
  

Stochastic models for analysis and optimization of unmanned aerial vehicle delivery on last-mile 

logistics 

 

 

by 

 

 

Ali Tolooie 

 

 

 

B.S., Mazandaran University of Science and Technology, 2010 

M.S., University Technology Malaysia, 2015 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Industrial and Manufacturing Systems Engineering 

Carl R. Ice College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2022 

 

  



  

Abstract 

Land transportation is generally considered one of the most expensive, polluting and least 

efficient parts of the logistics chain. Due to these issues, using unmanned aerial vehicles such as 

drones for package delivery in last-mile logistics becomes increasingly attractive. However, there 

are several significant obstacles in terms of technical aspects and performance capabilities of 

drones like limited flight coverage. In addition, supply chains are exposed to a broad range of 

uncertainties some of which may cause disruptions in the whole supply chain system. To hedge 

against these issues, a well-designed reliable network is a top priority. Most existing models for 

optimization within logistics chain are deterministic, lack reliability, or they are not 

computationally efficient for larger problems. This dissertation aims to improve the reliability and 

efficiency of the supply chain network through the development of stochastic optimization models 

and methods to help address important problems related to delivery of products using drones. To 

achieve this goal, this study has developed a generalized optimization model that captures the 

dynamic and stochastic nature of problems by using stochastic optimization and stochastic control.  

At first, this study addresses issues bordering on capacitated supply chain problems, 

specifically on how reliable supply chain networks can be designed in the face of random facility 

disruptions and uncertain demand. The proposed multi-period capacitated facility location and 

allocation problem is modeled as a two-stage stochastic mixed-integer formulation that minimizes 

the total establishing and transportation cost. To overcome the complexity of the model, the L-

shaped method of stochastic linear programming is applied by integrating two types of optimality 

and feasibility cuts for solving the stochastic model. This research improves the proposed 

algorithm in two ways: replacing the single-cut approach with a multi-cut and showing relatively 

complete recourse in the stochastic model by reformulating the original model. According to 



  

computational results, the proposed solution algorithm solves large-scale problems while avoiding 

long run times as well. It is also demonstrated that substantial improvements in reliability of the 

system can often be possible with minimal increases in facility cost. Next, this research aims to 

construct a feasible delivery network consisting of warehouses and recharging stations through the 

development of a stochastic mixed-integer model, resulting in improving the coverage and 

reliability of the supply chain network. Due to the computational complexity of the scenario-based 

mixed-integer model, this research improves the performance of the genetic algorithm by 

considering each scenario independently in one of the steps of the algorithm to significantly 

improve the computational time need to find the solutions. Computational results demonstrate that 

the proposed algorithm is efficiently capable of solving large-scale problems. Finally, this 

dissertation analyzes tradeoffs related to charging strategies for recharging stations which can be 

viewed as warehouses in last-mile logistics with capacity constraints and stochastic lead times. To 

enhance delivery time, this research assumes that extra batteries are available at the recharging 

station where individual drones land when they run out of power and swap empty batteries with 

fully charged ones. Stochastic Markov decision models are formulated to handle stochasticity in 

the problem and determine the optimal policy for decision-makers by applying a policy iteration 

algorithm. To overcome of computational challenges, a novel approximation method called the 

decomposition-based approach is proposed to split the original Markov decision problem for the 

system with N states into N independent Markov chain processes. Through numerical studies, this 

dissertation demonstrates that the proposed solution algorithm is not only capable of solving large-

scale problems, but also avoids long run times. It is also demonstrated how different stochastic 

rate like flight or demand, and inventory and backorder costs can affect the optimal decisions.  
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Abstract 

Land transportation is generally considered one of the most expensive, polluting and least 

efficient parts of the logistics chain. Due to these issues, using unmanned aerial vehicles such as 

drones for package delivery in last-mile logistics becomes increasingly attractive. However, there 

are several significant obstacles in terms of technical aspects and performance capabilities of 

drones like limited flight coverage. In addition, supply chains are exposed to a broad range of 

uncertainties some of which may cause disruptions in the whole supply chain system. To hedge 

against these issues, a well-designed reliable network is a top priority. Most existing models for 

optimization within logistics chain are deterministic, lack reliability, or they are not 

computationally efficient for larger problems. This dissertation aims to improve the reliability and 

efficiency of the supply chain network through the development of stochastic optimization models 

and methods to help address important problems related to delivery of products using drones. To 

achieve this goal, this study has developed a generalized optimization model that captures the 

dynamic and stochastic nature of problems by using stochastic optimization and stochastic control.  

At first, this study addresses issues bordering on capacitated supply chain problems, 

specifically on how reliable supply chain networks can be designed in the face of random facility 

disruptions and uncertain demand. The proposed multi-period capacitated facility location and 

allocation problem is modeled as a two-stage stochastic mixed-integer formulation that minimizes 

the total establishing and transportation cost. To overcome the complexity of the model, the L-

shaped method of stochastic linear programming is applied by integrating two types of optimality 

and feasibility cuts for solving the stochastic model. This research improves the proposed 

algorithm in two ways: replacing the single-cut approach with a multi-cut and showing relatively 

complete recourse in the stochastic model by reformulating the original model. According to 



  

computational results, the proposed solution algorithm solves large-scale problems while avoiding 

long run times as well. It is also demonstrated that substantial improvements in reliability of the 

system can often be possible with minimal increases in facility cost. Next, this research aims to 

construct a feasible delivery network consisting of warehouses and recharging stations through the 

development of a stochastic mixed-integer model, resulting in improving the coverage and 

reliability of the supply chain network. Due to the computational complexity of the scenario-based 

mixed-integer model, this research improves the performance of the genetic algorithm by 

considering each scenario independently in one of the steps of the algorithm to significantly 

improve the computational time need to find the solutions. Computational results demonstrate that 

the proposed algorithm is efficiently capable of solving large-scale problems. Finally, this 

dissertation analyzes tradeoffs related to charging strategies for recharging stations which can be 

viewed as warehouses in last-mile logistics with capacity constraints and stochastic lead times. To 

enhance delivery time, this research assumes that extra batteries are available at the recharging 

station where individual drones land when they run out of power and swap empty batteries with 

fully charged ones. Stochastic Markov decision models are formulated to handle stochasticity in 

the problem and determine the optimal policy for decision-makers by applying a policy iteration 

algorithm. To overcome of computational challenges, a novel approximation method called the 

decomposition-based approach is proposed to split the original Markov decision problem for the 

system with N states into N independent Markov chain processes. Through numerical studies, this 

dissertation demonstrates that the proposed solution algorithm is not only capable of solving large-

scale problems, but also avoids long run times. It is also demonstrated how different stochastic 

rate like flight or demand, and inventory and backorder costs can affect the optimal decisions. 
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Chapter 1 - Introduction 

A supply chain is formed by a network of entities such as manufacturers, suppliers, and 

distributors who work together to provide finished products to the end user. Figure 1.1 illustrates 

a supply chain network consisting of product flow, information, and cash flow links with supplier, 

producer, and customer.  

 

Figure 1.1  An illustration of a company's supply chain 

 

The supply chain management concept emerged in the 1990s to express the need to 

integrate key business processes. Supply chain management aims to produce and distribute the 

product in the right quantity, to the right place, and at the right time, in order to minimize system 

wide costs (or maximize profits) while meeting service levels. According to Melo et al. (2009) 

supply chain management has three planning levels, namely strategic, tactical, and operational. 

Strategic planning involves determining the number, location, capacity, and technology of 

facilities, while tactical/operational planning involves determining the quantities of purchasing, 
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production, distribution, product handling, and inventory holding. Supply chain activities focus on 

identifying customer demands, improving customer service, controlling production processes, and 

aligning the goals of supply chain partners (Drezner, 1987). To achieve this aim, logistics 

management as a part of supply chain management plays a critical role. It ensures a smooth and 

efficient flow of goods, services, and related information from the point of origin to the point of 

consumption. The "last mile" of delivery is the final stage in a product's journey from a warehouse 

shelf to a customer's doorstep in the fastest way possible. This has been driven by the continuously 

evolving market and customer demands across the industries (e-commerce, food, retail, etc.).  

Package delivery has become a significant function of logistics businesses due to the rise 

of e-commerce and customer preferences for online shopping. Traditionally, packages are 

delivered to the customer using land transportation (trucks, cars, and motorcycles). However, these 

means of transportation are considered to be one of the most expensive, less efficient, and most 

polluting entities of the logistics chain (Gevaers, Van de Vo- orde, & Vanelslander, 2014). In 

recent years, the use of unmanned aerial vehicles such as drones as an alternative transportation 

mode has become a promising solution for delivering packages in last-mile logistics. There are 

several advantages of using drones in package delivery. Firstly, drone delivery is much faster than 

land transportation since drones do not encounter congestion and road traffic jams. Secondly, 

drones are not restricted by specific paths, like roads, making them applicable to deliver parcels to 

areas that difficult to access by other methods. The drone delivery has drawn significant attention, 

and several companies and government agencies have deployed drones in small amounts to deliver 

small packages (Hern, 2014; Murray, & Chu, 2015; Ha et al., 2015; Ha et al., 2018). A number of 

companies have used drones to deliver packages and merchandise items to their customers, 

including Amazon, DHL, and Google. Unmanned arial vehicles (UAVs) have been identified by 
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DHL for having potential benefits such as higher last-mile efficiency, lower accidents, and swifter 

deliveries (Koiwanit, 2018). A subscription service called Amazon Prime Air is being considered 

by Amazon to rapidly deliver packages within 30 minutes of an online order (Hong, Kuby, & 

Murray, 2018). Later in June 2022, Amazon announced that customers in Lockeford, California, 

will be among the first to receive Prime Air drone deliveries in the U.S.  

Even though drones are cheaper and faster than traditional methods of parcel delivery, they 

should be reliable enough for customers and companies to consider them seriously. Prior to drones 

being widely adopted in supply chain networks, several technical aspects and performance 

limitations need to be overcome. These, along with the unplanned and unanticipated events that 

disrupt the normal flow of products and materials within a supply chain, have escalated the 

necessity of developing a well-designed resilient and reliable network. 

 1.1 Research motivation and objectives 

Logistics chains typically include land transportation, which has been criticized for being 

costly, inefficient, and polluting. Unmanned aerial vehicles (UAVs) are becoming increasingly 

attractive as an alternative transportation mode for parcel delivery in last-mile logistics due to these 

issues. Before drones can be widely adopted in package delivery, several technical and 

performance obstacles must be overcome. In addition, supply chains face a variety of uncertainties 

that may create disruptions throughout the entire process. These uncertainties could further 

increase if drones are included to the supply chain as an alternative mode of transportation. In 

order to hedge against these issues, a well-designed reliable network should be one of the top 

priorities.  

One of the substantial operational challenges in using drones in the supply chain network 

is the limited flight coverage since they have limited flight range. Currently, a drone's coverage is 
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limited to a radius of 20 miles, reducing the access for a significant segment of customers, and 

leading to the use of land transportation delivery processes (Scott, & Scott, 2017). While several 

research have addressed technological barriers for introducing drones in daily logistics operation, 

only a few studies have considered operational challenges. Murray and Chu (2015) considered the 

direct depot-to-customer operation inspired by Amazon. The Prime Air UAV has a range of 10 

miles. Thus, UAV deliveries must originate from distribution centers located in close proximity to 

the customers. Several logistical strategies can address the range limitation of a drone delivery 

system. A multi-modal approach would combine drones with trucks, using the advantages of one 

to offset the disadvantages of the other by launching drones from trucks for the "last-mile" only 

(Murray, & Chu, 2015; Agatz, Bouman, & Schmidt, 2018; Ha et al., 2018). As it is shown in the 

Figure 1.2 (b), an UAV/truck tandem may be a good option when UAV delivery can't be carried 

out directly by the distribution center (depot). All customer parcels and a UAV are transported 

from the DC on a delivery truck. From the truck, the UAV carries parcels for individual customers 

as the driver makes deliveries. The circular nodes indicate that customers 2 and 9 are ineligible for 

UAV delivery. Another technique is the installation of charging stations within the existing 

logistics infrastructure to facilitate batteries recharging (Sundar, & Rathinam, 2013; Dorling et al., 

2016; Yu, Budhiraja, & Tokekar, 2018). This is considered as a single-mode (drone only) door-

to-door drone delivery system from warehouse to customers would have to rely on single or 

multiple stops at battery recharging, battery-replacing, or hydrogen-refueling stations.  
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a) Truck Delivery system. 

 

b) Drone/Truck delivery system. 

Figure 1.2  Comparison of the delivery system without the aid of drones (a) and system which 

drone is launched from delivery tuck (b) 

 

For a drone delivery service to be developed within an existing logistics network, a 

coverage location model is needed. A typical facility location model locates a given number of 

facilities in order to maximize the volume of origin-destination flow that can travel without 

running out of fuel. It is, however, more difficult to solve the drone-recharging problem. Drone 

flight range determines the potential service area of facilities. As a result, it is necessary to have a 

coverage location model in order to optimize the location of drone delivery stations. In comparison 

to the usual network design problem, drone-based transportation poses a number of unique 

challenges. (1) There are fundamental limitations to the flight duration and load capacity of drones, 
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so they cannot transport goods over an extended period of time without replenishing consumables, 

such as fuel (battery charge) and the products they deliver. (2) UAVs' flight times depend 

delicately on how much loaded product they carry; therefore, the problem must address the 

relationship between the weight of the loaded product and the flight time. In this study, warehouses 

and recharging stations are used to build a logistical network for delivering goods. For recharging 

station system design, the delivery service coverage should be based on drone flight range in 

continuous two-dimensional space under different conditions, such as flying with or without a 

package. 

Supply chain is designed by utilizing facility location (optimization) models that find the 

optimal number, location, and allocation of facilities, which minimize fixed facility and operating 

costs. Traditional models are based on the assumption that the entire supply chain is completely 

reliable, and no disruption is anticipated in the supply chain network. However, this assumption is 

far from reality. Every day, supply chain systems have become more complex and dynamic with 

wide geographical coverage. Hence, supply chains are exposed to a broad range of uncertainties, 

some of which may cause disruptions in the supply chain (Rezapour, Farahani, & Pourakbar, 

2017). Accidental disruption due to large-scale natural disasters, manufacturing fires, terrorist 

attacks, wide-spread electrical shutdowns, and financial or political tension is among several other 

uncertainties that are likely to occur (Govindan, Fattahi, & Keyvanshokooh, 2017). A recent 

example of Colonial pipeline cyberattack and the widespread transmission of the novel COVID-

19, which created grave uncertainties in the global supply chain. In this study, facilities failure and 

demand fluctuation are considered as two types of uncertainty might cause disruptions in supply 

chain network. 
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Supply chain disruptions have been a challenging issue for many companies worldwide 

(Rezapour, Farahani, & Pourakbar, 2017). The disruption at one level of a supply chain can 

significantly impact the entire chain: for instance, any failure of a distribution center could cost a 

company additional transportation cost to satisfy customer demand (Tolooie, Maity, & Sinha, 

2020). Hendricks and Singhal (2003) reported on some of the severe impacts of supply chain 

disruptions on market share, which in some cases fell lower than 11% from just the announcement 

of disruptions alone. For example, in 2008, the Boeing Company was forced to pay massive 

amounts in compensation for postponing the delivery of the Dreamliner 787 due to delays the in 

supply of critical components (Peng et al., 2011). This is one of many real-world examples in 

which a single catastrophic event has significantly degraded the capabilities of several suppliers. 

Given the increase in the frequency of occurrence of supply chain disruptions in recent times, more 

and more researchers are beginning to give precedence to this very important area of research. 

Another example is evident from the transitional effect caused by the disruptions in a quarter of 

the world's silicon production as a result of the March 11, 2011 earthquake and tsunami in Japan, 

forcing more than 130 plants (mainly in the auto and electronics industries) to close down (Lim et 

al., 2010). The supply chains of many international companies were also influenced dramatically, 

particularly those in the steel, electronics, and automotive industries. General Motors, for example, 

had to stop its vehicle production at multiple plants due to parts shortages from Japanese suppliers. 

Also, Toyota in Japan halted the production of parts initially meant for other markets beyond its 

shores. The resulting slowdowns and pause of operations by many companies and have raised 

several questions on supply chain disruption and how to manage these situations.  Adding 

recharging station to supply chain could increase the complexity of the network even more, and 

any disruptions could lead enormous financial impacts and, in some cases, cause a permanent loss 
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of market share. For example, as shown in Figure 1.3, failure of one recharging station in the last 

part of the network could cut the network, which results in lost sales or backordering costs.  

 

Figure 1.3  Supply chain network under using drones in last-mile delivery under disruption 

 

The COVID-19 crisis with its unexpected global impact, it is a good example to illustrate 

how demand uncertainty can cause disruption in the whole supply chain system. The infamous 

toilet paper crisis of early March 2020, when the U.S. states began announcing quarantines, people 

panic-bought more toilet paper than suppliers had planned for. This was a demand surge. On the 

other side of this surge is the demand drop in commercial-use toilet paper. People were not at the 

office, out at restaurants, or in airports using the restroom so the need for large-roll, commercial 

toilet paper practically ceased. This is an example of a both a drop and a surge for the same product, 

but for different types of the product. 

Therefore, supply chain disruptions have been a challenging issue for companies globally. 

They are unplanned and unanticipated events that disrupt the normal flow of products and 

materials within a supply chain. The disruption at one part of the supply chain can significantly 

impact the entire chain. This is best illustrated in Figure 1.2, where the failure of one facility costs 

the company additional transportation costs to satisfy the demand of customers by providing 

another most available facility as a penalty. The uncertainty of natural disasters (occurrence and 
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intensity) and the amount of demand during each time period has a significant effect on designing 

the supply chain network using drones in last-mile delivery. To hedge against supply chain 

disruptions, a well-designed and reliable network is a top priority. Consider an example of a lean 

supply chain that had reached the goal of zero waste, i.e., a supply chain that utilizes single 

sourcing with absolutely no inventory. This supply chain would be highly efficient under stable 

conditions but would be highly vulnerable to any supply disruption risk (Peck 2006). The key to 

managing disruption risks in supply chains is not by eliminating cost reduction, or efficiency 

thinking but by creating supply chains that are both efficient in stable conditions and capable of 

handling hazards in unstable conditions (Abrahamsson, Aldin, & Stahre, 2003). Hence, reliable 

and flexible supply chain designs become a significant consideration to the decision maker.  

The objective of this research is to develop stochastic models to address important 

problems related to the delivery of products on last-mile logistics using drone. There are a lot of 

uncertainties associated with this logistics network like demand arrival, charging rate, flight rate, 

and disruptions due to the cyberattack, natural disasters or any other disaster. Yet most current 

models use simplified deterministic models to address this problem. Instead of using deterministic 

techniques, this proposed research develops a stochastic model to design a reliable supply chain 

network. The stochasticity in each problem is handled by different optimization methods to 

improve supply chain performance and better reflect the true supply chain dynamics and 

complexity. To overcome computational challenges, different novel approaches are proposed for 

each problem to provide an exact analysis of the logistics network. The decision options considered 

in these supply chains could include the location and number of facilities, number of products 

channeled through the network, location, and number of drones, number of extra batteries in the 
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system, transportation modes, and charging mode. This research includes three main research tasks 

as follows: 

Task 1, Designing reliable supply chains under uncertainties: This research aims to 

develop a general stochastic model for designing reliable and efficient supply chain networks 

under random facility disruptions and uncertain demand. This research also aims to develop 

theories to reduce the algorithm run times while solving large-scale problems. The solution 

approach utilizes novel decomposition-based techniques under unique last-mile logistics 

constraints that have never been addressed.  

Task 2, Exploring location and efficiency of charging station to extend the coverage 

of drone delivery system: This research aims to develop a location model for recharging station 

system design by considering: (1) the flight range of drones under different conditions; (2) delivery 

service coverage of recharging stations; and (3) development of a feasible delivery network 

consisting of warehouses and recharging stations. In a stochastic environment, most of the 

decisions and constraints are scenario-dependent, and their numbers grow exponentially with the 

number of scenarios. Additionally, increasing the number of charging stations in the system can 

also exponentially increase the number of allocation variables. As a result of this growth, 

traditional algorithms cannot be efficiently applied to solve very large size problem. This research 

aims to develop and modify the genetic algorithm for solving large scale problems with 

complicated variables to significantly improve the computational time need to find the solutions. 

Task 3, Managing drones and battery inventories on last-mile logistics under 

uncertainty: In this phase of research, it is assumed availability of extra batteries at the recharging 

station where the individual drone swaps the empty batteries with the full-charged batteries. This 

research aims to develop Markov decision process models to analyze different charging strategies 
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in recharging stations to improve the delivery time in last-mile logistics. To overcome 

computational challenges, a novel approximation method is proposed to decompose the original 

Markov decision problem for the system with N states into N independent Markov chain processes. 

This research also considers logistics systems when some of the sensors of drones are corrupted 

by an attacker.  

 1.2 Proposed methods and research contributions  

This dissertation focuses on modeling and solution methodologies applied to solve the 

stochastic supply chain and logistics network. Solution and modeling methods are broken into two 

major categories: stochastic optimization (Prescriptive method) and stochastic control (Descriptive 

method).  

At first, this research addresses issues bordering on supply chain network design problems, 

specifically on how reliable supply chain networks can be designed in the face of random facility 

disruptions and uncertain demand. The proposed problem is formulated as a two-stage stochastic 

mixed-integer programming model. The Benders decomposition algorithm is applied to optimize 

the system as a prescriptive method. This research aims to improve the proposed algorithm in three 

different ways: replacing the single-cut approach with a multi-cut, improving feasibility and 

optimality area, and showing relatively complete recourse in the stochastic model by reformulating 

the original model. The performance of the Benders decomposition algorithm is enhanced by 

developing a novel feasibility area of the model and introducing valid constraints to the original 

model. As a result, there is significant improvement in the algorithm's run time through reduction 

in the number of cuts required to add the problem. Next, this research examines stochasticity in a 

multi-period stochastic supply chain network design problem while considering charging stations 

to extend the coverage of drones in last-mile logistics. Our stochastic model is unique due to two 
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conditions: (i) it simultaneously considers delivery service coverage of recharging stations and 

distribution centers based on the flight range of drones under different conditions, capacities for 

supply and distribution centers and drone's utilization cost using Euclidian shortest path distance 

under demand and disaster uncertainty in multiple time periods. (ii) it adopts a combination of the 

two types of strategies simultaneously to design a reliable network using charging station as one 

of the levels under two different uncertain parameters in multi-time periods. Additionally, the 

heuristic algorithm is modified by considering a novel method for generating independent 

scenarios in order to create a new population. This significantly improves the efficiency of the 

algorithm due to the decrease in the number of infeasible solutions and allows us to efficiently 

solve real large-scale problems. Finally, this research evaluates the tradeoffs between the number 

of batteries and the drones in the last-mile logistics system. For improving the delivery time, this 

research assumes the availability of extra batteries in the system located at each recharging stations 

where drones swap their empty batteries with the full-charged batteries. Stochastic Markov 

decision models are developed to handle stochasticity in the problem and to analyze different 

charging strategies in recharging stations. The similarities in the transition probabilities for states 

belonging to a particular set within each state space is exploited to provide an exact analysis for 

logistics network with three different rate of charging batteries. To overcome difficulties 

computationally due to the increasing the size of the problem, a novel approximation method called 

decomposition-based approach is proposed. In addition, the research examines a resilience model 

in order to protect against cyber threats associated with drones used in last-mile logistics.  

The merit of this research is to design reliable models for the supply chain using drones for 

last-mile delivery. The models are designed to efficiently handle randomness in the system and 

serve as a framework for several future problems in supply chains using unmanned arial vehicle 
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as a means of transportation. Another merit is the development of the novel decomposition-based 

algorithm to overcome curse of dimensionality due to the increase in the complexity of the 

problem. 

 1.3 Dissertation outline 

This dissertation is organized in 6 chapters. Chapter 2 reviews the challenges of using 

drones in last-mile logistics and discusses modelling, and solution methodologies applied to solve 

the stochastic supply chain and logistics network. Chapter 3 is a published research paper (Tolooie. 

Maity, & Sinha, 2020), which discusses the application of stochastic optimization in designing 

reliable supply chain network. Chapter 4 is an under-review research paper, which provides the 

stochastic model to extend the coverage of drone delivery system by adding charging station. 

Chapter 5 is an under-review research paper, that analyzes stochastic control problem in evaluating 

the number of battery and drones and examines different charging strategies in recharging stations 

to improve drone delivery time in last-mile logistics. Finally, Chapter 6 summarizes the main 

conclusion and contributions of this dissertation and discusses the potential future works. 
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Chapter 2 - Literature Review 

There has been an increase in the focus on supply chain and logistics over the past few 

decades. Using supply chain design, one can estimate how long and how much time it will take to 

bring goods to market by analyzing the structure and network of a supply chain. Facility location, 

inventory management, and allocation problems are among the most studied issues in supply chain 

design (Leiras et al., 2014). Supply chain design can create competitive advantages and customer 

satisfaction through immediate response to specific customer needs. The activities associated with 

supply chain design are identifying customer demands, improving companies' ability to meet 

customer needs, controlling production processes, and aligning goals with supply chain partners. 

Several factors need to be considered when designing a supply chain network: the location of 

facilities, the allocation of customers to facilities, and the selection of suppliers (Ivanov, 

Tsipoulanidis, & Schönberger, 2019).  

In the following, in section 2.1, a literature of the most crucial studies that have directly 

addressed the issue of reliability in supply chain network problems will be introduced. Then, in 

section 2.2 challenges of using drones in last mile logistics will be discussed and a literature of 

studies in addressing these challenges will be introduced. Finally, in section 2.3 two stochastic 

approaches, namely stochastic optimization and stochastic control, applied to solve the stochastic 

supply chain and logistics network will be introduced. 

 2.1 Supply chain network design and reliability 

Chopra and Meindl (2007) identified three major components of the design of a supply 

chain: the distribution system, the facility network, and the transportation system. In the supply 

chain, designing a distribution system determines how and where inventory will be stored. During 

the design of the transportation system, inventory will be transported physically throughout the 
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supply chain. Designing supply chain networks is perhaps the most important element of supply 

chain design. Typically, supply chain networks involve the design of facilities, the assignment of 

capacities, and the allocation of customers. It is a highly strategic decision to design a supply chain 

network. A new facility can be very expensive to locate, so the organization cannot easily modify 

its location after it has been decided and implemented. Thus, it is imperative to take extreme care 

when designing supply chains. In most studies, facility locations and allocations under stochastic 

parameters, like demand or cost, are considered. However, only a few studies take into account the 

impact of facility disruptions, as well as other unknown parameters. Drezner (1987) is one of the 

first to present mathematical models to address issues in facility locations that have unreliable 

suppliers. The paper investigates the unreliable p-median and (p, q)-center location problems in 

which a facility has a given probability of becoming inactive. The goal of this paper is to locate p 

unreliable facilities that minimize expected travel distances between customers and facilities. A 

heuristic method was developed for solving this problem based on random facility failures. Snyder 

and Daskin (2005) developed reliable versions of the uncapacitated fixed-charge location problem 

and the p-median problem, both of which aim to minimize a weighted sum of the nominal cost 

(when disruptions do not occur) and the expected cost (when disruptions occur). To ensure 

tractability, they assumed that each facility would fail at the same rate. For tractability, they used 

the assumption that all facilities have the same probability of failure. Many other scholars 

considered models similar to Snyder and Daskin’s model, but relaxed the uniform disruption-

probability assumption using a variety of modeling approaches (Berman, Krass, & Menezes, 2007; 

Meepetchdee, & Shah, 2007; Cui, Ouyang, & Shen, 2010; Li, & Ouyang, 2010; Lim, Daskin, 

Bassamboo, & Chopra, 2010; Drezner, & Wesolowsky, 2003). More recently, Zokaee et al. (2017) 

have developed a model that enables designing a reliable supply chain network using a finite set 



16 

of scenarios for data costs, supply parameters, or demand factors. Afterwards, Farrokh et al. (2018) 

designed a close-loop supply chain network under a hybrid uncertainty by considering two sources 

of uncertainty as parameters. The first source is ‘uncertainty of future scenarios’ and the second 

source is ‘value of parameters in each scenario with an imprecise nature'.  

Other studies that have looked into reliable supply chain modelling include Snyder (2003) 

proposed a model to minimize the maximal failure cost versus expected failure costs, while Qi, 

Shen, and Snyder (2010) proposed a model for locating retailers as well as assigning customers to 

those retailers during cases of disruptions. Using heuristics and approximation algorithms with 

heterogeneous failure probabilities, Shen, Zhan, and Zhang (2011) proposed a stochastic program 

using different scenarios along with a nonlinear integer program. During their study, they assumed 

that in the event of a failure in the current facility, a second facility would be assigned to meet the 

customer's demand. Klibi and Martel (2012) proposed the use of several models for designing 

resilient supply chains that have the ability to accommodate disruptions and other types of 

uncertainties. They formulated the disruption’s optimal response strategy and estimated the 

solution to the supply chain problem based on sample average approximation. Hatefi et al. (2015) 

presented fuzzy optimization models to design a reliable forward-reverse logistics network to deal 

with facility disruptions. The proposed model deals with the epistemic uncertainties in the 

parameters by using credibility constrained programming. To design a resilient closed-loop supply 

chain network, Jabbarzadeh, Haughton, and Khosrojerdi (2018) developed a stochastic robust 

optimization model. To deal with random disruption risks, the proposed model uses lateral 

transhipment. By minimizing the total cost across all disruption scenarios, their model determines 

the location of facilities and quantities of lateral transhipment. To address the uncapacitated hub 

location problem when hubs are disrupted, Azizi et al. (2016) proposed a mathematical 
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formulation. In the event that a specific hub is disrupted, the entire demand of that hub is reassigned 

to the nearest facility using a reassignment strategy. The study was extended by Azizi (2019) by 

incorporating backup hub nodes as backup assignments for every demand point. According to all 

these studies, once a disruption occurs, the demand for the failed facility is served by a remaining 

facility that has not failed, enabling the model to make additional assignment decisions so as to 

minimize additional assignment costs. For the purpose of designing an efficient and reliable supply 

chain network, this research focuses on two strategies: reassignment strategies, which are used 

when disruptions take place, and hardening strategies, which are used when there are no 

disruptions. This study also determines the optimal facility location and allocation while jointly 

considering the randomness in the demand and facility failures. 

2.2 Application of drones in last-mile delivery 

The purpose of this section is to provide a background to the problem that has been 

addressed in the drone delivery system. To this end, Section 2.2.1 provides an overview of drone-

based delivery models, while Section 2.2.2 discusses charging stations as a means of extending 

the coverage of drones. Lastly, this study compares its main contributions to existing work. 

 2.2.1 Using drones in package delivery 

Logistics companies have already considered the potential advantages and disadvantages 

of UAVs. Logistics services company DHL, for instance, identifies lower accident rates, faster 

deliveries, and higher last-mile efficiency as key potential UAV benefits. Key UAV challenges 

include rules and regulations, limited capacity, and limited coverage ranges. As a result of 

announcements made by large corporations such as Amazon about potential application of UAVs, 

UAVs have become more prominent in the media but less so in the academic literature on logistics.  
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There has been a rapid increase in the utility of UAVs such as drones, particularly in the 

civilian sector (Finn, & Wright, 2012; Clarke, 2014; Mohammed et al., 2014). There are a number 

of small-scale applications for drones, thanks to their low operating costs (Zhang, & Kovacs, 2012; 

Sundar, & Rathinam, 2013). It has been reported that UAVs are being used to collect data on 

disease propagation (Fornace et al., 2014), agricultural applications (Zhang, & Kovacs, 2012; 

Pérez-Ortiz et al., 2015), vegetation analysis (Paneque-Gálvez et al., 2014), wildlife monitoring 

and conservation (Linchant et al., 2015; Sandbrook, 2015), and nighttime lighting assessment 

(Murray, & Feng, 2016). The use of drones can also be found in disaster relief (Adams, & 

Friedland, 2011), disease control (Amenyo et al., 2014), traffic monitoring (Kanistras et al., 2013), 

urban planning (Mohammed et al., 2014), map-making (Tahar et al., 2012), and law enforcement 

(Finn, & Wright, 2012; Clarke, 2014). Several academics have focused their attention on drone 

delivery systems because of their growing commercial interest and e-commerce exposure. It has 

been possible to develop numerous research directions in this area: reliability (Schenkelberg, 2016; 

Torabbeigi, Lim, & Kim, 2018), security (Seo et al., 2016), optimal routing and scheduling 

(Murray, & Chu, 2015; Wang, Poikonen, & Golden, 2017), energy efficiency and battery ageing 

(Park, Zhang, & Chakraborty, 2016), and inventory management (Xu, Kamat, & Menassa, 2018). 

A number of advances have been made in drone capabilities, such as their endurance, 

speed, payload, and automated navigation systems (Kuttolamadom, Mehrabi, & Weaver, 2010), 

which have made their application in the package delivery field more promising (Lee, 2017).  In 

the near future, drones package delivery systems are expected to become financially and 

technically feasible for the civilian sector (Thiels et al., 2015). A drone's technological 

advancements make it an ideal delivery vehicle. Now that carbon fiber is less expensive, drones 

are cheaper (Morgan, 2005), lithium polymer batteries allow for longer flight times, and they are 
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capable of autonomous operation with GPS, localization techniques, obstacle detection and 

avoidance techniques. As compared to trucks, drones can also reduce carbon dioxide emissions 

(Goodchild, & Toy, 2018). It has been extensively investigated in the literature how these benefits 

can be exploited, including low delivery costs, reduced maintenance costs, and reduced labor 

demands (Dorling et al., 2016). The use of drones to deliver blood and vaccines has been studied 

by Haidari et al. (2016), Scott and Scott (2017). The simulations indicated a potential increase in 

vaccine availability and cost savings, particularly when drones were used frequently. Dorling et 

al. (2016) proposed a cost function based on drone utilization and energy consumption.   

In terms of technical considerations, researchers are working to make UAVs more durable 

and safer. One area of research involves improving battery energy storage for UAVs of the size 

suitable for small parcel delivery. Flight endurance of these aircraft is affected by limited battery 

capacity, which can also be affected by flight speed and payload. In addition, the flight endurance 

of these UAVs is further decreased by the addition of redundant sensors and motors, which may 

be required for safety and reliability reasons. The GPS used by UAVs also has a lower accuracy 

of about 10 m without corrective technology (Arnold, & Zandbergen, 2011). In heavy forests and 

urban canyons, UAVs with GPS signals may lose connection. Therefore, more attention is being 

drawn to approaches that enable UAVs to function in GPS-deficient environments (Clark, & 

Bevly, 2008; Marais et al., 2014). Researchers are also investigating how to combat GPS 

"spoofing," which involves broadcasting false signals to hijack a UAV (Humphreys, 2012; 

Faughnan et al., 2013). It is still necessary for autonomous UAVs to detect and avoid obstacles 

even with perfect localization information. In this area of robotics, several methods based on 

vision, sonar, and laser are being improved (Jiménez, & Naranjo, 2011; Merz, & Kendoul, 2013; 

Apatean, Rogozan, & Bensrhair, 2013; Pestana et al., 2014, Park, & Kim, 2014). 
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A number of distribution centers and online retailers are implementing drone-based 

delivery systems, including Amazon Prime Air and Google Wing, fast-food delivery, Deutch Post, 

and transportation networks (D’Andrea, 2014). Researchers have begun developing operations 

research models from an operational perspective to optimize drone delivery systems in response 

to the growing commercial interest in drone delivery systems. In a number of papers, multimodal 

drone-truck systems have been proposed, in which delivery trucks serve as moving depots and 

drones are launched from the trucks [Ha et al., 2015, Ha et al., 2018]. As a result of Murray and 

Chu (2015), the phrase "flying sidekick traveling salesman problem" was coined, which involved 

first constructing truck routes for traveling salesmen, then substituting drones that deliver to certain 

customers and then return to the truck down the road. According to Murray and Chu (2015), drones 

can serve customers close to the warehouse directly by returning to the warehouse or meeting a 

truck route. Agatz, Bouman, and Schmidt (2015) identified the problem of following a road 

network by a drone, which is known as the Traveling Salesman Problem with a drone. A 

Heterogenous Delivery Problem was modeled by Mathew, Smith, and Waslander (2015), where 

drones are launched from trucks from a road endpoint, and they deliver their products to isolated 

customers who are located away from the roadway. To reduce delivery time as much as possible, 

Grippa et al. (2019) suggested assigning customer requests to drones using a task assignment 

strategy. In the proposed model, drone delivery requests are generated using Poisson processes 

based on queueing theory. Job assignment policies can be divided into two types: nearest job first 

to random vehicles, which chooses jobs according to the customer's location, and first job first to 

nearest vehicles, which chooses jobs according to the arrival time of the customer. If the load is 

low, the first to nearest vehicles policy will produce a smaller average delivery time, and even if 

the load is heavy, it will deliver on time. 
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 2.2.2 Drones charging station 

There are a few studies that examine drone-only delivery models. According to Dorling et 

al. (2016), UAVs can return to a depot several times to pick up additional packages or swap for a 

fresh battery on the basis of a vehicle routing and travel salesman problem. An extensive literature 

exists on location models for fueling and charging stations on rail and road networks that evaluate 

routes given their driving range. Researchers have pioneered building on the flow capturing (or 

intercepting) models to formulate flow refueling problems (Hodgson, 1990; Berman, Larson, & 

Fouska, 1992). In this problem, vehicles traveling the shortest path between origin and destination 

(O-D) must be able to complete the trip without running out of fuel given their driving ranges 

(Kuby, & Lim, 2005; Upchurch, Kuby, & Lim, 2009). On longer round trips, multiple fuel stops 

may be necessary because of range restrictions. There has been a formulation of the flow refueling 

problem with both maximal and complete covering objectives (Wang, & Lin, 2009), and a variety 

of heuristics and exact approaches have been used to solve these problems (Kuby et al., 2009; 

MirHassani, & Ebrazi, 2013; Capar et al., 2013) and extended (He, Yin, & Zhou, 2015; Riemann, 

Wang, & Busch, 2015).  

A recharging station location and capability model is required to extend the flight range of 

the battery-powered drones.  Unlike vehicle routing problem and travel salesman problem, Dorling 

et al. (2016) proposed a solution with a restricted flight range that enables UAVs to return to the 

depot multiple times to pick up additional packages and swap out batteries for fresh ones. Based 

on existing recharging facilities that are away from the base, Sundar and Rathinam (2013) optimize 

routes for the drones. Contrary to the existing research in drone route planning, this thesis extends 

drone-only approaches to the problem of locating a limited number of stationary recharging 

stations, in line with Amazon Prime Air's preliminary descriptions but with multiple charging 
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stations to extend the service coverage and multiple charging rate to reduce the service time in the 

system. Among other issues, Hong, Kuby, and Murray (2017) discussed problems with installing 

a network of recharging stations in urban areas so that drones can be used for commercial delivery 

without trucking cooperatives. To minimize average flight distance from depots to recharging 

stations, the authors constructed a coverage location model. A heuristic approach coupled with the 

Greedy algorithm was used in the formulation of this approach. As a solution to the drone coverage 

range issue, Yu, Budhiraja, and Tokekar (2018) deployed stationary or mobile recharging stations 

along the way where the drone could recharge. As the drone is transported from one place to 

another, mobile charging stations continue to recharge it. As well as identifying when and where 

to land at charging stations, the proposed algorithm determines the ideal path for the drone to visit 

multiple locations. Additionally, it determines the best locations for recharging stations and the 

paths of unmanned ground vehicles. A heuristic optimization deployment approach was proposed 

by Huang and Savkin (2020), which addressed the issue of station location by deploying charging 

stations throughout the city. To increase coverage, the authors suggest moving the charging station 

from one place to another. According to Shao et al. (2020), an optimization algorithm for drone 

delivery services, including battery swapping stations and maintenance checkpoints, is 

implemented to increase flight distance from depot to customer based on the ant colony 

optimization algorithm. As part of their study, Alyassi et al. (2022) proposed an autonomous drone 

recharging system and assessed the impact of drone batteries on the performance of the system as 

well. A spiral-based scanning method was used by Bacanli, Elgeldawi, and Turgut (2021) to 

deploy charging stations for unmanned aerial vehicles.   

It is necessary to develop a coverage location model for drone delivery by installing 

charging stations within existing logistics networks. It is essential to consider how long drones can 
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carry a package under different conditions, such as when flying with or without the package, when 

designing a location model for charging stations. Based on the assumption that drones can serve 

one customer at a time across the Euclidean path and can stop by as many stations as necessary, 

this study addresses the problem of locating charging stations for drones in a package delivery 

service. Some aspects of drone charging station location are similar to flow refueling, while others 

are different. In addition to the limited runtime due to on-board energy storage and use, the use of 

stationary charging stations and the need to recharge several times on longer round trips are similar 

characteristics. A major difference is that ground transport refueling is based on roads or railways, 

while drones operate in a continuous space. Euclidean shortest path properties can be used to 

extract a network from continuous space, however, its structure depends on the warehouse 

locations, their demand nodes, and their candidate locations. the other difference is that once a 

package is delivered, the drone's range changes significantly. This research aims to construct a 

feasible delivery network that consists of warehouses and charging stations for UAVs like drones. 

Besides, the majority of the studies have not examined the effects of various decision parameters 

on drone delivery services, such as recharging station configuration, charging time, battery and 

drone number, flight time, and demand uncertainty. In terms of charging technology (for example, 

slow recharging, fast recharging, partial recharging, battery swaps, fixed charging), the main 

models refer to recharging technologies and routing strategies (Koç et al., 2019; Li-ying, & Yuan-

bin, 2015) with a focus on sustainability, energy consumption, and power loss (Pal, Bhattacharya, 

& Chakraborty, 2021, Moupuri, 2021). This study addresses these gaps by introducing extra 

batteries in the system located at the recharging station which is considered as warehouses in this 

study with two different parts for full-charged batteries and empty batteries. The study develops 

stochastic models to deal with stochasticity in this problem and determine the best decision-making 
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policy for decision makers based on different charging rates, arrival rates, flight rates, and costs 

associated with them. 

 2.3 Stochastic approaches for supply chain problems 

This section focuses on modelling and solution approaches applied to solve the stochastic 

supply chain and logistics network. Solution and modeling methods can be broken into two major 

categories, namely stochastic optimization (Prescriptive method) and stochastic control 

(Descriptive method). In the following section, some of these key studies are discussed that 

describe the direction of this research. 

 2.3.1 Stochastic optimization 

The stochastic supply chain network problem is normally expressed as mixed-integer linear 

programming models in most studies. To capture a large number of scenarios for uncertain 

parameters in these models, a two-stage stochastic mixed-integer programming normally is used. 

Louveaux and Peeters (1992) formulated a two-stage stochastic programming problem with 

uncertainty involving transportation cost, selling prices, production cost, and demand. Laporte, 

Louveaux, and van Hamme (1994) expanded the amount of uncertainty in the system by adding 

additional factors, such as the establishment of transportation channels between facilities and 

customers. Barbarosoglu and Arda (2004) developed a two-stage stochastic programming model 

to formulate a transportation network problem for emergency responses to disasters. They assumed 

that the uncertainties arising from the disruption of the transportation system leads to not only 

random demand, but also stochastic supply and route capacity as well. Govindan and Fattahi 

(2017) considered supply a chain network design problem that involved determining the location 

of production plants and warehouses by formulating the problem as a two-stage stochastic model. 

They used a Latin Hypercube Sampling method to create scenarios for stochastic demand and then, 
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by applying a backwards-scenario reduction method, they decreased the number of scenarios. In 

the area of humanitarian relief logistics, Bozorgi-Amiri and Khorsi (2016) developed a dynamic 

multi-objective stochastic model in both pre-disaster and post-disaster conditions. In terms of 

quick responses to disaster relief, they examined a two-stage stochastic programming model 

considering the case study of an earthquake in Turkey. More recently, Jeihoonian, Zanjani, and 

Gendreau (2017) also formulated a two-stage stochastic mixed-integer programming model for 

designing a closed-loop supply chain network to deal with the uncertain quality status of the return 

stream. It is worth mentioning that all of these models focus on a single-period context. In the area 

of blood supply chains, Samani, Torabi, and Hosseini-Motlagh (2018) proposed a multi-objective 

mixed integer linear program for designing supply chain networks in disaster relief settings. For 

capturing the uncertainty of certain parameters, they formulated a hybrid two-stage stochastic 

model to make a trade-off between shortages in specific parameters, such as supply or demand and 

network cost efficiency. In the two-stage stochastic model, stochastic parameters like demand are 

considered as random variables with an associated probability function. All variables of the 

problem are classified into two stages. The first stage includes the variables which are not 

influenced by randomness. The decisions on variables affected by randomness are determined in 

the second stage based on the first stage solution and realized uncertainty in each scenario. The 

expected value of all scenarios in the second stage is added to the first-stage objective value to 

determine the total objective function. Two-stage stochastic programming can be obtained by 

reformulating the extensive model in a compact form as follow. 

𝑚𝑖𝑛𝐶𝑇𝑋 + 𝐸[𝐺(𝑋, ξ)] (2.1) 

Subject to:  

𝐴𝑋 ≤ 𝐵 (2.2) 
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Where 𝐺(𝑋, ξ) = 𝑔𝑇(ξ)𝑦 (2.3) 

Subject to:  

𝑊𝑦 + 𝑇(ξ)𝑋 ≤ ℎ(ξ) (2.4) 

The coefficients of fist-stage variables in objective function of first stage are denoted by 

vector 𝐶𝑇. Matrix A is the resource matrix of the first-stage decision variables 𝑋. The right-hand 

numbers in the first-stage constraints are also represented by vector 𝐵. Vector 𝑦 represents second-

stage variables. The coefficients of second-stage variables in objective function of second stage 

are denoted by vector 𝑔𝑇(ξ). 𝑇(ξ) is the technology matrix and 𝑊 is the fixed recourse matrix. 

The right-hand numbers in the second-stage constraints are also represented by vector ℎ(ξ).  

Moreover, Let 𝐾1 = {𝑋|𝐴𝑋 ≤ 𝐵, 𝑋 ∈ {0, 1}}. For given scenario ξ, the elementary 

feasibility set is defined by: 𝐾2 = {𝑋|𝑦 ≥ 0 𝑒𝑥𝑖𝑠𝑡𝑠 𝑠. 𝑡. 𝑊𝑦 + 𝑇(ξ)𝑋 ≤ ℎ(ξ)}. This means all 

possible values of X that make second stage feasible. 

These stochastic models involve computational challenges and other complexities when 

solved. The extensive form of this model which is a mixed-integer program can become extremely 

large by increasing in the number of scenarios and the scale of the supply chain system. Thus, 

normal commercial solvers cannot directly solve these large-scale problems with reasonable 

computing and memory requirements. Meta-heuristics and heuristics algorithms and several 

decomposition methods (e.g., the L-shaped method) are mostly used to solve stochastic models. 

Schütz, Tomasgard, and Ahmed (2009) proposed an approach to solve a two-stage stochastic 

program based on sample average approximation and dual decomposition. The objective of their 

paper was to minimize the investment and operating costs of supply chain networks. They assumed 

that there was operational uncertainty in facilities when making strategic decisions. Aghezzaf 

(2005) and Pimentel, Mateus, and Almeida (2013) presented Lagrangian relaxation-based 
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approaches to solve a two-stage stochastic model and a multi-stage stochastic model, respectively. 

Both studies assumed that demand variability was the only source of uncertainty in the supply 

chain network. Recently, Diabat, Jabbarzadeh, and Khosrojerdi (2019) proposed a robust bi-

objective supply chain model considering disaster scenarios. The objective of this model was to 

minimize the time and cost once the disaster occurred. The Lagrangian relaxation and constraint 

methods were applied to solve the model by considering a case study. In addition, many other 

studies presented meta-heuristic or heuristic algorithms in this area (Drezner, 1987; Shen, Zhan, 

& Zhang, 2011; Berman, Krass, & Menezes, 2007; Govindan, Jafarian, & Nourbakhsh, 2015; 

Cardona-Valdés, Álvarez, & Pacheco, 2014; Pan & Nagi, 2010; Fattahi et al., 2015). Finally, one 

of the popular approaches in obtaining an exact solution for the Stochastic supply chain network 

problem is Benders decomposition and is usually known as L-shaped bender decomposition 

(Santoso et al., 2005; Kiya, & Davoudpour, 2012; Keyvanshokooh, Ryan, & Kabir, 2016). This 

study applies L-shaped decomposition algorithm of stochastic linear programming by integrating 

two types of optimality and feasibility cuts for solving the model. In contrast to other studies, this 

research tries to improve the performance of the algorithm by replacing the single-cuts method 

with the multi-cuts version and creating a relatively complete recourse compared to the original 

stochastic model. This extended solution method allows us to find an optimal solution for large-

scale problems of numerous scenarios in a reasonable time frame. 

The L-shaped method algorithm is presented by Van Slyke and Wets (1969) for stochastic 

linear programming. The computation time and memory requirement for solving stochastic linear 

programming is greatly reduced by the L-shaped method algorithm through the drop in the number 

of second-stage problems. Whenever the second-stage value function is convex and piecewise 

linear, this approach integrates the second-stage value function into the master problem by a finite 
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number of feasibility and optimality cuts generated by solving linear programming problems. 

Deterministic master problem and a recourse subproblem with fixed coefficients of decision 

variable are the major components of the two-stage stochastic programming problem solved by 

the L-shaped approach (Birge, & Louveaux, 1997; Kall, Wallace, & Kall, 1994). The master 

problem has fewer variables but many constraints in comparison to the subproblem. The 

constraints iteratively add up as Bender cuts to the master problem. This method replaces the 

expected cost function 𝐸[𝐺(𝑋, ξ)] of recourse subproblem in the master problem by a piecewise 

linear function over all scenarios. The optimal value of the master problem has a lower bound and 

an upper bound on the expected optimal value of the subproblem. Two-stage stochastic can be 

reformulated by adding constraints (2.5) and (2.6) based on applying L-shaped method: 

𝐷𝑙𝑋 ≥ 𝑑𝑙                                               𝑙 = 1, … , 𝑟 (2.5) 

𝐸𝑙𝑋 + 𝜃 ≥ 𝑒𝑙                                         𝑙 = 1, … , 𝑠 (2.6) 

If a first-stage decision 𝑋 ∈ 𝐾1 is not 𝑋 ∈ 𝐾2, a constraint (called a feasibility cut) of type 

(2.5) should be generated and add to the master problem. If a first-stage decision 𝑋 ∈ 𝐾1 is also 𝑋 ∈

𝐾2,  For all ξ = 1, … , k solve the linear program: 

𝑀𝑖𝑛 𝑤 = 𝑔𝑇(ξ)𝑦 (2.7) 

Subject to:  

𝑊𝑦 + 𝑇(ξ)𝑋𝑣 ≤ ℎ(ξ) (2.8) 

𝑦 ≥ 0  

In this case, let 𝜋ξ
𝑣 be the associated simplex multipliers of problem ξ  of type (2.8) and 

define: 

𝐸𝑠+1 = ∑ 𝑞ξ. (𝜋ξ
𝑣)𝑇𝑇(ξ)

𝐾

ξ=1

/𝑒𝑠+1 = ∑ 𝑞ξ. (𝜋ξ
𝑣)𝑇ℎ(ξ)

𝐾

ξ=1
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Let 𝑤𝑣 = 𝑒𝑠+1 − 𝐸𝑠+1𝑋𝑣. If 𝜃𝑣 ≥ 𝑤𝑣, then stop algorithm and 𝑋𝑣 is an optimal solution. 

Otherwise, add to the constraint (called an optimality cut) of type (2.6). 

 2.3.2 Stochastic control 

A stochastic control problem deals with uncertainties when making decisions to maximize 

or minimize an objective function. With a given objective function, decision makers need to 

determine a strategy, which is the stochastic control, to optimize the objective function in a random 

environment. The stochastic control can be generally considered as the linear control system given 

by the equations: 

𝑥(𝑡+1) = 𝐴𝑥(𝑡) + 𝐵(𝑈(𝑡)(𝑦(0), … , 𝑦(𝑡)) + 𝜔(𝑡) (2.9) 

In equation (2.9), 𝑥(𝑡) represents the state of the system at time 𝑡, and 𝑦(𝑡) is the output of 

the system at time t. The control input applied at time 𝑡 depends on the history through the output 

feedback map 𝑈(𝑡). The 𝜔(𝑡) represents the uncertainty in the state of the system.  

Inventory management includes tactical decisions in supply chains system which can be 

descried by dynamic linkages of sequential decisions under multiple sources of uncertainty. These 

include storage condition for drones, batteries, charging rate, flight rate, demand, etc., that can 

affect the outcomes and therefore impact the optimal control decisions in these supply chains. 

Markov decision process (MDP) is discrete stochastic process that provide a mathematical 

framework for modeling decision making in situations where outcomes are probabilistic 

(Puterman, 2014). MDP is descriptive operation research method and one of the approaches use 

in stochastic control to describe the system. To optimal control decisions in this problem, it is 

suggested to use MDP. One of the elements in MDP is Decision Epochs which is action or 

decisions are taken at epochs corresponding to changes in the state. State Space is another element 

which is the state of the system needed to make decisions and quantify outcomes like the number 
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of items is inventory. An individual state can be theoretically described as a location within the 

state-space. The action space is another element that includes all the potential unique actions can 

be taken at any given state. There is transition model in MDP which is the transition probability 

from one state to another state under specific action. The transition probability matrix (or transition 

model) includes all the transition probabilities within the state space. The expected net benefit 

received for being in one state and taking specific action called rewards in MDP. The total set of 

rewards can be defined using a function or a matrix. Another important element of MDP is policy 

π which is defined as a mapping of actions to take given the state. The value function for a policy 

π is Vπ, which can be described recursively as in Equation (2.10) using Bellman’s equations, where 

π(s) is the action to take as determined by the policy π and γ is the discount factor that prevents 

the value function from going to infinity. The optimal policy π∗ is defined as the decision policy 

which maximizes the value function, see Equation (2.11). 

 Vπ(s) = R(s, π(s)) + γ ∑ p(s′|s, π(s))Vπ(s′)

s′∈𝒮

 (2.10) 

 π∗ = arg max π′(Vπ′) (2.11) 

Obtaining optimal policy π∗ that maximizes the value function at each state is the goal of 

dynamic programming. There are different approaches of finding optimal policies for MDPs. One 

of the most popular ways to solve for the optimal policy is by implementing the Policy Iteration 

algorithm (Bellman, 1995). This algorithm works under a simple premise. Firstly, select an initial 

policy and then determine the value of each state under the current policy. Next, consider whether 

the value could be improved by selecting a different action. If it can, change the policy at that state 

to take this new action. This step-by-step process gradually improves the performance of the policy 

and when no improvements are possible, then the policy is guaranteed to be optimal.  
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Another popular method is accomplished by formulating the MDP problem as a Linear 

Program (Manne, 1960). See below for the formulation of an MDP problem as a LP. This requires 

knowledge or an assumption of the initial state or its probability distribution 𝜇0 over 𝑆, with 𝜇0 >

0 for all 𝑠 ∈ 𝑆. 

 max  𝜇0(𝑠)𝑉(𝑠) 

s. t.    𝑉(𝑠) ≥ 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑉(𝑠′)

𝑠′∈𝒮

  ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 
(2.12) 

Policy iteration are typically faster than general LP algorithms (Farias, & Roy, 2003). 

There are several challenges with solving large-scale MDPs, especially in practice. One of the 

most significant challenges is that the information desired to be captured by the states and actions 

will grow (often exponentially) based on the problem’s complexity. This is why dynamic 

programming is sometimes avoided for large problems. To overcome this challenge, the original 

Markov decision problem can be split for the system with N states into N independent Markov 

chain processes. Each of this independent system is corresponding as a subsystem which 

efficiently evaluates one of those N states. In terms of accuracy of decomposition technique in 

each subsystem, the impact of other states needs to be accounted. 
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Chapter 3 - Stochastic Optimization and Designing Reliable Supply 

Chain Network 

Chapter 3.1 to 3.4 is based on the manuscript “A two-stage stochastic mixed-integer 

program for reliable supply chain network design under uncertain disruptions and demand” 

Published in Computers & Industrial Engineering (Tolooie, Maity, & Sinha, 2020). Apart from 

commercial application of L-shape decomposition algorithm, Chapter 3.5 provides another 

application for this approach in the security-constrained unit commitment problem. Finally, 

Chapter 3.6 presents the conclusions. 

 3.1 Introduction 

Nowadays, supply chain systems have become more complex and dynamic with wide 

geographical coverage. Hence, supply chains are exposed to a broad range of uncertainties, some 

of which may cause disruptions in the supply chain (Rezapour, Farahani, & Pourakbar, 2017). 

Accidental disruption of facilities due to large-scale natural disasters, manufacturing fires, terrorist 

attacks, wide-spread electrical shutdowns, and financial or political tension, is among several other 

uncertainties that are likely to occur (Govindan, Fattahi, & Keyvanshokooh, 2017). Therefore, 

supply chain disruptions have been a challenging issue for many companies worldwide. The 

disruption at one level of a supply chain can significantly impact the entire chain: for instance, any 

failure of a distribution center could cost company additional transportation costs to satisfy 

customer demand (Snyder & Daskin, 2007). Disruptions in supply chains have enormous financial 

impacts and, in some cases, cause a permanent loss of market share. Hendricks and Singhal (2003) 

reported on some of the severe impacts of supply chain disruptions on market share, which in some 

cases fell lower than 11% from just the announcement of disruptions alone. To hedge against 

supply chain disruptions, a well-designed and reliable network is a top priority. The key to 
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managing disruption risks in supply chains is not through the elimination of cost reduction or 

through efficiency but by creating supply chains that are both efficient in stable conditions and 

capable of handling hazards in unstable conditions. Hence, reliable and flexible supply chain 

designs have become a significant consideration to the decision maker. 

Unlike classical facility location problems where all facilities are reliable, this study adopts 

Lim et al. (2010)’s reliability concept in our model formulation and consider two types of facilities: 

unreliable facilities (influenced by random disruptions) and reliable facilities (resistant to random 

disruptions due to additional investment). This research also applies a hardening strategy to a set 

of potential distribution center nodes that helps to hedge against the risk of disruptions in the 

facility reliability problem. Our model also extends the capacitated facility location problem by 

making decisions regarding the selection of a supplier, the locations of reliable and unreliable 

distribution centers, the allocation of suppliers to customers, and the amount of products channeled 

through the network in a multi-time period.   

This research seeks to obtain both the optimal number and the locations of both suppliers 

and distribution centers in order to minimize the total expected transportation cost for the entire 

supply chain network across all future scenarios. Therefore, our problem is formulated as a two-

stage stochastic mixed-integer programming model in order to design a reliable and efficient 

supply chain network design under the uncertainty of demand and disruptions. Due to the fact that 

most of the variables and constraints are scenario-dependent, their numbers grow rapidly as the 

number of scenarios increases. As a result of this growth, standard solutions cannot be efficiently 

applied to solve this kind of problem. On the other hand, the two-stage structure of the problem 

leads us to apply decomposition method to tackle such models more efficiently. There are several 

developed decomposition-based approaches for solving two-stage stochastic programming: the 
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Bender decomposition method is one of the more powerful techniques for solving large scale 

problems with complicated variables (Conejo et al., 2006). 

In the two-stage stochastic formulation, the decisions of allocation nodes in the second 

stage of the problem are decomposed by scenarios once the first-stage variables (location of 

facilities) are fixed. This observation leads to the development of the efficient solution method for 

two-stage stochastic problems based on the well-known L-shaped method (Van Slyke & Wets, 

1969), which is an adaptation of the Bender decomposition method. The L-shaped method uses 

the fact that the second-stage value function is convex and piecewise, thus, it may be integrated 

into the master problem with a finite number of bender cuts, called optimality and feasibility cuts 

by solving linear programming problems.  

Due to the computational complexity of the stochastic mixed-integer model, this method 

is extended by replacing the single-cuts with multi-cut versions and creating relatively complete 

recourse in stochastic models by reformulating the original model. This improved algorithm can 

reduce the significant number of linear programming problems that must be solved in the second- 

stage for generating bender cuts, leading to improved running times. Computational efficiencies 

of improved algorithms are presented in the analysis section. The main contributions of this chapter 

are: 

First, this study analyzes stochasticity in a multi-period supply chain network design 

problem where the reliability of the facilities and the demand of the end customers are random. To 

the best of our knowledge, no existing studies have analyzed capacitated facility network design 

while considering these two uncertainties at the same time in multi-time periods. This research 

aims to determine the optimal locations of both the suppliers and the distribution centers to 

minimize the total expected transportation cost for the entire supply chain network under 
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uncertainty. In other words, the model adjusts the facility location choice and flow allocation 

decisions in response to the change in demand and the number of operational facilities. The 

proposed problem is formulated as a two-stage stochastic mixed-integer programming model to 

design a reliable and efficient supply chain network.  

Second, the research adopts a combination of the two types of supply chain network design 

strategies simultaneously for designing a reliable network under two different uncertain parameters 

in multi-time periods. This study considers reassignment strategies once a disruption has happened 

and hardening strategies when there are no disruptions in the system.  

Third, it is theoretically shown that if at least one of the suppliers are selected in the first 

stage, then our proposed stochastic model falls under the category of complete recourse. In other 

words, the second stage formulation is always feasible for any first stage feasible solution. This 

study also extends the L-shape algorithm by replacing the single-cuts method with a multi-cuts 

version, and then compare the results for the single-cut, multi-cut, and complete recourse 

versions under a case study presented in Peng, Snyder, Lim, and Liu (2011).   

The main contributions of this study in comparison to the existing literature are evident in 

following points: 

• Determining optimal facility locations and allocation while jointly considering 

randomness in the demand and facility failures. 

• Using reassignment strategies once a disruption has happened, and using 

hardening strategies with both reliable and unreliable facilities once there are no disruptions in 

the system, in order to design an efficient and reliable supply chain network. 

• Formulating two-stage stochastic mixed-integer programming models for multi-

period capacitated facility locations and allocation problems. 
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• Developing an efficient solution method for stochastic mixed-integer 

programming based on the L-shaped decomposition method. 

• Providing a trade-off analysis between optimal locations of facilities, disruption 

probability, and transportation costs. 

Next Chapter 3.2 describes how to formulate the two-stage stochastic mixed-integer 

programming model for reliable supply chain network. The L-shape decomposition algorithm with 

different types of cuts and the way of replacing multi-cut with single-cut are described by Chapter 

3.3. Although the lack of real-world stochastic parameters is being recognized as a main limitation 

of this problem, Chapter 3.4 provides numerical examples that show the applicability and 

efficiency of our model and problem-solving approach.  

 3.2 Reliable supply chain model 

This research studies models for reliable supply chain network problems under stochastic 

demands and with a disruption probability for facilities. The main decision is to choose a set of 

locations from a set of potential nodes for facility that are robust under disruptions. Any failure of 

a distribution center could cost the company additional transportation costs to reassign the 

customer demand. This is best illustrated in Figure 3.1, where the failure of a distribution center 

costs the company additional transportation costs to satisfy the demand of customers by providing 

another most available distribution center as a penalty.  
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Figure 3.1  Supply chain network under disruption 

 

The proposed supply chain three levels: suppliers, distribution centers, and customer. The 

customer locations are constant and certain. Each distribution center 𝑗 (𝑗 ∈ 𝐽) has either an 

unreliable facility with fixed cost of 𝑓𝑗
𝑈 which may fail with probability 𝑞𝑗 (0 < 𝑞𝑗 < 1) or a 

reliable facility with fixed cost of 𝑓𝑗
𝑅 (𝑓𝑗

𝑅 ≥ 𝑓𝑗
𝑈) which does not fail. These potential sites are 

definite and discrete. As Lim et al. (2010) examined, unreliable center hardening cost is presented 

by a linear function based on failure probability which is calculated by this equation: h=(𝑓𝑗
𝑅 - 𝑓𝑗

𝑈 

) = (𝑓𝑗
𝑈*10)*𝑞𝑗. Consequently, if a site incurs more failure probability, the costs of establishment 

would augment to compensate for more reliability. Another assumption in the formulated problem 

is that a single-product that can just move between two different network levels. This implies that 

no relationships exist among facilities in the same level. This study also assumes that each 

customer node 𝑐(𝑐 ∈ 𝐶) is completely fulfilled either by distribution centers or by suppliers with 

higher transportation cost as a penalty of not satisfying with distribution center in each period. The 

objective here is to minimize the fixed cost of facilities and expected transportation cost between 

facilities by locating a suitable number of reliable facilities among the unreliable facilities, and 
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also to specify the flow volume of products between the facilities within each time period. The 

demand 𝑑𝑐𝑝 of customer 𝑐 (𝑐 ∈ 𝐶) in period 𝑝 (𝑝 ∈ 𝑃) is random with a known distribution. The 

disruptions occur only in distribution centers with a defined disruption probability and these 

probabilities and failure occurrence are assumed independent of each other, i.e. when one 

distribution center fails, it does not have any negative influence on operating other distribution 

centers. 

The extensive form of deterministic equivalent formulation is first derived by extending 

the capacitated facility location problem for circumstance which a finite set of scenarios can 

capture uncertainties in the subsequent section, then the two-stage stochastic model is formulated 

for circumstance which the number of scenarios increase significantly. 

 3.2.1 Proposed extensive form model 

Table 3.1  Sets, parameters and decision variables for Reliable Supply Chain Model 

Sets  

𝐼 The set of candidate sites for suppliers 

𝐽 The set of candidate sites for distribution centers 

𝐶 The set of constant customers 

𝐽𝑐 The set of candidate sites for distribution centers that can cover each customer 𝑐, 𝑐 ∈ 𝐶 

𝑃 The set of time periods 

𝑆𝑑
𝐶 The set of scenarios for demand 

𝑆𝑓
𝐷 The set of plausible scenarios for disruptions in distribution centers 

Parameters  

𝑓𝑖 Fixed cost of established supply nodes 𝑖,                                                                  𝑖 ∈ 𝐼 

𝑓𝑗
𝑈 Fixed cost of established unreliable distribution nodes 𝑗,                                         𝑗 ∈ 𝐽 

𝑓𝑗
𝑅 Fixed cost of established reliable distribution nodes 𝑗,                                             𝑗 ∈ 𝐽 

𝑇𝑖𝑗
𝑆 Transportation cost from supplier 𝑖 to distribution center 𝑗,                           𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

𝑇𝑗𝑐
𝐷 Transportation cost from distribution center 𝑗 to customer 𝑐,                     𝑗 ∈ 𝐽𝑐 , 𝑐 ∈ 𝐶 

𝑇𝑖𝑐
𝐶  Transportation cost from supplier 𝑖 to customer 𝑐,                                       𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶 

𝑑𝑐𝑝 Demand of customer 𝑐 in each period 𝑝,                                                ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 

𝐾𝑖
𝑆 Capacity at supplier 𝑖,                                                                                               𝑖 ∈ 𝐼 

𝐾𝑗
𝐷 Capacity at distribution center 𝑗,                                                                               𝑗 ∈ 𝐽 

𝑞𝑑
𝐶 Probability of a demand scenario 𝑑,                                                               𝑑 ∈ 𝑆𝑑

𝐶 
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𝑞𝑓
𝐷 Probability of a disruptions scenario 𝑓,                                                                 𝑓 ∈ 𝑆𝑓

𝐷 

𝑎𝑗𝑓
𝐷  0–1 indicated parameter if facility 𝑗 is included in scenario 𝑓,                    𝑗 ∈ 𝐽, 𝑓 ∈ 𝑆𝑓

𝐷 

𝑎𝑑
𝐶 Percentage variation in demand for each scenario 𝑑,                                            𝑑 ∈ 𝑆𝑑

𝐶 

Binary Decision variables  

𝑋𝑖 {
1 if supplier  𝑖 is established

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋𝑗
𝑈 

{
1 𝑖𝑓 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑗 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋𝑗
𝑅 

{
1 𝑖𝑓 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑖𝑠 𝑗 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Continuous Decision variables  

𝐵𝑗𝑐𝑝𝑑𝑓
𝑈  The percentage of demand sent from unreliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) to customer 

𝑐(𝑐 ∈ 𝐶) in each period 𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑), and disruption scenario 𝑓(𝑓 ∈

𝑆𝑓). 

𝐵𝑗𝑐𝑝𝑑𝑓
𝑅  The percentage of demand sent from reliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) to customer 

𝑐(𝑐 ∈ 𝐶) in each period 𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑), and disruption scenario 𝑓(𝑓 ∈

𝑆𝑓). 

𝑍𝑖𝑐𝑝𝑑𝑓 The percentage of demand sent from supplier 𝑖(𝑖 ∈ 𝐼) to customer 𝑐(𝑐 ∈ 𝐶) in period 

𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑), and disruption scenario 𝑓(𝑓 ∈ 𝑆𝑓). 

𝑌𝑖𝑗𝑝𝑑𝑓
𝑈  The amount of supply sent from supplier 𝑖(𝑖 ∈ 𝐼) to unreliable distribution center 𝑗(𝑗 ∈

𝐽) in period 𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑), and disruption scenario 𝑓(𝑓 ∈ 𝑆𝑓). 

𝑌𝑖𝑗𝑝𝑑𝑓
𝑅  The amount of supply sent from supplier 𝑖(𝑖 ∈ 𝐼) to reliable distribution center 𝑗(𝑗 ∈ 𝐽) 

in period 𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑), and disruption scenario 𝑓(𝑓 ∈ 𝑆𝑓). 

 

 

Table 3.1 presents the necessary sets, parameters and decision variables. The multi-period 

capacitated facility location and allocation problems under stochastic demand and random 

disruption can be formulated as mixed-integer programming in extensive form as follow. 

𝑀𝑖𝑛   ∑ 𝑓𝑖𝑋𝑖

𝑖∈𝐼

+ ∑ 𝑓𝑗
𝑈𝑋𝑗

𝑈

𝑗∈𝐽

+ ∑ 𝑓𝑗
𝑅𝑋𝑗

𝑅

𝑗∈𝑗

+ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞𝑓

𝐷𝑎𝑑
𝐶𝑑𝑐𝑝𝑇𝑗𝑐

𝐷𝐵𝑗𝑐𝑝𝑑𝑓
𝑈

𝑓∈𝑆𝑓
𝐷𝑑∈𝑆𝑑

𝐶𝑝∈𝑃𝑐∈𝐶𝑗∈𝐽𝑐

 

+ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞𝑓

𝐷𝑎𝑑
𝐶𝑑𝑐𝑝𝑇𝑗𝑐

𝐷𝐵𝑗𝑐𝑝𝑑𝑓
𝑅

𝑓∈𝑆𝑓
𝐷𝑑∈𝑆𝑑

𝐶𝑝∈𝑃𝑐∈𝐶𝑗∈𝐽𝑐

+ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞𝑓

𝐷𝑇𝑖𝑗
𝑆𝑌𝑖𝑗𝑝𝑑𝑓

𝑈

𝑓∈𝑆𝑓
𝐷𝑑∈𝑆𝑑

𝐶𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

 

+ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞𝑓

𝐷𝑇𝑖𝑗
𝑆𝑌𝑖𝑗𝑝𝑑𝑓

𝑅

𝑓∈𝑆𝑓
𝐷𝑑∈𝑆𝑑

𝐶𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞𝑓

𝐷𝑎𝑑
𝐶𝑑𝑐𝑝𝑇𝑖𝑐

𝐶𝑍𝑖𝑐𝑝𝑑𝑓

𝑓∈𝑆𝑓
𝐷𝑑∈𝑆𝑑

𝐶𝑝∈𝑃𝑐∈𝐶𝑖∈𝐼

                (3.1) 
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Subject to: 

 

𝑋𝑗
𝑈 + 𝑋𝑗

𝑅 ≤ 1, ∀𝑗 ∈ 𝐽 (3.2) 

∑ 𝑋𝑗
𝑅

𝑗∈𝐽

≥ 1,  
(3.3) 

∑ 𝐵𝑗𝑐𝑝𝑑𝑓
𝑈

𝑗∈𝐽𝑐

+ ∑ 𝐵𝑗𝑐𝑝𝑑𝑓
𝑅

𝑗∈𝐽𝑐

+ ∑ 𝑍𝑖𝑐𝑝𝑑𝑓

𝑖∈𝐼

= 1, 

∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 (3.4) 

𝐵𝑗𝑐𝑝𝑑𝑓
𝑈 ≤ 𝑋𝑗

𝑈𝑎𝑗𝑓
𝐷 , ∀𝑗 ∈ 𝐽𝑐 , ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃, ∀𝑑

∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 

(3.5) 

𝐵𝑗𝑐𝑝𝑑𝑓
𝑅 ≤ 𝑋𝑗

𝑅𝑎𝑗𝑓
𝐷 , ∀𝑗 ∈ 𝐽𝑐 , ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃, ∀𝑑

∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 

(3.6) 

𝑍𝑖𝑐𝑝𝑑𝑓 ≤ 𝑋𝑖, ∀𝑖 ∈ 𝐼, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃, ∀𝑑

∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 

(3.7) 

∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑈

𝑖∈𝐼

= ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑐𝑝𝑑𝑓

𝑈

𝑐∈𝐶

, ∀𝑗 ∈ 𝐽𝑐 , ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 (3.8) 

∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑅

𝑖∈𝐼

= ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑐𝑝𝑑𝑓

𝑅

𝑐∈𝐶

, ∀𝑗 ∈ 𝐽𝑐 , ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 (3.9) 

∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑈

𝑗∈𝐽

+ ∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑅

𝑗∈𝐽

+ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝑍𝑖𝑐𝑝𝑑𝑓

𝑐∈𝐶

≤ 𝑋𝑖𝐾𝑖
𝑆, 

 

 

∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 

 

 

(3.10) 

∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑈

𝑖∈𝐼

≤ 𝐾𝑗
𝐷𝑋𝑗

𝑈𝑎𝑗𝑓
𝐷 , ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑

𝐶 , ∀𝑓 ∈ 𝑆𝑓
𝐷 (3.11) 
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∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑅

𝑖∈𝐼

≤ 𝐾𝑗
𝐷𝑋𝑗

𝑅𝑎𝑗𝑓
𝐷 , ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑

𝐶 , ∀𝑓 ∈ 𝑆𝑓
𝐷 (3.12) 

∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝑍𝑖𝑐𝑝𝑑𝑓

𝑐∈𝐶𝑖∈𝐼

+ ∑ ∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑈

𝑗∈𝐽𝑖∈𝐼

 

+ ∑ ∑ 𝑌𝑖𝑗𝑝𝑑𝑓
𝑅

𝑗∈𝐽𝑖∈𝐼

= ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝

𝑐∈𝐶

, 

 

 

 

∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 

 

 

 

(3.13) 

𝑋𝑖, 𝑋𝑗
𝑈, 𝑋𝑗

𝑅 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (3.14) 

𝐵𝑗𝑐𝑝𝑑𝑓
𝑈 , 𝐵𝑗𝑐𝑝𝑑𝑓

𝑅 , 𝑌𝑖𝑗𝑝𝑑𝑓
𝑈 , 𝑌𝑖𝑗𝑝𝑑𝑓

𝑅 , 𝑍𝑖𝑐𝑝𝑑𝑓 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 

 

(3.15) 

Equation (3.1) is the objective function and consists of eight terms. The first three are the 

fixed costs of establishing supply facilities, unreliable distribution centers, and reliable distribution 

centers, respectively. The transportation cost from unreliable or reliable distribution center 𝑗 (𝑗 ∈

𝐽𝑐) to the customer 𝑐 (𝑐 ∈ 𝐶) over all plausible scenarios and all periods is calculated by the fourth 

and fifth terms. The product transportation cost from supplier 𝑖 (𝑖 ∈ 𝐼) to unreliable or reliable 

distribution center 𝑗 (𝑗 ∈ 𝐽) is calculated by the sixth and seventh terms. The eighth term calculates 

the transportation cost from supplier 𝑖 (𝑖 ∈ 𝐼) to the customer 𝑐 (𝑐 ∈ 𝐶) as a penalty cost for not 

satisfying the particular customer demand. 

For each time period 𝑝, 𝑝 ∈ 𝑃, the constraints are described as follow. Constraint (3.2) 

indicates that for any candidate site we can only locate an unreliable or a reliable distribution 

center. Constraint (3.3) ensures that there should be at least one reliable distribution center. 

Constraint (3.4) ensures that each customer must be at least assigned to one of the facilities. 

Constraints (3.5) and (3.6) indicate that each customer must be assigned to a distribution center 

which is not failed after disruption for each scenario. Moreover, each customer can only be 
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allocated to the distribution center given that the distribution center is already established. 

Constraint (3.7) also ensures that each customer can only be assigned to the supplier given that the 

supplier is already established for each time period and scenario. Constraint (3.8) and (3.9) ensure 

that the sum of inflow to distribution center j must be equal to the sum of outflow from that 

distribution. Constraint (3.10) states that a flow occurs if and only if the supplier node is established 

and the outflow of each supplier node should be less than or equal to its capacity. Constraint (3.11) 

and (3.12) indicate the inflow to each distribution center node is less than or equal to its capacity, 

given that the distribution center is established. Constraint (3.13) ensures that all outflows of 

products from all the suppliers must equal sum of all the customer nodes demands. Constraints 

(3.14) and (3.15) are non-negative constraints used to represent the binary variables and product-

flow variables between the facilities, respectively. 

 3.2.2 Proposed two-stage stochastic model 

To control the large number of scenarios, this study now presents a two-stage stochastic 

mixed-integer programming with stochastic demand and random disruption while other 

parameters are deterministic. In two-stage stochastic approach, stochastic parameters are 

considered as random variables with an associated probability function. In this approach the 

variables of problem are classified in two stages. The decisions on variables like number and 

location of facilities which are not affected by randomness are made in first stage. The allocation 

of customers and amount of supplies which vary regard to randomness are determined in second 

stage based on facilities location and realized uncertainty in each scenario. The total objective 

function in this approach consists of the sum of the first-stage objective value and the expected 

value of all scenarios in the second stage.  
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In order to make the two-stage stochastic programming formulation for the reliable supply 

chain network design problem, considering 𝜉 = (𝑆𝑑
𝐶 , 𝑆𝑓

𝐷) as the set of scenarios. For any𝐴 ∈ 𝜉, let 

𝑞𝐴be the joint probability of 𝑆𝑑
𝐶  and 𝑆𝑓

𝐷 that scenario A happens. The two-stage stochastic 

programs can be formulated as: 

𝑀𝑖𝑛   ∑ 𝑓𝑖𝑋𝑖

𝑖∈𝐼

+ ∑ 𝑓𝑗
𝑈𝑋𝑗

𝑈

𝑗∈𝐽

+ ∑ 𝑓𝑗
𝑅𝑋𝑗

𝑅

𝑗∈𝑗

+ 𝐸[𝐺(𝑋, ξ)]                                                                   (3.16) 

Subject to: 

𝑋𝑗
𝑈 + 𝑋𝑗

𝑅 ≤ 1, ∀𝑗 ∈ 𝐽 (3.17) 

∑ 𝑋𝑗
𝑅

𝑗∈𝐽

≥ 1,  
(3.18) 

𝑋𝑖, 𝑋𝑗
𝑈, 𝑋𝑗

𝑅 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (3.19) 

 

Where 𝐺(𝑋, ξ) is the optimal value of the following problem: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑗𝑐
𝐷𝐵𝑗𝑐𝑝

𝑈 (ξ)

𝑝∈𝑃𝑐∈𝐶𝑗∈𝐽𝑐

+ ∑ ∑ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑗𝑐
𝐷𝐵𝑗𝑐𝑝

𝑅 (ξ)

𝑝∈𝑃𝑐∈𝐶𝑗∈𝐽𝑐

+ ∑ ∑ ∑ 𝑇𝑖𝑗
𝑆𝑌𝑖𝑗𝑝

𝑈 (ξ)

𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ ∑ 𝑇𝑖𝑗
𝑆𝑌𝑖𝑗𝑝

𝑅 (ξ)

𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑖𝑐
𝐶𝑍𝑖𝑐𝑝(ξ)

𝑝∈𝑃𝑐∈𝐶𝑖∈𝐼

                                (3.20) 

Subject to: 

∑ 𝐵𝑗𝑐𝑝
𝑈 (ξ)

𝑗∈𝐽𝑐

+ ∑ 𝐵𝑗𝑐𝑝
𝑅 (ξ)

𝑗∈𝐽𝑐

+ ∑ 𝑍𝑖𝑐𝑝(ξ)

𝑖∈𝐼

= 1, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.21) 

𝐵𝑗𝑐𝑝
𝑈 (ξ) ≤ 𝑋𝑗

𝑈𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽𝑐 , ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.22) 

𝐵𝑗𝑐𝑝
𝑅 (ξ) ≤ 𝑋𝑗

𝑅𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽𝑐 , ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.23) 

𝑍𝑖𝑐𝑝(ξ) ≤ 𝑋𝑖, ∀𝑖 ∈ 𝐼, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.24) 
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∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑖∈𝐼

= ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝐵𝑗𝑐𝑝
𝑈 (ξ)

𝑐∈𝐶

, ∀𝑗 ∈ 𝐽𝑐 , ∀𝑝 ∈ 𝑃 (3.25) 

∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑖∈𝐼

= ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝐵𝑗𝑐𝑝
𝑅 (ξ)

𝑐∈𝐶

, ∀𝑗 ∈ 𝐽𝑐 , ∀𝑝 ∈ 𝑃 (3.26) 

∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑗∈𝐽

+ ∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑗∈𝐽

+ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑖𝑐𝑍𝑖𝑐𝑝(ξ)

𝑐∈𝐶

≤ 𝑋𝑖𝐾𝑖
𝑆, 

 

 

∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 

 

 

(3.27) 

∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑖∈𝐼

≤ 𝐾𝑗
𝐷𝑋𝑗

𝑈𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃 (3.28) 

∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑖∈𝐼

≤ 𝐾𝑗
𝐷𝑋𝑗

𝑅𝑎𝑗
𝐷 , ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃 (3.29) 

∑ ∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑗∈𝐽𝑖∈𝐼

 

+ ∑ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑍𝑖𝑐𝑝(ξ)

𝑐∈𝐶𝑖∈𝐼

= ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝

𝑐∈𝐶

 

 

 

∀𝑝 ∈ 𝑃 

 

 

(3.30) 

𝐵𝑗𝑐𝑝
𝑈 (ξ), 𝐵𝑗𝑐𝑝

𝑅 (ξ), 𝑌𝑖𝑗𝑝
𝑈 (ξ), 𝑌𝑖𝑗𝑝

𝑅 (ξ), 𝑍𝑖𝑐𝑝(ξ) ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑐 ∈ 𝐶,  

∀𝑝 ∈ 𝑃 

 

(3.31) 

Note that 𝐺(𝑋, 𝜉) the optimal value of the second-stage problem (3.20) – (3.31) is a 

function of the first-stage decision variable 𝑋 and realization of uncertain parameters under each 

scenario ξ. Equation (3.16) is the objective function of first-stage consists of four terms. The first 

three are the fixed costs of establishing supply facilities, unreliable distribution centers, and 

reliable distribution centers, respectively. The second term is expected value of all transportation 

cost between any two level of supply chain over all possible scenarios. This expected value is 

calculated with respect to the joint probability distribution of uncertain parameters. Equation (3.20) 

is the objective function of second-stage which minimizes the total transportation cost between 
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any two nodes in different level of supply chain. This equation is a function of the first-stage 

decision variable and realization of uncertain parameters (demand and disruption) under each 

scenario ξ. Constraints (3.21) – (3.31) are same as constraints (3.4) – (3.15) except the fact that the 

decision variables of first stage and uncertain parameters are realized before starting the second 

stage.    

 3.3 Solution methodology 

 3.3.1 Background 

The L-shaped method algorithm is presented by Van Slyke and Wets (1969) for stochastic 

linear programming. The computation time and memory requirement for solving the problem is 

greatly reduced by this approach through the reduction in the number of second-stage problems. 

The concept behind this method is that whenever the second-stage value function is convex and 

piecewise linear on a polyhedral domain, this function can be introduced by a finite number of 

feasibility and optimality cuts to the main problem. These cuts can be generated by solving linear 

programming.  

The L-shaped method algorithm is developed by Laporte, Louveaux, and van Hamme 

(1994) to solve mixed-integer stochastic model which the integer variables are always included in 

the first stage. The whole idea of this extended algorithm is to create a method for obtaining the 

feasible solutions for first stage integer or non-integer variables and using them in the linear outer 

approximation of 𝐺(𝑋, 𝜉) for continuous variables. In this method the second-stage problem is 

linear, thus the duality theory of linear programming can be applied to gain outer approximations 

of the recourse cost function. Thus base on the concept of decomposition, linearization, and 

approximation, this study follows the L-shaped method to present the solution approach. 
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 3.3.2 Feasibility and optimality cuts 

The two-stage stochastic programming problem is decomposed into deterministic master 

problem and a recourse subproblem with fixed coefficients of decision variable by the L-shaped 

approach (Birge, & Louveaux, 1997; Kall, Wallace, & Kall, 1994). The master problem contains 

fewer variables but a large number of constraints in compare with subproblem. These constraints 

iteratively added to the master problem are known as benders cuts. In this approach, the recourse 

subproblem is solved by using optimal solution of master problem to determine the optimality and 

feasibility cuts over all scenarios. These cuts are iteratively added in the master problem as 

additional constraints. The purpose of this method is to replace the expected cost function of 

recourse subproblem over all scenarios in the master problem by a piecewise linear function. The 

optimal value in the master problem has a lower bound on the optimal value and an upper bound 

on the expected optimal value of the subproblem. In this study, the L-shaped method is applied 

into reliable supply chain network design problem with demand and disruption uncertainties. As a 

result, the master problem determines the facility location plan with piecewise linear function of 

transportation cost. The reason for formulating the problem in a multi-period setting is that the 

decision made about the first stage variables depends on the expected cost value of all scenarios 

which go through all periods in each scenario in the second stage. If the model is not formulated 

as a multi-period problem, then the decision to open facilities without considering how to allocate 

the facilities to the customers in later time periods will depend on which one is the cheaper one. 

However, that may not be optimal in a combined model where each facility has a disruption 

probability and can fail in later time periods. The disruption is only realized in subsequent time 

periods which also impacts the allocation (considers transportation costs and demand) to the 

customers. If the model suggested opening a cheaper facility but later, it failed because of the high 
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disruption probability then the customers allocated to this facility has to be reassigned which might 

cause huge transportation costs for the system. If we consider the impact of choosing to open a 

facility in later time periods, then only the decision will be optimal as we also consider the 

transportation costs and disruptions. Thus, the total expected cost of second stage decisions affects 

the optimal solution of the first stage. In addition, a different number of periods can result in 

different total expected costs in the second stage which might result in totally different optimal 

answers for first stage variables. The reliable supply chain under demand and disruption 

uncertainties can be reformulated by adding following cuts to the first stage of two-stage stochastic 

model: 

Optimality cut: 

∑ 𝑋𝑖𝐸𝑖,𝑙

𝑖∈𝐼

+ ∑ 𝑋𝑗
𝑈𝐸𝑗,𝑙

𝑗∈𝐽

+ ∑ 𝑋𝑗
𝑅𝐸𝑗,𝑙

𝑗∈𝑗

+ 𝐸[𝐺(𝑋, ξ)] ≥ 𝜔𝑙             𝑙 = 1, … , 𝑠                                (3.32) 

Feasibility cut: 

∑ 𝑋𝑖𝐷𝑖,𝑙

𝑖∈𝐼

+ ∑ 𝑋𝑗
𝑈𝐷𝑗,𝑙

𝑗∈𝐽

+ ∑ 𝑋𝑗
𝑅𝐷𝑗,𝑙

𝑗∈𝑗

≥ 𝑑𝑙                                       𝑙 = 1, … , 𝑟                               (3.33) 

Let 𝑟 = 𝑠 = 𝑣 is the number of iteration of master problem. Let  𝜇1 represents a set of all 

possible values of 𝑋𝑖, 𝑋𝑗
𝑈 and 𝑋𝑗

𝑅 that make first stage feasible and  𝜇2 represents a set of all 

possible values of 𝑋𝑖, 𝑋𝑗
𝑈 and 𝑋𝑗

𝑅 that make second stage feasible. The constraint (3.32) called 

optimality cut is added to the master problem whenever first-stage decision 𝑋 ∈ 𝜇1 is also 𝑋 ∈

𝐾𝜇2. 𝐸𝑖,𝑙 for 𝑖 ∈ 𝐼, 𝐸𝑗,𝑙 for 𝑗 ∈ 𝐽 and 𝜔𝑙 are determined using the duals variables present in 

constraints (3.21) – (3.30) and calculated by following steps: 

For all 𝜉 = 1, … , 𝑘 solve the linear program (3.20) – (3.31): 

In this case, let 𝜋ξ
𝑣(𝑚) be the associated dual value of problem 𝜉 of constraint of type (m) 

in iteration 𝑣 and define: 
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𝐸𝑖,𝑙 = ∑(−𝑞ξ𝜋ξ
𝑣(24) − 𝑞ξ𝜋ξ

𝑣(27)

𝐾

ξ=1

𝐾𝑖
𝑆)                                         ∀𝑖 ∈ 𝐼                                       (3.34) 

𝐸𝑗,𝑙 = ∑(−𝑞ξ𝜋ξ
𝑣(22)𝑎𝑗

𝐷(ξ) − 𝑞ξ𝜋ξ
𝑣(23)𝑎𝑗

𝐷(ξ) − 𝑞ξ𝜋ξ
𝑣(28)𝐾𝑗

𝐷𝑎𝑗
𝐷(ξ)

𝐾

ξ=1

− 𝑞ξ𝜋ξ
𝑣(29)𝐾𝑗

𝐷𝑎𝑗
𝐷(ξ))                                            ∀𝑗 ∈ 𝐽                                        (3.35) 

𝜔𝑙,𝑝 = ∑(𝑞ξ𝜋ξ
𝑣(21) + 𝑞ξ𝜋ξ

𝑣(30) ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝

𝑐∈𝐶

)

𝐾

ξ=1

                      ∀𝑝 ∈ 𝑃                                       (3.36) 

𝜔𝑙 = ∑ 𝜔𝑙,𝑝

𝑝∈𝑃

 

Let 𝑤𝑣 = 𝜔𝑙 − ∑ 𝑋𝑖𝐸𝑖,𝑙𝑖∈𝐼 − ∑ 𝑋𝑗
𝑈𝐸𝑗,𝑙𝑗∈𝐽 − ∑ 𝑋𝑗

𝑅𝐸𝑗,𝑙𝑗∈𝑗 . If 𝜃𝑣 ≥ 𝑤𝑣, then stop and 𝑋𝑣 is an 

optimal solution. Otherwise, set 𝑣 = 𝑣 + 1, add to the constraint (3.32), and solve it again. 

The constraint (3.33) called feasibility cut is added to the master problem whenever first-

stage decision 𝑋 ∈ 𝜇1 is not also 𝑋 ∈ 𝜇2. 𝐷𝑖,𝑙 for 𝑖 ∈ 𝐼, 𝐷𝑗,𝑙 for 𝑗 ∈ 𝐽 and 𝑑𝑙 are determined using 

the duals variables present in constraints (3.38) – (3.47) and calculated by following steps: 

Let 𝜉 = 1, … , k index its possible realizations and let 𝑞ξ be their probabilities. 

For all 𝜉 = 1, … , 𝑘 solve the linear program: 

𝑚𝑖𝑛 𝑣1𝑐𝑝
+ + 𝑣1𝑐𝑝

− + 𝑣2𝑗𝑐𝑝
+ + 𝑣2𝑗𝑐𝑝

− + 𝑣3𝑗𝑐𝑝
+ + 𝑣3𝑗𝑐𝑝

− + 𝑣4𝑖𝑐𝑝
+ + 𝑣4𝑖𝑐𝑝

− + 𝑣5𝑗𝑝
+ + 𝑣5𝑗𝑝

− + 𝑣6𝑗𝑝
+

+ 𝑣6𝑗𝑝
− + 𝑣7𝑖𝑝

+ + 𝑣7𝑖𝑝
− + 𝑣8𝑗𝑝

+ + 𝑣8𝑗𝑝
− + 𝑣9𝑗𝑝

+ + 𝑣9𝑗𝑝
− + 𝑣10𝑝

+ + 𝑣10𝑝
−           (3.37) 

Subject to: 

∑ 𝐵𝑗𝑐𝑝
𝑈 (ξ)

𝑗∈𝐽𝑐

+ ∑ 𝐵𝑗𝑐𝑝
𝑅 (ξ)

𝑗∈𝐽𝑐

+ ∑ 𝑍𝑖𝑐𝑝(ξ)

𝑖∈𝐼

+ 𝑣1𝑐𝑝
+

− 𝑣1𝑐𝑝
− = 1, 

 

∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 

 

(3.38) 

𝐵𝑗𝑐𝑝
𝑈 (ξ) + 𝑣2𝑗𝑐𝑝

+ − 𝑣2𝑗𝑐𝑝
− ≤ 𝑋𝑗

𝑈𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽𝑐 , ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.39) 
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𝐵𝑗𝑐𝑝
𝑅 (ξ) + 𝑣3𝑗𝑐𝑝

+ − 𝑣3𝑗𝑐𝑝
− ≤ 𝑋𝑗

𝑅𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽𝑐 , ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.40) 

𝑍𝑖𝑐𝑝(ξ) + 𝑣4𝑖𝑐𝑝
+ − 𝑣4𝑖𝑐𝑝

− ≤ 𝑋𝑖, ∀𝑖 ∈ 𝐼, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 (3.41) 

∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑖∈𝐼

+ 𝑣5𝑗𝑝
+ − 𝑣5𝑗𝑝

− = ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝐵𝑗𝑐𝑝
𝑈 (ξ)

𝑐∈𝐶

, ∀𝑗 ∈ 𝐽𝑐 , ∀𝑝 ∈ 𝑃 (3.42) 

∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑖∈𝐼

+ 𝑣6𝑗𝑝
+ − 𝑣6𝑗𝑝

− = ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝐵𝑗𝑐𝑝
𝑅 (ξ)

𝑐∈𝐶

, ∀𝑗 ∈ 𝐽𝑐 , ∀𝑝 ∈ 𝑃 (3.43) 

∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑗∈𝐽

+ ∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑗∈𝐽

+ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑖𝑐𝑍𝑖𝑐𝑝(ξ)

𝑐∈𝐶

+ 𝑣7𝑖𝑝
+ − 𝑣7𝑖𝑝

− ≤ 𝑋𝑖𝐾𝑖
𝑆, 

 

 

∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃 

 

 

(3.44) 

∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑖∈𝐼

+ 𝑣8𝑗𝑝
+ − 𝑣8𝑗𝑝

− ≤ 𝐾𝑗
𝐷𝑋𝑗

𝑈𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃 (3.45) 

∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑖∈𝐼

+ 𝑣9𝑗𝑝
+ − 𝑣9𝑗𝑝

− ≤ 𝐾𝑗
𝐷𝑋𝑗

𝑅𝑎𝑗
𝐷(ξ), ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃 (3.46) 

∑ ∑ 𝑌𝑖𝑗𝑝
𝑈 (ξ)

𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ 𝑌𝑖𝑗𝑝
𝑅 (ξ)

𝑗∈𝐽𝑖∈𝐼

+ ∑ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑍𝑖𝑐𝑝(ξ)

𝑐∈𝐶𝑖∈𝐼

+ 𝑣10𝑝
+

− 𝑣10𝑝
− = ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝

𝑐∈𝐶

 

 

 

 

∀𝑝 ∈ 𝑃 

 

 

 

(3.47) 

𝑣+, 𝑣− ≥ 0,   

Let 𝜎𝑣(𝑚) be the dual value associated with optimal solution of problem ξ of constraint 

of type (m) in iteration 𝑣. Define 𝐷𝑖,𝑙, 𝐷𝑗,𝑙 and 𝑑𝑙 as following equations: 

  

𝐷𝑖,𝑙 = −𝜎𝑣(40) − 𝜎𝑣(43)𝐾𝑖
𝑆                                                                  ∀𝑖 ∈ 𝐼                                 (3.48) 
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𝐷𝑗,𝑙 = −𝜎𝑣(38)𝑎𝑗
𝐷(ξ) − 𝜎𝑣(39)𝑎𝑗

𝐷(ξ) − 𝜎𝑣(44)𝐾𝑗
𝐷𝑎𝑗

𝐷(ξ)

− 𝜎𝑣(45)𝐾𝑗
𝐷𝑎𝑗

𝐷(ξ)                                                          ∀𝑗 ∈ 𝐽                                (3.49) 

𝑑𝑙,𝑝 = 𝜎𝑣(37) + 𝜎𝑣(46) ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝

𝑐∈𝐶

                                                 ∀𝑝 ∈ 𝑃                               (3.50) 

𝑑𝑙 = ∑ 𝑑𝑙,𝑝

𝑝∈𝑃

 

 3.3.3 Multi-cut L-shape algorithm 

This point should be highlighted again that the L-shape algorithm proposed in previous 

section can directly solve the two-stage stochastic model for reliable supply chain network design 

with binary variables in first stage.  One of the disadvantages of this algorithm is that at each 

iteration, a mixed-integer programming has to be solved for master problem instead of linear 

programming. The computation time and memory requirement for solving this kind of problem 

several times may be challenging for large size problem. To overcome this issue, one way is to 

extend proposed L-shape algorithm by replacing the single-cuts by multi-cuts. 

In the L-shape algorithm, this study adds a single optimality cut for all scenario at each 

iteration to master problem. The multi-cut L-shaped algorithm disaggregates the optimality cut for 

all scenario in each iteration into separate cuts which are added individually to master problem for 

each scenario. The idea behind this approach is that by creating more optimality cuts in each 

iteration, the optimal solution might be obtained in less iteration because of having more corner 

points in master problem. In addition to adding multiple optimality cuts for each scenario to master 

problem in this version, 𝜃 is replaced by ∑ 𝜃(ξ)𝐾
ξ=1  in the objective function of the master problem. 

So the outer approximations of the recourse cost function can reach to optimal value or lower 

bound in less iteration. It is worth to mention that adding multi-cuts instead of single-cut does not 

affect feasibility cut at all. One of limitation of this extension is that multi-cut approach works 
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perfectly when the problem deals with small number of scenarios because the additional optimality 

cut equations iteratively added to master problem are equal to the number of scenarios which 

causes complexity in problem with large number of scenarios. According to Birge and Louveaux 

(1997) multi-cut L-shape algorithm is more effective when the number of scenarios is not 

noticeably larger than the number of constraints in first-stage. To illustrate the effectiveness of the 

multi-cut approach, a sample set of results is presented in our numerical study and the 

computational performances are discussed. The reliable supply chain under demand and disruption 

uncertainties can be reformulated as follow based on applying L-shaped method: 

𝑚𝑖𝑛 ∑ 𝑓𝑖𝑋𝑖

𝑖∈𝐼

+ ∑ 𝑓𝑗
𝑈𝑋𝑗

𝑈

𝑗∈𝐽

+ ∑ 𝑓𝑗
𝑅𝑋𝑗

𝑅

𝑗∈𝑗

+ ∑ 𝜃(ξ)

𝐾

ξ=1

                                                                         (3.51) 

Subject to: 

𝐴𝑋 ≤ 𝐵                                                                                                                                                     (3.52) 

Feasibility cut: 

∑ 𝑋𝑖𝐷𝑖,𝑙

𝑖∈𝐼

+ ∑ 𝑋𝑗
𝑈𝐷𝑗,𝑙

𝑗∈𝐽

+ ∑ 𝑋𝑗
𝑅𝐷𝑗,𝑙

𝑗∈𝑗

≥ 𝑑𝑙                                               𝑙 = 1, … , 𝑟                       (3.53) 

Optimality cut: 

∑ 𝑋𝑖𝐸𝑖,𝑙(ξ)

𝑖∈𝐼

+ ∑ 𝑋𝑗
𝑈𝐸𝑗,𝑙(ξ)

𝑗∈𝐽

+ ∑ 𝑋𝑗
𝑅𝐸𝑗,𝑙(ξ)

𝑗∈𝑗

+ 𝜃(ξ) ≥ 𝜔𝑙(ξ)          𝑙(ξ) = 1, … , 𝑠(ξ)            (3.54) 

𝑋 ∈ {0, 1}, 𝜃 ∈ ℜ 

Where for each scenario ξ = 1, … , k solve the linear program problem (3.20) – (3.31): 

𝐸𝑖,𝑙(ξ) = −𝑞ξ𝜋ξ
𝑣(24) − 𝑞ξ𝜋ξ

𝑣(27)𝐾𝑖
𝑆                                                      ∀𝑖 ∈ 𝐼                               (3.55) 

𝐸𝑗,𝑙(ξ) =  −𝑞ξ𝜋ξ
𝑣(22)𝑎𝑗

𝐷(ξ) − 𝑞ξ𝜋ξ
𝑣(23)𝑎𝑗

𝐷(ξ) − 𝑞ξ𝜋ξ
𝑣(28)𝐾𝑗

𝐷𝑎𝑗
𝐷(ξ)

− 𝑞ξ𝜋ξ
𝑣(29)𝐾𝑗

𝐷𝑎𝑗
𝐷(ξ)                                                       ∀𝑗 ∈ 𝐽                               (3.56) 
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𝜔𝑙,𝑝(ξ) = 𝑞ξ𝜋ξ
𝑣(21) + 𝑞ξ𝜋ξ

𝑣(30) ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝

𝑐∈𝐶

                                    ∀𝑝 ∈ 𝑃                             (3.57) 

𝜔𝑙(ξ) = ∑ 𝜔𝑙,𝑝

𝑝∈𝑃

 

Let 𝑤𝑣(ξ) = 𝜔𝑙(ξ) − ∑ 𝑋𝑖𝐸𝑖,𝑙(ξ)𝑖∈𝐼 − ∑ 𝑋𝑗
𝑈𝐸𝑗,𝑙(ξ)𝑗∈𝐽 − ∑ 𝑋𝑗

𝑅𝐸𝑗,𝑙(ξ)𝑗∈𝑗 . if 𝜃𝑣(ξ) ≥ 𝑤𝑣(ξ) 

for any scenario ξ, then stop and 𝑋𝑣 is an optimal solution. Otherwise, set 𝑣(ξ) = 𝑣(ξ) + 1, add to 

the constraint (3.54), and solve the master problem again. 

 3.3.4 Stochastic program with relatively complete recourse 

In addition to the multi-cut version which improves the computational time of algorithm 

with respect to optimality cuts, it is noted that by adding the additional constraint in first stage and 

altering one our assumption, the algorithm can be improved in terms of computational time. The 

feasibility constraint of type (3.33) is iteratively added to the master problem by solving dual 

subproblem whenever the subproblem is not feasible by using first stage solutions. In other word, 

whenever first-stage decision variable 𝑋(𝑋 ∈ 𝜇1) is not inside the 𝜇, feasibility cut must be added. 

This study shows that, by adding equation ∑ Xii∈I ≥ 1 to the first stage and assuming each supplier 

has infinite capacity to supply, the subproblem is always feasible with respect to every solution of 

first stage. This means that our stochastic program has relatively complete recourse (𝜇1 ⊂ 𝜇2). The 

model is called relatively complete recourse when the second-stage problem is feasible for any 

feasible first-stage solution. This alternative representation significantly improves the computation 

time of algorithm by skipping finding dual of subproblem to generate feasibility cut for master 

problem.  

Let 𝜇1 = {𝑋𝑖, 𝑋𝑗
𝑈, 𝑋𝑗

𝑅 | 𝑋𝑗
𝑈 + 𝑋𝑗

𝑅 ≤ 1, ∑ 𝑋𝑗
𝑅

𝑗∈𝐽 ≥ 1, 𝑋𝑖, 𝑋𝑗
𝑈 , 𝑋𝑗

𝑅 ∈ {0, 1} , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽} 

represents a set of all possible values of 𝑋𝑖, 𝑋𝑗
𝑈 and 𝑋𝑗

𝑅 that make first stage feasible. Let 𝜇2 =

{𝑋𝑖, 𝑋𝑗
𝑈 , 𝑋𝑗

𝑅 |𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (3.21) 𝑡𝑜 (3.31)} be all possible values of 𝑋𝑖, 𝑋𝑗
𝑈 and 𝑋𝑗

𝑅 that make the 
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second stage formulation given by Equation (3.20) feasible. Using Proposition 1, it is shown that 

if at least one supplier is selected then the proposed two stage optimization has relatively complete 

recourse and does not need feasibility cut presented in Equations (3.33). 

Proposition 3.1: If ∑ 𝑋𝑖𝑖∈𝐼 ≥ 1, then the stochastic optimization model present in Equation 

(3.16) has a relatively complete recourse, i.e. 𝜇1 ∩ {𝑋𝑖| ∑ 𝑋𝑖𝑖∈𝐼 ≥ 1} ∈ 𝜇2. 

 

Proof: To prove this proposition, it is required to show that if condition ∑ 𝑋𝑖𝑖∈𝐼 ≥ 1 is 

satisfied then all solutions in the set 𝜇1 are present in the set 𝜇2. 

If ∑ 𝑋𝑖𝑖∈𝐼 ≥ 1, then there exist at least one 𝑋𝑖′ = 1, 𝑖′ ∈ 𝐼. Rewriting Equation (3.27) for 

supplier 𝑖′ and period p as: 

∑ 𝑌𝑖′𝑗𝑝
𝑈 (ξ)

𝑗∈𝐽

+ ∑ 𝑌𝑖′𝑗𝑝
𝑅 (ξ)

𝑗∈𝐽

+ ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑖′𝑐𝑍𝑖′𝑐𝑝(ξ)

𝑐∈𝐶

≤ 𝐾𝑖′
𝑆                                           (3.51) 

If  ∑ 𝐵𝑗𝑐𝑝
𝑈 (ξ)𝑗∈𝐽𝑐

+ ∑ 𝐵𝑗𝑐𝑝
𝑅 (ξ)𝑗∈𝐽𝑐

+ ∑ 𝑍𝑖𝑐𝑝(ξ)𝑖∈𝐼 = 1, 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃, and ∑ 𝑋𝑗
𝑅

𝑗∈𝐽 ≥ 1, and 

Equations (3.22) – (3.26) and Equations (3.28) – (3.31) are satisfied (trivial balance constraints) 

then from Equation (3.51) there exists a supplier 𝑖′  for which either ∑ 𝑌𝑖′𝑗𝑝
𝑈 (ξ)𝑗∈𝐽 ≥ 1 or 

∑ 𝑌𝑖′𝑗𝑝
𝑅 (ξ)𝑗∈𝐽 ≥ 1 or ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑖′𝑐𝑍𝑖′𝑐𝑝(ξ)𝑐∈𝐶 ≥ 1. This suggests that ∑ 𝑌𝑖′𝑗𝑝

𝑈 (ξ)𝑗∈𝐽 +

∑ 𝑌𝑖′𝑗𝑝
𝑅 (ξ)𝑗∈𝐽 + ∑ 𝑎𝐶(ξ)𝑑𝑐𝑝𝑇𝑖′𝑐𝑍𝑖′𝑐𝑝(ξ)𝑐∈𝐶 ≥ 1. Thus, 𝜇1 ∩ {𝑋𝑖| ∑ 𝑋𝑖𝑖∈𝐼 ≥ 1} ∈ 𝜇2. This concludes 

the proof. 

 3.4 Numerical example and computational experiment 

The case study presented in Peng et al. (2011) is adopted to illustrate the decisions from 

the model. As shown in Figure 3.2, the case study includes three levels of supply chain namely 

supplier, transshipment node (distribution center), and customer. By solving the reliable model, 

this research obtains a supply chain network with selected suppliers and distribution centers from 
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a list of potential locations. These models also calculate the volume of products transported 

between all level of supply chain, while minimizing the fixed cost and transportation cost for each 

time period under uncertain disruption and demand. 

 

Figure 3.2  Supply chain design problem (Peng, Snyder, Lim, & Liu, 2011) 

 

The cost of establishing an unreliable facility is determined by a fixed cost plus a variable 

cost which is a function of the population in each node and is denoted by: 𝑓𝑖 𝑜𝑟 𝑗= fixed cost + 

1.7*Demand. It is assumed the fixed demand for each node based on the worst-case scenario. The 

hardening cost used is similar to that of Lim et al. (2010) is calculated as follows: ℎ = (𝑓𝑗
𝑅 −

𝑓𝑗
𝑈 ) = (𝑓𝑗

𝑈 ∗ 10) ∗ 𝑞𝑗. Consequently, if a site incurs more failure probability, the costs of 

establishment would augment to compensate for better reliability. The disruption probability and 

failure occurrence data are assumed independent of each other and are taken from Federal 

Emergency Management Agency (FEMA). Google map is used for calculating distances between 

two sites via the highways. For computing the transportation cost for trucks, the distance is 

multiplied by $1.25. 20 random datasets of different problem sizes ranging from 50 to 500 for 

customers’ demands are generated based on exponential distribution with the mean ranging from 
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2/3 to 2. The L-shape algorithm is coded in Python and CPLEX is used as the solver, executed it 

on a computer with 3.40 GHz processor and 16 GB of RAM.  

 3.4.1 Comparison between single-cut, multi-cut and relatively complete recourse 

model 

In this subsection, the performance of the multi-cut and single-cut L-shape method is 

compared, and it is shown that the use of multi-cut instead of single-cut approach significantly 

improves the efficiency of L-shape algorithm in our case. It is also shown that the performance of 

the multi-cut approach is improved by converting the stochastic model to relatively complete 

recourse model. 

As it is mentioned before, the multi-cut L-shaped algorithm disaggregates the optimality 

cut for all scenario in each iteration into separate cuts which are added individually to master 

problem for each scenario. The idea behind this approach is that by creating more optimality cuts 

in each iteration, the optimal solution might be obtained in less iteration because of having more 

corner points in master problem. However, significant amount of time is required in each iteration 

to generate the additional optimality cuts. Therefore, the time spent to generate the additional 

optimality cuts in terms of decreasing the total time should be less than the time achieved by 

reducing the number of total iterations. Furthermore, by converting model to relatively complete 

recourse, the number of iterations decreases further because of elimination of the feasibility cuts 

from the master problem. 

Table 3.2 presents the comparison of the computational efficiencies between three L-shape 

algorithms for different values of 𝜆 for random demand, and |S| (the total number of scenarios). 

For each instance, the total numbers of iterations, the total number of optimality and feasibility 

cuts added to the master problem, and the solution times are reported for three different 
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approaches. The time restriction of five hours is set for our experiments in such that if the optimal 

solution is not obtained within this time limit, then such a situation is reported as “No Solution 

(NS)” in the column of solution time for each approach. 

Both single and multi-cut algorithms are able to solve our two-stage stochastic problem 

with up to 1000 scenarios without any memory issues. Multi-cut approach also successfully solves 

the problem with up to 16000 scenarios. On the other hand, using the single-cut approach does not 

obtain optimal solution within five hours for the instances with 2000 scenarios. 

Multi-cut algorithm has much better performance than single-cut algorithm in terms of the 

solution time. In average multi-cut perform 11 times better than the single-cut; this rate increases 

up to 13.16 in some instances. Although the multi-cut algorithm produces much more constraints 

in each iteration compared to single-cut, so the time spent for solving each iteration in multi-cut 

approach is higher than single-cut algorithm. In average the time spent on each iteration in multi-

cut is 1.5 times more than single-cut method, but multi-cut obtains optimal solution in much less 

iterations than single-cut. In average the number of iteration for solving the problem by multi-cut 

algorithm is 17 times less than single-cut.  For this problem, single-cut algorithm runs into memory 

issues for the instances with |𝑆| ≥ 1000. When the number of scenarios is 1000, for 𝜆 = 1 the 

single-cut can obtain solution in 4.6 hours which is still 12.43 times more than multi-cut approach. 

Multi-cut algorithm runs into problems for the instances with |𝑆| ≥ 16000. 

 

Table 3.2  Comparison between single-cut, multi-cut and complete recourse methods 

   Single-cut   Multi-cut   Complete recourse  

|S| 𝜆 No. of  

iters 

No. of 

cuts 

Sol. time 

(s) 

No. of  

iters 

No. of 

cuts 

Sol. time 

(s) 

No. of  

iters 

No. of 

cuts 

Sol. 

time (s) 

200 0.5 86 285 3440.7586 5 1000 256.437 4 800 161.566 

200 0.75 86 285 3438.2346 6 1162 307.8393 4 953 193.723 
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200 1 86 285 3474.2285 6 1166 307.3650 4 956 199.262 

200 1.25 86 285 3591.1809 6 1164 298.7630 4 961 208.621 

200 1.5 86 285 3344.3116 5 1000 253.5446 4 958 200.399 

400 0.5 86 485 6697.3933 5 1998 533.6637 4 1850 378.441 

400 0.75 86 485 6774.1908 5 1999 508.5652 4 1917 399.480 

400 1 86 485 6768.9062 5 2000 520.4204 4 1914 393.187 

400 1.25 86 485 6621.4133 5 1999 527.7853 4 1920 402.299 

400 1.5 86 485 6618.9044 5 1997 529.6119 4 1915 397.761 

1000 0.5 86 1085 16668.487 5 4996 1334.043 4 4108 787.311 

1000 0.75 85 1084 16730.439 5 4996 1313.702 4 3980 756.681 

1000 1 86 1085 16530.462 5 4991 1331.475 4 3998 770.811 

1000 1.25 86 1085 17347.315 5 4999 1329.357 4 4108 778.781 

1000 1.5 85 1084 16983.451 5 4994 1302.879 4 4110 790.228 

2000 0.5 NS NS NS 5 9993 2647.595 4 8020 1698.43 

2000 0.75 NS NS NS 5 9990 2662.467 4 8111 1788.82 

2000 1 NS NS NS 5 9983 2690.074 4 7987 1620.57 

2000 1.25 NS NS NS 5 9992 2666.614 4 8100 1799.22 

2000 1.5 NS NS NS 5 9991 2667.583 4 8100 1772.02 

 

By converting our stochastic model to relatively complete recourse, the performance of 

algorithm increase even more in terms of solution time. In average, multi-cut algorithm with 

relatively complete recourse model performs 1.65 times better than the multi-cut without it. The 

relatively complete recourse model also generates less number of constraints because there is no 

need to generate feasibility cuts any more. When the number of scenarios is 16000, for 𝜆 = 1 the 

multi-cut which is not relatively complete recourse can obtain solution in 5.8 hours which is still 

1.45 times more than multi-cut approach with relatively complete recourse model.  

In Figure 3.3, it is illustrated how the solution times are changed across number of scenarios 

for multi-cut, single-cut and relatively complete recourse version when the 𝜆 = 1. It can be clearly 

seen how solution time of single-cut method is sharply increased by growing the number of 

scenarios in compare with other two and how much the multi-cut approach with relatively 
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complete recourse model performs better than multi-cut approach without relatively complete 

recourse model. The variation in number of cuts across number of scenarios for relatively complete 

recourse, multi-cut and single-cut algorithm when the 𝜆 = 1 is shown in Figure 3.4. As you can 

see in this figure, the multi-cut with and without relatively complete recourse model produces 

much more cuts in each scenario compared to single-cut, but multi-cut obtains optimal solution in 

much less iterations than single-cut. 

 
Figure 3.3  Sensitive analysis of different size of scenarios and solution time for different 

methods 

 

Table 3.3 presents the results for the single-cut algorithm without any restricted time for 

|𝑆| = 2000 instances that this algorithm cannot solve it within five hours. Multi-cut algorithm 

obtains optimal solution for all of these instances within 0.75 hours. While it almost takes 10 hours 

for single-cut algorithm to find the optimal solution. 
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Figure 3.4  Sensitive analysis of different size of scenarios and number of cuts for different 

methods. 

 

Table 3.3 The results for the single-cut algorithm without any restricted time for |𝑺| = 𝟐𝟎𝟎𝟎  

   Single-cut  

|S| 𝜆 No. of  iters No. of cuts Sol. Time (s) 

2000 0.5 86 1842 35074.734 

2000 0.75 86 1842 34996.889 

2000 1 86 1842 35005.765 

2000 1.25 86 1842 35114.869 

2000 1.5 86 1842 35246.116 

 

In summary, the multi-cut algorithms perform much better than single-cut approach on 

different instances. On average, the multi-cut algorithm performs better yet for instances with a 

large number of scenarios which cannot be solved within five hours. This results even improve 

more by converting our stochastic model to relatively complete recourse model.  
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 3.4.2 Benefit of considering disruption risk and applying hardening strategy 

In this experiment, this research study the advantages of considering disruption in supply 

chain network design and applying hardening strategy to face with these disruptions. For fulfilling 

this purpose, the supply chain network problem is considered from two viewpoints. At first, the 

problem without any disruption with only one type of distribution center (unreliable distribution 

center) is considered. Then the increasing rate in total cost for all different disruption scenarios is 

calculated due to the transportation cost of customer’s reassignment in this model. In second 

perspective, the total cost for our reliable supply chain model for all those disruption scenarios is 

calculated and compare it with unreliable model. 

In both cases first each problem is solved and save the total cost which includes establishing 

cost and transportation cost. Then the disruption cost of both cases for each scenario takes place 

in the model is calculated in such way the demands loss in failed distribution center will be satisfied 

with their closest safe opened distribution centers with higher transportation cost. The optimal 

costs for designing an unreliable and reliable supply chain network using L-shape algorithm for 

sample size of 100 are $2967844 and $3046548 respectively and they are break down as it is shown 

in Table 3.4. It is obvious that with costing more investment about 50% in establishing facility, 

the total increasing cost for the reliable model is $78704. Thus, the reliable supply chain model 

can be designed with just about 2.8% additional investment more in total cost. 

 

Table 3.4  The results of two-stage stochastic model for both reliable and unreliable cases 

 Unreliable supply chain  model    

Component Number  Facilities Cost of Establishing Transportation Cost Total 

Facility 9 148800 2819044 2967844 

 Reliable supply chain model    

Component Number  Facilities Cost of Establishing Transportation Cost Total 
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Unreliable Facility 5 84950 1635878 - 

Reliable Facility 4 142554 1212316.21 - 

All Facilities 9 227504 2848194.21 3046548 

 

There are numerous disruption scenarios which could take place in the network in fact if 

|𝐽 | denote the number of DCs, then disruption scenarios in DCs would be 2𝐽. Table 5 presents all 

disruption scenarios in our numerical example and calculates the total cost of each scenario for 

both cases as well as the percentage of increase in total cost in the first case (designing supply 

chain network without applying hardening strategy) and compares it with second case cost 

(designing supply chain network without applying hardening strategy). The average of all total 

cost is then calculated for easier comparison. 

 

Table 3.5  Analyzing the total cost of each scenario for unreliable model 

Scenario Which DC is 

disrupted 

Damage cost of 

facility (first 

case) 

Cost of 

reassignment (first 

case) 

Total cost 

(first case) 

percentag

e of 

increase 

1 Chino 17040 3382167 3530967 +18.9% 

2 Phoenix 13710 3031815 3180615 +7.2% 

3 Memphis 19700 3010154 3158954 +6.5% 

4 Dallas 13400 2953044 3101844 +4.6% 

5 Chi & Pho 30750 4592155 4740955 +59.7% 

6 Pho & Mem 33410 3658167 3806967 +28.2% 

7 Pho & Dal 27110 3607167 3755967 +26.5% 

8 Mems & Chi 36740 3297915 3446715 +16.1% 

9 Dal & Chi 30440 3218815 3367615 +13.4% 

10 Dal & Mem 33100 3345439 3378500 +14.8% 

11 Pho & Chi & Mem 50450 4880655 5029455 +69.4% 

12 Pho & Chi & Dal 44150 4887555 5036355 +69.6% 

13 Pho & Mem & Dal 46810 4886643 4933453 +61.9% 
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14 Chi & Mem $ Dal 50140 4887854 4937994 +62.1% 

15 All of DCs 63850 18058800 18122650 +500% 

16 Average of 

scenarios (except 

15) 

- - 3832400 +29.1% 

 

As shown in the Table 3.5, by applying hardening strategy the reliability of the supply 

chain network has notably improved. In this table, it can be observed that all damage costs for all 

scenarios are more than the cost which is spent for making reliable supply chain network. The 

huge damage cost for reassigning the customer is prevented with specific investments in 

establishment facilities. For example, in instance number 14 with 2.8 % increase in total cost for 

applying reliability, we have an expected decrease of 62.1% in total disruption cost. These analyses 

represent that the reliability of the system can be increased by a slight increase in facility cost. 

Comparing total damage cost of each scenario for unreliable model and the cost of making 

reliable supply chain network is illustrated in Figure 3.5 As shown, all costs for all scenarios are 

more than the cost which is spent to make a reliable supply chain network. As illustrated in Figure 

3.5, scenarios 5, 11, 12, 13, and 14 are significant with 59.7%, 69.4%, 69.6%, 61.9%, and 62.1% 

increase in total cost respectively. The penalty costs for reassigning customers in these scenarios 

are huge compared to the cost of making the supply chain network reliable with specified 

investment. 
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Figure 3.5  Comparing total cost of reliable and unreliable models with all scenarios 

 

 3.4.3 Impact of disruption probability and opening fixed cost on number of 

unreliable and reliable distribution centers 

In this part, the impact of changing in disruption probability and fixed opening cost on 

optimal number of reliable and unreliable distribution centers is studied. Disruption probability is 

varied from 0.1 to 0.9 under two different hardening fixed costs in distribution centers. Figure 3.6 

and Figure 3.7 present the results for size of 200 scenarios for these two different fixed costs. As 

you can see in these figures, the number of reliable distribution centers increase as disruption 

probability increases while the number of unreliable distribution centers decrease. In fact, by 

looking at two figures, it can be observed that the number of reliable distribution centers always 

dominate the number of unreliable as disruption probability increases, but as you can see in Figure 

3.7 the optimal number of reliable distribution centers are less to satisfy customers when the fixed 

opening cost also grows. Consequently, the optimal number of unreliable distribution centers drop 
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by increasing in disruption probability and increasing in fixed opening costs result in dropping the 

optimal number of reliable distribution centers. 

 

Figure 3.6  Sensitive analysis of disruption probability and lower opening fixed cost on optimal 

number of unreliable and reliable distribution centers 

 

 

Figure 3.7  Sensitive analysis of disruption probability and higher opening fixed cost on optimal 

number of unreliable and reliable distribution centers 

 

In summary, the main contribution of this study is to formulate a two-stage stochastic 

mixed-integer programming model to design a reliable and efficient supply chain network under 
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uncertain parameters, and to develop an algorithm that can solve large-scale problems efficiently. 

By using numerical experiments, the model can be introduced to larger-sized networks and 

understand the relationship between optimal locations of facilities, disruption probability, and 

transportation costs. The computational results are summarized as follows: 

• The multi-cut algorithms perform significantly better than the single-cut approach for every 

scenario, regardless of size. Although the multi-cut approach produced more cuts in each scenario 

compared to the single-cut, it obtained an optimal solution in fewer iterations than the single-cut 

approach. 

• The result improves even more when converting the stochastic model to a relatively 

complete recourse model. It can be clearly seen how much the multi-cut approach with relatively 

complete recourse model performs better than all other models. 

• These computational results represent how the reliability of the supply chain system can 

be improved by a slight increase in facility cost. 

• It can be observed that under high disruption probability, the number of reliable distribution 

centers increased while the number of unreliable distribution centers decreased. In addition, it is 

clear that by increasing the opening fixed cost of facilities, the optimal number of reliable 

distribution centers decrease to satisfy customers. 

• Increasing the transportation cost results in the model preferring the assignment of reliable 

distribution centers rather than unreliable distribution centers. Because if one of the unreliable 

facilities stops working, customers initially allocated to that facility must be reassigned to other 

operational facilities with very high transportation costs. 
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 3.5 L-shape algorithm application in security-constrained unit commitment 

Apart from commercial applications, this method is also applied in another application by 

Tolooie et al. (2022). In this study, two-stage stochastic security-constrained unit commitment (S-

SCUC) has been used by independent system operators to manage the uncertainty attributed to an 

increasing penetration level of renewable energy. However, computational complexity has been 

widely regarded as a grand challenge in solving large-scale S-SCUC problems. This study 

addressed these issues by applying L-shaped decomposition algorithm. It is mathematically proved 

the S-SCUC problem has relatively complete recourse by leveraging the structural characteristics 

of the problem and the domain knowledge. A computationally efficient initial solution is proposed 

to accelerate the proposed L-shaped decomposition algorithm. Comparative results showed that, 

in the proposed relatively complete recourse L-shaped algorithm, multi-cut with an initial solution 

performs better than its single-cut counterpart with an initial solution and better than the multi-cut 

approach without any initial solution. The multi-cut algorithm with an initial solution is 

significantly superior to the single-cut approach without any initial solution. By using initial 

solutions in the decomposition algorithm, a significant number of cuts required to add to the master 

problem based on the L-shaped decomposition algorithm are eliminated. This improved algorithm 

reduced a significant number of linear programming problems that have to be solved in the second 

stage for generating Bender cuts, which leaded to improved running times. 

 3.6 Conclusion 

In this research, the reliable facility network design problem under uncertainty conditions 

in the presence of customer demand and disruptions at distribution centers was analyzed. The 

problem was formulated as a two-stage stochastic optimization problem and used the L-shape 

decomposition approach to solve it. It was also theoretically proved that the proposed stochastic 
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formulation has a relatively complete recourse structure when at least one supplier is selected. This 

improves the performance of the L-shape algorithm by significantly reducing the total number 

iterations in the L-shape decomposition due to absence of feasibility cuts.  To illustrate the 

applicability of the model and the improved algorithm, a case study was presented based on 

empirical data sourced from Peng et al. (2011), and those results were then discussed.  

In summary, this study potentially offers a number of significant contributions to the 

literature, and the supply chain industry in general. The main contribution of this study is that, by 

developing a two-stage stochastic model for reliable supply chain network design with stochastic 

parameters in multi-time periods and solving it, the relationships between the facility decisions, 

such as facility location, product assignment and key factors such as transportation cost, hardening 

investment and disruption probability, were understood. It was observed that under high disruption 

probability, increasing the transportation cost results in the model preferring the assignment of 

reliable distribution centers rather than unreliable distribution centers. Furthermore, an efficient 

solution method was developed for the optimization problem based on the multi-cut L-shaped 

decomposition method, which allowed us to solve real large-scale problems in shorter time frames. 

It is shown that multi-cut algorithms perform much better than single-cut algorithms in different 

instances, and that these results can be improved by converting our model to a relatively complete 

recourse model. 
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Chapter 4 - Designing Reliable Supply Chain Network Using Drones 

in Last-Mile Delivery  

Chapter 4 is based on the manuscript “Heuristic approach for optimizing reliable supply 

chain network using drones in last-mile delivery under uncertainty” Submitted to International 

Journal of System Assurance Engineering and Management. 

 4.1 Introduction 

The rise of e-commerce and the increase in customer inclination towards online shopping 

makes package delivery a significant function of logistics businesses. Traditionally, packages are 

delivered to the customer using land transportation (trucks, cars, and motorcycles). However, these 

means of transportation are considered one of the most expensive, less efficient, and most polluting 

entities of the logistics chain (Gevaers, Van de Vo- orde, & Vanelslander, 2014). Due to these 

issues and infrastructure limitations in remote areas, using unmanned aerial vehicles such as drones 

for package delivery in last-mile logistics is becoming an increasingly attractive alternative 

transportation mode. Drones have seen tremendous growth in several fields including surveillance, 

healthcare, scientific research, photography, emergency response, and wireless communications 

(Finn, & Wright, 2012; Clarke, 2014; Sandbrook, 2015). Drones have become a promising solution 

for delivering packages in last-mile logistics because drone technology is efficient in travel, more 

reliable, and has better energy consumption. Some big companies such as Amazon, DHL, and 

Google have used drones as a means to deliver packages and merchandise items to their customers. 

Amazon is considering a premium delivery service called Amazon Prime Air, which rapidly 

delivers packages within 30 minutes of a customer ordering online (Hong, Kuby, & Murray, 2018). 

There are several advantages of using drones in package deliver. Firstly, drone delivery is much 

faster than land transportation since drones do not encounter congestion and road traffic jams. 
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Secondly, drones are not restricted by specific paths, like roads, making them applicable to deliver 

parcels to areas that difficult to access by other methods.  Although using drones to deliver 

packages has many advantages over traditional land transportation delivery, there are several 

significant obstacles in technical aspects and performance capabilities to overcome before drones 

can have widespread commercial adoption. One of the substantial obstacles in using drones in the 

commercial sector is the limited flight coverage since drones are battery-operated devices with a 

limited-service range. Currently, a drone’s coverage is limited to a radius of 20 miles, which 

reduces access for a significant segment of customers, leading to the use of land transportation 

delivery processes (Scott, & Scott, 2017). Several logistical strategies can address the range 

limitation of a drone delivery system. A multi-modal approach would combine drones with trucks, 

using the advantages of one to offset the disadvantages of the other by launching drones from 

trucks for the “last-mile” only (Murray, & Chu, 2015; Agatz, Bouman, & Schmidt, 2018; Ha et 

al., 2018). Another technique is the installation of some stations within the existing logistics 

infrastructure so that drones can recharge their batteries in these stations after they run out of power 

(Sundar, & Rathinam, 2013; Dorling et al., 2016; Yu, Budhiraja, & Tokekar, 2018). To develop a 

drone delivery service by installing charging stations within the existing logistics network, a 

coverage location model is necessary. A location model for recharging station system design must 

consider the delivery service coverage of recharging stations based on the flight range of drones 

in continuous two-dimensional space under different conditions, such as flying with or without the 

package. This research aims to construct a feasible delivery network consisting of warehouses and 

recharging stations. 

In recent years, supply chain systems have become more complex and dynamic with wide 

geographical coverage, exposing supply chains to a broad range of uncertainties, some of which 
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may cause disruptions (Rezapour, Farahani, & Pourakbar, 2017). Accidental disruption due to 

large-scale natural disasters, manufacturing fires, terrorist attacks, wide-spread electrical 

shutdowns, and financial or political tensions are among several other uncertainties that are likely 

to occur (Govindan, Fattahi, & Keyvanshokooh, 2017). The recent example of the Colonial 

pipeline cyberattack or the widespread transmission of the novel COVID-19 developed grave 

uncertainties in the global supply chain. Supply chain disruptions have been challenging for many 

companies worldwide (Rezapour, Farahani, & Pourakbar, 2017). A disruption at one level of a 

supply chain can significantly impact the entire chain: for instance, any failure of a distribution 

center could cost company additional transportation costs in order to satisfy customer demand 

(Tolooie, Maity, & Sinha, 2020). Hendricks and Singhal (2003) reported on some of the severe 

impacts of supply chain disruptions on market share, which in some cases fell lower than 11% 

from just the announcement of disruptions alone. Adding recharging station to supply chain could 

increase the complexity of the network even more, and any disruptions could lead enormous 

financial impacts, and in some cases, cause a permanent loss of market share. For instance, in 

Figure 4.1, failure of one recharging station in the last part of the network could cut the network 

which results in losing a lot of orders or cost a lot of money to use backorder to satisfy those orders. 

 
Figure 4.1  Supply chain network under using drones in last-mile delivery under disruption 
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The uncertainty of natural disasters (occurrence and intensity) and the amount of demand 

during each time period has a significant effect on designing the supply chain network using drones 

in last-mile delivery. To provide a well-designed and reliable network, Lim et al. (2010)’s 

reliability concept is integrated in our model formulation by consider two types of facilities: 

unreliable facilities (influenced by random disruptions) and reliable facilities (resistant to random 

disruptions due to additional investment). The concept is known as a hardening strategy that helps 

to hedge against the risk of disruptions in the facility reliability problem. Our model also extends 

the capacitated facility location problem by making decisions regarding the selection of a supplier, 

the locations of reliable and unreliable distribution centers, the number of drones in each 

distribution centers, the locations of reliable and unreliable recharging stations, the allocation of 

suppliers to customers, and the amount of products channeled through the network in a multi-time 

period under different types of scenarios for stochastic demand and disruptions. 

The objective of this research is to find the optimal number and the locations of suppliers, 

distribution centers, charging stations, and number of drones in distribution center in order to 

minimize the total expected transportation cost and drone’s utilization cost for the entire supply 

chain network across all future scenarios. The stochastic supply chain network problem is normally 

expressed as mixed-integer linear programming models in most studies (Döyen, Aras, & 

Barbarosoğlu, 2012; Pradhananga et al., 2016; Manopiniwes, & Irohara, 2017; Alem, Clark, & 

Moreno, 2016; Mohammadi, Ghomi, & Jolai, 2016). Therefore, our problem is formulated as a 

mixed-integer programming model in order to design a reliable and efficient supply chain network 

design under the uncertainty of demand and disruptions. Since, most of the variables and 

constraints are scenario-dependent, their numbers grow rapidly as the number of scenarios 

increases. As a result of this growth, standard solutions cannot be efficiently applied to solve this 



72 

kind of problem. Additionally, facility location problem is NP-hard problem which leads us to 

apply heuristic algorithm to tackle such models more efficiently. Many other studies presented 

meta-heuristic or heuristic algorithms in this area (Drezner, 1987; Shen, Zhan, & Zhang, 2011; 

Berman, Krass, & Menezes, 2007; Govindan, Jafarian, & Nourbakhsh, 2015; Cardona-Valdés, 

Álvarez, & Pacheco, 2014; Pan & Nagi, 2010; Fattahi et al., 2015). Among several developed 

heuristic-based approaches for solving this kind of problem, the genetic algorithm is one of the 

more powerful techniques for solving large scale problems with complicated variables. Due to the 

computational complexity of the scenario-based mixed-integer model, this method is modified by 

considering each scenario independently in one of the steps of the algorithm to significantly 

improve the computational time need to find the solutions. The computational efficiency of 

improved algorithm is also presented. 

There are three main contributions of this study: firstly, stochasticity in a multi-period 

supply chain network design problem including charging station is examined to extend the 

coverage of drones in last-mile logistics, where the disaster and the demand are random. The 

proposed stochastic model is unique because of two conditions: (i) it simultaneously considers 

delivery service coverage of recharging stations and distribution centers based on the flight range 

of drones under different conditions, capacities for supply and distribution centers and drone’s 

utilization cost based on calculating Euclidian shortest path distance under demand and disaster 

uncertainty in multiple time periods. (ii) a combination of the two types of strategies is adopted 

simultaneously to design a reliable network using charging station as one of the levels under two 

different uncertain parameters in multi-time periods. The reassignment strategies is considered 

once a disruption has happened in facilities and hardening strategies when there are no disruptions 

in the system. The proposed problem is formulated as a stochastic mixed-integer programming 



73 

model to design an efficient supply chain network. Secondly, the heuristic algorithm is improved 

by considering a novel method to generate independent scenarios to create a new population. This 

significantly improves the efficiency of the algorithm due to the decrease in number of infeasible 

solutions and allows it to efficiently solve real large-scale problems. Thirdly, using numerical 

experiments, it is shown the relationship between the disruption probability, cost needed to make 

reliable distribution center and charging station and drone’s utilization cost with the number of 

drones in each distribution center, the number and location of reliable and unreliable distribution 

center and charging station. Contrary to popular belief, it is observed that by increasing disruption 

probability, utilization costs of drones and fix cost of establishing reliable and unreliable facilities, 

the model prefers to lose the demand and pay the penalty cost instead of buying drones and 

establishing more reliable facilities. 

The rest of this chapter is organized as follows: Section 4.2 presents the formulation of a 

stochastic mixed-integer programming model for designing reliable supply chain network under 

stochastic demand and disruption. In Section 4.3, the genetic algorithm approach and extensions 

are described. Section 4.4 provides numerical examples to clarify the applicability and efficiency 

of the model and problem-solving approach. Finally, Section 4.5 includes concluding remarks and 

further discussion.  

 4.2 Reliable supply chain network including charging station 

This research studies models for reliable supply chain network problems under stochastic 

demands and disruption probability for distribution centers and charging stations. The main 

decision is to determine a set of locations from potential nodes for distribution centers and charging 

stations that are robust under disruptions. Any failure of a distribution center or charging station 

could cost the company additional transportation costs to reassign the customer demand. This is 
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best illustrated in Figure 4.2, where the failure of a distribution center costs the company additional 

transportation costs to satisfy the demand of customers by providing another most available facility 

as a penalty.  

 

Figure 4.2  Supply chain network under disruption 

 

Charging stations are introduced within the existing logistics to extend the flight range of 

drone service area. A feasible delivery network consists of the potential locations for distribution 

centers and charging stations that are covered by calculating the flight range of drones under 

various conditions. The Euclidean distances determine the set of potential nodes that can be 

covered by each facility by calculating the maximum coverage range of that facility. Three factors 

are considered to find this coverage range. First, drones, like all vehicles, can be recharged as many 

times as needed to reach their destination. If the customer destination is not within the coverage 

range of a distribution center or charging station, then the drone must be refueled at a station within 

the facility’s coverage range. Second, in the last chain of network, it is not enough to simply arrive 

at the customer’s location within the maximum flying range. A drone must be able to return to a 
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station or the distribution center after delivery of its product without exceeding its remaining fuel 

range. A third factor is that once the parcel is delivered to customer, the weight of the drone 

decreases which results in increasing the flight range of drones. Thus, delivery drones do not need 

to arrive at their destination with at least 50% state of charge to return to the last station, as assumed 

in standard flow-refueling approaches, because the return trip will use less fuel. It is assumed that 

the fully loaded trip could require as much as twice the energy for an empty return trip. Under 

these assumptions, each drone needs to keep at least 1/3 state of charge fuel level for the return 

trip from the customer. Thus, as it is illustrated in Figure 4.3, the delivery flight range for all step 

except final step (before customer) would be within the maximum coverage range, but this range 

would be 2/3 of the normal max-payload flight range for the final delivery step. 

 

 

Figure 4.3  Coverage range of each facility 

 

The proposed supply chain consists of four levels: suppliers, distribution centers, charging 

stations and customer. The customer locations are constant and certain. Each distribution center 

𝑗 (𝑗 ∈ 𝐽) and charging station 𝑙 (𝐿 ∈ 𝐽) has either an unreliable facility with fixed cost of 𝑓𝑗
𝑈𝐷 and 

𝑓𝑙
𝑈𝐿 which may fail with probability 𝑞𝑗 (0 < 𝑞𝑗 < 1) or a reliable facility with fixed cost of 
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𝑓𝑗
𝑅𝐷 𝑎𝑛𝑑 𝑓𝑙

𝐿𝑅 (𝑓𝑗
𝑅 ≥ 𝑓𝑗

𝑈) which does not fail. These potential sites are definite and discrete. As 

Lim et al. (2010) examined, unreliable center hardening cost is presented by a linear function based 

on failure probability which is calculated by this equation: h= (𝑓𝑗
𝑅𝐷 - 𝑓𝑗

𝑈𝐷 ) = (𝑓𝑗
𝑈𝐷*10)*𝑞𝑗. 

Consequently, if a site incurs more failure probability, the costs of establishment would augment 

to compensate for more reliability. Another assumption in the formulated problem is that a single-

product that can just move between two different network levels except the charging station part 

which can move between two charging station. It is also assumed that each customer node 𝑐(𝑐 ∈

𝐶) is completely fulfilled either by distribution centers directly or through the charging stations or 

by suppliers with higher transportation cost as a penalty of not satisfying with distribution center 

in each period. The objective here is to minimize the fixed cost of facilities, cost of buying drones 

in each facility, depreciation cost and expected transportation cost between facilities by locating a 

suitable number of reliable facilities among the unreliable facilities, and also to specify the flow 

volume of products between the facilities within each time period. The demand 𝑑𝑐𝑝 of customer 

𝑐 (𝑐 ∈ 𝐶) in period 𝑝 (𝑝 ∈ 𝑃) is random with a known distribution. The disruptions occur only in 

charging stations and distribution centers with a defined disruption probability, and these 

probabilities and failure occurrence are assumed independent of each other, i.e. when one facility 

fails, it does not have any negative influence on operating other facilities. 

A deterministic equivalent formulation (also known as an extensive form) is derived by 

extending the capacitated facility location problem for the circumstance which a finite set of 

demand and disaster scenarios can capture uncertainties in the random parameters. 
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 4.2.1 Proposed extensive form model 

Table 4.1 presents the necessary sets, parameters, and decision variables. The multi-period 

capacitated supply chain network under stochastic demand and random disaster can be formulated 

as mixed-integer programming in extensive form as follows. 

 

Table 4.1  sets, parameters and decision variables for Reliable Supply Chain Model 

Sets   

𝐼 The set of candidate sites for suppliers  

𝐽 The set of candidate sites for distribution centers  

𝐿 The set of candidate sites for Charging Station  

𝐶 The set of constant customers  

𝐽𝑐 The set of candidate sites for distribution centers within delivery range 𝑓𝑑 of customer c (∀𝑐 ∈ 𝐶)  

𝐿𝑐  The set of candidate sites for Charging stations within delivery range 𝑓𝑑 of customer c (∀𝑐 ∈ 𝐶)  

𝐿𝑙 The set of candidate sites for Charging stations within Max-payload range 𝑓𝑝 of Charging station l 

(∀𝑙 ∈ 𝐿) 

 

𝐽𝑙 The set of candidate sites for distribution centers within Max-payload range 𝑓𝑝 of charging station l 

(∀𝑙 ∈ 𝐿) 

 

𝑃 The set of time periods  

𝑆𝑑
𝐶 The set of scenarios for demand  

𝑆𝑓
𝐷 The set of plausible scenarios for disruptions in distribution centers  

𝑆ℎ
𝐿 The set of plausible scenarios for disruptions in charging stations  

Parameters   

𝑓𝑖 Fixed cost of established supply nodes 𝑖,                 ∀𝑖 ∈ 𝐼 

𝑓𝑗
𝑈𝐷 Fixed cost of established unreliable distribution nodes 𝑗,         ∀𝑗 ∈ 𝐽 

𝑓𝑗
𝑅𝐷 Fixed cost of established reliable distribution nodes 𝑗,        ∀𝑗 ∈ 𝐽 

𝑓𝑙
𝑈𝐿 Fixed cost of established unreliable charging station l,    ∀𝑙 ∈ 𝐿 

𝑓𝑙
𝑅𝐿 Fixed cost of established unreliable charging station l,     ∀𝑙 ∈ 𝐿 

𝐶𝑑 Price of each drone,  

𝐶𝑢 Usage cost of drones,  

𝐸𝑗𝑙
𝐷𝐿 ESP distance from distribution center 𝑗 to charging station 𝑙,          ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 

𝐸𝑗𝑐
𝐷𝐶  ESP distance from distribution center 𝑗 to customer 𝑐,                    ∀𝑗 ∈ 𝐽, ∀𝑐 ∈ 𝐶 

𝐸𝑙𝑐
𝐿𝐶  ESP distance from charging station 𝑙 to customer 𝑐,                       ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶 
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𝐸𝑙𝑙′
𝐿𝐿 ESP distance from charging station 𝑙 to charging station 𝑙′ where 𝑙 ≠ 𝑙′,  

𝑇𝑖𝑗
𝑆𝐷 Transportation cost from supplier 𝑖 to distribution center 𝑗,                            ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 

𝑇𝑗𝑐
𝐷𝐶 Transportation cost from distribution center 𝑗 to customer 𝑐,                         ∀𝑗 ∈ 𝐽, ∀𝑐 ∈ 𝐶 

𝑇𝑗𝑙
𝐷𝐿 Transportation cost from distribution center 𝑗 to charging station 𝑙,              ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 

𝑇𝑙𝑐
𝐿𝐶  Transportation cost from charging station 𝑙 to customer 𝑐,                           ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶 

𝑇𝑙𝑙′
𝐿𝐿 Transportation cost from charging station 𝑙 to charging station 𝑙′ where 𝑙 ≠ 𝑙′, ∀𝑙 ∈ 𝐿, ∀𝑙′ ∈ 𝐿 

𝑇𝑖𝑐
𝑆𝐶  Transportation cost from supplier 𝑖 to customer 𝑐,                                        ∀𝑖 ∈ 𝐼, ∀𝑐 ∈ 𝐶 

𝑑𝑐𝑝 Demand of customer 𝑐 in each period 𝑝,                                                ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃 

𝐾𝑖
𝑆 Capacity at supplier 𝑖,                                                                                           ∀𝑖 ∈ 𝐼 

𝐾𝑗
𝐷 Capacity at distribution center 𝑗,                                                                           ∀𝑗 ∈ 𝐽 

𝑞𝑑
𝐶 Probability of a demand scenario 𝑑,                                                                      ∀𝑑 ∈ 𝑆𝑑

𝐶 

𝑞𝑓
𝐷 Probability of a disruption scenario 𝑓 for distribution centers                           ∀𝑓 ∈ 𝑆𝑓

𝐷 

𝑞ℎ
𝐿 Probability of a disruption scenario ℎ for charging stations                              ∀ℎ ∈ 𝑆ℎ

𝐿 

𝑎𝑗𝑓
𝐷  0–1 indicated parameter if facility 𝑗 is included in scenario 𝑓,                 ∀𝑗 ∈ 𝐽, ∀𝑓 ∈ 𝑆𝑓

𝐷 

𝑎𝑙ℎ
𝐿  0–1 indicated parameter if site 𝑙 is included in scenario ℎ,                      ∀𝑙 ∈ 𝐿, ∀ℎ ∈ 𝑆ℎ

𝐿 

𝑎𝑑
𝐶  Percentage variation in demand for each scenario 𝑑,                                             𝑑 ∈ 𝑆𝑑

𝐶 

Binary Decision variables   

𝑋𝑖 {
1 if supplier  𝑖 is established

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑋𝑗
𝑈𝐷 

{
1 𝑖𝑓 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑗 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑋𝑗
𝑅𝐷 

{
1 𝑖𝑓 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑗 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑋𝑙
𝑈𝐿 

{
1 𝑖𝑓 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑙 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑋𝑙
𝑅𝐿 

{
1 𝑖𝑓 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑙 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Continuous Decision variables   

𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑈𝐷𝐶  The percentage of demand sent from unreliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) to customer 𝑐(𝑐 ∈ 𝐶) in 

each period 𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈

𝑆ℎ
𝐿). 

 

𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑅𝐷𝐶  The percentage of demand sent from reliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) to customer 𝑐(𝑐 ∈ 𝐶) in 

each period 𝑝(𝑝 ∈ 𝑃), demand scenario 𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈

𝑆ℎ
𝐿). 

 

𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝐶  The percentage of demand sent from unreliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) to customer 𝑐(𝑐 ∈ 𝐶) in 

each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈

𝑆ℎ
𝐿). 
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𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝐶  The percentage of demand sent from reliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) to customer 𝑐(𝑐 ∈ 𝐶) in each 

period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑈𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from unreliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) 

to unreliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and 

disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓
𝐷) and ℎ(ℎ ∈ 𝑆ℎ

𝐿). 

 

𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑅𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from unreliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) 

to reliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and 

disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓
𝐷) and ℎ(ℎ ∈ 𝑆ℎ

𝐿). 

 

𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑈𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from reliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) to 

unreliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and 

disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓
𝐷) and ℎ(ℎ ∈ 𝑆ℎ

𝐿). 

 

𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑅𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from reliable distribution center 𝑗(𝑗 ∈ 𝐽𝑐) to 

reliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and 

disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓
𝐷) and ℎ(ℎ ∈ 𝑆ℎ

𝐿). 

 

𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑈𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from unreliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) to 

unreliable charging station 𝑙′(𝑙′ ∈ 𝐿𝑐) where 𝑙 ≠ 𝑙′ in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈

𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑅𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from unreliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) to 

reliable charging station 𝑙′(𝑙′ ∈ 𝐿𝑐) where 𝑙 ≠ 𝑙′ in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈

𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑈𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from reliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) to 

unreliable charging station 𝑙′(𝑙′ ∈ 𝐿𝑐) where 𝑙 ≠ 𝑙′ in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈

𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑅𝐿  The percentage of demand for customer 𝑐(𝑐 ∈ 𝐶) sent from reliable charging station 𝑙(𝑙 ∈ 𝐿𝑐) to 

reliable charging station 𝑙′(𝑙′ ∈ 𝐿𝑐) where 𝑙 ≠ 𝑙′ in each period 𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈

𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝑁𝑗  Total number of drones in each distribution center 𝑗(𝑗 ∈ 𝐽).  

𝑈𝑝𝑑ℎ𝑓
𝑑  Aggregate utilization of drones (total distance travelled by drones) in each period 𝑝(𝑝 ∈ 𝑃), 

demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝑍𝑖𝑐𝑝𝑑ℎ𝑓 The percentage of demand sent from supplier 𝑖(𝑖 ∈ 𝐼) to customer 𝑐(𝑐 ∈ 𝐶) in period 𝑝(𝑝 ∈ 𝑃), 

demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑈  The amount of supply sent from supplier 𝑖(𝑖 ∈ 𝐼) to unreliable distribution center 𝑗(𝑗 ∈ 𝐽) in period 

𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 

 

𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑅  The amount of supply sent from supplier 𝑖(𝑖 ∈ 𝐼) to reliable distribution center 𝑗(𝑗 ∈ 𝐽) in period 

𝑝(𝑝 ∈ 𝑃), demand scenario  𝑑(𝑑 ∈ 𝑆𝑑
𝐶), and disruption scenarios 𝑓(𝑓 ∈ 𝑆𝑓

𝐷) and ℎ(ℎ ∈ 𝑆ℎ
𝐿). 
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𝑀𝑖𝑛   ∑ 𝑓𝑖𝑋𝑖

𝑖∈𝐼

+ ∑ 𝑓𝑗
𝑈𝐷𝑋𝑗

𝑈𝐷

𝑗∈𝐽

+ ∑ 𝑓𝑗
𝑅𝐷𝑋𝑗

𝑅𝐷

𝑗∈𝑗

+ ∑ 𝑓𝑙
𝑈𝐿𝑋𝑙

𝑈𝐿

𝑙∈𝐿

+ ∑ 𝑓𝑙
𝑅𝐿𝑋𝑙

𝑅𝐿

𝑙∈𝐿

+ ∑ 𝐶𝑑𝑁𝑗

𝑗∈𝐽

+ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝐶𝑢𝑈𝑝𝑑ℎ𝑓

𝑑

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃

 

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑗𝑐
𝐷𝐶𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑈𝐷𝐶

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑗∈𝐽

 

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑗𝑐
𝐷𝐶𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑅𝐷𝐶

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑗∈𝐽

 

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑙𝑐
𝐿𝐶𝐵𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐿𝐶

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙∈𝐿

 

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑙𝑐
𝐿𝐶𝐵𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐿𝐶

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙∈𝐿

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑗𝑙
𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑈𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑗𝑙
𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑅𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑗𝑙
𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑈𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑗𝑙
𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑅𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑙𝑙′
𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓

𝑈𝐿𝑈𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑙𝑙′
𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓

𝑈𝐿𝑅𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑙𝑙′
𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓

𝑅𝐿𝑈𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑙𝑙′
𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓

𝑅𝐿𝑅𝐿

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑇𝑖𝑗

𝑆𝐶𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑈

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼

 

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑇𝑖𝑗

𝑆𝐶𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑅

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑗∈𝐽𝑖∈𝐼
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+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑞𝑑
𝐶𝑞ℎ

𝐿𝑞𝑓
𝐷𝑎𝑑

𝐶𝑑𝑐𝑝𝑇𝑖𝑐
𝑆𝐶𝑍𝑖𝑐𝑝𝑑ℎ𝑓

ℎ∈𝑆ℎ
𝐿𝑓∈𝑆𝑓

𝐷𝑑∈𝑆𝑑
𝐶𝑝∈𝑃𝑐∈𝐶𝑖∈𝐼

                    (4.1) 

 

Subject to: 

 

𝑋𝑗
𝑈𝐷 + 𝑋𝑗

𝑅𝐷 ≤ 1, ∀𝑗 ∈ 𝐽 (4.2) 

𝑋𝑙
𝑈𝐿 + 𝑋𝑙

𝑅𝐿 ≤ 1, ∀𝑙 ∈ 𝐿 (4.3) 

∑ 𝑋𝑗
𝑅

𝑗∈𝐽

≥ 1,  (4.4) 

∑ 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑈𝐷𝐶

𝑗∈𝐽𝑐

+ ∑ 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑅𝐷𝐶

𝑗∈𝐽𝑐

+ ∑ 𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝐶

𝑙∈𝐿𝑐

 

+ ∑ 𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝐶

𝑙∈𝐿𝑐

+ ∑ 𝑍𝑖𝑐𝑝𝑑ℎ𝑓

𝑖∈𝐼

= 1, 

 

 

∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 ,  

∀𝑓 ∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

 

 

 

(4.5) 

∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑈𝐿

𝑙′∈𝐿𝑙

+ ∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑅𝐿

𝑙′∈𝐿𝑙

+ 

𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝐶 = ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑈𝐿

𝑗∈𝐽𝑙

+ ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑈𝐿

𝑗∈𝐽𝑙

 

+ ∑ 𝐵𝑙′𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑈𝐿

𝑙′∈𝐿𝑙

+ ∑ 𝐵𝑙′𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑈𝐿

𝑙′∈𝐿𝑙

 

 

 

∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

 

 

 

(4.6) 

∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑈𝐿

𝑙′∈𝐿𝑙

+ ∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑅𝐿

𝑙′∈𝐿𝑙

+ 

𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝐶 = ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑅𝐿

𝑗∈𝐽𝑙

+ ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑅𝐿

𝑗∈𝐽𝑙

 

+ ∑ 𝐵𝑙′𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑅𝐿

𝑙′∈𝐿𝑙

+ ∑ 𝐵𝑙′𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑅𝐿

𝑙′∈𝐿𝑙

 

 

 

∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

 

 

 

(4.7) 

∑ ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑈𝐷𝐶

𝑐∈𝐶

≤ 𝑀 ∗ 𝑋𝑗
𝑈𝐷𝑎𝑗𝑓

𝐷 , 

∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

(4.8) 

∑ ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑅𝐷𝐶

𝑐∈𝐶

≤ 𝑀 ∗ 𝑋𝑗
𝑅𝐷𝑎𝑗𝑓

𝐷 , 

∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

(4.9) 
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∑ ∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑈𝐿

𝑐∈𝐶𝑙′∈𝐿

+ ∑ ∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑅𝐿

𝑐∈𝐶𝑙′∈𝐿

+ ∑ 𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝐶

𝑐∈𝐶

≤ 𝑀 ∗ 𝑋𝑙
𝑈𝐿𝑎𝑙ℎ

𝐿 , 

∀𝑙 ∈ 𝐿, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

(4.10) 

∑ ∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑈𝐿

𝑐∈𝐶𝑙′∈𝐿

+ ∑ ∑ 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑅𝐿

𝑐∈𝐶𝑙′∈𝐿

+ ∑ 𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝐶

𝑐∈𝐶

≤ 𝑀 ∗ 𝑋𝑙
𝑅𝐿𝑎𝑙ℎ

𝐿 , 

∀𝑙 ∈ 𝐿, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

(4.11) 

∑ 𝑍𝑖𝑐𝑝𝑑ℎ𝑓

𝑐∈𝐶

≤ 𝑀 ∗ 𝑋𝑖, 
∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃,  

∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , ∀ℎ ∈ 𝑆ℎ
𝐿 

(4.12) 

𝑁𝑗 ≥ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑈𝐷𝐶

𝑐∈𝐶

+ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑅𝐷𝐶

𝑐∈𝐶

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿

, 

 

 

 

 

∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓

∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

 

 

 

 

 

(4.13) 

𝑈𝑝𝑑ℎ𝑓
𝑑 ≥ ∑ ∑ 𝑎𝑑

𝐶𝑑𝑐𝑝𝐸𝑗𝑐
𝐷𝐶𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑈𝐷𝐶

𝑐∈𝐶𝑗∈𝐽

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑗𝑐

𝐷𝐶𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑅𝐷𝐶

𝑐∈𝐶𝑗∈𝐽

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑗𝑙

𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑗𝑙

𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑗𝑙

𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑗𝑙

𝐷𝐿𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿𝑗∈𝐽

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑙𝑙′

𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑈𝐿

𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑙𝑙′

𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑅𝐿

𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿
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+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑙𝑙′

𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑈𝐿

𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑙𝑙′

𝐿𝐿𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑅𝐿

𝑐∈𝐶𝑙′∈𝐿𝑙∈𝐿

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑙𝑐

𝐿𝐶𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝐶

𝑐∈𝐶𝑙∈𝐿

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐸𝑙𝑐

𝐿𝐶𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝐶

𝑐∈𝐶𝑙∈𝐿

, 

 

 

 

 

 

∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓

∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

 

 

 

 

 

 

(4.14) 

∑ 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑈

𝑖∈𝐼

= ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑈𝐷𝐶

𝑐∈𝐶

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿

, 

 

 

∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 ,  

∀𝑓 ∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

 

 

 

(4.15) 

∑ 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑅

𝑖∈𝐼

= ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑅𝐷𝐶

𝑐∈𝐶

 

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑈𝐿

𝑐∈𝐶𝑙∈𝐿

+ ∑ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑅𝐿

𝑐∈𝐶𝑙∈𝐿

, 

 

 

∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 ,  

∀𝑓 ∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

 

 

 

(4.16) 

∑ 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑈

𝑗∈𝐽

+ ∑ 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑅

𝑗∈𝐽

+ ∑ 𝑎𝑑
𝐶𝑑𝑐𝑝𝑍𝑖𝑐𝑝𝑑ℎ𝑓

𝑐∈𝐶

≤ 𝑋𝑖𝐾𝑖
𝑆, 

 

∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 ,  

∀𝑓 ∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

 

 

(4.17) 

∑ 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑈

𝑖∈𝐼

≤ 𝐾𝑗
𝐷 , ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑

𝐶 ,  

∀𝑓 ∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

(4.18) 

∑ 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑅

𝑖∈𝐼

≤ 𝐾𝑗
𝐷 , ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑

𝐶 ,  

∀𝑓 ∈ 𝑆𝑓
𝐷 , ∀ℎ ∈ 𝑆ℎ

𝐿 

(4.19) 

𝑋𝑖, 𝑋𝑗
𝑈𝐷 , 𝑋𝑗

𝑅𝐷 𝑋𝑙
𝑈𝐿 , 𝑋𝑙

𝑅𝐿 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 (4.20) 

𝑁𝑗 , 𝑈𝑝𝑑ℎ𝑓
𝑑 , 𝐵𝑗𝑐𝑝𝑑ℎ𝑓

𝑈𝐷𝐶 , 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑅𝐷𝐶 , 𝐵𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐿𝐶 , 𝐵𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝐶 , 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑈𝐽𝑈𝐿 ,  

𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑈𝐽𝑅𝐿 , 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓

𝑅𝐽𝑈𝐿 , 𝐵𝑗𝑙𝑐𝑝𝑑ℎ𝑓
𝑅𝐽𝑅𝐿 , 𝑌𝑖𝑗𝑝𝑑ℎ𝑓

𝑈 , 𝑌𝑖𝑗𝑝𝑑ℎ𝑓
𝑅 , 𝑍𝑖𝑐𝑝𝑑ℎ𝑓 ,  

𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑈𝐿𝑈𝐿 , 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓

𝑈𝐿𝑅𝐿 , 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓
𝑅𝐿𝑈𝐿 , 𝐵𝑙𝑙′𝑐𝑝𝑑ℎ𝑓

𝑅𝐿𝑅𝐿 ≥ 0, 

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑐

∈ 𝐶,  

∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝑆𝑑
𝐶 , ∀𝑓 ∈ 𝑆𝑓

𝐷 , 

∀ℎ ∈ 𝑆ℎ
𝐿 , ∀𝑙′ ∈ 𝐿 

 

 

(4.21) 

 



84 

Equation (4.1) is the objective function and consists of twenty-two terms. The first five are 

the fixed costs of establishing supply facilities, unreliable distribution centers, reliable distribution 

centers, unreliable charging station, and reliable charging station, respectively. The cost of buying 

drones and usage of each one is calculated by sixth and seventh terms. The transportation cost 

from each node to others over all plausible scenarios and all periods is calculated by terms eight 

to nineteen. The product transportation cost from supplier 𝑖 (𝑖 ∈ 𝐼) to unreliable or reliable 

distribution center 𝑗 (𝑗 ∈ 𝐽) is calculated by the 20 and 21 terms. The last term calculates the 

transportation cost from supplier 𝑖 (𝑖 ∈ 𝐼) to the customer 𝑐 (𝑐 ∈ 𝐶) as a penalty cost for not 

satisfying the particular customer demand. 

For each time period 𝑝, 𝑝 ∈ 𝑃, and each scenario 𝑑, 𝑓, ℎ, 𝑑 ∈ 𝑆𝑑
𝐶 , 𝑓 ∈ 𝑆𝑓

𝐷 , ℎ ∈ 𝑆ℎ
𝐿, 

constraints are described as follow. Constraints (4.2) and (4.3) indicate that for any candidate site 

we can only locate an unreliable or a reliable facility. Constraint (4.4) ensures that there should be 

at least one reliable distribution center. Constraint (4.5) ensures that each customer must be 

completely satisfied by one of the distribution centers with low-rate cost or suppliers with high-

rate cost. Constraints (4.6) and (4.7) ensure that for each customer the inflow and out flow of each 

charging station is equal. Constraints (4.8) to (4.12) indicate that each allocation must be assigned 

to a facility which is not failed after disruption for each scenario. Moreover, each customer can 

only be allocated to the supplier given that the supplier is already established. Constraint (4.13) 

ensures that the number of drones in each facility is greater than number of demands assigned to 

that facility. Constraint (4.14) is calculated the usage distance of all drones. Constraint (4.15) and 

(4.16) ensure that the sum of inflow to distribution center j must be equal to the sum of outflow 

from that station. Constraint (4.17) states that a flow occurs if and only if the supplier node is 

established and the outflow of each supplier node should be less than or equal to its capacity. 
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Constraint (4.18) and (4.19) indicate the inflow to each distribution center node is less than or 

equal to its capacity, given that the distribution center is established. Constraints (4.20) and (4.21) 

are non-negative constraints used to represent the binary variables and product-flow variables 

between the facilities, respectively. 

 4.3 Meta-heuristic algorithm for stochastic location and allocation problem 

 4.3.1 Background 

The computation time and memory requirement for solving stochastic mixed-integer linear 

programming can be computationally challenging. Decomposition algorithm like Benders 

decomposition have been proposed to solve network design problems (Kouvelis, Kurawarwala, & 

Gutierrez, 1992; Gutiérrez, Kouvelis, & Kurawarwala, 1996; Snyder, & Daskin, 2006). However, 

by increasing the number of scenarios and number of networks in the system, these algorithms 

even could not solve the problem efficiently. Having near-optimal solutions in short time instead 

of having optimal solution are often more interesting for managers in real word problem. 

This research proposes a metaheuristic algorithm which is an extension of a genetic 

algorithm. A main improvement of this research to the basic genetic algorithm scheme is that the 

initial populations are generated in a way that all solutions are feasible across all stochastic 

scenarios with the highest fitness. In the stochastic facility location and allocation problem, finding 

feasible solution is challenging because firstly the number of scenario dependent variables are 

huge which result in long length of string chromosome structure and secondly the allocation 

networks (scenario dependent variables) highly depend on the location of the nodes. In this 

approach the algorithm tends to find a better initial population size before the crossover and 

mutation operation for each individual in each generation. Thus, the average population fitness is 

improved and the probability of producing higher-quality offspring is increased.  
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 4.3.2 Representation scheme, fitness function and initial population generation 

An n-digit string chromosome structure is used that includes binary, integer, and rational 

parts to represent a solution X. For binary part, the ith digit on the string indicates whether the ith 

facility is open (‘‘1’’) or not (‘‘0’’). 𝑋𝑖, 𝑋𝑗
𝑈𝐷 , 𝑋𝑗

𝑅𝐷 , 𝑋𝑙
𝑈𝐿 , 𝑋𝑙

𝑅𝐿 for ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 are the binary 

variables and the length of the chromosome depends on the size of the potential locations for 

facilities. For example, in Figure 4.4(a), facilities 2, 3, 4 and 6 out of a total of eight potential sites 

are open in binary part of solution X. 𝑁𝑗, ∀𝑗 ∈ 𝐽 are integer part of the chromosome structure and 

the ith digit on the string indicates the number of drones of facility ith. Furthermore, in Figure 

4.4(b), facility 1 has 214 drones and facility 2 has 103 drones in integer part of solution X. The 

rest of the string indicates the linear part of the chromosome includes dependent scenario variables 

like the distance traveled by all drones and the amount of product flowing between each two nodes 

for each scenario and period. For instance, in Figure 4.4(c), 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑈𝐷𝐶  is the amount of product 

flowing between unreliable facility 1 to eight demand location for scenarios 𝑑 = 1, ℎ = 1, 𝑓 = 1 

and periods 1. The total length of chromosome just for variable 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑈𝐷𝐶  is |𝐽| ∗ |𝐶| ∗ |𝑃| ∗ |𝑆𝑑

𝐶| ∗ 

|𝑆𝑓
𝐷| ∗ |𝑆ℎ

𝐿|. This part of the chromosome is combination of the all scenario dependent variables 

which would be increased by increasing the number of scenarios and periods.  

 

(a) Binary part of chromosome structure. 

 

(b) Integer part of chromosome structure. 
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(c) Linear part of chromosome structure. 

Figure 4.4  Chromosome structure 

 

As mentioned before, the number of scenario dependent variables are large resulting in 

long length of string for chromosome structure. Thus, generating the feasible solution and 

maintaining the feasibility of the solutions after crossover and mutation is challenging in this kind 

of problem. A novel approach is proposed to deal with these issues. To speed up the generation of 

initial feasible population with highest fitness, the sequence of the digits in a chromosome is sorted 

using the following steps: 

1- Generate the feasible solutions for scenario independent variables such as location of 

facility and number of drones in each distribution centers. These solutions are common 

among all scenarios and periods.  

2- Based on the fixed location and number of drones obtained in step 1, the solution is 

generated for the rest of the string (scenario dependent variables). In this step, for each 

feasible solution of step one, initial feasible population is generated at specific size for each 

scenario separately. For example, 20 initial feasible solution would be generated for 

scenario dependent variable 𝐵𝑗𝑐𝑝𝑑ℎ𝑓
𝑈𝐷𝐶  for scenarios 𝑆𝑑

𝐶 = 1, 𝑆𝑓
𝐷 = 3, and 𝑆ℎ

𝐿 = 2. Then for 

each scenario the best of these initial solutions will be chosen in terms of fitness score to 

the number of initial population size. After finding the best initial populations for each 

scenario, they will be combined and added to the first step solution to generate the complete 

solution X. 

In this approach the algorithm tends to find a better initial population size before the 

crossover and mutation operation for each iteration, and the objective function value converges 
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within few iterations most of the time. Numerical experiments show that this novel approach has 

a great impact on the solution time. 

For a specific solution X, the problem is solved for each scenario and periods to get the 

optimal flow assignments. The objective function (4.1) is a commonly used as a fitness function 

to justify the quality of a solution X. However, unlike most heuristic algorithm in network design-

type problems, a given solution X is guaranteed to be feasible since it is generated by considering 

all constraints. 

 4.3.3 Genetic algorithm operators (crossover and mutation) 

 To reiterate, finding the feasible solution for stochastic location and allocation problem 

with large number of scenarios is challenging. Any switching digits among the solution in 

performing crossover operation most probably result in infeasible solution. In the proposed 

method, the crossover on binary and integer parts of the chromosome is separately performed in 

the way the feasibility of solutions is kept intact. The crossover operation starts with choosing two 

solutions randomly from the current population. For each pair, the binary and integer part of the 

solution are taken, and two new solutions are generated by switching some randomly chosen digits 

at the same position on the chromosomes. In this process it is required to check and make sure all 

constraints associated with the binary and integer parts of the chromosome are still satisfied or in 

other words, our solution is still feasible. For example, it is required to be sure there is at least one 

supplier available or in each potential location for distribution centers only one unreliable or 

reliable facility can be located. In Figure 4.5, you can see how the unfeasible solution can generate 

by crossover. 
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Figure 4.5  Crossover operation 

 

The digit swapping probability is selected uniformly for each pair from the set {0.0, 0.1, 

0.2, …, 1.0}. After performing crossover for scenario independent variables, the same process for 

scenario dependent variables is performed by checking the feasibility of the new network. Next, 

for crossover and new population generation, mutation is applied to avoid local optimal solution. 

In each iteration, every solution X has a probability of being chosen for mutation. If selected, one 

digit from integer part of the chromosome will be randomly selected and changed from 1 to 0 or 0 

to 1 as shown in Figure 4.6.  

 

Figure 4.6  Mutation operation 

 

Genetic algorithm normally stops when the best fitness of the population converges, or 

when the algorithm reaches a pre-specified time limit or iteration limit. In this method, the 
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objective function value converges within few iterations most of the time. Therefore, the algorithm 

would be stopped after few iterations. It is assumed algorithm will be stopped after 30 iterations, 

or when the improvement in the best solution is less than 0.01% for 10 consecutive iterations. The 

heuristic may be summarized algorithmically as follows: 

Genetic algorithm for stochastic mixed-integer programming model 

1: Initialize I ← 0, k ← 0 

2: Generate the feasible initial population based on steps explained in section 4.3.2: 

let 𝑋𝐼 ← the best solution of generation I;  

let 𝑋∗← the best solution in record (i.e., 𝑋∗ ← 𝑋0) 

3: If f(𝑋𝐼) < f(𝑋∗), let 𝑋∗ ← 𝑋𝐼;  

4: Apply the crossover and mutation operators.  

compute Δ = (f(𝑋𝐼) − f(𝑋𝐼−1))/f(𝑋𝐼−1) 

• If Δ ⩽ 0.01%, let k ← k + 1 

• else, let k ← 0 

5: If I ⩾ 30 or k ⩾ 10, go to Step 6; else, let I ← I + 1, go to Step 3 

6: If f(𝑋𝐼) < f(𝑋∗), let 𝑋∗ ← 𝑋𝐼; return the best solution found 𝑋∗. 

 

 4.4 Numerical example and computational experiment 

Several numerical experiments are performed to illustrate the decisions from the model. 

The case study considers a four-tier supply chain considered in Section 4.2. It is assumed two 

suppliers with certain capacity; three potential locations for distribution centers, each with a 

separate capacity; six potential locations for charging stations; and seven demand locations, each 

of which can be covered by some of the facilities. Next, different scenario sizes ranging from 128 

to 4480 are generated for customers’ demands based on exponential distribution with the mean of 

1 for percentage variation in all demands and facility disruption. For the first part of experiment, 

the population size is fixed at 15. The genetic algorithm is coded in Python, CPLEX is used as the 

solver, and the method is executed on a computer with 3.40 GHz processor and 16 GB of RAM. 
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 4.4.1 Comparison between solution time of heuristic method with normal 

commercial software 

In this subsection, the performance of the improved genetic algorithm is compared against 

commercial software under various scenarios. The genetic algorithm approach significantly 

improves the solution time of the problem. Genetic algorithm normally terminates when the best 

fitness of the population converges, or when the algorithm reaches a pre-specified time limit or 

iteration limit. In the proposed approach, the objective function value typically converges within 

5 iterations most of the time. In the computational study, the population size is fixed at 15. 

Tables 4.2 presents the comparison of the computational efficiencies between genetic 

algorithm and commercial software for different values of |S| (the total number of scenarios). For 

each instance, the difference between objective function value of genetic algorithm and optimal 

solution, and the solution times are reported. The computation time is restricted to twenty-four 

hours for all instances; if an optimal solution is not obtained within this time limit, then “No 

Solution (NS)” is reported in the solution time column. 

 

Table 4.2  Comparison between genetic algorithm and commercial software 

|S| λ Supplier DC C Periods Sol. Time Sol. time (Heuristic) %Obj 

128 1 2 2 7 2 12.8996 87.6327 7% 

192 1 2 2 7 2 60.4905 119.2164 6% 

256 1 2 2 7 2 104.9837 146.5260 6% 

320 1 2 2 7 2 149.4244 184.4826 5% 

384 1 2 2 7 2 192.6236 219.9877 7% 

448 1 2 2 7 2 248.6868 251.8581 6% 

512 1 2 2 7 2 303.4652 282.9916 6% 

576 1 2 2 7 2 342.2219 319.6640 7% 

640 1 2 2 7 2 403.2904 358.0674 7% 

704 1 2 2 7 2 461.3602 396.5483 5% 
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768 1 2 2 7 2 523.7434 431.3473 5% 

832 1 2 2 7 2 597.8175 465.0120 6% 

896 1 2 2 7 2 663.8456 509.8795 5% 

960 1 2 2 7 2 723.4302 541.6815 4% 

1088 1 2 2 7 2 852.3433 595.2275 7% 

1216 1 2 2 7 2 979.8793 656.9201 5% 

1344 1 2 2 7 2 1102.2947 709.3692 5% 

1472 1 2 2 7 2 1236.6621 765.7228 7% 

1600 1 2 2 7 2 1362.1032 819.6482 6% 

1728 1 2 2 7 2 1498.9123 862.4491 8% 

1984 1 2 2 7 2 1868.8712 979.7602 5% 

2240 1 2 2 7 2 NS 1095.5643 - 

2560 1 2 2 7 2 NS 1253.4565 - 

2880 1 2 2 7 2 NS 1446.9037 - 

3200 1 2 2 7 2 NS 1685.0081 - 

3840 1 2 2 7 2 NS 2102.6981 - 

4480 1 2 2 7 2 NS 2595.0043 - 
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Figure 4.7  Sensitive analysis of different size of scenarios and solution time for genetic 

algorithm and commercial software 

 

As it is illustrated in Table 4.2 and Figure 4.7, the Genetic algorithm can solve the 

stochastic problem with up to 4480 scenarios without any memory issues. However commercial 

software could not obtain an optimal solution within twenty-four hours for instances more than 

1984 scenarios. The commercial software can find the optimal solution faster than genetic 

algorithm for scenario size of 448 or less. Beyond that, the genetic algorithm can find the solution 

(within range of 5% of optimal solution) much faster. Genetic algorithm has much faster 

computation times in most cases as shown in Figure 4.7 and performs 40% better on average while 

this rate increases up to 55% in some instances. The commercial software runs into memory issues 

for the instances with |S|≥1984 while for genetic algorithm can easily solve such instances. In 

summary, the genetic method performs much better in stochastic problem which the size of the 
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problem is exponentially increased by increasing the number of scenarios for uncertain parameters 

because it can find the near optimal solution in efficient time.  

 4.4.2 Comparison between objective of heuristic model and number of populations  

This section analyzes impact of initial population on the quality of the solution. Table 4.3 

presents how objective value is changed by increasing the number of initial population while the 

size of the problem is |S|=128. It is started with population size of 3 and increase it to 1000. As it 

is clear, by increasing the size of population from 3 to 1000, the quality of solutions also increases. 

The solution of instance with population size of 3 is within 7.3% of optimal solution while the 

solution of instance with population size of 1000 is within 1.6% of optimal solution. However, it 

is required to consider the fact that the solution time of generating the new population is increased 

by increasing the size of the population because in this method the feasible solution is always 

generated which takes time.  

 

Table 4.3  The impact of different size of starting population on objective function value 

|S| λ Supplier DC C Periods Optimal Obj Obj (Heuristic) Sol. time  |P| %Obj 

128 1 2 2 7 2 33038200 35465235.7856 85.44 3 7.34% 

128 1 2 2 7 2 33038200 35254871.3068 157.48 5 6.70% 

128 1 2 2 7 2 33038200 35254871.3068 222.98 7 6.70% 

128 1 2 2 7 2 33038200 34951946.6136 350.47 10 5.79% 

128 1 2 2 7 2 33038200 34917968.1609 540.37 15 5.68% 

128 1 2 2 7 2 33038200 34719635.0370 737.46 20 5.08% 

128 1 2 2 7 2 33038200 34709896.4992 1584.05 40 5.05% 

128 1 2 2 7 2 33038200 34643762.2778 3066.81 80 4.85% 

128 1 2 2 7 2 33038200 34414024.4511 5946.56 150 4.16% 

128 1 2 2 7 2 33038200 34265179.7640 12394.39 300 3.71% 

128 1 2 2 7 2 33038200 33966431.3429 18834.17 500 2.80% 

128 1 2 2 7 2 33038200 33573718.7669 36593.47 1000 1.62% 
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 4.4.3 Impact of disruption probability, opening fixed cost, and flight cost on 

number of drones, number of unreliable and reliable facilities 

In this section, the impact of changing in disruption probability, fixed opening cost of 

facilities and drone flight cost on optimal number of drones, reliable and unreliable facilities is 

studied. Disruption probability is varied from 0.1 to 0.9 under fixed costs in distribution centers 

and charging stations. As you can see in Figure 4.8, the number of reliable facilities include 

charging stations and distribution centers increase as disruption probability increases while the 

number of unreliable facilities decrease. It is observed that the number of reliable facilities is 

highest when the disruption probability is high, while the optimal number of unreliable facilities 

are significantly less to satisfy the demands of the customers. 

 
Figure 4.8  Sensitive analysis of disruption probability on optimal number of unreliable and 

reliable distribution centers and charging stations 

 

To check the effect of fixed opening costs of facilities and flight cost of drones, it is started 

with 0% increase in fixed opening cost and increase that by 20% six times. Tables 4.4 and 4.5 

present the results for size of 512 scenarios for these two experiments. As you can see in Table 

4.4, the number of drones and facilities decrease as fixed costs of opening those facilities increase 
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while the probability of disruption remains constant. Contrary to popular belief, it is observed that 

the system prefers to lose customers instead of having more drones and facilities in the system 

when the opening fixed cost of facilities increase. The same trend occurs when increasing the flight 

cost of drones as you it is shown in Table 4.5. By increasing the flight cost of the drones, the 

system prefers to pay the penalty cost of losing customers than having more drones and facilities 

in the system. 

 

Table 4.4  Analyzing the impact of opening fixed cost of facilities on optimal number of drones 

and facilities 

The percentage of increasing fixed 

cost in facilities 

Number of drones Number of DC and battery 

station 

0% 1300 6 

20% 1300 6 

40% 1230 5 

60% 640 3 

80% 140 1 

100% 140 1 

150% 0 0 

 

Table 4.5  Analyzing the impact of flight cost of drones on optimal number of drones and facilities 

The percentage of increasing drone 

flight cost 

Number of drones Number of DC and battery 

station 

0% 1300 6 

20% 1230 5 

40% 980 4 

60% 640 3 

80% 640 3 

100% 420 2 

150% 0 0 
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 4.4.4 Benefit of considering disruption risk and applying hardening strategy 

The advantage of having reliable supply chain network in face with random disruptions by 

applying hardening strategy is studied in this experiment. The disruptions can only happen in 

distribution centers or charging stations. In this experiment, at first, supply chain network design 

problem is considered without applying hardening strategy which results in having only unreliable 

distribution centers and charging stations. Next, the increasing rate in total cost is calculated for 

all different disruption scenarios due to the transportation cost’s reassignment after facility failure 

in each scenario. Then, after applying hardening strategy, the total cost for the reliable supply chain 

model is calculated for all those disruption scenarios and compare it with unreliable model. 

At first, costs of designing unreliable and reliable supply chain are obtained which include 

cost of establishing unreliable and reliable facility, transportation, buying drones, and usage. Then 

the total cost of both cases is calculated after disruption for each scenario takes place in the model 

in such way the demands loss in failed charging station or distribution center will be satisfied with 

their closest safe opened charging station, distribution centers or suppliers with higher 

transportation cost. The optimal costs pf designing an unreliable and reliable supply chain network 

using drones as a last-mile delivery for scenario sample size of 512 are $31,525,000 and 

$33,038,200 respectively and they are break down as it is shown in Table 4.6. It is obvious that 

with costing more investment about 70% in establishing more reliable facilities, the total increased 

cost for the reliable model is $119000. Thus, the reliable supply chain model can be designed with 

just about 4.8% additional investment more in total cost. 

 

Table 4.6  The results of stochastic model for both reliable and unreliable cases 

 
Unreliable supply chain 

model 
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Component 
Number 

Facilities 

Cost of 

Establishing 
Other Cost Total 

Facility 8 150000 31375000 31525000 

 Reliable supply chain model    

Component 
Number 

Facilities 
Cost of Establishing Other Cost Total 

Unreliable Facility 2 44000 - - 

Reliable Facility 6 225000 - - 

All Facilities 8 269000 32769200 33038200 

 

The total number of disruption scenarios in distribution centers are 2𝑗 , ∀𝑗 ∈ 𝐽 , and in 

charging station are 2𝑙, ∀𝑙 ∈ 𝐿. Table 4.7 presents total cost of each scenario for reliable and 

unreliable distribution centers and compares the percentage of increase in total cost in both cases. 

The average of all total cost is then calculated for better comparison. 

 

Table 4.7  Comparing the total cost of each scenario for unreliable model with cost of having 

reliable model 

Scenario Which DC is 

disrupted 

Damage cost of 

facility (first case) 

Cost of reassignment 

(first case) 

Total cost 

(first case) 

percentage 

of increase 

1 L1 16500 5,148,032 36673032 +16.33% 

2 L2 16500 2,805,725 34330725 +8.90% 

3 L3 16500 5,570,467 37095467 +17.67% 

4 L4 16500 9,038,217 40563217 +28.67% 

5 L1 & L2 33000 13,101,790 44626790 +41.56% 

6 L1 & L3 33000 18,158,400 49683400 +57.60% 

7 L1 & L4 33000 21,720,725 53245725 +68.90% 

8 L2 & L3 33000 12,143,430 43668430 +38.52% 

9 L2 & L4 33000 15,340,065 46865065 +48.66% 

10 L3 & L4 33000 21,824,757 53349757 +69.23% 

11 L1 & L2 & L3 49500 29,107,032 60632032 +92.33% 

12 L1 & L2 & L4 49500 29,740,685 61265685 +94.34% 

13 L1 & L3 & L4 49500 31,134,090 62659090 +98.76% 

14 L2 & L3 $ L4 49500 28,558,497 60083497 +90.59% 

15 DC1 20000 19,302,757 50827757 +61.23% 
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16 DC2 20000 23,006,945 54531945 +72.98% 

17 Average of scenarios  - -  +51.33% 

 

Applying the hardening strategy to design a supply chain network has notably improved 

system’s reliability. As it is shown in Table 4.7, all damage costs from having an unreliable supply 

chain network for all scenarios are more than the cost spent for making a reliable supply chain 

network. It is clear that a small investment in establishing facilities can save significant damage 

costs for reassigning the customer in an unreliable network. For example, in instance number 11, 

with 4.8% additional investments on establishing reliable facilities, the total disruption cost 

decreases by 92.33%. The proposed research shows how a slight increase in facility cost can 

increase the reliability of the system. 

The total disruption cost of each scenario for unreliable supply chain model and the cost of 

having a reliable supply chain network are compared in Figure 4.9. The disruption costs for all 

scenarios are higher than developing a more reliable supply chain network. In Figure 4.9, scenarios 

7, and 10 to 16 have significant damage cost with an average 85.1% increase in total cost. The 

damage costs for reassigning customers in these scenarios are significant compared to the cost of 

designing a reliable supply chain network with specified investment. 
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Figure 4.9  Comparing total cost of reliable and unreliable models with all scenarios 

 

To summarize, the main contribution of this study is to formulate a mixed-integer 

programming model to design a reliable and efficient supply chain network using drones as a last-

mile delivery under the uncertainty parameters. The coverage service of the reliable network is 

extended by introducing extra charging stations in the system. Also, the proposed genetic 

algorithm can efficiently solve stochastic problems with large number of scenarios. Besides, 

numerical experiments show the how increasing disruption probability, utilization costs of drones 

and fix cost of establishing reliable and unreliable facilities can decrease the number of drones and 

facilities in the system.  

 4.5 Conclusion 

This research analyzes the reliable supply chain network problem that includes charging 

station to extend the coverage of drones in last-mile logistics under uncertain parameters. The 

mixed-integer linear programming model is formulated to design a reliable network and a genetic 

algorithm was applied to solve it. It is shown how a slight increase in facility investment can 
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increase the system’s reliability. It is also shown that, by considering each scenario independently 

to create a new population in the genetic algorithm, the efficiency of algorithm is significantly 

improved and near optimal solution is obtained in less iterations due to the absence of infeasibility 

solutions.  

In summary, it is shown that the genetic algorithms perform significantly better than the 

commercial software for most scenario size. Under high disruption probability, the number of 

reliable distribution centers and charging stations increased while the unreliable facilities decrease. 

Furthermore, increasing the fixed cost of charging stations and distribution centers and flight cost 

of drones decreases the optimal number of reliable facilities to satisfy customers.  
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Chapter 5 - Stochastic Control and Managing Drones and Battery 

Inventories 

Chapter 5 is based on the manuscript “Markov decision process model to evaluate drone 

and battery inventories in last-mile logistics” and analyzes stochastic control problem in evaluating 

the number of battery and drones and examines different charging strategies in recharging stations 

to improve drone delivery time in last-mile logistics. 

 5.1 Introduction 

Logistics networks are often designed in such a way as to reduce costs and delivery times 

by allowing parcel to be delivered quickly. Land transport such as trucks, cars, motorcycles, and 

bicycles has been the norm for package delivery for decades since it is inexpensive, reliable, and 

easy to access. Nonetheless, rising labor costs make unmanned aerial vehicle (UAV) delivery such 

as drone delivery an increasingly appealing alternative delivery mode. While ground vehicles 

encounter many obstacles along the delivery route and require assistance crossing otherwise 

impassable systems, UAVs can fly directly to their destination without any obstacles. Due to drone 

technology advances, package delivery services are now cheaper and more reliable. In fact, DHL 

delivers packages on islands and mountains using a UAV called the Parcelcopter. Time, effort, 

and costs can be saved by using UAVs in these ways. Moreover, UAVs provide quick and precise 

delivery services in urban areas since they can prevent traffic congestion. Beijing, Shanghai, and 

Guangzhou were the sites where Alibaba conducted tests to deliver goods using UAVs. To achieve 

a quick, within-30-minute, delivery (maximum range: 16 km), Amazon developed Amazon Prime 

Air. In addition, UAVs can provide relief to disaster scenes that can't be reached by ground vehicles 
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or even rescuers walking there. Also, secondary damage cannot affect the disaster relief mission. 

An example of UAVs used for relief delivery to a Nepal earthquake site can be seen in Figure 5.1. 

 

 

Figure 5.1  Using drones to deliver relief items in Nepal earthquake 2015 

 

UAVs could revolutionize the logistics industry by using them for 'last-mile' parcel 

deliveries. Before drones reach widespread adoption in the commercial sector, there are several 

significant technical and operational obstacles to overcome. A drone is generally faster, more 

affordable, less labor-intensive, and more environmentally friendly than a ground-based vehicle, 

like a truck. However, the drone has certain limitations such as reduced delivery capacity and a 

short flying distance per trip.  

From a technical perspective, researchers are working to improve the endurance and safety 

of UAVs. According to logistics research, researchers are trying to address limitations like limited 

delivery capacity and limited coverage per trip. Amazon, for instance, proposes a direct 

warehouse-to-customer operation. Prime Air's UAV can reach a distance of 10 miles (Gross, 

2013). It is, therefore, necessary for UAV deliveries to originate from distribution centers located 

close to the customer. It may also be necessary to relocate existing distribution centers or to build 

new ones in order to accomplish this. The range of a UAV delivery system can be extended through 

several logistical strategies. With a multi-modal approach, drones and trucks could be combined, 
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using one's advantages to offset the disadvantages of the other. For example, drones could be 

launched from trucks in order to deliver the "last mile" to customers (Murray, & Chu, 2015; Agatz, 

Bouman, & Schmidt, 2015; Ha et al., 2018). Nevertheless, a method to extend the drone's limited 

flight range would be necessary if a stand-alone drone delivery service was to cover a large area. 

There may be an answer to this problem by offering drone recharging stations that replace batteries. 

As it is shown in Figure 5.2, during a single-mode (drone only) door-to-door drone delivery, one 

or more stops would have to be made for batteries to be recharged, or to be replaced (Sundar, & 

Rathinam, 2013; Dorling et al., 2016; Yu, Budhiraja, & Tokekar, 2018). By replacing depleted 

batteries with fully charged ones, the recharging station extends the flight range of the drone. After 

leaving a warehouse or station, a drone reaches the next station or reaches a destination within a 

safe return distance. Each recharging station, therefore, serves a particular area's demands. 

 

 
Figure 5.2  Supply chain network includes charging stations to extend the coverage of the drones 

in last-mile delivery 

 

While research has been conducted to overcome the aforementioned technical and 

operational issues, no studies have addressed the challenges associated with recharging stations 

themselves. For example, most of the studies have not examined the effects of various decision 

parameters on drone delivery services, such as recharging station configuration, charging time, 

battery and drone number, flight time, and demand uncertainty. In terms of charging technology 
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(for example, slow recharging, fast recharging, partial recharging, battery swaps, fixed charging), 

the main models refer to recharging technologies and routing strategies (Koç et al., 2019; Li-ying, 

& Yuan-bin, 2015) with a focus on sustainability, energy consumption, and power loss (Pal, 

Bhattacharya, & Chakraborty, 2021, Moupuri, 2021). To fill these gaps, this study seeks to 

improve delivery time by finding the best policy for charging rates inside the charging stations. To 

enhance delivery time, this research assumes that extra batteries are available at the recharging 

station where individual drones land when they run out of power and swap empty batteries with 

fully charged ones. In this logistics network, there are a lot of uncertainties, such as demand arrival, 

charging rate, and flight rate. The inventory management process as part of the logistics system 

includes tactical decisions in the supply chain system. These decisions can be described as a 

dynamic linkage of sequential decisions under these uncertainties. For example, the state of 

batteries and drones, the rate at which batteries are charged, the rate at which drones are flown, 

and the demand can all affect the outcomes and thus affect the best control decisions. In this 

research, different charging strategies are examined for recharging stations, which can be viewed 

as warehouses in last-mile logistics. There is a difference between these strategies in terms of costs 

and rates. This research develops stochastic Markov decision models to handle stochasticity in the 

problem and determine the optimal policy for decision-makers by applying a policy iteration 

algorithm. 

When it comes to solving large-scale MDPs, especially in practice, there are several 

challenges involved. One of the most significant challenges is that the information desired to be 

captured by the states and actions will grow (often exponentially) based on the problem’s 

complexity. This is why dynamic programming is sometimes avoided for large problems. As a 

first step, a transition probability matrix is constructed by taking advantage of the similar transition 
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probabilities among the states belonging to a given set within each state space, which allows us to 

compute the exact performance estimate for the systems. In large-scale MDPs, finding optimal 

policy and exact analysis of the system becomes computationally challenging, despite deriving a 

set of conditions that partition the state space into regions to address dimensionality. To overcome 

this challenge, a novel approximation method called the decomposition-based approach is 

proposed to split the original Markov decision problem for the system with N states into N 

independent Markov chain processes. This independent system corresponds to a subsystem that 

evaluates one of those N states efficiently. In terms of the accuracy of the decomposition technique 

in each subsystem, the impact of other states belonging to other subsystems needs to be accounted 

for constructing the transition probability matrix of that subsystem. Through numerical examples, 

it is demonstrated that the proposed solution algorithm is not only capable of solving large-scale 

problems, but also avoids long run times. It is also demonstrated how storage conditions for drones, 

batteries, charging rate, flight rate, demand, etc. can affect optimal decisions.  

The main contributions of this study are: From the tactical and operational side, 

stochasticity in a logistics network including recharging stations as a warehouse of extra batteries 

for drones is analyzed where there are a lot of uncertainties associated with this network like 

demand arrival, charging rate, and flight rate. In the literature, the main models for selecting 

recharging technology relate to the location of the recharging stations, including recharging 

technologies and routing strategies with an emphasis on sustainability, energy consumption, and 

power loss. To the best of our knowledge, no existing studies have analyzed different charging 

strategies in recharging stations to improve the delivery time in last-mile logistics using drones. 

This research develops stochastic Markov decision models to handle stochasticity in this problem 

and determine the best policy for decision-makers based on different charging rates, demand 
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arrival rates, flight rates, and costs associated with them. Methodologically, a novel approximation 

method called the decomposition-based approach is developed to split the original Markov 

decision problem for the system into multiple independent Markov chain processes to improve the 

efficiency of solving the large-scale MDPs. This methodology will create a host of future research 

topics to advance modeling stochastic systems and mitigate the curse of dimensionality in dynamic 

programming. To the best of our knowledge, the proposed methodology is novel and has not been 

published in any relevant reports and venues. 

The rest of the study is organized as follows. Section 5.2 describes how to formulate the 

Markov decision models for proposed system. Using this formulation, stochasticity in the problem 

is analyzed and the optimal policy is determined. Section 5.3 presents an approximation method 

to solve large systems. Using this method, Markov chain formulation of the proposed system is 

developed and the similarities in the transition probabilities for states belonging to a particular set 

within each state space is exploited. Section 5.4 provides numerical examples that show the 

applicability and efficiency of our model and problem-solving approach. Finally, some 

conclusions are discussed in Section 5.5.  

 5.2 Mathematical model 

The logistics network proposed in this study includes three levels: suppliers, recharging 

station, and the customer (refer Figure 5.3). The recharging comprises of two different segments 

named as charging station for discharged batteries (𝐼2) and battery station for full-charged batteries 

(𝐼1). Most of the previous studies in this area considered the processing time as an exponential rate. 

Bradley (2005) analyzed an in-house production and subcontracting model with exponential 

processing times for orders. Sinha and Krishnamurthy (2020) formulated this problem as 

continuous-time Markov chain with exponentially distributed interarrival time and production 
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times. This study assumes the empty batteries can be charged in the charging station with three 

different exponential rates; fast, normal, and slow rate (𝜇𝑠𝑏 , 𝜇𝑛𝑏 , 𝜇𝑓𝑏) and made to stock in battery 

station. These rates of charging differ in terms of costs and rates.  

 

Figure 5.3  Logistics network includes recharging station as warehouses with two different parts 

 

Drones moving between each level of logistics network with different exponential rate 

(𝜇𝑠1, 𝜇𝑠2, 𝜇𝑑). Furthermore, customer demands are immediately satisfied if there are full-charged 

batteries in stock; otherwise, they are considered to be backordered. Customer orders arrive 

according to a Poisson process λ and are satisfied based on first come-first serve. Only one drone 

serves each customer, and the order quantity is always less than the drone's capacity. In last-mile 

logistics, limited and uncertain flight ranges of a large fleet of drones and random demand create 

complex issues. The selection of full-charged batteries from a slow, normal, or fast rate in a last-

mile logistics system with capacity constraints and stochastic lead times can be formulated as a 

Markov decision process. 

Let each state of the system at any time t be defined as 𝜎 = (𝐼1, 𝑛1, 𝑛2, 𝑛3), where 𝐼1 is the 

inventory position of full charged batteries and 𝑛𝑘 is the total number of drones traveling between 

each node. 𝑛1 is the total number of drones traveling between the supplier and the recharging 

station with exponential rate of 𝜇𝑠1. 𝑛2 is the total number of drones traveling back and forth from 

the recharging station and the customer with exponential rate of 𝜇𝑑. 𝑛3 is the total number of 
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drones traveling between the recharging station and the supplier with exponential rate of 𝜇𝑠2. Let 

N be the total number of drones in the system, M be the total number of batteries in the system 

(includes those installed on drones), and n be the number of drones located in the supplier. 

n =  𝑁 −  (𝑛1 +  𝑛2 +  𝑛3) (5.1) 

𝐼2 = 𝑀 − 𝑁 −  𝐼1 (5.2) 

Let 𝑆𝐼1, denote the possible values of 𝐼1, and Bmax denote the finite maximum limit for backorders 

for full charged batteries which it is assumed is equal to −𝑁. Then, the total number of states in 

𝑆𝐼1 is −𝑁 ≤ 𝐼1 ≤ 𝑀 − 𝑁. Let 𝑆𝑛𝑘, denote the possible values of 𝑛𝑘. Then, the total number of 

states in 𝑆𝑛𝑘 is 0 ≤ 𝑛𝑘 ≤ 𝑁. 

The state space 𝑆 can be re-written as 𝑆 = ∑ 𝑆𝐼1 ∗ 𝑆𝑛1 ∗ 𝑆𝑛2 ∗ 𝑆𝑛3, which should satisfy the 

following equations: 

n =  𝑁 −  𝑛1 −  𝑛2 −  𝑛3 (5.3) 

The constraint (5.3) ensures that the total number of drones in the system, N, equals the 

sum of drones located in the supplier, n, and those flying between levels, 𝑛1, 𝑛2, 𝑛3. Let 𝑎𝑗 =

(𝑠, 𝑛, 𝑓), 𝑎𝑗 ∈ 𝐴, 𝑗 = 1, … , 4 be an action taken at each decision epoch. For any action 𝑎𝑗, s takes 

the value of 1 if the discharged battery is charging in slow rate station and takes the value 0 if 

otherwise. Similarly, n and f are defined for normal and fast recharging respectively. Table 1 lists 

the 4 possible actions available for the decision maker. For instance, action a3 implies that the 

discharged battery is charging in fast rate station. 

 

Table 5.1 Action space for the system 

A s n f 

𝑎1 1 0 0 

𝑎2 0 1 0 

𝑎3 0 0 1 



110 

𝑎4 0 0 0 

 

Then, the system evolution can be modeled as a Markov chain Process. Define 𝑇(𝜎′|𝜎, 𝑎𝑗) 

as the transition probability from state 𝜎 = (𝐼1, 𝑛1, 𝑛2, 𝑛3) to state 𝜎′ = (𝐼1
′ , 𝑛1

′ , 𝑛2
′ , 𝑛3

′ ) under 

action 𝑎𝑗 ∈ 𝐴. The model is based on continuous-time Markov chains with exponentially 

distributed interarrival times, flight times, and charging times, which can be converted to discrete-

time Markov chains via uniformization (Lippman 1975). Let 𝜔 = λ + 𝜇𝑠1 + 𝜇𝑠2 + 𝜇𝑑 + 𝜇𝑠𝑏 +

𝜇𝑛𝑏 + 𝜇𝑓𝑏 denote the normalizing factor used for uniformization. Also, let 𝐴𝑠𝑗 , 𝐴𝑛𝑗  𝑎𝑛𝑑 𝐴𝑓𝑗 be 

indicator functions that take the value 1 if slow charging stations, normal charging station, and fast 

charging station, respectively, are charging battery under action 𝑎𝑗, and 0 otherwise. Transition 

probabilities are defined as follow: 

Demand arrival: 

Then 𝑛1
′ = 𝑛1 + 1; and the corresponding 𝑇(𝜎′|𝜎, 𝑎𝑗) is given by 

𝑇(𝜎′|𝜎, 𝑎𝑗) = (𝐴𝑠𝑗λ + 𝐴𝑛𝑗λ + 𝐴𝑓𝑗λ)/𝜔 

Drone completes its flight from supplier to recharging station:  

Then 𝑛1
′ = 𝑛1 − 1, 𝑛2

′ = 𝑛2 + 1 and 𝐼1
′ = 𝐼1 − 1; and the corresponding 𝑇(𝜎′|𝜎, 𝑎𝑗) is given by 

𝑇(𝜎′|𝜎, 𝑎𝑗) = (𝐴𝑠𝑗𝜇𝑠1 + 𝐴𝑛𝑗𝜇𝑠1 + 𝐴𝑓𝑗𝜇𝑠1)/𝜔 

Drone completes its go and back flight from recharging station to customer:  

Then 𝑛2
′ = 𝑛2 − 1, 𝑛3

′ = 𝑛3 + 1 and 𝐼1
′ = 𝐼1 − 1; and the corresponding 𝑇(𝜎′|𝜎, 𝑎𝑗) is given by 

𝑇(𝜎′|𝜎, 𝑎𝑗) = (𝐴𝑠𝑗𝜇𝑑 + 𝐴𝑛𝑗𝜇𝑑 + 𝐴𝑓𝑗𝜇𝑑)/𝜔 

Drone completes its flight from recharging station to supplier:  

Then 𝑛3
′ = 𝑛3 − 1; and the corresponding 𝑇(𝜎′|𝜎, 𝑎𝑗) is given by 

𝑇(𝜎′|𝜎, 𝑎𝑗) = (𝐴𝑠𝑗𝜇𝑠2 + 𝐴𝑛𝑗𝜇𝑠2 + 𝐴𝑓𝑗𝜇𝑠2)/𝜔 
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Charging completion: 

Then 𝐼1
′ = 𝐼1 + 1; and the corresponding 𝑇(𝜎′|𝜎, 𝑎𝑗) is given by 

𝑇(𝜎′|𝜎, 𝑎𝑗) = (𝐴𝑠𝑗𝜇𝑠𝑏 + 𝐴𝑛𝑗𝜇𝑛𝑏 + 𝐴𝑓𝑗𝜇𝑓𝑏)/𝜔  

Finally, 𝜎 = 𝜎′; and the corresponding 𝑇(𝜎′|𝜎, 𝑎𝑗) is given by: 

𝑇(𝜎′|𝜎, 𝑎𝑗) = (𝜔 − (λ + 𝜇𝑠1 + 𝜇𝑠2 + 𝜇𝑑 + 𝐴𝑠𝑗𝜇𝑠𝑏 + 𝐴𝑛𝑗𝜇𝑛𝑏 + 𝐴𝑓𝑗𝜇𝑓𝑏)) /𝜔 

Figure 5.4 presents the simplified transition diagram of our logistics system: 

 

Figure 5.4  All possible transition probability from one state to another for the system 

 

To construct the transition matrix Q, the similarities in the transition probabilities for states 

belonging to a particular set within each 𝑆𝑧 for each action 𝑎𝑗 is exploited. Each set 𝑆𝑧 , 𝑧 =

𝐼1, 𝑛1, 𝑛2, 𝑛3 can be further partitioned into three mutually exclusive subsets, 𝑆𝑧,𝑖 ⊂ 𝑆𝑧, 𝑖 = 1,2,3 

where ∪𝑖 𝑆𝑧,𝑖 = 𝑆𝑧. For set 𝑆𝐼1
, there are following subsets: 

𝑆𝐼1,1 = {𝐼1: 𝐼1 = −𝑁} 

𝑆𝐼1,2 = {𝐼1: −𝑁 < 𝐼1 < 𝑀 − 𝑁} 
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𝑆𝐼1,3 = {𝐼1: 𝐼1 = 𝑀 − 𝑁} 

For each set 𝑆𝑧 , 𝑧 = 𝑛1, 𝑛2, 𝑛3, there are following subsets: 

𝑆𝑧,1 = {𝑧: 𝑧 = 0} 

𝑆𝑧,2 = {𝑧: 0 < 𝑧 < 𝑁} 

𝑆𝑧,3 = {𝑧: 𝑧 = 𝑁} 

The total number of feasible combination of subsets with similarities in the transition 

probabilities would be 75. This method can significantly simplify the process of constructing 

transition matrix. Note that to construct the transition matrix you can only use the combination of 

subsets that can satisfy equation (5.3). For example, the following subset is infeasible: 

𝑆𝐼1,2 = {𝐼1: −𝑁 < 𝐼1 < 𝑀 − 𝑁}, 𝑆𝑛1,1 = {𝑛1: 𝑛1 = 0}, 𝑆𝑛2,2 = {𝑛2: 0 < 𝑛2 < 𝑁}, 𝑆𝑛2,3 = {𝑛3: 𝑛3

= 𝑁} 

The last important element of Markov decision model is the cost function. Define ℎ(𝜎) =

ℎ𝐼1 𝑚𝑎𝑥(𝐼1, 0) as the total inventory holding cost rate for full charged batteries and 𝑏(𝜎) =

𝑏𝐼1 𝑚𝑎𝑥(−𝐼1, 0) as the total backordering cost rate. Let 𝑐(𝑎𝑗) = 𝐴𝑠𝑗𝑐𝑠𝑏 + 𝐴𝑛𝑗𝑐𝑛𝑏 + 𝐴𝑓𝑗𝑐𝑓𝑏 

represent the charging cost rate for action 𝑎𝑗. Let 𝑜(𝜎) = 𝑜𝑛1𝑛1 + 𝑜𝑛2𝑛2 + 𝑜𝑛3𝑛3 represent the 

total flight cost rate. Let 𝑟(𝜎, 𝑎𝑗) denote the immediate cost function at state 𝜎 for action 𝑎𝑗, i.e 

𝑟(𝜎, 𝑎𝑗) = ℎ(𝜎) + 𝑏(𝜎) + 𝑜(𝜎) + 𝑐(𝑎𝑗). 

A policy is defined as a set of actions to take given the state, represented as 𝜃 =

{𝑎(𝜎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎 𝑖𝑛 𝑆}. Let 𝑣𝜃(𝜎) denote the value function at state 𝜎 for a policy 𝜃. The value 

function 𝑣𝜃(𝜎) can be described in equation (5.4) using Bellman’s equations, where 𝜃(𝜎) is the 

action to take as determined by the policy 𝜃 and 𝛾 is the discount factor. The optimal policy is 

determined by implementing a simple Policy Iteration algorithm (Bellman, 1955) to select an 

optimal decision policy 𝜃∗ that maximizes our value function, see equation (5.5). 



113 

𝑣𝜃(𝜎) = 𝑟(𝜎, 𝜃(𝜎)) + 𝛾 ∑ 𝑇(𝜎′|𝜎, 𝜃(𝜎))𝑣𝜃(𝜎′)

𝜎′∈𝑆

 
(5.4) 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃(𝑣𝜃′) (5.5) 

Optimal policies in the above system present challenges when analyzed structurally 

because the states and actions will grow exponentially based on the problem’s complexity. For 

example, if the number of drones and extra batteries in the system increase from 10 to 20, and 5 to 

10, respectively, the number of state increase from 15,000 to 240,000 for 4 actions.  

In the next section, a novel approximation method called the decomposition-based 

approach is described to split the original Markov decision problem for the system into multiple 

independent Markov chain processes to improve the efficiency of solving the large-scale MDPs. 

 5.3 Decomposition-based algorithm 

The original Markov decision process model described in Section 5.2 has a four-

dimensional state space which make the problem computationally challenging. For instance, when 

𝐼1 varies from -9 to 5, 𝑛1, 𝑛2, and 𝑛3 are vary from 0 to 9, then we get 15000 states. This issue 

with dimensionality is addressed by deriving a set of conditions that partitions the state space into 

regions. Besides, if the number of dimensions or the number of actions increase the size of the 

system will grow exponentially which make it very difficult for any dynamic programming to 

analyze the system. To overcome this challenge, a novel approximation method called 

decomposition-based approach is proposed to split the original Markov decision problem for the 

system with 𝑁 states into 𝑁 independent Markov chain processes. For example, as you can see in 

Figure 5.5(a) and Figure 5.5(b), the proposed problem in section 2 with four dimensional states 

defined as 𝜎 = (𝐼1, 𝑛1, 𝑛2, 𝑛3) can be split to two problems which both have two dimensional states 

defined as 𝜎1 = (𝑛1, 𝑛3) and 𝜎2 = (𝐼1, 𝑛2), or two problems which one has three dimensional 
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states defined as 𝜎1 = (𝑛1, 𝑛2, 𝑛3) and another one has one dimensional state defined as 𝜎2 = (𝐼1). 

These subsystems are connected to each other through novel probability functions. 

 

(a) First Problem with two dimensional states defined as 𝜎1 = (𝑛1, 𝑛3) and 𝜎2 =

(𝐼1, 𝑛2) 

 

(a) Second problem, one has three dimensional states defined as 𝜎1 = (𝑛1, 𝑛2, 𝑛3) and 

another one has one dimensional state defined as 𝜎2 = (𝐼1) 

Figure 5.5  Decomposition of the original problem into two subproblems 

 

In terms of accuracy of decomposition technique in each subsystem, the impact of other 

states needs to be accounted by considering the charging rate, flight rate, and demand arrival rate. 
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This impact can be applied from one sub-problem to other one by calculating the steady state 

probability of each system. Sinha and Krishnamurthy (2016) applied the same approach to make 

the decomposition method more accurate in analyzing the performance of systems with more than 

two products. 

Next, the novel probability functions that interlinks two subsystems together is discussed. 

In case 2 (shown in Figure 5.5(b)) as an example with two subproblems, 𝛸1 (𝜎 = (𝑛1, 𝑛2, 𝑛3)) and 

𝛸2 (𝜎 = (𝐼1)). Let 𝛱𝛸1 denote the steady-state probability vector and 𝜋(𝑛1, 𝑛2, 𝑛3) denote the 

steady-state probability of state (𝑛1, 𝑛2, 𝑛3) of the subproblem 𝛸1. Note that, subproblem 𝛸1 is 

considered as a Markov Chain since it does not include any action. Otherwise, the optimal policy 

is required to be fixed for Markov decision process before deriving steady-state probability. Using 

subsets 𝑆𝑧,𝑖 ⊂ 𝑆𝑧, 𝑖 = 1,2,3 from section 5.3, Chapman–Kolmogorov (C–K) equations can be 

written. However, in the subproblem 𝛸1, drone completes its flight from supplier to recharging 

station and between recharging and customer as long as the backorder for the full charged batteries 

is less than Bmax which can be captured by subproblem 𝛸2; i.e., the subsystem 𝛸1 ignores the fact 

that drones cannot swap the battery due to the possibility that backorders for full charged batteries 

reach Bmax. Therefore, the effective transition probability 𝑇𝛸1(σ′|σ) for this event in subproblem 

𝛸1 needs to be set to recognize this possibility. Let 𝑋𝛸2

𝐵  denote the event that the backorders at 

subsystem 𝛸2 is equal to Bmax and let 𝑃𝛸2

𝐵  denote the steady state probability of this event. 

∏(1 − 𝑃𝛸2

𝐵 ) is the steady state probability that the backorders at all of the states in subsystem 𝛸2 

are less than Bmax. This implies that the effective transition probability 𝑇𝛸1(σ′|σ) for drone 

completes its go and back flight from recharging station to customer in the analysis of subsystem 

𝛸1 is given by: 

𝑇(𝜎′|𝜎, 𝑎𝑗) = ∏(1 − 𝑃𝛸2

𝐵 ) ∗ 𝜇𝑑/𝜔 
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By knowing this, for 𝑛1 ∈ 𝑆𝑛1,1, 𝑛2 ∈ 𝑆𝑛2,1, and 𝑛3 ∈ 𝑆𝑛3
 the C-K equations are written 

as follows: 

For 𝑛1 ∈ 𝑆𝑛1,1, 𝑛2 ∈ 𝑆𝑛2,1, and 𝑛3 ∈ 𝑆𝑛3,1: 

𝜆 ∗ 𝜋(𝑛1, 𝑛2, 𝑛3) = 𝜇𝑠2 ∗ 𝜋(𝑛1, 𝑛2, 𝑛3 + 1)  

For 𝑛1 ∈ 𝑆𝑛1,1, 𝑛2 ∈ 𝑆𝑛2,1, and 𝑛3 ∈ 𝑆𝑛3,2: 

(𝜆 + 𝜇𝑠2) ∗ 𝜋(𝑛1, 𝑛2, 𝑛3)

= [∏(1 − 𝑃𝛸2

𝐵 )] ∗
𝜇𝑑

𝜔
∗ 𝜋(𝑛1, 𝑛2 + 1, 𝑛3 − 1) + 𝜇𝑠2 ∗ 𝜋(𝑛1, 𝑛2, 𝑛3 + 1) 

For 𝑛1 ∈ 𝑆𝑛1,1, 𝑛2 ∈ 𝑆𝑛2,1, and 𝑛3 ∈ 𝑆𝑛3,3: 

𝜇𝑠2 ∗ 𝜋(𝑛1, 𝑛2, 𝑛3) = [∏(1 − 𝑃𝛸2

𝐵 )] ∗
𝜇𝑑

𝜔
∗ 𝜋(𝑛1, 𝑛2 + 1, 𝑛3 − 1) 

Then the transition matrix 𝑄𝛸1 can be constructed using the subsets explained in section 

5.3 and the steady-state probabilities can be calculated using the system of equations (5.6) and 

(5.7): 

𝛱𝛸1𝑄𝛸1 = 0 (5.6) 

𝛱𝛸1𝑒𝛸1 = 1 (5.7) 

Here, 𝑒𝛸1 = [1 … 1] of size 𝑆𝑛1 ∗ 𝑆𝑛2 ∗ 𝑆𝑛3. The steady state probability of subsystem 𝛸2 

can be calculated by equations (5.8) and (5.9) in a similar way. Note that the optimal policy is 

required to be fixed for Markov decision process before deriving steady-state probability in the 

subsystem 𝛸2. 

𝛱𝛸2𝑄𝛸2 = 0 (5.8) 

𝛱𝛸2𝑒𝛸2 = 1 (5.9) 

Let (0, ∗, ∗) represents a vector with all states having 𝑛1 = 0. From the solutions to 

Equations (5.6) and (5.7), the expected number of drones between supplier and recharging station 
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𝐸[𝑁1], the expected number of drones flying go and back between recharging station and customer 

𝐸[𝑁2], and the expected number of drones between recharging station and supplier 𝐸[𝑁3] can be 

calculated using Equations (5.10), (5.11), and (5.12). From the solutions to Equations (5.8) and 

(5.9), the expected number of on-hand inventory level for full charged battery 𝐸[𝐼1] and expected 

backorders E[B1] can be calculated using Equation (5.13) and (5.14). Besides, let 𝜃∗(𝐼1) 

represents the optimal policy in state (𝐼1) and 𝐴𝑠∗,𝐼1, 𝐴𝑛∗,𝐼1 and 𝐴𝑓∗,𝐼1 are indicator functions that 

take the value 1 if slow charging stations, normal charging station, and fast charging station, 

respectively, are charging battery under optimal action 𝜃∗(𝐼1), and 0 otherwise. The charge station 

throughput for fast charging, 𝑇𝐻𝐹𝐶,  normal charging, 𝑇𝐻𝑁𝐶,  and slow charging, 𝑇𝐻𝑆𝐶, is 

computed using Equations (5.15), (5.16), and (5.17) respectively. 

𝐸[𝑁1] = ∑ 𝑛1𝜋(𝑛1,∗,∗)

𝑛1

 
(5.10) 

𝐸[𝑁2] = ∑ 𝑛2𝜋(∗, 𝑛2,∗)

𝑛2

 
(5.11) 

𝐸[𝑁3] = ∑ 𝑛3𝜋( ∗,∗ 𝑛3)

𝑛3

 
(5.12) 

𝐸[𝐼1] = ∑ max (𝐼1, 0)𝜋( 𝐼1)

𝐼1

 
(5.13) 

𝐸[𝐵1] = ∑ max (−𝐼1, 0)𝜋( 𝐼1)

𝐼1

 
(5.14) 

𝑇𝐻𝐹𝐶 = ∑ 𝐴𝑓,𝐼1𝜇𝑓𝑏𝜋( 𝐼1)

𝐼1

 
(5.15) 

𝑇𝐻𝑁𝐶 = ∑ 𝐴𝑛,𝐼1𝜇𝑛𝑏𝜋( 𝐼1)

𝐼1

 
(5.16) 
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𝑇𝐻𝑆𝐶 = ∑ 𝐴𝑠,𝐼1𝜇𝑠𝑏𝜋( 𝐼1)

𝐼1

 
(5.17) 

The decomposition-Based algorithm uses decomposition of the Markov chain to efficiently 

evaluate the system performance. Note that the performance measures obtained using the above 

equations use an approximation method. The generalized procedure steps for this iterative 

decomposition technique are shown below. Let 𝑧 =  1, … , 𝑛 denote the number of subsystems and 

𝜋(𝑧) is steady state probability,  𝑆𝑧 is state space, 𝑇𝑧(σ′|σ) is transition probability associated with 

that subproblem 𝑧. 

Step 0: Initialize 𝜋𝑖𝑡𝑟(𝑧) = 1/𝑆𝑧, 𝜋𝑖𝑡𝑟(𝑧) = 0, and 𝑖𝑡𝑟 = 0 for 𝑧 =  1, … , 𝑛.  

Step 1: If the subsystem 𝑧 is Markov chain, calculating the steady-state probabilities 

𝜋𝑖𝑡𝑟+1(𝑧1) for each 𝑧1 =  1, … , 𝑛, using 𝜋𝑖𝑡𝑟(𝑧2) for 𝑧2 =  1, … , 𝑛, 𝑧2 ≠ 𝑧1. Then go to 

step 4. 

Else go to step 2 

Step 2: If the subsystem 𝑧 is Markov chain process, using 𝜋𝑖𝑡𝑟(𝑧2) for 𝑧2 =

 1, … , 𝑛, 𝑧1 ≠ 𝑧2 to calculate the transition probability 𝑇𝑧1(σ′|σ) for the subsystem 𝑧1. 

Step 3: Applying policy iteration using 𝑇𝑧1(σ′|σ) from step 2 to find the optimal policy 

and then calculate the steady-state probabilities of that subsystem like step 1. 

Step 4: Compute 𝛿𝑖𝑡𝑟+1,𝑧 = |𝜋𝑖𝑡𝑟+1(𝑧) − 𝜋𝑖𝑡𝑟(𝑧)|, for 𝑧 =  1, … , 𝑛. 

Step 5: if 𝛿𝑖𝑡𝑟+1,𝑧 < 휀, stop, 

Else 𝑖𝑡𝑟 = 𝑖𝑡𝑟 + 1, and go to step 1. 

To check the effectiveness of the approximation method, the performance and running 

time of decomposition-based method can be computed and compare with the performance and 
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running time of the original system. The accuracy of these estimates is compared as part of our 

numerical studies in Section 5.4. 

 5.4 Numerical example and computational experiment 

This section discusses the numerical experiments conducted to test the performance of the 

developed decomposition-based algorithm. In the first section, the performance of the 

decomposition algorithm is examined by computing total costs and runtime, while in the second 

section, insights into the optimal solution for two common scenarios are provided (high and low-

rate demand for full charged batteries). The total cost function is defined as 𝑇𝐶 = 𝑜 ∗

(𝐸[𝑁1] + 𝐸[𝑁2] + 𝐸[𝑁3]) + ℎ ∗ 𝐸[𝐼1] + 𝑏 ∗ 𝐸[𝐵1] + 𝑐𝑠𝑏 ∗ 𝑇𝐻𝑆𝐶 + 𝑐𝑛𝑏 ∗ 𝑇𝐻𝑁𝐶 + 𝑐𝑓𝑏 ∗ 𝑇𝐻𝐹𝐶 

where 𝑏 is the cost of backordering per unit, ℎ is the holding cost per unit, 𝑜 is the flight cost, and 

𝑐 is the charging cost per battery for different rate. In all of our experiments, it is observed that the 

algorithm converges on a personal computer with 11th Gen Intel(R) Core (TM) i7 processor and 

12 GB of RAM. The primary system parameters are presented in Table 5.2. These parameters 

might be different based on the experiment. 

 

Table 5.2  System parameters and costs used in the numerical experiments 

Costs and total number of batteries Rate 

𝑜 10 𝜇𝑠1 1 

ℎ 1 𝜇𝑠2 2 

𝑏 30 𝜇𝑑 1.5 

𝑐𝑠𝑏 1 𝜇𝑠𝑏 0.5 

𝑐𝑛𝑏 3 𝜇𝑛𝑏 2 

𝑐𝑓𝑏 7 𝜇𝑓𝑏 8 

𝑀 8 (𝑁 = 5) 𝜆 1.5 
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 5.4.1 Performance comparison of the decomposition-based approach and normal 

approach by computing the runtime and total cost 

A system is analyzed that includes three levels of supply chain, which are a supplier, a 

recharging station, and a customer, as shown in Figure 5.3. The original system is decomposed in 

two different ways: case 1 (Figure 5.5(b)), and case 2 (Figure 5.5(a)). The runtime of applying the 

decomposed algorithm to cases 1 and 2 and applying the exact algorithm to the original case were 

compared to make sure the decomposition-based algorithm is efficient. A symmetric case is 

considered where all of the parameters for case 1 are equal to that of case 2 (see Table 5.2). Table 

5.3 compares the computational efficiencies for different state spaces of the original problem for 

three cases. For each instance, the solution times are reported for three different cases. The time 

restriction of five hours is set for our experiments such that if the solution is not obtained within 

this time limit, then such a situation is reported as “No Solution (NS)” in the column of solution 

time for each approach. 

Using a decomposition algorithm in both cases is much more efficient than applying a 

normal approach in the original case. In both decomposition cases, an optimal policy can be 

obtained with 1370386 states without a memory issue. However, if the state space exceeded 15000, 

the original problem encountered a memory issue. In the original problem with 15000 states, the 

exact algorithm will find the optimal policy in almost 54 minutes, while the decomposition-based 

algorithm will reach convergence in less than two seconds. To solve the problem with 41743 states, 

the decomposition algorithm takes less than 5 seconds.  By increasing the problem size 13.2 times 

(from 15000 to 198911 states), the decomposition algorithm still could find the solution in less 

than 5 minutes. Since case 1 includes a Markov decision process with fewer states, the 

decomposition algorithm performs slightly better than case 2. The case 1 has only one state (𝜎 =
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(𝐼1)) on the subsystem includes Markov decision process which decrease the size of the problem 

for different action and helps policy iteration algorithm to find the solution more efficiently. In 

average, the decomposition algorithm performs 0.06 times better in case 1.  

 

Table 5.3  Runtime of decomposition-based algorithm in case 1 and 2 and exact algorithm in 

original case over different state space 

Number of 

Drones 

Number of 

Extra Batteries 

Size of the States in 

Original Problem 

Runtime 

Case 1 (s) 

Runtime 

Case 2 (s) 

Runtime Original 

Case (s) 

2 1 108 0.2088 0.27728 0.5895 

3 1 320 0.2323 0.3022 1.3826 

4 2 875 0.2698 0.3550 3.6089 

5 3 1944 0.4354 0.6055 44.6108 

6 4 3773 0.5660 0.6854 151.7218 

8 4 9477 1.0790 1.1148 1029.6466 

9 5 15000 1.4831 1.9112 3221.9349 

10 5 21296 1.8084 2.3982 N/A 

11 5 29376 2.3344 2.7464 N/A 

12 6 41743 3.4561 3.9364 N/A 

13 7 57624 5.4676 5.9964 N/A 

16 8 122825 28.7554 30.3946 N/A 

18 10 198911 262.3887 279.9877 N/A 

30 15 1370386 16963.8506 18830.2337 N/A 

 

All three cases are illustrated in Figure 5.6 where solution times change with state space 

size. As it can be clearly seen, the original case's solution time is sharply increased by increasing 

the number of states in comparison to the two decomposed cases, and the decomposition-based 

approach performs better in both cases. The Decomposition algorithm solves problem with 57624 

states in less than 6 seconds, whereas exact algorithm cannot solve the problem with more than 

15000 states without memory problems.   
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Figure 5.6  Runtime comparison between decomposition-based algorithm in case 1 and 2 and 

exact algorithm in original case over different state space 

 

The variation in solution time across different scenarios for all three cases is shown in 

Figure 5.7 to verify the accuracy of the decomposition-based algorithm. Based on different values 

for flight and customer arrival rates, the scenarios are defined. As an example, it is assumed that 

in one case, customer arrival rates exceed flying rates between the supplier and the recharging 

station. these parameters are changed to create different scenarios for each case. Across 54 

different scenarios, the variation in solution time is less than 0.25 sec for case 1, 0.4 sec for case 

2, and 5 sec for the original case. 
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Figure 5.7  Runtime comparison between decomposition-based algorithm in case 1 and 2 and 

exact algorithm in original case over different flying and customer rates 

 

In order to verify the effectiveness of the decomposition-based method, the difference in 

total costs between the decomposition cases and the original problem in different scenarios are 

computed and compared. A decomposition-based algorithm's performance is measured by finding 

the percent difference between the total cost of decomposition case and the original problem. For 

example this amount for case 1 is (𝑇𝐶[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑎𝑠𝑒] − 𝑇𝐶[𝑐𝑎𝑠𝑒1])/𝑇𝐶[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑎𝑠𝑒], and 

for case 2 is (𝑇𝐶[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑎𝑠𝑒] − 𝑇𝐶[𝑐𝑎𝑠𝑒2])/𝑇𝐶[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑎𝑠𝑒].In Figure 5.8, it is shown 

the percentage variation in total costs between the original case and each of the cases 1 and 2, 
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which represent different scenarios. Clearly, the cost obtained by the decomposition algorithm in 

case 1 and case 2 differs from the cost obtained by the exact algorithm in the original case by less 

than 3% in 90 percent of cases. The percentage increases to 95 percent if the cost variation 

increases by 4%. Three scenarios result in an 8 percent variation in cost, which is still less than 10 

percent. It is because the demand rate in all these cases is much lower than other rates related to 

the problem that this increase occurs. Therefore, it is more likely that drones will not fly between 

logistics levels, thus undermining the subsystem connections.   

 

Figure 5.8  Performance comparison between decomposition-based algorithm in case 1 and 2 and 

exact algorithm in original case over different flying and customer rates 

 

To verify the accuracy of the decomposition-based algorithm, the algorithm performance 

in cases 1 and 2 is also compared to the exact algorithm in the original case over different state 

spaces. Figure 5.9 shows the variation in total cost between each decomposition case and the 
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original case as the problem size increases. State spaces range from 108 to 15000. Over 7 different 

problem sizes, both case 1 and case 2 show less than 0.004 variation in total cost. 

 

Figure 5.9  Performance comparison between decomposition-based algorithm in case 1 and 2 and 

exact algorithm in original case over different state space 

 

Our results suggest that the decomposition-based approach is fairly accurate for various 

choices of flight and customer rate, and the different sizes of the problem. Furthermore, it is noted 

that the runtime for the decomposition approach ranged from 0 to 30 seconds and did not increase 

significantly as the size of the states was varied from 108 to 122825. This suggests that the 

approach can be used to analyze fairly large systems. In contrast, the runtime of the exact approach 

for the original problem ranged from 0 to 3221 seconds. This increased significantly as the size of 

the states was varied from 108 to 15000. 

 5.4.2 Effect of the holding cost and backorder cost on inventory position 

In this part, the impact of changing in flying rate, customer arrival time, holding cost and 

backorder cost on inventory position of full charged batteries is studied. Two different scenarios 
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are considered in this study for a system with 10 drones and 4 extra batteries. So the inventory 

position of full charged batteries should be varied between 0 and 4, and the backorder level should 

be varied between 0 to 10. In the first scenario it is assumed the demand rate for full charged 

batteries is less by reducing the rate of flying and customer arrival. In the second scenario the rate 

of flying and customer arrival are increased to have a high demand rate for full charged batteries. 

Table 5.4 presents the flying rates and customer rates used in these two scenarios. 

 

Table 5.4  System Parameters for Sensitivity Analysis 

 Scenario 1 Scenario 2 

𝜇𝑠1 1 4 

𝜇𝑠2 0.5 3 

𝜇𝑑 1 4 

𝜆 1 3 

 

Figure 5.10 shows the impact of increasing holding cost on the inventory position of 

expected on-hand full charged batteries 𝐸[𝐼1] and expected backorders 𝐸[𝐵1] for two different 

scenarios. It is observed that the inventory position of full charged batteries decreases from 3 to 0 

for first scenario with increasing inventory cost from 1 to 20. For second scenario with higher 

demand rate for full charged batteries, inventory position of full charged batteries decreases from 

1.5 to 0. On the other hand, the inventory position for backorders increases from 0 to 8 for second 

scenario with high demand rate for full charged batteries while in the low demand rate scenario, 

the backorders increase from 0 to 6.5. In fact, by looking at this figure, it can be observed that by 

increasing the inventory cost, system prefers to have less on-hand full charged specially when the 

demand rate of full charged batteries is high. It can be also said that by increasing holding cost,  

system prefers to have more backorders and pay the penalty cost for that than have more on-hand 

full charged batteries to satisfy the orders. 
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Figure 5.10  Sensitive analysis of increasing holding cost on optimal number of inventory 

position of full charged batteries in different scenarios 

 

Figure 5.11 shows the impact of increasing backorder cost on the inventory position of on-

hand full charged batteries and expected backorders for two different scenarios. As you can see 

clearly, the inventory position of full charged batteries increases from 0 to 3 for first scenario with 

increasing backorder cost from 20 to 100. Same situation, inventory position of full charged 

batteries increases from 0 to 2.5 when the demand rate for full charges batteries increased. In 

contrast, the inventory position for backorders decreases from 7.2 to 1.5 for scenario with high 

demand rate for full charged batteries while in the low demand rate scenario, the backorders 

decrease from 5.5 to 0. It is clear by increasing the backorder cost, the system prefers to have more 

on-hand full charged specially when the demand rate of full charged batteries is low. It can be also 

said that by decreasing backorder cost, the system prefers to have more backorders and pay the 

penalty cost for that than have more on-hand full charged batteries to satisfy the orders. 
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Figure 5.11  Sensitive analysis of increasing backorder cost on optimal number of inventory 

position of full charged batteries in different scenarios. 

 

 5.5 Conclusions 

In this study, different charging strategies in recharging stations was examined to improve 

drone delivery time in last-mile logistics. In order to determine the best policy for decision-makers, 

stochastic Markov decision models were formulated based on different charging rates, arrival 

rates, flight rates, and associated costs. To improve the efficiency of solving the large-scale MDPs, 

a novel approximation method called the decomposition-based approach was developed to 

decompose the original Markov decision problem for the system into multiple independent 

Markov chain processes. To demonstrate the capability of this algorithm to efficiently solve the 

large-scale problems, numerical experiments conducted to check the performance of the algorithm. 

It was shown that the performance of the decomposition algorithm is significantly high in terms 

of runtime for large-scale problem. It was also shown that the decomposition-based approach is 
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fairly accurate for various choices of flight and customer rate, and different size of the problem. 

The approach not only provides reasonably accurate estimates of performance measures for large 

systems but also scales well in terms of computational effort. The insights on the characteristics 

of the optimal solution were provided by analyzing inventory position of full charged batteries 

over different cases. It is observed that under low inventory cost and high backorder cost, the 

system prefers to have more on-hand full charged batteries. 

 

  



130 

Chapter 6 - Conclusions and Future Research 

This dissertation provides a general methodology for modeling dynamic problems in last-

mile logistics using drones under uncertainty. This research also studies different decomposition 

techniques under unique last-mile logistics constraints that has never been addressed before. The 

proposed Bender-decomposition algorithm is improved by reducing the feasibility space of the 

problem and a novel approximation method called decomposition-based approach is developed to 

split the original Markov decision problem for the system with multiple independent Markov chain 

processes to increase the efficiency when trying to solve these complex models. It can be seen 

from the results that these approaches can show a similar result to what we can expect to see in the 

real-world situation and the proposed solution algorithms is not only capable of solving large-scale 

problems, but also avoids long run times. This methodology will create a host of future research 

topics to advance modeling reliable and resilient supply chain system using unmanned aerial 

vehicles delivery on last-mile logistics. A summary of the main contributions of this work is 

provided below, along with notes on potential avenues for future research and extensions. 

 6.1 Conclusions 

In chapter 3, the reliable facility network design problem under uncertainty conditions in 

the presence of customer demand and disruptions at distribution centers was analyzed. The 

problem was formulated as a two-stage stochastic optimization problem and used the L-shape 

decomposition approach to solve it. It was also theoretically proved that the proposed stochastic 

formulation has a relatively complete recourse structure when at least one supplier is selected. This 

improves the performance of the L-shape algorithm by significantly reducing the total number 

iterations in the L-shape decomposition due to absence of feasibility cuts.  To illustrate the 

applicability of the model and the improved algorithm, a case study was presented based on 
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empirical data sourced from Peng et al. (2011), and those results were then discussed. L-shaped 

decomposition algorithm was also applied to solve the S-SCUC problem, and a computationally 

efficient initial solution is further proposed to accelerate the proposed algorithm. 

This study potentially offers a number of significant contributions to the literature, and the 

supply chain industry in general. The main contribution of this study is that, by developing a two-

stage stochastic model for reliable supply chain network design with stochastic parameters in 

multi-time periods and solving it, the relationships between the facility decisions, such as facility 

location, product assignment and key factors such as transportation cost, hardening investment and 

disruption probability, were understood. It was observed that under high disruption probability, 

increasing the transportation cost results in the model preferring the assignment of reliable 

distribution centers rather than unreliable distribution centers. Furthermore, an efficient solution 

method was developed for the optimization problem based on the multi-cut L-shaped 

decomposition method, which allowed us to solve real large-scale problems in shorter time frames. 

It is shown that the multi-cut algorithms performed significantly better than the single-cut approach 

for every scenario, regardless of size. Although the multi-cut approach produced more cuts in each 

scenario compared to the single-cut, it obtained an optimal solution in fewer iterations than the 

single-cut approach. The result improved even more when converting the stochastic model to a 

relatively complete recourse model. It can be clearly seen how much the multi-cut approach with 

relatively complete recourse model performs better than all other models. These computational 

results also represented how the reliability of the supply chain system can be improved by a slight 

increase in facility cost. Moreover, comparative results for the S-SCUC problem show that, in the 

proposed relatively complete recourse L-shaped algorithm, multi-cut with an initial solution 
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performs much better than its single-cut counterpart with an initial solution and better than the 

multi-cut approach without any initial solution. 

Chapter 4 analyzed the reliable supply chain network problem that includes charging 

station to extend the coverage of drones in last-mile logistics under uncertain parameters. The 

mixed-integer linear programming model was formulated to design a reliable network and a 

genetic algorithm was applied to solve it. It is shown how a slight increase in facility investment 

can increase the system’s reliability. It was also shown that, by considering each scenario 

independently to create a new population in the genetic algorithm, the efficiency of algorithm is 

significantly improved and near optimal solution is obtained in less iterations due to the absence 

of infeasibility solutions. Computational results showed the genetic algorithm performs 

significantly better than the commercial software for most scenario size. It was also showed that 

under high disruption probability, the number of reliable distribution centers and charging stations 

increased while the number of unreliable facilities decrease. Furthermore, increasing the fixed cost 

of charging stations and distribution centers and flight cost of drones decreases the optimal number 

of reliable facilities to satisfy customers. 

There are three main contributions of this study: firstly, stochasticity in a multi-period 

supply chain network design problem including charging station is examined to extend the 

coverage of drones in last-mile logistics, where the disaster and the demand are random. The 

proposed stochastic model is unique because of two conditions: (i) it simultaneously considered 

delivery service coverage of recharging stations and distribution centers based on the flight range 

of drones under different conditions, capacities for supply and distribution centers and drone’s 

utilization cost based on calculating Euclidian shortest path distance under demand and disaster 

uncertainty in multiple time periods. (ii) a combination of the two types of strategies was adopted 
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simultaneously to design a reliable network using charging station as one of the levels under two 

different uncertain parameters in multi-time periods. The proposed problem was formulated as a 

stochastic mixed-integer programming model to design an efficient supply chain network. 

Secondly, the heuristic algorithm was improved by considering a novel method to generate 

independent scenarios to create a new population. This significantly improved the efficiency of 

the algorithm due to the decrease in number of infeasible solutions and allowed it to efficiently 

solve real large-scale problems. Thirdly, based on numerical experiments, the effects of disruption 

probability, cost needed to build a reliable distribution center and charging station, and drone's 

utilization cost were analyzed in relation to the number of drones per distribution center, the 

number and location of reliable and unreliable distribution centers and charging stations. Contrary 

to popular belief, it was observed that by increasing disruption probability, utilization costs of 

drones and fix cost of establishing reliable and unreliable facilities, the model prefers to lose the 

demand and pay the penalty cost instead of buying drones and establishing more reliable facilities. 

In the chapter 5, different charging strategies in recharging stations was examined to 

improve drone delivery time in last-mile logistics. In order to determine the best policy for 

decision-makers, stochastic Markov decision models were formulated based on different charging 

rates, arrival rates, flight rates, and associated costs. To improve the efficiency of solving the large-

scale MDPs, a novel approximation method called the decomposition-based approach was 

developed to decompose the original Markov decision problem for the system into multiple 

independent Markov chain processes.  

To demonstrate the capability of this algorithm to efficiently solve the large-scale 

problems, numerical experiments conducted to check the performance of the algorithm. It was 

shown that the performance of the decomposition algorithm is significantly high in terms of 
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runtime for large-scale problem. It was also shown that the decomposition-based approach is fairly 

accurate for various choices of flight and customer rate, and different size of the problem. The 

approach not only provided reasonably accurate estimates of performance measures for large 

systems but also scaled well in terms of computational effort. Insights on the characteristics of the 

optimal solution were provided by analyzing inventory position of full charged batteries over 

different cases. It is observed that under low inventory cost and high backorder cost, the system 

prefers to have more on-hand full charged batteries. 

The main contributions of this study are: From the tactical and operational side, 

stochasticity in a logistics network including recharging stations as a warehouse of extra batteries 

for drones is analyzed where there are a lot of uncertainties associated with this network like 

demand arrival, charging rate, and flight rate. In the literature, the main models for selecting 

recharging technology relate to the location of the recharging stations, including recharging 

technologies and routing strategies with an emphasis on sustainability, energy consumption, and 

power loss. To the best of our knowledge, no existing studies have analyzed different charging 

strategies in recharging stations to improve the delivery time in last-mile logistics using drones. 

This research developed stochastic Markov decision models to handle stochasticity in this problem 

and determine the best policy for decision-makers based on different charging rates, demand 

arrival rates, flight rates, and costs associated with them. Methodologically, a novel approximation 

method called the decomposition-based approach is developed to split the original Markov 

decision problem for the system into multiple independent Markov chain processes to improve the 

efficiency of solving the large-scale MDPs. This methodology will create a host of future research 

topics to advance modeling stochastic systems and mitigate the curse of dimensionality in dynamic 
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programming. To the best of our knowledge, the proposed methodology is novel and has not been 

published in any relevant reports and venues. 

 6.2 Future study 

One of the important concerns in using drones in commercial sector is drone-related cyber 

threats. This is a major concern since modern control systems are becoming large and decentralized 

and thus more vulnerable to attacks. These cyber threats not only make disorder in communications 

between drones, but also attempt to attack the entire network by injecting or modifying data. 

Considering logistics system when some of the GPS sensors of drones are corrupted by an attacker 

create a unique future research topics to advance modeling reliable and resilient supply chain 

system using unmanned aerial vehicles delivery on last-mile logistics. Stochastic models can be 

developed to adaptively learn the policy based on what the attackers does, and parameter changes 

to create the resilient system.  

The linear control system structure and the future path of this system are described in 

follow. This study is concerned with the estimation and control of linear systems when some of 

the sensors are corrupted by an attacker. The linear control system can be developed to improve 

the resiliency of the system. The linear control system can be written as following the equations: 

𝑥(𝑡+1) = 𝐴𝑥(𝑡) + 𝐵(𝑢(𝑡)(𝑦(0), … , 𝑦(𝑡)) + 𝜔(𝑡)) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑒(𝑡) 

Where, 𝑥(𝑡) is the state of the system at time t, and 𝑦(𝑡) is the output of the GPS sensors at 

time t. 𝑢(𝑡) is the action, and the control input applied at time t depends on the past measurements 

(𝑦(𝑎))
0≤𝑎≤𝑡

 through the output feedback map 𝑢(𝑡). The vector 𝑒(𝑡) indicates the attacks injected 

by the attacker in the different sensors, and the vector 𝜔(𝑡) is the other uncertainties in the state of 

the system. In the absence of an attack on sensor 𝑖 ∈  {1, . . . , 𝑝}, neither 𝑒𝑖
(𝑡)

 nor output 𝑦𝑖
(𝑡)

 of 
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sensor i are corrupted, otherwise 𝑒𝑖
(𝑡)

(and therefore 𝑦𝑖
(𝑡)

) can have any value. Accordingly, 𝑒(𝑡) 

indicates the set of sensors attacked. It can be assumed that the set of attacked nodes does not 

change over time. More precisely, if 𝐾 ⊂  {1, . . . , 𝑝} is the set of attacked sensors, then we have 

for all t, 𝑠𝑢𝑝𝑝(𝑒(𝑡))  ⊂  𝐾 (where 𝑠𝑢𝑝𝑝(𝑥) denotes the support of x, i.e., the indices of the nonzero 

components of x). The assumption is reasonable because a model where the set of attacked nodes 

changes every time step while having a fixed cardinality is not very realistic since it would assume 

that the attacker abandons from t to t + 1 some of the nodes he had control over. Moreover, if you 

are dealing with a malicious agent, it cannot be assumed the attacks 𝑒𝑖
(𝑡)

 (for an attacked sensor i) 

to follow any particular model. 𝑒𝑖
(𝑡)

 can simply take any arbitrary real numbers. 

For Future research two different directions can be considered. a simple case where the 

adversaries have complete information of the system and can only influence state and output by 

action 𝑒(𝑡) bounded by lower and upper values. Next, the adversaries have incomplete information 

of the system and can view the state of the system as 𝑦(𝑡). Then, the adversaries take optimal action 

𝑒(𝑡) while assuming an optimal action 𝑢(𝑡) by the system owner.  

In both case it is really critical to construct an iterative estimator to estimate the state of a 

linear dynamical system in the presence of attacks. The estimate of the state is updated by a simple 

iterative rule each time a new measurement is received. This estimator needs error detector to 

detect possible errors, i.e. deviations from the normal behavior. The error detector is supposed to 

be collocated with the controller; therefore, it only has access to 𝑦(𝑡) and 𝑢(𝑡) to evaluate the 

behavior of the system. Proper approaches to detecting malfunctions in control systems can help 

estimator to determine the action which can be adaptively changed based on what the attackers 

does, and parameter changes. This model will give a new characterization of the maximum 
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resilience of a system to attacks and the possibility of increasing the resilience of a system by 

secure local feedback. 

In the next step, Karush–Kuhn–Tucker (KKT) conditions can be developed to derive the 

optimal solution for proposed stochastic model. The special case can also be considered when the 

probability of uncertainty 𝜔(𝑡)comes from the exponential distribution. In this case MDP model 

can be developed and best policy would be obtained based on the decomposition-based approach 

proposed in chapter 5. The linear control system can adaptively learn the policy based on these 

changes. Deep reinforcement learning can be also applied to consider how states change between 

time periods and optimizes the system over the time. 

Another future path could include using machine learning models to predict future 

scenarios and probabilities of these scenarios for uncertain parameters and adapting these models 

to L-shape algorithms. Machine learning models can generate much more accurate scenarios for 

uncertainties associated with the problem like demand which can help decision makers to obtain 

more accurate solutions based on scenario-based algorithms like bender decomposition. However, 

the L-shape algorithm works using the duality theory of linear programming. In this method the 

second-stage problem is linear (convex), thus the duality theory of linear programming can be 

applied to gain outer approximations of the recourse cost function. The convexity can be lost by 

applying machine learning models at the second stage of the problem to generate the scenarios or 

the probability associated with them. Adopting these models in bender decomposition algorithms 

could be a unique future research topic for this research. Also, most of the reliability strategies are 

theoretical. In the future, it is better to study the reliable supply chain network in the real world, to 

make an optimization model that better reflects reality. 
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Chapter 5 explains how decomposing the MDP in different ways can affect the accuracy 

of the decomposition-based algorithm. As it is mentioned, for accuracy of the decomposition 

technique in each subsystem, the impact of stochastic rates in other states needs to be accounted. 

I believe that developing a theory to construct a structure for decomposing MDPs based on 

stochastic rates existing in the problem is a promising area for research. Of course, tradeoffs 

between the accuracy and efficiency of the decomposition algorithm must be considered for 

generalizing this structure. In addition, another interesting area of research would be characterizing 

the optimal policies in decomposition-based algorithms and extending them to original problems. 

In a MDP problem with many dimensions, it is impossible to determine the characteristics of 

optimal policies and how they change over time. However, the decomposition-based algorithm 

can provide us with the opportunity to find the characteristics of optimal policies in each subsystem 

and generalize them to the original system. 
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