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Thermal Signal Features
Xiaohang Wang, Member, IEEE, Hengli Huang, Ruolin Chen, Yingtao Jiang,

Amit Kumar Singh, Member, IEEE Mei Yang, Member, IEEE and Letian Huang

Abstract—In response to growing security challenges facing many-core systems imposed by thermal covert channel (TCC) attacks, a
number of threshold-based detection methods have been proposed. In this paper, we show that these threshold-based detection
methods are inadequate to detect TCCs that harness advanced signaling and specific modulation techniques. Since the frequency
representation of a TCC signal is found to have multiple side lobes, this important feature shall be explored to enhance the TCC
detection capability. To this end, we present a pattern-classification-based TCC detection method using an artificial neural network that
is trained with a large volume of spectrum traces of TCC signals. After proper training, this classifier is applied at runtime to infer TCCs,
should they exist. The proposed detection method is able to achieve a detection accuracy of 99%, even in the presence of the
stealthiest TCCs ever discovered. Because of its low runtime overhead (< 0.187%) and low energy overhead (< 0.072%), this
proposed detection method can be indispensable in fighting against TCC attacks in many-core systems. With such a high accuracy in
detecting TCCs, powerful countermeasures, like the ones based on dynamic voltage and frequency scaling (DVFS), can be rightfully
applied to neutralize any malicious core participating in a TCC attack.

Index Terms—Thermal Covert Channel Attack, Many-core System, Defense against Covert Channel Attack
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1 INTRODUCTION

AMONG a wide range of security challenges facing to-
day’s many-core chips, thermal covert channel attacks

are found particularly dangerous and difficult to deal with,
and even more so, as numerous innovative methods and
techniques have been attempted to enhance the transmis-
sion performance and/or stealthiness of TCCs. For instance,
by switching from non-return-to-zero (NRZ) [1] to Manch-
ester code [2] in encoding scheme, a TCC channel witnesses
its bit error rate (BER) drops from 11% [3] to 1% [2], while
the throughput gets a boost to 5 bits per second (bps). As
hyper-threading becomes commonplace in modern many-
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core systems, a TCC channel described in [2] can even
deliver a transmission rate higher than 45bps. In [3], a TCC
attack over a real computer was demonstrated. In another
study [4], cloud users who share the same FPGA chips can
suffer from secret information leak with the help of TCC.
These TCC attacks in real machines manifest the scope and
seriousness of TCC attacks.

To fight against TCC attacks, the dynamic voltage and
frequency scaling (DVFS) or noise jamming based counter-
measures that are supposedly to block any meaningful ther-
mal signal transmission can be applied [5], [6]. Both counter-
measures rely on the threshold-based detection methods to
detect the existence of a TCC. Essentially, a TCC is deemed
as present if the amplitude of the thermal signal exceeds a
well-defined threshold.

As TCC becomes stealthier with reduced signal ampli-
tudes, the threshold-based detection methods find them-
selves inadequate to discover TCC attacks. For example,
when a TCC needs to generate a high temperature within
a signal period of tb, if the heat up time is reduced from
0.5tb (the case shown in Fig. 1(a)) to 0.1tb (the case shown in
Fig. 1(b)) and the cool down time is increased from 0.5tb (the
case shown in Fig. 1(a)) to 0.9tb (the case shown in Fig. 1(b)),
the signal amplitude is so low that the threshold-based
detection schemes proposed in [5], [6] will fail to detect
any TCC, pushing down the detection accuracy to almost
0 as indicated in Fig. 1(c). Countermeasures with such a
low detection accuracy are unacceptable, since blindly gen-
erating thermal noise or applying DVFS to cores especially
those running legitimate applications will lead to significant
performance loss. In this paper, we define the radio of the
heat up time to the cool down time as α, and the value of α
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is important for the improved stealthy TCC.

0.5t
b

0.1t
b

0.5t
b

time

time

baseline

(a)

(b)

0.9t
b

Detection accuracy

Baseline Reduced
TCC

0

20

40

60

80

100

A
cc

u
ra

cy
  
%

0%

(c)

reduced amplitude

Fig. 1. (a) and (b) are the waveforms of temperatures signals when
transmitting bits “11” under the return-to-zero (RZ) [7] encoding
schemes. (a) The thermal pulse has a 50% duty cycle. (b) The thermal
pulse has a 10% duty cycle with reduced peak value. (c) The detec-
tion accuracy of the baseline TCC that follows signaling in (a) vs. the
detection accuracy of the TCC that has reduced signal amplitude as (b).

Although the improved stealthy TCC in Fig. 1(b) can
circumvent the threshold-based detection, the TCC signals
are found to have multiple side lobes of high amplitudes, a
fairly consistent feature that can be explored for the sake
of TCC detection. Correspondingly, we present a pattern
recognition algorithm to classify (detect) TCC attacks out
of thermal noise in this paper. This proposed pattern-
classification-based TCC detection method is able to detect
all the known TCC attacks and variants with a high detec-
tion accuracy. The contributions of this paper are as follows.

1) An improved stealthy TCC is designed such that
the existing threshold-based detection methods are
no longer useful.

2) The frequency components of the TCC signals are
analyzed, and the features drawn from the side
lobes are explored for TCC detection. A neural-
network-based classifier is thus developed, trained,
validated, and tested for TCC detection.

3) Experimental results show that the proposed detec-
tion scheme can detect TCCs with an accuracy of as
high as 99%, and the runtime overhead is very low.

The remainder of this paper is organized as follows.
Section 2 presents the previous works on thermal covert
channel attacks. Sections 3 and 4 present the details re-
garding the possible designs and detection of the improved
stealthy TCC, respectively. In section 5, the proposed detec-
tion scheme is experimentally verified, and the results are
reported. Finally, section 6 concludes this paper.

2 PRELIMINARIES AND RELATED WORK
ON DETECTION OF THERMAL COVERT
CHANNELS
2.1 Baseline Thermal Covert Channels

With heat as communication media and no shared resources
(e.g., cache and memory), the thermal covert channel attacks
can be launched in many-core systems [2], [3], [5], [7] more
easily than other types of covert channels. A typical thermal
covert channel is modeled to include a transmitter and a
receiver as well as a defender, shown in Fig. 2.

As shown in Fig. 2 (a), a TCC attack has a pair of
transmitter and receiver programs. The transmitter is in the
secure zone of the system and is able to obtain sensitive
data. The receiver is in the unsecure zone and does not
have direct access to the sensitive data. The transmitter
encodes the bit stream of the sensitive data into temperature
variations. For example, bit ‘1’ is encoded by a rise and fall
in temperature, and bit ‘0’ is encoded by staying at a low
temperature, as shown in Fig. 2 (b). The thermal signals are
generated by running either computation-intensive codes
for heating-up or keeping the core idle for cooling-down.
The receiver on the other end of the communication link
reads its thermal sensor and decodes the sensitive data
originated from the transmitter.

Fig. 2. (a) A TCC attack example showing a pair of transmitter and
receiver. (b) Thermal signal after data encoding.

The transmitter program in a TCC can be implanted into
a secure zone, which is supported by technologies like ARM
TrustZone [1] and Intel software-guard extensions (SGX) [8]
through software updates or other means [9]. For example,
before a user application is loaded into its own SGX enclave,
the transmitter codes can be injected into the user applica-
tion as a Trojan [9], resulting in that the transmitter is able to
run in the secure zone and has access to private data. After
implanted into the secure zone, a TCC program can leak
private data by deliberately manipulating chip temperatures
[2], [3], [5], [6]. The thermal signals can be obtained either
by directly reading the thermal sensors through MSR (i.e.,
Model Specific Register) software interface [10] or by read-
ing the temperature files exposed by some commonly in-
stalled temperature-monitoring utility tool (e.g., CoreTemp
[11] in Linux system). The thermal sensors nowadays are
technologically fine-tuned, with several precisions like 1◦C
in [10] and 0.12◦C in [12].

The TCC receiver program, which is outside the secure
zone, reads the thermal signals from its local thermal sensor,
decodes the bitstream back into sensitive data originated
from the transmitter, and delivers the data to the hacker
through the network.

In fighting against the TCC programs, a defender runs a
program that can detect all cores’ workload traces and can
access all thermal sensors. The defender is granted ROOT
privilege that it can apply countermeasures that it hopes to
neutralize any TCC attacks.

Hereinafter, the TCC models described in [5] are adopted
as the baseline TCC model in this paper. In paricular, both
0-hop and 1-hop TCCs are considered. Here the transmitter
and receiver of a 1-hop channel are two cores that are one
hop away from each other. There are two types of 0-hop
channels: i) the receiver and transmitter threads run in the
same physical core and they share the same thermal sensors;
and ii) the receiver and the transmitter have access to the
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same thermal data files which are exposed by installed
temperature monitoring software or sysfs system in Linux
[11].

2.2 Threshold-based Detection Methods and Their Dis-
advantages
To fight against TCCs, threshold-based detection methods
[5] have been proposed. The detection threshold, defined
as ρ, ranges from ρl to ρh, where ρl is the average noise
amplitude (e.g., thermal signals generated by normal appli-
cations), and ρh is the average value of signal amplitudes at
the transmission frequencies of TCCs.
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Fig. 3. (a) and (b) are the spectra of the baseline TCC and the im-
proved stealthy TCC. The transmission frequency is 50Hz. The detection
threshold against baseline TCCs is set to be 40dB.

The detection accuracy is related to the true positive
rate, false positive rate, and true negative rate. Here a false
positive case refers to the situation that an innocent thread
is mistakenly recognized as a malicious one, while a true
negative case refers to an innocent thread is not identified
as so, and a true positive is when a TCC thread is correctly
detected. From Figs. 3(a) and 3(b), one can see that when
using a threshold-based detection which works fine against
baseline TCCs, if the signal amplitudes of a TCC are below
the threshold, the threshold-based detection methods will be
unlikely to be able to detect such improved stealthy TCCs.
On average, the true positive rate, true negative rate, and
total accuracy are 0%, 47.5%, and 47.5%, respectively. Such
a low true positive rate is unacceptable in detection.

Fig. 4. The curves of f1(x) and f0(x).

Apparently, the error rate or detection accuracy depend
on the selection of detection threshold. As shown in Fig.
4, let x be the signal amplitude, f1(x) be the probability
density function of TCC’s signal amplitudes, and f0(x)
be the probability density function of noise’s amplitudes.
According to [13], the detection error rate, denoted as Pe,
can be modelled by Eqn. (1), where P (1) and P (0) are
the probabilities that the TCC signals and noise are sent,
respectively; P (0|1) is the probability that the signals from
TCCs are not detected; and P (1|0) is the probability that the
noise is regarded as TCC signals. One can see from Eqn. (1),

the detection error rate Pe or the detection accuracy (1−Pe)
depend on the value of the detection threshold ρ.

Pe = P (1)P (0|1) + P (0)P (1|0)

= P (1)

∫ ρ

−∞
f1(x)dx+ P (0)

∫ +∞

ρ

f0(x)dx
(1)

Fig. 5 shows the distributions of f1(x) and f0(x), which
are the probability density functions of the amplitudes of
TCC signals and noise, respectively.

Fig. 5. the distribution of noise’s and TCC’s signal amplitudes.

The overlap (the shaded area in Fig. 4) between the two
distribution functions, f1(x) and f0(x), denoted as Po, is
given by

Po =

∫ x1

−∞
f0(x)dx+

∫ x2

x1

f1(x)dx+

∫ +∞

x2

f0(x)dx (2)

The percentages of Po over f1(x) and f0(x) are defined
in Eqns. (3) and (4) respectively, which are 30% and 28%
from the experiments.

Po
1 =

Po∫ +∞
−∞ f1(x)dx

(3)

Po
0 =

Po∫ +∞
−∞ f0(x)dx

(4)

To study the impact of the threshold ρ on the detection
accuracy of improved stealthy TCCs, Fig. 6 shows the nu-
merical results of Eqn. (1) with the configurations detailed
in Section 5.1.

In our experiments, half of the applications generate
TCC signals, and the remaining half of the applications
generate noise. Therefore, the ideal case of the true positive
rate, the true negative rate, the false positive rate, and
the total accuracy are supposed to be 50%, 50%, 0%, and
100%, respectively. From Fig. 6, one can see that when
the threshold ρ is lower than 40dB, the true positive rate
increases, but the true negative rate decreases. When the
threshold drops to 30dB, the total detection accuracy reaches
the highest at 70%, with a true positive rate of 40% and
a true negative rate of 30%. Note that the false negative
rate of 10% means 10% of the TCC attacks are not detected.
In addition, when this threshold drops even further, the
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Fig. 6. The accuracies of detecting the improved stealthy TCC under
different detection thresholds. ‘TP’, ‘TN’, and ‘total’ are the percentage
of true positive cases over all cases, the percentage of true negative
cases over all cases, and the sum of ‘TP’ and ‘TN’, respectively.

false positive rate goes up to a level higher than 20% (i.e.,
30%∼50%). With such a high false positive rate, applying a
DVFS-based countermeasure, like the one described in [5],
will lead to unacceptable performance loss.

3 IMPROVED THERMAL COVERT CHANNEL
3.1 Design of improved stealthy TCCs
To circumvent the threshold-based detection, the signal am-
plitude of TCC needs to be reduced to the level lower than
the detection threshold. As shown in Fig. 1(b), the signal
amplitude reduction can be done by reducing the time to
boost up the temperatures as follows.

Based on the RZ encoding scheme, when transmitting
a bit ‘1’, hereinafter, the ratio of the time to heat up over
the time to cool down is defined as α. Note that α is almost
always set to 1 (e.g., α = 0.5tb/0.5tb as shown in Fig. 1(a)) in
the baseline TCCs in Section 2.1. The value of α is selected in
an iterative manner that targets to fail the threshold-based
detection method.

1) In each iteration, build a TCC based on a specific
value of α (intial value is set to 1, and in every
iteration its value is linearly decremented by ω from
the previous iteration).

2) Then we apply the threshold-based detection to
detect the just built TCC and get the detection
accuracy as well as the packet error rate (PER) when
no countermeasure is adopted.

3) The iterative method should be stopped if the mini-
mum detection accuracy is obtained and the PER of
the TCC is lower than an acceptable level, say 10%.

Once α is determined, the improved stealthy TCC attack
is designed as follows.

The transmitter uses the above method to compute α.
The bit stream to be transmitted is RZ encoded with a period
of tb. For bit ‘1’, the transmitter core runs CPU-intensive
code for a duration of ε× tb, and cools down for a duration
of (1 − ε) × tb within the same period. For bit ‘0’, the core
keeps idle for the entire period. On the receiver side, a finite
impulse response (FIR) filter with center frequency of 1/tb is
used to filter out the signal after reading the thermal sensors.
If the signal amplitude is over a decision threshold which is
half of the maximum signal amplitude, it is deemed as bit
‘1’, otherwise bit ‘0’.

The transmitter and receiver use a handshake protocol
[5] for communication. That is, the transmitter first sends a
request packet (REQ) to the receiver to setup the connection.
Upon receiving the REQ packet, the receiver replies an ACK
packet to the transmitter. The transmitter then starts data
transmission. Finally, the transmitter sends a TER packet to
terminate the connection once the data transmission is done.

3.2 Spectrum Analysis of TCC Signals

We analyze the above proposed improved stealthy TCC in
frequency domain. A TCC signal is set to be band-limited,
ranging from 10Hz to 500Hz [5]. Below 10Hz, thermal noise
dominates, and since the thermal sensors have a refresh rate
(sampling) of 1000 times per second, signal transmission
frequency has to be cut at 500Hz.

From Figs. 7(a) and 7(b), one can see that the signal
amplitude at 50Hz of the improved stealthy TCC is much
lower than that of the baseline TCC. Besides, the improved
stealthy TCC have additional high-amplitude side lobes
at 100, 150, 200, and 250Hz, a feature not seen in the
baseline TCC. By comparing the spectra of the baseline and
improved stealthy TCCs and that of thermal noise [see Fig.
7(c)], one can see that these high-amplitude side lobes can be
used as the key feature to distinguish the TCCs from noise.

Correspondingly, a pattern-classification-based detection
method is proposed in the next subsection. Even with
adoption of different types of encoding schemes (e.g., on-off
keying, RZ, and Manchester code), the TCCs with improved
stealthiness still exhibit high-amplitude side lobes when
PER is lower than 10%. As a result, a TCC can not be escaped
from being detected by the proposed detection method.
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Fig. 7. (a) and (b) are the spectra of the baseline TCC and the improved
stealthy TCC, respectively. The transmission frequencies in (a) and (b)
are both 50Hz. The red circles in (a) and (b) are the characteristics of
the baseline TCC and the improved stealthy TCC, respectively. (c) The
spectrum of thermal noise (e.g., generated by running the ‘blackscholes’
application from PARSEC [14]).
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4 CLASSIFICATION-BASED DETECTION OF
THERMAL COVERT CHANNEL ATTACKS
To fight against the improved TCC, the features of TCCs in
Section 3.2 is explored by a neural network based detection
to classify (detect) TCCs from noise. The neural network
model that is trained offline is applied to the system at
runtime to classify the TCC signals and noise. For TCC, the
pattern recognition algorithm generates an output 1, and for
thermal noise, the output is 0.

4.1 Neural Network Model
The neural network based model is experimentally com-
pared against two other models based on classification tree
[15] and logistic regression [15]. The validation accuracies
of all the three models are compared in Table 1. One can
see that the proposed neural network model has the highest
validation accuracy (the sum of true positive rate and true
negative rate on the validation data set). Therefore, we used
the proposed neural network model in all our subsequent
experiments.

TABLE 1
Validation accuracies of different machine learning techniques

Machine
learning
techniques

Neural
network

Classification
tree [15]

Logistic
regression
[15]

Validation ac-
curacies

0.99 0.91 0.95

As shown in Fig. 8, the neural network model has k
middle layers and 1 output layer, which is called (k + 1)-
layer neural network model.

1) Input data: the input data is a vector with 491
elements, with each element representing a signal
amplitude (the signal frequencies span from 10Hz
to 500Hz with an incremental of 1Hz) of TCC
or noise. The input vector is denoted as ~x [e.g.,
~x = (x1, x2, . . . , x491)].

2) Middle layers: the l-th layer contains nl neu-
ral nodes, with each node value being de-
noted as an element of vector ~a[l] [e.g., ~a[l] =
(a1

[l], a2
[l], . . . , anl

[l])]. The activation function of
layer l is denoted as δ[l](·).

3) Output layer: this layer has a node with its output
value (denoted as ŷ) to be either ‘1’ or ‘0’, indicating
whether the input is a TCC signal or not. The
‘sigmoid’ activation function is adopted in this layer
before the final result is generated. When the output
value from ‘sigmoid’ is higher than a threshold (e.g.,
0.5 in our experiments), it indicates that the input
data is possibly from TCC and the final output of
the model is 1, otherwise 0.

4.2 Data Preprocessing and Training
For the training data of the neural network model, we
generate TCC signals or noise from a logical core for each
t seconds (e.g., 2 seconds) with a sampling frequency of
1000Hz. That is, each data sample contains 1000×t temporal

Fig. 8. The architecture of the neutral network model for classification.

signal values over t seconds. Before training the param-
eters of the model, each data sample is transformed into
frequency domain representation. That is, through discrete
Fourier transform (DFT), each data sample is made of a
sequence of the amplitudes of 491 signal components. We
also provide a supervised label (denoted as y) for each
data sample to the neural network model for parameter
training. If the signals are from thermal covert channels, the
supervised label is set to be ‘1’, otherwise ‘0’.

The data samples are divided into three datasets: the
training set, validation set, and test set. As their names
suggest, the data from the training set is used to train the
parameters (i.e., the weights of the network edges) of the
neural network model; the data from the test set is used
to evaluate the ability of model generalization, that is, how
well the training model performs on new data samples; and
the data from the validation set is used to choose a model
that has the best ability of generalization among different
hyper-parameters (i.e., learning rate, number of training it-
erations, number of neural layers or nodes, etc.). The param-
eters (weights of edges) of the model during the training are
randomly initialized. After ϕ iterations in training, the gra-
dient descent based method [15] obtains the neural network
model parameters with learning rate ε and cost function
J(y, ŷ) = −

∑n
i=1 y

(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i)), by
the following three-step procedure.

Step 1 - Forward Propagation: From the input layer to the
output layer, the weights of each neuron a[l] are computed
layer by layer,

a[l] = δ[l]
(
W [l]a[l−1] + b[l]

)
(5)

where a[0] = x; that is, we have the input vector, ŷ = a[R]

with R as the number of layers of the neural network.
Step 2 - Backpropagation: From the output layer to the

first layer, the gradient of the cost function to the parameters
of each layer is calculated layer by layer by the chain rule
following Eqn. (6) to Eqn. (9),

dz[l] =
∂J

∂a[l]
× δ[l]

′ (
W [l]a[l−1] + b[l]

)
(6)

∂J

∂W [l]
=

1

c
× dz[l] × a[l−1]T (7)
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∂J

∂b[l]
=

1

c
×
J−1∑
h=0

dz[l][:, j] (8)

∂J

∂a[l−1] = W [l]T × dz[l] (9)

where ∂J
∂W [l] is the partial derivative of the cost function

J (y, ŷ) with respect to W [l], ∂J
∂b[l] is the partial derivative

of the cost function J (y, ŷ) with respect to b[l], dz[l] is an
intermediate term, δ[l]

′
(·) is the derivative of δ[l](·), a[l]T

and W [l]T are the transpose of a[l] and W [l] respectively,
and c is the sample size. dz[l][:, j] is the j-th column vector
of matrix dz[l].

Step 3, the parameters of the neural network model are
updated following Eqns. (10) and (11).

W [l] = W [l] − ∂J

∂W [l]
(10)

b[l] = b[l] − ∂J

∂b[l]
(11)

4.3 Online Detection

After the neural network model is trained offline, it can be
used to detect the existence of a TCC attack in a many-
core system at runtime. Herein a detection cycle and a
global manager are the time unit of each detection and the
thread to initiate a detection cycle, respectively. In addition,
the detection is performed at the logical core level since
the hyper-threading multi/many-core systems have become
commonplace. To reduce runtime overhead, a distributed
detection architecture can be adopted. That is, the global
manager assigns the detection jobs to each individual logical
core, and each logical core performs the detection and
reports their individual results back to the global manager
regarding whether there is a possible attack or not.

Note that since there is a strong thermal correlation
between neighboring cores, detecting thermal signals gener-
ated by each core’s activities cannot easily distinguish a TCC
core from those running normal applications. For instance,
in the case that a transmitter core and a core running
normal applications are physically next to each other in the
vertical stack of a 3D many-core system, the thermal signals
collected from both cores exhibit the same transmission
frequency. Essentially, a TCC program running in a secure
zone does not have direct access to the cores to change their
voltage and/or frequency; rather a TCC controls the CPU
workloads by either running computation-intensive codes
or keeping the cores idle as an indirect means to generate
thermal signals. Therefore, instead of using thermal signals,
the CPU workloads measured by the number of instructions
per cycle (IPC) are used to exactly pin down the TCC cores.

In each detection cycle, the global manager samples
each logical core’s IPC profiles over a time window, say t1
seconds (i.e., 2 seconds in our experiments), and it then com-
mands each logical core to execute a pattern-classification-
based detection to test whether there is a TCC attack or not.

Algorithm 1: Pattern-classification-based detection
at core i(1 ≤ i ≤ nc.)

Input: IPCi and L;
IPCi: The traces of CPU workload (IPC) of logical
core i recorded in a detection cycle;
L: A list, with a capacity of nc (the number of logical
cores in the SoC), of the transmitter logical cores
during a detection cycle. It is initially set to be
empty.
Output: L

1 begin
2 Calculate the spectrum of signal IPCi using the

discrete fast Fourier transform (FFT) algorithm;
3 Feed the signal amplitudes (from 10Hz to 500Hz

with a frequency incremental of 1Hz) to the
input layer of the neural network model and get
the model result ŷ;

4 if ŷ = 1 then
5 Add i to L;
6 Report logical core i to the global manager;
7 return.
8 end
9 Send a message to the global manager that no

TCC channel is found in core i.
10 end

This detection task is set to supersede any other tasks of the
logical core that has been engaged with.

The pattern-classification-based detection algorithm in
Algorithm 1 works as follows.

Step 1. The global manager initiates a detection cycle to
see if there is any possible TCC attack. Upon receiving the
command, each logical core extracts the spectrum of its IPC
signals (see line 2 in Algorithm 1). Then each logical core
feeds the signal amplitudes (from 10Hz to 500Hz with a
linear frequency incremental of 1Hz) to the detection model
and gets the output ŷ when the model calculation is finished
(see line 3 in Algorithm 1).

Step 2. After getting the output ŷ from the detection
model, one can decide whether the signals are actually from
a covert channel or not (see line 4 in Algorithm 1). Once
a suspicious channel is detected in logical core i, core i is
added to list L (see line 5 in Algorithm 1). Note that a
normal application running on a core may be mistakenly
deemed as a suspicious one, which is a standard false posi-
tive. There is a low probability of false positive, typically in
the range of 5% as demonstrated in [5], which is acceptable
in this step.

Step 3. At the end of a detection cycle, if a logical core
confirms that a TCC attack is present, it reports its findings,
including the position of the detected logical core, to the
global manager (see line 6 in Algorithm 1). Otherwise, the
logical core can conclude that no TCC attack has been found
in the current detection cycle and reports so to the global
manager (see line 9 in Algorithm 1).

Step 4. If the global manager finds no TCC channel exists
in any of the logical cores, it initiates a new detection cycle,
after which the process starts all over again from step 1.
Otherwise, if the address space of a thread listed in L can
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be accessed, that thread is removed from list L. Here only
a detected thread running in a secure zone is deemed a
threat to system security. Note that supported by processor
reserved memory [16], only self-signed applications can
access the secure zone.

If one or more TCC logical cores are detected, i.e., list
L is not empty, the global manager begins to block the
transmission from the cores listed in L. The transmission
blocking is supported by applying the DVFS-based counter-
measure proposed in [5] to the cores detected with a TCC
transmitter or receiver (essentially the physical CPU cores
that the detected logical cores belong to). Since the DVFS-
based countermeasure dynamically changes the voltage and
frequency level of the detected transmitter core (e.g., scaling
down from 2.5GHz to 500MHz), the thermal signals gen-
erated by the transmitter can be severely distorted, leading
to a very high error transmission rate that essentially shuts
down a TCC.

4.4 Overhead of the Proposed Detection Method

Similar to the threshold-based detection method in [5], a de-
tection cycle is initiated repeatedly; that is, a new detection
cycle will be initiated after the global manager applies DVFS
countermeasure to the detected cores. A detection cycle
spans 2 phases: t1, and t2 (see section 4.3), where t1 (i.e.,
2s) is the time for the global manager to calculate all logical
cores’ IPC values, and t2 is the time for each logical core
to perform discrete fast Fourier transform and neural net-
work model inference. Compared with the threshold-based
detection method in [5], the proposed detection method has
additional runtime overhead and energy overhead for the
neural network model inference at runtime.

As indicated in [5], the length of a detection cycle on
average is 2s (see section 4.3). During t1, only the global
manager takes 57344 × nc clock cycles or 28 × ncµs for a
core running at 2GHz. During t2, each core takes 901,120
clock cycles or 0.45ms to perform the discrete Fourier trans-
form. The neural network inference needs 4920 real number
multiplications, which corresponds to 9.84×104 clock cycles
[17], or a total of runtime of 49.1µs for a core clock running
at 2GHz.

Although the detection works periodically, the system
(except the global manager) runs normal tasks as well as
the TCC tasks during most of the time of a detection cycle
(i.e., during t1). When nc ≤ 100, the inference time of
the proposed detection accounts for lower than 0.17% of
the execution time of the normal applications. The energy
consumption overhead of the proposed detection is only
about 0.039% of the total energy consumption of the whole
system. In general, the runtime overhead in terms of cycle
count and energy consumption of our proposed detection
method is fairly low, given its high detection accuracy.

Besides, the global manager (running a thread that has
root privilege) needs to broadcast a control packet to other
cores to initiate the detections in parallel. With a 2-pipeline-
stage router architecture, when nc ≤ 100, the communi-
cation overhead is lower than 200 clock cycles, which is
negligible compared to execution times of most applications.

In terms of storage overhead, each logical core needs
to store a copy of the weights of the neural network with

each weight in double precision (64 bits). Altogether, when
nc ≤ 100, the storage overhead is lower than 3.936MB (i.e.,
100× 64× 4920÷ 8÷ 106), which is considered fairly low.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

Fig. 9. Examples of (a) 2D and (b) 3D many-core systems.

To demonstrate diverse applicability of our approach,
we have considered two sets of experiment, and they are
performed on respective 2D and 3D many-core systems. In
these many-core systems, each tile is composed by a pro-
cessor core, memory units (L1 I/D caches and an L2 cache
bank), network interface (NI), and a router, as shown in
Fig. 9. Tiles are connected by networks-on-chip. All the ex-
periments are either run on a many-core simulator, Sniper-
v7.2 [18], or directly run on two real machines featuring a
2D multi-core system.

In the simulator, to dynamically generate temperatures
for all the cores, McPAT-v1.0 [20] and Hotspot-v6.0 [21] are
adopted as the power and thermal models, respectively. The
temperatures from TCC cores are deemed as TCC signals
while the temperatures generated by normal applications
made of a few benchmarks from PARSEC [14] and SPLASH-
2 [22] are treated as the thermal noise. The detailed con-
figurations of Sniper, Hotspot, TCC programs, and real
machines are tabulated in Table 2.

5.1.1 Experimental Configurations of the Many-core Sys-
tems
As for a 2D 1-hop channel, two physically separated cores
form a TCC pair, one as the transmitter and the other as
the receiver, while all the other cores are running legitimate
threads from the selected benchmarks. Specifically, each
physical core runs two simultaneous multithreading (SMT)
threads, and both the transmitter core and the receiver core
run a TCC thread and a thread spawned by the benchmarks.
As for a 0-hop channel, the two logical cores sitting in
the same physical core are able to run the transmitter and
receiver programs.

As for a 3D many-core system where its floorplan fol-
lows the one used in [23], the receiver core of a 1-hop
channel is right below the transmitter core, while the re-
maining configurations are set to be the same as those of the
2D many-core case. In a 3D many-core system, the vertical
layers are connected by the TSV’s (Through-Silicon-Vias).
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TABLE 2
Experimental configurations

Sniper configuration
Instruction set architecture x86-64
Network topology Mesh
Network topology 3D mesh, with each layer hav-

ing its own 2D mesh and
the layers are connected verti-
cally through Through-Silicon-
Vias (TSV) [19].

Number of cores (2D) 3×3 / 4×4 / 8×8 / 16×4
Number of cores (3D) 3×3×3 / 4×4×3 / 8×8×3
Number of SMT threads per
core

2

CMOS technology node
(nm)

22

Frequency and voltage lev-
els of CPUs

2500/1.0, 1000/0.7,
800/0.68, 700/0.66,
600/0.64, 500/0.6, 400/0.5

Benckmarks of PARSEC Blackscholes, Canneal, Flu-
idanimate, Streamcluster,
Swaptions, X-264, Dedup,
Freqmine

Benckmarks of SPLASH-2 Raytrace, Barnes
Configuration of the integrated Hotspot

Chip thickness 0.15mm

Silicon thermal conductivity 100W/(m ·K)

Silicon specific heat capacity 1.75× 106J/(m3 ·K)

Heat sink side 0.06m

Heat sink thickness 6.9mm

Heat sink thermal conduc-
tivity

400W/(m ·K)

Specific heat capacity of heat
sink

3.55× 106J/(m3 ·K)

Configuration for TCC programs
Transmission frequency 10Hz, 20Hz, 50Hz, 80Hz,

100 Hz, 150 Hz
Preamble of a packet 101010
Packet size in bits 64
Distance between a trans-
mitter and a receiver

0/1 hop

Bandpass filter using by the
receiver

Window-based FIR (finite
impulse response) filter

Bandwidth of bandpass fil-
ter

4Hz

Configurations of the real machines
ID 1 2
Processor Intel(R) Core(TM)

i7-7700HQ CPU @
2.80GHz

Intel(R) Core(TM)
i7-7500U CPU @
2.70GHz

Memory 16 Gbytes 16 Gbytes
DRAM Frequency 1,200MHz 2,133MHz
Mainboard MSI Z170-A PRO 20HNA01PCD
# of Physical
Cores

4 2

# of Logical Cores 8 4
Operate System Ubuntu 16.04 LTS Windows 10

For real machines with 2D multi-core chips adopted in
this study, one has a quad-core eight-thread Intel Core i7-
7700HQ processor clocked at 2.8GHz, and the other has a
dual-core four-thread Intel Core i7-6700U processor clocked
at 2.7GHz. We fix the fan speed to the maximum and let
other cores sleep, and only the transmitter core and receiver
core are active, as the case in [2], and all the other cores are
set to sleep.

In the real machines with a coarse-grained sensor res-
olution of 1◦C, since a 0-hop channel does not need to
transfer heat between two neighbor cores, the transmission
frequency of a 0-hop channel can be much higher than that
of 1-hop channels. That is, the upper bound of transmis-
sion frequencies for 0-hop channels and 1-hop channels are
experimentally found to be 100Hz and 20Hz, respectively.

In the simulations, the precision of temperatures is set
to be 1◦C [10] and 0.12◦C [12] for simulations in 3D and
2D many-core systems, respectively. Note that the thermal
correlation in the vertical direction is higher than that in
the horizontal, thus, the vertically placed 3D 1-hop channels
are more efficient than those channels in a 2D many-core
system.

5.1.2 Experimental Scenarios of the Many-core Systems
The TCC communications are point to point in nature. For
each experiment, packets are transmitted randomly for 1000
times and the result is then averaged. Effectiveness of a TCC
attack is measured in terms of the PER, which is defined as
follows.

PER = Ne/N × 100% (12)

where N is the total number of packets transmitted, and Ne
is the number of packets failed to be correctly recognized.
Note that when a few bits of a control packet (e.g., the
connection request packet REQ) are flipped, say 1 in 5 bits,
the bit error rate (BER) in this case is 20%; but since the
packet cannot be recovered, the PER is actually 100%. The
experiments mainly include the following scenarios:

• Measuring the PERs of the improved stealthy TCC
communications under different system sizes when
threshold-based detection and DVFS-based counter-
measure [5] are applied.

• Measuring the detection accuracy when applying
the proposed pattern-classification-based detection
method.

• Measuring the PER of the improved stealthy
TCC communication when the proposed pattern-
classification-based detection and DVFS-based coun-
termeasure [5] are in place.

• Evaluating the performance loss of legitimate appli-
cations when exploiting the proposed detection and
DVFS control to the transmitter core.

• Evaluating the performance loss of legitimate appli-
cations when exploiting DVFS control to the trans-
mitter core.

5.2 Finding the value of α for the improved stealthy
TCC
The improved stealthy TCC not only needs to circumvent
the threshold-based detection, but also needs to ensure a
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low PER (e.g., < 10%). To better measure how well our
proposed detection method is, the TCC with the best stealth-
iness is firstly tested in a 1-hop channel.

Fig. 10 shows the PERs of a 1-hop TCC under differ-
ent α’s with and without the threshold-based detection
[5] and DVFS-based countermeasure [5] applied. When
the threshold-based detection is in place, the DVFS-based
countermeasure is applied to the detected CPU cores. As
α decreases from 1 to 1/9, the PER under the threshold-
based detection decreases significantly, dropping from 82%
to 8.5%. When α is 1/12 or even smaller, the PER of TCC
reaches an unacceptably high level (i.e., > 88%), since
the signal noise rate (SNR) is too low to sustain a TCC
communication. Therefore, the best α is set to be 1/9 for
an improved stealthy TCC.

1 1/4 1/8 1/9 1/10 1/12

20

40

60

80

P
E

R
 %

Without detection With detection

Fig. 10. The average PER results of 1-hop TCC communications with
different α’s with and without the threshold-based detection [5] and the
DVFS-based countermeasure [5] applied.

5.3 Finding the Parameters of the Neural Network
Model
In order to find the parameters and train the neural network
model for TCC detection, we collect 350,000 samples of
IPC signals that are from the TCC programs running with
different α values (e.g., from 1/12 to 1), encoding schemes,
transmission frequencies and packet bits. We also collect
350,000 samples of IPC noise that are from the legitimate
applications. The collected data samples are split among the
training (5/7 of the samples), test (1/7 of the samples), and
validation (1/7 of the samples) sets.

The parameters (weights of the edges) of the neural
network are automatically learned by the gradient-descent-
based training [24], while the hyper-parameters are manu-
ally tuned offline to get a model with better generalization
ability. Besides detection accuracy, another important con-
sideration is the network complexity in terms of the number
of layers and/or neurons, as complexity of a neural network
should be preferably kept low to reduce runtime overhead.
In this case, various neural network models described in
Section 4 are built with varying complexities and experi-
mentally compared for their detection accuracy.

The validation accuracies, defined as the sum of true
positive rate and true negative rate, of different neural
network models on the validation set are reported in Table
3. All the models in Table 3 have 491 inputs and 1 output.
Model A, whose inference time is 984 clock cycles, is a
two-layer neural network model with 2 nodes in its middle
layer. The numbers of nodes, layers, and inference times of

TABLE 3
Validation accuracies of different neural network models

Neural
networks

A B C D E

Number of
layers

2 2 2 2 3

Number of
nodes

2 5 10 100 10, 2

Inference time
(cycle)

984 2460 4920 49200 4932

Validation ac-
curacies

0.99956 0.99957 0.99996 0.99997 0.99996

the other neural network modes can be found in Table 3.
Model E has two middle layers, whereas they have 10 and
2 nodes, respectively. One can see that model C achieves
a high validation accuracy with moderate inference time.
Therefore, model C with 10 nodes in its middle layer is
adopted in the following experiments.

5.4 Experimental Results
5.4.1 Results of the improved stealthy TCC Attacks
To measure how well the improved stealthy TCCs (de-
scribed in Section 3.1) can be detected by the threshold-
based detection, we run another experiment. Once a TCC
core is detected by the threshold-based detection [5], the
DVFS-based countermeasure [5] is applied to that core to
block the communication. The average PERs of experiments
from the simulations and measurements of the two real
machines are shown in Fig. 11 and Table 4, respectively.

3
3
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4
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3
3

3

4
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0-hop

1-hop

Fig. 11. The average PERs of the improved stealthy TCC under different
system configurations and scenarios when the threshold-based detec-
tion [5] and DVFS-based countermeasure [5] are applied together.

As for the simulations, the TCCs can work with a trans-
mission frequency of 100Hz and a CPU running at 2,500
MHz. From Fig. 11, one can see that the average PERs of
TCC transmission in the 2D and 3D many-core systems of
different sizes are all below 8.5%, which means that the
improved stealthy TCC can barely be detected using the
threshold-based detection and thus most of the time, the
DVFS-based countermeasure is not triggered.

A similar result obtained for the TCCs running in the
two real machines is shown in Table 4. The average PERs
of a 0-hop channel and a 1-hop channel are both lower than
8%, which means the threshold-based detection method [5]
can not detect the improved stealthy TCC.

In a simple word, as indicated by both simulation results
and real machine measurements, the improved stealthy
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TABLE 4
The average PERs of the improved stealthy TCC by applying the

threshold-based detection [5] and DVFS-based countermeasure [5] in
the two real machines.

Distance PER Distance PER
0-hop 3.5% 1-hop 7%

TCC certainly poses a serious threat to any system, when
threshold-based detection method [5] be applied.

5.4.2 Evaluation of the Proposed Detection Scheme

In the end of each detection cycle, if a TCC attack is detected
by the global manager, the CPU core associated with the
TCC will be located. The accuracy is the combination of true
positive rate and true negative rate of detection.

Accuracy =

{
1 Pdetected = Ptransmitter or Pnot = Pnormal
0 otherwise

(13)
where Pdetected are the positions (core ID) of the detected

cores, Ptransmitter are the actual positions of the transmitter
cores, Pnot are the positions of the cores that are not detected
as TCC cores, and Pnormal are the positions of the cores that
are not running TCC transmitter threads.

To measure the average detection accuracies of the
threshold-based detection and the proposed detection, both
detection methods are respectively adopted in 100,000 ex-
periments grouped as 1,000 sets. Each experiment involves
4 logical cores, with 2 logical cores running the transmitter
and receiver programs of TCC, and the other 2 logical
cores running normal threads (threads from PARSEC [14]
or SPLASH2 [22]).

From Fig. 12, one can see that when applying the pro-
posed detection method, the average detection accuracies
of the baseline TCCs and the improved stealthy TCCs are
at 99% (i.e., 50% of true positive rate and 49% of true
negative rate). In sharp contrast, although the threshold-
based detection method works reasonably well to detect
the baseline TCCs with an accuracy about 96%,the accuracy
drops to only about 45% (i.e., 0% of true positive rate and
45% of true negative rate) when the improved stealthy TCC
is present.
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Fig. 12. The detection accuracies of both the improved stealthy TCC and
the baseline TCC under the threshold-based and the proposed detection
methods.

From Fig. 13, in the two real machines, our proposed
detection method can effectively detect both the baseline

and improved stealthy TCCs with average accurary of
higher than 95%. In contrast, the threshold-based detection
method in [5] fails to detect the improved stealthy TCC with
a detection accuracy of lower than 50%.
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Fig. 13. Average accuracies of the proposed detection method and the
threshold-based detection method [5] against the baseline and improved
stealthy TCCs in the two real machines.

The false positive rates of the proposed detection method
and the threshold-based detection method [5] are shown
in Table 5. One can see that when the threshold-based
detection method [5] is applied, the false positive rate of
the improved stealthy TCC is unacceptably high at 49%. But
with our proposed detection method applied, the false pos-
itive rates of detecting both the baseline TCC and improved
stealthy TCC are very low.

TABLE 5
The false positive rates of the proposed detection method and the

threshold-based detection method [5]

Proposed detection method Threshold-based detection method [5]
TCC type False posi-

tives rate
TCC type False posi-

tives rate
Baseline TCC 0.004% Baseline TCC 4%
Improved TCC 0.004% Improved TCC 49%

Therefore, by using the proposed pattern-classification-
based detection strategy, we can almost always identify
a TCC attack, should it ever exist, and correspondingly,
the location(s) of the transmitter core(s) can be accurately
determined.

Once a TCC attack (including the baseline TCC and the
improved stealthy TCC) is detected, the frequency level
of the TCC transmitter core is changed by the DVFS-
based countermeasure proposed in [5]. As shown in Table
6 (averaged measurements in the two real machines) and
Fig. 14 (simulation results), with our proposed pattern-
classification-based detection and DVFS-based countermea-
sure, the average PERs of the baseline TCCs and the im-
proved stealthy TCCs are all higher than 75%. Such a high
PER (i.e., > 70%) really denies any meaningful communi-
cations in practice; that is, our proposed detection with the
DVFS-based countermeasure can effectively shut down TCC
attacks.

5.4.3 Average Performance Loss
Scaling down the V/F level of a physical core running
the TCC transmitter program will also negatively impact
performance of a legitimate logical core. Fortunately, we do
not need to apply DVFS-based countermeasure to the TCC
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TABLE 6
The average PERs of the baseline and improved stealthy TCCs with
the proposed detection method and DVFS-based countermeasure [5]

applied in the two real machines.

Baseline TCC Improved stealthy TCC
Distance PER Distance PER
0-hop 75% 0-hop 77%
1-hop 86% 1-hop 88%

PER of Improved TCC
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Fig. 14. The average PER results of TCCs (i.e., baseline TCCs and
improved stealthy TCCs) communications with the proposed detection
method and the DVFS-based countermeasure.

transmitter core all the time since the TCC programs return
to be inactive after finishing transmission. We denote τ as
the ratio of the time of TCC being inactive to the time of
TCC being active. In practice, τ is set to be much higher
than 4 [5].

We assume that a TCC thread may share the same
physical core with a thread of a legitimate application. The
performance loss (PL) of a legitimate application is 0%, if
DVFS is not applied to block TCC. When DVFS is applied to
the physical cores participating in a TCC, the performance
loss of that legitimate application is calculated by

PL =
πavg − π0
πavg

× 100% (14)

As shown in Fig. 15, we compare the average PLs under
the threshold-based detection and the proposed detection
with the DVFS-based countermeasure and τ set to be 4.
The true positive and false positive rates of the threshold-
based detection are 40% and 20%, respectively, as given in
Section 3.2. The true positive and false positive rates of the
proposed detection are 50% and 1%, respectively, as given in
Section 5.4.2. One can see that with the false positive rate of
20% achieved by the threshold-based detection (see Section
3.2) and thus DVFS is excessively applied, the PL of the
threshold-based detection and DVFS is at least 3× higher
than the PL of the proposed detection method. For a large
many-core system (e.g., number of cores ≥ 8× 8), the PL of
the proposed detection and DVFS is lower than 2%, which
is considered very low in any practical sense.

Table 7 compares our proposed detection and defense
method with related countermeasures. As in Table 7, the
task migration-based method [3] and pre-heating method
[4] can detect neither the baseline TCC nor the improved
stealthy TCC, as these two methods do not involve detec-
tion. The threshold-base detection method [5] fails to detect
the improved stealthy TCC with the reason stated in Section

Performance Loss
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Fig. 15. The average performance loss (PL) of normal applications with
different system sizes with τ of 4.

TABLE 7
Comparison of related detection and/or countermeasure methods

Detection
method

Detection
accuracy
against the
baseline
TCC

Detection
accuracy
against the
improved
stealthy TCC

Performance loss
in a large-scale
multi-core system
(number of cores
≥ 8× 8 )

The task mi-
gration based
method [3]

0% 0% Not mentioned

The pre-
heating
method [4]

0% 0% Not mentioned

The
threshold-
based
detection
method [5]

97% 47% 3%

The
proposed
method

99% 99% 2%

2.2. In contrast, our proposed detection method can detect
both the baseline TCC and the improved stealthy TCCs.

6 CONCLUSION
In this paper, a pattern-classification-based detection
was proposed to fight against improved stealthy TCC
which employs reduced signal amplitude that fails the
threshold-based detection methods. This proposed pattern-
classification-based detection can achieve a detection ac-
curacy of 99% for both the baseline TCC and improved
stealthy TCC. After applying the DVFS-based countermea-
sure in the detected CPU cores, the PERs of both the base-
line TCC and the improved stealthy TCC are higher than
70%, but at a low runtime overhead (< 0.187%) and low
energy overhead (< 0.072%). With its low complexity and
overhead, the proposed detection and DVFS-based counter-
measure are able to work seamlessly together to thwart any
known TCC attacks.
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