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The probabilistic reduction approach to specifying multinomial logistic regression 

models in health outcomes research 

 

Abstract 

The paper provides a novel application of the Probabilistic Reduction 
approach to the analysis of multi-categorical outcomes. The Probabilistic 
Reduction (PR), which systematically takes account of heterogeneity and 
functional form concerns, can improve the specification of binary 
regression models.  However, its utility for systematically enriching the 
specification of and inference from models of multi-categorical outcomes 
has not been examined, while multinomial logistic regression models are 
commonly used for inference and, increasingly, prediction.  Following a 
theoretical derivation of the PR-based multinomial logistic model (MLM), 
we compare functional specification and marginal effects from a traditional 
specification and a PR-based specification in a model of post-stroke hospital 
discharge disposition and find that the traditional MLM is misspecified. 
Results suggest that the impact on the reliability of substantive inferences 
from a misspecified model may be significant, even when model fit 
statistics do not suggest a strong lack of fit compared to a properly specified 
model using the PR approach.  We identify situations under which a PR-
based MLM specification can be advantageous to the applied researcher. 
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1. Introduction 
 

 The availability of large datasets from insurers, hospitals, and third-party groups 

simplifies the task of generating population-based evidence of health differences and 

outcomes within a population. Statistical tools employed to analyze such datasets (and 

other similar datasets) should account for the complexity of the data generation process.  

There is often significant heterogeneity that exists in such data. ‘Main effects’-only models  

assume the relationship between the factor being examined and the health outcome is 

homogeneous across population subgroups defined, for example, by race, disease severity 

or age.  Understanding health trends across population subgroups defined by race is 

particularly important to the national public health agenda, as evidenced by the Healthy 

People 2010 and 2020 initiatives (http://www.healthypeople.gov/2020/default.aspx ) 

targeting racial disparities in health status. 

Main effects models are misspecified when heterogeneity across population 

subgroups or levels of analysis are present. To account for heterogeneity, statistical 

refinements presented in the literature include the incorporation of interaction effects (e.g. 

accounting for effect modification)[16, 8, 19]; stratification [7, 16, 18, 28] and/or 

extensions to address variance heterogeneity via multi-level models [29, 34, 35].  In the 

case of ethnic/racial disparities authors have reversed or otherwise revised [29, 34, 35] 

initial conclusions regarding the existence of a race disparity after enriching the model 



4 
 

using these techniques.1 Evidence from the literature confirms that model specification can 

lead to differences in the conclusions regarding heterogeneity in outcomes.  Prior work [4] 

discussed specification of binary logistic models for non-randomized designs. However, no 

systematic approach to model specification has been developed for the analysis of 

observational data for statistical models with multiple nominal outcomes.   

This paper utilizes the Probabilistic Reduction (PR) approach [32, 33] to model 

specification to develop a systematic approach to empirical modeling using observational 

data that takes account of the probabilistic information and heterogeneity present in the 

data. As applied to models with multiple nominal outcomes, the PR approach leads to a 

model specification that accords a primary role to the inverse conditional distribution of 

the explanatory variables conditioned on the nominal outcomes.  The specification based 

on the PR approach is consistent with that discussed in earlier work for binary logistic 

regression models [4, 20, 30].  Prior studies provide a rationale for the consideration of 

using inverse conditional distributions in specifying multinomial logistic regression models 

[2 , 23], but do not provide a systematic approach for model specification that extends 

much beyond linearity in the variables for the index or predictor functions of the model. 

The PR approach provides a justification for considering the role of a myriad of parametric 

inverse conditional distributions for specifying multinomial logistic regression models that 

may be nonlinear in the parameters, explanatory variables, or both (see Bergtold et al. [4] 

for examples for the binary case). Differences in the functional form can have important 

 
1 Heterogeneity and differences due to ethnic and racial disparity has been a significant topic in the health 
outcomes research literature [13,17,26,27]. 
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implications for substantive inferences (e.g. marginal effects or odds ratios) estimated 

using the model.  

 The purpose of this paper is to examine the specification of the multinomial logistic 

regression model using the Probabilistic Reduction approach with an empirical application: 

examining hospital discharge disposition. The paper has three objectives: (1) to derive the 

multinomial logistic regression model using the PR approach, emphasizing the role the 

inverse conditional distribution plays in model specification; (2) to compare the PR 

approach to more traditional specifications; and (3) to examine the impact of model 

misspecification on inference via marginal effects when the traditional approach leads to a 

misspecified model.  Model comparisons are conducted in the context of an empirical 

example of post-stroke hospital discharge disposition of Maryland patients from 2000 to 

2005. Results from the empirical example comparing the multinomial logistic regression 

model specified using the PR and more traditional approaches suggest that the impact on 

the reliability of substantive inferences (including racial and ethnic disparities) from a 

misspecified model may be significant, even when model fit statistics do not suggest a 

strong lack of fit compared to the properly specified model.  The novelty of the paper is the 

presentation of a systematic approach for modeling multinomial regression models that 

incorporates heterogeneity across subpopulations and provides derivations for marginal 

effect calculations that provide substantive inferences. 

2. Theory and Methods 

Existing frameworks for specifying the multinomial logistic regression models 

include the latent variable approach [37] and the transformational (generalized linear 
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model) approach [10]. Bergtold et al. [4] show that these two approaches can lead to model 

specifications that are either misspecified or do not take advantage of all the statistical 

information inherent in the data, by ignoring the distributional properties of covariates or 

explanatory variables. The generalized linear model approach lacks specific guidance on 

the functional form of the predictor (or log odds) function in the multinomial logistic 

regression model past linearity in the parameters, variables or both. The latent variable 

approach often imposes linearity to meet theoretical considerations. These requirements 

can result in model specifications which may not always be appropriate or complete [3]. 

The probabilistic structure of the explanatory variables can play an important role in the 

functional form of the predictor or index function. Arnold et al. [3] state that “many of the 

logistic regression models discussed in the applied literature are questionable in the light of 

these observations (p. 134).”  This is not to mention the inclusion of covariate terms or 

structure to model heterogeneity across sub-populations. This leads to the novelty provided 

by examining the model specification of statistical models with nominal outcomes using 

the Probabilistic Reduction approach. 

 

2. 1 The probabilistic reduction approach  

The Probabilistic Reduction approach to model specification specifies a statistical 

model based on the reduction of the joint distribution of the dependent binary variable and 

categorical and continuous explanatory variables. The importance accorded to the joint 

distribution leads to recognition of the role of inverse conditional distributions in providing 

relevant statistical information for model specification [4].  Inverse conditional 
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distributions (the distribution of the independent variables conditional on the discrete 

outcome) can provide important information about the functional form of the statistical 

model and in turn choice or outcome probabilities being estimated. This has been explored 

for the binary logistic regression model [4, 20, 30].  Using the joint distribution, via the 

inverse conditional distribution, to inform the model selection process can bring 

transparency to model-building and help ensure statistical adequacy and reliable 

substantive inferences. 

Consider the finite nominal choice or outcome set 𝐵 ൌ ሼ1, … , 𝑀ሽ for a set of N 

individuals and M choices. Furthermore, consider a set of K observed variables, denoted as 

𝑿௜ ൌ ൫𝑋ଵ,௜, … , 𝑋௄,௜൯, associated with the ith individual. Let the distribution of 𝑿௜ be given 

by 𝑓𝑿ሺ𝑿௜; 𝜃ሻ, where 𝜃 is an appropriate set of parameters. Let 𝑌௜ denote a polychotomous 

index of the set B, such that 𝑌௜ ൌ 𝑗 when individual i chooses alternative 𝑗 ∈ 𝐵. Assume 

that 𝐸ሺ𝑌௜ሻ ൌ 𝐏ሺ𝑌௜ ൌ 𝑗ሻ ൌ 𝑝௝, which makes the distribution of 𝑌௜: 

 𝑓௒ሺ𝑌௜; 𝒑ሻ ൌ ∏ 𝑝௝
𝟏ሺ௒೔ୀ௝ሻெ

௝ୀଵ ,       (1) 

where 𝟏ሺ. ሻ denotes the indicator function and ∑ 𝑝௝
ெ
௝ୀଵ ൌ 1. Equation (1) is known as the 

multinomial distribution. 

  Assume that the joint vector stochastic process ሼሺ𝑌௜, 𝑿௜ሻ, 𝑖 ൌ 1, … , 𝑁ሽ is 

independent (I). The stochastic process can be identically distributed (ID), but can be 

assumed to vary across sub-populations (e.g. heterogeneity among sub-groups) without 

loss of generality. Following Spanos [33], the PR approach starts with the decomposition 

of the joint distribution of the vector stochastic process ሼሺ𝑌௜, 𝑿௜ሻ, 𝑖 ൌ 1, … , 𝑁ሽ, which 

depends on the existence of the multivariate distribution of  ሺ𝑌௜, 𝑿௜ሻ. That is: 
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where   is an appropriate set of parameters. The multivariate distribution 𝑓ሺ𝑌௜, 𝑿௜; 𝜑ሻ 

can be represented as the product of conditional and marginal distributions, i.e.: 

 𝑓ሺ𝑌௜, 𝑿௜; 𝜑ሻ ൌ 𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ ∙ 𝑓𝑿ሺ𝑿௜; 𝜃ሻ ൌ 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯ ∙ 𝑓𝒀ሺ𝑌௜; 𝒑ሻ, (2) 

where 𝜑 is an appropriate set of parameters,  𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ is the conditional distribution 

of 𝑌௜ given 𝑿௜; 𝜷 is an appropriate set of parameters; 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯ is the inverse 

conditional distribution of 𝑿௜ given 𝑌௜; and 𝜃௝ is an appropriate set of parameters and a 

function of 𝑌௜ ൌ 𝑗. The existence of 𝑓ሺ𝑌௜, 𝑿௜; 𝜑ሻ and in turn a proper statistical model is 

dependent on the compatibility of 𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ and 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯ [3].   

 Now assume that 𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ is a conditional multinomial mass function that 

takes the form: 

 𝑓௒|𝑿ሺ𝑌௜|𝑿௜; 𝜷ሻ ൌ ∏ ℎ௝ሺ𝑿௜; 𝜷ሻ𝟏ሺ௒೔ୀ௝ሻெ
௝ୀଵ ,     (3) 

where 𝜷 ൌ ሺ𝛽ଵ, … , 𝛽ெሻ; ℎ௝ሺ𝑿௜; 𝜷ሻ: Θ𝜷 → ሾ0,1ሿ for 𝑗 ൌ 1, … , 𝑀; Θ𝜷 is the parameter space 

associated with 𝜷; and ∑ ℎ௝
ெ
௝ୀଵ ሺ𝑿௜; 𝜷ሻ ൌ 1. The probability of the ith individual choosing 

choice j can be determined by letting 𝑌௜ ൌ 𝑗; substituting equations (1) and (3) into 

equation (2); and rearranging terms, giving:  

 𝐏ሺ𝑌𝒊 ൌ 𝑗|𝐗௜ ൌ 𝐱௜ሻ ൌ 𝐸ሺ𝑌𝒊 ൌ 𝑗|𝐗௜ ൌ 𝐱௜ሻ ൌ ℎ௝ሺ𝑿௜; 𝜷ሻ ൌ
௙𝑿|ೊసೕ൫𝑿೔|௒೔ୀ௝;ఏೕ൯∙௣ೕ

௙𝑿ሺ𝑿೔;ఏሻ
. (4)  

The objective now is to determine the functional form of ℎ௝ሺ𝑿௜; 𝜷ሻ, which will incorporate 

the inverse conditional distribution 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯, ensuring compatibility with 

𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ and the existence of a statistical model. 
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 Following Arnold et al. ([3], p. 17), a sufficient condition for the compatibility of  

𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ and 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯ is that the ratio: 

 
௙ೊ|𝑿ሺ௒೔ୀ௝|𝑿𝒊;𝜷ሻ∙௙𝑿|ೊస೘ሺ𝑿೔|௒೔ୀ௠;ఏ೘ሻ

௙ೊ|𝑿ሺ௒೔ୀ௠|𝑿𝒊;𝜷ሻ∙௙𝑿|ೊసೕ൫𝑿೔|௒೔ୀ௝;ఏೕ൯
      (5) 

does not depend on Xi for any combination of choices j and m such that 𝑗 ് 𝑚. Using 

equation (2), condition (5) must be equal to 
௣ೕ

௣೘
. Now let m represent the “all other” choice, 

such that  𝑝௠ ൌ 1 െ ∑ 𝑝௦௦ஷ௠  and ℎ௠ሺ𝑿௜; 𝜷ሻ ൌ 1 െ ∑ ℎ௦௦ஷ௠ ሺ𝑿௜; 𝜷ሻ. Substituting equation 

(3) into condition (5) gives the following set of sufficient conditions: 

 
௙𝑿|ೊస೘ሺ𝑿೔|௒೔ୀ௠;ఏ೘ሻ

௙𝑿|ೊసೕ൫𝑿೔|௒೔ୀ௝;ఏೕ൯
∙

௛ೕሺ𝑿೔;𝜷ሻ

ଵି∑ ௛ೞೞಯ೘ ሺ𝑿೔;𝜷ሻ
ൌ

௣ೕ

௣೘
 for j = 1,….,M and 𝑗 ് 𝑚. 2   (6) 

That is, the conditions given by (6) must be satisfied for 𝑓௒|𝑿ሺ𝑌௜|𝑿𝒊; 𝜷ሻ and 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯ 

to be compatible. Note that the base choice m can be chosen arbitrarily, as well. Solving 

the set of M -1 equations given by condition (6) for ℎ௝ሺ𝑿௜; 𝜷ሻ, j = 1,…,M and 𝑗 ് 𝑚, 

gives:  

 ℎ௝ሺ𝑿௜; 𝜷ሻ ൌ
௚ೕቀ𝑿೔;ఉೕ൫ఏೕ,ఏ೘,௣ೕ,௣೘൯ቁ

ଵା∑ ௚ೞቀ𝑿೔;ఉೞ൫ఏೞ,ఏ೘,௣ೕ,௣೘൯ቁೞಯ೘
,     (7) 

where  

 𝑔௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ ൌ
௙𝑿|ೊసೕ൫𝑿೔|௒೔ୀ௝;ఏೕ൯∙௣ೕ

௙𝑿|ೊస೘ሺ𝑿೔|௒೔ୀ௠;ఏ೘ሻ∙௣೘
 for j =1,…,M  and 𝑗 ് 𝑚.    (8) 

The parameter vector  𝛽௝ ൌ 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ is a function of the parameters of the inverse 

conditional distributions for 𝑌 ൌ 𝑗 and 𝑌 ൌ 𝑚. 

 
2 This approach is related to that used by Maddala [22]. 
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  Equations (3), (7) and (8) give us the general specification for the multinomial 

model with nominal responses in terms of the inverse conditional distribution. A more 

intuitive choice for 𝑔௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ can be found by using the identity 𝑓ሺ. ሻ ൌ

exp ൫ln𝑓ሺ. ሻ൯, giving: 

 𝑔௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ ൌ exp ൬𝜂௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ൰ 

                                                        ൌ exp ൬ln ൤
௙𝑿|ೊసೕ൫𝑿೔|௒೔ୀ௝;ఏೕ൯

௙𝑿|ೊస೘ሺ𝑿೔|௒೔ୀ௠;ఏ೘ሻ
൨ ൅ 𝜅൰,  (9) 

where 𝜅 ൌ ln൫𝑝௝൯ െ lnሺ𝑝௠ሻ; 𝜂௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ is the index function (or predictor) 

for outcome j; and 𝑝௠ ൌ 1 െ ∑ 𝑝௦௦ஷ௠ . 

 Taking equations (3), (7) and (9) together gives rise to the logistic multinomial 

regression model, but it should be emphasized that the functional form of the 

index/predictor functions 𝜂௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ are dependent on the inverse 

conditional distributions 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯. As will be seen below and emphasized by 

Bergtold et al. [4] for the binary case, specification of the index/predictor functions may 

not be linear in the variables (or parameters) as is usually found in applied literature. 

Furthermore, the choice of using the logistic cumulative distribution function in the 

specification of the model arises naturally from the derivation of the model and makes 

estimation of the model more compatible with existing statistical software packages. That 

is, model specification primarily deals with the specification of the index/predictor 

function, as the logistic formulation arises naturally from the distributional assumption 

about the dependent variable.  
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Given heterogeneity is defined in terms of the moments of a distribution [33] and 

the multinomial distribution is completely characterized by its mean vector, heterogeneity 

in the multinomial logistic regression model is defined in terms of the parameter vector 

𝜷 ൌ ሺ𝜷ଵ, … , 𝜷ெሻ. The inclusion of indicator or binary variables to define sub-populations 

in the data has the effect of allowing 𝜷 to vary across sub-populations defined by the 

indicator variables. Interactions of these indicator variables in the above framework can 

allow researchers to capture multilevel effects. The inclusion of higher order terms 

(beyond interaction terms) allows for more complex heterogeneity to be modeled. A 

significant benefit of this approach is that by invoking the use of the inverse conditional 

distribution for model specification, the approach inherently considers these potential 

interactions. Thus, the modeler may discover unknown or unsuspected heterogeneity in the 

observed data using the PR approach.  

This unmodeled or unsuspected heterogeneity would include stratification, as the 

covariates would include multiplicative terms (e.g. age x race or age x race x income 

grouping) that directly capture the stratification in the model or the (marginal) effect of 

different sub-populations on a health outcome from a particular explanatory variable or 

covariate of interest. Additional forms of unmodeled heterogeneity may be captured using 

appropriate methods that allow for variation in 𝜷 such as the mixed logit or other latent 

class models [4, 35]. Furthermore, following Fahrmeir and Tutz [10], the conditional 

covariance matrix across choices or outcomes is given by diagሺ𝒉ሻ െ 𝒉𝒉′, where 𝒉 ൌ

ሺℎଵ, … , ℎெሻ and hj is given by equations (7) and (9). Thus, the covariance matrix is 

explicitly a function of 𝜷. Following Bergtold et al. [4], heterogeneity in the 
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variance/covariance matrix has to be captured by variations in the parameter vector 𝜷, as 

the variance/covariance matrix is explicitly defined in terms of the conditional mean vector 

h.  

 

2.2 Functional form specification 

Specification of the index functions is accomplished by specifying the functional 

form for the inverse conditional distribution 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯. Bergtold et al. [4]; Kay and 

Little [20]; and Scrucca and Weisberg [30] provide guidance on the specification of the 

index function for the binary choice logistic regression model using the inverse conditional 

distribution. The results from these papers have direct application here. For example, as 

shown by McFadden [23], the index functions will be linear in the explanatory variables if 

the inverse conditional distribution is multivariate normal with common covariance matrix 

for all 𝑗 ∈ 𝐵. If the covariance matrices exhibit heterogeneity over 𝑗 ∈ 𝐵, then following 

Kay and Little [20] the index functions would be quadratic in the explanatory variables. 

Bergtold et al. [4] provides some examples when 𝑔௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ is nonlinear in 

Xi. For example, consider the four variate case where 𝑋ଵ and 𝑋ଶ are jointly distributed 

bivariate beta, 𝑋ଷ is binary, and 𝑋ସ is exponential conditional on 𝑋ଷ. Then the index 

function of the model or 𝑔௝ ቀ𝑿௜; 𝛽௝൫𝜃௝, 𝜃௠, 𝑝௝, 𝑝௠൯ቁ would be linear in the parameters and 

include an intercept, lnሺ𝑋ଵሻ , lnሺ𝑋ଶሻ , lnሺ1 െ 𝑋ଵ െ 𝑋ଶሻ , 𝑋ଷ, 𝑋ସ, and 𝑋ଷ𝑋ସ [4]. Many of the 

direct distributional assumption examined in these papers are useful with a small number 

of covariates or covariates that are conditionally independent of each other. Kay and Little 

[20] emphasize the increasing difficulty in model specification when the inverse 
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conditional distribution must be treated as a multivariate distribution when the covariates 

are not conditionally independent. To help deal with this problem, the modeler can turn to 

approximations or other variable transformations to arrive at a manageable model 

specification approach. The latter approach is developed further in this paper.   

 A general functional form for the index function can be determined by following 

Bergtold et al. [4]. Consider the following decomposition of the inverse conditional 

distribution: 

 𝑓𝑿|௒൫𝑿௜|𝑌௜; 𝜃௝൯ ൌ 𝑓𝑿భ|𝑿మ,௒൫𝑿ଵ,௜|𝑌௜, 𝑿ଶ,௜; 𝜃ଵ,௝൯ ∙ 𝑓𝑿𝟐|௒൫𝑿ଶ,௜|𝑌௜; 𝜃ଶ,௝൯,  (10)  

where 𝑿ଵ,௜ is a set of continuous variables, 𝑿ଶ,௜ is a set of binary variables,  𝜃ଵ,௝ is a set of 

parameters dependent upon 𝑿ଶ,௜ and 𝑌௜, and 𝜃ଶ,௝ is a set of parameters dependent upon 𝑌௜. 

To obtain this decomposition, any ordinal variables may need to be recoded as binary or 

treated as continuous.  

Using a conditional distribution proposed by Day and Kerridge [8], assume that 

𝑓𝑿భ|𝑿మ,௒൫𝑿ଵ,௜|𝑌௜, 𝑿ଶ,௜; 𝜃ଵ,௝൯ takes the functional form: 

𝑓𝑿భ|𝑿మ,௒൫𝑿ଵ,௜|𝑌௜, 𝑿ଶ,௜; 𝜃ଵ,௝൯ ൌ 𝛼ଵ,௝,ఋ ∙ exp ቄെ ଵ

ଶ
൫𝑿𝟏,𝒊 െ Λଵ,୨,ஔ൯′Aଵ,୨,ஔ

ିଵ ൫𝑿𝟏,𝒊 െ Λଵ,୨,ஔ൯ቅ ∙ 𝛿൫𝑿𝟏,𝒊൯,  

             (11) 

where Λଵ,୨,ஔ are the mean vectors and Αଵ,୨, δ is the covariance matrix conditional on j = 

1,…,M, and for 𝑿𝟐,𝒊 ൌ 𝜹 , where 𝜹 is a particular realization of the binary random 

variables 𝑿𝟐,𝒊.That is, the parameters of the inverse conditional distribution given by 

equation (11) are dependent on the values of 𝑌௜ and 𝑿ଶ,௜. The term 𝛿൫𝑿𝟏,𝒊൯ is a non-

negative scalar function of 𝑿𝟏,𝒊. When 𝛿൫𝑿𝟏,𝒊൯ ൌ 1, the density given by equation (11) is 
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the multivariate normal distribution. When 𝛿൫𝑿𝟏,𝒊൯ ് 1, the density function can represent 

a wide range of alternatives, including skewed distributions [6]. The advantage of this 

distributional assumption is that 𝛿൫𝑿𝟏,𝒊൯ does not have to be specified explicitly to arrive at 

an estimable model [8]. 

 Letting  𝑿ଶ,௜ be a ሺ𝐾ଶ ൈ 1ሻ vector of binary variables, 𝑓𝑿𝟐|௒൫𝑿ଶ,௜|𝑌௜; 𝜃ଶ,௝൯ will be a 

multivariate Bernoulli distribution. The multivariate Bernoulli distribution can be 

represented in log-linear form as: 

 𝑓𝑿𝟐|௒൫𝑿ଶ,௜; 𝜃ଶ,௝൯ ൌ exp ቆ
𝑢଴,௝ ൅ ∑ 𝑢௞,௝𝑋ଶ,௞,௜

௄మ
௞ୀଵ ൅ ∑ ∑ 𝑢௞,௥,௝𝑋ଶ,௞,௜𝑋ଶ,௥,௜

௄మ
௥வ௞

௄మ
௞ୀଵ

൅ … ൅ 𝑢ଵ,.ଶ,…,௄మ,ೕ
𝑋ଶ,ଵ,௜ ⋯ 𝑋ଶ,௄మ,௜

ቇ   (12) 

 [21]. Combining equations (11) and (12) into equation (10) and then substituting this into 

the index function in equation (9), gives the following functional form for the 

index/predictor function (following [4]): 

𝜂௝൫𝑿௜; 𝛽௝൯ ൌ  ൫𝛼଴ ൅ ∑ 𝛼௦𝑋ଵ,௦,௜
௄భ
௦ୀଵ ൅ ∑ ∑ 𝑢௞,௥,௝𝑋ଵ,௦,௜𝑋ଶ,௧,௜

௄మ
௧ஹ௦

௄మ
௦ୀଵ ൯  ൈ ൫𝑢଴ ൅ ∑ 𝑢௞𝑋ଶ,௞,௜

௄మ
௞ୀଵ ൅

                      ∑ ∑ 𝑢௞,௥𝑋ଶ,௞,௜𝑋ଶ,௥,௜ ൅  … ൅ 𝑢ଵ,.ଶ,…,௄మ
𝑋ଶ,ଵ,௜ ⋯ 𝑋ଶ,௄మ,௜

௄మ
௥வ௞

௄మ
௞ୀଵ ൯,         (13) 

where 𝑿𝟏,𝒊  is a ሺ𝐾ଵ ൈ 1ሻ vector of continuous variables. The index function given in 

equation (13) can be made linear in the parameters via a reparameterization of the model 

by letting 𝛽௝ ൌ 𝛽ሺ𝜶, 𝒖ሻ.  To further improve the tractability of the model, the order of 

interaction terms in equation (12) may need to be limited to 𝐾ഥ ൑ 𝐾ଶ.  
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As an example, consider the case of two continuous variables ሺ𝑋ଵ, 𝑋ଶሻ and three 

binary variables ሺ𝑋ଷ, 𝑋ସ, 𝑋ହሻ, where only second order interaction terms are considered in 

equation (12). In this case, the index function would take the form (in terms of 𝛽௝): 

 𝜂௝൫𝑿௜; 𝛽௝൯ ൌ 𝛽଴,௝ ൅ 𝛽ଵ,௝𝑥ଵ,௜ ൅ 𝛽ଶ,௝𝑥ଶ,௜ ൅ 𝛽ଷ,௝𝑥ଷ,௜ ൅ 𝛽ସ,௝𝑥ସ,௜ ൅ 𝛽ହ,௝𝑥ହ,௜ ൅ 𝛽ଵଵ,௝𝑥ଵ,௜
ଶ   

                                 ൅𝛽ଵଶ,௝𝑥ଵ,௜𝑥ଶ,௜ ൅ 𝛽ଶଶ,௝𝑥ଶ,௜
ଶ ൅ 𝛽ଵଷ,௝𝑥ଵ,௜𝑥ଷ,௜ ൅ 𝛽ଵସ,௝𝑥ଵ,௜𝑥ସ,௜ ൅ 𝛽ଵହ,௝𝑥ଵ,௜𝑥ହ,௜ 

                                     ൅𝛽ଶଷ,௝𝑥ଶ,௜𝑥ଷ,௜ ൅ 𝛽ଶସ,௝𝑥ଶ,௜𝑥ସ,௜ ൅ 𝛽ଶହ,௝𝑥ଶ,௜𝑥ହ,௜ ൅ 𝛽ଷସ,௝𝑥ଷ,௜𝑥ସ,௜ 

           ൅𝛽ଷହ,௝𝑥ଷ,௜𝑥ହ,௜ ൅ 𝛽ସହ,௝𝑥ସ,௜𝑥ହ,௜ ൅ 𝛽ଵଵଷ,௝𝑥ଵ,௜
ଶ 𝑥ଷ,௜  

                                 ൅ 𝛽ଵଵସ,௝𝑥ଵ,௜
ଶ 𝑥ସ,௜ ൅ 𝛽ଵଵହ,௝𝑥ଵ,௜

ଶ 𝑥ହ,௜+𝛽ଵଶଷ,௝𝑥ଵ,௜𝑥ଶ,௜𝑥ଷ,௜ ൅ 𝛽ଵଶସ,௝𝑥ଵ,௜𝑥ଶ,௜𝑥ସ,௜ 

            +  𝛽ଵଶହ,௝𝑥ଵ,௜𝑥ଶ,௜𝑥ହ,௜൅ 𝛽ଶଶଷ,௝𝑥ଶ,௜
ଶ 𝑥ଷ,௜ ൅ 𝛽ଶଶସ,௝𝑥ଶ,௜

ଶ 𝑥ସ,௜ ൅ 𝛽ଶଶହ,௝𝑥ଶ,௜
ଶ 𝑥ହ,௜ 

           ൅ 𝛽ଵଷସ,௝𝑥ଵ,௜𝑥ଷ,௜𝑥ସ,௜ ൅ 𝛽ଵଷହ,௝𝑥ଵ,௜𝑥ଷ,௜𝑥ହ,௜ ൅ 𝛽ଵସହ,௝𝑥ଵ,௜𝑥ସ,௜𝑥ହ,௜             

           ൅ 𝛽ଶଷସ,௝𝑥ଶ,௜𝑥ଷ,௜𝑥ସ,௜ ൅ 𝛽ଶଷହ,௝𝑥ଶ,௜𝑥ଷ,௜𝑥ହ,௜ ൅ 𝛽ଶସହ,௝𝑥ଶ,௜𝑥ସ,௜𝑥ହ,௜               

                                 ൅ 𝛽ଵଵଷସ,௝𝑥ଵ,௜
ଶ 𝑥ଷ,௜𝑥ସ,௜ ൅ 𝛽ଵଵଷହ,௝𝑥ଵ,௜

ଶ 𝑥ଷ,௜𝑥ହ,௜ ൅ 𝛽ଵଵସହ,௝𝑥ଵ,௜
ଶ 𝑥ସ,௜𝑥ହ,௜ 

          ൅ 𝛽ଵଶଷସ,௝𝑥ଵ,௜𝑥ଶ,௜𝑥ଷ,௜𝑥ସ,௜ ൅  𝛽ଵଶଷହ,௝𝑥ଵ,௜𝑥ଶ,௜𝑥ଷ,௜𝑥ହ,௜ ൅  𝛽ଵଶସହ,௝𝑥ଵ,௜𝑥ଶ,௜𝑥ସ,௜𝑥ହ,௜ 

                                 ൅ 𝛽ଶଶଷସ,௝𝑥ଶ,௜
ଶ 𝑥ଷ,௜𝑥ସ,௜ ൅ 𝛽ଶଶଷହ,௝𝑥ଶ,௜

ଶ 𝑥ଷ,௜𝑥ହ,௜ ൅ 𝛽ଶଶସହ,௝𝑥ଶ,௜
ଶ 𝑥ସ,௜𝑥ହ,௜.        (14) 

The example illustrates the importance of appropriately choosing the order of interactions 

in the multivariate Bernoulli distribution. As 𝐾ഥ increases the number of terms grows 

exponentially, requiring greater degrees of freedom in the dataset. In addition, the 

inclusion of binary terms that represent indicator variables capturing sub-populations in the 

data allows the researcher to examine the differences in effects from covariates across 

alternative sub-populations defined by combinations or interactions of these different 

indicator variables. Furthermore, the significance of higher-order terms can be tested for 
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using asymptotic techniques, such as the Likelihood-Ratio or Lagrange Multiplier tests, to 

assess if the functional form is statistically appropriate and supported by the observed data.  

 

2.3 Marginal effects 

The coefficients of the multinomial logistic regression model are difficult to 

interpret given the nonlinear nature of the model. This arises due to the fact that 

coefficients enter the probabilities (or conditional means) for all choices in the choice or 

outcome set [14].  Marginal effects are a useful substantive measure of the impact of a 

relative change in an explanatory variable on the probability of a particular choice or 

outcome. For the multinomial model specified above, the marginal effects for continuous 

explanatory variables would be calculated as: 

 
డ𝐏ሺ௒𝒊ୀ௝|𝐗೔ୀ𝐱೔ሻ

డ𝒙𝒌
ൌ

డ௛ೕሺ𝑿೔;𝜷ሻ

డ𝒙𝒌
ൌ ℎ௝ሺ𝑿௜; 𝜷ሻ ൤

డఎೕ൫𝑿೔;ఉೕ൯

డ𝒙𝒌
െ ∑ డఎೞሺ𝑿೔;ఉೞሻ

డ𝒙𝒌
∙ ℎ௦ሺ𝑿௜; 𝜷ሻ௦ஷ௠ ൨ .(15) 

For binary variables, the marginal effect is the change in probability when changing the 

value of the binary variable from ‘0’ to ‘1’, ceteris paribus [14]. These latter marginal 

effects are determined by taking discrete differences.  

 Another marginal effect of interest is the marginal effect of interactions between 

explanatory variables. In the present framework, these marginal effects (or interaction 

effects) let the modeler examine how the effect of one explanatory variable on the 

probability for making choice j depends on the magnitude of another explanatory variable. 

In nonlinear models, marginal effects of interaction terms are more difficult to interpret, as 

they are not equivalent to the value of the coefficient on a particular interaction term.  Ai 

and Norton [1] derive the marginal effect for the interaction between two continuous 
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variables (and the case when at least one variable is a binary variable) for the binary 

logistic case.  In the equation below, we extend the marginal effect derivation to the case of 

an interaction between two continuous variables (𝑥௞ and 𝑥௥) in multinomial logistic 

regression for choice alternative j : 

 
డమ௛ೕሺ𝑿೔;𝜷ሻ

డ𝒙𝒌డ𝒙𝒓
ൌ ℎ௝ሺ𝑿௜; 𝜷ሻ ൤

డమఎೕ൫𝑿೔;ఉೕ൯

డ𝒙𝒌డ𝒙𝒓
െ ∑ ቀడ௛ೞሺ𝑿೔;𝜷ሻ

డ𝒙𝒓
∙ డఎೞሺ𝑿೔;ఉೞሻ

డ𝒙𝒌
൅ ℎ௦ሺ𝑿௜; 𝜷ሻ ∙௦ஷ௠

                                                       డ
మఎೞሺ𝑿೔;ఉೞሻ

డ𝒙𝒌డ𝒙𝒓
ቁ൨ ൅ ଵ

௛ೕሺ𝑿೔;𝜷ሻ
∙

డ௛ೕሺ𝑿೔;𝜷ሻ

డ𝒙𝒌
∙

డ௛ೕሺ𝑿೔;𝜷ሻ

డ𝒙𝒓
  (16). 

If one or both of the explanatory variables are binary, then discrete differences are taken 

instead. For example, if 𝑥௥ is a binary variable and 𝑥௞ remains as a continuous variable, 

then the marginal effect is the discrete change in the marginal effect for 𝑥௞ using equation 

(15) from changing the value of 𝑥௥ from ‘0’ to ‘1’, ceteris paribus. 

  Marginal effects can be calculated at the mean of the random variable (i.e. the 

marginal effect for the average person) or calculated for each respondent and then 

averaged across respondents (i.e. the average partial or mean marginal effect).  The 

corresponding marginal effects from either method are not necessarily asymptotically 

equivalent and the choice of method carries non- trivial implications for interpretation [39].  

The standard error for both types of marginal effects can be found using the delta method 

[1, 14] or simulation methods, such as the bootstrap or jackknife [9]. The average marginal 

effect is employed in the empirical application examining discharge disposition following 

a hospital admission of stroke. 

 

2.4 Data 
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The Maryland Health Services Cost Review Commission (HSCRC) (website:  

http://www.hscrc.state.md.us/) maintains a secure and proprietary database of all 

discharges from non-Federal short-stay hospitals in the state of Maryland.  The database 

includes information on the demographics, admission diagnoses, procedures, payer 

characteristics, and hospital characteristics pertaining to each hospitalization.  Study 

inclusion criteria were as follows: 1) hospital admissions with a discharge diagnosis of 

stroke as identified by the International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD9CM) codes 431-434 and 436-438; 2) patients discharged alive; and 3) 

patient age at admission greater than or equal to 18.  The ICD-9 CM codes used in this 

study are the same ones used by Fang and Alderman [11] in their study of national trends 

in stroke hospitalizations.  Discharges were excluded for the following reasons: nature of 

admission is listed as delivery; in-hospital death; no information on patient disposition 

among those discharged alive; invalid or missing provider Medicare number; and invalid 

or missing patient medical record number. The dataset consists of 69,921 hospital 

admissions for stroke over the January 2000 to December 2005 time period. Categories of 

discharge disposition include home (N = 7730), home health care (N = 525), rehabilitation 

(N = 9997), nursing home (including intermediate care) (N = 7323), discharges against 

medical advice (N = 4755), and all other (N = 39,591).  

To examine factors affecting the type of discharge, the explanatory variables 

included patient age (centered), as well as binary variables indicating a transfer admission 

(equal to ‘1’ if yes), gender (equal to ‘1’ if male), marital status (equal to ‘1’ if married), 
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insured status (equal to ‘1’ if not insured or self-pay), race (equal to ‘1’ if patient reports 

race/ethnicity other than non-Hispanic White), and hemorrhagic stroke (equal to ‘1’ if yes). 

 

2. 5 Empirical model application 

To illustrate the methodology and importance of ensuring statistical adequacy 

through proper model specification, an empirical application examining the predictors of 

post-stroke hospital discharge disposition among live discharges of adult patients was 

conducted. A multinomial model was specified following the PR approach with the 

dependent variable being post-stroke hospital discharge disposition as described earlier.  

The reference category was set as the “all other” category. 

 The index function of the model was specified by examining the product of the 

inverse conditional distribution of the continuous covariates times the inverse conditional 

multivariate Bernoulli distribution of the binary covariates (e.g. following equation (10)). 

The only continuous covariate in the dataset is patient age. The distribution of patient age 

was found to be mesokurtic, but slightly skewed to the right. The sample kurtosis for 

patient age was 3.01 and the sample skewness was -0.602. This distributional shape with 

the given range of patient age does not readily fit any of the distributional forms presented 

in Bergtold et al. [4].3 Thus, as suggested by Kay and Little [20], the functional 

 
3 An inverse conditional distribution that does fit the shape of the data and explored by Bergtold et al. [4] was 
the Weibull distribution. The Weibull distribution has two parameters (scale and location). If the scale 
parameter is not consistent across j, then this distribution will not provide a tractable option for defining an 
operational statistical model as no clear mapping between the parameters of the inverse conditional 
distribution and the multinomial logistic regression model (e.g. 𝛽௝ ൌ 𝛽ሺ𝜶, 𝒖ሻ) can be established, making 
estimation extremely difficult. For the given empirical problem, when the Weibull distribution was fit to 
patient age for the different hospital discharge categories, the scale parameter varied between the j categories 
(i.e. from 4 to 8). Thus, a more flexible approach was deemed the optimal modeling strategy to pursue.     
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specification of the index function becomes more difficult. Given the nature of the 

skewness of the distribution of patient age and its tractability, the flexible distribution 

following Day and Kerridge [8] (see equation (11)) was utilized to model the inverse 

conditional distribution of patient age conditional on the other binary explanatory and 

dependent variables.  

The multivariate inverse conditional distribution of the binary explanatory variables 

conditional on the dependent variable was modeled as a multivariate Bernoulli distribution. 

Likelihood ratio tests were utilized to determine the order of interactions to include in the 

index function. Results from asymptotic likelihood ratio tests indicated that: interactions of 

the binary variable up to order two with patient age and patient age squared, as well as 

third order interactions of the binary variables should be included in the specification of the 

index function. Likelihood ratio tests were conducted to test the significance of including 

third order interactions of binary variables with patient age and patient age-squared, as well 

as fourth order interaction terms of the binary variables. All tests conducted had p-values 

greater than 0.10. Thus, these higher order interaction terms were not included in the index 

function.   

The model specified using the Probabilistic Reduction approach consisted of 405 

estimable parameters.  Given that the index function is linear in the parameters, the model 

was estimated using a multinomial logistic regression procedure in MATLAB. 

For comparison, a traditional specification of the multinomial logistic regression 

model was estimated. The predictor or log odds function was assumed to be linear in the 

variables with the addition of three interaction terms: (i) patient age x race; (ii) insured 
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status x race; and (iii) hemorrhagic stroke x race. It is of interest to note that these 

interactions are included in the formulation following the PR approach. The first and third 

interaction terms reflect the potential for variation across age groups in the racial disparity 

in discharge outcomes [12] and the potential of a differential impact on discharge 

outcomes associated with the increased risk of hemorrhagic stroke among African 

Americans relative to Caucasians [25, 33]. The second interaction term is included to 

account for any differential effect on discharge outcome due to lower rates of insurance 

coverage for non-Caucasians compared to Caucasians [15]. Model specification was tested 

using Likelihood Ratio tests to compare the two models, as well as test for any functional 

misspecification in the model derived using the PR approach. 

Of interest is the impact of potential model misspecification due to incorrect 

functional form on substantive inferences from the model. While odds ratios are commonly 

estimated, marginal effects facilitate interpretation of the regression results because they 

are measured in the same units as the dependent variable. Marginal effects for both the 

individual covariates and the interactions: (i) patient age x race; (ii) insured status x race; 

and (iii) hemorrhagic stroke x race, were estimated. Individual marginal effects were 

estimated as the mean marginal effect across respondents following Greene [14]. Estimates 

of marginal effects for interactions were calculated using equation (16) as the mean across 

respondents. Standard errors for all estimates were estimated using a delete-d jackknife 

estimator with d equal to 10 percent of the data selected randomly without replacement 

over 5000 pseudo-random samples [9].  
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3. Results and Discussion 

3. 1 Model Fit 

Model fit statistics for both estimated models for the post-stroke hospital discharge 

data are provided in Table 1. Comparison of the traditional specification against the PR 

approach based on the AIC and R-squared values does not provide compelling evidence of 

a significant lack of model fit by the traditional specification when compared to the 

specification of the model using the PR approach; however if a model is misspecified then 

the fit statistics, such as AIC and R-squared can be misleading, as they presume proper 

specification of the model [24,31]. Furthermore, the significance of higher order 

interaction terms was tested for the model using the PR approach to help identify a 

properly specified model. These tests results were presented earlier and establish the 

statistical adequacy of the model specified using the PR approach over the more traditional 

specification. The specification highlighted the need to include polynomial terms and 

interactions to account for potential nonlinearities and additional heterogeneity (via 

interactions of the binary covariates) in the model specification. 

 

Table 1: Model fit statistics for the multinomial logistic regression of post-stroke hospital 
discharge disposition. 

Statistic Traditional Specification PR Specification 
Log Likelihood -86,140.67 -85,544.87
R2

VZ 1  0.165 0.183
Correct Prediction  57.4 % 57.5 %
Correct Prediction  
         (as 1st or 2nd  likely outcome)

72.6 % 73.0 % 

AIC2 172391.33 171899.75 

1 Veall and Zimmerman [38] 
2 Burnham and Anderson [5] 
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The estimated models were compared using a likelihood ratio test (distributed 

𝜒ଶሺ350ሻ) with the null hypothesis that the traditional specification was correct (Table 1). 

The value of the test statistic was 1192 with an associated p-value of 0.000, indicating a 

strong lack of evidence for the null hypothesis, indicating that the traditional specification 

was misspecified.  From Table 1, the percent correctly predicted was higher based on the 

PR specification; however there were only slight differences between both approaches, 

suggesting that the PR specification did not offer a significant improvement over the 

traditional specification.  When the goal of the analysis is to develop substantive inference, 

model prediction may not represent a sufficient criterion for selecting the appropriate 

specification  and comparing the models based on model fit statistics may be misleading. 

Spanos [31] suggests that misspecified models may provide misleading or erroneous 

conclusions and inferences when using model fit statistics.   

Closer examination of the models in terms of significant covariates reveals that 

higher order nonlinear terms in the PR specification of the multinomial logistic regression 

model were statistically significant. For example, model coefficients for a third order 

interaction term between patient age, gender and hemorrhagic stroke (P = 0.044), as well 

as a fourth order term between patient age squared, gender and marital status (P = 0.010) 

were both statistically significant. While direct interpretation of these coefficients is not 

straightforward, the omission of nonzero nonlinear terms could have a significant impact 

on the estimation of marginal effects or other substantive inferences. Furthermore, 
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significance of higher order terms in the model may indicate the presence of unmodeled or 

previously unknown heterogeneity in the data.   

The PR approach provides a systematic approach for obtaining a statistically 

adequate model, thereby capturing any potential statistical information in the observed data 

not anticipated by the applied modeler. Domain knowledge (or theory) provides a strong 

starting point for model specification, by indicating what explanatory variables or 

covariates should enter the model and guidance for initial model specification (e.g. using 

random utility theory). This would have likely lead to a potential model specification as 

given by the traditional multinomial logistic model specification indicated here, as most 

applied applications assume predictor (or index) functions linear in the covariates [3]. The 

above discussion indicates that the traditional specification was misspecified for the 

problem examined here, which can lead to erroneous inferences from the model [33]. The 

PR approach builds from the traditional specification by allowing for a more flexible 

modeling approach that starts with domain knowledge, but allows the statistical 

information in the observed data to be properly captured, so as to provide reliable 

inferences. Another way of viewing this is that the PR approach allows domain knowledge 

to be flexible by helping to determine the functional form and shape of the relationship 

being modeled. In addition, the PR approach helps to provide a modeling approach that 

can allow substantive inferences that provide evidence in support of claims or hypotheses 

arising from the domain knowledge [31, 33]. The impact on substantive inferences is 

highlighted in the next section of the paper.       

 



25 
 

 

 

3.2 Marginal effects and substantive inferences 

Marginal effects for the individual and interaction effects ((i) patient age x race; (ii) 

insured status x race; and (iii) hemorrhagic stroke x race for the traditional and PR model 

specifications are provided in Tables 2 and 3, respectively. There are significant  

 

Table 2: Marginal effect estimates for the traditional multinomial regression model.

Variable/ 
Discharge 
Category 

Home Home 
Health 
Care 

Rehabilitation Nursing/ 
Intermediate 

Care 

AMA 
Discharge 

Individual Effects 
Patient Age -0.0086* 

(0.0001) 
0.0014* 
(0.0000)

-0.0002* 
(0.0000)

0.0063* 
(0.0000) 

-0.0002* 
(0.0000)

Transfer 
Admission  

-0.0746* 
(0.0017) 

0.0010 
(0.0009)

-0.0069* 
(0.0010)

0.0488* 
(0.0013) 

0.0060* 
(0.0004)

Male Gender 0.0158* 
(0.0013) 

-0.0101* 
(0.0007)

0.0090* 
(0.0008)

-0.0105* 
(0.0009) 

0.0032* 
(0.0002)

Married 0.0952* 
(0.0013) 

-0.0006 
(0.0007)

-0.0163* 
(0.0008)

-0.0569* 
(0.0010) 

-0.0044* 
(0.0002)

Uninsured/ 
Self-Pay (US) 

-0.0102 
(0.0069) 

0.0082* 
(0.0042)

-0.0282* 
(0.0037)

0.0001 
(0.0067) 

0.0183* 
(0.0017)

Non-
Caucasian,  
(NC) 

-0.3269* 
(0.0053) 

0.0317* 
(0.0044) 

0.0273* 
(0.0039) 

0.2254* 
(0.0085) 

0.0012 
(0.0009) 

Hemorrhagic 
Stroke 

-0.2312* 
(0.0026) 

-0.0051* 
(0.0014)

0.0889* 
(0.0022)

0.0601* 
(0.0022) 

-0.0014* 
(0.0005)

   
Interaction Effects

Patient Age x 
NC 

0.0031* 
(0.0001) 

-0.0004* 
(0.0001)

-0.0005* 
(0.0001)

-0.0012* 
(0.0001) 

-0.0000* 
(0.0000)

US x NC 0.1720* 
(0.0086) 

-0.0138* 
(0.0051)

-0.0573* 
(0.0040)

-0.0678* 
(0.0075) 

-0.0003 
(0.0020)

Hemorrhagic 
Stroke X NC 

0.0793* 
(0.0043) 

-0.0071* 
(0.0023)

-0.0400* 
(0.0033)

-0.0035 
(0.0036) 

-0.0036* 
(0.0006)



26 
 

Notes: AMA refers to ‘against medical advice’. Individual marginal effects were estimated as the marginal 
effect averaged across respondents following Greene [14]. Estimates of marginal effects for interactions 
were calculated following Ai and Norton [1] and calculated as the marginal effect averaged across 
respondents. Standard errors for all estimates are in parentheses and were estimated using a delete-d 
jackknife estimator with d equal to 10 percent of the data selected randomly without replacement over 
5000 pseudo-random samples [9]. ‘*’ indicates statistical significance at the 10 percent level or above. 

 

differences in the marginal effects estimates both in sign and magnitude between the two 

models. The signs for all the individual marginal effects for patient age and male gender  

 

Table 3: Marginal effect estimates for multinomial regression model following the 
probabilistic reduction approach. 

Variable/ 
Discharge 
Category 

Home Home 
Health 
Care 

Rehabilitation Nursing/ 
Intermediate 

Care 

AMA 
Discharge 

Individual Effects 
Patient Age 0.0015* 

(3.20e-5) 
-0.0002* 
(3.27e-5)

0.0069* 
(4.75e-5)

-0.0002* 
(1.05e-5) 

0.0019* 
(3.92e-5)

Transfer 
Admission  

0.0021* 
(0.0010) 

-0.0076* 
(0.0011)

0.0501* 
(0.0013)

0.0057* 
(0.0004) 

0.0236* 
(0.0012)

Male Gender -0.0094* 
(0.0007) 

0.0081* 
(0.0008)

-0.0122* 
(0.0010)

0.0034* 
(0.0002) 

-0.0062* 
(0.0008)

Married -0.0006 
(0.0007) 

-0.0151* 
(0.0009)

-0.0485* 
(0.0010)

-0.0038* 
(0.0002) 

-0.0104* 
(0.0009)

Uninsured/ 
Self-Pay (US) 

0.0089* 
(0.0055) 

-0.0531* 
(0.0036)

-0.0254* 
(0.0083)

0.0098* 
(0.0014) 

0.0008 
(0.0067)

Non-
Caucasian,  
(NC) 

0.0100* 
(0.0008) 

0.0276* 
(0.0009) 

0.0319* 
(0.0010) 

0.0016* 
(0.0003) 

0.0057* 
(0.0009) 

Hemorrhagic 
Stroke 

-0.0038* 
(0.0012) 

0.0707* 
(0.0018)

0.0624* 
(0.0018)

-0.0025* 
(0.0003) 

0.0806* 
(0.0018)

   
Interaction Effects

Patient Age x 
NC 

-0.0004* 
(7.53e-5) 

-0.0033* 
(90.1e-5)

0.0033* 
(0.0001)

-0.0003* 
(2.25e-5) 

-0.0013* 
(0.0001)

US x NC -0.0064 
(0.0094) 

-0.0493* 
(0.0059)

-0.0612* 
(0.0126)

-0.0046* 
(0.0023) 

-0.0291* 
(0.0105)

Hemorrhagic 
Stroke X NC 

-0.0142* 
(0.0074) 

-0.0488* 
(0.0058)

-0.0107* 
(0.0051)

-0.0058 
(0.0067) 

-0.0249* 
(0.0043)
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Notes: AMA refers to ‘against medical advice’. Individual marginal effects were estimated as the marginal 
effect averaged across respondents following Greene [14]. Estimates of marginal effects for interactions 
were calculated following Ai and Norton [1] and calculated as the marginal effect averaged across 
respondents. Standard errors for all estimates are in parentheses and were estimated using a delete-d 
jackknife estimator with d equal to 10 percent of the data selected randomly without replacement over 
5000 pseudo-random samples [9]. ‘*’ indicates statistical significance at the 10 percent level or above.

 

are opposite in sign between the two models. For example, for each year older a patient is, 

the patient has a 0.86 percent lower likelihood of going home and 0.63 percent higher 

likelihood of receiving nursing/intermediate care under the traditional specification of the 

model. For the PR specification of the model, a patient has a 0.15 percent higher likelihood 

of going home and a 0.02 percent lower likelihood of receiving nursing/intermediate care. 

The signs are different for a number of the marginal effects from being a transfer 

admission and having a hemorrhagic stroke, as well. Under the traditional specification, a 

patient is 0.82 percent more likely to receive home health care if they are uninsured or self-

pay; and 0.14 percent less likely to be discharged against medical advice if they have had a 

hemorrhagic stroke. Under the PR specification, a patient is 5.31 percent less likely to 

receive home health care if they are uninsured or self-pay; and 8.06 percent more likely to 

be discharged against medical advice if they have had a hemorrhagic stroke. The stark 

differences in the signs and some of the magnitudes of the marginal effects emphasize the 

significance in getting the model specification correct. Model misspecification may likely 

affect the sign or “direction” of an effect.  

Of particular interest is the impact of ethnicity on post-stroke hospital discharge 

disposition, which is dramatically different between the two models for some categories. 

Following the traditional specification of the model, non-Caucasians are 32.7 percent less 

likely to be sent home following a stroke and 22.5 percent more likely to require additional 
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nursing or intermediate care (e.g. nursing home). Following the PR specification, non-

Caucasians are only 1.0 percent more likely to be sent home and 0.16 percent more likely 

to be discharged to additional nursing or intermediate care. Furthermore, non-Caucasians 

are 0.57 percent more likely to be discharged against medical advice following a stroke 

under the PR specification, while the same marginal effect under the traditional 

specification is not statistically significant (from zero). The differences in magnitudes of 

these marginal effects across the two models are quite significant. While race/ethnicity 

plays a significant role in post-stroke discharge disposition in both model specifications, 

model misspecification resulted in significantly over-estimating the impact of this factor. 

Thus, model misspecification may significantly bias substantive inferences, resulting in 

over- or under- inflated estimates for the marginal effect of different individual factors.  

Including interaction terms in the traditional formulation to account for potential 

heterogeneity by race may not adequately capture the effects of interest or relevance.  

 The results for the interaction effect of insured status by race differ between the two 

models. The traditional specification indicates that uninsured non-Caucasians patients are 

17 percent more likely to be sent home; 1.3 percent less likely to receive home health care; 

6.8 percent less likely to receive nursing/intermediate care; 0.03 percent more likely to be 

discharged AMA (not statistically significant). In contrast, under the PR specification, 

uninsured non-Caucasian patients 0.64 less likely to be sent home (not statistically 

significant); 4.9 percent less likely to receive home health care; 0.46 percent less likely to 

receive nursing/intermediate care; and 2.9 percent less likely to be discharged AMA.   
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As with the previous interaction marginal effect, the two models differ with respect to the 

interaction of hemorrhagic stroke by race and patient age by race. Not including 

interactions that may capture unmodeled (and unexpected) heterogeneity or relationships in 

the observed data may result in model misspecifications that lead to biased estimates and 

erroneous inferences, that could wrongly influence decision-making and policy. 

The PR approach to model specification results in the estimation of a model that is 

more complicated than one would traditionally estimate in practice. Thus, the modeler 

needs to consider the degrees of freedom available for estimation of the model and may 

need to limit the order of covariate terms used in the model. Traditional modeling 

approaches lead to models composed primarily of main effects (or terms linear in the 

variables). This assumption significantly reduces the number of parameters that need to be 

estimated, allowing for an easier interpretation of parameter estimates. However, what 

does the modeler do if the model is not properly specified?  Several manipulations of the 

explanatory variables that can be considered include: nonlinear transformations of 

continuous covariates; inclusion of interaction terms between variables of interest; 

choosing a different link function; or assuming an alternative stochastic error distribution. 

In practice, how would the researcher systematically enrich a misspecified model?  Neither 

the generalized linear model approach nor the latent variable approach provides a definite 

answer to this question that is implicit in the majority of applied studies. The PR approach 

provides an answer to this question and thus guidance through the maze of options by 

forcing the explicit consideration of nonlinearities, heterogeneity across sub-populations 

and dependence across included covariates in the initial model specification (via the use of 
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the inverse conditional distribution).  Reductions from this initial specification (that are not 

related to sample size or multicollinearity concerns) can be systematically tested using 

likelihood ratio tests. The empirical example here provides evidence of the impact on 

substantive inferences that can occur when the relationship (both substantive and 

statistical) between the dependent and explanatory variables is misspecified. It should be 

emphasized that the use of model fit statistics requires proper model specification and 

remains unreliable in the presence of model misspecification.   

 
4. Conclusion 

Traditional approaches to specifying multinomial logistic regression models may 

ignore some of the probabilistic information in the observed data, potentially resulting in 

biased and inconsistent estimates, as well as unreliable substantive inferences. The 

probabilistic reduction approach to model specification provides an alternative that puts 

emphasis on using the inverse conditional distribution for model specification. Using the 

PR approach, the paper provides a systematic method for specifying multinomial logistic 

regression models using a flexible inverse conditional distribution that can account for 

various continuous and discrete combinations of explanatory variables applicable to a 

myriad of empirical settings.  

An objective of this paper was to compare the PR approach to a more traditional 

model specification. The results from this paper suggest that proper model specification 

can strongly affect substantive inference. Furthermore, model fit statistics may not be 

reliable if the model is misspecified. Empirical results for the post-stroke hospital 

discharge analysis show that even if diagnostic tests do not show strong differences across 
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different models, nested tests such as the likelihood ratio test can be instructive for 

examining model specification to help arrive at a properly specified model, which in turn 

will lead to reliable substantive inference. Model misspecification may result in significant 

bias in substantive inferences (e.g. marginal effects) for covariates and interactions 

between covariates of interest. We show that the PR approach to the specification of 

multinomial logistic regression models leads to an initial model specification that differs 

from the initial model that follows from the traditional modeling approaches commonly 

specified using domain knowledge only at times. We show that these differences between 

the PR and traditional approach in terms of the initial model specification may be relevant 

for the results from model diagnostic tests and for inference on covariates of interest.  

Under the PR approach, the progress from the initial specification to the final model 

proceeds along a path that is transparent, reproducible, and based on internally consistent 

assumptions. 

The PR approach provides a systematic approach for model specification. It builds 

on the use of domain knowledge for initial model specification by taking account of the 

relevant statistical information in the observed data used to estimate the model. The PR 

approach provides a methodology that can help in discovery of the shape of interactions 

between variables in a model (e.g. potential nonlinear relationships); the capturing of 

unexpected heterogeneity; and a modeling approach that provides reliable statistical and 

substantive inferences. It allows for domain knowledge to be expanded and tested. That is, 

domain knowledge (or theory) will indicate a particular relationship or hypothesis to be 

tested. The PR approach provides a statistical methodology that begins with, but is not 
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unduly constrained by, domain knowledge, so as to have the ability to provide reliable 

substantive inferences (which depend on statistical adequacy) to expand domain 

knowledge (or theory) by providing more rigorous evidence.     
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