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Abstract
This paper presents an overview of the ImageCLEFcoral 2021 task that was organised as part of the
Conference and Labs of the Evaluation Forum - CLEF Labs 2021. The task addresses the problem of au-
tomatically segmenting and labelling a collection of underwater images that can be used in combination
to create 3D models for the monitoring of coral reefs. The training dataset contained 882 images from
6 subsets from 4 locations. 1 subset was complete (containing all the images to build the 3D model) and
5 subsets containing a partial collection. The test data (491 images) contained the images required to
complete 4 of the partial image sets from each of the 4 locations (the final partial subset is not used for
testing, only training). 8 teams registered to the ImageCLEFcoral task, of which 3 teams submitted 8
runs. Participants’ entries showed that although automatic annotation of benthic substrates was possi-
ble, developing a generic algorithm to work across multiple geographical locations will be difficult due
to the variation of characteristics within and between classification types.
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1. Introduction

Coral reef ecosystems are highly complex non-uniform structures that support a wide range of
biodiversity; however, there has been a steady decline in coral reefs in recent years [1]. Currently,
more than 85% of the reefs within the Coral Triangle region are at risk of disappearing [2, 3].

Coral reef community composition is an essential element for monitoring reef health and
the importance of automated data collection, 3D analysis and large-scale data processing are
increasingly being recognised [4]. In 2017, Chamberlain et al. at the University of Essex
developed a novel multi-camera system to scale up previous data capture approaches [5] by
acquiring imagery from several viewpoints simultaneously. The increasing use of large-scale
modelling of environments has driven the need to have such models labelled, with annotated
data essential for machine learning techniques to automatically identify areas of interest, assess
community composition and monitor phase shifts within functional groups.
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The composition of marine life on a coral reef varies globally. Within the Indo-Pacific Coral
Triangle there are over 76% of all coral species and more than 3,000 fish species [2]. The Western
Indian Ocean is also a centre of high diversity for hard corals and reef fauna [6] and forms an
evolutionary distinct region. Coral reef fauna from the Caribbean within the Atlantic Ocean, is
strongly delineated from the Indian Ocean [7].

Geographically distinct regions can contain the same species or genera with entirely different
morphological features and traits. The variety in both environmental conditions and competitive
niche filling can lead to changes in phenotypic expression, which makes the task of identifying
them difficult without an extensive training image set. Typically, such training sets are developed
from the region of interest; however, the utility of a generalised algorithm for identifying benthic
fauna cannot be under-estimated as it would allow for rapid monitoring of invasive species and
indicator species used to monitor climate change.

Previous ImageCLEFcoral tasks [8, 9] required participants to automatically annotate and
localise a collection of images with types of benthic substrate, such as hard coral and sponge.
Participants’ entries showed that automatically annotating corals and benthic substrates was
possible, despite this being a difficult task due to the variation of colour, texture and morphology
between and within classification types. The results also showed that better performance was
achieved when training on datasets similar to the test dataset, with some notable exceptions
such as branching corals.

In its 3rd edition, the ImageCLEFcoral training and test data form the complete sets of images
required to produce 3D reconstructions of the environment. This allows the participants to
explore novel probabilistic computer vision techniques based around image overlap and trans-
position of data points. In addition, we encouraged the participants to train their algorithms
with large-scale public datasets available from the National Oceanic and Atmospheric Adminis-
tration (NOAA) and provided a conversion table from NOAA format to ImageCLEFcoral format.
ImageCLEFcoral is organised as part of the Conference and Labs of the Evaluation Forum (CLEF
Labs 2021) [10].

The paper is organised as follows: Section 2 presents the ImageCLEFcoral task and the
participation; Section 3 describes the dataset; Section 4 the evaluation methodology used in the
task; the results are presented in Section 5; and finally Section 6 discusses the lessons learnt
and future directions.

2. Task and Participation

The ImageCLEFcoral task followed the same format as in previous editions [8, 9]. Participants
were asked to automatically annotate regions in a collection of images containing 13 types of
benthic substrates such as fire coral or algae. As in previous editions, the overall task comprises
two sub-tasks:

1. Coral reef image annotation and localisation
2. Coral reef image pixel-wise parsing

The first sub-task uses bounding boxes for the annotation, with sides parallel to the edges
of the image, around identified features. The second sub-task uses a series of boundary image



coordinates which form a single polygon around each identified feature; this has been dubbed
pixel-wise parsing (these polygons should not have self-intersections). Participants were invited
to make submissions for either or both tasks.

The annotation task is different from other image classification and marine substrate clas-
sification tasks [11, 12, 13]. Firstly, the images are collected using low-cost action cameras
with a fixed lens and firing on timelapse or extracted as stills from video. The effect of this
on the imagery is that there is some blurring, the colour balance is not always correct (as the
camera adjusts the white balance automatically based on changing environmental variables)
and final image quality is lower than what could be achieved using high-end action cameras or
DSLRs. However, the images can be used for reconstructing a 3D model and therefore have
useful information in the pipeline. Low cost cameras were used to show this approach could be
replicated affordably for future projects.

In the 2021 edition 8 teams registered to the ImageCLEFcoral task, of which 3 teams submitted
8 runs. Table 1 presents the three teams participating on the task. Teams were limited to submit
10 runs per subtask.

Table 1
Participating groups of the ImageCLEF 2021 Coral task. Teams with previous participation are marked
with an asterisk.

Team Institution Runs T1 Runs T2

UAlbany [14] University at Albany, Albany, USA 1 -
Pilsen Eyes [15] * Faculty of Applied Sciences, University of West

Bohemia, Pilsen, Czechia
2 1

MTRU [16] * Marine Technology Research Unit, University of
Essex, Colchester, UK

- 4

3. Data Set

The images were captured using an underwater multi-camera system developed at the Marine
Technology Research Unit at the University of Essex (MTRU), UK.1 The images contain annota-
tions of the following 13 types of substrates: Hard Coral – Branching, Hard Coral – Submassive,
Hard Coral – Boulder, Hard Coral – Encrusting, Hard Coral – Table, Hard Coral – Foliose, Hard
Coral – Mushroom, Soft Coral, Soft Coral – Gorgonian, Sponge, Sponge – Barrel, Fire Coral –
Millepora and Algae - Macro or Leaves.

The ground truth annotations of the training and test sets were made by a combination of
marine biology MSc students at the University of Essex and experienced marine researchers.
All annotations were double checked by an experienced coral reef researcher. The annotations
were performed using a web-based tool, initially developed in a collaborative project with
London-based company Filament Ltd and subsequently extended by one of the organisers.
This tool was designed to be simple to learn, quick to use and allows many people to work
concurrently (full details are presented in the ImageCLEFcoral 2019 overview [8]).

1https://essexnlip.uk/marine-technology-research-unit/
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Figure 1: 3D reconstruction of a coral reef (approx. 4x6m). Each image in the subset to create this
model is represented by a blue rectangle, with the track of multi-camera array clearly visible across the
environment.

In this third edition, a complete set of images required to form a 3D reconstruction of the
environment was provided with the training and test data. Figure 1 shows an example 3D
reconstruction of one of the subsets of data (approx 4x6m). Each image in the subset to create
this model is represented by a blue rectangle, with the track of multi-camera array used for data
collection clearly visible across the environment. The .obj files were available to the participants
and the 3D models can be visualised online.2 The training dataset contained 882 images from
6 subsets from 4 locations. 1 subset was complete (containing all the images to build the 3D
model) and 5 subsets containing a partial collection. The test data (491 images) contained the
images required to complete 4 of the partial image sets from each of the 4 locations (the final
partial subset is not used for testing, only training).

In addition, participants were encouraged to use the publicly available NOAA NCEI data3

and/or CoralNet4 to train their approaches. The NOAA NCEI data typically contains 10 anno-
tated pixels per image, with a considerably larger classification scheme than the classes used in
ImageCLEFcoral. A NOAA Translation processor to capture the classification types within the
data set and translate them via an expert defined translation matrix into the ImageCLEFcoral
classes was provided.

2https://skfb.ly/oo6VZ
3https://www.ncei.noaa.gov/
4https://coralnet.ucsd.edu/
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Table 2
Distribution of classified pixels for training and test datasets.

Substrate Training Test

algae_macro_or_leaves 5.18% 12.28%
fire_coral_millepora 0.09% 0.03%
hard_coral_boulder 20.45% 10.83%
hard_coral_branching 17.34% 24.28%
hard_coral_encrusting 5.79% 4.30%
hard_coral_foliose 0.94% 0.03%
hard_coral_mushroom 0.30% 0.05%
hard_coral_submassive 8.50% 19.57%
hard_coral_table 3.16% 9.81%
soft_coral 27.84% 2.48%
soft_coral_gorgonian 0.71% 0.14%
sponge 7.68% 14.89%
sponge_barrel 2.02% 1.31%
unclassified 80% 77%

3.1. Collection Analysis

Table 2 shows the distribution of pixel classification between the training and the test datasets.
The training dataset had a higher proportion of boulder coral and soft coral, compared to the
test dataset which had more algae, branching coral, submassive coral, table coral and sponge.
Both datasets had a similar amount of unclassified pixel areas. It was hoped the inclusion of
additional large-scale public datasets from NOAA would allow the participants to address the
lack of training examples for under-represented classes in the training data.

4. Evaluation Methodology

The performance of the participants’ runs was evaluated on the unseen test data (see Section 3)
using the popular intersection over union metric from the PASCAL VOC5 exercise. This
computes the area of intersection of the output of an algorithm and the corresponding ground
truth, normalising that by the area of their union to ensure its maximum value is bounded.

We defined the following metric:

• MAP 0.5 IoU : the localised Mean Average Precision (MAP) for each submitted method
using the performance measure of IoU >=0.5 of the ground truth.

5. Results

Tables 3 and 4 shows the results obtained by the participants for sub-task 1 and 2, respectively,
and Table 5 shows a breakdown per class of each run for sub-task 2.

The submission from the Pilsen Eyes team [15] achieved the best results in both sub-tasks.
Their approach was based around the Mask R-CNN model, pre-trained on the ImageNet database.
Images were re-sized to 1000 × 1000 pixels and the model trained with batch size 2 and

5http://host.robots.ox.ac.uk/pascal/VOC/
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Table 3
Performance in terms of all submitted runs for the ImageCLEF 2021 coral reef image annotation and
localisation subtask.

Group Name Submission Run MAP 0.5 IoU

Pilsen Eyes 138115 0.121
Pilsen Eyes 137821 0.105
UAlbany 139118 0.001

Table 4
Performance in terms of all submitted runs for the ImageCLEF 2021 coral reef image pixel-wise parsing
subtask.

Group Name Submission Run MAP 0.5 IoU

Pilsen Eyes 139084 0.075
MTRU 138389 0.021
MTRU 138443 0.018
MTRU 138411 0.017
MTRU 138449 0.011

Table 5
Coral reef image annotation and localisation performance in terms of the pixel-wise Intersection over
Union (IoU) per benthic substrate
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Pilsen Eyes 139084 0.000 0.000 0.054 0.111 0.026 0.000 0.000 0.027 0.000 0.504 0.000 0.016 0.003
MTRU 138411 0.000 0.000 0.076 0.005 0.007 0.000 0.000 0.010 0.000 0.002 0.000 0.000 0.000
MTRU 138449 0.000 0.000 0.088 0.056 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MTRU 138389 0.000 0.000 0.096 0.011 0.000 0.001 0.000 0.030 0.004 0.000 0.000 0.000 0.000
MTRU 138443 0.000 0.000 0.128 0.023 0.026 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000

accumulated gradient 4 using a SGD optimiser; the initial learning rate was 0.005 with a step
decay of 0.0005 after 3 epochs. The training imagery were partitioned into a training set (80%)
and validation set (20%). Augmentation of the training data employed random horizontal flips
and brightness and contrast variations.

The MTRU [16] team only participated in the pixel-wise parsing subtask. The team employed
the DeepLabV3 model from a previous submission, based around ResNet-101. Features extracted
via ResNet undergo atrous convolution, which increases the field of view in the last layer by
inserting 0-values at a particular rate, then atrous spatial pyramid pooling to assign a label to
each pixel using different atrous convolution rates. The latter stages essentially make sure the
network has seen different fields of view of the data.

As well as working with only the ImageCLEF dataset, the MTRU team explored augmenting



the dataset with NOAA NCEI data on runs 138411 and 138449, which provided 3032 images and
classifications at 10 pixels per image. Perhaps surprisingly, incorporating these annotations
generally reduced the accuracy of classifications.

The UAlbany [14] team emphasised the importance of spatial relationships in analysing
feature classes such as fire coral and branching coral, which have similar spatial patterns. This
motivated them to make use of wavelet transforms in their approach, resulting in an over-
complete decomposition across multiple scales known as Wave-CLASS. Multiple training phases
were used. The first employed 120 images and 405 annotations across all 13 feature types while
the second employed 96 images and 515 annotations. There appears to have been some manual
intervention between first and second phases to ensure correctness.

6. Conclusion

The results of both sub-tasks were not as high as previous years. However, the 2020 task asked
participants to train on a single geographical location and test on multiple locations. This
year, the training set was from multiple locations, as was the test set. This multiplication of
complexity compounds the known difficulty of varied morphology and distribution of substrates
across different datasets and locations. This suggests that trying to develop a single generic
algorithm to detect coral reef substrate type will be challenging, even with the incorporation of
considerably larger datasets from other sources as training corpora.

The next steps for this work are to leverage the image overlap of the data to develop proba-
bilistic labelled models in 3D and develop cross-compatibility in large datasets for use in this
task.
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