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Abstract—Swallowing recognition is the leading step in the 

evaluation of dysphagia which seriously affects people’s life. 

Current medical swallowing monitoring methods require an in-

hospital environment and overly rely on professional knowledge 

of the medical staff. In this study, we developed a wearable 

swallowing recognition system that consists of an on-neck 

wearable swallowing sensing device and a data processing 

module on a host computer. The wearable device collects inertial 

signals including acceleration and angular velocity, as well as 

dual photoplethysmography (PPG) signals based on infrared 

and green light from the neck. A novel processing framework for 

dual PPG signals is proposed to extract and enhance the 

laryngeal motion component introduced by swallowing activities 

in the data processing module. The laryngeal motion component 

of dual PPG signals together with the preprocessed inertial 

signals are further used for feature extraction to proceed 

swallowing recognition based on random forest classifier. We 

collected data from 32 healthy subjects in the center and side 

positions on the neck using our system to analyze their 

swallowing activities. As a result, we achieved a high average 

area under curve (AUC) of the swallowing recognition by 86.6%. 

We also find the sensing position has a significant impact on 

gender-specific swallowing recognition performance, as the 

center position was better for females (92.9%), while the side 

position was better for males (87.6%). The results indicate that 

the proposed system could achieve high integrity and good 

performance, which is helpful for the future swallowing 

research. 

I. INTRODUCTION 

Swallowing is a common daily activity, which involves the 
movement of multiple cartilage and tissues, especially thyroid 
cartilage and cricoid cartilage. In clinical practice, the 
videofluoroscopic / videoendoscopic swallowing study (VFSS 
/ VESS) are commonly used to monitor subjects’ swallowing. 
However, such methods are limited by in-hospital 
environment and cannot fully reflect subjects’ swallowing 
state in daily life. Therefore, it is of great significance to study 
swallowing monitoring system with good user experience and 
the ability of daily monitoring, where mobile health 
technology could meet the requirements. 

Nicholls et al. [1] designed a skin like flexible polymer 
sensor for surface electromyography acquisition and a game 
feedback interface on computer to realize the functions of 
swallowing monitoring and swallowing behavior correction. 
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Kuramoto et al. [2] utilized microphones and inertial sensors 
to detect changes in neck angle during swallowing with a 
wireless visual feedback device to convey the swallowing 
state. Nagae et al. [3] implemented a swallowing monitoring 
system to monitor real-time swallowing behavior in daily life 
and distinguish swallowing from speaking and coughing. Wei 
et al. [4] considered that the movement of laryngeal cartilage 
introduced “noise” into laryngeal PPG signal, and they used 
the “noise” and inertial signals to identify swallowing 
behavior. 

In this study, we developed a wearable swallowing 
recognition system based on dual photoplethysmograghy 
(PPG) and inertial signals sensing from laryngeal movements 
that includes a novel dual PPG motion component extraction 
framework, and analyzed the swallowing behavior using the 
laryngeal motion information extracted from these signals. A 
total 470 10-second laryngeal movement data from 32 healthy 
subjects (14 females, 18 males) in the center and side positions 
were collected for system training and validation. The center 
position is located in the depression between thyroid cartilage 
and cricoid cartilage [5], and the side position is with the dense 
distribution of cricothyroid artery. The system achieved a high 
average area under curve (AUC) of the swallowing recognition 
by 86.6%. Meanwhile, the results indicates that the sensing 
position has a significant impact on the performance of 
gender-specific swallowing recognition, as the center position 
is better for the female swallowing recognition, while the side 
position is better for the male one. 

II. SYSTEM DEVELOPMENT 

We designed and implemented a wearable swallowing 
recognition system, as shown in Fig. 1. The inertial sensing 
data including 3-axis acceleration and 3-axis angular velocity, 
as well as the dual PPG data during swallowing and at rest 
were collected by the wearable device. These data were 
transmitted wirelessly to a host computer for data processing. 
The original inertial signals were first preprocessed by a 12-
level “sym8” wavelet decomposition and reconstructed 
without the approximation coefficient to eliminate the baseline 
drift. And the signals underwent a 10-point moving window 
mean smoothing to eliminate the burr. We took the modulus 
of acceleration and angular velocity respectively to reduce the 
feature dimension. On the other hand, the dual PPG signals 
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Figure 1.  Configuration of the swallowing recognition system 

were filtered by band-pass filter with a pass-band between 0.5 
Hz and 4 Hz, and the swallowing motion components were 
extracted by independent component analysis (ICA), time-
frequency proportion subtraction, and time-domain amplitude 
multiplication. The swallowing segments and resting segments 
were identified and distinguished by random forest. 

A. Wearable Device Design 

The on-neck wearable laryngeal movement sensing device 
is shown in Fig. 2. The device could acquire swallowing 
activities via inertial and dual PPG signals and transmit them 
to host computers by Bluetooth. Two pieces of elastic bands 
were integrated with the printed circuit board to achieve neck 
wearing function and improve the portability. The black tapes 
were applied to isolate the interference of ambient light. 

B. Dual PPG Motion Component Extraction Module 

Previous studies showed that PPG with long wavelength 
such as infrared light can be disturbed by the movement of 
deep tissues due to its stronger ability of penetration [6], which 
brings more motion component. And infrared light can reach 
deeper skin tissue than short light such as green and blue light 
[7]. Therefore, Zhang et al. [8] took the infrared PPG as the 
micro motion reference, and the green PPG with greater signal 
motion artifact ratio as the main signal to extract the heart rate 
(HR). The methods of normalized time-frequency subtraction 
after continue wavelet transform (CWT) and the time-domain 
decomposition and reconstruction were adopted to eliminate 
the motion noise and reconstruct the heart rate component. Lee 
et al. [9] adopted ICA to decompose the HR components from 
the PPG signals of 12 channels (4 positions with infrared, red, 
and green light), and then applied truncated singular value 
decomposition (SVD) to the further motion artifacts reduction. 
Additionally, in [10], the inertial signals and green PPG served 
as motion reference, and the red PPG was reconstructed to 
remove motion artifacts from based on wavelet method. 

Inspired by these studies, on the contrary, a framework was 
proposed in this study to extract motion components from PPG 
signals with different wavelengths for swallowing recognition. 
In particular, the motion component extraction module of this 
study mainly includes three steps as shown in Fig. 3. We first 
carried out ICA to preliminarily decompose the motion 
components and HR components in the infrared and green 
light PPG. Thus, we obtained two signals which are with 
greater correlation with the original infrared light PPG signal, 
and more sensitive to heart rate respectively. Then, to further 
reduce the coupling of the two signals, based on the difference 
between them in time-frequency domain, the wavelet 
coefficients proportion the two signals in the whole frequency 
band were compared with the other to retain the wavelet 
coefficients with greater proportion, and then the two signals 
described as “PPG  motion” and “PPG HR” in Fig. 3 

Figure 2.  The wearable device for swallowing signals acquisition 

Figure 3.  Dual PPG motion component extraction configuration 

were reconstructed respectively. Finally, since the swallowing 
and resting segments of the motion component (“PPG motion” 
in Fig. 3) both had high fluctuation, it was multiplied by the 
signal of the HR component (“PPG HR” in Fig. 3) with small 
overall fluctuation to enlarge the gap between swallowing and 
resting segments. As a result, the final motion component 
(“Final PPG motion” in Fig. 3) was extracted. 

C. Feature Extraction and Model Training 

In this system, we collected signals for 10 seconds at a 
time, while the basic swallowing recognition unit was set to 1 
second according to the generally approximate duration of 
single healthy swallowing with 5-mL bolus of 1 second [11]. 
We extracted 32 features from each of the signals including 
the modulus of three-axis acceleration, the modulus of three-
axis angular velocity and the PPG motion component in time 
domain, frequency domain, wavelet domain and information 
domain. In order to reduce individual differences, we 
calculated the ratio of features of each 1-second short segment 
in the 10-second sample, so as to focus only on the relative 
fluctuation per second in 10 seconds. The random forest 
screened out the features below a certain threshold according 
to the out-of-bag error (OOBE). Among the final features, the 
10 most commonly used features were the proportion of the 
following variables: the range of acceleration, the range of 
angular velocity, the range of PPG motion component, the 
mean value of angular velocity, the mean value of PPG motion 
component, the interquartile range of angular velocity, the 
interquartile range of PPG motion component, the standard 
deviation of acceleration, the standard deviation of angular 
velocity, and the standard deviation of PPG motion 
component.  

We applied 5-fold cross validation in the intra-group 
training and testing of random forest. In each fold, the best 
hyperparameter combination was selected according to F1-
score through grid search on the training set for each 10-
second sample. The inputs of random forest were the features 
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of each 1-second segment to classify whether it contained 
swallowing or not (1 bit “1” or “0”). Finally, a 10 bit “0” and 
“1” sequence was obtained for 10s samples. 

III. EXPERIMENTS 

A.  Experiment Setup 

In the experiment, the device was used to collect inertial 
signals and dual PPG signals for swallowing detection in two 
positions as described in Fig. 4 (a). One of the positions is the 
median depression between the thyroid and cricoid cartilage, 
i.e., the center position, and the other is the intersection of the 
horizontal line of thyroid cartilage and the circular thyroid 
artery, i.e., the side position. The former position with more 
bony structures reveals more swallowing information for 
inertial sensors, while the latter reflects stronger PPG signals 
due to its more abundant artery distribution. A total of 32 
healthy subjects participated in the experiment, including 14 
females and 18 males with an age of 22.6±2.1. This study was 
approved by the Medical Ethics Committee of the Medical 
College of Zhejiang University (Document No. 2020-107). 

B. Data Overview 

Subjects were asked to sit upright with the device fixed by 
an elastic band around their necks and the PPG sensor fitted 
the center or side position. For each position, the subjects 
swallowed a mouthful of 5 mL water at any time within 10 
seconds after the serial port indicator on the development 
board controlled by a button lighted on. A single measurement 
lasted for 10 seconds. The above steps were repeated 10 times, 
and the subjects remained stationary in another two repeated 
measurements. The system in measurement is shown in Fig. 4 
(b). The data were divided into four groups according to four 
conditions with the combinations of positions and gender as 
shown in Table Ⅰ. Each 10-second sample was labeled 
manually with the minimum unit of labeling set to 1 second to 
form a 10-bit sequence, and only when each second in this 
sample contained no swallowing, could it be identified as a 
negative sample. Otherwise, it was a positive sample. 

IV. RESULTS AND DISCUSSION 

A. Results 

In this study, all metrics were calculated based on the 
recognition results listed in Table Ⅱ [4] except the metrics p-
Accuracy and n-Accuracy. These two metrics are defined as 
the proportions of TP in all 10-second samples containing 
swallowing and the proportions of TN in all 10-second resting 
samples respectively. The swallowing recognition results of 
male and female in the two positions are shown in Table Ⅲ. 
Overall, the swallowing recognition performance of the 
system in female group with an average AUC of 91.0% (see 
the italic and bold in Table Ⅲ) is better than that in male with 
an average AUC of 82.2%. At the same time, for female, the 
center position is a more suitable position to collect 
swallowing signals due to its better recognition performance 
with an AUC of 92.9%. While the side position is better for 
male with an AUC of 87.6%. 

B. Feature Analysis and Discussion 

In order to explain the better data measurement position 
for each gender, we calculated the OOBE of each feature in 

Figure 4.  (a) Data collected positions, (b) System in measurement 

TABLE I.  DISTRIBUTION OF DATASET 

Groups 
Center Position Side Position 

Female Male Female Male 

Samples (10s) Pa Na P N P N P N 

Number 88 13 117 17 84 17 114 20 

Sum 101 134 101 134 

a. P and N refer to positive and negative samples collected during swallowing and at rest respectively 

TABLE II.  DEFINITION OF RECOGNITION RESULTS 

Results Definition 

TP 
Number of positive samples with each 1-sec segment 

correctly recognized 

TN Number of negative samples correctly recognized 

FP 

Number of negative samples incorrectly recognized + 

Number of positive samples with misjudged swallowing 

duration 

FN Number of positive samples identified as negative 

 
the random forest model for four groups (the higher the 
OOBE, the greater the importance of the feature), and listed 
five features with the highest OOBE, as shown in Table Ⅳ.  

The difference of swallowing recognition performance 
under four experimental groups are analyzed. For the female 
subjects, the performance with an AUC of 92.9% in the center 
position is better, which may be because the center position is 
in the main area of swallowing and is more affected by 
swallowing. The cartilage movement caused by swallowing is 
easier to be collected by the inertial sensor in the center 
position with more abundant cartilage and fewer arteries, 
which makes the inertial signal here better reflect swallowing. 
Thus, the five most important features of female in the center 
position in the Table Ⅳ are mainly inertial features with a ratio 
of 4/5. In the side position, although the influence of 
swallowing reflected by all signals is weak, the arteries 
increase and the cartilage decreases, which is beneficial for 
PPG signals reflecting swallowing. As a result, for female 
group, the significance of PPG features increases to 
compensate for the weakening of swallowing effects in the 
side position as the number of PPG features in the top 5 
important features increases from 1 in the center position to 3 
in the side position. 

The performance on female subjects is better for two 
reasons. Firstly, the poor fit between the board and the neck 
caused by the protrusion of male’s thyroid cartilage not only 
weakens the sensitivity of inertial signal to swallowing, but 
also leads to the decline of PPG signal quality as a result of 
light leakage. For the male subjects, the worse performance in 
the center position may be the result of the poorer fit of the 
board and the lower PPG energy. 
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TABLE III.  EVALUATION ON GENDER AND POSITION 

Groups Evaluation Metrics 

Gender Position TPR TNR Accuracy F-measure AUC p-Accuracy n-Accuracy 

Female 
Center 100.0%±0.0% 70.0%±27.4% 92.0%±9.1% 94.7%±6.4% 92.9%±9.6% 90.4%±11.2% 100.0%±0.0% 

Side 100.0%±0.0% 70.7%±34.9% 92.1%±9.1% 95.1%±5.5% 89.0%±16.0% 91.0%±9.9% 100.0%±0.0% 

Average for female 100.0%±0.0% 70.3%±31.2% 92.0%±9.1% 94.9%±5.9% 91.0%±12.8% 90.7%±10.6% 100.0%±0.0% 

Male 
Center 100.0%±0.0% 47.2%±27.6% 88.9%±6.9% 93.3%±4.0% 76.9%±11.5% 89.1%±7.2% 83.3%±23.6% 

Side 100.0%±0.0% 54.9%±15.3% 88.8%±4.5% 92.9%±3.1% 87.6%±9.3% 86.8%±5.3% 100.0%±0.0% 

Average for male 100.0%±0.0% 51.1%±21.3% 88.8%±6.1% 93.1%±4.0% 82.2%±10.6% 88.0%±7.0% 91.7%±2.4% 

Average 100.0%±0.0% 60.7%±26.3% 90.4%±7.4% 94.0%±4.7% 86.6%±11.6% 89.3%±8.4% 95.8%±5.9% 

TABLE IV.  THE FIVE MOST IMPORTANT FEATURES OF EACH GROUP 

Groups 

Female-Center Female-Side Male-Center Male-Side 

Feature Name OOBEb Feature Name OOBE Feature Name OOBE Feature Name OOBE 

Angular velocity (ω) mean 0.7651 ω range 0.6712 ω mean 0.7917 ω mean 0.6551 

ω standard deviation (std) 0.6527 PPG_m std 0.6071 Acceleration range 0.7577 PPG_m std 0.5971 

PPG motion (PPG_m) range 0.5795 PPG_m range 0.6065 PPG_m std 0.7049 ω iqr 0.5074 

ω range 0.5352 ω mean 0.5778 PPG_m range 0.6270 ω std 0.5027 

ω interquartile range (iqr) 0.3726 PPG_m mean 0.5521 ω std 0.6035 PPG_m mean 0.4336 

b. OOBE refers to out-of-bag error 

Different from the situation that the model in female group 
tends to use inertial signals in the center position and PPG 
signal in the side position, which is the natural result of 
physiological structure, the ratios of inertial features and PPG 
features in the two positions of male in the Table Ⅳ are both 
3:2, which indicates that the model on the male dataset “has 
to” take a compromise feature selection measure as a result of 
the poor signals. Secondly, the arteries of the female group 
may be more superficial [12], leading to stronger PPG that can 
be collected more under the influence of swallowing. 

V. CONCLUSION 

We developed a wearable swallowing recognition system 
based on inertial signals and dual PPG signals collected on the 
neck that reflect laryngeal movement during swallowing. In 
the data processing module, a novel processing framework for 
dual PPG signals is proposed to extract and enhance the 
motion in swallowing. The system was used to collect and 
process data from 32 healthy subjects in the center and side 
position on the neck which achieved a high average AUC of 
the swallowing recognition of 86.6%. In addition, we found 
that under our system, the better swallowing data acquisition 
positions related to performance are different for female and 
male. The center position is better for female with an AUC of 
92.9%, while the side position is better for male with an AUC 
of 87.6%. The system is expected to be used for daily 
swallowing monitoring and research on swallowing disorders. 
There are still some limitations. For example, the low fit of the 
hard printed circuit board and neck leads to the deterioration 
of signal quality, and the feature selection and recognition 
algorithm is also relatively rough, which will be improved in 
the follow-up study. 
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