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Abstract 

This dissertation focuses on applying machine learning (ML) modeling for image segmentation 

tasks of various applications such as additive manufacturing monitoring, agricultural soil cover 

classification, and laser scribing quality control.  The proposed framework uses various ML 

models such as gradient boosting classifier and deep convolutional neural network to improve and 

automate image segmentation tasks.  

In recent years, supervised ML methods have been widely adopted for imaging processing 

applications in various industries. The presence of cameras installed in production processes has 

generated a vast amount of image data that can potentially be used for process monitoring. 

Specifically, deep supervised machine learning models have been successfully implemented to 

build automatic tools for filtering and classifying useful information for process monitoring. 

However, successful implementations of deep supervised learning algorithms depend on several 

factors such as distribution and size of training data, selected ML models, and consistency in the 

target domain distribution that may change based on different environmental conditions over time. 

The proposed framework takes advantage of general-purposed, trained supervised learning 

models and applies them for process monitoring applications related to manufacturing and 

agriculture. In Chapter 2, a layer-wise framework is proposed to monitor the quality of 3D printing 

parts based on top-view images. The proposed statistical process monitoring method starts with 

self-start control charts that require only two successful initial prints. Unsupervised machine 

learning methods can be used for problems in which high accuracy is not required, but statistical 

process monitoring usually demands high classification accuracies to avoid Type I and II errors. 

Answering the challenges of image processing using unsupervised methods due to lighting, a 



  

supervised Gradient Boosting Classifier (GBC) with 93 percent accuracy is adopted to classify 

each printed layer from the printing bed. 

Despite the power of GBC or other decision-tree-based ML models comparable to 

unsupervised ML models, their capability is limited in terms of accuracy and running time for 

complex classification problems such as soil cover classification. In Chapter 3, a deep 

convolutional neural network (DCNN) for semantic segmentation is trained to quantify and 

monitor soil coverage in agricultural fields. The trained model is capable of accurately quantifying 

green canopy cover, counting plants, and classifying stubble. Due to the wide variety of scenarios 

in a real agricultural field, 3942 high-resolution images were collected and labeled for training and 

test data set.  

The difficulty and hardship of collecting, cleaning, and labeling the mentioned dataset was 

the motivation to find a better approach to alleviate data-wrangling burden for any ML model 

training. One of the most influential factors is the need for a high volume of labeled data from an 

exact problem domain in terms of feature space and distributions of data of all classes. Image data 

preparation for deep learning model training is expensive in terms of the time for labelling due to 

tedious manual processing. Multiple human labelers can work simultaneously but inconsistent 

labeling will generate a training data set that often compromises model performance. In addition, 

training a ML model for a complication problem from scratch will also demand vast computational 

power.  

One of the potential approaches for alleviating data wrangling challenges is transfer 

learning (TL). In Chapter 4, a TL approach was adopted for monitoring three laser scribing 

characteristics – scribe width, straightness, and debris to answer these challenges. The proposed 

transfer deep convolutional neural network (TDCNN) model can reduce timely and costly 



  

processing of data preparation. The proposed framework leverages a deep learning model already 

trained for a similar problem and only uses 21 images generated gleaned from the problem domain. 

The proposed TDCNN overcame the data challenge by leveraging the DCNN model called 

VGG16 already trained for basic geometric features using more than two million pictures. 

Appropriate image processing techniques were provided to measure scribe width and line 

straightness as well as total scribe and debris area using classified images with 96 percent accuracy. 

In addition to the fact that the TDCNN is functioning with less trainable parameters (i.e., 5 million 

versus 15 million for VGG16), increasing training size to 154 did not provide significant 

improvement in accuracy that shows the TDCNN does not need high volume of data to be 

successful. Finally, chapter 5 summarizes the proposed work and lays out the topics for future 

research.  
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Abstract 

This dissertation focuses on applying machine learning (ML) modelling for image segmentation 

tasks of various applications such as additive manufacturing monitoring, agricultural soil cover 

classification, and laser scribing quality control.  The proposed ML framework uses various ML 

models such as gradient boosting classifier and deep convolutional neural network to improve and 

automate image segmentation tasks.  

In recent years, supervised ML methods have been widely adopted for imaging processing 

applications in various industries. The presence of cameras installed in production processes has 

generated a vast amount of image data that can potentially be used for process monitoring. 

Specifically, deep supervised machine learning models have been successfully implemented to 

build automatic tools for filtering and classifying useful information for process monitoring. 

However, successful implementations of deep supervised learning algorithms depend on several 

factors such as distribution and size of training data, selected ML models, and consistency in the 

target domain distribution that may change based on different environmental conditions over time. 

The proposed framework takes advantage of general-purposed, trained supervised learning 

models and applies them for process monitoring applications related to manufacturing and 

agriculture. In Chapter 2, a layer-wise framework is proposed to monitor the quality of 3D printing 

parts based on top-view images. The proposed statistical process monitoring method starts with 

self-start control charts that require only two successful initial prints. Unsupervised machine 

learning methods can be used for problems in which high accuracy is not required, but statistical 

process monitoring usually demands high classification accuracies to avoid Type I and II errors. 

Answering the challenges of image processing using unsupervised methods due to lighting, a 



  

supervised Gradient Boosting Classifier (GBC) with 93 percent accuracy is adopted to classify 

each printed layer from the printing bed. 

Despite the power of GBC or other decision-tree-based ML models to comparable to 

unsupervised ML models, their capability is limited in terms of accuracy and running time for 

complex classification problems such as soil cover classification. In Chapter 3, a deep 

convolutional neural network (DCNN) for semantic segmentation is trained to quantify and 

monitor soil coverage in agricultural fields. The trained model is capable of accurately quantifying 

green canopy cover, counting plants, and classifying stubble. Due to the wide variety of scenarios 

in a real agricultural field, 3942 high-resolution images were collected and labeled for training and 

test data set.  

The difficulty and hardship of collecting, cleaning, and labeling the mentioned dataset was 

the motivation to find a better approach to alleviate data-wrangling burden for any ML model 

training. One of the most influential factors is the need for a high volume of labeled data from an 

exact problem domain in terms of feature space and distributions of data of all classes. Image data 

preparation for deep learning model training is expensive in terms of the time for labelling due to 

tedious manual processing. Multiple human labelers can work simultaneously but inconsistent 

labeling will generate a training data set that often compromises model performance. In addition, 

training a ML model for a complication problem from scratch will also demand vast computational 

power.  

One of the potential approaches for alleviating data wrangling challenges is transfer 

learning (TL). In Chapter 4, a TL approach was adopted for monitoring three laser scribing 

characteristics – scribe width, straightness, and debris to answer these challenges. The proposed 

transfer deep convolutional neural network (TDCNN) model can reduce timely and costly 



  

processing of data preparation. The proposed framework leverages a deep learning model already 

trained for a similar problem and only uses 21 images generated gleaned from the problem domain. 

The proposed TDCNN overcame the data challenge by leveraging the DCNN model called 

VGG16 already trained for basic geometric features using more than two million pictures. 

Appropriate image processing techniques were provided to measure scribe width and line 

straightness as well as total scribe and debris area using classified images with 96 percent accuracy. 

In addition to the fact that the TDCNN is functioning with less trainable parameters (i.e., 5 million 

versus 15 million for VGG16), increasing training size to 154 did not provide significant 

improvement in accuracy that shows the TDCNN does not need high volume of data to be 

successful. Finally, chapter 5 summarizes the proposed work and lays out the topics for future 

research. 
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1. Introduction  
 

Manufacturing processes have been integrating with industrial digital technologies such as 

Artificial Intelligence (AI), Internet of Things (IoT), and cloud computing in the fourth industrial 

revolution [1]. Sensors and cameras installed on production machines and vehicles, satellites, 

drones, and many other data collection tools collect real-time data that could be potentially used 

for agriculture and manufacturing applications. A significant portion of collected data is either in 

the form of grayscale or RGB images. Image processing techniques for pre-processing, processing 

and post-processing are often necessary to extract useful information before data can be fed into 

algorithms or models [2].  Pre-processing operations include image cleaning, noise reductions, and 

labeling. Typical noise types include Gaussian noise, salt-and-pepper noise, and shot noise. Next, 

pre-processed images are processed further to extract useful information such as labeling specific 

objects with their location, width, height, etc. At the end, the extracted information must be 

validated in post processing. 

 

 
1.1. Motivation and background 

1.1.1.  Image-based process monitoring using ML 

Image processing consists of methods and operations on a set of gray scale or color arrays 

representing an image to extract some useful information [2]. With the advent of machine vision 

and ML, opportunities arise for the use of AI framework for monitoring and characterizing 

manufacturing processes as well as natural resource management. Image-based process monitoring 

has been used in a wide range of industries from agriculture and food production  [3], [4] to health 

system monitoring [5]–[7], and manufacturing processes [8], [9]. Among all state-of-the-art 

monitoring methods, data-driven methods without physical models or expert knowledge have won 
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massive popularity in recent years [10]. A wide variety of quality characteristics such as product 

geometry, surface analysis, dimensional data, and defect patterns can be monitored using imaged 

based monitoring [11].  

Image-based process monitoring includes the following steps: image acquisition, image 

pre-processing, feature extraction, and process monitoring, and control charts [12]. Previous 

research in this area mostly focused on two approaches [13]. The first approach uses spatial control 

chart to detect the location of and size of a defect [14]–[18] while the second approach aims to 

detect defects through a well-defined statistical method [19], [20]. These two approaches may be 

implemented simultaneously [21]. Image-based process monitoring is discussed with more details 

in section 1.1.2.  Although these advancements have brought considerable benefits, such as lower 

costs, production efficiency and consistency in monitoring, the potential of using generated images 

for process monitoring has not been discovered completely. Image-based process monitoring could 

also be used in different industries for proactive maintenance, packaging inspections, assembly 

line inspections, quality monitoring, tracking, and tracing, and demand prediction. Image-based 

process monitoring could be implemented via various ML techniques including supervised, 

unsupervised, and reinforcement learning. In the following sections, the basic definitions of ML 

techniques and their relations are described to outline the scope of this dissertation. 

 

1.1.1.1.  Unsupervised machine learning 

Let’s have domain D = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀} ∈ χ where 𝑥𝑖 ∈ 𝑅𝑛 is input training instances with 

i.i.d. distribution. In unsupervised ML, the goal is to learn the internal structure of the data without 

knowing the labels. Dimensionality reduction methods (e.g., principal component analysis (PCA)), 
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clustering (e.g., k-means), and density estimation are some of most common unsupervised 

methods. 

 
1.1.1.2.  Supervised machine learning 

In supervised ML, label or labels are associated to each instance. Let’s have domain D = {(𝑥1,𝑦1) 

(𝑥2,𝑦2), … , (𝑥𝑀,𝑦𝑀)} ⊑ χ × 𝒴 where 𝑥𝑖 ∈ 𝑅𝑛 is the input instance, and 𝑦𝑖is its label. 𝒴 is called 

label space and χ is feature space or input space. The main goal in supervised learning is to learn 

a function h such that h(χ) is an estimator for 𝒴 with a high probability. We use GBC and neural 

networks (NN) in this dissertation. Other supervised ML methods include naïve bayes, logistics 

regression, support vector machine (SVM), and random forest are some of the popular supervised 

learning methods.  

 

1.1.1.3.  Reinforcement learning 

Reinforcement learning (RL) is the task of learning through trial and error and rewarding desired 

behaviors or punishing undesired ones. RL is out of the scope of this research, but to understand 

the contribution of this research we needed to define it. RL could be supervised or unsupervised, 

where the difference between supervised learning and RL is that the feedback provided to the agent 

in supervised learning is a correct set of action for performing a task, but RL uses rewards policy. 

To compare to unsupervised learning, the goal in unsupervised learning is to find similarities, 

however, the goal in RL is to maximize rewards. 

 

1.1.1.4.  Deep learning 

Deep learning (DL) is a powerful approach that was explicitly addressed first time in 1976 [22] 

but has gotten a momentum in applications and improvements of ML models recently. DL imitates 
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the way how a human brain learns certain types of knowledge through multi-layered non-linear 

function approximators, typically neural networks. It should be noted that DL is not an ML model 

itself, but instead, it is a toolbox that can be applied to all other ML models. That is why DL could 

have overlapped with all other ML methods shown in Figure 1.1.  

 

Figure 1.1. Relationship among AI, ML, supervised learning, unsupervised learning, DL, and 

RL 

 

1.1.2.  Process monitoring using transfer learning 

Many challenges still exist in adopting DL framework for process monitoring.  Large data 

requirements, the inability to produce physically consistent results, and their lack of 

generalizability to out-of-sample scenarios are some of the most important constraints in the 

application of black-box ML models, that causes limited success in scientific domains [23]. DL and 

convolutional neural network (CNN) have showed promising performance among other ML 

methods in recent years in different contexts from autonomous driving vehicles to medical image 
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analysis [24], [25]. However, these methods need a significant amount of data for training a model 

with adequate accuracy [26]–[28]. Collecting image data may not be a big challenge these days but 

pre-processing and labeling of these images for training is. This data preparation stage is the most 

time-consuming and costly step in any machine vision/DL application. One way to alleviate this 

problem is the use of transfer learning [29].  

Existing supervised ML methods such as decision tree and other methods based on various 

trees such as Random Forest (RF) or GBC may not need as much training data as the DL/CNN 

models do but still require a large amount of data. In addition, these traditional ML methods cannot 

handle complicated problems such as semantic segmentation with multiple quality characteristics. 

For example, there might be several classes of objects to be classified or each class might have 

different geometrical shapes and colors [28].  

Transfer Learning (TL) may be used to alleviate the lack of labeled data problems. 

Specifically, TL enables model knowledge gained from a different yet similar problem for solving 

another problem. For the diagnostic radiology example, labelled images are often hard to obtain, 

especially for rare conditions. Another often-happened issue in ML training is overfitting which 

prevents a trained model from predicting instances accurately when they are not a part of the 

training dataset. Therefore, TL provides a mean for model training even when the training data set 

is relatively small. Usually, TL is best applied where the base model has been trained on a vastly 

bigger training set than the task at hand. Ng (2016) predicted that TL will be the next driver of ML 

commercial success after supervised learning [30]. Figure 1.2 shows a general structure of TL 

using a feature extraction approach.  
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Figure 1.2 shows a general structure of TL using a feature extraction approach. Feature 

extraction is the process of reducing the dimension of a problem in which the raw data matrix is 

reduced to a smaller manageable groups [31]. TL can be defined in terms of domain, task, and 

marginal probabilities [32]. Let’s say X= {x1, x2, …. , xn} which xi is a specific sample point and 

X  χ. Domain D is defined as a tuple of feature space χ (e.g. Dataset 1 in Figure 1.2) and marginal 

probability P(X). A task, T, on the other hand, can be defined as a two-element tuple of the label 

space γ (e.g. Dataset 2 in Figure 1.2).  The task is  to maximize  objective function f given the 

sample point X [33]. 

D = { χ , P(X)}         (1) 

f = P(γ |X)          (2) 

T = { γ, P(γ |X)}         (3) 

Deep transfer learning is categorized into four categories [34], [35]: 

1.1.2.1. Instances-based deep transfer learning 

Instance-based deep TL refers to the case that a part of the instances from the source domain are 

re-used in the target domain and it was used initially based on AdaBoost model [36]. Although 

there are differences between the source domain and target domain, there are still a partial instance 

in the source domain that can be utilized by the target domain with appropriate weights [37]–[39]. 

Figure 1.3 shows a schematic map of instance-based transfer learning.   

Feature extraction 

Dataset 1 

Output 

Dataset 2 

Figure 1.2. General structure of feature- representation – transfer approach 
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Figure 1.3. Schematic map of instance-based transfer learning 

 

1.1.2.2. Mapping-based deep transfer learning 

A map from instances in target domain and similar instances in source domain can create a new 

data space [40]. Creating this new data space called mapping-based transfer learning provides a 

similar and suitable domain to train a union neural network. Figure 1.4 demonstrates a schematic 

diagram of mapping-based deep transfer learning method. 

 

Figure 1.4. Schematic mapping-Based transfer learning 
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1.1.2.3. Network-based deep transfer learning 

Network-based deep transfer learning refers to the approach that a part of another trained model is 

transferred and reused to a new ML model as a pre-trained model [41]–[43]. Specifically, all 

weights in the neural network layers in the source domain are adopted in the target domain before 

the training on the target domain begins [44]. Additional layers are necessary for the target domain 

for desired model performance. However, the inclusion of the pre-trained layers will dramatically 

reduce the training effort in terms of the number of labeled data and training time.  This is the 

approach used in this dissertation. Figure 1.5 demonstrates network-based deep transfer learning 

model using another deep neural network as a pre-trained model and transfer weights from trained 

layers to train target domain. 

 

Figure 1.5. Schematic map of network-based transfer learning 
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1.1.2.4. Adversarial-based deep transfer learning 

Adversarial-based transfer learning is inspired by generative adversarial networks (GANs) [45] to 

improve performance of generator, discriminator or both in a conventional GANs model. Different 

domain adaption methods such as domain adaption loss function or network-based transfer 

learning could be used for this purpose. There is no strong condition to determine how many 

images needed for training a DCNN model. As a rule of thumb, it is suggested that 1000 images 

per class should be sufficient. Note that this number could vary based on the problem. A DCNN 

model where there is approximately the same amount of data for each task may still benefit from 

transfer learning if there is a risk of overfitting, as it often occurs when the destination task is highly 

domain specific [30], [32]. In fact, training a large domain specific DCNN might be 

counterproductive, as it may overfit the domain. Overall, when used appropriately, transfer 

learning will provide a trifecta of benefits: a higher starting accuracy, faster convergence, and 

higher asymptotic accuracy (i.e. the accuracy level to which the training converges) [33], [46], [47]. 

It is not easy to locate TL among other ML methods since there is an overlap between each 

subcategory, but Figure 1.6 demonstrates the relation between TL and other ML methods.  
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Figure 1.6. Relationship of TL (in purple) among other ML methods 

 

This dissertation focuses on the applications of image segmentation using ML models applied 

to manufacturing process monitoring and agricultural field management. Table 1.1 

summarizes the most relevant studies related to the applications of TL in manufacturing process 

monitoring. TL models might be affected by many parameters including the ML methods that the 

source model (pre-trained model) was trained on or the source or target dataset. Also, process 

monitoring could be done by different types of data such as text, images, or time series data. It is 

not easy to compare studies from different data types. This shows the wide gape and research 

potential of using TL methods in manufacturing and natural resource management. 
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Table 1.1. Most relevant transfer learning approaches for manufacturing process monitoring 

purposes 

Study Year Case Study ML Approach Target Data Type Datasets Number 

Of 

Classes 

Approximate 

Max Accuracy 

(%) 
Source Target Source 

Target 

Size 

[48] 2018 Castings ResNet CNN 

Image 

Segmentation & 

Object Detection 

ImageNet 2500 2 95 

[49] 2019 3D printing 
transfer component 

analysis (TCA) 
SVM Time Series 

vibration acceleration 

signals 

2400 × 

162 

16 86-92 

[50] 2020 

Wind 

turbine 
CNN CNN Time Series 

Time waveforms of 

collected vibration data 

12000 

&24000 

1&3 98 

[51] 2021 

 
Weld 

penetration 

ResNet CNN 

Image 

Classification 

ImageNet 28494 3 96 

[52] 2021 

Acoustic 

emission 
VGG16 CNN 

Image 

Classification 

ImageNet 480000 12 92 

 

According to Table 1.1, various ML approaches have been used in different studies. This research 

also used traditional ML in chapter two, DCNN in chapter three, and TDCNN in chapter four. 

Figure 1.7 demonstrates position of this study among other ML sub-categories in green color. 
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Figure 1.7. Relationship of TL (in purple) among other ML methods and position of this study 

(in green) under ML category 

 

1.2. Challenges 

Pre-processing (especially labeling images) might may be the most time-consuming and costly 

step in image processing.  Traditional supervised ML methods for image classification are costly 

because of the need to label images manually. However, when objects have a very similar features, 

current unsupervised learning will fail to detect, segment, and locate them in the image. Supervised 

ML methods such as decision tree and other methods based on various trees such Random Forest 

(RF) or Gradient Boosting Classifier (GBC) usually provide good accuracy for prediction, but they 

have limited performance especially in the face of complicated problems. Complexity of a simple 

decision tree is in the order of O(n2p), for RF O(n2pntrees), and for Support Vector Machin (SVM) 

is O(n2p + n3) where n is the number of training samples, ntrees is the number of trees for methods 
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based on various trees, and p is the number of features [52]. Therefore, if the number of images 

and features increases, the running time for model training will increase exponentially.  

Deep learning (DL) methods provide an alternative framework for feature extraction and 

classification that overcome some of the limitations of traditional machine learning approaches. 

Applying traditional machine learning (ML) methods, users need to design features manually, 

which is a serious burden for model building. In contrast, DL methods, such as deep convolutional 

neural network (CNN), use unsupervised, supervised, semi supervised, or hierarchical methods to 

achieve feature extraction automatically [53]. The total complexity of all convolutional layers is 

in the order of O(∑ 𝑛𝑙−1
𝑑
𝑙=1 𝑠𝑙

2𝑛𝑙𝑚𝑙
2) [54] where the index of a convolutional layer is l, number of 

convolutional layers is d, number of filters (also known as “width”) in the lth layer is nl. Also, nl−1 

is also known as the number of input channels of the l-th layer. sl is the spatial size (length) of the 

filter and ml is the spatial size of the output feature map. 

However, at least hundreds of labeled images are needed, and labeling is often required to 

have a well-trained CNN. Labeling this these many images is very time- consuming. Semi-

supervised learning [55], where a small set of labeled images is used to classify a large dataset, 

usually provides better accuracy than unsupervised learning but is not as good as supervised 

learning methods. Another area in Machine Learning (ML) along with supervised and 

unsupervised learning is Reinforcement Learning (RL) where a software agent rewards different 

actions and maximizes total rewards based on a Markovian Decision Process (MDP) [56]. RL 

methods are promising for some applications such as video games [57]. However, an RL algorithm 

usually requires even more data than traditional ML and DL methods[58]–[62].  
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Despite the vast progress in developing novel ML/DL/RL models and their sharply growing 

applications, there are still several prominent challenges. These challenges include but are not 

limited to: 

1- How can the burden of pre-processing and labeling be reduced for supervised ML 

models which demands a high level of costs and human resources? 

2- Is it necessary to start a model-training process from scratch for a new ML 

problem? 

3- How can process monitoring be implemented before a ML model is successfully 

trained? 

4- How can ML model training time be reduced for a complex problem? The 

assumption is that solving more complex problems demands higher computational 

power and running time. 

5- Is there a way to reduce complexity and improve accuracy at the same time for ML 

model building? 

Transfer Learning (TL) is a potential solution to address all of the questions asked above. 

A new approach to answer these questions is called TL where uses the knowledge gained from a 

different and yet similar problem is used to solve another problem.  
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1.3. Dissertation outline 

The remainder of this dissertation is organized as follows. Chapter 2 describes the application 

image processing and ML in statistical process monitoring [63]. This chapter involves an image-

based quality monitoring framework capable of monitoring 3D printing parts layer by layer. The 

proposed framework is illustrated by a 243-layer basket part with 3-inch diameter and 1.5-inch 

tall. An overhead camera takes images after a printer finishes each layer. The traditional SPC phase 

I process requires at least 20 to 25 parts to establish control limits and each layer requires one set 

of control charts [64]. Since the material and resources using in 3D printing is usually expensive 

if a human operator needs to watch the printing process, the first challenge is how to monitor the 

printing process from the very beginning when there are not enough samples to establish these 

control charts.  as well as the second challenge is how to automate process monitoring.  Thus, the 

proposed framework first starts with a self-start control chart over based on layer-wise images in 

the beginning. To improve detection power and reduce false alarms, the proposed process 

monitoring method and switches to a cluster-charting approach after enough good parts are printed.  

Chapter 3 adopts a DL model for a machine-vision application of soil coverage in 

agriculture fields. Unlike a manufacturing process that often takes place in a controlled and 

protected environment, agriculture applications, such as soil conservation and water management, 

often contain more variations [65]. Estimating crop residue and green canopy cover in agricultural 

fields is a key element in conservation agriculture and crop development. Current image analysis 

methods in agriculture are mostly limited to classifying a few types of crop residue images at the 

experimental level or just quantifying green canopy cover. This chapter aims to explore a deep 

CNN model for quantifying the percentage of stubble, live vegetation, and bare soil in downward-

facing images of agricultural fields. The proposed tool based on this CNN model has features for 
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easily and accurately quantifying green canopy cover, counting plants, and classifying stubble 

using a comprehensive dataset containing 3942 labeled images from real agricultural fields. 

Finally, chapter 4 advances data-driven machine learning models in a manufacturing 

process [66]. Specifically, TL methods are explored to reduce the amount of data needed for 

training as well as to improve the accuracy of image analysis for a laser scribing process. To do 

so, image-based characterization of laser scribing quality using Aa deep transfer learning model is 

used for the identification of several quality characteristics such as debris, scribe width, and 

straightness of a scribe line.  Images taken from the laser scribes on intrinsic Si wafers are 

examined. These images are labeled in a large and a small dataset, respectively. The large dataset 

includes 154 images while the small dataset only includes 21 images.  
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2. A layer-by-layer quality monitoring framework for 3D printing1 

Abstract 

Technology development in additive manufacturing is rapidly transitioning from mass production 

to mass customization. In this transition, automation in all stages of production including quality 

control is a key. In this study, a layer-wise framework is proposed to monitor the quality of 3D 

printing parts based on top-view images. The proposed statistical process monitoring method starts 

with self-start control charts that require only two successful initial prints. Answering the 

challenges of image processing due to lighting, a Machine Learning (ML) method is adopted to 

separate each layer from the printing bed. A sample image is compared to the standard image from 

a good part at each layer. The number of pixels in the difference images is fed into the proposed 

control charts to monitor the printing process at each layer. An Exponentially Weighted Moving 

Average (EWMA) chart based on the number of pixels is used for process monitoring at each 

layer. Once enough parts have been printed, homogeneous layers are clustered to reduce the 

number of control charts needed for process monitoring. Experimental results based on a 3-inch 

diameter basket part show that the proposed framework based on continuously monitoring of layer-

by-layer images is able of detecting small changes in the printing process.   

  

 

1 Reprinted with permission from "A layer-by-layer quality monitoring framework for 3D printing" by Mohammad 

Najjartabar Bisheh, Shing I. Chang, and Shuting Lei, 2020. Computers & Industrial Engineering, 157, 107314. 
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2.1. Introduction 

The ability of Additive Manufacturing (AM) often called 3D printing generating parts with 

complex geometry makes it a viable manufacturing option. AM is recognized as a disruptive 

technology in the digital innovation ecosystem [67]. The disruption is leading manufacturing 

paradigm evolution from mass production and lean manufacturing to mass customization [68], 

[69]. The global 3D printing industry revenue has been increasing from around one billion dollars 

in 2009 to over five billions in 2015 [67], [70], [71].  

3D printing technology and mass customization has been used widely from automotive to 

food, healthcare and medical, fabric and fashion, and electric and electronic industries [72]. For 

example, Ford is the leader in car industries using 3D printing to produce prototype and engine 

parts [73], BMW uses 3D printing to produce hand-tools for automotive testing and assembly, and 

Audi uses it to produce spare parts [74]. Some companies such as Nike, Adidas, and New Balance 

provide in the traditional store and online services where customers can customize their own shoes 

by selecting from different varieties of material and designs and print them out [75], [76].  

ISO/ASTM 52900 defined AM as “a process of joining materials to make parts from 3D 

model data, usually layer upon layer, as opposed to subtractive manufacturing and formative 

manufacturing methodologies, ranks high on the transformative scale” [77]. In order tTo reach the 

full potential of AM, quality monitoring during a printing process is crucial to ensure production 

efficiency and customer satisfaction [78]. However, most 3D printers are not equipped with an 

automatic quality monitor feature. The lack of supervision may result in wasted prints especially 

if the printing problems occurred in early layers [79]. Machine vision provides a mean for several 

different applications such as test mining or an automatic process monitoring operation [80]–[82].  
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Automatic process monitoring is very important for large scale 3D printing operations in 

which hundreds of 3D printing machines are used in mass production of the same part. Even for 

small-batch 3D printing jobs, automatic process monitoring is also important in that there are not 

many printed parts for implementing traditional statistical process monitoring methods. A phase I 

control charting may not be established when the batch size is less than 20 parts. Support Action 

for Standardization in Additive Manufacturing (SASAM) drafted additive manufacturing roadmap 

and standards for quality and performance is one of the five high priority areas [83].  

Due to the rich process information that can be captured, images and videos are 

increasingly deployed to monitor an AM process. Machine Vision System (MVS) can be used to 

inspect quality characteristics in many different industries such as liquid crystal display, ceramic 

tiles, textile, and food products [11]. Typically a MVS usually include a device to capture images 

(e.g. a vision sensor or cameras) and a computer to analyses and process the images captured by 

devices [84]. MVSs have been increasingly used in industrial process monitoring due to the 

efficiency increasing and cost reduction [13]. However, high-dimensionality, correlation structure 

and complex data characteristics present many challenges for existing process monitoring methods 

to fully utilize the information of color images [12]. By integrating MVS and statistical process 

control (SPC) in manufacturing process monitoring, not only product quality can be monitored, 

but also information gleaned from product images can be used for diagnostic analysis [13], [85].  

The rest of this study is organized as follows. Section 2.2 provides some research 

background of imaged base quality monitoring with focus on additive manufacturing. Section 2.3 

is devoted to two subsections of image preprocessing and proposed process monitoring framework. 

Then an experimental example is presented to highlight how the proposed methodology can be 
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applied to a real-world problem in section 2.4. Finally, conclusion and future research can be found 

in section seven 2.5. 

 

2.2. Literature review and contribution 

A wide variety of quality characteristics such as product geometry, surface analysis, dimensional 

data, and defect patterns can be monitored using imaged based monitoring [11]. Image-based 

quality monitoring includes the following steps: image acquisition, image pre-processing, feature 

extraction, and process monitoring, and control charts [12]. Previous research in this area mostly 

focused on two approaches [13]. The first approach uses spatial control chart to detect the location 

of and size of a defect [14]–[18]while the second approach aims to detect defects through a well-

defined statistical method [19], [20]. These two approaches may be implemented simultaneously 

[21]. 

The idea of using control charts to monitor image data was first proposed by Hosrt and 

Negin [86]  for dimensional control of web production processes [86]. They showed that the use 

of control charts with image data improved productivity and profitability significantly. Koosha et 

al. applied imaged-based SPC for nonparametric profile monitoring [87]. They monitored the 

coefficient of extracted features with a generalized likelihood ratio (GLR) control chart. Their 

results under different fault tests showed that their model was able to detect shifts quickly. 

Delli and Chang proposed a Support Vector Machine (SVM) method to distinguish good 

parts from bad parts based on segments on printed images at critical checkpoints [88]. Each image 

was first segmented into an 8 x 8 lattice forming 64 stamps. RGB statistics of these stamps were 

fed into the proposed SVM for a go/no-go determination.  A major drawback of this method was 

that a large number of training images including both good and bad parts were required. Often 
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time the bad parts were hard to collect and might take a long time before this proposed process 

monitoring method could be implemented.  

Imani et al. used a layer-by-layer image analysis to detect the onset process conditions that 

led to a lack of fusion-related porosity from in-process sensor data in laser powder bed fusion 

additive manufacturing [89]. Their goal was not only to quantify size, number, and location of 

pores but to identify process conditions that were liable to cause porosity through analysis of in-

process, layer-by-layer images. They successfully examined and showed that several machine 

learning techniques could be used to detect pores in laser additive manufacturing. Imani et al. 

implemented a deep learning neural network in layer-wise imaging profile for additive 

manufacturing quality control [90].  

In reality, there might be several layers of printing and quality features in 3D printing parts 

which could generate a large amount of data which was hard to track and monitor. Zou et al. 

proposed an Exponentially Weighted Moving Average (EWMA) and region growing based control 

chart to monitor images of production lines where the quality characteristic had either a specific 

pattern or uniformity character [91].  Table 2.1 summarized position of our proposed method 

among other researchers’ work. As we can see in Table 2.1, most existing methods in statistical 

monitoring wait until the finished print for process control. The proposed method works in a layer-

by-layer fashion so that remedial actions can be taken while a part is still printing. Finally, the 

methods which are capable of layer-by-layer process monitoring (such as [89], [90]) requires a 

very large amount of image samples to implement. On the other hand, the proposed method can 

start with a minimal number of images. 
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Table 2.1. Related Imaged-based Quality Monitoring Methods 

 PAPER YEAR CASE OR INDUSTRY FEATURE EXTRACTION (ML) 

AND/OR MONITORING METHOD 

LAYER-

WISE 

MONITORI

NG 

GROUPI

NG 

LAYERS 

SELF-

START 

PROCESS

ING 

1 Lu & Tsai 2005 Thin film  transistor  

liquid  crystal  displays  

(TFT-LCDs) 

Singular Value Decomposition (SVD) No No No 

2 Lin & Chiu 2006 Liquid Crystal Displays 

(LCD) 

Hoteling T2 Statistics, Ant Colony 

Algorithm, Back Propagation Network 

No No No 

3 Megahed et al. 2012 nonwoven textile GLR No No No 

4 He et al. 2015 Lego car manufacturing 

lab 

Multivariate GLR No No No 

5 Yan et al. 2015 steel tube Unfolded Principal Component 

Analysis (UPCA) and Low-rank tensor 

decomposition (LRTD), Hoteling T2 

control chart 

No No No 

6 Koosha et al. 2017 nonwoven textile GLR No No No 

7 Delli & Chang 2018 3D printing SVM No No No 

8 Imani et al. 2018 Laser Powder Bed Fusion Multifractal and Spectral Graph 

Theory, Neural Networks (NN) 

Yes No No 

9 Imani et al. 2019 Laser Powder Bed Fusion Convolutional Neural Network (CNN) Yes No No 

10 Zuo et al. 2019 nonwoven textile Region Growing Algorithm, EWMA No No No 

11 Proposed 

Method 

2021 3D printing NN, SVM, and Gradient Boosting 

Classifier (GBC), EWMA 

Yes Yes Yes 

 

 

In this study, an image-based quality monitoring framework is applied to 3D printed 

images layer by layer. The proposed framework is illustrated by a 243-layer basket part with 3-

inch diameter and 1.5-inch tall. An overhead camera takes an image after a printer finishes each 

layer. The traditional SPC phase I process requires at least 20 to 25 parts to establish control limits 

and each layer requires one set of control charts [64]. Since the material and resources using in 3D 

printing is usually expensive, the challenge is how to monitor the process from the very beginning 
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when there are not enough samples to establish these control charts as well as how to automate 

process monitoring.  

Thus, the proposed framework first will start with a self-start control chart over layer-wise 

images in the beginning and switch to a cluster-charting approach after enough good parts are 

printed. The cluster-charting approach includes an Auto Regressive Integrated Moving Average 

(ARIMA) filter to alleviate the autocorrelation of statistics from adjacent layers and then use one 

EWMA control chart for each homogenous layer family. 

 

2.3. Problem description and proposed method 

In 3D printing industry, quality of 3D printed parts is checked when a part is printed. This practice 

means that if there is a mistake even in the first layer of printing, not only it can cause a significant 

waste in material and time but also the part should be printed again. Figure 2.1 (a) and (b) show 

two defective samples that can happen in a 3D printing process toward the end of a printing 

process. Figure 2.1 (c) shows another defect when operator discovered the problem at an early 

stage and stopped the printing process. This study attempts an automatic inspection framework to 

monitor quality of parts after each layer of printing by taking pictures and compare them with a 

standard print image.  

 

(b) Toward final 

layers of printing 

Figure 2.1.(a) Defect at the 

end of process 

(c) Defect during early 

stage of printing 
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The proposed method starts with data preparation and image processing and then goes to 

process monitoring. Figure 2.2 shows the proposed imaged-based quality monitoring framework. 

In image processing, images will be cleaned, classified, and prepared to monitor the process. By 

having cleaned and classified images, process monitoring will start. Monitoring of the process 

includes two methods. First method (self-start control charting) is designed in the beginning of the 

printing when there are not enough parts to design a regular control chart.  

In this approach in order to find inverse normal distribution (Unj) at least two printed sample 

is needed. After printing two standard parts, the proposed framework will start by feeding image 

of first layer to monitor quality of the process. The basic assumption is that the quality of the two 

printed parts is satisfactory. This process will be implemented for each layer of printing separately. 

Each step is explained in more details. Note that in 3D printing industry there is a high chance that 

there is a demand just for less than a hundred parts. Thus, the self-starting might be the most helpful 

method in 3D printing quality monitoring.  

For the scenario where there are several hundred parts, we can use the second proposed 

method after printing the first 20-25 parts. In this case, a regular EWMA control chart can be used. 

Another major contribution of this study is the ability to monitor the process layer-by-layer so that 

the process monitoring is accomplished before a part is printed. However, the main challenge is 

that two images from two consecutive layers might be 99 percent similar. This similarity implies 

the possibility of autocorrelation in the time series feeding into a control chart.  

To remove autocorrelation, an ARIMA filter is used and then data is standardized. Another 

major challenge is homogeneity. Information gleaned from in the beginning layers may not be the 

same as those in the final layers.  Thus, to overcome this problem and reduce false alarms, 

Sullivan’s change point detection [92] is used here for creations of homogeneous clusters. 
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Sullivan’s method is designed to capture mean shift. In our study, we used Sullivan’s method to 

group consecutive homogeneous layers together. One control chart can be implemented for each 

homogeneous cluster.  
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Figure 2.2. Layer-by-Layer Image-Based Quality Monitoring Framework for in-process 3D 
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2.3.1. Image processing 

Image processing is the first core stage in the proposed quality monitoring framework. To do this, 

RGB values for each pixel in the image is compared to the same pixel location in the corresponding 

standard image. A gray-scale image can be represented as a function f (x, y) where x and y can 

take non-negative integer values. For an 8-bit unsigned integer, this value is between 0 (black) and 

255 (white) and the same color for a 16-bit unsigned integer is between 0 and 65535. However, 

printed layers are a small proportion of the printing bed as shown in Figure 2.3 and a small change 

in lightening may cause a large difference in RGB values. 

 

To identify a printed layer from the printing bed, the proposed method first classifies each 

pixel into two classes: a part of the print or not a part of the print. This way, the part image is 

isolated from the machine bed and its environment so just the parts would be compared and not 

the environment. Then the filtered image containing only the part can be compared to a standard 

image. Two quality monitoring techniques in the proposed framework are then applied on the 

difference of sample and standard images to determine whether the process is in control or not. In 

this section, data preparation and image processing of our study is explained step by step. 

 

 

Figure 2.3. Experimental setup 
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2.3.1.1. Experimental Setup and Image Capturing 

The 3D printer used in this study was Ultimaker 3. Ultimaker Cura was used to design the part and 

to handle the G code, remote access to the camera feed, and mage webcam snapshots. Octoprint 

software served as the operation platform was used to print a part and collect part images layer by 

layer. Figure 2.4 shows that the part design on Ultimaker Cura. Octoprint can be implemented in 

either on a PC or Raspberry Pi. To ensure consistent lighting, an enclosure was built to cover the 

Ultimaker printer.  A strip lighting and a photography umbrella are mounted on the top of the 

enclosure.  After printing of each layer, the G code instructed the printing head to its default 

location at the upper left-hand corner shown in the top view picture in Figure 2.4. Then the 

overhead webcam takes a picture.  The material used for this research was PLA.  The same 3D 

printer configuration was used throughout this study. Finally, Python 3.7 has been used for image 

processing and extraction.  

 

 

Figure 2.4. The part designed using Ultimaker Cura 

 

Images were taken by two cameras – from the top (Figure 2.3 (a)) and from the front 

(Figure 2.3 (b)) of the Ultimaker printer. In this study, we focus on the data only from top view 

camera. Side view images can be processed and analyzed using the same methods.  In addition, 

we are working on using several cameras from the corners so that the printer head does not have 
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to travel to the default location after each print. Figure 2.4 presents a possible angle for this 

implementation. 

 

2.3.1.2. Image Pre-processing and Filtering 

To make sure suitable images are generated with pixels containing part only, it is essential to clean 

the data. First, the portion containing the part in Figure 2.3 (a) was cropped to contain only the 

printed layer and its surrounding bed area. Then all the pixels in the cropped image need to be 

classified into two classes: part only and printer bed. Finally, each pixel containing the RGB values 

is transformed from colored images into binary images with “part” and “not part” label. In other 

words, the proposed approach first converts the RGB values in each pixel into a gray scale value. 

Then a gray scale cut-off threshold value can be used for the binary classification task[93].  

However, lighting is a significant issue as shown in Figure 2.5 where the reflection of the part on 

the printer bed causes some of the printer-bed pixels to be classified as a part of the part. A single 

threshold value cannot be implemented for the classification task. 

 

Figure 2.5. RGB to gray scale using skimage package on python 

 

To overcome this issue, three different machine learning algorithms of Neural Network 

(NN), Gradient Boosting Classifier (GBC) and Support Vector Machine (SVM) from sklearn 

package in python were used to achieve the classification task. These methods were chosen 

because of their performance in binary classifications. NN and SVM are two well-known machine 
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learning algorithms in binary classification and GBC is a newer and improved method based on 

random forest. Totally 6000 pixels include 3000 part pixels and 3000 non-part pixels from five 

different images has been picked and labeled for training purpose. The labeled data then split to 

training, validation, and test set with 60 percent for test, 20 percent for validation and 20 percent 

for testing. 

Among three machine learning methods studied, SVM which had the worst performance 

while NN and GBC performed more than 90 percent accuracy. NN had slightly better performance 

than GBC in terms of True Positive (TP) and False Positive (FP) Rate, but GBC had lower FPR 

which is more critical to eliminate the part reflection on the printer bed mistaken as the part in 

Figure 2.5. So in this research, GBC is chosen for further analysis. Figure 2.6(a) shows the AUC 

curves of the different ML methods studied. Comparing various ML methods, we prefer AUC 

curves trending toward upper left-hand corner. The preliminary data shows that NN and GBC are 

capable of detecting part with 95 and 93 percent accuracy while SVM can only achieve 60 percent 

accuracy for pixel classification.  

 

 

 

The GBC method was used for pixel classification and Figure 2.6(b) shows True Positive (TP), 

False Positive (FP), True Negative (TN), and False Negative (FN) of the confusion matrix over 
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Figure 2.6. (a) ML Performance Sensitivity    (b) Confusion matrix for GBC model 
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test set for GBC. GBC was chosen because of the highest accuracy over test set as well as lowest 

false negative value among other methods. This process has to be done for all the layers in every 

single part. The sample part in this study has 243 layers. Figure 2.7 depicts the outcome for layer 

200 of the first part. Figure 2.7(b) is the color image while Figure 2.7(a) is binary image where the 

light color (i.e. yellow) represents “part” and the dark color (i.e. purple) is the printer bed. Due to 

the classification errors, the filtered image contains noise and loses resolution. As shown in the 

outer rim in the original image almost disappears in the filtered image. This sacrifice is necessary 

in that each pixel contains three values in Red, Green, and Blue, which cannot be directly used in 

the next stage of the proposed method, which is the image difference operation. 

 

 

 

2.3.1.3. Image Extraction 

The outcome in the previous section is a gray-scale filtered image free of noise from lighting and 

background as shown in Figure 2.7(a). The proposed imaged-based process monitoring framework 

involves a layer-by-layer monitoring scheme. Specifically, any future sample layer would be 

compared to a good layer, which can be established when the first two good print is obtained. Each 

grayscale image from a given layer is represented in a two-dimensional matrix and resolution of 

each image is 128 x 128 in this case. To compare images, the 2D grayscale matrix of the sample 

Figure 2.7. (a) GBC binary prediction on the left and (b) the actual part (Layer 200) on the right 
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layer should be subtracted from that of the first good layer. The pixels not containing any part (i.e. 

the printer bed) are already assigned the value zero by the proposed GBC algorithm in the last 

section while pixels containing the part are assigned the value 255.   

Consider the case of n parts each with m layers. Let Mij be the image matrix, i=1,2,…, n 

and j=1,2, …, m and its resolution is 128x128. The element in the M matrix can be presented as 

M (h, v) where horizontal index h=1,2,…, 128 and vertical index of v=1,2, …, 128.  For example, 

M1j is the image of the first part at jth layer. Define Dij as the total number of different pixels for 

the jth layer between ith part and the first standard or good part.  

 

Thus:  

Dij= ∑ ∑
|𝑀𝑖𝑗(ℎ,𝑣) − 𝑀1𝑗(ℎ,𝑣)| 

255

128
𝑣=1

128
ℎ=1   where i=2, 3, …, n and j=1, 2, …, m, h=v= 1, 2, …, 128.    (1) 

Remember that Mij is a matrix containing elements with zeros representing “no part” and 

255 representing “part.” Thus, the expression “𝑀𝑖𝑗(ℎ, 𝑣)  −  𝑀1𝑗(ℎ, 𝑣)” is a value of either 0 or a 

multiple of 255. When an element in Dij is 255, it means that there is a difference in the sample 

image pixel and that of the first part at layer j.  To find total different pixels we need to divide it 

by 255 and tally all elements in the matrix Mij.  

 

2.3.2. Process monitoring 

Dij generated in equation (1) can be used for the process monitoring purposes. The goal of process 

monitoring is to ensure print quality at each layer as opposed to at the end of an entire part. Two 

complementary approaches are explored to monitor the production process depending on the 

amount of information available for Phase I of control charting. Traditional Phase I control 

charting guideline demands at least 20 to 25 observations to establish a control chart. However, 
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Hawkins suggests the use of a self-start control charting procedure when this number can be 

reached [94]. The first method applies one self-start control chart to each layer. The proposed 

approach can start from the third part after two parts are successfully printed and the layer-by-

layer images are stored. Equation (1) is implemented to generate the statistic for control charting. 

Since the part in this study contains 243 layers, we use 243 control charts each for a layer.  The 

second approach can be implemented when enough homogeneous sample statistics are available. 

The core idea is to use as fewer control charts as much as possible by grouping adjacent layers. 

Instead of using one control chart for each layer, statistics from “similar” layers can be plotted on 

the same control chart. This requirement can be met after multiple parts are successfully printed 

and similar adjacent layers can be clustered according to the distribution of the standardized Dij. 

The one control chart is applied to each homogeneous cluster.   

 

2.3.2.1. Method I: Self-start Charting 

A self-start control chart can be used for process monitoring on the number of different pixels in 

the matrix Dij, j=1,2,…, m. Hawkins proposed self-start Cumulative Sum Control Chart (CUSUM) 

[94]. In their proposed method, any other control charts can be applied when standardized values 

for observation is calculated. CUSUM is an approach to catch small shifts [95]. However, in 

image-based quality monitoring we are mostly interested to catch medium to large size shifts. 

Thus, EWMA would be a better approach than CUSUM. 

In this research we propose an EWMA self-start control chart to start monitoring of each 

layer from the third part.  One control chart is applied for each layer of printing in this method and 

each point in the chart represents the quality at end of each layer. If the difference statistic Dij plots 

within the control limits, it means that the process is in control. We could have chosen Individual 
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X control chart in this case since the processing monitoring task is mainly for various mis-printing 

situations such as those in Figure 2.1 (a)-(c). However, an IX chart requires the underlying statistics 

are normally distributed which is not true in this case.  

Equations for this method are summarized as follow where �̅�𝑛𝑗 is the average of the first n 

observations of Dij and ꙍnj the sum of squared deviations from �̅�𝑛𝑗 for each layer j: 

ꙍnj = ∑ (𝐷𝑖𝑗 −  �̅�𝑛𝑗)𝑛
𝑖=1

2         (2) 

�̅�𝑛𝑗 = �̅�(𝑛−1)𝑗 + 
𝐷𝑖𝑗−�̅�(𝑛−1)𝑗

𝑛
         (3) 

Thus, we can have: 

ꙍnj = ꙍ(n-1)j +  
(𝑛−1)(𝐷𝑖𝑗−�̅�(𝑛−1)𝑗)2

𝑛
        (4) 

The sample variance of first n observation (s2
nj), standardized observation (Tnj), cumulative 

t distribution of standardized observation (F(n-2)j(anjTnj)), and the transformation of inverse normal 

distribution (Unj) formula for n≥3 are given as follow: 

s2
nj = 

ꙍ𝑛𝑗

𝑛−1
           (5) 

Tnj = 
𝐷𝑖𝑗−�̅�(𝑛−1)𝑗

𝑠(𝑛−1)𝑗
          (6) 

 anj = √
𝑛−1

𝑛
           (7) 

P(Tnj ≤ tj) = F(n-2)j(anjTnj) = F(n-2)j (tj√
𝑛−1

𝑛
)       (8) 

Unj = Ф-1[F(n-2)j(anjTnj)]         (9) 

 

Note that we assumed Tnj is normally distributed. A large value of Dij means that huge 

difference between the printing part and first standard sample at layer j and a small number means 

the process is in control. So one can use values of Unj in a CUSUM chart because in self-start we 
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want to be careful about small and medium size changes. However, because of the lightening and 

environmental changes issues, and philosophy of CUSUM in catching very small changes, 

CUSUM for images-based quality monitoring might cause many false alarms. Thus we 

recommend the use of EWMA control charts for each layer j which is a better approach to catch 

medium to large size shifts by adjusting the EWMA parameter l  toward 1. Table 2.2 shows a self-

start procedure calculation for layer 122 of our printed parts and Figure 2.8 demonstrate self-start 

EWMA control chart for layer 122 of first 16 parts. 

Table 2.2. Self-Start control chart calculation for layer 122 of the first 16 parts 

Part 

number(n) 

Dn122 �̅�𝒏𝟏𝟐𝟐 ꙍn122 Sn122 Tn122 an122Tn122 F(n-2)122(an122Tn122) Un122 

1 347 347 0 - - - - - 

2 272 309.5 2812.5 53.03301 - - - - 

3 266 295 4074 45.13314 -0.82024 -0.66973 0.312159661 -0.48974 

4 246 282.75 5874.75 44.25212 -1.08568 -0.94022 0.223177095 -0.76151 

5 242 274.6 7203.2 42.43583 -0.92086 -0.82364 0.235258149 -0.72164 

6 311 280.6667 8307.333 40.76109 0.857766 0.783029 0.761313095 0.710533 

7 228 273.1429 10684.86 42.19964 -1.29208 -1.19624 0.142615765 -1.06864 

8 319 278.875 12524.88 42.29974 1.086671 1.016488 0.82569006 0.93727 

9 275 278.4444 12538.22 39.58886 -0.09161 -0.08637 0.466795854 -0.08333 

10 404 291 26726 54.49363 3.171487 3.008737 0.991577035 2.390053 

11 446 305.0909 48566.91 69.68996 2.844369 2.712 0.988040471 2.258427 

12 418 314.5 60253 74.01044 1.620163 1.551188 0.924048633 1.432843 

13 398 326.6154 82735.54 83.0339 2.128078 2.044591 0.967208136 1.841258 

14 403 303.2857 179319.1 117.4469 -3.93352 -3.79043 0.001287113 -3.01448 

15 400 283.0667 263557.7 137.2062 -2.58232 -2.49476 0.013426394 -2.21365 

16 472 290.25 274343.3 135.2389 0.837668 0.811069 0.784550315 0.787654 
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Figure 2.8. Self-start EWMA control chart for layer 122 of first 16 parts 

 

2.3.2.2. Method II: Cluster Charting: Standardizing, Autocorrelation Filtering, Change 

Point Clustering 

The self-start control chart is able to run real time process monitoring and detect defect. However, 

in self-start method for each layer one control chart needs to be monitored. For example, in our 3-

inches basket case, there are 243 layers which means 243 control charts should be monitored. It 

would be desirable to have one or a few control charts for each part. This can be done when there 

are enough samples (20-25) to build a regular SPC control chart.  

The cluster-charting method aims to reduce type II error by grouping adjacent similar 

layers. In 3D printing, comparing printed parts in the very beginning layer with the last layer based 

on just images might increase chance of error type II. This is because at the very beginning most 

of an image is bed of printer and we are analyzing pixels in an image that contain part and not bed 

of a printer. Thus, to overcome this problem and reduce false alarm probability, Sullivan’s change 

point detection [92] is used here. Sullivan’s method is designed to capture mean shift [96]. In our 

study, we used Sullivan’s method to find mean shift in non-defect part. This will help us to know 
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at what layer we have significant change in number of pixels include part and then monitor similar 

layers with same control chart. 

Chang et. al. proposed a real-time detection of condensation-water-temperature wave 

profile monitoring. The core idea is to monitor product quality during the curing process rather 

than at the end of the process [97]. The same idea can be used in this application as well since 3D 

printing is accomplished layer by layer. Each layer represents a critical stage in the production 

process of interest. The print quality monitoring should take place at the end of each layer rather 

than at the end of the entire print. This method contains two major steps of standardization and 

ARIMA filtering and then change point clustering. Unlike the self-start control charting in section 

5.1, we use much fewer number of charts for process monitoring. 

 

2.3.2.2.1. Standardization and ARIMA filtering 

The statistics in self-start control charts are independent because each point in a control chart 

comes from a different part. However, in the effort to plot statistics from different layers of the 

same part on the same control chart, the independent assumption may be violated. To test the i.i.d. 

assumption, we need to first standardize statistics Dij. 

eij = 
𝐷𝑖𝑗 − µ𝑗 

𝜎𝑗
           (10)  

Note that in the self-start charting, control chart points are from different parts, i.e. i=1,2, 

… The plot statistics are independent since they from different parts.  In the cluster charting 

method, we want to use the same chart family to plot eij, j=1,2, … The eij statistics, j=1,2,…,m, on 

the other hand, might be auto-correlated. Autocorrelation function plot (ACF) and Partial 

Autocorrelation function plot (PACF) can be used to test this autocorrelation. In order to remove 
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the autocorrelation from eij we needed to apply a filter as in Figure 2.2. ARIMA can be used to 

remove autocorrelation from eij. If ACF dies out gradually and PACF cuts off sharply after a few 

lags, then an AR filter is recommended and if PACF dies out gradually and ACF cuts off sharply 

then MA filter is recommended. After the filtering operation, the uncorrelated is named e′ij. 

 

2.3.2.2.2. Change Point Clustering 

From the previous section, we have removed autocorrelation from the statistics and generated 

statistics e’ij which come from different layers of the different sample part. The next step is to 

cluster homogeneous streams of e’ij for control chart families.  Sullivan’s change-point detection 

approach [92]is proposed for this task. This clustering algorithm for each part i find distance (dik) 

with m -1 boundaries (kj) which separating the layers into clusters: 

�̅�𝑖𝑘= 
∑ �́�𝑖𝑗

𝑘
𝑗=1

𝑘
           (11) 

dik = 
|�̅�𝑖𝑘− �̅�𝑖(𝑘+1)|

𝑠𝑖√
𝑚𝑖𝑘+𝑚𝑖(𝑘+1)

𝑚𝑖𝑘𝑚𝑖(𝑘+1)

  𝑖 = 1,2, … 𝑛, 𝑘 = 1,2, … , 𝐾          (12)                                           

Where mik and number of layers in the adjacent clusters, si is an estimation of standard 

deviation of all clusters. Since the ranking of dik does not depend on the standard deviation so we 

can set it to one without loss of generality and �̅�𝑖𝑘is the layers mean. Different parts might have 

different change points. In a typical 3D printing part, the difference from layer to layer may be 

very small. The implementation in the proposed self-start approach may be relaxed to allow 

adjacent layers to be combined. However, small incremental changes may accumulate to a large 

change. Therefore, it is necessary to cluster similar layers in term of the statistic e’ij together. This 
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procedure can be simply done by finding high density of change point around a specific layer. For 

example, if most of the parts exhibit their first change point between layer 57 to 62 then probably 

layer 60 can be a general change point for all the parts. Note that the number of change points 

might be different from part to part. Therefore, we pick the maximum number of change points 

among all parts to this procedure.  This practice might require more control charts, but the number 

of charts is far less than the number of layers. 

 

2.3.3. Control charting 

By having values of Unj in the first method (self-start charting) and e’ij in the second method, we 

propose to use method I to start process monitoring after two acceptable prints are accomplished. 

After more successful parts have been printed, we will switch to method II. Since each printing 

part has different characteristics, the timing, and criteria for switching depends on how fast the 

estimates of 𝜇𝑖and 𝜎𝑖 in equation (10) is stabilized.  

In our problem we are mainly interested in catching medium to large shifts. EWMA control 

charts can be adjusted to meet these needs. Thus, in this case of self-start charting, EWMA control 

charts is used to plot Unj.  Each layer will be monitored with a control chart so 243 control charts 

will monitor the process. Self-start statistics are updated after every new printed layer. Same as 

the self-start charting, EWMA control charts can be used for each cluster. Note that estimation for 

standard deviation can be find by using 
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 where the 𝑀𝑅̅̅̅̅̅ is the average of moving range from part 

to part for a layer and d2 is a function of sample size. Since adjacent layers are used, eij of adjacent 

layer are used to estimate the standard deviation, d2=1.128. 
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2.4. Numerical results and discussion 

The proposed framework adopts various methods such as machine learning techniques, ARIMA 

filtering, self-start control charting, and change-points-detection for clustering for image-based 

monitoring of 3D printing parts. It aims to automatically detect bad prints in every layer using the 

proposed self-start control chart which only requires the first two successful prints. In this study, 

we printed 15 non-defect part plus four defect parts to demonstrate the proposed methods.  

 

2.4.1. Self-start EWMA control charts 

Self-start EWMA control charts have been designed to monitor the production process after 

printing two parts. In addition to the 15 non-defect parts that we already used to design the 

traditional EWMA control chart and to see performance of the method, a 16th defect part has been 

added to the data set. Figure 2.9(a) and (b) shows layer 122 and 123 of part 16 respectively. With 

a naked eye it looks there is no difference between two images. If an operator checked the process 

after each layer, he might not be able to understand if one extra layer is printed or not. However, 

layer 123 is the start point of making a defect part. It is might not be clear from these images but 

after layer 122, the part had a small shift on the bed and that small displacement cause the huge 

mess which can be seen in Figure 2.9(c) as the last layer of this part.  
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We already have seen self-start procedure for layer 122 of first 16 parts. To see how the 

proposed method, catch this problem, we only need to run self-start EWMA control chart for 

layers 123. Table 2.3 shows self-start procedure calculation for layer 123. 

Table 2.3.  Self-Start control chart calculation for layer 122 of the first 16 parts 

Part 

number(n) 

Dn123 �̅�𝒏𝟏𝟐𝟑 ꙍn123 Sn123 Tn123 an123Tn123 F(n-2)123(an123Tn123) Un123 

1 322 322 0 - - - - - 

2 275 298.5 1104.5 33.23402 - - - - 

3 293 296.6667 1124.667 23.71357 -0.16549 -0.13512 0.457247472 -0.10737 

4 257 286.75 2304.75 27.71732 -1.67274 -1.44864 0.142221342 -1.07039 

5 228 275 5066 35.58792 -2.11961 -1.89584 0.077131518 -1.42463 

6 337 285.3333 8269.333 40.66776 1.742164 1.590371 0.906520918 1.319631 

7 288 285.7143 8275.429 37.13809 0.065572 0.060708 0.523028147 0.057755 

8 314 289.25 8975.5 35.80802 0.761636 0.712445 0.748530168 0.669872 

9 283 288.5556 9010.222 33.56006 -0.17454 -0.16456 0.436970827 -0.15865 

10 411 300.8 22503.6 50.004 3.648517 3.461287 0.995724206 2.629479 

11 416 311.2727 34568.18 58.79471 2.303816 2.196602 0.972175973 1.913782 

12 407 319.25 42968.25 62.49964 1.628161 1.558846 0.924954116 1.439207 

13 390 324.6923 47581.52 62.96925 1.132007 1.087597 0.849985287 1.03637 

14 419 331.4286 52574.35 63.59387 1.497678 1.443199 0.912721246 1.357704 

15 411 336.7333 55816.25 63.14171 1.251244 1.208816 0.875869425 1.154583 

16 1074 382.8125 532129.7 188.3489 11.67638 11.30561 0.99999999 5.611786 

 

Even before plotting a control chart, we can see a huge difference in the value of U16, 123, but the 

EWMA control charts which has been presented in Figure 2.10 shows this issue even better. Note 

Figure 2.9. (a) Layer 122 of the 16th part  (b) Layer 123 of the 16th part (c)Layer 243 of the 16th part 
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that the standard deviation for the EWMA chart has been calculated with
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 where the moving 

range is within a part among layers.  

 

 

Figure 2.10. Self-start EWMA control chart for layer 123 of first 16 parts 

Lightening issues and production environment changes makes some differences between same 

layers of different parts. Thus, trends might not have a meaning of being out of control. Also, in 

this method we are not looking for catching small changes in the images. So, methods like CUSUM 

which is basically designed to catch small shifts might not be the best method to use due to the 

concern of false alarms. 

 

2.4.2. Standardizing, ARIMA filtering, change point clustering 

The case study of printed parts showed sufficient performance of self-start control charts in 

catching shifts from images data. However, monitoring the process using this approach carries a 

high overhead cost since there is one control chart for each layer or in this case 243 charts). Thus, 
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Method II can be used to monitor each part based on printed layers of same part when we printed 

enough parts to estimate mean and variance.  

Different approaches have been explored to find optimal number of observations to design 

control chart. However, traditionally it is recommended at least 20-25 observation is needed to do 

that [64]. In Imaged base quality monitoring definition of observation might be different because 

there is one observation for each layer and layers from one part can be divided into different 

clusters. Finding sufficient number of observations to start this approach is explained better in 

section 2.3.2. When there are enough samples to normalizing the data from Dij to eij, we need to 

check the independent assumption. Figure 2.11 shows autocorrelation (ACF) and partial 

autocorrelation (PACF) on eij of part 11 as an example which shows images (especially in first 

layers) are highly auto-correlated. They suggest that the underlying auto-correlated structure may 

be modeled by an autoregressive model. 

 

 

Figure 2.11. ACF and PCF of part 11 

 

2.4.2.1. ARIMA Filter 

According to the PACF and ACF in Figure 2.11 we can see there are two spikes in the PACF so 

we can conclude the best type of filter to remove autocorrelation would be AR(2). After applying 
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AR(2) over eij, the uncorrelated variable is named e’ij. Figure 2.12 shows uncorrelated ACF after 

applying AR(2). 

 

 

Figure 2.12. Auto-correlation (ACF) of part 11 after applying AR(2) 

 

2.4.2.2. Change point segmentation and control charting 

Next step is finding change points. To do this we can plot change point detection method proposed 

by Sullivan[92]for each part separately. However, in phase I of quality monitoring, we need to 

design our process and control limits and having different change point for different part could be 

a problem and is not efficient. Figure 2.13 shows time series plot of part 11and Figure 2.14 shows 

time series plot of location and distance for the same part. By comparing change point of all 15 

parts, we conclude that for most of parts, one change happens between layer 59-63 and another 

between layers 185-195. Thus, the best segmentation looks to be (1, 60), (61, 180), (181, 243). 

Part 11 was chosen to demonstrate process monitoring with this method because of three clusters 

of layers. As we mentioned before, usually 20-25 observation is needed to design Shewhart control 

chart. In this case, since three charts are used and each chart has more than 60 observations (layers), 
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thus 10 parts should be enough to estimate mean and variance.  Thus, we can switch from the 

Method I self-start charting to Method II cluster-charting starting from part 11. 

 

 

Figure 2.13. Time series plot of e’ij of part 11 

 

 

Figure 2.14. Time series plot of location, and distance for part 11 
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In the next (and final) step of this method, an EWMA control chart is plotted for each cluster of 

layers. Figure 2.15 (a), (b), and (c) shows the control chart for layers 1-60, 61-180, and 180-243 

respectively. 

 

Figure 2.15. (a) EWMA control chart for layers 1-60 part 11 

 

 

Figure 2.15. (b) EWMA control chart for layers 61-180 part 11 
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Figure 2.15. (c) EWMA control chart for layers 181-243 part 11 

 

2.5. Conclusions and future research 

This chapter presents the modeling and monitoring framework on layer-wise images in 3D printing 

parts. An example of 16 basket samples shows the proposed methods are implemented to 

demonstrate the proposed framework can indeed be implemented for process monitoring based on 

a very limited number of parts printed. Two complimentary methods can successfully detect 

printing problems layer by layer. Some important findings of this study are as follows: 

• EWMA control chart can be used for imaged based quality monitoring in addition to 

general purpose quality monitoring.  

• A self-start charting method can be used after producing only two parts. In other words, 

process monitoring can start from the third part. The proposed method alleviates the need 

of the traditional control charting phase I requirement where at least 20 to 25 parts were 

recommended to establish control limits. 
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• Images quality and lightening issue was addressed by three machine learning techniques: 

Neural Network (NN), Gradient Boosting Classifier (GBC) and Support Vector Machine 

(SVM). GBC has the best performance in terms of accuracy and false identification rates.   

• After printing enough part to have an accurate estimation of mean and standard deviation 

of the production, Method II using the cluster charting approach may be useful to reduce 

the charting overhead of the self-start charting approach from 243 charts to only three 

charts. 

In the current study, we only need to know whether the printer is producing bad part or not and 

there is no need to find location of the issue. For future study, this method can be extended for a 

problem that needs to determine the location of a problem. We will explore an approach to segment 

each image to smaller tiles and analyze those tiles. The problematic tile shows location of the issue 

as well. Also, if enough images are available and in a higher complexity situation, to determine 

whether a picture represents a good part or not, a deep learning and transfer learning algorithms 

may be used. The proposed method solves a new initial start problem in process monitoring of 

printing a simple part (3-inch diameter basket in our case) while deep learning may be used for 

printing parts with higher level of complexity. Once one deep learning module is available then 

transfer learning may be used to accelerate learning process with a better accuracy and less need 

to image data. 
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3. Quantifying soil, plant, and residue cover in images of 

agricultural fields using convolutional neural network 
 

Abstract: 

Residue cover and green canopy cover are key elements in the conservation of soil and 

water resources in agriculture. However, there is lack of tools to rapidly and accurately assess the 

percentage of the land cover covered by crop residue, live vegetation, and bare soil. This research 

aims to explore a deep learning model for quantifying the percentage of stubble, live vegetation, 

and bare soil in downward-facing images of agricultural fields. The trained model is based on a 

convolutional neural network (CNN) coupled with image segmentation techniques. The proposed 

tool based on this CNN model have features for easily and accurately quantifying green canopy 

cover, counting plants, and classifying stubble using a comprehensive dataset containing 3942 

labeled images from real agricultural fields. This dataset includes a set of images spanning various 

agricultural scenarios encompassing different levels of bare soil, crop residue, and live vegetation. 

A hybrid unsupervised auto-labeling algorithm, combining Canopeo and Otsu’s method was coded 

to automate initial labeling and then each labeled section has been checked and relabeled by an 

operator. A web-based app based on the trained CNN model is available publicly to classify 

different combinations of soil, plant, and stubble from agricultural field images in real time on 

https://soilwater.github.io/srpnet/. 
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3.1. Introduction 

 In modern agricultural systems, crop residue (i.e., stubble that remains on the soil surface 

after harvest) is considered a valuable input that contributes to nutrient cycling [98], promotes 

near-surface biological activity and soil aggregation [99]–[102], helps conserving soil water by 

reducing the evaporation rate [103], attenuates soil thermal fluctuations [104], [105], and 

constitutes a durable barrier that protects the soil surface from erosive rainfall events. Together 

with vegetation cover, soil residue cover minimizes soil detachment and physical dispersion due 

to raindrop impact, thus reducing the risk of soil erosion, soil degradation, and non-point source 

pollution from agricultural fields [106], [107]. Thus, to better manage soil and water resources, 

and to guide, implement, and assess the effectiveness of improved conservation practices, field 

agronomists, soil conservationists, and scientists need tools to accurately determine the 

proportion the soil surface covered with crop residue and live vegetation in agricultural fields. 

Traditional field methods to quantify the proportion of the land surface covered by stubble and 

actively growing vegetation have mostly relied on line transects across several parts of the field 

[108]–[110] and visual estimation using field guides containing reference image cards of known 

residue cover [111]–[113]. In recent years, the use of digital image analysis has resulted in new 

tools for measuring land cover components. For instance, smartphone applications like Canopeo 

[114] and Easy Leaf Area [115] have been used for non-destructive measurements of vegetation 

green canopy cover. However, most existing tools for determining land cover components are 

almost exclusively limited to measuring plant-related components and rarely discriminate other 

components of the land surface like crop residue. Part of the reason for the lack of tools for 

quantifying stubble from digital images is the complexity of the problem. Discriminating green 

canopy cover from the background can be effectively accomplished using simple thresholding 
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techniques-based color ratios [116], [117]. On the other hand, crop stubble exhibits a wide range 

of colors, illumination, shapes, and level of entanglement depending on the crop type, state of 

residue decomposition, and residue distribution during harvest; all of which makes the 

segmentation of residue cover from digital images challenging. Traditional machine learning 

methods, such as random forests (RF) classifiers, have shown promising classification accuracy of 

soil, residue, and vegetation cover using a small dataset of ~200 images covering a limited number 

of agricultural scenarios and most images containing <50% residue cover [118]. For example, 

Figure 3.1 (a) and (c) represent two different scenarios and  Figure 3.1 (b) and (d) are classified 

images of (a) and (c) respectively using RF model from [118]. Figure 3.1 (a) represent an easy to 

classify scenario in agricultural fields that the RF model was able to predict each pixel almost 

perfectly. However,  Figure 3.1 (c) is a hard to classify situation where most of the picture is 

covered by stubble and the RF model miss-classified majority of stubble pixels as soil. 
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Figure 3.1. Two images from agricultural field, classified using [118] RF model. Image (a) and 

it’s classified image (b) represent a common simple classification scenario, while image (c) and 

it's classified image (d) represent another common scenario where most of the image is covered 

by residue and the RF model miss-classified almost all residue as soil.  

Another disadvantage of traditional ML methods is that the training time is highly sensitive 

to the sample size, meaning that increasing the number of data points will increase computational 

time exponentially. For instance, the running time for a RF architecture with n training samples, k 

trees, and p features would result in O(n2pk) [119], which is running in quadratic time. In other 

words, given an input size n, the number of steps to accomplish a training task is proportional to 

n2. 

Convolutional neural network (CNN) methods provide a powerful framework for feature 

extraction and land cover classification that overcome some of the limitations of traditional 

machine learning approaches [120].Typically, CNNs result in better performance in terms of 

running time than traditional ML methods, with a complexity in the order of O(∑ 𝑛𝑙−1
𝑑
𝑙=1 𝑠𝑙

2𝑛𝑙𝑚𝑙
2) 

a b

c d
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[54], where l is the index of a convolutional layer, d is the number of convolutional layers, 𝑛𝑙 is 

the number of filters in the l-th layer, nl−1 is the number of input channels of the l-th layer, sl is the 

spatial size of the filter, and ml is the spatial size of the output feature map. Another distinct 

advantage of CNN models is their ability to take into account not only pixel colors, but also 

morphological and contextual information about objects. For instance, deep learning (DL) methods 

have been recently and successfully used for weed detection in cropped fields  [121], estimation 

of foliar diseases in horticultural crops [122], [123] , and for root segmentation [124]. Thus, a CNN 

approach has the potential to learn and generalize the classification of stubble, plant, and bare soil 

across a wide range of complex agricultural scenarios including different crops, soils, and light 

conditions [125]. The objectives of this study were to i) create a benchmark dataset of semantically 

segmented downward-facing images obtained from agricultural fields and ii) test the accuracy of 

a supervised convolutional deep neural network to quantify the percentage of stubble, live 

vegetation, and bare soil using the generated dataset. In this study, semantic segmentation refers 

to the process of classifying each pixel in an image. 

 

 

 

3.2. Materials and methods 

3.2.1. Image dataset 

The image dataset consisted of a collection of 3944 downward facing (i.e., nadir) pictures 

spanning diverse combinations of soil, plant, and stubble cover obtained from production fields 

and experimental plots with different tillage systems, crop stubbles, and crop phenological stages 

across Kansas State University Agricultural Experiment stations (Table 3.1). Images were 
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collected using traditional point-and-shoot digital cameras and mobile devices by positioning the 

camera parallel to the ground at about 1.5 m above the ground level. For computational speed 

during training of the deep neural network model, images in the RGB (i.e., red, green, and blue) 

color space were resized to a width of 512 pixels and a height of 512 pixels to retain sufficient 

detail in the canopy structure and stubble elements. 

Then, each pixel of each resized image was assigned one of three possible labels: “plant”, 

which was defined as live, green living vegetation; “stubble”, defined as crop residue left on the 

soil surface from previous harvests of agricultural crops; and “soil”, defined as bare soil surface. 

Our study did not include any other objects (e.g., stones) and did not account for different plant 

types (e.g., crops and weeds). The labeling process consisted of a three-step approach. The first 

step involved a coarse segmentation of pixels corresponding to live vegetation using the approach 

proposed in the Canopeo application [114]. The second step consisted of segmenting the remaining 

pixels (i.e. non plant pixels) into stubble and bare soil using an unsupervised adaptive thresholding 

method based on the local mean intensity around the neighborhood of each pixel [126]. This 

process misclassified portions of the image, particularly regarding bare soil and stubble 

components, but it allowed us to generate a first-order segmentation that substantially alleviated 

the subsequent manual labeling of the images. The third step in the labeling process involved a 

manual inspection and pixel-wise correction of each image by a trained operator to ensure correct 

classification of the labeled image dataset. The entire labeling process was conducted using the 

Image Labeler application in Matlab R2020a (Mathworks, Natick, MA). 

 

Table 3.1. Number of images in the dataset grouped by the predominant labels in the image. 

Category† Number of images 
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Soil 212 

Stubble 262 

Soil and plant 410 

Stubble and plant 112 

Soil and stubble 461 

Soil, stubble, and plant 1846 

† The “plant” category is missing because even images with nearly complete green canopy cover 

exhibited small areas with background pixels that were attributed to soil. Images with a large 

(>95% green canopy cover) proportion of green canopy cover were included in the “soil and 

plant” category. 

 

3.2.2. Model architecture and hyper-parameters tuning 

In this study we used a deep convolutional neural network (DCNN) approach called SegNet 

(Segmentation Network) [24] for semantic segmentation of land cover images with including a 

dropout after each convolutional layer as it is shown in Figure 3.2. The SegNet is an encoder-

decoder architecture that includes five encoders and consists of 13 convolutional layers included 

in the VGG16 network [127]. Each encoder produces a featured map with the help of a 

convolutional layer that applies dot product by sliding a filter sized patch across the two-

dimensional image. The encoder also includes a convolutional layer followed by a batch 

normalization layer [128] and a rectified linear unit layer (ReLU) [129]. The architecture discards 

the fully connected layers and only retains high-resolution feature maps in the decoder outputs, 

which reduces the number of trainable parameters from 134 million in VGG16 [127] to ~15 million 

parameters in SegNet. The last layer of the SegNet model has a Softmax classifier that outputs 

pixel labels based on the maximum label probability of each pixel.  
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Figure 3.2. Architecture of SegNet used in this study. Each blue block representing four layers 

of convolution, normalization, dropout, and ReLu. 

The SegNet model was implemented using Tensorflow Core version 2.1.0 in the Python 

programming language version 3.7 on a desktop computer with a 3.8 GHz AMD Ryzen 9 with a 

12-core processor, 32 GB of RAM memory, and an NVIDIA GeForce RTX 2080 graphic card. 

Other DCNN architectures such as DeconvNet [130] and U-Net [131] have shown promising 

results for semantic segmentation in computer vision problems in medical applications [132], 

[133], but the retention of all the feature maps in the decoder together with the larger parameter 

space usually demand more computer memory than a SegNet model and result in comparable 

performance [24]. 

During the early stages of the training process to optimize the hyper-parameter space, we 

conducted a series of tests with the aim of fine-tuning learning rates, optimizers, batch size, and 

dropout parameters. Table 3.2 demonstrates the relative tuning where root means square 

propagation (RMSProp) and adaptive moment optimization (Adam) optimizers are two widely 

used optimizers in computer vision research [134]. A larger batch size might reduce each epoch 

running time; however, it will increase memory in use exponentially. Facing the limitations on 

Input RGB Image Output RGB Image

Conv + Batch Normalization + Dropout + ReLU

Max Pooling Upsampling Softmax
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batch size and based on available hardware, we use batch size 1 and 4. While we try different 

values for on parameter, the other parameters stay fix at the baseline experiments. 

 

Table 3.2. The hyper-parameter tuning. For the process of training, hyper-parameters were tested 

under the key main feature of Learning rates, optimizers, batch size, and dropout. The table 

demonstrates the relative experiment. 

Parameter Variations 
Baseline 

experiment 

Selected 

value 

Learning 

rates 
0.1 and 0.01 with a momentum of 0.9. 0.01 0.01 

Optimizers 
RMS prop, Adam optimizer to identifying the better 

results in training the data 
RMS prop RMS prop 

Batch size 

1 and 4, staying under the hardware constrain the 

maximum constrains maximum batch size was 

identified as 4 

4 4 

Dropouts 
Regularization methods have been utilized to get rid 

of overfitting, 20%, and 40% percentages 
0.4 0.4 

Epochs 

The number of passes through the data is varied in 

this section to identify the training capabilities of the 

model. 

200 3000 

 

The baseline experiment was selected based on the previous research and studies in the area of DL 

and image segmentation. After tuning the optimizer, batch size, and dropouts value, we need to 

find the best number of training epochs that is showed in last column in Table 3.2. This can save 

time and memory as well as preventing overfitting in some cases. Based on the hyper-parameter 

tuning, RMS prop outperformed Adam optimizer and a learning rate of 0.01 had faster 
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convergence than 0.1. Additionally, we observed mini-batch size of 4, 40% dropout, and 3000 

epochs showed sufficient result for our problem. 

 

3.2.3. Model evaluation 

After training the SegNet model and testing the performance using test set, we can calculate 

confusion matrix. By having true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) values in a confusion matrix, the values for OA, recall, precision, and F1-score can 

be calculated as follow: 

OA = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+𝐹𝑁+𝐹𝑃
         (1) 

Precision = 
𝑇𝑃

𝐹𝑃+𝑇𝑃
         (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁    
         (3) 

F-1 score = 2 * 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (4) 

 

3.3. Results and discussion 

The proposed SegNet is trained using the best parameter that was determined in the previous 

section and achieved overall accuracy as high as 84%. Figure 3.3 shows accuracy and loss 

performance after 3000 epochs using the confusion matrix (Figure 3.4). The trained model is tested 

over the aforementioned test set and using confusion matrix we were able to calculate overall 

accuracy and F-1 score for each class shown in Table 3.3. 

.  
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Figure 3.3. (a) Training and validation accuracy on 3000 epochs (b) training and validation loss 

value 

 

 Residue Soil Plant 

Residue 36471423 16058399 565404 

Soil 5037519 69342911 1440324 

Plant 1988040 2077725 35838991 

Figure 3.4. Confusion matrix after 3000 epochs 

 

From this result we can easily see that the model has no issue in classifying green canopy. 

However, as we expect, there is some misclassification between soil and stubble. High recall value 

for soil means 93 percent of pixels containing soil in our test set was detected correctly by the 

model. High precision value for stubble means if a single pixel is classified as stubble, then it is 

most likely correctly classified stubble. On the other hand, low recall value for stubble and low 

precision value for soil means our model is classifying some stubble as soil mistakenly. This fact 

can be seen better in the next section and Figure 3.5. 

a b 
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Table 3.3. Evaluation of trained SegNet model using a test set of 640 images 

Label Precision Recall F1-score 

Stubble 0.86 0.69 0.77 

Soil 0.79 0.93 0.85 

Canopy 0.95 0.91 0.92 

Overall Accuracy - - 0.84 

 

Despite the complex and hard to explain nature of deep neural networks, CNNs have internal 

structure that preserve the spatial relationships for what the model learned during training. In this 

section we visualized binary classification of the final layer as well as feature maps from selected 

convolutional layers. Figure 3.5 shows qualitative assessment of the SegNet predictions on some 

agricultural RGB test images which is usually not easy to predict. Top row represents original 

images captured from agricultural fields. Middle Row shows how they are labeled, and the last 

row is our model prediction. We mention these images are hard to predict because to the best of 

the authors’ knowledge and experience, when residue has a smooth texture (e.g., wheat residue in 

image E) or has a very light brown color (e.g., wheat residue in images C and D), usually ML 

techniques will fail to predict successfully as we show before in Figure 3.1 . This issue might 

happen especially when there is not enough training data. 
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Figure 3.5. Qualitative assessment of the SegNet predictions on agricultural RGB test images. 

Five original images representing different scenario that might observe in agricultural field on 

top row. Middle row shows ground truth (labeled) images and bottom row demonstrate SegNet 

classification. 

To better understand how the SegNet does the prediction over several hidden convolutional 

layers, we can have visualized feature maps after each convolutional filter. Before visualizing, we 

expect that the layers closer to input are detecting small details such as lines and the layers closer 

to output are capturing more general features representing each class of object [134]. We know 

our feature map matrix after the first convolutional layer has 512 x 512 x 64 where 512 x 512 is 

our image resolution and 64 is number of filters. This layer can be visualized by an 8 x 8 set of 

images shown in Figure 3.6. Since there are 4 encoders and 4 decoder convolutional layers in our 

SegNet architecture, we are able to visualize each and every single layer. However, because of 

space limitations it is not possible to include all the visualization in this paper. To bring an example 

of decoder layers closer to output, Figure 3.7 presents again 64 feature maps of 7th convolutional 

A B C D E

Figure . binary classification (a) stubble  (b) plant      (c) soil 
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layer (or 2nd decoder layer). Note that this layer has 256 filters and visualizing all those filters is 

not possible in this paper. Thus, we picked the first 64 feature maps. Figure 3.6 and Figure 3.7 

meet our expectations mentioned earlier in where in the previous paragraph. Feature maps in 

Figure 3.6 show that the model draws lines created by each object and Figure 3.7 showing the 

model’s attempt to capture general feature maps. 

 

Figure 3.6. Visualization of all 64 Feature Maps Extracted from the First 16 Convolutional 

Layer of block 1 in the SegNet Model.  
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Figure 3.7. Visualization of only 64 out of 256 Feature Maps Extracted from the First 16 

Convolutional Layer of block 7 in the SegNet Model 

 

Based on the results in this section, we could conclude if the model classifies a pixel as plant or 

stubble, then with a high confidence it is classified correctly. However, the small issue is that not 

all stubble could be captured by this current model. In fact, the model misclassifies some stubble 

as soil. Figure 3.8 makes demonstrate of this miss-classification using the publicly available web-

based application, developed by this research. Basically Figure 3.8 presents an image that is 

covered by only green canopy and stubble. Note that some parts are even hard for human eyes to 

be detected and you may need to zoom into the image to figure it out whether it is stubble or soil. 

The classification in Figure 3.8 shows the model successfully found all the green canopy plus all 
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bigger pieces of stubble. However, areas with homogeneous stubble texture (shown in red areas) 

misclassified as soil. 

 

Figure 3.8. An example classified image using the publicly available web-based application 

from this research. A scenario of the original image on the left and some misclassification from 

the model on the bottom left and right side of the classified image. The original image is almost 

covered by stubbles. 

 

3.4. Conclusion 

Residue cover is an essential component of sustainable agriculture and conservation farming 

techniques such as no-till farming. In this study, by providing a large dataset of high-quality images 

from different possible scenarios, we used a deep learning model that is able to classify soil, green 

canopy and stubble covered agricultural fields. Due to the tedious effort and time consumption in 

labeling 3942 images, a combination approach of unsupervised ML and manual correction is used 
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to accelerate image labeling and preprocessing. The comprehensive dataset has been used to train 

a state-of-the-art deep learning CNN model called SegNet.  

Validating the model through test sets confirms its successful performance in classifying 

green canopy and soil. The main challenge and future research is stubble classification where the 

model has an accuracy of 69 percent. The precision and recall values of soil and stubble show that 

the trained SegNet misclassified some stubble as soil. One simple idea to solve this issue is to 

retrain the model with more images from soil and stubble. Future studies could include the use of 

satellite images or drone videos to estimate soil cover percentage. Other ML methods such as 

transfer learning, semi-supervised learning and reinforcement learning could be explored to 

improve performance and accuracy. This research classifies three classes of soil, canopy, and 

stubble, but we can easily expand more classes such as stones to capture all possible varieties in 

agricultural fields. 
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4. Image-based characterization of laser scribing quality using 

transfer learning2 
 

Abstract 

Ultrafast laser scribing provides a new microscale materials processing capability. Due to 

the processing speed and high-quality requirement in modern industrial applications, it is important 

to measure and monitor quality characteristics in real time during a scribing process. Although 

deep learning models have been successfully applied for quality monitoring of laser welding and 

laser based additive manufacturing, these models require a large sample for training and a time-

consuming data labelling procedure for a new application such as the laser scribing process. This 

chapter presents a study on image-based characterization of laser scribing quality using a deep 

transfer learning model for several quality characteristics such as debris, scribe width, and 

straightness of a scribe line.  Images taken from the laser scribes on intrinsic Si wafers are 

examined. These images are labelled in a large and a small dataset, respectively. The large dataset 

includes 154 and small dataset includes 21 images. A novel transfer deep convolutional neural 

network (TDCNN) model is proposed to learn and assess scribe quality using the small dataset. 

The proposed TDCNN is able to overcome the data challenge by leveraging a convolutional neural 

network (CNN) model already trained for basic geometric features. Appropriate image processing 

techniques are provided to measure scribe width and line straightness as well as total scribe and 

debris area using classified images with 96 percent accuracy. Validating model’s performance 

based on the small data set, the model trained with the large dataset has a similar accuracy of 97 

 

2 Reprinted with permission from "Image-based characterization of laser scribing quality using transfer learning " by 

Mohammad Najjartabar Bisheh, Xinya Wang, Shing I. Chang, Shuting Lei, and Jianfeng Ma, 2022. Journal of 

Intelligent Manufacturing, https://doi.org/10.1007/s10845-022-01926-z. 
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percent. The trained TDCNN model was also applied to a different scribing application. With 10 

additional images to retrain the model, the model accuracy performs as well as the original model 

at 96 percent.  Based on the proposed TDCNN classification of debris on a scribed image of 

straight lines, two algorithms are proposed to compute scribe width and straightness. The results 

show that all the three quality characteristics of debris, scribe width, and scribe straightness can be 

effectively measured based on a much smaller set of images than regular CNN models would 

require 

 

4.1. Introduction 

 

Laser scribing is a laser micromachining technique which uses laser scanning to make a shallow 

scribe line on a surface. It has been extensively studied using short pulse lasers (i.e. picosecond 

and nanosecond) for solar cell applications [135]–[137]. Generally, higher pulse energy and lower 

pulse duration mean higher productivity, but with some negative effects on scribe quality [138], 

[139]. On the other hand, lower pulse energy means less energy waste and melting of the process 

material [140]. To overcome thermally induced damage due to melting, recast and microcrack 

formation in laser scribing, process optimization through modeling is a viable approach.  

Traditionally, scribing quality issues can be detected using optical and geometrical 

inspection. Variation in laser parameters such as pulse energy, pulse duration, repetition rate, and 

scanning speed can occur at any time scale. Those variations may result in several scribe issues 

such as debris, crack, missing pulse, or un-straight lines [141]. Hence, it is very important to 

identify and prevent these defects during a scribing process. Scribing errors are easy to be fixed 

right after scribing since the defect locations are known [142], [143]. Note that the usual inspection 
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and testing for the final product (e.g. solar panels) do not help since detected defects will lead to 

scrapping the product. 

Some recent studies deployed image analysis in monitoring different laser based 

manufacturing processes such as additive manufacturing [88], [90], [144]–[151] and laser welding 

[146], [152]–[156]. For example, Imani et al. [89] attempted to relate pore size and location to 

laser powder bed fusion (LPBF) parameters. In their study, they built nine titanium alloy cylinders 

on a commercial LPBF machine (EOS M280) at different laser power, hatching spacing, and 

velocity conditions. Multifractal and spectral graph analysis enabled them to monitor and 

discriminate process deviations with around 80% statistical fidelity. Later, Imani et. al [90] used a 

deep neural network (DNN) for inspection and quality control of 362 regions of interest (ROIs) 

representing 362 layers of a titanium alloy. A DNN algorithm called AlexNet can detect the lack 

of fusion flaws with 92 percent accuracy. 

Various defects can occur during selective laser melting (SLM) that could be detected 

during the process using images (e.g. improper heat conduction in overhang features, wrong 

powder deposition due to a worn recoating blade, or improper heat conduction to the underneath 

powder at the connection between the bottom layers of the part and the supports) [146]. SLM 

process monitoring might be even much more challenging for difficult-to-process materials (e.g. 

zinc and its alloys) [148]. They compared several image segmentation methods on zinc powder 

ROIs to detect stable and unstable meting conditions using multivariate control charts. Their study 

showed that process monitoring of some difficult-to-process materials could be completely 

automated using suitable image segmentation techniques.  

In a laser-induced material melting-solidification process, the quality of welded parts might 

be deteriorated by porosity, cracks, lack of fusion, and incomplete penetration [154]. Even though 
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machine learning has been used and explored in laser welding more than in other applications of 

laser technology, challenges still remain in making laser welding processes more stable using 

advanced techniques for quality monitoring [153]. Recently Gonzalez-Val et al. [155] released 

first large dataset of laser metal decomposition (LMD) and laser welding. This dataset primarily 

includes 1.6 million images in which 24,444 of them are labeled as defect. 

Based on the general performance of convolutional neural network (CNN) on image data, 

[153] examined a shallow CNN to monitor irregular weld seam, recessed weld seam, undercut, 

weld bead, and holes and spatters in laser welding. Their combined quality monitoring system was 

able to detect 209 out of 227 bad parts. Shevchik et al. [152] used hard X-ray radiography images 

to train a supervised DNN to reveal the unique signature of sub-surface events in wavelet 

spectrograms from the laser back-reflection and acoustic emission signals. Using 300 images in 

training and 100 in test set, their quality classification was able to achieve an accuracy between 

71% and 99% [152]. Shevchik et al. [156] adopted a graph support vector machine with data 

adaptive kernel approach and 23 laser welds as the dataset to achieve an accuracy ranging between 

85.9% and 99.9%. 

Current physical models are capable of predicting certain geometric aspects of laser 

scribing such as scribe width and depth. However, several other important quality measures cannot 

be obtained from the model. These quality measures include heat affected zone, debris, and micro-

cracks [157]. Roozbahani et al. [142] defined discontinuance as a kind of defect in laser scribing 

and tried to detect discontinuance area in copper indium gallium selenide solar panels using a 

particle analysis algorithm. However, laser scribes might also suffer from several other quality 

issues.  
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To the best of our knowledge, no existing models can predict all aspects of laser scribing 

quality, which can be attributed to the following three main reasons. First, laser scribing using 

short laser pulses is a very complicated process involving many laser parameters and various 

physical processes in which mechanisms are not completely understood. Second, ultrafast laser-

matter interaction is a highly dynamic process and materials are first pushed to a highly non-

equilibrium state followed by a rapid hydrodynamic motion, resulting in material ejection. During 

this process a material experiences fast phase changes and property changes (e.g. physical, optical, 

mechanical, electrical, etc.), making it extremely difficult to obtain reliable material data to feed 

into a model. Finally, the uncertainties associated with physical equipment (e.g., laser power 

fluctuation) and environment (e.g., temperature, vibration) can derail a model from giving reliable 

predictions since many of these process variations are treated as noise and thus not being 

considered in a physical model. 

With the advent of machine vision and machine learning (ML), an opportunity arises for 

an Artificial Intelligence (AI) framework to be used to monitor and characterize a laser scribing 

process with multiple quality features including debris, scribe width, and scribe straightness. The 

inputs of the proposed framework are images while the scribing is taking place and the output is a 

classification reports on the quality characteristics under consideration. We propose a deep 

learning method for the AI framework. Considering the fact that each problem might need a new 

dataset and high cost of providing labeled dataset for supervised ML that give sufficient accuracy, 

the main challenge is to use the least amount of images possible to train such a model and able to 

monitor all aspects of aforementioned scribing quality.    

Deep learning (DL) and convolutional neural network (CNN) showed promising 

performance among other ML methods in recent years in different contexts from autonomous 
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driving to medical image analysis [24], [25]. However, these methods need significant amount of 

data for training a model with adequate accuracy [26]–[28]. Collecting image data may not be a 

big challenge, but pre-processing and labeling of these images for training is. This data preparation 

stage is the most time-consuming and costly step in any machine vision/DL applications. One way 

to alleviate this problem is the use of transfer learning [29].  

Existing supervised ML methods such as decision tree and other methods based on various 

trees such as Random Forest (RF) or Gradient Boosting Classifier (GBC) may not need as much 

training data as the DL/CNN models would but still require a large amount of data. In addition, 

these traditional ML methods may not be able to handle complicated problems such as semantic 

segmentation with multiple quality characteristics. In such a complicated problem, there might be 

several classes of objects to be classified or each might have different geometrical shape and color 

[28]. A new approach to alleviating the lack of labeled data problem is called Transfer Learning 

(TL) where the knowledge gained from a different and yet similar problem can be used to solve 

another problem. Figure 4.1 demonstrates how the knowledge could be transferred from a pre-

trained model to a new model where Softmax layer is an extension version of logistics regression 

idea into a multi-class world. 
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In the last few years, several studies used image data to monitor laser-based manufacturing 

processes. Table 4.1 summarizes these studies, the research focuses, and their results. However, 

there is a lack of research for in-process monitoring of laser scribing quality. These quality 

characteristics include scribe width, debris, crack length, scribe depth, width of heat affected zone, 

and straightness.  Also, most of the research is done using a specific experimental condition and 

one question is whether the results could be applied to other scribing conditions with different 

imaging systems. In this study we attempt to measure and monitor three important laser scribing 

characteristics (i.e. scribe width, debris, and straightness) using image data and a state-of-the-art 

transfer learning method. TDCNN will enable us to leverage existing deep learning models from 

different domains and accelerate classification with less amount of laser-scribing data.  

 

 

Figure 4.1. An example of feature transfer from a pre-trained model in TL 
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Table 4.1. Applications and features addressed by the most related publications 

 Study Year Case 
ML/Monitoring 

approach 

Seman

tic 

segme

ntation 

Debris 

Scr

ibe 

wid

th 

Scribe 

straig

htness 

Other quality characteristics 

1 
Grasso et 

al. [158] 
2017 SLM 

principal component 

analysis (PCA) and 

k-means clustering 

No No No No 

local overheating phenomena caused by a 

wrong 

heat transfer from the melt pool to the 

surrounding material. 

2 
Grasso et 

al. [148] 
2018 SLM 

IsoData, Otsu’s, 

Li’s, Huang’s and k-

means, and 

multivariate control-

charting 

No No No No 
detect unstable melting conditions since 

their early stage. 

3 
Imani et al. 

[147] 
2018 LPBF 

multifractal & 

spectral graph 

theoretic 

analysis 

No No No No 

size, count, and location of pores 

around 80% accuracy and images from nine 

samples. 

4 
Imani et al. 

[90] 
2019 LPBF DNN (AlexNet) No No No No 

lack of fusion flaws; 

362 images from one single part reach 

accuracy 92.5%. 

5 

Roozbahani 

et al. 

[142] 

2018 
Laser 

scribing 

A Particle 

Analysis Algorithm 
No No No No 

Detecting discontinuance area in 

copper indium gallium selenide solar panels 

6 
Mayr et al. 

[153] 
2018 

Laser 

welding 
CNN No No No No 

irregular weld seam, recessed weld seam, 

undercut, weld bead, and holes & spatters. 

500 operations (images) with 512x512 

resolution. 

7 
Shevchik et 

al. [156] 
2019 

Laser 

welding 

graph support vector 

machine with data 

adaptive kernel 

No No No No 23 laser welds for the same events in row 9. 

8 
Shevchik et 

al. [152] 
2020 

Laser 

welding 
DNN No No No No 

300 images in training and 100 in test set is 

used to reveal the unique signature of sub-

surface events in wavelet spectrograms 

from the laser back-reflection and acoustic 

emission signals. 

9 
Zhang et 

al.[154]  
2020 

Laser 

welding 
DNN No No No No 

Porosity monitoring using grayscale images 

and achieving 96.1% accuracy. 

10 

Gonzalez-

Val et al. 

[155] 

2020 
Laser 

welding 
CNN No No No No 

The model were able to detect defect parts 

with 97.5% accuracy. 

11 This study 2021 
Laser 

scribing 
TDCNN Yes Yes Yes Yes 

The proposed model achieved 96% 

accuracy using a small set and 97% on 

large set. 
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4.2. Research methodology 

 

4.2.1. Experimental setup 

The experimental setup is depicted in Figure 4.2, and the samples used throughout the study are 

<100>-oriented, 1-mm thick intrinsic Si wafers with a resistivity of >200 Ω cm. An IR laser is used 

to scribe lines on the surface of a silicon wafer. Specifically, the laser source (MWTech, PFL-

1550) has a wavelength of λ = 1550 nm and produces pulses of length τ = 3.5 ns (full width at half-

maximum) and can be operated at various repetition rates with a maximum pulse energy of 20 μJ. 

The output beam has a 1/e2 diameter of 6 mm.  

 

 
 

Figure 4.2. Experimental setup. P: polarizer, HWP: Halfwave plate, PBS: polarized beam 

splitter, M: mirror. 

A half wave-plate in conjunction with a polarizing beam splitter is used to control the pulse 

energy by rotation of the wave-plate. The beam is then focused on to the surface of the Si sample 

by a microscope objective (NA = 0.85, Olympus, Model LCPLN100XIR) that is corrected for 

spherical aberration. At focus, the beam has a theoretical diameter at 1 𝑒2⁄  of 2𝑤0 =

1.22 𝜆 𝑁𝐴 = 2.2 μm⁄ , with a Rayleigh length of 𝑦𝑅 = 2.6 μm in air. Parallel lines are scribed on 

the surface of the silicon samples. Considering three parameters in control and easy to change, we 

adopted a 23 factorial experimental design. Each factor is experimented on a high and a low value. 
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Specifically, the low level and high level of the pulse energy are 1 and 2 µJ respectively. The low 

and high levels for petition rates are 20 and 120 kHz. Finally, the low and high setting for scanned 

speed are 0.5 and 10 mm/s respectively. The scribing conditions are listed in Table 4.2.  The images 

are obtained by separating long scribe lines from each condition listed in Table 4.2 into multiple 

small segments. 

 

Table 4.2. Scribing conditions used in our experiment 

 

 

 

 

4.2.2. Image data and pre-processing 

 

The first step of image processing for object identification is image segmentation. This 

segmentation task is accomplished by an unsupervised ML model, which does not require a time-

consuming labeling process. However, unsupervised ML has limited applications and are not 

suitable for problems that need high accuracy. Figure 4.3 (b) shows adaptive thresholding (AT) 

[159] and Figure 4.3 (c)  Otsu’s thresholding (OT) [160] methods, respectively. AT is a local 

intensity method while OT is a global intensity one. As shown in Figure 4.3, AT performs better 

than OT. However, the segmentation is still very far from desirable for process monitoring. To 

monitor a process, a high level of segmentation accuracy is required. Neither method achieves this 

Line number Pulse energy (µJ) Repetition rate (kHz) Scanning speed (mm/s) 

1 1 20 0.5 

2 1 20 10 

3 1 120 0.5 

4 1 120 10 

5 2 20 0.5 

6 2 20 10 

7 2 120 0.5 

8 2 120 10 
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standard. Our goal is to measure and monitor scribe width, debris, and straightness. None of those 

goals can be achieved using these thresholding methods. 

 

Image pre-processing can include renaming, resizing, de-noising, segmenting, edge 

smoothing, and finally labeling. In this study, the collected image dataset is renamed, resized to 

1024 x 1024, and labeled to the mentioned classes of scribe, debris, and the part background. The 

initial goal is to train the model with sufficient accuracy and minimum amount of data. To do this, 

a total of 21 images from 8 different scribes are collected and labeled to three classes of debris, 

scribe, and silicon background. Note that this data sets were split into 3 sets of training, validation, 

and testing with the ratio of 60-20-20. However, a valid concern is testing the model is not reliable 

based on a handful of images, even if we get very high accuracy and low loss. To make sure the 

accuracy is reliable, we prepared a large dataset that includes 154 images with the same size and 

more variety in scribe size, camera zoom, and defects. The purpose of the second dataset is to 

verify model performance. Specifically, we define the validation set as the dataset held back from 

training to estimate the model’s capability for tuning hyper parameters and the testing set is just as 

the part of dataset held back from the training set to give an unbiased estimation of the final trained 

Figure 4.3.(a) A sample include 2 scribes, (b) clustering result using adaptive thresholding 

(AT) method, (c) clustering results using Otsu's thresholding (OT) method  

a b c 
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model [161]. However, by verification we want to ensure that the model won’t misbehave on a 

broader range of circumstances [162]. Thus, in this research, all the images were labeled carefully 

using MATLAB R2020a Image Labeler application manually. A pixel-wise region of interest is 

defined in the MATLAB Image Labeler application where we assigned 1 to all silicon background 

pixels, 2 to all scribe pixels, and 3 to all debris pixels. The labeled ground truth data was exported 

from MATLAB environment and then imported to Python for DL and image processing. 

 

 

4.2.3. Transfer learning model architecture 

To solve traditional machine learning issues pointed out in the previous section in image 

segmentation, we designed our TL-based model. Figure 4.4 shows the details of the designed 

architecture where blue part (i.e. the first two and half rows) represents the layers with weights 

transferred from the pre-trained VGG16 and the orange part (the rest of the rows) is the proposed 

CNN classifier built on top of the pre-trained model. TL works the best when a related pre-trained 

CNN can be used to transfer knowledge. There are several well-known pre-trained CNNs such as 

Xception, VGG16, VGG19, ResNet50, Inception, and MobileNet, which have been trained over 

different public datasets like ImageNet and MNIST, and CIFAR  [130], [163]–[166]. All of these 

datasets are designed for object detection, of which goal is just to determine whether an image 

contain a specific object or not. However, to the best of our knowledge we could not find any pre-

trained pixel-wise semantic segmentation CNN. Among several aforementioned pre-trained 

models for image classification, VGG16 is a very deep CNN that is trained on part of ImageNet 

dataset with 2 million images and 1000 different class of objects such as animals, furniture, sports, 

plants, etc. [167]. VGG16 has a high accuracy for the objects it was trained for. Thus, for this 

research, VGG16 is chosen to transfer the image feature knowledge. 
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Note that the original VGG16 is trained on images with a 224 x 224 resolution. The output 

of this model is one scalar value representing the classified object. However, the input, desired 

output, and consequently dimensions of all the layers need to be changed for different problems. 

In each problem, various resolutions for images can be used for training. Thus, the main adjustment 

needed for the proposed framework is to change the input dimension or image resolution. The 

topology of the proposed TDCNN is shown in Figure 4.4. Working on appropriate fine-tuning and 

feature extraction, we trained the proposed TDCNN model. This new classifier can be a logistics 

regression or support vector machine model in case of binary classification, or deep CNN. Since 

the pre-trained model and the proposed model serve two purposes (the former is for object 

detection and the latter is for semantic segmentation), thus another deep CNN should be trained 

based on a new small dataset. To design this deep CNN, the idea of decoding and up-sampling in 

Unet [131] and SegNet [24] is adopted. In a similar study, pre-trained DeconvNet [168] layers are 

transferred on top of VGG 16 for off-road autonomous driving without considering any batch 

normalization or drop outs [169]. 

The last blue block in Figure 4.4 is the output from the feature extraction process. The 

output of feature extraction from the pre-trained model is a matrix with dimensions of 

128x128x256 where 256 is the number of filters. This output (i.e. the output from the last blue 

block) is the input of the proposed CNN. Six blocks of convolutional layers are designed. Each 

block contains a convolutional layer, batch normalization, ReLU, dropout, and Max pooling (or 

unpooling). The dropout helps to reduce overfitting. There is only one max pooling layer connected 

right after the first convolutional block followed by four max unpooling layers for up-sampling 

weights to the desired dimension, which is 1024 x 1024 in this case. Finally, a fully connected 

layer followed by a Softmax layer gives the desired classification. Note that the weights in the blue 
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part remain fixed during training. This is because those weights have been obtained with training 

from millions of images. The rationale of transfer learning is to leverage this knowledge of 

fundamental geometrical features for various objects. The orange part is the proposed module for 

the desired classification of a specific problem domain, in this case, the scribed images.  

Despite the complex appearance of the proposed architecture, it is significantly less 

complicated than the other well-known CNNs like the VGG16. As mentioned above, the blue 

section in the architecture belongs to the transferred layers from the pre-trained VGG16. The blue 

part does not include all the trainable layers in the original VGG16. The weights in the transferred 

layers from VGG16 were unchanged during training.  In the proposed TDCNN and based on filter 

size and number of layers, we only trained 5 million parameters in each epoch for the new module 

with 771 parameters in the last dense layer, which were 3 times less than those of VGG16.  
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Figure 4.4. The proposed TDCNN architecture 
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4.2.4. Model training and evaluation 

 

The architecture in Figure 4.4 was coded on the Google Colaboratory using a P100 GPU and 

TensorFlow environment. Model evaluation was done by two sets of image data; a validation set 

and a testing set. The validation set was the part of the sample data held back from training to 

estimate model performance during tuning the model’s hyper-parameters while the testing set was 

the part of the sample data held back from training to estimate the model’s final performance. We 

split the entire small dataset with 21 images to 14 images for training, 3 for validation, and 3 for 

testing. It is necessary to emphasize that the main effort here is to train our model with a few 

numbers of images and reach desired accuracy. Since the training set was small, the test set was 

also small, and one might claim the result was not enough. To address this concern, a large data 

set including 154 images was created and trained later to verify the results and accuracy.  

In the training phase, training and validation accuracy and losses were used to access model 

performance. Thus for the aforementioned model, using Adam optimizer [170] with a learning rate 

of 0.0001, and a mini batch size of 4 the model was trained for 30 epochs. Figure 4.5 demonstrates 

the training performance of the designed model. Note that a dropout value of 0.4 was used to 

prevent possible overfitting during training. Both training and validation indexes (i.e., accuracy 

and losses) in Figure 4.5 are very close to each other in each epoch, especially closer to the final 

epochs. This observation demonstrates that our model was able to avoid overfitting successfully.  
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While Figure 4.5 represents training and validation performance during the model training 

process, there is still a need to examine the final trained model accuracy on test set. To do this we 

calculated F1-score for each class and Overall Accuracy (OA) using confusion matrix. Given a 

general structure of confusion matrix with True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) values in it, F1-score is defined as harmonic average of precision 

and recall. Equations 1-4 give some details on how to calculate OA, precision, recall, and F1-score. 

OA is the correct identification rate. Precision is the rate of correct positive observations out of all 

observations identified as positive. High precision rates mean low false positive rates. Recall, on 

the other hand, is the ratio of correctly predicted positive observations out of all positive cases. 

High recall rates mean low false-negative cases. Finally, F1 score is the weighted average of 

precision and recall. In short, precision is a measure of false positives while recall is a measure of 

false negatives. F1 score is an overall measure of both. OA is the F1 score when all correct 

identifications of all categories are considered as a whole. All 4 metrics used here are the larger 

the better. 

OA = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+𝐹𝑁+𝐹𝑃
          (1) 

Figure 4.5. Training and validation performance of TDCNN 
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Precision = 
𝑇𝑃

𝐹𝑃+𝑇𝑃
          (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁  
          (3) 

F1 score = 2 * 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (4) 

 

Table 4.3 shows the OA and details of F-1 scores over the test set. The last column in Table 

4.3 is the number of pixels that support each class. Precision here means, for example, 64 percent 

of those pixels classified as debris are actually debris. This outcome is expected because debris 

pixels are only 6.7% of all pixel examined and there are many none debris pixels mistakenly 

identified as debris. The recall value for debris means our model was able to find and classify 85 

percent of all debris pixels. The recall for “Part background” is over 97 percent while the recall for 

scribed part is 94 percent. This means that the proposed model is able to find and classify all the 

pixels related to the part correctly with very high rates. This outcome also suggests that most of 

misclassifications are related to debris and scribe pixels. Debris has the lowest F-1 score. The fact 

of low precision and high recall values for the debris means the model was able to find most of the 

debris; however, there are also many non-debris pixels that were classified as debris. We suspect 

that the misclassification is from the scribe. Figure 4.7 provides the evidence since many debris 

are connected to the scribed line.  

 

Table 4.3. Overall accuracy and F1-score of testing the model using the first data set 

 precision recall F1-n score support 

Debris 0.64 0.85 0.73 281939 

Part background 0.99 0.97 0.98 3574063 

Scribe 0.95 0.93 0.94 338302 

OA (Overall 

Accuracy) 
  0.96 4194304 
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Since using 3 images in the test set (despite the high image resolution) might not be very 

reliable, we trained this model with 60 percent of images in the large dataset and the rest of them 

is used for testing and validation. Interestingly, this time accuracy even improved to 97 percent 

and loss value went below 0.1 for both training and validation. Table 4.4 shows the results of 

training the model and testing it. As can be seen, performance is just slightly better than training 

with the small set. The F-1 score for debris is still less than 80 percent. This is probably because 

of the high unbalance ratio. Also, considering Figure 4.5 and the same graph in training the large 

dataset, there is not a big gap between the training and validation loss value. This observation 

confirms that our model was able to avoid overfitting.  

 

Table 4.4. Overall accuracy and F1-score of testing the model using the large dataset  

 precision recall F1-score support 

Debris 0.69 0.83 0.79 663595 

Part background 0.98 0.99 0.98 17048192 

Scribe 0.96 0.98 0.97 3259733 

OA (Overall Accuracy)   0.97 20971520 

 

 

4.2.5. Generation of scribe width and straightness of laser scribes 

 

Given a sample scribe in Figure 4.6, we can measure debris as well as scribe width and 

straightness. Trained models over the small and large sets had almost the same performance. In 

this section we use the model trained by the small set. The output from TDCNN is a 2D image that 

three categories of scribe, debris, and sample part are classified in it (see Figure 4.7 (b)). Thus, 

debris can be measured directly by measuring the number of pixels that classified as debris. Using 

the same classified image, scribe width and straightness also could be measured using geometric 
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dimensioning & tolerancing (GD&T) [171], [172] with appropriate adjustments on the formulas 

based on the classified images.  

 

After quantifying debris, the whole image will be segmented to scribe and no-scribe pixels. 

Figure 4.7 shows the image and pixel values for an example image of 3 scribe lines. In the initial 

classification in Figure 4.7 (b), the model assigns one’s to all scribed pixels, zero’s to all 

background pixel and two’s to all debris. After measuring debris area and monitoring scribe width 

and straightness, all the debris pixels’ value will be replaced with zero’s to have a binary 

classification of scribe and no-scribe. 

In Figure 4.7 (c) a pixel matrix is presented, in which one’s (1’s) represent all pixels that 

are classified as scribed and zero’s represent the background and debris. Let 𝑥𝑖𝑗 be the value of a 

pixel in row i and column j. In order to determine the width and straightness, the tolerance zones 

and center line CL need to be identified. The width (W) is the distance between Jmax and Jmin 

Figure 4.6. A scribed sample part showing measurement parameters 
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which are the maximum and minimum positions in the effective area, respectively. The effective 

area consists of all column j’s where the row sum of j= ∑ 𝑥𝑖𝑗
1023
𝑖=0  is greater than 1024*(1-α). Here 

α is the classification error and 1024 is the image resolution. Thus the effective area’s boundary 

and width are: 

Jmin ≤Effective area≤ Jmax         (5) 

And, 

W = Jmax - Jmin          (6) 

Let J be all the columns that with value 1 (i.e. contain scribe). Then the center line (CL) will be: 

CL = ∑
𝑗

𝐽⁄
𝑗𝑚𝑎𝑥
𝑗𝑚𝑖𝑛

          (7) 

Now define upper bound (Ub) max j that contains at least 1 pixel contain scribe and lower bound 

(Lb) min j that contains at least 1 pixel contain scribe. Thus: 

Tolerance Zone 1 is between line Ub and Jmax      (8) 

Tolerance Zone 2 is between line Jmin and Lb      (9) 

Finally, if the total number of columns in the tolerance zone is n then for each row, the error (ei) 

in the tolerance zone is: 

ei =∑
|𝑥𝑖𝑗 − �̅�𝑖𝑗|

𝑛⁄
𝑎𝑙𝑙 𝑗 𝑖𝑛 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑧𝑜𝑛𝑒        (10)   

and �̅�𝑖𝑗 is the average 𝑥𝑖𝑗 in row i. Plotting ei gives a clear idea about the straightness of the scribe. 

 

4.3. Results and discussion 

 

The proposed study uses different scribing conditions causing different quality issues such as 

debris, fluctuation, and very thin or very thick lines. The proposed TDCNN method was able to 

capture and help quantify the scribed lines. In the following sections, we will discuss these findings.  
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4.3.1. Debris measurement 

Figure 4.7 (a) is an original image from scribing 3 lines and Figure 4.7 (b) shows the classified 

image after the use of the proposed TDCNN model. The green region in the classified image 

represents the background of the part, the yellow regions are scribes, and the purple ones are debris. 

Figure 4.7 (c) shows the classification values around the middle line. Note that there are 1024 

*1024 = 220 pixels in the image. Based on this classification, pixel counting shows that the 110893 

purple pixels are debris, the 833790 greens are background, and the 103893 yellows are scribes. 

This means 79.5 percent of the shape is background, 9.9 percent is scribe, and 10.6 percent is debris 

(mostly because of the second scribe line).  

 

 

 

Figure 4.7. (a) original scribed sample on top left;  (b) classification using TDCNN on top right. 

 (c) scribe classification values  

a b 

c 
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4.3.2. Straightness 

Figure 4.8 show straightness measurement plots for a normal (straight) line and a fluctuating line, 

respectively. Those plots were obtained after classifying the line using TDCNN and then 

quantifying straightness using equations (5-10). On top of each figure the original scribe can be 

seen and ei is plotted for the first tolerance zone of each scribe. 

 

 

The error value range for a straight line (Figure 4.8 (a)) was between 0 to 1. However, this 

range for a fluctuating line (Figure 4.8 (b)) was between 0 and 6. In addition, comparing Figure 

4.8 (a) and (b) shows that a straight line has a smoother ei plot with lower variations.  

 

4.3.3. Transferability to a new case 

Most DL models are designed and trained based on the assumption that experimental and 

environmental conditions are consistent. However, these assumptions might not hold in real life. 

Changes in scribing parameters and imaging conditions potentially make significant differences in 

the final picture. To solve this problem, the proposed model needs to be retrained in order to obtain 

knowledge from a new environment. In a model without transfer learning, we might need to use a 
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Figure 4.8. Error (ei) plot of (a) normal line and (b) fluctuating line 
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big data set that includes new conditions to get appropriate accuracy. However, the proposed model 

can accomplish this task with only a handful of images. 

In our research, to test this hypothesis, we provided a new dataset of images from a different 

laser and imaging conditions. This new dataset is collected from a group of lines scribed by a 

nanosecond laser with a wavelength of 1064 nm and a repetition rate of 10 Hz. Eight lines with 

different conditions were scribed. Table 4.5 shows the technical details about the second group of 

scribes. 

 

Table 4.5. Scribing conditions of the second group of lines 

 

 

To examine the trained TDCNN, we tried to classify the new images using the current 

trained model. Figure 4.9 shows the classification result on new samples without any change or 

retraining. Figure 4.9(a) is the original scribe image while Figure 4.9 (b) is the classification result. 

Note that the yellow part represents the scribe. Interestingly, the model was relatively successful 

in finding the background. However, we have a high rate of misclassification for the scribe. This 

misclassification presents a challenge for achieving our goal of automatic characterization of 

debris, scribe width, and scribe straightness.  

 

 

Line number Pulse energy (mJ) Spot size(mm) Scanning speed (mm/s) 

1 202 0.7 1.5 

2 202 0.7 3.0 

3 202 1.2 1.5 

4 202 1.2 3.0 

5 415 1.2 1.5 

6 415 1.2 3.0 

7 415 0.7 1.5 

8 415 0.7 3.0 
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To solve this problem, we retrained the same TDCNN but used additional 6 images to 

create a new dataset to train a new classification model. This way the model will learn extra 

knowledge in addition to the knowledge it already has. Network architecture and all the training 

hyper parameters (e.g. learning rate) were kept the same as the first training. We manually labeled 

the middle of the scribe as scribe rather than background or debris in the pixels in Figure 4.9 (a). 

Training and validation accuracy in retraining is over 98 percent which is even better than that of 

the first training result. Figure 4.9 (c) shows the retraining performance on a new image. From this 

point, all the steps in Section 4.2.5 can be repeated and Equations (5-10) can be used to calculate 

scribe width and straightness.  

 

4.4. Conclusions 

In this study we proposed a novel deep transfer learning model to classify images from laser 

scribing with balanced performance for high accuracy and low overfitting. The classified images 

contain identified debris and scribes. Further image processing and algorithms are developed to 

quantify scribe width and straightness based on the classified images.  

The proposed TDCNN has big advantages over a regular deep learning algorithm without 

transfer learning. First, while all regular deep learning models require a huge amount of image data 

and long training time for model accuracy, the proposed model requires only a few image samples 

for adapting new situations. This transfer learning feature in the proposed framework saves 

Figure 4.9. Image classification on new dataset (a) original image with different 

imaging setup, (b) classification result without retraining (c) classification result with 

retraining

a b  c 
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substantial effort and time in data preparation and labeling and leads to a much shorter time in the 

modeling and training phase. With the training of only 5 million parameters compared to the 

current well-known architecture (e.g., VGG16 with more than 15 million trainable parameters), 

the proposed model has less complexity in the newly developed portion. Second, the proposed TL 

architecture is flexible in that adding new information based on new scribing conditions can be 

achieved with minimum effort and still retains the same performance. Usually working with a small 

dataset increases the chance of overfitting. In the proposed TDCNN architecture, we used several 

layers of batch normalization and dropout to overcome this challenge. These layers helped reduce 

(if not remove) overfitting. 

The main idea in re-using pre-trained layers is transferring general knowledge and patterns 

such as edges, corners, dots etc. from other labeled images. Thus, only most common features are 

needed from the transferred layers, specifically, the number of filters were reduced to 64. Facing a 

new and specific problem, 512 filters were added to capture larger combinations of patterns. For 

future research, more complicated pattern combinations may be captured and studied by adding 

new layer modules. 

The proposed TDCNN model enables the characterization of laser scribing quality using 

just a small number of sample images and reaches the accuracy as high as 96 percent. The scribe 

images in this study had mainly three features of concern: debris, width variation, and straightness. 

The quality measures on these characteristics pave the way to track all these features automatically 

and enable the possibility of real-time process control as a logical next step. Although the proposed 

method is able to measure and quantify debris with any scribe shape, quantifying straightness and 

width is only limited to vertical lines and further study is needed for non-vertical lines. This study 

only focuses on laser scribing on silicon wafers. We expect the same framework can be extended 
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to different materials such as solar photovoltaic thin film. However, different quality issues such 

as cracks may arise that also require future research. Highly unbalanced data was a significant 

limitation in this study. We will tackle this issue using the other state-of-the-art methods such as 

Differentially Private Generative Adversarial Networks in future studies as well. Finally, the case 

study in section 4.3.3 demonstrates that the trained TDCNN model can be transferred to a new case 

to improve its original performance. We expect the trained models may also be transferred to other 

laser related processes. Future research is much needed to confirm this hypothesis. 
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5. Conclusion 
 

5.1. Summary 

In this dissertation, different ML models have been studied for image segmentation applied to a wide 

range of applications from manufacturing process monitoring to soil cover classification. The advent 

of machine vision coupled with ML has enabled the monitoring and characterization of 

manufacturing processes as well as natural resource management. ML models driven by data have 

won massive popularity in recent years without physical models or expert knowledge. Although 

such an approach using black box ML for image-based process monitoring has brought 

considerable benefits, such as lower costs, and production efficiency in monitoring, it has faced 

significant challenges such as large data requirements, inability to produce physically consistent 

results, and the lack of generalizability for out-of-sample scenarios. Collecting image data may not 

be a big challenge anymore but pre-processing and labeling of training images is persistently a 

major issue. This data preparation stage is the most time-consuming and costly step in any machine 

vision/DL applications.  

To show effectiveness of image-based process monitoring and how it can be utilized in 

statistical process monitoring, in chapter two we proposed a GBC to classify layer-wise images in 

3D printing parts in a condition where unsupervised ML models failed to segment images due to 

lightning and low accuracy issue. The proposed framework first starts with a self-start control chart 

images that is collected using an overhead camera after a printer finishes each layer in the 

beginning and then switch to a cluster-charting approach after enough good parts are printed. The 

proposed method alleviates the need of the traditional control charting phase I requirement where 

at least 20 to 25 parts were recommended to establish control limits. 
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The classification problem of a 3D printed part versus background is relatively a simple 

classification problem even though unsupervised algorithms failed to provide a satisfactory result. 

Real world classification problems might be even more complicated where there is no specific 

color or shape difference between different classes that needs to be classified. Soil cover 

classification was the example we studied in this dissertation to classify green canopy, stubble, 

and soil. Despite green canopy classification which is relatively a simpler task, classifying soil and 

stubble is challenging due to color similarities and lack of specific geometrical shape. In chapter 

three, we created a benchmark dataset of semantically segmented downward-facing images 

obtained from agricultural fields include 3944 labeled images and then test the accuracy of a 

supervised DCNN to quantify the percentage of stubble, live vegetation, and bare soil using the 

generated dataset. The DCNN was trained for 3000 epochs and achieved 84 percent accuracy with 

0.85 F1-score for soil and 0.77 F1-score for stubble. 

The DCNN that was used in soil cover classification was able to achieve a satisfactory 

accuracy needed for agriculture and soil conservation purposes. However, frustration in the 

process of preprocessing and labeling those 3944 images was undeniable and perhaps the most 

challenging and painful part is re-doing all the steps (i.e., image collection, image preprocessing 

and labeling, data modeling and training) from scratch for a new problem and domain. In chapter 

four we proposed a novel deep transfer learning model to classify images from laser scribing with 

balanced performance for high accuracy and low overfitting. The classified images contain 

identified debris and scribes. Further image processing and algorithms are developed to quantify 

scribe width and straightness based on the classified images. The proposed TDCNN has big 

advantages over a regular deep learning algorithm without transfer learning. First, while all regular 

deep learning models require a huge amount of image data and long training time for model 
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accuracy, the proposed model requires only a few image samples for adapting new situations. This 

transfer learning feature in the proposed framework saves substantial effort and time in data 

preparation and labeling and leads to a much shorter time in the modeling and training phase. The 

proposed TDCNN model enables the characterization of laser scribing quality using just a small 

number of sample images and reaches the accuracy as high as 96 percent. The scribe images in 

this study had mainly three features of concern: debris, width variation, and straightness. The 

quality measures on these characteristics pave the way to track all these features automatically and 

enable the possibility of real-time process control as a logical next step. 

  



96 

5.2. Future studies 

In this research, we studied a data-driven approach for image segmentation where we collect, 

analyze, and extract insight from data in a specific domain. The goal was to find the best model 

that provides best classification under different scenarios such as capturing changes in early stage, 

classifying complicated segmentation problems, and segmentation using a few numbers of images 

as possible. This approach, where finding the best model is at the center of the problem, is also 

known as model-centric problem. However, along with a model-centric model it is also important 

to focus on a “data-centric” approach where data is the primary asset. Focusing on data-centric 

allows us to collect different perspective of data. For example, in 3D printing, if printed parts 

usually appear in the center of the image, it is hard for classifier to segment with high accuracy, if 

the defect is recognizable from other different angles. Additionally, focusing on data-centric is 

essential in improving trained model with diversity of data.  

 The TL approach studied in this dissertation has showed a promising improvement for 

reductions of training samples. However, a successful implementation of TL requires a strong 

similar pre-trained network to transfer the knowledge. In this research, we transferred knowledge 

from a pre-trained VGG16 that was trained over the ImageNet dataset. The only similarity between 

our domain (i.e., laser scribing) and ImageNet is that both domains are images. For future study, 

we recommend a multiple stages transfer learning method where the general knowledge will be 

transferred from a general domain such as ImageNet to a similar domain to create a good similar 

pre-trained network. Then having a high quality pre-trained network, we can transfer the 

knowledge to the target domain faster by further reduction of the training images in the problem 

domain of interest. 
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 In manufacturing, our goal is improvement of manufacturing processes through process 

monitoring and quality control. We propose three steps of creating a pre-trained model, domain 

adaptation, and physics-based ML, and parameters optimization. For creating a pre-trained model, 

the key point in feature adaption and transfer learning is having a good pre-trained network. For 

future study, we propose to use generative adversarial networks (GANs) and physics-based 

simulation to create a pre-trained model that includes a pre-trained network using data without any 

experimental results. By design, the generated data and pre-trained network are not supposed to 

be very accurate but could create a similar network using thousands of data points to accelerate 

training process. GANs are type of ML methods that contains two separate neural networks where 

the first network is called generator and it receives a random input vector. Discriminator is the 

second neural network in GANs that serves as a loss function for the generator. GANs were shown 

a high capability to accurately capture solution manifolds of partial differential equations (PDEs) 

parametrized by physical parameters [173], and generating spatio-temporal super-resolution [174]. 

 The proposed integration of the domain adaptation and physics-based ML is summarized 

in Figure 5.1. Given the drivers which is our generated data using scientific formula and GAN 

model, we will create pre-trained model fphy to predict Yphy. The pre-trained model fphy is a function 

based on possible understood parameters (i.e., trained parameters). The pre-trained model fphy will 

be again trained using experimental data and measurements using a wider range of parameters to 

predict output quality Ypred. Finally, based on the physics-based ML prediction, we recommend 

running an appropriate parameter optimization model based on the experimental design such as 

steepest descend gradient method, Bayesian optimization, and reinforcement leaning to find best 

parameters as recommendation for next experiment. After finding recommended parameters, the 

three steps should repeat until finding best parameter settings.  
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Figure 5.1. Hybrid Physics-Based Domain Adaption Model 

 

For example, process monitoring of 3D freeze inkjet printing of aerogel could be done so 

that the droplet frequency can be optimized as an in-control parameter. This challenge is 

identification of the dimensions and shape of the printed aerogel lines. A two-stage TL model 

could be applied to classify printed lines from the background. In the first stage, basic image 

classification knowledge from the pre-trained VGG16 [127] will be transferred to a labeled laser 

scribing image data. The combined deep learning model is then could be used to train the model 

(i.e. additional layers) for the 3D inkjet aerogel printing problem. Finally, the classified images 

will be used to measure the width and height of the printed lines to determine the optimal printing 

frequency.  
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