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ABSTRACT

Parametric Paraglider Modeling

Peter Frank Heatwole

Dynamic simulations are invaluable for studying system behavior, developing control

models, and running statistical analyses. For example, paraglider flight simulations could

be used to analyze how a wing behaves when it encounters wind shear, or to reconstruct

the wind field that was present during a flight. Unfortunately, creating dynamics models

for commercial paraglider wings is difficult: not only are detailed specifications unavailable,

but even if they were, a detailed model would be laborious to create. To address that

difficulty, this project develops a paraglider flight dynamics model that uses parametric

components to model commercial paraglider wings given only limited technical specifications

and knowledge of typical wing design. To validate the model design and implementation,

an aerodynamic simulation of a reference paraglider canopy is compared to wind tunnel

measurements, and a dynamic simulation of a commercial paraglider system is compared

to basic flight test data. The entirety of the models and example wings are available as an

open source library [1] built on the Python scientific computing stack.
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Chapter 1

INTRODUCTION

1.1 Overview

The objective of this paper is to create a set of parametric models that can estimate the

flight dynamics of commercial paraglider wings using only limited technical specifications.

In this paper, modeling refers to creating a mathematical representation of a physical

characteristic or behavior. A dynamics model is a mathematical function that computes

the acceleration of an object given the forces that act on it, as described by Newton’s 2nd

law of motion (1.1):

Translational F = ma

Angular M = Jα

(1.1)

These equations show that to compute the translational acceleration a and the rotational

acceleration α, a dynamics model requires:

1. The mass m and mass moment of inertia J

2. The forces F and moments M

For a paraglider, the forces and moments that act on it are determined by its current

velocity, the relative wind flowing past the glider, air density, gravity, and the pilot control

inputs. The motion that is produced are the flight dynamics, and the equations that

represent how those inputs produce the accelerations are called a flight dynamics model:

Fig. 1.1: Flight dynamics model block diagram

The purpose of these flight dynamics models is to enable dynamic simulations. A dy-

namic simulation is when acceleration is integrated over time to produce a record of the

1
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object’s velocity and position. The ability to simulate a system’s behavior provides oppor-

tunities such as studying that behavior, developing control models, and running statistical

filtering pipelines. In fact, the inspiration for this project was a question whether statistical

flight reconstruction could be used to recreate the wind fields present during a paraglider

flight given only a record of its position, in much the same way as researchers attempted to

locate the lost Malaysia Airlines Flight 370 [2].

The steps to producing a dynamic simulation can be summarized as follows:

1. Understand the physical system

2. Model its inertial properties and forces

3. Develop the equations of motion (Newton’s 2nd law)

4. Integrate the equations of motion over time

The majority of the work for this project is in step 2 (estimating the inertial properties

and forces) because the estimation process requires accurate models of the mass distribution

and aerodynamics of each component of the glider.

1.2 Modeling challenges

The existence of this project suggests that existing (and freely available) tools for aircraft

simulations are inadequate for simulating paragliders. The reason is that paragliders have

a variety of unique characteristics that make them difficult to model using tools built for

conventional aircraft:

1. Highly curved shape

Aerodynamics models must simplify the Navier-Stokes equations in order to produce a

tractable system of equations. Those simplifications frequently make them incapable

of representing the flow field around a nonlinear wing.

2. Low airspeed
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Paraglider airspeeds are typically in the range 24–72 [km/h]. They also have relatively

short wing sections, with chord lengths ranging from 0.5–3 [m]. These characteristics

combined with the reduced airspeed at the inside wingtip during a turn means that

the canopy (and the wing tips in particular) are frequently operating at Reynolds

values in the 300k range, far below the Re = 106 range where where viscous effects

start to become significant.

3. High angles of attack

Compounding the issue of operating at low Reynolds values, paragliders frequently

operate at high angles of attack, leading to flow separation and the dramatic nonlinear

aerodynamic behavior that results. As they approach stall conditions, simple aircraft

simulators that rely on linear aerodynamics can dramatically overestimate the true

lift produced by the wing.

4. Flexible

Paragliders are constructed from flexible nylon sheets and rely on air pressure and

suspension lines to maintain their shape. Their internal cells billow and wrinkle while

the canopy twists and bends in the wind. It can even collapse entirely. Systems

that rely on a predetermined geometry are fundamentally incapable of modeling such

behavior.

5. Air intakes

To produce the internal pressure that forms the canopy, paragliders use air intakes at

the leading edge which pressurize its volume. These air intakes violate the expected

pressure gradients predicted by analyses that use the idealized airfoils used to define

the section profiles. As a result, theoretical aerodynamic coefficients underestimate

the section drag.

6. Lightweight

A paraglider canopy is a large volume with a small amount of solid mass. Its low den-

sity means that a naive application of Newton’s 2nd law will overestimate acceleration
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because it fails to account for the momentum of the fluid surrounding the glider, an

effect known as apparent mass.

In addition to these characteristics, there is another issue that is relatively unique to

gliding aircraft:

7. Pilots care about the details of the wing behavior in non-uniform wind fields.

The reason is that glider pilots rely on the ability to determine the structure of the

wind field by sensing the imbalanced forces produced by differences in relative wind

vectors across the wing.

Each of these characteristics introduce modeling challenges. The modeling require-

ments will depend on which of these characteristics the dynamics model attempts to cap-

ture.

1.3 Modeling requirements

The nuances of paraglider behavior are dominated by subtle interactions. The design phi-

losophy for this project was to avoid simplifying assumptions whenever reasonable to avoid

accidentally masking those subtle interactions. This approach was driven by a desire to

answer questions such as:

• How much drag comes from each individual component?

• How important are section-specific Reynolds values?

• How important is apparent mass?

• How does a paraglider react when one side of the wing is in a stronger thermal than

the other side?

The desire for accuracy must be balanced with practical limitations, choosing which

characteristics to include and which to simplify away. Having considered the tradeoffs, this
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project chose the following set of modeling requirements, beginning with the fundamental

challenges of the previous section:

1. The aerodynamics method must use the true, nonlinear geometry. It must not flatten

the canopy geometry in any dimension.

2. The aerodynamics method must support variable Reynolds values.

3. The aerodynamics method must provide graceful degradation as it approaches high

angles of attack. (A decrease in accuracy is acceptable, but assuming linear aerody-

namics up to high alpha is not. The goal is to fly the wing into strong thermals which

will rapidly increase angle of attack, so the method must at least approximate those

conditions.)

4. Canopy deformations due to flexibility will be neglected. This means that glider

controls that use non-brake-line manipulations will also be neglected (since they rely

on canopy deformations).

5. The aerodynamics method must support empirical viscous correction factors to mit-

igate the issues caused by a mismatch between the theoretical and actual section

profiles.

6. The system model must support apparent mass (in order to verify its significance).

7. The aerodynamics method must support non-uniform vectors along the span.

In addition to those characteristic behaviors, this project had an additional goal:

8. Computationally fast

The fundamental goal of this project is to enable people to create models of commercial

paraglider wings, and that process requires iteration, so the software should pursue

simulation speed that would allow rapid iteration.
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1.4 Roadmap

The majority of this work is spent producing the models that estimate the inertial properties

and resultant forces for each component, but it also develops the additional models necessary

to generate flight simulations. For reference, a complete flight simulation architecture is

shown in Fig. 1.2. This paper will develop everything inside the “State dynamics” block.

Simulator

State dynamics

System dynamics

Canopy

Lines

Payload

Glider controls

Glider state

Environment

State
derivatives

Model 
inputs

Fig. 1.2: Flight simulation block diagram

The modeling process begins by developing a novel Foil geometry with increased flex-

ibility compared to other open source wing modeling tools, enabling simple, parametric

representations of typical paraglider canopies. It then chooses a Foil aerodynamics method

that satisfies those Modeling requirements that relate to the canopy aerodynamics. Next, it

develops a set of parametric Component models using parametrizations that simplify cre-

ating models of commercial paraglider systems. Finally, System dynamics models combine

the components into complete flight dynamics models, and State dynamics shows how to

define the derivatives of a set of state variables in terms of those system dynamics. Having

completed the model derivations, the paper provides a complete demonstration of how they

can be used to model a commercial paraglider wing. The penultimate chapter provides Val-

idation data of the aerodynamics method by comparing wind tunnel measurements for a

scale-model paraglider wing against simulated results, as well as comparing simulated polar



7

curves for the demonstration model against basic flight test data. Finally, the Conclusion

revisits the questions from the Modeling requirements and proposes how this material may

be used in future work.



Chapter 2

RELATED WORKS

2.1 Flight simulation

This paper develops paraglider flight dynamics models that can be used for flight simula-

tion, which means that this paper is built on the foundations of flight simulation. Flight

simulation is simply the specific name of a dynamic simulation that involves a flight dy-

namics model, and developing a flight dynamics model follows the structure outlined in the

Overview: understand the system, model the inertia and forces, develop the equations of

motion, and integrate them over time.

The first step to creating a model of an aircraft is a familiarity with the physical

system and how it behaves. Key concepts in the context of this paper include characteristics

of wing geometry; conventions for axes and relative motion; flow angles (angle of attack

and sideslip); aerodynamic coefficients; and control inputs, actuators, and surfaces. An

approachable starting point is [3], which provides a thorough discussion of the terminology

and significance of the major wing design characteristics. Another ubiquitous resource is

[4], which may be more suitable to in-depth study.

Next, to model a behavior you must be able to explain the behavior. The unique

characteristic of aircraft dynamics is that they experience aerodynamic forces due to their

motion relative to the air. The aerodynamic forces on the surfaces of an aircraft are the

results of the geometry, relative motion, and characteristics of the fluid. Key concepts

include the characteristics of the flow (inviscid versus viscous, laminar versus turbulent,

compressibility, etc) and the modeling intuition of Prandtl’s seminal work on boundary

layers [5] (both 2D and 3D, which are vital to understanding some of the aerodynamic

difficulties in simulating flow around a paraglider canopy). When selecting and working with

aerodynamics models, it is highly beneficial to have a general awareness of the complexity

of Navier-Stokes, and how the variety of aerodynamics models are the result of attempts to

produce tractable systems of equations by applying different simplifying assumptions. An

excellent introduction to these topics is [6], which provides an approachable introduction to

8
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the underlying physics, overviews of the core aerodynamic models, and how they’re derived.

Another prevalent work is [7] (or any of Anderson’s works). For more targeted discussions,

[8] provides clear insight into the theoretical details of common aerodynamics models, and

[9] provides a guide to their computational aspects. For a less conventional approach,

[10] provides a unique perspective of these aerodynamics models and the assumptions that

underlie them, including an excellent discussion of some issues with the NLLT that may

shed light on the difficulties that arise when using that approach.

Once the inertial properties, forces, and moments can be determined, they must be

synthesized into a complete system dynamics model, which in this case are known as the

equations of motion. Unlike the simple equations in the Overview, the equations describing

the translational and angular accelerations of an aircraft cannot always be decoupled; the

equations must be solved simultaneously. Producing the equations of motion when such

relationships exist involves writing equations for the translational and angular momentum

of the system and taking their derivatives with respect to time (since acceleration is the

time rate of change of momentum). For a thorough explanation with a focus on aircraft

dynamics see [11]; although the notation can be opaque, it provides an excellent develop-

ment for conservation of momentum of multi-body systems, which is especially useful for

understanding the derivations of system models that include degrees of freedom between

the paraglider harness and the rest of the system.

Once the equations of motion are known, they can be used to generate simulated trajec-

tories of the aircraft in response to different environmental and pilot inputs. Key concepts

include the choice of state variables, coordinate systems and their relative advantages,

encoding geometric orientation, representing the environment, and applying numerical in-

tegration to the equations of motion to produce the simulated result. For this work I found

a complete reference in [12]; the opening chapters provide a masterful introduction to these

key concepts, including a principled mathematical notation (adopted by this paper, see

Notation and Symbols) and a thorough review of vector calculus (especially the counter-

intuitive results of taking the derivative of a vector with respect to an accelerating reference

frame, which is important when defining the State dynamics).
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2.2 Paraglider modeling

In addition to the general knowledge of aircraft behavior, it is necessary to understand

the unique characteristics of paraglider flight. For practical knowledge, recreational pilot

materials make excellent resources. One thorough introduction targeting beginner pilots

[13] provides a tour of the components of a paraglider, their function, behavior, and an

admirable review of their aerodynamics; if any of the paraglider-specific terminology in this

paper is unclear, this book will likely clear up the confusion.

Beyond recreational sources, academic literature relevant to paraglider modeling is

typically from one of two branches: parafoil-payload systems, and paragliders. Parafoil-

payload systems usually (but not always) refer to large-scale ram-air gliding parachutes

intended for heavy payload applications such as cargo delivery and vehicle-recovery (such as

landing the X-38 experimental space plane [14], or the more recent work by SpaceX to catch

rocket fairings on a boat), while the term “paraglider” usually (but not always) refers to the

recreational aircraft. Although the physical characteristics of parafoil-payload systems differ

significantly from paragliders due to their scale, carrying capacity, and control schemes,

their similarities make much of the research informative, albeit not directly applicable.

As a result this section will mix the two groups, noting their differences when significant.

Also, as this project has chosen to neglect the effects of canopy deformations, research into

modeling those deformations will not be discussed.

The first topic of research is on the aerodynamics of arched, inflatable wings. Their

nonlinear geometry made analyses difficult, so early studies were limited to their longitu-

dinal dynamics (fore-aft two-dimensional motion). Alternatively, simple models of their

3D dynamics divide the wing into several discrete segments that act independently (thus

neglecting the 3D flow interactions of a real 3D model) [15]. Attempts to account for the

full 3D aerodynamics typically involved either measuring the longitudinal and lateral aero-

dynamic coefficients experimentally [16], or estimating them using vortex lattice and panel

methods that can account for their nonlinear geometry by neglecting viscous effects. The

significance of the viscous effects led to attempts to incorporate experimental aerodynamic
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coefficients via extended lifting-line models; two important works regarding this approach

were [17] and [18], which could estimate the 3D aerodynamics of wings with circular arcs,

but were unable to account for sweep. As nonlinear lifting-line theory (NLLT) models con-

tinue to be developed, their applicability to paraglider wings has greatly improved [19]; for

example, [20] successfully applied the method from [21] to a reference paraglider wing in a

static flight test, confirming the merit of the of a modern NLLT to this application.

Another significant characteristic of paraglider canopies is their low density, which

makes them sensitive to the effects of apparent mass [22]. Early attempts to model the

apparent mass of a paraglider simplified the wing as an ellipsoid with a single center of

rotation [23]. Further developments recognized the inadequacies the ellipsoid model, and

adjusted the estimates to account for two separate centers of rotation for rolling and pitching

motions [24]. Both models are limited by their assumption of steady flow [25] so their

adequacy for simulations involving dynamic maneuvers is unclear; nevertheless, the adapted

model is assumed to be adequate for the purposes of this paper.

The last major topic of research is the system model. There are many system models

in literature, but their key differentiating factors in the context of this project are whether

they incorporate apparent mass and how they model the attachment of the harness to the

suspension lines. The inclusion of apparent mass appears to be a modeling decision driven

by whether the author expected the effect to be significant; papers that exclude apparent

mass do so without explicit justification. For the harness connection, models are categorized

by their degrees of freedom (DoF) and the character of the connection points; a 6-DoF model

does not allow the payload to move at all, a 7-DoF allows the payload to translate or rotate

(relative to the suspension lines) in one dimension, an 8-DoF adds two degrees of freedom,

etc. For a general understanding of the impact, [26] provides a comparative analysis of a

fixed (6-DoF) model versus a 9-DoF system model. For a more thorough review of the many

available system models, [27] has a seemingly exhaustive list of the models through 2005,

including a discussion of those models that account for apparent mass. Two informative

models that incorporate apparent mass are [15] (which used the older method in [23]) and

[28] (which used the adapted apparent mass model from [24]).
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In addition to topical works, there have been several more comprehensive studies. The

best place to start is [29]: although it has a parafoil-payload perspective, this approachable

paper is a thorough introduction to the terminology, geometric parameters, choice of airfoil,

and control schemes of parafoils (which it calls a “ram-air parachute”); this paper also used

geometric simplifications to study the canopy aerodynamics and drag contributions, and

developed linear models of the longitudinal and lateral dynamics to study performance and

stability. Next, for a paraglider perspective, [30] provides a compact survey on the sources

of aerodynamic drag; it reviews the impacts of arc, flexibility, air intakes, lines, and pilot.

Worth reading immediately after is [20], as it is essentially an updated revision of [30].

The most comprehensive work on paraglider flight dynamics to date is the dissertation

[31] that inspired the general structure of this paper. First, it provides an overview of

paraglider geometry, construction, and behavior. It then develops a foil geometry that uses

the locus of quarter-chord points to position the sections, as well as intuitive parametric

definitions of the underlying paraglider canopy structure. For the paraglider components, it

develops a model to position the harness as a function of the accelerator control, a continuous

brake deflection distribution using both brakes, and the spherical harness model used by this

paper. Next, for the canopy aerodynamics it develops a pseudo-LLT (which it acknowledges

is an approximation in deference to the project’s primary focus on stability and control)

using constant 2D aerodynamic coefficients. From the complete aerodynamics model, it

then estimates the 3D aerodynamic coefficients and stability derivatives for a linearized

model that is used for the remainder of the work, which is focused on performance aspects

(such as glide ratio versus equilibrium pitch angle), stability analyses (such as longitudinal

stability versus riser position, and roll stability versus sideslip), and controllability (takeoff,

maneuvering, and landing).
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2.3 This work

As mentioned in the previous paragraph, this project began with [31] as its starting point.

While attempting to use those models to recreate commercial paraglider wings, this work

identified a collection of improvements that led to newly derived models.

First, it improves the canopy geometry by developing a novel foil geometry model

inspired by a suggestion in [32] that allows independent reference points for the x- and yz-

positions. This increased flexibility allows accurate representations of existing wings using

simple parametric equations, which this work uses to replace the parametric design curves

in [31] with new parametrizations that are easier to estimate for an existing paraglider

canopy. It also replaces the approximate inertia calculations for the canopy surface and

volume with a mesh-based method that can account for different upper and lower surface

densities, and the extra solid mass from vertical ribs.

For the canopy aerodynamics, it replaces his pseudo-LLT with a full NLLT ([21], [33])

that supports arbitrary arc, sweep, twist, specific (nonlinear model) aerodynamic coefficients

for each section as a function of Reynolds number and deflection distance, and non-uniform

wind vectors along the span. Also, instead of modeling trailing edge deflections as section

rotations (by adding the deflection angle to the section angle of attack, effectively shift-

ing the coefficient curves), this model uses section coefficients generated from the actual

deflected geometry, and accounts for the effects of Reynolds number.

Next, it completely redesigns the suspension line model, keeping only the intuition to

replace the “rigging angle” with a displacement vector in the body axes. The new model

improves the representation of the brakes by first calculating the deflection distance before

calculating the true change in angle of attack (which depends on the section chord), as well

as improving the accuracy of the deflection distribution itself. The new model improves

the representation of the accelerator by parametrizing the fore and aft connection points

instead of fixing them at the leading and trailing edge of the canopy, thus allowing accurate

models of commercial wings. Lastly, the new model moves the line drag away from canopy

centroid and distributes it into lumped points that can model asymmetric forces between
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each semispan.

For the harness, the only minor change was to separate the weight shift distance from an

absolute distance to a proportional one controlled by a harness parameter for the maximum

displacement. Although functionality equivalent, I personally felt that this change makes

simulation scenarios easier to write and understand.

For the system model, this paper derived 6-DoF and 9-DoF models (the 9-DoF is

a rederivation of the model used in [34] and [35]) that may optionally incorporate the

apparent mass estimates from [24]. The 9-DoF model is included for demonstration and

testing purposes, and is not used in any analyses.

The implementation of all models are available as an open source library [1], including

example wing models, and the simulations used in this paper are available as part of the

open source materials used to produce this paper.

https://github.com/pfheatwole/glidersim
https://github.com/pfheatwole/thesis


Chapter 3

FOIL GEOMETRY

The essential components of any flying object are the lifting surfaces, or foils: by redirecting

airflow, a foil exchanges momentum with the air, producing a lifting force that allows the

object to fly. The dynamics of a foil depend on its inertial properties and its aerodynamics,

both of which can be estimated from its shape.

A foil geometry model describes the shape of a foil by defining the positions of all the

points on the foil’s surfaces. Although those positions can be defined as an explicit set of

points (with interpolation in between), it is much more convenient to decompose them into

a set of variables that represent distinct characteristics of the foil’s shape. Similarly, those

variables may be defined using explicit values, but it is much more convenient to define

them using design curves: parametric functions that encode that underlying structure of

the foil with a small number of intuitive parameters.

This decomposition is essential to this project, because the foils of interest are com-

mercial paraglider wings, and manufacturers do not provide explicit geometry data; at best,

marketing materials and user manuals provide basic summary specifications, which means

the majority of the geometry is unknown. Generating a surface model from summary infor-

mation requires making educated guesses about the missing structure in order to generate

a complete geometry. That assumed structure takes the form of domain expertise encoded

in the design curves, which augment the summary data to produce a fully specified model.

The difficulty with this approach is that the choice of variables in a geometry model

controls how a designer must specify the structure. More variables increase model flexibility

at the cost of increased complexity, so the goal is to choose the smallest number of variables

that provide the designer with adequate flexibility. Existing foil models are inflexible,

making strong assumptions about how foils are most naturally defined, and that inflexibility

forces the remaining complexity into the design curves. This unnecessary complication

makes it difficult to describe a parafoil using simple parametric functions: they must not

only encode the fundamental structure, they must also translate that structure into the

15
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variables that define the model. Instead of the geometry model adapting to the needs of

the design curves, the design curves must adapt to the inflexibility of the model.

The solution developed in this chapter is to reject the assumption that predefined

reference points are the most convenient way to position the elements of a foil surface. The

result is a novel foil geometry that fully decouples the design curves, allowing each variable

to be designed independently. It also presents a simplified model that eliminates most of

the additional complexity of the expanded model. The simplified model is both flexible and

intuitive for designing highly nonlinear foil geometries (such as paraglider canopies) using

simple parametric functions.

But first, a remark on notation: in this chapter, the lifting surface of an aircraft is

referred to as a foil instead of using the conventional terms wing or canopy (for traditional

aircraft or parafoils, respectively). This unconventional term was chosen to avoid two gen-

eralization issues. First, although wing is the conventional term for the primary lifting

surfaces of non-rotary aircraft, the paragliding community already uses the term paraglider

wing to reference not only the lifting surface but also the supporting structure connected

to it, such as suspension lines, risers, etc. Second, although this project is primarily con-

cerned with parafoils, the content in this chapter is not limited to parafoil canopies, making

“canopy” a poor choice.

In addition, note that these are idealized geometry models, not detailed structural

models. Structural models include physical details that can be used to simulate effects

such as internal forces and wing deformations [36]. Unfortunately, as discussed earlier, such

details are not available for commercial paraglider wings, and such analyses would be time

prohibitive even if they were. Instead, this design will model only those details of the shape

that can be approximated from the available data. It does not model internal structures,

in-flight deformations, or surface deviations from the idealized design target.
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3.1 Modeling with wing sections

At its most basic, a foil geometry is the surface of a volume. Points on the surface can

be defined with explicit coordinates, or they can be generated using functions that encode

aspects of the surface’s structure. Explicit geometries are extremely flexible (since they

can encode arbitrary amounts of detail), but refining an explicit mesh can be very time

consuming (in addition to requiring highly detailed geometry data). Conversely, parametric

geometries model the surface mesh indirectly using parametric functions which encode

structural knowledge of the shape. In effect, the parameters summarize the structure:

a structural parameter communicates more information than an explicit coordinate, which

means less work (and less data) is required to specify a design.

The standard first step towards parametrizing a foil geometry is to define it in terms

of wing sections ([37]; [6], Sec. 5.2). The foil is modeled as a sequence of sections (typically

arranged spanwise, left to right) over some continuous section index s. Each section is

assigned a 2D cross-sectional profile, called an airfoil, which lies perpendicular to the local

spanwise axis. Each airfoil is scaled, positioned, and oriented to produce the section profile.

Together, the section profiles produce a continuous surface that defines the complete 3D

volume.

Wing design using airfoils is thus decomposed into two steps:

1. Specify the scale, position, and orientation of each section

2. Specify the airfoil at each section

In some literature [3] these two steps are described as designing the planform and the

profile, but this description is problematic due to inconsistent uses of the term planform

across literature. Specifically, in some cases the planform is the complete surface produced

by the section chords, and in others “planform” refers to a projected-view of the chord

surface onto the xy-plane. Due to this ambiguity, this paper avoids the term planform

in preference of explicit references such as chord surface, mean camber surface, or profile

surface.
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Fig. 3.1: Wing section profiles.
Note that section profiles are not the same thing as the ribs of a parafoil. Parafoil ribs are the

internal structure that produce the desired section profile at specific points along the span.

3.1.1 Section index

In order to generate a foil from discrete wing sections (and to support queries about their

individual properties) each section must be assigned a unique identifier which this paper

refers to as a section index s. This term is deliberately generic. Some aeronautics literature

use the term spanwise station, but “spanwise” is ambiguous: some papers use “spanwise” to

refer to the absolute y-coordinate of some reference point embedded in each section, while

others refer to the linear distance along the curve through those reference points. The term

section index generalizes these concepts and provides an arbitrary reference to any choice

of unique identifier over the set of sections.

However, avoiding ambiguity is the not the primary purpose of this generality. The real

goal is to avoid unnecessary coupling of the design curves that define the geometry. Instead

of committing to a definition immediately, delaying the choice of section index allows a

designer the freedom to define the section index in terms of the geometry, or the geometry

in terms of the section index, or a even a mixture of the two. This freedom will be used

later by the Simplified model to enable particularly simple parametric design curves.
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3.1.2 Airfoil

The building block of each section is its dimensionless cross-sectional profile, called an

airfoil. The volume of the wing is generated by the continuum of neighboring airfoils, so

the choice of 2D airfoils is vital to designing the flow field characteristics over the 3D wing.

The choice involves trade-offs specific to the application (for example, thicker airfoils tend

to offer more gentle stall characteristics in exchange for a small increase in drag); as a result,

the variety of airfoil designs is very diverse.

Fig. 3.2: Airfoils.

Airfoils are conventionally described using terms that assume the airfoil can be divided

into upper and lower surfaces. The upper and lower surfaces are separated by two points

defined by a straight chord line that runs from the rounded leading edge back to the sharp

trailing edge. The curve created by the midpoints between the upper and lower surface

curves is the mean camber line.

mean camber line

lower surface
upper surface

chord line

Fig. 3.3: Components of an airfoil.

Another standard design parameter for an airfoil is its thickness distribution. Unfortu-

nately, the mean camber line and thickness distribution are not universally defined, because

there are two conventions for measuring the airfoil thickness: perpendicular to the chord

line (sometimes referred to as the “British” convention), or perpendicular to the mean

camber line (the “American” convention). The thickness convention also determines what

point is designated the leading edge. For the “British” convention the leading edge is the

point where the curve is perpendicular to a line from the trailing edge. For the “Ameri-
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can” convention, the leading edge is the “leftmost” point with the smallest radius (greatest

curvature).

Perpendicular convention.

Vertical convention.

Fig. 3.4: Airfoil thickness conventions.

As a result, the exact value of the mean camber line and thickness depends on the

thickness convention, but in general the mean camber line will lie halfway between an

upper and lower surface whose separation distance is specified by the thickness distribution.

Fortunately, this ambiguity is irrelevant except when comparing airfoil design parameters.

3.1.3 Scale

By convention, airfoils are normalized to a unit chord length. Similarly, the aerodynamic

coefficients associated with an airfoil are also dimensionless. To generate the geometry and

compute the aerodynamic forces associated with a wing segment, both the airfoil and its

aerodynamic coefficients must be scaled in units appropriate to the model.

Although conceptually simple, section scale plays a large role in controlling the aerody-

namic behavior of a wing segment; in fact, all but the most basic foils have variable section

chord lengths. The only fundamental requirement is that the sections collectively produce

enough aerodynamic lift to support the aircraft, but beyond that a foil designer is free to

use use spanwise variation to control behavior such as:

• Spanwise loading (the chord lengths are one factor, along with choice of section profile

and orientation/twist, that can be used to encourage an elliptical load distribution,

thus minimizing induced drag)

• Weight distribution
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• Relative importance of wing segments (if the wingtips are smaller then they contribute

less to the loading, making the loading is less sensitive to wingtip stalls, leading to

“gentler” stall characteristics)

3.1.4 Position

The relative position of the sections is fundamental to controlling important foil charac-

teristics such as span, sweep, and arc [3]. Span (the width of the wing, roughly speaking)

together with the chord distribution determines the aspect ratio of a foil, which impacts

characteristics such as aerodynamic efficiency and maneuverability. Sweep (the fore-aft

relative positioning of the sections) is important for controlling spanwise airflow. Arc (the

vertical relative positioning of the sections, roughly speaking) is primarily used to increase

the roll stability of conventional wings, although for parafoils the arc anhedral is essential

to designing the spanwise loading across the suspension lines.

To define their layout, each section must be positioned by specifying a vector in foil

coordinates of some reference point in the section’s local coordinate system. For example,

the most common choice of reference point is the leading edge of the section profile; by

convention the section leading edge will coincide with the origin of the airfoil coordinate

system, which means no additional translations are required to position the profile. This

conventional but inflexible choice is demonstrated by the Basic model, then relaxed by the

Expanded model, and made convenient by the Simplified model.

3.1.5 Orientation

The last degree of freedom for a wing section is its orientation. Instead of pointing straight

ahead, the can roll and twist to change their angle of attack in different flight conditions.

Changing the wind angles affects both their aerodynamic coefficients as well as the direction

of the force and moment produced by that section. Controlling the strength, magnitude,

and orientation of the section forces can be used to control characteristics such as the zero-

lift angle of the wing, spanwise loading (the lift distribution, which also affects the induced
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drag of the wing), stall profile (how stall conditions develop across the span), and dynamic

stability (such as the roll-yaw coupling exhibited by wings with arc anhedral).

3.2 Basic model

Choosing to model a foil using wing sections means that the surfaces are defined by 2D

airfoils. The 2D airfoil curves must be converted into a 3D section-local coordinate system,

then scaled, positioned, and oriented relative to the foil coordinate system. This “basic”

model describes how that is done by conventional wing modeling tools, which position the

sections by their leading edge.

First, let P represent any point in a wing section (such as points on the chord, mean

camber line, or profile), and LE be the leading edge of that section. It is conventional to

share the origin between the airfoil and section coordinate systems, and specify the section

position using the section leading edge, so using the notation of this paper, a general

equation for the position of that point P with respect to the foil origin O, written in terms

of the foil coordinate system f , is:

rfP/O = rfP/LE + rfLE/O
(3.1)

Assuming the foil geometry is symmetric, designate the central section the foil root, and let

the 3D foil inherit the 3D coordinate system defined by the root section. Points in section

(local) coordinate systems s must be rotated into the foil (global) coordinate system f .

Given the direction cosine matrix Cf/s between the section and foil coordinate systems,

position vectors in foil coordinates can be written in terms of section coordinates:

rfP/LE = Cf/sr
s
P/LE

(3.2)

Because airfoil curves are defined in the 2D airfoil-local coordinate system a, another trans-

formation is required to convert them into the 3D section-local coordinate system s. The

convention for airfoil coordinates places the origin at the leading edge, with the x-axis

pointing from the leading edge towards the trailing edge, and the y-axis oriented towards

the upper surface. This paper uses a front-right-down convention for all 3D coordinate
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systems, so the conversion from 2D airfoil coordinates a to 3D section coordinates s can be

written as a matrix transformation:

Ts/a
def
=


−1 0

0 0

0 −1

 (3.3)

Next, the airfoil must be scaled. By convention, airfoil geometries are normalized to a unit

chord, so the section geometry defined by the airfoil must be scaled by the section chord c.

Writing the points in terms of relative position vectors defined in the foil coordinate system

produces:

rfP/LE = Cf/sTs/a c r
a
P/LE

(3.4)

The complete general equation for arbitrary points P in each section s is then:

rfP/O(s) = Cf/s(s)Ts/a c(s) r
a
P/LE(s) + rfLE/O(s)

(3.5)

In this form it is clear that a complete geometry definition requires four design curves that

define the variables for every section:

c(s) Scale

rfLE/O(s) Position

Cf/s(s) Orientation

raP/LE(s) Airfoil

(3.6)

3.3 Expanded model

The basic equation (3.5) is an explicit mathematical equivalent of the approach used by

most freely available wing modeling tools. However, although it is technically sufficient

to describe arbitrary foils composed of airfoils, its inflexibility can introduce incidental

complexity into what should be fundamentally simple design curves.

For example, consider a delta wing with a straight trailing edge:
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Fig. 3.5: Ogival delta wing planform.
Figure by Wikimedia contributor “Steelpillow”, distributed under a CC-BY-SA 3.0 license.

The wing geometry is fundamentally simple. Its specification should be equally simple,

but defining this wing with a model that is only capable of positioning sections by their

leading edge makes that impossible. Instead, the position curve must be just as complex

as the scale function (chord length) in order to achieve the straight trailing edge. The

simplicity of the model has forced an artificial coupling between the design curves.

The problem becomes much more severe when section section chords no longer lie in

the xy-plane, because the trailing edge position is no longer a simple x-coordinate offset;

instead, all of the scale, position, and orientation design curves are coupled together, making

design iterations incredibly tedious. Whether the adjustments are performed manually or

with the development of additional tooling, the fact is the extra work is unnecessary.

The solution is to decouple all of the design curves by allowing section position to be

specified using arbitrary reference points in the section coordinate systems. This can be

accomplished by decomposing their positions into two vectors: one from the section leading

edge LE to some arbitrary reference point RP , and one from the reference point to the foil

origin O:

rfLE/O = rfLE/RP + rfRP/O
(3.7)

Although this decomposition increases model complexity, the additional flexibility allows

a designer to choose whichever point in each section’s coordinate system will produce the

simplest geometry specification. The basic model (3.5) is replaced by an expanded equation

https://en.wikipedia.org/wiki/File:Wing_ogival_delta.svg
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with a new set of design curves:

rfP/O(s) = Cf/s(s)Ts/a c(s) r
a
P/LE(s) + rfLE/RP (s) + rfRP/O(s)

(3.8)

c(s) Scale

rfRP/O(s) Position

Cf/s(s) Orientation

raP/LE(s) Airfoil

rfLE/RP (s) Reference point

(3.9)

3.4 Simplified model

The Basic model is adequate to represent wings arbitrary foils composed of airfoils, but

its inflexibility forced incidental complexity into the design curves. The Expanded model

provides additional flexibility, but it’s generality can make it difficult for a designer to

identify which aspects of the foil structure result in a simple parametric representation. This

section identifies several simplifying assumptions that provide a foundation for a particularly

concise representation of many foils (parafoils in particular). The result is an intuitive,

partially-parametrized foil geometry model that decouples the design curves and allows a

parafoil to be rapidly approximated using only minimal available data, even if that data

was obtained from a flattened version of the parafoil.

3.4.1 Section index

Although most tools do not explicitly announce to their choice of section index, there are

two conventions in common use: the most common is to use the reference point y-coordinate

(s = y, or its normalized version s = y
b/2). Although simple and intuitive for flat wings,

defining a nonlinear geometry in terms of y can become unwieldy, so another common choice

is to use the linear distance along the locus of reference points rRP/O (or its normalized

version that ranges ±1). Unfortunately, both are problematic for modeling a paraglider

canopy using the most readily-available data.
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When trying to create a model of a flexible wing like a paraglider canopy, it is much

easier to take measurements when the wing is stretched out flat. When the canopy is flat

it is possible to measure c(s) and x(s) directly, whether from the physical wing or from

photos (such as are found in user manuals). Also, it is trivial to measure the flattened span

compared to trying to measure the span of an in-flight canopy. The solution is to use the

normalized section y-coordinates from the flattened foil:

s =
yflat
bflat/2

(3.10)

Not only does this choice make the section index easy to measure from a flattened paraglider

canopy, but with a careful choice of reference points it also decouples the yz-coordinates

of the reference positions (yz(s)) from all the other design curves, which is a key aspect

of this model’s ability to define complex nonlinear foils using simple parametric functions.

The next section explains the process in detail, but the key idea (and why this choice

of section index is so important) is that using this definition of s and choosing the same

chord position for the y and z components of the reference point you can simply “wrap”

the flattened paraglider canopy around yz(s) to produce the final geometry. It becomes

possible design the flattened foil geometry before designing its arc, a natural process that

enables the direct use of the most readily available measurements for commercial paraglider

canopies.

3.4.2 Reference point

The Basic model positions each section using the section origins (the leading edges). The

Expanded model allows the sections to be positioned using arbitrary reference points any-

where in the 3D section coordinate systems. Although flexible, the freedom of the expanded

model does not address the problem of choosing good reference points.

One intuitive choice is to use points on the section chords, in which case the reference

point is a function of a chord ratio 0 ≤ r ≤ 1. The chord lies on the negative section x-axis,

so a reference point at some fraction r along the chord is given by rsRP/LE = −r c x̂ss (where

x̂ss
def
= [1 0 0]T , the x-axis of section s in that section’s local coordinate system). Substituting
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rLE/RP = −rRP/LE into (3.8) produces:

rfLE/O = Cf/s r c x̂
s
s + rfRP/O

Simple and intuitive, this parametrization captures the choices used by every foil modelling

tool reviewed for this project. Models that position sections by their leading edge (XFLR5,

AVL, MachUpX) are equivalent to setting r = 0. Another (less common [31]) choice is to

use the quarter-chord positions, in which case r = 0.25. The problem with the constraint

that reference points lie on the section chords is that it couples the position functions for

all three dimensions. For many foil geometries it can be significantly more convenient to

use different chord positions for different dimensions.

For example, suppose an engineer is designing a foil with an elliptical chord distribution

and geometric twist, and they wish to place the leading edge in the plane x = 0 and the

trailing edge in the plane z = 0. Although the intuitive specification of this foil would be

x(s) = 0, z(s) = 0, it cannot be used because it needs to position different points on each

section chord: the x(s) = 0 design requires r = 0, but the z(s) = 0 design requires r = 1.

One of the position curves must be changed, introducing unnecessary complexity to make

up for this inflexibility.

For another example, a foil designer may want to arc an elliptical planform such that

the y- and z-coordinates of the quarter-chord (r = 0.25) follow a circular arc while the

x-coordinate of the trailing edge (r = 1) is a constant. Because of the elliptical chord

distribution, the x-coordinates of the quarter-chord that would produce a straight trailing

edge are distinctly non-constant; if geometric twist is present the issue becomes even more

severe. What should be a simple x(s) = 0 to specify the straight trailing edge must become

a complex function with no simple analytical representation.

The underlying problem is that the designer cannot specify their design directly us-

ing a shared reference point that lies directly on the chord; instead, they must translate

their design into an alternative specification using positions that accommodate the shared

reference point.
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The solution is that instead of using a shared reference point directly on the chord for

all dimensions, allow each dimension to choose independent reference points along the chord,

and associate each dimension of the position design curve with that dimension’s coordinate

of that dimension’s reference point. The x(s) design curve specifies the x-coordinate of the

reference point for the x-dimension, etc.

Fortunately, providing this flexibility is easier to implement and use than it is to de-

scribe. Instead of a shared r for all three dimension, allow an independent r for each

dimension of the reference point:

R
def
=


rx 0 0

0 ry 0

0 0 rz


where 0 ≤ rx, ry, rz ≤ 1 are proportions of the chord, as before. The coordinates of

the leading edge relative to the reference point are now the displacement of the section

origin relative to the {x, y, z} components of the {rx, ry, rz} positions along the chord. The

resulting equation, which allows completely decoupled positioning for each dimension, is

surprisingly simple:

rfLE/O = RCf/sc x̂
s
s + rfRP/O

This choice of reference point makes the earlier examples trivial to implement. For the first,

which was struggling with the fact that geometric twist has coupled the x and z positions is

solved with {rx = 0, rz = 1} (because the foil is flat, every choice of ry is equivalent). The

second example, which was struggling to define an x(s) to achieve a straight trailing edge,

the answer is simply {rx = 1, ry = 0.25, rz = 0.25}. In both cases, the designer is able to

specify their target directly, using simple design curves, with no translation necessary. The

reason is that (3.10) combined with ry = rz means that changing yz(s) does not change

the section index; having designed the orientation and fore-aft position x(s) of a section,

changing yz(s) will not affect that design. The curves have been decoupled.

rfLE/RP = RCf/sc x̂
s
s

(3.11)
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R
def
=


rx 0 0

0 ryz 0

0 0 ryz

 (3.12)

3.4.3 Orientation

The expanded model (3.8) uses a direction cosine matrix (DCM) to define the orientation

of each section; the problem is how to define that matrix. A natural parametrization of

a DCM is a set of three Euler angles ⟨ϕ, θ, γ⟩, corresponding to roll, pitch, and yaw. The

Euler parametrization replaces the R3×3 matrix with a 3-vector — three parameters — but

the structure of typical parafoils can provide further simplifications.

In particular, observe that when a parafoil is flattened out on the ground, the sections

are (essentially) vertical, with no relative roll or yaw. Inflating the parafoil and using the

suspension lines to form the arc will naturally roll the sections without affecting the section

yaw. These observations reveal that the section orientation produced by inflating a parafoil

is well approximated by a single degree of freedom, resulting in a minimal parametrization

with a single design variable for section pitch θ(s).

For the section roll ϕ(s), observe that inflating the foil to produce the arc does not

produce a shearing effect between sections; instead, the sections roll jointly with the arc.

This relationship can be encoded using the derivatives of the ⟨y(s), z(s)⟩ components of the

position curve rRP/O(s):

ϕ = arctan
(
dz

dy

)
(3.13)

For the section yaw γ(s), inflating the parafoil to produce the arc anhedral will roll the

sections in the foil’s yz-plane and does not affect the section yaw, which remains zero:

γ = 0 (3.14)

The remaining degree of freedom is the rotation about each sections y-axis. This pitch

angle θ(s), conventionally known as geometric torsion, is produced when the wing is man-

ufactured, and is not affected when the flattened wing is shaped into its final arched form.
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Fig. 3.6: Geometric torsion.
Note that this refers to the angle, and is the same regardless of any particular rotation point.

3.4.4 Summary

In conclusion, the simplifications identified by this model not only reduced the number

of parameters of the expanded model (3.9), it also replaced the arbitrary and unwieldy

3D reference points with simple ratios of the section chords. It allows rapid and intuitive

conversion of measurements from a flattened paraglider canopy to a foil geometry, and

decoupled the design curves to allow the design of each variable to be manipulated without

affect the others. In short, it provides the flexibility of the expanded model but without its

complexity.

c(s) Scale

rx(s) Chord ratio for positioning RPx

ryz(s) Chord ratio for positioning RPy and RPz

rfRP/O(s) Position

θ(s) Pitch

raP/LE(s) Airfoil

(3.15)

3.5 Examples

These examples demonstrate how the simplified model makes it easy to represent nonlinear

foil geometries using simple parametric functions, such as constants, absolute functions,

ellipticals, and polynomials. For a discussion of the elliptical functions for the arc and

chord distributions, see Parametric design curves.

All examples show a wireframe view of the chord surface because it is easier to visualize

the foil layout. The green dashed lines are projections of the section quarter-chord positions
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(shown because of their use in analyzing aerodynamics). The red dashed lines are the

projections of the rx and ryz chord positions.
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3.5.1 Delta wing

A delta with with a linear chord distribution and straight trailing edge can be defined with

rx = 1 and a piecewise-linear c(s). Unlike conventional wing modeling tools, because the

trailing edge is used directly for position in the x-direction, the x(s) curve does not need

to be coupled to c(s) to compute offsets for the leading edge.

Fig. 3.7: Chord surface of a delta wing planform.
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3.5.2 Elliptical wing

Similarly, a flat wing with an elliptical chord distribution and fore-aft symmetric is trivial

to define using rx = 0.5 and an elliptical chord function.

Fig. 3.8: Chord surface of an elliptical wing planform.
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3.5.3 Twisted wing

Wings with twist typically use relatively small angles that can be difficult to visualize.

Exaggerating the angles with extreme torsion makes it easier to see the relationship.

Fig. 3.9: Chord surface of a wing with geometric twist.
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3.5.4 Manta ray

The effect of changing the reference positions can be surprising. A great example is a “manta

ray” inspired design: each model uses the same piecewise-linear chord distribution and

circular x(s), changing only the constant value of rx. These examples clearly demonstrate

the flexibility of the Simplified model: four of the six design “curves” are merely constants,

and yet they enable significantly nonlinear designs in an intuitive way.

Fig. 3.10: “Manta ray” with rx = 0
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Fig. 3.11: “Manta ray” with rx = 0.5
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Fig. 3.12: “Manta ray” with rx = 1.0
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3.5.5 Parafoil

Lastly, as this project is primarily focused on paragliders, these examples would not be

complete without showing how the Simplified model allows two simple elliptical functions

and rx = 0.75 to easily produce an accurate generalization of a paraglider canopy.

Fig. 3.13: Chord surface of a simple parafoil.
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In addition to the surface produced by the section chords, it may be helpful to see the

upper and lower profile surfaces produced after assigned every section an airfoil (NACA

23015):

Fig. 3.14: Profile surface of a simple parafoil.



Chapter 4

FOIL AERODYNAMICS

For the purposes of this chapter, an aerodynamics model provides the instantaneous forces

and moments produced on a foil when it moves relative to air. In a rigorous modeling

process the aerodynamic forces and moments would be measured experimentally, either

in a wind tunnel or with flight tests, but that rigor is time consuming, expensive, and

requires physical possession of the wing. Instead, this paper is concerned with estimating

the dynamics of commercial paraglider wings from basic technical specifications, and so it

must rely on theoretical methods that predict the flow-field surrounding a foil by combining

fundamental equations of fluid behavior with the foil geometry.

This chapter suggests performance criteria for simulating paraglider aerodynamics,

and selects a theoretical method capable of simulating those dynamics under the typical

flight conditions. It presents a derivation of the method, modifies the method to improve its

behavior in the context of flight simulation, and validates the modified method by comparing

its predictions against wind tunnel measurements of a representative parafoil model from

literature.

4.1 Aerodynamics models

Classical aerodynamics predate the modern computing era, and were forced to prioritize

simplifying assumptions that would enable analytical solutions of the governing equations;

those assumptions placed heavy restrictions on what geometries could be analyzed and what

characteristics of the flow-field must be neglected. These simplifying assumption made the

problems tractable in a surprising variety of situations, but — despite their elegance —

such analytical solutions are inadequate for analyzing the geometry and flight conditions of

a paraglider.

In contrast, modern computational aerodynamics [9] solve the equations numerically,

relaxing the need for analytical solutions. As a result, modern methods can analyze signif-

icantly more complex foil geometries over the entire set of flow-field characteristics. How-

40
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ever, even with modern computers the fluid equations are too difficult to solve in the general

case, so simplifying assumptions are still required to produce a tractable system of equa-

tions. This modeling process has led to a wide variety aerodynamic models built on different

simplifying assumptions regarding the geometry and the characteristics of the flow-field.

4.1.1 Model requirements

The introduction to this paper established a set of Modeling requirements, which determine

the choice of aerodynamics method. Summarizing those requirements here for convenience,

the model must account for the following characteristics:

• Nonlinear geometry

• Viscosity

• Non-uniform wind field (different relative wind angles at different sections)

Where “viscosity” is elaborated as a collection of requirements:

• The model should account for the decreased lift and increased drag due to flow sep-

aration across individual wing segments (at least approximately). This requirement

is due to paraglider’s tendency to fly at relatively high angles of attack, and for in-

dividual sections to experience high angles due to the arc anhedral (especially during

turns).

• The model must demonstrate graceful accuracy degradation approaching stall (but is

not required to model post-stall). The goal is not to simulate with absolute accuracy

through stall, but the flight simulator should tolerate brief moments near stall.

• The model should accept empirical corrections to viscous drag to individual wing

sections to incorporate experimental wind tunnel results.

• The model should use section-specific Reynolds values (not a wing average) since the

sections of a paraglider canopy can vary from 300k to 2M during a turn (thus spanning

the transition regime of Reynolds values)
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There was also an optional, but desirable, goal that the method should be fast enough

for real-time simulations to support rapid iteration during parameter estimation.

4.1.2 Model selection

Despite the wide variety of options for choosing a theoretical aerodynamics model, in prac-

tice the Modeling requirements makes the selection process rather straightforward. The first

requirement — to support nonlinear foil geometries — eliminates the classic LLT. Several

authors have developed extensions of the LLT that are able to account for circular arc ([17],

[18]), but are unable to model a swept quarter-chord.

The practical answer to nonlinear geometries is to switch to a vortex lattice method or

panel method [8], which place the aerodynamic singularities on the nonlinear camber sur-

face, or the profile surface itself, and apply the inviscid flow approximation to reformulate

the problem as an instance of Laplace’s equation. Unfortunately, the inviscid assumption

necessary to produce those solutions violate another of the modeling requirements: the

ability to model viscous effects. Although extended models may apply strip theory to in-

corporate viscous drag coefficients (through lookups based on the estimated section angle of

attack or lift coefficient), the inviscid methods fail to provide graceful accuracy degradation

near stall. Because the inviscid solutions rely on linear relationships that are assumed to

hold indefinitely, they are incapable of capturing the aerodynamic nonlinearities that arise

at high angles of attack.

The next level of aerodynamic models are the computational fluid dynamics [9] meth-

ods. Instead of limiting the singularities to points on (or inside) the foil, CFD methods

simulate the dynamics of the entire volume surrounding the object. In this way they are

able to capture the entire array of flow characteristics such as viscosity, turbulence, and

compressibility. Unfortunately, CFD methods have the downside of violating another of

the modeling requirements: the requirement for speed. The purpose of this project is to

enable a user to rapidly iterate the parameters of a model in order to improve the accuracy

of a model. Individual CFD simulations at this level are commonly measured in seconds, if

not minutes, rendering the fundamentally unsuitable.
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Fortunately, there is yet another category, numerical lifting-line methods, which has

progressed sufficiently to introduce a method suitable for wings with arbitrary camber,

sweep, and dihedral while also supporting (some) viscous effects.

4.2 Phillips’ numerical lifting-line

Phillips’ numerical lifting-line method (NLLT) [21] is an extension of Prandtl’s classic lifting-

line theory (LLT) to account for the effects of a curved lifting-line.

Unlike the classical LLT, this numerical approach supports the characteristic nonlinear

geometry of parafoils by decomposing the foil into discrete wing segments, each with their

own scale, position, orientation, and profile. It can also be adapted to non-uniform wind

vectors, allowing it to analyze non-uniform, non-longitudinal scenarios involving wind shear

and wing rotation.

Unlike pure potential flow solutions, such as traditional vortex lattice and surface panel

methods, it is able to approximately account for the effects of viscosity through its use of

section coefficients (critical for incorporating viscous drag corrections and approximating

flow behavior at high angles of attack).

And unlike full CFD solvers, the implementation is relatively simple, requires minimal

manual configuration, and is computationally efficient (a critical point when generating

iterated solutions for flight simulation).

4.2.1 Derivation

For the purposes of discussion, the derivation of Phillips’ NLLT is briefly repeated here

using the notation of this paper. Note that to avoid confusion, this derivation breaks the

convention of this paper and instead uses Phillips’ convention of a capital V for velocity,

and a lowercase v for the induced velocities.

The goal is to establish a system of equations by equating two measures of the aero-

dynamic force applied to discrete segments of a wing. One uses the 3D vortex lifting law
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Fig. 4.1: Wing sections for Phillips’ method.

(4.1) and the other uses the local section lift coefficients (4.2):

dFi = ρΓiVi × dli (4.1)

∥dFi∥ =
1

2
ρair ∥Vi∥2CLi (αi, δi)Ai (4.2)

The net local velocity Vi at control point i is the sum of the freestream relative wind velocity

V∞ at the control point and the induced velocities from all the other segments:

Vi = V∞ +
N∑
j=1

Γjvji (4.3)

where vji are the velocities induced at control point i by horseshoe vortex j:

vji =
1

4π

[
u∞ × rj2i

rj2i (rj2i − u∞ · rj2i)
+ (1− δji)

(rj1i + rj2i)(rj1i × rj2i)

rj1irj2i(rj1irj2i + rj1i · rj2i)
− u∞ × rj1i

rj1i (rj1i − u∞ · rj1i)

]
(4.4)

and δji is the Kronecker delta function:

δji
def
=


1 i = j

0 i ̸= j

(4.5)

Solving for the vector of circulation strengths can be approached as a multi-dimensional

root-finding problem over f , where f is a vector-valued function of residuals, and the

residual for each horseshoe vortex i is the difference between the two measures of section

lift, (4.1) and (4.2):

fi (Γi) = 2Γi ∥Wi∥ − ∥Vi∥2AiCL,i (αi, δi) (4.6)
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where

Wi = Vi × dli (4.7)

The set of residuals fi (Γi) represent a system of nonlinear equations that can be solved

numerically to produce an estimate of the spanwise circulation Γi. In order to solve the

system, Phillips suggests gradient descent using the system Jacobian Jij
def
= ∂fi

∂Γj
, which

expands to:

Jij = δij 2 ∥Wi∥+ 2Γi
Wi

∥Wi∥
· (vji × dli)

− ∥Vi∥2Ai
∂CL,i

∂αi

Va,i (vji · un,i)− Vn,i (vji · ua,i)

V 2
ai + V 2

ni

− 2AiCL,i(αi, δi)(Vi · vji)

(4.8)

with the effective wind speed in the normal and chordwise directions

Cf/si = −


| | |

ua,i us,i un,i

| | |

 (4.9)

Va,i = Vi · ua,i

Vn,i = Vi · un,i

(4.10)

and the effective local angle of attack αi

αi = arctan
(
Va,i

Vn,i

)
(4.11)

After solving for the circulation strengths, the 3D vortex lifting law (4.1) is used to compute

the inviscid forces at each control point, and the viscous drag and pitching moments are

computed as in standard strip theory using the effective angle of attack (4.11):

dFvisc,i =
1

2
ρair ∥Vi∥2 ciCD,i (αi, δi) V̂i (4.12)

dMi = −1

2
ρair ∥Vi∥2AiciCM,i (αi, δi)us,i (4.13)
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4.2.2 Modifications

Although the original derivation is suitable for simple, static scenarios, it is inadequate for

simulating dynamic conditions that commonly occur during paraglider flights. This section

presents a number of modifications to improve the usability, functionality, and numerical

stability of the method that greatly extend its applicability.

4.2.2.1 Control point distribution The paper recommends placing the control points using

a cosine distribution over the 3D spanwise coordinate y, but that recommendation assumes

a predominantly flat wing; cosine spacing generates a poor distribution when the wing tips

are nearly vertical, which is common with parafoils. Instead, distributing the control points

according to the section index s will maintain spacing along the foil’s yz-curve regardless

of the arc. (Note that although this works well for parafoils, other foil geometries may be

better suited to either a different section index, or some nonlinear spacing in s.)

4.2.2.2 Variable Reynolds numbers Lifting-line methods typically assume the section co-

efficient data is an explicit function of angle of attack α, and possibly some sort of control

deflection δ, but assume the coefficients are constant with respect to Reynolds number.

For relatively high Reynolds regimes this is reasonable since the airfoil data is essentially

constant, but parafoil sections under typical flight conditions experience Reynolds numbers

in the range from roughly 150,000 to 3,000,000, spanning the transitional regime where

viscous effects can be significant. To verify whether section-local Reynolds numbers have

a significant effect on parafoil aerodynamics, the coefficients should be an explicit function

of Reynolds number.
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4.2.2.3 Non-uniform upstream velocities Phillips’ original derivation [21] assumes uniform

flow, but [33] relaxes that assumption by replacing the uniform freestream velocity V∞ with

the relative upstream velocity Vrel,i that “may also have contributions from prop-wash or

rotations of the lifting surface about the aircraft center of gravity.” (Compare Phillips Eq:5

to Hunsaker-Snyder Eq:5.) The result is that (4.3) is replaced with:

Vi = Vrel,i +

N∑
j=1

Γjvji (4.14)

In [33] they are concerned with accounting for propeller wash, but for a parafoil the upstream

velocity is simply the local wind velocity at control point i combined with the velocity

produced by the control point CP, i rotating about the glider center of mass CM :

Vrel,i = V∞,i + rCP,i/CM × ωb/e (4.15)

This change enables the method to approximately accommodate non-uniform wind condi-

tions, such as from wind shear, turning maneuvers, etc. This flexibility should be used with

caution, however; see Straight-wake assumption for a discussion.

4.2.2.4 Better solver To solve for the circulation strengths Γi, the Phillips paper suggests

using Newtons’ method, which computes the zero of a function via gradient descent. Gra-

dient descent has several practical issues, but the most important problem in this case is

that it fails to converge if the gradient goes to zero. For this application, the function under

evaluation is the residual error (4.6), and its gradient (4.8) depends on derivatives of the

section lift coefficients. When a wing section reaches the angle of attack associated with

CL,max the section has stalled, its section lift slope is zero, and gradient descent will fail to

converge. Phillips suggests switching to Picard iterations to deal with stalled sections, but

it is unclear whether the target function reliably produces fixed points; a simple prototype

failed to converge.

An alternative is to use a robust, hybrid root-finding algorithm that uses gradient de-

scent for speed but switches to a line-search method when the gradient goes to zero. The

implementation for this project had great success with a modified Powell’s method, which

https://en.wikipedia.org/wiki/Powell%27s_method
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“retains the fast convergence of Newton’s method but will also reduce the residual when

Newton’s method is unreliable” (see the GSL discussion or MINPACK’s hybrj documen-

tation for more information). This method not only mitigates the convergence issues near

stall, but it is also significantly faster: it does not depend on fixed step sizes (which must be

inherently pessimistic to encourage convergence) and is able to use approximate Jacobian

updates instead of requiring full Jacobian evaluations at each step.

4.2.2.5 Reference solutions The root-finding algorithm that solves for the circulation

strengths requires an initial proposal for the circulation distribution Γ(s). Poor propos-

als produce large residual errors that can push Newton iterations into unrecoverable states,

so it is preferable to use prior information to predict the true distribution. The original

paper suggested solving a linearized version of the equations, but that choice is only suitable

for foils with no sweep or dihedral. Another common suggestion from related methods is

to assume an elliptical distribution; for most foils, an elliptical circulation distribution is a

reasonable guess during straight and steady flight, but it is a poor proposal for scenarios

that include non-uniform wind or asymmetric control inputs, such as during flight maneu-

vers. It is clear that generating suitable proposals for nonlinear geometries under variable

flight conditions requires a different approach.

For sequential problems, such as the sequence of states in a flight simulator or the points

of a polar curve, an effective solution is to use the solution from the previous iteration as

the proposal. Provided the time resolution of the simulation is reasonably small then the

state of the aircraft should be similar between each timestep, so the proposal will be very

close to the target. An added advantage of using a prior solution is an ability to capture

hysteresis effects [38].

https://www.gnu.org/software/gsl/doc/html/multiroots.html#c.gsl_multiroot_fdfsolver_hybridsj
https://www.math.utah.edu/software/minpack/minpack/hybrj.html
https://www.math.utah.edu/software/minpack/minpack/hybrj.html
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4.2.2.6 Clamping section coefficients A major issue with the method is a tendency to

produce fictitious “infinite” induced velocities under certain conditions, causing convergence

to fail. This tendency increases as the grid resolution is refined, and is most commonly

observed at the wing tips, especially during turning maneuvers. The cause is apparent in

equation (4.4), where the induced velocities between bound segments increases as the inverse

of their separation distance; as the separation distance goes to zero, the induced velocity

goes to infinity. In most cases, the induced velocities from the left and right neighbors of a

segment mostly cancel, but if the foil has discontinuities (such as at the wingtips, where the

outer segment has only an inboard neighbor) then cancellation may be incomplete, leaving

a large imbalance. It can also occur due to numerical issues at very fine grid resolutions.

For parafoils the most significant discontinuities are at the wingtips, where the effect of

the induced velocity spike is to dramatically overestimate the effective angle of attack. The

NLLT relies on accurate section coefficient data, and if that coefficient data is unavailable

(such as at high angles of attack) then the numerical routine cannot continue, causing

convergence to fail.

Clearly the lack of coefficient data is not a valid reason to abort, since the large induced

angle of attack is fictitious. To mitigate the issue when it occurs at the wingtips, assume

the true α is less than or equal to the maximum α supported by the coefficient data, and

clamp CL to its value at that maximum α. In the case where the high α is fictitious, the CL

will be incorrect but will at least remain relatively close to the true value, and will allow the

simulation to continue. In the case where α is genuinely large, then the unclamped inboard

segments will also lack coefficient data and the method will correctly fail.

It is important to note that this is a practical mitigation, not a theoretically-justified

solution. The point is not to “fix” the method, the point is to limit the magnitude of

the error and allow the simulation to continue with reasonable accuracy. However, despite

lacking a theoretical basis, there are several strong justifications:

1. If the outer segment is small, then its contribution to the error is expected to be small.

For example, if the outer segment represents the last 5% of the wing span means then
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the error from much less than 5% of the total aerodynamic contributions (since the

area of that wingtip segment is very small).

2. If the outer segment is small, you wouldn’t expect a significant change in alpha from

the wingtip to its neighbor, so if the inboard neighbor is in the valid range you can

expect that the wingtip alpha is (relatively) close to the valid range.

4.2.3 Limitations

4.2.3.1 Assumes minimal spanwise flow This method argues that the derivation of the

3D vortex lifting law in [39] proves that “the relationship between section lift and section

circulation is not affected by flow parallel to the bound vorticity.” In other words, it relies

on the fact that the 3D vortex lifting law holds even in the presence of spanwise flow. What

this does not account for, however, is the effect of spanwise flow on the section coefficients.

Wing analysis using section coefficients relies on the assumption that each wing segment

acts as a finite segment of an infinite wing, provided the spanwise flow is negligible ([6], p.

356). Although the 3D vortex law holds in the presence of spanwise flow, solving for the

circulation strengths using section coefficients does not.

A similar discussion can be found in [38], who apply a similar NLLT to a flat wing with

45° sweep. They acknowledge that although the sweep introduces significant 3D flow-field

effects, the method “shows very good agreement” versus experimental measurements. Their

success offers some confidence that the effects of spanwise flow may indeed be negligible,

but it is unclear whether the effect has more significance once continuous arc anhedral is

involved.

4.2.3.2 Straight-wake assumption A common aerodynamic modeling approximation is to

assume that vorticity is shed into the wake as a trailing vortex sheet; the strength of the shed

vorticity varies with the local variation of lift along the span. In a rigorous analysis, the

trailing vorticity should follow a curved path ([6], p. 390), but this produces an intractable

nonlinear system of equations. Instead, models apply a further simplification known as the
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straight-wake assumption: that the trailing wake vortex sheet streams straight back from

the lifting-line. The straight-wake assumption is an important step in linearizing the system

of equations to allow mathematically tractable solutions.

For a discretized method, such as Phillips’ or Weissinger’s LLT [40], the vortex sheet

is lumped into a series of shed vortex filaments whose strength is proportional to the dif-

ference in local lift of neighboring segments. Under the straight-wake assumption, the

trailing legs of all horseshoe vortices extend from the nodes in straight lines parallel to

some freestream velocity direction u∞ (see (4.4)). This is clearly invalid for a rotating wing

where a freestream velocity is ambiguous.

Despite this limitation, this project assumes that as long as the rotation rates remain

small enough that relative flow angles remain small the method still provides useful approx-

imations. This assumption is made without theoretical justification; instead, this paper

relies on the superior aerodynamics knowledge of its sources. First, the use of this method

with non-zero rotation is explicitly mentioned in [33]. Also, this assumption is shared with

the vortex-lattice model used in AVL [41], although in that method the trailing legs are

aligned with the foil x-axis, regardless of freestream flow. In Phillips’ method the trailing

are aligned to the freestream, which for this work is defined as the local upstream velocity

u∞,0 of the central section under the assumption that it minimizes average deviation.

For a related technical discussion that incorporates rotation rates into a vortex lattice

method, refer to [8] Sec. 6.5; in particular, Eq. 6.33 for aligning the trailing legs with the

x-axis, Eq. 6.37 for accounting by adding it to the flow tangency equations, and Eq. 6.39

for incorporating the rotation rates into the aerodynamic influence coefficients matrix.

4.2.3.3 Reliance on section coefficients A significant limitation of aerodynamic methods

based on the theory of wing sections their assumption that the section coefficient data is

accurate and representative of the flow conditions during a flight. In practice, section coeffi-

cient data is notoriously optimistic, relying on idealized geometry, negligible spanwise flow,

a uniform flow-field across the segment, steady-state conditions, etc. These assumptions

are strong to begin with, and become particularly questionable near stall, especially when
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using simulated airfoil data.

Not only do these methods assume the section coefficient data is accurate for each

individual section in isolation, they also assume the flow conditions of each section will

have a negligible impact on the coefficients of neighboring sections. In reality, development

of 3D flow-field conditions such as separation bubbles is significantly impacted by such

neighboring sections. Part of the interaction can be captured by the induced velocities,

but section coefficients are ultimately incapable of modeling effects such as turbulence, 3D

separation bubbles, significant spanwise (or “cross”) flow, etc. Such effects seem likely to

be even more prominent given the significant arc of a parafoil.

4.2.3.4 No unsteady effects This method produces a steady-state (non-accelerated) solu-

tion. It does not include unsteady (time-varying) effects, such as ([8], p. 149):

• Unsteady foil motion

• Unsteady foil deformation

• Spatially-varying or unsteady atmospheric velocity field

Thankfully, the (arguably) most important unsteady effect for the purposes of

paraglider simulation under typical flight conditions can be accounted for by the simulator

itself; see Apparent Mass.
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4.2.3.5 Non-unique solutions Gradient descent will find a zero of the residual, but it is

not guaranteed to be unique, especially given that the numerical solver relies on tolerances

instead of exact solutions. Depending on the initial conditions, the solver may converge to

different circulation distributions.

4.2.3.6 Sensitive to initial proposal This method relies on a good proposal (an initial

“guess” of the circulation distribution) to encourage convergence while minimizing opti-

mization runtime. The root-finding problem uses the residual error (4.6) which is likely a

non-convex function, in which case a global optimization method such as gradient descent

is not guaranteed to find the global minimum for a non-convex function, so the solution

is sensitive to the starting point (the initial proposal). In practice this issue is not a ma-

jor problem when the intended use is flight simulation; solutions are generated iteratively,

in which case the previous solution is a natural choice for minimizing the initial residual

error (see Reference solutions). As an added bonus, using the previous solution adds the

capability of capturing hysteresis effects [38]; for example, in [42] they discuss a wing that

demonstrates hysteresis depending on whether data were generated with increasing versus

decreasing alpha. Nevertheless, the fact that the method has a tendency to produce differ-

ent solutions for different proposals mean the method will exhibit hysteresis effects which

may or may not be physically accurate.

4.2.3.7 Unreliable near stall Phillips suggests that this method can be used up to stall

“with caution”. Closely related to the issues of spanwise flow, the development of stall

conditions along a wing has a high likelihood of violating the assumptions used to generate

the section coefficients. Worse, the flexible nature of a parafoil will exacerbate the effects

of section stall, which cause the profiles to deform and wrinkle even more than normal.

Nevertheless, this project attempts to apply the method to “near stall” conditions under

the belief that, for the purposes of flight reconstruction, it is preferable to get a low-quality

estimate as opposed to no estimate at all. It is vital, however, for the filtering architecture

to model the increased uncertainty as sections approach stall conditions.



Chapter 5

COMPONENT MODELS

A paraglider can be modeled as a system of three components: a canopy, a harness, and

suspension lines that connect the canopy to the harness.

Lines

Harness

Canopy

Fig. 5.1: Paraglider component breakdown
Diagram remixed from a Wikipedia contribution by user Mysid.

To compute the dynamics of the composite system, each component model must define

three things:

1. Control inputs

2. Inertial properties

3. Resultant force

This chapter develops basic models for each component, favoring simplicity whenever

possible. In particular, all models are based on a quasi-rigid body assumption; unlike a

true rigid-body model where no component is allowed to move, these models (and their

connections) are treated as “instantaneously rigid”, where they are allowed specific recon-

figurations based on the control inputs (moving the pilot in the harness, or deflecting the

trailing edges of the canopy). This may seem like a major oversimplification, but in practice
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https://commons.wikimedia.org/wiki/File:Paraglider.svg
https://en.wikipedia.org/wiki/Resultant_force
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it works quite well: although nearly every component of a paraglider is made from highly

flexible materials, they tend to remain relatively rigid during typical flight conditions.

5.1 Canopy

A paraglider canopy (or parafoil) is a kind of ram-air parachute: inflatable lifting surfaces

manufactured from nylon sheets with air intakes at the leading edge that pressurize their

internal volume. The shape of an inflated parafoil is determined by a combination of surface

materials, internal structure, air pressure, and suspension lines. Because the canopy is

flexible, pilots can manipulate the suspension lines to change the shape of the canopy,

allowing them to control its aerodynamics.

To model a parafoil, it is helpful to think of the canopy as a physical realization of

some idealized foil geometry. The physical canopy is significantly more complex because

it must attempt to create the foil geometry using flexible materials that deform once the

canopy is pressurized (as well as meeting requirements such as weight, physical reliability,

manufacturability, etc). Modeling the deformations that occur during flight (cell billow-

ing, profile flattening, surface wrinkling, etc) are exceptionally difficult to model without

resorting to complete material simulation [36], which is why this project does not consider

any deformations other than deflections of the trailing edge due to brake inputs (which are

calculated separately).

Instead, this model assumes that the foil geometry is an exact representation of the

physical canopy, then adds small empirical corrections to account for the most significant

error. It models the canopy volume with smooth upper and lower surfaces, whose extents

also serve to define the section air intakes. It does not model individual cells, but it does

incorporate an estimate of the additional inertia from the internal ribs between each cell.

The only deformations included in the model are trailing edge deflections due to pilot control

inputs, which are accounted for with precomputed section aerodynamic coefficients; it does

not support manipulation via load-bearing lines (used by pilots for maneuvers such as “big

ears”, C-riser control, etc) or the stabilo lines.
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5.1.1 Controls

A paraglider canopy is controlled by changing its shape through manipulation of suspension

lines. In theory, any of the suspension lines can be used to alter the positions, orientations, or

profiles of its wing sections, but this model only supports trailing edge deflections produced

by the lines connected to the left and right brake handles.

When a pilot applies the brakes, they generate a continuous deformation along the

trailing edge of the canopy. In terms of the individual sections, this results in deformed

variants of the undeflected section profiles. Because this canopy model does not perform

material simulation, it requires that each variant has been precomputed and assigned a

unique airfoil index that associates it with a given brake input. The choice of section index

has a significant impact on the design of the suspension line model, and should be chosen

thoughtfully.

A simplistic (but not uncommon) approach is to model the trailing edge deflection as

a global rotation about some rotation point, and completely ignore profile deformations.

The airfoil index in this case is the deflection angle measured between the deflected and

undeflected chords. The rotation point is typically implicit; for example, lifting-line models

that assume a fixed quarter-chord are implicitly rotating about the quarter-chord position.

Fig. 5.2: Deflection as a rotation of the entire profile.

By ignoring deformations of the profile geometry this model assumes the shape of the

aerodynamic coefficient curves do not change with brake deflections. Instead, the deflection

angle δf is added directly to the angle of attack, meaning the control input produces a

simple translation of the section coefficients. The appeal of this model is the fact that it

only requires the section coefficient data from the undeflected profile. Unfortunately, the

accuracy of the model degrades rapidly as the deflection angle is increased.
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A more accurate model that is extremely common for wings built from rigid materials

is to use a discrete flap which rotates about a hinge point at some fixed position along the

chord:

Fig. 5.3: Deflection as a rotation of a rigid flap about a fixed hinge point.

Fixed-hinge flaps are ubiquitous due to their simplicity and acceptable accuracy for

rigid wings. Unfortunately, this model is troublesome for flexible wings because there are no

fixed hinge points: parafoil edge deflections develop as a variable arc, not a rigid rotation.

Also, explicit deflection angles are problematic because parafoil brake inputs cannot control

the deflection angles directly; they can only control the downward deflection distance δd of

the trailing edge:

Fig. 5.4: Deflection as a vertical displacement of the trailing edge.

Because airfoils and section coefficients are conventionally normalized to a unit chord,

the natural choice of airfoil index for a parafoil is the normalized deflection distance δd, a

function of the deflection distance δd and the chord length c:

δd
def
=

δd
c

(5.1)

The normalized deflection distances are unusual in that, although they are control inputs to

the canopy aerodynamics model, they are not direct inputs to the system model. Instead,

they are computed indirectly using values provided by the suspension lines and the foil

geometry so that the deflection distribution along the span is a function of section index

and brake inputs:

δd (s, δbl, δbr) =
δd (s, δbl, δbr)

c (s)
(5.2)
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5.1.2 Inertia

For a parafoil canopy in-flight, the effective inertia is produced by a combination of three

different masses: a solid mass, from the structural materials, an air mass, from the air

enclosed in the foil, and an apparent mass, from the air surrounding the foil. (Some texts

refer to the combination of the solid and enclosed air masses as the real mass [24].)

5.1.2.1 Solid mass The solid mass is all the surface and structural materials that comprise

the canopy. A rigorous model would include the upper and lower surfaces, ribs, half-ribs,

v-ribs, horizontal straps, tension rods, tabs (line attachment points), stitching, etc, but for

this model the calculation is restricted to the upper and lower surfaces and internal ribs.

The internal ribs are assumed to be solid (non-ported), resulting in an overestimate that is

somewhat mitigated by the absence of accounting for the other internal structures.

It does, however, account for the extents of the upper and lower surfaces along the

section profile. This extent will be used to calculate the inertial properties of the upper and

lower surface materials, as well as to calculate empirical viscous correction factors for the

section drag coefficients. For this model, the extent of the upper surface and lower surface

can be defined using the normalized distance along the section profile, with −1 ≤ rlower ≤

rupper ≤ 1, with their symmetric spanwise extent controlled by a section index 0 ≤ send ≤ 1.

Fig. 5.5: Air intake parameters

Assuming the material densities are uniform, the inertial properties of the materials

can be determined by first calculating the total area a and areal inertia matrix J for each

surface (using the method in Area), then scaling them by the areal densities ρ of each

surface. The result is the total masses for the upper surface, lower surface, and internal
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ribs:

mu = ρuau

ml = ρlal

mr = ρrar

(5.3)

And their mass moments of inertia about the canopy origin O:

Ju/O = ρuJau/O

Jl/O = ρlJal/O

Jr/O = ρrJar/O

(5.4)

In theory the inertial properties are functions of the brake inputs since they alter the

distribution of mass, but in practice the effect is negligible. For this project the centroids

and moments of inertia for the solid mass are calculated once using the undeflected section

profiles.

5.1.2.2 Air mass Although the weight of the air inside the canopy is counteracted by its

buoyancy, it still represents significant mass. When the canopy is accelerated the enclosed

air is accelerated at the same rate, and must be included in the inertial calculations. (This

model neglects surface porosity; although the canopy is porous, and thus constantly receiv-

ing an inflow of air through the intakes, in a properly functioning wing the leakage is slow

enough that the volume of air can be treated as constant.)

Similar to the surface masses, the internal volume and its unscaled inertia about the

canopy origin is easily computed from the Foil geometry using the method in Volume. Given

the internal volume v and the current air density ρair, the total mass of the enclosed air

mair is simply:

mair = ρairv (5.5)

Similarly, for the inertia matrix of the enclosed air about the canopy origin O:

Jair/O = ρairJv/O (5.6)
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5.1.2.3 Apparent Mass Newton’s second law states that the acceleration of an isolated

object is proportional to the net force applied to that object:

a =

∑
F

m

This simple rule is sufficient and effective for determining the behavior of isolated objects,

but when an object is immersed in a fluid it is longer isolated. When an object moves

through a fluid there is an exchange of momentum, and so the momentum of the fluid must

be taken into account as well. In fact, it is this exchange of momentum that gives rise to

the aerodynamic forces on a wing. The difference is that apparent mass is an unsteady

phenomena that is not accounted for by simple aerodynamic models, such as Phillips’

numerical lifting-line.

In static scenarios, where the vehicle is not changing speed or direction relative to the

fluid, this exchange of momentum can be summarized with coefficients that quantify the

forces and moments on the wing due to air velocity. But for unsteady flows, where the

vehicle is accelerating relative to the fluid, the net force on the vehicle is no longer simply

the product of the vehicle’s “real” mass and acceleration. Instead, when a net force is

applied to an object in a fluid, it will accelerate more slowly than the object would have in

isolation, as if the vehicle has increased its mass:

a =

∑
F

m+ma

This apparent mass ma (or added mass [25]) tends to become more significant as the density

of the vehicle approaches the density of the fluid. If the density of the vehicle is much greater

than the density of the fluid then the effect is often ignored, but for lightweight aircraft the

effect can be significant.

Because apparent mass effects are the result of a volume in motion relative to a fluid, its

magnitude depends on the volume’s shape and the direction of the motion. Unlike the real

mass, apparent mass is anisotropic, and the diagonal terms of the apparent inertia matrix

are independent. Calculating the apparent mass of an arbitrary geometry is difficult. For

a classic discussion of the topic, see [22]. For a more recent discussion of apparent mass in
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the context of parafoils, see [23], which used an ellipsoid model to establish a parametric

form commonly used in parafoil-payload literature

This paper uses an updated method from [24] which added corrections to the ellipsoid

model of [23]. (For a replication of the equations in that method but given in the notation of

this paper, see Apparent mass of a parafoil.) The method uses several significant simplifying

assumptions (the dynamics reference point must lie in the xz-plane, the foil has circular

arc, uniform thickness, uniform chord lengths, etc), but the effects of deviations from the

method’s assumptions are negligible for typical parafoil models.

5.1.3 Resultant force

A method for estimating the canopy aerodynamics was presented earlier. An advantage of

that method is that it does not assume any particular functional form of the aerodynamic

coefficients (linear, polynomial, etc), allowing their definition to use whatever form is con-

venient. This model uses that flexibility to compose the section coefficients as a two step

process:

1. Design a set of airfoils associated with the range of trailing edge deflection, and

estimate their aerodynamic coefficients.

2. Apply correction factors to each section to account for physical inaccuracies in the

idealized airfoils.

The airfoils are indexed by their normalized deflection distance (5.1), which appears

in Phillip’ NLLT as the control input δi; the indexed airfoils allow the brakes to control

the canopy aerodynamics with no modifications to the NLLT. This section index allows

each section to provide its own section coefficients, as well as empirical correction factors.

One correction factor included in this model, CD,surface, is for “surface roughness” ([43],

[30]), and the other, CD,intakes, is for the additional viscous drag due to the air intakes

[30]. (See the demonstration for an example.) Given the foil geometry and aerodynamic

coefficients, the aerodynamics model estimates the aerodynamic forces ff,aero,n (4.1) and
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moments gf,aero,n (4.13) for the N foil sections.

ff,weight = mpg (5.7)

ff,aero =

N∑
n=1

ff,aero,n (5.8)

gf/R =

N∑
n=1

(
rCPn/R × ff,aero,n

)
+

N∑
n=1

gf,aero,n + rS/R × ff,weight (5.9)

5.1.4 Parameter summary

In addition to the design curves that define the Foil geometry, the physical canopy model

requires additional information about physical details associated with that geometry:

rupper Profile extent of the upper surface

rlower Profile extent of the lower surface

send Section index where air intakes end

ρu Areal density of the upper surface material

ρr Areal density of the internal rib material

ρl Areal density of the lower surface material

Ncells Number of internal cells

CD,intakes Drag coefficient due to air intakes

CD,surface Drag coefficient due to surface characterstics

(5.10)

5.2 Suspension lines

The suspension lines connect the canopy to the harness and pilot. The lines are convention-

ally grouped into load-bearing sets (labeled A/B/C/D, depending on their relative positions

on the section chords), brake lines (that produce the trailing edge deflections), and stabilo

lines (that assist in preventing the wing tips from curling into a dangerous cravat). Starting

from the canopy, the lines progressively attach together in a cascade that terminates at two
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risers which connect the lines to the harness. The lines are responsible for producing the

arc of the canopy, suspending the harness at some position relative to the canopy, and

allowing the pilot to manipulate the shape of the canopy.

For rigorous models the line geometry is a major factor in wing performance, but for

this project a fully-specified suspension line model would be both tedious and redundant.

It would be tedious because it would require the lengths of every segment of every line, and

it would be (mostly) redundant because the canopy model is a quasi-rigid body whose arc

is already defined by the yz-curve of the idealized foil geometry. As a result, the suspension

lines can only affect the riser position and trailing edge deflections, so this model can

reasonably use simple approximations that do not depend on an explicit line geometry.

5.2.1 Controls

The suspension lines provide two primary methods of controlling the paraglider system:

through brakes, which change the canopy aerodynamics, and the accelerator, which reposi-

tions the payload underneath the canopy.

5.2.1.1 Brakes A parafoil canopy can be manipulated by pulling on any of its many suspen-

sion lines, but two of the lines in particular are dedicated to slowing the wing or controlling

its turning motion. Known as the brakes or toggles, these controls induce downward trailing

edge deflections (see Fig. 5.4) along each half of the canopy, increasing drag on that side

of the wing. Symmetric deflections slow the wing down, and asymmetric deflections cause

the wing to turn.

A physically accurate model of the deflection distribution would need to model the

length and angle of every line and how the angles deform during braking maneuvers. Be-

cause the line geometry was not a focus for this project, an approximation is used instead.

First, observe that as brakes are progressively applied the deflections will typically

start near the middle and radiate towards the wing root and tip as the brake magnitude is

increased. For small brake inputs the deflections are zero near the wing root and tip, but

for large brake inputs even those sections experience deflections.
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Fig. 5.6: Asymmetric brake deflection.
Photograph by Frédéric Bonifas, distributed under a CC-BY-SA 3.0 license.

https://commons.wikimedia.org/wiki/File:Paragliding.jpg
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Fig. 5.7: Symmetric brake deflection.
Photograph by Wikimedia contributor “PiRK” under a CC-BY-SA 3.0 license.

To approximate this behavior, start by assuming the deflection distances from each

individual brake input are symmetric around some peak near the middle of each semispan

and vary as a quartic function q(p). Define the polynomial coefficients such that the function

value and slope are zero at p = 0 and p = 1 and a peak at p = 0.5. The result is a quartic

that is symmetric about p = 0.5 with a peak magnitude of 1.

q(p) =


16p4 − 32p3 + 16p2 0 ≤ p ≤ 1

0 else
(5.11)

Next define two variables for the section indices near the canopy root and tip that

control the start and stop points of the deflection. Representing the start and stop positions

as variables allows modeling how the deflection distribution changes with the brake inputs.

https://commons.wikimedia.org/wiki/File:ApcoAllegra.jpg
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Fig. 5.8: Truncated quartic distribution

For both sstart and sstop, define their values when δbr = 0 and δbr = 1. Then, using linear

interpolation as a function of brake input:

sstart = sstart,0 + (sstart,1 − sstart,0) δb

sstop = sstop,0 + (sstop,1 − sstop,0) δb

(5.12)

The start and stop points can be used to map the section indices s into the domain of the

quartic p, such that s = sstart → p = 0 and s = sstop → p = 1:

p(s) =
s− sstart

sstop − sstart
(5.13)

The quartic output for each brake is unit magnitude, which should be scaled by the brake

input. Summing the two scaled outputs represent the fraction of maximum brake deflection

distance over the entire span. The maximum brake deflection distance is a constraint set

by the suspension line model parameter κb, the maximum length that the model will allow

the pilot to pull the brake line (although on a physical wing there isn’t a clear limit to how

far the brakes can be pulled).
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Finally, the total brake deflection distance is the sum of contributions from left and

right brake:

δd(s, δbl, δbr) = (δbl · q(p(−s)) + δbr · q(p(s))) · κb (5.14)

A feature of this design is that setting sstart,1 < 0 allows deep brake inputs to deflect the

opposing semispan, and sstop,1 > 1 allows deflections at the wing tips, as shown in Fig. 5.9.

Fig. 5.9: Quartic brake deflections, δbl = 1.00 and δbr = 1.0

Together with the Foil geometry, the absolute brake deflection distances can be used

to compute each section’s airfoil index (5.1).

5.2.1.2 Accelerator Paragliders are not powered aircraft, but pilots can increase their air-

speed by adjusting how the payload is positioned relative to the canopy. The accelerator

or speed bar is positioned under the pilot’s feet, and by pushing out they can shift the riser

position RM forward and up. The canopy pitching angle, angle of attack, and airspeed

must adjust to the new equilibrium, changing both the airspeed and the glide ratio.

The goal is to model how the riser position changes as a function of the accelerator

control input 0 ≤ δa ≤ 1.

For notational simplicity, define A and C as the lengths of the lines connecting them

to the riser midpoint RM :

A
def
=

∥∥rA/RM

∥∥
C

def
=

∥∥rC/RM

∥∥
The default lengths of the lines are defined by two pairs of design parameters. First, the

default position of the riser midpoint RM is defined with κx and κz; this is the position of
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Fig. 5.10: Paraglider wing accelerator geometry.

RM when δa = 0. Second, two connection points along the canopy root chord are defined

with κA and κC ; connecting lines from these points are the physical means by which RM

is positioned underneath the canopy. The A lines connect near the front of the wing, and

are variable length; the pilot can use the accelerator to shorten the lengths of these lines.

The C lines connect towards the rear of the canopy, and are fixed length.

Geometrically, shortening A will move RM forward while rotating the C lines. Aero-

dynamically, shortening A effectively rotates the canopy pitch down about the point C,

decreasing the global angle of incidence of the canopy; decreasing the angle of incidence

decreases lift, and the wing must accelerate to reestablish equilibrium.

A fifth design parameter, the accelerator length κa, is required to define the maximum

length change produced by the accelerator; this is the maximum length that A can be

decreased. This value is limited by the physical geometry of the pulleys that give the pilot

the leverage to pull the canopy into its new position. The pilot uses the accelerator control

input δa, a value between 0 and 1, to specify the total decrease in A:

A(δa) = A0 − δaκa (5.15)
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For deriving the basic geometric relations, it is convenient to normalize all the design

parameters by the central chord. This avoids the extra terms in the derivation and allows

a wing design to scale naturally with the canopy.

The goal is to use the physical geometry, where the risers position is determined by A

and C, to define the position of RM a function of δa. The first step is to determine the

default line lengths by setting δa = 0 and applying the Pythagorean theorem:

A0 =

√
κ2z + (κx − κA)

2

C0 =

√
κ2z + (κC − κx)

2

(5.16)

In the general case, the line lengths are functions of δa:

A(δa)
2 = RM2

z + (RMx − κA)
2

C(δa)
2 = RM2

z + (κC −RMx)
2 = C0

2

(5.17)

Where C ≡ C0 due to the physical constraint that the length of the C lines are constant.

Subtract the two equations in (5.17):

A(δa)
2 − C0

2
= (RMx − κA)

2 − (κC −RMx)
2

Finally, substitute (5.15) and solve for RMx and RM z as functions of δa:

RMx(δa) =

(
A0 − δaκa

)2 − C0
2 − κ2A + κ2C

2 (κC − κA)

RM z(δa) =

√
C0

2 − (κC −RMx(δa))
2

(5.18)

The final position of RM with respect to the leading edge (which is also the origin of the

canopy coordinate system), scaled by the length of the central chord c0 of the wing, is then:

rbRM/LE(δa) = c0 · ⟨−RMx(δa), 0, RM z(δa)⟩ (5.19)

Where RMx was negated since the wing x-axis is positive forward.
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5.2.2 Inertia

This simplistic model assumes the inertia of the lines is negligible compared to that of the

canopy; in particular, inaccuracies in the simplified canopy inertia are more significant than

the line inertia, so this model simply defines the translational and rotation inertia as zero.

5.2.3 Resultant force

Although the lines are nearly invisible compared to the rest of the wing, they contribute a

significant amount of aerodynamic drag. Because the total system drag of a paraglider is

relatively small, even a small increase can have a large impact on sensitive characteristics

such as glide ratio; in fact, paraglider suspension lines contribute upwards of 20% of the

total paraglider system drag ([30], [20]), and should not be neglected.

This model does not provide an explicit line geometry, so it can’t compute the true line

area distribution. Instead, it lumps the entire length of the lines into configurable control

points; for example, given the total line length and average line diameter, the line area can

be lumped into singularities such as the centroid of line area for each semispan. As with

other similar designs [20], this model treats the drag as isotropic (because the operating

ranges of alpha and beta are so small the line drag is effectively constant, and what little

force exists along the z-axis is negligible compared to the lift of the canopy). Given the

total area Slines represented by each singularity the total aerodynamic drag at some control

point L can be calculated as in [20] or [30]:

Sl = κLκd (5.20)

fl,aero,n =
1

2
ρair

∥∥vW/Ln

∥∥2 SlCd,l,nv̂W/Ln
(5.21)

fl,aero =
1

N

N∑
n=1

fl,aero,n (5.22)

gl/R =
1

N

N∑
n=1

rCPn/R × fl,aero,n (5.23)
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5.2.4 Parameter summary

For the harness position:

κA Chord ratio to the A lines

κC Chord ratio to the C lines

κx Chord ratio to the x-coordinate of the riser midpoint

κz Chord ratio to the z-coordinate of the riser midpoint

κa Accelerator line length

(5.24)

For the brakes:

sstart,0, sstart,1 Section indices where deflections begin for δb ∈ {0, 1}

sstop,0, sstop,1 Section indices where deflections end for δb ∈ {0, 1}

κb Maximum trailing edge deflection distance

(5.25)

For the aerodynamics:

κL Total line length

κd Average line diameter

rCPn/R Position of lumped control point n

Cd,l,n Line drag coefficient for control point n

(5.26)

5.3 Harness

A paraglider harness is the seat for the pilot, which is suspended from the risers. Safety

straps over the legs and chest ensure the pilot cannot fall from the harness in turbulent

conditions or during unsteady maneuvers. A tensioning strap in front of the pilot’s chest

controls the horizontal riser separation distance, which allows the pilot to adjust the balance

between stability (sensitivity to turbulence) and wing responsiveness to weight shift control.

In addition to giving the pilot a safe place to sit, the harness also provides places to store

the pilot’s gear, a pouch to contain the emergency reserve parachute, and optional padding

to protect the pilot in the event of a crash.
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Instead of attempting to capture all the geometric irregularities of paraglider harnesses,

this model calls upon a time-honored solution from physics: it considers the harness as a

sphere. Moreover, the pilot, gear, and reserve parachute are accounted for by simply adding

their masses to the mass of the harness. The harness, pilot, and gear are collectively referred

to as the payload.

5.3.1 Controls

Paraglider harnesses allow pilots to shift their weight left and right, causing an imbalanced

load on each semispan. (For a real wing this maneuver also causes a vertical shearing stress

along the center of the foil, but due to the rigid body assumption of the canopy model this

deformation will be neglected.) The weight imbalance causes the canopy to roll towards

the shifted mass, resulting in a gentle turn in the desired direction. Although the turn rate

is less than can be produced by the brakes, this maneuver causes less drag and is preferred

(when suitable) for its aerodynamic efficiency.

The movement of the pilot can be arguably described as occurring inside the volume of

the harness, so weight shift control can be modeled as a displacement of the payload center

of mass P . Given that the pilot can only shift a limited distance κw in either direction,

a natural choice of control input is −1 ≤ δw ≤ 1. With the harness initially centered in

the canopy xz-plane, the displacement due to weight shift control is ∆y = δwκw. The

displacement of the payload center of mass produces a moment on the risers that rolls the

wing and induces the turn.

Defining the riser midpoint RM as the origin the harness-local coordinate system, the

position of the displaced center of mass is then:

rP/RM = r̄P/RM + ⟨0, δwκw, 0⟩ (5.27)
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5.3.2 Inertia

As in [44] (and similarly in [20]), the payload is modeled as a solid sphere of uniform density.

With a total mass mp, center of mass P , and projected surface area Sp, the moment of inertia

about the payload center of mass is simply:

Jp/P =


Jxx 0 0

0 Jyy 0

0 0 Jzz


where

Jxx = Jyy = Jzz =
2

5
mpr

2
p =

2

5

mpSp

π

5.3.3 Resultant force

Harness drag coefficients were studied experimentally in [44]. The author measured several

harness models in a wind tunnel and converted the results into aerodynamic coefficients

normalized by the cross-sectional area of the sphere. For a more sophisticated approach

the coefficient can be adjusted to account (approximately) for angle of attack and Reynolds

number [20], but this model simply treats the drag coefficient as a constant.

fp,weight = mpg (5.28)

fp,aero =
1

2
ρair

∥∥vW/P

∥∥2 SpCD,pv̂W/P (5.29)

gp/R = rCP/R × fp,aero + rP/R × fp,weight (5.30)

Note that the spherical nature of the model implies isotropic drag. Although this is clearly

a poor assumption for such a significantly non-spherical object, the fact that the wind is

rarely more than 15 degrees off the x-axis means the such a “naive” drag coefficient will

remain fairly accurate over the typical range of operation (regardless of the poor geometric

accuracy). This assumption also has the downside that it will never produce an aerodynamic

moment about the payload center of mass, but in the absence of experimental data on the

magnitude of the missing moment, this model continues to ignore it.
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5.3.4 Parameter summary

mp Total payload mass

r̄P/RM Payload center of mass default position

κw Maximum weight shift distance

Sp Projected payload area

Cd,p Payload drag coefficient



Chapter 6

SYSTEM DYNAMICS

This chapter combines the individual component models into composite system dynamics

models. In this paper, a system dynamics model is a set of derivatives that define the

translational and angular acceleration of groups of components that represent an aircraft,

specified using a coordinate system attached to the aircraft. Developing a system model

can be roughly described as a sequence of steps:

1. Choose a set of components to represent the aircraft

2. Characterize their connections

3. Choose a dynamics reference point for the composite system

4. Develop the system of equations for the accelerations

6.1 Components

The previous chapter defined component models for the canopy, suspension lines, and har-

ness; in the system models, these are lumped into two quasi-rigid-body groups called the

body and the payload. The body of the glider is the combination of canopy and suspension

lines. The payload includes the harness, pilot, and their gear (in this simplified model, the

pilot and their gear are treated as additional masses that are added to the mass of the

harness).

These models are quasi-rigid because the dynamics equations will only consider their

instantaneous configurations when calculating their accelerations; conservation of momen-

tum requires accounting for redistributions of mass, but doing so would require inertia

derivatives as functions of time derivatives of the control input (such as weight shift, accel-

erator, etc), which would significantly complicate the model. Because the redistributions of

mass are relatively small for typical scenarios, these models assume the affect of violating

conservation of momentum is negligible.

75
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It is important to note that the unfortunately ambiguous terminology of body is de-

liberate. The paraglider community typically refers to the combination of canopy and

lines as a paraglider wing, but the “body” convention improves consistency with existing

parafoil-payload literature (which in turn inherited the term from conventional aeronautics

literature). Some texts prefer the term parafoil, but having the same prefix p for both

parafoil and payload makes subscripting the variables unnecessarily difficult. Similarly, us-

ing “wing” would be preferred in this context, but subscripting with w causes confusion

when discussing wind vectors. Referring to whatever group of components include the

canopy as the body was a compromise chosen for consistency with existing literature.

6.2 Connections

Next, the system model must characterize the connection between the body and payload.

In literature, parafoil-payload models are commonly categorized by their degrees-of-freedom

(DoF): the total number of dimensions in which the components of the system are free

to move. The body has 3-DoF for translational motion and another 3-DoF for rotational

motion, and if the payload is allowed to translate or rotate relative to the body, those

additional DoF are added to the total DoF of the system model. For example, in a 6-DoF

model, the body and payload are connected as a single rigid body, with no relative motion

between them.

Fig. 6.1: Diagram for a 6-DoF model.

For typical paragliding flight maneuvers, assuming a fixed payload orientation is rea-

sonably accurate, but with one significant failing: although the relative roll and twist are

typically negligible, relative pitch about the riser connections is very common, even during
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static glides. Friction at the riser carabiners (and aerodynamic drag, to a lesser extent)

dampen pitching oscillations, but the payload is otherwise free to pitch as necessary to

maintain equilibrium. Assuming a fixed relative pitch angle introduces a fictitious pitching

moment that disturbs the equilibrium conditions of the wing and artificially dampens the

pitching dynamics during maneuvers. To mitigate that issue, the obvious solution is to

add an additional DoF, but for demonstration purposes it is simpler to define a full 9-DoF

model, where the body and payload are connected at the riser midpoint RM . The con-

nection is modeled as a spring-damper system, which produces an internal force FR and

moment MR:

Fig. 6.2: Diagram for a 9-DoF model with internal forces.

6.3 Reference point

Each dynamics model must choose a reference point about which the moments and angular

inertia are calculated. A common choice for conventional aircraft is the center of real mass

because it decouples the translational and angular dynamics of isolated objects. For a

paraglider, however, this is not possible: paragliders are sensitive to apparent mass, which

depends on the direction of motion, so there is no “center” that decouples the translational

and rotational terms of the apparent inertia matrix [24]. Because the system matrix cannot

be diagonalized there is no advantage in choosing the center of real mass. Instead, the

reference point can be chosen such that it simplifies other calculations.
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In particular, the method to estimate the apparent inertia matrix requires that the

reference point lies in the xz-plane of the canopy. Two natural choices in that plane are

the leading edge of the central section, or the midpoint between the two risers. The riser

midpoint RM has the advantage that is a fixed point in both the body and payload coor-

dinate systems, which means it does not depend on the relative position or orientation of

the payload with respect to the body. (This choice simplifies the equations for the 9-DoF

model while maintaining consistency with the 6-DoF model.)

6.4 System inputs

The inputs u to the system model the control inputs for each component (with the excep-

tion of the trailing edge deflection distances δd(s) which are computed internally using the

suspension lines and foil geometry models), the wind velocity vW/e, air density ρair, and

the gravity vector g.

u =
{
δa, δbl, δbr, δw,v

b
W/e, ρair, g

b,
}

(6.1)

Here the wind field is assumed to be uniform so the wind velocity at every control point is

defined by a single, constant vector, but for non-uniform wind fields there will be a unique

wind vector for each aerodynamic control point.

6.5 Equations of motion

The equations of motion are developed by solving for the derivatives of translational mo-

mentum eṗ =
∑

F = mv̇ and angular momentum eḣ =
∑

M = Jω̇ for each group of

components [11]. In addition to requiring the forces, moments, and inertia matrices for each

component, each system model must choose a dynamics reference point and whether to ac-

count for the affects of apparent mass. The appendix includes derivations demonstrating

different choices for several each model.

For the 6-DoF model, the most complete is Model 6a which accounts for the effects of

apparent mass, while Model 6b and Model 6c have the advantage of simplicity (making them

https://en.wikipedia.org/wiki/Equations_of_motion
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easier to implement and useful for validating implementations of more complex models).

The derivation produces a system of equations (2.13) that can be solved for the two vector

derivatives that describe the accelerations of the body relative to the earth frame Fe taken

with respect to the body frame Fb:

bv̇RM/e translational acceleration of the riser midpointRM

bω̇b/e angular acceleration of the body
(6.2)

Similarly, for the 9-DoF model, Model 9a also develops a complete system of equations

(2.32) that account for apparent mass of the canopy, but with the addition of a separate

angular acceleration for the payload with respect to the payload frame Fp:

bv̇RM/e translational acceleration of the riser midpointRM

bω̇b/e angular acceleration of the body

pω̇p/e angular acceleration of the payload

(6.3)



Chapter 7

STATE DYNAMICS

The System dynamics defined the instantaneous accelerations of the aircraft in terms of

local reference frames traveling with the aircraft. To record the behavior of an aircraft

over time, a set of variables must be chosen to encode the state of the system relative to

some global reference frame. The state dynamics — time derivatives of the state variables

— encode the dynamic behavior of the aircraft in that global frame. A flight simulator

integrates the state dynamics to generate a state trajectory: a record of how the state of

the aircraft evolved over time.

This chapter develops state dynamics models for the paraglider system models. For

each system model, it chooses a global coordinate system, defines a set of state variables x

in terms of that global coordinate system, and defines the state dynamics ẋ in terms of the

system dynamics.

7.1 State variables

To track the position of the glider, the state models must choose a reference point in the

glider’s local coordinate system. It does not have to be the same reference point used to

calculate the system dynamics, but it turns out the riser midpoint RM is also good choice

for tracking the glider position. Because the riser midpoint is close to where a pilot would

likely mount their flight recorder, it is likely to be representative of the data in a flight track,

which makes it the most convenient point for comparing real flight data to simulated data.

Another advantage is that the riser midpoint is typically very close to the glider center of

mass, which makes the position data easier to understand when developing the models.

Next, the state model must choose a coordinate system for the position. Most GPS

applications, including paraglider flight records (IGC files), encode position using the WGS-

84 geodetic datum, which uses the geocentric coordinates of latitude, longitude, and altitude.

However, positioning on the global spheroid is overkill for these simulations, so to avoid the

complexity involved with angular coordinates the state models here use a tangent-plane (tp)
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approximation ([12], p. 27) that records position as a linear displacement from an arbitrary

origin.

For orientation, there are two common representations: Euler angles and quaternions.

Euler angles have the advantage of being easier to understand, but they can experience

an issue known as Gimbal lock which prevents their use in situations where the aircraft

rotates to extreme angles. Although the limitations of the paraglider aerodynamics make

it unlikely for the simulator to encounter situations in which the glider is facing straight up

or straight down, quaternions provide peace of mind and a minor improvement in compu-

tational efficiency.

Given these choices, the state variables of the 6-DoF models are four vectors:

rRM/O absolute position of the riser midpointRM

vRM/e translational velocity of the riser midpointRM

qb/tp orientation of the body to the tangent plane

ωb/e angular velocity of the body

(7.1)

Similarly, the 9-DoF models use the same four vectors, plus an additional quaternion and

angular acceleration vector for the payload:

rRM/O absolute position of the riser midpointRM

vRM/e translational velocity of the riser midpointRM

qb/tp orientation of the body to the tangent plane

qp/tp orientation of the payload to the tangent plane

ωb/e angular velocity of the body

ωp/e angular velocity of the payload

(7.2)
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7.2 State derivatives

Next, define the derivatives of the state variables in terms of the current state and the

system derivatives. The derivative of state variable for position is straightforward since it

uses the same reference point as dynamics. The only modification is that the derivatives

calculated by the system dynamics models were taken in the body and payload reference

frames, Fb and Fp, but tracking the position and orientation of the aircraft relative to the

tangent plane requires derivatives taken with respect to the inertial frame Fe. To provide

the simulator with the proper derivatives, the state dynamics models must use the equation

of Coriolis ([12], Eq. 1.4-2) to calculate the derivative of velocity taken with respect to the

inertial frame:

ev̇tp
RM/e = Ctp/b ·

(
bv̇b

RM/e + ωb
b/e × vb

RM/e

)
eω̇b

b/e =
bω̇b

b/e

eω̇p
p/e =

pω̇p
p/e

For the orientation state variable, the time derivative of a quaternion q that is tracking

the orientation of an object can be calculated using the object’s angular velocity vector

ω = {p, q, r} in the coordinate system attached to that object (ωb
b/e for the body, or ωp

p/e

for the payload) ([12], Eq. 1.8-15):

Ω
def
=



0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0


q̇ =

1

2
Ω · q
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The complete set of state dynamics equation for the 6-DoF models in terms of the system

derivatives (6.2) and state variables (7.1) are then:

eṙtpRM/O = vtp
RM/e

ev̇tp
RM/e = Ctp/b ·

(
bv̇b

RM/e + ωb
b/e × vb

RM/e

)
eq̇b/tp =

1

2
Ωb/tp · qb/tp

eω̇b
b/e =

bω̇b/e

(7.3)

Similarly, the complete set of state dynamics equation for the 9-DoF models in terms of the

system derivatives (6.3) and state variables (7.2):

eṙtpRM/O = vtp
RM/e

ev̇tp
RM/e = Ctp/b ·

(
bv̇b

RM/e + ωb
b/e × vb

RM/e

)
eq̇b/tp =

1

2
Ωb/tp · qb/tp

eq̇p/tp =
1

2
Ωp/tp · qp/tp

eω̇b
b/e =

bω̇b
b/e

eω̇p
p/e =

pω̇p
p/e

(7.4)

The state dynamics models in (7.3) and (7.4) are ready to be used with a suitable numerical

integration method to generate the state trajectories. Due to the significant nonlinear

behavior of the dynamics, the implementation for this project uses a standard 4th order

Runge-Kutta method.

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods


Chapter 8

DEMONSTRATION

The motivation for this project was a need for paraglider flight dynamics models for com-

mercial paraglider wings. The goal of this project was to build those system models by

creating parametric component models that augment the limited available specifications

with assumptions of the unknown structure. This chapter demonstrates one possible work-

flow to estimate the parameters of those component models by combining publicly available

technical specifications and photographs with knowledge of typical paraglider wing design.

The paraglider wing used in this example is a Niviuk Hook 3. With forgiving flight

characteristics targeting advanced beginners, this wing is not intended for acrobatics, so

the limitations of the aerodynamics method are not an issue when simulating the majority

of flights produced by this wing.

Wing data for a commercial wing is typically limited to four sources:

1. Technical specifications and user manuals

2. Flight test data from certifications and reviews

3. Pictures and videos

4. Physical measurements

For this chapter, only the first three will be utilized. Although physical measurements

are ideal, they are frequently difficult to obtain (especially for older wings). Instead, this

demonstration is focused on showing that it is feasible to create an approximate wing model

even if physical measurements are unavailable.

84
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Fig. 8.1: Front-view of an inflated Niviuk Hook 3

8.1 Technical specifications

The following sections demonstrate how to estimate the parameters for a size 23 version of

the wing. The same process is used (but not shown) to create models of the size 25 and 27

wings to validate the modeling choices and implementation.

The process begins with the primary technical data from the official technical specifi-

cations manual:

https://niviuk.com/niviuk/customer_pdf/Descatalogado/Hook%203/Datos%20t%C3%A9cnicos/HOOK3_TECNIC_ENG.pdf
https://niviuk.com/niviuk/customer_pdf/Descatalogado/Hook%203/Datos%20t%C3%A9cnicos/HOOK3_TECNIC_ENG.pdf
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Table 8.1: Wing data

Property [unit] Size 23 Size 25 Size 27

Flat area [m2] 23 25 27

Flat span [m] 11.15 11.62 12.08

Flat aspect ratio 5.40 5.40 5.40

Projected area [m2] 19.55 21.25 22.95

Projected span [m] 8.84 9.22 9.58

Projected aspect ratio 4.00 4.00 4.00

Root chord [m] 2.58 2.69 2.8

Tip chord [m] 0.52 0.54 0.56

Standard mean chord [m] 2.06 2.14 2.23

Number of cells 52 52 52

Total line length [m] 218 227 236

Central line length [m] 6.8 7.09 7.36

Accelerator line length [m] 0.15 0.15 0.15

Solid mass [kg] 4.9 5.3 5.5

In-flight weight range [kg] 65-85 80-100 95-115

Recall that a “paraglider wing” includes both the canopy and the suspension lines,

so the technical data describes both components. It also includes the weight range that

the wing can safely carry while retaining control authority, which will be used to define a

suitable payload.
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8.2 Canopy

The first component model of the paraglider system is for the canopy. The canopy model

combines an (idealized) Foil geometry model with physical details to estimate the aerody-

namics and inertial properties of the canopy. For the canopy model parameters, it’s easiest

to think of them in two groups:

1. Parameters for the design curves that define the variables (3.15) of the foil geometry

model.

2. Parameters for the physical details (5.10)

8.2.1 Foil geometry

Layout The first part of specifying a foil geometry is to layout the scale, position, and

orientation of its sections.

For a parafoil, it’s easiest to start by describing the geometry of the flattened (un-

inflated) canopy before dealing with the arc. This approach is made much easier by the

choice of the Simplified model to define the section index as the normalized distance along

the yz-curve. When a parafoil is flattened the section index corresponds to the normal-

ized distance along each semispan, which allows the x-positions and chord lengths to be

measured directly without regard for the arc.

First, consider the chord length distribution c(s). The technical specifications only

list the root, tip, and mean chord lengths, so more information is required. Thankfully,

for parafoils a reasonable guess is that the wing uses a truncated elliptical distribution.

(Paragliding wings commonly use truncated elliptic functions because they encourage ellip-

tical lift distributions, thus reducing induced drag.) Such a truncated elliptical distribution

can be easily parametrized by the wing root and wing tip section chord lengths, as shown

by the Elliptical chord design curve. The technical specs list these two parameters as

croot = 2.58 and ctip = 0.52, respectively. Using those values produces a standard mean

chord length of 2.06, which exactly matches the value listed in the manufacturers specs,
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so the assumption was justified. An additional check is to compare the area of the flat-

tened chord surface projected onto the xy-plane; for these values the truncated elliptical

produces a flattened area of 22.986 compared to the true specification of 23.0, which further

confirms the design. (The small discrepancy may be explained by differences in measuring

methodology or by the current absence of any geometry twist, but in practice the effect is

negligible.)

Next is the fore-aft positioning of the sections, which are controlled by the rx(s) and

x(s) design curves. Although traditional wing geometry models would effectively choose

rx(s) = 0 and measure the x-offsets of each section’s leading edge, that choice often produces

an unnecessarily complicated x(s) function. Instead, paragliders can often be described with

constant rx(s) and x(s) = 0. As with the chord lengths, the value of rx(s) is easiest to

estimate from the flattened wing; in fact, flattened drawings are commonly available in

technical manuals, making them especially convenient. (Admittedly, such drawings do not

always maintain the true aspect ratio, and so should be used with caution.) For this wing, a

small amount of trial and error using a top-down view from the wing user manual suggests

a constant rx(s) = 0.7 gives a strong agreement with the drawing in the manual, as seen in

Fig. 8.2.

Fig. 8.2: Top-down outline of flattened canopy
The black outline is the boundary of the model’s flattened chord surface. The colored background

is taken from the user manual for the wing.

With the flattened chord surface completed, the next step is to define the arc (position

in the yz-plane) to bend the flattened surface into its characteristic shape. Photos of the

wing suggest that an elliptical arc segment is likely. The exact value of the arc reference

points ryz(s) has a minimal impact for typical parafoils (which have relatively small geo-
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metric twist), but a reasonable guess is to use the quarter-chord position ryz(s) = 0.25.

For the arc positions yz(s), an Elliptical arc can be defined using three parameters: two

for the normalized shape (Γtip and ϕtip) and one for the scale (bflat). There are several

ways to estimate the elliptical arc parameters of the physical wing, such as the width to

height ratios, or visual estimation of the arc angle, but since the specs included both the

flattened and projected spans, the simplest method is to guess a value for ϕtip and increase

Γtip until the projected span matches the expected value. Starting with an initial guess of

ϕtip = 75, a few iterations shows good agreement with Γtip = 32. Checking the fit shows

a projected span of b = 8.845 (versus the true value of b = 8.840) and a projected area of

S = 19.405 (versus the true value of S = 19.550). As with the flattened values, the small

discrepancy may be explained by differences in measurement methodology, and likely isn’t

worth optimizing further.

After the relatively straightforward process of positioning the sections is the more

difficult task of estimating their orientation. In the simplified model, section roll ϕ(s) is

defined by the curvature of the yz-curve and the section yaw γ(s) is defined as zero, but

the section pitch θ(s) (or geometric torsion) can be difficult to determine (even with a

physical wing in hand). Relying on the fact that parafoils commonly benefit from a small

amount of increasing geometric torsion towards the wing tips (or washin), a conservative

guess of 4° at the wingtip should be reasonably accurate [32]. For lack of better information,

this demonstration chose a piecewise linear model that grows 0–4° degrees over the range

0.05 ≤ |s| ≤ 1.

Profiles Having finished defining the section layout (scale, position, and orientation), each

section must be assigned an airfoil [37]. The most accurate way to determine the section

profiles would be to cut open the wing and trace the outline of the internal ribs, but in

this case that’s not an option. Another option would be to search an airfoil database, but

the simplest approach is to use a choice from literature. When using literature, it’s impor-

tant to keep in mind that although papers discussing “parafoils” and “ram-air parachutes”

have much in common with paraglider canopies, those papers are typically analyzing large
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canopies designed for heavy payloads.

From the ram-air category, [29] observes that many “older designs” use a Clark-Y airfoil

with 18% thickness; it also mentions that “newer gliders” have been design with “low-speed

sections”, such as the LS(1)-0417 (for example, see [45]). For literature targeting paragliders

specifically, one option is the NACA 23015: a classic, general purpose airfoil used in the wind

tunnel model [19]. Another paraglider-specific option is the “Ascender”: an 18% thickness

airfoil developed for an open-design paraglider [32]; for an example of literature using that

airfoil, see [46].

The criteria for selecting an airfoil is beyond the scope of this demonstration, but a

key observation is the tendency for paragliders to use unusually thick airfoils. The rea-

son for this is that thick airfoils tend to have more gentle stall characteristics, since their

low-curvature leading edges encourage flow attachment as the angle of attack increases.

Higher performance wings may select thinner airfoils to reduce drag, because the Hook 3

is a beginner-friendly wing this model uses a NACA 24018; it’s similar to the 23015 used

by the wind tunnel model but with 18% thickness. (For the curious reader, using the As-

cender airfoil barely changes the equilibrium conditions for the wing; small changes to the

equilibrium pitch angles and a small increase in the range of airspeeds, but otherwise the

change had a surprisingly small effect.)

After choosing an airfoil, the next step is to modify it support the brake inputs. The

unmodified airfoil defines the section profiles when no brakes are applied, but a paraglider

must deform those profiles in order to turn and slow down. This poses a significant difficulty

with modeling a paraglider, since the deformation is a complex process. Unlike wings made

from rigid materials with fixed-hinge flaps, the brakes produce a continuous deformation

along variable-length sections of the profile. Instead of dealing with that complexity, this

project uses a strategy to simply guess the deflected geometry.

To begin, observe that the trailing edge of a braking paraglider typically exhibits a

transition region followed by a gentle curve. In the interest of practicality, model the

transition and trailing regions as circular arc segments. (This modeling choice is made with

no theoretical justification beyond the recognition that spherical shapes tend to appear
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as the energy-minimizing state of a flexible surface under tension.) Because this is not

a theoretically well-justified model the algorithm will not be covered in detail, but this

“two-circle model” can be used to generate a set of deflected airfoils.

Fig. 8.3: Two-circle model to generate an airfoil with a smoothly-deflecting trailing edge.

For the upper surface, first choose a point (a) at some distance from the trailing edge

(c) and attach a circle C2 tangent to the airfoil at a and replace the transition region of the

airfoil with an arc from a to b; then, place a second, larger, circle C1 tangent at b and draw

another arc for the remaining length of the upper curve. For the lower surface, choose a

point d some distance roughly equal to the modified length of the upper surface and use

a Bézier curve to draw a deflected lower surface between d, the new trailing edge c, and

the point where the deformed upper surface curve crosses the original (undeformed) lower

surface curve. The radius of the smaller circle C2 controls the sharpness of the transition,

and the radius of the larger circle C1 controls the maximum steepness at the trailing edge.

This procedure maintains the length of the upper surface, but neglects the wrinkling that

normally occurs along the lower surface.
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Using this procedure with the NACA 24018 as the baseline produces a set of reasonable-

looking curves:

Fig. 8.4: Set of NACA 24018 airfoils with trailing edge deflections.

At this point the reader should be highly skeptical of this airfoil set. The choice

of airfoil, and how the airfoil deforms in response to trailing edge deflections, is full of

assumptions. Nevertheless, these results will be used for the remainder of this chapter as a

means to demonstrate the working of the model. As a result, an important thing to keep in

mind when interpreting the results of these choices is that choosing such a large radius for C2

is wildly optimistic, but was chosen anyway to reduce the curvature of the transition region.

For small brake inputs the transition curvature is negligible, but becomes progressively

sharper as deflection increases. High curvature can be a problem for some theoretical

models used to estimate the section coefficients (including the viscous/inviscid coupling

method in XFOIL [47]), since the high curvature inhibits the method from converging

on a solution when viscosity is taken into account. Softening the curvature allows the

estimate to converge, but at the cost of hiding convergence failures that typically suggest

flow separation. As a result, this profile set is likely to overestimate lift and underestimate

drag.

8.2.2 Physical details

In addition to a foil geometry, a canopy model requires details of physical attributes such

as surface material densities and air intake extents in order to calculate inertial properties

and viscous drag corrections.
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Surface materials In this case, the surface material densities can be read directly from the

materials section of the user manual:

Table 8.2: Hook 3 material densities

Surface Material Density
[
kg
m2

]
Upper Porcher 9017 E77A 0.039

Lower Dominico N20DMF 0.035

Internal ribs Porcher 9017 E29 0.041

In addition to the material densities, the canopy model requires the number of cells to

determine the distribution of mass for the internal ribs. The specs lists Ncells = 52, which

implies the wing has 53 ribs (including the wing tips). In reality the ribs are ported (holes

that allow air to flow between cells) so assuming solid ribs is an overestimate, but since

the canopy model is neglecting the mass from the remainder of the internal structure the

discrepancy should (partially) balance out.

For the air intakes, the model must know the spanwise extent (since sections near

the wing tips typically do not include air intakes). The user manual provides a projected

diagram (Fig. 11.4, p. 17) which shows that the air intakes start at the 21st of 26 ribs (the

27th “rib” in the diagram is part of the stabilizer panel) spreading out from the central rib;

assuming a linear spacing of the ribs this would correspond to s = 0.807, so send = 0.8 is a

reasonable guess.

The other dimension of the air intakes is the size of their opening, which is determined

by the extent of the upper and lower surface for each section profile. This value is difficult

to determine precisely from photos, but thankfully its effect on the solid mass inertia and

viscous drag is relatively minor; in the absence of physical measurements, a reasonable guess

is rupper = −0.04 and rlower = −0.09 for an air intake length roughly 5% of the length of

the chord. For a related discussion, see [46].

At this point the canopy can compute the total mass, which is another opportunity to

sanity check the approximations. The technical specs list the total wing weight at 4.9kg,
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Fig. 8.5: NACA 24018 with air intakes

but the canopy materials included in this model only account for 2.95kg. This highlights

the fact that the model neglects the extra mass due to things like the lines, riser straps,

carabiners, internal v-ribs, horizontal straps, tension rods, etc. Fortunately, a significant

amount of that missing mass is near the system center of mass and does not impart a

major weight moment, so for the goals of this project the discrepancy is assumed to have a

negligible impact on the overall system behavior.

Viscous drag corrections The last step is to add the empirical corrections to the section

viscous drag coefficients. The first is a general factor applied to all the sections evenly

to account for “surface characteristics”, as estimated during wind tunnel measurements of

parafoils in [43]:

Cd,surface = 0.004 (8.1)

The second correction is to account for the additional viscous drag due to the presence of

air intakes at the leading edge of some of the sections. In [30] they propose a simple linear

relationship between the length of the air intake:

Cd,intakes = 0.07
h

c
(8.2)

where h is the length of the air intakes and c is the length of the chord. This model

assumes the air intakes constant (but proportional) size along the entire span between from

−sstart ≤ s ≤ −sstart. As seen in Fig. 8.5, the air intakes are roughly 5% of the chord, for a

value of roughly CD,intakes = 0.0035. (The precise value is computed automatically by the

implementation.)
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8.3 Suspension lines

The second component model of the paraglider system is for the suspension lines. The

behavior of the lines is deceptively complex, so the numerous parameters of the model were

grouped by related functionality to (hopefully) make their relationships more intuitive.

8.3.1 Riser position

The first group of parameters (5.24) for the suspension line model determine the position

of the harness (and pilot) underneath the canopy as a function of δa, the control input for

the Accelerator.

Typically the most straightforward parameter to procure is κz: the vertical distance

from the riser midpoint to the canopy as a ratio of the central chord croot; for this wing,

the technical specs listed this value as the “Central line length” and can be used directly,

so κz = 6.8 [m]
2.58 [m] = 2.64. Similarly, the accelerator line length (the maximum amount the

accelerator can decrease the length of the central A lines) can also be read directly from

the technical specs as κa = 0.15 [m].

Next, the canopy connection positions of the A and C lines as fractions of the central

chord, κA and κC , are frequently visible in the line diagrams of the user manual; a quick

measurement of the “Line plan” diagram (Sec. 11.4, p. 17) suggests κA = 0.11 and

κC = 0.59.

The remaining parameter, κx, determines the fore-aft position of the riser midpoint.

At first glance, this value can seem elusive, since it is difficult to determine precisely using

any of the data in the technical manual; in fact, this value is also difficult to measure

accurately from the physical wing, diagrams, or pictures. However, a useful strategy is to

simply delay fixing the value of this parameter until the glider model is complete. The key

insight is to recognize how the position of the harness impacts the equilibrium pitch angle

of the wing, which in turn affects the equilibrium glide ratio of the complete glider. A

simple rule of thumb is that modern paragliders are designed to maximize their glide ratio

at “trim” conditions (that is, when no controls are being used), so choosing a value for κx
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can be accomplished iteratively by choosing the value that maximizes the glide ratio with

zero control inputs. If maximum glide requires braking, increase kappax; if maximum glide

requires accelerating, decrease kappax. The exact value will depend on the type of harness

and the weight limit the designer was using as the optimization target, but a reasonable

starting point is κx = 0.5.

8.3.2 Brakes

The second group of parameters (5.25) for the suspension line model determine how the

trailing edge of the canopy is deflected as a function of {δbl, δbr}, the control inputs for the

Brakes.

The first four parameters determine how the deflection distribution develops along the

trailing edge as the brake lines are pulled. (Recall that the brake distribution is centered

about sstart and sstop, which are interpolated between their zero- and maximum-brake val-

ues.) Estimating these parameters starts by finding a view of the trailing edge when brakes

are being applied:

First, the zero-brake values. From this picture the deflection appears to begin near

the middle of each semispan. Adding a symmetric margin softens the distribution while

keeping the starting point centered at s = 0.5, so sstart,0 = 0.3 and sstop,0 = 0.7 look about

right.

The maximum-brake values are more difficult, since they must coordinate with the

value of κb, but from safety training footage it can be seen that maximum brakes produce a

deflection from roughly sstart,1 = 0.08 to sstop,1 = 1.05 (where the stopping position exceeds

the wing tip to indicate that the wing tip itself experiences a small deflection).

Next, the model needs the maximum distance the brake lines can be pulled. On a real

wing the brake lines effectively don’t have a well-defined limit, since a pilot can literally

wrap the brake lines around their hand to pull the trailing edge all the way back to the

risers, but in practice the airfoil set Fig. 8.4 that defines the deflected profiles is limited to

some maximum deflection distance. For that reason, the Suspension lines model uses brake

inputs on a scale from 0 to 1, with a maximum brake deflection distance κb. The value of κb

https://www.youtube.com/watch?v=D-OyGZbOmS0
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Fig. 8.6: Rear-view of an inflated Hook 3 with symmetric brake deflections

should maximize the usable range of the brakes without causing the normalized deflection

distance δ̄d (5.1) of any section to exceed the distance supported by the airfoil set. Written

as an optimization in terms of (5.14), the goal is to calculate the value of κb such that:

max
s

δd(s, 1, 1)

c(s)
= δ̄d,max

Checking the airfoil set used for this model (Fig. 8.4), define δ̄d,max = 0.203. Solving the

optimization problem determines κb = 0.426 [m]. This procedure is unfortunately convo-

luted, but in summary: for this specific airfoil set, the foil’s chord distribution, and these

brake position parameters, the model can allow the brake lines to be pulled a maximum

distance of 42.6 [cm].

To check the model fit, plot the undeflected and deflected trailing edge to compare

with the reference photos:



98

Fig. 8.7: Niviuk Hook 3 23 brake distribution, δbl = 0.25 and δbr = 0.5

Fig. 8.8: Niviuk Hook 3 23 brake distribution, δbl = 1.00 and δbr = 1.0

8.3.3 Line drag

The third group of parameters (5.26) for the suspension line model determine the aerody-

namic drag of the lines. Because the model is focused on providing functionality instead

of a detailed (and tedious) layout of every line, it computes the drag by lumping the total

area of the lines into a small number of points. For this demonstration, satisfactory results

can be achieved with just two points (one for each semispan) and crude estimates of the

true line area distribution.

First, the total line length for this wing is listed directly in the technical specs, κL =

218 [m]. Next, κL must be multiplied by the average diameter of the lines κd to get their

total surface area. Although a complete set of diameters for each line segment are given

in the “Lines Technical Data” section, computing an accurate distribution would require

their detailed layout; instead, with lower sections of the cascade averaging 2.8 [mm] and

upper sections using 0.6 [mm] lines, a good starting point is to assume an average diameter

of κd = 1 [mm]. Next, the area is divided into the two control points, which must be

positioned at the area centroids of their group of lines. For an approximate model such as
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this, the positions of the points are easiest to estimate visually; using Fig. 8.6 they appear

to be around rCP/R = ⟨−0.5croot,±1.75, 1.75⟩. Lastly, each lumped line area is assigned

a drag coefficient; because the lines are essentially cylinders, a suitable drag coefficient is

simply Cd,l = 1 [20].

8.4 Payload

The final component model of the paraglider system is for the harness. This component

is responsible for positioning the mass of the payload (harness and pilot) as a function of

weight-shift, and computing the aerodynamic drag applied to the payload. The parameters

of the model are the total mass of the payload (mp), the vertical distance of the mass

centroid below the riser midpoint (zriser), the cross-sectional area of the payload (Spayload),

the aerodynamic drag coefficient (Cd,payload), and the maximum horizontal distance a pilot

can displace the centroid using weight-shift control (κw).

For the total mass, the technical specs list the weight range for the size 23 wing as

65–85 [kg], so mp = 75 [kg] is a conservative choice.

For the mass centroid, one option is to consider the DHV airworthiness guidelines [48],

which specify that the riser attachment points must be “35–65cm above the seat board”,

which suggests that zriser = 0.5 [m] is a reasonable value in most cases. Alternatively, simply

look up the technical diagram of a suitable harness; for example, the wing certification flight

tests (published in the Hook 3 User Manual, p. 22) list the “harness to risers distance” as

49cm.

For the surface area and its associated drag coefficient, consider [31] (p. 85) or [30] (p.

422); for a 75kg payload with a non-pod-style harness, a reasonable estimate of the area

would be Spayload = 0.55
[
m2

]
with an drag coefficient of Cd,payload = 0.8.

Lastly, when choosing a weight shift limit, underestimates are preferable to overesti-

mates, since an underestimate merely limits the range of behavior the model can produce,

whereas an overestimate can produce fictitious behavior; in the absence of a rigorous mea-

surement, a conservative guess is κw = 0.15 [m].
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VALIDATION

9.1 Foil aerodynamics

The Foil aerodynamics chapter selected Phillips’ NLLT because it appeared to satisfy the

Modeling requirements established at the beginning of this paper; this section uses wind

tunnel measurements to validate that choice. First it recreates the geometry using the

Simplified model, then it recreates the range of test conditions used by the experiment and

tabulates the aerodynamic coefficients estimated by the NLLT. The estimates are com-

pared to the wind tunnel data, as well as to other standard aerodynamic models commonly

recommended for nonlinear geometries.

9.1.1 Geometry

The geometry from a 2015 parafoil wind tunnel test [19] makes an excellent case study of a

foil specification from literature that positions the sections using alternative reference points

on the section chords. Moreover, the geometry satisfies the assumptions of the Simplified

model, making an implementation of the geometry almost trivial.

First, the paper describes the geometry of the full-scale canopy they wish to study:

Table 9.1: Full-scale wing dimensions

Property Value Unit

Arch height 3.00 m

Central chord 2.80 m

Projected area 25.08 m2

Projected span 11.00 m

Projected aspect ratio 4.82 –

Flat area 28.56 m2

Flat span 13.64 m

Flat aspect ratio 6.52 –
100
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For the wind tunnel test, a one-eighth scale physical model was constructed from a

wood-carbon frame with polyurethane foam sections covered in fiberglass. Physical di-

mensions and positions were provided for the physical model as pointwise data with linear

interpolation between each point.

Table 9.2: Wind tunnel wing geometry data at panel’s ends

i y [m] z [m] c [m] rx ryz θ [deg]

0 -0.688 0.000 0.107 0.6 0.6 3

1 -0.664 -0.097 0.137 0.6 0.6 3

2 -0.595 -0.188 0.198 0.6 0.6 0

3 -0.486 -0.265 0.259 0.6 0.6 0

4 -0.344 -0.325 0.308 0.6 0.6 0

5 -0.178 -0.362 0.339 0.6 0.6 0

6 0.000 -0.375 0.350 0.6 0.6 0

7 0.178 -0.362 0.339 0.6 0.6 0

8 0.344 -0.325 0.308 0.6 0.6 0

9 0.486 -0.265 0.259 0.6 0.6 0

10 0.595 -0.188 0.198 0.6 0.6 0

11 0.664 -0.097 0.137 0.6 0.6 3

12 0.688 0.000 0.107 0.6 0.6 3

It is important to notice the difference between the section numbers i used in the paper

and the section indices s used in the simplified model; the section indices are easily calcu-

lated using the normalized linear distance along the ⟨y, z⟩ points. Also, the reference data is

defined with the wing tips at z = 0, whereas the convention of this paper places the canopy

origin at the leading edge of the central section; this is easily accommodated by subtracting

the central z = −0.375 from all z-coordinates. (Alternatively, the implementation of the

simplified model in glidersim can shift the origin automatically.)

Calculating the section indices for each point and using linear interpolation as a func-

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.foil_layout.html#pfh.glidersim.foil_layout.FoilLayout
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Fig. 9.1: NACA 23015

tion of the section index produces a set of piecewise-linear design curves, and assigning

every section a NACA 23015 airfoil (Fig. 9.1) completes the foil geometry model.
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Fig. 9.2: Chord surface for Belloc’s reference paraglider wing.

9.1.2 Wind tunnel setup

The setup mounted the 1/8-scale model on a 1 meter rod connected to force sensors, and set

the wind tunnel to a 40 m/s airspeed. Measurements were taken with the angle of attack

and sideslip ranging over −5 < α < 22 and −15 < β < 15 (a range suitable capturing

longitudinal performance post-stall). For better accuracy, wind tunnel measurements should

be corrected for wall interactions with the flow ([49]; [8], Sec. 10.3). However, because

classical wind tunnel wall corrections assume a flat wing, the data for the arched parafoil
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Fig. 9.3: Profile surface for Belloc’s reference paraglider wing.

are uncorrected for wall effects.

9.1.3 Aerodynamics models

The wind tunnel data will be compared to three theoretical aerodynamics models, one that

includes viscous effects, and two that do not (inviscid models):

1. NLLT: the numerical lifting-line model from [21]

2. AVL: an extended vortex lattice method by Mark Drela [41] (who also authored

XFOIL [47] while at MIT) . With a long history in academic research, this is the

primary reference for comparing the results of the NLLT.

3. XFLR5: an experimental vortex lattice method from the open source wing modeling

tool by André Deperrois. This model is marked “experimental” by the author be-

cause it is still under development, but the principle is to mitigate the “small angles”

approximation relied on by standard vortex lattice methods by reorienting the foil

geometry instead of reorienting the flow. The purpose of including this method in

https://web.mit.edu/drela/Public/web/avl/
https://www.xflr5.tech/xflr5.htm
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these tests is to show the effect of the simplifying assumptions used when designing

the system of equations for aerodynamics models. For conventional aircraft where the

flow angles are relatively small, small angle approximations are reasonable, but for

nonlinear geometries at large angles of attack, classic methods such as AVL begin to

struggle.

9.1.4 Results

9.1.4.1 Lift vs drag The standard way to summarize the efficiency of a wing is to plot the

amount of lift it produces versus the amount of drag; with practice, such charts can be used

to quickly approximate performance characteristics such as its glide ratio. They are also

useful for quickly comparing the relative performance of each aerodynamics method.

Fig. 9.4: Lift vs induced drag

The first thing step during validation is to verify the test setup for each of the models.

One way to do that is by comparing methods that are expected to produce equivalent

results; in this case, the inviscid methods from AVL and XFLR5 should be nearly identical
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at low angles of attack, and should estimate zero drag at zero lift coefficient and zero

sideslip. Because the NLLT uses aerodynamic coefficients that include viscous effects it

is not directly comparable to the inviscid models, but because viscosity is not expected

to have a significant effect on lift at low angles of attack, it is possible to disregard the

viscous drag coefficients and plot the pseudo-inviscid polar curve by setting the viscous

drag coefficients to zero, as shown in Fig. 9.4. (This is a “pseudo” inviscid curve since

the section lift coefficients used by the NLLT include viscous effects.) The resulting drag

coefficient is limited to drag produced by the creation of lift, as would be predicted by the

inviscid methods. This plot is useful because it validates that the geometry model and test

conditions were configured correctly in all tools, and provides evidence that the NLLT was

implemented correctly.

Fig. 9.5: Lift vs drag

The second plot (Fig. 9.5) compares the inviscid methods to the NLLT with the un-

adjusted aerodynamic coefficients from XFOIL. The first thing to note is the difference

compared to the pseudo-inviscid plot (Fig. 9.4): as expected, including viscous drag sig-
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nificantly improves the agreement between the theoretical and experimental results for the

NLLT. Another observation is the significance of the inviscid assumption, with both invis-

cid methods overestimating lift and underestimating drag at higher angles of attack. This

plot also appears to show the effect of the “small angles” approximation relied on by AVL,

with the experimental “tilted geometry” method from XFLR5 providing better accuracy at

high angles of attack and sideslip.

Fig. 9.6: Lift vs drag with extra viscous drag due to “surface characteristics”

A final plot (Fig. 9.6) is more for future reference than validation. Instead of the

unadjusted aerodynamic coefficients from XFOIL, it adds the additional viscous drag due to

“surface characteristics” suggested in [43] as a result of their wind tunnel tests on parafoils.

Because this empirical adjustment will be used in the Demonstration portion of this paper,

this plot is useful to show the expected accuracy of the NLLT when applied to a model of

commercial paraglider wing used for dynamic simulations.



108

9.1.4.2 Coefficients vs angle of attack Another valuable way to summarize wing behavior

is to plot the longitudinal-centric coefficients (lift, drag, and pitching moment) versus the

angle of attack α. These results are grouped into four quadrants by the sideslip angle β

used during the test.

Fig. 9.7: Lift coefficient vs angle of attack

The first (and arguably most interesting) plot is for lift versus angle of attack (Fig.

9.7). Separating lift into its own plot reveals the source of the flatline region in the “Lift vs

drag” plots; the wing enters stall (so lift ceases to grow) at approximately α = 17°, β = 0°,

and slightly earlier during sideslip (although the nonlinearity of the geometry dramatically

affects the stall pattern and “smooths” the effect making it more difficult to see).

The more interesting result, however, is that all three theoretical methods are in very

close agreement for the majority of the range, they all mispredict the zero-lift angle of

attack, and they all uniformly overestimate the slope of the lift curve. This anomaly is

difficult to explain; at β = 0° and low angles of attack, the effects of viscosity should have a

negligible effect on lift, and the vortex lattice methods should perform very well, but they
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don’t. The fact that the NLLT agrees with them is encouraging (again, the fact that it uses

lift coefficients that account for viscosity should have a negligible effect in this test, and so

the NLLT is expected to agree with the inviscid methods). I contacted the authors of both

the wind tunnel data and the NLLT, and neither author had any immediate feedback on

what would cause this issue. Nevertheless, there are two useful takeaways:

1. The NLLT is at least as accurate as the inviscid methods.

2. The NLLT is approximating the nonlinear effects of early stall, whereas the inviscid

methods maintain a virtually linear response. This is an encouraging sign that the

NLLT is a suitable choice given my Modeling requirements that the aerodynamics

should provide “graceful degradation of accuracy” as it approaches high angles of

attack.

This plot also highlights a limitation of relying on aerodynamic coefficients: the NLLT

cannot produce a solution if any of the sections experience a section-local angle of attack

that exceeds the range supported by the set of aerodynamic coefficients. This is effect is

clear as the sideslip angle increases: because the wing is arched, as sideslip becomes positive

(so the relative wind approaches from the right of the wing) the angle of attack on the left

wingtip increases. As a result, as soon as global α and β produce a section-local α that

exceeds the maximum value in the coefficients lookup table, the NLLT cannot produce a

solution. The inviscid models, on the other hand, are founded on linear relationships with

no upper bound, allowing them to generate estimates at significantly higher angles of attack

and sideslip. Whether a bad estimate is better than no estimate, however, depends on the

application.

When considering drag versus angle of attack (Fig. 9.8), the most noteworthy details

are how all three methods fail to predict the rapid increase in drag as the wing enters the

stall region, and how the “tilted geometry” of the XFLR5 model allows it to more accurately

track the shape (if not the value) of the viscous solution.

Another coefficient that has a strong impact on the pitch stability of a paraglider

canopy is the pitching moment versus angle of attack (Fig. 9.9). This plot can be viewed
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Fig. 9.8: Drag coefficient vs angle of attack

Fig. 9.9: Pitching coefficient vs angle of attack.
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as pre- and post-stall conditions (before and after α = 17° in the β = 0° quadrant), and are

worth considering separately.

In the pre-stall region, the plot shows how a negative pitching moment grows with

α, resulting in negative feedback that provides a restoring force back to equilibrium. If

the wing pitches backwards, the negative pitching moment will help bring the canopy back

overhead into a stable position.

In the post-stall region, the effect of flow separation can be seen in the experimental

data by the sudden flat response of the pitching coefficient to α. This reason is complex,

but informative:

• Because the lift vector at positive α points forwards, lift creates a negative (forward)

pitching moment. At stall, lift decreases, which increases Cm.

• Because drag points backwards, it creates a positive (backwards) pitching moment.

At stall, drag dramatically increases, which also increases Cm.

• At stall, flow separation typically starts at the trailing edge on the upper surface. The

loss of pressure creates a negative (forwards) pitching moment, which decreases Cm.

For the wind tunnel model, it appears that (again, for the β = 0° case) these effects

are counteracting each other, producing a relatively flat Cm in the post-stall region. The

inviscid method used by AVL fails to capture the nonlinearity of flow separation, causing

it to overestimate the lift and underestimate drag that together producing a significantly

inaccurate pitching moment post-stall. (Unfortunately the experimental method in XFLR5

had a bug that produced zero sideforce, so its results are omitted.) The NLLT performs

much better, but still highlights the effect of using the well-known “optimistic” estimates

produced by XFOIL near the stall region; and again, the NLLT fails to converge when

the section-local α of the downwind wingtip exceeds the maximum α supported by the

coefficients lookup table instead of producing progressively more incorrect results.
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9.1.4.3 Coefficients vs sideslip A third perspective of wing behavior is to plot the coeffi-

cients that affect motion in the y-direction (sideforce, rolling moment, and yawing moment)

versus angle of sideslip β. These results are grouped into four quadrants by the angle of

attack α used during the test. Unfortunately, the experimental method in XFLR5 had a

bug that produced zero sideforce, which is also coupled to the roll and yaw moments, so its

results are omitted.

Fig. 9.10: Lateral force coefficient vs sideslip

Plotting sideforce vs sideslip (Fig. 9.10) showed good agreement between the experi-

mental data and both theoretical models, although the NLLT has a slight accuracy advan-

tage over the inviscid method.

In the rolling moment versus sideslip test (Fig. 9.11) we find the only examples where

the inviscid method outperforms the NLLT, but otherwise this plot demonstrates no note-

worthy effects.

The last plot, for the yawing moment versus sideslip (Fig. 9.12) has several similarities

to Fig. 9.9, except instead of demonstrating the pitch stability of the wing, it demonstrates
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Fig. 9.11: Rolling coefficient vs sideslip

Fig. 9.12: Yawing coefficient vs sideslip
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the yaw stability of the wing. When the relative wind approaches from the right (β > 0°)

a positive yaw moment will turn the canopy into the wind, and vice-versa for wind from

the left. And again, the effect of failing to accurately model stall conditions on individual

sections (the downwind sections, specifically) causes both methods to overestimate the

restoring moment. Nevertheless, the NLLT succeeded in capturing at least part of the

effect, once again proving the value of the method over purely inviscid solutions.

9.2 Niviuk Hook 3 system dynamics

The previous chapter provided a Demonstration of how to estimate the parameters of the

component models for a commercial paraglider wing. Having defined the component mod-

els, they are combined into a composite System dynamics model that provides the behavior

of the complete glider. Getting to this point with such little information required many

modeling assumptions, simplifications, approximations, and outright guesswork, so the nat-

ural next step is to question the validity of the model: how accurately does it estimate the

true behavior of the physical system? In any modeling project it is vital to validate the

model by comparing its estimates to experimental data, and this case is no exception.

Unfortunately, experimental data is extremely scarce for commercial paraglider wings.

Unlike the previous section, wind tunnel measurements are unavailable. What’s worse, the

dynamic behavior of a wing in motion is significantly more complex than the static behavior

of a wing held fixedly in a wind tunnel. As a result, validation is limited to point data and

general expectations gleaned from sources such as glider certifications and consumer wing

reviews. Clearly such sources lack the rigor to “prove” model accuracy, but — when taken

together — they can still provide incremental confidence that a model is adequate to answer

basic questions of wing performance.
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9.2.1 Polar curve

The conventional way to summarize the performance of a gliding aircraft is with a chart

called the polar curve. These curves show the vertical and horizontal speed of the aircraft

at equilibrium over the range of brake and accelerator inputs, providing information such

as the speed range of the glider and its glide ratio at different speeds. Given the wealth of

information compactly communicated by a polar curve, they are an excellent starting point

for critiquing the estimates of a flight dynamics model for a glider.

The previous section demonstrated the creation of a paraglider model for a Niviuk

Hook 3, size 23. Now, models for the larger sizes of the wing (created using the same

workflow) will be compared to experimental data by comparing measurements from test

flights to the predicted polar curves.

9.2.1.1 Size 25 The experimental data for this section is taken from a size 25 version of

the wing that was reviewed for the French magazine “Parapente Mag”. Unfortunately,

reviews such as this cannot provide the entire polar curve: because each point is laborious

to measure accurately, reviews only provide noteworthy values, such as the minimum and

maximum speeds, or the horizontal and vertical speeds that mark the “minimum sink”

and “best glide” operating points of the glider. Despite this ambiguity, by plotting the

experimental point data over the theoretical curve it is possible to get a sense of the general

accuracy of the model estimates.

Fig. 9.13: Polar curve for Niviuk Hook 3 size 25
Colored markings are theoretical data from the model, black markings are experimental data from

Parapente Mag. Red represents symmetric braking, green represents accelerating, and the blue
diagonal line marks the predicted best glide ratio. The three black vertical lines mark the

experimental values for minimum speed, trim speed, and maximum speed; the left black dot is the
“minimum sink” operating point, and the right dot is the “best glide” operating point.
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If the model is a good approximation of the glider that generated the data — and

assuming the data was collected accurately — then the experimental values should match

the predicted values:

• The minimum ground speed should align with the leftmost endpoint of the red curve

• Trim speed should align with the point where the red and green curves connect

• The maximum ground speed should align with the rightmost endpoint of the green

curve

• The “minimum sink” operating point should lie on the point where the curve reaches

its minimum

• The “best glide” operating point should lie on the point where the blue line touches

the polar curve

Although the diagram is a convenient way to summarize so much information it can

be hard to distinguish specific values, so their numerical equivalents are listed below.

Table 9.3: Niviuk Hook 3 25 simulated polar curve vs flight

data

Value Experimental Simulated Error

Minimum speed 6.7 7.4 +10%

Minimum sink <h, v> 9.22, 1.02 9.6, 1.06 +4.2%, +3.9%

Trim speed 10.6 10.2 -3.8%

Maximum speed 14.4 14.7 +2.08%

Best glide <h, v> 10.4, 1.12 10.2, 1.08 -1.9%, -3.6%

Best glide ratio 9.3 9.44 +1.5%

Observations:

• The minimum ground speed of the theoretical model is significantly higher than the

experimental value. That may be explained by the conservative value of κb = 0.44 [m]
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(the maximum distance the brakes can be pulled; see the earlier discussion when

defining the parameters for the Brakes). The review listed the maximum brake length

as >60cm, which suggests that this model can only apply <73% of the full range of

brakes, so this result in unsurprising.

• Minimum sink occurs at about 0.4 m/s slower ground speed. This may be related to

the procedure to generate the deflected Profiles, to the deflection distribution, or to

the aerodynamic coefficient estimates from XFOIL.

• Minimum sink rate is remarkably close (1.06 versus 1.02 m/s), which I find surprising

since I expected the “optimistic” airfoil set Fig. 8.4 to overestimate lift during braking.

• The theoretical model underestimates the ground speed at trim. Although this could

be due to it overestimating the drag, it is far more likely that the model is overesti-

mating the lift of the wing, so less speed is required to counteract the weight of the

glider.

• This experimental data reported the best glide at 10.4 m/s when trim was 10.6 m/s.

This disagrees with our earlier assumption that best glide should occur at trim.

• The model overestimates the maximum ground speed. This may suggest it is un-

derestimating drag, or it could suggest that the model parameters are wrong (κC in

particular has a large impact on maximum speed), or it could be because this rigid

body model neglects foil deformations (it assumes the accelerator produces a perfect

pitch-rotation of the foil) as well as the section profile deformations that increase with

speed.

In truth, these observations are just a few of the possible issues with the theoretical

model (not to mention issues with the experimental data itself); there are so many simplifi-

cations at work, and point data cannot hope to reveal all their flaws. These results suggest

that the performance of the model is excellent when predicting longitudinal equilibrium,

but a wider variety of wing models need to be examined to determine if this excellence

generalizes to other wings.
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9.2.1.2 Size 27 The experimental data for this section is taken from a size 27 version of

the wing that was reviewed for the Spanish magazine “Parapente”. As with the size 25

model, plotting the experimental data on top of the theoretical curves produces valuable

reference data:

Fig. 9.14: Polar curve for Niviuk Hook 3 size 27
Colored markings are theoretical data from the model, black markings are experimental data from
Parapente. Red represents symmetric braking, green represents accelerating, and the blue diagonal

line marks the predicted best glide ratio. The three black vertical lines mark the experimental
values for minimum speed, trim speed, and maximum speed; the left black dot is the “minimum

sink” operating point, and the right dot is the “best glide” operating point.

As before, the numerical equivalents of the data in the figure above:

Table 9.4: Niviuk Hook 3 27 simulated polar curve vs flight

data

Value Experimental Simulated Error

Minimum groundspeed 6.7 7.83 +17%

Minimum sink <h, v> 9.72, 1.15 10.2, 1.12 +4.9%, -2.6%

Trim speed 11.1 10.8 -2.7%

Maximum speed 15 15.4 +2.7%

Best glide <h, v> 11.1, 1.17 10.8, 1.13 -2.7%, -3.4%

Best glide ratio 9.5 9.52 0.21%

The observations are similar to that for the size 25 model. Overall the fit is excellent.

This model was limited to κb = 0.46 [m], or <76% of the usable “>60cm” brake length,

so the minimum ground speed is still too high. And again, the model underestimates the

ground speed at trim. The best glide ratio matches exactly, although the theoretical model
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still slightly underestimates the ground speed where that occurs.

9.2.2 Pitch stability

Another simple sanity check is to verify the glider pitch stability by flying on a straight

course at maximum speed and abruptly releasing the accelerator ([48], Sec. 4.1.5). Releasing

the accelerator shifts the payload to shift aft, causing the canopy to pitch backwards; in

the positive-pitch position the glider briefly ascends as it converts the energy from its high

airspeed into altitude, but because the wing loses airspeed so quickly it will “overshoot” its

equilibrium point and need to dive forward as the glider attempts to reestablish equilibrium.

The danger of this pitch-forward behavior is that it may induced a frontal collapse of

the canopy. To estimate the safety margin of the wing, the test assigns a grade based on the

negative pitch angle as it dives forward. If the wing pitches forward less than 30° it receives

an “A”; if it pitches forward 30–60° it receives a “C”, and for >60° it receives an “F”. The

Niviuk Hook 3 is rated as an “B” wing, and should not pitch forward more than 30°. Using

this model to simulate the test protocol by releasing the accelerator in 0.3s produces:

Fig. 9.15: Flight test, rapidly exiting accelerated flight, side view
Black lines are drawn from the riser to the point directly above the payload to help visualize the

canopy pitch angle, and are added every 0.5 seconds.

The model predicts the wing configuration will pitch backwards 23° before diving for-

wards to a pitch angle of -13° which satisfies the expected grading. Although this test is

not particularly informative, it’s simplicity makes it worthwhile.
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Fig. 9.16: Flight test, rapidly exiting accelerated flight, pitch angle

9.2.3 Steady-state turn

Although the simplicity of longitudinal dynamics make them the best place to start testing

a model, the more difficult tests are for the dynamic behavior. One simple test is to check

the behavior during a steady 360° maneuver and compare them to the “guidelines” in [13]

that lists approximate sink rates and turn radii as a function of bank angle. The method

does come with some caveats, however: for example, the author does is not discussing a

specific glider, so these values are assumed to be averages of wing performance; this this is

a midrange paraglider wing, it is assumed to be “average”. Also, the author does not define

the control inputs, but standard piloting practice is to use a combination of weight shift

and brake for an efficient turn, so it is safe to assume the author is describing situations

with those control inputs. Simulating this scenario produces the results in Fig. 9.17:

Table 9.5: Steady-state turn validation

Value Guideline Simulated Error

Turn radius [m] ~12 20 +67%

Sink rate [m/s] ~1.1 1.5 +36%

360° turn rate [sec] ~11.5 16 +40%

Unlike the accurate estimates for the polar curves, which measured steady-state, lon-

gitudinal dynamics, this model clearly struggles with this test. It is unclear what is causing
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Fig. 9.17: Steady-state turn at a 20° bank angle, top-down view

the discrepancy, but it is an important counterpoint that highlights the many dimensions

of model accuracy. It is also suggests a direction for future work on weight shift modeling.



Chapter 10

CONCLUSION

10.1 Results

This project completed the set of tasks outline in its Roadmap:

1. It developed a novel Foil geometry specifically to enable simple representations of

paraglider canopies.

2. It selected, implemented and validated a fast-but-accurate theoretical aerodynam-

ics model well-suited to the nonlinear geometries and challenging flow conditions of

paraglider canopies, as outlined in the Modeling requirements defined at the beginning

of the project.

3. It developed parametric models to estimate the inertial properties and resultant forces

of the components of a paraglider.

4. It used the parametric components to demonstrate how to produce a complete flight

dynamics model of a commercial paraglider wing using only limited technical data,

photos, and video of the wing.

5. It validated the longitudinal performance of the demonstration model against basic

flight test data, as well as highlighted some areas in which the accuracy of flight

dynamics could be improved.

This final section of the paper will address the last of the Modeling requirements: it will

revisit the set of motivating questions that helped guide the design process, and consider

the ability of these models to answer them.
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10.1.1 Study: drag breakdown

A common question for curious pilots is how to reduce the drag of their glider so they can

improve the glide ratio or top speed of their wing. The natural progression of this curiosity

is wonder where all the drag comes from in the first place. One way to answer that question

is to plot the drag contributions from each component [50].

Fig. 10.1: Drag breakdown for Niviuk Hook 3 23 with a pod harness.

Viscous drag includes effects such as the sheer forces produced by the viscosity of

the air, and the pressure drag due to flow separation (the “vacuum” that can occur on

the downwind side of an object); these forms of drag occur on every surface of the glider,

including the lines and payload. Inviscid drag is less intuitive: commonly referred to as

“lift-induced drag”, it is the energy lost in the vorticity that the wing sheds into its wake

as a side-effect of producing lift.

This diagram provides a satisfying look into the behavior of a wing across the range of

speeds. At the low end, pilots understand that the “brakes” will slow the wing by increasing

its drag, but may be surprised to discover that the increase in drag is dominated by how

the wing produces lift. At the high end, it can be surprising to learn what proportion of

the total system drag is produced by the seemingly-negligible suspension lines. Although

drag is just one piece of the lift/drag ratio, this sort of breakdown is valuable for estimating

how much improvement is possible by (for example) reducing the drag of the payload.
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This decomposition is also educational because it offers another perspective of how

each component of the wing affects the overall design. Consider the general guideline that

paraglider wings are designed to achieve their maximum glide ratio at “trim” (zero controls),

which usually coincides with the speed that minimizes the total system drag (as seen here).

Now suppose the design was changed; for example, increasing the aspect ratio of the canopy

will tend to decrease its lift-induced drag, which in turn requires repositioning the payload

at trim. The complete system behavior is a complex interaction of components, and having

access to a parametric model such as this is an excellent resource for quickly answering

questions about glider efficiency by developing an intuition of how their interactions affect

the system behavior.

10.1.2 Study: effects of Reynolds numbers and apparent mass

There were two questions at the start of this project that affected my modeling choices:

1. How significant are the effects of apparent mass?

2. How significant are the effects of accurate Reynolds numbers?

Both contributions to the flight dynamics are typically neglected in paraglider dynamics

models without clear justification or discussion of their expected impact on model accuracy.

The models developed in this paper can be used to provide insight on those questions.

Using the Niviuk Hook 3 (size 23) component models created for the Demonstration, a

programming script created multiple instances of the 6-DoF system models, configuring

them to either respect or ignore the effects of apparent mass and precise Reynolds numbers

(which are normally computed dynamically for each wing section). Pairs of models — one

with the full dynamics and the other lacking one or both effects — are put into a figure-8

maneuver starting at that model’s equilibrium state and receiving the same control inputs

over a span of 60 seconds. (The maneuver did not use weight shift control to avoid possible

issues modeling canopy deformations.) Three simulations were run:

1. To show the affect of neglecting apparent mass (Fig. 10.2)
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2. To show the effect of neglecting accurate Reynolds numbers by using a constant

Re = 2× 106 (Fig. 10.3)

3. To show the combined effect of neglecting both apparent mass and accurate Reynolds

values (Fig. 10.4)

Fig. 10.2: Figure-8 when neglecting apparent mass

The differences produced by each simplification are similar in this case, and will be dis-

cussed jointly. First, the less noticeable difference between the two simulations in Fig. 10.4

is the total altitude loss, where the “fixed Reynolds, no apparent mass” model descended

an extra 2 meters. The difference is not visually interesting so no side-view is shown, but

the effect is worth noting and should be expected for two reasons:
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Fig. 10.3: Figure-8 when neglecting accurate Reynolds numbers

1. There is minimal acceleration in the z-direction so the z-component of the apparent

mass is negligible.

2. The sections most impacted by the incorrect Reynolds values are at the outside of

the span. Since the majority of the lift is produced by the central sections, which are

already near the Re = 2 × 106 value, total lift is not greatly affected by assuming a

fixed value of Re.

The more significant effect was on the lateral motion of the glider, which is easier to

see from a top-down perspective (Fig. 10.5), where the complete model exhibited a turn

radius of 54 [m] versus 51 [m] of the simplified model. (The cumulative horizontal distances

traveled were 522 [m] at 8.7
[
m
s

]
and 532 [m] at 8.87

[
m
s

]
, respectively.) Again, the effect is

expected for two reasons:
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Fig. 10.4: Figure-8 neglecting both apparent mass and accurate Reynolds numbers

1. Apparent mass resists changes to the translational velocity, which reduced the com-

plete models centripetal acceleration and prevented it from producing as narrow a

turn as the simplified model.

2. Lower Reynolds values resulted in lower lift coefficients, especially for sections with

deflected trailing edges (since their increased curvature magnifies the viscous effects).

The lift vectors of sections on the inside semispan are angled into the turn and pull

the canopy into the circle, so reducing their lift contributions further reduced the

complete models centripetal acceleration.

Because these affects are heavily dependent on the glider design and specific flight

maneuvers, this discussion focused on the qualitative nature of these effects. Whether
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Fig. 10.5: Figure-8 neglecting both apparent mass and accurate Reynolds numbers, topdown
view

these sources of error are significant depend heavily on the model (the canopy geometry in

particular, as well as target airspeed of the glider) and its application. For example, when

developing a linearized model to generate an error term for a control model these effects

can be safely neglected, but any long-run simulation should review their specific control

sequence (because turning magnifies their impact). With this model, checking the impact

of such choices is readily available.

10.1.3 Study: indirect thermal interactions

A reliable way to start a lively discussion on a paragliding forum is to question what happens

when a wing encounters a thermal on only one side of its wing. Some pilots will argue that

the thermal will pull the wing in; other pilots will argue that the thermal will push the wing

away. A grand desire of this project was that the resulting flight dynamics model might be

able to shed light on why two seasoned pilots might hold such opposing views.

This final study used the Niviuk Hook 3 size 23 components from the Demonstration

with a 6-DoF system dynamics model. The scenario is simple: place a thermal slightly

off-center of the path of a paraglider flying straight forward at equilibrium with symmetric
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brakes. Because the span of the wing is only 8.84 [m], the thermal was placed 15 [m] to

the right with exponential falloff such that the thermal strength was reduced to 5% by the

time it reached the center of the canopy with a peak (core) strength of 3 [ms ] (extremely

strong for such a tight thermal). The effect of the exponential falloff was a peak gradient

of 0.67 [ms ] from the wingtip nearest the thermal to the center of the canopy as the glider

passed the core.

Fig. 10.6: Indirect thermal interaction.
The first row represents the Euler angles for position, the second row represents the angular

velocities, and the third row is the angular accelerations.

These results can be viewed in two ways: quantitatively and qualitatively. From a

quantitative perspective the results are disappointing: the absolute angular deviations were

on the order of 1°, which seem impossibly small for pilots to argue over. From a qualitative

perspective, however, the results are perhaps more interesting. As the wing passes the

thermal, the canopy initially rolls to the right (into the thermal), pitches forward (into the

thermal), and the adverse yaw twists the wing to the left (away from the thermal); although

the angular deviations are tiny it may produce an effect similar to falling, which needs only

a small distance to produce a striking sensation. The same logic applies after the initial

response, where the accelerates again, but more rapidly, and in the opposite direction: now
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the wing is rolling away from the thermal while yawing into it. Perhaps the sensation of

acceleration holds the key to the argument: whether a pilot is more sensitive to roll or

yaw, and whether they’re more sensitive to the initial or secondary accelerations may offer

a partial explanation?

Personally I find this argument unconvincing. Despite the potential explanation offered

by the qualitative analysis, it seems much more likely that the model has failed to capture

one or more of the significant dynamics of the system. One possible cause is the foil

aerodynamics model, which is not intended to capture unsteady aerodynamics; despite its

accuracy in the wind tunnel testing, it may be inadequate for this level of subtlety in

dynamic scenarios. Another possible cause is the quasi-rigid-body assumption imposed on

the canopy geometry; real wings would flex and distort, especially in such a strong thermal,

and it seems like that such deformations may play a larger roll that anticipated.

All in all, despite the underwhelming results the truth is this was always an ambitious

goal, and I hope it demonstrates the theoretical advantages of pursuing flight dynamics

models that are capable of capturing the effects of non-uniform wind vectors along the

span of the wing, and will serve as a starting point for some future work. Perhaps we will

someday have an answer for the forums.

10.2 Future work

10.2.1 Canopy

• Arc deformations: the design curves that define the foil geometry are not required to

be constant functions; they can be functions of control inputs, such as weight shift.

The primary difficulty is that the current implementation of the NLLT assumes that

the shape of the canopy is constant, but that a practical limitation, not a theoretical

one.

• Weight shift modeling: the Steady-state turn sanity check of the demonstration model

suggests that lateral movement of the mass centroid is not the primary control mech-
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anism for weight shift control. The alternative mechanism is the wing deformations

that occur during weight shift. At the outset of this project the assumption was that

the canopy deformations during weight shift would be negligible compared to the dis-

placement of payload mass, but the turn radius and sink rate suggest otherwise. It

may be fruitful to generate plausible yz(s, δw) design curves (so the foil arc deforms

as a function of weight shift), and consider if the changes to the canopy aerodynamics

would explain the inaccuracies in the rigid canopy model. If canopy arc deflections

prove to be a significant factor for accurate weight shift predictions, they should prob-

ably be implemented as an interaction between yz(s) and the suspension line model.

(Paraglider pilots quickly discover the relationship between chest riser strap width

and weight shift control, which strongly suggests that the lines play a dominant role).

• Choice of airfoil: the Demonstration chose the NACA 24018 as an example of a

conservative guess, but if a few commercial section profiles were measured accurately

(including their spanwise variation), all models of commercial paraglider wings would

benefit.

• Deflected profiles: the demonstration used section Profiles produced by a “two circle”

model of trailing edge deflection. That optimistic model was designed to balance

the accuracy of profile deformation against the ability to estimate the aerodynamic

coefficients with XFOIL. In reality, their unnaturally smooth curvature likely causes

them to underestimate flow separation. Future work would benefit from more accurate

deflection profiles.

• Aerodynamic coefficients: in conjunction with more accurate deflection profiles, an-

other improvement would be is to use more sophisticated methods to estimate the

aerodynamic coefficients. One option is RFOIL from Delft University of Technology

(a fork of XFOIL that is reported to improve estimates, particularly at high angles of

attack), or to apply a complete computational fluid dynamics approach with Open-

Foam.
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10.2.2 Lines

• The parameters for the brakes are confusing at first glance, and tedious to tune. At

the least they would benefit from an automated procedure where instead of having to

tune sstart,1 and sstop,1 to match κb (which was in turn limited by the δ̄dmax supported

by the aerodynamic coefficient set). It would be much easier to define sstart,1 and

sstop,1 at some hypothetical value of κb and have the lines adjust their values based

on the true κb.

10.2.3 Harness

• The spherical model neglects pitch and yaw moments due to angle of attack and

sideslip, but because paragliders put their legs out in front those effects seem likely.

• The harness model uses constant drag coefficients. [20] developed a model for the

harness that accounts for Reynolds numbers, but that model was not tested in this

work.

10.2.4 System dynamics

• This paper derived a 9-DoF system dynamics model that modeled the connection

between the lines and payload as a spring-damper system, but without flight test-

ing the parameters were difficult to estimate. It would be interesting to review the

applicability of the spring-damper model and to estimate suitable parameters. I sus-

pect that the lack of canopy deformations and the inability of the 6-DoF to show

payload-relative roll are at least partial explanation of the underwhelming results of

the indirect thermal study. The sensation of payload-relative roll and yaw accelera-

tions could definitely play a role in why pilots disagree on the behavior of a paraglider

encountering a thermal.

Study:indirectthermalinteraction
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10.3 Open source

The materials to produce this paper and its implementation [1] are both available under

permissive open source licenses. Although this work focused on paragliders, the structure of

the models is mirrored in the structure of the code, and should be easily adaptable to other

gliding aircraft such as hang gliders or kites. For maximum versatility and approachability,

the entire implementation was built on the Python scientific computing stack; despite not

producing the fastest implementation, Python made up for the performance cost with value

in other areas:

• Free (unlike MATLAB, AutoCAD, etc)

• Extensive cross-domain usage (aerospace, computer science, etc)

• Powerful scientific computing libraries (NumPy, SciPy, Numba)

• Easy to integrate into tools with native Python interpreters (such as FreeCAD,

Blender, and QGIS)

I am grateful for the work freely shared by those who came before, and hope that this

material may provide some value to those who follow.

https://github.com/pfheatwole/thesis/
https://github.com/pfheatwole/glidersim/
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APPENDIX A

Notation and Symbols

Table A.1: Common Notation

Notation Meaning

x a scalar

x a vector

xy a scalar raised to a power, where y is a scalar

xc a vector in the coordinate system c

xB/A a vector from point A to point B (“B with respect to A”)
rẋ the derivative of a vector taken in reference frame Fr

xk a variable at index k of a sequence of length K

x(n) element n of a set of N elements

XM×N a matrix with M rows and N columns

Xz a matrix exponential, where z is a scalar

|x| absolute value of a scalar

∥x∥ Euclidean norm of a vector

|X| determinant of a matrix

Cb/a the directed cosine matrix that transforms vectors from coor-

dinate system a into coordinate system b

qb/a a quaternion that encodes the relative orientation of coordinate

system b relative to coordinate system a

ωb/a angular velocity vector of frame Fb with respect to frame Fa

f(·), func(·), etc functions, where f, func, can be any identifier
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Another notation which is useful when building systems of equations involving matrices

is the cross-product matrix operator, so that [v]× x ≡ v × x:

[v]×
def
=


0 −v3 v2

v3 0 −v1

−v2 v1 0


By their nature, vectors require the most intricate notation, since a fully specified vector

might include all of:

1. A reference frame

2. A coordinate system

3. A fixed point (if it’s a bound vector)

For simplicity, Table A.1 only shows examples of each distinct element of a vector

encoding. In practice, vectors may appear quite complex; for some realistic examples taken

from [12]:

pA/B
def
= the position of the point A with respect to point B

vA/i
def
= the velocity vector of a point A in frame Fi

bv̇A/i
def
= the vector derivative of vA/i taken in frame Fb

vc
A/i

def
= array of components of vA/i in coordinate system c

bv̇c
A/i

def
= components in coordinate system c of the derivative taken in frame Fb
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Derivations

B.1 Parametric design curves

The “simplified” foil geometry chose a set of variables (3.15) that describe different aspects

of the shape. This section provides definitions for several of those variables using parametric

functions that can approximate the structure of a typical parafoil using a small number of

simple parameters.

B.1.1 Elliptical chord

A Foil geometry requires a chord distribution c(s). For parafoils, the chords lengths are

most commonly defined by a truncated elliptical function of section index, in which case

the distribution is a function of two design parameters. The typical choices are either the

root and wingtip chord lengths, or the root length and a taper ratio. Choosing the root and

wingtip chord lengths, a truncated elliptical function over the section index −1 ≤ s ≤ 1 is

then:

a =
1√

1−
(

ctip
croot

)2

b = croot

c(s) = b

√
1−

(s
a

)2

(2.1)

Refer to EllipticalChord in glidersim for an implementation.

B.1.2 Elliptical arc

In this paper the arc of a parafoil is the vector-valued function of ⟨y, z⟩ coordinates that po-

sition the section reference points. For parafoils, the arc is typically defined by an elliptical

function.

A centered elliptical curve can be defined as a function of four parameters, but the

symmetry of the wing reduces that to three free design parameters, and normalizing the

141

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.foil_layout.html#pfh.glidersim.foil_layout.EllipticalChord
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arc length reduces it to just two. There are several possible parametrizations, but an

intuitive choice is the mean anhedral angle Γtip and the section roll angle ϕtip of the wing

tips [31].

Fig. B.1: Parametrized elliptical arc

Choosing those parameters to define an elliptical function that is proportional to the

desired yz-curve produces an intermediate result:

k1 = 1− tan(Γtip)

tan(ϕtip)

k2 = 1− 2 tan(Γtip)

tan(ϕtip)

A =
k1√
k2

B =
k1
k2

tan(Γtip)

f(t) = ⟨A cos(t), B sin(t)⟩

This design requires that ϕtip > 2Γtip (so the wing must be wider than it is tall and the wing

tip roll cannot exceed 90°) and is valid over tmin ≤ t ≤ π − tmin, where tmin = arccos
(
1
A

)
.

Next although the shape produced by this intermediate result is proportional to the

desired curve, it is not directly usable by the Foil geometry. It needs two modifications:

1. Make the arc a function of the chosen section index s

2. Scale the arc to a total curve length of bflat



143

Both can be achieved by normalizing the elliptical function to a curve length of 2.

First, scale the axes to produce a new semi-ellipse with a total curve length of 1:

L(t) =

∫ tmin

π
2

∥f(t)∥ dt

k3 = L(tmin)

f̄(t) =

〈
A

k3
cos(t), B

k3
sin(t)

〉
The fact that the simplified foil geometry chose to define the section index s as the linear

distance along the yz-curve enables a convenient conversion over π
2 ≤ t ≤ tmin and 0 ≤ s ≤

1:

L̄(t) =

∫ tmin

π
2

∥∥f̄(t)∥∥ dt = s(t)

t(s) = s−1(t)

Thus the complete parametric function for the yz-curve of the arc is thus ⟨y, z⟩ (s) =

f̄(t(|s|)). The integrals and inverse functions are not available analytically, but are trivial

to compute numerically. Refer to EllipticalArc in glidersim for an implementation.

B.1.3 Polynomial torsion

Like most wings, parafoils use section-relative pitch θ(s) (conventionally referred to as

geometric torsion) to fine-tune wing behavior. The exact distribution of geometric torsion

along a wing can be difficult to measure, but they are frequently described using simple

polynomials or piecewise-linear functions. For idealized models of nonlinear geometries such

as those developed here, a piecewise-polynomial function is assumed to be adequate.

Assuming a symmetric wing, define three parameters:

• T : the maximum torsion (in radians) at the wingtips

• sstart: the section index where the torsion begins (where 0 ≤ sstart < 1)

• β: the degree of the polynomial (for example, β = 1 is linear, β = 2 is quadratic, etc.)

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.foil_layout.html#pfh.glidersim.foil_layout.EllipticalArc
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p(s) =
|s| − sstart
1− sstart

θ(s) =


0 |s| < sstart

Tpβ |s| ≥ sstart

Refer to PolynomialTorsion in glidersim for an implementation.

B.2 Area and Volume of a Mesh

The paraglider dynamics require the inertial properties of the canopy surface areas and vol-

ume. These include the magnitudes (total mass or volume), centroids, and inertia tensors.

All of these quantities can be computed using a triangular surface mesh over the canopy

surfaces.

What follows is a reproduction of the procedure developed in [51], which is a func-

tionally equivalent to the procedure from [52] but with a more intuitive interpretation and

complete equations for the inertia tensors.

B.2.1 Area

First, for each of the upper and lower surfaces, cover the surface with a triangulated mesh

so it is represented by a set of N triangles. Each triangle is defined by three points

{P1,P2,P3}n in canopy coordinates. For convenience, define position vectors for each

of the three points of the nth triangle: ri,n
def
= rPi/O,n.

The area of each triangle is easily computed using the vector cross-product of two legs

of the triangle:

an =
1

2
ρ ∥(r2,n − r1,n)× (r3,n − r2,n)∥

The total area of the surface is the sum of the triangle areas:

a =
N∑

n=1

an

The area centroid of each triangle:

an
def
=

1

3
(r1,n + r2,n + r3,n)

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.foil_layout.html#pfh.glidersim.foil_layout.PolynomialTorsion


145

And the centroid A of the total surface area with respect to the canopy origin O:

rA/O =
1

a

N∑
n=1

anan

The covariance matrix of the total surface area:

Σa =
N∑

n=1

anana
T
n

The inertia tensor of the total surface area a about the canopy origin O:

Ja/O = trace (Σa) I3 −Σa

This completes the calculation of the three relevant properties for each surface area: the

total area a, the area centroid rA/O, and the inertia tensor Ja/O.

B.2.2 Volume

Now for the volume. For the purposes of computing the inertia properties of the enclosed

air, it is convenient to neglect the air intakes and treat the canopy as a closed volume. Given

this simplifying assumption, build another triangular mesh that covers the entire canopy

surface as well as the left and right wing tip sections. For this derivation, it is essential

that the points on each triangle are ordered such that a right-handed traversal produces a

normal vector pointing out of the volume. It is also essential that the complete mesh does

not contain any holes, or the volume may be miscounted. Given a surface triangulation

over the closed canopy geometry using N triangles, the volume can be computed as follows.

First, treat each triangle as the face of a tetrahedron that includes the origin. The

signed volume of the tetrahedron formed by each triangle is given by:

vn =
1

6
(r1,n × r2,n) · r3,n

Given that the vertices of each triangle were oriented such that they satisfy a right-hand

rule, the sign of each volume will be positive if the normal vector for each triangular face

points away from the origin, and negative if it points towards the origin. In essence the

tetrahedrons “overcount” the volume for triangles pointing away from the origin, then the
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triangles facing the origin subtract away the excess volume. The final volume of the canopy

is the simple sum:

v =
N∑

n=1

vn

For the volume centroid of each tetrahedron:

vn
def
=

1

4

3∑
i=1

ri,n

And the centroid V of the total volume with respect to the canopy origin O:

rV/O =
1

v

N∑
n=1

vnvn

Lastly, calculating the inertia tensor of the volume can be simplified by computing the iner-

tia tensor of a prototypical or “canonical” tetrahedron and applying an affine transformation

to produce the inertia tensor of each individual volume.

First, given the covariance matrix of the “canonical” tetrahedron:

Σ̂
def
=


1
60

1
120

1
120

1
120

1
60

1
120

1
120

1
120

1
60


Use the points in each triangle to define:

Tn
def
=


| | |

r1,n r2,n r3,n

| | |


The covariance of each tetrahedron volume is then:

Σn = |Tn|T T
n Σ̂Tn

And the covariance matrix of the complete volume:

Σv =
N∑

n=1

Σn

And at last, the inertia tensor of the volume about the origin O can be computed directly

from the covariance matrix:

Jv/O = trace (Σv) I3 −Σv



147

B.3 Apparent mass of a parafoil

This section presents Barrows’ method [24] for estimating the apparent mass matrix of a

wing with circular arc anhedral. (For a discussion of apparent mass effects, see Apparent

Mass.) The equations have been adapted to use the standard notation of this paper.

The purpose of the equations is estimate several terms that allow the paraglider system

dynamics model to calculate the apparent inertia matrix with respect to the dynamics

reference point, so the apparent mass can be taken into account when calculating the

canopy acceleration. The necessary terms are:

• Aa/R: apparent inertia matrix with respect to some reference point R. This matrix

is comprised of a translational inertia part Ma and a rotational inertia part Ja/R.

• rRC/R: roll center with respect to R

• rPC/RC : pitch center with respect to the roll center RC

Some notes about Barrows’ development:

• It assumes the foil is symmetric about the xz-plane (left-right symmetry) and about

the yz-plane (fore-aft symmetry).

• It requires that the dynamics reference point R lies in the xz-plane

• It assumes the canopy arc is circular.

• It assumes a constant chord length over the entire span.

• It assumes constant thickness over the entire span.

• It assumes no chordwise camber.

• It assumes the chords are all parallel to the x-axis (which also means no geometric

twist). This mostly isn’t a problem since our coordinate system is defined by the

central chord, the geometric torsion angles tend to be quite small, and twist tends to
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occur over segments which represent negligible volume compared to the bulk of the

wing.

Fig. B.2: Geometry for Barrow’s apparent mass equations.

Some initial definitions:

t = Airfoil thickness.

h∗ =
h

b

First, the apparent mass terms for a flat wing of a similar volume, from Barrows’ equations

34-39:

mf11 = kAπ
(
t2b/4

)
mf22 = kBπ

(
t2c/4

)
mf33 = [AR/ (1 + AR)]π

(
c2b/4

)

If11 = 0.055 [AR/ (1 + AR)] bS2

If22 = 0.0308 [AR/ (1 + AR)] c3S

If33 = 0.055b3t2
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Where kA and kB are the “correction factors for three-dimensional effects”:

kA = 0.85

kB = 1.0

Assuming the parafoil arc is circular and with no chordwise camber, use Barrows equations

44 and 50 to compute the pitch center PC and roll center RC as points directly above the

confluence point C of the arc:

zPC/C = −r sin (Θ)

Θ

zRC/C = −
zPC/C mf22

mf22 + If11/r2

zPC/RC = zPC/C − zRC/C

Modifying the apparent mass terms from the flat wing to approximate the terms for the

arched wing, Barrows equations 51-55:

m11 = kA

[
1 +

(
8

3

)
h∗2

]
π
(
t2b/4

)
m22 =

r2mf22 + If11
z2PC/C

m33 = mf33

I11 =
z2PC/RC

z2PC/C

r2mf22 +
z2RC/C

z2PC/C

If11

I22 = If22

I33 = 0.055
(
1 + 8h∗2

)
b3t2

The apparent mass and apparent moment of inertia matrices are then defined in Barrows

equations 1 and 17:

Ma
def
=


m11 0 0

0 m22 0

0 0 m33

 (2.2)
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Ia
def
=


I11 0 0

0 I22 0

0 0 I33

 (2.3)

Define two helper matrices:

S2
def
=


0 0 0

0 1 0

0 0 0


Q = S2

[
rPC/RC

]×
Ma

[
rRC/R

]×
Where [x]× is the cross-product matrix operator.

Using the helper matrices, use Barrows equation 25 to write the rotational part of the

apparent inertia matrix:

Ja/R
def
= I −

[
rRC/R

]×
Ma

[
rRC/R

]× −
[
rPC/RC

]×
Ma

[
rPC/RC

]×
S2 −Q−QT

And the corresponding angular momentum of the apparent mass about R, using Barrows

equation 24:

ha/R =
(
S2

[
rPC/RC

]×
+
[
rRC/R

]×)
MavR/e + Ja/Rω

And finally, the completed apparent inertia matrix with respect to the reference point R,

from Barrows equation 27:

Aa/R =

 Ma −Ma

([
rRC/R

]×
+
[
rPC/RC

]×
S2

)
(
S2

[
rPC/RC

]×
+
[
rRC/R

]×)
Ma Ja/R

 (2.4)

Plus the vectors necessary to incorporate Ja/R into the final dynamics:

rPC/RC =

[
0 0 zPC/RC

]
Linear momentum of the apparent mass:

pa/e = Ma ·
(
vR/e −

[
rRC/R

]×
ωb/e −

[
rPC/RC

]×
S2 · ωb/e

)
(2.5)
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Angular momentum of the apparent mass about R:

ha/R =
(
S2 ·

[
rPC/RC

]×
+
[
rRC/R

]×) ·Ma · vR/e + Ja/R · ωb/e (2.6)

Refer to ParagliderWing in glidersim for an implementation.

B.4 Paraglider system models

B.4.1 Model 6a

This section describe a paraglider dynamics model with 6 degrees of freedom. It uses a

rigid-body assumption, and incorporates the effects of apparent mass. The dynamics are

computed with respect to the riser midpoint RM instead of the wing center of mass B

because it avoids needing to recompute the apparent inertia matrix whenever B changes.

In this derivation all vectors are in the canopy coordinate system c, so the vector coordinate

systems are implicit in the notation.

The derivation develops the equations of motion by starting with derivatives of linear

and angular momentum. The derivation is largely based on the excellent [11], although this

section uses this paper’s version of Stevens’ notation (see Notation and Symbols).

An implementation of this model is available as Paraglider6a in the glidersim pack-

age. The glidersim package also includes Paraglider6b and Paraglider6c, which de-

couple the translational and angular equations of motion by choosing the glider center of

gravity for the dynamics reference point, but do not incorporate the apparent mass matrix.

B.4.1.1 Real mass only Start with the equations for the translational and angular mo-

mentum of the body b about the reference point RM as observed by the inertial reference

frame e:

pb/e = mb vB/e

= mb

(
vRM/e + ωb/e × rB/RM

) (2.7)

hb/RM = mb rB/RM × vRM/e + Jb/RM · ωb/e (2.8)

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider_wing.html#pfh.glidersim.paraglider_wing.ParagliderWing
https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics6a
https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics6b
https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics6c
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Compute the momentum derivatives in the inertial frame Fe in terms of derivatives in the

body frame Fb:

eṗb/e =
bṗb/e + ωb/e × pb/e

= mb

(
bv̇RM/e +

bω̇b/e × rB/RM + ωb/e ×�����:0b ˙rB/RM

)
+ ωb/e × pb/e

= mb

(
bv̇RM/e +

bω̇b/e × rB/RM

)
+ ωb/e × pb/e

eḣb/RM = bḣb/RM + ωb/e × hb/RM

= mb

(
�����:0b ˙rB/RM × vRM/e + rB/RM × b ˙vRM/e

)
+ Jb/RM · bω̇b/e + ωb/e × hb/RM

= mb rB/RM × b ˙vRM/e + Jb/RM · bω̇b/e + ωb/e × hb/RM

(2.9)

Relate the derivatives of momentum with respect to the inertial frame to the net force on

the body fb and the net moment on the body about the reference point gb/RM :

eṗb/e = fb

eḣb/RM + vRM/e × pb/e = gb/RM

(2.10)

Where

fb = fb,aero + fb,weight

gb/RM = gb,aero + rB/RM × fb,weight

Combining (2.9) and (2.10) gives the final equations for the dynamics of the real mass (solid

mass plus the enclosed air) in terms of bv̇RM/e and bω̇b/e.

mb
bv̇RM/e +mb

bω̇b/e × rB/RM = fb − ωb/e × pb/e

mb rB/RM × bv̇RM/e + Jb/RM · bω̇b/e = gb/RM − ωb/e × hb/RM − vRM/e × pb/e

(2.11)

Rewriting the equations as a linear system:

Ar/RM

bv̇RM/e

bω̇b/e

 =

b1
b2

 (2.12)
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Where:

Ar/RM =

 mb I3 −mb

[
rB/RM

]×
mb

[
rB/RM

]×
Jb/RM



b1 = fb − ωb/e × pb/e

b2 = gb/RM − ωb/e × hb/RM − vRM/e × pb/e

B.4.1.2 Real mass + apparent mass Writing the dynamics in matrix form not only makes

it straightforward to solve for the state derivatives, it also makes it easy to incorporate the

apparent inertia matrix from Apparent mass of a parafoil. Adding the apparent inertia into

the system matrix and accounting for the translational and angular apparent momentum

produces:

[
Ar/RM +Aa/RM

]bv̇RM/e

bω̇b/e

 =

b3
b4

 (2.13)

b3 = b1 − ωb/e × pa/e

b4 = b2 − vRM/e × pa/e − ωb/e × ha/RM + vRM/e ×
(
Ma · vRM/e

)
Where Aa/RM is the apparent inertia matrix of the canopy from (2.4), Ma is the apparent

mass matrix from (2.2), and pa/e and ha/RM are the linear and angular apparent momen-

tums from (2.5) and (2.6). The extra term vRM/e×
(
MavRM/e

)
in b4 is necessary to avoid

double counting the aerodynamic moment already accounted for by the section pitching

coefficients.

B.4.2 Model 6b

Following the same logic as Model 6a, but targeting bvB/e and using the momentum about

the body center of mass B produces a simpler model with a diagonal system matrix, but

at the cost of requiring the body center of mass to be determined before computing the

apparent inertia matrix with respect to that point. For that reason the apparent mass is
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neglected here, although if B lies in the xz-plane then the method described in Apparent

mass of a parafoil could be used.

The main purpose of this model is for validating model implementations. An imple-

mentation of this model is available as Paraglider6b in the glidersim package.

pb/e = mb vB/e (2.14)

hb/B = Jb/B · ωb/e (2.15)

Computing the inertial derivatives with respect to the body frame:

eṗb/e = mb
bv̇B/e + ωb/e × pb/e

eḣb/B = Jb/B · bω̇b/e + ωb/e × hb/B

(2.16)

Using the body center of mass as the reference point simplifies the equation for angular

momentum:

eṗb/e = fb

eḣb/B = gb/B

(2.17)

Combining (2.16) and (2.17): and rewriting as a linear system:mb 0

0 Jb/B


bv̇B/e

bω̇b/e

 =

 fb − ωb/e × pb/e

gb/B − ωb/e × hb/B

 (2.18)

B.4.3 Model 6c

Another option is to target bv̇RM/e directly, but again using the momentum about the body

center of mass B. Like Model 6b this also produces a simpler dynamics model, but again

at the cost of making it less convenient to precompute the apparent inertia matrix.

The main purpose of this model is for validating model implementations. An imple-

mentation of this model is available as Paraglider6c in the glidersim package.

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics6b
https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics6c
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Computing the inertial derivatives with respect to the body frame:

eṗb/e = mb

(
bv̇RM/e +

bω̇b/e × rB/RM

)
+ ωb/e × pb/e

eḣb/B = Jb/B · bω̇b/e + ωb/e × hb/B

(2.19)

Using the body center of mass as the reference point simplifies the equation for angular

momentum:

eṗb/e = fb

eḣb/B = gb/B

(2.20)

Combining (2.19) and (2.20): and rewriting as a linear system:mb −mb

[
rB/RM

]×
0 Jb/B


bv̇RM/e

bω̇b/e

 =

 fb − ωb/e × pb/e

gb/B − ωb/e × hb/B

 (2.21)

B.4.4 Model 9a

Similar to Model 6a, this design uses the riser connection midpoint RM as the reference point

for both the body and the payload, which simplifies incorporating the apparent mass matrix.

However, this model treats the body and payload as separate components, connected by

a rotational spring-damper model that adds an additional three degrees-of-freedom. A

similar 9DoF model derivation can be found in [35] (9DoF, but relative roll and pitch are

unconstrained).

An implementation of this model is available as Paraglider9a in the glidersim pack-

age. The glidersim package also includes Paraglider9b, which uses the centers of mass as

the reference points for the body and payload dynamics; that choice simplifies the derivatives

for angular momentum (because it eliminates the moment arms), but prohibits incorporat-

ing the effects of apparent mass.

https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics9a
https://pfheatwole.github.io/glidersim/_autosummary/pfh.glidersim.paraglider.html#pfh.glidersim.paraglider.ParagliderSystemDynamics9b
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B.4.4.1 Real mass only Start with the equations for the translational and angular mo-

mentum of the body b about the reference point RM as observed by the inertial reference

frame e:

pb/e = mb vB/e

= mb

(
vRM/e + ωb/e × rB/RM

) (2.22)

pp/e = mp vP/e

= mp

(
vRM/e + ωb/e × rP/RM

) (2.23)

hb/RM = mb rB/RM × vRM/e + Jb/RM · ωb/e (2.24)

hp/RM = mp rP/RM × vRM/e + Jp/RM · ωp/e (2.25)

Compute the two momentum derivatives:

eṗb/e =
bṗb/e + ωb/e × pb/e

= mb

(
bv̇RM/e +

bω̇b/e × rB/RM

)
+ ωb/e × pb/e

eḣb/RM = bḣb/RM + ωb/e × hb/RM

= mbrB/RM × bv̇RM/e + Jb/RM · bω̇b/e + ωb/e × hb/RM

eṗp/e =
pṗp/e + ωp/e × pp/e

= mp

(
pv̇RM/e +

pω̇p/e × rP/RM

)
+ ωp/e × pp/e

= mp

(
bv̇RM/e + ωb/p × vRM/e +

pω̇p/e × rP/RM

)
+ ωp/e × pp/e

eḣp/RM = pḣp/RM + ωp/e × hp/RM

= mprP/RM × p ˙vRM/e + Jp/RM · pω̇p/e + ωp/e × hp/RM

= mprP/RM ×
(
b ˙vRM/e + ωb/p × vRM/e

)
+ Jp/RM · pω̇p/e + ωp/e × hp/RM

(2.26)

Derivatives of the payload momentums are computed in terms of the body velocity derivative

in the body frame to allow writing the dynamics as a single system of equations. First,
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compute the net external forces and moments:

fb = fb,aero + fb,weight

gb/RM = gb,aero + gb,weight

fp = fp,aero + fp,weight

gp/RM = gp,aero + gp,weight

(2.27)

And equate them to the derivatives of momentum with respect to the inertial frame:

eṗb/e = fb − fRM

eḣb/RM + vRM/e × pb/e = gb/RM − gRM

eṗp/e = fp + fRM

eḣp/RM + vRM/e × pp/e = gp/RM + gRM

(2.28)

The spring-damper connection produces forces and moments shared by the body and the

payload. There are six variables but only three degrees of freedom. Both systems have the

riser connection point RM at a fixed position, and the force only exists to maintain the

fixed relative positioning.

gRM =


κϕϕ+ κϕ̇ϕ̇

κθθ + κθ̇θ̇

κγγ + κγ̇ γ̇

 (2.29)

Where ωp
p/b = ⟨ϕ, θ, γ⟩ are the angular rates of the payload, pω̇p

p/b =
〈
ϕ̇, θ̇, γ̇

〉
are the

angular accelerations of the payload, and the κ are the stiffness and dampening coefficients

of the spring-damper model.

This is a very simple model. A better model would need to account for the coupling

between dimensions, and should really be a function of the riser strap width.]]

Combining equations (2.26) and (2.28) and rewriting as a linear system provides the

dynamics of the real mass (solid mass plus the enclosed air) in terms of bv̇RM/e, bω̇b/e,
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bω̇p
p/e, and f b

RM :

Ar/RM



bv̇b
RM/e

bω̇b
b/e

pω̇p
p/e

f b
RM


=



bb1

bb2

bp3

bp4


(2.30)

Where:

Ar/RM =



mb I3 −mb

[
rbB/RM

]×
03×3 I3

mb

[
rbB/RM

]×
J b
b/RM 03×3 03×3

mpCp/b 03×3 −mp

[
rpP/RM

]×
−Cp/b

mp

[
rpP/RM

]×
Cp/b 03×3 Jp

p/RM 03×3


bb1 = f b

b − ωb
b/e × pb

b/e

bb2 = gb
b − gb

RM − vb
RM/e × pb

b/e − ωb
b/e × hb

b/RM

bp3 = fp
p − ωp

p/e × pp
p/e −mpω

p
b/p × vp

RM/e

bp4 = gp
b + gp

RM − vp
RM/e × pp

p/e − ωp
p/e × hp

p/RM −mpr
p
P/RM ×

(
ωp
b/p × vp

RM/e

)
(2.31)

B.4.4.2 Real mass + apparent mass As with the 6-DoF system, the effects of apparent

mass on the canopy can be accounted for by adding the apparent inertia matrix from

Apparent mass of a parafoil to the components of the system matrix associated with the

translational and angular acceleration of the body and accounting for the translational and

angular apparent momentum:

Ar/RM +

Aa/RM 06×6

06×6 06×6






bv̇b
RM/e

bω̇b
b/e

pω̇p
p/e

f b
RM


=



bb5

bb6

bp3

bp4


(2.32)

bb5 = bb1 − ωb/e × pa/e

bb6 = bb2 − vRM/e × pa/e − ωb/e × ha/RM + vRM/e ×
(
Ma · vRM/e

)
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Where Aa/RM is the apparent inertia matrix of the canopy from (2.4), Ma is the apparent

mass matrix from (2.2), and pa/e and ha/RM are the linear and angular apparent momen-

tums from (2.5) and (2.6). The extra term vRM/e×
(
MavRM/e

)
in bb6 is necessary to avoid

double counting the aerodynamic moment already accounted for by the section pitching

coefficients.
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