a lower 

dimensional latent space, usually 256. 
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5. Prediction: The vector encoding from the ‘online’ network is used to predict the 

vector encoding from the ‘target’ network i.e., the distance between the vector 

encodings is minimized using the normalized mean squared error loss function. 

6. Update Target Network: The ‘target’ network is updated at the end of each 

training step as the exponential moving average of the parameters of the ‘online’ 

network. The ‘target’ network closely follows yet lags behind the ‘online’ network 

at all times. 

In essence, BYOL attempts to leverage the ‘online’ network in one training step as the 

‘target’ network in the subsequent training step. Doing so avoids the collapsed 

representation problem and also betters the performance of the network. The 

architecture is as shown in Figure 3.27. 

 3.4.1 Related Work 

Relevant research involving a combination of domain randomization and self-

supervised learning is not abundant. However, works that employ domain randomization 

and self-supervised learning independently are available. In terms of training neural 

network models using synthetic datasets, Toda et. al [170] applied synthetic datasets to 

Figure 3.27: BYOL Architecture 
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Mask RCNN, an instance detection framework, to perform instance segmentation and 

detection of seeds. Gulzar et. al [47] developed a seed classification system for 14 different 

types of seeds by applying transfer learning on VGG-16, a convolutional neural network. 

In the realm of contrastive self-supervised learning frameworks, Chen et. al [68] proposed 

the SimCLR framework, a major breakthrough in terms of contrastive self-supervised 

learning frameworks in the sense that don’t require a memory bank. The framework relies 

on the presence of large batches of training data. The work demonstrated the critical role 

played by the composition of data augmentations on contrastive learning. He et. al [150] 

proposed the Momentum Contrast (MoCo) framework for unsupervised visual 

representation learning that approached contrastive learning as a dictionary look-up 

problem. A dynamic dictionary with a queue and a moving-averaged encoder is built on-

the-fly to facilitate contrastive unsupervised learning. Chen et. al [26] proposed a modified 

framework to MoCo by using a multi-layer perceptron projection head and more data 

augmentation that outperformed SimCLR without the need for large training batches. Grill 

et. al [46] introduced the Bootstrap Your Own Latent (BYOL) approach to self-supervised 

image representation learning. BYOL works by the use of an online and a target neural 

network. The principle is to train the online network on an augmented view of an image to 

predict the target network representation of the image that is a different augmented view. 

 3.4.2 Dataset and Method 

A. Dataset 

The seeds of canola, rough rice, sorghum, soy and wheat are used as part of the experiment. 

Since the work attempts to study the feasibility of domain randomization on self-supervised 

learning frameworks, the images used for the training and validation datasets are synthetic 
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images generated using a representative sample of each of the seeds. A large seed pool of 

the order of several hundred is available considering the nature of research conducted in 

the laboratory is primarily focused on agriculture. 30 seeds belonging to each of the seed 

types in consideration are chosen at random and photographed individually resulting in a 

sample of 150 images. In accordance with the technique outlined in section 3.1, images 

containing seeds overlaid on a common background are generated where in each image 

contains 50 seeds of a certain seed type as shown in Figure 3.28.  

 

1000 images per seed type, each 224 x 224 x 3 in size, are generated of which 800 are used 

for training and 200 for validation. As for the test dataset, 40 images of each seed type are 

photographed where in each of the images contains ~50 seeds of the same seed type placed 

on a lightbox. It is ensured that the seeds in the test dataset are not the seeds used to compile 

Figure 3.28: (a) Image capture of soy seed on lightbox; Bottom row shows synthetic images of (b) 
canola (c) rough rice (d) sorghum (e) soy (f) wheat 
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the synthetic image dataset. Overall, the training dataset comprises of 5000 images while 

the test dataset is made up of 200 images. 

B. Experimental Setup 

ResNet-50 is used as the encoder for each of the self-supervised learning 

frameworks in consideration, SimCLR, MoCo and BYOL. The implementation of the 

frameworks is done in PyTorch and executed on a Tesla V100 GPU provided by Google 

Colab Pro. The lr-finder module is used to find the learning rate that best fits a model for 

fine-tuning. 

C. SimCLR, MoCo and BYOL 

Each of the frameworks, SimCLR, MoCo and BYOL, is implemented as described 

in section 3.3 (A – C) using a ResNet-50 model pre-trained on the ImageNet dataset as 

encoder. While there are several variants of ResNet such as ResNet-34, ResNet-50, 

ResNet-101 and ResNet-152, the reason behind selecting ResNet-50 as the encoder is its 

performance on the ImageNet validation dataset. The error rates (%) of single-model 

results on the ImageNet validation set are as shown in Table 3.5 [64]. 

Table 3.5: Error Rates (%) of ResNet Models on ImageNet Validation Set 

Model Top-1 Error Top-5 Error 

ResNet-34 B 21.84 5.71 

ResNet-34 C 21.53 5.60 

ResNet-50 20.74 5.25 

ResNet-101 19.87 4.60 

ResNet-152 19.38 4.49 
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The results show that an increase in the number of layers has a direct improvement on the 

error rate. ResNet-50 provides a happy medium between error rate and network size. 

Hence, ResNet-50 is the network of choice to compare against the self-supervised neural 

networks. Each of the frameworks is trained for a total of 50 epochs at a learning rate of 

1e-3 on the training dataset. Weight Decay, a regularization technique, set to 1e-4 is added 

to the models to prevent overfitting. It is worth noting that the training at this stage does 

not involve any labels and is solely to minimize the loss functions of each of the 

frameworks. The implementation details specific to each of the frameworks are described 

further. 

SimCLR: A projection head with Linear-ReLU-Linear layers that yields 128-dimensional 

latent space vectors as output is added on top of the ResNet-50 model because [26] shows 

that the framework delivers its best performance under a non-linear projection head. A 

batch size of 192 is used while the network is trained. Upon training the network, the non-

linear projection head is removed and each of the layers in the network is frozen. A linear 

classifier with one layer that predicts the class of an image is added to the network. 

MoCo: The projection head of MoCo’s is similar to that of SimCLR’s and contains Linear-

ReLU-Linear layers. The projection head outputs 128-dimensional latent space vectors. A 

dictionary of size 256 is used to keep track of the encoded keys in the ‘target’ network. 

Upon training the model, the projection head is removed, and a linear classifier is added 

on top of the model. 

BYOL: The projection head is made up of two linear layers where in an input vector of 

2048 dimensions is taken, projected to 4096 dimensions and then, a vector reduced to 256 

dimensions is output. 
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 3.4.3 Results and Discussion 

Predictions are made on SimCLR, MoCo and BYOL upon training the networks 

as described earlier. The accuracies obtained by the models is as shown in Table 3.6. 

Table 3.6: Self-Supervised Framework Accuracies 

Framework Test Accuracy 

 SimCLR 33% 

  MoCo 39% 

  BYOL 26% 

It is apparent from the results that the models do not generalize well to the real-world 

images in the test dataset. In order to enhance the performance of the models, linear 

classifiers are built on top of the self-supervised models and trained for 100 epochs on 5% 

Figure 3.29: Training and Validation Accuracies and Losses of ResNet-50, SimCLR, MoCo 
and BYOL 



98 

 

of the labels i.e., 250 images comprising of 50 images of each seed type. 40 images of each 

seed type are used for training and 10 for validation. Supervised training is performed on 

ResNet-50 on the entire 5000 image training dataset for a total of 100 epochs. The 

accuracies and losses obtained by each of the models during training and validation are as 

shown in Figure 3.29. Amongst the self-supervised learning frameworks, SimCLR and 

MoCo perform almost identically. It isn’t too surprising considering the architectures of 

the models are similar in nature. SimCLR and MoCo attain a validation accuracy of ~80% 

and loss of ~0.6. It is interesting to observe that their validation statistics are highly 

coherent with that of ResNet-50’s. ResNet-50 also achieves a validation accuracy of ~80% 

and loss of ~0.6. However, the same is not true of BYOL. The model achieves a validation 

accuracy of ~55% and loss of ~1.1, performing well below SimCLR and MoCo. The total 

lack of negative examples might be the factor that contributes heavily to such a behavior. 

The models trained on linear classifiers are evaluated on the test dataset.  

The classification report containing precision, recall and F-1 score for each of the classes 

generated using Scikit are as tabulated in Table 3.7. The terms Precision, Recall, F1-Score, 

Accuracy and Macro Average are briefly described below: 

Precision: Given by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) , precision 

indicates the number of positives correctly classified by the classifier. It is also called False 

Positive Rate. 

Recall: Given by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠), recall indicates 

the number of positives identified by the model of all the positives in the dataset. It is also 

called True Positive Rate. 
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Table 3.7: Classification Reports of ResNet-50, SimCLR, MoCo and BYOL 

F1-Score: Considering both precision and recall, F1-Score is the harmonic mean of 

precision and recall. It is given by the formula, 2 ∗
 ∗ 

  
. 

Accuracy: Accuracy is given by the sum of true positives and true negatives to the sum of 

true positives, true negatives, false positives and false negatives.  

Macro Average: Macro Average is simply the arithmetic mean of the values for each of 

the classes in the dataset. It treats the contribution of each of the classes in the dataset 

equally.  

Unsurprisingly, ResNet-50 achieves the best performance of the four models in question 

and establishes a steep benchmark for the self-supervised learning models to meet. 

Amongst the self-supervised models, MoCo is the standout winner with a macro average 

F1-Score that is significantly higher than SimCLR’s and BYOL’s. A high macro average 

 ResNet-50 SimCLR MoCo BYOL 

 Precision Recall F1 
Score 

Precision Recall F1 
Score 

Precision Recall F1 
Score 

Precision  Recall F1 
Score

Canola 0.96 1.00 0.98 0.60 1.00 0.75 0.83 1.00 0.91 0.65 0.95 0.77 

Rough 
Rice 

0.85 0.94 0.89 0.83 0.39 0.53 0.98 0.75 0.85 0.62 0.46 0.52 

Sorghum 0.79 0.87 0.83 1.00 0.04 0.08 0.79 0.43 0.56 0.29 0.04 0.07 

Soy 1.00 0.98 0.99 0.77 0.82 0.80 0.98 0.91 0.95 0.77 0.89 0.82 

Wheat 0.83 0.62 0.71 0.32 0.63 0.43 0.43 0.78 0.55 0.43 0.64 0.51 

             

Accuracy   0.90   0.56   0.77   0.58 

Macro 
Avg. 

0.89 0.88 0.88 0.70 0.58 0.51 0.80 0.78 0.76 0.55 0.60 0.54 
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F1-Score indicates that the model delivers good precision and recall across the five classes 

in the dataset. The performance of the models on the test dataset is in-line with the 

performance on the training dataset except for SimCLR. SimCLR’s validation accuracy 

closely follows that of MoCo’s. However, the performance does not translate onto the test 

dataset with a macro average F1-Score of 0.51 in comparison to BYOL’s 0.54, the model 

with the lowest validation accuracy. While achieving a macro average precision of 0.70 

that is not too far from MoCo’s 0.80, the macro average recall is a mere 0.58 in comparison 

to MoCo’s 0.78 pulling down the F1-Score significantly. As for the individual seed types, 

the best F1-Scores are observed on canola and soy across the board with sorghum and 

wheat lying at the tail end. This is interesting considering the shape of the seeds. The seeds 

of canola, sorghum and soy are circular in nature while those of rough rice and wheat are 

oblong. Considering the models of SimCLR and BYOL on sorghum, a high precision and 

low recall is observed which indicates that the model does a good job of identifying 

sorghum when it does but does not think a lot of the sorghum seeds are actually sorghum. 

The majority of sorghum either get classified as canola or soy. While better than the 

performance on sorghum, a similar characteristic is observed between rough rice and 

wheat. Self-supervised learning frameworks have a sense of reliance on color histograms. 

The intuition is that the color histograms of random crops of the same image are similar 

and different images are dissimilar. However, random color jittering applied to images 
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occasionally results in multiple images from different classes having similar histograms. 

Stark similarities between histograms of images belonging to different classes leads to error 

in classification. Figure 3.30 shows one such case where similar histograms are obtained 

on color jittered images of canola and rough rice. While the images belong to two entirely 

different classes, the root mean square difference between the two histograms is 35.6, low 

enough to group both histograms in the same category. It is hard to predict the frequency 

of occurrence of such similarities since the data augmentation pipeline is random, but it is 

almost certain that they will occur and hinder classification. Considering the fact that every 

class in the dataset is a seed type and the seeds are similar to a degree, the dataset may be 

considered tough for self-supervised learning. In addition, the aspect of using synthetic 

datasets for training means that the models are supposed to learn from datasets that are not 

real-world. Owing to such convolutions, MoCo, the best model observed, achieves an 

Figure 3.30: Similar Color Histograms of Canola and Rough Rice 
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accuracy of 77% which is only 13% shy of ResNet-50’s 90% whilst being trained on a 

dataset that is 1/20th the size. 

3.5 Future Work and Conclusions 

Overall, the performance of the domain randomization framework demonstrates 

that synthetic image datasets are a great alternative to high-throughput phenotyping 

applications in the absence of real-world datasets. One of the self-criticisms of the work is 

that the experiments conducted result in the neural networks being overly reliant on the 

size and shape of the seed kernel but doesn’t consider the color of the seed kernel. For 

instance, the seed kernels of soy are yellow whereas the seed kernels of wheat are reddish-

brown. However, the current experiment captures the images of seed kernels placed on a 

light box to ensure an illuminous background. The downside to the practice is that the seed 

varieties appear to be the same color. Hence, the network relies on the size and shape of 

the seed kernels primarily to distinguish one type from another. As the size of broken seed 

kernels of a certain variety could resemble a different seed type, the models could fail to 

correctly identify broken seed kernels. Moving forward, the experimental setup which is 

illuminous and captures the color of the seed kernel properly will be developed to 

efficiently leverage color information. More experiments to determine the feasibility of the 

neural network models on broken seeds will be conducted as the color scheme of the seed 

kernels is also utilized. 

Section 3.1 presents a randomized synthetic image generation framework using 

image processing that applies different image transforms to generate transformed variants 

of the object in the image. The use of simple image transforms means that the framework 
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is light weight and is able to function efficiently on a CPU unlike large scale neural network 

models that require a GPU for efficient functioning. In addition to images, the framework 

also generates annotation files in the COCO format, so the images are able to train on the 

neural networks. 

Section 3.2 describes training instance segmentation neural networks such as Mask 

R-CNN and YOLO on the synthetic images generated by the framework described in 

section 3.1. The trained network models are evaluated for their performance on images 

containing real seeds. The evaluation demonstrates that the proposed random image 

generation framework produces synthetic images that are able to transfer to real seed 

images. 

Sections 3.3 and 3.4 describe the application of synthetic images to train 

classification neural network models in the supervised and self-supervised domain. The 

models of VGG-16, VGG-19 and ResNet-101 are the candidates from the supervised 

domain whereas SimCLR, Momentum Contrast and Bootstrap Your Own Latent (BYOL) 

are the candidates from the self-supervised space. The obtained results show that 

randomized synthetic images generated by the proposed framework are able to achieve 

good performance on the classification models as well.  

Overall, the chapter demonstrates the feasibility of domain randomization and 

transfer learning for seed phenotyping. The ability to train neural network models on 

synthetic images eliminates the need for large real-world datasets which are often 

unavailable to researchers.  
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Chapter 4 - Real-time Seed Kernel Tracking and Counting 

One of the key aspects of High-throughput Phenotyping is cereal yield estimation. 

The two important characteristics that determine cereal yield are cereal size and number of 

grains per ear. While leveraging images to count the number of grains as mentioned in 

previous sections works, it has the pitfall of being tedious and time-consuming. Imagine 

having a pile of seeds where they have to be arranged and photographed on a common 

background so that they aren’t clustered or overlapped. It requires significant time and 

man-power. Proposed as part of the chapter is a fleshed-out image processing algorithm to 

conduct the task of seed kernel counting from videos. A video is a multitude of frames 

(images) put together and played in sequence. The image processing solution is based on a 

technique known as ‘slit imaging’ wherein only a tiny sliver from each frame of the video 

is used for seed kernel detection and counting. The application is significant since the seed 

counter machines available in the market cost upwards of $500 on average, a hefty price 

tag. The development of mobile applications that estimate seed count from videos 

significantly reduces the cost associated with seed counting. In addition, the solution acts 

as a vehicle to drive phenotyping from the conventional lab setting to the field setting that 

the majority of plant scientists prefer.  

 4.1 Related Work 

Neilsen et al. [114] proposed an algorithm to conduct seed kernel counting from 

videos. The working of the algorithm is based on tracking each of the seed kernels as they 

flow down a backlit platform. A seed kernel is considered a valid detection and counted if 
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the seed kernel is detected a predefined number of times (threshold). The algorithm serves 

as the basis for the work in Chapter 4. 

GridFree [55] is a python package for image analysis of interactive grain counting 

and measurement. GridFree uses an unsupervised machine learning approach, K-Means, 

to segment kernels from the background by using principal component analysis (PCA) on 

both raw image channels and their color indices. The package incorporates users’ 

experiences as a dynamic criterion to set thresholds for a divide-and-combine strategy that 

effectively segments adjacent kernels. When adjacent multiple kernels are incorrectly 

segmented as a single object, they form an outlier on the distribution plot of kernel area, 

length, and width. The software exhibits great performance on multiple crop types such as 

alfalfa, canola, lentil, wheat, chickpea, and soybean. 

Abto Software developed a counting technique for moving objects using the 

technique of slit imaging. Reference [4] demonstrates the technique developed by the 

company to count cars in a video. The algorithm developed by the company serves as the 

basis for the proposed algorithm using slit imaging in chapter 4. 

Parico et al. [122] performed real-time pear fruit detection and counting using 

YOLOv4 models and Deep SORT algorithm. The study provides a systematic and 

pragmatic methodology to choose the most suitable neural network model for a desired 

application in the field of agriculture. The region-of-interest (ROI) line technique was used 

by the study to estimate the number of pear fruits detected by the neural network model. 

Santos et al. [148] conducted grape detection, segmentation and tracking using deep 

neural networks and three-dimensional association on wine grape clusters. Different neural 
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networks such as Mask R-CNN, YOLOv2, and YOLOv3 were investigated as part of the 

work, and it was determined that the Mask R-CNN model produced the best outcomes. An 

F1-Score up to 0.91 for instance segmentation was reached on 408 grape clusters where 

the images were captured using a trellis-system based vineyard. 

Hajar et al. [48] performed vision-based moving obstacle detection and tracking in 

paddy field using YOLOv3 and Deep SORT. The center point positions of the obstacles 

were used to track the objects as they moved through the paddy field. The augmented 

YOLOv3 architecture consisted of 23 residual blocks and up-sampled only once. The 

augmented architecture obtained a mean intersection over union score of 0.779 and was 

27.3% faster in processing speed than standard YOLOv3. 

Chen et al. [25] performed citrus detection in orchard environment using the 

YOLOv4 neural network model. The motivation for the work was that detecting fruits in 

natural environments was a challenge due to occlusion among leaves and fruits. A Kinect 

V2 camera was used to collect RGB images of citrus trees. The Canopy algorithm and K-

Means++ algorithm were applied to automatically select a pre-defined number of frames 

from the RGB images. Finally, a fine-tuned YOLOv4 model was applied on the images to 

detect the citrus fruits. The experimental results delivered an accuracy of 96.04%. 

 4.2 Seed Kernel Counting using Slit Imaging 

The proposed algorithm to count seed kernels leverages a technique named Slit 

Image Generation. Slit image is an image constructed by joining pixels belonging to each 

frame in the video corresponding to a singular location. For instance, in a video consisting 

of 1000 frames where each frame is 200 x 200, a slit image may be generated by extracting 
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pixels between the coordinates (0, 0) and (10, 10) and vertically stacking the extracted 

regions together to form a single image. The regions at which the pixels are extracted are 

known as regions of interest (ROI). The chosen ROI for a video is subjective and depends 

on the task at hand. Processing and analyzing a video are tasks that require plenty of time 

and resources. It is a computationally expensive operation that generally calls for the use 

of Graphical Processing Unit (GPU). Even with the availability of a high number of 

resources, it is important to note that not every point in a video (or image) is equally 

informative. It could be the case that a subset of the frames in the video contain only the 

background or noise. In such cases, the resources are essentially wasted. The use of Slit 

Imaging technique alleviates some of the problems associated with video processing. Since 

a slit image is a representation of the entire video, the video is no longer required upon the 

generation of the slit image. The slit image may then be processed to gain a complete 

insight into the specifics of the video. Not only does the technique save time, but it also 

lowers the resources required since a video only needs to be processed once to build the 

slit image and the image may be processed on resource constrained mobile devices. 

Performing inference on the slit image is relatively easy compared to performing inference 

on the entire video which once again is a collection of images. 

 4.2.1 Video Capture for Seed Kernel Counting 

Inspired from the video capture mechanism described in [114], a video capture 

mechanism where seed kernels are rolled down a white light emitting light box by a 

mechanical hopper is designed. Figure 4.1 shows the seed kernel image capture setup 

designed for the experiment. The mechanical hopper helps to deliver seeds at a constant 

rate unlike free-hand delivery that tends to be erratic. The mobile phone is placed on a 3-
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D printed stand to ensure that the camera is always held orthogonal to the surface. It helps 

to eliminate any skew that may result during the capture of the video. The stand is fitted 

with a 3-D printed platform at the bottom. The platform at the bottom channels the seed 

kernels ensures that the seed kernels remain in the field of view of the camera as they roll 

down the light box. In the absence of the platform, it is observed that seed kernels often 

drift to the side and fall off the light box prematurely hindering their detection. The mobile 

phone used for image capture is a Motorola Moto G6 mobile phone whose capture frame 

rate is 60 fps for HD quality video.  

Figure 4.1: Mechanical Hopper Delivering Soy Seed Kernels 
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 4.2.1.1 Influencing Factors 

The slit image is required to be representative of the entire video. In the event the slit image 

is not constructed adequately, key information might fall through the cracks leading to sub-

par results upon analysis. In the context of seed kernel counting, the factors that require 

careful consideration are as follows: 

1. Frame Rate: The frame rate of the video, also known as frames per second (fps), 

is key to information extraction and retrieval from the video. Since the slit image is 

a group of pixels extracted from the same location in every image of the video, high 

frame rate is preferred. A high frame rate ensures that the action in the video is 

highly continuous with few breaks. It is essential since the ROI used for slit image 

creation is typically a small window. In the event objects of interest aren’t captured 

in a window, the end count of seed kernels is thrown off. 

2. Object Clusters: In a video where a multitude of seed kernels are made to flow 

down a sled at the same time, it is almost always the case that the seed kernels touch 

each other while in motion. In case the seed kernels are clustered at the time of 

extraction for slit image, the count is incorrect if the cluster is considered to be one 

seed kernel since it consists of at least two or more kernels. Figure 4.2 shows a 

frame in a video where seeds are clustered.    
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4.2.1.2 Algorithm 

The algorithm is defined as a three-step process: 

1. Capture of seed kernel video 

2. Generation of slit image 

3. Analysis of slit image to count seed kernels 

1. Capture of Seed Kernel Video 

Frame rate is key to the efficient functioning of the algorithm. The typical capture rate 

of mobile phone cameras over the years is 15 – 30 frames per second. Recent models of 

smartphones are able to capture slow-motion and super slow-motion videos at 60 frames 

per second and 120 frames per second respectively. The work [114] analyzed the impact 

of frame rate on seed kernel counting and realized that frame rate is directly proportional 

to the accuracy i.e., the higher the frame rate, the more accurate the seed kernel count 

Figure 4.2: Frame with Seed Clusters 
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produced by the algorithm. In order to perform a well-rounded evaluation of the algorithm, 

videos of seed kernels flowing down the light box are captured at normal, slow-motion and 

super slow-motion rates i.e., 30 fps, 60 fps, and 120 fps respectively. Regardless of the 

frame rate at which videos are captured, video players render videos at 30 fps. The captured 

videos are put through a minimal amount of pre-processing before applying the algorithm. 

The pre-processing is primarily to remove any unnecessary frames in the video. For 

instance, in the majority of videos captured, the initial (about five) seconds of the video 

does not contain any seed kernels since it takes a few seconds for the mechanical hopper 

to deliver the seed kernels onto the lightbox. Pruning such non-informative parts of the 

video helps in improving the runtime of the algorithm. MoviePy is a python module for 

video editing operations such as clipping, concatenation, and title insertion. The MoviePy’s 

subclip function is used to clip the video. The subclip function takes in two arguments – 

start and end, and outputs a clip of the video. The input arguments are used as the endpoints 

to clip the video.  

2. Generation of Slit Image 

The first step in the generation of slit image is the selection of region of interest. In 

theory, any part of the image could be selected to as the region of interest. However, in 

practice, it is observed that the seed kernels being delivered by the mechanical hopper are 

clustered at the point of delivery. Multiple seed kernels appear as one when they are 

clustered. Algorithmic analysis on clustered seeds is complex and often leads to erroneous 

results. Another observation is that the seed kernels bounce off the lightbox since they are 

delivered from a height of about two inches from the lightbox by the mechanical hopper. 

Seed kernels which have circular morphometry, such as soy, are observed to bounce more 
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than ones with elliptical morphometry, such as wheat. In order to best avoid seed kernel 

clusters and bounce off the lightbox, it is empirically determined that any part of the image 

that lies in the bottom-half of the image is best suited to be region of interest. Upon 

selecting the region of interest, the video generated in the previous step is put through a 

video processer that runs through every frame of the video and extracts the pixels belonging 

to the region of interest. All the regions of interest extracted from the video are vertically 

concatenated with each other resulting in the slit image. For instance, if the ROI extracted 

from each frame is of size w x h pixels where w and h are number of width and height 

respectively, the resulting slit image is of size (k x h) x w pixels where k is the number of 

frames in the video. Figure 4.3 shows the slit image generated from a video of wheat seed 

kernels. The video consists of 1500 frames and the region of interest spans three pixels in 

height and the entirety of the width i.e., 1809 pixels, of the image. The resulting slit image 

is of dimensionality is given by (3 x 1500) x 1809 i.e., 4500 x 1809 pixels. The region of 

interest for a given video depends on multiple factors such as frame rate, render rate and 

height of image capture. The influencing parameters are further discussed in 4.4.3. The 

biggest challenge in the generation of the slit image is to configure the dimensionality of 

the region of interest in a manner so that every seed kernel that flows down the lightbox is 

captured. The dimensionality of the region of interest is primarily influenced by three 

factors – seed kernel velocity, frame rate of image capture[A20] and height of image capture. 

The velocity of the seed kernel is influenced by the texture of the seed kernel and the angle 

of orientation of the lightbox along with the amount of friction it offers. Seed kernels with 

circular morphometry such as soy exhibit a higher velocity in comparison to seed kernels 

such as wheat that have elliptical morphometry. Generally, wheat seed kernels have a flat 
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bottom with a crease in-between which slows their flow on the lightbox. The higher the 

velocity, the faster the seed kernels moves in and out of the region of interest. The frame 

rate of image capture is critical to ensure appropriate collection of information. A higher 

frame ensures that a larger amount of information is captured. The height from which the 

images are captured significantly impact the size of the seed kernels in the video. For 

instance, the seed kernels appear larger in a video where the camera is placed at 10 cm 

from the ground compared to a video where the camera is placed at 30 cm from the ground. 

Hence, it is important to strike a balance among the three aforementioned parameters to 

ensure the generation of a quality slit image that captures all the information. Figure 4.4 

shows the slit image generated for wheat seed kernels flowing down the lightbox oriented 

at 10° where the camera is held 18 cm from the ground and the region of interest is set to 

a height of ten pixels. Figure 4.4 is further analyzed to estimate the number of seed kernels 

in the slit image. 

 Figure 4.3: A Frame showing Two Wheat Seed Kernels at Region of Interest 
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3. Seed Kernel Counting using Slit Image 

The steps involved in estimating the count of seed kernels are as follows: 

1. Convert the slit image from RGB color space to grayscale.  

Figure 4.4: Slit Image of Each ROI stacked Vertically for Wheat Seeds 
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2. Gaussian blur[A21] the image to reduce noise and apply inverted binary thresholding 

on the grayscale image. The result is an image where the seed kernels are in white 

and background is black, as shown in Figure 4.5.  

 

3. Perform a dilation on the image and find contours on the image to identify the 

contours of the detected seed kernels.  

Figure 4.5: Contours on Grayscale Slit Image for Wheat 
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Figure 4.6: Zoomed-in Detections within Red Rectangle of Wheat Seed Kernel Slit Image 
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Essence of Dilation: The importance of dilating the image before the detection of contours 

is paramount. The key point to note with the detected contours in the absence of dilation is 

that they are slightly disjointed although they appear connected all along. Figure 4.6 shows 

four contours (from the red rectangle) that are identified from the slit image for analysis. 

They are disjointed because the region of interest is much larger than the seed kernels and 

captures the seed kernels multiple times as they flow through it. The region of interest is 

set to 10 pixels. The frame rate of 30 fps is high enough to capture the seed kernels multiple 

times as they flow through the region of interest.  Hence, the contours are almost identical 

to each other albeit being different contours vertically stacked on top of each other. In a 

perfect world, the region of interest is precise enough and frame rate is high enough that 

the region of interest precisely captures a seed kernel exactly once and the number of 

contours identified in the image is the number of seed kernels present in the image. 

However, configuring a region of interest that captures a seed kernel exactly once is 

complex. The downside to multiple contour detections for a given seed when relying on 

contour count to estimate seed kernel count is that it leads to inaccurate seed count.  

Dilation helps to ignore duplicate contours of the seed kernel and accurately estimate the 

count because dilation closes the gap and connects the disjointed contours. It leads to well-

formed singular contours where the scope for multiple contour detection is significantly 

reduced although not completely eliminated. Figure 4.7 shows the result of dilating 

contours in Figure 4.6. 
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Figure 4.8 shows a comparison of contours identified on the original and dilated slit 

images, as shown in Figure 4.6 and 4.7 respectively. The gray dots within the contour 

indicate the center of the contours. 

 

 

Figure 4.7: Result of Dilating Detections in Figure 4.6 

Figure 4.8: (left) Detection of Contours on Original Slit Image (right) Detection of Contours 
on Dilated Slit Image with Contour Centers shown by Gray Dots 
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As observed from Figure 4.8, multiple contours are detected (as indicated by multiple gray 

dots representing contour centers) for the same seed kernel on the original slit image 

whereas exactly one contour per seed kernel is detected on the dilated slit image. While 

multiple contours may be filtered to arrive at the accurate count estimate, it leads to 

additional overhead in terms of computational resource requirement and run-time of the 

algorithm. Hence, dilation is paramount to the efficient functioning of the algorithm. 

4. Filter the contours by size to ensure that any stray contours that are detected on the 

dilated image. Figure 4.9(a) shows multiple small contours detected at the coarse 

edges of the contour. The stray contours observed are generally tiny abrasions that 

get picked up as contours by OpenCV. Applying a threshold on the size ensures 

that the tiny contours are ignored, as shown in Figure 4.9(b) 

 

Figure 4.9: (a) Tiny Contours Detected in the absence of Size Thresholding (b) Tiny 
Contours Ignored by Size Thresholding 



120 

 

5. One of the downsides to dilation is that multiple seed kernels could appear to be 

one seed kernel. Figure 4.10 shows the case where dilation causes grouping of 

contours belonging to multiple seeds. 

Figure 4.10(a) shows the recordings for two seed kernels wherein they passed one 

after the other. While the distinction is evident from the original image in Figure 

4.10(a), the same cannot be said of Figure 4.10(b) which is the dilated version of 

Figure 4.10(a). The recordings of both seed kernels are connected offering the 

impression that they are one seed kernel. The same is observed upon detecting 

contours. Figure 4.10(c) shows the contours detected on Figure 4.10(a). While 

multiple contours per seed kernel are detected, it is still possible to observe the 

Figure 4.10: (a) Original Slit Image showing Two Seed Kernel Contours (b) Dilated Slit 
Image where Two Seed Kernels appear to be One (c) Contour Detection on Original Slit 

Image (d) Contour Detection on Dilated Slit Image 
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presence of two seed kernels whereas in Figure 4.10(d) that shows the contours 

detected on Figure 4.10(b), only one contour is detected for the two seed kernels. 

Dilation has the ill effect of clubbing multiple seed contours leading to inaccuracies. 

In order to negate the inaccuracies caused by clubbing contours, the metric of 

contour size is used. Another observation that is made from Figure 4.10(d) is that 

clubbed contours drawn around multiple seed kernels are significantly larger than 

contours drawn around single seed kernels. The observation is leveraged to arrive 

at the true seed kernel count and negate inaccuracies. 

6. Elimination of Duplicate Contours: It is possible that multiple contours of the 

same size be detected around the same seed kernel. The contours be large enough 

to pass the minimum size threshold and perhaps identical to the contour that wraps 

around the entire seed kernel. Figure 4.11 shows four contours detected around the 

same seed kernels wherein all the contours are deemed valid. The numbers next to 

the contours are labels. The presence of overlapping numbers indicates that 

multiple valid contours are detected around the seed kernel. The detection of 

multiple contours is a known behavior of OpenCV when contours have abrupt 

edges or contours don’t have a perfectly closed boundary. The detection of multiple 

valid contours leads to inaccuracies in the count due to a contour being accounted 

multiple times. While multiple contours are present, it may also be observed that 

there is only one gray dot in each of the contours. The gray dot indicates contour 
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center. The presence of a single gray dot indicates that the centers of both contours 

are at the same point. Hence, multiple contours centered at the same location are 

considered to represent the same seed kernel. In order to improve filtering, a 

threshold on the distance between the two contours may be established to filter out 

multiple contours that represent the same seed kernel. The experiments on multiple 

videos as part of the work showed that the occurrence of multiple contours centered 

at different locations is a rarity although the occurrence of multiple contours 

centered at the same location is common. 

7. Compute the average area of the contours identified in the image. OpenCV provides 

the cv2.ContourArea function to estimate the area of contours in pixels.  

8. Find the contours that have an area greater than 1.5 times the average contour area. 

The threshold of 1.5 is arrived upon repeated experiments providing accurate 

results. However, it is a tunable parameter that is required to be tuned to the task at 

hand. The idea behind the step is to identify contours that could potentially belong 

to multiple seeds. All the contours with an area under the threshold are assumed to 

represent one seed kernel[A22]. 

Figure 4.11: Multiple Valid Contours around Seed Kernels 
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9. Find the number of seed kernels within each of the contours identified in step 6 by 

calculating the ratio of individual contour area and average contour area. The 

resulting value (upon rounding) is the count of seeds present within the contours. 

For instance, consider the average contour area is 400 pixels and a random contour 

has an area of 700 pixels, the number of seeds within the contour is round (700/400) 

i.e., 2.  

10. The number of seed kernels is given by the appropriately dissecting the contours 

detected in the image as mentioned in steps 7, 8, and 9[A23].  

 4.4.3 Experiment and Results 

The algorithm is applied on seed kernel videos of wheat and soy for experimentation. The 

reason behind the choice of wheat and soy is their distinct morphometry. As mentioned 

earlier, the experiment includes the seed kernels flowing down a lightbox. The circular 

morphometry of soy seed kernels means that they flow down the lightbox seamlessly even 

when the lightbox is oriented at less than 10 degrees whereas the seed kernels of wheat do 

not flow down smoothly at smaller orientations of the lightbox owing to their elliptical 

morphometry. The minimum inclination of the lightbox for smooth rundown of the soy 

seed kernels is 5° whereas the wheat seed kernels require at least 12° to 15°. It is best to 

orient the lightbox at 15° from the surface to ensure that all seed kernels flow down 

seamlessly. However, it is to be noted that the orientation of the lightbox has a visible 

impact on the velocity of the seed kernels as they flow down the lightbox. Higher the 

orientation of the lightbox, larger the velocity of the seed kernels. The frame rate of image 

capture is to be increased with increase in seed velocity to ensure optimal recording of the 

seed kernels as they flow down the lightbox. The size of the region of interest is also 
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required to increase with increase in velocity of the seed kernels. Hence, the orientation of 

the lightbox impacts multiple other parameters such as velocity, frame rate, and region of 

interest. The experiment is conducted on different videos captured at frame rates of 30 fps 

i.e., normal mobile phone frame rate, 60 fps i.e., slow-motion frame rate, and 120 fps i.e., 

super slow-motion frame rate. The height of image capture and the size of region of interest 

are also altered as the videos are captured. Videos are captured from heights of 18cm, 12cm 

and 9cm and regions of interest of sizes 10 pixels, 15 pixels and 20 pixels are configured 

for the experiment. Table 4.1 shows the results of the algorithm applied to wheat seed 

kernels. 

Table 4.1: Algorithmic Results on Wheat Seed Kernels 

Frame 

Rate  

Height 

(cm) 

Region of 

Interest 

(pixels) 

Actual 

Count 

Algorithmic 

Count 

Actual – 

Algorithmic 

Count 

Count 

Estimate 

Accuracy 

(%) 

30 18 5 275 186 89 67.63 

10 275 193 82 70.18 

15 275 191 84 69.45 

12 5 275 179 96 65.09 

10 275 184 91 66.90 

15 275 187 88 68 
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9 5 275 178 97 64.72 

10 275 182 93 66.18 

15 275 185 90 67.27 

60 18 5 275 262 13 95.27 

10 275 265 10 96.36 

15 275 273 2 99.27 

12 5 275 266 9 96.72 

10 275 270 5 98.18 

15 275 268 3 97.45 

9 5 275 262 13 95.27 

10 275 266 9 96.72 

15 275 268 7 97.45 

120 18 5 275 271 4 98.54 

10 275 271 4 98.54 

15 275 273 2 99.27 

12 5 275 270 5 98.18 

10 275 269 3 98.9 
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15 275 271 3 98.54 

9 5 275 269 6 97.8 

10 275 270 5 98.1 

15 275 272 3 98.9 

 

As evident from the results, the performance of the algorithm on videos captured at 30 fps 

is sub-par. Regardless of the height of video capture and size of region of interest, the best 

performance of the algorithm is 70.18%. Upon investigating the slit image for the mediocre 

performance, it is observed that the fallacy lies in the capture of seed kernels within the 

region of interest. The frame rate of 30 is so low that a portion of the seed kernels is never 

captured as it passes through the region of interest. As a result, the slit image does not 

contain the seed kernels. However, it is worth mentioning that the algorithm does a good 

job of precisely accounting for the seed kernels that are captured in the slit image. The 

performance of the algorithm receives a significant boost as the frame rate of the video is 

increased. At 60 fps and 120 fps, the algorithm achieves accuracies of over 95%. The best 

accuracy of 99.27% is achieved on the video captured at 120 fps. The reason for such high 

performance at higher frame rates is that the algorithm captures all the seed kernels as they 

pass through the region of interest. As the amount of information in the slit image increases, 

the performance of the algorithm also significantly improves. The size of region of interest 

does not have a significant impact when the frame rate is high enough, as evident from the 

results. However, the factor that leads to the algorithm still undercounting by a few seeds 

is seed clusters. As explained in the algorithm, as the seed kernels pass through the region 
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of interest, they could be in contact. The clusters of seed kernels produce larger contours 

than singular seed kernels. While the algorithm establishes a mechanism to account for 

seed kernel clusters, a few clusters still escape the filter. Table 4.2 shows the results from 

the application of the algorithm to soy.  

Table 4.2: Algorithmic Results on Soy Seed Kernels 

Frame 

Rate  

Height 

(cm) 

Region of 

Interest 

(pixels) 

Actual 

Count 

Algorithmic 

Count 

Actual – 

Algorithmic 

Count 

Count 

Estimate 

Accuracy 

(%) 

30 18 5 236 141 95 59.7 

10 236 144 92 61.01 

15 236 148 88 62.71 

12 5 236 139 97 58.89 

10 236 147 89 62.28 

15 236 149 87 63.13 

9 5 236 137 99 58.05 

10 236 140 96 59.32 

15 236 141 95 59.74 

60 18 5 236 226 10 95.76 
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10 236 225 11 95.33 

15 236 227 9 96.18 

12 5 236 226 10 95.76 

10 236 226 10 95.76 

15 236 223 13 94.49 

9 5 236 225 11 95.33 

10 236 226 10 95.76 

15 236 224 12 94.91 

120 18 5 236 227 9 96.18 

10 236 228 8 95.39 

15 236 229 7 97.03 

12 5 236 224 12 94.91 

10 236 226 10 95.76 

15 236 227 9 96.18 

9 5 236 226 10 95.76 

10 236 228 8 96.61 

15 236 228 8 96.61 
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A pattern similar to wheat is observed for soy as well wherein the performance of the 

algorithm is mediocre on videos captured at 30 fps regardless of the height of image 

capture. The performance of the algorithm on videos captured at 60 fps and 120 fps also 

follows that for wheat wherein the algorithm performs exceedingly well. The reason for 

the lack luster performance of the algorithm at 30 fps is that the seed kernels are not 

captured as they pass through the region of interest due to low frame rate.  

 4.4.4 Comparison with Neilsen et al. [114] 

The proposed algorithm is inspired by the earlier work by Neilsen et al. [114]. The 

algorithm put forth by Neilsen et al. [114] works on the basis of tracking a seed kernel 

using the technique of background subtraction as it flows down the lightbox. A seed kernel 

is deemed valid and counted when it is detected a certain number of times defined by the 

average flow rate. The average flow rate is a scalar that indicates the rate at which the seed 

kernels in the video flow down. It is used to estimate the location of the seed kernel at a 

given point and search for it. In the algorithm put forth by Neilsen et al. [114], assuming 

that the current position x of a seed kernel is known, the seed kernel is expected to be found 

in the subsequent frames at or within 4 ∗  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒. Hence, the average flow 

rate plays a critical role in determining the position of a seed kernel in subsequent frames. 

In addition to flow rate, another parameter that the algorithm relies on is average area. The 

average area parameter is indicative of the average area occupied by each of the contours 

detected in the video. The algorithm initially assumes a value of 0 for both average flow 

rate and average area. While the algorithm updates the values of average flow rate and 

average area, it takes a few frames to do so. Prior to the update to average flow rate and 

average area, the count made by the algorithm tends to be inaccurate. Determining the 
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appropriate values for average flow rate and average area requires meticulous observation. 

Neilsen et. al determined that the most optimal frame rate for efficient functioning of the 

algorithm is 60 fps. The work by Neilsen et al. also mentioned that the error rate for the 

algorithm exploded when the frame rate was less than 60 fps. As a means to compare the 

proposed algorithm to the one proposed by Neilsen et al., the video of wheat seed kernels 

captured at 60 fps is used. The results are as shown in Table 4.3. 

Table 4.3: Comparison between Proposed Algorithm and Neilsen et al. 

Seed 

Type 

Frame 

Rate  

Height 

(cm) 

Actual 

Count 

Algorithmic 

Count 

Neilsen 

et al. 

Count 

Algorithmic 

Count 

Accuracy 

(%) 

Neilsen 

et al. 

Count 

Estimate 

Accuracy 

(%) 

Soy 60 18 236 226 228 95.76 97.02 

12 236 225 229 95.33 97.03 

9 236 227 228 96.18 97.02 

Wheat 60 18 275 266 270 96.72 98.18 

12 275 270 270 98.18 98.18 

9 275 268 266 97.45 96.72 
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 The proposed algorithm exhibits a high degree of correlation to that of the algorithm 

proposed by Neilsen et al. Overall, the experiments conducted on the seed varieties of soy 

and wheat show that the algorithm exhibits quality performance on slit images provided 

that the slit image is constructed well. However, the construction of a well informing slit 

image depends greatly on the frame rate at which the video is captured. The algorithm is 

shown to provide inferior results on videos captured at 30 fps in comparison to the videos 

captured at 60 fps and 120 fps. At such high frame rates, the size of the region of interest 

does not impact the outcome much.  

 4.4.5 Conclusions and Future Work 

The algorithm demonstrates the feasibility of seed kernel counting using region of 

interest segmentation and slit imaging. The algorithm gracefully handles the issue of 

duplicate contours within the detected contours. The pitfall of occlusion within centroid 

tracking algorithm is handled using the slit imaging technique. Since the slit image is 

created by stitching multiple regions of interest together, the likelihood that the seed kernel 

is not occluded increases, thereby, reducing the chance of missing out on seed kernels. 

However, the proposed algorithm’s reliance on an informational slit image can be stated as 

its pitfall. Especially at lower frame rates where the slit image tends to miss recording 

information, the algorithm exhibits poor performance. Moving forward, an algorithm 

which is the combination of centroid tracking and slit imaging will be implemented. 

Currently, counting using centroid tracking relies on observing the seed kernel for a certain 

number of times before it is deemed a valid seed kernel that is counted. However, occlusion 

in certain cases causes the centroid tracking algorithm to lose track of the seed kernel. In 
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order to avoid such a scenario, the seed kernel is tracked all through the region of interest 

to ensure that the seed kernel is detected in case it is not blocked (or tied).  
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Chapter 5 - Automated Phenotyping of Single Seeds using a 

Novel Volume Sculpting Framework 

Seed and plant breeding applications require the ability to estimate the morphometric 

characteristics, otherwise known as phenotypes, of agricultural entities and products such 

as seeds, leaves and fruits in order to establish a correlation between morphometry and 

behavior. Plant phenotyping is the assessment of complex plant traits such as growth, 

development, tolerance, resistance, architecture, physiology, ecology, yield, and the basic 

measurement of individual quantitative parameters that form the basis for complex trait 

assessment [79]. Reliable techniques to estimate morphological traits such as plant biomass 

[102][44], root morphology [73][178], leaf morphology [62][12] and fruit traits [30][109] 

are available to aid in plant phenotyping. Besides the aforementioned traits, another key 

morphological trait that aids in phenotyping is seed volume. The estimation of seed volume 

is complex because seeds are irregular shaped entities, in general. A seed is the most basic 

agricultural entity from which the complex root and shoot systems develop. The research 

on seed-functional ecology and seed-trait correlates is heavily dependent upon seed 

volume, which is overwhelmingly represented by the mean seed mass [143]. In order to 

integrate the ecological and functional correlates of seed size distributions in soil seed bank 

studies, seeds are required to be sorted by size. Conventionally, seeds are sorted by passing 

them through a series of sieves of diminishing mesh sizes. The pitfall with the technique is 

that sieves only separate the seeds according to a linear dimension rather than volume. In 

addition, it is laborious, time consuming and may damage the seeds at times [146]. Other 

popular techniques to estimate seed volume include water displacement, volume slicing 

and silhouette-based volume sculpting. The technique of water displacement attributes the 
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volume of an object to the amount of water displaced when the object is dropped in the 

body of water. However, the technique is detrimental to the structural integrity of the seeds 

since they tend to absorb water and bloat in size. Volume slicing refers to the technique of 

dividing the object in the image into a certain number of cross-sections and computing the 

volume of each of the cross-sections. The aggregate of cross-sectional volumes is deemed 

the total volume. The silhouette-based volume estimation is the technique of constructing 

the 3-D model of the object from multi-view imagery. While no volume estimation 

technique is 100% accurate, the image-based techniques of volume slicing and silhouette-

based estimation preserve the structural integrity and chemical composition of the seeds. 

Another key benefit to image-based analysis is that the results are reproducible across 

different experiments eliminating subjective bias. The estimation of volume, a three-

dimensional quantity from images, two- dimensional entities, needs a meticulously curated 

setup wherein the 3-D reconstruction of the seed from images is achieved. The article 

extends upon the silhouette-based volume estimation technique and presents a low-cost, 

end-to-end silhouette-based volume sculpting framework that reconstructs the 3-D model 

of a seed using multi-view imagery that captures the seed from different perspectives. The 

proposed system is low-throughput that processes one seed at a time. 

5.1 Related Work 

Koc [70] demonstrated the use of ellipsoid slicing and image processing techniques 

to estimate the volume of watermelon. The dimensions such as the length, major and minor 

diameters of the watermelon were used as the parameters in the ellipsoid approximation 

method. In case of image processing, the grayscale contour i.e., boundary of the 

watermelon was extracted using image processing. The boundary image was approximated 
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for volume using the disk method [138]. The outcomes of the two techniques were 

compared to those by water displacement. The comparison showed that the outcomes of 

the water displacement and image processing techniques were more similar to each other 

than those between water displacement and ellipsoid slicing. 

Roussel, Geiger, Fischbach, Jahnke and Scharr [60] described a method to perform 

3D reconstruction of plant seeds surfaces with diameters as small as 200 μm using shape-

from-silhouette approach. The robotized system developed as part of the work was low-

throughput and handled one seed at a time. One of the noteworthy accomplishments of the 

work was the manner in which camera pose variations were handled. The work served as 

the basis for Cao et al. [24]. 

Cao and Neilsen [24] extended the work by Roussel et al. [60] and presented an 

affordable 3-D single seed volume measurement system. The method involved the use of 

3-D printed components to act as the scaffolding onto which cameras were mounted. The 

seed was placed on a turntable with a black background. Images of the seed were captured 

by the camera as the seed rotated on the turntable. The captured imagery was processed 

using silhouette-based volume sculpting to estimate volume. The system was verified 

against a ceramic ball of known geometry. The volume estimated by the system showed 

less than 3% difference to the actual. Cao et al. [24] is the basis for the current article. 

Pound, French, Murchie and Pridmore [126] proposed an approach for automated 

recovery of three-dimensional models of plant shoots from multiple color images using a 

single low-cost camera. The algorithm for reconstruction used an initial point cloud 

estimate as a basis for the growth of plant surfaces in three dimensions. The reconstructed 

plants were represented as a series of small planar section that together model the more 
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complex architecture of leaf surfaces. The boundary of each leaf patch was refined using 

the level-set method, optimizing the model based on image information, curvature 

constraints, and the position of neighboring surfaces. The proposed approach was tested on 

the datasets of wheat, rice and a virtual dataset that allowed for the measurement of 

reconstruction accuracy.  

Yang and Cho [191] performed 3-D crop reconstruction and automatic analysis of 

phenotyping index using machine learning. In the experiment, a system was configured 

and implemented for the 3-D image reconstruction of red pepper plant, as well as its 

automatic analysis. A Kinect v2 with a depth sensor and a high-resolution RGB camera 

were used to obtain more accurate reconstructed 3-D images. The reconstructed 3-D 

images were compared with conventional reconstructed images, and the data of the 

reconstructed images were analyzed with respect to their directly measured features and 

accuracy, such as leaf number, width, and plant height. The results showed that the 

proposed method showed an error of about 5 mm or less when reconstructing and analyzing 

3-D images, and was suitable for phenotypic analysis. 

Potmesil [89] presented a method to generate octree models for 3-D solid objects 

from their silhouettes obtained in a sequence of images. The silhouettes of objects were 

projected into an image and the center of projection generated 3-D conic volumes. The 3-

D model of the objects is constructed by intersecting such conic volumes obtained from a 

sequence of images. In order to process 3-D volume data efficiently, hierarchical octree 

structures were used. The volumes of individual objects were labelled by a connectivity-

labeling algorithm, and surface-normal vectors were added to their surface volume 

elements.  
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Sankaran, Wang and Vandemark [146] proposed an image-based rapid 

phenotyping technique to estimate the size of chickpeas. The experiment was conducted 

on samples collected from 72 plots from two different locations. The experiment involved 

the use of images where chickpeas were clustered together and also separated from each 

other. The Watershed algorithm was used to segment the clusters of chickpeas and a macro 

developed in ImageJ was used to estimate seed count and seed size. The reference object 

to estimate chickpea size was the US Penny. The results exhibited a high correlation 

between the seed size estimated by the image processing technique and ground-truth data.  

Zhang, Zhang, Wang, and Yang [196] developed an information management 

architecture for distributed wireless sensor networks to deploy in distributed regions. 

Different types of sensors, environmental factors, and control devices were considered 

during the development of the architecture. The architecture consisted of four layers: 

sensor, gateway, central server, and domain application. The developed architecture was 

applied to a melon greenhouse production base and apple tree cultivation base. The 

integrated bases were able to interact with the information management platform well.  

Golbach, Kootstra, Damjanovic, Otten and Zedde [43] proposed a high-throughput 

system for 3-D reconstruction of plants. The 3-D reconstruction was based on the use of 

silhouette-based technique. In order to make the process high-throughput, varying number 

of cameras were used to capture the image of the plants from different perspectives. While 

the quality increased with the increase in the number of cameras, it also led to an increase 

in the computational complexity of the system. In the end, ten cameras were chosen to 

balance the trade-off. The results indicated a high correlation between the results obtained 

by the algorithm and ground-truth measurements obtained by manual measurement. 
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5.2 Materials and Methods 

The concepts that help to understand the estimation of volume using the silhouette-

based approach are explained as follows. Please note that the underlying mathematical 

derivations are out of scope of the article. 

Voxel: A voxel is the unit of information that defines a point in 3-D space. A pixel in 2-D 

space is analogous to a voxel in 3-D space. Simply, they are virtual cubic blocks that are 

representative of 3-D space. 

World Coordinate System: It is the basic 3-D cartesian coordinate system with an origin 

assigned by means of arbitrary assumption. In other words, it may be defined as any point 

in the 3-D space. 

Camera Coordinate System: It is the 3-D coordinate system that measures relative to the 

camera’s origin and orientation. It is possible to apply the operations of rotation and 

translation to convert a point in the world coordinate system to the camera coordinate 

system. There exists a 4 x 4 transformation matrix known as Camera Extrinsic Matrix 

which applies rotation and translation to convert a point from world coordinate system to 

camera coordinate system. The camera extrinsic matrix changes with the physical location 

of the camera. 

Image Coordinate System: It is the coordinate system that projects the 3-D point from 

camera coordinate system to the 2-D plane. Only the height and width of the 3-D point are 

captured but there is no sense of depth in the image coordinate system. Hence, it is a lossy 

transformation that cannot be reversed.  
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Pixel Coordinate System: In order to discretize the image coordinate system, it is divided 

into pixels. The pixel coordinates of an image are discrete values within a range computed 

by dividing the coordinates in the image coordinate system by pixel width and pixel height. 

Intrinsic Parameters: The parameters that define the relationship between the image 

coordinates and camera coordinates are called Intrinsic parameters. Intrinsic parameters 

are specific to the camera in use and a meticulous calibration of the intrinsic parameters is 

required to avoid image distortion. The intrinsic parameters typically considered are: 

1. Focal Length: Focal Length is defined as the distance between the image plane and origin 

of the camera coordinate system.  

2. Principal Point: The Principal Point is the point where the Optical axis i.e., the Z-axis of 

the camera coordinate system, intersects the image. 

Figure 5.1 presents a graphical representation of the intrinsic parameters of focal length 

and principal point. 

Figure 5.1: Intrinsic Parameters 
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 5.2.1 Shape-from-Silhouette Method for Seed Kernel Reconstruction 

The silhouette of an object in an image refers to the contour that separates the object 

from the background. The shape from silhouette method requires multiple images captured 

from different angles to perform 3-D reconstruction of a seed kernel. For each of the images 

captured, the silhouettes are segmented using a method known as background subtraction. 

The silhouettes are then back-projected onto a common 3-D space with projection centers 

equal to the camera locations. The back-projection onto a common space requires the 

intrinsic camera matrix K and distance between the origin of the working volume and 

camera center. The origin of the working volume is considered to be the intersection point 

(IP) of the seed bottom horizontal line and the line drawn through the center of the image. 

A total of N images equidistant from each other spaced at rotation angles ai where i ∊ {1…, 

N} are acquired. The rotation is around the vertical axis through the IP and parallel to the 

Y-axis of the camera. A grayscale threshold on each of the acquired images is applied and 

segmented into a binary mask Mi where i ∊ {1…, N}. For each image, the camera 

projection matrix Pi is calculated from the rotation angle ai by 𝑃𝑖 =  𝐾(𝑅𝑖 | 𝑇𝑖) where 

Ri is the rotation matrix and Ti is the translation matrix corresponding to the given angle 

ai. Then, an equidistantly spaced cubic voxel grid around the world origin is defined around 

the world origin. The size of each voxel is set to 1 mm3. Each voxel center with 

homogenous world coordinates �⃗� is projected to a point, �⃗�i in each mask Mi by �⃗�i = Pi�⃗�. If 

a voxel belongs to the foreground object, its value V (�⃗�) is set to 1. If the voxel does not 

belong to the foreground object, its value V (�⃗�) is set to 0. The mask Mi in volume carving 

is sensitive to misalignment of the object volume and needs to be carefully adjusted. 
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 5.2.2 Hardware Framework 

3-D reconstruction of seeds requires multiple images captured from different angles at 

regular angle intervals. In order to ensure that the images are captured precisely, a low-cost 

hardware setup is proposed. Different parts of the hardware setup are described as follows 

and shown in Figure 5.2. 

a) Seed Station: The seed station shown in Figure 5.2 carries the seed as it is rotated 

by a NEMA 23 stepper motor. The seed station is just big enough to ensure that the 

seed comfortably fits on it. The stepper motor is powered by a 12V power supply 

and controlled by an Arduino micro-controller using a Synthetic gShield stepper 

driver. 

b) Image Capture: The images of the seed are captured using a color camera DFK 

37BUX287 manufactured by ImagingSource IC. Two cameras that are placed 

orthogonal to each other are used in the setup. The image capture is automated 

using the API provided by ImagingSource IC software. 

c) Stepper Motor: The stepper motor is controlled by an Arduino UNO R3 board 

fitted with a gShield v5 board. The stepper motor is controlled by G-Code strings 

sent to it from a program written in Python. The turn rate in degrees is customizable 

by the user. For the experiment, a 10-degree rotation is used as the default setting. 

d) 3-D Graphics and Legos: The mounds that hold the cameras are printed using 3-

D graphics. In order to print the parts, a MakerGear M2 3-D printer is used. A 

software tool named Cubit is used to create the STL models for the 3-D mounds. 

The model is converted to gcode for printing using another software tool named 
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slic3r. The gcode is input to the MakerGear M2 3-D printer for printing. The camera 

mounds are rested on a base built using Lego pieces. The Legos are sturdy enough 

to hold the lightweight 3-D camera mounds and cameras themselves. 

e) Light Source: Two gooseneck LED light sources are set next to the seed station to 

focus on the seed kernel, so the seed kernel appears bright at the time of image 

capture. 

 

 5.2.3 Software Framework 

The software implementation to control the hardware framework and 3-D 

reconstruction is done in Python and C#. While C# is predominantly used to control the 

image capture of the camera, Python is used to perform every other task including the 3-D 

Figure 5.2: Hardware Setup for Single Seed Reconstruction 
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seed reconstruction. The different software packages and their versions used in the 

application are as shown in Table 5.1. 

Table 5.1: Packages and their Versions for Single Seed Reconstruction Applications 

Package Version 

Python 3.7 

Numpy 1.20.1 

Matplotlib 3.3.3 

Mayavi 4.7.2 

SciPy 1.2.3 

OpenCV 4.5.1.48 

 

The steps in the application for seed reconstruction are described as follows. 

1. The user interface shown in Figure 5.3 is provided as part of the framework and requires 

the user to enter basic information such as username, location, folder to save results, 

description and rotation angle of stepper motor. The rotation angle determines the number 

of images that are to be captured as part of the experiment. For instance, a rotation angle 

of 10-degrees means that the experiment will capture 360/10 = 36 images. Either image 

count or rotation only is required to be entered the user. The application calculates the other 

from the entry. In case 30 images is entered by the user, the application determines the 

rotation to as 360/30 = 12 degrees and sends G-Code commands to the stepper motor 

accordingly. 

2. Crop the images such that the object of interest i.e., the seed kernel is at the center of the 

image. 
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3. Convert the images to HSV color space from RGB to aid in better thresholding. Image 

thresholding is applied on the HSV image to extract the foreground from background i.e., 

the seed kernel. 

4. Apply binary thresholding on the extracted seed kernel to obtain a binary mask. 

Perform volume carving using each of the binary masks obtained to perform 3-D seed 

reconstruction. 

5. Apply binary thresholding on the extracted seed kernel to obtain a binary mask. 

6. Perform volume carving using each of the binary masks obtained to perform 3-D seed 

reconstruction. 

Figure 5.3: User Interface for Single Seed Reconstruction Application 
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 The center of the reconstruction cuboid is identified by using the IP of the seed 

bottom horizontal line and the centerline in the image. A cuboid is constructed 

outside of the object defined by voxels where each voxel has a size of 1 x 1 x 1. 

 For every binary mask obtained, the cuboid is carved i.e., the locations where the 

seed exists is kept whereas the other locations are removed. The process requires 

that a projection matrix [99] be constructed and back-projected. 

7. The total volume of 3-D reconstructed voxels is ∑ vi where vi = 1 x 1 x 1. The total 

volume of seed kernel is computed by multiplying by a factor which is the cubic volume 

of a pixel per mm in camera properties. 

 5.3 Improvements from the Previous Version 

The current work is an iterative improvement to Cao et al., 2020 [24]. The current 

iteration is a significant improvement from a hardware and software perspective. The 

improvements are described as follows. 

 5.3.1 Hardware Improvements 

a) Seed Station: Figure 5.4 shows the single seed reconstruction hardware proposed 

by Cao et al., 2020 [24]. The hardware proposed by the current work (shown in 

Figure 5.2) alters the size of the seed station and proposes one that is only large 

enough to hold the seed kernel. The benefit to the smaller seed station is that the 

seed kernel could be placed back at the location of image capture in case it gets 

dislodged as the images are captured. The exact location of image capture for the 

seed kernel is hard to determine on the larger seed station making it practically 
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impossible to place the seed at the same location in case it got dislodged. Another 

improvement in the proposed hardware is the use of double-sided tape to firmly 

attach the seed kernel to the seed station. In the previous iteration, the seed kernel 

freely rests on the seed station. As a result, the seed kernel tends the move by a tiny 

fraction during image capture leading to misaligned images. The use of the double-

sided tape ensures that the seed kernel is firmly attached to the seed station resulting 

in fully aligned images. 

b)  Stepper Motor Automation: In the previous iteration, the stepper motor was 

operated manually using Universal G-Code Sender, a desktop application that 

connected to the stepper motor. The operation of the stepper motor is automated in 

Figure 5.4: Single Seed Reconstruction Framework [24] 
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the current iteration wherein G-Code corresponding to a specific amount of rotation 

is sent to the stepper motor using Python. The input provided by the user (using the 

user interface shown in Figure 5.3) is processed to determine the G-Code to be sent 

to the stepper motor. The NEMA 23 stepper motor takes 200 steps per rotation. 

Hence, each step amounts to a rotation of 1.8°. It is worth noting that only rotation 

in multiples of 1.8° is achievable by the stepper motor. 

c) Camera Orientation: The camera was fixed to the mount at an orientation of 10° 

in the previous iteration which led to an image wherein the bottom surface was not 

captured. The camera orientation is adjusted so that the camera is held orthogonal 

to the seed kernel. As a result, the bottom surface of the seed kernel is captured 

appropriately. Figure 5.5 shows a graphical representation of the difference in 

camera setup between the two iterations. 

Figure 5.5: Camera Orientation in (a) Previous Iteration (b) Current Iteration 
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 5.3.2 Software Improvements 

Automated Seed Kernel Detection: In the previous iteration of the application, the user 

was expected to determine pixel coordinates of the most likely location of the seed kernel. 

As part of it, the user had to provide three rectangular regions to identify the seed kernel. 

They are search rectangle, template rectangle and crop rectangle. The crop rectangle is the 

rectangular region that closely encompasses the seed kernel. The Template rectangle is the 

rectangular region that encompasses the crop rectangle. The Template and Crop rectangle 

together help crop the seed kernel in the sense the offset between the two rectangular 

regions is always fixed and the Crop rectangle moves along with the Template rectangle as 

and when its position is changed. The search rectangle encompasses the Template rectangle 

and is the region within all the images where the seed is definitely found. For instance, if 

the image dataset contains 36 images where the seed kernel may be present at different 

regions of the image, the search rectangle is the rectangular region that contains the seed 

kernel in any image when searched. The rectangular regions are shown in Figure 5.6. 

Figure 5.6: Rectangular Regions to crop Seed Kernel within Image 
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The three rectangular regions are specific to the experiment and anytime the location of the 

seed on the seed station changes, the regions are to be determined once again. Determining 

the criteria for the three rectangular regions is cumbersome, error prone and the expectation 

is unrealistic from a user perspective. The current iteration improves upon the aspect 

wherein it automatically determines the location of the seed kernel using image processing. 

The steps to determine the location of the seed kernel are as follows. 

1. In each of the images acquired, detect the contour of the seed kernel and crop the 

rectangular region around the contour, as shown in Figure 5.7. 

Note: A key point to note is that the size of the contour of the seed kernel within each of 

the images is slightly different due to the position of the seed kernel as it rotates on the 

seed station. Since the seed kernel rotates circularly on the seed station, assuming that the 

diameter of the circle is d and distance between camera and center of the seed station is x, 

the seed kernel is at a distance of x – d and x + d at two distinct points during the rotation. 

The distance x – d is the closest that the seed kernel comes to the camera and x + d is the 

farthest that the seed kernel moves from the camera. The seed kernel appears larger when 

it is positioned closer to the camera than farther. In order to align all the image on a level 

playing field, it is required to normalize the size of the cropped images and make their size 

uniform. 

Figure 5.7: Detected Rectangle around Seed Kernel Contour 



150 

 

2. Resize all the images in the dataset to the mean size of the images containing the largest 

and smallest seed kernel contours. 

3. Detect the contour of the seed kernel in each of the resized images (similar to step 1). 

5.4 Verification Mechanism 

The volume of each of the seed kernels is estimated based on the proposed 3-D 

reconstruction technique. However, there is no known standard technique to estimate the 

volume of a seed kernel. Manual measurement using a caliper is error prone since the 

measurements are not reproducible across different individuals and subject to bias. As a 

means to verify and validate that the volumetric estimation made by the 3-D reconstruction 

technique is within reason, the seed kernel is approximated to a mathematical shape whose 

volume may be estimated. While the likelihood that the shape of any seed kernel fully 

conforms to a mathematical shape is minimal, the approximation acts as a means to verify 

that the results output by the 3-D reconstruction technique are reasonable. In general, seed 

kernels have varying shapes which makes developing a universal model that works for all 

seed types. As part of the experiments for the current work, the seeds of wheat and soy are 

considered and are as shown in Figure 5.8.  

Figure 5.8: (left) Soy Seed Kernels (right) Wheat Seed Kernels 
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The closest mathematical shape that the seeds of soy and wheat may assume is that of the 

ellipsoid since it captures the properties of both spherical (soy) and oblong (wheat) seed 

types. The volume of a seed kernel upon being assumed to be an ellipsoid is the aggregate 

of the individual cross-sectional volumes. Each cross-section of the ellipsoid is an elliptic 

cylinder, as shown in Figure 5.9. The volume of the ith cross-section is given by vi = 

π.Ai.Bi.hi where vi is the volume of the ith  cross-section of an ellipsoid (elliptic cylinder), 

Ai is the radius of the major axis and Bi is the radius of the minor axis of the ith cross-

section of the ellipsoid and hi is the height of the ith cross-section of the ellipsoid. 

The algorithm for volumetric estimation using ellipsoidal assumption is inspired by Cao, 

2020 [23] and assimilated to the current work. The algorithm is described as follows: 

1. Convert the original image of the seed kernel in RGB color space to HSV color 

space. 

2. Filter out the background from the seed and color threshold the HSV image. 

Figure 5.9: Cross-sections of Ellipsoid 
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3. Detect the seed kernel in the image and plot the contour that encompasses it. 

4. Plot a rotated (minimum area) rectangle around the seed contour. The length of the 

rectangle is assumed to be the length of the seed kernel. 

5. Segment the seed kernel contour into n horizontal segments where n is the length 

of the bounding rectangle.  

6. Plot a line joining the left most and right most points on the seed kernel contour. 

7. Compute the mid-point on the line and determine points on the contour that are 

above and below the line joining left most and right most points. Store the points 

belonging to the top and bottom of the line in two different lists. 

8. Calculate the average of the five adjacent points that belong to the top and bottom 

lists to make a rectangular box for each segment (from step 5). 

9. Estimate the volume of each segment (cross-section) by approximating it as an 

elliptic cylinder i.e., vi = π.Ai.Bi.hi. 

Finally, compute the aggregate of the volumes of each of the segments to estimate the 

volume of the seed kernel, i.e., V = Σn
i = 1 π.Ai.Bi.hi. 

 5.4.1 Image Capture 

The goal of image acquisition is to capture the seed kernel without ignoring even the 

slightest detail. The estimation of volume using the ellipsoid slicing technique requires the 

top view and side view of the seed kernel. The length and width of the seed kernel are 

obtained from the top view whereas the side view is required to obtain the thickness of the 

seed kernel. The acquisition of seed kernel images is performed using two different 
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techniques that capture the seed kernel from the top view and side view. The hardware 

setup for the 3-D reconstruction technique shown in Figure 5.2 is used for image capture. 

The techniques are described as follows. 

a) Two-Camera Image Capture: As evident from Figure 5.2, the hardware setup 

consists of two cameras, one at the top and another at the side, held equidistant from the 

seed station. The seed kernel is placed on the seed station and the image of the seed kernel 

is captured by both the top and side cameras. The image captured by the side camera gives 

the side view of the seed kernel whereas the image captured by the top camera gives the 

Figure 5.10: Two-Camera Image Capture of Wheat Seed 
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top view of the seed kernel. Figure 5.10 shows the capture of a wheat seed kernel using the 

two-camera image capture technique. 

The images captured using the two-camera technique are put through the silhouette-based 

3-D reconstruction technique to reconstruct the 3-D model of the seed kernel from images. 

Figure 5.11 shows the side view of the 3-D reconstruction model at 0°, 90°, and 180°. 

Likewise, Figure 5.12 shows the top-view of the 3-D reconstruction model at 0°, 90°, and 

Figure 5.12: Side-view of 3-D Seed Kernel Reconstruction at (a) 0° (b) 90° (c) 180° 

Figure 5.11: Top-view of 3-D Seed Kernel Reconstruction at (a) 0° (b) 90° (c) 180° 
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180°. The reconstructed model is viewed in a 3-D model viewing tool known as Mayavi.  

The obtained top view and side view of the wheat seed kernel are as shown in Figure 5.13. 

The obtained images are processed using the algorithm described in section 5.4 to estimate 

the volume of the seed kernel. Figure 5.14 shows the top view and side view of the seed 

kernel sliced into different segments of the ellipsoid. 

 

While the detail captured by the two-camera technique is excellent, the illumination around 

the seed kernel causes part of the seed station to show prominently. It is observed in Figure 

5.13 (left) where an illuminated circle of light is detected around the seed kernel. It requires 

additional processing to ensure that the circle of light is ignored from the volumetric 

estimation. The inclusion of the light around the seed results in inaccurate computation of 

the volume. 

Figure 5.14: (left) Top View Sliced into Elliptic Cylinder Segments (right) Side View into 
Elliptic Cylinder Segments 

Figure 5.13: (left) Top View Wheat Seed Kernel (right) Side View of Wheat Seed Kernel 
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b) Mirror-based Image Capture: The mirror-based image capture technique 

captures the top view and side view of the seed kernel using a camera and mirror. The idea 

is to hold a mirror at a 45° to the seed station and capture the image of the seed kernel 

placed on the seed station using the side camera. Since the mirror is at a 45° to the seed 

station, the reflection of the seed kernel in the mirror captures the top view of the seed 

kernel. Figure 5.15 shows the image capture using the mirror-based technique. 

Figure 5.15: Mirror-based Image Capture of Wheat Seed Kernel 
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The captured images for the top view and side view are as shown in Figure 5.16. The 

images are put through the algorithm described in section 5.4 to estimate the volume of the 

seed kernel. Figure 5.17 shows the images of the top and side views sliced into multiple 

segments. 

5.5 Results 

Experiments using the proposed 3-D reconstruction framework and ellipsoid 

slicing techniques are conducted on a random sample of five soy seed kernels and five 

wheat seed kernels. The experiment using each of the techniques is carried out for a total 

of 20 times to also detect any variability in the estimations. The images used for the 

Figure 5.16: (left) Top View of Wheat Seed Kernel (right) Side View of Wheat Seed Kernel 

Figure 5.17: (left) Top View Sliced into Elliptic Cylinder Segments (right) Side View Sliced 
into Elliptic Cylinder Segments 
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ellipsoid slicing technique are captured using the mirror-based approach and two-camera 

based approach. In order to compare the volumetric estimations between the two 

techniques, Relative Standard Deviation (RSD) is used as the metric. The underlying 

concepts to understand RSD are as described further. 

Mean: Mean is given the ratio of the sum of all the datapoints in the dataset and number 

of data samples. Assuming d = [1, 2, 3, 8] as being the dataset and n = 4 is the length of 

the dataset, mean is given by 
∑

 i.e. (1 + 2 + 3 + 8)/ 4 = 3.5. It gives the average of the 

values in the dataset. 

Variance: Variance indicates the dispersion of data points around the mean. It is given the 

by the squared difference between each datapoint di of dataset d and mean, M divided by 

the degrees of freedom i.e., n – 1 where n is the number of datapoints in the dataset d. It is 

expressed as s2 = 
(  )

.  

Standard Deviation: The square root of Variance is known as Standard Deviation. 

Variance being the squared value tends to be large at times being hard to calculate. 

Therefore, standard deviation is often considered. 

Relative Standard Deviation (RSD): RSD, otherwise known as Co-efficient of Variation, 

is the measure of standard deviation relative to the mean of the dataset. It is a unitless 

measure of dispersion obtained by dividing the standard deviation by the mean of the 

sample. Its use is preferred in cases where a comparison on the dispersion of two datasets 

of different units is made. Mathematically, 𝑅𝑆𝐷 =  𝑠/𝑀 where s is the standard deviation 

and M is the mean of the dataset. A comparison of the RSD for each of the five wheat seeds 
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using the mirror-based approach and 3-D reconstruction approach is shown in Table 5.2. 

Similarly, a comparison for five soy seed kernels is shown in Table 5.3. 

Table 5.2: Standard Deviation, Average Volume and RSD for Wheat using Mirror-based 
and 3-D Reconstruction Approaches 

       Wheat 

ID Mirror-based Approach 3-D Reconstruction Approach 

 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

1 0.318 27.602 0.011 0.13 27.912 0.004 

2 0.244 29.401 0.008 0.102 30.670 0.003 

3 0.443 31.642 0.014 0.142 31.645 0.004 

4 0.356 27.409 0.012 0.127 28.560 0.004 

5 0.296 25.897 0.011      0.108 26.742 0.004 

 

Table 5.3: Standard Deviation, Average Volume and RSD for Soy using Mirror-based 
and 3-D Reconstruction Approaches 

      Soy 

ID Mirror-based Approach 3-D Reconstruction Approach 

 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

1 0.638 147.918 0.004 0.3845 146.2841 0.002 

2 0.605 106.057 0.005 0.3448 104.1521 0.003 

3 0.973 132.855 0.007 0.375 130.1393 0.002 

4 1.347 151.763 0.008 0.5594 150.6711 0.003 

5 0.468 135.773 0.003 0.3283 133.4657 0.002 
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A comparison of the RSD for each of the five wheat seeds using the two camera-based 

approach and 3-D reconstruction approach is shown in Table 5.4. Similarly, a comparison 

for five soy seed kernels is shown in Table 5.5. 

Table 5.4: Standard Deviation, Average Volume and RSD for Wheat using Two Camera-
based and 3-D Reconstruction Approaches 

       Wheat 

ID Two Camera-based Approach 3-D Reconstruction Approach 

 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

1 0.473 28.727 0.016 0.195 28.47 0.006 

2 0.408 30.332 0.013 0.229 32.615 0.007 

3 0.356 32.368 0.011 0.207 33.437 0.006 

4 0.344 27.845 0.012 0.109 29.042 0.003 

5 0.254 26.582 0.009      0.196 27.093 0.007 

 

Table 5.5: Standard Deviation, Average Volume and RSD for Soy using Two Camera-
based and 3-D Reconstruction Approaches 

      Soy 

ID Two Camera-based Approach 3-D Reconstruction Approach 

 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Relative 
Standard 
Deviation 

1 1.406 147.209 0.009 0.369 147.517 0.002 

2 0.768 106.897 0.007 0.372 105.779 0.003 

3 0.705 132.406 0.005 0.313 132.135 0.002 

4 0.813 152.475 0.005 0.392 151.990 0.002 
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Please note that the five seeds each of wheat and soy used in the experiment are the same. 

However, there is a minor variation in the results of the 3-D reconstruction approach 

between the experiment due to variation in light intensity and position of the seed kernel 

on the seed station. The position and light intensity are maintained constant in a given 

experiment. The obtained results demonstrate superior RSD with the 3-D reconstruction 

approach in comparison to the two-camera and mirror-based approaches. The RSD of all 

seed kernels, soy or wheat, is lower for the proposed 3-D reconstruction technique in every 

experiment. The lower RSD indicates that lower variance and higher level of reliability for 

the 3-D reconstruction technique in comparison to the others. 

5.6 Future Work and Conclusion 

The proposed technique demonstrates an end-to-end 3-D reconstruction technique 

for volumetric estimation of seed kernels and its improved performance over the previous 

setup. In addition, the proposed technique also provides better results in comparison to 

volume slicing using ellipsoid approximation technique where images are captured using 

the two-camera and mirror-based setups. In upcoming iterations of the 3-D reconstruction 

setup, one of the ideas is to build a seed station with non-reflective material. Since the 

currently used seed station is 3-D printed using a material that reflects light, it shows in the 

captured images. As a result, the image processing algorithm used to process the images 

struggles to precisely identify the seed kernel in the image. Along the same lines, the use 

of a light intensity that is constant from start-to-end of the experiment is required. The 

gooseneck LED that is currently used is battery powered. Hence, the intensity of the light 

emitted changes over time as the battery is drained. Other methods to initially locate the 

5 0.636 135.205 0.004 0.423 133.147 0.003 
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target’s contour are to be developed in addition to the one proposed. In addition, the impact 

of stepper motor variation on volume estimation needs investigated. The NEMA stepper 

motor used in the experiment does not yield an exact ten-degree rotation. It is because each 

step of the stepper motor yields a 1.8-degree rotation. As a result, the rotation obtained is 

10.8-degrees (1.8 x 6) but not ten which has the potential to lead to inaccuracies. 
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Chapter 6 - Phenotyping Algorithms for Mobile Applications 

 Accurate data collection and analysis is key to advance the field of digital image 

processing. The availability of mobile phones and portable devices with cameras is feasible 

means to collect image data at will. However, analysis of the collected data to make 

meaningful inferences requires mobile applications that have the ability to extract, process 

and analyze the image data.  A plethora of phenotyping applications are available in the 

market for free as mobile applications. The applications are a boon to the agricultural 

community since they enable farmers and plant researchers to conduct phenotyping on the 

field. One such phenotyping application is FieldBook, an open-source android application 

that is under active development by the Poland Lab at Kansas State University. The goal 

of the application is to increase the speed of data collection and analysis to increase the 

size and accuracy of agricultural field experiments. Fieldbook moves towards the vision of 

one handheld device per breeder, giving every breeder access to robust data collection and 

management that will facilitate the development of improved varieties to enable needed 

gains in agricultural productivity [139]. Fieldbook in its current state displays data at an 

individual entry level with the capacity to navigate independently between traits and entries 

as shown in Figure. 6.1 [139]. The features currently available in Fieldbook include 

visualization of the state of data collection in the field with a field map that indicates which 

entries have and have not been collected for a specific trait. In addition, the map allows the 

user to perform a visual analysis on the data to identify outliers. 
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While Fieldbook is promising in its current state, there is a need for additional features to 

make it widely adopted in the agricultural industry. The chapter proposes two fully 

developed algorithms to improve upon the feature stack of Fieldbook or other mobile 

applications in the realm of phenotyping. They are: 

1. Estimation of angle between leaf and stem 

2. Estimation of plant cover. 

Figure 6.1: Layout and Trait Information Displayed by FieldBook [139] 
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6.1 Estimation of Angle between Leaf and Stem 

The yields of maize and planting densities in the United States have increased 

concurrently in the past 50 years [36]. A comparative analysis of U.S. commercial maize 

hybrids released since the 1960s revealed that by selecting high yielding hybrids under 

high planting densities, breeders indirectly selected hybrids with upright leaf angles (LAs) 

[36]. The discovery was that upright LAs combined with higher planting densities improve 

light distribution within the canopy. For instance, modern hybrids intercept 14% more light 

than older hybrids [36]. Leaf Angle Distribution (LAD) is a key parameter that describes 

the structure of horizontally homogeneous vegetation canopies. It is defined as the 

probability of a leaf element of unit size to have its normal within a specified unit solid 

angle [199]. LAD affects the manner in which incident photosynthetically active radiation 

is distributed on plant leaves, thus directly affecting plant productivity. The traditional 

technique to measure LAD involves the use of mechanical inclinometer, a precision 

instrument that measures the angle of slope of an object with respect to its gravity by 

creating an artificial horizon. The use of the mechanical inclinometer makes the process of 

determining LAD laborious and time-consuming. Other techniques such as 3-D digitizing 

of individual plant elements using specialized instrumentation [154] and laser scanning 

[50] are available. However, the techniques are resource demanding. A feasible low-cost 

alternative is use of digital imagery to estimate LA since image processing preserves the 

state of the canopy while providing enough insight into the morphometry. Image 

processing tools such as ImageJ and Adobe Photoshop have built-in angle estimation tools 

that aid in the estimation of LA. The pitfall is that the operation of the tools is manual 

which means that the estimations may be subject to user bias and users end up spending 
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extended periods of time to estimate LA in case of a large dataset. In order to overcome 

the pitfalls of the manual setup, the current chapter proposes an automated technique for 

LA estimation using convolutional neural networks (CNN) and image processing. 

 6.1.1 Related Work 

Dzievit [36] conducted genetic mapping and a meta-analysis to dissect genetic 

factors controlling LA variation on maize. Genetic mapping populations were developed 

using inbred lines B73 (Iowa Still Stalk Synthetic), PHW30 (lodent, expired plant variety 

protection inbred), and Mo17 (Non-Stiff Stalk) that have distinct LA architectures. The 

leaf angles were estimated using the ImageJ image processing tool. 

 Herbert [53] described a technique for the estimation of leaf angles using stereo-

photogrammetry. The technique permitted accurate measurement of leaf angle and position 

from several meters away and had sufficient resolution to permit the analysis of complex 

phenomena such as the effect of leaf shape upon interception of light and photosynthesis. 

 Sinoquet et al. [155] proposed a method to measure light interception by vegetation 

canopies using a 3-D digitizer and image processing software. The 3-D digitizer allowed 

for simultaneous acquisition of the spatial coordinates of leaf locations and orientations. 

The software for image synthesis also had the ability to make virtual photographs of the 

real canopy. The information on light interception was derived from virtual images by 

using the simple features of image analysis software.  

 Hosoi et al. [50] estimated the LAD of wheat canopy at different growth stages 

such as tillering, stem elongation, flowering, and ripening stages by using a high-resolution 

portable scanning lidar. The canopy was scanned three-dimensionally by optimally 
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inclined laser beams emitted from several measuring points surrounding the canopy and 3-

D point cloud images in each stage were obtained. After co-registration of lidar images 

between different measurement positions, leaves were extracted from the images and each 

leaf was divided into small pieces along the leaf-length direction. Each of the pieces was 

approximated as a plane, to which normal were estimated. The distribution of the leaf 

inclination angles was derived from the angles of the normal with respect to the zenith. 

 Ryu et al. [135] examined the feasibility of seven techniques such as litterfall, 

allometry, LAI-2000, TRAC, digital hemispheric photography, digital cover photography, 

and traversing radiometer system to determine leaf area index across a 9-ha domain in an 

oak-savanna ecosystem in California, USA. It was shown that the combination of digital 

cover photography and LAI-2000 could provide spatially representative leaf area index, 

gap fraction and element clumping index. 

 6.1.2 Materials and Methods 

Researchers at Iowa State University captured the images of several plants in a field 

using the Fieldbook android application. As for the current work, two datasets namely, 

Summer_2015-Ames_ULA and Summer_2015-Ames_MLA wherein the former consists 

of 924 images and latter, 969 images, are used as the experimental datasets. Each of the 

images in either dataset shows the intersection of the leaf and stem. A sample image is a 

shown in Figure 6.2.  

The proposed leaf angle estimation procedure contains two broad steps: 

1. Extraction of region of interest (ROI) 

2. Estimation of Leaf Angle 
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 6.1.3.1 Extraction of Region of Interest (ROI) 

 The first step in the extraction of ROI is the detection of leaf and stem within the 

image. The images captured in the field contain numerous plants that look similar. Hence, 

it is important to determine the plant of interest and perform a curated extraction of it for 

the estimation of LA. Such an extraction may be performed using the semi-automated 

image cropper described in Chapter 4 by plotting a polygon around the leaf-and-stem 

portion of the image. However, such an extraction works well in the case of relatively small 

sized datasets but isn’t feasible for larger datasets such as the one at hand. It is determined 

from empirical observation of the dataset that the plant of interest is always the foreground 

Figure 6.2: Leaf-Stem Image Captured using Fieldbook 
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object present either to the left or right of the image.  Another feasible alternative is the use 

of foreground extraction techniques such as OpenCV’s GrabCut algorithm. However, the 

results obtained upon the application of the GrabCut algorithm to each of the datasets are 

not satisfactory. While the algorithm captures the foreground, it also captures part of the 

plants in the background. The captured plants in the background are essentially noise and 

detrimental to LA estimation. Figure 6.3 shows the botched foreground extraction 

performed on a plant image from the Summer_2015-Ames_MLA dataset. 

Figure 6.3: Foreground Extraction using GrabCut Algorithm 
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In order to better perform foreground extraction, the CNN model of Mask R-CNN 

is employed to extract foreground and identify the region of interest appropriately. Mask 

R-CNN is a deep neural network aimed to solve the problem of instance segmentation in 

computer vision. Instance Segmentation is the task of precisely identifying the pixels of 

each of the objects in the image. It is perhaps the hardest and most precise of the vision 

tasks of classification, semantic segmentation, object detection, and instance segmentation. 

In order to better understand the vision tasks, consider the image with balloons shown in 

Figure 6.4. Classification is the task of merely detecting that the image contains balloons. 

Semantic segmentation is the task of detecting all the balloon pixels within the image.  

Figure 6.4: Different Computer Vision Tasks [135] 
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Object detection is the task of detecting the number of entities of a certain kind. In other 

words, it is the task of identifying that the image contains seven balloons. Instance 

segmentation combines the tasks of semantic segmentation and object detection wherein it 

precisely identifies the pixels that belong to each of the entities within the image. Hence 

the reason, each of the balloon images is applied a unique color. The architecture of Mask 

R-CNN is explained in section 3.2.3.1 elaborately. Please refer to it for an in-depth 

understanding of the architecture. 

1. 175 images belonging to each of the Summer_2015-Ames_MLA and 

Summer_2015-Ames_ULA datasets are manually annotated using 

makesense.ai tool. The tool is free to use and generates annotations in the 

COCO format that Mask R-CNN is able to consume. A polygonal annotation is 

drawn where the stem and leaf meet each other. Figure 6.5 shows a polygonal 

annotation drawn using makesense.ai on an image with leaf and stem. 

 

Figure 6.5: Polygonal Annotation Plotted using MakeSense.ai 
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2. The annotated images are trained on the Mask R-CNN network for a total of 20 

epochs. The loss of after 20 annotations is 0.034. However, the loss is not 

significant since Mask R-CNN is being used to extract the portion of the image 

where the leaf and stem meet but not to extract masks that are precise in shape 

and size. All the annotated images are used for training only. The dataset is not 

split into training, validation and test datasets since the goal is not to evaluate 

the performance of Mask R-CNN but instead to extract regions of interest in 

the image that are later processed to estimate the angle between leaf and stem. 

Upon training, the trained weights are used to extract the masks of each of the 

images in the Summer_2015-Ames_MLA and Summer_2015-Ames_ULA 

datasets. Figure 6.6 shows the mask extracted by Mask R-CNN for the plant 

image shown in Figure 6.5. 

 

Figure 6.6: Mask Predicted by Mask R-CNN 
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3. The predicted mask indicates the region of interest that corresponds to the leaf 

and stem. In order to extract the region from the original image, the bitwise and 

operation is applied on the mask predicted by Mask R-CNN and original image. 

The resulting image gives the region of interest in the original image. Figure 

6.7 shows the region of interest extracted from the original image.  

 

 6.1.3.2 Estimation of Leaf Angle 

The extracted region of interest provides enough information for further processing 

to estimate the angle between leaf and stem. The basis for the estimation of leaf angle is 

provided by [36]. The work describes the above ear leaf and below ear leaf angles that are 

measured by plant scientists. Figure 38, an excerpt from [36], shows the exact position at 

which the angle between leaf and stem is to be measured. While leaves are typically long 

Figure 6.7: Extracted Region of Interest from Original Image 
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and tilt in different directions owing to environmental factors, the angle between leaf and 

stem is measured exactly where the leaf and stem connect to each other. 

The next step upon the extraction of region of interest from the image is to detect the point 

of contact of leaf and stem. Such a detection is complex considering the transition from the 

stem to leaf is rather smooth than abrupt. Upon empirical observation of the dataset, it is 

determined that the majority of the images in the dataset consist of straight lines that run 

along the length of the leaf. The lines are visible when the image is zoomed in. Figure 39 

(zoomed-in Figure 37) shows the lines on the leaf of the plant. 

Figure 6.8: Above Ear and Below Ear Leaf Angles [36] 
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Another empirical observation made is that the straight lines along the leaf are parallel to 

each other. Hence, the straight lines are used as indicators to determine the angle between 

leaf and stem under the assumption that the base of the stem is perpendicular to the ground. 

In other words, the angle between leaf and stem is the angle is determined as the angle 

made by the straight lines that run along the leaf with the horizontal.   

Hough Transform 

The detection of straight lines in images is done by applying the Hough Lines transform. 

Typically, straight lines are represented using the slope-intercept method as y = mx + c 

Figure 6.9: Straight Lines on Leaf 
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where m is the slope and c is the y-intercept. However, Hough Transform relies on 

representing straight lines using the pair of polar coordinates, (ρ, θ). The first parameter, ρ, 

is the shortest distance from the origin to the line. The second parameter, θ, is the angle 

between the x-axis and distance line. Figure 6.10 shows the representation of a line in polar 

coordinates. 

 

The equation of the straight line in polar coordinate system is given by, ρ = x * cos(θ) + y 

* sin(θ) where (x, y) is a point on the line. A straight line in image space is represented by 

a point in Hough space, as shown in Figure 6.11. 

 

Likewise, a group of intersecting lines in the image space form a group of points in the 

Hough space that appear in the shape of a sinusoid, as shown in Figure 6.12. An infinite 

Figure 6.11: Straight Line in Polar Coordinates 

Figure 6.10: Representation of Straight Line in Image Space (left) and Hough Space (right) 
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number of straight lines in the image space forms a continuous sinusoid in the Hough space. 

A group of points that represent a straight line are represented by multiple sinusoids that 

intersect at a common point. In order to detect points that form straight lines in the Hough 

space, points of sinusoid intersection are to be detected.  

 

Standard and Probabilistic Hough Transforms 

The Hough Transform takes the edges from a binary image as input. The Hough 

Transform maps each of the pixels to multiple points in Hough (or parameter) space. An 

edge pixel is mapped to a sinusoid in 2D parameter space, (ρ, θ) representing all possible 

lines that could pass through the point. It is referred to as the voting stage. The sinusoids 

of collinear points in the Hough space cross each other indicating collinearity. There are 

two variants of Hough Transform, Standard and Probabilistic [67]. The primary difference 

between the two variants is the computational complexity. Consider an image that has M 

pixels as edge points and a Hough space divided in Nρ x Nθ accumulators. In case of the 

Standard Hough Transform, each of the M edge pixels is used for computation which 

means that the computational complexity is O(M. Nθ) for the voting stage and O(Nρ. Nθ) 

Figure 6.12: Intersecting Lines in Image Space (left) as Sinusoid in Hough Space (right) 
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for the search stage. However, in the Probabilistic Hough Transform, only a subset m of M 

edge pixels is used for computation which means that the computational complexity is 

reduced to O(m. Nθ) for the voting stage resulting in a faster execution of the algorithm. 

The algorithmic steps to estimate leaf angle from the extracted region of interest 

are as shown in Figure 6.13 and described as follows. 

1. Convert the input image (extracted region of interest) from RGB color space to 

grayscale. 

2. Detect contours on the image to identify the location of the plant in the image. 

It is possible that multiple contours are detected. In such a case, filter the 

contours to identify the largest contour in the image since the largest contour in 

the image most likely belongs to that of the plant. 

3. Detect the direction in which the leaf shoots from the stem using the moments 

of the contour. The moments of the contour help to determine the center of the 

contour. In case the center is present in the right-half of the image, the leaf 

shoots to the left whereas the leaf shoots to the right if the center of mass is 

present in the left-half of the image. The knowledge of direction is important 

since the slope of the straight lines on which the algorithm is based depends 
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upon the direction of leaf from the stem. The slope of the lines on the leaf is 

negative if the leaf shoots from left to right in the image, vice-versa otherwise. 

4. Detect edges on the grayscale image from step 1. The edge image is required as 

input for the probabilistic Hough lines algorithm. 

5. Apply probabilistic Hough lines transform on the edge image and detect all the 

lines on the image. The application of probabilistic Hough transform requires 

the specification of a vote range i.e., the level of confidence that the 

probabilistic Hough lines algorithm has that a group of points forms a straight 

line. The vote range for the current image analysis is set to 180 and lowered by 

10 on the subsequent iteration in case no lines are detected by the probabilistic 

Hough lines function in the current iteration. Other parameters that are input to 

the algorithm are minimum line length i.e., minimum length that any detected 

line is required to be and maximum line gap i.e., the maximum gap between 

two lines in order for them to be considered separate lines. If the gap is lower, 

the lines are merged together. A value of 10 for minimum line length and 50 for 

maximum line gap are used for the majority of the images in the dataset. Since 

the parameters are tunable, a universal value that works for any image is hard 

to define. It is required to be evaluated on a case-by-case basis. 

6. In case no lines are detected when vote range reaches zero, it means that the 

algorithm is not able to detect any straight lines. At that point, the algorithm is 

terminated. However, if lines are detected, a filter to retrieve the lines 

specifically on the leaf is applied. The probabilistic Hough lines algorithm 

determines all the straight lines that meet the criteria, and it is the case that 
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several of the detected lines indicate the stem rather than the leaf. The lines on 

the stem are irrelevant and need to be eliminated from the processing. Two 

constraints, one on slope and another on proximity to image boundary are 

placed on the detected straight lines to filter out the ones that don’t belong to 

the leaf. 

a) Slope Constraint: The leaf is generally oriented in comparison to the stem 

that is almost perpendicular to the ground in the majority of cases. As a 

result, lines whose orientations are between 80 and 90 degrees are ignored 

since they are likely to belong to the stem but not the leaf. 

b) Boundary Proximity Constraint: It is determined empirically that the 

lines that belong to the leaf are at least 100 px apart from the image 

boundary. The lines that are closest to the image boundary are those of the 

stem. Hence, the constraint to ignore lines that are under 100 px in distance 

to the image boundary works to ignore lines that belong to the stem. 

Both constraints are required to be satisfied for a line to be ignored. In certain 

images that orientation of the leaf is between 80 and 90 degrees. In such cases, 
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without the boundary constraint, the lines pertinent to the leaf are ignored. The 

lines that pass the filter are assumed to be present on the leaf. 

7. Compute the slope of each of the lines and find the mode of the slopes. Mode 

refers to the most frequently occurring item among a list of items. 

8. Retrieve the lines with the most frequently occurring slope for further 

processing. Only the lines with the orientation of the mode are considered to 

eliminate any stray lines that may be detected and present on the leaf. 

9. Compute the orientation of the lines made with the horizontal as the tan inverse 

of slope i.e., angle = tan-1(slope). Since all the lines have the same orientation, 

Figure 6.13: (a) Grayscale Region of Interest Image (b) Contours of Region of Interest 
(c) Center of Contours Plotted on Grayscale Image (d) Edges of Contours (e) All Straight 

Lines Detected by Probabilistic Hough Lines Algorithm (f) Filtered Straight Lines on 
Leaf 
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it is sufficient to pick one line and compute its orientation. The orientation made 

by the line is deemed the orientation of the leaf with the stem. 

Alternate Approach: Another approach that is an adaptation of the approach previously 

described is as follows.  

1. The algorithmic steps until step 6 are the same as described above. The 

proposed approach deviates from step 7. 

2. Upon the determination of lines that belong to the leaf, compute the median of 

the orientations of lines pertinent to the leaf. The orientations are given by the 

tan inverse of the slope of the lines. 

3. Apply an orientation threshold (under five degrees is recommended) and 

calculate upper bound and lower bound of orientation where upper bound = 

median orientation + orientation threshold and lower bound = median 

orientation – orientation threshold. 

4. Apply the upper bound and lower bound as filtering criterion and identify the 

lines whose orientations lie within the bounds of orientation. The retrieved lines 

have an orientation that is within x degrees of each other where x is the 

orientation threshold. 

5. Merge the lines that are close to each other by a certain orientation threshold. 

In other words, apply an orientation threshold (smaller than the orientation 
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threshold applied in step 3) and create a single line segment whose orientation 

is the average of each of the line segments within the threshold. 

6. Repeat step 5 by increasing the orientation threshold each time until only a 

single line segment is left.  

7. The orientation of the line segment is the orientation between the leaf and stem. 

Note: While both approaches provide quality outcomes, the alternate approach is more 

complex to understand and implement.  

 6.1.4 Validation Mechanism 

 A mechanism to ensure that the estimation made by the aforementioned algorithm 

is devoid of flaws is developed. The idea is to split the region of interest image into two 

and consider the half that is farthest from the image boundary. The algorithm is applied on 

the half of the image farthest from the image boundary. In theory, the estimation made by 

the algorithm on the original region of interest image and the cropped image is the same 

(or highly similar). Figure 6.14 (a) and 6.14 (b) show an instance where the region of 

interest and cropped region of interest yield the same result upon the application of the 

algorithm. A tolerance threshold which indicates the allowable discrepancy in estimations 

is defined. Any estimations that violate the tolerance threshold may be manually evaluated 

and corrected. Figure 6.14 (c) and 6.14 (d) show an instance where the estimations on 
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region of interest and cropped region of interest images yield results that exhibit a high 

degree of variance. 

 6.1.5 Impact of assuming a Vertical Stem 

The angle estimated between the leaf and stem assumes that the stem is a vertical 

line. While stems are close to being vertical, they are not always at a 90°. The estimated 

angle is closest to the actual when the stem is close to or exactly 90°. However, the more 

Figure 6.14: (a) Uncropped Image and (b) Cropped Image Showing Identical 
Orientation Estimates (c) Uncropped Image and (d) Cropped Image Showing Varying 

Orientation Estimates 
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deviant stem is from being a vertical, the more deviant the estimated angle is from the 

actual. 

 6.1.6 Impact of Image Sharpness 

A key factor that impacts the outcome of the algorithm is image sharpness. 

Sharpness describes the clarity of detail in a photo. The aspects of resolution and acutance 

primarily impact sharpness of an image. Since the proposed algorithm relies on detecting 

lines that are present along the leaf, it is imperative that the lines on the leaf be sharp so the 

lines may be identified easily. Figure 6.15 shows the algorithm applied on the original and 

sharpened version of the original image. The lack of sharpness leads to the algorithm’s 

faulty behavior on the original image whereas the algorithm correctly detects lines along 

the leaf on the sharpened version of the image.  

 

The OpenCV-Python library is used to increase the sharpness of the images. The key 

parameter that[A24] is required is the kernel. A kernel 
0 −1 0

−1 5 −1
0 −1 0

 of shape 3 x 3 is used 

Figure 6.15: (a) Original Image (b) Sharpened Image 
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to sharpen an image. It is empirically determined that a sharpness of 0.7 or higher is 

desired for efficient functioning of the algorithm.  

 6.1.7 Multiple Leaf and Stem Detections 

In certain cases, the trained Mask R-CNN model detects multiple leaf and stem 

instances on a given image. Figure 6.16 shows two instances where multiple leaf and stem 

instances are detected. The default behavior of the algorithm is to consider the largest 

contour in the image as the valid instance. However, it may be flawed in cases where the 

misidentified instance is larger than the actual leaf and stem instance. The validation 

mechanism defined prior is able to detect the failures due to multiple instances. 

Figure 6.16: Multiple Leaf-Stem Instances in a Single Image 
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 6.1.8 Results 

The algorithm is applied on each of the image from the Summer_2015-Ames_ULA 

and Summer_2015-Ames_MLA datasets and the orientation between leaf and stem is 

estimated. The results are verified against the orientation estimations made by two graduate 

students at Iowa State University. The students worked independent of each other as they 

arrived at their estimations. The students used the ImageJ tool to estimate the orientations. 

ImageJ is a Java-based image processing tool that was developed at the National Institutes 

of Health and Laboratory for Optical and Computational Instrumentation. It runs on Linux, 

Mac OS X and Windows in both 32-bit and 64-bit modes. The features that ImageJ 

provides for analysis of images is the measurement of area, mean, standard deviation, min 

and max of selection or entire image, and angles. The angle measurement feature of ImageJ 

was used by the students to measure the orientation of the leaf. ImageJ allows the user to 

plot three points on the image that it uses to draw two lines. The angle measurement tool 

computes the angle between the two lines. Figure 6.17 shows the angle estimation made 

by plotting two lines (shown in yellow) and the result window output by ImageJ. 

Figure 6.17: (left) Lines drawn for Angle Measurement (right) Measurement Output by ImageJ 
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The estimations made the students and algorithm are compared using a metric known as 

Cosine Similarity. Cosine Similarity is the cosine of the angle between two vectors that are 

typically non-zero and within an inner product space.  It is useful to compare the similarity 

between two vectors represented in a higher-dimensional vector space. Mathematically, it 

is defined as the division between the dot product of vectors and product of the magnitude 

of each vector and is expressed as, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝐴. 𝐵/||𝐴|| ||𝐵|| where A and B are the 

two vectors compared for similarity. The measure is expressed as a value between 0 and 1. 

The Scikit-Python library is used to programmatically estimate the cosine similarity and 

matplotlib is used to plot a line chart of the datapoints. Figures 6.18 and 6.19 show the leaf 

angle estimates made by the proposed algorithm and student1, and proposed algorithm and 

student 2 respectively on the Summer_2015-Ames_MLA dataset which consists of 955 

images. The cosine similarity between the proposed algorithm and student 1 is 0.98 which 

indicates a ten-degree difference in orientation between vectors, and proposed algorithm 

Figure 6.18: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 1 
for Summer_2015-Ames_MLA Dataset 



189 

 

and student 2 is 0.99 which indicates an eight-degree difference in orientation between the 

vectors[A25].  

 

Figure 6.19: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 
2 for Summer_2015-Ames_MLA Dataset  

Figures 6.20 and 6.21 show the leaf angle estimates made by the proposed algorithm and 

student1, and proposed algorithm and student 2 respectively on the Summer_2015- 

Figure 6.20: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 
1 for Summer_2015-Ames_ULA Dataset 
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Ames_ULA dataset which consists of 872 images. The cosine similarity between the 

proposed algorithm and student 1 is 0.998 which indicates a four-degree difference in 

orientation between vectors, and proposed algorithm and student 2 is 0.992 which indicates 

a seven-degree difference in orientation between the vectors. Furthermore, an intuitive 

outlier analysis is performed on the results to gain insight into the similarity of estimation 

between the different techniques. The rule used to identify an outlier is, “the difference in 

estimates between proposed algorithm and a student is greater than 7 degrees”. The 

analysis assumes that the estimations made by the students are accurate. However, the 

estimations by the students also have a variance between them. The variance in student 

estimates, given by Σ(e1 − e2)/n where e1 and e2 are estimates made by students 1 and 2 

respectively, and n is the total size of the data sample, are 2.57 and 2.07 on Summer_2015-

Ames_MLA dataset and Summer_2015-Ames_ULA dataset respectively. Hence, the 

seven degree range to identify outliers is reasonable. Applying the outlier rule, a total of 

31 outliers on the Summer_2015-Ames_MLA dataset and 18 outliers on the 

Figure 6.21: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 
2 for Summer_2015-Ames_ULA Dataset 
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Summer_2015-Ames_ULA dataset are detected. While a higher number of outliers is 

detected upon the initial application of the algorithm, part of them are due to issues with 

image sharpness and incorrect mask detections made by Mask R-CNN. Such outliers are 

fixed manually by applying appropriate fixes to the images. Among the estimates that are 

inliers, a variance of 3.2 degrees and 2.9 degrees is identified between the proposed 

algorithm and student 1, and proposed algorithm and student 2 respectively on the 

Summer_2015-Ames_MLA dataset whereas a variance of 2.6 degrees and 2.8 degrees is 

identified between the proposed algorithm and student 1, and proposed algorithm and 

student 2 respectively on the Summer_2015_Ames_ULA dataset. The results show that the 

proposed algorithm outputs results that highly co-relate with the manual measurements 

made by the students demonstrating the feasibility of the proposed automated technique 

for leaf angle estimation. 

 6.1.9 Code Availability 

The code for the algorithm is available for download at 

https://github.com/marven22/Leaf-Angle-Estimation.git . The codebase is developed in an 

Anaconda environment and uses Python 3.8.3 and OpenCV 4.4.0.44 as the primary set of 

libraries for image processing.  

 6.1.10 Future Work and Conclusions 

The proposed algorithm is implemented in Python using the OpenCV library. Moving 

forward, the algorithm will be implemented as part of a real-time android application so 

plant scientists and individual enthusiasts may leverage the application on a day-to-day 

basis. The bottleneck for the mobile application is the use of neural network models. The 
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current Mask R-CNN network will have to be adapted so it works on mobile devices using 

networks such as Mobilenet SSD v1/v2 as the backbone in place of the current ResNet-101 

model. Running models with large architectures on resource constrained devices is a 

challenge that needs to be overcome. The annotation of images is another bottleneck that 

is laborious and time consuming. The use of eye tracking hardware to annotate the images 

has the potential to greatly speed up the process of annotating images. The use of a screen 

to act as the common background over the plants as images are captured is an efficient way 

to help identify the location of the plant in the image. In case a routine is established, the 

region of interest in the image may be identified using simple image processing. 

 Overall, the proposed technique demonstrates the idea of estimating angle between 

leaf and stem using instance segmentation neural networks and image processing, a task 

that is laborious and cumbersome when performed manually. The estimation of leaf angles 

using automation is novel and has the potential to turn into one-of-a-kind utility for the 

agricultural community upon its implementation as a mobile app.  

 6.2 Plant Cover Analysis for Companion Planting 

Companion planting is the idea of growing multiple species of plants in close 

proximity so that they reap mutual benefits, such as improved crop yield, soil quality and 

pest control. One of the foremost instances of companion planting in North America is that 

of ‘three sisters’ pioneered by the Native Americans. The plant varieties of beans, corn and 

squash constitute the ‘three sisters’ where their cultivation in close proximity led to the 

benefits of shelter and growth support for plants in addition to improved soil quality and 

decreased soil erosion [29]. Other combinations of plant varieties that complement each 
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other’s growth include artichoke and cucumber, beetroot and onion, and tomatoes and 

carrot whereas the combinations of parsnip and carrot, potatoes and pumpkin, and peas and 

garlic are instances of poor companions that deter one another’s growth and development 

[82]. Hence, the discovery of companion plant species that are able to co-exist is of 

significant value to the agricultural sector. A key metric that helps estimate the growth of 

plant species is Fractional Vegetation Cover (FVC). FVC is defined as the percentage of 

the ground surface covered by vegetation elements from the overhead perspective [2]. 

Different techniques such as Point-and-Line cover Estimation, Plot-based cover 

estimation, Ocular-based estimation and semi-quantitative ocular-based estimation are 

available to estimate FVC at a certain location. However, the techniques currently available 

are labor-intensive, stochastic and subjective in nature. In addition, the techniques are 

prone to overestimating the vegetation cover due to field survey design [63]. The need for 

a technique that precisely analyzes the amount of FVC persists. The article proposes a 

technique to precisely estimate the amount of FVC in an area from images by drawing 

inferences from and extending upon the Daubenmire method, a semi-quantitative ocular-

based FVC estimation technique. While current techniques estimate the percentage of FVC 

within images, the proposed technique provides an estimate on the area occupied by FVC 

in metric units in addition to percentage. The precise estimation of the FVC helps the plant 

scientists make discoveries of plant varieties that make good companions and offer well-

informed suggestions to the agrarian community.  

 6.2.1 Related Work 

The development of vegetation cover rating scales started in the early 1900s. The 

most widely accepted scale at the time was the rating scale proposed by Braun-Blanchet 
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[16]. The scale involved estimating and classifying the vegetation cover within a certain 

area into one of five cover classes from one to five where one indicated cover less than five 

percent, two indicated cover between five and twenty-five percent, three meant cover 

between 25% and 50%, four meant cover between 50% and 75%, and five meant cover 

between 75% and 100%. 

RF Daubenmire [16] proposed the canopy coverage method in 1959. It was a semi-

quantitative ocular-based estimation technique and regarded as one of the most accurate 

methods for vegetation cover analyses over the years. It involved meticulously placing a 

20- x 50- cm quadrat along a tape on permanently located transects and classifying the 

amount of vegetation cover into one of six cover classes. The cover classes are similar to 

Braun-Blanchet’s classes with the difference being that cover class five was divided into 

two classes where cover class five indicated vegetation cover between 75% and 95% and 

class six indicated vegetation cover between 95% and 100%. 

Booth, Cox and Berryman [17] proposed SamplePoint, a free vegetation cover 

estimation tool from digital images using manual point sampling. The application shows 

users multiple single-pixel sample points (defaults to 100) on the image and allows them 

to classify the pixel as belonging to one of nine categories. The application uses the 

classifications made by the users to identify the percentage of pixels belonging to each of 

the nine categories. The results are output to an excel spreadsheet and have been 

comparable to the results from the most accurate field experiments for vegetation cover 

estimation. 

Systat Software Inc. [163] provides specialized scientific software products for 

research in fields such as environmental sciences, life sciences and engineering. SigmaScan 
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Pro 5.0, an image processing software tool developed by Systant Software Inc. may be 

used to estimate the percentage of pixels that belong to vegetation from digital imagery. 

While the tool was not developed for vegetation cover estimation, it is able to be adapted 

for the use case. 

Patrignani and Ochsner [124] developed a software tool named Canopeo to estimate 

the fractional green canopy cover from digital images. The tool was developed using 

Matlab and red-to-green (R/G), blue-to-green (B/G) and excess green index (2G-R-B). 

Desktop and mobile versions of the tool for android and iOS are available as free 

downloads. The tool provides a percentage estimate of the amount of green cover within 

an image and provides a grayscale image highlighting the green cover. However, the tool 

doesn’t provide the vegetation cover estimate in metric units making it hard to reproduce 

results among experiments across individuals due to difference of height of image capture. 

Louhaichi, Hassan, Clifton, and Johnson [85] proposed VegMeasure, a software 

tool that processes digital imagery collected in a specialized manner known as Digital 

Vegetative Charting Technique (DVCT). VegMeasure provides classification of imagery 

and measures change over time. However, DVCT requires a digital camera with built-in 

GPS that can be mounted to a stand, so images are captured from a fixed height with lens 

pointed orthogonal to the surface. VegMeasure requires that the camera, its height and 

orientation be kept constant throughout the image capture process for its estimation and 

analysis. 

Zhang, Wang, and Elfaki [197] conducted research in the area of weed 

identification using imaging technology and spectroscopy. It was determined that location, 

color, texture, and shape feature of weeds and crops were the major criteria for weed 
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detection sensor structure and algorithm design. Imaging-based weed sensors were 

compared with optical weed sensors as part of the experiment. Statistical and neural-

network classification models were also used as part of the experiment.  

Laliberte, et. al [76] demonstrated that object-based image analysis upon the 

conversion of RGB scale images to IHS (intensity-hue-saturation) scale images is a viable 

approach for estimating total cover of vegetation, bare soil, and fractional components of 

green and senescent vegetation. The image analysis tool used for the experiments was 

eCognition where the image was segmented into homogenous areas based on three 

parameters: scale, color and shape. 

 6.2.3 Materials and Methods 

The breeders at the Land Institute in Salina, KS aim to estimate FVC across 

multiple plant varieties with the goal to identify companion plant species and make quality 

recommendations may be made to the farming community. The design of the experiment 

is inspired by the Daubenmire canopy coverage method and visually depicted by Figure 

6.22.  

Figure 6.22: Daubenmire Quadrat with Ground Cover Classes [16] 



197 

 

Briefly, the Daubenmire technique involves using a 20 cm x 50 cm quadrat around 

vegetation cover along a tape on permanently located transects. The vegetation within the 

quadrat is measured by trained plant scientists based on ocular estimation. Since estimating 

the precise amount of plant cover from ocular observation is farfetched, plant scientists 

classify (estimate) the plant cover into one of six cover classes labelled one through six, as 

defined by Daubenmire. Membership in class one indicates crop cover less than five 

percent, membership in class two indicates crop cover between five and twenty-five 

percent, membership in class three indicates crop cover between 25% and 50%, 

membership in class four indicates crop cover between 50% and 75%, membership in class 

five indicates crop cover between 75% and 95%, and membership in class six indicates 

crop cover between 95% and 100%. As part of the experiment, a PVC frame of known 

dimensionality is dropped across multiple rows of crops as shown in Figure 6.23(a) and 

the amount of vegetation cover within each of the segments of the PVC frame is estimated 

independently at regular intervals over a stipulated time frame. Since the experiment 

progresses over time, accurate readings at each time step are essential to estimate the 

growth of vegetation. An algorithm that leverages image processing and analysis is 

proposed to eliminate the need for ocular estimation of FVC and measure FVC from digital 

images with precision.  The development of the algorithm is performed on images from 

two datasets where one of the datasets comprises 33 images that capture alfalfa at a 

resolution of 3024 x 4032 pixels and the other comprises 177 images that capture a one-

segment PVC frame laid around plants of Kura at a resolution of 5184 x 3456 pixels, as 

shown in Figure 6.23. Broadly, the algorithm is a three-step process where in the first and 

second steps are the detection and extraction of the PVC frame and vegetation cover from 
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the image respectively. The final step is the estimation of the amount of vegetation cover 

within each of the segments of the PVC frame.  

The algorithm is developed in Python using the OpenCV image processing library. The 

code for the algorithm is available at: https://github.com/marven22/Fractal-Vegetation-

Cover-Estimation.git . 

 6.2.3.1. Noise Removal and PVC Frame Extraction from Image 

In addition to vegetation cover within the PVC frame, the image consists of area outside 

the PVC frame. The area outside the PVC frame is irrelevant in terms of vegetation cover 

estimation within the grid. Hence, the first step of the process is the meticulous 

determination of the region of interest, i.e., the PVC frame and pixels within the PVC 

frame. The image processing concepts that are relevant to the process are HSV color space, 

Perspective Transform and ‘bitwise and’ operation. 

Figure 6.23: (a) Vegetation Cover within Five-Segment PVC Frame 
(b) Kura Plant within One-Segment PVC Frame 
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HSV Color Space: HSV refers to Hue, Saturation and Value which make up the co-

ordinates for the color space, as shown in Figure 6.24.  

It is a cylindrical color space where the radius represents Saturation, the vertical axis 

represents Value, and the angle represents Hue. Intuitively, Hue is the dominant color 

visible to an observer, Saturation is the amount of white light mixed with a hue and Value 

is the chromic notion of intensity. As Value decreases, the color gets closer to black 

whereas the intensity of the color increases as Value increases.  

Perspective Transform: Perspective Transform corrects the perspective of an image to 

bird’s eye or top view. In other words, it helps view the image as if it were captured with 

the camera held orthogonal to the surface. The application of the transform immensely 

helps reduce skew in images captured using freehand. The downside to images being 

skewed is that objects in skewed images appear to be of a different size and orientation in 

comparison to their true dimension. In the context of the current algorithm, the application 

Figure 6.24: HSV Color Scheme 
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of the perspective transform to the images helps reduce skew, thereby making the process 

of identifying the PVC frame easier. 

Bitwise AND Operation: The ‘bitwise and’ operation is used to extract a specific region 

from an image using a mask. The mask is a grayscale image provided to indicate the region 

of the image required to be extracted. Typically, the pixels of the mask are made to be 

either white (255) or black (0). The original image is also converted to grayscale and all 

the regions of the image that are not a black (0) pixel are set to white (255). The ‘bitwise 

and’ operation operates on a pixel-by-pixel basis where it identifies the common regions 

between the two and sets them to white (255). 

The algorithmic steps to remove noise and extract the PVC frame are described as follows 

and the results produced after each step are shown in Figure 6.25. 

Figure 6.25: (a) Original Image (b) Original Image in HSV Color Scheme (c) Grayscale 
Image of PVC Frame 

(d) Contour of the PVC Frame (e) Original Image without Noise (f) Extracted PVC Frame 
from Original Image 
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2. Convert the detected pixels of the PVC frame to grayscale and apply a median blur on 

the image to smoothen the image, if necessary. 

3. Perform canny edge detection on the image and detect contours on the edges obtained. 

4. Identify the largest contour of the contours detected. The idea is that the largest contour 

runs along the circumference of the PVC frame since the contours of each of the individual 

segments are significantly smaller in comparison to the outer contour which encapsulates 

the PVC frame. 

5. Plot the minimum area rotated rectangle around the contour of the PVC frame.  

6. Perform a ‘bitwise and’ operation on the input image using the minimum area rotated 

rectangle as the mask. Doing so precisely identifies the location of the PVC frame on the 

image. The region of the image within the PVC frame is the only portion of the image to 

be processed for vegetation cover estimation. 

7. Apply perspective transform on the image to view the image from the top view. It 

corrects skew and makes the task of detecting segments on the PVC grid easier. 

8. Convert the output of step 7 to HSV format and apply the lower and upper ranges 

mentioned in step 1 to precisely extract the PVC frame. 

 6.2.3.2. Vegetation Cover Detection using Simple Linear Iterative Clustering 

On the region of interest identified in the previous step, Simple Linear Iterative 

Clustering (SLIC) is applied to segment the image into multiple super-pixels. To elaborate, 

the process of partitioning an image into multiple segments by assigning a label to every 

pixel in the image is called image segmentation. The idea is that segments with the same 
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label are perceptually similar and share common characteristics. Image segmentation helps 

to identify similar regions in images and extract semantic information from them. While 

segmenting images by pixel is an intuitive approach, segmenting by super-pixel is more 

optimal. A super-pixel is defined as a group of pixels that perceptually belong together by 

sharing common characteristics such as pixel color, intensity and other low-level 

properties. Modern cameras result in images of high resolution. While the level of detail 

within the images is excellent, it overburdens the image processing algorithms used to 

process the images resulting in longer runtimes. The key benefit to using super-pixels over 

pixels is that they shrink the pixel space required to be processed by the algorithm and in 

turn, lead to shorter runtimes without compromising accuracy. In addition, a single pixel 

by itself does not provide any semantic information whereas a super-pixel provides 

semantic information that helps make key discoveries within images. 

Simple Linear Iterative Clustering (SLIC): SLIC is an image processing technique that 

clusters pixels to generate super-pixels based on their color similarity and proximity in the 

Figure 6.26: CIELAB Color Space 
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image plane. SLIC uses the five dimensional [LABXY] space for the clustering where 

[LAB] is the pixel color vector in CIELAB color space and [XY] is the pixel position on 

the XY plane [166]. The CIELAB color space, as shown in Figure 6.26, is defined by the 

International Commission on Illumination (CIE) to improve upon the fact that the 

conventional RGB color space only allows for the representation of 40% of the colors that 

the human eye can perceive. The L channel represents lightness which ranges from black 

to white, the A channel represents the value on the axis that ranges from green to red and 

the B channel represents the value on the axis that ranges from blue to yellow. A key 

characteristic of the CIELAB color space is that its dimensions are non-linearly scaled in 

the sense that spatial distance between two colors corresponds to perceptual distance and 

is uniform across the color space. For instance, consider two pairs of different colors that 

appear to be equally similar such as blue and light blue, red and light red. When Euclidean 

distance is computed between the two pairs of colors in the CIELAB color space, it is 

observed the Euclidean distance between both pairs of colors is the same. 

In order to use the Euclidean distance measure in the five dimensional [LABXY] space, 

the spatial distance between two points is required to be normalized since it is subject to 

image size. Consider an image containing N pixels and let K be the number of super-pixels 

in the segmented image. The size of each super-pixel is N/K, and a super-pixel center is 

present at every grid interval S = √N/K. The center of each of the super-pixels Ck = [Lk, 

Ak, Bk, Xk, Yk] where k = [1, K] is chosen at regular grid intervals S. The spatial extent of 

each of the super-pixels is approximately S2 the area of a super-pixel and the pixels that 

are associated with any super-pixel center lie within a 2S x 2S area around the super-pixel 

center on the XY plane [5]. Euclidean distances in CIELAB color space are perceptually 
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meaningful for small distances but not large distances. The distance measure Ds used in 

SLIC is the aggregate of the LAB distance and XY plane distance normalized by the grid 

interval S. The mathematical notations are as follows: 

LAB distance, Dlab = √ (lk - li)2 + (ak – ai)2 + (bk – bi)2 

XY plane distance, Dxy = √ (xk - xi)2 + (yk – yi)2 

SLIC distance measure, Ds = Dlab + (m/S) * Dxy where m is the factor that controls 

compactness of the super-pixel. The greater the value of m, the more compact the cluster. 

The SLIC algorithm is similar to any other clustering algorithm in the sense it begins by 

sampling K regularly spaced cluster centers and moving them to seed location 

corresponding to the lowest gradient position in a 3 x 3 neighborhood. Image gradients are 

computed as G (x, y) = ||I (x + 1, y) – I (x – 1, y) ||2+ ||I (x, y + 1) – I (x, y – 1) ||2 where I 

(x, y) is the LAB vector corresponding to the pixel at position (x, y) and ||. || is the L2 norm 

[163]. Each pixel in the image is associated with the nearest cluster center whose search 

area overlaps the pixel. After all the pixels are associated with the nearest cluster center, a 

new center is computed as the average LABXY vector of all the pixels belonging to the 

cluster. The process is iteratively repeated until convergence. 

The regions that indicate plant cover are identified by inferring from the semantics 

of the super-pixels put out by SLIC. The steps in the process are described as follows.  

1. Segment the image into a pre-defined number of super-pixels using the SLIC function 

from the OpenCV image processing library. It is observed that segmenting the image into 

300 super-pixels identifies the plant cover best although the algorithm may execute faster 
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at the expense of accuracy if the image is segmented into fewer super-pixels. The image 

segmented into super-pixels is shown in Figure 6.27(a). 

2. Find the average color value within each of the super-pixels and assign it as the label 

that represents the super-pixel. It ensures that a given super-pixel has only one color. 

3. Find unique labels within the image and apply a filter that identifies the plant cover. An 

observation that is made based on experimentation is that the super-pixels that consist of 

plants are green. Hence, all the green labels are identified, and a grayscale image is created 

where the locations of green labels are plotted in white (255). The image represents the 

vegetation cover within the image. 

4. (Optional) Perform a ‘bitwise and’ operation on the image using the grayscale image 

from step 3 as the mask. The resulting image shows the vegetation cover in the image 

Figure 6.27: (a) Super-pixel Segmentation of Original Image (b) Detected Vegetation 
Cover in RGB Color Space 
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within each of the segments of the PVC frame in the 3-channel RGB color space. The step, 

whose output is as shown in Figure 6.27(b), is merely to observe the vegetation detected 

within the image for user validation but is not required for analysis. 

6.2.3.3. Vegetation Cover to PVC Frame Segment Association 

Once the PVC frame and vegetation cover are identified, the next step in the process 

is to associate the vegetation cover with each segment of the PVC frame. The Hough Lines 

Transform is used to detect each of the segments of the PVC frame. The Hough Lines 

Transform is typically used to identify straight lines in images [7][35]. Typically, straight 

lines are represented using the slope-intercept method as y = mx + c where m is the slope 

and c is the y-intercept. However, Hough Transform relies on representing straight lines 

using the pair of polar co-ordinates, (ρ, θ). The first parameter, ρ, is the shortest distance 

from the origin to the line. The second parameter, θ, is the angle between the x-axis and 

distance line. The equation of the straight line in polar co-ordinate system is given by, ρ = 

x * cos(θ) + y * sin(θ) where (x, y) is a point on the line. The Hough Transform takes the 

edges from a binary image as input. The Hough Transform maps each of the pixels to 

multiple points in Hough (or parameter) space. An edge pixel is mapped to a sinusoid in 

2D parameter space, (ρ, θ) representing all possible lines that could pass through the point. 

It is referred to as the voting stage. The sinusoids of collinear points in the Hough space 

cross each other indicating collinearity. There are two variants of Hough Transform, 

Standard and Probabilistic [35][69]. The primary difference between the two variants is the 

computational complexity. Consider an image that has M pixels as edge points and a Hough 

space divided in Nρ x Nθ accumulators. In case of the Standard Hough Transform, each of 

the M edge pixels is used for computation which means that the computational complexity 



207 

 

is O(M. Nθ) for the voting stage and O(Nρ. Nθ) for the search stage. However, in the 

Probabilistic Hough Transform, only a subset m of M edge pixels is used for computation 

which means that the computational complexity is reduced to O(m. Nθ) for the voting stage 

resulting in a faster execution of the algorithm. 

The algorithmic steps to associate vegetation cover with PVC frame is described as 

follows. 

1. Consider the image of the PVC frame obtained as the output in section B.  

2. Detect straight lines on the image using the Probabilistic Hough Lines transform. 

The detected line segments indicate the segments of the PVC frame. A vote measure of 

180 is used to start the search for straight lines. In case no lines are identified at the vote 

range, it is lowered by 10 until lines are detected.  

3.   Filter the line segments to identify the ones that run along the segments of the 

PVC frame. Any given segment in the PVC frame should have four lines with slope ~0.0 

i.e., horizontal or nearly horizontal lines and two lines with infinite slope i.e., vertical or 

nearly vertical lines associated with it. In order to detect the lines, parallel lines with slopes 

less than 15 and slopes higher than 100 are retrieved. Lines with slopes under 15 are 

oriented at less than 10 degrees with the X-axis whereas lines with slopes above 100 

approaching infinity are oriented at over 45 degrees with the X-axis. It is possible that more 

lines than expected are detected along the PVC frame segment. In order to contain only the 

expected six lines, any overlapping line segments or ones that are closer in position and 

orientation than a certain threshold are merged together into a single line segment. All line 

segments that are separated by less than 10 pixels in distance and 0.2 degree in orientation 
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are grouped together and only a single line segment from amongst the group is considered 

for analysis.  

4. Extend the line segments along the PVC frame segments by a factor of five (or 

higher) to ensure that the horizontal line segments intersect with the vertical line segments 

in case they do not. 

5. Determine the segment of the PVC frame to which each of the line segments 

belong based on the position of the line segments in the image. In case of PVC frames that 

contain multiple segments, the association of line segments to the PVC frame segments 

helps estimate the amount of vegetation cover within the PVC frame segments. 

6. Consider the line segments associated with each segment of the PVC frame and 

determine the innermost lines i.e., two inner vertical and two inner horizontal lines. Find 

the four points of intersection of the innermost lines. The idea is to identify the inner 

rectangles (polygons) within the PVC frame. 

7. Create a grayscale image and plot a polygon using the points of intersection as 

the four vertices of the polygon. Fill the polygon in white (255), as shown in Figure 6.28(b). 

In a PVC frame with n segments, n polygons are obtained where each of the polygons 

indicates a segment within the PVC frame.  
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8. Perform a ‘bitwise and’ operation on the output of section 5.2.3(B), as shown in 

Figure 6.27(b), using each of the grayscale images as the mask. The pixels indicating 

vegetation cover are plotted in white (255), as shown in Figure 6.28(c). 

 6.2.3.4. Amount of Vegetation Cover Estimation 

The percentage of vegetation within each segment and the amount of vegetation 

cover in metric units are estimated by the algorithm. The ratio of the number of pixels that 

indicate vegetation cover and the number of pixels present in each segment of the PVC 

frame gives the percentage of vegetation cover within each PVC frame segment. In other 

words, the ratio of white pixels in images obtained from step 7 and step 8 gives the 

percentage of vegetation cover. The estimation of vegetation cover in metric units requires 

the knowledge of dimensions of the PVC frame. The length and width of the inner 

Figure 6.28: (a) Detected Hough Lines for the PVC Frame with Vegetation Cover (b) 
Polygon Mask for Segment 3 (c) Vegetation Cover within Segment 3 
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rectangles of the PVC frame shown in Figure 6.23(a) are 19.75” and 6.75” respectively. 

The number of pixels present within the rectangle are obtained from polygon masks plotted 

in step 7 of section 5.2.3(C). Please note that each polygon might have slightly different 

pixel count since the image may be partly skewed. Since the number of vegetation cover 

pixels are known from step 8 of section 5.2.3(C), the area of vegetation cover is given by 

the equation, 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟 (𝑠𝑞. 𝑖𝑛)  =

 (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 (𝑠𝑞. 𝑖𝑛) 𝑥𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠)/

 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑝𝑖𝑥𝑒𝑙𝑠) 

 6.2.4 Results and Discussion 

In the absence of ground truth measurements for the vegetation cover within each 

of the PVC frames, the proposed algorithm is evaluated on two applications SamplePoint 

and Canopeo. SamplePoint is a desktop application that facilitates foliar cover 

measurements from nadir imagery by superimposing a systematic or random array of up to 

225 crosshairs targeting single image pixels and provides a platform for simple, manual 

classification of the pixels.  SamplePoint is a product that has been developed in 

collaboration with the USDA and serves as the benchmark for vegetation cover estimation. 

Canopeo is a tool available as desktop and mobile applications to estimate fractional 

vegetation canopy cover. Both SamplePoint and Canopeo provide vegetation cover 

estimates as a percentage of the image size but not in metric units. It is perhaps due to the 

lack of a reference object in the image. The proposed algorithm is compared to the 

measurements provided by SamplePoint and Canopeo across 100 Kura plant images, 

similar to Figure 6.23(b). The Cosine Similarity [190] measure is used to compare 

similarity among the three measures. Cosine Similarity is the cosine of the angle between 
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two vectors that are typically non-zero and within an inner product space.  Mathematically, 

it is defined as the division between the dot product of vectors and product of the magnitude 

of each vector and is expressed as, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝐴. 𝐵/||𝐴|| ||𝐵|| where A and B are the 

two vectors compared for similarity. A plot of the estimates of vegetation cover across the 

100 images using each of the three measures is shown in Figure 6.29. 

 

The cosine similarity measure between the proposed algorithm and SamplePoint is 0.995 

whereas that between the proposed algorithm and Canopeo is 0.99. It is worth noting that 

the cosine similarity between SamplePoint and Canopeo is 0.99. The results indicate a high 

degree of cadence among the techniques and demonstrates the quality of results produced 

by the proposed algorithm. As observed from the median and mean values, the results 

produced by the proposed algorithm lie between that of the results produced by 

SamplePoint and Canopeo. The median of the proposed algorithm is 12.04 whereas that of 

SamplePoint and Canopeo are 13 and 9.14 respectively. The mean of the proposed 

algorithm is 12.40 whereas that of SamplePoint and Canopeo are 14.21 and 10.01 

respectively. The key benefit to using the proposed technique is that the algorithm provides 

Figure 6.29: Vegetation Cover Estimates by the Proposed Algorithm, 
SamplePoint and Canopeo 
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the measurement of the amount of vegetation cover in metric units along with percentage. 

It significantly improves reproducibility of the results across multiple individuals 

conducting the experiments since it eliminates the dependence of the results on the height 

from which the image is captured. 

 6.2.5 Future Work and Conclusions 

Proposed is an algorithm to estimate the FVC in an area from images to aid in 

Companion Planting. The proposed algorithm provides an estimate of the vegetation cover 

as a percentage of the image size and an absolute value in metric units. The algorithm relies 

on the presence of a PVC frame of known dimensionality in the image to be used as 

reference to measure the vegetation cover in metric units. The results of the proposed 

algorithm when compared to SamplePoint and Canopeo exhibit a high degree of similarity. 

Moving forward, the algorithm will be implemented as a mobile application that the users 

may download onto their devices. The code for the algorithm is also made open source for 

enthusiasts to use and develop further. 
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Chapter 7 - Development Tools 

The research conducted as part of the work for each of the chapters relied on the availability 

of several tools and libraries such as OpenCV, TensorFlow, and PyTorch. The availability 

of libraries helped in performing tasks such as baselining, diagnostics and troubleshooting 

along with the development of algorithms themselves. The thesis resulted in the 

development and usage of three tools for image processing that have been extensively used. 

While the logic and code for the tools may be available on the internet in bits and pieces, 

the current chapter documents and describes the tools for readers to comprehend and 

leverage the tools on their research journeys. Each of the tools is implemented in OpenCV-

Python. The three image processing tools are: 

1. Image Thresholding Trackbar 

2. Semi-automated Image Cropper 

3. Eraser 

7.1 Image Thresholding Trackbar 

Image thresholding is the technique of segmenting images to extract information. 

The applications of image thresholding are widespread in the area of digital image 

processing. Conventional cameras capture information in the RGB color scheme where R 

is Red, G is Green, and B is Blue. An image is an amalgamation of several pixels of the 

same or varying color intensities. The intensities of red, green and blue in an RGB image 

range from 0 to 255 where 0 indicates 0% intensity and 255 indicates 100% intensity. In 

the majority of image processing applications, determining the appropriate intensities of 
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red, blue, and green is critical to extract key information from images. However, 

determining the intensities is a task that requires meticulous curation due to each of the 

channels having a profound impact on the content of the image. The image thresholding 

tracker helps to curate the values for the red, green, and blue channels so researchers are 

able to extract information from images easily. Furthermore, the RGB color space is not 

always the most feasible to extract information from images. Other color spaces such as 

grayscale, HSV, and LAB provide access to certain detail that the RGB color space doesn’t 

necessarily provide. The proposed image thresholding trackers help threshold images in 

different color spaces such as grayscale, RGB, HSV and LAB.  

7.1.1 RGB Image Thresholding Trackbar 

OpenCV provides a ‘createTrackbar’ function that creates a trackbar. The function 

takes five arguments – trackbar name, window name to which it is attached, default value 

that the trackbar is set at the time of creation, maximum value and callback function which 

is executed every time the value of the trackbar alters. Six trackers, two for each of the red, 

green, and blue channels are created using the ‘createTrackbar’ function of OpenCV. Each 

channel contains two trackbars so a lower bound and upper bound on the channel are able 

to be specified by the user. As the user alters the values corresponding to each of the 

channels, all the pixels that do not lie within the upper and lower bounds for each of the 

channels are subject to thresholding. The process of thresholding involves determining the 

pixels that lie in within the upper and lower bounds set on the trackbar using OpenCV’s 

‘inRange’ function. The function takes three parameters – image, lower bound, and upper 

bound. The upper and lower bounds are input as numpy arrays where each of the numpy 

arrays contains three values – red, green, and blue intensities. The function returns all the 
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pixels that lie within the thresholds of upper and lower bounds. The portion of the image 

that is returned by the ‘inRange’ function is used as the mask in the ‘bitwise_and’ operation 

to extract the desired information from the original image. Figure 7.1 shows the RGB color 

thresholding trackbar in action on the image of rust-stricken wheat leaf held by a plant 

science researcher wearing a purple glove. 

 

Figure 7.1(a) shows the original image of the wheat leaf in the hand of a researcher. 

Assuming that the analysis is to be performed on the leaf, the first step in the analytical 

Figure 7.1: (a) Image of Wheat Leaf in Hand (b) Extraction of Wheat Leaf (c) Upper and 
Lower Thresholds of Red, Green, and Blue Channels 



216 

 

process is the extraction of region of interest i.e., the wheat leaf. Figure 7.1(b) shows the 

extraction of the wheat leaf by the application of RGB thresholding. Figure 7.1(c) shows 

the upper and lower values for the red, green, and blue channels that led to the extraction 

of the leaf. Altering the values further modifies the thresholding. l_r and h_r corresponds 

to lower bound of red and upper bound of red respectively. Likewise, for l_g, l_b, h_g, and 

h_b. The values for each of the channels range from 0 to 255. 

7.1.2 HSV and Lab Image Thresholding Trackbars 

HSV is the acronym for thresholding based on hue, saturation and value. Hue refers 

to the color portion of the model expressed as a number from 0 to 360 degrees. Red is 

represented by values between 0 and 60, yellow by values between 61 and 120, green by 

numbers between 121 and 180, cyan by numbers between 181 and 240, blue by numbers 

Figure 7.2: (a) HSV Color Model of Figure 7.1(a) (b) Extracted Wheat Leaf 
using HSV Thresholding (c) HSV Trackbar 
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between 241 and 300, and Magenta by numbers from 301 to 360 degrees. Saturation 

describes the amount of gray in a particular color and ranges from 0 to 100 percent. 

Reducing the amount of saturation towards zero increases the amount of gray within the 

image and produces a faded effect. Value is synonymous with brightness in the image. It 

is a value that ranges from 0 to 100 where 0 is completely black and 100 reveals the most 

color. Figure 7.2 shows HSV thresholding performed on the wheat plant shown in Figure 

7.1.  

 The Lab color space is a color-opponent space with the dimension L for lightness, 

and A and B to represent color-opponent dimensions based on non-linearly compressed 

CIEXYZ color space coordinates. The Lab color space includes all perceivable colors 

which means that its gamut exceeds that of the RGB color model. In addition, the Lab color 

model is device independent i.e., the colors are defined independent of their nature of 

creation [128]. The range of L is from 0 to 100 whereas that of a and b is 0 to 127. The 

HSV and Lab image thresholding trackbars are created in the same manner as the RGB 

image thresholding trackbar. The only additional step is that the image subject to 

thresholding is converted to the respective color scheme before the application of the steps 

outlined in the creation of RGB thresholding trackbar.  

7.1.3 Grayscale Image Thresholding Trackbar 

The grayscale representation of an image consists of only one channel unlike RGB 

images that consist of three channels. As a result, the grayscale image thresholding trackbar 

consists of only one slider whose value ranges from 0 to 255. The value of 0 represents 

black whereas the value of 255 represents white. Figure 7.3 shows grayscale thresholding 

in action using the grayscale image thresholding trackbar.  
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7.2 Semi-Automated Image Cropper 

The training of convolutional neural networks involves learning key features from 

an image. However, the images acquired from the agricultural field contain plenty of 

background noise in addition to the entity of interest. The training of neural networks on 

images containing noise yields results that are sub-par. In order to avoid such a scenario, 

the neural networks are required to be trained only on the region of interest (ROI). Given 

an image dataset, chances are that the ROI is not present at the same location in each of the 

images. Hence, cropping a certain region from every image in the dataset is not an option. 

In addition, the ROI in each image may be of a different size. One of the requirements to 

train neural networks is that all the training images be of the same size. Different neural 

Figure 7.3: (a) Image of Wheat Leaf in Hand (b) Grayscale Thresholding on Original Image 
(c) Grayscale Image Thresholding Trackbar at 160 
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networks may take images of different size as input. For instance, the state-of-the-art neural 

networks of ResNet-50, VGG-16 and VGG-19 require that the input be of size 224 x 224 

px. While resizing images may be a simple operation, resizing generally leads to distortion 

of the objects in the image rendering the image useless for training. Hence, proposed is a 

semi-automated image cropping tool that extracts the ROI from an image and resizes it to 

a size of the user’s choice without distortion. The proposed tool is a step forward in 

generating image datasets for neural network/ machine learning model training. 

 7.2.1 Procedure 

The image extractor is a Python-OpenCV that provides headless and user-interface modes. 

The extraction of ROI from images is defined as a 3-step process: 

1. Image thresholding to eliminate background noise. 

2. Image cropping to extract ROI 

3. Resizing the extracted ROI and centering the image on a canvas of choice. 

Image Thresholding 

The extractor provides a user interface to apply two different types of thresholding 

namely, RGB and HSV where the default is HSV. The user interface consists of trackbars 

and allows the user to apply thresholding to extract the region of interest removing 

immediate noise in the background. Figure 9 shows the HSV thresholding applied on an 

image of a wheat plant. The region of interest is present within the glove. As a first step, 

the glove is removed from the image using HSV thresholding. At this point, the size of the 

image is unaffected. 
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Figure 7.4: (left) Image of Wheat Plant Captured in a Field Setting; (right) HSV 
Thresholding Applied to Remove Glove from Image 

 

Image Cropping 

A tool that allows the user to select the region of interest is provided by the framework. 

The user is allowed to drag the cursor along the region of interest starting at the top left 

and ending at the bottom right of the image. The tool crops the image based on the co-

ordinates selected by the user. Figure 10 shows the ROI extraction made by the tool. 

Figure 7.5: (left) ROI Cropping of the HSV Threshold Image; (right) Cropped ROI 
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Image Resizing 

Resizing the ROI extracted in the previous step as-is leads to distortion due to poor aspect 

ratio that could result. Figure 11 shows the distorted image obtained by resizing the ROI. 

The ROI obtained from image cropping is of size 361 x 61 px. The ROI is resized to 224 

x 224 px. The resulting distortion renders the image unfit for training. 

 

Such distortion leads to the images being unsuitable for training on the neural networks 

since the majority of the image features are lost. The technique to avoid distortion is to 

copy the ROI onto an n x n canvas that fits the ROI completely and then resize. Such a 

technique preserves the aspect ratio thereby negating distortion. However, merely 

preserving the aspect ratio does not provide an image that is fit for training. Figure 12 

shows an image generated by copying the ROI onto a larger canvas.  

Figure 7.6: Image Distortion from Resizing 
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The dimensionality of the canvas is 600 x 600 px whereas the dimensionality of the ROI 

is 361 x 61 px. The image is then resized to a dimensionality 224 x224 px. While the aspect 

ratio is preserved, the downside is that the ROI in the final image occupies only a tiny 

portion of the canvas whereas the majority of the image is occupied by the background. 

When a feature extractor is trained on such an image, the feature extractor learns the 

features of the background more than the features of the ROI. Besides, the feature extractor 

takes significant number of epochs to distinguish the foreground from the background. In 

such a scenario, there is a high chance that the key features of the ROI are entirely missed 

by the feature extractor yielding sub-par results. The proposed tool identifies the smallest 

Figure 7.7: ROI Copied onto 600 x 600 px Canvas and Resized to 224 x 224 px 
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possible canvas size to fit the ROI and copies the ROI onto the canvas. The canvas is then 

resized to the dimensionality of the user’s choice preserving the aspect ratio. Figure 7.8 

shows the resized image obtained using the proposed tool. The ROI in the resized image 

occupies a larger area and the clarity of the features is significantly higher. 

7.3 Image Eraser 

In addition to cropping discussed in section 7.2, another useful application is the 

ability to remove portions of the image that are undesired. The use case of erasing is 

different from that of cropping in the sense cropping the image removes pixels from the 

image and alters the size of the image whereas erasing refers to the act of carefully weeding 

out portions of the image that hinder the process of information retrieval. The image eraser 

is a tool that complements foreground extraction tools such as instance segmentation neural 

networks and OpenCV GrabCut. The goal of the aforementioned extraction tools is the 

Figure 7.8: ROI Resized to 224 x 224 px from 361 x 61 px 
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detection of the most informative portion of image. Examples of instance segmentation 

neural networks include Mask R-CNN and YOLO. Users are able to train the networks to 

precisely detect a certain part of the image that is most useful for analysis. Likewise, 

OpenCV GrabCut is used to detect the object in the foreground of the image. While the 

tools are expected to detect and extracted the desired portions of the image precisely, it is 

not always the case in practice. Figure 7.9 shows the image of plant whose leaf and stem 

are focused. There are other plants in the background since the image was captured in a 

field setting. Figure 7.9 is used to demonstrate the use case for the image eraser. 

 

Figure 7.9: Field Image of Leaf and Stem 
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Assuming that the task at hand is to precisely extract the leaf and stem present in the 

foreground, OpenCV’s GrabCut may be applied. The application of OpenCV’s GrabCut 

algorithm results in the image shown in Figure 7.10. 

 

While the portion of the image showing leaf and stem is present in Figure 7.10, also present 

are portions of other plants in the background of the image. Foreground extraction is hardly 

ever perfect owing to the complex nature of the image. All the areas of the image apart 

from the objects in the foreground area essentially noise in terms of information extraction. 

The image eraser helps to erase the undesirable portions of the image as a means of noise 

reduction.  

Figure 7.10: Foreground Extraction using OpenCV GrabCut 
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 7.3.1 Procedure 

The image eraser works by allowing the user to plot a polygon around the object or 

portion of the image that is undesired. The eraser then eliminates the portion of the image 

within the polygon. The steps involved in the process are as follows: 

1. Plot a polygon around the portion of the image that is not desired. In order to 

plot the polygon, the tool lets the user plot different points on the image using 

the left mouse click and joins the points by drawing a line between the points. 

The right mouse click is used to indicate to the tool that all the points at the 

desired locations are plotted. Figure 7.11 shows the polygon drawn around the 

object that is undesired. 

Figure 7.11: Polygon around Undesired Portion of Image 
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2. The polygon plotted by the user is then filled by the tool in white pixel. Closing 

the polygon and plotting it in white helps to recognize the region of interest i.e., 

the region of the image that is required to be erased from the image. Figure 7.12 

shows the closed polygon. 

 

3. The ‘bitwise_xor’ operation is performed on the image and the polygon plotted 

by the user. The ‘bitwise_xor’ operation returns 0 (false) if both inputs provided 

to it are true. The idea is that all the pixels where the polygon and image are not 

0 (black pixel) are set to 0. Setting the pixel to 0 erases the portion of the image 

Figure 7.12: Closed Polygon plotted in White Pixel 
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within the user selected polygon. Figure 7.13 shows the erased portion of the 

image using the user plotted polygon. 

 

 

 

Figure 7.12: Pixels within Polygon erased from Original Image in Figure 
7.10 
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7.4 Code Availability 

 The code for the tools is available in the GitHub repository at: 

https://github.com/marven22/Image-Processing-Tools.git . The chapter explains the 

functionality of three image processing tools namely, the image thresholding trackbar, 

semi-automated image cropper and image eraser. The tools are handy in the development 

and testing of image processing applications using OpenCV-Python. While the current 

implementations are in Python, suitable libraries in C++ are also available for 

implementation.  
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Chapter 8 - Conclusions and Future Work 

Chapter 2 presents the idea of using low-cost, 3-D printed components to efficiently 

segment seed kernels for morphometry estimation. In addition, a technique using the 

conventional watershed method is also proposed for morphometry estimation. The 

algorithms developed as part of the work are implemented as part of OneKK, an android 

application developed in collaboration with developers at the Poland Lab in Kansas State 

University. The application is currently available for download from Google’s Play Store 

and has over 500 downloads. The application also reads from the gyroscope of smart 

phones to determine the presence of the skew during image capture. The capture of pictures 

without skew assist in the efficient functioning of the algorithm. In the current state, the 

algorithms are meant to be used on relatively smaller seeds such as wheat and soy. 

However, the assimilation of the algorithms for larger seeds such as cassava is to be done 

in future. The 3-D printed meshes proposed as part of the work may be extendable to the 

larger seed varieties as well.  

Chapter 3 extends the seed kernel morphometry estimation algorithms presented in 

chapter 2 and presents the technique of applying different kinds of neural networks for seed 

kernel morphometry estimation. The feasibility of the application of domain randomization 

to the use case is demonstrated. The combination of synthetic datasets and transfer learning 

are demonstrated as feasible techniques to achieve high-throughput for seed kernel 

morphometry estimation. The synthetic image generation framework is proven out on the 

conventional supervised learning neural network models of VGG and ResNet. In addition, 

the framework is also proven to provide quality results on self-supervised neural network 

models and instance segmentation neural network models. Modern day mobile devices are 
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equipped with processors powerful enough to run neural network models. Leveraging the 

neural network models on mobile devices provides a quality alternative to the image 

processing solutions in terms of achieving better results since neural networks are able to 

train and adapt to different problems easily. In future, android applications such as OneKK 

may be augmented to leverage the power of the neural network models trained on the 

proposed domain randomization framework to achieve better outcomes. 

Chapter 4 proposes an idea to aid the seed packaging industry in packaging seed 

kernels by count rather than weight owing to its limitations. The idea of stitching multiple 

slit images together to estimate the number of seeds flowing down a platform delivers 

quality results, as evident from the experiment. The current idea expands upon the previous 

idea of tracking seed kernels as they flow down the platform using the technique of centroid 

tracking. While centroid tracking works well, the algorithm when implemented as an 

android mobile application, Abacus, takes plenty of processing time and delivers inaccurate 

results. Although the proposed solution has not been implemented as an android mobile 

application yet, it is apparent that the algorithm is less resource intensive since it only 

captures the seed kernels as they flow through the region of interest but doesn’t track the 

seed kernels all along the video. While the proposed algorithm requires a slow-motion 

video captured at 60 fps to function efficiently, most modern-day smart phones are 

equipped with the ability to capture videos at that rate. The next step in the process is to 

implement the algorithm as part of the Abacus android application developed earlier by 

Neilsen et al. at Kansas State University. The application when finetuned with the less 

resource intensive algorithm of slit imaging can be put out for clients and customers to 

download on Google Play Store. In addition to the use of image processing, other 
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techniques such as the use of microwaves to detect seed kernels will be made part of the 

experiment to investigate its feasibility.  

Chapter 5 carries the aspect of morphometry estimation one step forward and 

proposes a solution to conduct the volumetric analysis of single seed kernels. The proposed 

solution is an end-to-end, automated solution wherein the user is provided with a user 

interface to operate the solution. The proposed setup improves upon the previous iteration 

developed as part of [24]. The major pitfall of the current iteration is the use of Legos to 

develop the hardware infrastructure for the project. Moving forward, the hardware is 

developed using metal to ensure that the hardware is sturdy and more akin to operation in 

a lab setting such as that of the United States Department of Agriculture (USDA). The 

setup for the next iteration of the system is shown in Figure 8.1.  

 

Figure 8.1: Improved Hardware Framework for Volume Estimation of Seed Kernel 
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The speed of computation is another area that has scope for improvement. Currently, the 

algorithm captures 36 images, one every 10°, to capture the seed kernel from different 

angles. The process may be improvised by capturing a video instead of images and 

meticulously extracting the frames at ten-degree intervals. The material used as the 

background for seed capture is currently not non-reflective. As a result, a small of the light 

gets reflected onto the seed kernel which tends to have an impact on the volumetric 

estimation. The use of a non-reflective material as the background helps to eliminate 

reflection and improve the accuracy of the results. The system in its current state only 

estimates the volume of one seed kernel at a time. In the future, a conveyor belt that runs 

the seed kernels onto the seed station one after the other is of the essence to develop the 

system into a high-throughput application. 

 Chapter 6 shifts the focus toward plant phenotyping from seed phenotyping. The 

chapter presents algorithms for two different use cases, one for leaf angle estimation and 

another for companion plant determination. Both the use cases presented in the chapter are 

some of the first and most vetted out solutions. The leaf angle estimation algorithm 

estimates the angle between leaf and stem to help predict the characteristics of a plant’s 

growth in the field. The algorithm presented uses OpenCV-Python and Tensoflow as the 

technical stack. The algorithm will be implemented as part of FieldBook, a mobile 

application developed on the android platform using OpenCV as its backbone for image 

processing and Mask R-CNN as its backbone for foreground detection. A key aspect that 

helps improve the functioning of the algorithm is better image capture in the field. 

Currently, the images captured in the field setting are noisy in the sense they contain plenty 

of other plants in the background. As a result, the plant of interest is to be detected and 
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identified as the pre-processing step before the leaf angle may be estimated. However, a 

setup that ensures only the plant of interest is captured helps improve the speed and 

efficiency of the results of the algorithm. The use of a cardboard as the background is 

proposed as the simplest means to effect noiseless image capture. Moving forward, the 

implementation of the algorithm as a mobile application and design of image capture setup 

will be done to improve the current state of the algorithm and make it more widely 

adoptable.  

 The second use of companion plant determination is a project that is being carried 

out in collaboration with the scientists at the Land Institute in Salina, KS. The algorithm 

developed as part of the project is perhaps one of the first of its kind since it provides an 

estimate of the plant area in metric units, unlike other applications that only provide a 

percentage measure of the plant area. The elimination of skew is one of the key challenges 

that the algorithm encounters. Moving forward, it is important to leverage the gyroscope 

of smart phone and other mobile devices as the algorithm is industrialized to address skew. 

Also, it is important to design an optimal image capture method wherein the images don’t 

contain human shadows because they interfere heavily with the image processing of the 

algorithm. Moving forward, the algorithm will be tested on other plant images provided by 

the scientists at the Land Institute in Salina concurrently as it is implemented as a mobile 

application.  
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