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Abstract

In this dissertation, novel estimation procedures are proposed for a class of Poisson linear

regression when the covariate is contaminated with Laplace measurement error.

This dissertation contains two research projects. In the first project, we propose a

weighted least squares estimation procedure that incorporates the first two conditional mo-

ments of the response variable given the observed surrogate, and the weight function is

intentionally chosen to avoid the complexity caused by the random denominator and to

increase the estimation efficiency. To solve for the conditional moments, a Tweedie-type

formula for the conditional expectation of the likelihood function given the observed surro-

gate has been adopted. Instead of assuming the distribution of the unobserved covariate is

known, we assume that the distribution of that latent variable is unknown. Large sample

properties of the proposed estimator, including the consistency and the asymptotic normal-

ity, are discussed. The finite sample performance of the proposed estimation procedure is

evaluated by simulation studies, showing that the proposed estimator is more efficient than

the existing ones.

In the second project, we propose a corrected maximum likelihood estimation procedure

based upon the Tweedie-type formula. Two situations, the distribution of the latent variable

is known as well as unknown, are considered. Large sample properties of the proposed

estimator are discussed, and simulation study shows that the estimator is more efficient than

the existing estimation procedures. Besides, further simulation studies are also conducted

to compare our proposed two estimation procedures. And sensitivity analysis has been done

to examine the robustness of our methods in real data.

Although the discussion is conducted for univariate cases, the proposed estimation pro-

cedure can be readily extended to the multivariate cases by using multivariate Tweedie-type

formulae.
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Chapter 1

Introduction

Regression model is a common model to explore the relationship between a response variable

Y and some independent variables X. In many studies researchers are interested in the

relationship

Y = m(X; β) + ϵ,

where β is the unknown regression parameter and ϵ is the random error.

However, in real applications, the true independent variable X sometimes cannot be

observed directly. One could only observe some surrogates for X instead. In other words, the

independent variable is measured with error. The statistical models with error-contaminated

variables are called measurement error models or errors-in-variables models.

A variety of methods have been proposed to estimate the parameters in the generalized

linear regressions models when the measurement error follows normal distribution. However,

few works have been done when the measurement error follows other distributions, such as

the Laplace distribution. As a representative example of ordinary-smooth distributions, it’s

very common to see the Laplace errors in the real practice. The research interest in this

dissertation is to propose novel estimation procedures for the parameter in Poisson linear

regression model when the covariates are contaminated with the Laplace measurement error.

We will first consider the weighted least square estimation procedure, then the corrected

maximum likelihood estimation procedure.
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In this chapter, we will introduce some background knowledge that is related with our

two estimation procedures.

1.1 Measurement Error Model

In the measurement error literature, there are two kinds of measurement errors, the classical

error and the Berkson error. The main difference between these two error structures lies in

how X and its surrogate Z are related. The classical error model specifies Z = X+U , where

E[U |X] = 0, U is independent of X, and therefore E[Z|X] = X. While the Berkson error

model specifies X = Z +U where E[U |Z] = 0, U is independent of Z, and as a consequence

E(X|Z) = Z. Therefore, Var(Z) > Var(X) for the classical errors and Var(X) > Var(Z)

for the Berkson errors. While these two types of errors are both of researcher’s interest, the

classical error is more common in the literature. In our research, we are also interested in

the situation when the measurement error follows the classical error structure.

1.2 Tweedie’s Formula and Tweedie-Type Formula

As disclosed in Efron (2011), the Tweedie’s formula is named after Maurice Kenneth Tweedie

and it was first discussed in Robbins (1956). Assuming that X is p-dimensional random

vector, and U ∼ NP (0,Σu), Z = X + U , the Tweedie’s formula could be expressed as

E(X|Z) = Z + Σu
g′(Z)

g(Z)
,

where g(·) is the density function of Z.

However, notice that this Tweedie’s formula only focuses on E(X|Z) under the normal

measurement error. When the measurement error U follows Laplace distribution, U ∼

MLp(0,Σu), Shi and Song (2015) proposed a Tweedie-type formula

E[m(X)|Z] = 1

g(Z)

[∫
m(x)f(Z − x)g(x)dx− 1

2

p∑
j,l=1

σjl

∫
m(x)f(Z − x)

∂2g(x)

∂xj∂xl

dx

]
,
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where m(X) is a measurable function of X, f(·) is the density function of U and σjl is the

(j, l)th element of Σ.

In Chapter 2 and Chapter 3, we will adopt this Tweedie-Type formula to calculate

E[m(X)|Z] for a given function m(X) for both the proposed weighted least squares estima-

tion and the corrected maximum likelihood estimation procedure.

1.3 Existing Estimation Procedures

There have been different kinds of bias-correction estimation procedures proposed in lit-

erature for estimating the parameters in nonlinear models with measurement error. An

extensive discussion on this topic can be found in Carroll et al. (2006).

1.3.1 Regression Calibration

Suppose that the mean of Y given X can be modeled by E(Y |X) = mY (X; β) for some

unknown parameter β. X is not known due to the presence of measurement error and we

can observe Z which is related to X. The regression calibration method is based on replacing

the unobserved X by the regression of X on Z, µX(Z, γ), depending on parameters γ, which

are estimated by γ̂. And use µX(Z, γ̂) to obtain the parameter estimate using a stantard

analysis. After replacement, regression calibration is dealing with the following approximate

model

E(Y |Z) ≈ mY (µX(Z, γ), β)

However, notice that this is only an approximate model for the observed data. This method

only produce approximately consistent estimators. In cases when E(X|Z) is in a complicated

form or when the regression model is highly nonlinear, simply replacing X with E(X|Z) may

not generate a satisfying estimate.

In Chapter 3, we are making some adjustment to the traditional regression calibration

method. Instead of replacing X with E(X|Z) and using the approximate model, we try

to calculate E(Y |Z) directly, when the measurement error U follows Laplace distribution,
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using the Tweedie-type formula mentioned in the previous subsection.

1.3.2 Score Function Methods

There are two kinds of score function methods, conditional score method and corrected score

method.

Stefanski and Carroll (1987) discussed the conditional score method in the generalized

linear normal measurement error model. Given a covariateX = x, Y has the density function

hY (y; θ, x) = exp

{
y(α + βTx)− b(α + βTx)

a(ϕ)
+ c(y, ϕ)

}
,

which is that of a generalized linear model in canonical form in McCullagh and Nelder (1989).

And θT = (α, βT , ϕ) is the unknown parameters to be estimated. In Stefanski and Carroll

(1987)’s paper, they introduce ∆, a complete and sufficient statistic for measurement error

u, that has the form of

∆ = ∆(Y,X, θ) = X + Y Ωβ,

where Ω = Ω̄/a(ϕ) and Ω̄ is the covariance matrix of u. Based on the conditional distribution

Y |∆, they are able to derive unbiased estimating equations for θ that are independent of u.

For Poisson regression, the conditional distribution has the form

prθ(Y = k|∆ = δ) =
(k!)−1 exp{k(α + βT δ)− 1

2
k2βTΩβ}∑

(j!)−1 exp{j(α + βT δ)− 1
2
j2βTΩα}

,

where the sum is over j = 0, ...,∞. However, it could be noticed that this unbiased condi-

tional score function has no closed form.

Front a different perspectiv, Nakamura (1990) proposed corrected score function method

for the generalized linear models with normal measurement error. Let F be an open convex

subset of a parameter space including β, he defines a function l∗(β,X, Y ) to be called a

corrected log likelihood if

E∗{l∗(β,X, Y )} = l(β, Z, Y ),
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for any β in F , where l(β, Z, Y ) is the log likelihood function of β given Y and the observable

variable Z. Meanwhile, U∗(β,X, Y ) = ∂l∗(β,X, Y )/∂β is called a corrected score function,

and the value β∗ such that U∗(β,X, Y ) = 0 is called a corrected estimate. For Poisson

regression, l∗(β,X, Y ) = 0 has the form

l∗(β) =
n∑

i=1

{YiZ
′

iβ − lnYi!− exp(Z
′

iβ − 0.5β
′
Σuβ)}.

Unfortunately, this corrected log likelihood function is not bounded in β.

To deal with the situation when the distribution of measurement error U is unknown,

Guo and Li (2002) constructed a new type of consistent corrected score estimator for the

parameter in Poisson regression model. The newly adjusted log-likelihood function is

Qnew(β) =
n∑

i=1

[YiZiβ − lnYi!]− EX [exp(Xβ)].

However, to calculate this estimator, we need to know EX [exp(Xβ)], which often requires

some knowledge of the density function of X. While in real applications, the density function

of X is usually unknown.

Note that the majority of the methods above are all under the situation that measurement

error follows normal distribution. While there are few literature when the measurement error

follows Laplace distribution. To compare our proposed method with an existing method,

we found that when the measurement error follows a Laplace distribution with zero mean

and unknown variance, Hong and Tamer (2003) provided a modified method of the moment

estimator to estimate the parameters in general nonlinear models. They showed that if

U ∼ Laplace(0, σ2
u), then

E exp(Xβ) = E

(
1− σ2

uβ
2

2

)
exp(Zβ).

And combining the results of Guo and Li (2002) and Hong and Tamer (2003), when the

measurement error U follows a Laplace distribution with mean 0 and variance σ2, there
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exists an estimation procedure of β by maximizing the following function

Qcom(β) =
n∑

i=1

[
YiZiβ − log Y !−

(
1− σ2β2

2

)
exp(Ziβ)

]
.

However, note that the function Qcom(β) is indeed unbounded in β.

1.3.3 Likelihood and Quasi-likelihood Methods

To conduct a likelihood analysis in measurement error models. One must specify a parametric

model in case of X being observable, then choose the error structure, classical or Berkson.

In the classical measurement error setting, we specify a model for the unobserved X given

the observed covariate Z. Then the likelihood function can be constructed.

However, in some cases, the exact distribution cannot be identified for the data, therefore,

the corresponding likelihood function is not available. A well known substitute for the likeli-

hood method is the so called quasi-likelihood method, which is also known as quasi-likelihood

and variance function (QVF) method. Proposed by Wedderburn (1974), quasi-likelihood es-

timation assumes only a mean-variance relationship rather than a specific distribution for

Yi. More specifically, instead of assuming a distributional type for Yi, it assumes only

Var(Yi) = v(µi),

where µi = E(Yi) and v is some chosen variance function. And It could be showed that the

equations that determine quasi-likelihood estimates are the same as the likelihood equations

for GLMs. Thus, to implement the quasi-likelihood method, we only have to know the mean

and variance function of the response instead of the entire distribution. And to extend this

method to measurement error setups, we would need to compute the mean and variance

functions of the response given the observed covariates Z, or

E(Y |Z) = E{mY (·)|Z}, Var(Y |Z) = σ2E{g2(·)|Z}+Var{mY (·)|Z},

6



which define a variance function model. If the functional forms of the mean and variance

functions are known, then the parameters in the corresponding statistical models can be

estimated by the common fitting algorithms. See Agresti (2002) and Carroll et al. (2006)

for detailed discussions on the likelihood and quasi-likelihood methods.

In Chapter 3, we will derive the probability mass function of (Y |Z) and the conditional

log-likelihood function of P (Y |Z) using the Tweedie-Type formula developed in Shi and Song

(2015) and apply the maximum-likelihood estimation procedure. Large sample properties,

including the consistency and the asymptotic normality of the resulting estimator, under both

cases, the density function of X being known and unknown, will be thoroughly investigated.

1.3.4 Minimum Distance Estimation

For a class of nonlinear regression models with the Berkson measurement error structure,

Wang (2004) proposed a minimum distance estimator for the regression parameters. The

method is based on the first two conditional moments of the response variable given the

observed covariate, and the estimator is the minimizer of the target function

Qn(γ) =
n∑

i=1

ρ′(Yi, Zi; γ)W (Zi)ρ(Yi, Zi; γ),

where W (Zi) is a weighting matrix which may depend on Zi and

ρ(Yi, Zi; γ) = (Yi − E(Yi|Zi), Y 2
i − E(Y 2

i |Zi))
′.

This minimum distance estimation is indeed a weighted least square estimation procedure.

However, note that under the Berkson error structure, the calculations of the conditional

expectations E(Y |Z) and E(Y 2|Z) are quite straightforward. While this is not the case

for the classical measurement error. In Chapter 2, for the Poisson regression model with

Laplace measurement error, we will calculate these two conditional expectations based on

the Tweedie-type formulae developed in Shi and Song (2015), then construct a weighted least

squares estimation procedures similar to the procedures discussed in Wang (2004). Large

7



sample properties of the weighted least squares estimator will be investigated.

1.4 Kernel Density Estimation

Kernel density estimation procedure is a very popular nonparametric smoothing technique for

estimating the density function of a random variable. To be specific, suppose X1, X2, . . . , Xn

is a sample from a univariate population X, then the commonly used Rosenblatt-Parzen

kernel density estimator of density function f takes the form of

f̂(x;h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

whereK is called a kernel density function, satisfyingK(x) ≥ 0,
∫
K(x)dx = 1 and is usually

taken to be symmetric function such as the standard normal density function. h, a sequence

of positive integers tending to 0 as the sample size n goes to infinity, is called the bandwidth.

If we denote Kh(u) = h−1K(u/h), then the kernel density estimator can also be rewritten as

f̂(x;h) = n−1
n∑

i=1

Kh(x−Xi). See Wand and Jones (1995) for an extensive discussions on the

kernel smoothing for both the univariate and the multivariate data. The Rosenblatt-Parzen

kernel density estimator will be adopted in our construction of the estimation procedure.

In Chapter 2 and Chapter 3, we will apply this density estimation procedure in estimating

the density function of Z when the distribution of the true variable X is unknown.

8



Chapter 2

Weighted Least Squares Estimation in

Poisson Regression with Laplace

Measurement Error

2.1 Introduction

As a typical example of the generalized linear model, Poisson regression model is widely used

for fitting the count data. The intensity function of the Poisson regression is often modeled as

a linear function of the covariates. To be specific, let Y be a nonnegative integer, in Poisson

regression, for a given covariate X = x, possibly multidimensional, Y assumes a Poisson

distribution with intensity function λ(x) = exp(xTβ). Statistical inferences on Poisson

regression are abundant in literature. An extensive discussion on the Poisson regression, as

well as other related regression models on count data, can be found in Cameron and Trivedi

(2013). However, the covariate X, sometimes a part of X, cannot be measured precisely

due to potential measurement instruments imperfection or human errors. However, another

covariate, denoted as Z, can be observed, which is related to X via the additive structure

Z = X + U , where X and U are often assumed to be independent. The random variable

U is called the measurement error. Another structure in measurement error literature for

9



describing the relationship between Z and X is X = Z+U with Z and U being independent,

which is called Berkson error. The different natures of these two structures leads to very

different theoretical developments. Throughout this chapter, we assume that Z and X

follows the classical measurement error structure. Another important assumption made in

the classical measurement error literature is that U is nondifferential, that is, the conditional

distribution of Y given X,Z is the same as the conditional distribution of Y given X.

In other words, given the true variable X, knowing the variable Z does not provide any

further information on the distribution of Y . We will also adopt the nondifferential condition

throughout the chapter. A comprehensive discussion on the measurement error modeling

can be found in Fuller (2009), Cheng and Ness (2010), Buonaccorsi (2010) and Carroll et al.

(2006).

It is well known that the naive estimation procedures, or simply replacing X with the

data from Z in a standard estimation procedure often result in biased estimate. For Pois-

son regression, note that the mean and variance function of the response variable Y given

X are all equal to exp(XTβ). However, the conditional expectation E(Y |Z) is less than

Var(Y |Z). This over dispersion effect was first observed by Guo and Li (2002). The research

on reducing or removing the effect of the measurement error in the estimation of β has

attracted more and more attentions from both theoretical and applied statisticians. Some

classical estimation procedures, such as the regression calibration, simulation extrapolation

and instrumental variable methods have been applied to Poisson regression models. Exam-

ples include the conditional score estimator proposed in Stefanski and Carroll (1987), the

corrected score estimator proposed in Stefanski (1989) and Nakamura (1990). However, the

existing methods either have complicated algorithms, or the target functions to be maxi-

mized are not bounded, or the measurement errors to be assumed are normal. Although

Guo and Li (2002) relaxed the normality assumption and constructed the exact corrected

log-likelihood, but the computation of such likelihood function involves the estimation of

E[X exp(Xβ)] which is not straightforward if the distribution of X is unknown.

In this chapter, we will propose a simple estimation procedure based on the first and

second conditional moments of Y given the surrogate covariate Z. The proposed estimation

10



procedure is a weighted least square methods which is similar to the minimum distance

procedure discussed in Wang (2004) in the context of nonlinear regression with the Berkson

measurement error. Since the conditional expectations of Y given Z are more complicated

in the classical measurement error cases, the derivation of the estimation procedure, and the

discussion of the statistical properties of the resulting estimators are more challenging than

the minimum distance procedure discussed in Wang (2004).

To avoid notational complexity from multivariate covariateX, we will limit our discussion

to the univariate cases, the estimation procedure can be readily extended to the multivariate

covariates scenarios.

This chapter is organized as follows. The proposed weighted least square estimation

procedures will be stated in Section 2.2. Large sample properties of the proposed estimator,

including the consistency and the asymptotic normality, will be thoroughly discussed in

Section 2.3. Simulation studies will be conducted in Section 2.4 and the proofs of the main

results will be deferred to Section 2.5.

2.2 Weighted Least Squares Estimation Procedure

In the Berkson measurement error setup, Wang (2004) proposed a minimum distance estima-

tion procedure for the nonlinear regression model based on the first and second conditional

moments of the response variable given the surrogates. Under the nondifferential condition,

we could obtain the first conditional moment of Y given Z as

E(Y |Z) = E[E(Y |Z,X)|Z] = E[E(Y |X)|Z] = E(exp(Xβ0)|Z),

where β0 is the true value of β, and the second conditional moment as

E(Y 2|Z) = E[E(Y 2|Z,X)|Z] = E[E(Y 2|X)|Z] = E(exp(Xβ0)|Z) + E(exp(2Xβ0)|Z).

11



Unlike the Berkson measurement error, the above two conditional moments do not have a

simple form even if the distribution of X is known in the classical measurement error setup.

For a twice differentiable function m(x), Shi and Song (2015) showed that if the density

function g(Z) of Z is also twice continuously differentiable, then under the assumption of

the Laplace measurement error (0, σ2
u), there holds the following Tweedie-type formula

E[m(X)|Z] = m(Z) +
1

g(Z)

∫ ∞

z

[
m′(x)− σum

′′(x)

2
√
2

]
g(x) exp

(
z − x

σu/
√
2

)
dx

− 1

g(Z)

∫ z

−∞

[
m′(x) +

σum
′′(x)

2
√
2

]
g(x) exp

(
x− z

σu/
√
2

)
dx

In the Poisson regression with a univariate X, the regression function E(Y |X) = exp(Xβ).

Let m(X) = exp(Xβ), then according to the above Tweedie-type formula, we have

E[exp(Xβ)|Z] = exp(Zβ) +
1

g(Z)

(
β − σu

2
√
2
β2

)
exp

(√
2Z

σu

)∫ ∞

Z

g(x) exp[(β −
√
2/σu)x]dx

− 1

g(Z)

(
β +

σu

2
√
2
β2

)
exp

(
−
√
2Z

σu

)∫ Z

−∞
g(x) exp[(β +

√
2/σu)x]dx.

Similarly, let m(X) = exp(2Xβ), we have

E[exp(2Xβ)|Z] = exp(2Zβ) +
1

g(Z)

(
2β − 2σu√

2
β2

)
exp

(√
2Z

σu

)∫ ∞

Z

g(x) exp[(2β −
√
2/σu)x]dx

− 1

g(Z)

(
2β +

2σu√
2
β2

)
exp

(
−
√
2Z

σu

)∫ Z

−∞
g(x) exp[(2β +

√
2/σu)x]dx.

If the density function g(z) of Z is known, then similar to the minimum distance estimator

proposed in Wang (2004), β can be estimated by β̃n = argmin L̃n(β), where the target

function L̃n(β) has the following form

1

n

n∑
i=1

[(Yi − E(exp(Xiβ)|Zi))
2 + (Y 2

i − E(exp(Xiβ)|Zi)− E(exp(2Xiβ)|Zi))
2]W (Zi),

whereW (Zi) is the weight function which is nonnegative and chosen to improve the efficiency

12



of the estimator.

To proceed, we denote

T (Z, β) =

(
β − σu

2
√
2
β2

)
exp

(√
2Z

σu

)∫ ∞

Z

g(x) exp[(β −
√
2/σu)x]dx

−
(
β +

σu

2
√
2
β2

)
exp

(
−
√
2Z

σu

)∫ Z

−∞
g(x) exp[(β +

√
2/σu)x]dx.

Then the target function Ln(β) can be written as

L̃n(β) =
1

n

n∑
i=1

{[
Yi − exp(Ziβ)−

T (Zi, β)

g(Zi)

]2
+

[
Y 2
i − exp(2Ziβ)−

T (Zi, 2β)

g(Zi)
− exp(Zi, β)−

T (Zi, β)

g(Zi)

]2}
W (Zi). (2.1)

Note that in practice the density function g is rarely known, so the function Ln(β) cannot

be used directly. In this case, replacing the unknown g function with some nonparametric

estimators, for example, the Rosenblatt-Parzen kernel density estimator, becomes a natural

choice. However, such replacement will lead to a random denominator in Ln(β) which

makes the large sample theory development more difficult. To avoid this potential technical

challenge, we can modify the function Ln(β) by choosing the weight function to be the form

of g2(z)W (z). As a result, L̃n(β) in (2.1) becomes

Ln(β) =
1

n

n∑
i=1

{[Yig(Zi)− exp(Ziβ)g(Zi)− T (Zi, β)]
2

+ [Y 2
i g(Zi)− exp(2Ziβ)g(Zi)− T (Zi, 2β)− exp(Ziβ)g(Zi)− T (Zi, β)]

2}W (Zi).

For each i = 1, 2, . . . , n, suppose Z is independent of Zi and has the density function

g(z), then

∫ ∞

Zi

g(x) exp[(β −
√
2/σu)x]dx = E[exp[(β −

√
2/σu)Z]I[Zi,∞)(Z)|Zi],

13



∫ Zi

−∞
g(x)[(β +

√
2/σu)x]dx = E[exp[(β +

√
2/σu)Z]I(−∞,Zi)(Z)|Zi],

which indicates that the two integrals can be estimated by the empirical sample analogues

1

n

n∑
j=1

exp[(β −
√
2/σu)Zj]I[Zj≥Zi] and

1

n

n∑
j=1

exp[(β +
√
2/σu)Zj]I[Zj<Zi].

Thus, T (Zi, β) can be estimated by

T̂ (Zi, β) =

(
β − σu

2
√
2
β2

)
exp

(√
2Zi

σu

)
1

n

n∑
j=1

exp[(β −
√
2/σu)Zj]I[Zj≥Zi]

−
(
β +

σu

2
√
2
β2

)
exp

(
−
√
2Zi

σu

)
1

n

n∑
j=1

exp[(β +
√
2/σu)Zj]I[Zj<Zi].

Therefore, in the cases of unknown g(z), the proposed estimator of β is defined as

β̂n = argminβL̂n(β), (2.2)

where

L̂n(β) =
1

n

n∑
i=1

{[Yiĝ(Zi)− exp(Ziβ)ĝ(Zi)− T̂ (Zi, β)]
2 (2.3)

+ [Y 2
i ĝ(Zi)− exp(2Ziβ)ĝ(Zi)− T̂ (Zi, 2β)− exp(Ziβ)ĝ(Zi)− T̂ (Zi, β)]

2}W (Zi),

where ĝ(z) is the classic kernel density estimator ĝ(z) = (nh)−1
∑n

i=1K ((z − Zi)/h) with

K being a kernel density function and h being a bandwidth which is a sequence of positive

integers indexed by the sample size n.

2.3 Large Sample Results

In this section, large sample properties of the estimator defined in (2.2), including the con-

sistency and the asymptotic normality will be discussed. Recall that β̂n is the minimizer of

14



L̂n(β) defined in (2.3), so β̂n is the solution of the equation
˙̂
Ln(β) = 0, where

˙̂
Ln(β) is the

derivative of L̂n(β) with respect to β, which has the following form

˙̂
Ln(β) =

2

n

n∑
i=1

{[Yiĝ(Zi)− exp(Ziβ)ĝ(Zi)− T̂ (Zi, β)][−Zi exp(Ziβ)ĝ(Zi)−
˙̂
T (Zi, β)]

+ [Y 2
i ĝ(Zi)− exp(Ziβ)ĝ(Zi)− exp(2Ziβ)ĝ(Zi)− T̂ (Zi, β)− T̂ (Zi, 2β)]·

[−Zi exp(Ziβ)ĝ(Zi)− 2Zi exp(2Ziβ)ĝ(Zi)−
˙̂
T (Zi, β)−

˙̂
T (Zi, 2β)]}W (Zi),

where

˙̂
T (Zi, β) =

(
1− σu√

2
β

)
exp

(√
2Zi

σu

)
1

n

n∑
j=1

exp[(β −
√
2/σu)Zj]I[Zj≥Zi]

+

(
β − σu

2
√
2
β2

)
exp

(√
2Zi

σu

)
1

n

n∑
j=1

Zj exp[(β −
√
2/σu)Zj]I[Zj≥Zi]

−
(
1 +

σu√
2
β

)
exp

(
−
√
2Zi

σu

)
1

n

n∑
j=1

exp[(β +
√
2/σu)Zj]I[Zj<Zi]

−
(
β +

σu

2
√
2
β2

)
exp

(
−
√
2Zi

σu

)
1

n

n∑
j=1

Zj exp[(β +
√
2/σu)Zj]I[Zj<Zi].

The validity of the large sample results for the estimator β̂n relies on the following tech-

nical assumptions.

(C1). The parameter space of β is a closed interval Θ = [β, β̄] in R, and the true value

β0 is an interior point of Θ.

(C2). The density function g(z) of Z is twice continuously differentiable.

(C3). The latent variable X satisfies E exp[(β∗ +
√
2/σu)X] < ∞, and E exp[−(β∗ +

√
2/σu)X] < ∞.

(C4). EY (|Z|+ 1) exp(Zβ)W (Z) and EYW (Z) exp(
√
2Z/σu) are finite for all β ∈ Θ.

(C5). Ee211, Ee221, Ee231 and Ee241 are all finite, where e11, e21, e31 and e41 are defined

in (2.8), (2.9),(2.12), and (2.13), respectively.
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The following theorems summarize the consistency and the asymptotic normality of β̂n.

Theorem 1. Under conditions (C1)-(C4), β̂n → β0 in probability as n → ∞.

Theorem 2. In addition to the conditions in Theorem 1, we further assume that (C5) holds,

then
√
n(β̂n − β0) =⇒ N(0, σ2) as n → ∞, where σ2 = E(e11 + e21 + e31 + e41)

2/L̈2(β0),

L̈(β) = L̈1(β) + L̈2(β) are defined in (2.4) and (2.5), respectively, and e11, e21, e31 and e41

are defined in (2.8), (2.9),(2.12), and (2.13), respectively.

Although the asymptotic variance σ2 has a complicated form, it can be well explained by

four different sources of variabilities. In specific, e11 is the irreducible deviations of Y and

Y 2 from E(Y |Z) and E(Y 2|Z), respectively, e21 reflects the variability from the estimation

of the density function of Z, e31 represents the variability from the estimation of T (Z, β0),

and e41 is caused by the estimation of both T (Z, β0) and T (Z, 2β0).

2.4 Simulation Studies

In this section, we conduct a simulation study to evaluate the performance of the proposed

estimation procedure. The response variable Y is generated from a Poisson distribution

with mean exp(Xβ), where X ∼ N(0, 1). The true value of β is chosen to be 1. We further

contaminate the X variable with an additive independent Laplace measurement error U with

mean 0 and variance σ2
u, that is, Z = X+U . To see the effects of sample sizes and σ2

u on the

estimates, we choose n = 200, 300, 500 and 1000, and σ2
u = 0.5, 0.25 and 0.1. For comparison

purpose, the simulation is repeated 500 times for each setup. Then the means, variances,

biases, and mean squares errors are computed, as well as the boxplots from 500 estimates.

The kernel density estimator is used to estimate the density function of Z, and bandwidth

is chosen to be h = an−1/5, where a is a positive constant to control the smoothness. By

doing so, we can evaluate the influence of the bandwidth on the performance of the proposed

estimator. In the simulation study, we choose a = 0.8, 1 and 1.2. The weight function

W (z) = 1 is used in the simulation studies for the sake of simplicity.
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Figure 2.1: Boxplots for h = 0.8n−1/5

Figure 2.1 are the boxplots of the 500 estimates of β for h = 0.8n−1/5. It clearly shows

that the estimates become better when the sample size gets bigger and the variance of the

measurement error gets smaller. It is also noted that the estimated values tend to be smaller

than the true values of the parameter. These observations are further confirmed by the

biases and MSEs reported in Table 2.1.

n=200 n=300 n=500 n=1000
σ2
u 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1

Mean 0.823 0.896 0.925 0.847 0.910 0.943 0.859 0.931 0.964 0.893 0.952 0.974
Bias -0.177 -0.104 -0.075 -0.153 -0.090 -0.057 -0.141 -0.069 -0.036 -0.107 -0.048 -0.026

Variance 0.013 0.007 0.004 0.011 0.006 0.002 0.009 0.003 0.002 0.006 0.002 0.001
MSE 0.045 0.018 0.009 0.034 0.014 0.006 0.029 0.008 0.003 0.018 0.004 0.002

Table 2.1: Mean, Bias, Variance and MSE of β̂ when h = 0.8n−1/5

The simulation results for h = n−1/5 and 1.2n−1/5, summarized in Figure 2.2, 2.3, Table

2.2 and 2.3, are similar to those reported in Figure 2.1 and Table 2.1.
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Figure 2.2: Boxplots for h = n−1/5
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n=200 n=300 n=500 n=1000
σ2
u 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1

Mean 0.826 0.896 0.925 0.851 0.911 0.943 0.864 0.933 0.964 0.898 0.954 0.974
Bias -0.174 -0.104 -0.075 -0.149 -0.089 -0.057 -0.136 -0.067 -0.036 -0.102 -0.046 -0.026

Variance 0.013 0.007 0.004 0.010 0.005 0.002 0.008 0.003 0.002 0.006 0.002 0.001
MSE 0.043 0.018 0.009 0.032 0.013 0.006 0.027 0.008 0.003 0.016 0.004 0.001

Table 2.2: Mean, Bias, Variance and MSE of β̂ when h = n−1/5
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Figure 2.3: Boxplots for h = 1.2n−1/5

n=200 n=300 n=500 n=1000
σ2
u 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1

Mean 0.827 0.896 0.926 0.853 0.911 0.942 0.867 0.933 0.964 0.901 0.954 0.974
Bias -0.173 -0.104 -0.074 -0.147 -0.089 -0.058 -0.133 -0.067 -0.036 -0.099 -0.046 -0.026

Variance 0.012 0.007 0.004 0.010 0.005 0.002 0.008 0.003 0.002 0.005 0.002 0.001
MSE 0.042 0.017 0.009 0.031 0.013 0.006 0.026 0.007 0.003 0.015 0.004 0.001

Table 2.3: Mean, Bias, Variance and MSE of β̂ when h = 1.2n−1/5

2.5 Appendix: Proofs of Main Results

Denote L1(β) = E{[Y−E(exp(Xβ)|Z)]2g2(Z)W (Z)}, and L2(β) = E{[Y 2−E(exp(Xβ)|Z)−

E(exp(2Xβ)|Z)]2g2(Z)W (Z)}, we have L(β) = L1(β)+L2(β). Then L̇(β), the derivative of

L(β), can be expressed as

L̇(β) =
∂

∂β

{
E

[(
Y − exp(Zβ)− T (Z, β)

g(Z)

)2

+

(
Y 2 − exp(2Zβ)− T (Z, 2β)

g(Z)
− exp(Zβ)− T (Z, β)

g(Z)

)2
]
g2(Z)W (Z)

}

= 2E{[Y g(Z)− exp(Zβ)g(Z)− T (Z, β)][−Z exp(Zβ)g(Z)− Ṫ (Z, β)]

+ [Y 2g(Z)− exp(Zβ)g(Z)− exp(2Zβ)g(Z)− T (Z, β)− T (Z, 2β)]·
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[−Z exp(Zβ)g(Z)− 2Z exp(2Zβ)g(Z)− Ṫ (Z, β)− Ṫ (Z, 2β)]}W (Z).

Before we prove the consistency of β̂n, we shall show that L(β) has a unique minimizer β0.

Recall that β0 is the true value of β.

By taking the second derivative of L1(β) and L2(β) with respect to β, we see that

L̈1(β) = 2E[E(exp(Xβ)X2|Z)g2(Z)W (Z)], (2.4)

L̈2(β) = 2E[E(exp(Xβ)X2 + 4 exp(2Xβ)X2|Z)g2(Z)W (Z)]. (2.5)

It is easy to see that they are strictly bigger than 0. Thus, both L1(β) and L2(β) are strictly

convex in β. This implies that L(β) is also strictly convex in β. Therefore, the minimizer of

L(β), if exists, must be unique. Now, let us show the minimizer of L1(β) and L2(β) is the

true parameter value β0. To see this, note that

L̇1(β) = − 2E{[Y − E(exp(Xβ)|Z)]E(X exp(Xβ)|Z)g2(Z)W (Z)}

= − 2E
[
E{[Y − E(exp(Xβ)|Z)]E(X exp(Xβ)|Z)g2(Z)W (Z)|Z}

]
= − 2E

[
{E(Y |Z)− E(exp(Xβ)|Z)}E(X exp(Xβ)|Z)g2(Z)W (Z)

]
= − 2E

[
{E(exp(Xβ0)|Z)− E(exp(Xβ)|Z)}E(X exp(Xβ)|Z)g2(Z)W (Z)

]
.

So, β = β0 is a solution of L̇1(β) = 0. We also have

L̇2(β) = − 2E{[Y 2 − E(exp(Xβ)|Z)− E(exp(2Xβ)|Z)]

[E(X exp(Xβ)|Z) + 2E(X exp(2Xβ)|Z)]g2(Z)W (Z)}

= − 2E{[E(Y 2|Z)− E(exp(Xβ)|Z)− E(exp(2Xβ)|Z)]

[E(X exp(Xβ)|Z) + 2E(X exp(2Xβ)|Z)]g2(Z)W (Z)}

= − 2E{[E(exp(Xβ0)|Z) + E(exp(2Xβ0)|Z)− E(exp(Xβ)|Z)− E(exp(2Xβ)|Z)]

[E(X exp(Xβ)|Z) + 2E(X exp(2Xβ)|Z)]g2(Z)W (Z)}.
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Clearly, β = β0 is a solution of L̇2(β) = 0. Thus, β = β0 is the solution of L̇(β) = 0, this

implies, together with the previous discussion on the uniqueness of the minimizer, that β0 is

the unique minimizer of L(β).

To show the consistency of β̂n, we need the following lemmas.

Lemma 3. If the kernel function K has integrable characteristic function, h → 0, nh2 → ∞,

g(Z) is uniformly continuous, then supz |ĝ(z)− g(z)| = op(1); If we further assume that the

density function g(z) is twice differentiable, and its second derivative is bounded, then by

choosing the kernel function K to be supported on [−1, 1], h = n−1/5(log n)1/6, we have

sup
z

|ĝ(z)− g(z)| = O(n−2/5(log n)1/3), a.s.

as n → ∞.

The first statement in Lemma 3 is a well known result in kernel density estimation

literature, while the second statement is from Chen (1983).

Lemma 4. Let {ξi} be random variables with finite second moment, {(ξi, Xi)}, i = 1, . . . , n

are i.i.d.. Then the following iterative logarithm law holds,

sup
x∈R

| 1
n

n∑
i=1

ξiI[Xi≤x] − Eξ1I[X1≤x]| = O

(√
log log n

n

)
, a.s.

Proof. First, assume ξ to be nonnegative. Let µ = Eξ, assumed to be positive and finite.

Note that µ = 0 would mean ξ = 0, a.s. and the LIL is trivially true. Let G(x) = E(ξI(X ≤

x)). Clearly, 0 < G(∞) = µ < ∞.

Let

Gn(x) := n−1

n∑
i=1

ξiI(Xi ≤ x).

By the LIL for iid r.v.’s., for each −∞ ≤ x ≤ ∞,

|Gn(x)−G(x)| = O(
√
(log log(n)/n)), a.s.
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To obtain this uniformly in x, take a partition of the interval [−∞,∞] x0 = −∞ < x1 <

· · · < xK < xK+1 = ∞ such that

max
1≤j≤K+1

[G(xj)−G(xj−1)] ≤
√

n log log(n).

This can be always possible since G is non decreasing right continuous and 0 < G(∞) = µ <

∞. Now

sup
−∞≤x≤∞

|Gn(x)−G(x)| = max
1≤j≤K+1

sup
xj−1<x≤xj

|Gn(x)−G(x)|

Now use the monotonicity of Gn and G to obtain for xj−1 < x ≤ xj,

Gn(xj−1)−G(xj−1)+G(xj−1)−G(xj) ≤ Gn(x)−G(x) ≤ Gn(xj)−G(xj)+G(xj)−G(xj−1).

Hence

sup
−∞≤x≤∞

|Gn(x)−G(x)| ≤ 2 max
1≤j≤K+1

|Gn(xj)−G(xj)|+max1≤j≤K+1|G(xj)−G(xj−1)|

= O(
√
n log log(n)), a.s.

To conclude the proof, for general ξ, we can write ξi = ξ+i − ξ−i and apply the triangle

inequality.

Now let us prove the consistency of β̂n.

Proof of Theorem 1. To show the consistency of β̂n, it suffices to show that

sup
β∈Θ

| ˙̂Ln(β)− L̇(β)| = op(1). (2.6)

In fact, if (2.6) is true, then
˙̂
Ln(β̂n) − L̇(β̂n) = op(1), which further implies L̇(β̂n) = op(1).

Since β0 is the unique solution of L̇(β) = 0, we could conclude that β̂n → β0 in probability.

Note that
˙̂
Ln(β)− L̇(β) =

˙̂
Ln(β)− L̇n(β) + L̇n(β)− L̇(β). So to show (2.6), it suffices to
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verify that

sup
β∈Θ

| ˙̂Ln(β)− L̇n(β)| = op(1), sup
β∈Θ

|L̇n(β)− L̇(β)| = op(1). (2.7)

By assuming the kernel function K and the density function of Z satisfy the conditions

stated in Lemma 3, we could have sup1≤i≤n |ĝ(Zi)− g(Zi)| = op(1). Also, if we let

ξj = exp

[(
β −

√
2

σu

)
Zj

]
or exp

[(
β +

√
2

σu

)
Zj

]
,

then by Lemma 4, for each β ∈ Θ, we have

sup
z

∣∣∣∣∣ 1n
n∑

j=1

ξjI[Zj≤z] − Eξ1I[Z1≤z]

∣∣∣∣∣ = op(1).

In fact, the op(1) is uniform for β ∈ Θ, which is guaranteed by assuming that

E exp

[(
β∗ +

√
2

σu

)
Z

]
+ E exp

[
−

(
β∗ +

√
2

σu

)
Z

]
< ∞,

where β∗ = max(|β̄|, |β|), β∗ = min(|β̄|, |β|), and Theorem 16(a) in Ferguson (2017).

Now let’s show supβ∈Θ | ˙̂Ln(β)− L̇n(β)| = op(1). Note that

L̇n(β) =
2

n

n∑
i=1

{[Yig(Zi)− exp(Ziβ)g(Zi)− T (Zi, β)][−Zi exp(Ziβ)g(Zi)− Ṫ (Zi, β)]

+[Y 2
i g(Zi)− exp(Ziβ)g(Zi)− exp(2Ziβ)g(Zi)− T (Zi, β)− T (Zi, 2β)] ·

[−Zi exp(Ziβ)g(Zi)− 2Zi exp(2Ziβ)g(Zi)− Ṫ (Zi, β)− Ṫ (Zi, 2β)]}W (Zi)

= − 2

n

n∑
i=1

YiZi exp(Ziβ)g
2(Zi)W (Zi)−

2

n

n∑
i=1

Yig(Zi)Ṫ (Zi, β)W (Zi)

+
2

n

n∑
i=1

Zi exp(2Ziβ)g
2(Zi)W (Zi) +

2

n

n∑
i=1

exp(Ziβ)g(Zi)Ṫ (Zi, β)W (Zi)

+
2

n

n∑
i=1

Zi exp(Ziβ)T (Zi, β)g(Zi)W (Zi) +
2

n

n∑
i=1

T (Zi, β)Ṫ (Zi, β)W (Zi)

− 2

n

n∑
i=1

2Y 2
i Zi exp(2Ziβ)g

2(Zi)W (Zi)−
2

n

n∑
i=1

Y 2
i g(Zi)Ṫ (Zi, 2β)W (Zi)
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− 2

n

n∑
i=1

Y 2
i Zi exp(Ziβ)g

2(Zi)W (Zi)−
2

n

n∑
i=1

Y 2
i g(Zi)Ṫ (Zi, β)W (Zi)

+
2

n

n∑
i=1

2Zi exp(4Ziβ)g
2(Zi)W (Zi) +

2

n

n∑
i=1

exp(2Ziβ)g(Zi)Ṫ (Zi, 2β)W (Zi)

+
2

n

n∑
i=1

Zi exp(3Ziβ)g
2(Zi)W (Zi) +

2

n

n∑
i=1

exp(2Ziβ)g(Zi)Ṫ (Zi, β)W (Zi)

+
2

n

n∑
i=1

2Zi exp(2Ziβ)g(Zi)T (Zi, 2β)W (Zi) +
2

n

n∑
i=1

T (Zi, 2β)Ṫ (Zi, 2β)W (Zi)

+
2

n

n∑
i=1

Zi exp(Ziβ)g(Zi)T (Zi, 2β)W (Zi) +
2

n

n∑
i=1

T (Zi, 2β)Ṫ (Zi, β)W (Zi)

+
2

n

n∑
i=1

2Zi exp(3Ziβ)g
2(Zi)W (Zi) +

2

n

n∑
i=1

exp(Ziβ)g(Zi)Ṫ (Zi, 2β)W (Zi)

+
2

n

n∑
i=1

Zi exp(2Ziβ)g
2(Zi)W (Zi) +

2

n

n∑
i=1

exp(Ziβ)g(Zi)Ṫ (Zi, β)W (Zi)

+
2

n

n∑
i=1

2Zi exp(2Ziβ)g(Zi)T (Zi, β)W (Zi) +
2

n

n∑
i=1

T (Zi, β)Ṫ (Zi, 2β)W (Zi)

+
2

n

n∑
i=1

Zi exp(Ziβ)g(Zi)T (Zi, β)W (Zi) +
2

n

n∑
i=1

T (Zi, β)Ṫ (Zi, β)W (Zi).

˙̂
Ln(β) has a similar expression by simply replacing g, T by ĝ, T̂ .

Assuming E[Y exp(Zβ)W (Z)|Z|] < ∞ and E[Y exp(Zβ)W (Z)g(Z)|Z|] < ∞, the abso-

lute difference between the first term of
˙̂
Ln(β) and the first term of L̇n(β) could be expressed

as ∣∣∣∣∣ 2n
n∑

i=1

YiZi exp(Ziβ)g
2(Zi)W (Zi)−

2

n

n∑
i=1

YiZi exp(Ziβ)ĝ
2(Zi)W (Zi)

∣∣∣∣∣
=

∣∣∣∣∣ 2n
n∑

i=1

YiZi exp(Ziβ)ĝ
2(Zi)W (Zi)−

2

n

n∑
i=1

YiZi exp(Ziβ)g
2(Zi)W (Zi)

∣∣∣∣∣
=

∣∣∣∣∣ 2n
n∑

i=1

YiZi exp(Ziβ)W (Zi)[ĝ
2(Zi)− g2(Zi)]

∣∣∣∣∣
=

∣∣∣∣∣ 2n
n∑

i=1

YiZi exp(Ziβ)W (Zi)[(ĝ(Zi)− g(Zi))
2 + 2(ĝ(Zi)− g(Zi))g(Zi)]

∣∣∣∣∣
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≤ sup |ĝ(Z)− g(Z)|2 2
n

n∑
i=1

Yi exp(Ziβ)W (Zi)|Zi|

+2 sup |ĝ(Z)− g(Z)| 2
n

n∑
i=1

Yi|Zi| exp(Ziβ)W (Zi)g(Zi) = op(1).

Next, note that the second term of
˙̂
Ln(β) is

− 2

n

n∑
i=1

Yiĝ(Zi)
˙̂
T (Zi, β)W (Zi) = − 2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi) + g(Zi)]W (Zi) ·{
1

n
(1− σuβ/

√
2) exp(

√
2Zi/σu)·

n∑
j=1

[((β −
√
2/σu)Zj)I[Zj≥Zi] − E exp((β −

√
2/σu)Z)I[Z≥Zi] + E exp((β −

√
2/σu)Z)I[Z≥Zi]]

+
1

n
(β − σuβ

2/(2
√
2)) exp(

√
2Zi/σu) ·

n∑
j=1

[Zj exp((β −
√
2/σu)Zj)I[Zj≥Zi] − EZ exp((β −

√
2/σu)Z)I[Z≥Zi]

+EZ exp((β −
√
2/σu)Z)I[Z≥Zi]]−

1

n
(1 + σuβ/

√
2) exp(−

√
2Zi/σu) ·

n∑
j=1

[exp((β +
√
2/σu)Zj)I[Zj<Zi] − E exp((β +

√
2/σu)Z)I[Z<Zi] + E exp((β +

√
2/σu)Z)I[Z<Zi]]

− 1

n
(β + σuβ

2/(2
√
2)) exp(−

√
2Zi/σu) ·

n∑
j=1

[Zj exp((β +
√
2/σu)Zj)I[Zj<Zi] − EZ exp((β +

√
2/σu)Z)I[Z<Zi]

+EZ exp((β +
√
2/σu)Z)I[Z<Zi]]

}
.

Denote

An1(Zi) =
1

n

n∑
j=1

exp((β −
√
2/σu)Zj)I[Zj≥Zi] − E exp((β −

√
2/σu)Z)I[Z≥Zi],

An2(Zi) =
1

n

n∑
j=1

Zj exp((β −
√
2/σu)Zj)I[Zj≥Zi] − EZ exp((β −

√
2/σu)Z)I[Z≥Zi],

24



An3(Zi) =
1

n

n∑
j=1

exp((β +
√
2/σu)Zj)I[Zj<Zi] − E exp((β +

√
2/σu)Z)I[Z<Zi],

An4(Zi) =
1

n

n∑
j=1

Zj exp((β +
√
2/σu)Zj)I[Zj<Zi] − EZ exp((β +

√
2/σu)Z)I[Z<Zi],

then the second term of
˙̂
Ln(β) is equal to

= − 2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(1− σuβ/
√
2) exp(

√
2Zi/σu)An1(Zi)

− 2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(1− σuβ/
√
2) exp(

√
2Zi/σu)E exp((β −

√
2/σu)Z)I[Z≥Zi]

− 2

n

n∑
i=1

Yig(Zi)W (Zi)(1− σuβ/
√
2) exp(

√
2Zi/σu)An1(Zi)

− 2

n

n∑
i=1

Yig(Zi)W (Zi)(1− σuβ/
√
2) exp(

√
2Zi/σu)E exp((β −

√
2/σu)Z)I[Z≥Zi]

− 2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(β − σuβ
2/(2

√
2)) exp(

√
2Zi/σu)An2(Zi)

− 2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(β − σuβ
2/(2

√
2)) exp(

√
2Zi/σu)EZ exp((β −

√
2/σu)Z)I[Z≥Zi]

− 2

n

n∑
i=1

Yig(Zi)W (Zi)(β − σuβ
2/(2

√
2)) exp(

√
2Zi/σu)An2(Zi)

− 2

n

n∑
i=1

Yig(Zi)W (Zi)(β − σuβ
2/(2

√
2)) exp(

√
2Zi/σu)EZ exp((β −

√
2/σu)Z)I[Z≥Zi]

+
2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(1 + σuβ/
√
2) exp(−

√
2Zi/σu)An3(Zi)

+
2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(1 + σuβ/
√
2) exp(−

√
2Zi/σu)E exp((β +

√
2/σu)Z)I[Z<Zi]

+
2

n

n∑
i=1

Yig(Zi)W (Zi)(1 + σuβ/
√
2) exp(−

√
2Zi/σu)An3(Zi)

+
2

n

n∑
i=1

Yig(Zi)W (Zi)(1 + σuβ/
√
2) exp(−

√
2Zi/σu)E exp((β +

√
2/σu)Z)I[Z<Zi]
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+
2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(β + σuβ
2/(2

√
2)) exp(−

√
2Zi/σu)An4(Zi)

+
2

n

n∑
i=1

Yi[ĝ(Zi)− g(Zi)]W (Zi)(β + σuβ
2/(2

√
2)) exp(−

√
2Zi/σu)EZ exp((β +

√
2/σu)Z)I[Z<Zi]

+
2

n

n∑
i=1

Yig(Zi)W (Zi)(β + σuβ
2/(2

√
2)) exp(−

√
2Zi/σu)An4(Zi)

+
2

n

n∑
i=1

Yig(Zi)W (Zi)(β + σuβ
2/(2

√
2)) exp(−

√
2Zi/σu)EZ exp((β +

√
2/σu)Z)I[Z<Zi].

By assuming that EYW (Z) exp
(√

2Z/σu

)
< ∞, the first term in the above expression

is op(1). In fact, it is bounded above by

1

n

n∑
i=1

YiW (Zi)

∣∣∣∣1− σu√
2
β

∣∣∣∣ exp
(√

2Zi

σu

)
sup
1≤i≤n

|An1(Zi)| sup
1≤i≤n

|ĝ(Zi)− g(Zi)| = op(1).

Similarly, by imposing conditions such as above, we could show all other terms involving

ĝ − g, Anj, j = 1, 2, 3, 4 are of the order of op(1). The terms not involving these terms are

− 2
n

∑n
i=1 Yig(Zi)Ṫ (Zi, β)W (Zi). Hence

sup
β

∣∣∣∣∣ 2n
n∑

i=1

Yiĝ(Zi)
˙̂
T (Zi, β)W (Zi)−

2

n

n∑
i=1

Yig(Zi)Ṫ (Zi, β)W (Zi)

∣∣∣∣∣ = op(1).

Using similar arguments, we can show that supβ∈Θ | ˙̂Ln(β)− L̇n(β)| = op(1). In the mean-

while, the second claim in (2.7), i.e. supβ∈Θ |L̇n(β) − L̇(β)| = op(1), could be justified by

using law of large numbers for each β ∈ Θ, the continuity of L̇n(β)− L̇(β) as a function of

β ∈ Θ and the compactness of Θ.

To show the asymptotic normality of β̂n, we need the following lemma whose proof can

be found in Shi and Song (2015).

Lemma 5. Assume that µ(x) is a continuous function, and the density function g of Z is
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twice differentiable with bounded second derivative. Then

1√
n

n∑
i=1

µ(Zi)[ĝn(Zi)− g(Zi)] =
1√
n

n∑
i=1

[µ(Zi)g(Zi)− Eµ(Z)g(Z)] + op(1).

Proof of Theorem 2. Let β̂n be the solution of
˙̂
Ln(β) = 0. By Taylor expansion,

0 =
˙̂
Ln(β̂n) =

˙̂
Ln(β0) +

¨̂
Ln(β̃n)(β̂n − β0).

where β̃n is between β̂n and β0. Denote T1i = T (Zi, β0), T2i = T (Zi, 2β0), Wi = W (Zi),

ξi = Yi − exp(Ziβ0), ηi = Y 2
i − exp(2Ziβ0)− exp(Ziβ0), Vi = 2Zi exp(2Ziβ0) + Zi exp(Ziβ0),

Si = Zi exp(Ziβ0). We have

˙̂
Ln(β0) =

1

n

n∑
i=1

{[
(Yi − exp(Ziβ0)) ĝi − T̂ (Zi, β0)

]
·
[
−Zi exp(Ziβ0)ĝi − ˙̂

T (Zi, β0)
]

+
[
(Y 2

i − exp(2Ziβ0)− exp(Ziβ0))ĝi − T̂ (Zi, 2β0)− T̂ (Zi, β0)
]
·[

− (2Zi exp(2Ziβ0) + Zi exp(Ziβ0)) ĝi − ˙̂
T (Zi, 2β0)− ˙̂

T (Zi, β0)
]}

W (Zi)

= − 1

n

n∑
i=1

{[
(Yi − exp(Ziβ0)) ĝi − T̂1i

]
·
[
Zi exp(Ziβ0)ĝi +

˙̂
T1i

]
+
[
(Y 2

i − exp(2Ziβ0)− exp(Ziβ0))ĝi − T̂2i − T̂1i

]
·[

(2Zi exp(2Ziβ0) + Zi exp(Ziβ0)) ĝi +
˙̂
T2i +

˙̂
T1i

]}
Wi

= − 1

n

n∑
i=1

{
(ξiĝi − T̂1i)(Siĝi +

˙̂
T1i) + (ηiĝi − T̂2i − T̂1i)(Viĝi +

˙̂
T2i +

˙̂
T1i)

}
Wi.

Adding and subtracting gi, T1i, Ṫ1i, T2i, Ṫ2i from ĝi, T̂1i,
˙̂
T1i, T̂2i,

˙̂
T2i, respectively, also,

define ∆gi = ĝ(Zi)−g(Zi), ∆T1i = T̂ (Zi, β0)−T (Zi, β0), ∆T2i = T̂ (Zi, 2β0)−T (Zi, 2β0),

and ∆Ṫ1i =
˙̂
T (Zi, β0)− Ṫ (Zi, β0), ∆Ṫ2i =

˙̂
T (Zi, 2β0)− Ṫ (Zi, 2β0), we can rewrite

˙̂
Ln(β0)
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as

− 1

n

n∑
i=1

[(ξigi − T1i)(Sigi + Ṫ1i) + (ηigi − T2i − T1i)(Vigi + Ṫ2i + Ṫ1i)]Wi

− 1

n

n∑
i=1

[ξigi − T1i][Si∆gi +∆Ṫ1i]Wi −
1

n

n∑
i=1

[ξi∆gi −∆T1i][Sigi + Ṫ1i]Wi

− 1

n

n∑
i=1

(ηigi − T2i − T1i)[Vi∆gi +∆Ṫ2i +∆Ṫ1i]Wi −
1

n

n∑
i=1

[ηi∆gi −∆T2i −∆T1i][Vigi + Ṫ2i + Ṫ1i]Wi

− 1

n

n∑
i=1

[ξi∆gi −∆T1i][Si∆gi +∆Ṫ1i]Wi −
1

n

n∑
i=1

[ηi∆gi −∆T2i −∆T1i][Vi∆gi +∆Ṫ2i +∆Ṫ1i]Wi

=

− 1

n

n∑
i=1

[(ξigi − T1i)(Sigi + Ṫ1i) + (ηigi − T2i − T1i)(Vigi + Ṫ2i + Ṫ1i)]Wi

− 1

n

n∑
i=1

[(ξigi − T1i)Si + (Sigi + Ṫ1i)ξi + (ηigi − T2i − T1i)Vi + (Vigi + Ṫ2i + Ṫ1i)ηi]Wi∆gi

+
1

n

n∑
i=1

[(Sigi + Ṫ1i) + (Vigi + Ṫ2i + Ṫ1i)]Wi∆T1i +
1

n

n∑
i=1

(Vigi + Ṫ2i + Ṫ1i)Wi∆T2i

− 1

n

n∑
i=1

[(ξigi − T1i) + (ηigi − T2i − T1i)]Wi∆Ṫ1i −
1

n

n∑
i=1

(ηigi − T2i − T1i)Wi∆Ṫ2i

− 1

n

n∑
i=1

[ξi∆gi −∆T1i][Si∆gi +∆Ṫ1i]Wi −
1

n

n∑
i=1

[ηi∆gi −∆T2i −∆T1i][Vi∆gi +∆Ṫ2i +∆Ṫ1i]Wi.

For brevity, we denote the eight terms on the right hand side of the above expression as Snj,

j = 1, 2, . . . , 8. Recall that the true parameter β0 is the solution of L̇(β) = 0. Then since

L(β) = E[(Y − E(exp(Xβ)|Z))2 + (Y 2 − E(exp(Xβ)|Z)− E(exp(2Xβ)|Z))2]g2(Z)W (Z),

we have

L̇(β0) = −2E[(Y − E(exp(Xβ0)|Z) · E(X exp(Xβ0)|Z))

+ (Y 2 − E(exp(Xβ0|Z)− E(exp(2Xβ0)|Z)) · (E(X exp(Xβ0)|Z) + 2E(X exp(2Xβ0)|Z)))] ·

g2(Z)W (Z).
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Also since

Y − E(exp(Xβ0)|Z) = ξ − T1

g(Z)
, E(X exp(Xβ0)|Z) = Z exp(Zβ0) +

Ṫ1

g
= S +

Ṫ1

g
,

and

Y 2 − E(exp(Xβ0)|Z)− E(exp(2Xβ0)|Z) = η − T2

g
− T1

g
,

E(X exp(Xβ0)|Z) + 2E(X exp(2Xβ0)|Z) = V +
Ṫ2

g
+

Ṫ1

g
,

we have

E

[(
ξ − T1

g

)(
S +

Ṫ1

g

)
+

(
η − T2

g
− T1

g

)(
V +

Ṫ2

g
+

Ṫ1

g

)]
g2W = 0,

or E
[
(ξg − T1)

(
Sg + Ṫ1

)
+ (ηg − T2 − T1)

(
V g + Ṫ2 + Ṫ1

)]
W = 0. For each i = 1, 2, . . . , n,

denote

e1i = [(ξigi − T1i)(Sigi + Ṫ1i) + (ηigi − T2i − T1i)(Vigi + Ṫ2i + Ṫ1i)]Wi, (2.8)

then Sn1 can be written as n−1/2
∑n

i=1 e1i. In fact, one can easily verify that

e1i =

{
[Yi − E(Yi|Zi)]

∂E(Yi|Zi)

∂β
+ [Y 2

i − E(Y 2
i |Zi)]

∂E(Y 2
i |Zi)

∂β

}
g2(Zi)W (Zi)

with β = β0. By CLT, we have
√
nSn1 =⇒ N(0, τ 2),

where τ 2 = E
[
(ξg − T1)(Sg + Ṫ1) + (ηg − T2 − T1)(V g + Ṫ2 + Ṫ1)

]2
W provided τ 2 exists.

For Sn2, denote the coefficients of Wi∆gi as µ2i, Sn2 = n−1
∑n

i=1 µ2iWi(ĝi − gi). And if we

further denote, for each i,

e2i = µ2iWigi − Eµ2Wg, (2.9)

29



then by Lemma 5,
√
nSn2 = n−1/2

∑n
i=1 e2i + op(1). Further computation shows that

e2i =W (Zi)g(Zi)

(
[Yi − E(Yi|Zi)]

∂ exp(Ziβ0)

∂β

)
+W (Zi)g(Zi)

(
[Y 2

i − E(Y 2
i |Zi)]

∂[exp(Ziβ0) + exp(2Ziβ0)]

∂β

)
−
(
W (Zi)g(Zi)[Yi − exp(Ziβ0)]

∂E(Yi|Zi)

∂β
− EW (Z)g(Z)

(
[Y − exp(Zβ0)]

∂E(Y |Z)
∂β

))
−
(
W (Zi)g(Zi)

(
[Y 2

i − exp(Ziβ0)− exp(2Ziβ0)]
∂E(Y 2

i |Zi)

∂β

)
−EW (Z)g(Z)

(
[Y 2 − exp(Zβ0)− exp(2Zβ0)]

∂E(Y 2|Z)
∂β

))
.

While for Sn3, if we denote the coefficients of Wi∆T1i in Sn3 as µ3i, we have
√
nSn3 =

n−1
∑n

i=1 µ3iWi∆T1i which can be written as

1√
n

n∑
i=1

µ3iWi ·{(
β0 −

σ2
u

2
√
2
β2
0

)
exp

(√
2Zi

σu

)
·

1

n

n∑
j=1

[
exp((β0 −

√
2/σu)Zj)I[Zj≥Zi] −

∫ ∞

Zi

exp((β0 −
√
2/σu)x)g(x)dx

]

−
(
β0 +

σ2
u

2
√
2
β2
0

)
exp

(
−
√
2Zi

σu

)
·

1

n

n∑
j=1

[
exp((β0 +

√
2/σu)Zj)I[Zj<Zi] −

∫ Zi

−∞
exp((β0 +

√
2/σu)x)g(x)dx

]}
.

Note that µ3i = −(Sigi + Ṫ1i)− (Vigi + Ṫ2i + Ṫ1i). Let us further denote

W̃i = µ3iWi

(
β0 −

σ2
u

2
√
2
β2
0

)
exp

(√
2Zi

σu

)
,

then the first term in
√
nSn3 can be written as

√
nSn31 = n−3/2

∑n
i=1

∑n
j=1 W̃iVij, where

Vij = exp((β0 −
√
2/σu)Zj)I[Zj≥Zi] −

∫ ∞

Zi

exp((β0 −
√
2/σu)x)g(x)dx.

30



Denote Uij = (W̃iVij + W̃jVji)/2, then

√
nSn31 =

1

n
√
n

n∑
i=1

n∑
j=1

VijW̃i
1

n
√
n

n∑
i=1

W̃iVii +
1

n
√
n

∑
i ̸=j

W̃iVij

=
1

n
√
n

n∑
i=1

W̃iVii +
n− 1√

n

2

n(n− 1)

∑
i<j

Uij =
1

n
√
n

n∑
i=1

W̃iVii +
n− 1√

n
Un.

Assume that EW̃iVii < ∞, then the first term above is op(1). And it is easy to see that Un

is a U -statistic. If E[U12]
2 < ∞, and V ar[E(U12|Z1)] > 0, then

√
n[Un − E(U12)] =

1√
n

n∑
i=1

[E(Uij|Zi)− E(U12)] + op(1).

Note that

E[W̃1V12|Z1] = E
[
[−(S1g1 + Ṫ11)− (V1g1 + Ṫ21 + Ṫ11)]W1(β0 − σ2

u/(2
√
2)β2

0) exp(
√
2Z1/σu)·

[exp((β0 −
√
2/σu)Z2)I[Z2≥Z1] −

∫ ∞

Z1

exp((β0 −
√
2/σu)x)g(x)dx]|Z1

]
= 0,

and

E[W̃2V21|Z1] = E
[
[−(S2g2 + Ṫ12)− (V2g2 + Ṫ22 + Ṫ12)]W2(β0 − σ2

uβ
2
0/(2

√
2)) exp(

√
2Z2/σu)·[

exp((β0 −
√
2/σu)Z1)I[Z2<Z1] −

∫ ∞

Z2

exp((β0 −
√
2/σu)x)g(x)dx

]
|Z1

]
= exp((β0 −

√
2/σu)Z1)

∫
W̃ (v)I[v<Z1]g(v)dv −

∫ ∞

−∞

∫ ∞

v

exp((β0 −
√
2/σu)x)g(x)W̃ (v)g(v)dxdv

= exp((β0 −
√
2/σu)Z1)

∫ Z1

−∞
W̃ (v)g(v)dv −

∫ ∞

−∞

∫ ∞

−∞
exp((β0 −

√
2/σu)x)I[x>Z2]g(x)W̃ (v)g(v)dvdx

= exp((β0 −
√
2/σu)Z1)

∫ Z1

−∞
W̃ (v)g(v)dv −

∫ ∞

−∞

∫ x

−∞
exp((β0 −

√
2/σu)x)W̃ (v)g(v)g(x)dvdx.

Thus

E[U12|Z1] =
1

2

[
exp((β0 −

√
2/σu)Z1)

∫ Z1

−∞
W̃ (v)g(v)dv − E

[
exp((β0 −

√
2/σu)Z1)

∫ Z1

−∞
W̃ (x)g(x)dx

]]
,

31



and

√
n(Un − EU12) =

1

2
√
n

n∑
i=1

[
(exp((β0 −

√
2/σu)Zi)

∫ Zi

−∞
W̃ (x)g(x)dx−

E

[
exp((β0 −

√
2/σu)Z)

∫ Z

−∞
W̃ (x)g(x)dx

]
− EU12

]
+ op(1)

And since EU12 = 0,
√
nUn can be written as n−1/2

∑n
i=1 e31i + op(1), where

e31i =
1

2

[
exp((β0 −

√
2/σu)Zi)

∫ Zi

−∞
W̃ (x)g(x)dx− E

[
exp((β0 −

√
2/σu)Z)

∫ Z

−∞
W̃ (x)g(x)dx

]]
(2.10)

and an op(1) term. Similarly, if we denote

Ŵi =

(
β0 +

σ2
u

2
√
2
β2
0

)
µ3iWi exp

(
−
√
2Zi

σu

)
,

and V̂ij = exp((β0 +
√
2/σu)Zj)I[Zj<Zi] −

∫ Zi

−∞ exp((β0 +
√
2/σu)x)g(x)dx, the second term in

√
nSn3 can be written as

1√
n

n∑
i=1

Ŵi
1

n

n∑
j=1

V̂ij =
1

2
√
n

n∑
i=1

[
exp((β0 +

√
2/σu)Zi)

∫ ∞

Zi

Ŵ (x)g(x)dx

−E

[
exp((β0 +

√
2/σu)Z)

∫ ∞

Z

Ŵ (x)g(x)dx

]]
+ op(1) =

1√
n

n∑
i=1

e32i + op(1),

where, for each i,

e32i =
1

2

[
exp((β0 +

√
2/σu)Zi)

∫ ∞

Zi

Ŵ (x)g(x)dx− E

[
exp((β0 +

√
2/σu)Z)

∫ ∞

Z

Ŵ (x)g(x)dx

]]
.

(2.11)

Hence for Sn3, we have
√
nSn3 = n−1/2

∑n
i=1 e3i + op(1), where

e3i = e31i + e32i, (2.12)
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and e31i, e32i are defined in (2.10), (2.11), respectively. Let ν3(z) = −g(Z)[∂Eβ(Y |Z)/∂β +

∂Eβ(Y
2|Z)/∂β],

L1(Z, β0) =
1

2
exp(β0Z)

(
β0 −

σ2
u

2
√
2
β2
0

)
, L2(Z, β0) =

1

2
exp(β0Z)

(
β0 +

σ2
u

2
√
2
β2
0

)
.

We can rewrite e31i + e32i = ξ3i − Eξ3i, where

ξ3i =L1(Zi, β0)E
[
ν3(Z)w(Z) exp(−

√
2|Z − Zi|/σu)I(Z ≤ Zi)

∣∣∣Zi

]
+ L2(Zi, β0)E

[
ν3(Z)w(Z) exp(−

√
2|Z − Zi|/σu)I(Z > Zi)

∣∣∣Zi

]
Now let’s consider Sn4. If we denote µ4i = (Vigi + Ṫ2i + Ṫ1i)Wi, then

√
nSn4 could be

written as

√
nSn4 =

1√
n

n∑
i=1

µ4i

{
(2β0 − 2σ2

uβ
2
0/
√
2) exp(

√
2Zi/σu)·

1

n

n∑
j=1

[
exp((2β0 −

√
2/σu)Zj)I[Zj≥Zi] −

∫ ∞

Zi

exp((2β0 −
√
2/σu)x)g(x)dx

]
− (2β0 + 2σ2

uβ
2
0/
√
2) exp(−

√
2Zi/σu)·

1

n

n∑
j=1

[
exp((2β0 +

√
2/σu)Zj)I[Zj<Zi] −

∫ Zi

−∞
exp((2β0 +

√
2/σu)x)g(x)dx

]}
.

Denote

W̃i =

(
2β0 −

2σ2
u√
2
β2
0

)
µ4i exp

(√
2Zi

σu

)
, Ŵi =

(
2β0 +

2σ2
u√
2
β2
0

)
µ4i exp

(
−
√
2Zi

σu

)
,

then
√
nSn4 can be written as n−1/2

∑n
i=1 e4i + op(1), where, for each i,

e4i =
1

2

{[
exp((2β0 −

√
2/σu)Zi)

∫ Zi

−∞
W̃ (x)g(x)dx− E

[
exp((2β0 −

√
2/σu)Z)

∫ Z

−∞
W̃ (x)g(x)dx

]]
+[

exp((2β0 +
√
2/σu)Zi)

∫ ∞

Zi

Ŵ (x)g(x)dx− E

[
exp((2β0 +

√
2/σu)Z)

∫ ∞

Z

Ŵ (x)g(x)dx

]]}
.

(2.13)
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In fact, after some algebra, we can rewrite e4i as ξ4i − Eξ4i, where

ξ4i = − L1(Zi, β0)E
[
K̇1(Z)g(Z)W (Z) exp(−

√
2|Z − Zi|/σu)I(Z ≤ Zi)

∣∣∣Zi

]
− L2(Zi, β0)E

[
K̇1(Z)g(Z)W (Z) exp(−

√
2|Z − Zi|/σu)I(Z > Zi)

∣∣∣Zi

]
− [L1(Zi, β0)− L1(2β0, Zi)]E

[
K̇1(Z)g(Z)W (Z) exp(−

√
2|Z − Zi|/σu)I(Z ≤ Zi)

∣∣∣Zi

]
− [L2(Zi, β0)− L2(2β0, Zi)]E

[
K̇1(Z)g(Z)W (Z) exp(−

√
2|Z − Zi|/σu)I(Z > Zi)

∣∣∣Zi

]
Next, let’s consider Sn5. Let µ5i = [(ξigi − T1i) + (ηigi − T2i − T1i)]Wi, then

√
nSn5 =

1√
n

n∑
i=1

µ5i

{
(1− σuβ0/

√
2) exp(

√
2Zi/σu)

1

n

n∑
j=1

exp[(β0 −
√
2/σu)Zj]I[Zj≥Zi]

+(β0 − σuβ
2
0/(2

√
2)) exp(

√
2Zi/σu)

1

n

n∑
j=1

Zj exp[(β0 −
√
2/σu)Zj]I[Zj≥Zi]

−(1 + σuβ0/
√
2) exp(−

√
2Zi/σu)

1

n

n∑
j=1

exp[(β0 +
√
2/σu)Zj]I[Zj<Zi]

−(β0 + σuβ
2
0/(2

√
2)) exp(−

√
2Zi/σu)

1

n

n∑
j=1

Zj exp[(β0 +
√
2/σu)Zj]I[Zj<Zi]

−(1− σuβ0/
√
2) exp(

√
2Zi/σu)

∫ ∞

Zi

g(x) exp[(β0 −
√
2/σu)x]dx

−(β0 − σuβ
2
0/(2

√
2)) exp(

√
2Zi/σu)

∫ ∞

Zi

g(x)x exp[(β0 −
√
2/σu)x]dx

+(1 + σuβ0

√
2) exp(−

√
2Zi/σu)

∫ Zi

−∞
g(x) exp[(β0 +

√
2σu)x]dx

+(β0 + σuβ
2
0/(2

√
2)) exp(−

√
2Zi/σu)

∫ Zi

−∞
g(x)x exp[(β0 +

√
2/σu)x]dx

}
.

Note that

E[ξg − T |Z] = E

[(
ξ − T

g

)
g|Z
]
= g(Z)E[(Y − E(exp(βX)|Z))] = 0, (2.14)
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now let’s consider

1√
n

n∑
i=1

(ξigi − T1i)Wi

{
(1− σuβ0/

√
2) exp(

√
2Zi/σu)·

1

n

n∑
j=1

[
exp[(β0 −

√
2/σu)Zj]I[Zj≥Zi] −

∫ ∞

Zi

g(x) exp[(β0 −
√
2/σu)x]dx

]}

+
1√
n

n∑
i=1

(ξigi − T1i)Wi

{
(β0 − σuβ

2
0/(2

√
2)) exp(

√
2Zi/σu)·

1

n

n∑
j=1

[
Zj exp[(β0 −

√
2/σu)Zj]I[Zj≥Zi] −

∫ ∞

Zi

g(x)x exp[(β0 −
√
2/σu)x]dx

]}
(2.15)

− 1√
n

n∑
i=1

(ξigi − T1i)Wi

{
(1 + σuβ0/

√
2) exp(−

√
2Zi/σu) ·

1

n

n∑
j=1

[
exp[(β0 +

√
2/σu)Zj]I[Zj<Zi] −

∫ Zi

−∞
g(x) exp[(β0 +

√
2/σu)x]dx

]}

− 1√
n

n∑
i=1

(ξigi − T1i)Wi

{
(β0 + σuβ

2
0/(2

√
2)) exp(−

√
2Zi/σu)·

1

n

n∑
j=1

[
Zj exp[(β0 +

√
2/σu)Zj]I[Zj<Zi] −

∫ Zi

−∞
g(x)x exp[(β0 +

√
2/σu)x]dx

]}
.

Denote

ζi = (1− σuβ0/
√
2)(ξigi − Ti)Wi exp(

√
2Zi/σu),

Vij = exp[(β0 −
√
2/σu)Zj]I[Zj≥Zi] −

∫ ∞

Zi

g(x) exp[(β0 −
√
2/σu)x]dx.

Then the first term in (2.15) can be written as n−3/2
∑n

i=1

∑n
j=1 ζiVij. Rearrange it as

1

n
√
n

n∑
i=1

ζiVii +
1

n
√
n

∑
i ̸=j

ζiVij. (2.16)

The first term in (2.16), under the assumption E|ζiVii| < ∞, is op(1). For the second term,

note that

E

(
1

n
√
n

∑
i ̸=j

ζiVij

)
=

n(n− 1)

n
√
n

Eζ1V12 = 0,
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and

E

(
1

n
√
n

∑
i ̸=j

ζiVij

)2

=
1

n3

∑
i ̸=j

Eζ2i V
2
ij +

1

n3

∑
i ̸=j

∑
k ̸=l,

(i,j)̸=(k,l)

EζiζkVijVkl.

By assuming that Eζ21V
2
12 < ∞, n−3

∑
i ̸=j Eζ2i V

2
ij = n−2(n−1)Eζ21V

2
12 → 0. For the cross-over

terms, we consider several cases.

(i). i = k, j ̸= l. Without loss of generality, let i = k = 1, j = 2, l = 3,

Eζ21V12V13 = Eζ21

[
exp[(β0 −

√
2/σu)Z2]I[Z2≥Z1] −

∫ ∞

Z1

g(x) exp[(β0 −
√
2/σu)x]dx

]
·[

exp[(β0 −
√
2/σu)Z3]I[Z3≥Z1] −

∫ ∞

Z1

g(x) exp[(β0 −
√
2/σu)x]dx

]
= 0.

(ii). i ̸= k, j = l. Without loss of generality, let i = 1, k = 2, j = l = 3,

Eζ1ζ2V13V23 = Eζ21

[
exp[(β0 −

√
2/σu)Z3]I[Z3≥Z1] −

∫ ∞

Z1

g(x) exp[(β0 −
√
2/σu)x]dx

]
·[

exp[(β0 −
√
2/σu)Z3]I[Z3≥Z2] −

∫ ∞

Z2

g(x) exp[(β0 −
√
2/σu)x]dx

]
= E[ζ1ζ2E[V13V23|Z1, Z2]] = E[E[V13V23|Z1, Z2] · E[ζ1ζ2|Z1, Z2]] = 0.

by (2.14).

(iii). i ̸= k, j ̸= l. Without loss of generality, let i = l = 1, k = j = 2, Eζ1ζ2V12V21 = 0

by (2.14).

(iv). i, j, k, l are all different. Without loss of generality, let i = 1, j = 2, k = 3, l = 4,

Eζ1ζ3V12V34 = 0.

So, the first term in (2.15) is op(1). Similarly, the second, third and fourth term in (2.15)
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are also op(1). Therefore, for
√
nSn5, we have

1√
n

n∑
i=1

µ̃5iWi

{
(1− σuβ0/

√
2) exp(

√
2Zi/σu)·

1

n

n∑
j=1

[
exp[(β0 −

√
2/σu)Zj]I[Zj≥Zi] −

∫ ∞

Zi

g(x) exp[(β0 −
√
2/σu)x]dx

]}

+
1√
n

n∑
i=1

µ̃5iWi

{
(β0 − σuβ

2
0/(2

√
2)) exp(

√
2Zi/σu)·

1

n

n∑
j=1

[
Zj exp[(β0 −

√
2/σu)Zj]I[Zj≥Zi] −

∫ ∞

Zi

g(x)x exp[(β0 −
√
2/σu)x]dx

]}
(2.17)

− 1√
n

n∑
i=1

µ̃5iWi

{
(1 + σuβ0/

√
2) exp(−

√
2Zi/σu)·

1

n

n∑
j=1

[
exp[(β0 +

√
2/σu)Zj]I[Zj<Zi] −

∫ Zi

−∞
g(x) exp[(β0 +

√
2/σu)x]dx

]}

− 1√
n

n∑
i=1

µ̃5iWi

{
(β0 + σuβ

2
0/(2

√
2)) exp(−

√
2Zi/σu)·

1

n

n∑
j=1

[
Zj exp[(β0 +

√
2/σu)Zj]I[Zj<Zi] −

∫ Zi

−∞
g(x)x exp[(β0 +

√
2/σu)x]dx

]}
,

where µ̃5i = (ηigi−T2i−T1i). Since E[ηg−T2−T1|Z] = 0, we could show that (2.17) is also

op(1). Thus,
√
nSn5 is op(1). Similarly, one can show that

√
nSn6 = op(1).

For Sn7 and Sn8, by Lemma 3, we have supz |ĝ(z) − g(z)| = O(n−2/5(log n)1/3), and by

Lemma 4,

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

ξiI[Xi≤x] − Eξ1I[X1≤x]

∣∣∣∣∣ = O

(√
log log n

n

)
, a.s..

Thus
√
nSn7 and

√
nSn8 are

√
nO(n−4/5(log n)2/3), which is op(1).

In summary, we eventually obtain
√
n
˙̂
Ln(β0) =

1√
n

∑n
i=1[ei1 + ei2 + ei3 + ei4] + op(1),

Also note that
¨̂
Ln(β̃) → L̈(β0) in probability, we conclude the proof of Theorem 2 by

applying the CLT and Slutsky theorem.
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Chapter 3

Calibrating Poisson Regression

Likelihood with Laplace Measurement

Error

3.1 Introduction

Poisson linear regression model is commonly used for fitting the count data. In its classical

form, given a covariate X = x, possibly multidimensional, the response variable Y has a

Poisson distribution with intensity function λ(x) = exp(xTβ). Throughout this chapter, we

shall assume that the predictor X is univariate. In real applications, due to measurement

instrument imperfection or human errors, often times the covariate X cannot be observed

directly. Instead, one can observe another variable Z which is related to X via the additive

structure Z = X + U , where X and U are assumed to be independent, and U is called the

measurement error. In the measurement error literature, U is usually assumed to be nondif-

ferential, that is, the conditional distribution of Y given X,Z is the same as the conditional

distribution of Y given X. In other words, given the true variable X, knowing the variable

Z does not provide any extra information on the distribution of Y . This nondifferential

condition will be adopted throughout the chapter. In the following, we denote the density
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function of X,Z as f and g, respectively. An extensive introduction of Poisson regression

and other related regression models on count data can be found in Cameron and Trivedi

(2013), and a comprehensive discussion on the measurement error modeling can be found in

Fuller (2009) and Carroll et al. (2006).

The estimation of β is the main research interest in Poisson regression models. Like other

errors-in-variables models, simply replacing X with the data from Z in standard estimation

procedures often result in biased estimate. In fact, although the mean and variance function

of the response variable Y given the true regressor X in the Poisson regression are the same,

the conditional expectation E(Y |Z) and Var(Y |Z) are not equal. Guo and Li (2002) showed

that the measurement error increases the dispersion, that is, E(Y |Z) ≤ Var(Y |Z) holds. The

classical estimation procedures, such as the regression calibration, simulation extrapolation

and instrumental variable methods can be applied to Poisson regression directly. For ex-

ample, conditional on a pseudo-sufficient statistics, Stefanski and Carroll (1987) proposed a

conditional score estimator in the generalized linear model. However, when applied to Pois-

son regression, the analysis is complicated due to a summation of an infinite series in the

probability mass function of Y given the pseudo-sufficient statistics. Later, Stefanski (1989)

and Nakamura (1990) constructed a corrected score method, in which a function of (Y, Z)

and β is found so that the its expectation equals to the expectation of the likelihood function

based on (Y,X). When applied to Poisson regression model, the function has the form of∑n
i=1 [YiZ

′
iβ − lnYi!− exp(Z ′

iβ − 0.5β′Σuβ)] . Unfortunately, the above corrected likelihood

function is not bounded in β. Guo and Li (2002) relaxed the normality assumption and

constructed the exact corrected log-likelihood, so that the corrected score estimator is the

solution of
∑n

i=1 (YiZi − E[Xi exp(Xiβ)]) = 0. But the computation of E[Xi exp(Xiβ)] is

not straightforward even if the distribution of X is known.

In this chapter, we shall propose a more efficient estimation procedure for the Poisson

regression with Laplace measurement error. Different from the corrected scores method pro-

posed in Stefanski (1989) and Nakamura (1990), we will derive the probability mass function

of Y given the observed data Z. The computation is made possible by the construction of

the Tweedie-type formula established in Shi and Song (2015). The proposed estimator is
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defined as the maximizer of the likelihood function based on the probability mass function

of (Y, Z), hence is more efficient than the existing methods proposed in literature.

This chapter is organized as follows. The proposed calibration likelihood estimator, when

the density function of X is known and unknown, will be proposed in Section 3.2. Large

sample results, including the consistency and the asymptotic normality, of the proposed esti-

mator will be thoroughly investigated in Section 3.3. Simulation studies will be conducted in

Section 3.4. Some further discussions, including some future remarks, more simulation stud-

ies to compare our two proposed methods, as well as sensitivity analysis will be mentioned

in Section 3.5. All the technical proofs will be deferred to Section 3.6.

3.2 Calibrating Poisson Regression Likelihood

We begin with the scenarios in which the density function f of X is known. It is noted

that the assumption of known f is rather strict, but it is not rare in real applications. Such

examples are abundant in econometrics, nutrition studies and biology literatures. Most

importantly, the derivation of the calibrated likelihood estimation procedure based on the

known f can help us to construct a semi-parametric estimation procedure for cases where

the density function f is unknown.

To be specific, by the nondifferential condition, for any nonnegative integer y, we have

P (Y = y|Z) = E[I(Y = y)|Z] = E([I(Y = y)|X,Z]|Z) = E([I(Y = y)|X]|Z)

= E

(
λ(X)y

y!
exp(−λ(X))

∣∣∣∣∣Z
)

=
1

y!
E[exp(yXβ − exp(Xβ))|Z].

The probability mass function P (Y = y|Z = z) will be denoted as p(y|z, β). For any twice

differentiable function m(x), Shi and Song (2015) showed that if the density function g of

Z is also twice continuously differentiable, and U has a Laplace distribution, we have the
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following Tweedie-type formula

E[m(X)|Z] = m(Z) +
1

g(Z)

∫ ∞

z

[
m′(x)− σum

′′(x)

2
√
2

]
g(x) exp

(
z − x

σu/
√
2

)
dx

− 1

g(Z)

∫ z

−∞

[
m′(x) +

σum
′′(x)

2
√
2

]
g(x) exp

(
x− z

σu/
√
2

)
dx (3.1)

Tweedie formula is originally developed for the conditional expectation E(X|Z) when U

follows a normal distribution. As disclosed in Efron (2011), the Tweedie’s formula is named

after Maurice Kenneth Tweedie and it was first discussed in Robbins (1956). Due to its

strong Bayesian flavor, Efron (2011) exclaimed the Tweedie’s formula as an “extraordinary

Bayesian estimation formula”, and a selection bias application of this formula to genomics

data was also discussed. However, (3.1) indicates that if U has a Laplace distribution, then

a similar Tweedie-type formula can be established for E(m(X)|X), not limited to E(X|Z).

Let m(x; y, β) = exp(yxβ − exp(xβ)). Clearly, as a function of x, m(x; y, β) is twice

differentiable. Define

H−(y, x, β) = m′(x; y, β)− σum
′′(x; y, β)

2
√
2

, H+(y, x, β) = m′(x; y, β) +
σum

′′(x; y, β)

2
√
2

and G(x, z) = g(x) exp(−|z − x|/(σu/
√
2)), where m′ and m′′ denote the first and second

derivatives of m with respect to x. Then the log-likelihood function of β, based on a sample

(Zi, Yi)
n
i=1 of size n, can be written as

L(β) =
n∑

i=1

log
1

Yi!
E[exp(YiXiβ − exp(Xiβ))|Zi]

∝
n∑

i=1

log

[
g(Zi)m(Zi;Yi, β) +

∫ ∞

Zi

H−(Yi, x, β)G(x, Zi)dx−
∫ Zi

−∞
H+(Yi, x, β)G(x, Zi)dx

]
.

In fact, for the Poisson regression model discussed in this paper, we have

m′(x; y, β) = β exp(yxβ − exp(xβ))(y − exp(xβ))

m′′(x; y, β) = β2 exp(yxβ − exp(xβ))[(y − exp(xβ))2 − exp(xβ)].
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Further denote ṁ′(x; y, β), ṁ′′(x; y, β) as the derivatives of m′(x; y, β), m′′(x; y, β) with re-

spect to β, respectively. Then we have

ṁ′(x; y, β) = exp(yxβ − exp(xβ))
[
xβ(y − exp(xβ))2 − xβ exp(xβ) + y − exp(xβ)

]
ṁ′′(x; y, β) = exp(yxβ − exp(xβ))[xβ2(y − exp(xβ))3 + 2β(y − exp(xβ))2

− 3(y − exp(xβ)) exp(xβ)xβ2 − (xβ + 2)β exp(xβ)].

Hence the maximum likelihood estimator of β is the maximizer of L(β). Like other likelihood-

based estimation procedures, under some regularity conditions, the maximizer of L(β) is the

solution of the likelihood equation ∂L(β)/∂β = 0, or

n∑
i=1

g(Zi)ṁ(Yi, Zi, β) +
∫∞
Zi

Ḣ−(Yi, x, β)G(x, Zi)dx−
∫ Zi

−∞ Ḣ+(Yi, x, β)G(x, Zi)dx

g(Zi)m(Yi, Zi, β) +
∫∞
Zi

H−(Yi, x, β)G(x, Zi)dx−
∫ Zi

−∞ H+(Yi, x, β)G(x, Zi)dx
= 0.

(3.2)

The solution of (3.2) is denoted as β̃n.

According to Shi and Song (2015), the validity of (3.1) also requires the density function

g to be twice continuously differentiable. Note that Z is the convolution of X and U and

the Laplace density function is nondifferentiable at the origin, so differentiability of g clearly

relies on the smoothness of the density function f of X.

Example 1: Assume that X ∼ N(0, σ2
x), and U ∼Laplace(0, σ2

u), then

g(z) =
1

2
exp

(
σ2
x

σ2
u

)[
exp

(
−z

√
2

σu

)
Φ̄σx,σu(z) + exp

(
z
√
2

σu

)
Φσx,σu(z)

]

where

Φ̄σx,σu(z) = 1− Φ

(
σx

√
2

σu

− z

σx

)
, Φσx,σu(z) = Φ

(
− z

σx

− σx

√
2

σu

)
,

and Φ is the CDF of the standard normal distribution. Clearly, g(z) is twice differentiable

with respect to z.
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Example 2: Assume that X ∼Uniform(−a, a) for some a > 0, and X ∼Laplace(0, σ2
u), then

g(z) =
e
√
2(z+a)/σu − e

√
2(z−a)/σu

4a
I(−∞,−a)(z) +

2− e−
√
2(z+a)/σu − e

√
2(z−a)/σu

4a
I[−a,a](z)

+
e−

√
2(z−a)/σu − e−

√
2(z+a)/σu

4a
I(a,∞)(z).

One can check that g(z) is not twice differentiable with respect to z. In this case, the

Tweedie-type formula (3.1) is not applicable. In fact, by direct calculation, one can obtain

that

E[m(X; y, β)|Z] = 1

2ag(Z)

∫ a

−a

m(x; y, β)
1

2b
exp

(
−|x− Z|

b

)
dx

=
e−Z/b

4abg(Z)

∫
[−a,a]∩(−∞,Z]

m(x; y, β)ex/bdx+
eZ/b

4abg(Z)

∫
[−a,a]∩(Z,∞)

m(x; y, β)e−x/bdx.

Thus the MLE of β is defined as the solution of the likelihood equation

n∑
i=1

e−Zi/b

∫
[−a,a]∩(−∞,Zi]

ṁ(Yi, x, β)e
x/bdx+ eZi/b

∫
[−a,a]∩(Zi,∞)

ṁ(Yi, x, β)e
−x/bdx

e−Zi/b

∫
[−a,a]∩(−∞,Zi)

m(Yi, x, β)e
x/bdx+ eZi/b

∫
[−a,a]∩(Zi,∞)

m(Yi, x, β)e
−x/bdx

= 0.

In this chapter, we will focus on the large sample properties the estimator of β defined

by (3.2). That is, we will assume that the density g is twice continuously differentiable. The

discussion on the cases as in Example 2 deserves an independent study.

Rarely is the density function f of X known in practice, neither is the density function

g of Z. The observations from Z allow us to construct a nonparametric estimate of g(z),

such as the kernel density estimator. From the likelihood equation (3.2), we can see that

the kernel density estimator is only necessary for the first term in both the numerator and

denominator of the summand, and all the integration terms can be estimated via a more
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efficient approach. To be specific, note that

∫ ∞

Zi

H−(Yi, x, β)G(x, Zi)dx =

∫ ∞

Zi

H−(Yi, x, β) exp(−|Zi − x|/(σu/
√
2))g(x)dx

= E[H−(Yi, Z, β) exp(−|Zi − Z|/(σu/
√
2))I[Zi,∞)(Z)|Yi, Zi],

where Z is independent of {Yi, Zi}ni=1. So the expectation can be estimated by its sample

analogues

Tn1(Yi, Zi, β) =
1

n

n∑
j=1

H−(Yi, Zj, β) exp

(
−
√
2|Zi − Zj|

σu

)
I[Zi,∞)(Zj).

Similarly,
∫ Zi

−∞ H+(Yi, x, β)G(x, Zi)dx can be estimated by

Tn2(Yi, Zi, β) =
1

n

n∑
j=1

H+(Yi, Zj, β) exp

(
−
√
2|Zi − Zj|

σu

)
I(−∞,Zi)(Zj).

Let Ṫn1, Ṫn2 bet the same as Tn1 and Tn2 with H− and H+ being replace by Ḣ− and Ḣ+,

respectively. Thus, the likelihood equation (3.2) can be replaced by

L̇n(β) =
n∑

i=1

ĝn(Zi)ṁ(Yi, Zi, β) + Ṫn1(Yi, Zi, β)− Ṫn2(Yi, Zi, β)

ĝn(Zi)m(Yi, Zi, β) + Tn1(Yi, Zi, β)− Tn2(Yi, Zi, β)
= 0, (3.3)

where ĝn(z) is the classic Rosenblatt-Parzen kernel density estimator of g(z). The solution

of (3.3) is denoted as β̂n.

Instead of estimating the integral terms using empirical averages, we may consider esti-

mating g in the integral with the kernel density estimator also. To be specific, choosing K

and w as the kernel function and bandwidth, an alternative estimate Tn1 can be defined as

Tn1(Yi, Zi, β) =
1

nw

n∑
j=1

∫ ∞

Zi

H−(Yi, z, β) exp

(
−
√
2|Zi − z|
σu

)
K

(
z − Zj

w

)
dz.

Other quantities can be similarly redefined. The large sample properties of the resulting
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estimator of β may not be different from the one defined in (3.3), but clearly, the proof will

be more complicated.

3.3 Large Sample Results

In this section, we discuss the large sample properties of the estimators β̃n and β̂n proposed in

Section 3.2, for both cases when the density function f of X is known and unknown. Denote

the true value of β as β0. The following list contains the technical assumptions necessary for

presenting and proving the relevant large sample results.

(C1). The density function g(z) of Z is twice continuously differentiable, and the

second derivative is bounded.

(C2). The parameter space Θ = [a, b] for some a < b, and for all β ∈ Θ, E exp(2βX) <

∞; β0 is an interior point of Θ.

(C3). L(β) is differentiable with respect to β, and β0 is the unique maximizer of L(β),

where L(β) = E logQ(Y, Z; β), Q(y, z; β) = E[exp(yXβ − exp(Xβ))|Z = z].

Condition (C1) is used to guarantee that the kernel estimator of g has the desired order in

the asymptotic expansion, and the bounded parameter space ensure the application of domi-

nated convergence theorems is legitimate. Condition (C3) implies that, in the neighborhood

of β0, L̇(β) > 0 when β < β0 and L̇(β) < 0 when β > β0 for all β ∈ Θ = [a, b].

The following theorem shows that β̃n, when the distribution ofX is assumed to be known,

is consistent.

Theorem 6. Suppose the condition (C1), (C2) hold. Then β̃n converges to β0 almost surely.

To state the asymptotic normality of θ̃n, we denote

K1(x) = min(1, |x|, x2) exp(−max(|a|, |b|)|x|), K2(x) = max(1, |x|, x2) exp(max(|a|, |b|)|x|).

The asymptotic normality of θ̃n is summarized in the following theorem.

45



Theorem 7. In addition to (C1) and (C2), we further assume that 0 < EK(Y, Z) < ∞ for

K(y, z) = y2E[Ky+2
2 e−K1(X)|Z = z], E[Ky

1 (X)e−K2(X)|Z = z]. Then

√
n(β̃n − β0) =⇒ N(0, 1/I(β0)),

where I(β0) is the Fisher information of β based on p(y|z, β).

If the density function of Z is unknown, then we estimate β with β̂n, which is defined

as the solution of L̇n(β) = 0, as shown in (3.3). The following theorem shows that β̂n is

consistent.

Theorem 8. In addition to the conditions of Theorem 7, suppose (C3) holds. Then β̂n

converges to β0 in probability.

To state the asymptotic normality of β̂n, for i = 1, 2, . . . , n, denote ηi = g(Zi)m(Yi, Zi; β0)+

T1(Yi, Zi; β0) − T2(Yi, Zi; β0), and η̇i = g(Zi)ṁ(Yi, Zi; β0) + Ṫ1(Yi, Zi; β0) − Ṫ2(Yi, Zi; β0),

mi = m(Yi, Zi; β0), η̇i and ṁi are similarly defined,

M1i(β0) = E

[
η̇j
η2j

H−(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zj ,∞)(Zi)

∣∣∣∣∣Yi, Zi

]
,

M2i(β0) = E

[
η̇j
η2j

H+(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zi,∞)(Zj)

∣∣∣∣∣Yi, Zi

]
,

N1i(β0) = E

[
1

ηj
Ḣ−(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zj ,∞)(Zi)

∣∣∣∣∣Yi, Zi

]
,

N2i(β0) = E

[
1

ηj
Ḣ+(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zi,∞)(Zj)

∣∣∣∣∣Yi, Zi

]
,

and

S1i =
(ηiṁi − η̇imi)g(Zi)

η2i
− E

(ηṁ− η̇m)g(Z)

η2
,

S2i =
M1i −M2i

2
− η̇i(T1i − T2i)

2η2i
, S3i =

N1i −N2i

2
− Ṫ1i − Ṫ2i

2ηi
.

Then we have
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Theorem 9. Assume that σ2 = E[S11 − S21 + S31 + η̇/η]2 < ∞, then the estimator β̂n is

asymptotically normal:
√
n(β̂n − β0) =⇒ (0, σ2/I2(β0)).

From Theorem 9, one can see that the effect of measurement error is reflected by the

extra term σ2 comparing to the result in Theorem 7, which reduces to I(θ0) if σ
2
u = 0.

3.4 Simulation Studies

In this section, some simulation studies are conducted to evaluate the finite sample perfor-

mance of the proposed estimate β̂n. We considers both situations in which the distribution

of X is assumed to be known and unknown.

3.4.1 Parametric Case

In this case, X is generated from the standard normal distribution. The true value of β0 is

chosen to be 1. To see the effect of measurement error on the estimator, the scale parameter

b is chosen to be 0.2, 0.5, 0.8 and 1. Note that the variance σ2
u = 2b2, and four sample sizes,

n = 100, 200, 300, 500 are considered. For each setup, the simulation is repeated 500 times,

and the mean, bias, and mean squared errors (MSEs) are used as the criteria to evaluate the

finite sample performance of the estimation procedures. For comparison purpose, we also

calculate the estimator proposed in Guo and Li (2002), denoted as GL in Table 3.1.

From Table 3.1, it can be seen that for both estimators, when the scale parameter b is

fixed, the MSEs and biases get smaller when the sample size gets larger. While for fixed

sample size n, when b or σ2
u is small, for example, b = 0.2, the proposed method has slightly

higher MSE and bias than Guo and Li (2002)’s method. However, as b or σ2
u increases,

our method outperforms Guo and Li (2002)’s method. The reason that why the proposed

estimator is inferior to GL estimator for smaller b values needs further investigation.
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GL β̂n

b n Mean MSE Bias Mean MSE Bias

100 0.9637 0.0358 -0.0363 0.9556 0.0387 -0.0444

0.2
200 0.9856 0.0159 -0.0144 0.9713 0.0329 -0.0287
300 0.9887 0.0103 -0.0113 0.9826 0.0305 -0.0174
500 0.9919 0.0066 -0.0081 0.9847 0.0248 -0.0153

100 0.9606 0.0408 -0.0394 0.9711 0.0189 -0.0289

0.5
200 0.9729 0.0176 -0.0271 0.9892 0.0074 -0.0108
300 0.9869 0.0141 -0.0131 0.9932 0.0077 -0.0068
500 0.9938 0.0076 -0.0062 1.0006 0.0040 0.0006

100 0.9541 0.0510 -0.0459 0.9781 0.0180 -0.0219

0.8
200 0.9821 0.0204 -0.0179 0.9908 0.0106 -0.0092
300 0.9849 0.0128 -0.0151 0.9935 0.0083 -0.0065
500 0.9874 0.0101 -0.0126 0.9951 0.0057 -0.0049

100 0.9480 0.0609 -0.0520 0.9786 0.0157 -0.0214

1
200 0.9795 0.0236 -0.0205 0.9886 0.0130 -0.0114
300 0.9840 0.0148 -0.0160 0.9904 0.0100 -0.0096
500 0.9970 0.0111 -0.0030 0.9987 0.0074 -0.0013

Table 3.1: Estimates when the distribution of X is known

3.4.2 Semi-parametric Case

When the distribution of X is unknown, the estimator in Guo and Li (2002) is no longer

applicable since E exp(Xβ) would not be available. For comparison purpose, the proposed

estimator will be compared with the estimation method that combines Guo and Li (2002)

and Hong and Tamer (2003)’s approach as mentioned in 3.1, denoted as GLHT in Table 3.2.

To estimate the density function of Z, we choose the standard normal density function as

the kernel function. For the bandwidth of the kernel, we choose n−1/5 which is the optimal

order of the bandwidth in kernel density estimation at which the kernel density estimate

achieves optimal convergence rate in the MSE sense. Other settings are the same as in

Section 3.4.1. The simulation results are summarized in Table 3.2.

From Table 3.2, one can see for fixed sample size, when b or σ2
u is small, the performance

of the proposed method is similar to the method combining Guo and Li (2002) and Hong

and Tamer (2003)’s approach. However, as b increase, the MSEs and biases of the combined

48



method are much higher than the proposed method. This result is consistent with our

discussion in Section 1, that the modified likelihood function of the combined method is

indeed not bounded.

GLHT β̂n

b n Mean MSE Bias Mean MSE Bias

100 0.9940 0.0091 -0.0060 1.0430 0.0345 0.0430

0.2
200 0.9887 0.0175 -0.0113 1.0329 0.0287 0.0329
300 0.9023 0.1039 -0.0977 1.0242 0.0119 0.0242
500 0.9788 0.0214 -0.0212 1.0161 0.0107 0.0161

100 1.5655 0.6195 0.5655 1.1111 0.1610 0.1111

0.5
200 1.5370 0.5751 0.5369 1.1053 0.1383 0.1053
300 1.4701 0.5183 0.4701 1.1531 0.1436 0.1531
500 1.3280 0.4426 0.3280 1.1179 0.1227 0.1179

100 1.9861 0.9964 0.9861 1.0533 0.2250 0.0533

0.8
200 1.9861 0.9964 0.9861 1.1068 0.2125 0.1068
300 1.9967 0.9987 0.9967 1.1275 0.2015 0.1275
500 1.9907 0.9957 0.9907 1.1230 0.1800 0.1230

100 2.0000 0.9999 1.0000 1.0441 0.2640 0.0441

1
200 2.0000 0.9999 1.0000 1.1070 0.2713 0.1070
300 2.0000 0.9999 1.0000 1.0941 0.2404 0.0941
500 2.0000 0.9999 1.0000 1.0646 0.2141 0.0646

Table 3.2: Estimates when the distribution of X is unknown

3.5 Discussion

3.5.1 Future Remarks

As we mentioned before, the validity of (3.1) requires the density function g to be twice

continuously differentiable, which may not be held, as the example in Example 2 on uniform

X suggested. In this case, a direct estimate of the density function of X can be used. By

using the standard normal kernel, the deconvolution kernel density estimator of f is defined
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as

f̂n(x) =
1

nw

n∑
j=1

Ln

(
x− Zj

w

)
, where Ln(x) =

1√
2π

exp

(
−x2

2

)[
1− σ2

u

2w2
(x2 − 1)

]
.

Note that E[m(y,X, β)|Z] = g−1(Z)
∫
m(y, x, β)f(x)h(Z − x)dx, so we can estimate the

above expectation, denoted as M(y, Z, β) by

M̂(y, Z, β) =
1

nwĝn(Z)

n∑
j=1

∫
m(y, x, β)Ln

(
x− Zj

w

)
1

2b
exp

(
−|x− Z|

b

)
dx.

Therefore, an estimate of β can be obtained by solving the following estimated likelihood

equation

n∑
i=1

˙̂
M(Yi, Zi, β)

M̂(Yi, Zi, β)
=

n∑
i=1

n∑
j=1

∫
ṁ(Yi, x, β)Ln

(
x− Zj

w

)
exp

(
−|x− Zi|

b

)
dx

n∑
j=1

∫
m(Yi, x, β)Ln

(
x− Zj

w

)
exp

(
−|x− Zi|

b

)
dx

= 0. (3.4)

The large sample properties of such an estimator deserves an independent study.

Also, note that in this chapter, we only considered a simple case where the explanatory

variable X is univariate. It is well known that the definition of the multivariate Laplace

distribution is not unique. Although we have developed some Tweedie-type formulae for

two multivariate Laplace distributions in Shi and Song (2015) and Song et al. (2021), but

these Tweedie-type formulae have complicated forms and seem too hard to apply to the

Poisson regression with multivariateX variables. We will continue the exploration for simpler

versions so that it can be used for constructing more efficient estimation procedures.

3.5.2 Simulation Studies to Compare WLS and MLE

Besides, some simulation studies are also conducted to evaluate the finite sample performance

of our proposed weighted least squares estimator (WLS) in chapter 2 and maximum likelihood

estimator (MLE) in this chapter, when the distribution of X is unknown.
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Similar to the settings in Section 2.4, X is generated from the standard normal distri-

bution. The true value of β0 is chosen to be 1. And to see the effect of measurement error

on the estimator, the variance σ2
u is chosen to be 1.25, 1, 0.75, 0.5, 0.25, 0.1. And four sample

sizes, n = 200, 300, 500, 1000 are considered. The bandwidth of the kernel density estimator

is chosen to be n−1/5 and 10n−1/5. For each setup, the simulation is repeated 500 times,

and the means, bias, variances and mean squared errors (MSEs) are used as the criteria to

evaluate the finite sample performance of the proposed estimation procedures. The simula-

tion results are summarized in Table 3.3 and Table 3.4. Our proposed weighted least square

estimator and maximum likelihood estimator are denoted by β̂WLS and β̂MLE respectively.

From Table 3.3, it can be seen that when the variance is small, β̂MLE has slightly bigger

biases and variances compared with β̂WLS. While as σ2
u increases, β̂MLE has relatively smaller

biases but still bigger variances.

From Table 3.4, one can see that for fixed small variance σ2
u, β̂MLE tends to have smaller

biases than β̂WLS when the sample size increases. While for fixed big variance, β̂MLE has

smaller biases than β̂WLS under both small and big sample size. However, we do realize that

under both small and big variances, the variances of β̂MLE is bigger than β̂WLS, which needs

further investigation.

3.5.3 Sensitivity Analysis

To evaluate the performance of the two proposed estimators in practices, we considered the

dataset from the website https://www.theanalysisfactor.com/generalized-linear-models-in-r-

part-6-poisson-regression-count-variables/. The dataset consists of 109 observations on the

counts of high school students diagnosed with an infectious disease within a period of days

from an initial outbreak. Figure 3.1 is the scatterplot of counts of students (y) versus days

from the initial outbreak (x).

A sensitivity analysis is conducted in this section. Some Laplace errors are added to the

covariate x. Since the variance of x is 1202.911, the variance of measurement error σ2
u is

chosen to be 1 to 351 with equal step 50, from very small error contamination to moderately
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β̂WLS β̂MLE

σ2
u n Mean Bias Variance MSE Mean Bias Variance MSE

1.25 200 0.625 -0.375 0.004 0.145 0.680 -0.320 0.425 0.527
300 0.652 -0.348 0.003 0.125 0.720 -0.280 0.413 0.491
500 0.676 -0.324 0.003 0.108 0.757 -0.243 0.376 0.435
1000 0.706 -0.294 0.002 0.089 0.778 -0.222 0.358 0.407

1 200 0.669 -0.331 0.005 0.115 0.702 -0.298 0.405 0.494
300 0.700 -0.300 0.004 0.094 0.743 -0.257 0.379 0.445
500 0.728 -0.272 0.004 0.078 0.716 -0.284 0.344 0.424
1000 0.768 -0.232 0.002 0.056 0.853 -0.147 0.333 0.355

0.75 200 0.741 -0.259 0.006 0.074 0.776 -0.224 0.357 0.407
300 0.771 -0.229 0.004 0.057 0.786 -0.214 0.370 0.416
500 0.801 -0.199 0.004 0.044 0.778 -0.222 0.373 0.423
1000 0.837 -0.163 0.003 0.030 0.879 -0.121 0.293 0.308

0.5 200 0.825 -0.175 0.008 0.038 0.735 -0.265 0.359 0.429
300 0.860 -0.140 0.006 0.026 0.836 -0.164 0.361 0.388
500 0.885 -0.115 0.004 0.017 0.838 -0.162 0.301 0.327
1000 0.919 -0.081 0.003 0.009 0.900 -0.100 0.246 0.255

0.25 200 0.915 -0.085 0.009 0.016 0.907 -0.093 0.231 0.240
300 0.944 -0.056 0.005 0.008 0.885 -0.115 0.222 0.235
500 0.963 -0.037 0.003 0.004 0.938 -0.062 0.199 0.203
1000 0.979 -0.021 0.001 0.002 0.955 -0.045 0.121 0.123

0.1 200 0.977 -0.023 0.006 0.007 0.971 -0.029 0.077 0.078
300 0.987 -0.013 0.004 0.004 0.979 -0.021 0.070 0.071
500 0.996 -0.004 0.002 0.002 1.004 0.004 0.031 0.032
1000 1.000 0.000 0.001 0.001 0.994 -0.006 0.019 0.019

Table 3.3: β̂WLS and β̂MLE when h = n−1/5
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β̂WLS β̂MLE

σ2
u n Mean Bias Variance MSE Mean Bias Variance MSE

1.25 200 0.532 -0.468 0.018 0.237 0.549 -0.451 0.428 0.632
300 0.519 -0.481 0.010 0.242 0.613 -0.387 0.434 0.583
500 0.526 -0.474 0.006 0.231 0.667 -0.333 0.429 0.540
1000 0.538 -0.462 0.003 0.217 0.676 -0.324 0.427 0.532

1 200 0.566 -0.434 0.019 0.208 0.588 -0.412 0.412 0.582
300 0.562 -0.438 0.014 0.206 0.662 -0.338 0.438 0.552
500 0.568 -0.432 0.009 0.196 0.665 -0.335 0.427 0.539
1000 0.580 -0.420 0.003 0.180 0.681 -0.319 0.398 0.500

0.75 200 0.644 -0.356 0.024 0.150 0.648 -0.352 0.457 0.580
300 0.631 -0.369 0.015 0.152 0.664 -0.336 0.420 0.533
500 0.636 -0.364 0.011 0.143 0.620 -0.380 0.411 0.556
1000 0.628 -0.372 0.004 0.143 0.702 -0.298 0.365 0.454

0.5 200 0.751 -0.249 0.024 0.086 0.646 -0.354 0.471 0.596
300 0.726 -0.274 0.017 0.092 0.648 -0.352 0.400 0.524
500 0.718 -0.282 0.011 0.091 0.740 -0.260 0.359 0.426
1000 0.715 -0.285 0.006 0.088 0.737 -0.263 0.295 0.364

0.25 200 0.860 -0.140 0.018 0.038 0.736 -0.264 0.370 0.440
300 0.850 -0.150 0.015 0.037 0.748 -0.252 0.369 0.432
500 0.838 -0.162 0.010 0.036 0.782 -0.218 0.277 0.325
1000 0.843 -0.157 0.006 0.030 0.871 -0.129 0.177 0.193

0.1 200 0.961 -0.039 0.010 0.012 0.881 -0.119 0.200 0.214
300 0.943 -0.057 0.007 0.010 0.927 -0.073 0.125 0.130
500 0.944 -0.056 0.005 0.008 0.968 -0.032 0.046 0.047
1000 0.935 -0.065 0.003 0.008 0.967 -0.033 0.024 0.025

Table 3.4: β̂WLS and β̂MLE when h = 10n−1/5
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large noises. The bandwidth of the kernel density estimator is chosen to be n−1/5. For

convenience, the weight function of our weighted least square estimator is chosen to be

e−z2/2. To conduct the sensitivity analysis, the intercept is included in the model, i.e., the

intensity function λ(x) of the Poisson regression model is chosen to be exp(β0+β1x), instead

of exp(βx). For each different σ2
u, the simulation is repeated 500 times, and the means of β0

and β1 are calculated. The results are summarized in Table 3.5.

Note that the estimates of β0 and β1 are 1.9902 and −0.0175 based on the data from

(Y,X), respectively. From Table 3.5, it could be seen that when the variance of measurement

error σ2
u is small, or when there is almost no measurement error, the performance of our

proposed maximum likelihood estimator (MLE) is similar to the naive estimator and is

slightly better than our proposed weighted least square estimator (WLS). While as the

variance increases, our MLE estimator outperforms the naive estimator with respect to both

β0 and β1, and our WLS estimator outperforms the naive estimator with respect to β0 and

performs similar with the naive estimator with respect to β1.

Figure 3.1: Scatterplot
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β̂Naive β̂MLE β̂WLS

σ2
u β0 β1 β0 β1 β0 β1

1 1.9894 -0.0174 1.9809 -0.0175 1.7404 0.0997
51 1.9527 -0.0166 1.9502 -0.0168 1.9000 -0.0283
101 1.9157 -0.0159 1.9186 -0.0162 1.9222 -0.0323
151 1.8852 -0.0152 1.8926 -0.0156 1.8675 -0.0267
201 1.8581 -0.0146 1.8705 -0.0151 1.8718 -0.0268
251 1.8318 -0.0141 1.8473 -0.0147 1.8673 -0.0284
301 1.8084 -0.0136 1.8278 -0.0142 1.8304 -0.0247
351 1.7848 -0.0130 1.8076 -0.0138 1.8472 -0.0242

Table 3.5: β̂Naive, β̂MLE and β̂WLS when h = n−1/5

3.6 Appendix: Proof of Main Results

The proof the consistency of β̃n is facilitated by a lemma whose proof can be found in

Ferguson (2017). For the sake of completeness, the lemma is reproduced below.

Lemma 10. Let X1, X2, . . . be i.i.d. with density p(x; θ), θ ∈ Θ, and let θ0 denote the true

value of θ. If

(F1). Θ is compact,

(F2). p(x; θ) is upper semicontinuous in θ for all x,

(F3). there exists a function K(x) such that Eθ0|K(X)| < ∞ and

U(x; θ) = log p(x; θ)− log p(x; θ0) ≤ K(x), for all x and θ,

(F4). for all θ ∈ Θ and sufficiently small ρ > 0, sup|θ′−θ|<ρ p(x; θ
′) is measurable in x,

(F5). p(x; θ) = p(x; θ0) a.e. implies θ = θ0,

then, for any sequence of MLEs θ̂n of θ0, θ̂n → θ0 almost surely.

The proof of Theorem 6. Applying Lemma 10 to

p(y, z; β) = (y!)−1E[λy(X, β) exp(−λ(X, β))|Z = z]
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with (y, z) being treated as the variable x. It is easy to see that (F1), (F2) and (F4) hold in

the current setup, so it suffices to show that (F3) and (F5) also hold.

To show the identifiability condition (F3) in Lemma 10, we consider the difference

∣∣∣∣log 1

y!
E[λy(X, β) exp(−λ(X, β))|Z]− log

1

y!
E[λy(X, β0) exp(−λ(X, β0))|Z]

∣∣∣∣ .
By the triangular inequality, the difference is bounded above by

| logE[λy(X, β) exp(−λ(X, β))|Z]|+ | logE[λy(X, β0) exp(−λ(X, β0))|Z]|.

Since for any λ > 0, λy exp(−λ) ≤ yy exp(−y), so the difference is further bounded above by

2| log(yy exp(−y))| ≤ 2y| log y|+2y. Thus, (F3) is satisfied because of E[Y | log Y |+Y ] < ∞

under the condition of EY 2 < ∞. In fact, EY 2 = E[E[Y 2|X]] = E[exp(β0X)+exp(2β0X)] <

∞ implies E[exp(2β0X)] < ∞, which is finite by the condition (C2).

Let β1, β2 ∈ Θ, and we assume that

E[λy(X, β1) exp(−λ(X, β1))|Z = z] = E[λy(X, β2) exp(−λ(X, β2))|Z = z] (3.5)

for almost every z. Note that for any β ∈ Θ,

∫
λy(x, β) exp(−λ(x, β))fX|Z(x, z)dx

= g−1(z)

∫
λy(x, β) exp(−λ(x, β))fX(x)

1√
2σu

exp

(
−
√
2|z − x|
σu

)
dx,

and, as a location family, the Laplace distribution is complete, so (3.5) implies

λy(x, β1) exp(−λ(x, β1)) = λy(x, β2) exp(−λ(x, β2))

for all x, z and y. Recall that λ(x, β) = exp(xβ), the above equality implies β1 = β2.

Therefore, the identifiability condition (F4) holds in Lemma 10. This concludes the proof of
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Theorem 6.

To show the asymptotic normality of the proposed MLE β̂n, we need the classical

Cramér’s theorem. For the sake of completeness, the Cramér’s theorem is reproduced here.

Lemma 11. Let X1, X2, . . . be i.i.d. with density p(x; β), and let β0 denote the true value

of the parameter. If

(N1). Θ is an open subset of R;

(N2). Second partial derivatives of p(x; β) with respect to β exist and are continuous

for all x, and may be passed under the integral sign in
∫
p(x; β)dx;

(N3). There exists a function K(x) such that Eβ0K(X) < ∞ and each component of

Ψ̇(x; β) = ∂2 log p(x; β)/∂β2 is bounded in absolute value by K(x) uniformly in some

neighborhood of β0;

(N4). I(β0) = −Eβ0(Ψ̇(x; β0)) is positive definite;

(N5). p(x; β) = p(x; β0) a.e. implies β = β0.

Then there exists a strongly consistent sequence β̂n of roots of the likelihood equation such

that
√
n(β̂n − β0) =⇒ N(0, I−1(β0)).

The proof of Theorem 7. We begin with by checking the condition (N2) in Lemma 11. That

is, the second partial derivative of p(y, z; β) with respect to β exists and may be passed under

the sum sign in
∑

y

∫
p(y, z; β)dz. Note that

∞∑
y=0

∫
∂

∂β
p(y, z; β)dz =

∞∑
y=0

1

y!

∫
∂

∂β
E[λy(X, β) exp(−λ(X, β))|Z = z]g(z)dz,

and

∂

∂β
(λy(x, β) exp(−λ(x, β)))

= yλy−1(x, β)λ′(x, β) exp(−λ(x, β))− λy(x, β) exp(−λ(x, β))λ′(x, β).
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Recall that the parameter space of β is a closed interval Θ = [a, b], a, b ∈ R, this implies for

the functions K1(x) and K2(x) defined in Section 3.3, we have 0 ⩽ K1(x) ⩽ λ(x, β) ⩽ K2(x),

0 ⩽ K1(x) ⩽ λ′(x, β) ⩽ K2(x), then

∣∣∣∣ ∂∂β (λy(x, β)) exp(−λ(x, β))

∣∣∣∣ ≤ yKy−1
2 (x)K2(x) exp(−K1(x)) +Ky+1

2 (x) exp(−K1(x))

= yKy
2 (x) exp(−K1(x)) +Ky+1

2 (x) exp(−K1(x))

≤ (y + 1)Ky+1
2 (x) exp(−K1(x)).

This, together with the condition E[Ky+1
2 (X) exp(−K1(X))] < ∞ and Fubini’s Theorem,

we have

∞∑
y=0

∫
∂

∂β
p(y, z; β)dz =

∞∑
y=0

1

y!

∫
E

[
∂

∂β
λy(X, β) exp(−λ(X, β))|z

]
g(z)dz

=
∞∑
y=0

1

y!

∫
E[(yλy−1(X, β) exp(−λ(X, β))− λy(X, β) exp(−λ(X, β)))λ′(X, β)|z]g(z)dz

=

∫
E

[
∞∑
y=0

1

y!
[yλy−1(X, β) exp(−λ(X, β))− λy(X, β) exp(−λ(X, β))]λ′(X, β)|z

]
g(z)dz

=

∫
E[(1− 1)λ′(X, β)|z]g(z)dz = 0.

Similarly, from the fact that 0 ⩽ K1(X) ⩽ |λ′′(X, β)| ⩽ K2(X), we can show that the second

partial derivatives can also be passed under the integral sign. Thus, the condition (N2) in

Cramer’s theorem holds.

Finally, let us show that each component of Ψ̇(y, z, β) is bounded in absolute value by

K(y, z) uniformly in some neighborhood of β0. Note that

Ψ̇(y, z, β) =
∂2

∂β2
log p(y, z; β) =

∂2

∂β2
logE[λy(X, β) exp(−λ(X, β))|Z = z]

=
∂

∂β

E[yλy−1(X, β) exp(−λ(X, β))λ′(X, β)− λy(X, β) exp(−λ(X, β))λ′(X, β)|Z]
E[λy(X, β) exp(−λ(X, β))|Z = z]

=
M(y, z)

(E[λy(X, β) exp(−λ(X, β))|Z = z])2
,

58



where M(y, z) can be written as

E[y(y − 1)λy−2(X, β) exp(−λ(X, β))(λ′(X, β))2

− yλy−1(X, β) exp(−λ(X, β))(λ′(X, β))2

+ yλy−1(X, β) exp(−λ(X, β))λ′′(X, β)− yλy−1(X, β) exp(−λ(X, β))(λ′(X, β))2

+ λy(X, β) exp(−λ(X, β))(λ′(X, β))2

− λy(X, β) exp(−λ(X, β))λ′′(X, β)|Z = z]E[λy(X, β) exp(−λ(X, β))|Z = z]

− (E[yλy−1(X, β) exp(−λ(X, β))λ′(X, β)− λy(X, β) exp(−λ(X, β))λ′(X, β)|Z = z])2

Note that E[λy(X, β) exp(−λ(X, β))|Z] ⩾ E[Ky
1 (X) exp(−K2(X))|Z], then from the condi-

tion set in the theorem, we can show that |Ψ̇(y, z, β)| is bounded above by a function of (y, z)

whose expectation under the joint distribution of (Y, Z) is finite. Hence, by Crámer’s Theo-

rem, we conclude that
√
n(β̂n−β0)

L
=⇒ N(0, I−1(β0)), where I(β) is the Fisher information

number I(β) = E [∂ log p(Y, Z; β)/∂β]2 which can be written as

E

[
g(Z)ṁ(Y, Z, β) +

∫∞
Z

Ḣ−(Y, x, β)G(x, Z)dx−
∫ Z

−∞ Ḣ+(Y, x, β)G(x, Z)dx

g(Z)m(Y, Z, β) +
∫∞
Z

H−(Y, x, β)G(x, Z)dx−
∫ Z

−∞H+(Y, x, β)G(x, Z)dx

]2
.

Now, let us proceed to the proof of the consistency of β̂n.

The proof of Theorem 8. . To show the consistency of β̂n, it suffices to show that

sup
β∈Θ

|L̇n(β)− L̇(β)| = op(1). (3.6)

Indeed, (3.6) implies that L̇n(β̂n) − L̇(β̂n) = op(1), which further implies that L̇(β̂n) =

op(1). Since β0 is the unique solution of L̇(β) = 0, so β̂n → β0 in probability. Note that
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L̇n(β)− L̇(β) = L̇n(β)− ˙̃Ln(β) +
˙̃Ln(β)− L̇(β), so it suffices to show that

sup
β∈Θ

|L̇n(β)− ˙̃Ln(β)| = op(1), sup
β∈Θ

| ˙̃Ln(β)− L̇(β)| = op(1), (3.7)

where

˙̃Ln(β) =
1

n

n∑
i=1

giṁi(β) + Ṫ1i(β)− Ṫ2i(β)

gimi(β) + T1i(β)− T2i(β)
.

For brevity, denote

T1i(β) = E[Tn1(Yi, Zi, β0)|Yi, Zi] =

∫ ∞

Zi

H−(Yi, x, β)G(x, Zi)dx

T2i(β) = E[Tn2(Yi, Zi, β0)|Yi, Zi] =

∫ Zi

−∞
H+(Yi, x, β)G(x, Zi)dx,

ĝni = ĝn(Zi), Tn1i(β) = Tn1(Yi, Zi, β), ηi(β) = gim(Zi, β) + T1i(β) − T2i(β), ∆Tn1i(β) =

Tn1(Yi, Zi, β)− T1i(β),∆Tn2i(β) = Tn2(Yi, Zi, β)− T2i(β), and other quantities are similarly

defined. Note that

L̇n(β)− ˙̃Ln(β)

=
1

n

n∑
i=1

ĝniṁi(β) + Ṫn1i(β)− Ṫn2i(β)

ĝnimi(β) + Tn1i(β)− Tn2i(β)
− 1

n

n∑
i=1

giṁi(β) + Ṫ1i(β)− Ṫ2i(β)

gimi(β) + T1i(β)− T2i(β)

=
1

n

n∑
i=1

(ĝni − gi)ṁi(β) + ∆Ṫn1i(β)−∆Ṫn2i(β)

(ĝni − gi)mi(β) + ∆Tn1i(β)−∆Tn2i(β) + ηi(β)

− 1

n

n∑
i=1

η̇i(β)

ηi(β)

(
(ĝni − gi)mi(β) + ∆Tn1i(β)−∆Tn2i(β)

(ĝni − gi)mi(β) + ∆Tn1i(β)−∆Tn2i(β) + ηi(β)

)
,

Note that for β ∈ [a, b], we have m(x, y; β) and ∂m(x, y; β)/∂β are both bounded below and

above by Ky
1 (x)e

−K2(x) and y2E[Ky+2
2 (X)e−K1(x)].

Let’s first consider the asymptotic behavior of
∑n

i=1[(ĝn(Zi) − g(Zi))m(Yi, Zi, β)]
4 and∑n

i=1[Tnj(Yi, Zi, β0)− Tj(Yi, Zi, β)]
4, j = 1, 2.
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First, we have

E

(
n∑

i=1

[(ĝn(Zi)− g(Zi))m(Yi, Zi, β)]
4

)
= nE[(ĝn(Z1)− g(Z1))m(Y1, Z1, β)]

4

≤ nE[(ĝn(Z1)− g(Z1))[K2(Z1)]
Y1 exp(−K1(Z1))]

4.

Denote U(Z, Y ) = [K2(Z)]
Y exp(−K1(Z)) and rewrite ĝn(Z1) as

1

nh
K(0) +

1

(n− 1)h

n∑
i=2

K

(
Zi − Z1

h

)
− 1

n(n− 1)h

n∑
i=2

K

(
Zi − Z1

h

)
.

So,

E[(ĝn(Z1)− g(Z1))U(Y1, Z1)]
4

≤ 27

n4h4
K4(0)EU4(Y1, Z1) + 27E

[
1

(n− 1)h

n∑
i=2

K

(
Zi − Z1

h

)
− g(Z1)

]4
U4(Y1, Z1)

+27E

[
1

n(n− 1)h

n∑
i=2

K

(
Zi − Z1

h

)]4
U4(Y1, Z1).

Denote

ξi1 =
1

h
K

(
Zi − Z1

h

)
− E

(
1

h
K

(
Zi − Z1

h

) ∣∣∣∣∣Z1

)
, ξ1 = E

(
1

h
K

(
Zi − Z1

h

) ∣∣∣∣∣Z1

)
,

Then

E

[
1

(n− 1)h

n∑
i=2

K

(
Zi − Z1

h

)
− g(Z1)

]4
U4(Y1, Z1)

≤ 8E

[
1

(n− 1)

n∑
i=2

ξi1

]4
U4(Y1, Z1) + 8E [ξ1 − g(Z1)]

4 U4(Y1, Z1).

Note that

E

[
U(Y1, Z1)

n− 1

n∑
i=2

ξi1

]4
=

Eξ421U
4(Y1, Z1)

(n− 1)3
+

3(n− 2)Eξ221ξ
2
31U

4(Y1, Z1)

(n− 1)3
= O

(
1

n2h2

)
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and E [ξ1 − g(Z1)]
4 U4(Y1, Z1) = O(h8). It is also easy to see that, by the boundedness of

K,

E

[
1

n(n− 1)h

n∑
i=2

K

(
Zi − Z1

h

)]4
U4(Y1, Z1) = O

(
1

n4

)
.

Therefore, we have

E

(
n∑

i=1

[(ĝn(Zi)− g(Zi))m(Yi, Zi, β)]
4

)
= O

(
1

nh2

)
+O(nh8)

uniformly in β ∈ Θ, and

max
1≤i≤n, β∈Θ

|(ĝn(Zi)− g(Zi))m(Yi, Zi, β)| = Op

(
4

√
1

nh2
+ nh8

)
(3.8)

On the other hand, we have E [
∑n

i=1(Tn1i(β)− T1i(β))
4] = nE(Tn11 − T11)

4. Define

H̃−(Yi, Zi, Zj) = H−(Yi, Zj, β) exp

(
−
√
2|Zi − Zj|

σu

)
I[Zi,∞)(Zj).

Then Tn11(β) = n−1H̃−(Y1, Z1, Z1) + n−1
∑n

j=2 H̃−(Y1, Z1, Zj)

T11(β) = E[Tn11|Y1, Z1] =
1

n
H̃−(Y1, Z1, Z1) +

1

n

n∑
j=2

E[H̃−(Y1, Z1, Zj)|Y1, Z1].

So

E

[
n∑

i=1

(Tn1i(β)− T1i(β))
4

]
=

1

n3
E

[
n∑

j=2

(
H̃−(Y1, Z1, Zj)− E[H̃−(Y1, Z1, Z2)|Y1, Z1]

)]4

is the order of O(n−1). By the compactness of Θ, one can show that the above holds

uniformly in β. Therefore

max
1≤i≤n,β∈Θ

|Tn1i(β)− T1i(β)| ≤

[
n∑

i=1

(Tn1i(β)− T1i(β))
4

]1/4
= Op

(
1
4
√
n

)
. (3.9)
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Similarly, we also have

max
1≤i≤n,β∈Θ

|Tn2i(β)− T2i(β)| = Op

(
n−1/4

)
. (3.10)

From (3.8), (3.9) and (3.10), one can see that

∣∣∣L̇n(β)− ˙̃Ln(β)
∣∣∣ ≤ op(1) ·

1

n

n∑
i=1

[
1

|ηi(β)|
+ op(1)

]
− op(1) ·

1

n

n∑
i=1

[∣∣∣∣ η̇i(β)η2i (β)

∣∣∣∣+ op(1)

]
= op(1)

by the conditions of the theorem. Finally, the second claim in (3.7) can be justified by using

law of large numbers for each β ∈ Θ, the continuity of ˙̃Ln(β)− L̇(β) as a function of β ∈ Θ

and the compactness of Θ.

Now, let’s prove the asymptotic normality of β̂n.

Proof. We begin with showing that

1√
n

n∑
i=1

ĝn(Zi)ṁ(Yi, Zi, β0) + Ṫn1(Yi, Zi, β0)− Ṫn2(Yi, Zi, β0)

ĝn(Zi)m(Yi, Zi, β0) + Tn1(Yi, Zi, β0)− Tn2(Yi, Zi, β0)

is asymptotically normal. For the sake of convenience, denote mi = ṁ(Yi, Zi; β0), Tn1i =

Tn1(Yi, Zi; β0), Tn2i = Tn2(Yi, Zi; β0), and ṁi, Ṫn1i, Ṫn2i are similarly defined. Note that

1√
n

n∑
i=1

ĝniṁi + Ṫn1i − Ṫn2i

ĝnimi + Tn1i − Tn2i

(3.11)

=
1√
n

n∑
i=1

(ĝni − gi)ṁi + (Ṫn1i − Ṫ1i)− (Ṫn2i − Ṫ2i) + giṁi + Ṫ1i − Ṫ2i

(ĝni − gi)mi + (Tn1i − T1i)− (Tn2i − T2i) + gimi + T1i − T2i

=
1√
n

n∑
i=1

(ĝni − gi)ṁi + (Ṫn1i − Ṫ1i)− (Ṫn2i − Ṫ2i) + giṁi + Ṫ1i − Ṫ2i

gimi + T1i − T2i

− 1√
n

n∑
i=1

(ĝni − gi)ṁi + (Ṫn1i − Ṫ1i)− (Ṫn2i − Ṫ2i) + giṁi + Ṫ1i − Ṫ2i

gimi + T1i − T2i

·(
(ĝni − gi)mi + (Tn1i − T1i)− (Tn2i − T2i)

(ĝni − gi)mi + (Tn1i − T1i)− (Tn2i − T2i) + gimi + T1i − T2i

)
.
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For the sake of brevity, denote dni = (ĝni − gi)mi + (Tn1i − T1i) − (Tn2i − T2i),ηi =

gimi + T1i − T2i, andi = giṁi + Ṫ1i − Ṫ2i. Then the second term in (3.11) can be written as

the sum of the following twelve terms

Sn1 =
1√
n

n∑
i=1

(ĝni − gi)
2miṁi

(dni + ηi)ηi
, Sn2 =

1√
n

n∑
i=1

(ĝni − gi)(Tn1i − T1i)ṁi

(dni + ηi)ηi
,

Sn3 = − 1√
n

n∑
i=1

(ĝni − gi)(Tn2i − T2i)ṁi

(dni + ηi)ηi
, Sn4 =

1√
n

n∑
i=1

(ĝni − gi)(Ṫn1i − Ṫ1i)mi

(dni + ηi)ηi
,

Sn5 =
1√
n

n∑
i=1

(Ṫn1i − Ṫ1i)(Tn1i − T1i)

(dni + ηi)ηi
, Sn6 = − 1√

n

n∑
i=1

(Ṫn1i − Ṫ1i)(Tn2i − T2i)

(dni + ηi)ηi
,

Sn7 = − 1√
n

n∑
i=1

(ĝni − gi)(Ṫn2i − Ṫ2i)mi

(dni + ηi)ηi
, Sn8 = − 1√

n

n∑
i=1

(Ṫn2i − Ṫ2i)(Tn1i − T1i)

(dni + ηi)ηi
,

Sn9 =
1√
n

n∑
i=1

(Ṫn2i − Ṫ2i)(Tn2i − T2i)

(dni + ηi)ηi
, Sn10 =

1√
n

n∑
i=1

η̇i(ĝni − gi)mi

(dni + ηi)ηi
,

Sn11 =
1√
n

n∑
i=1

η̇i(Tn1i − T1i)

(dni + ηi)ηi
, Sn12 = − 1√

n

n∑
i=1

η̇i(Tn2i − T2i)

(dni + ηi)ηi
.

To show that the first 9 terms of the second term in (3.11) is the order of op(1), it suffices

to show E(Snj)
2 = o(1) for j = 1, 2, . . . , 9. We only present the proofs for the cases j = 1, 2.

Note that

ES2
n1 = E

[
1√
n

n∑
i=1

(ĝni − gi)
2miṁi

(dni + ηi)ηi

]2

=
1

n
E

[
n∑

i=1

(ĝni − gi)
4m2

i ṁ
2
i

(dni + ηi)2η2i

]
+

1

n
E

[∑
i ̸=j

(ĝni − gi)
2(ĝnj − gj)

2miṁimjṁj

(dni + ηi)(dnj + ηj)ηiηj

]

= E

[
(ĝn1 − g1)

4m2
1ṁ

2
1

(dn1 + η1)2η21

]
+ (n− 1)E

[
(ĝn1 − g1)

2(ĝn2 − g2)
2m1ṁ1m2ṁ2

(dn1 + η1)(dn2 + η2)η1η2

]
≤ nE

[
(ĝn1 − g1)

4m2
1ṁ

2
1

(dn1 + η1)2η21

]
.
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Before proceeding, we want to show that P (η1 + dn1 < η1/2, i.o.) = 0. In fact,

∞∑
n=1

P (η1 + dn1 < η1/2)) ≤
∞∑
n=1

P (|dn1| ≥ η1/2) ≤ c
∞∑
n=1

E

[
d2rn1
η2r1

]
≤ c

∞∑
n=1

E

(
(ĝn1 − g1)m1

η1

)2r

+ c

∞∑
n=1

E

(
Tn11 − T11

η1

)2r

+ c

∞∑
n=1

E

(
Tn21 − T21

η1

)2r

= c
∞∑
n=1

[
O

(
1

(nh)r

)
+O(h4r) +O

(
1

nr

)]
< ∞.

Therefore, when n is large enough,

ES2
n1 ≤ nE

[
(ĝn1 − g1)

4m2
1ṁ

2
1

(dn1 + η1)2η21

]
≤ 4nE

[
(ĝn1 − g1)

4m2
1ṁ

2
1

η41

]
= op(1).

Similarly, for Sn2, we have

ES2
n2 = E

[
1√
n

n∑
i=1

(ĝni − gi)(Tn1i − T1i)ṁi

(dni + ηi + δn)ηi

]2

=
1

n
E

[
n∑

i=1

(ĝni − gi)
2(Tn1i − T1i)

2ṁ2
i

(dni + ηi)2η2i

]

+
1

n
E

[∑
i ̸=j

(ĝni − gi)(ĝnj − gj)(Tn1i − T1i)(Tn1j − T1j)ṁiṁj

(dni + ηi)(dnj + ηj)ηiηj

]

= E

[
(ĝn1 − g1)

2(Tn11 − T11)
2ṁ2

1

(dn1 + η1)2η21

]
+(n− 1)E

[
(ĝn1 − g1)(ĝn2 − g2)(Tn11 − T11)(Tn12 − T12)ṁ1ṁ2

(dn1 + η1)(dn2 + η2)η1η2

]
≤ n

√
E

[
(ĝn1 − g1)4ṁ4

1

(dn1 + η1)2η21

]
· E
[
(Tn11 − T11)4

(dn1 + η1)2η21

]
= o(1).

Furthermore, we can show that

1√
n

n∑
i=1

η̇i(ĝni − gi)mi

η2i
− 1√

n

n∑
i=1

η̇i(ĝni − gi)mi

(dni + ηi)ηi
=

1√
n

n∑
i=1

η̇i(ĝni − gi)midniηi
(dni + ηi)η3i

= op(1),
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and

Sn11 =
1√
n

n∑
i=1

η̇i(Tn1i − T1i)

η2i
+ op(1), Sn12 = − 1√

n

n∑
i=1

η̇i(Tn2i − T2i)

η2i
+ op(1).

Then we eventually have

1√
n

n∑
i=1

ĝniṁi + Ṫn1i − Ṫn2i

ĝnimi + Tn1i − Tn2i

=
1√
n

n∑
i=1

(ĝni − gi)ηiṁi + ηi(Ṫn1i − Ṫ1i)− ηi(Ṫn2i − Ṫ2i) + ηiη̇i
η2i

− 1√
n

n∑
i=1

η̇i(ĝni − gi)mi

η2i
− 1√

n

n∑
i=1

η̇i(Tn1i − T1i)

η2i
+

1√
n

n∑
i=1

η̇i(Tn2i − T2i)

η2i
+ op(1)

=
1√
n

n∑
i=1

[
(ĝni − gi)(−η̇imi + ηiṁi)

η2i

]
+

1√
n

n∑
i=1

[
Ṫn1i − Ṫ1i

ηi

]
− 1√

n

n∑
i=1

[
η̇i(Tn1i − T1i)

η2i

]
+ op(1)

− 1√
n

n∑
i=1

[
Ṫn2i − Ṫ2i

ηi

]
+

1√
n

n∑
i=1

[
η̇i(Tn2i − T2i)

η2i

]
+

1√
n

n∑
i=1

η̇i
ηi

+ op(1).

At this stage, we will introduce two lemmas.

Lemma 12. Assume that µ(x) is a continuous function, and the density function g of Z is

twice differentiable with bounded second derivative. Then

1√
n

n∑
i=1

µ(Zi)[ĝn(Zi)− g(Zi)] =
1√
n

n∑
i=1

[µ(Zi)g(Zi)− Eµ(Z)g(Z)] + op(1).

The proof of Lemma 12 can be found in Shi et al. (2019).

Lemma 13. Under some regularity conditions, for k = 1, 2, we have

1√
n

n∑
i=1

(
η̇iTnki

η2i
− E

[
η̇Tk

η2

])
=

1√
n

n∑
i=1

(
η̇i
2η2i

Tki(β0) +
1

2
Mki(β0)− E

[
η̇Tk

η2

])
+ op(1),

1√
n

n∑
i=1

(
Ṫnki

ηi
− E

[
Ṫk

η

])
=

1√
n

n∑
i=1

(
Ṫki(β0)

2ηi
+

1

2
Nki(β0)− E

[
Ṫk

η

])
+ op(1),
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where

M1i(β0) = E

[
η̇j
η2j

H−(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zj ,∞)(Zi)

∣∣∣∣∣Yi, Zi

]
,

M2i(β0) = E

[
η̇j
η2j

H+(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zi,∞)(Zj)

∣∣∣∣∣Yi, Zi

]
,

N1i(β0) = E

[
1

ηj
Ḣ−(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zj ,∞)(Zi)

∣∣∣∣∣Yi, Zi

]
,

N2i(β0) = E

[
1

ηj
Ḣ+(Yj, Zi, β0) exp

(
−
√
2|Zj − Zi|

σu

)
I[Zi,∞)(Zj)

∣∣∣∣∣Yi, Zi

]
.

Proof. Denote

Wij1 = H−(Yi, Zj, β0) exp

(
−
√
2|Zi − Zj|

σu

)
I[Zi,∞)(Zj),

and Vi = η̇i/η
2
i . Then

1√
n

n∑
i=1

η̇iTn1i

η2i
=

1√
n

n∑
i=1

Vi

[
1

n

n∑
j=1

Wij1

]
=

1

n
√
n

n∑
i=1

ViWii1 +
1

n
√
n

∑
i ̸=j

ViWij1.

The assumption of EV1W111 < ∞ implies the first term on the right is op(1). Denote

Uij1 = (ViWij1 + VjWji1)/2,

1

n
√
n

∑
i ̸=j

ViWij1 =
n− 1√

n
· 2

n(n− 1)

∑
i<j

Uij1 =
n− 1√

n
Un.

It is easy to see that Un is a U -statistic. If E[VW ]2 < ∞, and Var[E(U121|Z1, Y1)] > 0, then

√
n[Un − E(V1W121)] =

1√
n

n∑
i=1

[E(Uij1|Zi, Yi)− E(V1W121)] + op(1),

where i ̸= j. Note that

E(Uij1|Zi, Yi) =
1

2
E [ViWij1|Zi, Yi] +

1

2
E [VjWji1|Zi, Yi]
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and

E [ViWij1|Zi, Yi] = ViE[Wij1|Zi, Yi]

=
η̇i
η2i

E

[
H−(Yi, Zj, β0) exp

(
−
√
2|Zi − Zj|

σu

)
I[Zi,∞)(Zj)

∣∣∣∣∣Yi, Zi

]

=
η̇i
η2i

∫ ∞

Zi

H−(Yi, x, β0)G(x, Zi)dx =
η̇i
η2i

T1i(β0).

On the other hand, we can show that E [VjWji1|Zi, Yi] = M1i(β0). Now, take

Wij2 = H+(Yi, Zj, β0) exp

(
−
√
2|Zi − Zj|

σu

)
I(−∞,Zi](Zj),

then similarly, we can show that

E [ViWij2|Zi, Yi] = ViE[Wij2|Zi, Yi]

=
η̇i
η2i

E

[
H+(Yi, Zj, β0) exp

(
−
√
2|Zi − Zj|

σu

)
I(−∞,Zi](Zj)

∣∣∣∣∣Yi, Zi

]

=
η̇i
η2i

∫ Zi

−∞
H+(Yi, x, β0)G(x, Zi)dx =

η̇i
η2i

T2i(β0)

and E [VjWji2|Zi, Yi] = M2i(β0). This concludes the proof.

From the above lemma, we showed that

1√
n

n∑
i=1

η̇i(Tn1i − T1i)

η2i
− 1√

n

n∑
i=1

η̇i(Tn2i − T2i)

η2i
=

1√
n

n∑
i=1

[
M1i −M2i

2
− η̇i(T1i − T2i)

2η2i

]
.

1√
n

n∑
i=1

Ṫn1i − Ṫ1i

ηi
− 1√

n

n∑
i=1

Ṫn2i − Ṫ2i

ηi
=

1√
n

n∑
i=1

[
N1i −N2i

2
− Ṫ1i − Ṫ2i

2ηi

]
.
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For the sake of brevity, denote

S1i =
(ηiṁi − η̇imi)g(Zi)

η2i
− E

(ηṁ− η̇m)g(Z)

η2
,

S2i =
M1i −M2i

2
− η̇i(T1i − T2i)

2η2i
, S3i =

N1i −N2i

2
− Ṫ1i − Ṫ2i

2ηi
.

Then base on Lemma 12 and 13, we obtain

1√
n

n∑
i=1

ĝniṁi + Ṫn1i − Ṫn2i

ĝnimi + Tn1i − Tn2i

=
1√
n

n∑
i=1

[
S1i − S2i + S3i +

η̇i
ηi

]
+ op(1).

This implies that
1√
n

n∑
i=1

ĝniṁi + Ṫn1i − Ṫn2i

ĝnimi + Tn1i − Tn2i

=⇒ N(0, σ2),

where σ2 = E(S11−S21+S31+ η̇/η)2. And note that the estimator β̂n satisfies the following

equation
1√
n

n∑
i=1

ĝn(Zi)ṁ(Yi, Zi, β̂n) + Ṫn1(Yi, Zi, β̂n)− Ṫn2(Yi, Zi, β̂n)

ĝn(Zi)m(Yi, Zi, β̂n) + Tn1(Yi, Zi, β̂n)− Tn2(Yi, Zi, β̂n)
= 0.

By Taylor expansion, we have

0 =
1√
n

n∑
i=1

ĝn(Zi)ṁ(Yi, Zi, β0) + Ṫn1(Yi, Zi, β0)− Ṫn2(Yi, Zi, β0)

ĝn(Zi)m(Yi, Zi, β0) + Tn1(Yi, Zi, β0)− Tn2(Yi, Zi, β0)

+
√
n(β̂n − β0)

1

n

n∑
i=1

∂

∂β

[
ĝn(Zi)ṁ(Yi, Zi, β̃n) + Ṫn1(Yi, Zi, β̃n)− Ṫn2(Yi, Zi, β̃n)

ĝn(Zi)m(Yi, Zi, β̃n) + Tn1(Yi, Zi, β̃n)− Tn2(Yi, Zi, β̃n)

]
.

The consistency of β̂n to β0 implies that β̃n also converges to β0 in probability. Therefore,

1

n

n∑
i=1

∂

∂β

[
ĝn(Zi)ṁ(Yi, Zi, β̃n) + Ṫn1(Yi, Zi, β̃n)− Ṫn2(Yi, Zi, β̃n)

ĝn(Zi)m(Yi, Zi, β̃n) + Tn1(Yi, Zi, β̃n)− Tn2(Yi, Zi, β̃n)

]

→ E
∂

∂β

[
g(Z)ṁ(Y, Z, β0) + Ṫ1(Y, Z, β0)− Ṫ2(Y, Z, β0)

g(Z)m(Y, Z, β0) + T1(Y, Z, β0)− T2(Y, Z, β0)

]

which is the Fisher information number based on the joint density function of Y and Z.

Thus, we conclude the main result on the asymptotic normality of β̂n.
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