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Examining the relationship between vertical coordination strategies and 

technical efficiency: Evidence from the Brazilian ethanol industry 

 

Abstract 

The sugarcane industry in Brazil, one of the world’s leading producers of ethanol and sugar, is 

undergoing significant changes driven by geographic expansion and technological innovations. 

These changes are forcing sugarcane producers and processors to re-evaluate their vertical 

coordination and growth strategies. This paper presents an empirical analysis of the relationship 

between vertical coordination strategies at the production-processing interface of the Brazilian 

ethanol supply chain and technical efficiency of mills, utilizing data envelopment analysis and 

Tobit censored models for 204 mills that account for around half of Brazil’s sugar and ethanol 

production. Results indicate that vertical integration and location of mill have a statistically 

significant impact on efficiency. Findings show that technical efficiency is not the main driver of 

vertical integration, implying such decisions are primarily motivated by strategic considerations. 

Mills are likely to forgo gains in technical efficiency in exchange for improving their strategic 

position through vertical integration.  
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Examining the relationship between vertical coordination strategies and 

technical efficiency: Evidence from the Brazilian ethanol industry 

1. Introduction 

Brazil, as one of the leading producers of ethanol and sugar, was responsible for 40% of 

the world’s sugarcane production in 2014 (FAOSTAT 2014). The sugar-energy sector in Brazil 

accounts for almost 2% of the country’s Gross Domestic Product (Neves et al. 2011). It employs 

1.2 million workers, encompassing 70,000 sugarcane producers and over 400 mills (Chaddad 

2015). Over the last decade, the Brazilian sugarcane production underwent significant changes 

driven by geographic expansion, technological innovations, changes in public policy, as well as 

domestic and global market forces (Nunez et al., 2013). These changes have created unprecedented 

competitive dynamics in the industry forcing the players at all levels of the supply chain to re-

evaluate their strategies and operations. This is particularly true for sugarcane producers and 

processors (Sant’Anna, Shanoyan, et al. 2016). 

 The production-processing interface of the Brazilian sugarcane supply chain is 

predominantly governed through two vertical coordination strategies: contracting – where farmers 

are contracted by the mills, and vertical integration – where the mills either acquire or rent the land 

and backward vertically integrate into sugarcane production (Moraes and Zilberman 2014; 

Sant’Anna, Shanoyan, et al. 2016). With the ongoing expansion of the sugarcane industry, the 

choice of vertical coordination strategy at the production-processing interface can have important 

implications not only for operational efficiency and competitive strategy of sugarcane processors, 

but also, for the structure of regional agricultural production and public policy.  
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From the operations perspective, several factors at the sugarcane production stage (e.g. 

distance and harvest timeline limitations) can affect the efficiency at the processing stage due to 

technical aspects of the refining process (Chaddad 2015; Neves et al. 1998). Thus, backward 

vertical integration can potentially result in efficiency gains by reducing transaction costs 

associated with coordinating, monitoring, and enforcing transactions with farmers to ensure timely 

and reliable supply of sugarcane.  

From the strategy perspective, with increased control over the production stage mills can 

gain a potential competitive advantage by securing an adequate procurement base, while reducing 

or eliminating the bargaining power of suppliers. Additionally, in geographic areas with limited 

production resources, such vertical coordination strategies can reduce the intensity of the rivalry 

over access to inputs and create barriers to entry. However, the strategic and operational benefits 

of backward vertical integration into sugarcane production come with additional costs and risks 

for processors. Specifically, vertical integration into sugarcane production will: a) expose mills to 

additional risks that are inherent in production agriculture, and b) will require investing significant 

additional capital in acquiring production resources and capabilities (e.g. land, infrastructure and 

machinery). These additional costs and risk can have important implications for strategic decisions 

and the operational efficiency of the mills. 

From the policy perspective, any potential effect of changes in vertical coordination 

strategies at the production-processing interface of the sugarcane supply chain (e.g. changes in 

land use, shifts in bargaining power, etc…) will be magnified over time due to the ongoing 

expansion of the sugarcane industry from the North-Northeast region to the Center-South region 

of Brazil (Granco et al. 2015). The evidence of such effects has been seen predominantly in the 

Cerrado, Brazil’s second largest biome, where over 40 sugarcane processing mills have been 
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constructed in the states of Goiás and Mato Grosso do Sul since the early 2000s (Procana 2013). 

The geographic expansion has provoked a change in land use in this region historically known for 

livestock and soybean production (Granco et al. 2015).  

Policy makers have long recognized the importance of potential long-term impacts of the 

expansion and placed a regulatory restriction on the extent of vertical integration with an aim to 

ensure a competitive market for sugarcane and to support agricultural producers. In 1941, the 

Brazilian government issued the Statute of Sugarcane which requires that 40% of the sugarcane 

processed by mills must be procured from independent sugarcane producers with exceptions 

granted in situations where independent producers are unable to provide an adequate supply of 

sugarcane for the mill (Brazil 1941). Data from 2013 suggests that the regulatory allowance for 

vertical integration was used by the mills up to the limit, resulting in 60% of total processed 

sugarcane produced by mills and the remaining 40% supplied by independent producers (Chaddad 

2015). This highlights the preference towards backward vertical integration by mills and raises a 

number of important management and policy questions. Specifically, what is the optimal 

coordination strategy from the perspective of operational efficiency and strategic position; and 

what is the nature of the relationship between vertical coordination and technical efficiency? These 

questions warrant a close examination of strategic motivations for vertical integration at the 

production-processing interface of the Brazilian sugarcane supply-chain and the potential impact 

on operational efficiency of mills. 

The existing literature on the relationship between vertical integration and efficiency does 

not provide a definitive conclusion on the impact of vertical integration on efficiency1. Technical 

efficiency is defined in the literature as the measure of the firm’s ability to minimize input usage 

 
1 Refers to technical and cost efficiencies. 
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at a given level of output (Färe et al. 1994). Pieri and Zaninotto (2013) investigated the relationship 

between vertical integration and technical efficiency in the Italian machine tool industry. They find 

that, technically efficient firms tend to pursue vertical integration strategy, but did not find 

evidence of an impact of vertical integration on technical efficiency. Federico (2010) examined 

the links between productivity and vertical integration and found a positive relationship (Federico, 

2010; Pieri and Zaninotto 2013). Tomiura (2007) found positive relationship between productivity 

and vertical integration in the study of Japanese manufacturing firms (Tomira 2007; Pieri and 

Zaninotto 2013). Bakhtiari (2011) examined the relationship between cost efficiency and vertical 

integration in the Australian manufacturing industry and found it to be positive (Pieri and 

Zaninotto 2013). D’Aveni and Ravenscraft (1994) found a small positive relationship between 

vertical integration and performance, but did not provide a conclusive evidence that the vertical 

integration resulted in technical efficiency gains.  

While the importance of both vertical coordination and technical efficiency in the context 

of the Brazilian ethanol industry has been recognized by researchers, the previous studies have 

limited their scope by examining each of these factors separately. For example, Bastos (2013) 

analyzed data from 2009 to 2012 and found higher levels of vertical integration in areas where 

sugarcane has had recent expansion, such as in the states in the Center-West region, and lower 

levels in areas with a tradition of sugarcane production. Junior et al. (2014), when analyzing the 

technical efficiency of Brazilian mills, find a higher concentration of efficient mills in the state of 

São Paulo, the largest sugarcane producing state. Torquato et al. (2009) studying mill efficiency 

in the state of São Paulo found that mills in counties with an established tradition of growing 

sugarcane are more homogeneous and closer to the cost efficient frontier than those in counties 

where sugarcane production is more recent. Our review of the literature indicates that, to date, no 
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study has examined the impact of vertical coordination on the technical efficiency of ethanol and 

sugarcane mills in Brazil.  

The purpose of this study is to address the gap in the literature by providing an empirical 

analysis of the relationship between the vertical coordination strategy at the production-processing 

interface of the Brazilian ethanol supply chain and the technical efficiency of the mills. The 

specific objective is to estimate the impact from vertical coordination on technical efficiency. The 

methods involve data envelopment analysis and a Tobit censored model in combination with a 

unique data on 204 sugarcane processing mills that were responsible for approximately half of 

Brazil’s recent sugar and ethanol production. The findings provide important implications for 

industry players and policy makers. The rest of the paper is organized as follows: section two 

provides background on sugarcane production and supply-chain coordination in Brazil; section 

three presents the data, followed by the description of empirical analysis and estimation methods; 

section four presents the results and discussion, and section five provides concluding remarks. 

2. Coordination at the production-processing interface of the Brazilian 

sugarcane supply chain 

The transactions at the production-processing interface of the Brazilian sugarcane supply 

chain are characterized by high levels of asset specificity, specifically, geographic, temporal, and 

physical asset specificity (Moraes and Zilberman 2014). Sugarcane procurement is limited to a 

certain radius of distance from the mill to minimize transportation costs and avoid sugarcane 

quality losses. This restricts the supply and procurement base to a specific area resulting in 

geographic asset specificity (Moraes and Zilberman 2014, Chaddad 2016). Additionally, the 

perishable nature of harvested sugarcane makes the time between harvesting and processing an 

important factor of the transaction resulting in temporal asset specificity (Moraes and Zilberman 
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2014, Neves et al. 1998). From the production perspective, the perennial nature of sugarcane 

implies a minimum 5-year production commitment thus resulting in physical and dedicated asset 

specificity (Moraes and Zilberman 2014; Khanna et al., 2017).  

The high asset specificity combined with inherent volatility in commodity markets leads 

to high transaction costs of coordination between the production and processing stages in the 

Brazilian sugarcane industrial supply chain. This in turn leads to: a) challenges in establishing 

reliable procurement relationships with farmers as mills expand to new geographic areas with a 

historically limited tradition of sugarcane production (e.g. the Center-South region of Brazil); and 

b) intense rivalry among mills and higher bargaining power of suppliers in areas with historically 

well-established sugarcane production (e.g. North-Northeast region) (Bastos 2013; Sant’Anna, 

Granco et al 2016). Consequently, consistent with Transaction Cost Economics (TCE) theory 

predictions, vertical coordination strategies with higher levels of control (e.g. vertical integration) 

are preferred by the mills over the spot market or contracting. Studies have found increased 

reliance on vertical integration both in traditional sugarcane producing regions and in new areas 

of expansion (Bastos 2013; Sant’Anna, Granco et al. 2016). 

The extent of vertical coordination at the production and processing stages by the state in 

2012 is presented in Table 1. Backwards vertical integration is reflected by the percentage of the 

processed sugarcane supplied through a mill’s own production operations (produced on acquired 

or rented land). The highest extent of backward vertical integration (100%) is observed in areas 

with lower numbers of mills (e.g. Rio Grande do Sul and states in the North region). Relatively 

higher extents of backward vertical integration is also observed in states with no previous tradition 

of growing sugarcane (e.g. Mato Grosso do Sul, Goiás and Mato Grosso). These states also contain 

higher numbers of new plants. In states with historically well-established sugarcane production, 
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such as Pernambuco and São Paulo, a relatively lower but still a significant extent of vertical 

integration is observed. For example, in São Paulo state, the share of sugarcane produced by the 

mills is about 50%. In states bordering São Paulo, such as Minas Gerais, the picture is similar. 

Although Minas Gerais does not have a tradition of growing sugarcane, it is likely that mills 

located closer to the border are able to procure from producers in the state of São Paulo (Figure 2).  

 Studies have shown that vertical integration facilitates the implementation of new 

technologies and advanced agricultural practices enhancing productivity of sugarcane production 

(Chaddad 2015). Increased productivity in sugarcane production can provide efficiency gains for 

a mill, since sugarcane accounts for 70% of total costs at the processing stage (Chaddad 2015). 

According to Crago et al. (2010) backward-integrated mills have higher sugarcane yields than 

independent farmers, 81 tons per hectare versus 75 tons per hectare, respectively. It has been 

argued that the technical efficiency of the mills can be enhanced through increased control over 

harvesting and transportation of the sugarcane (Chaddad, 2015). On the other hand, the benefits of 

increased control over the production and supply comes at a cost, including increased capital 

investments and exposure to risks inherent in production agriculture (Neves et al. 1998).  

Cost inefficiencies may also occur due to the combination of price volatility and the 

perennial nature of sugarcane production. For example, cost inefficiencies can arise in situations 

where the mill is forced to rely on their own pre-committed supply versus buying from the spot 

market when the market prices are lower than the production costs (D’Aveni and Ravenscraft 

1994). Cost and technical inefficiencies may also arise due to factors such as agency costs and 

underutilized capacity (D’Aveni and Ravenscraft 1994). The interrelated nature of the strategic 

and operation considerations in choosing vertical coordination strategy highlights the need for a 
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closer examination of the relationship between vertical integration and technical efficiency at the 

production-processing interface of the Brazilian sugarcane supply chain.  

3. Methods 

In this paper, a two-stage analysis is utilized to examine how vertical coordination impacts 

technical efficiency. In the first stage, data envelopment analysis (DEA) is used to obtain efficiency 

scores for each of the mills. In the second stage, a Tobit model is estimated using the estimated 

efficiency scores, from the first stage, as the dependent variable to assess the impact of backwards 

vertical integration on technical efficiency. 

3.1 A DEA input-oriented model 

DEA is a nonparametric approach used to construct efficiency frontiers allowing for the 

evaluation of relative efficiency of decision making units (DMU). The benefit of using DEA is 

that no prior assumptions about the production relationships between inputs and outputs are needed 

(Zhou et al. 2008). DEA assumes that all mills have access to the same technology. This study 

utilizes an input-oriented DEA with variable returns to scale given the interest on sugarcane 

procurement by mills. The decision to allow variable returns to scale was made after testing for 

whether the underlying technology exhibited constant, variable returns to scale or non-increasing 

returns to scale using code developed by Simm and Besstremyannaya (2016). This program tests 

the null hypothesis of constant returns to scale against the alternative hypothesis of variable returns 

to scale, or the null hypothesis of non-increasing returns to scale against the hypothesis of variable 

returns to scale. It uses test statistics developed by Simar and Wilson (2002; 2011a). Results from 
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both tests rejected the null hypothesis confirming with a statistical significance level of 5% the 

presence of variable returns to scale2. 

The DEA input-oriented model measures efficiency by focusing on the firm’s ability to 

minimize the quantity of inputs given a fixed quantity of outputs (Fare et al. 1994). In this study, 

there are N DMUs (mills) and M inputs. The M inputs are used in the production of S outputs. The 

model determines the minimum level of input (𝑥 , , 𝜃 ) each DMU requires to produce a certain 

level of output and be technically efficient. This is done using the following minimization problem 

for the nth DMU (Färe et al. 1994): 

 

𝑚𝑖𝑛
,

𝜃  (1) 

𝑠. 𝑡. λ 𝑥 , 𝑥 , 𝜃  𝑓𝑜𝑟 𝑚 1, … , 𝑀 

λ 𝑦 , 𝑦 ,  𝑓𝑜𝑟 𝑠 1, … , 𝑆 

λ 1 

λ , … , λ 0 

 

where λ , … , λ  are weights estimated by the model, 𝑥 ,  are the 𝑚 1, … , 𝑀 inputs, and 𝑦 ,  are 

the 𝑠 1, … , 𝑆 outputs. θ  is the input-oriented technical efficiency of mill n ranging from 0 to 1. 

The closer θ  is to one the more efficient the mill is (Färe et al. 1994). Mills with θ =1 are fully 

 
2 The test of constant returns to scale against variable returns to scale had a p-value of 0.02, while the test of non-
increasing returns to scale against constant returns to scale had a p-value of 0.01.  
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efficient. When θ is less than one it provides information on reductions in input use that could be 

made to produce the same level of output. DEA analysis was conducted using R-Studio using the 

rDEA (Simm and Besstremyannaya 2016) and benchmarking packages (Bogetoft and Otto 2015). 

 

3.2 Estimating the effect of backwards vertical integration on technical efficiency 

Once the technical efficiency for each DMU has been calculated, the effect of backwards 

vertical integration on the efficiency of the mill was estimated. Vertical integration can be 

measured as the quantity of a good transferred from one stage of production to another inside a 

firm (Perry 1989). In this study, vertical integration is measured as the percentage of the total 

crushed sugarcane used for production that came from land controlled by the mill. Thus, mills with 

a higher percentages of own sugarcane production are assumed to be more vertically integrated.  

Prior to estimating the impact of vertical integration on technical efficiency, we checked 

that the assumption of separability held. Technical efficiency scores (𝜃 ) are only interpretable in 

a second-stage regression analysis when a separability condition applies (Simar and Wilson 2011b; 

Daraio, Simar and Wilson 2015). The separability condition assumes that environmental variables 

do not impact the efficiency frontier. That is, the possible set of combinations of inputs and outputs 

is the same regardless of the presence of environmental variables. Daraio and Simar (2005) 

describe environmental variables as factors that the producer has no control over but that may 

influence production. We tested for this condition by comparing the conditional and unconditional 

DEA technical efficiency scores with respect to the level of backwards vertical integration. We 

found that the separability condition held (see the supplemental appendix for details), allowing for 

the two stage analysis conducted here.  
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Given that the separability assumption holds, we measured the impact of vertical 

coordination on technical efficiency score using a two-sided Tobit regression with an upper and 

lower limit of censoring of 1 and 0, respectively. The efficiency score, the dependent variable, 

ranges from 0 to 1, such that mills with an efficiency score closer to one are more efficient and 

closer to the efficient frontier. In the literature, there are different views on the use of the Tobit 

model in the second stage regression (e.g. Simar and Wilson, 2011b). We decide, though, to follow 

Hoff (2007) who argues that the Tobit model is sufficient for regressing DEA scores against 

exogenous variables. Nevertheless, we provide estimates for two more commonly suggested 

models: Simar and Wilson’s algorithm #1 using a truncated regression model (see Simar and 

Wilson 2007; Tauchmann 2016) and the fractional regression model with a logistic distribution 

(see Ramalho et al. 2010; Williams 2016). The Tobit model estimated in this study was: 

 

 

 

 
where  perown  is the percentage of crushed sugarcane that was produced by mills; mixed is a 

dummy that is 1 if the mill produces both ethanol and sugar and 0 otherwise; sp is a dummy 

variable that is 1 if mill is in the state of São Paulo and 0 otherwise; cw is a dummy variable that 

is 1 if the mill is in the Center-West region and 0 otherwise; alpe is a dummy variable that is 1 if 

the mill is in the states of Alagoas or Pernambuco and 0 otherwise; and age is how old the mill is 

in years (see Table 2 for summary statistics of the variables). Second stage regressions were 

estimated using Stata 14. Standard errors are obtained through a bootstrap procedure with 

replacement using 5000 repetitions to correct for the serial correlation of the DEA efficiency 

estimates following Simar and Wilson (2007). We checked for misspecification in the Tobit model 

𝜃 𝛼 𝛽 𝑝𝑒𝑟𝑜𝑤𝑛 𝛽 𝑚𝑖𝑥𝑒𝑑 𝛽 𝑆𝑃 𝛽 𝐶𝑊 𝛽 𝐴𝐿𝑃𝐸 𝛽 𝑆𝑃 ∗ 𝑝𝑒𝑟𝑜𝑤𝑛

𝛽 𝐶𝑊 ∗ 𝑝𝑒𝑟𝑜𝑤𝑛 𝛽 𝐴𝐿𝑃𝐸 ∗ 𝑝𝑒𝑟𝑜𝑤𝑛 𝛽 𝑎𝑔𝑒 𝑒  

(2) 
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by running a link test (Pregibon 1979). The link test involves refitting the estimated model with 

the values of the predicted dependent value and its squared term. If the coefficient of the predicted 

dependent variable squared is statistically significant then the model is misspecified3. We also used 

inefficiencies (1-𝜃 ) as the dependent variable to run the bctobit test for misspecification written 

by Vincent (2010)4.  

The choice of exogenous variables was guided by previous studies. The region of the 

Center-West along with the states of São Paulo, Alagoas and Pernambuco are where most of the 

mills in the sample are concentrated (Figure 2). São Paulo is the largest sugar, ethanol and 

sugarcane producer in Brazil, where mills are reportedly less vertically integrated (Bastos, 2013) 

and are more efficient than in other Brazilian states (Junior et al, 2014). In terms of the Center-

West, this region has experienced recent sugarcane expansion with over 40 new mills installed 

since 2000 (Sant’Anna, Granco, et al. 2016). The states of Alagoas and Pernambuco are in the 

Northeast region, where historically sugarcane production began in Brazil. Given past studies 

(Bastos 2013; Junior et al. 2014) it is reasonable to expect observing more technically efficient 

mills in São Paulo and in the Center-West, while relatively older and, perhaps, less technically 

efficient mills in Alagoas and Pernambuco. We interact the location dummies with the proxy for 

vertical integration to understand how vertical integration in these areas impacts technical 

efficiency.  

Other variables were age and mixed. The type of the mill (i.e. mixed or not) is controlled 

for to account for differences in the mills due to the diversity of their output production set. We 

 
3 The coefficient for the predicted dependent variable squared had a p-value of 0.313 and was not found to be 
statistically significant at a 5% level of significance, indicating no functional misspecfication. 
4 Bctobit tests the tobit specification using a Lagrange Multiplier test statistic against a model that is non-linear in the 
regressors with heteroskedastic and non-normally distributed errors (Vincent 2010). The test statistic for our model 
was 0.212. When this is compared with the critical value of 4.59 for the test at a 5% level of significance, the null 
hypothesis cannot be rejected. 
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expect mixed to have a positive effect (i.e. mills that produce two products instead of one are more 

efficient), since mixed mills may likely have newer technology in place in comparison to mills that 

produce only one type of output. We expect age to have a negative impact on efficiency. The older 

the mill, it is likely the older the technology they utilize. The impact of perown is ambiguous. 

Perown should have a positive effect if through backward vertical integration mills become more 

efficient. That is, by having more control over the coordination of planting, harvesting and hauling 

of sugarcane, mills can increase efficiency in ethanol and/or sugar production. On the other hand, 

if mills are integrating for reasons other than increasing efficiency and coordination in sugarcane 

production (e.g. to improve strategic position), the effect of perown on the efficiency of the mill is 

not known and could be negative.  

Marginal effects were estimated after the estimation of the Tobit regression given the 

nonlinear nature of the model. Marginal effects allow us to evaluate the effect of a one unit change 

of an exogenous variable on technical efficiency (Onukwugha et al. 2015). Marginal effects for 

the exogenous variables, except for the interaction terms, are estimated as average partial effects. 

The average partial effect was estimated by obtaining separate marginal effects for each 

observation and then taking the average over individual marginal effects (Onukwugha et al. 2015).  

Marginal effects of interaction terms are interpreted as changes in the marginal effects due 

to changes in another variable of interest. Generally, the marginal effect of an interaction term is 

the partial derivative of the marginal effect of one of the variables in the interaction (Onukwugha 

et al. 2015). In equation (2), the interaction terms consist of a dummy and a continuous variable. 

Thus, the marginal effect of the interaction term is estimated as the difference in the marginal 

effects of perown at each of the dummy values (Onukwugha et al. 2015). For example, the 
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marginal effect (ME) of perown*cw on technical efficiency (𝜃) is the marginal effect of perown at 

cw=0 minus the marginal effect of perown at cw=1: 

 

𝑀𝐸 ∗  (3) 

 

Asymptotic standard errors for the marginal effects were estimated using the delta method 

(Onukwugha et al. 2015). 

4. Data 

Information on sugarcane processing mills in Brazil is obtained from the 2013 Brazilian 

Sugar and Ethanol Guide (Procana 2013). From the 422 mills included in the guide, 204 had a 

complete set of data required for the analysis5. This is a remarkable sample as the 204 firms in the 

study produced 48% of the ethanol and 54% of the sugar produced in 2013 in Brazil. To put it in 

perspective, Brazil’s total production in 2013 was 38.4 million tons of sugar and 23.2 billion liters 

of ethanol (Procana 2013). Two inputs6 (capacity and crushed sugarcane), and two outputs7 (sugar 

and ethanol) were modeled in the input-oriented DEA model (Table 2). Of the inputs, capacity is 

a proxy for the capital of the mill, representing a long-term variable, while sugarcane would 

represent a short-term input variable of the production process. Of the 204 mills, 60 produced only 

ethanol and 6 only sugar, while the rest produced both ethanol and sugar. For 12 mills that did not 

 
5 Some of the issues encountered were: firms with more one mill only provided consolidated information; mills did 
not produce in 2013 or provided data; and, mills only provided partial information. 
6 Information on sugarcane yield and labor were not added. Labor was only rarely reported by the mills and would 
significantly reduce the sample size. Yield information is not reported and would require dividing the amount of 
crushed sugarcane over the total area reported which might introduce measurement errors, as well as, endogeneity 
issues in the second stage regressions estimated, unduly complicating analyses. 
7 The amount of energy sold by the mills was not considered as an output due to the limited information available. For 
the same reason, the amount of labor was not considered as an input. 
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report this information in the 2013 Brazilian Sugar and Ethanol Guide8, the information on prior 

year capacity was used (obtained from Procana 2012). Most of the mills in the sample are in São 

Paulo (69 mills), a state responsible for over 50% of the sugarcane produced in the country. The 

North region was the region with the least number of mills (4 mills). From the Center-West, an 

area that has recently experienced sugarcane expansion, there were 37 mills in the sample. 

Considering the sample for this study, in 2013 the amount of sugarcane used by a single 

mill in the production of ethanol and sugar varied from 33 thousand tons to 7 million tons. 

Sugarcane crushing capacity of the mills ranged from 800 to 42,000 tons of sugarcane per day. 

The average mill produced 62 thousand metric liters of ethanol and produced  

91.5 thousand tons of sugar (Table 2).  

The second stage of the analysis uses input-oriented technical efficiency scores computed 

for each mill and other data from the 2013 Brazilian Sugar and Ethanol Guide including the 

percentage of crushed sugarcane produced by mills out of the total amount of sugarcane used 

(Perown), and information on the location of the mill. The age of the mill is calculated by adding 

the years from when the mill started operating up to 2013. The year when the mill began operations 

is obtained from the websites of the individual mills, as well as, search engines for company 

profiles (Graphiq Inc 2017; Bloomberg 2017). In the cases where the mill was sold to another 

company, the year when the buying company started production is used.  

The sample includes mills that are fully vertically integrated producing 100% of their own 

sugarcane supply (i.e. Perown is 100%) and mills that procure all of their sugarcane supply from 

third parties (i.e. Perown is 0%) through contracting. On average, mills produce 64% of their 

sugarcane supply. In geographic areas where sugarcane with production ranges from 2,808 to 10 

 
8 We assumed that the capacity of the mill will remain unchanged from one year to the next. 
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million tons, mills tend to be more integrated, producing about 99% of their sugarcane supply. 

Mills in the newly expanded areas (i.e. Center-West) are producing on average 80% of their own 

sugarcane supply. In contrast, mills in areas with more established sugarcane production (i.e. 

Alagoas, Pernambuco and São Paulo) produce on average 62% of their own supply.  The sample 

includes mills with production history ranging from one year to over a century in operation (Table 

2). The older mills tend to be located in Alagoas and Pernambuco with an average age of 65 years. 

The oldest mill in these two states has been in operation for 152 years. The relatively newer mills 

are located in the Center-West, where the average age of a mill is 11 years in 2013. 

5. Results 

The results from the input-oriented DEA illustrate that out of 204 plants analyzed, only 20 

are found to be fully efficient (i.e. 𝜃 1  (Table 3). At least one fully efficient mill is found to be 

present in each region (i.e. North, Northeast, Southeast, South and Center West). Similar to the 

findings of Junior et al. (2014), we found that most of the efficient mills were located in São Paulo. 

Mills in the Center-West appear to be more homogeneous in terms of efficiency, as evidenced by 

the low standard deviation of the efficiency scores (Table 3). One likely reason for this is that most 

of the mills operating in this region started their operation after 2000. Ten states are found to have 

no fully efficient mills. These states in general have a smaller number of mills. The low efficiency 

scores could be a result of the lack of market pressure to incentivize them to improve technical 

efficiency (D’Aveni and Ravenscraft 1994). The least efficient mill, with an efficiency score of 

0.53, is found to be in the state of Minas Gerais. Mills in this state appear to be more heterogeneous 

in comparison to other states, as evidenced by the higher standard deviation. The standard 

deviation of the efficiency scores is 0.10. On average, the North region is home to the least amount 

of efficient mills, while the most efficient mills are located in the Center-West region (Table 3). 
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Considering the total sample, mills on average have an input-oriented technical efficiency 

score of 0.88 and a standard deviation of 0.08. There are 21 firms in the top 10th percentile . Close 

to 10% of the mills were fully efficient, and less than 12% had an efficiency score below 0.8. 

In the second stage a two-sided Tobit model is estimated to assess the impact of backwards 

vertical integration on technical efficiency. Following UCLA Statistical Consulting Group (2017) 

we calculate a rough estimate of the pseudo R2 by squaring the correlation of the predicted 

efficiency scores (𝜃 ) with the actual efficiency scores (𝜃 ). The model accounts for approximately 

12% of the variation in the dependent variable. A Wald test shows that the hypothesis that the sum 

of all the coefficients is zero is rejected at a 5% level of significance (Table 4).  

Model estimates and marginal effects are presented for all three second-stage models 

(Tobit, Simar Wilson Algorithm #1 and fractional) in Tables 4 and 5. Corresponding coefficients 

of the three estimated models have the same signs though they are of different magnitudes due to 

varying functional specifications (Table 4). Marginal effects have the same sign and relative 

magnitudes between the models (e.g. cw has a higher marginal effect on technical efficiency 

followed by alpe then sp) (Table 5). Average partial effects of the interaction terms are not found 

to be statistically significant at a 5% level of significance for any of the models, though their signs 

and relative magnitudes are the same. Concern could be raised over the fact that the marginal effect 

of perown is not statistically significant in the Simar Wilson Algorithm #1 model, but it is 

significant in the other two models (Table 5). It can be reasonably argued though, that the size of 

the marginal effect of vertical integration is small enough for it not to change the findings of the 

paper. Furthermore, the only other significant difference is the marginal effect on mixed, which is 

only significant in the Simar and Wilson Algorithm #1 model. This model assumes a truncated 

versus censored regression model. Hoff (2007) finds that the tobit (censored) regression provides 
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a suitable approximation for analysis of technical efficiency scores, which further is supported by 

the specification tests conducted and relative agreement with the fractional regression model 

estimated. Thus, the remainder of our discussion concentrates on the marginal effects of the Tobit 

regression. 

Marginal effects of the age of the mill and whether the mill can produce both sugar and 

ethanol (mixed) were statistically insignificant, but have the expected sign (Table 5). Older mills 

may have older technology, potentially reducing technical efficiency. On the other hand, mill’s 

age may not affect technical efficiency since facilities may be upgraded. Mills with an option to 

choose the allocation of sugarcane supplied towards ethanol and sugar production may be able to 

achieve higher efficiency through optimal input allocation, but this decision is made at the 

beginning of the production cycle each year, potentially limiting its impact on technical efficiency 

as other more significant factors may arise during the production cycle.  

Results concerning the impact of backwards vertical integration (perown) on technical 

efficiency show that an increase in vertical integration by 1% implies a decrease of 0.0004 in 

technical efficiency. It can be argued that this negative effect is a reflection of significant 

differences between the processing and production activities in the supply chain. Nevertheless, the 

impact is negligible from a practical perspective.  For example, consider an average mill that 

produces 64% of its sugarcane supply (i.e. extent of vertical integration). For that mill, a 10% 

increase in vertical integration would mean a change in technical efficiency from 0.8834 to 0.8790, 

which when rounded to two decimal places remains at 0.88. This result is consistent with the 

findings of Pieri and Zaninotto (2013) who did not find evidence of vertical integration 

significantly impacting technical efficiency. The results imply that the decision to backwards 

vertically integrate is not primarily driven by the desire to increase technical efficiency. Even if 
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mills have higher sugarcane productivity (Chaddad 2015) or produce higher yields (Crago et al. 

2010), vertical integration of the production process does not necessarily lead to gains in technical 

efficiency. This result does not rule out gains in efficiency from other forms of vertical 

coordination. Increased vertical coordination, such as mills signing supply or crop share contracts 

with farmers or overseeing harvesting, hauling and delivery services could possibly bring gains in 

technical efficiency9.  

The marginal effects associated with location dummies are all positive (Table 5). Mills 

located in the Center-West have 0.05 higher technical efficiency scores relative to mills in other 

states of Brazil not captured by the model. The marginal effect from the Center-West location is 

also the largest relative to the other locations controlled for (i.e. SP and ALPE). This difference 

could come from the fact that mills in the Center-West are newer and may have newer technology. 

When analyzing mills in the Center-South, Pereira et al. (2016) find that mills only adopt 

technologies with proven efficiency. Also, there is evidence of increased coordination through 

service provisions in this region. Sant’Anna, Granco, et al (2016) finds that mills in Mato Grosso 

do Sul and Goiás attract local farmers to sugarcane production by providing them with sugarcane 

seedlings, payment advances and consulting services.  

The results indicate that the mills in Alagoas or Pernambuco regions are relatively more 

efficient compared to regions not captured by the regression model. Given the decline of the 

sugarcane sector in these states (Andrade 2001) it is likely that only the more efficient mills 

remained in operation. The findings are similar for the state of São Paulo, where it is likely that 

more intense rivalry has driven the inefficient mills out of business or forced them to improve. Our 

 
9 We were unable to account for this scenario. There was no data available on coordination strategies involving service 
provisions. 
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findings on the efficiency of the mills in Alagoas region is consistent with the previous literature 

and indicates higher efficiency (Junior et al., 2014).  

Figures 4, 5, and 6 illustrate the impact on predicted technical efficiency of backwards 

vertical integration by plotting estimated efficiency scores against 1% changes in backwards 

vertical integration. The plots illustrate the effect on the predicted technical efficiency score of 

vertical integration for mixed mills, holding other factors constant. We chose mixed mills since 

these were the majority of mills in the sample and they represent the state-of-the-art in mill 

technology. Plots show that differences in technical efficiency, between mills in the Center-West 

and São Paulo compared to mills in other parts of Brazil, occur when mills are around 60% 

vertically integrated (Figures 4 and 5). That is, as vertical integration increases, the impact on 

technical efficiency of mills in the Center-West and São Paulo remain relatively stable and are 

relatively higher than the technical efficiency of firms in other regions of Brazil.  

Strategic considerations underlying the choice of vertical coordination strategies are likely 

to be a reason for limited effect of vertical integration on technical efficiency in the Center-West 

(Figure 4). In this region, reliance on specification contracts is a common coordination strategy. 

In general, in Goiás and Mato Grosso do Sul and other states of the Center-West, farmers prefer 

to enter into contractual relationship with mills (Sant’Anna, Granco, et al. 2016). Hence, it is likely 

that the results are showing how vertical coordination through contracting may be just as 

beneficial, in terms of technical efficiency, as vertical integration. The occurrence of vertical 

integration in the Center-West may be a management strategy of incumbent mills to create barriers 

to entry for new entrants. Given that sugarcane has recently expanded into this region, mills 

establishing in the Center-West may want to control sugarcane production in surrounding lands to 
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limit new mills from entering that geographic area and increasing competition for input 

procurement.  

In the state of São Paulo, the presence of a well-established sugarcane spot market may 

explain why technical efficiency does not change with higher levels of vertical integration. As 

suggested by D’Aveni and Ravenscraft (1994), competitive markets may be pressuring farmers to 

be more efficient. If so, it may be difficult for mills to be more productive than their suppliers. 

This may explain why mills in São Paulo are less likely to vertically integrate than in other states 

(Bastos 2013). The observed extent of vertical integration in São Paulo may be a result of 

management strategy designed to increase mill’s bargaining power with suppliers and reduce the 

rivalry for procurement.  

The technical efficiency of mills in Alagoas and Pernambuco changes as the percentage of 

vertical integration increases (Figure 6). The statistically significant difference between mills in 

these states and those in other unmodeled states occurs from the level of 40% to 70% of vertical 

integration. As vertical integration increases, mills in these states start to have the same technical 

efficiency as those in unmodeled states, at a lower level of technical efficiency, Bastos (2013) 

reports a constant high level of vertical integration in the Northeastern states in past years. As 

Andrade (2001) reports, the sugarcane sector in Pernambuco is regressing. A declining sugarcane 

market may be a reason why we still see mills vertically integrating (Stuckey and White 1993). 

Another reason may be the costs associated with dis-integration. Stuckey and White (1993) argue 

that vertical integration may be difficult and costly to reverse. The state of Pernambuco, for 

instance, has a history of consolidated economic groups being responsible for their own sugarcane 

production (Andrade 2001). This suggests that mills may have decided, in the past, to vertically 

integrate and now find it too costly to divest from sugarcane production. In addition, current 
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policies in place in Brazil seem to favor sugarcane production in the Center-South (e.g. the 

Sugarcane Agroecological Zoning identifies larger areas for sugarcane production in the Center-

South states (Manzatto 2009; Sant’Anna, Granco, et al. 2016)). This discourages new farmers from 

entering sugarcane production or current producers from investing in sugarcane production.   

6. Conclusion 

The sugarcane industry in Brazil, one of the world’s leading producers of ethanol and 

sugar, is undergoing significant changes driven by geographic expansion and technological 

innovations. These changes are forcing the players at all levels of the supply chain, particularly 

sugarcane producers and processors, to re-evaluate their vertical coordination and growth 

strategies. This paper contributes to the literature by presenting an empirical analysis of the 

relationship between the vertical coordination strategies at the production-processing interface of 

the Brazilian ethanol supply chain and the technical efficiency of the mills. It utilizes data 

envelopment analysis and a Tobit censored model in combination with a unique data on 204 mills 

that were collectively responsible for around half of the Brazil’s sugar and ethanol production in 

2013.  

Results indicate that vertical integration and the location of the mill have a statistically 

significant impact on efficiency. Moreover, the differences in technical efficiency between mills 

in different locations are more significant at higher levels of vertical integration. The findings 

indicate that the technical efficiency is not the main driver of vertical integration though, implying 

that such decisions are primarily motivated by strategic considerations. Interestingly, the results 

indicate that the mills are likely to forgo gains in technical efficiency in exchange for improving 

their strategic position through vertical integration. The findings shed light on the underlying 
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motivation for the observed level of vertical integration that accompanies the expansion of the 

Brazilian sugarcane industry. 

The vertical integration at the production-processing interface of the Brazilian sugarcane 

supply chain is not a recent phenomenon. Public policies have been put in place since 1941 to 

mitigate potential negative effects on the structure of agricultural production, on the sustainability 

of natural resources, and on the balance of bargaining power and concentration within the industry. 

However, considering recent and ongoing expansion of sugarcane industry, many important 

questions remain unanswered regarding the long-term impact of those policies on operational 

efficiency and strategic dynamics within sugarcane processing sector. The unique contribution of 

this study is that it bridges the gap between two distinct and parallel strands of existing literature 

that are comprised of studies with a primary focus on either technical efficiency and operations or 

strategy and management. By examining the relationship between vertical coordination strategies 

and technical efficiency this study not only presents useful insights for policy and industry decision 

makers, but also provides a platform for future studies aiming to shed light on complex interaction 

between operational and strategic considerations and long-term policy and management 

implications for the Brazilian sugarcane and ethanol industry.  

  



26 
 

7. References 

Andrade, M.C. de. 2001. “Espaço e tempo na agroindústria canavieira de Pernambuco.” Estudos 
Avançados 15(43):267–280. 

Augusto, C.A., J.P. de Souza, and S.A.F. Cario. 2013. “Governance structures and strategic 
resources in distilleries located in the state of Paraná: an analysis based on TCE and RBV 
complementarity.” Revista de Administração (São Paulo) 48(1):179–195. 

Bădin, L., C. Daraio, and L. Simar. 2012. “How to measure the impact of environmental factors 
in a nonparametric production model.” European Journal of Operational Research 
223(3):818–833. 

Bakhtiari, S. 2011. “Size evolution and outsourcing: theory and evidence from australian 
manufacturing.” No. 2012-08, School of Economics, The University of New South 
Wales. Available at: https://ideas.repec.org/p/swe/wpaper/2012-08.html [Accessed March 
24, 2017]. 

Bastos, A. da C. 2013. “Fornecimento de cana-de-açúcar e integração vertical no setor 
sucroenergético do Brasil.” Universidade de São Paulo (USP). Escola Superior de 
Agricultura “Luiz de Queiroz”–Dissertação de Mestrado 130. 

Besanko, D., D. Dranove, M. Shanley, and S. Schaefer. 2009. Economics of strategy. John Wiley 
& Sons. 

Bloomberg. 2017. “Snapshot.” Available at: http://www.bloomberg.com/research/stocks/private/ 
snapshot.asp?privcapId=33172765 [Accessed March 1, 2017]. 

Bogetoft, P., and L. Otto. 2015. Benchmarking. Available at: https://cran.r-
project.org/web/packages/Benchmarking/Benchmarking.pdf [Accessed March 1, 2017]. 

Brazil. 1941. Decree No. 3,855 of November 21st 1941. Estatuto da lavoura canavieira. Rio de 
Janeiro: Diario oficial da uniao. Available at: http://www.planalto.gov.br/ccivil_03/ 
decreto-lei/Del3855.htm [Accessed June 1, 2016]. 

Chaddad, F. 2015. The economics and organization of Brazilian agriculture: recent evolution 
and productivity gains. Academic Press. 

Crago, C.L., M. Khanna, J. Barton, E. Giuliani, and W. Amaral. 2010. “Competitiveness of 
Brazilian sugarcane ethanol compared to US corn ethanol.” Energy Policy 38(11):7404–
7415. 

Daraio, C., and L. Simar. 2005. “Introducing environmental variables in nonparametric frontier 
models: a probabilistic approach.” Journal of Productivity Analysis 24(1):93–121. 

Daraio, C., L. Simar, and P.W. Wilson. 2015. “Testing the ‘separability’ condition in two-stage 
nonparametric models of production.” No. 2015/21, LEM Working Paper Series. 
Available at: https://www.econstor.eu/handle/10419/119865 [Accessed March 11, 2017]. 



27 
 

D’Aveni, R.A., and D.J. Ravenscraft. 1994. “Economies of integration versus bureaucracy costs: 
does vertical integration improve performance?” The Academy of Management Journal 
37(5):1167–1206. 

FAOSTAT - Food and Agriculture Organization of the United Nations. 2014. FAOSTAT 
statistics database. Available at: www.fao.org/faostat [Accessed Jun 14, 2017].  

Fare, R., S. Grosskopf, and C.K. Lovell. 1994. Production frontiers. Cambridge University 
Press. 

Federico, S. 2010. “Outsourcing versus integration at home or abroad and firm heterogeneity.” 
Empirica 37(1):47–63. 

Granco, G., M.M. Caldas, J.S. Bergtold, and A.C. Sant’Anna. 2015. “Exploring the policy and 
social factors fueling the expansion and shift of sugarcane production in the Brazilian 
Cerrado.” GeoJournal 82(1):63–80. 

Graphiq Inc. 2017. “FindTheCompany.” Available at: http://www.findthecompany.com.br/ 
[Accessed January 1, 2017]. 

Hoff, A. 2007. “Second stage DEA: Comparison of approaches for modelling the DEA score.” 
European Journal of Operational Research 181(1):425–435. 

IBGE, Brazilian Institute of Geography and Statistics. 2014. “Produção Agrícola Municipal – 
PAM.” Available at: www.ibge.gov.br [Accessed May 20, 2015]. 

Junior, A.P.S., F.V. Carlucci, and C.A. Grespan. 2014. “Investment potential for new sugarcane 
plants in Brazil based on assessment of operational efficiency.” International Food and 
Agribusiness Management Review 17(2):41. 

Kerkvliet, J. 1991. “Efficiency and vertical integration: the case of mine-mouth electric 
generating plants.” The Journal of Industrial Economics 39(5):467–482. 

Khanna, M., J. Louviere, and X. Yang. 2017. “Motivations to grow energy crops: the role of crop 
and contract attributes.” Agricultural Economics 48: 263-277. 

Macaulay, S. 1963. “Non-contractual relations in business: A preliminary study.” American 
sociological review:55–67. 

MAPA, Ministry of Agriculture, Live Stock and Supply. 2013. Anuário estatístico da 
agroenergia 2012: statistical yearbook of agrienergy. Brasília: Ministério da Agricultura, 
Pecuária e Abastecimento. Secretaria de Produção e Agroenergia. 

Milgrom, P., and J. Roberts. 1990. “Bargaining costs, influence costs, and the organization of 
economic activity.” Perspectives on positive political economy 57:60. 

Moraes, M.A.F.D. de, and D. Zilberman. 2014. Production of ethanol from sugarcane in brazil: 
from state intervention to a free market. Springer Science & Business Media. 



28 
 

Neves, M.F., V.G. Trombin, and M. Consoli. 2011. “The sugar-energy map of Brazil.” In E. L. 
Leao de Sousa and I. de C. Macedo, eds. Ethanol and bioelectricity: sugarcane in the 
future of the energy matrix. São Paulo: UNICA, pp. 14–43. 

Neves, M.F., R.S. Waack, and M.K. Marino. 1998. “Sistema agroindustrial da cana-de-açúcar: 
caracterização das transações entre empresas de insumos, produtores de cana e usinas.” In 
Anais. XXXVI Congresso da Sociedade Brasileira de Economia e Sociologia Rural - 
SOBER. Poços de Caldas, M.G.: SOBER, pp. 559–572. Available at: http://pensa.org.br/ 
wp-content/uploads/2011/10/O_sistema_agroindustrial_da_cana_ de_acucar_1998.pdf 
[Accessed November 30, 2014]. 

Nunez, H.M., H. Onal, and M. Khanna. 2013. “Land use and economic effects of alternative 
biofuel policies in Brazil and the United States.” Agricultural Economics 44: 487-499 

Onukwugha, E., J. Bergtold, and R. Jain. 2015. “A Primer on Marginal Effects—Part I: Theory 
and Formulae.” PharmacoEconomics 33(1):25–30. 

Pereira, C.N., J.M.F.J. Silveira, C.N. Pereira, and J.M.F.J. Silveira. 2016. “Análise exploratória 
da eficiência produtiva das usinas de cana-de-açúcar na região Centro-Sul do Brasil.” 
Revista de Economia e Sociologia Rural 54(1):147–166. 

Perry, M.K. 1989. “Vertical integration: determinants and effects.” In R. Schmalensee and R. D. 
Willig, eds. Handbook of industrial organization. Holland: Elsevier, pp. 183–255. 

Peterson, H.C., A. Wysocki, and S.B. Harsh. 2001. “Strategic choice along the vertical 
coordination continuum.” The International Food and Agribusiness Management Review 
4(2):149–166. 

Pieri, F., and E. Zaninotto. 2013. “Vertical integration and efficiency: an application to the 
Italian machine tool industry.” Small Business Economics 40(2):397–416. 

Pregibon, D. 1979. Data analytic methods for generalized linear models. University of Toronto 
Canada. 

Procana. 2012. Brazilian sugar and ethanol guide 2012. Ribeirão Preto: ProCana Brasil. 

Procana. 2013. Brazilian sugar and ethanol guide 2013. Ribeirão Preto: ProCana Brasil. 

Pyrdol, J. 1978. “The effects of electric utilities’ captive coal operations.” Washington, DC: 
Federal Energy Regulatory Commission. 

Ramalho, E.A., J.J.S. Ramalho, and P.D. Henriques. 2010. “Fractional regression models for 
second stage DEA efficiency analyses.” Journal of Productivity Analysis 34(3):239–255. 

Sant’Anna, A.C., G. Granco, J.S. Bergtold, M.M. Caldas, T. Xia, P. Masi, T. Link, and W. 
Lorenzani. 2016. “The challenges of the sugarcane expansion: how do producers and land 
owners think and act?” In G. R. Santos, ed. Forty years of ethanol in Brazil: hide or 
confront the crises? Brasilia: IPEA, pp. 113–142. 



29 
 

Sant’Anna, A.C., A. Shanoyan, J.S. Bergtold, M.M. Caldas, and G. Granco. 2016. “Ethanol and 
sugarcane expansion in Brazil: what is fueling the ethanol industry?” International Food 
and Agribusiness Management Review 19(4):163–182. 

Silva, A.A., and F. Miziara. 2011. “Sucroalcohol sector and agricultural frontier expansion in the 
Goiás state, Brazil.” Pesquisa Agropecuária Tropical 41(3):399–407. 

Simar, L., and P.W. Wilson. 2007. “Estimation and inference in two-stage, semi-parametric 
models of production processes.” Journal of econometrics 136(1):31–64. 

Simar, L., and P.W. Wilson. 2011a. “Inference by the m out of n bootstrap in nonparametric 
frontier models.” Journal of Productivity Analysis 36(1):33–53. 

Simar, L., and P.W. Wilson. 2002. “Non-parametric tests of returns to scale.” European Journal 
of Operational Research 139(1):115–132. 

Simar, L., and P.W. Wilson. 2011b. “Two-stage DEA: caveat emptor.” Journal of Productivity 
Analysis 36(2):205. 

Simm, J., and G. Besstremyannaya. 2016. rDEA. Available at: https://cran.r-project.org/web/ 
packages/rDEA/rDEA.pdf [Accessed March 1, 2017]. 

Stuckey, J., and D. White. 1993. “When and when ‘not’ to vertically integrate.” Sloan 
Management Review 34(3):71. 

Tauchmann, H. 2016. SIMARWILSON: Stata module to perform Simar & Wilson efficiency 
analysis. Boston College Department of Economics. Available at: 
https://ideas.repec.org/c/boc/bocode/s458156.html [Accessed March 15, 2017]. 

Tomiura, E. 2007. “Foreign outsourcing, exporting, and FDI: A productivity comparison at the 
firm level.” Journal of International Economics 72(1):113–127. 

Torquato, S.A., R. Martins, and F.S. Ramos. 2009. “Cana-de-açucar no estado de São Paulo. 
Eficiência econômica das regionais. Novas e tradicionais de produção.” Informações 
Econômicas, Instituto Economia Agrícola. 

UCLA: Statistical Consulting Group. 2017. “Tobit analysis | Stata data analysis examples.” 
IDRE Stats. Available at: http://stats.idre.ucla.edu/stata/dae/tobit-analysis/ [Accessed 
March 15, 2017]. 

Vincent, D. 2010. BCTOBIT: Stata module to produce a test of the tobit specification. Boston 
College Department of Economics. Available at: https://ideas.repec.org/c/boc/bocode/ 
s457163.html [Accessed March 15, 2017]. 

Vukina, T., and P. Leegomonchai. 2006. “Oligopsony power, asset specificity, and hold-up: 
Evidence from the broiler industry.” American Journal of Agricultural Economics 
88(3):589–605. 



30 
 

Williams, R. 2016. “Analyzing proportions: fractional response and zero one inflated beta 
models.” Available at: https://www3.nd.edu/~rwilliam/stats3/FractionalResponse 
Models.pdf [Accessed March 1, 2017]. 

Williamson, O.E. 1985. The economic institutions of capitalism: Firms, markets, relational 
contracting. Free Press New York. 

Zhou, P., B.W. Ang, and K.-L. Poh. 2008. “A survey of data envelopment analysis in energy and 
environmental studies.” European Journal of Operational Research 189(1):1–18. 

  



31 
 

 

Figure 1: Sugarcane production in Brazil in crop year 2011/12 and location of sugarcane mills 
modeled. 

Source: IBGE (2014) and CONAB (2013) 
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Table 1: Sugarcane supply share and average area cultivated by farmers and mills in the crop    
year 2011/12 

States and Regions 
Cane production share Land cultivated by  
Mill(%) Farmer(%) Mills (ha) Farmers (ha)

North         
Acre 100% 0% 526.22 0.00
Amazonas 100% 0% 3,870.64 0.00
Para 100% 0% 12,115.82 0.00
Rondonia 84% 16% 2,328.74 437.97

Northeast         
Alagoas 66% 34% 11,732.95 6,098.28
Bahia 69% 31% 4,332.74 1,908.60
Paraiba 55% 45% 7,710.81 6,365.15
Pernambuco 60% 40% 8,559.10 5,611.60
Piaui 83% 17% 11,619.26 2,417.05
Rio Grande do 

Norte 
79% 21% 11,385.73 3,039.37

Sergipe 74% 26%     

Southeast         
São Paulo 57% 43% 14,680.91 10,971.56
Minas Gerais 58% 42% 9,470.81 6,960.16
Espirito Santo 57% 43% 6,037.94 4,618.50
Rio de Janeiro 11% 89% 1,338.32 10,985.42

South        
Parana 90% 10% 18,272.56 2,127.75
Rio Grande do Sul 100% 0% 1,876.97 0.00

Center West            

Mato Grosso do Sul 73% 27% 16,806.98 5,671.26
Goiás 77% 23% 15,126.91 4,184.86
Mato Grosso 87% 13% 21,705.23 3,024.44

Brazil 64% 36% 13,110.12 7,348.45
Source: CONAB 2013.         
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Table 2: Summary statistics of inputs, outputs and exogenous variables used  

 

  

Variables Description N Minimum Mean Maximum
Standard 
Deviation

Inputs
sugarcane

204 33.11    1,484.69   7,601.58   1,155.33  

capacity 204 800.00  10,130.19 42,000.00 6,707.17  

Outputs
ethanol

204 0.00 62.00        295.85      52.37       

sugar
204 0.00 91.51        638.70      99.99       

Exogenous
perown

204 0.00 64.27        100.00      29.29       

mixed
204 0.00 0.68          1.00          0.47         

cw Dummy that is 1 when the mill is in the 
Center-West and 0 otherweise

204 0.00 0.18          1.00          0.39         

cw=0 167 0.00 0.61          1.00          0.29         

cw=1 37 0.00 0.80          1.00          0.27         

sp Dummy that is 1 when the mill is in São 
Paulo and 0 otherweise

204 0.00 0.34          1.00          0.47         

sp=0 135 0.00 0.66          1.00          0.30         

sp=1 69 0.00 0.62          1.00          0.27         

alpe Dummy that is 1 when the mill is either 
in Alagoas or Pernambuco and 0 

204 0.00 0.16          1.00          0.36         

alpe=0 172 0.00 0.65          1.00          0.31         

alpe=1 32 0.00 0.62          0.90          0.19         

age 204 1.00 28.33        152.00      27.84       

Amount in 1,000 tons of sugarcane crushed by 
the DMU

Percentage (%) of sugarcane crushed that was 
produced by the mill 
Dummy that is 1 when the mill produces two 
goods and 0 otherweise

Age of the mill in years

Amount of sugar produced in 1,000 tons by 
each DMU

Amount of ethanol produced in 1,000,000 liters 
by each DMU

Amout of sugarcane daily crushing capacity 

Interaction of a dummy indicating if the 
mill is in the Center West region with 
perown

cw*perown

sp*perown

alpe*perown

Interaction of a dummy indicating if the 
mill is in the state of Sao Paulo with 
perown

Interaction of a dummy indicating if the 
mill is in the states of Alagoas or 
Pernambuco with perown
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Table 3: Input-oriented efficiency scores by region and state with variable returns to scale 

States and Regions N Minimum Mean Maximum 
Standard 

Deviation

North 4 0.70 0.82 1.00 0.13
Acre 1 1.00 1.00 1.00 .
Amazonas 1 0.75 0.75 0.75 .
Para 1 0.85 0.85 0.85 .
Rondonia 1 0.70 0.70 0.70 .

Northeast 50 0.60 0.88 1.00 0.09
Alagoas 20 0.80 0.92 1.00 0.06
Bahia 6 0.60 0.72 0.85 0.09
Paraiba 6 0.80 0.90 1.00 0.08
Pernambuco 12 0.74 0.88 1.00 0.06
Piaui 1 0.84 0.84 0.84 .
Rio Grande do Norte 1 0.72 0.72 0.72 .
Sergipe 4 0.87 0.92 0.96 0.04

Southeast 101 0.53 0.88 1.00 0.08
São Paulo 69 0.71 0.89 1.00 0.06
Minas Gerais 26 0.53 0.88 1.00 0.10
Espirito Santo 4 0.73 0.75 0.76 0.01
Rio de Janeiro 2 0.81 0.82 0.83 0.01

South 12 0.78 0.86 1.00 0.06
Parana 11 0.78 0.85 0.91 0.05
Rio Grande do Sul 1 1.00 1.00 1.00 .

Center  West 37 0.77 0.91 1.00 0.06
Mato Grosso do Sul 9 0.81 0.90 1.00 0.06
Goiás 19 0.77 0.91 1.00 0.07
Mato Grosso 9 0.83 0.90 1.00 0.05

Brazil 204 0.53 0.88 1.00 0.08
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Table 4: Estimation results for the Tobit, Simar Wilson and Fractional regression models 

  
Tobit Simar Wilson 

Algorithm #1
Fractional 
Regression

Perown -0.0006   -0.0004 -0.0044
  (0.0004)   (0.0003)   (0.0031)   

Mixed 0.0118   0.0489 *** 0.1576
  (0.0159)   (0.0160)   (0.1336)   

Cw 0.0294   0.0205 0.2536
  (0.0665)   (0.0608)   (0.6619)   

Sp 0.0063   0.0013 0.0638
  (0.0361)   (0.0376)   (0.3072)

Alpe 0.1482 * 0.0964 1.6323 *
  (0.0902)   (0.0928)   (0.8485)   

Age -0.0002   -0.0004 -0.0024
  (0.0003)   (0.0003)   (0.00279)   

cw*perown 0.0005   0.0009 0.0047
  (0.0008) 

  
(0.0007) (0.0076)

sp*perown 
0.0006 

  
0.0008

  
0.0052

  

  (0.0005)   (0.0005)   (0.0043)   

alpe*perown 
-0.0013 

  
-0.0004

  
-0.0157

  (0.0003)   (0.0013)   (0.0115)   

Constant 0.885 *** 0.8444 *** 1.9624 ***
  (0.0314)   (0.0250)   (0.2585)   

Sigma 0.082   0.078
  (0.0054)   (0.0057)      

   

   
Wald Test 
Statistic for 
Overall 
Significance 17.94   35.282 23.47

P-Value 0.036   0.000 0.005
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Note: Standard errors are in parenthesis.  
Significant levels: *** is 1%, ** is 5%, * is 10%. 
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Table 5: Estimated marginal effects for Tobit, Simar Wilson and Fractional regression models 

  
Tobit Simar Wilson 

Algorithm #1
Fractional 
regression

Perown -0.0004 * -0.00004 -0.0004 *** 

  
(0.0002)   (0.0003)   (0.0002)

Mixed 0.0107   0.0489 *** 0.0160

  
(0.0144)   (0.0160)   (0.0136)

Cw 0.0526 *** 0.0801 *** 0.0505 *** 
  (0.0189)   (0.0236)   (0.0182)

Sp 0.0401 *** 0.0540 *** 0.0385 *** 
  (0.0123)   (0.0165)   (0.0113)

Alpe 0.0513 *** 0.0723 *** 0.0479 *** 
  (0.0161)   (0.0259)   (0.0156)

Age -0.0002   -0.0004 -0.0002
  (0.0003)   (0.0003)   (0.0003)

Interactions         

cw*perown 0.0005   0.0009   0.0005
  (0.0006)   (0.0007)   (0.0006)

sp*perown 0.0006   0.0008   0.0006
  (0.0004)   (0.0005)   (0.0004)

alpe*perown -0.0009   -0.0004   -0.0010
  (0.0009)   (0.0013)   (0.0009)

Note: Standard errors are in parenthesis.  
Significant levels: *** is 1%, ** is 5%, * is 10%. 
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Figure 2: Predicted efficiency scores and 95% confidence interval for different levels of vertical 
integration for mixed mills in the Center-West (cw=1) and rest of Brazil (cw=0) 

 

cw=0

cw=1
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Figure 3: Predicted efficiency scores and 95% confidence interval for different levels of vertical 
integration for mixed mills in São Paulo (sp=1) and rest of Brazil (sp=0) 

 

  

sp=0 

sp =1 
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Figure 4: Predicted efficiency scores and 95% confidence interval for different levels of vertical 
integration for mixed mills in Alagoas or Pernambuco (alpe=1) and rest of Brazil 
(alpe=0) 

  

alpe=0 

alpe=1 
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Supplementary Appendix: Testing for separability 

Prior to running a second stage regression using DEA scores, a modeler must check if the 

separability assumption holds. This involves estimating conditional and unconditional DEAs. If 

the separability assumption holds, that is, if the environmental variables (i.e. vertical integration) 

do not impact the efficiency frontier, then the unconditional DEA scores can be used in a second 

stage regression. 

Consider a vector of input quantities 𝑋 𝜖 𝑅 , a vector of output quantities 𝑌 𝜖 𝑅 and a 

vector of environmental variables 𝑍 𝜖 𝑅 . The environmental variables are variables not present in 

the vector of inputs or outputs but, nevertheless, may affect the distribution of the efficiency scores 

and location of the efficiency frontier (Daraio et al. 2015). The environmental variables can impact 

the production process through: (1) the set of feasible input and output combinations 𝜓 ; (2) 

through the joint density function 𝑓 𝑥, 𝑦, 𝑧 ; or (3) both (1) and (2) (Daraio et al. 2015). Let 𝜓  

be the set of possible pairs of inputs and outputs for a firm when there are environmental variables 

Z. In this case (Daraio et al. 2015): 

 

𝜓  𝑋, 𝑌 |𝑋 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑌 𝑤ℎ𝑒𝑛 𝑍 𝑧  (C.1) 

 

That is, the efficiency frontier will be determined in part by the value of the environmental 

variable(s). In this case, the efficient frontier is not separable from the level of Z.  If environmental 

factors do not impact the location of the efficient frontier, then the set of possible pairs of inputs 

and outputs for a firm becomes: 

 

𝜓  𝑋, 𝑌 |𝑋 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑌  (C.2) 
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Tests of separability are important to determine if second-stage regression results are not 

biased and inconsistent by not taking account of the effect of environmental variables of interest 

in estimating the efficient frontier.. These tests compare the null hypothesis of separability  

𝐻 : 𝜓 𝜓 against the alternative hypothesis 𝐻 : 𝜓 𝜓, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑧 ∈ 𝑍 (Daraio et al. 2015). 

If the null hypothesis is rejected, meaning that the seperability assumption does not hold, the 

environmental variables must be accounted for in first stage estimation of technical efficiency 

using DEA. This is done by using conditional DEA (Daraio et al. 2015) or correction procedures 

as proposed by Simar and Wilson (2007).  

To check for separability we follow methods in Daraio et al. 2015 and compared the 

conditional efficiency scores with the unconditional efficiency scores using the level of backward 

vertical integration as the conditioning environmental factor. Conditional efficiency scores were 

obtained by splitting the sample into groups that have similar levels of the environmental variable 

factor Z. This means that DMU’s were split into groups according to the percentage of sugarcane 

that was crushed that came from land under their control. First the unconditional DEA was 

estimated followed by the estimation of the conditional DEA. For the conditional DEA, the 

minimization problem described in (1) was run separately for each group. Conditional and 

unconditional scores were compared, as in Bădin et al. (2012), by taking the ratio (𝑅  of the 

efficiency scores:  

 

𝑅 𝑥, 𝑦|𝑧
, |

,
 (C.3) 
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Conditional DEAs were run by splitting the sample into groups of 3, 4 and 5 depending on 

their percentage of crushed sugarcane that was produced by the mill. The groups and their sizes 

are presented in Table SA1. In all cases the conditional efficiency scores matched that of the 

unconditional DEA. Groups contain over 30 DMUs in each subgroup to ensure that the DEA is 

relevant. Since the efficiency scores from the conditional DEAs and the unconditional DEAs were 

close to identical we decided that there was no need to run statistical tests. Results from the pooled 

and conditional DEA are presented in Table SA2.  
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Table SA1: Conditional DEA groupings by level of backward vertical integration. 

Group Size Category N

3 [0%-50%] 52
  (50%-80%] 81
  (80%-100%] 75
4 [0%-50%] 52
  (50%-70%] 53
  (70%-85%] 46
  (85%-100%] 57
5 [0%-45%] 44
  (45%-65%] 44
  (65%-80%] 42
  (80%-95%] 38
  (95%-100%] 36
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Table SA2: Comparison of the conditional and unconditional DEA efficiency scores 

 

Three (3) Four (4) Five (5) (1)/(3) (1)/(4) (1)/(5)
1 0.965 0.965 0.965 0.965 1.000 1.000 1.000
2 0.850 0.850 0.850 0.850 1.000 1.000 1.000
3 0.903 0.903 0.903 0.903 1.000 1.000 1.000
4 0.534 0.534 0.534 0.534 1.000 1.000 1.000
5 0.808 0.808 0.808 0.808 1.000 1.000 1.000
6 0.747 0.747 0.747 0.747 1.000 1.000 1.000
7 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.923 0.923 0.923 0.923 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 0.710 0.710 0.710 0.710 1.000 1.000 1.000
11 0.878 0.878 0.878 0.878 1.000 1.000 1.000
12 0.775 0.775 0.775 0.775 1.000 1.000 1.000
13 0.793 0.793 0.793 0.793 1.000 1.000 1.000
14 0.847 0.847 0.847 0.847 1.000 1.000 1.000
15 0.806 0.806 0.806 0.806 1.000 1.000 1.000
16 0.814 0.814 0.814 0.814 1.000 1.000 1.000
17 0.858 0.858 0.858 0.858 1.000 1.000 1.000
18 0.929 0.929 0.929 0.929 1.000 1.000 1.000
19 0.927 0.927 0.927 0.927 1.000 1.000 1.000
20 0.877 0.877 0.877 0.877 1.000 1.000 1.000
21 0.872 0.872 0.872 0.872 1.000 1.000 1.000
22 0.898 0.898 0.898 0.898 1.000 1.000 1.000
23 0.911 0.911 0.911 0.911 1.000 1.000 1.000
24 0.894 0.894 0.894 0.894 1.000 1.000 1.000
25 0.839 0.839 0.839 0.839 1.000 1.000 1.000
26 0.891 0.891 0.891 0.891 1.000 1.000 1.000
27 0.878 0.878 0.878 0.878 1.000 1.000 1.000
28 0.891 0.891 0.891 0.891 1.000 1.000 1.000
29 0.845 0.845 0.845 0.845 1.000 1.000 1.000
30 0.817 0.817 0.817 0.817 1.000 1.000 1.000
31 0.852 0.852 0.852 0.852 1.000 1.000 1.000
32 0.931 0.931 0.931 0.931 1.000 1.000 1.000
33 0.903 0.903 0.903 0.903 1.000 1.000 1.000
34 0.959 0.959 0.959 0.959 1.000 1.000 1.000
35 0.874 0.874 0.874 0.874 1.000 1.000 1.000
36 0.870 0.870 0.870 0.870 1.000 1.000 1.000
37 0.883 0.883 0.883 0.883 1.000 1.000 1.000
38 0.842 0.842 0.842 0.842 1.000 1.000 1.000
39 0.967 0.967 0.967 0.967 1.000 1.000 1.000
40 0.855 0.855 0.855 0.855 1.000 1.000 1.000
41 0.953 0.953 0.953 0.953 1.000 1.000 1.000
42 0.708 0.708 0.708 0.708 1.000 1.000 1.000
43 0.810 0.810 0.810 0.810 1.000 1.000 1.000
44 0.858 0.858 0.858 0.858 1.000 1.000 1.000
45 0.892 0.892 0.892 0.892 1.000 1.000 1.000
46 0.971 0.971 0.971 0.971 1.000 1.000 1.000
47 0.847 0.847 0.847 0.847 1.000 1.000 1.000
48 0.811 0.811 0.811 0.811 1.000 1.000 1.000
49 0.801 0.801 0.801 0.801 1.000 1.000 1.000
50 0.986 0.986 0.986 0.986 1.000 1.000 1.000
51 0.978 0.978 0.978 0.978 1.000 1.000 1.000

dmu
Unconditional 

DEA (1)
Conditional DEA in groups of Ratios
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Three (3) Four (4) Five (5) (1)/(3) (1)/(4) (1)/(5)
52 0.879 0.879 0.879 0.879 1.000 1.000 1.000
53 0.847 0.847 0.847 0.847 1.000 1.000 1.000
54 0.947 0.947 0.947 0.947 1.000 1.000 1.000
55 0.888 0.888 0.888 0.888 1.000 1.000 1.000
56 0.783 0.783 0.783 0.783 1.000 1.000 1.000
57 1.000 1.000 1.000 1.000 1.000 1.000 1.000
58 0.778 0.778 0.778 0.778 1.000 1.000 1.000
59 0.905 0.905 0.905 0.905 1.000 1.000 1.000
60 0.858 0.858 0.858 0.858 1.000 1.000 1.000
61 0.908 0.908 0.908 0.908 1.000 1.000 1.000
62 0.898 0.898 0.898 0.898 1.000 1.000 1.000
63 0.894 0.894 0.894 0.894 1.000 1.000 1.000
64 0.859 0.859 0.859 0.859 1.000 1.000 1.000
65 0.930 0.930 0.930 0.930 1.000 1.000 1.000
66 0.856 0.856 0.856 0.856 1.000 1.000 1.000
67 0.834 0.834 0.834 0.834 1.000 1.000 1.000
68 0.857 0.857 0.857 0.857 1.000 1.000 1.000
69 0.910 0.910 0.910 0.910 1.000 1.000 1.000
70 0.794 0.794 0.794 0.794 1.000 1.000 1.000
71 0.809 0.809 0.809 0.809 1.000 1.000 1.000
72 0.919 0.919 0.919 0.919 1.000 1.000 1.000
73 0.812 0.812 0.812 0.812 1.000 1.000 1.000
74 0.898 0.898 0.898 0.898 1.000 1.000 1.000
75 0.882 0.882 0.882 0.882 1.000 1.000 1.000
76 0.842 0.842 0.842 0.842 1.000 1.000 1.000
77 0.912 0.912 0.912 0.912 1.000 1.000 1.000
78 0.770 0.770 0.770 0.770 1.000 1.000 1.000
79 0.931 0.931 0.931 0.931 1.000 1.000 1.000
80 0.886 0.886 0.886 0.886 1.000 1.000 1.000
81 0.883 0.883 0.883 0.883 1.000 1.000 1.000
82 0.837 0.837 0.837 0.837 1.000 1.000 1.000
83 0.818 0.818 0.818 0.818 1.000 1.000 1.000
84 0.918 0.918 0.918 0.918 1.000 1.000 1.000
85 0.827 0.827 0.827 0.827 1.000 1.000 1.000
86 0.912 0.912 0.912 0.912 1.000 1.000 1.000
87 0.845 0.845 0.845 0.845 1.000 1.000 1.000
88 0.885 0.885 0.885 0.885 1.000 1.000 1.000
89 0.894 0.894 0.894 0.894 1.000 1.000 1.000
90 0.977 0.977 0.977 0.977 1.000 1.000 1.000
91 0.880 0.880 0.880 0.880 1.000 1.000 1.000
92 0.833 0.833 0.833 0.833 1.000 1.000 1.000
93 0.844 0.844 0.844 0.844 1.000 1.000 1.000
94 0.872 0.872 0.872 0.872 1.000 1.000 1.000
95 0.920 0.920 0.920 0.920 1.000 1.000 1.000
96 0.937 0.937 0.937 0.937 1.000 1.000 1.000
97 0.985 0.985 0.985 0.985 1.000 1.000 1.000
98 0.853 0.853 0.853 0.853 1.000 1.000 1.000
99 0.937 0.937 0.937 0.937 1.000 1.000 1.000

100 0.789 0.789 0.789 0.789 1.000 1.000 1.000
101 0.853 0.853 0.853 0.853 1.000 1.000 1.000
102 0.862 0.862 0.862 0.862 1.000 1.000 1.000

(continued)
Conditional DEA in groups of Ratios

dmu
Unconditional 

DEA (1)
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Three (3) Four (4) Five (5) (1)/(3) (1)/(4) (1)/(5)
103 0.973 0.973 0.973 0.973 1.000 1.000 1.000
104 1.000 1.000 1.000 1.000 1.000 1.000 1.000
105 1.000 1.000 1.000 1.000 1.000 1.000 1.000
106 0.939 0.939 0.939 0.939 1.000 1.000 1.000
107 0.859 0.859 0.859 0.859 1.000 1.000 1.000
108 0.890 0.890 0.890 0.890 1.000 1.000 1.000
109 0.903 0.903 0.903 0.903 1.000 1.000 1.000
110 1.000 1.000 1.000 1.000 1.000 1.000 1.000
111 0.885 0.885 0.885 0.885 1.000 1.000 1.000
112 0.891 0.891 0.891 0.891 1.000 1.000 1.000
113 0.938 0.938 0.938 0.938 1.000 1.000 1.000
114 0.847 0.847 0.847 0.847 1.000 1.000 1.000
115 0.874 0.874 0.874 0.874 1.000 1.000 1.000
116 0.919 0.919 0.919 0.919 1.000 1.000 1.000
117 0.961 0.961 0.961 0.961 1.000 1.000 1.000
118 0.904 0.904 0.904 0.904 1.000 1.000 1.000
119 0.957 0.957 0.957 0.957 1.000 1.000 1.000
120 0.954 0.954 0.954 0.954 1.000 1.000 1.000
121 0.879 0.879 0.879 0.879 1.000 1.000 1.000
122 0.981 0.981 0.981 0.981 1.000 1.000 1.000
123 0.893 0.893 0.893 0.893 1.000 1.000 1.000
124 1.000 1.000 1.000 1.000 1.000 1.000 1.000
125 0.969 0.969 0.969 0.969 1.000 1.000 1.000
126 0.997 0.997 0.997 0.997 1.000 1.000 1.000
127 0.983 0.983 0.983 0.983 1.000 1.000 1.000
128 0.911 0.911 0.911 0.911 1.000 1.000 1.000
129 0.904 0.904 0.904 0.904 1.000 1.000 1.000
130 0.974 0.974 0.974 0.974 1.000 1.000 1.000
131 0.941 0.941 0.941 0.941 1.000 1.000 1.000
132 0.929 0.929 0.929 0.929 1.000 1.000 1.000
133 1.000 1.000 1.000 1.000 1.000 1.000 1.000
134 0.905 0.905 0.905 0.905 1.000 1.000 1.000
135 1.000 1.000 1.000 1.000 1.000 1.000 1.000
136 0.906 0.906 0.906 0.906 1.000 1.000 1.000
137 1.000 1.000 1.000 1.000 1.000 1.000 1.000
138 0.942 0.942 0.942 0.942 1.000 1.000 1.000
139 0.854 0.854 0.854 0.854 1.000 1.000 1.000
140 0.981 0.981 0.981 0.981 1.000 1.000 1.000
141 1.000 1.000 1.000 1.000 1.000 1.000 1.000
142 0.990 0.990 0.990 0.990 1.000 1.000 1.000
143 1.000 1.000 1.000 1.000 1.000 1.000 1.000
144 1.000 1.000 1.000 1.000 1.000 1.000 1.000
145 1.000 1.000 1.000 1.000 1.000 1.000 1.000
146 1.000 1.000 1.000 1.000 1.000 1.000 1.000
147 0.854 0.854 0.854 0.854 1.000 1.000 1.000
148 0.977 0.977 0.977 0.977 1.000 1.000 1.000
149 0.830 0.830 0.830 0.830 1.000 1.000 1.000
150 0.872 0.872 0.872 0.872 1.000 1.000 1.000
151 0.803 0.803 0.803 0.803 1.000 1.000 1.000
152 0.900 0.900 0.900 0.900 1.000 1.000 1.000
153 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(continued)

dmu
Unconditional 

DEA (1)
Conditional DEA in groups of Ratios
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Three (3) Four (4) Five (5) (1)/(3) (1)/(4) (1)/(5)
154 0.940 0.940 0.940 0.940 1.000 1.000 1.000
155 0.892 0.892 0.892 0.892 1.000 1.000 1.000
156 0.991 0.991 0.991 0.991 1.000 1.000 1.000
157 0.858 0.858 0.858 0.858 1.000 1.000 1.000
158 0.891 0.891 0.891 0.891 1.000 1.000 1.000
159 0.967 0.967 0.967 0.967 1.000 1.000 1.000
160 0.910 0.910 0.910 0.910 1.000 1.000 1.000
161 1.000 1.000 1.000 1.000 1.000 1.000 1.000
162 0.912 0.912 0.912 0.912 1.000 1.000 1.000
163 0.976 0.976 0.976 0.976 1.000 1.000 1.000
164 0.845 0.845 0.845 0.845 1.000 1.000 1.000
165 0.747 0.747 0.747 0.747 1.000 1.000 1.000
166 0.848 0.848 0.848 0.848 1.000 1.000 1.000
167 0.680 0.680 0.680 0.680 1.000 1.000 1.000
168 0.677 0.677 0.677 0.677 1.000 1.000 1.000
169 0.764 0.764 0.764 0.764 1.000 1.000 1.000
170 0.776 0.776 0.776 0.776 1.000 1.000 1.000
171 0.603 0.603 0.603 0.603 1.000 1.000 1.000
172 0.749 0.749 0.749 0.749 1.000 1.000 1.000
173 0.763 0.763 0.763 0.763 1.000 1.000 1.000
174 0.739 0.739 0.739 0.739 1.000 1.000 1.000
175 0.731 0.731 0.731 0.731 1.000 1.000 1.000
176 0.850 0.850 0.850 0.850 1.000 1.000 1.000
177 0.898 0.898 0.898 0.898 1.000 1.000 1.000
178 0.983 0.983 0.983 0.983 1.000 1.000 1.000
179 1.000 1.000 1.000 1.000 1.000 1.000 1.000
180 0.910 0.910 0.910 0.910 1.000 1.000 1.000
181 0.831 0.831 0.831 0.831 1.000 1.000 1.000
182 0.805 0.805 0.805 0.805 1.000 1.000 1.000
183 0.744 0.744 0.744 0.744 1.000 1.000 1.000
184 0.904 0.904 0.904 0.904 1.000 1.000 1.000
185 1.000 1.000 1.000 1.000 1.000 1.000 1.000
186 0.869 0.869 0.869 0.869 1.000 1.000 1.000
187 0.902 0.902 0.902 0.902 1.000 1.000 1.000
188 0.842 0.842 0.842 0.842 1.000 1.000 1.000
189 0.902 0.902 0.902 0.902 1.000 1.000 1.000
190 0.892 0.892 0.892 0.892 1.000 1.000 1.000
191 0.913 0.913 0.913 0.913 1.000 1.000 1.000
192 0.894 0.894 0.894 0.894 1.000 1.000 1.000
193 0.848 0.848 0.848 0.848 1.000 1.000 1.000
194 0.872 0.872 0.872 0.872 1.000 1.000 1.000
195 0.844 0.844 0.844 0.844 1.000 1.000 1.000
196 0.807 0.807 0.807 0.807 1.000 1.000 1.000
197 0.827 0.827 0.827 0.827 1.000 1.000 1.000
198 0.716 0.716 0.716 0.716 1.000 1.000 1.000
199 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 0.699 0.699 0.699 0.699 1.000 1.000 1.000
201 0.867 0.867 0.867 0.867 1.000 1.000 1.000
202 0.906 0.906 0.906 0.906 1.000 1.000 1.000
203 0.956 0.956 0.956 0.956 1.000 1.000 1.000
204 0.944 0.944 0.944 0.944 1.000 1.000 1.000

(continued)

dmu
Unconditional 

DEA (1)
Conditional DEA in groups of Ratios


