

Artificial intelligence and image processing applications for high-throughput phenotyping

by

Venkata Siva Kumar Margapuri

B.S., Jawaharlal Nehru Technological University, 2014

M.S., Bradley University, 2015

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science

Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2022

Abstract

The areas of Computer Vision and Scientific Computing have witnessed rapid

growth in the last decade with the fields of industrial robotics, automotive and healthcare

acting as the primary vehicles for research and advancement. However, related research in

other fields, such as agriculture, remains an understudied problem. This dissertation

explores the application of Computer Vision and Scientific Computing in an agricultural

domain known as High-throughput Phenotyping (HTP). HTP is the assessment of complex

seed traits such as growth, development, tolerance, resistance, ecology, yield, and the

measurement of parameters that form more complex traits.

The dissertation makes the following contributions: The first contribution is the

development of algorithms to estimate morphometric traits such as length, width, area, and

seed kernel count using 3-D graphics and static image processing, and the extension of

existing algorithms for the same.

The second contribution is the development of lightweight frameworks to aid in

synthetic image dataset creation and image cropping for deep neural networks in HTP.

Deep neural networks require a plethora of training data to yield results of the highest

quality. However, no such training datasets are readily available for HTP research,

especially on seed kernels. The proposed synthetic image generation framework helps

generate a profusion of training data at will to train neural networks from a meager samples

of seed kernels. Besides requiring large quantities of data, deep neural networks require the

input to be a certain size. However, not all available data are in the size required by the

deep neural networks. The proposed image cropper helps to resize images without resulting

in any distortion, thereby, making image data fit for consumption.

The third contribution is the design and analysis of supervised and self-supervised

neural network architectures trained on synthetic images to perform the tasks of seed kernel

classification, counting and morphometry. In the area of supervised image classification,

state-of-the-art neural network models of VGG-16, VGG-19 and ResNet-101 are

investigated. A Simple framework for Contrastive Learning of visual Representations

(SimCLR) [133], Momentum Contrast (MoCo) [55] and Bootstrap Your Own Latent

(BYOL) [119] are leveraged for self-supervised image classification. The instance-based

segmentation deep neural network models of Mask R-CNN and YOLO are utilized to

perform the tasks of seed kernel classification, segmentation and counting. The results

demonstrate the feasibility of deep neural networks for their respective tasks of

classification and instance segmentation. In addition to estimating seed kernel count from

static images, algorithms that aid in seed kernel counting from videos are proposed and

analyzed. Proposed is an algorithm that creates a slit image which can be analyzed to

estimate seed count. Upon the creation of the slit image, the video is no longer required to

estimate seed count, thereby, significantly lowering the computational resources required

for the estimation.

The fourth contribution is the development of an end-to-end, automated image

capture system for single seed kernel analysis. In addition to estimating length and width

from 2-D images, the proposed system estimates the volume of a seed kernel from 2-D

images using the technique of volume sculpting. The relative standard deviation of the

results produced by the proposed technique is lower (better) than the relative standard

deviation of the results produced by volumetric estimation using the ellipsoid slicing

technique.

The fifth contribution is the development of image processing algorithms to provide

feature enhancements to mobile applications to improve upon on-site phenotyping

capabilities. Algorithms for two features of high value namely, leaf angle estimation and

fractional plant cover estimation are developed. The leaf angle estimation feature estimates

the angle between stem and leaf for images captured using mobile phone cameras whereas

fractional plant cover is to determine companion plants i.e., plants that are able to co-exist

and mutually benefit.

The proposed techniques, frameworks and findings lay a solid foundation for future

Computer Vision and Scientific Computing research in the domain of agriculture. The

contributions are significant since the dissertation not only proposes techniques, but also

develops low-cost end-to-end frameworks to leverage the proposed techniques in a scalable

fashion.

Artificial intelligence and image processing applications for high-throughput phenotyping

by

Venkata Siva Kumar Margapuri

B.S., Jawaharlal Nehru Technological University, 2014

M.S., Bradley University, 2015

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science

Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2022

Approved by:

Major Professor

Dr. Mitchell L. Neilsen

Copyright

© Venkata Siva Kumar Margapuri 2022.

Abstract

The areas of Computer Vision and Scientific Computing have witnessed rapid

growth in the last decade with the fields of industrial robotics, automotive and healthcare

acting as the primary vehicles for research and advancement. However, their research in

other fields such as agriculture with abundant potential remains an understudied problem.

The dissertation explores the potential of Computer Vision and Scientific Computing in an

agricultural domain known as High-throughput Phenotyping (HTP). HTP is the assessment

of complex seed traits such as growth, development, tolerance, resistance, ecology, yield,

and the measurement of parameters that form more complex traits.

The dissertation makes the following contributions: The first contribution is the

development of algorithms to estimate morphometric traits such as length, width, area and

seed kernel count using 3-D graphics and static image processing, and extension of the

existing Watershed technique for the same.

The second contribution is the development of light weight frameworks to aid in

synthetic image dataset creation and image cropping for deep neural networks in HTP.

Deep neural networks require a plethora of training data to yield results of the highest

quality. However, no such training datasets are readily available for HTP research,

especially on seed kernels. The proposed synthetic image generation framework helps

generate a profusion of training data at will to train neural networks from a meager sample

of seed kernels. Besides requiring a plethora of data, deep neural networks require the input

to be a certain size. However, not all available data are in the size required by the deep

neural networks. The proposed image cropper helps to resize images without resulting in

any distortion, thereby, making image data fit for consumption.

The third contribution is the design and analysis of supervised and self-supervised

neural network architectures trained on synthetic images to perform the tasks of seed kernel

classification, counting and morphometry. In the area of supervised image classification,

the state-of-the-art neural network models of VGG-16, VGG-19 and ResNet-101 are

investigated. A Simple framework for Contrastive Learning of visual Representations

(SimCLR) [133], Momentum Contrast (MoCo) [51] and Bootstrap Your Own Latent

(BYOL) [119] are leveraged for self-supervised image classification. The instance-based

segmentation deep neural network models of Mask R-CNN and YOLO are utilized to

perform the tasks of seed kernel classification, segmentation and counting. The results

demonstrate the feasibility of deep neural networks for their respective tasks of

classification and instance segmentation. In addition to estimating seed kernel count from

static images, algorithms that aid in seed kernel counting from videos are proposed and

analyzed. Proposed is an algorithm that creates a slit image which can be analyzed to

estimate seed count. Upon the creation of the slit image, the video is no longer required to

estimate seed count, thereby, significantly lowering the computational resources required

for the estimation.

The fourth contribution is the development of an end-to-end, automated image

capture system for single seed kernel analysis. In addition to estimating length and width

from 2-D images, the proposed system estimates the volume of a seed kernel from 2-D

images using the technique of volume sculpting. The relative standard deviation of the

results produced by the proposed technique is lower (better) than the relative standard

deviation of the results produced by volumetric estimation using the ellipsoid slicing

technique.

The fifth contribution is the development of image processing algorithms to provide

feature enhancements to mobile applications to improve upon on-site phenotyping

capabilities. Algorithms for two features of high value namely, leaf angle estimation and

fractional plant cover estimation are developed. The leaf angle estimation feature estimates

the angle between stem and leaf for images captured using mobile phone cameras whereas

fractional plant cover is to determine companion plants i.e., plants that are able to co-exist

and mutually benefit.

The proposed techniques, frameworks and findings lay a solid foundation for future

Computer Vision and Scientific Computing research in the domain of agriculture. The

contributions are significant since the dissertation not only proposes techniques, but also

develops low-cost end-to-end frameworks to leverage the proposed techniques in a scalable

fashion.

 x

Table of Contents

List of Figures .. xiv

List of Tables ...xx

Acknowledgements .. xxi

Dedication .. xxiii

Chapter 1 - Introduction ...1

1.1 Contribution and Overview ...8

Chapter 2 - Image Processing and 3-D Components for Seed Morphometry Estimation .10

2.1 Related Work ...11

2.2 Mesh Algorithm ...13

2.2.1 Mesh Detection and Estimation using Pixel Color ...16

2.2.2 Mesh Identification and Estimation using HSV Color Thresholding17

2.2.3 Seed Detection and Estimation ...18

2.2.4 Morphometry Estimations on Different Mesh Types20

2.3 No-Mesh Algorithm ...21

2.3.1 Detection of Segmented Seeds ..22

2.3.2 Application of Watershed Algorithm ..24

2.4.3 Seed Morphometry Estimation ...29

2.5 Analysis of Outcome Impacting Parameters ...30

2.5.1 Analysis of Outcome Impacting Parameters ...30

2.5.2 Analysis of Outcome Impacting Parameters ...32

2.5.2 Analysis of Outcome Impacting Parameters ...33

2.5.3 Comparison to Other Applications ...34

2.6 Future Work and Conclusion ...35

Chapter 3 - Deep Learning using Domain Randomization for Image-based High-
throughput Phenotyping..37

3.1 Domain Randomization Framework for Synthetic Image Datasets38

3.1.1 Related Work ..39

 xi

3.1.2 Procedure ..40

3.2 Seed Kernel Counting and Morphometric Estimation using Domain Randomization
and Transfer Learning ..45

3.2.1 Related Work ..46

3.2.2 YOLOv5 ...47

3.2.3 Mask R-CNN ..53

3.2.4 Results and Discussion ...63

3.2.5 Morphometry Estimation ..68

3.2.6 Estimated Morphometry in Comparison to Other Applications70

3.3 Seed Classification on Supervised Neural Networks ..71

3.3.1 VGG-16 ...72

3.3.2 VGG-19 ...74

3.3.3 ResNet-101 ...74

3.3.4 Related Work ..75

3.3.5 Experimental Setup ...78

3.3.6 Experiment and Results ..82

3.3.7 Ensemble Model ...85

3.4 Seed Classification on Self-Supervised Learning Frameworks87

3.4.1 Related Work ..92

3.4.2 Dataset and Method ..93

3.4.3 Results and Discussion ...97

3.5 Future Work and Conclusions ...102

Chapter 4 - Real-time Seed Kernel Tracking and Counting ..104

4.1 Related Work ...104

4.2 Seed Kernel Counting using Slit Imaging ...106

4.2.1 Video Capture for Seed Kernel Counting ...107

4.4.3 Experiment and Results ..123

4.4.4 Comparison with Neilsen et al. [121] ...129

4.4.5 Conclusions and Future Work ..131

 xii

Chapter 5 - Automated Phenotyping of Single Seeds using a Novel Volume Sculpting
Framework ..133

5.1 Related Work ...134

5.2 Materials and Methods ...138

5.2.1 Shape-from-Silhouette Method for Seed Kernel Reconstruction140

5.2.2 Hardware Framework ...141

5.2.3 Software Framework ...142

5.3 Improvements from the Previous Version ...145

5.3.1 Hardware Improvements ...145

5.3.2 Software Improvements ..148

5.4 Verification Mechanism ..150

5.4.1 Image Capture ...152

5.5 Results ..157

5.6 Future Work and Conclusion ...161

Chapter 6 - Phenotyping Algorithms for Mobile Applications163

6.1 Estimation of Angle between Leaf and Stem ..165

6.1.1 Related Work ..166

6.1.2 Materials and Methods ..167

6.1.4 Validation Mechanism ..183

6.1.5 Impact of assuming a Vertical Stem ...184

6.1.6 Impact of Image Sharpness ...185

6.1.7 Multiple Leaf and Stem Detections ..186

6.1.8 Results ...187

6.1.9 Code Availability ..191

6.1.10 Future Work and Conclusions ..191

6.2 Plant Cover Analysis for Companion Planting ..192

6.2.1 Related Work ..193

6.2.3 Materials and Methods ..196

6.2.4 Results and Discussion ...210

 xiii

6.2.5 Future Work and Conclusions ..212

Chapter 7 - Development Tools ...213

7.1 Image Thresholding Trackbar ..213

7.1.1 RGB Image Thresholding Trackbar ..214

7.1.2 HSV and Lab Image Thresholding Trackbars ..216

7.1.3 Grayscale Image Thresholding Trackbar ..217

7.2 Semi-Automated Image Cropper ...218

7.2.1 Procedure ..219

7.3 Image Eraser ..223

7.3.1 Procedure ..226

7.4 Code Availability ...229

Chapter 8 - Conclusions and Future Work ..230

Bibliography ..235

 xiv

List of Figures

Figure 2.1: Components for Mesh Algorithm ...14

Figure 2.2: RGB Color Space [107] ..15

Figure 2.3: HSV Color Space [42] ...15

Figure 2.4: Soy Seeds in a 3-D Grid ..16

Figure 2.5: Mesh Detection using Pixel Color...17

Figure 2.6: Mesh Detection using HSV Thresholding...18

Figure 2.7: Seed Morphometry (Image Zoomed In) ..19

Figure 2.8: Seed Soy Sample Area Estimations ..20

Figure 2.9: Interquartile Range Calculation [156] ...22

Figure 2.10: Convexity Defects [183] ...23

Figure 2.11: Detection of Segmented Seeds ..24

Figure 2.12: Morphological Operations ...24

Figure 2.13: Preprocessing and Application of Watershed ...26

Figure 2.14: Seed Count using No-Mesh Algorithm ...28

Figure 2.15: Estimated Seed Areas in mm2 using Pennies ..29

Figure 2.16: Impact of Height of Image Capture on Estimation31

Figure 2.17: Impact of Seed Orientation on Estimation ..32

Figure 2.18: Impact of Mesh Thickness on Estimation ...33

Figure 2.19: Detected Seed Contour on Thicker and Lighter Meshes34

Figure 2.20: Estimated Seed Areas in mm2 using pennies ..34

Figure 3.1: Image Capture of Sorghum Seed Kernels ...40

Figure 3.2: Sample of Seeds and Corresponding Masks for Synthetic Data Sets42

Figure 3.3: DenseNet Architecture [60]...48

Figure 3.4: CSPDarknet-53 [143] ..50

Figure 3.5: Path Aggregation Network [87] ..50

Figure 3.6: YOLOv5x Instance Detections on Clustered Seeds of (a) Canola (b) Rough
Rice (c) Soy (d) Wheat (e) Sorghum ...52

 xv

Figure 3.7: Mask R-CNN Architecture ..53

Figure 3.8: RPN Classifier, Regressor and Anchor Boxes [141]54

Figure 3.9: Original Image Convolved to Feature Map ...56

Figure 3.10: Quantized Feature Map using ROI Pooling ..57

Figure 3.11: Bi-linear Interpolation ...58

Figure 3.12: ROI Segmented into 7 x 7 Boxes ..59

Figure 3.13: Bi-linear Interpolation on a Grid Cell in ROI ...60

Figure 3.14: Mask RCNN Instance Detections on Different Seeds...................................62

Figure 3.15: Coin Detection by YOLO5x..69

Figure 3.16: Size Estimation Operations on Sorghum Seeds on Mask R-CNN70

Figure 3.17: Seed Area Estimates using Morphometry Estimation Applications71

Figure 3.18: Layers of VGG-16 [168] ...72

Figure 3.19: Architecture of VGG-16 [168] ..73

Figure 3.20: Skip Connection in ResNet Architecture ..74

Figure 3.21: Image Capture of Seeds in Phenotyping Environment using Parrot AR
Drone 2.0 ..80

Figure 3.22: Top row shows real seeds captured by the UAV; Bottom row shows
synthetic images generated by the DR Framework using the real seeds82

Figure 3.23: Training and Validation Accuracies and Losses for Fine-tuned VGG-16,
VGG-19 and ResNet-101 ...84

Figure 3.24: Workflow of Ensemble Model ..85

Figure 3.25: SimCLR Architecture ..88

Figure 3.26: Momentum Contrast Architecture ...90

Figure 3.27: BYOL Architecture ...92

Figure 3.28: (a) Image capture of soy seed on lightbox; Bottom row shows synthetic
images of (b) canola (c) rough rice (d) sorghum (e) soy (f) wheat94

Figure 3.29: Training and Validation Accuracies and Losses of ResNet-50, SimCLR,
MoCo and BYOL ...97

Figure 3.30: Similar Color Histograms of Canola and Rough Rice101

Figure 4.1: Mechanical Hopper Delivering Soy Seed Kernels ..108

 xvi

Figure 4.2: Frame with Seed Clusters ..110

Figure 4.3: A Frame showing Two Wheat Seed Kernels at Region of Interest...............113

Figure 4.4: Slit Image of Each ROI stacked Vertically for Wheat Seeds114

Figure 4.5: Contours on Grayscale Slit Image for Wheat ..115

Figure 4.6: Zoomed-in Detections within Red Rectangle of Wheat Seed Kernel Slit
Image ..116

Figure 4.7: Result of Dilating Detections in Figure 4.6 ...118

Figure 4.8: (left) Detection of Contours on Original Slit Image (right) Detection of
Contours on Dilated Slit Image with Contour Centers shown by Gray Dots118

Figure 4.9: (a) Tiny Contours Detected in the absence of Size Thresholding (b) Tiny
Contours Ignored by Size Thresholding ..119

Figure 4.10: (a) Original Slit Image showing Two Seed Kernel Contours (b) Dilated Slit
Image where Two Seed Kernels appear to be One (c) Contour Detection on Original
Slit Image (d) Contour Detection on Dilated Slit Image ...120

Figure 4.11: Multiple Valid Contours around Seed Kernels ...122

Figure 5.1: Intrinsic Parameters ...139

Figure 5.2: Hardware Setup for Single Seed Reconstruction ..142

Figure 5.3: User Interface for Single Seed Reconstruction Application144

Figure 5.4: Single Seed Reconstruction Framework [29] ..146

Figure 5.5: Camera Orientation in (a) Previous Iteration (b) Current Iteration147

Figure 5.6: Rectangular Regions to crop Seed Kernel within Image148

Figure 5.7: Detected Rectangle around Seed Kernel Contour ...149

Figure 5.8: (left) Soy Seed Kernels (right) Wheat Seed Kernels150

Figure 5.9: Cross-sections of Ellipsoid ..151

Figure 5.10: Two-Camera Image Capture of Wheat Seed ...153

Figure 5.11: Side-view of 3-D Seed Kernel Reconstruction at (a) 0° (b) 90° (c) 180° ...154

Figure 5.12: Top-view of 3-D Seed Kernel Reconstruction at (a) 0° (b) 90° (c) 180°154

Figure 5.13: (left) Top View Wheat Seed Kernel (right) Side View of Wheat Seed Kernel
 ..155

Figure 5.14: (left) Top View Sliced into Elliptic Cylinder Segments (right) Side View
into Elliptic Cylinder Segments ...155

 xvii

Figure 5.15: Mirror-based Image Capture of Wheat Seed Kernel156

Figure 5.16: (left) Top View of Wheat Seed Kernel (right) Side View of Wheat Seed
Kernel ...157

Figure 5.17: (left) Top View Sliced into Elliptic Cylinder Segments (right) Side View
Sliced into Elliptic Cylinder Segments ..157

Figure 6.1: Layout and Trait Information Displayed by FieldBook [143]164

Figure 6.2: Leaf-Stem Image Captured using Fieldbook...168

Figure 6.3: Foreground Extraction using GrabCut Algorithm ..169

Figure 6.4: Different Computer Vision Tasks [139] ..170

Figure 6.5: Polygonal Annotation Plotted using MakeSense.ai171

Figure 6.6: Mask Predicted by Mask R-CNN ..172

Figure 6.7: Extracted Region of Interest from Original Image ..173

Figure 6.8: Above Ear and Below Ear Leaf Angles [41] ...174

Figure 6.9: Straight Lines on Leaf ...175

Figure 6.10: Straight Line in Polar Coordinates ..176

Figure 6.11: Representation of Straight Line in Image Space (left) and Hough Space
(right) ...176

Figure 6.12: Intersecting Lines in Image Space (left) as Sinusoid in Hough Space (right)
 ..177

Figure 6.13: (a) Grayscale Region of Interest Image (b) Contours of Region of Interest (c)
Center of Contours Plotted on Grayscale Image (d) Edges of Contours (e) All
Straight Lines Detected by Probabilistic Hough Lines Algorithm (f) Filtered Straight
Lines on Leaf ...181

Figure 6.14: (a) Uncropped Image and (b) Cropped Image Showing Identical Orientation
Estimates (c) Uncropped Image and (d) Cropped Image Showing Varying
Orientation Estimates ...184

Figure 6.15: (a) Original Image (b) Sharpened Image ...185

Figure 6.16: Multiple Leaf-Stem Instances in a Single Image ..186

Figure 6.17: (left) Lines drawn for Angle Measurement (right) Measurement Output by
ImageJ ..187

Figure 6.18: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 1
for Summer_2015-Ames_MLA Dataset ..188

 xviii

Figure 6.19: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 2
for Summer_2015-Ames_MLA Dataset ..189

Figure 6.20: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 1
for Summer_2015-Ames_ULA Dataset...189

Figure 6.21: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 2
for Summer_2015-Ames_ULA Dataset...190

Figure 6.22: Daubenmire Quadrat with Ground Cover Classes [21]196

Figure 6.23: (a) Vegetation Cover within Five-Segment PVC Frame (b) Kura Plant
within One-Segment PVC Frame ..198

Figure 6.24: HSV Color Scheme ...199

Figure 6.25: (a) Original Image (b) Original Image in HSV Color Scheme (c) Grayscale
Image of PVC Frame ...200

Figure 6.26: CIELAB Color Space ..202

Figure 6.27: (a) Super-pixel Segmentation of Original Image (b) Detected Vegetation
Cover in RGB Color Space ..205

Figure 6.28: (a) Detected Hough Lines for the PVC Frame with Vegetation Cover (b)
Polygon Mask for Segment 3 (c) Vegetation Cover within Segment 3209

Figure 6.29: Vegetation Cover Estimates by the Proposed Algorithm, SamplePoint and
Canopeo ...211

Figure 7.1: (a) Image of Wheat Leaf in Hand (b) Extraction of Wheat Leaf (c) Upper and
Lower Thresholds of Red, Green, and Blue Channels ...215

Figure 7.2: (a) HSV Color Model of Figure 7.1(a) (b) Extracted Wheat Leaf using HSV
Thresholding (c) HSV Trackbar ..216

Figure 7.3: (a) Image of Wheat Leaf in Hand (b) Grayscale Thresholding on Original
Image (c) Grayscale Image Thresholding Trackbar at 160218

Figure 7.4: (left) Image of Wheat Plant Captured in a Field Setting; (right) HSV
Thresholding Applied to Remove Glove from Image ...220

Figure 7.5: (left) ROI Cropping of the HSV Threshold Image; (right) Cropped ROI.....220

Figure 7.6: Image Distortion from Resizing ..221

Figure 7.7: ROI Copied onto 600 x 600 px Canvas and Resized to 224 x 224 px222

Figure 7.8: ROI Resized to 224 x 224 px from 361 x 61 px..223

Figure 7.9: Field Image of Leaf and Stem ...224

 xix

Figure 7.10: Foreground Extraction using OpenCV GrabCut ...225

Figure 7.11: Polygon around Undesired Portion of Image ..226

Figure 7.12: Pixels within Polygon erased from Original Image in Figure 7.10228

Figure 8.1: Improved Hardware Framework for Volume Estimation of Seed Kernel232

 xx

List of Tables

Table 2.1: Geometry and Characteristics of the Meshes ...20

Table 2.2: Seed Area (mm2) Estimations for Seven Seed Sample of Soy21

Table 2.3: Seed Areas with Varying Image Heights and Image Size of 3456 x 4608 px..30

Table 2.4: Seed Areas with Varying Image Heights and Image Size of 1920 x 1080 px..31

Table 2.5: Lengths and Widths of Seeds in Different Orientations (Length - Width in
mm) ..32

Table 2.6: Seed Areas using Meshes of Different Thickness (Area in mm2)33

Table 3.1: Performance of Models on Synthetic and Real Seed Datasets64

Table 3.2: Hyperparameter Values for Training ..83

Table 3.3: Evaluation Results on the Fine-Tuned Models of VGG-16, VGG-19, and
ResNet-101 ..86

Table 3.4: Evaluation Results on Ensemble Model ...87

Table 3.5: Error Rates (%) of ResNet Models on ImageNet Validation Set95

Table 3.6: Self-Supervised Framework Accuracies ...97

Table 3.7: Classification Reports of ResNet-50, SimCLR, MoCo and BYOL99

Table 4.1: Algorithmic Results on Wheat Seed Kernels ...124

Table 4.2: Algorithmic Results on Soy Seed Kernels..127

Table 4.3: Comparison between Proposed Algorithm and Neilsen et al.130

Table 5.1: Packages and their Versions for Single Seed Reconstruction Applications ...143

Table 5.2: Standard Deviation, Average Volume and RSD for Wheat using Mirror-based
and 3-D Reconstruction Approaches ...159

Table 5.3: Standard Deviation, Average Volume and RSD for Soy using Mirror-based
and 3-D Reconstruction Approaches ...159

Table 5.4: Standard Deviation, Average Volume and RSD for Wheat using Two Camera-
based and 3-D Reconstruction Approaches ...160

Table 5.5: Standard Deviation, Average Volume and RSD for Soy using Two Camera-
based and 3-D Reconstruction Approaches ...160

 xxi

Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. IOS 1543958 and the U.S. Department of Agriculture under Cooperative

Agreement 58-3020-1-013. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author and do not necessarily reflect the views of

the National Science Foundation.

I would like to express gratitude of the highest order to my advisor Dr. Mitchell

Neilsen for his unwavering support on every front throughout my doctoral program. His

passion for research and learning is the impetus that has propelled my dissertation. None

of this would be possible without his support.

I would also like to thank Dr. Torben Amtoft, Dr. Doina Caragea, Dr. Sherry

Fleming, and Dr. Naiqian Zhang for serving on my doctoral committee and providing me

with valuable input and motivation through my doctoral journey.

My sincere appreciation to the fellow students, faculty, and staff in the department

of Computer Science at Kansas State University. I would like to express my gratitude to

my research collaborators Mr. Anthony Atkinson, Dr. Paul Armstrong, Dr. Daniel Brabec,

Dr. Chaney Courtney, Dr. John Hatcliff, Mr. Friday James, Dr. Ratan Lal, Mr. QA

Mendoza, Ms. Niketa Penumajji, Dr. Pavithra Prabhakar, Dr. Trevor Rife, Mr. Robert

Stewart, Dr. Brandon Schlautman, Mr. Dan Wagner, Ms. Shanshan Wu, and Mr. Kai Zhao.

I would like to express my gratitude to my parents and immediate family members

from the Koripella family, the Chinnam family, the Chirumamilla family, and my friend

 xxii

Chaitanya Parupalli for their unconditional love, support, patience, and trust during my

doctoral endeavor.

 xxiii

Dedication

I dedicate my dissertation to my late grandfather Mr. Rama Rao Koripella who

inspired and motivated me to pursue higher learning and research.

1

Chapter 1 - Introduction

The origins of Artificial Intelligence (AI) date back to the 1950s when Alan Turing,

a British mathematician envisioned a world in which computers could think and make

decisions based on knowledge acquired. However, the bottleneck at the time was that

computers could only execute instructions, but not store them. In other words, the concept

of memory for computing systems wasn’t prevalent at the time. Over time, the concept of

memory in computers has become so prevalent that it is taken for granted. With the

explosive growth of memory and the computational ability of computers, modern day

machines are put to the task of making educated decisions and predictions based on

historical knowledge. The ability of machines to think and act like humans is termed

‘Artificial Intelligence’. The applications of AI prevalent in the modern world are speech

recognition, language translation and visual perception. The field of AI that deals with

visual data is called ‘Computer Vision’. Computer Vision describes the computer’s ability

to process, understand and infer from visual data similar to processing by humans gathering

images from their eyes. The fact that machines are able to make sense of visual data means

that the data in the form of images and videos can be analyzed. With the abundant

availability of mobile cameras, a profusion of visual data is available in different domains

across the board. As a result, computer vision has gained popularity amongst researchers

in different fields such as industrial automation, healthcare, banking and automotive. The

aspects of image processing and convolutional neural networks are great means to apply

the idea of computer vision to images and videos to each of the fields mentioned. While

computer vision research in the aforementioned fields has been prevalent, computer vision

in the field of agriculture offers plenty of avenues for exploration. This dissertation

2

explores the idea of using Computer Vision for High-Throughput Phenotyping (HTP) in

agriculture. The general paradigm of agriculture has its foundation in the ‘seed’. The

analysis of the seed kernel, both genotype and phenotype, provides plant researchers with

invaluable information in terms of seed behavior in different environmental conditions.

The dissertation specifically focuses on the analysis of phenotypes, and not genotypes. The

study of the morphological traits of a seed kernel provides information about its growth,

development, yield, and resistance. The morphological traits of a seed kernel such as the

length, width, area, volume, and density aid plant scientists in determining and evaluating

the behavior of a seed in an ecosystem. The seed kernel length and width are manually

measured using a caliper. However, the measurement is subjective to trial and individual

on duty. To arrive at estimates that are agnostic of the individual conducting the

experiment, image analysis techniques to estimate seed kernel length, width and area are

proposed. The proposed image analysis techniques consider three important problems of

image processing namely, image skewness, object clusters on image and unclear image

background. The proposed techniques leverage low-cost 3-D printed physical components

and backlit lightbox to counter the problems.

While the proposed image processing techniques work well, available are state-of-

the-art deep neural network models meant for classification and instance segmentation.

The use of deep neural network models in the field of HTP is still in a nascent state. Several

pre-trained models trained on COCO and ImageNet datasets are available for use. Transfer

learning comes into play when pre-trained models are employed on a custom dataset. The

training of deep neural network models requires a large volume of training data to yield

good results. However, the availability of seed kernel image datasets to train on the neural

3

networks is scarce. An alternative to real seed kernel image datasets is the use of synthetic

image datasets. We propose a synthetic image generation framework that applies the

principles of Domain Randomization to generate synthetic image datasets that can be used

as training data for deep neural networks. The synthetic image generation framework

generates synthetic images from a small sample of real seed kernel images. The framework

augments each of the real seed kernels to generate the synthetic images. The user is offered

flexibility in terms of the augmentations that are applied. The rotation, brightness and shear

are the properties that are augmented by default. In addition to a large volume of data,

another key requirement of deep neural networks is that the input be of a specific size. For

instance, the neural network model of Oxford VGG-16 requires that the input image be of

size 224 x 224 px. However, the training data at hand might not always be of that size.

While resizing is an option, it usually leads to image distortion leading to loss of image

quality. To ensure that the resizing results in an image without distortion, an image

cropping tool using OpenCV-Python is developed. The tool helps to resize an image to a

size of the user’s choice placing the object of interest at the center of the resized image.

Such images lend themselves well to training on deep neural networks.

Synthetic image generation is used to create synthetic image datasets on five types

of seed kernels namely, canola, sorghum, soy, rough rice and wheat. The synthetic images

are used to train deep neural network models meant for image classification. Within the

realm of classification, supervised and self-supervised deep neural network architectures

are trained and evaluated for their performance. In the space of supervised neural network

models, the pre-trained architectures of Oxford’s VGG-16, VGG-19 and Microsoft’s

ResNet-101 are used to build custom models trained on the synthetic image datasets. In the

4

space of self-supervised neural network models, the architectures of SimCLR, Momentum

Contrast (MoCo) and Bootstrap Your Own Latent (BYOL) are used to train on the

synthetic image datasets. The testing of the supervised and self-supervised models is

performed on real seed kernel images but not synthetic images. In addition to classification

models, state-of-the-art instance segmentation models are available that use the

classification models such as ResNet-50 as backbones. Not only do the instance

segmentation neural networks aid in classification, but they are also able to localize each

of the objects within an image, unlike the classification models. Localization is done by

plotting a bounding box around each of the objects detected within the image. As a result,

an analysis over the localized image generated by the instance segmentation neural

networks helps determine the object’s morphometry and count in the image. The instance

segmentation models of Mask R-CNN and YOLO are used to perform instance

segmentation on synthetic image datasets generated for each of the seed kernels. Once the

seed kernels are segmented by the neural networks and bounding boxes are plotted, the

images are analyzed using OpenCV to estimate the morphometry of each of the instances

detected. Methods such as using the coordinates of the bounding box, plotting minimum

area enclosing rectangle and ellipses aid in the estimation of seed kernel morphometry.

Now that the seed kernel morphometry is computed, the count of seed kernels in

the image is estimated as the number of bounding boxes plotted by the instance

segmentation neural networks. The count depends heavily on the efficiency of the neural

networks in the sense that any missed seed kernels result in an incorrect count. While the

estimation of seed morphometry is directly tied to HTP, the count has applications in the

seed packaging industry. Conventionally, seed packaging is done based on the weight of a

5

sample of seeds but not on the count of seeds within the seed sample. Since the weight of

a random seed sample is influenced by factors such as moisture in the air, weight of the

seed sample changes over time. Customers generally purchase seed samples expecting a

certain number of seed kernels to be present in the package. Since the packages are made

by weight but not seed kernel count, customers don’t end up with the exact number of seeds

that they expect. Needless to mention the impact of environmental factors on the weight of

the seed sample. To better meet the expectations of the customers, techniques to count the

seed sample for packaging are developed. Seed counter machines are available in the

market for prices ranging from $300 to $2000. However, not all packaging firms are able

to afford the machines at such hefty prices. The availability of deep neural networks and

image processing techniques aid in the formulation of low-cost seed counting techniques

that aid the packaging industry. Proposed is a seed counting framework that estimates seed

kernel count from a video captured using mobile devices. The video capture system is a

low-cost setup that includes a 3d printed holder that holds a sled to allow seed kernels to

roll down as they’re captured by the mobile device. The dissertation proposes two

techniques to estimate seed count. The first technique is completely based on image

processing and analysis using OpenCV whereas the second technique uses an instance

segmentation deep neural network and modified Kalman filter.

The estimation of seed morphometry techniques defined thus far estimate different

parameters such as length, width, and area but one key parameter that is not estimated is

volume. The reason is that volume computation requires much more than a single 2-D

image. As a result, a single 2-D image is not sufficient to estimate volume. Conventional

techniques for volume measurement include water displacement methods in which the seed

6

is submerged in container with water. The amount of water displaced from the container

indicates the volume. The technique is prone to human error while also being tedious and

time consuming. Typically, seed kernels absorb moisture when placed in ambient air.

Likewise, seed kernels absorb water when dipped in water resulting in a change in seed

volume and damage to the seed. As a result, the volume of the seed kernel is altered leading

to discrepancy in the volume measurement. Another similar technique is bead displacement

in which volume is measured by the displacement of beads placed in a container. The

technique is error prone and tends to over-estimate the volume of the seed kernel. To

counter the error in estimates, morphometry estimation techniques using image analysis

are developed. The new technique builds on work by Cao and Neilsen [24], and estimates

volume from a set of images captured at different angles. An automated image capture

system that consists of a camera, stepper motor, LEDs and turntable is proposed to capture

the images of the seed kernel from different angles. The technique of volume carving for

3-D reconstruction is used to estimate the volume of the seed kernel. While volume carving

is an existing technique, an end-to-end automated framework that uses volume carving for

3-D reconstruction is not available. High accuracy in volume estimation is achieved using

the framework.

Data collection is a key aspect that helps advance emerging fields of research such

as high-throughput phenotyping in agriculture. The availability of data helps scientists

develop systems that are able to extract and analyze information from data to make defining

discoveries. Techniques of the yesteryears required researchers to have a laboratory for

research. However, the onset of mobile development shifted the paradigm toward on-site

research wherein phenotyping applications run on modest mobile devices such as mobile

7

phones and tablets. One such application in the field of high-throughput phenotyping is

Fieldbook, an Android application developed by the Poland Lab at Kansas State

University, KS. The application is geared towards plant breeders and researchers who aim

to collect, record and process information to better conduct field experiments. The

application has the potential to cater to the needs of the larger research community in the

domain of agriculture. To enhance the feature stack of the existing mobile applications,

algorithms for two new features are proposed and developed. The first feature is leaf angle

estimation wherein the angle between the stem and leaf of a given plant image is estimated

using a combination of neural networks and image processing techniques. Plant studies

[36] have shown that plants with upright leaf angles contribute to better hybrid plant

varieties. However, the determination of leaf angle by manual means is tedious and subject

to bias. Image processing tools such as ImageJ that consist of an angle estimation tool are

able to estimate the leaf angle from images. While tools such as ImageJ provide a sense of

reproducibility of results across different individuals, the problem of tedium still remains.

The proposed algorithm for automated leaf angle estimation is perhaps one of the very few

fully vetted algorithms in the realm. The second feature is percentage plant cover

estimation on the field for the use case of companion planting. Companion planting refers

the idea of growing multiple species of plants in close proximity so that they reap mutual

benefits, such as improved crop yield, soil quality and pest control. The development of

the algorithm is performed in conjunction with researchers from the Land Institute in

Salina, KS whose goal is to grow different grasses together in close proximity to make

discoveries pertinent to grasses that make good companions. The known techniques for

plant cover estimation such as Daubenmire technique are ocular-based and therefore,

8

subject to bias. The proposed algorithm is able to estimate the amount of plant cover in

metric units along with percentage measure. The literature survey conducted as part of the

research shows no other application that estimates the amount of plant cover in metric units.

 1.1 Contribution and Overview

In summary, this dissertation focuses on pushing the boundaries of Computer

Vision in the field of agriculture, primarily High-Throughput Phenotyping. The overview

of each of the chapters of the dissertation is as follows:

1. Chapter 2 proposes a low-cost, high-throughput technique for the estimation of

seed kernel morphometry using 3-D printed components that is applicable to a

wide variety of seeds. Elaborate analysis on the factors that impact the

performance of the proposed algorithm is performed and results are presented.

2. Chapter 3 investigates the use case of seed kernel morphometry estimation on

different classes of neural networks such as supervised, self-supervised and

instance segmentation models. The technique of domain randomization is

applied to generate synthetic image datasets to train the neural networks. The

results obtained demonstrate the feasibility of domain randomization for high-

throughput phenotyping.

3. Chapter 4 proposes a near real-time seed kernel counting algorithm that aids in

seed packaging. The idea is to track a group of seeds as they flow down a

platform in a video and estimate the count of seeds. The technique of slit

imaging is used to capture and count the seeds as they flow down the platform.

9

4. Chapter 5 describes the current iteration of the low-throughput seed kernel

volume estimation framework. The framework in the current iteration consists

of a user interface to capture input and the image capture is completely

automated based on input received from the user.

5. Chapter 6 proposes two algorithms to improve upon the feature stack of the

mobile applications for high-throughput phenotyping. The first algorithm

performs the task of estimating angles between leaf and stem from images. The

second algorithm is to estimate the amount of plant cover within multiple

bounded regions wherein the use case is to identify plants that are able to

develop and co-exist in a given environment. Both algorithms are at the stage

where they may be implemented as mobile and desktop applications.

6. Chapter 7 sheds light on the image processing tools developed as part of each

of the chapters of the dissertation. The tools are handy in terms of image

segmentation and cropping.

10

Chapter 2 - Image Processing and 3-D Components for Seed

Morphometry Estimation

Image processing is defined as the analysis and augmentation of images to draw

meaningful insights that lead to novel discovery. In other words, image processing helps

to discover patterns and aspects in images that are otherwise not apparent. The applications

of image processing are prevalent in industrial robotics, automotive and healthcare

industries. The learnings from image processing applied in other industries serves as the

basis for applications in the field of agriculture. Computer Vision relies on the inputs

provided in terms of videos and images to make inferences and image processing

complements computer vision by providing inputs that are feasible to infer upon. In

addition to image processing, another field that has revolutionized the world in the last

couple of decades is 3-D graphics. The 3-D models can be used to prototype complex

models and conduct inexpensive experiments. For instance, in the field of construction and

architecture, prototypes of large structures, such as buildings and dams, are constructed to

study and evaluate the strength and aesthetics of the structures. Image processing coupled

with 3-D graphics opens many unexplored opportunities in the domain of agriculture. This

chapter explores the potential of the combination of Image Processing and 3-D graphics

for High-throughput Phenotyping (HTP) of seeds. HTP of seeds, also known as Seed

Phenotyping, is the comprehensive assessment of complex seed traits such as growth,

development, tolerance, resistance, ecology, yield, and the measurement of parameters that

form more complex traits [78]. HTP increases the accuracy of measurements while

reducing costs through the application of automation, remote sensing, data integration, and

experimental design. Multiple studies [116][105][184][68] emphasize the importance of

11

seed morphometric estimations in predicting the behavior of seeds in different

environmental settings. The morphometric estimation of seed length, width, area and

volume may be performed using tools such as Vernier caliper. However, such a procedure

is time consuming and tedious resulting in low-throughput. A high-throughput and low-

cost solution to estimate seed morphometry is proposed using 2-D imagery and 3-D

graphics. The goal of the work is to address some of the key problems in image processing

namely, object skew on images, object clusters on images, poor image quality due to

improperly lit backgrounds.

The chapter proposes algorithms for seed morphometry estimation with the goal to

address use cases such as seed kernel counting, length and width estimation, and area and

perimeter estimation using OpenCV for static image processing and compares against the

existing Android applications in the realm of seed morphometry estimation.

2.1 Related Work

The foundation for the algorithmic development using OpenCV is the Watershed

algorithm, as discussed by F. Meyer and S. Beucher in the work, ‘The Morphological

Approach to Segmentation: The Watershed Transformation’ [15]. The work discusses in

detail the intricacies of the algorithm, including the tools, transformations, uses, and the

application of watershed algorithm to images.

Tanabata et al. proposed SmartGrain [164], a high-throughput phenotyping

software tool to measure seed shape through image analysis. The tool uses a technique

where outlines of seed kernels are automatically recognized from digital images and

several seed shape parameters such as length, width, area, and perimeter length are

12

calculated. The software is validated on rice seed by employing quantitative trait locus

(QTL) analysis. SmartGrain removes areas of awns and pedicels automatically from

images as it processed them.

What et al. proposed GrainScan [182], a low-cost, fast method for grain size and

color measurements of seed kernels. The software tool identifies each seed kernel in an

image independently and assigns them a unique color. In case of varieties such as wheat

that have a crease at the bottom, the software is also able to identify the crease precisely

and draw a line along it.

Schrader et al. proposed LeafIT [150], an android application for the measurement

of leaf area. Leaf traits are some of the most important traits because they describe key

dimensions of a plant’s life history strategy. Furthermore, leaf area correlates with leaf

chemical composition, photosynthetic rate, leaf longevity, and carbon investment. The

application’s precision and accuracy are compared against commercial software tools such

as WinFOLIA [185] which uses the Altman-Bland method wherein the results showed that

results are similar to a high degree.

Komyshev, et al. [71] proposed SeedCounter, a mobile application for grain

phenotyping. The app analyses grain morphometry in cereals which is an important step in

selecting new high-yielding plants. It was developed under the premise that manual

assessment of parameters such as the number of grains per ear and grain size is laborious.

The application was evaluated under six different light conditions and three mobile devices

wherein the application demonstrated that the lighting has an impact on the outcomes.

13

 2.2 Mesh Algorithm

The Mesh algorithm refers to the static image processing algorithm and framework

including the 3D stand, 3D mesh, and lightbox, as shown in Figure 2.1. Each of the

components has a specific use case. The algorithm solves multiple problems in the

following ways:

1. 3D Stand: The 3D stand solves the problem of skew that most image processing

algorithms encounter. The stand ensures that the image capture device such as a

phone is always parallel to the surface and directly above the seeds to be captured.

This ensures the image is not skewed. The stand used for the experiment is 3d

printed using a white filament with a height of 110 mm (11 cm).

2. 3D Mesh: The 3D mesh addresses the problem of the object touching on images.

The hexagonal boundaries act as barriers ensuring that the seeds do not touch each

other. The mesh, printed using a white filament contains hexagons of side 5 mm.

Meshes for different sized seeds can be easily produced.

3. Lightbox: The lightbox ensures that the images which are captured have a bright

background. A bright background makes it easier to identify the objects on the

image and eliminate any noise such as tiny dirt particles that may be present on the

image.

14

Figure 2.1: Components for Mesh Algorithm

The algorithm can be generalized as a two-step process, described as follows:

1. Detect the mesh on the image and estimate the morphometry. The hexagons within

the mesh are saved as ground truth values.

2. Detect the seeds on the image and use the estimated morphometry of the mesh to

infer the size of the seeds.

The key concepts that aid in the development of algorithms are RGB color space and HSV

color space. Broadly, any color space is a mathematical model that describes colors as a

list of numbers. RGB is one of the most common color spaces used in image processing

[103].

RGB Color Space: RGB stands for Red, Green, Blue color space. The color space is

defined by the numerical values assigned to the colors of red, green, and blue. For a 24-bit

image, the values assigned for each color are stored using 8-bits for a range between 0 and

255. In the context of the RGB color space, the colors of red, green, and blue are referred

to as primary colors, and every other color is referred to as non-primary. All non-primary

colors generated in the RGB color space are a result of the combination of the primary

15

colors in different intensities. Hence, the color space may be classified as an additive color

space and is graphically described as shown in Figure 2.2.

Figure 2.2: RGB Color Space [103]

HSV Color Space: HSV refers to Hue, Saturation and Value which make up the

coordinates for the color space as shown in Figure 2.3. It is a cylindrical color space where

the radius represents Saturation, the vertical axis represents Value, and the angle represents

Hue. Intuitively, Hue

is the dominant color visible to an observer, Saturation is the amount of white light mixed

with a hue and Value is the chromic notion of intensity. As Value decreases, the color gets

Figure 2.3: HSV Color Space [37]

16

closer to black whereas the intensity of the color increases as Value increases[A1]. Each of

Hue, Saturation, and Value have their own significance in the processing of images. Hue

helps to classify the colors whereas Value determines the intensity of the color. Saturation

is the property that determines the amount of white light mixed with hue.

 2.2.1 Mesh Detection and Estimation using Pixel Color

A key point worth reiterating here is that the filament used to build the mesh and

the light emitted by the lightbox are white. From Figure 2.4, the mesh is merely a shade

darker than the light emitted by the lightbox.

1. For reproducibility, the mesh should have pixel values between 170 and 255

for each color channel.

2. Perform a median blur and apply Canny edge detection to detect the edges on

the image.

3. Detect the contours of the edges identified by Canny edge detection.

4. (Observation/ Assumption) Find all contours which occupy an area greater than

an individual hexagon of the mesh in pixels.

Figure 2.4: Soy Seeds in a 3-D Grid

17

5. Compute the median area occupied by the mesh in pixels and consider it as the

area occupied by each hexagon in the mesh. Likewise, compute the median

perimeter of the mesh.

A relationship between the number of pixels to the area in metric units is now

established. The area of a hexagon in mm2 is given by √
 𝑎 where 𝑎 is the length of

a side of the hexagon in mm, and the perimeter is given by 6 ∗ 𝑎 .where a is the side of the

hexagon in mm. Figure 2.5 shows the different steps involved in the process of mesh

detection.

 2.2.2 Mesh Identification and Estimation using HSV Color Thresholding

1. Convert the source image from RGB to HSV color space.

2. Create a mask which identifies H, S and V values of a desired range[A2]. The values

of H, S, and V need to be programmed since each of H, S, and V has its own

significance in the context of image processing. Augmenting each of H, S and V

includes or eliminates part of the image.

3. Perform a bitwise-AND operation on the mask and the source image.

4. Apply a Median blur followed by Canny edge detection.

Figure 2.5: Mesh Detection using Pixel Color

18

Once the Canny edges of the image are identified, the process to estimate the mesh is the

same as that described in steps 4 and 5 of section 2.2.2. Figure 2.6 shows the detection of

the mesh from the input image.

 2.2.3 Seed Detection and Estimation

1. Apply binary thresholding on the source image to filter out all of the white pixels

and retain only the black pixels, i.e., pixels that represent seeds on the image.

2. Median blur the image and perform Canny edge detection on the image.

3. Detect seeds on the image and compute the area occupied by each of the seed

contours.

4. (Seed Count) The number of contours deemed seeds is the estimated number of

seeds on the image[A3].

5. (Area and Perimeter Estimation) The area of seeds in metric units is estimated

by taking the median area occupied by the mesh’s hexagons in pixels and metric

units as ground truth values, and scaling, i.e., 𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚 =

 (𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ ℎ𝑒𝑥𝑎𝑔𝑜𝑛 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚)/

 (𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑒𝑥𝑎𝑔𝑜𝑛 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠) . Likewise, a simple scaling is applied to

obtain the average perimeter of the seeds in mm.

Figure 2.6: Mesh Detection using HSV Thresholding

19

6. (Length and Width Estimation) The lengths and widths of each contour are

estimated using minimum area rotated rectangles. Rectangles are fit to the contour

samples. The longest axis returned is considered the length, while the shorter axis

is the width. Besides, connecting the left-most to the right-most and top-most to the

bottom-most points, and computing the length of the connecting lines is a means to

estimate the length and width of the seeds[A4]. The orientation of the seed kernels

has an impact on the estimation of length and width of the seed kernels. The

orientation of the seed kernels can be derived as the minimum area rotated

rectangles are plotted using the OpenCV function from the orientation of the sides

of the rectangle. The knowledge of seed kernel orientation helps users identify the

differences of length and width of seed kernels at different orientations.

Figure 2.7 shows the seed counts, estimated seed areas in mm2, and length-width

estimations in mm for a soy seed sample.

As mentioned, the experiment is performed on six different types of seeds. The algorithm

performs well consistently on five of the six types of seeds in question failing on white

rice. The reason is that the light emitted by the lightbox is the same color as the seed of

white rice. As a result, the algorithm fails to distinguish between the mesh and seeds. While

the proposed algorithm still holds, a different experimental setup involving a contrasting

Figure 2.7: Seed Morphometry (Image Zoomed In)

20

background is essential for white rice. The app in Python-OpenCV is available at

https://github.com/VenkatMargapuri/MeshAlgorithm.

 2.2.4 Morphometry Estimations on Different Mesh Types

The algorithm is tested on three different geometries of meshes i.e., hexagon, triangle and

rhombus with different infill rates and boundary thickness. Table 2.1 shows

characteristics of the meshes used as part of the experiment[A5]. In table 2.1, the side

refers to the side of each of the geometric shapes within the mesh whereas area refers to

the area of the geometry with the given side. Infill rate indicates the fullness of the inside

of a 3-D printed component. An infill rate of 0% indicates that the component is hollow

whereas an infill rate of 100% indicates that the component is completely filled.

Table 2.1: Geometry and Characteristics of the Meshes

Mesh
Geometry

Side (mm) – Area(mm2) Infill Rates Thickness

Hexagon 4 – 41.57, 5 - 64.95,6.5 –
109.77

18%, 15%, 12%,
10%,8%

5 mm, 1.5 mm, 0.5
mm

Rhombus 7.7 – 60.5, 6.3 – 40.5, 10.6
– 112.5

15%, 12%, 10% 5 mm, 0.5 mm

Triangle 13 – 84.5, 10 – 50 10%, 12% 5 mm, 0.5 mm

Figure 2.8: Seed Soy Sample Area Estimations

21

As the morphometry of the seeds is estimated on different mesh types, the observation is

that the estimations are similar, although not exactly the same on all of the mesh types.

The difference in the estimations is better explained in section 2.5. In order to

demonstrate the performance of the algorithm, a sample of seven soy seeds is considered

and estimated using different mesh types. The seeds laid on different meshes is shown in

Figure 2.8 and the readings are as shown in Table 2.2.

Table 2.2: Seed Area (mm2) Estimations for Seven Seed Sample of Soy

2.3 No-Mesh Algorithm

 The No-Mesh algorithm is a static image processing algorithm that does not use the

3D printed mesh, unlike the algorithm discussed in Section 2.2 Instead, the algorithm

leverages the popular Watershed Algorithm to segment seed clusters on images. The other

components, 3D stand, and the lightbox are optional, but recommended to achieve the

proper performance of the algorithm. The algorithm is explained as a three-step process,

described as follows:

1. Detect segmented seeds on the image i.e., seeds not in contact with other seeds

on the image.

2. Apply the Watershed Algorithm on the image and segment the seeds to perform

morphometric estimations.

Mesh
Geometry

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

Hexagonal 32.45 28.92 35.74 33.59 30.06 29.14 29.93

Rhombus 32.13 28.2 33.69 34.45 27.35 26.1 25.88

Triangular 31.91 29.61 36.45 33.72 31.44 29.03 27.2

22

3. Estimate the morphometry of seeds using a ground truth object.

 2.3.1 Detection of Segmented Seeds

The detection of segmented seeds makes use of the interquartile range, convexity

defects, and the convex hull. The Interquartile Range (IQR) is a measure of the middle

50% of the values in a dataset. It is a proven mathematical technique that aids in the

detection of outliers. In Figure 2.9, the IQR is 𝑄3 – 𝑄1. Q1 represents a quarter of the way

through the list, and Q3 represents three-quarters of the way through the list. The IQR rule

is that all values that are not between 𝑄1 – 1.5 𝑥 𝐼𝑄𝑅 and 𝑄3 + 1.5 𝑥 𝐼𝑄𝑅 are outliers.

Convex hull and convexity defects: A convex object is one where none of the interior

angles is greater than 180 degrees. The convex hull is a tight-fitting boundary around the

object. As shown in Figure 2.10, the image on the left is convex. It has a convex hull that

wraps entirely around the boundary, whereas the image on the right is not convex. The

Figure 2.9: Interquartile Range Calculation [153]

23

convex hull does not wrap around correctly. The imperfections in the convex hull are

known as convexity defects.

1. Convert the image to grayscale and gaussian blur the image using a 3 𝑥 3 kernel.

2. To threshold the seeds from the background, apply inverted binary Otsu

thresholding on the image.

3. Detect the contours of the seeds along with the area occupied by each of the

contours. Also, find the convex hull of each of the seed contours.

4. Detect a segmented seed by evaluating the convexity of a contour, i.e., 𝑖𝑓

𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑜𝑢𝑟)/ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑣𝑒𝑥ℎ𝑢𝑙𝑙) <= 3, the contour is identified as a

potential segmented collection of seeds.

5. Find the area occupied by each of the contours of the potential segmented seeds.

6. Remove the outliers from the potential segmented seeds by applying the IQR rule

for outliers, stated above.

7. (Case for Touching Seeds) An edge case is that a few false positives might

satisfy the step-four check. To eliminate them, filter any contours where the

Figure 2.10: Convexity Defects [183]

24

center is relatively white, i.e., with an intensity of about 170 or higher.

After segmentation, compute the morphometries, including the farthest point from the

convex hull to the seed. Results are utilized further in section 2.3.2. The steps in the process

of segmented seed detection are as shown in Figure 2.11.

 2.3.2 Application of Watershed Algorithm

The Watershed algorithm's application relies on the concepts of morphological

operations, erosion, dilation, closing, and opening, shown in Figure 2.12.

The principle behind morphological operations is the idea that ‘on a grayscale image, black

(0) and white (255) pixels can be identified with good precision’.

Figure 2.11: Detection of Segmented Seeds

Figure 2.12: Morphological Operations

25

Erosion: Erosion is a means to pare the image. A kernel of any size is convolved across

the image. If one of the pixels along the kernel is black, all pixels on the image with respect

to the kernel, are set to black (0).

Dilation: Dilation is a means to enhance the size of the image. A kernel is convolved across

the image. If one of the pixels on the kernel is white, all pixels on the kernel are set to white

(255).

Opening: Opening is a means to eliminate noise from an image. It is an erosion followed

by a dilation.

Closing: Closing is a means to fill out the gaps in the image. It is a dilation followed by an

erosion.

 2.3.2.1 Pre-processing and Application of Watershed Algorithm[A6]

Watershed algorithm is a popular image segmentation algorithm that has the ability

to segment clustered objects in an image. In use cases such as this where counting objects

in the image is one of the goals, object clustering leads to erroneous counts. Employing

Watershed algorithm leverages different transforms of the original image for segmentation.

The preliminary steps applied to the original image are explained as follows.

1. Convert the image to grayscale and apply binary thresholding to the image.

2. Perform a morphological opening to remove noise and a morphological closing

to remove any holes in the image.

3. (Background Identification) Sure background area on the image is identified

by performing a dilation.

26

4. (Foreground Identification) Compute the distance transform on the image and

apply a threshold on the distance transform. The threshold values depend on the

image.

5. (Unknown/ Border) The regions which are neither foreground nor background

are the unknown/ border areas. They are computed by subtracting the foreground

area from the background area.

6. (Label Assignment) Assign labels to the identified foreground, background, and

unknown areas. If using OpenCV, the cv.ConnectedComponents() function can

be used for this purpose. It assigns 0 to the background and random numbers

starting from 1 to the objects in the foreground. However, the Watershed

algorithm assumes all regions with a value of 0 as unknown areas. To avoid this

scenario, increment all values by one, so the background has a value of 1 and

assign 0 to all pixels of the unknown area.

7. Apply a gaussian blur to the image to reduce the inner contour noise and avoid

over-segmentation.

8. Apply the Watershed algorithm to the blurred image and capture the output

markers.

The pre-processing steps applied for the Watershed algorithm is as shown in Figure

Figure 2.13: Preprocessing and Application of Watershed

27

2.13[A7].

 2.3.2.2 Image Segmentation Post-Watershed Application

1. Draw the boundaries of the watershed segments on the markers produced by

applying the Watershed algorithm (The Watershed algorithm denotes boundaries

by -1).

2. Change the boundary markings from -1 to background, i.e., 0.

3. Invert the background and the foreground, i.e., set all 0's to 255's and the others

to 0's, to identify boundaries in white since markers is a grayscale image.

4. Find contours on markers that also return the hierarchy of the contours.

Note: Contour hierarchy is an OpenCV concept. The hierarchy is a data structure

that allows contours to access four different relative values, next contour, previous

contour, first child, and parent contour.

5. Use the hierarchy to find all contours which are not considered noise. Identify

child contours larger than a quarter of the average segmented seed contour area

and mark them as ‘parent’.

 2.3.2.3 Counting Seeds[A8]

Seeds in images are often overlapping or clustered; therefore, counting the number

of seeds on the image is a tricky task. The segmentation performed by the Watershed

algorithm is used for counting. The algorithm, however, provides two types of counting

techniques, namely, area-based count and contour-based count.

28

Area-based Count: The area-based counting technique uses the average segmented seed

areas to estimate the number of seeds in a given contour containing a cluster of seeds. For

example, if the average pixel area of segmented seed contours is 10000 and the contour

with a cluster of seeds has an area of 50000, the area based counting technique estimates

the number of seeds in the cluster to be five.

Contour-based Count: The contour-based counting technique uses the results computed

in section 2.3.1, i.e., the mean (𝑆𝑆_𝑀𝑒𝑎𝑛), median (𝑆𝑆_𝑀𝑒𝑑𝑖𝑎𝑛), and standard deviation

(𝑆𝑆_𝑆𝐷) of the segmented seeds. The count also makes use of the contour area (𝑃𝐶_𝐶𝐴),

and the fixed-point depths (𝑃𝐶_𝐹𝑃𝐷) of the contours identified as ‘parent’ contours in

section 3.2.2.2. The estimation of the seed count is defined as the following:

𝐼𝑓 𝑀𝑒𝑎𝑛 (𝑃𝐶_𝐹𝑃𝐷) > 𝑆𝑆_𝑀𝑒𝑑𝑖𝑎𝑛 + 3 ∗ 𝑆𝑆_𝑆𝐷:

𝑐𝑜𝑢𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓
𝑃𝐶

𝑆𝑆

𝐸𝑙𝑠𝑒: 𝑐𝑜𝑢𝑛𝑡 = 1

The algorithm is used to count the number of seeds on images of different seeds. The results

are shown below in Figure 2.14.

Figure 2.14: Seed Count using No-Mesh Algorithm

29

As observed from the results, the algorithm performs well on the images of sorghum, soy,

and wheat, where the range of estimated count is within the actual number of seeds on the

image. However, on the seeds of canola and rough rice, the algorithm overcounts and

undercounts, respectively. The results for white rice are not presented because the

algorithm fails to detect the seeds precisely. Note that a change in the arrangement, be it

the position or the orientation of seeds on the image, leads to the detection of different

contours and might influence the seed count since it is entirely dependent upon the detected

contours.

 2.4.3 Seed Morphometry Estimation

Unlike the Mesh algorithm, the No-Mesh algorithm has no ground truth value.

Hence, the idea is to capture the image with objects of known morphometry and base the

estimates on the ground truth. For this experiment, the penny, a US coin, is used. A total

of four pennies are placed in each of the four corners of the lightbox when the image is

captured. The pennies on the image are identified based on the size of the contour, i.e., the

four most massive contours found on the image are assumed to be those of coins and

circularity computed as 4 ∗ 𝑝𝑖 ∗ (𝑎𝑟𝑒𝑎/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟) where area and perimeter are

pertinent to the contour in question. sample of seven soy seeds whose areas (mm2) are

Figure 2.15: Estimated Seed Areas in mm2 using Pennies

30

estimated using pennies is as shown in Figure 2.15.

2.5 Analysis of Outcome Impacting Parameters

Analysis on the impacts of parameters such as height of image capture, size of

image and seed orientation is performed to recommend the best parameters for image

capture. The observations are as follows.

 2.5.1 Analysis of Outcome Impacting Parameters

In order to study the impact of height and image size, three random samples of

seven seeds are taken. 3 different heights of 11cm, 17cm and 21cm are the choice for image

capture. The size of the images is varied between dimensions of 3456 x 4608 px and 1920

x 1080 px. For this experiment, the heights of image capture are varied while image size is

kept constant. The results observed for the three samples of seeds are similar. The results

of one of the samples are shown in Tables 2.3 and 2.4 for reference.

Table 2.3: Seed Areas with Varying Image Heights and Image Size of 3456 x 4608 px

From the readings in Table 2.3, it can be inferred that the impact of height is minimal when

the size of the image is 3456 x 4608 pixels (px[A9]).

Image Height Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

11cm 32.99 32.49 29.48 34.53 28.07 28.43 27.71

17cm 33.04 32.84 29.71 32.18 27.98 28.16 27.97

21cm 33.13 33.03 29.85 31.98 27.79 28.07 28.27

31

Table 2.4: Seed Areas with Varying Image Heights and Image Size of 1920 x 1080 px

From the readings of the values in Table 2.4, it is inferred that the size of the image and

the height of image capture have an inverse relationship[A10] i.e., the height of the image

has minimal impact when the size of the image is large. Figure 2.16, which contains seeds

and pennies on the image together help to reason the behavior. Green contours are supposed

to be drawn only around seeds but when the height of image capture is 21 cm, the pennies

also appear small enough that they are also considered seeds.

Image Height Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

11cm 44.0 42.0 37.0 42.0 35.0 37.0 37.0

17cm 41.0 36.0 37.0 35.0 31.0 35.0 32.0

21cm 0 0 0 0 0 0 0

Figure 2.16: Impact of Height of Image Capture on Estimation

32

 2.5.2 Analysis of Outcome Impacting Parameters

The impact of seed orientation is investigated by using a sample of seven seeds laid

on a mesh. The hypothesis behind investigating orientation is that the algorithm gives out

different results depending upon the orientation of the seeds since it affects the detected

contours which is ultimately the basis for the estimations. Turns out that the hypothesis is

true and is explained further from observing Figure 2.17 which shows a sample of seven

seeds each laid in a different orientation.

As observed from the results in Table 2.5, the lengths and the widths of the seeds differ

depending upon the orientation of the seeds. It could also impact the area estimations if

they were based on the length and width of the seeds.

Table 2.5: Lengths and Widths of Seeds in Different Orientations (Length - Width in
mm)

[A11]

Orientation Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

#1 7.44 - 5.96 6.85-6.17 6.38-6.15 6.62-6.16 6.06-5.9 6.14-5.87 6.36-5.68

#2 7.19-6.15 6.76-6.1 6.39-6.18 6.56-6.23 6.04-5.85 6.11-5.85 6.56-5.53

Figure 2.17: Impact of Seed Orientation on Estimation

33

 2.5.2 Analysis of Outcome Impacting Parameters

The thickness of the mesh has a direct correlation to the portion of the seed that is

overlaid by the mesh. The more the overlay, the higher the deviation of the estimated

morphometry from the actual. Figure 2.18 shows an example where a sample of seven

canola seeds are laid on a thicker hexagonal mesh (3 mm) and a thinner rhombus mesh (0.5

mm) and Table 2.6 shows the area estimates for seed kernels placed within meshes of

varying thickness.

Table 2.6: Seed Areas using Meshes of Different Thickness (Area in mm2)

The readings in Table 2.6 show that the estimates for seed areas are significantly different

when using meshes of different thickness. The thicker mesh overlays more and hides more

part of the seed compared to the thinner mesh which does not overlay as much. As a result,

the contours detected are not the same even with all other parameters being the same,

 Thickness Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

3mm 1.57 1.82 1.33 2.29 1.5 1.36 1.15

0.5mm 2.75 2.55 2.32 3.29 2.16 2.55 2.43

Figure 2.18: Impact of Mesh Thickness on Estimation

34

causing the results between the two images to be deviant. For instance, consider the seed

circled in red in Figure 2.18.

The contours of the seed when placed on the thicker and lighter meshes are as shown in

Figure 2.19. As observed, the thicker mesh results in a part of the seed being hidden

yielding a partial contour. The impact of mesh thickness is felt more on seeds that are

relatively smaller in size such as canola.

 2.5.3 Comparison to Other Applications

The areas estimated by the proposed algorithms are compared against the estimates

of other applications. Seed Counter, LeafIT, SmartGrain, and a manual estimation

performed using a vernier caliper are compared. A sample of seven soy seeds is used for

the comparison. The reason for the soy seed sample is that some of the applications in

consideration are built to estimate specific types of seeds and do not necessarily pick up

0

20

40

60

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

Estimated Areas in mm2

Mesh No-Mesh LeafIT SmartGrain SeedCounter Manual

Figure 2.19: Detected Seed Contour on Thicker and Lighter Meshes

Figure 2.20: Estimated Seed Areas in mm2 using pennies

35

seeds smaller or larger than a specific size. Soy is one of the seeds which is estimated by

all of the applications in question and the results of estimation are shown in Figure 2.20.

 From[A12] the results[A13]:

1. Manual estimations using a vernier caliper are consistently lower than those

provided by any of the applications and proposed algorithms.

2. The results provided by the Mesh algorithm are most similar to those of the

results provided by the android app, Seed Counter with the most considerable difference

in estimates being two mm2 for seeds one, four, and seven.

3. The results provided by the No-Mesh Algorithm are most similar to that of

LeafIT’s, with the most considerable difference in estimations being three mm2. Not

surprisingly, both algorithms use ground truth reference objects. The difference, though, is

that LeafIT estimates morphometry of leaves, one at a time. In contrast, the No-Mesh

algorithm estimates morphometry of seeds, multiple at a time.

 2.6 Future Work and Conclusion

The proposed algorithms are a formidable addition to the repertoire of image processing

algorithms for seed kernel morphometry estimation. The algorithms demonstrate the

estimation of seed morphometry using low-cost hardware components. While the

algorithm is demonstrated on smaller seed varieties such as soy and canola, the

performance of the algorithm on larger seed varieties such as cassava remains to be seen.

A sturdy hardware setup that is shippable to customers that wish to leverage the technology

is to be developed if the algorithms are to be widely adopted. The implementation of the

algorithms as part of an android application, OneKK is currently in progress. The app helps

36

plant scientists leverage the power of the algorithms using handheld devices such as mobile

phones and estimate seed morphometry of a large volume of seeds in a matter of seconds.

37

Chapter 3 - Deep Learning using Domain Randomization for

Image-based High-throughput Phenotyping

Computer Vision is a subset of Artificial Intelligence (AI) that aids computers in

extracting meaningful information from different input sources such as images and videos.

In other words, a human-like understanding and interpretation from input sources may be

deemed Computer Vision. Deep Learning, a subset of the broader family of Machine

Learning, is the idea of utilizing neural networks to learn from a set of data. The basic unit

of a neural network is the perceptron which takes an input xi and outputs f(wTx + b) where

w and b are the parameters controlled by a set of hyperparameters and f is a non-linear

activation function. Several neurons are stacked together leading to a neural network. The

use of Computer Vision and Deep Learning in High-Throughput Phenotyping provides

invaluable knowledge to plant scientists in specific and farming community in general.

Precisely, Seed Phenotyping is the area of High-Throughput Phenotyping that deals with

the comprehensive assessment of complex seed traits such as growth, development,

tolerance, resistance, ecology, yield, and the measurement of parameters that form more

complex traits [78]. The goal of Seed Phenotyping is the analysis of seed quality using

morphological traits, eventually aiding in Seed Certification. Seed Certification is a

mechanism to ensure high quality of the seed and propagate materials of superior adapted

crop varieties is the identification of seed type [172]. The state-of-the-art computer vision

techniques rely on neural networks for tasks of visual perception such as image

classification, object detection and object recognition. Chapter-3 investigates the

performance of the state-of-the-art neural networks on synthetic image datasets generated

for various types of seed kernels using a technique known as Domain Randomization. The

38

use of the technique enables plant scientists and enthusiasts to train neural networks

without the availability of a profusion of training data, a key bottleneck that hinders the use

of neural networks in the area of High-throughput Phenotyping.

 3.1 Domain Randomization Framework for Synthetic Image Datasets

In the field of AI in general and deep learning in specific, data is key to the

development of models that are efficient and robust. However, the availability of data

remains a key bottleneck in many domains, high-throughput phenotyping (HTP) included.

In the area of HTP, one of the critical tasks is seed certification i.e., the process by which

a state seed certifying agency gives official recognition to seeds produced of a cultivar or

named variety under a limited generation system which ensures genetic purity, identity,

and a given minimum level of quality. A key bottleneck with regards to using neural

network models for HTP is the lack of quality image datasets that can be used to train the

neural networks. As a result, HTP still lags behind in being able to leverage state-of-the-

art neural network models. None of the popular image datasets used to pre-train state-of-

the-art image classification and instance segmentation models such as ImageNet and

COCO contain seed kernels of any variety as one of their classes. In order to generate

quality image datasets to train the state-of-the-art neural networks, one could either capture

a multitude of seed kernel images manually or leverage Domain Randomization. The

capture of a profusion of imagery requires access to a plethora of seed kernels which is not

always feasible, especially considering the growing number of citizen scientists who don’t

always enjoy the luxury of a lab setting with resources available. Even for plant scientists

who have access to resources, the capture of a large volume of images proves tedious and

time consuming. Considering the aforementioned problems, an efficient way to create

39

datasets is to leverage Domain Randomization (DR), a technique that bridges the gap

between simulation and real-world experiments. In the context of applying DR to HTP for

neural networks, the idea is to generate synthetic images that resemble seed kernels in the

real-world to train on the neural networks.

 3.1.1 Related Work

In the work done by Rozantsev, et. al [140], an approach to estimate the rendering

parameters required to synthesize similar images given a coarse 3D model of the target

object was proposed. The identified parameters could be reused to generate an unlimited

number of training images of the object of interest in arbitrary 3D poses.

Silva et. al [33] provide an approach to estimate soybean leaf defoliation using

convolutional neural networks and synthetic images. The captured imagery is put through

a pre-processing pipeline where the image is converted to grayscale and rotated to make

the image rotation invariant. The rotated image is put through polygonal or circular

defoliation i.e., multiple polygonal or circular areas of a certain dimension are cropped out

of the image resulting in augmentation.

Rahnemoonfar and Sheppard [132] use synthetic images for fruit counting using

deep simulated learning. In order to generate the synthetic images, a blank image of size

128 x 128 pixels is created followed by filling the entire image with green and brown circles

to simulate the background and the tomato plant, which are later blurred by a Gaussian

filter. Tomatoes of different sizes are created by drawing several circles of random size in

red at random positions on the image.

40

 3.1.2 Procedure

The synthetic image generation framework is developed for the seed kernel types of

canola, rough rice, sorghum, soy, and wheat. In addition, synthetic images for the US

Penny coin are also developed. The coin, in the current context, is used to generate images

that the framework may use as the ground truth for the estimation of morphometry pertinent

to each of the seed kernels. The framework involves three steps primarily:

1. Acquisition of a sample of real images to be synthesized.

2. Generation of synthetic images with desired foregrounds and backgrounds.

3. Generation of image annotations for the neural networks to consume the synthetic

images.

 3.1.2.1 Image Acquisition

Initially, the images for each of the seeds in the considered sample are required to be

acquired. In order to develop the framework, 40 seeds are considered for each seed type of

Figure 3.1: Image Capture of Sorghum Seed Kernels

41

which 25 are used for training/ validation and 15 for testing. For the coins, 10 pennies are

considered of which seven are used for training and three for testing. Fewer pennies are

selected since pennies are uniform as opposed to seed kernels that have random shapes.

The images are captured using a Motorola Moto G6 mobile phone placed on a 3-D stand

that holds the phone orthogonal to the ground so as to eliminate any skew that might result

from holding the phone free-hand. For the background, a lightbox emitting white light is

chosen. The resolution of the captured images is 3456 x 4608 px. Figure 3.1 shows the

capture of the 25 seed sample of soy selected for training. Likewise, images of the others

are captured.

 3.1.2.2 Creation of Synthetic Images

1. Capture images of each of the samples as shown in Figure 3.1 and extract out the

seeds (or coins) on the image. Typically, the seeds (or coins) are the foreground on

the image and are extracted by separating the alpha channel from the image. Such

an extraction can be performed using tools such as Gimp or OpenCV GrabCut. For

this work, Gimp is used.

2. Select a canvas onto which the extracted samples can be laid. The canvas functions

as the background of the image and it is recommended that a canvas that resembles

the real-world test site be picked. If there are different test sites, it is best to have at

least one image of each of the test sites.

3. Now that foregrounds and backgrounds are available, select all samples belonging

to a particular foreground and lay them on each of the backgrounds with varying

42

sizes and orientations. Other kinds of augmentation such as brightness are also be

performed as needed.

4. As the images are being created in step 3, concurrently create a black canvas and

color each of the regions where the seed (or coin) is placed on the image. Use a

unique color for each of the objects on the image so as to identify them later.

Figure 3.2 shows the synthetic images of the seed kernels of canola, rough rice,

sorghum, soy, and wheat, along with the US Penny coin.

 3.1.2.3 Image Annotations

In order for the neural networks to consume the images generated by the

framework, the images are required to be annotated. Annotations are files that contain

information about the image ID, boundary, class, area and any other characteristic of each

of the objects in the image. Different neural networks consume annotations in different

formats. For instance, Mask R-CNN consumes annotations in the COCO file format

whereas YOLO consumes annotations in the TXT file format although either of them

performs the task of instance segmentation. Currently, frameworks that convert annotations

Figure 3.2: Sample of Seeds and Corresponding Masks for Synthetic Data Sets

43

in the COCO file format to TXT file format are available. However, a framework that auto-

generates the annotations in COCO file format alongside synthetic images is not available.

Hence, the proposed framework auto-generates annotations in the COCO file format which

may later be used as-is on Mask R-CNN or converted to a different file format such as TXT

using an available translation framework.

COCO Annotation Format

The COCO annotation file is formatted in JSON and consists of five sections:

1. Info

2. Licenses

3. Images

4. Annotations

5. Categories

Info: The info section consists of basic information about a dataset and may comprise of

any information that the user/ creator sees fit. Typically, information such as description,

date, author and version are included.

Licenses: The licenses section consists of licenses applicable to each of the images in the

dataset. The author/ creator of an image dataset may choose to make their images open-

source under a specific license that the users are required to cite. Image ID, URL and the

name of the license are the fields commonly present in the section.

Images: The Images section consists of all the images in the dataset. The section primarily

consists of the high-level information about each of the images such as name, image ID,

44

height, width and date of capture. The image IDs are required to be unique to the image for

ease of identification. Note that information related to the labels, bounding boxes or

segmentation is not present in the section.

COCO has annotations meant for five different use cases:

1. Object Detection

2. Key Point Detection

3. Stuff Segmentation

4. Panoptic Segmentation

5. Image Captioning

The proposed framework aids in generating annotations for object detection wherein the

purpose is to detect each of the objects belonging to a certain category in a given image.

The object detection use case is required to have a list of categories and annotations to

define each of the objects in the image. The categories section is intuitive and consists of

each of the broader categories of objects in the image such as person, car, table, chair and

so on. The annotations section contains a list of properties to define each of the objects

belonging to every category on the image. The annotations section consists of the following

properties as described below:

1. Segmentations: The segmentations are a list of coordinates of polygons drawn

around each of the objects in the image.

2. Area: The area is measured in pixels and represents the area of the polygonal

segmentation.

45

3. IsCrowd: The IsCrowd property specifies if the annotation refers a single object

or a cluster of objects such as the crowd at a game.

4. Image_ID: The Image_ID property refers to a specific image in the dataset.

5. Bbox: The Bbox property specifies the coordinates of the bounding box around

an object in the image. The format is [top left x, top left y, width, height].

6. Category ID: The category ID attributes a category from the list of categories

defined in the categories section.

7. Annotation ID: The annotation ID specifies a unique ID for each annotation.

 3.2 Seed Kernel Counting and Morphometric Estimation using Domain

Randomization and Transfer Learning

In the area of computer vision, the topics of object detection and semantic

segmentation lay the foundation for instance segmentation. Object detection refers to the

task of detecting an object on an image and plotting a bounding box around the object

whereas semantic segmentation refers to the task of associating each pixel of an image to

a class label. All the instances that belong to a certain class are treated the same. Instance

segmentation applies a layer of precision on top of semantic segmentation and

distinguishes between each of the instances belonging to a certain class. For instance,

assume an image that consists of two humans and two apples. When semantic segmentation

is applied on the image, the humans and apples are identified distinctly but the two humans

are considered the same entity. Likewise, the apples. However, when instance

segmentation is applied, each of the humans is considered their own entity and likewise,

46

the apples. In other words, instance segmentation is the process of applying a distinct mask

to each of the entities on the image and assigning each mask a class label. Applying the

principle of instance segmentation to neural networks, the number of seed kernels on an

image may be estimated. In addition, the morphometry of each of the detected seed kernels

may be estimated by processing the mask drawn around each of the seed kernels. In order

to apply instance segmentation, the state-of-the-art neural networks of YOLOv5 and Mask

R-CNN are considered.

 3.2.1 Related Work

Toda et al. [170] applied synthetic image datasets to train instance segmentation

neural networks for crop seed phenotyping. The model was trained on the seed kernels of

rice, wheat, lettuce, and oat. The work demonstrated that utilizing synthetic data is a

powerful method to alleviate human labor costs for deploying deep learning-based analysis

in the agricultural domain.

 Kuznichov et al. [75] proposed a technique named collage, an image analysis

technique to augment data for leaf segmentation and counting tasks in Rosette plants. The

idea is to create a set of segmented leaf images on a transparent background, a single leaf

per image, using manual annotations or an automatic procedure. The single leaves are made

to undergo different geometric transformations with random parameters in a fixed range

and pasted in random locations over selected backgrounds. The application of the technique

provides diverse datasets for training on neural networks.

Tanabata et al. [164] proposed SmartGrain, a software tool to measure seed shape

through image analysis. The software uses an image analysis method to reduce the time

47

taken in the preparation of seeds and in image capture. Outlines of seeds are automatically

recognized from digital images, and several shape parameters, such as seed length, width,

area, and perimeter length, are calculated. The software removes areas of awns and pedicels

automatically, and several QTLs were detected for six shape parameters.

Schrader [150] proposed LeafIT, an android application to measure leaf area. Leaf

area is a key parameter with relevance for other traits such as specific leaf area, which in

turn correlates with leaf chemical composition, photosynthetic rate, and carbon investment.

The android application is free to use and runs on Android 4 or higher. The area

measurements made by the applications are compared to the measurements made by

WinFOLIA [185], a commercial software that uses the Altman-Bland method for

measurements.

Komyshev, et al. [71] proposed SeedCounter, a mobile application for grain

phenotyping. The application solves the problem of grain phenotyping analysis using

image processing. The application was evaluated under six different lighting conditions

and three mobile devices at the time of development. The finding was that lighting had a

significant impact on the outcomes produced by the application.

3.2.2 YOLOv5

You Only Look Once (YOLO) is one of the first object detection models that

introduced the idea of combining bounding box prediction and object classification into a

single network. The architecture got introduced as part of a framework called Darknet.

YOLO has come out with timely iterations with the latest iteration being five. Each of the

iterations, except the fifth iteration has architectural changes done to improve upon the

48

performance of the model. YOLOv5 consists of four different architectures, YOLOv5s,

YOLOv5m, YOLOv5l and YOLOv5x. Each of the architectures differ in the number of

neural network layers with 5s, 5m, 5l and 5x containing 283, 391, 499 and 607 layers

respectively. All four of the official models made available are trained from scratch on the

COCO dataset. YOLOv5 is a one-stage object detection framework that has fast inference

and optimization for parallel computations. The architecture of YOLOv4 primarily consists

of three components:

1. Backbone

2. Neck

3. Head

Backbone: The backbone of the object detector is a pre-trained neural network such as

VGG-16, ResNet-50, CSPDarknet53 or ShuffleNet. The YOLOv5 model considers the use

of a Focus layer [117] in a DenseNet coupled with Cross-Stage-Partial (CSP) connections,

Figure 3.3: DenseNet Architecture [56]

49

and CSPDarknet53 for the backbone. DenseNet is made up of multiple dense blocks, as

shown in Figure 3.3.

The Focus layer provides the advantage of requiring reduced CUDA memory, increased

forward propagation and backpropagation. A dense block contains multiple convolutional

layers with each layer Hi composed of batch normalization, ReLU, and followed by

convolution. Each layer Hi consumes as input the output of each of the previous layers as

well as the original input. Each layer produces four feature maps i.e., the number of feature

maps increases by four upon passing through a dense block. Each of the dense layers

consists of a transition layer containing convolution and pooling layers. However, the

DenseNet architecture is computationally expensive. Cross-Stage-Partial (CSP)

Connections increase the computational efficiency of the convolution. Each layer Hi

consumes as input the output of each of the previous layers as well as the original input.

Each layer produces four feature maps i.e., the number of feature maps increases by four

upon passing through a dense block. Each of the dense layers consists of a transition layer

containing convolution and pooling layers. However, the DenseNet architecture is

computationally expensive. Cross-Stage-Partial (CSP) Connections increase the

computational efficiency of the design by separating the input feature maps of the

DenseNet architecture into two parts. The first part xo
’ bypasses the dense block and

becomes part of the input to the next transition layer whereas the second part xo
’’ passes

through the dense block. The CSP connections along with Darknet-53 whose architecture

is as shown in Figure 3.4 for feature extraction.

50

Neck: Object detection models insert additional layers between the backbone and head to

collect feature maps from different stages. The neck typically consists of several bottom-

up paths and top-down paths. Examples include Feature Pyramid Network (FPN), Path

Aggregation Network (PAN) and Bi-FPN. PAN is the choice of neck used in the current

experiment. In conventional deep learning frameworks, each layer consumes input from

Figure 3.4: CSPDarknet-53 [136]

Figure 3.5: Path Aggregation Network [83]

51

the previous layer. The early layers in the network extract localized texture and pattern to

build up the semantic information required by the later layers in the network. However, as

the information is repeatedly convolved, the knowledge required to localize is lost. PAN is

a kind of an architectural system that facilitates the availability of fine-grain information

to the top layers in the network. Figure 3.5 shows an FPN with PAN.

The bottom-up path, shown in Figure 3.5 (b), is augmented to make the information from

lower layers percolate to the layers at the top. In a conventional FPN, the spatial

information travels to the upper layers using the path shown by the red arrow in (a) whereas

PAN introduces the path shown by the green arrow to percolate information. In the original

implementation of PaNet, the current layer and information from previous layer are added

together to form a new vector whereas in YOLOv4 implementation, a modified paradigm

wherein a new vector is created by concatenating the input and vector from a previous

layer.

Head: The head of the object detector predicts classes and bounding boxes of objects. In

case of a one-stage detector, the primary responsibility of the head is to perform dense

prediction. The dense prediction is the final prediction which is composed of a vector

containing the coordinates of the predicted bounding box (center, height, width), the

confidence score of the prediction and label. The prediction is based on anchor boxes that

help to predict objects of a certain aspect ratio and size. Multiple anchor boxes may be

assigned to each of the grid cells of the image.

52

Figure 3.6 shows the detections made by YOLOv5 on the different entities that the model

is trained.

 3.2.2.1 Tiny YOLO

The models created using YOLOv5 are too complex and large to deploy natively as mobile

apps. Tiny-YOLO models are a variation of the YOLO models but are much smaller in

comparison to the YOLO models. However, the models are not accurate as their bigger

counterparts. For the purposes of this work, YOLOv4-Tiny is considered since it is closest

to the YOLOv5 models at the time of experimentation. The average precision (AP) at 50%

mask-IOU of YOLOv4-Tiny is 40.2% in comparison to YOLOv4’s 64.9% on the COCO

data set. In exchange for accuracy, the speed of the models has a multifold increase. The

Tiny-YOLOv4 achieves about 371 FPS during inference on a single GPU (GTX 1080 Ti)

in comparison to YOLOv4’s 62 FPS on a single GPU (TeslaV100) on the Darknet

framework and is about six times faster. While there is a significant decrease in the

Figure 3.6: YOLOv5x Instance Detections on Clustered Seeds of (a) Canola (b) Rough
Rice (c) Soy (d) Wheat (e) Sorghum

53

accuracy of the Tiny-YOLO models in comparison to YOLO models on the complex

COCO data set, it is worth noting that Tiny-YOLO models function nearly as efficiently

as the larger YOLO models when trained on custom data sets that are not as complex, like

the ones in this work. A key difference between the larger models and Tiny-YOLOv4 is

that the input image resolution of Tiny-YOLOv4 is 416 x416 px as opposed to the larger

models’ 768 x768 px.

 3.2.3 Mask R-CNN

 3.2.3.1 Mask R-CNN Architecture

The architecture of Mask R-CNN is explained further and is as shown in Figure

3.7.

The architecture of Mask R-CNN is divided into two stages. In the first stage, the network

generates proposals about the regions where an object may be present based on the input

image whereas the second stage predicts the class of the object, refines the bounding box

and generates a mask at the pixel level of the object. The network consumes the input image

and passes it through a CNN such as VGG-16, ResNet-50, and Inceptionv3. Typically,

Figure 3.7: Mask R-CNN Architecture

54

CNN applies a series of convolutions on the input image to generate feature maps. The last

stage of CNN is the fully connected layer that predicts the class of the image from the

feature maps. However, in case on Mask R-CNN, the fully connected layer of the network

is not leveraged. Instead, only the feature maps are collected as output and passed to the

Region Proposal Network (RPN). RPN is a fully convolutional network that predicts the

object bounds and “objectness” score at each position in a feature map. Objectness score

refers to the likelihood of an object being present at a certain location. The architecture of

RPN is shown below in Figure 3.8.

In order to generate the proposals, the RPN slides a small network over the convolutional

feature map that is output by the last convolutional layer (indicated as intermediate layer

in Figure 3.8) of the CNN. The network uses n x n spatial window as input from the feature

Figure 3.8: RPN Classifier, Regressor and Anchor Boxes [137]

55

map. Each sliding window is mapped to a lower dimensional feature. RPN has two

components – classifier and regressor.

Classifier determines the probability that a proposal contains the target object. Regressor

regresses the coordinates of the proposal, so they are better refined and fit the target

precisely. The key idea that aids the regressor and classifier is Anchor Boxes or Anchors.

Anchors are a set of predefined locations and scales relative to the image, typically centered

at the sliding window of the RPN. Binary ground-truth classes i.e., object and background,

and bounding boxes are assigned to individual anchors according to a predefined

Intersection-over-Union (IoU) score. In case of Mask R-CNN, anchors with three different

aspect-ratios and three scales are proposed. Hence, a total of nine anchor boxes are present

for each pixel of the image. Hence, there a W x H x K anchors in an image of width W,

height H, and K anchors per pixel. The classifier and regressor are fully convolutional

layers that typically apply 1 x 1 sized filters. The classifier is binary in the sense it merely

predicts the presence of an object but not the class of the object. The regressor predicts the

bounding box around the object detected by the classifier. Assuming an image of height H,

width W, N classes of objects, and K anchors per pixel, the output of the classification head

has the shape H x W x 2.K whereas that of the regression head is H x W x 4.K. The idea

behind having multiple anchor boxes per pixel location is so that the network is able to

predict multiple objects of different sizes per location. Finally, the loss function for RPN

is given by L({pi}, {ti}) = (1/Ncls) x ΣLcls(pi, pi
*) + (λ/Nreg) x Σ pi

*Lreg(ti, ti
*) [125] where i

is the index of anchor, p is the probability of being an object, t is the vector of four

parameterized coordinates of predicted bounding box, * represents ground truth box, L for

cls represents Log loss over two classes. p*with regression term in loss function counts if

56

and only if an object is identified, else, it is zero. Ncls and Nreg are normalizations. λ is set

to a default value of 10 in order to scale classifier and regressor by a common factor.

After the RPN is the ROI Align i.e., Region of Interest Align phase. ROI refers to a region

proposed by the RPN that corresponds to the original image. ROI Align is a process that is

put in place to improve upon the technique of ROI Pooling. The process of ROI Pooling is

described first to better describe the process of ROI Align. The goal of ROI pooling (and

ROI Align) is to convert the feature maps to a standard size, so they are able to be consumed

by the fully connected layers (FC Layers shown in Figure 27). The process of ROI Pooling

is explained using Figure 3.9 which shows the image of a wheat plant that is run through a

CNN resulting in a convolved feature map. Assume that the size of the original image is

800 x 800 px and the size of the ROI is 350 x 200 px. As the image is run through the CNN

and convolutions are applied, consider that the resulting feature map is of dimensionality

25 x 25 px i.e., a reduction of 32 times from the original size. Along with the size of image,

the size of the ROI is also scaled down by 32 times which results in a size of 10.93 x 8 px.

ROI Pooling applies quantization on the feature map as it consumes the feature map as

input. Quantization is the process of constraining an input from a set of real values to a set

of discrete values, such as integers. As quantization is applied, only the integral values are

Figure 3.9: Original Image Convolved to Feature Map

57

considered as input for processing. In other words, ROI of 10 x 8 px is considered instead

of 10.93 x 8 px. While 0.93 px might not seem like much of a displacement, it is important

to realize that each pixel in the feature map corresponds to 32 pixels in the original image.

As a result, portion of the ROI is lost as it is consumed as the input. In addition to loss of

ROI in the input phase, information is also lost in the output as ROI Pooling attempts to

alter the dimensionality of the feature maps. Assume the required output dimensionality of

the feature map is 7 x 7 px. In order to convert a feature map of size 10 x 8 px to 7 x 7 px,

ROI pooling gets the ratio of the width and height dimensions i.e., 10/7 and 8/7

respectively. The results are 1.42 and 1.14 respectively, both float values. Once again, ROI

Pooling applies quantization which considers only the integral value of the float numbers.

A 1 x 1 filter is applied along the feature map to retrieve a 7 x7 output using either max

pooling or average pooling. Max pooling refers to the technique of selecting the maximum

value within the filter whereas average pooling refers to the technique of selecting the

average of the values within the filter. It doesn’t matter in a 1 x 1 filter if max pooling or

average pooling is applied. Since only seven rows and seven columns are in the output,

three columns out of the ten rows and one row out of the eight is ignored, as shown in

Figure 3.10. In summary, ROI pooling applies quantization twice, once during the mapping

of image coordinates to feature map

Figure 3.10: Quantized Feature Map using ROI Pooling

58

coordinates and again during the mapping of feature map coordinates to ROI Pooling

output feature map. Overall, ROI Pooling is a lossy transformation wherein key features of

the image are ignored in the process of quantization.

ROI Align helps mitigate the pitfalls of ROI Pooling by eliminating the application of

quantization for data pooling. Instead, it divides the ROI into a certain number of equal

sized boxes and applies the process of bi-linear interpolation for data pooling as shown in

Figure 3.11.

Bi-linear interpolation is a technique for two-dimensional interpolation on a rectangle. It

works under the assumption that the values of some unknown function at points that form

a rectangle are known. In Figure 31, the four tuples formed by the cross-join of the two

points (x1, y1) and (x2, y2) make up the vertices that form the rectangle. The values at (x1,

y1), (x1, y2), (x2, y1) and (x2, y2) are Q11, Q12, Q21, and Q22 respectively. The point whose

value is to be determined is (x, y) indicated by P. The size of each box for bi-linear

interpolation is determined by the size of the mapped ROI and size of the pooling layer.

Figure 3.11: Bi-linear Interpolation

59

Assuming a pooling layer of size 7 x 7 as shown in Figure 3.12 and considering the feature

map ROI shown in Figure 3.12 whose width and height are 10.93 x 8 respectively, the

width and height of each box are 1.14 and 1.56 respectively.

Four sampling points are created within each of the cells, one at the top-left, one at

bottom-left, one at top-right and another at bottom-right of the cell. The relevant equation

to derive the values for each of the points is as follows:

Top-Left Point:

𝑋 = 𝑋_𝑏𝑜𝑥 + (𝑤𝑖𝑑𝑡ℎ/3) ∗ 1

𝑌 = 𝑌_𝑏𝑜𝑥 + (ℎ𝑒𝑖𝑔ℎ𝑡/3) ∗ 1

Bottom-Left Point:

𝑋 = 𝑋_𝑏𝑜𝑥 + (𝑤𝑖𝑑𝑡ℎ/3) ∗ 1

𝑌 = 𝑌_𝑏𝑜𝑥 + (ℎ𝑒𝑖𝑔ℎ𝑡/3) ∗ 2

Top-Right Point:

𝑋 = 𝑋_𝑏𝑜𝑥 + (𝑤𝑖𝑑𝑡ℎ/3) ∗ 2

Figure 3.12: ROI Segmented into 7 x 7 Boxes

60

𝑌 = 𝑌_𝑏𝑜𝑥 + (ℎ𝑒𝑖𝑔ℎ𝑡/3) ∗ 1

Bottom-Right Point:

𝑋 = 𝑋_𝑏𝑜𝑥 + (𝑤𝑖𝑑𝑡ℎ/3) ∗ 2

𝑌 = 𝑌_𝑏𝑜𝑥 + (ℎ𝑒𝑖𝑔ℎ𝑡/3) ∗ 2

Where X_box and Y_box indicate the x and y coordinates that belong to the top-left corner

of the ROI. A point from the derived list of points is considered and connected to the middle

of the closest neighboring cells, unless they are connected already. Figure 3.13 shows one

segment from each of the segments of the 7 x 7 ROI grid wherein the segment overlaps six

cells in the grid. As a hypothetical instance, the point (9.5, 10.5) is assumed to be one of

the points from the derived list. Following the procedure described earlier, the point is

connected to the midpoint of the closest neighboring cells. The values at each of the

midpoints of the cells to the top-left, top-right, bottom-left, and bottom-right are assumed

to be 0.1, 0.2, 0.7 and 1 respectively. Bi-linear interpolation is applied using the formula,

𝑃 = (𝑦2 – 𝑦)/ (𝑦2 – 𝑦1) ((𝑥2 – 𝑥)/ (𝑥2 – 𝑥1) 𝑥 𝑄11 + (𝑥 – 𝑥1)/

 (𝑥2 – 𝑥1) 𝑥 𝑄21) + (𝑦 – 𝑦1)/ (𝑦2 – 𝑦1) ((𝑥2 – 𝑥)/ (𝑥2 – 𝑥1) 𝑥 𝑄12 + (𝑥 – 𝑥1)/

Figure 3.13: Bi-linear Interpolation on a Grid Cell in ROI

61

 (𝑥2 – 𝑥1) 𝑥 𝑄22). Upon the computation of bi-linear interpolation values for the four

sampling points in the segment, max pooling or average pooling is applied (as in ROI

Pooling). Since each of the cells in the 7 x 7 grid is used, all the information within the

ROI is leveraged. Warped features from the ROI Align phase are fed into the fully

connected layers of the network. The network uses the bounding box regressor to predict

the bounding box around the object, mask stage to plot the mask around the object and

SoftMax layer to predict the class of the object that is detected by the network.

 3.2.3.2 Mask R-CNN Implementation

The Mask RCNN implementation used is the popular implementation by

Matterport that runs on Tensorflow. Mask RCNN comes pretrained on 80 classes that

belong to the COCO data set. For a majority of the applications, the default parameters

shipped out by the Matterport implementation are good enough for object detection.

However, for the object detection of the seeds and pennies, one key change that is made is

the ‘anchor scales’ and ‘anchor ratios’ of the Region Proposal Network. Anchor scales and

anchor ratios play a crucial role in instance detection. For instance, say the network is

trained on canola with images of size 768 x 768 px. If the anchor scales were selected to

be [32, 64] and anchor ratios, which are essentially aspect ratios, were [1, 2], four anchor

boxes would be generated at each position with dimensions 32:32 px, ~22:44 px, 64:64 px,

~90:45 px. However, from experimentation, it is observed that even the largest of canola

seeds don’t occupy nearly as close to the smallest of the anchors 32:32 px (or 22:44 px).

As a result, the network fails to train well yielding a higher overall loss and sloppy

detection. In order to ensure this does not happen, different anchor scales and ratios are

experimented with and the values of [2, 4, 16, 32, 64] and [1.5, 2, 3] are settled on for

62

anchor scales and ratios respectively. For this work, two different models are created using

the pre-trained weights of COCO and ImageNet with the backbone of ResNet101

architecture. While ImageNet is a data set that comprises of 1000 classes in comparison to

COCO’s 80, it is worth noting that neither ImageNet nor COCO was trained on any kind

of seeds originally. While the performance of both models is similar, there is one key

fallacy that they possess pertinent to seed shape. Amongst the five seeds in question, the

seeds of soy and sorghum are circular and similar in size on occasion. Likewise, wheat and

rough rice, except that they are oblong in shape. As a consequence, both models tend to

commonly mistake rough rice for wheat and vice-versa, and soy for sorghum and vice-

versa. The seeds of canola, although circular like soy and sorghum are significantly smaller

in comparison leading to a lower error rate while detecting them. Figure 3.14 shows the

detections of seeds on each of the images in question. While the classification of seeds may

not be accurate, a point worth noting is that the instance segmentation performed by the

networks is beneficial by itself because the majority of applications, desktop or mobile, are

catered to work for a certain type of seed. As a result, classification of seeds isn’t as critical

as instance segmentation.

Figure 3.14: Mask RCNN Instance Detections on Different Seeds

63

 3.2.4 Results and Discussion

The project starts off with work on Mask RCNN where the network, once with pre-

trained weights of COCO and another time with pre-trained weights of ImageNet, is trained

on 31 images of soy where each image contains multiple (about 20 - 30) seeds. The images

are manually annotated using Oxford’s VGG Annotator tool. Although the network trains

well and achieves a decent loss of ~2, the performance of the model on the test data set is

sub-par. It is after the experience that the use of domain randomization is employed. The

trained models are tested on two test datasets, one that contains real-world images of seeds

and another of synthesized seed images. One of the criticisms of the work by Toda et al.

[170] is that the metric scores represented for the synthetic data set could be biased since

the synthetic test data set is created using the same seed samples used for training. In order

to test out the alternative, the synthetic test data set is created using different seed samples.

Overall, 150 images of size 768 x 768 px (416 x 416 px for YOLO-Tinyv4) are created

where each type of seed contains 15 synthetic images and 15 real-world images containing

50 - 100 seeds. For the real-world test data set on each seed, about 5 of the images do not

contain entities that touch each other but the remainder of the images do. The reason for

such a setup is to observe the performance of the network on touching and non-touching

entities. It is common knowledge that object detection networks struggle to perform well

when entities on the image touch. The hypothesis is proven correct by both Mask RCNN

and YOLO as the metric scores are significantly lower for images with touching entities in

comparison to the ones that don’t. Similar behavior is observed on both the synthetic and

real seed image test data sets. It is also worth pointing out that the networks perform

phenomenally on images with only non-touching entities achieving recall and precision of

64

~1.0. It is also observed that the performance of the models on the real-world data sets is

OK but not close to that of the performance on synthetic datasets that they are trained on.

The metrics to evaluate the models are Recall and Average Precision (AP) which

are the standard evaluation metrics for object detection and localization models such as

Mask RCNN and YOLO. Recall is defined as the true-positive rate, or the ratio of true

positives detected by the model to the total number of objects present. In object detection

and localization networks, recall is generally defined over different thresholds of a

parameter called Intersection-over-Union (IOU). For the purposes of the current work,

recall is defined on the IOU of the bounding rectangles predicted by the network and the

ground-truth bounding rectangles. The AP of each class is computed using IOU of masks

predicted by the network and the ground-truth masks. As pointed out in the work by Toda

et al. [170], the use of bounding rectangles is not an accurate measure since the rectangles

are not the minimum area bounding rectangles and don’t tightly bind around the instances

in the image. The use of IOU over masks helps alleviate the problem since the masks

resemble the original instance to a higher degree as they represent the orientation of the

instance in the image.

The performance of the models along with pre-trained weights used to train the

model on each of the networks is shown in Table 3.1. The image datasets used for training

and testing contained seed kernels that are both clustered and segmented.

Table 3.1: Performance of Models on Synthetic and Real Seed Datasets[A14]

Seed Model Synthetic Data Set Real Seed Data Set

65

 Network Weights Recall5

0
AP5

0
AP@[.5
: .95]

Recall5

0

AP5

0

AP@[.5
: .95]

Canola M-RCNN ImageN
et

0.88 0.90 0.76 0.78 0.77 0.62

M-RCNN COCO 0.90 0.92 0.77 0.74 0.78 0.64

YOLOv5
x

COCO 0.92 0.94 0.80 0.81 0.77 0.65

YOLO5l COCO 0.90 0.92 0.78 0.78 0.74 0.62

YOLO5m COCO 0.89 0.88 0.74 0.71 0.73 0.62

YOLO5s COCO 0.82 0.83 0.69 0.69 0.71 0.56

T-
YOLOv4

T-
YOLOv
4

0.71 0.73 0.65 0.56 0.61 0.49

Rough

Rice

M-RCNN ImageN
et

0.90 0.91 0.79 0.85 0.74 0.61

M-RCNN COCO 0.89 0.89 0.75 0.81 0.74 0.60

YOLOv5
x

COCO 0.94 0.97 0.82 0.83 0.81 0.68

YOLO5l COCO 0.92 0.92 0.80 0.77 0.77 0.61

YOLO5m COCO 0.90 0.90 0.76 0.72 0.73 0.58

YOLO5s COCO 0.84 0.87 0.71 0.64 0.67 0.51

T-
YOLOv4

T-
YOLOv
4

0.76 0.81 0.72 0.68 0.63 0.52

Sorghu
m

M-RCNN ImageN
et

0.89 0.90 0.77 0.80 0.79 0.66

M-RCNN COCO 0.87 0.89 0.75 0.78 0.80 0.67

YOLOv5
x

COCO 0.93 0.93 0.80 0.84 0.80 0.72

YOLOv5l COCO 0.91 0.90 0.78 0.81 0.77 0.64

YOLOv5
m

COCO 0.89 0.88 0.75 0.74 0.72 0.60

66

YOLOv5s COCO 0.89 0.84 0.74 0.68 0.66 0.55

T-
YOLOv4

T-
YOLOv
4

0.73 0.78 0.66 0.67 0.70 0.56

Soy M-RCNN ImageN
et

0.87 0.86 0.74 0.86 0.73 0.68

M-RCNN COCO 0.88 0.89 0.76 0.84 0.76 0.63

YOLOv5
x

COCO 0.94 0.91 0.77 0.88 0.77 0.66

YOLOv5l COCO 0.88 0.88 0.73 0.81 0.71 0.62

YOLOv5
m

COCO 0.87 0.88 0.71 0.82 0.66 0.63

YOLOv5s COCO 0.83 0.81 0.65 0.74 0.64 0.53

T-
YOLOv4

T-
YOLOv
4

0.81 0.84 0.69 0.76 0.77 0.63

Wheat M-RCNN ImageN
et

0.89 0.88 0.76 0.84 0.75 0.61

M-RCNN COCO 0.89 0.86 0.74 0.81 0.71 0.64

YOLOv5
x

COCO 0.91 0.93 0.79 0.82 0.74 0.63

YOLOv5l COCO 0.89 0.92 0.77 0.80 0.72 0.62

YOLOv5
m

COCO 0.86 0.90 0.75 0.82 0.67 0.58

YOLOv5s COCO 0.81 0.82 0.71 0.76 0.66 0.57

T-
YOLOv4

T-
YOLOv
4

0.73 0.77 0.61 0.61 0.65 0.51

Recall50 – Recall values at the bounding box IOU threshold of 50% AP50 – Average precision values at the mask IOU

threshold of 50% AP@[.5:.95] – Mean of AP value from IOU of 50% to 90% with a step size of 5%

T-YOLOv4 – Tiny-YOLOv4

67

From the results, it is observed:

1. Although the synthetic test data set is created from seeds entirely different than those

used for training, the metrics for recall and average precision are significantly higher

for the synthetic data set in comparison to the real seed data set.

2. The models trained on both the COCO and ImageNet for Mask R-CNN data sets

produce similar results on both the synthetic and the real seed test data sets showing

that both the pre-trained weights are as good as each other[A15].

3. Of the YOLO models, YOLO5x outperforms the others in both recall and average

precision for each one of the seeds. It is inferred that the accuracy of the network is

directly influenced by the number of layers in the network.

4. In terms of the experiment, only synthetic images are used for training. However, all

the synthetic images are generated from images of real seeds extracted using the

proposed synthetic image generation framework. The number of real seeds used in the

generation of synthetic images for each seed type is 30 to 40. The synthetic images are

generated by putting the images of real seeds through different image augmentation

procedures before pasting them on the desired canvas. Each synthetic image consists

of 50 to 100 seeds whose count is assigned at random by the synthetic image generation

framework. A large training dataset where each seed type consists of ~150 images are

used for training. Based on the results on the test dataset, one might argue that more

data is required. However, the training results are satisfactory considering the network

exhibits good Recall and Precision on all the seed types. The scope for improvement

68

perhaps lies in the synthetic image generation framework wherein the seed kernels

generated might need to reflect the real-world seeds more closely.

The performance of Tiny-YOLOv4 lags behind the larger Mask R-CNN and YOLO

models, except for YOLOv5s on occasion. In all fairness, it is not reasonable to compare

it against the larger models considering it is smaller in size architecturally. However, it is

worth reiterating that they are fit for mobile applications where the models are required to

be compact.

 3.2.5 Morphometry Estimation

The focus of the work from this point shifts towards morphometric estimations of the

detected seeds. As part of the morphometric measurements, a method which closely

follows the No-Mesh algorithm described in chapter-2 and standards laid out by the

International Seed Morphology Association, an organization that promotes research in the

areas of seed morphology and identification, to estimate the length, width and area of each

of the seeds along with the count of seeds on the image is proposed. The proposed

technique is dependent upon drawing smallest rotated rectangles around observed contours

and works well on both Mask R-CNN and YOLO models for all of the seed types in

question. The caveat is that the estimations are dependent solely upon the quality of

instance detections made by the networks. In case the network doesn’t detect an instance

or predicts contours incorrectly, which is not uncommon from the results shown in Table

7, the estimates suffer a lack of accuracy. In order to estimate the morphometry i.e., the

area, length and width of each of the seeds in question, the following strategy using

OpenCV2 is proposed:

69

1. Capture an image with multiple US pennies. For this experiment, four pennies

are used. It is important to have multiple pennies because it is observed from

prior research that the position of the objects on the image impacts their

perceived area.

2. Input the image to the trained neural network model and detect the contours of

each of the coins on the image and determine the average area of all of the

detected coins in metric units. The computation of average area is performed

by plotting a rectangle around each of the coin contours that are detected and

applying the area of the rectangle in pixels to the area of the coin in mm2. It is

known that the diameter of the US penny is 19.05 mm resulting in an area of

284.87 mm2 approximating it as a circle. The coins detected and labeled using

YOLOv5 are shown in Figure 3.15.

3. (Length and Width Estimation) Likewise, on images with seeds, detect the

contours around each of the seeds in the image and plot the smallest rotated

rectangle that encloses each of the contours. The longer axis returned is deemed

length and the shorter axis, width.

4. (Area Estimation) The area of each of contours is given by a cross-

multiplication using the contour area of the detected seed in pixels, contour area

Figure 3.15: Coin Detection by YOLO5x

70

of the penny in pixels and area of the penny in mm2 as 𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚2 =

(𝑠𝑒𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ coin 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑚𝑚2)/ (𝑚𝑒𝑑𝑖𝑎𝑛 coin 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠).

Figure 3.16 shows the detected instances of sorghum seeds on Mask RCNN along with the

smallest enclosing rectangles plotted for size estimation using OpenCV2. Likewise, Figure

3.16 shows the detected instances of wheat amongst four pennies placed at each of the

corners of the image.

 3.2.6 Estimated Morphometry in Comparison to Other Applications

The morphometric estimations made by the neural networks are compared against

the estimations made mobile applications Leaf-IT and Seed Counter which are also in the

realm of morphometry estimation. In addition, the estimates are compared against the

estimations made by the Mesh algorithm and manual measurements using a vernier caliper.

Soy is considered to evaluate for the reason that not all of the seed types in question are

Figure 3.16: Size Estimation Operations on Sorghum Seeds on Mask R-CNN

71

able to be estimated by all of the applications in consideration. The areas estimated by each

of them on a sample of seven soy seeds is as shown in Figure 3.17. Please note that the

experiment is repeated on all of the applications with the seed maintained at the same

orientation in order to cut out any bias due to orientation and that the seeds do not touch

on the images. The type of mesh used for the application of the Mesh algorithm is

hexagonal. The results show a high degree of cadence[A16] amongst the estimates made by

each of the applications. It shows that the estimates made using neural network detections

correlate to the applications that currently prevail[A17].

3.3 Seed Classification on Supervised Neural Networks

Supervised Learning is the technique of training neural networks on labeled data to

learn a mapping from an input to a certain output. The technique is popular in the realm of

deep learning and is widely leveraged to train neural networks. While the technique may

be applied to a neural network of any kind, the current work focuses on the application of

supervised learning to convolutional neural networks (CNN) for the classification of seed

kernels of different varieties. The CNNs considered for the experiment are the state-of-the-

25

30

35

40

45

0 2 4 6 8

AR
EA

 IN
 M

M
2

Mask-RCNN

YOLOv5x

Seed Counter

Leaf-IT

Mesh

Manual

Figure 3.17: Seed Area Estimates using Morphometry Estimation Applications

72

art networks of Oxford’s VGG-16, VGG-16 and Microsoft’s ResNet-101. The

architectures of the networks are described as follows:

 3.3.1 VGG-16

VGG-16 is a convolutional neural network developed by researchers Karen

Simonyan and Andrew Zimmerman at the University of Oxford. The 16 in the VGG-16

stands for the number of the layers that the architecture consists of. The model achieved

92.7% top-5 test accuracy in ImageNet Large Scale Visual Recognition Challenge

(ISLRVC) on ImageNet, a dataset that consists over 14 million images belonging to 1000

classes. The model improved over AlexNet which was the state-of-the-art model at the

time. The architecture comprises a stack of five convolutional layers followed by three

fully connected layers, as shown in Figure 3.18.

Figure 3.18: Layers of VGG-16 [168]

73

The input to the first convolutional layer is an RGB image of size 224 x 224 px. Each of

the convolutional layers comprises a filter with a receptive field of 3 x 3. Max pooling

layers are present after each of the convolutional layers to perform spatial pooling. Max

pooling is performed over a 2 x 2-pixel window with a stride of 2. Of the three fully

connected layers, the first two have a total of 4096 channels each, and the third dense layer

has as many channels as the number of output categories that the network is expected to

classify. The final layer is the softmax layer that outputs a probability of an image

belonging to a certain class. ReLU is used as the activation function for each of the hidden

layers. Figure 3.19 shows the feature map sizes of VGG-16.

Figure 3.19: Architecture of VGG-16 [168]

74

 3.3.2 VGG-19

The architecture of VGG-19's is similar to that of VGG-16's. The architecture comprises

a total of 19 layers in comparison to VGG-16's 16. Like VGG-16, the architecture of VGG-

19 comprises a stack of five convolutional layers with max-pooling layers to reduce the

spatial dimensions of the output volume. However, a total of 13 convolutional layers are

observed in VGG-16 whereas 16 convolutional layers are present in VGG-19. The

architecture follows VGG-16 in every other aspect.

 3.3.3 ResNet-101

The ResNet architecture relies on the idea of using a skip connection process that

performs a convolution transformation F(X) on an incoming feature X and adds the result

Figure 3.20: Skip Connection in ResNet Architecture

75

to the original feature X. Figure 3.20 shows a skip connection used in the ResNet

architecture.

The modified feature is then served as the input to the next layer. It primarily solves the

problem of vanishing gradient i.e. the condition where the loss function shrinks to zero

after repeated applications of the chain rule. It is generally the case when the network

architectures are overly deep. With ResNets, the network learns the residual elements.

There are two main designs of residual elements, skip connection and identity mapping

[92]. The training of the residual network may be explained as learning the residual

function Y = F(X) + X where the goal is to minimize F(X) so it reaches 0. Applying L2

regularization or weight decay is a way to achieve F(X) = 0 since it incentivizes the network

weights to be as small as possible. At that point, Y = X i.e. an identity mapping. As a result,

the addition of more layers to the network does not hurt the performance of the network.

In other words, the presence of multiple residual blocks in the network allows the structure

of the residual network to be self-regulated through skip connections thereby achieving the

deepening effect of the network [92].

 3.3.4 Related Work

The work by Toda et. al. [170] applies the technique of domain randomization to

train Mask R-CNN, an instance segmentation neural network on a synthetic image dataset

of 20 different cultivars belonging to barley, four cultivars of wheat, and one cultivar each

of rice, oat and lettuce. The average precision (AP) values computed based on mask regions

at the varying intersection over union (IoU) thresholds achieved comparable AP50 values

of 96% and 95% for the synthetic and real-world datasets respectively.

76

Ward, Moghadam, and Hudson [179] conducted similar experiments to perform

automated segmentation of individual leaves of a plant for high-throughput phenotyping.

The proposed technique leveraged synthetic images of plants generated from real plant

images. The Mask R-CNN architecture was trained with a combination of real and

synthetic images of Arabidopsis plants. The proposed technique achieved a 90% leaf

segmentation score on the A1 test set and outperformed the state-of-the-art approaches for

the CVPPP Leaf Segmentation Challenge (LSC).

Gulzar, Hamid, Soomro, Alwan and Journaux [47] developed a seed classification

system for 14 different types of seeds employing the concept of transfer learning on a pre-

trained model of VGG-16. The results showed a classification accuracy of 99% on a test

image dataset of 234 images.

Buters, Belton, and Cross in [21] conducted experiments to perform seed and

seedling detection and classification using unmanned aerial vehicles. The technique of

object-based image analysis (OBIA) with eRecognition software used as part of the

experiments. The results showed the feasibility of low-cost commercially available UAVs

in monitoring ecological recovery.

Coulibaly, Kamsu-Foguem, Kamissako, and Traore [31] proposed a deep learning

technique with transfer learning in millet crop images using VGG-16. The goal of the study

was to identify mildew disease in pearl millet. Fine-tuning was performed on a pre-trained

model of VGG-16 by adding two fully connected layers and training the model on the

image dataset. An accuracy of 95%, precision of 90.50%, recall of 94.5% and f1score of

91.75%.

77

In the study conducted by Mukti and Biswas [110], transfer learning-based plant

disease detection was performed using ResNet-50. The dataset included 38 different

classes of plant leaf images where in 70295 training images and 17572 validation images

were used. Fine-tuning was performed to enhance the performance of the ResNet-50 model

that eventually yielded a training accuracy of 99.80%. 33 images belonging to the 38

classes of leaves were used for testing. The proposed model yielded an accuracy of 100%

on the test dataset.

Muneer and Fati [111] proposed a deep learning technique to classify and recognize

the desired herb from thousands of herbs using shape and texture features. The proposed

system employed two classifiers, Support Vector Machine (SVM) and Deep Learning

Neural Network (DLNN). The models were tested on a dataset containing 1000 herbs. The

results showed that the SVM model achieved a recognition accuracy of 74.63% whereas

the DLNN achieved 93% accuracy. Furthermore, the processing time was four seconds for

SVM and five seconds for DLNN.

A deep-learning classification system for identifying weeds using high-resolution

UAV imagery was proposed by Bah, Dericquebourg, Hafiane, and Canals in [14]. The

proposed system was applied to images of vegetables captured about 20m above the soil

using a UAV. The results showed that weed detection was effective in different crop fields

with overall precisions of 93%, 81%, and 69% obtained for beet, spinach, and bean

respectively.

Bristeau, Vissière, Callou and Petit [19] discuss the navigation and control

technology embedded in the Parrot AR Drone. The article sheds light on the low-cost

78

inertial sensors, computer vision techniques, attitude and velocity estimation, and control

architecture used in the UAV.

 3.3.5 Experimental Setup

Each of the neural network architectures is trained on synthetic images

[A18]generated using the Domain Randomization framework described in section 3.1. One

of the observations from chapter 2 is that the height of image capture impacts seed

classification i.e., an object in question appears different from different heights as the field

of view of the camera changes. In order to avoid the issue of misclassification due to height

of image capture, the neural networks are trained on images captured from varying heights.

However, the manual capture of images from different heights is a tedious and error prone.

An image captured freehand results in skew since it is hard to hold one’s hand perfectly

orthogonal to the ground. Also, from experimentation, it is realized that is more than a one-

person job. Hence, the use of an unmanned aerial vehicle (UAV) aka drone is considered

to capture the images.

 3.3.5.1 Parrot AR Drone 2.0

The Parrot AR Drone 2.0 is a quadcopter manufactured by the French company

Parrot SA. The drone uses a 3630 OMAP CPU, a processor that is based upon a 32-bit

ARM cortex and runs with 1 GHz. The drone uses 4 brushless motors running at 28.5

revolutions/minute which are controlled by an 8 MIPS AVR CPU on each motor controller.

The drone has a front and a bottom camera to capture images and videos. The front camera

provides an HD image resolution (720p-30fps) whereas the bottom camera provides

QVGA (320 x 240) at 60fps. The drone may be controlled via a mobile application

79

supported on Android and iOS provided by Parrot SA. Besides the mobile app, the

quadcopter has support for autonomous navigation through libraries supported in Robot

Operating System (ROS) and nodeJS. It turns out that JavaScript is a good fit to control

drones autonomously for the work since it is inherently event driven. The nodeJS library,

node-ar-drone is leveraged to operate the drone autonomously in the breeding environment.

While the node-ar-drone library provides a plethora of functions to operate the quadcopter,

the ones used for the current work are take-off, land, spin, and video capture and stop. The

behavior of the functions is self-intuitive from the names of the functions. The video

captured by the drone is output in .h264 format when the video capture function of the

node-ar-drone library is used. Videos in raw .h264 format don't carry rate information.

However, different frames of the video are required to be extracted for the creation of

synthetic images. As a work-around, the FFmpeg library is used to convert the video in

.H264 format to .mp4 format rendering it conducive for frame extraction using the Python-

OpenCV framework. The UAV is flown across a prototypical seed phenotyping

environment where in a sample of each of the seed varieties is placed on a lightbox. Figure

3.21 shows the Parrot AR Drone 2.0 flying across the prototypical seed phenotyping

environment.

80

 3.3.5.2 Synthetic Image Dataset

The seeds of canola, rough rice, sorghum, soy, and wheat are used as part of the

experiment. 30 seeds belonging to each of the seed types in question i.e., canola, rough

rice, sorghum, soy, and wheat are randomly selected from a large pool of available seeds

belonging to each of the seed types and placed in the prototypical seed phenotyping

environment. The Parrot AR Drone 2.0 is flown over the phenotyping environment

autonomously and made to capture a video of the seeds as it moves across the seed

phenotyping environment using its bottom camera. The drone is made to fly at three

different heights of 0.3m, 0.5m, and 0.7m to capture three different videos. Four images of

the white light-emitting lightbox are used as the canvas (background) for the synthetic

images. While it is fair to assume that the lightbox looks the same across the board while

emitting white light, it is not the case and minor discrepancies in the intensity are observed

amongst lightboxes. As a result, using the images of different lightboxes ensures that minor

discrepancies are captured during the creation of the synthetic dataset. Each of the videos

Figure 3.21: Image Capture of Seeds in Phenotyping Environment using Parrot AR
Drone 2.0

81

is processed using the Python-OpenCV framework described in section 3.1 to create

synthetic images for each of the seeds in question. The synthetic images generated are of

the size 224 x 224 x3 to match the input size for the neural networks used to train on the

dataset. For each of the seeds, 1000 synthetic images are generated of which the images

consist of 20 - 50 seeds each. The dataset is made diverse by the fact that the images consist

of seeds captured from different heights i.e. the 1000 images of a single seed comprise 333

images where the seeds are captured from a height of 0.3m, 333 images where the seeds

are captured from a height of 0.5m and 334 images where the seeds are captured from a

height of 0.7m. Overall, a total of 5000 images are generated amongst all of the seeds. One

of the struggles in classifying multiple classes of seeds is the appearance of seeds at

different heights. It is not an issue in cases where the images are captured from a fixed

height. However, it is not always feasible whilst using drones since they are mobile and

are influenced by environmental factors such as wind and obstacles. It is observed that a

given seed appears smaller from larger heights and vice-versa. Owing to this, the training

dataset consisting of all images from a fixed height may not be a representative sample of

the real-world test set that the neural network might encounter. Hence, the drone is

programmed to capture images from varying heights of 0.3m, 0.5m, and 0.7m to ensure

that a real-world representative sample of seeds is obtained. Figure 3.22 shows the

synthetic images generated for the seed types of canola, rough rice, sorghum, soy and

wheat.

82

 3.3.6 Experiment and Results

The three neural network architectures are imported from the canned architectures

provided by Keras as part of their Applications module. The imported models are models

pre-trained on the ImageNet dataset that comprises 1000 classes. The key idea behind the

use of pre-trained models trained on ImageNet is that the notion of Transfer Learning may

apply. Briefly, Transfer Learning is the ability of a neural network to apply the knowledge

gained by training on a dataset to a different dataset where there is a presence of common

domains between the source and target datasets. However, the ImageNet dataset does not

consist of the five seeds or anything remotely similar that are of interest for the experiment.

In cases where the source and target domains don't share domains, the sheer transfer of

knowledge is usually unsuccessful and often results in poor performance. Since the neural

network architectures are large, training the entire neural network from scratch requires an

exorbitant amount of data. As a means to better train the network whilst preserving the

learned features from the ImageNet dataset, the architecture of the neural networks is

Figure 3.22: Top row shows real seeds captured by the UAV; Bottom row shows synthetic
images generated by the DR Framework using the real seeds

83

augmented. As for augmented architectures, three Sequential models (one for each of

VGG-16, VGG-19, and ResNet-101) are built from the imported models wherein all of the

layers except the fully connected layers and softmax layer are copied to the Sequential

models. The VGG models consist of three fully connected layers whereas ResNet-101 has

one. Three fully connected layers are added to the Sequential models followed by a softmax

layer for classification. All of the transferred layers from the pre-trained models are

rendered frozen for training and only the three fully connected layers added to the model

are trained. The dataset used for the experiment is the synthetic image dataset described in

section 3.3.2.2. 80% of the dataset is used for training and 20% of the dataset is used for

validation. Experiments with different hyperparameters are conducted in the training

phase. Upon training each model with a different set of hyperparameters, the models that

yield the best accuracy and loss are saved. The hyperparameters used for each of the best

models are as shown in Table 3.2.

Table 3.2: Hyperparameter Values for Training

Hyperparameter VGG-16 VGG-19 ResNet-101

Nodes per trained layer 512 512 1024

Learning Rate 1 x e-3 1 x e-3 1 x e-2

Learning Rate Decay 100 steps @0.96 100 steps @0.96 No Decay

Dropout 0.4 0.5 0.5

Batch Size 32 32 32

Optimizer Adam SGD Adam

84

The training accuracies and losses of the best models for the fine-tuned neural networks

are as shown in Figure 3.23. Overfitting is commonly observed across all three of the

models. Overfitting refers to the situation where the neural network learns the training data

too well to the point it does not generalize to other data during validation. The use of

Dropout helped with reducing the overfitting of the models. However, it results in the

validation accuracy being higher than training accuracy in parts[A19]. Overall, the validation

accuracy for each of the fine-tuned models of VGG-16, VGG-19, and ResNet-101 at the

end of the training phase is 96.43%, 90.03%, and 97.81% respectively.

The images for the test dataset consist of 75 images containing 20 – 50 seeds of a certain

seed type captured from varying heights. Overall, a test dataset consisting of 450 images

is used to evaluate the performance of each of the networks. The results of evaluation based

on the metrics of Accuracy, Precision, and Recall are as shown in Table 3.3. The metrics

are briefly described below:

Figure 3.23: Training and Validation Accuracies and Losses for Fine-tuned VGG-16,
VGG-19 and ResNet-101

85

Accuracy: Accuracy is defined as the fraction of the samples in the dataset correctly

classified by the classifier. It is given by (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)/

 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠).

Precision: Precision is given by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠).

Precision indicates the number of positives correctly classified by the classifier.

Recall: Recall is defined as the True Positive Rate of a classifier and given

by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) . Recall indicates the number

of positives detected by the classifier of all the positives in the dataset.

The results show that ResNet-101 lends itself best to the task of classification achieving an

overall accuracy of 92% while VGG-16 and VGG-19 lag behind at 89% and 86%

respectively. However,

the performance of all of the models is sub-par in comparison to the accuracy on the

validation set during training.

 3.3.7 Ensemble Model

Ensemble Learning refers to the generation and combination of multiple inducers

to solve a machine learning task [144]. In an attempt to better the classification

Figure 3.24: Workflow of Ensemble Model

86

performance, an ensemble whose predictions are based on the individual predictions made

by each of the models is developed.

Table 3.3: Evaluation Results on the Fine-Tuned Models of VGG-16, VGG-19, and

ResNet-101

The ensemble model works by summing the categorical softmax outputs of each of

the models for a given sample. The prediction made by the model is the largest resultant

categorical value. The workflow of the ensemble model is as shown in Figure 3.24 and the

results obtained are as shown in table 3.4. The results show an improvement in overall

accuracy to 94.6% showing a 2.6% improvement in accuracy compared to the best

individual model of ResNet-101. Besides, a significant improvement in the precision and

recall for each of the individual classes is also observed which indicates better quality of

predictions.

 VGG-16 VGG-19 ResNet-101

 Accura
cy

Precisi
on

Reca
ll

Accura
cy

Precisi
on

Reca
ll

Accura
cy

Precisi
on

Reca
ll

Canola 0.91 0.76 0.79 0.86 0.67 0.67 0.91 0.78 0.78

Rough
Rice

0.91 0.78 0.78 0.90 0.77 0.80 0.93 0.81 0.87

Sorghu
m

0.90 0.70 0.77 0.75 0.66 0.60 0.91 0.78 0.77

Soy 0.90 0.75 0.80 0.90 0.74 0.77 0.93 0.88 0.81

Wheat 0.84 0.78 0.76 0.89 0.73 0.75 0.94 0.85 0.87

Overal
l

0.89 0.86 0.92

87

Table 3.4: Evaluation Results on Ensemble Model

Seed Type Ensemble Model

 Accuracy Precision Recall

Canola 0.94 0.84 0.90

Rough Rice 0.95 0.88 0.89

Sorghum 0.94 0.91 0.82

Soy 0.95 0.83 0.96

Wheat 0.95 0.88 0.90

Overall 0.94

 3.4 Seed Classification on Self-Supervised Learning Frameworks

Self-Supervised learning refers to the technique of training neural networks where the

training data is labeled automatically [18]. Self- supervised learning consists of the traits

of both supervised and unsupervised learnings. It is supervised in the sense that the model

is still trained to learn a function from pairs of inputs and labeled outputs. It is unsupervised

in the sense that the model learns without being provided with labels. Contrastive Self-

Supervised learning falls under the broader umbrella of self-supervised learning where the

intuition is to learn the features of a dataset by a measure of distinctiveness. While labels

are absent, the model learns the similarity between the datapoints in the dataset and groups

them together. This process results in obtaining groups of similar datapoints, yielding in

classification.

Three frameworks namely, SimCLR, Momentum Contrast (MoCo) and Build Your

Own Latent (BYOL) are used as part of the experiments. The architecture and working of

each of the frameworks is as described further.

A. SimCLR

88

SimCLR functions by maximizing the similarity measure between two augmented

views obtained from the same image. The framework is described as a three-step process:

1. Data Augmentation: Given an input image, two correlated views of the image are

generated using three different transformations namely, random crop and resize,

horizontal flip and color distortion involving jitter and grayscale conversion. This

process helps in generating different views of the same image aiding the network in

its ability to be transformation independent.

2. Neural Network Encoder: The augmented images are put through an encoder such

as ResNet-18 or ResNet-50 and vector encodings of the images are extracted.

3. Projection Head: A neural network encoder such as ResNet-50 generates encodings

that are 2048 dimensional. In order to reduce the dimensionality of the vector

encodings, a multi-layer perceptron (MLP) with one hidden layer is used. The

encodings in high dimensional space are mapped to 128-dimensional latent space

upon which contrastive loss is applied. The activation function used in the MLP is

ReLU. The architecture of SimCLR is as shown in Figure 3.25.

Contrastive Loss: Given a set of augmented images that contains two correlated views for

each of the images in the set, the contrastive loss functions aims to identify each pair of

correlated views that belong to the same image. The vector encodings in 128-dimensional

Figure 3.25: SimCLR Architecture

89

latent space are run through the contrastive loss function that takes similarity of the images

into account. The similarity between two images is computed using a measure named

Cosine Similarity. It is defined as 𝑠𝑖𝑚(𝑥, 𝑦) = (𝑥 𝑦)/|𝑥||𝑦| where x and y are two

different vector encodings. The contrastive loss function that takes cosine similarity into

account is defined as:

𝐿 , = −𝑙𝑜𝑔
𝑒

,

∑ 𝑒
(,)

Z = {z1, z2, …, zk}∈ ℝk are output vectors from the projection head. In the event that two

vectors are similar, the function yields a result of zero which is the optimal loss. τ is the

temperature parameter used to scale the cosine similarities. Reference [14] found that the

optimal temperature parameter helps the model learn from hard negatives. It is worth

noting that the value of τ depends on the number of epochs and batch size during training.

Given a batch of N images, the augmentation results in each image having two

representations yielding a total of 2N augmented images. The positive pair is the pair of

images that are a result of augmentation from the same image and every other pair in the

set is considered a negative pair. The augmented image set consists of one positive pair

and 2(N – 1) negative pairs. The framework relies on the presence of large models and

batch sizes to achieve better accuracy. This requirement is also deemed a bottleneck for the

framework because the increase in batch and model sizes have a direct impact on the

number of computational resources required to train the network.

B. MoCo

90

Momentum Contrast (MoCo) is a technique similar to SimCLR with the key

improvement being that it eliminates the need for large models and batch sizes employed

by SimCLR. There is one key difference that sets SimCLR and MoCo apart from each

other; the use of two neural network encoders. MoCo functions on the principle of

matching queries to keys where key and query refer to the encodings of an augmented

image. As opposed to the idea of having a single neural network encoder in SimCLR, a

second neural network encoder, similar to the first is introduced where one of them

generates the encodings for the key and the other, query. MoCo constructs a dictionary

built and operated as a queue that keeps a history of the encoded keys. The dictionary in

turn, acts as the resource pool for positive and negative pairs of images. A positive pair

refers to the instance where a query matches the key. Every other sample in the dictionary

that doesn’t correspond to the query acts as a negative sample. One of the key challenges

of the approach is that, learning the parameters of the key encoder requires calculating the

gradients of each of the samples in the queue. The larger the number of samples, the greater

the number of computational resources required. In order to address the issue, MoCo

updates the key encoder with the momentum-based average of the query encoder. It is

defined as 𝜃 ← 𝑚𝜃 + (1 − 𝑚)𝜃 where 𝜃 and 𝜃 are the parameters of key and query

Figure 3.26: Momentum Contrast Architecture

91

encoders respectively, m is the momentum whose value is kept close to one. The

architecture of MoCo is as shown in Figure 3.26.

C. Bootstrap Your Own Latent (BYOL)

BYOL is a technique similar to SimCLR and MoCo with one key difference. BYOL

does not take negative samples into account. Instead, BYOL focuses solely on ensuring

that similar samples have similar representations. While it might not be apparent at first

glance as to the reason it is significant, it is important to understand that BYOL avoids the

collapsed representation problem without negative samples. Collapsed representation is the

state wherein a network trained only on similar pairs learns a constant function since the

loss output over similar pairs is always a constant, such as zero. No discriminative features

are learnt rendering the network unfit for prediction on a test dataset or fine-tuning on a

different dataset. The working of BYOL is described as follows:

1. Target and Online Networks: Consider two encoders with the same architecture,

generally ResNet-50, where in one of them is randomly initialized to be the ‘target’

network and another set to be trainable known as the ‘online’ network.

2. Data Augmentation: Pass an input image ‘I’ through the data augmentation

pipeline to generate two stochastically augmented views ‘I1’ and ‘I2’.

3. Vector Encoding Extraction: Run the augmented views ‘I1’ and ‘I2’ through the

‘target’ and ‘online’ networks respectively and extract the vector representations of

the views

4. Projection Head: Use an MLP to reduce the vector encodings to a lower

dimensional latent space, usually 256.

92

5. Prediction: The vector encoding from the ‘online’ network is used to predict the

vector encoding from the ‘target’ network i.e., the distance between the vector

encodings is minimized using the normalized mean squared error loss function.

6. Update Target Network: The ‘target’ network is updated at the end of each

training step as the exponential moving average of the parameters of the ‘online’

network. The ‘target’ network closely follows yet lags behind the ‘online’ network

at all times.

In essence, BYOL attempts to leverage the ‘online’ network in one training step as the

‘target’ network in the subsequent training step. Doing so avoids the collapsed

representation problem and also betters the performance of the network. The

architecture is as shown in Figure 3.27.

 3.4.1 Related Work

Relevant research involving a combination of domain randomization and self-

supervised learning is not abundant. However, works that employ domain randomization

and self-supervised learning independently are available. In terms of training neural

network models using synthetic datasets, Toda et. al [170] applied synthetic datasets to

Figure 3.27: BYOL Architecture

93

Mask RCNN, an instance detection framework, to perform instance segmentation and

detection of seeds. Gulzar et. al [47] developed a seed classification system for 14 different

types of seeds by applying transfer learning on VGG-16, a convolutional neural network.

In the realm of contrastive self-supervised learning frameworks, Chen et. al [68] proposed

the SimCLR framework, a major breakthrough in terms of contrastive self-supervised

learning frameworks in the sense that don’t require a memory bank. The framework relies

on the presence of large batches of training data. The work demonstrated the critical role

played by the composition of data augmentations on contrastive learning. He et. al [150]

proposed the Momentum Contrast (MoCo) framework for unsupervised visual

representation learning that approached contrastive learning as a dictionary look-up

problem. A dynamic dictionary with a queue and a moving-averaged encoder is built on-

the-fly to facilitate contrastive unsupervised learning. Chen et. al [26] proposed a modified

framework to MoCo by using a multi-layer perceptron projection head and more data

augmentation that outperformed SimCLR without the need for large training batches. Grill

et. al [46] introduced the Bootstrap Your Own Latent (BYOL) approach to self-supervised

image representation learning. BYOL works by the use of an online and a target neural

network. The principle is to train the online network on an augmented view of an image to

predict the target network representation of the image that is a different augmented view.

 3.4.2 Dataset and Method

A. Dataset

The seeds of canola, rough rice, sorghum, soy and wheat are used as part of the experiment.

Since the work attempts to study the feasibility of domain randomization on self-supervised

learning frameworks, the images used for the training and validation datasets are synthetic

94

images generated using a representative sample of each of the seeds. A large seed pool of

the order of several hundred is available considering the nature of research conducted in

the laboratory is primarily focused on agriculture. 30 seeds belonging to each of the seed

types in consideration are chosen at random and photographed individually resulting in a

sample of 150 images. In accordance with the technique outlined in section 3.1, images

containing seeds overlaid on a common background are generated where in each image

contains 50 seeds of a certain seed type as shown in Figure 3.28.

1000 images per seed type, each 224 x 224 x 3 in size, are generated of which 800 are used

for training and 200 for validation. As for the test dataset, 40 images of each seed type are

photographed where in each of the images contains ~50 seeds of the same seed type placed

on a lightbox. It is ensured that the seeds in the test dataset are not the seeds used to compile

Figure 3.28: (a) Image capture of soy seed on lightbox; Bottom row shows synthetic images of (b)
canola (c) rough rice (d) sorghum (e) soy (f) wheat

95

the synthetic image dataset. Overall, the training dataset comprises of 5000 images while

the test dataset is made up of 200 images.

B. Experimental Setup

ResNet-50 is used as the encoder for each of the self-supervised learning

frameworks in consideration, SimCLR, MoCo and BYOL. The implementation of the

frameworks is done in PyTorch and executed on a Tesla V100 GPU provided by Google

Colab Pro. The lr-finder module is used to find the learning rate that best fits a model for

fine-tuning.

C. SimCLR, MoCo and BYOL

Each of the frameworks, SimCLR, MoCo and BYOL, is implemented as described

in section 3.3 (A – C) using a ResNet-50 model pre-trained on the ImageNet dataset as

encoder. While there are several variants of ResNet such as ResNet-34, ResNet-50,

ResNet-101 and ResNet-152, the reason behind selecting ResNet-50 as the encoder is its

performance on the ImageNet validation dataset. The error rates (%) of single-model

results on the ImageNet validation set are as shown in Table 3.5 [64].

Table 3.5: Error Rates (%) of ResNet Models on ImageNet Validation Set

Model Top-1 Error Top-5 Error

ResNet-34 B 21.84 5.71

ResNet-34 C 21.53 5.60

ResNet-50 20.74 5.25

ResNet-101 19.87 4.60

ResNet-152 19.38 4.49

96

The results show that an increase in the number of layers has a direct improvement on the

error rate. ResNet-50 provides a happy medium between error rate and network size.

Hence, ResNet-50 is the network of choice to compare against the self-supervised neural

networks. Each of the frameworks is trained for a total of 50 epochs at a learning rate of

1e-3 on the training dataset. Weight Decay, a regularization technique, set to 1e-4 is added

to the models to prevent overfitting. It is worth noting that the training at this stage does

not involve any labels and is solely to minimize the loss functions of each of the

frameworks. The implementation details specific to each of the frameworks are described

further.

SimCLR: A projection head with Linear-ReLU-Linear layers that yields 128-dimensional

latent space vectors as output is added on top of the ResNet-50 model because [26] shows

that the framework delivers its best performance under a non-linear projection head. A

batch size of 192 is used while the network is trained. Upon training the network, the non-

linear projection head is removed and each of the layers in the network is frozen. A linear

classifier with one layer that predicts the class of an image is added to the network.

MoCo: The projection head of MoCo’s is similar to that of SimCLR’s and contains Linear-

ReLU-Linear layers. The projection head outputs 128-dimensional latent space vectors. A

dictionary of size 256 is used to keep track of the encoded keys in the ‘target’ network.

Upon training the model, the projection head is removed, and a linear classifier is added

on top of the model.

BYOL: The projection head is made up of two linear layers where in an input vector of

2048 dimensions is taken, projected to 4096 dimensions and then, a vector reduced to 256

dimensions is output.

97

 3.4.3 Results and Discussion

Predictions are made on SimCLR, MoCo and BYOL upon training the networks

as described earlier. The accuracies obtained by the models is as shown in Table 3.6.

Table 3.6: Self-Supervised Framework Accuracies

Framework Test Accuracy

 SimCLR 33%

 MoCo 39%

 BYOL 26%

It is apparent from the results that the models do not generalize well to the real-world

images in the test dataset. In order to enhance the performance of the models, linear

classifiers are built on top of the self-supervised models and trained for 100 epochs on 5%

Figure 3.29: Training and Validation Accuracies and Losses of ResNet-50, SimCLR, MoCo
and BYOL

98

of the labels i.e., 250 images comprising of 50 images of each seed type. 40 images of each

seed type are used for training and 10 for validation. Supervised training is performed on

ResNet-50 on the entire 5000 image training dataset for a total of 100 epochs. The

accuracies and losses obtained by each of the models during training and validation are as

shown in Figure 3.29. Amongst the self-supervised learning frameworks, SimCLR and

MoCo perform almost identically. It isn’t too surprising considering the architectures of

the models are similar in nature. SimCLR and MoCo attain a validation accuracy of ~80%

and loss of ~0.6. It is interesting to observe that their validation statistics are highly

coherent with that of ResNet-50’s. ResNet-50 also achieves a validation accuracy of ~80%

and loss of ~0.6. However, the same is not true of BYOL. The model achieves a validation

accuracy of ~55% and loss of ~1.1, performing well below SimCLR and MoCo. The total

lack of negative examples might be the factor that contributes heavily to such a behavior.

The models trained on linear classifiers are evaluated on the test dataset.

The classification report containing precision, recall and F-1 score for each of the classes

generated using Scikit are as tabulated in Table 3.7. The terms Precision, Recall, F1-Score,

Accuracy and Macro Average are briefly described below:

Precision: Given by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) , precision

indicates the number of positives correctly classified by the classifier. It is also called False

Positive Rate.

Recall: Given by 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠), recall indicates

the number of positives identified by the model of all the positives in the dataset. It is also

called True Positive Rate.

99

Table 3.7: Classification Reports of ResNet-50, SimCLR, MoCo and BYOL

F1-Score: Considering both precision and recall, F1-Score is the harmonic mean of

precision and recall. It is given by the formula, 2 ∗
 ∗

.

Accuracy: Accuracy is given by the sum of true positives and true negatives to the sum of

true positives, true negatives, false positives and false negatives.

Macro Average: Macro Average is simply the arithmetic mean of the values for each of

the classes in the dataset. It treats the contribution of each of the classes in the dataset

equally.

Unsurprisingly, ResNet-50 achieves the best performance of the four models in question

and establishes a steep benchmark for the self-supervised learning models to meet.

Amongst the self-supervised models, MoCo is the standout winner with a macro average

F1-Score that is significantly higher than SimCLR’s and BYOL’s. A high macro average

 ResNet-50 SimCLR MoCo BYOL

 Precision Recall F1
Score

Precision Recall F1
Score

Precision Recall F1
Score

Precision Recall F1
Score

Canola 0.96 1.00 0.98 0.60 1.00 0.75 0.83 1.00 0.91 0.65 0.95 0.77

Rough
Rice

0.85 0.94 0.89 0.83 0.39 0.53 0.98 0.75 0.85 0.62 0.46 0.52

Sorghum 0.79 0.87 0.83 1.00 0.04 0.08 0.79 0.43 0.56 0.29 0.04 0.07

Soy 1.00 0.98 0.99 0.77 0.82 0.80 0.98 0.91 0.95 0.77 0.89 0.82

Wheat 0.83 0.62 0.71 0.32 0.63 0.43 0.43 0.78 0.55 0.43 0.64 0.51

Accuracy 0.90 0.56 0.77 0.58

Macro
Avg.

0.89 0.88 0.88 0.70 0.58 0.51 0.80 0.78 0.76 0.55 0.60 0.54

100

F1-Score indicates that the model delivers good precision and recall across the five classes

in the dataset. The performance of the models on the test dataset is in-line with the

performance on the training dataset except for SimCLR. SimCLR’s validation accuracy

closely follows that of MoCo’s. However, the performance does not translate onto the test

dataset with a macro average F1-Score of 0.51 in comparison to BYOL’s 0.54, the model

with the lowest validation accuracy. While achieving a macro average precision of 0.70

that is not too far from MoCo’s 0.80, the macro average recall is a mere 0.58 in comparison

to MoCo’s 0.78 pulling down the F1-Score significantly. As for the individual seed types,

the best F1-Scores are observed on canola and soy across the board with sorghum and

wheat lying at the tail end. This is interesting considering the shape of the seeds. The seeds

of canola, sorghum and soy are circular in nature while those of rough rice and wheat are

oblong. Considering the models of SimCLR and BYOL on sorghum, a high precision and

low recall is observed which indicates that the model does a good job of identifying

sorghum when it does but does not think a lot of the sorghum seeds are actually sorghum.

The majority of sorghum either get classified as canola or soy. While better than the

performance on sorghum, a similar characteristic is observed between rough rice and

wheat. Self-supervised learning frameworks have a sense of reliance on color histograms.

The intuition is that the color histograms of random crops of the same image are similar

and different images are dissimilar. However, random color jittering applied to images

101

occasionally results in multiple images from different classes having similar histograms.

Stark similarities between histograms of images belonging to different classes leads to error

in classification. Figure 3.30 shows one such case where similar histograms are obtained

on color jittered images of canola and rough rice. While the images belong to two entirely

different classes, the root mean square difference between the two histograms is 35.6, low

enough to group both histograms in the same category. It is hard to predict the frequency

of occurrence of such similarities since the data augmentation pipeline is random, but it is

almost certain that they will occur and hinder classification. Considering the fact that every

class in the dataset is a seed type and the seeds are similar to a degree, the dataset may be

considered tough for self-supervised learning. In addition, the aspect of using synthetic

datasets for training means that the models are supposed to learn from datasets that are not

real-world. Owing to such convolutions, MoCo, the best model observed, achieves an

Figure 3.30: Similar Color Histograms of Canola and Rough Rice

102

accuracy of 77% which is only 13% shy of ResNet-50’s 90% whilst being trained on a

dataset that is 1/20th the size.

3.5 Future Work and Conclusions

Overall, the performance of the domain randomization framework demonstrates

that synthetic image datasets are a great alternative to high-throughput phenotyping

applications in the absence of real-world datasets. One of the self-criticisms of the work is

that the experiments conducted result in the neural networks being overly reliant on the

size and shape of the seed kernel but doesn’t consider the color of the seed kernel. For

instance, the seed kernels of soy are yellow whereas the seed kernels of wheat are reddish-

brown. However, the current experiment captures the images of seed kernels placed on a

light box to ensure an illuminous background. The downside to the practice is that the seed

varieties appear to be the same color. Hence, the network relies on the size and shape of

the seed kernels primarily to distinguish one type from another. As the size of broken seed

kernels of a certain variety could resemble a different seed type, the models could fail to

correctly identify broken seed kernels. Moving forward, the experimental setup which is

illuminous and captures the color of the seed kernel properly will be developed to

efficiently leverage color information. More experiments to determine the feasibility of the

neural network models on broken seeds will be conducted as the color scheme of the seed

kernels is also utilized.

Section 3.1 presents a randomized synthetic image generation framework using

image processing that applies different image transforms to generate transformed variants

of the object in the image. The use of simple image transforms means that the framework

103

is light weight and is able to function efficiently on a CPU unlike large scale neural network

models that require a GPU for efficient functioning. In addition to images, the framework

also generates annotation files in the COCO format, so the images are able to train on the

neural networks.

Section 3.2 describes training instance segmentation neural networks such as Mask

R-CNN and YOLO on the synthetic images generated by the framework described in

section 3.1. The trained network models are evaluated for their performance on images

containing real seeds. The evaluation demonstrates that the proposed random image

generation framework produces synthetic images that are able to transfer to real seed

images.

Sections 3.3 and 3.4 describe the application of synthetic images to train

classification neural network models in the supervised and self-supervised domain. The

models of VGG-16, VGG-19 and ResNet-101 are the candidates from the supervised

domain whereas SimCLR, Momentum Contrast and Bootstrap Your Own Latent (BYOL)

are the candidates from the self-supervised space. The obtained results show that

randomized synthetic images generated by the proposed framework are able to achieve

good performance on the classification models as well.

Overall, the chapter demonstrates the feasibility of domain randomization and

transfer learning for seed phenotyping. The ability to train neural network models on

synthetic images eliminates the need for large real-world datasets which are often

unavailable to researchers.

104

Chapter 4 - Real-time Seed Kernel Tracking and Counting

One of the key aspects of High-throughput Phenotyping is cereal yield estimation.

The two important characteristics that determine cereal yield are cereal size and number of

grains per ear. While leveraging images to count the number of grains as mentioned in

previous sections works, it has the pitfall of being tedious and time-consuming. Imagine

having a pile of seeds where they have to be arranged and photographed on a common

background so that they aren’t clustered or overlapped. It requires significant time and

man-power. Proposed as part of the chapter is a fleshed-out image processing algorithm to

conduct the task of seed kernel counting from videos. A video is a multitude of frames

(images) put together and played in sequence. The image processing solution is based on a

technique known as ‘slit imaging’ wherein only a tiny sliver from each frame of the video

is used for seed kernel detection and counting. The application is significant since the seed

counter machines available in the market cost upwards of $500 on average, a hefty price

tag. The development of mobile applications that estimate seed count from videos

significantly reduces the cost associated with seed counting. In addition, the solution acts

as a vehicle to drive phenotyping from the conventional lab setting to the field setting that

the majority of plant scientists prefer.

 4.1 Related Work

Neilsen et al. [114] proposed an algorithm to conduct seed kernel counting from

videos. The working of the algorithm is based on tracking each of the seed kernels as they

flow down a backlit platform. A seed kernel is considered a valid detection and counted if

105

the seed kernel is detected a predefined number of times (threshold). The algorithm serves

as the basis for the work in Chapter 4.

GridFree [55] is a python package for image analysis of interactive grain counting

and measurement. GridFree uses an unsupervised machine learning approach, K-Means,

to segment kernels from the background by using principal component analysis (PCA) on

both raw image channels and their color indices. The package incorporates users’

experiences as a dynamic criterion to set thresholds for a divide-and-combine strategy that

effectively segments adjacent kernels. When adjacent multiple kernels are incorrectly

segmented as a single object, they form an outlier on the distribution plot of kernel area,

length, and width. The software exhibits great performance on multiple crop types such as

alfalfa, canola, lentil, wheat, chickpea, and soybean.

Abto Software developed a counting technique for moving objects using the

technique of slit imaging. Reference [4] demonstrates the technique developed by the

company to count cars in a video. The algorithm developed by the company serves as the

basis for the proposed algorithm using slit imaging in chapter 4.

Parico et al. [122] performed real-time pear fruit detection and counting using

YOLOv4 models and Deep SORT algorithm. The study provides a systematic and

pragmatic methodology to choose the most suitable neural network model for a desired

application in the field of agriculture. The region-of-interest (ROI) line technique was used

by the study to estimate the number of pear fruits detected by the neural network model.

Santos et al. [148] conducted grape detection, segmentation and tracking using deep

neural networks and three-dimensional association on wine grape clusters. Different neural

106

networks such as Mask R-CNN, YOLOv2, and YOLOv3 were investigated as part of the

work, and it was determined that the Mask R-CNN model produced the best outcomes. An

F1-Score up to 0.91 for instance segmentation was reached on 408 grape clusters where

the images were captured using a trellis-system based vineyard.

Hajar et al. [48] performed vision-based moving obstacle detection and tracking in

paddy field using YOLOv3 and Deep SORT. The center point positions of the obstacles

were used to track the objects as they moved through the paddy field. The augmented

YOLOv3 architecture consisted of 23 residual blocks and up-sampled only once. The

augmented architecture obtained a mean intersection over union score of 0.779 and was

27.3% faster in processing speed than standard YOLOv3.

Chen et al. [25] performed citrus detection in orchard environment using the

YOLOv4 neural network model. The motivation for the work was that detecting fruits in

natural environments was a challenge due to occlusion among leaves and fruits. A Kinect

V2 camera was used to collect RGB images of citrus trees. The Canopy algorithm and K-

Means++ algorithm were applied to automatically select a pre-defined number of frames

from the RGB images. Finally, a fine-tuned YOLOv4 model was applied on the images to

detect the citrus fruits. The experimental results delivered an accuracy of 96.04%.

 4.2 Seed Kernel Counting using Slit Imaging

The proposed algorithm to count seed kernels leverages a technique named Slit

Image Generation. Slit image is an image constructed by joining pixels belonging to each

frame in the video corresponding to a singular location. For instance, in a video consisting

of 1000 frames where each frame is 200 x 200, a slit image may be generated by extracting

107

pixels between the coordinates (0, 0) and (10, 10) and vertically stacking the extracted

regions together to form a single image. The regions at which the pixels are extracted are

known as regions of interest (ROI). The chosen ROI for a video is subjective and depends

on the task at hand. Processing and analyzing a video are tasks that require plenty of time

and resources. It is a computationally expensive operation that generally calls for the use

of Graphical Processing Unit (GPU). Even with the availability of a high number of

resources, it is important to note that not every point in a video (or image) is equally

informative. It could be the case that a subset of the frames in the video contain only the

background or noise. In such cases, the resources are essentially wasted. The use of Slit

Imaging technique alleviates some of the problems associated with video processing. Since

a slit image is a representation of the entire video, the video is no longer required upon the

generation of the slit image. The slit image may then be processed to gain a complete

insight into the specifics of the video. Not only does the technique save time, but it also

lowers the resources required since a video only needs to be processed once to build the

slit image and the image may be processed on resource constrained mobile devices.

Performing inference on the slit image is relatively easy compared to performing inference

on the entire video which once again is a collection of images.

 4.2.1 Video Capture for Seed Kernel Counting

Inspired from the video capture mechanism described in [114], a video capture

mechanism where seed kernels are rolled down a white light emitting light box by a

mechanical hopper is designed. Figure 4.1 shows the seed kernel image capture setup

designed for the experiment. The mechanical hopper helps to deliver seeds at a constant

rate unlike free-hand delivery that tends to be erratic. The mobile phone is placed on a 3-

108

D printed stand to ensure that the camera is always held orthogonal to the surface. It helps

to eliminate any skew that may result during the capture of the video. The stand is fitted

with a 3-D printed platform at the bottom. The platform at the bottom channels the seed

kernels ensures that the seed kernels remain in the field of view of the camera as they roll

down the light box. In the absence of the platform, it is observed that seed kernels often

drift to the side and fall off the light box prematurely hindering their detection. The mobile

phone used for image capture is a Motorola Moto G6 mobile phone whose capture frame

rate is 60 fps for HD quality video.

Figure 4.1: Mechanical Hopper Delivering Soy Seed Kernels

109

 4.2.1.1 Influencing Factors

The slit image is required to be representative of the entire video. In the event the slit image

is not constructed adequately, key information might fall through the cracks leading to sub-

par results upon analysis. In the context of seed kernel counting, the factors that require

careful consideration are as follows:

1. Frame Rate: The frame rate of the video, also known as frames per second (fps),

is key to information extraction and retrieval from the video. Since the slit image is

a group of pixels extracted from the same location in every image of the video, high

frame rate is preferred. A high frame rate ensures that the action in the video is

highly continuous with few breaks. It is essential since the ROI used for slit image

creation is typically a small window. In the event objects of interest aren’t captured

in a window, the end count of seed kernels is thrown off.

2. Object Clusters: In a video where a multitude of seed kernels are made to flow

down a sled at the same time, it is almost always the case that the seed kernels touch

each other while in motion. In case the seed kernels are clustered at the time of

extraction for slit image, the count is incorrect if the cluster is considered to be one

seed kernel since it consists of at least two or more kernels. Figure 4.2 shows a

frame in a video where seeds are clustered.

110

4.2.1.2 Algorithm

The algorithm is defined as a three-step process:

1. Capture of seed kernel video

2. Generation of slit image

3. Analysis of slit image to count seed kernels

1. Capture of Seed Kernel Video

Frame rate is key to the efficient functioning of the algorithm. The typical capture rate

of mobile phone cameras over the years is 15 – 30 frames per second. Recent models of

smartphones are able to capture slow-motion and super slow-motion videos at 60 frames

per second and 120 frames per second respectively. The work [114] analyzed the impact

of frame rate on seed kernel counting and realized that frame rate is directly proportional

to the accuracy i.e., the higher the frame rate, the more accurate the seed kernel count

Figure 4.2: Frame with Seed Clusters

111

produced by the algorithm. In order to perform a well-rounded evaluation of the algorithm,

videos of seed kernels flowing down the light box are captured at normal, slow-motion and

super slow-motion rates i.e., 30 fps, 60 fps, and 120 fps respectively. Regardless of the

frame rate at which videos are captured, video players render videos at 30 fps. The captured

videos are put through a minimal amount of pre-processing before applying the algorithm.

The pre-processing is primarily to remove any unnecessary frames in the video. For

instance, in the majority of videos captured, the initial (about five) seconds of the video

does not contain any seed kernels since it takes a few seconds for the mechanical hopper

to deliver the seed kernels onto the lightbox. Pruning such non-informative parts of the

video helps in improving the runtime of the algorithm. MoviePy is a python module for

video editing operations such as clipping, concatenation, and title insertion. The MoviePy’s

subclip function is used to clip the video. The subclip function takes in two arguments –

start and end, and outputs a clip of the video. The input arguments are used as the endpoints

to clip the video.

2. Generation of Slit Image

The first step in the generation of slit image is the selection of region of interest. In

theory, any part of the image could be selected to as the region of interest. However, in

practice, it is observed that the seed kernels being delivered by the mechanical hopper are

clustered at the point of delivery. Multiple seed kernels appear as one when they are

clustered. Algorithmic analysis on clustered seeds is complex and often leads to erroneous

results. Another observation is that the seed kernels bounce off the lightbox since they are

delivered from a height of about two inches from the lightbox by the mechanical hopper.

Seed kernels which have circular morphometry, such as soy, are observed to bounce more

112

than ones with elliptical morphometry, such as wheat. In order to best avoid seed kernel

clusters and bounce off the lightbox, it is empirically determined that any part of the image

that lies in the bottom-half of the image is best suited to be region of interest. Upon

selecting the region of interest, the video generated in the previous step is put through a

video processer that runs through every frame of the video and extracts the pixels belonging

to the region of interest. All the regions of interest extracted from the video are vertically

concatenated with each other resulting in the slit image. For instance, if the ROI extracted

from each frame is of size w x h pixels where w and h are number of width and height

respectively, the resulting slit image is of size (k x h) x w pixels where k is the number of

frames in the video. Figure 4.3 shows the slit image generated from a video of wheat seed

kernels. The video consists of 1500 frames and the region of interest spans three pixels in

height and the entirety of the width i.e., 1809 pixels, of the image. The resulting slit image

is of dimensionality is given by (3 x 1500) x 1809 i.e., 4500 x 1809 pixels. The region of

interest for a given video depends on multiple factors such as frame rate, render rate and

height of image capture. The influencing parameters are further discussed in 4.4.3. The

biggest challenge in the generation of the slit image is to configure the dimensionality of

the region of interest in a manner so that every seed kernel that flows down the lightbox is

captured. The dimensionality of the region of interest is primarily influenced by three

factors – seed kernel velocity, frame rate of image capture[A20] and height of image capture.

The velocity of the seed kernel is influenced by the texture of the seed kernel and the angle

of orientation of the lightbox along with the amount of friction it offers. Seed kernels with

circular morphometry such as soy exhibit a higher velocity in comparison to seed kernels

such as wheat that have elliptical morphometry. Generally, wheat seed kernels have a flat

113

bottom with a crease in-between which slows their flow on the lightbox. The higher the

velocity, the faster the seed kernels moves in and out of the region of interest. The frame

rate of image capture is critical to ensure appropriate collection of information. A higher

frame ensures that a larger amount of information is captured. The height from which the

images are captured significantly impact the size of the seed kernels in the video. For

instance, the seed kernels appear larger in a video where the camera is placed at 10 cm

from the ground compared to a video where the camera is placed at 30 cm from the ground.

Hence, it is important to strike a balance among the three aforementioned parameters to

ensure the generation of a quality slit image that captures all the information. Figure 4.4

shows the slit image generated for wheat seed kernels flowing down the lightbox oriented

at 10° where the camera is held 18 cm from the ground and the region of interest is set to

a height of ten pixels. Figure 4.4 is further analyzed to estimate the number of seed kernels

in the slit image.

 Figure 4.3: A Frame showing Two Wheat Seed Kernels at Region of Interest

114

3. Seed Kernel Counting using Slit Image

The steps involved in estimating the count of seed kernels are as follows:

1. Convert the slit image from RGB color space to grayscale.

Figure 4.4: Slit Image of Each ROI stacked Vertically for Wheat Seeds

115

2. Gaussian blur[A21] the image to reduce noise and apply inverted binary thresholding

on the grayscale image. The result is an image where the seed kernels are in white

and background is black, as shown in Figure 4.5.

3. Perform a dilation on the image and find contours on the image to identify the

contours of the detected seed kernels.

Figure 4.5: Contours on Grayscale Slit Image for Wheat

116

Figure 4.6: Zoomed-in Detections within Red Rectangle of Wheat Seed Kernel Slit Image

117

Essence of Dilation: The importance of dilating the image before the detection of contours

is paramount. The key point to note with the detected contours in the absence of dilation is

that they are slightly disjointed although they appear connected all along. Figure 4.6 shows

four contours (from the red rectangle) that are identified from the slit image for analysis.

They are disjointed because the region of interest is much larger than the seed kernels and

captures the seed kernels multiple times as they flow through it. The region of interest is

set to 10 pixels. The frame rate of 30 fps is high enough to capture the seed kernels multiple

times as they flow through the region of interest. Hence, the contours are almost identical

to each other albeit being different contours vertically stacked on top of each other. In a

perfect world, the region of interest is precise enough and frame rate is high enough that

the region of interest precisely captures a seed kernel exactly once and the number of

contours identified in the image is the number of seed kernels present in the image.

However, configuring a region of interest that captures a seed kernel exactly once is

complex. The downside to multiple contour detections for a given seed when relying on

contour count to estimate seed kernel count is that it leads to inaccurate seed count.

Dilation helps to ignore duplicate contours of the seed kernel and accurately estimate the

count because dilation closes the gap and connects the disjointed contours. It leads to well-

formed singular contours where the scope for multiple contour detection is significantly

reduced although not completely eliminated. Figure 4.7 shows the result of dilating

contours in Figure 4.6.

118

Figure 4.8 shows a comparison of contours identified on the original and dilated slit

images, as shown in Figure 4.6 and 4.7 respectively. The gray dots within the contour

indicate the center of the contours.

Figure 4.7: Result of Dilating Detections in Figure 4.6

Figure 4.8: (left) Detection of Contours on Original Slit Image (right) Detection of Contours
on Dilated Slit Image with Contour Centers shown by Gray Dots

119

As observed from Figure 4.8, multiple contours are detected (as indicated by multiple gray

dots representing contour centers) for the same seed kernel on the original slit image

whereas exactly one contour per seed kernel is detected on the dilated slit image. While

multiple contours may be filtered to arrive at the accurate count estimate, it leads to

additional overhead in terms of computational resource requirement and run-time of the

algorithm. Hence, dilation is paramount to the efficient functioning of the algorithm.

4. Filter the contours by size to ensure that any stray contours that are detected on the

dilated image. Figure 4.9(a) shows multiple small contours detected at the coarse

edges of the contour. The stray contours observed are generally tiny abrasions that

get picked up as contours by OpenCV. Applying a threshold on the size ensures

that the tiny contours are ignored, as shown in Figure 4.9(b)

Figure 4.9: (a) Tiny Contours Detected in the absence of Size Thresholding (b) Tiny
Contours Ignored by Size Thresholding

120

5. One of the downsides to dilation is that multiple seed kernels could appear to be

one seed kernel. Figure 4.10 shows the case where dilation causes grouping of

contours belonging to multiple seeds.

Figure 4.10(a) shows the recordings for two seed kernels wherein they passed one

after the other. While the distinction is evident from the original image in Figure

4.10(a), the same cannot be said of Figure 4.10(b) which is the dilated version of

Figure 4.10(a). The recordings of both seed kernels are connected offering the

impression that they are one seed kernel. The same is observed upon detecting

contours. Figure 4.10(c) shows the contours detected on Figure 4.10(a). While

multiple contours per seed kernel are detected, it is still possible to observe the

Figure 4.10: (a) Original Slit Image showing Two Seed Kernel Contours (b) Dilated Slit
Image where Two Seed Kernels appear to be One (c) Contour Detection on Original Slit

Image (d) Contour Detection on Dilated Slit Image

121

presence of two seed kernels whereas in Figure 4.10(d) that shows the contours

detected on Figure 4.10(b), only one contour is detected for the two seed kernels.

Dilation has the ill effect of clubbing multiple seed contours leading to inaccuracies.

In order to negate the inaccuracies caused by clubbing contours, the metric of

contour size is used. Another observation that is made from Figure 4.10(d) is that

clubbed contours drawn around multiple seed kernels are significantly larger than

contours drawn around single seed kernels. The observation is leveraged to arrive

at the true seed kernel count and negate inaccuracies.

6. Elimination of Duplicate Contours: It is possible that multiple contours of the

same size be detected around the same seed kernel. The contours be large enough

to pass the minimum size threshold and perhaps identical to the contour that wraps

around the entire seed kernel. Figure 4.11 shows four contours detected around the

same seed kernels wherein all the contours are deemed valid. The numbers next to

the contours are labels. The presence of overlapping numbers indicates that

multiple valid contours are detected around the seed kernel. The detection of

multiple contours is a known behavior of OpenCV when contours have abrupt

edges or contours don’t have a perfectly closed boundary. The detection of multiple

valid contours leads to inaccuracies in the count due to a contour being accounted

multiple times. While multiple contours are present, it may also be observed that

there is only one gray dot in each of the contours. The gray dot indicates contour

122

center. The presence of a single gray dot indicates that the centers of both contours

are at the same point. Hence, multiple contours centered at the same location are

considered to represent the same seed kernel. In order to improve filtering, a

threshold on the distance between the two contours may be established to filter out

multiple contours that represent the same seed kernel. The experiments on multiple

videos as part of the work showed that the occurrence of multiple contours centered

at different locations is a rarity although the occurrence of multiple contours

centered at the same location is common.

7. Compute the average area of the contours identified in the image. OpenCV provides

the cv2.ContourArea function to estimate the area of contours in pixels.

8. Find the contours that have an area greater than 1.5 times the average contour area.

The threshold of 1.5 is arrived upon repeated experiments providing accurate

results. However, it is a tunable parameter that is required to be tuned to the task at

hand. The idea behind the step is to identify contours that could potentially belong

to multiple seeds. All the contours with an area under the threshold are assumed to

represent one seed kernel[A22].

Figure 4.11: Multiple Valid Contours around Seed Kernels

123

9. Find the number of seed kernels within each of the contours identified in step 6 by

calculating the ratio of individual contour area and average contour area. The

resulting value (upon rounding) is the count of seeds present within the contours.

For instance, consider the average contour area is 400 pixels and a random contour

has an area of 700 pixels, the number of seeds within the contour is round (700/400)

i.e., 2.

10. The number of seed kernels is given by the appropriately dissecting the contours

detected in the image as mentioned in steps 7, 8, and 9[A23].

 4.4.3 Experiment and Results

The algorithm is applied on seed kernel videos of wheat and soy for experimentation. The

reason behind the choice of wheat and soy is their distinct morphometry. As mentioned

earlier, the experiment includes the seed kernels flowing down a lightbox. The circular

morphometry of soy seed kernels means that they flow down the lightbox seamlessly even

when the lightbox is oriented at less than 10 degrees whereas the seed kernels of wheat do

not flow down smoothly at smaller orientations of the lightbox owing to their elliptical

morphometry. The minimum inclination of the lightbox for smooth rundown of the soy

seed kernels is 5° whereas the wheat seed kernels require at least 12° to 15°. It is best to

orient the lightbox at 15° from the surface to ensure that all seed kernels flow down

seamlessly. However, it is to be noted that the orientation of the lightbox has a visible

impact on the velocity of the seed kernels as they flow down the lightbox. Higher the

orientation of the lightbox, larger the velocity of the seed kernels. The frame rate of image

capture is to be increased with increase in seed velocity to ensure optimal recording of the

seed kernels as they flow down the lightbox. The size of the region of interest is also

124

required to increase with increase in velocity of the seed kernels. Hence, the orientation of

the lightbox impacts multiple other parameters such as velocity, frame rate, and region of

interest. The experiment is conducted on different videos captured at frame rates of 30 fps

i.e., normal mobile phone frame rate, 60 fps i.e., slow-motion frame rate, and 120 fps i.e.,

super slow-motion frame rate. The height of image capture and the size of region of interest

are also altered as the videos are captured. Videos are captured from heights of 18cm, 12cm

and 9cm and regions of interest of sizes 10 pixels, 15 pixels and 20 pixels are configured

for the experiment. Table 4.1 shows the results of the algorithm applied to wheat seed

kernels.

Table 4.1: Algorithmic Results on Wheat Seed Kernels

Frame

Rate

Height

(cm)

Region of

Interest

(pixels)

Actual

Count

Algorithmic

Count

Actual –

Algorithmic

Count

Count

Estimate

Accuracy

(%)

30 18 5 275 186 89 67.63

10 275 193 82 70.18

15 275 191 84 69.45

12 5 275 179 96 65.09

10 275 184 91 66.90

15 275 187 88 68

125

9 5 275 178 97 64.72

10 275 182 93 66.18

15 275 185 90 67.27

60 18 5 275 262 13 95.27

10 275 265 10 96.36

15 275 273 2 99.27

12 5 275 266 9 96.72

10 275 270 5 98.18

15 275 268 3 97.45

9 5 275 262 13 95.27

10 275 266 9 96.72

15 275 268 7 97.45

120 18 5 275 271 4 98.54

10 275 271 4 98.54

15 275 273 2 99.27

12 5 275 270 5 98.18

10 275 269 3 98.9

126

15 275 271 3 98.54

9 5 275 269 6 97.8

10 275 270 5 98.1

15 275 272 3 98.9

As evident from the results, the performance of the algorithm on videos captured at 30 fps

is sub-par. Regardless of the height of video capture and size of region of interest, the best

performance of the algorithm is 70.18%. Upon investigating the slit image for the mediocre

performance, it is observed that the fallacy lies in the capture of seed kernels within the

region of interest. The frame rate of 30 is so low that a portion of the seed kernels is never

captured as it passes through the region of interest. As a result, the slit image does not

contain the seed kernels. However, it is worth mentioning that the algorithm does a good

job of precisely accounting for the seed kernels that are captured in the slit image. The

performance of the algorithm receives a significant boost as the frame rate of the video is

increased. At 60 fps and 120 fps, the algorithm achieves accuracies of over 95%. The best

accuracy of 99.27% is achieved on the video captured at 120 fps. The reason for such high

performance at higher frame rates is that the algorithm captures all the seed kernels as they

pass through the region of interest. As the amount of information in the slit image increases,

the performance of the algorithm also significantly improves. The size of region of interest

does not have a significant impact when the frame rate is high enough, as evident from the

results. However, the factor that leads to the algorithm still undercounting by a few seeds

is seed clusters. As explained in the algorithm, as the seed kernels pass through the region

127

of interest, they could be in contact. The clusters of seed kernels produce larger contours

than singular seed kernels. While the algorithm establishes a mechanism to account for

seed kernel clusters, a few clusters still escape the filter. Table 4.2 shows the results from

the application of the algorithm to soy.

Table 4.2: Algorithmic Results on Soy Seed Kernels

Frame

Rate

Height

(cm)

Region of

Interest

(pixels)

Actual

Count

Algorithmic

Count

Actual –

Algorithmic

Count

Count

Estimate

Accuracy

(%)

30 18 5 236 141 95 59.7

10 236 144 92 61.01

15 236 148 88 62.71

12 5 236 139 97 58.89

10 236 147 89 62.28

15 236 149 87 63.13

9 5 236 137 99 58.05

10 236 140 96 59.32

15 236 141 95 59.74

60 18 5 236 226 10 95.76

128

10 236 225 11 95.33

15 236 227 9 96.18

12 5 236 226 10 95.76

10 236 226 10 95.76

15 236 223 13 94.49

9 5 236 225 11 95.33

10 236 226 10 95.76

15 236 224 12 94.91

120 18 5 236 227 9 96.18

10 236 228 8 95.39

15 236 229 7 97.03

12 5 236 224 12 94.91

10 236 226 10 95.76

15 236 227 9 96.18

9 5 236 226 10 95.76

10 236 228 8 96.61

15 236 228 8 96.61

129

A pattern similar to wheat is observed for soy as well wherein the performance of the

algorithm is mediocre on videos captured at 30 fps regardless of the height of image

capture. The performance of the algorithm on videos captured at 60 fps and 120 fps also

follows that for wheat wherein the algorithm performs exceedingly well. The reason for

the lack luster performance of the algorithm at 30 fps is that the seed kernels are not

captured as they pass through the region of interest due to low frame rate.

 4.4.4 Comparison with Neilsen et al. [114]

The proposed algorithm is inspired by the earlier work by Neilsen et al. [114]. The

algorithm put forth by Neilsen et al. [114] works on the basis of tracking a seed kernel

using the technique of background subtraction as it flows down the lightbox. A seed kernel

is deemed valid and counted when it is detected a certain number of times defined by the

average flow rate. The average flow rate is a scalar that indicates the rate at which the seed

kernels in the video flow down. It is used to estimate the location of the seed kernel at a

given point and search for it. In the algorithm put forth by Neilsen et al. [114], assuming

that the current position x of a seed kernel is known, the seed kernel is expected to be found

in the subsequent frames at or within 4 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒. Hence, the average flow

rate plays a critical role in determining the position of a seed kernel in subsequent frames.

In addition to flow rate, another parameter that the algorithm relies on is average area. The

average area parameter is indicative of the average area occupied by each of the contours

detected in the video. The algorithm initially assumes a value of 0 for both average flow

rate and average area. While the algorithm updates the values of average flow rate and

average area, it takes a few frames to do so. Prior to the update to average flow rate and

average area, the count made by the algorithm tends to be inaccurate. Determining the

130

appropriate values for average flow rate and average area requires meticulous observation.

Neilsen et. al determined that the most optimal frame rate for efficient functioning of the

algorithm is 60 fps. The work by Neilsen et al. also mentioned that the error rate for the

algorithm exploded when the frame rate was less than 60 fps. As a means to compare the

proposed algorithm to the one proposed by Neilsen et al., the video of wheat seed kernels

captured at 60 fps is used. The results are as shown in Table 4.3.

Table 4.3: Comparison between Proposed Algorithm and Neilsen et al.

Seed

Type

Frame

Rate

Height

(cm)

Actual

Count

Algorithmic

Count

Neilsen

et al.

Count

Algorithmic

Count

Accuracy

(%)

Neilsen

et al.

Count

Estimate

Accuracy

(%)

Soy 60 18 236 226 228 95.76 97.02

12 236 225 229 95.33 97.03

9 236 227 228 96.18 97.02

Wheat 60 18 275 266 270 96.72 98.18

12 275 270 270 98.18 98.18

9 275 268 266 97.45 96.72

131

 The proposed algorithm exhibits a high degree of correlation to that of the algorithm

proposed by Neilsen et al. Overall, the experiments conducted on the seed varieties of soy

and wheat show that the algorithm exhibits quality performance on slit images provided

that the slit image is constructed well. However, the construction of a well informing slit

image depends greatly on the frame rate at which the video is captured. The algorithm is

shown to provide inferior results on videos captured at 30 fps in comparison to the videos

captured at 60 fps and 120 fps. At such high frame rates, the size of the region of interest

does not impact the outcome much.

 4.4.5 Conclusions and Future Work

The algorithm demonstrates the feasibility of seed kernel counting using region of

interest segmentation and slit imaging. The algorithm gracefully handles the issue of

duplicate contours within the detected contours. The pitfall of occlusion within centroid

tracking algorithm is handled using the slit imaging technique. Since the slit image is

created by stitching multiple regions of interest together, the likelihood that the seed kernel

is not occluded increases, thereby, reducing the chance of missing out on seed kernels.

However, the proposed algorithm’s reliance on an informational slit image can be stated as

its pitfall. Especially at lower frame rates where the slit image tends to miss recording

information, the algorithm exhibits poor performance. Moving forward, an algorithm

which is the combination of centroid tracking and slit imaging will be implemented.

Currently, counting using centroid tracking relies on observing the seed kernel for a certain

number of times before it is deemed a valid seed kernel that is counted. However, occlusion

in certain cases causes the centroid tracking algorithm to lose track of the seed kernel. In

132

order to avoid such a scenario, the seed kernel is tracked all through the region of interest

to ensure that the seed kernel is detected in case it is not blocked (or tied).

133

Chapter 5 - Automated Phenotyping of Single Seeds using a

Novel Volume Sculpting Framework

Seed and plant breeding applications require the ability to estimate the morphometric

characteristics, otherwise known as phenotypes, of agricultural entities and products such

as seeds, leaves and fruits in order to establish a correlation between morphometry and

behavior. Plant phenotyping is the assessment of complex plant traits such as growth,

development, tolerance, resistance, architecture, physiology, ecology, yield, and the basic

measurement of individual quantitative parameters that form the basis for complex trait

assessment [79]. Reliable techniques to estimate morphological traits such as plant biomass

[102][44], root morphology [73][178], leaf morphology [62][12] and fruit traits [30][109]

are available to aid in plant phenotyping. Besides the aforementioned traits, another key

morphological trait that aids in phenotyping is seed volume. The estimation of seed volume

is complex because seeds are irregular shaped entities, in general. A seed is the most basic

agricultural entity from which the complex root and shoot systems develop. The research

on seed-functional ecology and seed-trait correlates is heavily dependent upon seed

volume, which is overwhelmingly represented by the mean seed mass [143]. In order to

integrate the ecological and functional correlates of seed size distributions in soil seed bank

studies, seeds are required to be sorted by size. Conventionally, seeds are sorted by passing

them through a series of sieves of diminishing mesh sizes. The pitfall with the technique is

that sieves only separate the seeds according to a linear dimension rather than volume. In

addition, it is laborious, time consuming and may damage the seeds at times [146]. Other

popular techniques to estimate seed volume include water displacement, volume slicing

and silhouette-based volume sculpting. The technique of water displacement attributes the

134

volume of an object to the amount of water displaced when the object is dropped in the

body of water. However, the technique is detrimental to the structural integrity of the seeds

since they tend to absorb water and bloat in size. Volume slicing refers to the technique of

dividing the object in the image into a certain number of cross-sections and computing the

volume of each of the cross-sections. The aggregate of cross-sectional volumes is deemed

the total volume. The silhouette-based volume estimation is the technique of constructing

the 3-D model of the object from multi-view imagery. While no volume estimation

technique is 100% accurate, the image-based techniques of volume slicing and silhouette-

based estimation preserve the structural integrity and chemical composition of the seeds.

Another key benefit to image-based analysis is that the results are reproducible across

different experiments eliminating subjective bias. The estimation of volume, a three-

dimensional quantity from images, two- dimensional entities, needs a meticulously curated

setup wherein the 3-D reconstruction of the seed from images is achieved. The article

extends upon the silhouette-based volume estimation technique and presents a low-cost,

end-to-end silhouette-based volume sculpting framework that reconstructs the 3-D model

of a seed using multi-view imagery that captures the seed from different perspectives. The

proposed system is low-throughput that processes one seed at a time.

5.1 Related Work

Koc [70] demonstrated the use of ellipsoid slicing and image processing techniques

to estimate the volume of watermelon. The dimensions such as the length, major and minor

diameters of the watermelon were used as the parameters in the ellipsoid approximation

method. In case of image processing, the grayscale contour i.e., boundary of the

watermelon was extracted using image processing. The boundary image was approximated

135

for volume using the disk method [138]. The outcomes of the two techniques were

compared to those by water displacement. The comparison showed that the outcomes of

the water displacement and image processing techniques were more similar to each other

than those between water displacement and ellipsoid slicing.

Roussel, Geiger, Fischbach, Jahnke and Scharr [60] described a method to perform

3D reconstruction of plant seeds surfaces with diameters as small as 200 μm using shape-

from-silhouette approach. The robotized system developed as part of the work was low-

throughput and handled one seed at a time. One of the noteworthy accomplishments of the

work was the manner in which camera pose variations were handled. The work served as

the basis for Cao et al. [24].

Cao and Neilsen [24] extended the work by Roussel et al. [60] and presented an

affordable 3-D single seed volume measurement system. The method involved the use of

3-D printed components to act as the scaffolding onto which cameras were mounted. The

seed was placed on a turntable with a black background. Images of the seed were captured

by the camera as the seed rotated on the turntable. The captured imagery was processed

using silhouette-based volume sculpting to estimate volume. The system was verified

against a ceramic ball of known geometry. The volume estimated by the system showed

less than 3% difference to the actual. Cao et al. [24] is the basis for the current article.

Pound, French, Murchie and Pridmore [126] proposed an approach for automated

recovery of three-dimensional models of plant shoots from multiple color images using a

single low-cost camera. The algorithm for reconstruction used an initial point cloud

estimate as a basis for the growth of plant surfaces in three dimensions. The reconstructed

plants were represented as a series of small planar section that together model the more

136

complex architecture of leaf surfaces. The boundary of each leaf patch was refined using

the level-set method, optimizing the model based on image information, curvature

constraints, and the position of neighboring surfaces. The proposed approach was tested on

the datasets of wheat, rice and a virtual dataset that allowed for the measurement of

reconstruction accuracy.

Yang and Cho [191] performed 3-D crop reconstruction and automatic analysis of

phenotyping index using machine learning. In the experiment, a system was configured

and implemented for the 3-D image reconstruction of red pepper plant, as well as its

automatic analysis. A Kinect v2 with a depth sensor and a high-resolution RGB camera

were used to obtain more accurate reconstructed 3-D images. The reconstructed 3-D

images were compared with conventional reconstructed images, and the data of the

reconstructed images were analyzed with respect to their directly measured features and

accuracy, such as leaf number, width, and plant height. The results showed that the

proposed method showed an error of about 5 mm or less when reconstructing and analyzing

3-D images, and was suitable for phenotypic analysis.

Potmesil [89] presented a method to generate octree models for 3-D solid objects

from their silhouettes obtained in a sequence of images. The silhouettes of objects were

projected into an image and the center of projection generated 3-D conic volumes. The 3-

D model of the objects is constructed by intersecting such conic volumes obtained from a

sequence of images. In order to process 3-D volume data efficiently, hierarchical octree

structures were used. The volumes of individual objects were labelled by a connectivity-

labeling algorithm, and surface-normal vectors were added to their surface volume

elements.

137

Sankaran, Wang and Vandemark [146] proposed an image-based rapid

phenotyping technique to estimate the size of chickpeas. The experiment was conducted

on samples collected from 72 plots from two different locations. The experiment involved

the use of images where chickpeas were clustered together and also separated from each

other. The Watershed algorithm was used to segment the clusters of chickpeas and a macro

developed in ImageJ was used to estimate seed count and seed size. The reference object

to estimate chickpea size was the US Penny. The results exhibited a high correlation

between the seed size estimated by the image processing technique and ground-truth data.

Zhang, Zhang, Wang, and Yang [196] developed an information management

architecture for distributed wireless sensor networks to deploy in distributed regions.

Different types of sensors, environmental factors, and control devices were considered

during the development of the architecture. The architecture consisted of four layers:

sensor, gateway, central server, and domain application. The developed architecture was

applied to a melon greenhouse production base and apple tree cultivation base. The

integrated bases were able to interact with the information management platform well.

Golbach, Kootstra, Damjanovic, Otten and Zedde [43] proposed a high-throughput

system for 3-D reconstruction of plants. The 3-D reconstruction was based on the use of

silhouette-based technique. In order to make the process high-throughput, varying number

of cameras were used to capture the image of the plants from different perspectives. While

the quality increased with the increase in the number of cameras, it also led to an increase

in the computational complexity of the system. In the end, ten cameras were chosen to

balance the trade-off. The results indicated a high correlation between the results obtained

by the algorithm and ground-truth measurements obtained by manual measurement.

138

5.2 Materials and Methods

The concepts that help to understand the estimation of volume using the silhouette-

based approach are explained as follows. Please note that the underlying mathematical

derivations are out of scope of the article.

Voxel: A voxel is the unit of information that defines a point in 3-D space. A pixel in 2-D

space is analogous to a voxel in 3-D space. Simply, they are virtual cubic blocks that are

representative of 3-D space.

World Coordinate System: It is the basic 3-D cartesian coordinate system with an origin

assigned by means of arbitrary assumption. In other words, it may be defined as any point

in the 3-D space.

Camera Coordinate System: It is the 3-D coordinate system that measures relative to the

camera’s origin and orientation. It is possible to apply the operations of rotation and

translation to convert a point in the world coordinate system to the camera coordinate

system. There exists a 4 x 4 transformation matrix known as Camera Extrinsic Matrix

which applies rotation and translation to convert a point from world coordinate system to

camera coordinate system. The camera extrinsic matrix changes with the physical location

of the camera.

Image Coordinate System: It is the coordinate system that projects the 3-D point from

camera coordinate system to the 2-D plane. Only the height and width of the 3-D point are

captured but there is no sense of depth in the image coordinate system. Hence, it is a lossy

transformation that cannot be reversed.

139

Pixel Coordinate System: In order to discretize the image coordinate system, it is divided

into pixels. The pixel coordinates of an image are discrete values within a range computed

by dividing the coordinates in the image coordinate system by pixel width and pixel height.

Intrinsic Parameters: The parameters that define the relationship between the image

coordinates and camera coordinates are called Intrinsic parameters. Intrinsic parameters

are specific to the camera in use and a meticulous calibration of the intrinsic parameters is

required to avoid image distortion. The intrinsic parameters typically considered are:

1. Focal Length: Focal Length is defined as the distance between the image plane and origin

of the camera coordinate system.

2. Principal Point: The Principal Point is the point where the Optical axis i.e., the Z-axis of

the camera coordinate system, intersects the image.

Figure 5.1 presents a graphical representation of the intrinsic parameters of focal length

and principal point.

Figure 5.1: Intrinsic Parameters

140

 5.2.1 Shape-from-Silhouette Method for Seed Kernel Reconstruction

The silhouette of an object in an image refers to the contour that separates the object

from the background. The shape from silhouette method requires multiple images captured

from different angles to perform 3-D reconstruction of a seed kernel. For each of the images

captured, the silhouettes are segmented using a method known as background subtraction.

The silhouettes are then back-projected onto a common 3-D space with projection centers

equal to the camera locations. The back-projection onto a common space requires the

intrinsic camera matrix K and distance between the origin of the working volume and

camera center. The origin of the working volume is considered to be the intersection point

(IP) of the seed bottom horizontal line and the line drawn through the center of the image.

A total of N images equidistant from each other spaced at rotation angles ai where i ∊ {1…,

N} are acquired. The rotation is around the vertical axis through the IP and parallel to the

Y-axis of the camera. A grayscale threshold on each of the acquired images is applied and

segmented into a binary mask Mi where i ∊ {1…, N}. For each image, the camera

projection matrix Pi is calculated from the rotation angle ai by 𝑃𝑖 = 𝐾(𝑅𝑖 | 𝑇𝑖) where

Ri is the rotation matrix and Ti is the translation matrix corresponding to the given angle

ai. Then, an equidistantly spaced cubic voxel grid around the world origin is defined around

the world origin. The size of each voxel is set to 1 mm3. Each voxel center with

homogenous world coordinates �⃗� is projected to a point, �⃗�i in each mask Mi by �⃗�i = Pi�⃗�. If

a voxel belongs to the foreground object, its value V (�⃗�) is set to 1. If the voxel does not

belong to the foreground object, its value V (�⃗�) is set to 0. The mask Mi in volume carving

is sensitive to misalignment of the object volume and needs to be carefully adjusted.

141

 5.2.2 Hardware Framework

3-D reconstruction of seeds requires multiple images captured from different angles at

regular angle intervals. In order to ensure that the images are captured precisely, a low-cost

hardware setup is proposed. Different parts of the hardware setup are described as follows

and shown in Figure 5.2.

a) Seed Station: The seed station shown in Figure 5.2 carries the seed as it is rotated

by a NEMA 23 stepper motor. The seed station is just big enough to ensure that the

seed comfortably fits on it. The stepper motor is powered by a 12V power supply

and controlled by an Arduino micro-controller using a Synthetic gShield stepper

driver.

b) Image Capture: The images of the seed are captured using a color camera DFK

37BUX287 manufactured by ImagingSource IC. Two cameras that are placed

orthogonal to each other are used in the setup. The image capture is automated

using the API provided by ImagingSource IC software.

c) Stepper Motor: The stepper motor is controlled by an Arduino UNO R3 board

fitted with a gShield v5 board. The stepper motor is controlled by G-Code strings

sent to it from a program written in Python. The turn rate in degrees is customizable

by the user. For the experiment, a 10-degree rotation is used as the default setting.

d) 3-D Graphics and Legos: The mounds that hold the cameras are printed using 3-

D graphics. In order to print the parts, a MakerGear M2 3-D printer is used. A

software tool named Cubit is used to create the STL models for the 3-D mounds.

The model is converted to gcode for printing using another software tool named

142

slic3r. The gcode is input to the MakerGear M2 3-D printer for printing. The camera

mounds are rested on a base built using Lego pieces. The Legos are sturdy enough

to hold the lightweight 3-D camera mounds and cameras themselves.

e) Light Source: Two gooseneck LED light sources are set next to the seed station to

focus on the seed kernel, so the seed kernel appears bright at the time of image

capture.

 5.2.3 Software Framework

The software implementation to control the hardware framework and 3-D

reconstruction is done in Python and C#. While C# is predominantly used to control the

image capture of the camera, Python is used to perform every other task including the 3-D

Figure 5.2: Hardware Setup for Single Seed Reconstruction

143

seed reconstruction. The different software packages and their versions used in the

application are as shown in Table 5.1.

Table 5.1: Packages and their Versions for Single Seed Reconstruction Applications

Package Version

Python 3.7

Numpy 1.20.1

Matplotlib 3.3.3

Mayavi 4.7.2

SciPy 1.2.3

OpenCV 4.5.1.48

The steps in the application for seed reconstruction are described as follows.

1. The user interface shown in Figure 5.3 is provided as part of the framework and requires

the user to enter basic information such as username, location, folder to save results,

description and rotation angle of stepper motor. The rotation angle determines the number

of images that are to be captured as part of the experiment. For instance, a rotation angle

of 10-degrees means that the experiment will capture 360/10 = 36 images. Either image

count or rotation only is required to be entered the user. The application calculates the other

from the entry. In case 30 images is entered by the user, the application determines the

rotation to as 360/30 = 12 degrees and sends G-Code commands to the stepper motor

accordingly.

2. Crop the images such that the object of interest i.e., the seed kernel is at the center of the

image.

144

3. Convert the images to HSV color space from RGB to aid in better thresholding. Image

thresholding is applied on the HSV image to extract the foreground from background i.e.,

the seed kernel.

4. Apply binary thresholding on the extracted seed kernel to obtain a binary mask.

Perform volume carving using each of the binary masks obtained to perform 3-D seed

reconstruction.

5. Apply binary thresholding on the extracted seed kernel to obtain a binary mask.

6. Perform volume carving using each of the binary masks obtained to perform 3-D seed

reconstruction.

Figure 5.3: User Interface for Single Seed Reconstruction Application

145

 The center of the reconstruction cuboid is identified by using the IP of the seed

bottom horizontal line and the centerline in the image. A cuboid is constructed

outside of the object defined by voxels where each voxel has a size of 1 x 1 x 1.

 For every binary mask obtained, the cuboid is carved i.e., the locations where the

seed exists is kept whereas the other locations are removed. The process requires

that a projection matrix [99] be constructed and back-projected.

7. The total volume of 3-D reconstructed voxels is ∑ vi where vi = 1 x 1 x 1. The total

volume of seed kernel is computed by multiplying by a factor which is the cubic volume

of a pixel per mm in camera properties.

 5.3 Improvements from the Previous Version

The current work is an iterative improvement to Cao et al., 2020 [24]. The current

iteration is a significant improvement from a hardware and software perspective. The

improvements are described as follows.

 5.3.1 Hardware Improvements

a) Seed Station: Figure 5.4 shows the single seed reconstruction hardware proposed

by Cao et al., 2020 [24]. The hardware proposed by the current work (shown in

Figure 5.2) alters the size of the seed station and proposes one that is only large

enough to hold the seed kernel. The benefit to the smaller seed station is that the

seed kernel could be placed back at the location of image capture in case it gets

dislodged as the images are captured. The exact location of image capture for the

seed kernel is hard to determine on the larger seed station making it practically

146

impossible to place the seed at the same location in case it got dislodged. Another

improvement in the proposed hardware is the use of double-sided tape to firmly

attach the seed kernel to the seed station. In the previous iteration, the seed kernel

freely rests on the seed station. As a result, the seed kernel tends the move by a tiny

fraction during image capture leading to misaligned images. The use of the double-

sided tape ensures that the seed kernel is firmly attached to the seed station resulting

in fully aligned images.

b) Stepper Motor Automation: In the previous iteration, the stepper motor was

operated manually using Universal G-Code Sender, a desktop application that

connected to the stepper motor. The operation of the stepper motor is automated in

Figure 5.4: Single Seed Reconstruction Framework [24]

147

the current iteration wherein G-Code corresponding to a specific amount of rotation

is sent to the stepper motor using Python. The input provided by the user (using the

user interface shown in Figure 5.3) is processed to determine the G-Code to be sent

to the stepper motor. The NEMA 23 stepper motor takes 200 steps per rotation.

Hence, each step amounts to a rotation of 1.8°. It is worth noting that only rotation

in multiples of 1.8° is achievable by the stepper motor.

c) Camera Orientation: The camera was fixed to the mount at an orientation of 10°

in the previous iteration which led to an image wherein the bottom surface was not

captured. The camera orientation is adjusted so that the camera is held orthogonal

to the seed kernel. As a result, the bottom surface of the seed kernel is captured

appropriately. Figure 5.5 shows a graphical representation of the difference in

camera setup between the two iterations.

Figure 5.5: Camera Orientation in (a) Previous Iteration (b) Current Iteration

148

 5.3.2 Software Improvements

Automated Seed Kernel Detection: In the previous iteration of the application, the user

was expected to determine pixel coordinates of the most likely location of the seed kernel.

As part of it, the user had to provide three rectangular regions to identify the seed kernel.

They are search rectangle, template rectangle and crop rectangle. The crop rectangle is the

rectangular region that closely encompasses the seed kernel. The Template rectangle is the

rectangular region that encompasses the crop rectangle. The Template and Crop rectangle

together help crop the seed kernel in the sense the offset between the two rectangular

regions is always fixed and the Crop rectangle moves along with the Template rectangle as

and when its position is changed. The search rectangle encompasses the Template rectangle

and is the region within all the images where the seed is definitely found. For instance, if

the image dataset contains 36 images where the seed kernel may be present at different

regions of the image, the search rectangle is the rectangular region that contains the seed

kernel in any image when searched. The rectangular regions are shown in Figure 5.6.

Figure 5.6: Rectangular Regions to crop Seed Kernel within Image

149

The three rectangular regions are specific to the experiment and anytime the location of the

seed on the seed station changes, the regions are to be determined once again. Determining

the criteria for the three rectangular regions is cumbersome, error prone and the expectation

is unrealistic from a user perspective. The current iteration improves upon the aspect

wherein it automatically determines the location of the seed kernel using image processing.

The steps to determine the location of the seed kernel are as follows.

1. In each of the images acquired, detect the contour of the seed kernel and crop the

rectangular region around the contour, as shown in Figure 5.7.

Note: A key point to note is that the size of the contour of the seed kernel within each of

the images is slightly different due to the position of the seed kernel as it rotates on the

seed station. Since the seed kernel rotates circularly on the seed station, assuming that the

diameter of the circle is d and distance between camera and center of the seed station is x,

the seed kernel is at a distance of x – d and x + d at two distinct points during the rotation.

The distance x – d is the closest that the seed kernel comes to the camera and x + d is the

farthest that the seed kernel moves from the camera. The seed kernel appears larger when

it is positioned closer to the camera than farther. In order to align all the image on a level

playing field, it is required to normalize the size of the cropped images and make their size

uniform.

Figure 5.7: Detected Rectangle around Seed Kernel Contour

150

2. Resize all the images in the dataset to the mean size of the images containing the largest

and smallest seed kernel contours.

3. Detect the contour of the seed kernel in each of the resized images (similar to step 1).

5.4 Verification Mechanism

The volume of each of the seed kernels is estimated based on the proposed 3-D

reconstruction technique. However, there is no known standard technique to estimate the

volume of a seed kernel. Manual measurement using a caliper is error prone since the

measurements are not reproducible across different individuals and subject to bias. As a

means to verify and validate that the volumetric estimation made by the 3-D reconstruction

technique is within reason, the seed kernel is approximated to a mathematical shape whose

volume may be estimated. While the likelihood that the shape of any seed kernel fully

conforms to a mathematical shape is minimal, the approximation acts as a means to verify

that the results output by the 3-D reconstruction technique are reasonable. In general, seed

kernels have varying shapes which makes developing a universal model that works for all

seed types. As part of the experiments for the current work, the seeds of wheat and soy are

considered and are as shown in Figure 5.8.

Figure 5.8: (left) Soy Seed Kernels (right) Wheat Seed Kernels

151

The closest mathematical shape that the seeds of soy and wheat may assume is that of the

ellipsoid since it captures the properties of both spherical (soy) and oblong (wheat) seed

types. The volume of a seed kernel upon being assumed to be an ellipsoid is the aggregate

of the individual cross-sectional volumes. Each cross-section of the ellipsoid is an elliptic

cylinder, as shown in Figure 5.9. The volume of the ith cross-section is given by vi =

π.Ai.Bi.hi where vi is the volume of the ith cross-section of an ellipsoid (elliptic cylinder),

Ai is the radius of the major axis and Bi is the radius of the minor axis of the ith cross-

section of the ellipsoid and hi is the height of the ith cross-section of the ellipsoid.

The algorithm for volumetric estimation using ellipsoidal assumption is inspired by Cao,

2020 [23] and assimilated to the current work. The algorithm is described as follows:

1. Convert the original image of the seed kernel in RGB color space to HSV color

space.

2. Filter out the background from the seed and color threshold the HSV image.

Figure 5.9: Cross-sections of Ellipsoid

152

3. Detect the seed kernel in the image and plot the contour that encompasses it.

4. Plot a rotated (minimum area) rectangle around the seed contour. The length of the

rectangle is assumed to be the length of the seed kernel.

5. Segment the seed kernel contour into n horizontal segments where n is the length

of the bounding rectangle.

6. Plot a line joining the left most and right most points on the seed kernel contour.

7. Compute the mid-point on the line and determine points on the contour that are

above and below the line joining left most and right most points. Store the points

belonging to the top and bottom of the line in two different lists.

8. Calculate the average of the five adjacent points that belong to the top and bottom

lists to make a rectangular box for each segment (from step 5).

9. Estimate the volume of each segment (cross-section) by approximating it as an

elliptic cylinder i.e., vi = π.Ai.Bi.hi.

Finally, compute the aggregate of the volumes of each of the segments to estimate the

volume of the seed kernel, i.e., V = Σn
i = 1 π.Ai.Bi.hi.

 5.4.1 Image Capture

The goal of image acquisition is to capture the seed kernel without ignoring even the

slightest detail. The estimation of volume using the ellipsoid slicing technique requires the

top view and side view of the seed kernel. The length and width of the seed kernel are

obtained from the top view whereas the side view is required to obtain the thickness of the

seed kernel. The acquisition of seed kernel images is performed using two different

153

techniques that capture the seed kernel from the top view and side view. The hardware

setup for the 3-D reconstruction technique shown in Figure 5.2 is used for image capture.

The techniques are described as follows.

a) Two-Camera Image Capture: As evident from Figure 5.2, the hardware setup

consists of two cameras, one at the top and another at the side, held equidistant from the

seed station. The seed kernel is placed on the seed station and the image of the seed kernel

is captured by both the top and side cameras. The image captured by the side camera gives

the side view of the seed kernel whereas the image captured by the top camera gives the

Figure 5.10: Two-Camera Image Capture of Wheat Seed

154

top view of the seed kernel. Figure 5.10 shows the capture of a wheat seed kernel using the

two-camera image capture technique.

The images captured using the two-camera technique are put through the silhouette-based

3-D reconstruction technique to reconstruct the 3-D model of the seed kernel from images.

Figure 5.11 shows the side view of the 3-D reconstruction model at 0°, 90°, and 180°.

Likewise, Figure 5.12 shows the top-view of the 3-D reconstruction model at 0°, 90°, and

Figure 5.12: Side-view of 3-D Seed Kernel Reconstruction at (a) 0° (b) 90° (c) 180°

Figure 5.11: Top-view of 3-D Seed Kernel Reconstruction at (a) 0° (b) 90° (c) 180°

155

180°. The reconstructed model is viewed in a 3-D model viewing tool known as Mayavi.

The obtained top view and side view of the wheat seed kernel are as shown in Figure 5.13.

The obtained images are processed using the algorithm described in section 5.4 to estimate

the volume of the seed kernel. Figure 5.14 shows the top view and side view of the seed

kernel sliced into different segments of the ellipsoid.

While the detail captured by the two-camera technique is excellent, the illumination around

the seed kernel causes part of the seed station to show prominently. It is observed in Figure

5.13 (left) where an illuminated circle of light is detected around the seed kernel. It requires

additional processing to ensure that the circle of light is ignored from the volumetric

estimation. The inclusion of the light around the seed results in inaccurate computation of

the volume.

Figure 5.14: (left) Top View Sliced into Elliptic Cylinder Segments (right) Side View into
Elliptic Cylinder Segments

Figure 5.13: (left) Top View Wheat Seed Kernel (right) Side View of Wheat Seed Kernel

156

b) Mirror-based Image Capture: The mirror-based image capture technique

captures the top view and side view of the seed kernel using a camera and mirror. The idea

is to hold a mirror at a 45° to the seed station and capture the image of the seed kernel

placed on the seed station using the side camera. Since the mirror is at a 45° to the seed

station, the reflection of the seed kernel in the mirror captures the top view of the seed

kernel. Figure 5.15 shows the image capture using the mirror-based technique.

Figure 5.15: Mirror-based Image Capture of Wheat Seed Kernel

157

The captured images for the top view and side view are as shown in Figure 5.16. The

images are put through the algorithm described in section 5.4 to estimate the volume of the

seed kernel. Figure 5.17 shows the images of the top and side views sliced into multiple

segments.

5.5 Results

Experiments using the proposed 3-D reconstruction framework and ellipsoid

slicing techniques are conducted on a random sample of five soy seed kernels and five

wheat seed kernels. The experiment using each of the techniques is carried out for a total

of 20 times to also detect any variability in the estimations. The images used for the

Figure 5.16: (left) Top View of Wheat Seed Kernel (right) Side View of Wheat Seed Kernel

Figure 5.17: (left) Top View Sliced into Elliptic Cylinder Segments (right) Side View Sliced
into Elliptic Cylinder Segments

158

ellipsoid slicing technique are captured using the mirror-based approach and two-camera

based approach. In order to compare the volumetric estimations between the two

techniques, Relative Standard Deviation (RSD) is used as the metric. The underlying

concepts to understand RSD are as described further.

Mean: Mean is given the ratio of the sum of all the datapoints in the dataset and number

of data samples. Assuming d = [1, 2, 3, 8] as being the dataset and n = 4 is the length of

the dataset, mean is given by
∑

 i.e. (1 + 2 + 3 + 8)/ 4 = 3.5. It gives the average of the

values in the dataset.

Variance: Variance indicates the dispersion of data points around the mean. It is given the

by the squared difference between each datapoint di of dataset d and mean, M divided by

the degrees of freedom i.e., n – 1 where n is the number of datapoints in the dataset d. It is

expressed as s2 =
()

.

Standard Deviation: The square root of Variance is known as Standard Deviation.

Variance being the squared value tends to be large at times being hard to calculate.

Therefore, standard deviation is often considered.

Relative Standard Deviation (RSD): RSD, otherwise known as Co-efficient of Variation,

is the measure of standard deviation relative to the mean of the dataset. It is a unitless

measure of dispersion obtained by dividing the standard deviation by the mean of the

sample. Its use is preferred in cases where a comparison on the dispersion of two datasets

of different units is made. Mathematically, 𝑅𝑆𝐷 = 𝑠/𝑀 where s is the standard deviation

and M is the mean of the dataset. A comparison of the RSD for each of the five wheat seeds

159

using the mirror-based approach and 3-D reconstruction approach is shown in Table 5.2.

Similarly, a comparison for five soy seed kernels is shown in Table 5.3.

Table 5.2: Standard Deviation, Average Volume and RSD for Wheat using Mirror-based
and 3-D Reconstruction Approaches

 Wheat

ID Mirror-based Approach 3-D Reconstruction Approach

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

1 0.318 27.602 0.011 0.13 27.912 0.004

2 0.244 29.401 0.008 0.102 30.670 0.003

3 0.443 31.642 0.014 0.142 31.645 0.004

4 0.356 27.409 0.012 0.127 28.560 0.004

5 0.296 25.897 0.011 0.108 26.742 0.004

Table 5.3: Standard Deviation, Average Volume and RSD for Soy using Mirror-based
and 3-D Reconstruction Approaches

 Soy

ID Mirror-based Approach 3-D Reconstruction Approach

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

1 0.638 147.918 0.004 0.3845 146.2841 0.002

2 0.605 106.057 0.005 0.3448 104.1521 0.003

3 0.973 132.855 0.007 0.375 130.1393 0.002

4 1.347 151.763 0.008 0.5594 150.6711 0.003

5 0.468 135.773 0.003 0.3283 133.4657 0.002

160

A comparison of the RSD for each of the five wheat seeds using the two camera-based

approach and 3-D reconstruction approach is shown in Table 5.4. Similarly, a comparison

for five soy seed kernels is shown in Table 5.5.

Table 5.4: Standard Deviation, Average Volume and RSD for Wheat using Two Camera-
based and 3-D Reconstruction Approaches

 Wheat

ID Two Camera-based Approach 3-D Reconstruction Approach

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

1 0.473 28.727 0.016 0.195 28.47 0.006

2 0.408 30.332 0.013 0.229 32.615 0.007

3 0.356 32.368 0.011 0.207 33.437 0.006

4 0.344 27.845 0.012 0.109 29.042 0.003

5 0.254 26.582 0.009 0.196 27.093 0.007

Table 5.5: Standard Deviation, Average Volume and RSD for Soy using Two Camera-
based and 3-D Reconstruction Approaches

 Soy

ID Two Camera-based Approach 3-D Reconstruction Approach

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

Standard
Deviation

Avg.
Volume
(mm3)

Relative
Standard
Deviation

1 1.406 147.209 0.009 0.369 147.517 0.002

2 0.768 106.897 0.007 0.372 105.779 0.003

3 0.705 132.406 0.005 0.313 132.135 0.002

4 0.813 152.475 0.005 0.392 151.990 0.002

161

Please note that the five seeds each of wheat and soy used in the experiment are the same.

However, there is a minor variation in the results of the 3-D reconstruction approach

between the experiment due to variation in light intensity and position of the seed kernel

on the seed station. The position and light intensity are maintained constant in a given

experiment. The obtained results demonstrate superior RSD with the 3-D reconstruction

approach in comparison to the two-camera and mirror-based approaches. The RSD of all

seed kernels, soy or wheat, is lower for the proposed 3-D reconstruction technique in every

experiment. The lower RSD indicates that lower variance and higher level of reliability for

the 3-D reconstruction technique in comparison to the others.

5.6 Future Work and Conclusion

The proposed technique demonstrates an end-to-end 3-D reconstruction technique

for volumetric estimation of seed kernels and its improved performance over the previous

setup. In addition, the proposed technique also provides better results in comparison to

volume slicing using ellipsoid approximation technique where images are captured using

the two-camera and mirror-based setups. In upcoming iterations of the 3-D reconstruction

setup, one of the ideas is to build a seed station with non-reflective material. Since the

currently used seed station is 3-D printed using a material that reflects light, it shows in the

captured images. As a result, the image processing algorithm used to process the images

struggles to precisely identify the seed kernel in the image. Along the same lines, the use

of a light intensity that is constant from start-to-end of the experiment is required. The

gooseneck LED that is currently used is battery powered. Hence, the intensity of the light

emitted changes over time as the battery is drained. Other methods to initially locate the

5 0.636 135.205 0.004 0.423 133.147 0.003

162

target’s contour are to be developed in addition to the one proposed. In addition, the impact

of stepper motor variation on volume estimation needs investigated. The NEMA stepper

motor used in the experiment does not yield an exact ten-degree rotation. It is because each

step of the stepper motor yields a 1.8-degree rotation. As a result, the rotation obtained is

10.8-degrees (1.8 x 6) but not ten which has the potential to lead to inaccuracies.

163

Chapter 6 - Phenotyping Algorithms for Mobile Applications

 Accurate data collection and analysis is key to advance the field of digital image

processing. The availability of mobile phones and portable devices with cameras is feasible

means to collect image data at will. However, analysis of the collected data to make

meaningful inferences requires mobile applications that have the ability to extract, process

and analyze the image data. A plethora of phenotyping applications are available in the

market for free as mobile applications. The applications are a boon to the agricultural

community since they enable farmers and plant researchers to conduct phenotyping on the

field. One such phenotyping application is FieldBook, an open-source android application

that is under active development by the Poland Lab at Kansas State University. The goal

of the application is to increase the speed of data collection and analysis to increase the

size and accuracy of agricultural field experiments. Fieldbook moves towards the vision of

one handheld device per breeder, giving every breeder access to robust data collection and

management that will facilitate the development of improved varieties to enable needed

gains in agricultural productivity [139]. Fieldbook in its current state displays data at an

individual entry level with the capacity to navigate independently between traits and entries

as shown in Figure. 6.1 [139]. The features currently available in Fieldbook include

visualization of the state of data collection in the field with a field map that indicates which

entries have and have not been collected for a specific trait. In addition, the map allows the

user to perform a visual analysis on the data to identify outliers.

164

While Fieldbook is promising in its current state, there is a need for additional features to

make it widely adopted in the agricultural industry. The chapter proposes two fully

developed algorithms to improve upon the feature stack of Fieldbook or other mobile

applications in the realm of phenotyping. They are:

1. Estimation of angle between leaf and stem

2. Estimation of plant cover.

Figure 6.1: Layout and Trait Information Displayed by FieldBook [139]

165

6.1 Estimation of Angle between Leaf and Stem

The yields of maize and planting densities in the United States have increased

concurrently in the past 50 years [36]. A comparative analysis of U.S. commercial maize

hybrids released since the 1960s revealed that by selecting high yielding hybrids under

high planting densities, breeders indirectly selected hybrids with upright leaf angles (LAs)

[36]. The discovery was that upright LAs combined with higher planting densities improve

light distribution within the canopy. For instance, modern hybrids intercept 14% more light

than older hybrids [36]. Leaf Angle Distribution (LAD) is a key parameter that describes

the structure of horizontally homogeneous vegetation canopies. It is defined as the

probability of a leaf element of unit size to have its normal within a specified unit solid

angle [199]. LAD affects the manner in which incident photosynthetically active radiation

is distributed on plant leaves, thus directly affecting plant productivity. The traditional

technique to measure LAD involves the use of mechanical inclinometer, a precision

instrument that measures the angle of slope of an object with respect to its gravity by

creating an artificial horizon. The use of the mechanical inclinometer makes the process of

determining LAD laborious and time-consuming. Other techniques such as 3-D digitizing

of individual plant elements using specialized instrumentation [154] and laser scanning

[50] are available. However, the techniques are resource demanding. A feasible low-cost

alternative is use of digital imagery to estimate LA since image processing preserves the

state of the canopy while providing enough insight into the morphometry. Image

processing tools such as ImageJ and Adobe Photoshop have built-in angle estimation tools

that aid in the estimation of LA. The pitfall is that the operation of the tools is manual

which means that the estimations may be subject to user bias and users end up spending

166

extended periods of time to estimate LA in case of a large dataset. In order to overcome

the pitfalls of the manual setup, the current chapter proposes an automated technique for

LA estimation using convolutional neural networks (CNN) and image processing.

 6.1.1 Related Work

Dzievit [36] conducted genetic mapping and a meta-analysis to dissect genetic

factors controlling LA variation on maize. Genetic mapping populations were developed

using inbred lines B73 (Iowa Still Stalk Synthetic), PHW30 (lodent, expired plant variety

protection inbred), and Mo17 (Non-Stiff Stalk) that have distinct LA architectures. The

leaf angles were estimated using the ImageJ image processing tool.

 Herbert [53] described a technique for the estimation of leaf angles using stereo-

photogrammetry. The technique permitted accurate measurement of leaf angle and position

from several meters away and had sufficient resolution to permit the analysis of complex

phenomena such as the effect of leaf shape upon interception of light and photosynthesis.

 Sinoquet et al. [155] proposed a method to measure light interception by vegetation

canopies using a 3-D digitizer and image processing software. The 3-D digitizer allowed

for simultaneous acquisition of the spatial coordinates of leaf locations and orientations.

The software for image synthesis also had the ability to make virtual photographs of the

real canopy. The information on light interception was derived from virtual images by

using the simple features of image analysis software.

 Hosoi et al. [50] estimated the LAD of wheat canopy at different growth stages

such as tillering, stem elongation, flowering, and ripening stages by using a high-resolution

portable scanning lidar. The canopy was scanned three-dimensionally by optimally

167

inclined laser beams emitted from several measuring points surrounding the canopy and 3-

D point cloud images in each stage were obtained. After co-registration of lidar images

between different measurement positions, leaves were extracted from the images and each

leaf was divided into small pieces along the leaf-length direction. Each of the pieces was

approximated as a plane, to which normal were estimated. The distribution of the leaf

inclination angles was derived from the angles of the normal with respect to the zenith.

 Ryu et al. [135] examined the feasibility of seven techniques such as litterfall,

allometry, LAI-2000, TRAC, digital hemispheric photography, digital cover photography,

and traversing radiometer system to determine leaf area index across a 9-ha domain in an

oak-savanna ecosystem in California, USA. It was shown that the combination of digital

cover photography and LAI-2000 could provide spatially representative leaf area index,

gap fraction and element clumping index.

 6.1.2 Materials and Methods

Researchers at Iowa State University captured the images of several plants in a field

using the Fieldbook android application. As for the current work, two datasets namely,

Summer_2015-Ames_ULA and Summer_2015-Ames_MLA wherein the former consists

of 924 images and latter, 969 images, are used as the experimental datasets. Each of the

images in either dataset shows the intersection of the leaf and stem. A sample image is a

shown in Figure 6.2.

The proposed leaf angle estimation procedure contains two broad steps:

1. Extraction of region of interest (ROI)

2. Estimation of Leaf Angle

168

 6.1.3.1 Extraction of Region of Interest (ROI)

 The first step in the extraction of ROI is the detection of leaf and stem within the

image. The images captured in the field contain numerous plants that look similar. Hence,

it is important to determine the plant of interest and perform a curated extraction of it for

the estimation of LA. Such an extraction may be performed using the semi-automated

image cropper described in Chapter 4 by plotting a polygon around the leaf-and-stem

portion of the image. However, such an extraction works well in the case of relatively small

sized datasets but isn’t feasible for larger datasets such as the one at hand. It is determined

from empirical observation of the dataset that the plant of interest is always the foreground

Figure 6.2: Leaf-Stem Image Captured using Fieldbook

169

object present either to the left or right of the image. Another feasible alternative is the use

of foreground extraction techniques such as OpenCV’s GrabCut algorithm. However, the

results obtained upon the application of the GrabCut algorithm to each of the datasets are

not satisfactory. While the algorithm captures the foreground, it also captures part of the

plants in the background. The captured plants in the background are essentially noise and

detrimental to LA estimation. Figure 6.3 shows the botched foreground extraction

performed on a plant image from the Summer_2015-Ames_MLA dataset.

Figure 6.3: Foreground Extraction using GrabCut Algorithm

170

In order to better perform foreground extraction, the CNN model of Mask R-CNN

is employed to extract foreground and identify the region of interest appropriately. Mask

R-CNN is a deep neural network aimed to solve the problem of instance segmentation in

computer vision. Instance Segmentation is the task of precisely identifying the pixels of

each of the objects in the image. It is perhaps the hardest and most precise of the vision

tasks of classification, semantic segmentation, object detection, and instance segmentation.

In order to better understand the vision tasks, consider the image with balloons shown in

Figure 6.4. Classification is the task of merely detecting that the image contains balloons.

Semantic segmentation is the task of detecting all the balloon pixels within the image.

Figure 6.4: Different Computer Vision Tasks [135]

171

Object detection is the task of detecting the number of entities of a certain kind. In other

words, it is the task of identifying that the image contains seven balloons. Instance

segmentation combines the tasks of semantic segmentation and object detection wherein it

precisely identifies the pixels that belong to each of the entities within the image. Hence

the reason, each of the balloon images is applied a unique color. The architecture of Mask

R-CNN is explained in section 3.2.3.1 elaborately. Please refer to it for an in-depth

understanding of the architecture.

1. 175 images belonging to each of the Summer_2015-Ames_MLA and

Summer_2015-Ames_ULA datasets are manually annotated using

makesense.ai tool. The tool is free to use and generates annotations in the

COCO format that Mask R-CNN is able to consume. A polygonal annotation is

drawn where the stem and leaf meet each other. Figure 6.5 shows a polygonal

annotation drawn using makesense.ai on an image with leaf and stem.

Figure 6.5: Polygonal Annotation Plotted using MakeSense.ai

172

2. The annotated images are trained on the Mask R-CNN network for a total of 20

epochs. The loss of after 20 annotations is 0.034. However, the loss is not

significant since Mask R-CNN is being used to extract the portion of the image

where the leaf and stem meet but not to extract masks that are precise in shape

and size. All the annotated images are used for training only. The dataset is not

split into training, validation and test datasets since the goal is not to evaluate

the performance of Mask R-CNN but instead to extract regions of interest in

the image that are later processed to estimate the angle between leaf and stem.

Upon training, the trained weights are used to extract the masks of each of the

images in the Summer_2015-Ames_MLA and Summer_2015-Ames_ULA

datasets. Figure 6.6 shows the mask extracted by Mask R-CNN for the plant

image shown in Figure 6.5.

Figure 6.6: Mask Predicted by Mask R-CNN

173

3. The predicted mask indicates the region of interest that corresponds to the leaf

and stem. In order to extract the region from the original image, the bitwise and

operation is applied on the mask predicted by Mask R-CNN and original image.

The resulting image gives the region of interest in the original image. Figure

6.7 shows the region of interest extracted from the original image.

 6.1.3.2 Estimation of Leaf Angle

The extracted region of interest provides enough information for further processing

to estimate the angle between leaf and stem. The basis for the estimation of leaf angle is

provided by [36]. The work describes the above ear leaf and below ear leaf angles that are

measured by plant scientists. Figure 38, an excerpt from [36], shows the exact position at

which the angle between leaf and stem is to be measured. While leaves are typically long

Figure 6.7: Extracted Region of Interest from Original Image

174

and tilt in different directions owing to environmental factors, the angle between leaf and

stem is measured exactly where the leaf and stem connect to each other.

The next step upon the extraction of region of interest from the image is to detect the point

of contact of leaf and stem. Such a detection is complex considering the transition from the

stem to leaf is rather smooth than abrupt. Upon empirical observation of the dataset, it is

determined that the majority of the images in the dataset consist of straight lines that run

along the length of the leaf. The lines are visible when the image is zoomed in. Figure 39

(zoomed-in Figure 37) shows the lines on the leaf of the plant.

Figure 6.8: Above Ear and Below Ear Leaf Angles [36]

175

Another empirical observation made is that the straight lines along the leaf are parallel to

each other. Hence, the straight lines are used as indicators to determine the angle between

leaf and stem under the assumption that the base of the stem is perpendicular to the ground.

In other words, the angle between leaf and stem is the angle is determined as the angle

made by the straight lines that run along the leaf with the horizontal.

Hough Transform

The detection of straight lines in images is done by applying the Hough Lines transform.

Typically, straight lines are represented using the slope-intercept method as y = mx + c

Figure 6.9: Straight Lines on Leaf

176

where m is the slope and c is the y-intercept. However, Hough Transform relies on

representing straight lines using the pair of polar coordinates, (ρ, θ). The first parameter, ρ,

is the shortest distance from the origin to the line. The second parameter, θ, is the angle

between the x-axis and distance line. Figure 6.10 shows the representation of a line in polar

coordinates.

The equation of the straight line in polar coordinate system is given by, ρ = x * cos(θ) + y

* sin(θ) where (x, y) is a point on the line. A straight line in image space is represented by

a point in Hough space, as shown in Figure 6.11.

Likewise, a group of intersecting lines in the image space form a group of points in the

Hough space that appear in the shape of a sinusoid, as shown in Figure 6.12. An infinite

Figure 6.11: Straight Line in Polar Coordinates

Figure 6.10: Representation of Straight Line in Image Space (left) and Hough Space (right)

177

number of straight lines in the image space forms a continuous sinusoid in the Hough space.

A group of points that represent a straight line are represented by multiple sinusoids that

intersect at a common point. In order to detect points that form straight lines in the Hough

space, points of sinusoid intersection are to be detected.

Standard and Probabilistic Hough Transforms

The Hough Transform takes the edges from a binary image as input. The Hough

Transform maps each of the pixels to multiple points in Hough (or parameter) space. An

edge pixel is mapped to a sinusoid in 2D parameter space, (ρ, θ) representing all possible

lines that could pass through the point. It is referred to as the voting stage. The sinusoids

of collinear points in the Hough space cross each other indicating collinearity. There are

two variants of Hough Transform, Standard and Probabilistic [67]. The primary difference

between the two variants is the computational complexity. Consider an image that has M

pixels as edge points and a Hough space divided in Nρ x Nθ accumulators. In case of the

Standard Hough Transform, each of the M edge pixels is used for computation which

means that the computational complexity is O(M. Nθ) for the voting stage and O(Nρ. Nθ)

Figure 6.12: Intersecting Lines in Image Space (left) as Sinusoid in Hough Space (right)

178

for the search stage. However, in the Probabilistic Hough Transform, only a subset m of M

edge pixels is used for computation which means that the computational complexity is

reduced to O(m. Nθ) for the voting stage resulting in a faster execution of the algorithm.

The algorithmic steps to estimate leaf angle from the extracted region of interest

are as shown in Figure 6.13 and described as follows.

1. Convert the input image (extracted region of interest) from RGB color space to

grayscale.

2. Detect contours on the image to identify the location of the plant in the image.

It is possible that multiple contours are detected. In such a case, filter the

contours to identify the largest contour in the image since the largest contour in

the image most likely belongs to that of the plant.

3. Detect the direction in which the leaf shoots from the stem using the moments

of the contour. The moments of the contour help to determine the center of the

contour. In case the center is present in the right-half of the image, the leaf

shoots to the left whereas the leaf shoots to the right if the center of mass is

present in the left-half of the image. The knowledge of direction is important

since the slope of the straight lines on which the algorithm is based depends

179

upon the direction of leaf from the stem. The slope of the lines on the leaf is

negative if the leaf shoots from left to right in the image, vice-versa otherwise.

4. Detect edges on the grayscale image from step 1. The edge image is required as

input for the probabilistic Hough lines algorithm.

5. Apply probabilistic Hough lines transform on the edge image and detect all the

lines on the image. The application of probabilistic Hough transform requires

the specification of a vote range i.e., the level of confidence that the

probabilistic Hough lines algorithm has that a group of points forms a straight

line. The vote range for the current image analysis is set to 180 and lowered by

10 on the subsequent iteration in case no lines are detected by the probabilistic

Hough lines function in the current iteration. Other parameters that are input to

the algorithm are minimum line length i.e., minimum length that any detected

line is required to be and maximum line gap i.e., the maximum gap between

two lines in order for them to be considered separate lines. If the gap is lower,

the lines are merged together. A value of 10 for minimum line length and 50 for

maximum line gap are used for the majority of the images in the dataset. Since

the parameters are tunable, a universal value that works for any image is hard

to define. It is required to be evaluated on a case-by-case basis.

6. In case no lines are detected when vote range reaches zero, it means that the

algorithm is not able to detect any straight lines. At that point, the algorithm is

terminated. However, if lines are detected, a filter to retrieve the lines

specifically on the leaf is applied. The probabilistic Hough lines algorithm

determines all the straight lines that meet the criteria, and it is the case that

180

several of the detected lines indicate the stem rather than the leaf. The lines on

the stem are irrelevant and need to be eliminated from the processing. Two

constraints, one on slope and another on proximity to image boundary are

placed on the detected straight lines to filter out the ones that don’t belong to

the leaf.

a) Slope Constraint: The leaf is generally oriented in comparison to the stem

that is almost perpendicular to the ground in the majority of cases. As a

result, lines whose orientations are between 80 and 90 degrees are ignored

since they are likely to belong to the stem but not the leaf.

b) Boundary Proximity Constraint: It is determined empirically that the

lines that belong to the leaf are at least 100 px apart from the image

boundary. The lines that are closest to the image boundary are those of the

stem. Hence, the constraint to ignore lines that are under 100 px in distance

to the image boundary works to ignore lines that belong to the stem.

Both constraints are required to be satisfied for a line to be ignored. In certain

images that orientation of the leaf is between 80 and 90 degrees. In such cases,

181

without the boundary constraint, the lines pertinent to the leaf are ignored. The

lines that pass the filter are assumed to be present on the leaf.

7. Compute the slope of each of the lines and find the mode of the slopes. Mode

refers to the most frequently occurring item among a list of items.

8. Retrieve the lines with the most frequently occurring slope for further

processing. Only the lines with the orientation of the mode are considered to

eliminate any stray lines that may be detected and present on the leaf.

9. Compute the orientation of the lines made with the horizontal as the tan inverse

of slope i.e., angle = tan-1(slope). Since all the lines have the same orientation,

Figure 6.13: (a) Grayscale Region of Interest Image (b) Contours of Region of Interest
(c) Center of Contours Plotted on Grayscale Image (d) Edges of Contours (e) All Straight

Lines Detected by Probabilistic Hough Lines Algorithm (f) Filtered Straight Lines on
Leaf

182

it is sufficient to pick one line and compute its orientation. The orientation made

by the line is deemed the orientation of the leaf with the stem.

Alternate Approach: Another approach that is an adaptation of the approach previously

described is as follows.

1. The algorithmic steps until step 6 are the same as described above. The

proposed approach deviates from step 7.

2. Upon the determination of lines that belong to the leaf, compute the median of

the orientations of lines pertinent to the leaf. The orientations are given by the

tan inverse of the slope of the lines.

3. Apply an orientation threshold (under five degrees is recommended) and

calculate upper bound and lower bound of orientation where upper bound =

median orientation + orientation threshold and lower bound = median

orientation – orientation threshold.

4. Apply the upper bound and lower bound as filtering criterion and identify the

lines whose orientations lie within the bounds of orientation. The retrieved lines

have an orientation that is within x degrees of each other where x is the

orientation threshold.

5. Merge the lines that are close to each other by a certain orientation threshold.

In other words, apply an orientation threshold (smaller than the orientation

183

threshold applied in step 3) and create a single line segment whose orientation

is the average of each of the line segments within the threshold.

6. Repeat step 5 by increasing the orientation threshold each time until only a

single line segment is left.

7. The orientation of the line segment is the orientation between the leaf and stem.

Note: While both approaches provide quality outcomes, the alternate approach is more

complex to understand and implement.

 6.1.4 Validation Mechanism

 A mechanism to ensure that the estimation made by the aforementioned algorithm

is devoid of flaws is developed. The idea is to split the region of interest image into two

and consider the half that is farthest from the image boundary. The algorithm is applied on

the half of the image farthest from the image boundary. In theory, the estimation made by

the algorithm on the original region of interest image and the cropped image is the same

(or highly similar). Figure 6.14 (a) and 6.14 (b) show an instance where the region of

interest and cropped region of interest yield the same result upon the application of the

algorithm. A tolerance threshold which indicates the allowable discrepancy in estimations

is defined. Any estimations that violate the tolerance threshold may be manually evaluated

and corrected. Figure 6.14 (c) and 6.14 (d) show an instance where the estimations on

184

region of interest and cropped region of interest images yield results that exhibit a high

degree of variance.

 6.1.5 Impact of assuming a Vertical Stem

The angle estimated between the leaf and stem assumes that the stem is a vertical

line. While stems are close to being vertical, they are not always at a 90°. The estimated

angle is closest to the actual when the stem is close to or exactly 90°. However, the more

Figure 6.14: (a) Uncropped Image and (b) Cropped Image Showing Identical
Orientation Estimates (c) Uncropped Image and (d) Cropped Image Showing Varying

Orientation Estimates

185

deviant stem is from being a vertical, the more deviant the estimated angle is from the

actual.

 6.1.6 Impact of Image Sharpness

A key factor that impacts the outcome of the algorithm is image sharpness.

Sharpness describes the clarity of detail in a photo. The aspects of resolution and acutance

primarily impact sharpness of an image. Since the proposed algorithm relies on detecting

lines that are present along the leaf, it is imperative that the lines on the leaf be sharp so the

lines may be identified easily. Figure 6.15 shows the algorithm applied on the original and

sharpened version of the original image. The lack of sharpness leads to the algorithm’s

faulty behavior on the original image whereas the algorithm correctly detects lines along

the leaf on the sharpened version of the image.

The OpenCV-Python library is used to increase the sharpness of the images. The key

parameter that[A24] is required is the kernel. A kernel
0 −1 0

−1 5 −1
0 −1 0

 of shape 3 x 3 is used

Figure 6.15: (a) Original Image (b) Sharpened Image

186

to sharpen an image. It is empirically determined that a sharpness of 0.7 or higher is

desired for efficient functioning of the algorithm.

 6.1.7 Multiple Leaf and Stem Detections

In certain cases, the trained Mask R-CNN model detects multiple leaf and stem

instances on a given image. Figure 6.16 shows two instances where multiple leaf and stem

instances are detected. The default behavior of the algorithm is to consider the largest

contour in the image as the valid instance. However, it may be flawed in cases where the

misidentified instance is larger than the actual leaf and stem instance. The validation

mechanism defined prior is able to detect the failures due to multiple instances.

Figure 6.16: Multiple Leaf-Stem Instances in a Single Image

187

 6.1.8 Results

The algorithm is applied on each of the image from the Summer_2015-Ames_ULA

and Summer_2015-Ames_MLA datasets and the orientation between leaf and stem is

estimated. The results are verified against the orientation estimations made by two graduate

students at Iowa State University. The students worked independent of each other as they

arrived at their estimations. The students used the ImageJ tool to estimate the orientations.

ImageJ is a Java-based image processing tool that was developed at the National Institutes

of Health and Laboratory for Optical and Computational Instrumentation. It runs on Linux,

Mac OS X and Windows in both 32-bit and 64-bit modes. The features that ImageJ

provides for analysis of images is the measurement of area, mean, standard deviation, min

and max of selection or entire image, and angles. The angle measurement feature of ImageJ

was used by the students to measure the orientation of the leaf. ImageJ allows the user to

plot three points on the image that it uses to draw two lines. The angle measurement tool

computes the angle between the two lines. Figure 6.17 shows the angle estimation made

by plotting two lines (shown in yellow) and the result window output by ImageJ.

Figure 6.17: (left) Lines drawn for Angle Measurement (right) Measurement Output by ImageJ

188

The estimations made the students and algorithm are compared using a metric known as

Cosine Similarity. Cosine Similarity is the cosine of the angle between two vectors that are

typically non-zero and within an inner product space. It is useful to compare the similarity

between two vectors represented in a higher-dimensional vector space. Mathematically, it

is defined as the division between the dot product of vectors and product of the magnitude

of each vector and is expressed as, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐴. 𝐵/||𝐴|| ||𝐵|| where A and B are the

two vectors compared for similarity. The measure is expressed as a value between 0 and 1.

The Scikit-Python library is used to programmatically estimate the cosine similarity and

matplotlib is used to plot a line chart of the datapoints. Figures 6.18 and 6.19 show the leaf

angle estimates made by the proposed algorithm and student1, and proposed algorithm and

student 2 respectively on the Summer_2015-Ames_MLA dataset which consists of 955

images. The cosine similarity between the proposed algorithm and student 1 is 0.98 which

indicates a ten-degree difference in orientation between vectors, and proposed algorithm

Figure 6.18: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student 1
for Summer_2015-Ames_MLA Dataset

189

and student 2 is 0.99 which indicates an eight-degree difference in orientation between the

vectors[A25].

Figure 6.19: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student
2 for Summer_2015-Ames_MLA Dataset

Figures 6.20 and 6.21 show the leaf angle estimates made by the proposed algorithm and

student1, and proposed algorithm and student 2 respectively on the Summer_2015-

Figure 6.20: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student
1 for Summer_2015-Ames_ULA Dataset

190

Ames_ULA dataset which consists of 872 images. The cosine similarity between the

proposed algorithm and student 1 is 0.998 which indicates a four-degree difference in

orientation between vectors, and proposed algorithm and student 2 is 0.992 which indicates

a seven-degree difference in orientation between the vectors. Furthermore, an intuitive

outlier analysis is performed on the results to gain insight into the similarity of estimation

between the different techniques. The rule used to identify an outlier is, “the difference in

estimates between proposed algorithm and a student is greater than 7 degrees”. The

analysis assumes that the estimations made by the students are accurate. However, the

estimations by the students also have a variance between them. The variance in student

estimates, given by Σ(e1 − e2)/n where e1 and e2 are estimates made by students 1 and 2

respectively, and n is the total size of the data sample, are 2.57 and 2.07 on Summer_2015-

Ames_MLA dataset and Summer_2015-Ames_ULA dataset respectively. Hence, the

seven degree range to identify outliers is reasonable. Applying the outlier rule, a total of

31 outliers on the Summer_2015-Ames_MLA dataset and 18 outliers on the

Figure 6.21: Datapoints from Leaf Angle Estimates of Proposed Algorithm and Student
2 for Summer_2015-Ames_ULA Dataset

191

Summer_2015-Ames_ULA dataset are detected. While a higher number of outliers is

detected upon the initial application of the algorithm, part of them are due to issues with

image sharpness and incorrect mask detections made by Mask R-CNN. Such outliers are

fixed manually by applying appropriate fixes to the images. Among the estimates that are

inliers, a variance of 3.2 degrees and 2.9 degrees is identified between the proposed

algorithm and student 1, and proposed algorithm and student 2 respectively on the

Summer_2015-Ames_MLA dataset whereas a variance of 2.6 degrees and 2.8 degrees is

identified between the proposed algorithm and student 1, and proposed algorithm and

student 2 respectively on the Summer_2015_Ames_ULA dataset. The results show that the

proposed algorithm outputs results that highly co-relate with the manual measurements

made by the students demonstrating the feasibility of the proposed automated technique

for leaf angle estimation.

 6.1.9 Code Availability

The code for the algorithm is available for download at

https://github.com/marven22/Leaf-Angle-Estimation.git . The codebase is developed in an

Anaconda environment and uses Python 3.8.3 and OpenCV 4.4.0.44 as the primary set of

libraries for image processing.

 6.1.10 Future Work and Conclusions

The proposed algorithm is implemented in Python using the OpenCV library. Moving

forward, the algorithm will be implemented as part of a real-time android application so

plant scientists and individual enthusiasts may leverage the application on a day-to-day

basis. The bottleneck for the mobile application is the use of neural network models. The

192

current Mask R-CNN network will have to be adapted so it works on mobile devices using

networks such as Mobilenet SSD v1/v2 as the backbone in place of the current ResNet-101

model. Running models with large architectures on resource constrained devices is a

challenge that needs to be overcome. The annotation of images is another bottleneck that

is laborious and time consuming. The use of eye tracking hardware to annotate the images

has the potential to greatly speed up the process of annotating images. The use of a screen

to act as the common background over the plants as images are captured is an efficient way

to help identify the location of the plant in the image. In case a routine is established, the

region of interest in the image may be identified using simple image processing.

 Overall, the proposed technique demonstrates the idea of estimating angle between

leaf and stem using instance segmentation neural networks and image processing, a task

that is laborious and cumbersome when performed manually. The estimation of leaf angles

using automation is novel and has the potential to turn into one-of-a-kind utility for the

agricultural community upon its implementation as a mobile app.

 6.2 Plant Cover Analysis for Companion Planting

Companion planting is the idea of growing multiple species of plants in close

proximity so that they reap mutual benefits, such as improved crop yield, soil quality and

pest control. One of the foremost instances of companion planting in North America is that

of ‘three sisters’ pioneered by the Native Americans. The plant varieties of beans, corn and

squash constitute the ‘three sisters’ where their cultivation in close proximity led to the

benefits of shelter and growth support for plants in addition to improved soil quality and

decreased soil erosion [29]. Other combinations of plant varieties that complement each

193

other’s growth include artichoke and cucumber, beetroot and onion, and tomatoes and

carrot whereas the combinations of parsnip and carrot, potatoes and pumpkin, and peas and

garlic are instances of poor companions that deter one another’s growth and development

[82]. Hence, the discovery of companion plant species that are able to co-exist is of

significant value to the agricultural sector. A key metric that helps estimate the growth of

plant species is Fractional Vegetation Cover (FVC). FVC is defined as the percentage of

the ground surface covered by vegetation elements from the overhead perspective [2].

Different techniques such as Point-and-Line cover Estimation, Plot-based cover

estimation, Ocular-based estimation and semi-quantitative ocular-based estimation are

available to estimate FVC at a certain location. However, the techniques currently available

are labor-intensive, stochastic and subjective in nature. In addition, the techniques are

prone to overestimating the vegetation cover due to field survey design [63]. The need for

a technique that precisely analyzes the amount of FVC persists. The article proposes a

technique to precisely estimate the amount of FVC in an area from images by drawing

inferences from and extending upon the Daubenmire method, a semi-quantitative ocular-

based FVC estimation technique. While current techniques estimate the percentage of FVC

within images, the proposed technique provides an estimate on the area occupied by FVC

in metric units in addition to percentage. The precise estimation of the FVC helps the plant

scientists make discoveries of plant varieties that make good companions and offer well-

informed suggestions to the agrarian community.

 6.2.1 Related Work

The development of vegetation cover rating scales started in the early 1900s. The

most widely accepted scale at the time was the rating scale proposed by Braun-Blanchet

194

[16]. The scale involved estimating and classifying the vegetation cover within a certain

area into one of five cover classes from one to five where one indicated cover less than five

percent, two indicated cover between five and twenty-five percent, three meant cover

between 25% and 50%, four meant cover between 50% and 75%, and five meant cover

between 75% and 100%.

RF Daubenmire [16] proposed the canopy coverage method in 1959. It was a semi-

quantitative ocular-based estimation technique and regarded as one of the most accurate

methods for vegetation cover analyses over the years. It involved meticulously placing a

20- x 50- cm quadrat along a tape on permanently located transects and classifying the

amount of vegetation cover into one of six cover classes. The cover classes are similar to

Braun-Blanchet’s classes with the difference being that cover class five was divided into

two classes where cover class five indicated vegetation cover between 75% and 95% and

class six indicated vegetation cover between 95% and 100%.

Booth, Cox and Berryman [17] proposed SamplePoint, a free vegetation cover

estimation tool from digital images using manual point sampling. The application shows

users multiple single-pixel sample points (defaults to 100) on the image and allows them

to classify the pixel as belonging to one of nine categories. The application uses the

classifications made by the users to identify the percentage of pixels belonging to each of

the nine categories. The results are output to an excel spreadsheet and have been

comparable to the results from the most accurate field experiments for vegetation cover

estimation.

Systat Software Inc. [163] provides specialized scientific software products for

research in fields such as environmental sciences, life sciences and engineering. SigmaScan

195

Pro 5.0, an image processing software tool developed by Systant Software Inc. may be

used to estimate the percentage of pixels that belong to vegetation from digital imagery.

While the tool was not developed for vegetation cover estimation, it is able to be adapted

for the use case.

Patrignani and Ochsner [124] developed a software tool named Canopeo to estimate

the fractional green canopy cover from digital images. The tool was developed using

Matlab and red-to-green (R/G), blue-to-green (B/G) and excess green index (2G-R-B).

Desktop and mobile versions of the tool for android and iOS are available as free

downloads. The tool provides a percentage estimate of the amount of green cover within

an image and provides a grayscale image highlighting the green cover. However, the tool

doesn’t provide the vegetation cover estimate in metric units making it hard to reproduce

results among experiments across individuals due to difference of height of image capture.

Louhaichi, Hassan, Clifton, and Johnson [85] proposed VegMeasure, a software

tool that processes digital imagery collected in a specialized manner known as Digital

Vegetative Charting Technique (DVCT). VegMeasure provides classification of imagery

and measures change over time. However, DVCT requires a digital camera with built-in

GPS that can be mounted to a stand, so images are captured from a fixed height with lens

pointed orthogonal to the surface. VegMeasure requires that the camera, its height and

orientation be kept constant throughout the image capture process for its estimation and

analysis.

Zhang, Wang, and Elfaki [197] conducted research in the area of weed

identification using imaging technology and spectroscopy. It was determined that location,

color, texture, and shape feature of weeds and crops were the major criteria for weed

196

detection sensor structure and algorithm design. Imaging-based weed sensors were

compared with optical weed sensors as part of the experiment. Statistical and neural-

network classification models were also used as part of the experiment.

Laliberte, et. al [76] demonstrated that object-based image analysis upon the

conversion of RGB scale images to IHS (intensity-hue-saturation) scale images is a viable

approach for estimating total cover of vegetation, bare soil, and fractional components of

green and senescent vegetation. The image analysis tool used for the experiments was

eCognition where the image was segmented into homogenous areas based on three

parameters: scale, color and shape.

 6.2.3 Materials and Methods

The breeders at the Land Institute in Salina, KS aim to estimate FVC across

multiple plant varieties with the goal to identify companion plant species and make quality

recommendations may be made to the farming community. The design of the experiment

is inspired by the Daubenmire canopy coverage method and visually depicted by Figure

6.22.

Figure 6.22: Daubenmire Quadrat with Ground Cover Classes [16]

197

Briefly, the Daubenmire technique involves using a 20 cm x 50 cm quadrat around

vegetation cover along a tape on permanently located transects. The vegetation within the

quadrat is measured by trained plant scientists based on ocular estimation. Since estimating

the precise amount of plant cover from ocular observation is farfetched, plant scientists

classify (estimate) the plant cover into one of six cover classes labelled one through six, as

defined by Daubenmire. Membership in class one indicates crop cover less than five

percent, membership in class two indicates crop cover between five and twenty-five

percent, membership in class three indicates crop cover between 25% and 50%,

membership in class four indicates crop cover between 50% and 75%, membership in class

five indicates crop cover between 75% and 95%, and membership in class six indicates

crop cover between 95% and 100%. As part of the experiment, a PVC frame of known

dimensionality is dropped across multiple rows of crops as shown in Figure 6.23(a) and

the amount of vegetation cover within each of the segments of the PVC frame is estimated

independently at regular intervals over a stipulated time frame. Since the experiment

progresses over time, accurate readings at each time step are essential to estimate the

growth of vegetation. An algorithm that leverages image processing and analysis is

proposed to eliminate the need for ocular estimation of FVC and measure FVC from digital

images with precision. The development of the algorithm is performed on images from

two datasets where one of the datasets comprises 33 images that capture alfalfa at a

resolution of 3024 x 4032 pixels and the other comprises 177 images that capture a one-

segment PVC frame laid around plants of Kura at a resolution of 5184 x 3456 pixels, as

shown in Figure 6.23. Broadly, the algorithm is a three-step process where in the first and

second steps are the detection and extraction of the PVC frame and vegetation cover from

198

the image respectively. The final step is the estimation of the amount of vegetation cover

within each of the segments of the PVC frame.

The algorithm is developed in Python using the OpenCV image processing library. The

code for the algorithm is available at: https://github.com/marven22/Fractal-Vegetation-

Cover-Estimation.git .

 6.2.3.1. Noise Removal and PVC Frame Extraction from Image

In addition to vegetation cover within the PVC frame, the image consists of area outside

the PVC frame. The area outside the PVC frame is irrelevant in terms of vegetation cover

estimation within the grid. Hence, the first step of the process is the meticulous

determination of the region of interest, i.e., the PVC frame and pixels within the PVC

frame. The image processing concepts that are relevant to the process are HSV color space,

Perspective Transform and ‘bitwise and’ operation.

Figure 6.23: (a) Vegetation Cover within Five-Segment PVC Frame
(b) Kura Plant within One-Segment PVC Frame

199

HSV Color Space: HSV refers to Hue, Saturation and Value which make up the co-

ordinates for the color space, as shown in Figure 6.24.

It is a cylindrical color space where the radius represents Saturation, the vertical axis

represents Value, and the angle represents Hue. Intuitively, Hue is the dominant color

visible to an observer, Saturation is the amount of white light mixed with a hue and Value

is the chromic notion of intensity. As Value decreases, the color gets closer to black

whereas the intensity of the color increases as Value increases.

Perspective Transform: Perspective Transform corrects the perspective of an image to

bird’s eye or top view. In other words, it helps view the image as if it were captured with

the camera held orthogonal to the surface. The application of the transform immensely

helps reduce skew in images captured using freehand. The downside to images being

skewed is that objects in skewed images appear to be of a different size and orientation in

comparison to their true dimension. In the context of the current algorithm, the application

Figure 6.24: HSV Color Scheme

200

of the perspective transform to the images helps reduce skew, thereby making the process

of identifying the PVC frame easier.

Bitwise AND Operation: The ‘bitwise and’ operation is used to extract a specific region

from an image using a mask. The mask is a grayscale image provided to indicate the region

of the image required to be extracted. Typically, the pixels of the mask are made to be

either white (255) or black (0). The original image is also converted to grayscale and all

the regions of the image that are not a black (0) pixel are set to white (255). The ‘bitwise

and’ operation operates on a pixel-by-pixel basis where it identifies the common regions

between the two and sets them to white (255).

The algorithmic steps to remove noise and extract the PVC frame are described as follows

and the results produced after each step are shown in Figure 6.25.

Figure 6.25: (a) Original Image (b) Original Image in HSV Color Scheme (c) Grayscale
Image of PVC Frame

(d) Contour of the PVC Frame (e) Original Image without Noise (f) Extracted PVC Frame
from Original Image

201

2. Convert the detected pixels of the PVC frame to grayscale and apply a median blur on

the image to smoothen the image, if necessary.

3. Perform canny edge detection on the image and detect contours on the edges obtained.

4. Identify the largest contour of the contours detected. The idea is that the largest contour

runs along the circumference of the PVC frame since the contours of each of the individual

segments are significantly smaller in comparison to the outer contour which encapsulates

the PVC frame.

5. Plot the minimum area rotated rectangle around the contour of the PVC frame.

6. Perform a ‘bitwise and’ operation on the input image using the minimum area rotated

rectangle as the mask. Doing so precisely identifies the location of the PVC frame on the

image. The region of the image within the PVC frame is the only portion of the image to

be processed for vegetation cover estimation.

7. Apply perspective transform on the image to view the image from the top view. It

corrects skew and makes the task of detecting segments on the PVC grid easier.

8. Convert the output of step 7 to HSV format and apply the lower and upper ranges

mentioned in step 1 to precisely extract the PVC frame.

 6.2.3.2. Vegetation Cover Detection using Simple Linear Iterative Clustering

On the region of interest identified in the previous step, Simple Linear Iterative

Clustering (SLIC) is applied to segment the image into multiple super-pixels. To elaborate,

the process of partitioning an image into multiple segments by assigning a label to every

pixel in the image is called image segmentation. The idea is that segments with the same

202

label are perceptually similar and share common characteristics. Image segmentation helps

to identify similar regions in images and extract semantic information from them. While

segmenting images by pixel is an intuitive approach, segmenting by super-pixel is more

optimal. A super-pixel is defined as a group of pixels that perceptually belong together by

sharing common characteristics such as pixel color, intensity and other low-level

properties. Modern cameras result in images of high resolution. While the level of detail

within the images is excellent, it overburdens the image processing algorithms used to

process the images resulting in longer runtimes. The key benefit to using super-pixels over

pixels is that they shrink the pixel space required to be processed by the algorithm and in

turn, lead to shorter runtimes without compromising accuracy. In addition, a single pixel

by itself does not provide any semantic information whereas a super-pixel provides

semantic information that helps make key discoveries within images.

Simple Linear Iterative Clustering (SLIC): SLIC is an image processing technique that

clusters pixels to generate super-pixels based on their color similarity and proximity in the

Figure 6.26: CIELAB Color Space

203

image plane. SLIC uses the five dimensional [LABXY] space for the clustering where

[LAB] is the pixel color vector in CIELAB color space and [XY] is the pixel position on

the XY plane [166]. The CIELAB color space, as shown in Figure 6.26, is defined by the

International Commission on Illumination (CIE) to improve upon the fact that the

conventional RGB color space only allows for the representation of 40% of the colors that

the human eye can perceive. The L channel represents lightness which ranges from black

to white, the A channel represents the value on the axis that ranges from green to red and

the B channel represents the value on the axis that ranges from blue to yellow. A key

characteristic of the CIELAB color space is that its dimensions are non-linearly scaled in

the sense that spatial distance between two colors corresponds to perceptual distance and

is uniform across the color space. For instance, consider two pairs of different colors that

appear to be equally similar such as blue and light blue, red and light red. When Euclidean

distance is computed between the two pairs of colors in the CIELAB color space, it is

observed the Euclidean distance between both pairs of colors is the same.

In order to use the Euclidean distance measure in the five dimensional [LABXY] space,

the spatial distance between two points is required to be normalized since it is subject to

image size. Consider an image containing N pixels and let K be the number of super-pixels

in the segmented image. The size of each super-pixel is N/K, and a super-pixel center is

present at every grid interval S = √N/K. The center of each of the super-pixels Ck = [Lk,

Ak, Bk, Xk, Yk] where k = [1, K] is chosen at regular grid intervals S. The spatial extent of

each of the super-pixels is approximately S2 the area of a super-pixel and the pixels that

are associated with any super-pixel center lie within a 2S x 2S area around the super-pixel

center on the XY plane [5]. Euclidean distances in CIELAB color space are perceptually

204

meaningful for small distances but not large distances. The distance measure Ds used in

SLIC is the aggregate of the LAB distance and XY plane distance normalized by the grid

interval S. The mathematical notations are as follows:

LAB distance, Dlab = √ (lk - li)2 + (ak – ai)2 + (bk – bi)2

XY plane distance, Dxy = √ (xk - xi)2 + (yk – yi)2

SLIC distance measure, Ds = Dlab + (m/S) * Dxy where m is the factor that controls

compactness of the super-pixel. The greater the value of m, the more compact the cluster.

The SLIC algorithm is similar to any other clustering algorithm in the sense it begins by

sampling K regularly spaced cluster centers and moving them to seed location

corresponding to the lowest gradient position in a 3 x 3 neighborhood. Image gradients are

computed as G (x, y) = ||I (x + 1, y) – I (x – 1, y) ||2+ ||I (x, y + 1) – I (x, y – 1) ||2 where I

(x, y) is the LAB vector corresponding to the pixel at position (x, y) and ||. || is the L2 norm

[163]. Each pixel in the image is associated with the nearest cluster center whose search

area overlaps the pixel. After all the pixels are associated with the nearest cluster center, a

new center is computed as the average LABXY vector of all the pixels belonging to the

cluster. The process is iteratively repeated until convergence.

The regions that indicate plant cover are identified by inferring from the semantics

of the super-pixels put out by SLIC. The steps in the process are described as follows.

1. Segment the image into a pre-defined number of super-pixels using the SLIC function

from the OpenCV image processing library. It is observed that segmenting the image into

300 super-pixels identifies the plant cover best although the algorithm may execute faster

205

at the expense of accuracy if the image is segmented into fewer super-pixels. The image

segmented into super-pixels is shown in Figure 6.27(a).

2. Find the average color value within each of the super-pixels and assign it as the label

that represents the super-pixel. It ensures that a given super-pixel has only one color.

3. Find unique labels within the image and apply a filter that identifies the plant cover. An

observation that is made based on experimentation is that the super-pixels that consist of

plants are green. Hence, all the green labels are identified, and a grayscale image is created

where the locations of green labels are plotted in white (255). The image represents the

vegetation cover within the image.

4. (Optional) Perform a ‘bitwise and’ operation on the image using the grayscale image

from step 3 as the mask. The resulting image shows the vegetation cover in the image

Figure 6.27: (a) Super-pixel Segmentation of Original Image (b) Detected Vegetation
Cover in RGB Color Space

206

within each of the segments of the PVC frame in the 3-channel RGB color space. The step,

whose output is as shown in Figure 6.27(b), is merely to observe the vegetation detected

within the image for user validation but is not required for analysis.

6.2.3.3. Vegetation Cover to PVC Frame Segment Association

Once the PVC frame and vegetation cover are identified, the next step in the process

is to associate the vegetation cover with each segment of the PVC frame. The Hough Lines

Transform is used to detect each of the segments of the PVC frame. The Hough Lines

Transform is typically used to identify straight lines in images [7][35]. Typically, straight

lines are represented using the slope-intercept method as y = mx + c where m is the slope

and c is the y-intercept. However, Hough Transform relies on representing straight lines

using the pair of polar co-ordinates, (ρ, θ). The first parameter, ρ, is the shortest distance

from the origin to the line. The second parameter, θ, is the angle between the x-axis and

distance line. The equation of the straight line in polar co-ordinate system is given by, ρ =

x * cos(θ) + y * sin(θ) where (x, y) is a point on the line. The Hough Transform takes the

edges from a binary image as input. The Hough Transform maps each of the pixels to

multiple points in Hough (or parameter) space. An edge pixel is mapped to a sinusoid in

2D parameter space, (ρ, θ) representing all possible lines that could pass through the point.

It is referred to as the voting stage. The sinusoids of collinear points in the Hough space

cross each other indicating collinearity. There are two variants of Hough Transform,

Standard and Probabilistic [35][69]. The primary difference between the two variants is the

computational complexity. Consider an image that has M pixels as edge points and a Hough

space divided in Nρ x Nθ accumulators. In case of the Standard Hough Transform, each of

the M edge pixels is used for computation which means that the computational complexity

207

is O(M. Nθ) for the voting stage and O(Nρ. Nθ) for the search stage. However, in the

Probabilistic Hough Transform, only a subset m of M edge pixels is used for computation

which means that the computational complexity is reduced to O(m. Nθ) for the voting stage

resulting in a faster execution of the algorithm.

The algorithmic steps to associate vegetation cover with PVC frame is described as

follows.

1. Consider the image of the PVC frame obtained as the output in section B.

2. Detect straight lines on the image using the Probabilistic Hough Lines transform.

The detected line segments indicate the segments of the PVC frame. A vote measure of

180 is used to start the search for straight lines. In case no lines are identified at the vote

range, it is lowered by 10 until lines are detected.

3. Filter the line segments to identify the ones that run along the segments of the

PVC frame. Any given segment in the PVC frame should have four lines with slope ~0.0

i.e., horizontal or nearly horizontal lines and two lines with infinite slope i.e., vertical or

nearly vertical lines associated with it. In order to detect the lines, parallel lines with slopes

less than 15 and slopes higher than 100 are retrieved. Lines with slopes under 15 are

oriented at less than 10 degrees with the X-axis whereas lines with slopes above 100

approaching infinity are oriented at over 45 degrees with the X-axis. It is possible that more

lines than expected are detected along the PVC frame segment. In order to contain only the

expected six lines, any overlapping line segments or ones that are closer in position and

orientation than a certain threshold are merged together into a single line segment. All line

segments that are separated by less than 10 pixels in distance and 0.2 degree in orientation

208

are grouped together and only a single line segment from amongst the group is considered

for analysis.

4. Extend the line segments along the PVC frame segments by a factor of five (or

higher) to ensure that the horizontal line segments intersect with the vertical line segments

in case they do not.

5. Determine the segment of the PVC frame to which each of the line segments

belong based on the position of the line segments in the image. In case of PVC frames that

contain multiple segments, the association of line segments to the PVC frame segments

helps estimate the amount of vegetation cover within the PVC frame segments.

6. Consider the line segments associated with each segment of the PVC frame and

determine the innermost lines i.e., two inner vertical and two inner horizontal lines. Find

the four points of intersection of the innermost lines. The idea is to identify the inner

rectangles (polygons) within the PVC frame.

7. Create a grayscale image and plot a polygon using the points of intersection as

the four vertices of the polygon. Fill the polygon in white (255), as shown in Figure 6.28(b).

In a PVC frame with n segments, n polygons are obtained where each of the polygons

indicates a segment within the PVC frame.

209

8. Perform a ‘bitwise and’ operation on the output of section 5.2.3(B), as shown in

Figure 6.27(b), using each of the grayscale images as the mask. The pixels indicating

vegetation cover are plotted in white (255), as shown in Figure 6.28(c).

 6.2.3.4. Amount of Vegetation Cover Estimation

The percentage of vegetation within each segment and the amount of vegetation

cover in metric units are estimated by the algorithm. The ratio of the number of pixels that

indicate vegetation cover and the number of pixels present in each segment of the PVC

frame gives the percentage of vegetation cover within each PVC frame segment. In other

words, the ratio of white pixels in images obtained from step 7 and step 8 gives the

percentage of vegetation cover. The estimation of vegetation cover in metric units requires

the knowledge of dimensions of the PVC frame. The length and width of the inner

Figure 6.28: (a) Detected Hough Lines for the PVC Frame with Vegetation Cover (b)
Polygon Mask for Segment 3 (c) Vegetation Cover within Segment 3

210

rectangles of the PVC frame shown in Figure 6.23(a) are 19.75” and 6.75” respectively.

The number of pixels present within the rectangle are obtained from polygon masks plotted

in step 7 of section 5.2.3(C). Please note that each polygon might have slightly different

pixel count since the image may be partly skewed. Since the number of vegetation cover

pixels are known from step 8 of section 5.2.3(C), the area of vegetation cover is given by

the equation, 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟 (𝑠𝑞. 𝑖𝑛) =

 (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 (𝑠𝑞. 𝑖𝑛) 𝑥𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠)/

 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑝𝑖𝑥𝑒𝑙𝑠)

 6.2.4 Results and Discussion

In the absence of ground truth measurements for the vegetation cover within each

of the PVC frames, the proposed algorithm is evaluated on two applications SamplePoint

and Canopeo. SamplePoint is a desktop application that facilitates foliar cover

measurements from nadir imagery by superimposing a systematic or random array of up to

225 crosshairs targeting single image pixels and provides a platform for simple, manual

classification of the pixels. SamplePoint is a product that has been developed in

collaboration with the USDA and serves as the benchmark for vegetation cover estimation.

Canopeo is a tool available as desktop and mobile applications to estimate fractional

vegetation canopy cover. Both SamplePoint and Canopeo provide vegetation cover

estimates as a percentage of the image size but not in metric units. It is perhaps due to the

lack of a reference object in the image. The proposed algorithm is compared to the

measurements provided by SamplePoint and Canopeo across 100 Kura plant images,

similar to Figure 6.23(b). The Cosine Similarity [190] measure is used to compare

similarity among the three measures. Cosine Similarity is the cosine of the angle between

211

two vectors that are typically non-zero and within an inner product space. Mathematically,

it is defined as the division between the dot product of vectors and product of the magnitude

of each vector and is expressed as, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐴. 𝐵/||𝐴|| ||𝐵|| where A and B are the

two vectors compared for similarity. A plot of the estimates of vegetation cover across the

100 images using each of the three measures is shown in Figure 6.29.

The cosine similarity measure between the proposed algorithm and SamplePoint is 0.995

whereas that between the proposed algorithm and Canopeo is 0.99. It is worth noting that

the cosine similarity between SamplePoint and Canopeo is 0.99. The results indicate a high

degree of cadence among the techniques and demonstrates the quality of results produced

by the proposed algorithm. As observed from the median and mean values, the results

produced by the proposed algorithm lie between that of the results produced by

SamplePoint and Canopeo. The median of the proposed algorithm is 12.04 whereas that of

SamplePoint and Canopeo are 13 and 9.14 respectively. The mean of the proposed

algorithm is 12.40 whereas that of SamplePoint and Canopeo are 14.21 and 10.01

respectively. The key benefit to using the proposed technique is that the algorithm provides

Figure 6.29: Vegetation Cover Estimates by the Proposed Algorithm,
SamplePoint and Canopeo

212

the measurement of the amount of vegetation cover in metric units along with percentage.

It significantly improves reproducibility of the results across multiple individuals

conducting the experiments since it eliminates the dependence of the results on the height

from which the image is captured.

 6.2.5 Future Work and Conclusions

Proposed is an algorithm to estimate the FVC in an area from images to aid in

Companion Planting. The proposed algorithm provides an estimate of the vegetation cover

as a percentage of the image size and an absolute value in metric units. The algorithm relies

on the presence of a PVC frame of known dimensionality in the image to be used as

reference to measure the vegetation cover in metric units. The results of the proposed

algorithm when compared to SamplePoint and Canopeo exhibit a high degree of similarity.

Moving forward, the algorithm will be implemented as a mobile application that the users

may download onto their devices. The code for the algorithm is also made open source for

enthusiasts to use and develop further.

213

Chapter 7 - Development Tools

The research conducted as part of the work for each of the chapters relied on the availability

of several tools and libraries such as OpenCV, TensorFlow, and PyTorch. The availability

of libraries helped in performing tasks such as baselining, diagnostics and troubleshooting

along with the development of algorithms themselves. The thesis resulted in the

development and usage of three tools for image processing that have been extensively used.

While the logic and code for the tools may be available on the internet in bits and pieces,

the current chapter documents and describes the tools for readers to comprehend and

leverage the tools on their research journeys. Each of the tools is implemented in OpenCV-

Python. The three image processing tools are:

1. Image Thresholding Trackbar

2. Semi-automated Image Cropper

3. Eraser

7.1 Image Thresholding Trackbar

Image thresholding is the technique of segmenting images to extract information.

The applications of image thresholding are widespread in the area of digital image

processing. Conventional cameras capture information in the RGB color scheme where R

is Red, G is Green, and B is Blue. An image is an amalgamation of several pixels of the

same or varying color intensities. The intensities of red, green and blue in an RGB image

range from 0 to 255 where 0 indicates 0% intensity and 255 indicates 100% intensity. In

the majority of image processing applications, determining the appropriate intensities of

214

red, blue, and green is critical to extract key information from images. However,

determining the intensities is a task that requires meticulous curation due to each of the

channels having a profound impact on the content of the image. The image thresholding

tracker helps to curate the values for the red, green, and blue channels so researchers are

able to extract information from images easily. Furthermore, the RGB color space is not

always the most feasible to extract information from images. Other color spaces such as

grayscale, HSV, and LAB provide access to certain detail that the RGB color space doesn’t

necessarily provide. The proposed image thresholding trackers help threshold images in

different color spaces such as grayscale, RGB, HSV and LAB.

7.1.1 RGB Image Thresholding Trackbar

OpenCV provides a ‘createTrackbar’ function that creates a trackbar. The function

takes five arguments – trackbar name, window name to which it is attached, default value

that the trackbar is set at the time of creation, maximum value and callback function which

is executed every time the value of the trackbar alters. Six trackers, two for each of the red,

green, and blue channels are created using the ‘createTrackbar’ function of OpenCV. Each

channel contains two trackbars so a lower bound and upper bound on the channel are able

to be specified by the user. As the user alters the values corresponding to each of the

channels, all the pixels that do not lie within the upper and lower bounds for each of the

channels are subject to thresholding. The process of thresholding involves determining the

pixels that lie in within the upper and lower bounds set on the trackbar using OpenCV’s

‘inRange’ function. The function takes three parameters – image, lower bound, and upper

bound. The upper and lower bounds are input as numpy arrays where each of the numpy

arrays contains three values – red, green, and blue intensities. The function returns all the

215

pixels that lie within the thresholds of upper and lower bounds. The portion of the image

that is returned by the ‘inRange’ function is used as the mask in the ‘bitwise_and’ operation

to extract the desired information from the original image. Figure 7.1 shows the RGB color

thresholding trackbar in action on the image of rust-stricken wheat leaf held by a plant

science researcher wearing a purple glove.

Figure 7.1(a) shows the original image of the wheat leaf in the hand of a researcher.

Assuming that the analysis is to be performed on the leaf, the first step in the analytical

Figure 7.1: (a) Image of Wheat Leaf in Hand (b) Extraction of Wheat Leaf (c) Upper and
Lower Thresholds of Red, Green, and Blue Channels

216

process is the extraction of region of interest i.e., the wheat leaf. Figure 7.1(b) shows the

extraction of the wheat leaf by the application of RGB thresholding. Figure 7.1(c) shows

the upper and lower values for the red, green, and blue channels that led to the extraction

of the leaf. Altering the values further modifies the thresholding. l_r and h_r corresponds

to lower bound of red and upper bound of red respectively. Likewise, for l_g, l_b, h_g, and

h_b. The values for each of the channels range from 0 to 255.

7.1.2 HSV and Lab Image Thresholding Trackbars

HSV is the acronym for thresholding based on hue, saturation and value. Hue refers

to the color portion of the model expressed as a number from 0 to 360 degrees. Red is

represented by values between 0 and 60, yellow by values between 61 and 120, green by

numbers between 121 and 180, cyan by numbers between 181 and 240, blue by numbers

Figure 7.2: (a) HSV Color Model of Figure 7.1(a) (b) Extracted Wheat Leaf
using HSV Thresholding (c) HSV Trackbar

217

between 241 and 300, and Magenta by numbers from 301 to 360 degrees. Saturation

describes the amount of gray in a particular color and ranges from 0 to 100 percent.

Reducing the amount of saturation towards zero increases the amount of gray within the

image and produces a faded effect. Value is synonymous with brightness in the image. It

is a value that ranges from 0 to 100 where 0 is completely black and 100 reveals the most

color. Figure 7.2 shows HSV thresholding performed on the wheat plant shown in Figure

7.1.

 The Lab color space is a color-opponent space with the dimension L for lightness,

and A and B to represent color-opponent dimensions based on non-linearly compressed

CIEXYZ color space coordinates. The Lab color space includes all perceivable colors

which means that its gamut exceeds that of the RGB color model. In addition, the Lab color

model is device independent i.e., the colors are defined independent of their nature of

creation [128]. The range of L is from 0 to 100 whereas that of a and b is 0 to 127. The

HSV and Lab image thresholding trackbars are created in the same manner as the RGB

image thresholding trackbar. The only additional step is that the image subject to

thresholding is converted to the respective color scheme before the application of the steps

outlined in the creation of RGB thresholding trackbar.

7.1.3 Grayscale Image Thresholding Trackbar

The grayscale representation of an image consists of only one channel unlike RGB

images that consist of three channels. As a result, the grayscale image thresholding trackbar

consists of only one slider whose value ranges from 0 to 255. The value of 0 represents

black whereas the value of 255 represents white. Figure 7.3 shows grayscale thresholding

in action using the grayscale image thresholding trackbar.

218

7.2 Semi-Automated Image Cropper

The training of convolutional neural networks involves learning key features from

an image. However, the images acquired from the agricultural field contain plenty of

background noise in addition to the entity of interest. The training of neural networks on

images containing noise yields results that are sub-par. In order to avoid such a scenario,

the neural networks are required to be trained only on the region of interest (ROI). Given

an image dataset, chances are that the ROI is not present at the same location in each of the

images. Hence, cropping a certain region from every image in the dataset is not an option.

In addition, the ROI in each image may be of a different size. One of the requirements to

train neural networks is that all the training images be of the same size. Different neural

Figure 7.3: (a) Image of Wheat Leaf in Hand (b) Grayscale Thresholding on Original Image
(c) Grayscale Image Thresholding Trackbar at 160

219

networks may take images of different size as input. For instance, the state-of-the-art neural

networks of ResNet-50, VGG-16 and VGG-19 require that the input be of size 224 x 224

px. While resizing images may be a simple operation, resizing generally leads to distortion

of the objects in the image rendering the image useless for training. Hence, proposed is a

semi-automated image cropping tool that extracts the ROI from an image and resizes it to

a size of the user’s choice without distortion. The proposed tool is a step forward in

generating image datasets for neural network/ machine learning model training.

 7.2.1 Procedure

The image extractor is a Python-OpenCV that provides headless and user-interface modes.

The extraction of ROI from images is defined as a 3-step process:

1. Image thresholding to eliminate background noise.

2. Image cropping to extract ROI

3. Resizing the extracted ROI and centering the image on a canvas of choice.

Image Thresholding

The extractor provides a user interface to apply two different types of thresholding

namely, RGB and HSV where the default is HSV. The user interface consists of trackbars

and allows the user to apply thresholding to extract the region of interest removing

immediate noise in the background. Figure 9 shows the HSV thresholding applied on an

image of a wheat plant. The region of interest is present within the glove. As a first step,

the glove is removed from the image using HSV thresholding. At this point, the size of the

image is unaffected.

220

Figure 7.4: (left) Image of Wheat Plant Captured in a Field Setting; (right) HSV
Thresholding Applied to Remove Glove from Image

Image Cropping

A tool that allows the user to select the region of interest is provided by the framework.

The user is allowed to drag the cursor along the region of interest starting at the top left

and ending at the bottom right of the image. The tool crops the image based on the co-

ordinates selected by the user. Figure 10 shows the ROI extraction made by the tool.

Figure 7.5: (left) ROI Cropping of the HSV Threshold Image; (right) Cropped ROI

221

Image Resizing

Resizing the ROI extracted in the previous step as-is leads to distortion due to poor aspect

ratio that could result. Figure 11 shows the distorted image obtained by resizing the ROI.

The ROI obtained from image cropping is of size 361 x 61 px. The ROI is resized to 224

x 224 px. The resulting distortion renders the image unfit for training.

Such distortion leads to the images being unsuitable for training on the neural networks

since the majority of the image features are lost. The technique to avoid distortion is to

copy the ROI onto an n x n canvas that fits the ROI completely and then resize. Such a

technique preserves the aspect ratio thereby negating distortion. However, merely

preserving the aspect ratio does not provide an image that is fit for training. Figure 12

shows an image generated by copying the ROI onto a larger canvas.

Figure 7.6: Image Distortion from Resizing

222

The dimensionality of the canvas is 600 x 600 px whereas the dimensionality of the ROI

is 361 x 61 px. The image is then resized to a dimensionality 224 x224 px. While the aspect

ratio is preserved, the downside is that the ROI in the final image occupies only a tiny

portion of the canvas whereas the majority of the image is occupied by the background.

When a feature extractor is trained on such an image, the feature extractor learns the

features of the background more than the features of the ROI. Besides, the feature extractor

takes significant number of epochs to distinguish the foreground from the background. In

such a scenario, there is a high chance that the key features of the ROI are entirely missed

by the feature extractor yielding sub-par results. The proposed tool identifies the smallest

Figure 7.7: ROI Copied onto 600 x 600 px Canvas and Resized to 224 x 224 px

223

possible canvas size to fit the ROI and copies the ROI onto the canvas. The canvas is then

resized to the dimensionality of the user’s choice preserving the aspect ratio. Figure 7.8

shows the resized image obtained using the proposed tool. The ROI in the resized image

occupies a larger area and the clarity of the features is significantly higher.

7.3 Image Eraser

In addition to cropping discussed in section 7.2, another useful application is the

ability to remove portions of the image that are undesired. The use case of erasing is

different from that of cropping in the sense cropping the image removes pixels from the

image and alters the size of the image whereas erasing refers to the act of carefully weeding

out portions of the image that hinder the process of information retrieval. The image eraser

is a tool that complements foreground extraction tools such as instance segmentation neural

networks and OpenCV GrabCut. The goal of the aforementioned extraction tools is the

Figure 7.8: ROI Resized to 224 x 224 px from 361 x 61 px

224

detection of the most informative portion of image. Examples of instance segmentation

neural networks include Mask R-CNN and YOLO. Users are able to train the networks to

precisely detect a certain part of the image that is most useful for analysis. Likewise,

OpenCV GrabCut is used to detect the object in the foreground of the image. While the

tools are expected to detect and extracted the desired portions of the image precisely, it is

not always the case in practice. Figure 7.9 shows the image of plant whose leaf and stem

are focused. There are other plants in the background since the image was captured in a

field setting. Figure 7.9 is used to demonstrate the use case for the image eraser.

Figure 7.9: Field Image of Leaf and Stem

225

Assuming that the task at hand is to precisely extract the leaf and stem present in the

foreground, OpenCV’s GrabCut may be applied. The application of OpenCV’s GrabCut

algorithm results in the image shown in Figure 7.10.

While the portion of the image showing leaf and stem is present in Figure 7.10, also present

are portions of other plants in the background of the image. Foreground extraction is hardly

ever perfect owing to the complex nature of the image. All the areas of the image apart

from the objects in the foreground area essentially noise in terms of information extraction.

The image eraser helps to erase the undesirable portions of the image as a means of noise

reduction.

Figure 7.10: Foreground Extraction using OpenCV GrabCut

226

 7.3.1 Procedure

The image eraser works by allowing the user to plot a polygon around the object or

portion of the image that is undesired. The eraser then eliminates the portion of the image

within the polygon. The steps involved in the process are as follows:

1. Plot a polygon around the portion of the image that is not desired. In order to

plot the polygon, the tool lets the user plot different points on the image using

the left mouse click and joins the points by drawing a line between the points.

The right mouse click is used to indicate to the tool that all the points at the

desired locations are plotted. Figure 7.11 shows the polygon drawn around the

object that is undesired.

Figure 7.11: Polygon around Undesired Portion of Image

227

2. The polygon plotted by the user is then filled by the tool in white pixel. Closing

the polygon and plotting it in white helps to recognize the region of interest i.e.,

the region of the image that is required to be erased from the image. Figure 7.12

shows the closed polygon.

3. The ‘bitwise_xor’ operation is performed on the image and the polygon plotted

by the user. The ‘bitwise_xor’ operation returns 0 (false) if both inputs provided

to it are true. The idea is that all the pixels where the polygon and image are not

0 (black pixel) are set to 0. Setting the pixel to 0 erases the portion of the image

Figure 7.12: Closed Polygon plotted in White Pixel

228

within the user selected polygon. Figure 7.13 shows the erased portion of the

image using the user plotted polygon.

Figure 7.12: Pixels within Polygon erased from Original Image in Figure
7.10

229

7.4 Code Availability

 The code for the tools is available in the GitHub repository at:

https://github.com/marven22/Image-Processing-Tools.git . The chapter explains the

functionality of three image processing tools namely, the image thresholding trackbar,

semi-automated image cropper and image eraser. The tools are handy in the development

and testing of image processing applications using OpenCV-Python. While the current

implementations are in Python, suitable libraries in C++ are also available for

implementation.

230

Chapter 8 - Conclusions and Future Work

Chapter 2 presents the idea of using low-cost, 3-D printed components to efficiently

segment seed kernels for morphometry estimation. In addition, a technique using the

conventional watershed method is also proposed for morphometry estimation. The

algorithms developed as part of the work are implemented as part of OneKK, an android

application developed in collaboration with developers at the Poland Lab in Kansas State

University. The application is currently available for download from Google’s Play Store

and has over 500 downloads. The application also reads from the gyroscope of smart

phones to determine the presence of the skew during image capture. The capture of pictures

without skew assist in the efficient functioning of the algorithm. In the current state, the

algorithms are meant to be used on relatively smaller seeds such as wheat and soy.

However, the assimilation of the algorithms for larger seeds such as cassava is to be done

in future. The 3-D printed meshes proposed as part of the work may be extendable to the

larger seed varieties as well.

Chapter 3 extends the seed kernel morphometry estimation algorithms presented in

chapter 2 and presents the technique of applying different kinds of neural networks for seed

kernel morphometry estimation. The feasibility of the application of domain randomization

to the use case is demonstrated. The combination of synthetic datasets and transfer learning

are demonstrated as feasible techniques to achieve high-throughput for seed kernel

morphometry estimation. The synthetic image generation framework is proven out on the

conventional supervised learning neural network models of VGG and ResNet. In addition,

the framework is also proven to provide quality results on self-supervised neural network

models and instance segmentation neural network models. Modern day mobile devices are

231

equipped with processors powerful enough to run neural network models. Leveraging the

neural network models on mobile devices provides a quality alternative to the image

processing solutions in terms of achieving better results since neural networks are able to

train and adapt to different problems easily. In future, android applications such as OneKK

may be augmented to leverage the power of the neural network models trained on the

proposed domain randomization framework to achieve better outcomes.

Chapter 4 proposes an idea to aid the seed packaging industry in packaging seed

kernels by count rather than weight owing to its limitations. The idea of stitching multiple

slit images together to estimate the number of seeds flowing down a platform delivers

quality results, as evident from the experiment. The current idea expands upon the previous

idea of tracking seed kernels as they flow down the platform using the technique of centroid

tracking. While centroid tracking works well, the algorithm when implemented as an

android mobile application, Abacus, takes plenty of processing time and delivers inaccurate

results. Although the proposed solution has not been implemented as an android mobile

application yet, it is apparent that the algorithm is less resource intensive since it only

captures the seed kernels as they flow through the region of interest but doesn’t track the

seed kernels all along the video. While the proposed algorithm requires a slow-motion

video captured at 60 fps to function efficiently, most modern-day smart phones are

equipped with the ability to capture videos at that rate. The next step in the process is to

implement the algorithm as part of the Abacus android application developed earlier by

Neilsen et al. at Kansas State University. The application when finetuned with the less

resource intensive algorithm of slit imaging can be put out for clients and customers to

download on Google Play Store. In addition to the use of image processing, other

232

techniques such as the use of microwaves to detect seed kernels will be made part of the

experiment to investigate its feasibility.

Chapter 5 carries the aspect of morphometry estimation one step forward and

proposes a solution to conduct the volumetric analysis of single seed kernels. The proposed

solution is an end-to-end, automated solution wherein the user is provided with a user

interface to operate the solution. The proposed setup improves upon the previous iteration

developed as part of [24]. The major pitfall of the current iteration is the use of Legos to

develop the hardware infrastructure for the project. Moving forward, the hardware is

developed using metal to ensure that the hardware is sturdy and more akin to operation in

a lab setting such as that of the United States Department of Agriculture (USDA). The

setup for the next iteration of the system is shown in Figure 8.1.

Figure 8.1: Improved Hardware Framework for Volume Estimation of Seed Kernel

233

The speed of computation is another area that has scope for improvement. Currently, the

algorithm captures 36 images, one every 10°, to capture the seed kernel from different

angles. The process may be improvised by capturing a video instead of images and

meticulously extracting the frames at ten-degree intervals. The material used as the

background for seed capture is currently not non-reflective. As a result, a small of the light

gets reflected onto the seed kernel which tends to have an impact on the volumetric

estimation. The use of a non-reflective material as the background helps to eliminate

reflection and improve the accuracy of the results. The system in its current state only

estimates the volume of one seed kernel at a time. In the future, a conveyor belt that runs

the seed kernels onto the seed station one after the other is of the essence to develop the

system into a high-throughput application.

 Chapter 6 shifts the focus toward plant phenotyping from seed phenotyping. The

chapter presents algorithms for two different use cases, one for leaf angle estimation and

another for companion plant determination. Both the use cases presented in the chapter are

some of the first and most vetted out solutions. The leaf angle estimation algorithm

estimates the angle between leaf and stem to help predict the characteristics of a plant’s

growth in the field. The algorithm presented uses OpenCV-Python and Tensoflow as the

technical stack. The algorithm will be implemented as part of FieldBook, a mobile

application developed on the android platform using OpenCV as its backbone for image

processing and Mask R-CNN as its backbone for foreground detection. A key aspect that

helps improve the functioning of the algorithm is better image capture in the field.

Currently, the images captured in the field setting are noisy in the sense they contain plenty

of other plants in the background. As a result, the plant of interest is to be detected and

234

identified as the pre-processing step before the leaf angle may be estimated. However, a

setup that ensures only the plant of interest is captured helps improve the speed and

efficiency of the results of the algorithm. The use of a cardboard as the background is

proposed as the simplest means to effect noiseless image capture. Moving forward, the

implementation of the algorithm as a mobile application and design of image capture setup

will be done to improve the current state of the algorithm and make it more widely

adoptable.

 The second use of companion plant determination is a project that is being carried

out in collaboration with the scientists at the Land Institute in Salina, KS. The algorithm

developed as part of the project is perhaps one of the first of its kind since it provides an

estimate of the plant area in metric units, unlike other applications that only provide a

percentage measure of the plant area. The elimination of skew is one of the key challenges

that the algorithm encounters. Moving forward, it is important to leverage the gyroscope

of smart phone and other mobile devices as the algorithm is industrialized to address skew.

Also, it is important to design an optimal image capture method wherein the images don’t

contain human shadows because they interfere heavily with the image processing of the

algorithm. Moving forward, the algorithm will be tested on other plant images provided by

the scientists at the Land Institute in Salina concurrently as it is implemented as a mobile

application.

235

Bibliography

[1] A. Laurentini, “The Visual Hull Concept for Silhouette-Based Image
Understanding,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, no. 2, pp. 150–162, 1994.

[2] Abbott, L. (2013). Vegetation Cover Introduction. Retrieved from:
https://www.youtube.com/watch?v=TXV5DxEaSR4

[3] Abbott, L. (2013). Vegetation Cover using Ocular Estimation in Plots. Retrieved
from: https://youtu.be/wKcKQzNbsds

[4] Abto Software. [Blog] https://www.abtosoftware.com/blog/object-counting-
image-processing.

[5] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2010). Slic
superpixels (No. REP_WORK).

[6] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC
superpixels compared to state-of-the-art superpixel methods. IEEE transactions on
pattern analysis and machine intelligence, 34(11), 2274-2282.

[7] Aggarwal, N., & Karl, W. C. (2006). Line detection in images through regularized
Hough transform. IEEE transactions on image processing, 15(3), 582-591.

[8] Alake, R. (2020). Medium (Blog Post). Retrieved from:
https://towardsdatascience.com/understanding-cosine-similarity-and-its-
application-
fd42f585296a#:~:text=The%20cosine%20similarity%20is%20the,or%20magnitu
de%20of%20each%20vector.

[9] Aldenhart (2013). Gshield v5 – Synthetos. (GitHub repository)
https://github.com/synthetos/grblShield.git

[10] Aleem, M., Raj, R., & Khan, A. (2020). Comparative performance analysis of the
resnet backbones of mask rcnn to segment the signs of covid-19 in chest ct
scans. arXiv preprint arXiv:2008.09713.

[11] Amaravadi, S. (2018). “Mobile applications for high-throughput seed
characterization (Master’s thesis, Kansas State University)”.

[12] Arvidsson, S., Pérez-Rodríguez, P., and Mueller-Roeber, B. (2011). A growth
phenotyping pipeline for Arabidopsis thaliana integrating image analysis and
rosette area modeling for robust quantification of genotype effects. New Phytol.
191, 895–907. doi: 10.1111/j.1469-8137.2011.03756.x

[13] Atabansi, C. C., Chen, T., Cao, R., & Xu, X. (2021, April). Transfer Learning
Technique with VGG-16 for Near-Infrared Facial Expression Recognition.
In Journal of Physics: Conference Series (Vol. 1873, No. 1, p. 012033). IOP
Publishing.

236

[14] Bah, M. D., Dericquebourg, E., Hafiane, A., & Canals, R. (2018, July). Deep
learning-based classification system for identifying weeds using high-resolution
UAV imagery. In Science and Information Conference (pp. 176-187). Springer,
Cham.

[15] Beucher, S., & Meyer, F. (1993). “The morphological approach to segmentation:
the watershed transformation”. Mathematical Morphology in Image
Processing, 34, 433-481.

[16] Bonham, C. D., Mergen, D. E., & Montoya, S. (2004). Plant cover estimation: a
contiguous Daubenmire frame. Rangelands, 26(1), 17-22.

[17] Booth, D. T., Cox, S. E., & Berryman, R. D. (2006). Point sampling digital imagery
with ‘SamplePoint’. Environmental Monitoring and Assessment, 123(1), 97-108.

[18] Bouchard, Louis. What is Self-Supervised Learning? Will machines ever be able to
learn like humans? [Blog Post]. Retrieved from: https://medium.com/what-is-
artificial-intelligence/what-is-self-supervised-learning-will-machines-be-able-to-
learn-like-humans-d9160f40cdd1

[19] Bristeau, P. J., Callou, F., Vissière, D., & Petit, N. (2011). The navigation and
control technology inside the ar. drone micro uav. IFAC Proceedings
Volumes, 44(1), 1477-1484.

[20] Buckland, M., & Gey, F. (1994). The relationship between recall and
precision. Journal of the American society for information science, 45(1), 12-19.

[21] Buters, T., Belton, D., & Cross, A. (2019). Seed and seedling detection using
unmanned aerial vehicles and automated image classification in the monitoring of
ecological recovery. Drones, 3(3), 53.

[22] C. R. Moore, D. S. Gronwall, N. D. Miller, and E. P. Spalding, “Mapping
quantitative trait loci affecting arabidopsis thaliana seed morphology features
extracted computationally from images,” G3: Genes, Genomes, Genetics, vol. 3,
no. 1, pp. 109–118, 2013.

[23] Cao, C. (2020). Computer vision frameworks for physics-based simulation of
liquids and solids. Kansas State University.

[24] Cao, C., & Neilsen, M. (2020, December). Efficient Seed Volume Measurement
Framework. In 2020 International Conference on Computational Science and
Computational Intelligence (CSCI) (pp. 1328-1334). IEEE.

[25] Chen, W., Lu, S., Liu, B., Li, G., & Qian, T. (2020). Detecting citrus in orchard
environment by using improved YOLOv4. Scientific Programming, 2020.

[26] Chen, X., Fan, H., Girshick, R., & He, K. (2020). Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297.

[27] Chhetri, M., & Fontanier, C. (2021). Use of Canopeo for Estimating Green
Coverage of Bermudagrass during Postdormancy
Regrowth. HortTechnology, 31(6), 817-819.

237

[28] Chibane, Julian, Thiemo Alldieck, and Gerard Pons-Moll. “Implicit Functions in
Feature Space for 3D Shape Reconstruction and Completion.” (2020)

[29] Colombe, S., Nepal, M. P., Browning, L. B., Miller, M. L., & White, P. T. (2018).
Three Sister Crops: Understanding American Indian Agricultural Practices of Corn,
Beans and Squash.

[30] Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D. W., Menesatti, P., et al.
(2011). Shape analysis of agricultural products: a review of recent research
advances and potential application to computer vision. Food Bioproc. Technol. 4,
673–692. doi: 10.1007/s11947-011-0556-0

[31] Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2019). Deep
neural networks with transfer learning in millet crop images. Computers in
Industry, 108, 115-120.

[32] Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek, M. (2012, May). A brief
introduction to OpenCV. In 2012 proceedings of the 35th international convention
MIPRO (pp. 1725-1730). IEEE.

[33] da Silva, L. A., Bressan, P. O., Gonçalves, D. N., Freitas, D. M., Machado, B. B.,
& Gonçalves, W. N. (2019). Estimating soybean leaf defoliation using
convolutional neural networks and synthetic images. Computers and electronics in
agriculture, 156, 360-368.

[34] Doersch, C., & Zisserman, A. (2019). Sim2real transfer learning for 3D human pose
estimation: motion to the rescue. In Advances in Neural Information Processing
Systems (pp. 12949-12961).

[35] Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines
and curves in pictures. Communications of the ACM, 15(1), 11-15.

[36] Dzievit, M. J., Li, X., & Yu, J. (2019). Dissection of leaf angle variation in maize
through genetic mapping and meta‐analysis. The plant genome, 12(1), 180024.

[37] ECE Northwestern retrieved from: http://www.ece.northwestern.edu/local-
apps/matlabhelp/toolbox/images/color11.html

[38] Fenner, M. (Ed.). (2000). Seeds: the ecology of regeneration in plant communities.
Cabi.

[39] Floyd, D. A., & Anderson, J. E. (1987). A comparison of three methods for
estimating plant cover. The Journal of Ecology, 221-228.

[40] Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A., Chakraborty, J., & Nandi, D.
(2019, February). Brain tumor classification using ResNet-101 based squeeze and
excitation deep neural network. In 2019 Second International Conference on
Advanced Computational and Communication Paradigms (ICACCP) (pp. 1-6).
IEEE.

[41] Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R., Wang, X.,
& Ganapathysubramanian, B. (2019). A weakly supervised deep learning

238

framework for sorghum head detection and counting. Plant Phenomics, 2019,
1525874.

[42] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, ChristopherSTAN, Liu
Changyu, Prashant Rai (2020). Ultralytics/yolov5: v3.1 – Bug Fixes and
Performance Improvements (Version v3.1).
http://doi.org/10.5281/zenodo.4154370

[43] Golbach, F., Kootstra, G., Damjanovic, S., Otten, G., & van de Zedde, R. (2016).
Validation of plant part measurements using a 3D reconstruction method suitable
for high-throughput seedling phenotyping. Machine Vision and
Applications, 27(5), 663-680.

[44] Golzarian, M. R., Frick, R. A., Rajendran, K., Berger, B., Roy, S., Tester, M., &
Lun, D. S. (2011). Accurate inference of shoot biomass from high-throughput
images of cereal plants. Plant methods, 7(1), 1-11.

[45] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
& Bengio, Y. (2020). Generative adversarial networks. Communications of the
ACM, 63(11), 139-144.

[46] Grill, J. B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., ...
& Valko, M. (2020). Bootstrap your own latent: A new approach to self-supervised
learning. arXiv preprint arXiv:2006.07733.

[47] Gulzar, Y., Hamid, Y., Soomro, A. B., Alwan, A. A., & Journaux, L. (2020). A
Convolution Neural Network-Based Seed Classification
System. Symmetry, 12(12), 2018.

[48] Hajar, M. M. A., Lazim, I. M., Rosdi, A. R., & Ramli, L. (2021). Autonomous
UAV-Based Cattle Detection And Counting Using Yolov3 And Deep Sort.

[49] Han, Xian-Feng, Hamid Laga, and Mohammed Bennamoun. “Image-Based 3D
Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era.”
IEEE transactions on pattern analysis and machine intelligence 43.5 (2021): 1578–
1604.

[50] Hasoi, F., Nakai, Y., Omasa, K. (2009). Estimating the leaf inclination angle
distribution of the wheat canopy using a portable scanning lidar. Journal of
Agricultural Meteorology, 65(3), 297-302

[51] He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 9729-9738).

[52] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision (pp. 2961-2969).

[53] Hedert, T. J. (1995). Stereophotogrammetry of plant leaf angles. Photogrammetric
Engineering & Remote Sensing, 61(1), 89-92.

[54] Hendrycks, D., Mazeika, M., Kadavath, S., & Song, D. (2019). Using self-

239

supervised learning can improve model robustness and uncertainty. arXiv preprint
arXiv:1906.12340.

[55] Hu, Y., & Zhang, Z. (2021). GridFree: a python package of imageanalysis for
interactive grain counting and measuring. Plant physiology, 186(4), 2239-2252.

[56] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4700-4708).

[57] Huang, R., Pedoeem, J., & Chen, C. (2018, December). YOLO-LITE: a real-time
object detection algorithm optimized for non-GPU computers. In 2018 IEEE
International Conference on Big Data (Big Data) (pp. 2503-2510). IEEE.

[58] Hung, V. (2020). Tensorflow-yolov4-tflite.
https://github.com/hunglc007/tensorflow-yolov4-tflite

[59] Islam, S., Khan, S. I. A., Abedin, M. M., Habibullah, K. M., & Das, A. K. (2019,
July). Bird species classification from an image using vgg-16 network.
In Proceedings of the 2019 7th International Conference on Computer and
Communications Management (pp. 38-42).

[60] J. Roussel, F. Geiger, A. Fischbach, S. Jahnke, and H. Scharr, “3D surface
reconstruction of plant seeds by volume carving: Performance and accuracies,”
Frontiers in Plant Science, vol. 7, no. June2016, pp. 1–13, 2016.

[61] Jain, D. (2019). Medium [Blog Post]. Retrieved from:
https://darshita1405.medium.com/superpixels-and-slic-6b2d8a6e4f08

[62] Jansen, M., Gilmer, F., Biskup, B., Nagel, K. A., Rascher, U., Fischbach, A., et al.
(2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via
growscreen fluoro allows detection of stress tolerance in Arabidopsis thaliana and
other rosette plants. Funct. Plant Biol. 36, 902–914. doi: 10.1071/FP09095

[63] Jonasson, S. (1988). Evaluation of the point intercept method for the estimation of
plant biomass. Oikos, 101-106.

[64] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In ECCV, 2016.

[66] Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A
survey. Computers and electronics in agriculture, 147, 70-90.

[67] Karmakar, T., Region Proposal Network (RPN) – Backbone of Faster R-CNN
[Blog Post]. Retrieved from: https://medium.com/egen/region-proposal-network-
rpn-backbone-of-faster-r-cnn-4a744a38d7f9

[68] Kehel, Z., Sanchez-Garcia, M., El Baouchi, A., Aberkane, H., Tsivelikas, A., Chen,
C., & Amri, A. (2020). “Predictive characterization for seed morphometric traits

240

for genebank accessions using genomic selection”. Frontiers in Ecology and
Evolution, 8, 32.

[69] Kiryati, N., Eldar, Y., & Bruckstein, A. M. (1991). A probabilistic Hough
transform. Pattern recognition, 24(4), 303-316.

[70] Koc, Ali Bulent. “Determination of Watermelon Volume Using Ellipsoid
Approximation and Image Processing.” Postharvest biology and technology 45.3
(2007): 366–371.

[71] Komyshev, E., Genaev, M., & Afonnikov, D. (2017). “Evaluation of the
SeedCounter, a mobile application for grain phenotyping”. Frontiers in Plant
Science, 7, 1990.

[72] Kornilov, A. S., & Safonov, I. V. (2018). “An overview of watershed algorithm
implementations in open source librarie”s. Journal of Imaging, 4(10), 123.

[73] Kumar, P., Huang, C., Cai, J., & Miklavcic, S. J. (2014). Root phenotyping by root
tip detection and classification through statistical learning. Plant and soil, 380(1),
193-209.

[74] Kuznetsova, A., Maleva, T., & Soloviev, V. (2020, December). Detecting Apples
in Orchards Using YOLOv3 and YOLOv5 in General and Close-Up Images.
In International Symposium on Neural Networks (pp. 233-243). Springer, Cham.

[75] Kuznichov, D., Zvirin, A., Honen, Y., & Kimmel, R. (2019). Data augmentation
for leaf segmentation and counting tasks in Rosette plants. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 0-
0).

[76] Laliberte, A. S., Rango, A., Herrick, J. E., Fredrickson, E. L., & Burkett, L. (2007).
An object-based image analysis approach for determining fractional cover of
senescent and green vegetation with digital plot photography. Journal of Arid
Environments, 69(1), 1-14.

[77] Laurentini, A. “The Visual Hull Concept for Silhouette-Based Image
Understanding.” IEEE transactions on pattern analysis and machine intelligence
16.2 (1994): 150–162.

[78] Li, L., Zhang, Q., & Huang, D. (2014). “A review of imaging techniques for plant
phenotyping”. Sensors, 14(11), 20078-20111.

[79] Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant
phenotyping. Sensors, 14(11), 20078-20111.

[80] Lin, Y., Tang, C., Chu, F. J., & Vela, P. A. (2020, May). Using Synthetic Data and
Deep Networks to Recognize Primitive Shapes for Object Grasping. In 2020 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 10494-10501).
IEEE.

[81] Linder, T., Pfeiffer, K. Y., Vaskevicius, N., Schirmer, R., & Arras, K. O. (2020,
May). Accurate detection and 3D localization of humans using a novel YOLO-

241

based RGB-D fusion approach and synthetic training data. In 2020 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 1000-1006).
IEEE.

[82] Little, B. (2000). Companion planting in Australia. New Holland.

[83] Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for
instance segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 8759-8768).

[84] Louhaichi, M. (2019). VegMeasure® Software: User Report.

[85] Louhaichi, M., Hassan, S., Clifton, K., & Johnson, D. E. (2018). A reliable and
non-destructive method for estimating forage shrub cover and biomass in arid
environments using digital vegetation charting technique. Agroforestry
Systems, 92(5), 1341-1352.

[86] Lugo, J. J., & Zell, A. (2014). Framework for autonomous on-board navigation with
the AR. Drone. Journal of Intelligent & Robotic Systems, 73(1), 401-412.

[87] M. Aharchi and M. Ait Kbir, “A Review on 3D Reconstruction Techniques from
2D Images,” pp. 510–522, 2020.

[88] M. MakerGear™, “Makergear m2 3d printer,” 2020. [Online]. Available:
https://www.makergear.com/products/m2

[89] M. Potmesil, “Generating octree models of 3D objects from their silhouettes in a
sequence of images,” Computer Vision, Graphics and Image Processing, vol. 40,
no. 1, pp. 1–29, 1987.

[90] Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., &
Kendrick, G. (2020). Automatic detection of Western rock lobster using synthetic
data. ICES Journal of Marine Science, 77(4), 1308-1317.

[91] Maisonet-Guzman, O. E. (2011). “Food security and population growth in the 21st
century”. Retr. from http://www.e-ir.info/2011/07/18/food-security-and-
population-growth-in-the-21st-century

[92] Mao, J., Tran, D., Ma, W., Naumovski, N., Kellett, J., & Slattery, A. (2020,
December). Application of Deep Learning in Automated Meal Recognition.
In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 58-63).
IEEE.

[93] Margapuri, V., & Neilsen, M. (2021). Seed Phenotyping on Neural Networks using
Domain Randomization and Transfer Learning. In 2021 ASABE Annual
International Virtual Meeting (p. 1). American Society of Agricultural and
Biological Engineers.

[94] Margapuri, V., & Neilsen, M. (2021, December). Classification of Seeds using
Domain Randomization on Self-Supervised Learning Frameworks. In 2021 IEEE
Symposium Series on Computational Intelligence (SSCI) (pp. 01-08). IEEE.

242

[95] Margapuri, V., Courtney, C., & Neilsen, M. (2020). Image Processing for High-
Throughput Phenotyping of Seeds. In 33rd International Conference on Computer
Applications in Industry and Engineering, Las Vegas, NV.

[96] Margapuri, V., Courtney, C., & Neilsen, M. (2021). Image processing for high-
throughput phenotyping of seeds. EPiC Series in Computing, 75, 69-79.

[97] Margapuri, V., Penumajji, N., & Neilsen, M. (2021, December). Seed
Classification using Synthetic Image Datasets Generated from Low-Altitude UAV
Imagery. In 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA) (pp. 116-121). IEEE.

[98] Margapuri, V., Rife, T., Courtney, C., Schlautman, B., Zhao, K., Neilsen, M.
Fractal Vegetation Cover Estimation using Hough Lines and Linear Iterative
Clustering. Pre-print: https://arxiv.org/abs/2205.00366

[99] Margapuri, V., Zhao, K., & Neilsen, M. (2022). Automated Phenotyping of Single
Seeds using a Novel Volume Sculpting Framework. In 2022 ASABE Annual
International Meeting (p. 1). American Society of Agricultural and Biological
Engineers. (In-Press).

[100] Martin, Worthy N, and J. K Aggarwal. “Volumetric Descriptions of Objects from
Multiple Views.” IEEE transactions on pattern analysis and machine intelligence
PAMI-5.2 (1983): 150–158. Web.

[101] Mateen, M., Wen, J., Song, S., & Huang, Z. (2019). Fundus image classification
using VGG-19 architecture with PCA and SVD. Symmetry, 11(1), 1.

[102] Menzel, M. I., Tittmann, S., Buehler, J., Preis, S., Wolters, N., Jahnke, S., ... &
KRAUSE, H. J. (2009). Non‐invasive determination of plant biomass with
microwave resonators. Plant, cell & environment, 32(4), 368-379.

[103] Microsoft Build retrieved from: https://docs.microsoft.com/en-
us/windows/win32/wcs/rgb-color-spaces

[104] Miller, N. D., Haase, N. J., Lee, J., Kaeppler, S. M., de Leon, N., & Spalding, E. P.
(2017). A robust, high‐throughput method for computing maize ear, cob, and kernel
attributes automatically from images. The Plant Journal, 89(1), 169-178.

[105] Mir, R. R., Reynolds, M., Pinto, F., Khan, M. A., & Bhat, M. A. (2019). “High-
throughput phenotyping for crop improvement in the genomics era”. Plant
Science, 282, 60-72.

[106] Misra, I., & Maaten, L. V. D. (2020). Self-supervised learning of pretext-invariant
representations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 6707-6717).

[107] Mnih, V., & Hinton, G. E. (2010, September). Learning to detect roads in high-
resolution aerial images. In European Conference on Computer Vision (pp. 210-
223). Springer, Berlin, Heidelberg.

[108] Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for

243

image-based plant disease detection. Frontiers in plant science, 7, 1419.

[109] Monforte, A. J., Diaz, A., Caño-Delgado, A., and van der Knaap, E. (2014). The
genetic basis of fruit morphology in horticultural crops: lessons from tomato and
melon. J. Exp. Bot. 65, 4625–4637. doi: 10.1093/jxb/eru017

[110] Mukti, I. Z., & Biswas, D. (2019, December). Transfer learning-based plant
diseases detection using ResNet50. In 2019 4th International Conference on
Electrical Information and Communication Technology (EICT) (pp. 1-6). IEEE.

[111] Muneer, A., & Fati, S. M. (2020). Efficient and Automated Herbs Classification
Approach Based on Shape and Texture Features using Deep Learning. IEEE
Access, 8, 196747-196764.

[112] Nafi, N. M., & Hsu, W. H. (2020, July). Addressing Class Imbalance in Image-
Based Plant Disease Detection: Deep Generative vs. Sampling-Based Approaches.
In 2020 International Conference on Systems, Signals and Image Processing
(IWSSIP) (pp. 243-248). IEEE.

[113] Nai, A. SimCLR: Contrastive Learning of Visual Representations [Blog Post].
Retrieved from: https://medium.com/@nainaakash012/simclr-contrastive-
learning-of-visual-representations-52ecf1ac11fa

[114] Neilsen, M. L., Courtney, C., Amaravadi, S., Xiong, Z., Poland, J., & Rife, T.
(2017, October). “A dynamic, real-time algorithm for seed counting”. In Proc. Of
the 26th International Conference on Software Engineering and Data Engineering.

[115] Neilsen, M. L., Courtney, C., Amaravadi, S., Xiong, Z., Poland, J., & Rife, T.
(2017, October). A dynamic, real-time algorithm for seed counting. In Proc. Of the
26th International Conference on Software Engineering and Data Engineering.

[116] Neilsen, M. L., Gangadhara, S. D., & Rife, T. (2016, September). “Extending
watershed segmentation algorithms for high throughput phenotyping”.
In Proceedings of the 29th International Conf. on Computer Applications in
Industry and Engineering, Denver, CO.

[117] Nepal, U., & Eslamiat, H. (2022). Comparing YOLOv3, YOLOv4 and YOLOv5
for Autonomous Landing Spot Detection in Faulty UAVs. Sensors, 22(2), 464.

[118] NOBORIO, H, S FUKUDA, and S ARIMOTO. “Construction of the Octree
Approximating Three-Dimensional Objects by Using Multiple Views.” IEEE
transactions on pattern analysis and machine intelligence 10.6 (1988): 769–782.
Print.

[119] Odom, F. Easy Self-Supervised Learning with BYOL [Blog Post]. Retrieved from:
https://medium.com/the-dl/easy-self-supervised-learning-with-byol-53b8ad8185d

[120] Olsson, K., & Persson, T. (2002). Shape from silhouette scanner.

[121] Oord, A. V. D., Li, Y., & Vinyals, O. (2018). Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748.

244

[122] Parico, A. I. B., & Ahamed, T. (2021). Real time pear fruit detection and counting
using YOLOv4 models and deep SORT. Sensors, 21(14), 4803.

[123] Patil, K., Kulkarni, M., Sriraman, A., & Karande, S. (2017, December). Deep
learning-based car damage classification. In 2017 16th IEEE international
conference on machine learning and applications (ICMLA) (pp. 50-54). IEEE.

[124] Patrignani, A., & Ochsner, T. E. (2015). Canopeo: A powerful new tool for
measuring fractional green canopy cover. Agronomy Journal, 107(6), 2312-2320.

[125] Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018, May). Sim-to-
real transfer of robotic control with dynamics randomization. In 2018 IEEE
international conference on robotics and automation (ICRA) (pp. 1-8). IEEE.

[126] Pound, Michael P et al. “Automated Recovery of Three-Dimensional Models of
Plant Shoots from Multiple Color Images.” Plant physiology (Bethesda) 166.4
(2014): 1688–1698.

[127] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and
benchmarking self-supervised visual representation learning. In ICCV, 2019.

[128] Psychology wiki retrieved from:
https://psychology.fandom.com/wiki/Lab_color_space

[129] Purevdorj, T. S., Tateishi, R., Ishiyama, T., & Honda, Y. (1998). Relationships
between percent vegetation cover and vegetation indices. International journal of
remote sensing, 19(18), 3519-3535.]

[130] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000. [Online]. Available:
https://books.google.com/books?id=MHrYnQEACAAJ

[131] R. P. Herridge, R. C. Day, S. Baldwin, and R. C. Macknight, “Rapid analysis of
seed size in Arabidopsis for mutant and QTL discovery,” Plant Methods, vol. 7, no.
1, pp. 1–11, 2011.

[132] Rahnemoonfar, M., & Sheppard, C. (2017). Deep count: fruit counting based on
deep simulated learning. Sensors, 17(4), 905.

[133] Rastogi, A. Reducing computational constraints in SimCLR using Momentum
Contrast V2 (MoCo-V2) in PyTorch [Blog Post]. Retrieved from:
https://medium.com/analytics-vidhya/simclr-with-less-computational-constraints-
moco-v2-in-pytorch-3d8f3a8f8bf2

[134] Rastogi, A. Understanding SimCLR – A Simple Framework for Contrastive
Learning of Visual Representations with Code [Blog Post]. Retrieved from:
https://medium.com/analytics-vidhya/understanding-simclr-a-simple-framework-
for-contrastive-learning-of-visual-representations-d544a9003f3c

[135] Razmi, T. Mask R-CNN [Blog Post]. Retrieved from:
https://medium.com/@tibastar/mask-r-cnn-d69aa596761f

245

[136] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767.

[137] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information
processing systems, 28.

[138] Riddle, D.F., 1979. Calculus and Analytic Geometry. Wadsworth Publishing
Company, Inc. Belmont, CA, USA. pp. 506 – 507.

[139] Rife, T. W., & Poland, J. A. (2014). Field book: an open‐source application for field
data collection on android. Crop Science, 54(4), 1624-1627.

[140] Rozantsev, A., Lepetit, V., & Fua, P. (2015). On rendering synthetic images for
training an object detector. Computer Vision and Image Understanding, 137, 24-
37.

[141] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A.
C. (2015). Imagenet large scale visual recognition challenge. International journal
of computer vision, 115(3), 211-252.

[142] Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., &
Baldocchi, D. D. (2010). How to quantify tree leaf area index in an open savanna
ecosystem: a multi-instrument and multi-model approach. Agricultural and Forest
Meteorology, 150(1), 63-76.

[143] Saatkamp, A., Cochrane, A., Commander, L., Guja, L. K., Jimenez‐Alfaro, B.,
Larson, J., ... & Walck, J. L. (2019). A research agenda for seed‐trait functional
ecology. New Phytologist, 221(4), 1764-1775.

[144] Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.

[145] Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., & Gelly, S. (2018). Assessing
generative models via precision and recall. arXiv preprint arXiv:1806.00035.

[146] Sankaran, S., Wang, M., & Vandemark, G. J. (2016). Image-based rapid
phenotyping of chickpeas seed size. Engineering in agriculture, environment and
food, 9(1), 50-55.

[147] Santos, L., Santos, F. N., Oliveira, P. M., & Shinde, P. (2019, November). Deep
learning applications in agriculture: A short review. In Iberian Robotics
conference (pp. 139-151). Springer, Cham.

[148] Santos, T. T., de Souza, L. L., dos Santos, A. A., & Avila, S. (2020). Grape
detection, segmentation, and tracking using deep neural networks and three-
dimensional association. Computers and Electronics in Agriculture, 170, 105247.

[149] Saranya, K. C., Thangavelu, A., Chidambaram, A., Arumugam, S., & Govindraj,
S. (2020). Cyclist detection using tiny yolo v2. In Soft Computing for Problem
Solving (pp. 969-979). Springer, Singapore.

246

[150] Schrader, J., Pillar, G., & Kreft, H. (2017). “Leaf‐IT: An Android application for
measuring leaf area”. Ecology and Evolution, 7(22), 9731-9738.

[151] Schweigert, A., Blesing, C., & Friedrich, C. M. (2020). Deep Learning Based
Hazard Label Object Detection for Lithium-ion Batteries Using Synthetic and Real
Data. In Deep Learning Applications (pp. 137-154). Springer, Singapore.

[152] Seedcount. Next Instruments (2015)., Accessed June 2015.

[153] Shrimali, K. (2018). Convex Hull using OpenCV in Python and C++. (Blog)
retrieved from: https://learnopencv.com/convex-hull-using-opencv-in-python-and-
c/

[154] Sinoquet, H., Thanisawanyangkura, S., Mabrouk, H., & Kasemsap, P. (1998).
Characterization of the light environment in canopies using 3D digitising and image
processing. Annals of Botany, 82(2), 203-212.

[155] Sinoquet, H., Thanisawanyangkura, S., Mabrouk, H., & Kasemsap, P. (1998).
Characterization of the light environment in canopies using 3D digitising and image
processing. Annals of Botany, 82(2), 203-212.

[156] Song, Y. (2016). Automatic assessment of biological control effectiveness of the
egg parasitoid Trichogramma bourarachar against Cadra cautella using machine
vision (Doctoral dissertation, Kansas State University).

[157] Steinmetz solid - Wikipedia, https://en.wikipedia.org/wiki/Steinmetz solid,
(Accessed on 10/20/2020).

[158] Steinmetz solid - Wikipedia, https://en.wikipedia.org/wiki/Steinmetz solid,
(Accessed on 10/20/2020).

[159] Steven Owen, Timothy Shead, Shawn Martin, "Defeaturing Using Machine
Learning", 27th International Meshing Roundtable, Research Note Albuquerque,
NM, Oct 2018

[160] Sur, R. SimCLR – A Simple Framework for Constrastive Learning of Visual
Representation [Blog Post]. Retrieved from:
https://rittikasur16.medium.com/simclr-a-simple-framework-for-contrastive-
learning-of-visual-representation-799a903c2779

[161] Sural, S., Qian, G., & Pramanik, S. (2002, September). Segmentation and histogram
generation using the HSV color space for image retrieval. In Proceedings.
International Conference on Image Processing (Vol. 2, pp. II-II). IEEE.

[162] Suzuki, S. (1985). “Topological structural analysis of digitized binary images by
border following”. Computer Vision, Graphics, and Image Processing, 30(1), 32-
46.

[163] Systat Software, Inc. Retrieved from: https://www.environmental-
expert.com/software/sigmascan-version-pro-50-automatically-images-analyze-
software-560982

247

[164] Tanabata, T., Shibaya, T., Hori, K., Ebana, K., & Yano, M. (2012). “SmartGrain:
high-throughput phenotyping software for measuring seed shape through image
analysis”. Plant Physiology, 160(4), 1871-1880.

[165] Theckedath, D., & Sedamkar, R. R. (2020). Detecting Affect States Using VGG16,
ResNet50 and SE-ResNet50 Networks. SN Computer Science, 1(2), 1-7.

[166] Thevenot, A. (2020). Medium. [Blog Post]. Retrieved from:
https://towardsdatascience.com/understand-and-visualize-color-spaces-to-
improve-your-machine-learning-and-deep-learning-models-4ece80108526

[167] Tian, X., & Chen, C. (2019, September). Modulation pattern recognition based on
Resnet50 neural network. In 2019 IEEE 2nd International Conference on
Information Communication and Signal Processing (ICICSP) (pp. 34-38). IEEE.

[168] Tinmay Thaker, VGG 16 Easiest Explanation [Blog Post]. Retrieved from:
https://medium.com/nerd-for-tech/vgg-16-easiest-explanation-12453b599526

[169] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017,
September). Domain randomization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (pp. 23-30). IEEE.

[170] Toda, Y., Okura, F., Ito, J., Okada, S., Kinoshita, T., Tsuji, H., & Saisho, D. (2020).
Training instance segmentation neural network with synthetic datasets for crop seed
phenotyping. Communications biology, 3(1), 1-12.

[171] Toth, D., Cimen, S., Ceccaldi, P., Kurzendorfer, T., Rhode, K., & Mountney, P.
(2019, May). Training deep networks on domain randomized synthetic X-ray data
for cardiac interventions. In International Conference on Medical Imaging with
Deep Learning (pp. 468-482). PMLR.

[172] Trammel, M. (2020). Seed Certification: What Is It and What Does It Mean for
You. Noble News and Views, Volumes, 38(4), 1-2.

[173] Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., ... &
Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (pp. 969-977).

[174] USDA. Ag and Food Sectors and the Economy [Blog Post]. Retrieved from:
https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-
essentials/ag-and-food-sectors-and-the-economy/

[175] Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., &
Schmid, C. (2017). Learning from synthetic humans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 109-117).

[176] Vuola, A. O., Akram, S. U., & Kannala, J. (2019, April). Mask-RCNN and U-net
ensembled for nuclei segmentation. In 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019) (pp. 208-212). IEEE.

248

[177] W. N. Martin, W. N. Martin, and J. K. Aggarwal, “Volumetric Descriptions of
Objects from Multiple Views,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-5, no. 2, pp. 150–158, 1983.

[178] Walter, A., Liebisch, F., & Hund, A. (2015). Plant phenotyping: from bean
weighing to image analysis. Plant methods, 11(1), 1-11.

[179] Ward, D., Moghadam, P., & Hudson, N. (2018). Deep leaf segmentation using
synthetic data. arXiv preprint arXiv:1807.10931.

[180] Wei, J., Zhang, N., Wang, N., Lenhert, D., Neilsen, M., & Mizuno, M. (2005). Use
of the “smart transducer” concept and IEEE 1451 standards in system integration
for precision agriculture. Computers and Electronics in Agriculture, 48(3), 245-
255.

[181] Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer
learning. Journal of Big data, 3(1), 9.

[182] Whan, A. P., Smith, A. B., Cavanagh, C. R., Ral, J. P. F., Shaw, L. M., Howitt, C.
A., & Bischof, L. (2014). “GrainScan: a low cost, fast method for grain size and
colour measurements”. Plant Methods, 10(1), 23.

[183] Wikipedia. Retrieved from: https://en.wikipedia.org/wiki/Interquartile_range

[184] Wiley, V., & Lucas, T. (2018). “Computer vision and image processing: a paper
review”. International Journal of Artificial Intelligence Research, 2(1), 29-36.

[185] WinFOLIA by Regent Instruments Inc. Retrieved from:
https://regentinstruments.com/assets/winfolia_software.html

[186] Winseedle. Regent Instruments (2000)., Ville de Quebec: Instruments ` Regent
Inc., Accessed June 2015.

[187] Wu, L., Hoi, S. C., & Yu, N. (2010). Semantics-preserving bag-of-words models
and applications. IEEE Transactions on Image Processing, 19(7), 1908-1920.

[188] X. Han, H. Laga, and M. Bennamoun, “Image-based 3D Object Reconstruction:
State-of-the-Art and Trends in the Deep Learning Era,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[189] X. Ren and J. Malik, “Learning a Classification Model for Segmentation,”
Proceedings of International Conference on Computer Vision (ICCV), Nice, 13-16
October 2003, pp. 10-17. doi:10.1109/ ICCV.2003.1238308

[190] Xia, P., Zhang, L., & Li, F. (2015). Learning similarity with cosine similarity
ensemble. Information Sciences, 307, 39-52.

[191] Yang, Myongkyoon, and Seong-In Cho. “High-Resolution 3D Crop Reconstruction
and Automatic Analysis of Phenotyping Index Using Machine Learning.”
Agriculture (Basel) 11.10 (2021): 1010–.

[192] Yann LeCun. Predictive learning, 2016. URL https://www.youtube.com/watch?v=
Ount2Y4qxQo.

249

[193] Yehao (2020). COCO-annotations_convert. Github.com/ujsyehao.
https://github.com/ujsyehao/COCO-annotations-darknet-format

[194] Yu, X., & Guo, X. (2021). Extracting Fractional Vegetation Cover from Digital
Photographs: A Comparison of In Situ, SamplePoint, and Image Classification
Methods. Sensors, 21(21), 7310.

[195] Zakharov, S., Kehl, W., & Ilic, S. (2019). Deceptionnet: Network-driven domain
randomization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (pp. 532-541).

[196] Zhang, H., Zhang, N., Wang, N., Yang, Q., & Hu, J. (2011). A general agricultural
information management architecture for distributed wireless sensor network.
In 2011 Louisville, Kentucky, August 7-10, 2011 (p. 1). American Society of
Agricultural and Biological Engineers.

[197] Zhang, N., Wang, N., Elfaki, M. S., CHAISATTAPAGON, C., & Fan, G. E.
(2006). Weed identification using imaging technology and
spectroscopy. Environmental Control in Biology, 44(3), 161-171.

[198] Zhao, T., & Nevatia, R. (2003). Car detection in low resolution aerial
images. Image and Vision Computing, 21(8), 693-7

[199] Zou, X., Mõttus, M., Tammeorg, P., Torres, C. L., Takala, T., Pisek, J., ... &
Pellikka, P. (2014). Photographic measurement of leaf angles in field
crops. Agricultural and Forest Meteorology, 184, 137-146.

