
 1 

Contextualised Segment-Wise Citation Function Classification  

Xiaorui Jiang1, Jingqiang Chen2 

1 Coventry University, Coventry, UK xiaorui.jiang@coventry.ac.uk 

2 Nanjing University of Posts and Telecommunications, Nanjing, China cjq@njupt.edu.cn 

 

 

Abstract 

Much effort has been made in the past decades to citation function classification. Noteworthy issues exist. Annotation difficulty 

made existing datasets quite limited in size, especially for minority classes, and quite limited in the representativeness of a 

scientific domain. Different annotation schemes made existing studies not easily mappable and comparable. Concerning 

algorithmic classification, state-of-the-art deep learning-based methods are flawed by generating a feature vector for the whole 

citation context (or sentence) and failing to exploit the full realm of citation modelling options. Responding to these issues, this 

paper studied contextualised citation function classification. Specifically, a large new citation context dataset was created by 

merging and re-annotating six datasets about computational linguistics. A variety of strong SciBERT-based citation function 

classification models were proposed. In addition to achieving the new state of the art of citation function classification, this 

study focused on deeper performance analysis of to answer several research questions about the effective ways of performing 

citation function classification, more specifically, the necessity of modelling in-text citations in context and doing citation 

function classification at citation (segment) level. A particular emphasis was placed on in-depth per-class performance analysis 

for the purpose of understanding whether citation function classification is robust enough for scientometric applications, what 

implications can be derived for the applicability of citation function classification to different scientometric analysis tasks, and 

what further efforts are required to meet such analytic needs.  
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1. Introduction 

Citation context analysis (Zhang et al., 2013) is an important task in scientific text understanding with rich downstream 

applications envisioned in Ding et al., (2014). In addition to the cited content of a referenced paper, citation context also reveals 

the citing authors’ motivation to cite a paper, i.e. citation function (Teufel et al., 2006b), a.k.a. citation role, intent, or motivation 

etc. For instance, in Example 1 in Figure 1, the first citation “Prince et al., 1993” describes the weakness (“Weak”) of the cited 

work by Prince et al., while the second citation “Kisseberth, 1970” is simply a neutral citation, here meaning no specific 

intellectual relations with the citing paper but merely a mention or acknowledgement of an existing past study. 

        The past two decades have witnessed rich machine learning algorithms for citation function classification (CFC; Teufel et 

al., 2006b; Agarwal et al., 2010; Dong & Schäfer, 2011; Jochim & Schütze, 2012; Abu-Jbara et al., 2013; Iorio et al., 2013; Li 

et al., 2013; Jha et al., 2016; Hernández-Alvarez et al., 2017; Meng et al., 2017; Jurgens et al, 2018). See Iqbal et al. (2021) for 

a comprehensive review. The state-of-the-art (SOTA) of this research topic has been significantly advanced by deep learning 

in term of classification accuracy (Cohan et al., 2019; Beltagy et al., 2019). On a dataset with 6-class annotation scheme, the 

CFC performance has been improved from 54.9% macro F1 by the state-of-the-art feature engineering approach (Jurgens et 

al., 2018) to 67.9% by Cohan et al. (2019)] and 70.98% by Beltagy et al. (2019). CFC performances on specific academic 

entities like algorithm (Turado et al., 2021) or resource (Zhao et al, 2019; Zheng et al., 2021) can be higher, but they are not 

the focus of this paper. 

  

 

Figure 1: Examples of Citation Function Classification where Multiple In-Text Citations Have Different Functions. (Examples 

Taken from Teufel’s Annotation Guideline). 

 

1.1. Issues with Citation Function Annotations and Datasets  

Several noteworthy issues exist in past studies, which inspired the research questions to be answered by the current paper. 

Firstly, almost each study in the past used a different citation function annotation scheme, ranging from Teufel et al.’s most 

comprehensive 12 classes (Teufel et al., 2006a) to the drastically reduced scheme consisting of only three classes – Background, 

Method, and Result of the popular scicite dataset (Cohan et al., 2019; Beltagy et al., 2019) and its extension in Zhang et al. 

(2022). There was little work discussing and experimenting on these different annotation schemes (detailed in Sect. 2.1 and 

3.2). We argue that it is time and important to understand how well CFC performs and how well CFC serves different 

scientometric analysis tasks. Usually, existing datasets are also limited in data size due to annotation difficulty. Minority classes 

typically have only a few dozens of samples. For example, in Teufel et al. (2006a, 2006b), the two most important classes, 

“PModi” (technical modification of cited work) and “PBas” (ideationally based on cited work), both only have 60 instances. 

In Jurgens et al. (2018), the “Extends” class, equivalent to “PBas” and “PModi” combined, only has 73 instances. More extreme 

cases are the “hed” class (criticism via hedging) in Hernández-Alvarez et al. (2017) and the “Weak” class (weakness of cited 
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paper) in Su et al. (2019), which have only 40 and 30 annotations respectively. This makes these datasets less feasible for 

training large deep learning models. Aljohani et al. (2021a) merged the datasets of Teufel et al. and Jurgens et al., however 

their dataset is not easy to map against other annotation schemes (further elaborated in Sect. 2.1 and 3.2). Because of this, 

existing studies mainly worked on their own datasets with bespoke annotation schemes. From the discussions above, our first 

research question is stated below. The answer to this question may allow us to create a larger and more comprehensive citation 

function dataset.  

RQ1. What are the relationships between different citation function annotation schemes and the mappings between 

existing citation function datasets?  

1.2. Issues with Citation Function Classification Algorithms  

Concerning algorithmic classification, CFC was typically done on individual in-text citations, called citation-level CFC,  

although consecutive citations must have the same function. Being less discussed, most deep learning (DL) approaches 

generated a feature vector for the whole citation sentence (abbr. citance) or context, called citance-level CFC or context-level 

CFC, rather than modelling individual in-text citations (hereafter citations), including those reporting SOTA performances such 

as Cohan et al. (2019) and Beltagy et al. (2019). Early DL methods used Convolutional Neural Network (CNN; Lauscher et 

al., 2017; Bakhti et al., 2018; Su et al., 2019) or Bidirectional Long-Short Term Memory (BiLSTM; Munkhdalai et al., 2016; 

Cohan et al., 2019) as the encoder. These methods could only generate a feature vector for the whole citance or context, rather 

than individual citations. Recently, the SciBERT model reported impressively strong new SOTAs on a wide range of scientific 

text classification tasks (Beltagy et al., 2019). However, their CFC experiments were based on the sequence-level classification 

symbol “[CLS]”, i.e., at citance or context level. In practice, it is common to see multiple citations of different functions in the 

same citance. Figure 1 shows two examples of such case. The above methods would assign the same citation function to these 

citations. Unfortunately, this is conceptually flawed. Ideally, each citation should be modelled and classified separately. 

Therefore, the second research question is stated as follows. 

RQ2. Should CFC be performed at (in-text) citation level or at citance or context level: Which choice is empirically 

supported? 

        Some publicly available datasets only included citances and thus the DL methods only encoded citances (Cohan et al., 

2019; Beltagy et al., 2019), while many datasets included contexts of several sentences and thus the DL methods encoded 

citations in the context (Su et al., 2019). The CNN and BiLSTM encoders typically use max-pooling and self-attention to pool 

a summary feature vector for either the citance or the context, while the SciBERT encoder can also rely on sequence separator 

“[SEP]” and sequence classification symbol “[CLS]” for pooling citance representation and context representation respectively. 

We can conclude that existing DL models have only explored a very limited design space for the representation learning of in-

text citations. What is more, there is no systematic study of what encoding methods are the most effective for citation modelling, 

including the methods for encoding in-text citation, the enclosing citance, and the surrounding context, as well as whether and 

how citance and context encodings could help improve CFC performance. The third research question is defined as follows.  

RQ3. Should citation modelling be done in its context and what are the most effective methods for encoding and 

utilizing the representations of citation sentence and citation context for CFC? 
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1.3. Issues with Using Citation Function Classification Results  

Ideally, it is cognitively plausible to apply one CFC model to all the classes in an annotation scheme, as (almost) all existing 

studies do1. However, the reality might be that a CFC model does not work equally well on all citation functions. To understand 

this, we can think about the challenging class “CoCoXY” (comparison between two cited works) in Teufel et al.’s 12-class 

scheme (Figure 2). On the one hand, it bears linguistic similarity with other “CoCo” (Comparison or Contrast) classes because 

both use comparative expressions. A model that is good at detecting comparative expressions for the “CoCo” class may 

misrecognize many “CoCoXY” instances. On the other hand, a “CoCoXY” instance does not describe any relationship between 

the cited work(s) with the citing paper, so in this sense it is similar to “Neut” (neutral class for cases that cannot fall into other 

categories) and may be confused with “Neut”. This is why Jurgens et al. merged it into “Background” (their neutral class). In 

fact, while Cohan et al.’s second best model reported very good performance on “Background” on the ACL-ARC dataset 

(Jurgens et al., 2019), its performance on “CompareOrContrast” was poor (Cohan et al., 2019, Table 5). Their best model was 

greatly improved for “CompareOrContrast” at the cost of worse performances on “Extension” (cited work is based on or 

extended by citing paper) and “Motivation” (cited work motivates the citing paper). From the perspective just discussed, there 

is a need to explore various modelling options to find not only the best CFC model in term of overall classification performance, 

but also the best models for different citation functions, because there are a range of scientometic tasks that work with a specific 

citation function.     

RQ4. How well can a general-purpose citation function classification model suit different types of scientometric 

analysis tasks and what implications can we derive for the real-world application of citation function classification? 

 

 

Figure 2: Confusing Examples of “CoCoXY”: Examples from the Teufel et al.’s Annotations. 

 

1.4. Summary of This Paper  

This paper tries to answer, at least partially, the questions raised before. We also hope to provide a good benchmark of citation 

function classification and a set of strong baseline models which achieve new SOTAs for the purpose of facilitating the 

scientific community in furthering research in citation context analysis and semantics-driven scientometric and bibliometric 

analysis based on citation context analysis. For answers for the research question RQ1, we did a critical review of the existing 

citation function datasets and their annotation schemes and the important nuances in them, starting from which, we will show 

how different annotation schemes are partially mappable (Sect. 3.1). To deal with the data size issue, we aimed at enlarging as 

much as possible the minority classes. To this end, Sect. 3.2. will show how we were able to create a new citation context 

dataset with different citation function annotation schemes, ranging from Teufel et al.’s most cognitively plausible but most 

challenging 12-class scheme to Jurgens et al.’s most popular and most computationally feasible 6-class scheme. Consecutive 

                                                           

1 Lauscher et al., (2021) could be said the only exception, where multi-label CDC was the focus, which essentially built, or can be seen as building, one classifier per citation function.  
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citation strings were merged into citation segments. To answer research questions RQ2 to RQ3, we designed a series of strong 

deep learning models based on SciBERT (Beltagy et al., 2019) by extensively exploring the options of encoding citation context 

and/or citance into the citation feature representation (Sect. 4). Experimental results were reported and analysed to answer the 

questions about the best ways of modelling citations and performing CFC, including whether CFC should be performed at 

citation level, whether citations should be better modelled in context, and what are the best ways of encoding and combining 

citation, citance and context (Sect 5). Finally, in Sect. 6 we will make a deeper analysis of the CFC performances. By looking 

at the per-class performances and further analysing a special class “PSup”/“Support” (knowledge claims support each other or 

approaches computationally compatible/plug-in-able to each other, according to Teufel et al.’s definition), we will discuss what 

implications can be derived from both the CFC experiments and the answers for RQ2 and RQ3 for various types of downstream 

scientometric and bibliometric analysis tasks (RQ4). Finally, preliminary experiments of an ensemble CFC approach will be 

presented to further improve the overall CFC performance as well as the CFC performances for each class.  

2. Related Work 

Citation context analysis has a long history dated back to the 1980s. Initially, citation function analysis was mainly focused on 

the motivations for authors to cite references in scientific writing. Many citation function schemes were proposed by these 

social science studies. As these studies are not the focus of this paper and the line of research in algorithmic citation function 

classification, interested readers are referred to a good survey on the tasks about citation context analysis by Hernandez et al. 

(2016). Lyu et al. (2021) provided a good meta-synthesis approach to understanding the nature and classification of citation 

motivations. Kunnath et al. (2021) not only presented a comprehensive survey of the annotation schemes for citation function, 

but also covered the preprocessing steps and feature engineering approaches when applying machine learning algorithms for 

citation function classification (CFC), as well as a comparative analysis of the existing datasets/benchmarks and the state of 

the art of machine learning and deep learning methods on this task. 

        The early attempt to building an automated citation function classifier was rule-based where a so-called pragmatic 

grammar was manually created, which describes a number of handcrafted cue lists and certain syntactic constraints and 

relations on the cue words (Garzone and Mercer, 2000). Similarly, by designing a set of 160 cue phrased-based rules, Nanba et 

al. (2000) developed a three-type citation classifier for theoretical basis, gap or weakness, and other. In 2006, Teufel et al. 

(2006a) provided the first comprehensive and, at the same time, operationalizable 12-class annotation scheme and a dataset 

suitable for machine learning algorithms . The 12-class scheme follows a four-way distinction between the citation motivations: 

Explicit statement of weakness of cited work; contrast or comparison with other work; agreement, usage, or compatibility with 

other work; and a neutral category (holding all cases that unfit other categories). They designed a large set of features capturing 

commonly seen cue phrases in expressing scientific ideas as well as the syntactic information around these phrases or the main 

verbs of the citation sentence, and applied IBk (Instance-Based k-nearest-neighbor classifier) for CFC (Teufel et al., 2006b). 

Annotation schemes proposed in follow-up studies were greatly simplified from Teufel et al.’s scheme and more or less 

mappable to it (Li et al., 2013; Abu-Jbara et al., 2013; Jha et al., 2017; Hernández-Alvarez et al., 2017; Jurgens et al., 2018; Su 

et al., 2019). See Sect. 3.1-3.2 for more in-depth discussions. 

        Teufel et al.’s seminal works embarked a lot of research in this line by adapting their 12-class annotation scheme and 

adding or adjusting the syntactic features and lexical patterns around the manually collated informative cue-phrases for different 

classes (Agarwal et al., 2010; Dong & Schäfer, 2011; Li et al., 2013; Abu-Jbara et al., 2013; Jha et al., 2017; Hernández-Alvarez 

et al., 2017; Meng et al., 2017). Amongst this line, the work by Jochim and Schütze (2012) was special as they defined a four-

aspect annotation scheme: including conceptual v.s. operational (akin to “Fundamental_Idea” v.s. “Technical_Basis” in Dong 

and Schäfer (2011)), organic v.s. perfunctory (equivalent to important v.s. incidental), evolutionary v.s. juxtapositional (i.e., 

“based on” v.s. “alternative to” cited work), and confirmative v.s negational. While this scheme is cognitively plausible, not all 

aspects appear in every citation. This study also concluded on the significance of named entity features in CFC. The problem 
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with these studies is that they all provided their own schemes, datasets, algorithms but did not evaluate on the same benchmark. 

The SOTA result of feature engineering approaches was produced by Jurgens et al. (2018) with an easy-to-understand 6-class 

scheme, including “Background”, “Future”, “CompareOrContrast”, “Motivation”, “Uses”, and “Extends”. New features like 

topics of citation context, bootstrapped linguistic patterns around the citation, and PageRank rankings were introduced. This 

scheme was later used in the 3C shared tasks (Kunnath et al., 2020, 2021). 

        Recently deep learning approaches have been introduced to the CFC task. Earlier works applied CNN (Convolutional 

Neural Network) (Lauscher et al., 2017; Bakhti et al., 2018), BiLSTM (Bidirectional Long-Short Term Memory) (Munkhdalai 

et al., 2016) or CNN stacked over BiLSTM (Yousif et al., 2018) to encode the citation sentence or context and pool a feature 

representation of it, which was then fed into a linear or MLP (Multiple-Layer Perceptron) classifier. Pretrained word 

embeddings (Cohan et al., 2019; Roman et al., 2021) or contextualised language models (Beltagy et al., 2019; Maheshwari et 

al., 2021) were used to improve the understanding of citation contexts. A recent trend was to incorporate semantically related 

tasks into modelling the CFC task by use of multi-task learning. These supplementary tasks included sentiment classification 

(Yousif et al., 2019), citation worthiness prediction and section type classification (Cohan et al., 2019). A common issue with 

most existing deep learning solution, as will be demonstrated and discussed in more detail in Sect. 5, is that they typically 

model the whole citation sentence or context, which we believe is flawed. This study explored various ways of modeling 

citations. 

        A very closely related task, though being not our focus, is about identifying important or significant citations. Wan & Liu 

(2014), Zhu et al. (2014), and Valenzuela et al. (2015) were the seminar studies embarking on the topic of citation importance 

classification, after which a lot of studies were presented in this line (Hassan et al., 2017; Pride & Knoth, 2017; Qayyum & 

Afzal, 2019; Wang et al., 2020; Qayyum et al., 2021; Aljohani et al, 2021b). Citation importance classification can be seen as 

a special case of CFC with a further reduced annotation scheme because citation importance in essence has been defined based 

on citation function (Lu et al., 2014; Valenzuela et al. 2015). There difference is that CFC is done per each in-text citation, but 

existing citation importance classification is done on each citing and cited paper pair. Therefore, only paper metadata was used 

(Wan & Liu, 2014; Valenzuela et al., 2015). Full text features used were also primitive, such as cue phrases and textual 

similarities (Zhu et al., 2014; Hassan et al., 2018; Qayyum & Afzal, 2019; Ghosh et al., 2022). Deep learning approaches for 

this task suffered the same problem as in CFC (Yousif et al., 2019; Aljohani et al., 2021b; Maheshwari et al., 2021). 

3. Dataset and Annotation 

3.1. Citation Function Datasets and Annotation Schemes: A Critical Review  

In the past two decades, many citation context datasets were proposed. Table 1 gives a comprehensive but by no means 

exhaustive review of existing datasets. The table contains three parts: 1) general-purpose citation function datasets (the majority 

part), 2) special-purpose citation function datasets for a subset of citation functions or citation functions on specific scientific 

entities, and 3) a special type of datasets about citation importance (note that they are not about citation contexts but annotated 

per citing-cited paper pair). The “Fulltext” column says whether all citation contexts and all in-text citations of involved papers 

were annotated (marked by “”) or not (left blank). For the “Context (size)” column, the notation “[-l, +r]” specifies that the 

context consists of l sentences to the left and r sentences to the right sides of the citance, while a “?” indicates the information 

is unclear from the paper. The value “variable” means the context can be of a variable length according to user needs, usually 

thanks to the fact that full-texts of the articles are parsed and annotated (i.e., parse). “OA” stands for “open accessible”. The 

last column “Authoritative” indicates whether the annotations of the involved papers were done by the authors of papers 

(marked by “”).  

        Most datasets provided citation contexts of certain lengths. Teufel et al. (2006a, 2006b) and Hernández-Alvarez et al. 

(2017) annotated all citations in their full contexts. Dong and Schäfer (2011) instead annotated all citations only in their citances 
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and replaced each citation string with a pair of empty parentheses. Abu-Jbara et al. (2013), also Jha et al. (2016), and Su et al. 

(2019) used a window of sentences as context, while Jurgens et al. (2018) and Tuarob et al. (2020) used a window of words 

that were extracted and controlled by ParsCit2. It is valuable to provide full texts in the dataset so that users have the flexibility 

to define citation context according to application needs. As we observed in our own annotation process, sometimes context 

could be very large, far beyond 2-3 sentences at both sides of the citance. Lauscher et al. (2021) has made a similar claim. A 

representative case is Teufel’s General Rule 27 about meta-statements of the “CoCo” (Comparison or Contrast) class (Teufel, 

2010). The meta-statement may appear at the beginning of a paragraph to qualify all subsequent citations as “CoCo”, but some 

“CoCo” citations may be far from the meta-statement, as Example 5 in Figure 3 shows. “PMot” often requires larger context 

too. Teufel’s guidelines require annotators to skim-read the source paper to understand what approach/tool is used/extended to 

solve what problem, i.e. the contribution sentences defined in D’Souza et al. (2021). In this sense, context sentences for “PMot” 

can appear anywhere, although they will more likely occur in the Title, Abstract, Introduction and Conclusion sections. 

Therefore, we decided full text availability to be the first prerequisite for creating a citation context dataset. 

 

 

Figure 3. Example of Meta-statement of Comparison and Contrast. 

 

        We can observe that very different aspects were annotated for biomedicine (BM) and computational linguistics (CL) or 

computer science (CS) domains, which are non-ignorable nuances to mapping and merging different datasets. For example, 

BM had an obvious focus on scientific claims in biomedical publications, evidenced by the “confute/contrast” relationships, 

e.g., “Similarity/Consistency” v.s. “Contrast/Conflict” in Agarwal et al. (2010), and “Corroboration” v.s. “Contrast” in Li et al. 

(2013) and Meyers (2013). In addition, annotation schemes for BM are less consistent and mappable. Some categories are of 

specific interest to biomedical scientists, like “Evaluation”, “Explanation” and “Modality” in Agarwal et al. (2010) and 

“Discover+”, “Practical+” and “Standard+” in Li et al. (2013). On the other hand, citation function schemes for engineering 

science like CS or CL have been more or less “stabilised” to a 6-class scheme since Jurgens et al. (2018). Although Teufel et 

al.’s 12-class scheme (Teufel et al., 2006a; Teufel, 2010) may be the most cognitively plausible, the 6-class scheme is easier to 

understand and annotate by scientists not specialised in the area of citation context analysis. Therefore, our second prerequisite 

was that the annotation schemes of source datasets should be at least partially mappable. 

 

                                                           

2 https://github.com/knmnyn/ParsCit   
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Table 1. Survey of Existing Citation Function Datasets 

Dataset Fields* Size Annotation Scheme Fulltext  Context OA Authoritative  

Teufel et al. (2006a, 2010) CL 4022 Neut, Weak, CoCoXY, CoCoGM, CoCoR0, CoCo-, 

PSim, PSup, PMot, PUse, PModi, PBas 
 variable   

Agarwal et al. (2010) BM 3491 Background/Perfunctory, Contemporary, 

Contrast/Conflict, Evaluation, Explanation, Method, 

Modality, Similarity/Consistency 

 [-1, +1]   

Dong and Schäfer (2011) CL 1728 Level 1: Background, Compare, Fundamental 

Level 2: Background_GRelated, Background_SRelated, 

Background_MRelated, Compare, Fundamental_Idea, 

Technical_Basis 

    

Jochim and Schütze (2012) CL 2008 Aspect 1: conceptual vs operational;  

Aspect 2: evolutionary vs juxtapositional;  

Aspect 3: organic vs perfunctory;  

Aspect 4: confirmative vs negational. 

 variable   

Li et al. (2013) BM 6335 Based_on+, Corroboration+, Discover+, Positive+, 

Practical+, Significant+, Standard+, Supply+, Contrast=, 

Co-citation=, Neutral=,  

Negative- (+/=/-: positive/neutral/negative) 

 [-?, +?]   

Abu-Jbara et al. (2013) 

  also Jha et al. (2016) 

CL 2098 Neutral, Criticizing, Comparison, Substantiating, Basis, 

Use 

 [-1, +2]   

Hernández-Alvarez et al. 

(2017) 

CL 3013 acknowledge, corroborate, weakness, hedge, useful, 

based 
 variable   

Jurgens et al. (2018) CL 1954 Background, Compare or Contrasts, Motivation, Uses, 

Continuation (=> Extends), Future 

partial**  ***   

Cohan et al. (2019) CS, BM 11020 Background introduction, Method, Result comparison     

Su et al. (2019)  CL 1402 Neut, Weak, CoCo, Pos  [-1, +1]   

Kunnath, Pride, et al. (2020, 

2021) 

CS, BM 3000 Background, Compares_Contrasts, Motivation, Uses, 

Extension, Future  

    

Pride and Knoth (2020) various 11233 Background, Compare_Contrast (subclasses: similarities, 

differences, disagreement), Motivation, Uses, Extension, 

Future 

  ?  

Ferrod et al. (2021) 

 

various 1380 Proposes, Analyzes (subclass: critiques), Compares 

(subclass: contrasts), Uses (subclass: dataset), Extends 

Additional aspect: role – subj v.s. obj  

    

Lauscher et al. (2021) 

  Multi-label annotation 

CL 12653 Background, Differences, Similarities, Motivation, Uses, 

Extends, Future Work 

 variable   

Zhang et al. (2021) CL 9594 Relationship – Motivation, Comparison, Extension, 

Application;  

Content – Background, Method, Data, Result; 

Sentiment – Positive v.s. Negative 

 ?   

Zhang et al., (2022) 

 

CS, BM, 

plus CL 

9645*** Cohan et al., (2019) enlarged with CL papers: 

Background introduction, Method, Result comparison 

    

        

Meyers (2013) BM 291 Corroborate v.s. Contrast ? [-?, +?]   

Zhao et al. (2019), Zheng et 

al. (2021) 

Resource citation 

CL, ML, 

BM 

3088 Use, Produce, Introduce, Compare, Extend, Other 

Role: Material – Data; Method – Tool, Code, Algorithm; 

Supplement – Website, Document, Paper, Media, License  

 [-2, +2]   

Tuarob et al. (2020) 

Algorithm citation 

CS 8796 Level 1: UTILIZE v.s. NONUTILIZE 

Level 2: USE, EXTEND v.s. MENTION, NOTALGO 

 ****   

        

Jochim and Schütze (2012) CL 2008 2-grade: organic v.s. perfunctory (citation-level)  variable   

Wan et al. (2014) CL ~800 5-grade N/A N/A   

Zhu et al. (2015) various  140+ 2-grade: influential v.s. non-influential N/A N/A   
Valenzuela et al. (2015) CL 465 4-grade; 2-grade (important v.s. incidental) N/A N/A   

Qayyum and Afzal (2019) CS 488 2-grade N/A N/A   
        

This study 

CITSEG- and citation-

level annotation 

CL 4784/ 

3854 

11-/10-class: Future, Neutral, Weak, CoCoXY, 

CoCoGM, CoCoRes, Similar, (Support)*****, Motivation, 

Usage, Basis 

 [-2, +3] 

or 

variable 

  

* Field abbreviations: CL – Computational Linguistics; BM – Biomedicine; CS – Computer Science in general; ML – Machine Learning.   
** Not all citations and not all citation contexts were annotated. 
*** The original size, i.e., number of citation contexts, is 11965. We cleaned it to 9645 non-duplicate contexts. CFC is made on citation contexts rather than citations. 
**** A context window of a certain number of characters around the citation were extracted by ParsCit’s.context size is not in measured in sentence count.  
***** 11- or 10-class depending on whether including a Support class or re-annotating Support into other categories 
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3.2. Partial Mappability between Different Annotation Schemes  

In the past two decades, many citation context datasets were proposed for automatic citation function classification (see Table 

1 for a critical review). Refer to Kunnath et al. (2021), Lyu et al. (2021), and Hernández-Alvarez and Gómez (2016) for 

complete surveys of the datasets, tasks and methods. A possible way of creating a large citation context dataset is to merge and 

re-annotate existing datasets. Although biomedicine (BM) papers are freely available through PubMed Central3, there are only 

few datasets. In addition, BM datasets focused on relationships between scientific claims (Agarwal et al., 2010; Li et al., 2013; 

Meyers, 2013) and their annotation schemes are less consistent and hard to map. Therefore, most existing datasets were 

annotated on computational linguistics (CL) papers4. There was no publicly available BM dataset, but we were able to obtain 

six publicly available citation function datasets of CL papers for re-annotation, namely Teufel20105 (Teufel et al., 2006a; 

Teufel et al., 2006b; Teufel, 2010), Dong20116 (Dong & Schäfer, 2011), Jha20167 (Abu-Jbara et al., 2013; Jha et al., 2016), 

Alvarez20178 (Hernández-Alvarez et al., 2017), Jurgens20189 (Jurgens et al., 2018), and Su201910 (Su et al., 2019).  

      RQ1. What are the relationships between different citation function annotation schemes and the mappings between existing 

citation function datasets? The six datasets’ citation function annotation schemes are partially mappable (summarised in Table 

2). For example, the comparison functions “CoCoGM”, “CoCoR0” and “CoCo-” defined in Teufel2010 are merged into a 

single function in other datasets. “Technical_Basis” in Dong2011 subsumes the “PUse” and “PModi” functions in Teufel2010, 

and “Fundamental_Idea” conceptually subsumes “PBas”, “PMot” and “PSim”. The “bas” function in Alvarez2017 is 

equivalent to “Fundamental_Idea” and “Technical_Basis” combined, while “Pos” in Su2019 moves instances about similarity 

to “CoCo”. To conclude, we felt it feasible to re-annotate a large portion of each dataset. A less notable benefit is the wide time 

span of the combined dataset, ranging from early 1990s to late 2010s. We believe that the merged dataset can better reflect 

authors’ patterns in placing citations and exhibit richer language expressions around citations.  

3.3. Annotation Schemes and Dataset Reannotation 

Our dataset, named Jiang2021, was created in three steps: dataset preparation, re-annotation and post-processing (Figure 4). 

Due to space limit, the details of the whole pipeline were moved to the Appendix A. Three postgraduate research students in 

natural language processing were recruited for re-annotation. The four annotators, including the first author of this paper, re-

annotated all non-Neutral citation instances (excluding “Neut(ral)”, “Background”, “ack”) from the six datasets according to 

Teufel et al.’s 12-class scheme (Teufel et al., 2006a) plus a “Future” class for future work. The final function for each sample 

in dispute was adjudicated by consensus among the four annotators. Therefore, no inter-annotator agreement was reported. 

After re-annotation, we merged consecutive citation strings in each citance into a citation segment, represented by a pseudoword 

“CITSEG”. For example, the citance “SHRDLU (Winogard, 1973) was intended to address this problem.” would be tokenized 

and rewritten to “[“SHRDLU”, “(”, “CITSEG”, “)”, “was”, “intended”, “to”, “address”, “this”, “problem”, “.”]”. As a result, 

our dataset Jiang2021 gathered 3356 citation contexts, 4784 in-text citations, and 3854 CITSEGs in total (Table 3). Because 

“PModi” and “PBas” were still too small, although much bigger than past datasets, we decided to merge them into “Basis” 

(equivalent to “Extends”). “CoCo-” was split and re-annotated into “CoCoGM” and “CoCoR0” due to its small size. These 

                                                           

3 https://pubmed.ncbi.nlm.nih.gov/  
4 Association for Computational Linguistics (ACL) maintains an open repository of computational linguistics (CL) papers published in ACL-sponsored venues, called 

ACL Anthology https://aclanthology.org/  
5 https://www.cl.cam.ac.uk/~sht25/CFC.html  
6 https://aclbib.opendfki.de/repos/trunk/citation_classification_dataset/  
7 https://github.com/ivder/University-Project/tree/master/  (The “Citation Sentiment_Purpose Analyser/citation_sentiment_umich/” subfolder) 
8 http://rua.ua.es/dspace/handle/10045/47416  
9 https://github.com/davidjurgens/citation-function  
10 https://github.com/WING-NUS/citation_func_n_prov (We combined the “func” and “prov” portions of this dataset) 
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treatments resulted in our own 11-class citation function annotation scheme, which was mapped to 9-class, 7-class and 6-class 

schemes. 

 

 

Figure 4. The Dataset Re-annotation Pipeline. 

 

3.4. Discussions 

Context matters a lot for annotation. “Weak” instances often require reading a few context sentences ahead because a common 

scientific argumentation pattern is that the citance gives a neutral description while the following sentences point out its 

weakness. An issue related to multi-sentence context is that a citation may have multiple functions depending on how we deem 

it in the context, such as “Neutral” by only looking at the citance and “Weak” by looking at the context. From an application 

point of view, the stronger class overwrites or subsumes the weaker (Teufel, 2010). Therefore, we defined overwriting rules 

following Teufel (2010), e.g., “Weak” overwrites “Neutral”, and marked each citation with the strongest function based on its 

context. For another overwriting example, “Motivation” subsumes “Usage” if the plausible usage of something (qualifying 

“Usage”) is justified by a positive statement (qualifying “Motivation”), because one prerequisite of “Motivation” according to 

Teufel’s guidelines is that the citing study uses something from the cited. Multi-label annotation (Lauscher et al., 2021) is also 

a reasonable choice in such scenarios. We left it as a potential future direction to explore. 
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Table 2. Annotation Schemes, Statistics, and (Partial) Conceptual Mappings between Six Citation Function Datasets 

Teufel2010 Dong2011 Jha2016 Alvarez2017 Jurgens2018 Su2019 

Type # % Type # % Type # % Type # % Type # % Type # % 

PSup2 46 1.14 Background4  

 - GRelated 
General  
 - SRelated 
Specifics:  

method, 

parameter, … 

 - MRelated 
Methods that 

may be usable 

Neu 953 55.15 Substantiate?? 
Unmappable!! 

126 6.01 Background 

corroborate 
acknowledge 

 

 
debate (0) 

 
0 

 

0 
ComOrCon - - Neut 993 70.83 

Neut 
Neutral description, or not 
fit into other classes 

2398 
 

59.6 Future 69 3.53 

Neutral 1283 61.15 982 32.59 

Background 999 51.13 

CoCoXY  
Contrast between 2 cited 

methods 

125 3.11 0 0 

Pos   
PMot?                                                                                                           

149 8.62 

Criticising Pos 
PMot? 

71 3.38 Use (useful) 
Partly PMot? 

857 28.44 

Weak 
Weakness  

127 3.16 Neg 46 2.66 Neg 

 

150 7.15 Critique  

 - weakness 

 - hedge  

 
141 

 
4.68 

ComOrCon  

(Compare or 

Contrast) 

353 18.07 Weak 

 

30 2.14 

40 1.33 

CoCo- 
Unfavourable 
contrast/comparison 

(against cited work) 

62 1.54 Compare 70 4.05 Comparison 
 

122 5.82 Contrast 

(con) 

136 4.51 CoCo 

 

90 6.42 

CoCoGM1 

contrast/comparison in 
Goals or Methods 

187 4.65 

CoCoR0 
comparison in Results 

51 1.27 

PSim 
similar 

133 3.31 Fundamental 

 - (Fundamental) 
Idea 
+PSim 
 

 

 

127 7.35 Use (based) 
 = PSim +  

    PUse +  

    PModi +  

    PBas +  
    PMot  

 

491 16.30 

PMot 
positive about approach 
used or problem studied, as 

motivation for citing paper 

131 3.26 Basis 74 3.53 Motivation 89 4.55 Pos 
Positive 
(usage)  

289 20.61 

PBas 
starting point 

60 1.49 Extends 

 

78 3.99 

PModi 
Adapt or modify tools, 

algorithms, data etc. 

60 1.49  - (Technical) 
Basis 
+PSim 

420 24.31 

PUse 
Use algorithms, tools, data 

and etc. 

642 15.96 Use 272 12.96 Uses  366 18.73 

Total 4022   1728  2098  3013  1954  1402 
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Table 3. Citation function scheme mapping and CITSEG-level statistics of the re-annotated dataset 

Teufel2010 (12+1 class) 
 

Jiang2021 (11-class)  Jiang2021 (9-class) 
 

Jiang2021 (7-class)  Jurgens2018 (6-class) 

label 
size ratio  

label size ratio 
 
label size ratio 

 
label size ratio 

 
label size ratio 

citstr citseg citseg     

Future 97 85 2.21%  Future 85 2.21%  Future 85 2.21%  Future 85 2.21%  Future 85 2.21% 

CoCoXY 200 152 3.94%  CoCoXY 152 3.94%  
Neutral 1615 41.90% 

 

Background 1773 46.00% 

 
Background 1615 41.90% 

Neut 1924 1463 37.96%  Neutral 1463 37.96%    

Weak 223 158 4.10%  Weakness 158 4.10%  Weakness 158 4.10%   

ComOrCon 944 24.49% 

CoCoGM 390 299 7.76%  
CoCoGM 328 8.51% 

 

Comparison 479 12.43% 

 

ComOrCon 479 12.43% 

 

CoCo- 108 80 2.08% 
    

 
CoCoRes 151 3.92% 

   

CoCoR0 107 100 2.59%     

PSup 123 100 2.59%  Support 100 2.59%  Support 100 2.59%  
Similar** 307 7.97% 

 

PSim 247 207 5.37%  Similar 207 5.37%  Similar 207 5.37%   

PMot 365 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47% 

PUse 794 755 19.59%  Usage 755 19.59%  Usage 755 19.59%  Uses 755 19.59%  Uses 755 19.59% 

PModi 72 65 1.69%  
Basis 167 4.33% 

 
Basis 167 4.33% 

 
Extends 167 4.33% 

 
Extends 167 4.33% 

PBas 134 102 2.65%     

Total 4784 3854    3854    3854    3854    3854  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 13 

4. Citation Function Classification Algorithms 

We designed a series of SciBERT-based DL models for citation function classification. The overall model architecture is shown 

in Figure 5. To perform segment-wise CFC, the pseudoword “CITSEG” was added to the vocabulary of SciBERT. SciBERT 

was used to encode the citation context. The CITSEG Encoder used the encodings of CITSEG as the citation representation h. 

According to Lauscher et al. (2021), more than 90% citation instances could be annotated based on the citance alone, so we 

defined the Citance Pooler to generate the citance representation s. To handle citations requiring multi-sentence contexts, the 

Context Pooler generated the context representation c. In this study, we fixed the context window to [-2, +3], i.e. two left and 

three right sentences. Indeed, Lauscher et al. (2021) showed that a very tiny portion of citation instances need contexts larger 

than 6 sentences. The final feature vector f was the concatenation of these three parts, i.e., f = [h; s; c]. An MLP (Multiple-

Layer Perceptron) was used for citation function classification. Citation representation was a mandatory component distinguish 

different citations in the same citance, but citance and context representations were optional. If only context representation was 

used, then f = [h; c]. On the contrary, we also tested only using citance representation, i.e., f = [h; s], to prove the indispensability 

of citation context.  

 

 

Figure 5. SciBERT-based Citation Semantics Analysis Model (Demonstrated Using a Hierarchical Context). 

 

        Following the BERT tradition, the token sequence of citation context was prepended with the sequence-level classification 

symbol “[CLS]” and appended with a sequence separator “[SEP]” to the end. Two types of contexts were tested: sequential 

context without inserting “[SEP]” to separate context sentences and hierarchical context with sequence separators inserted after 

each context sentence. For sequential context, citance representation was pooled from the tokens of the citance by applying a 

citance mask to the context, while context representation was pooled from all context tokens. We opted for two types of 

citance/context poolers: max-pooling (Eberts & Ulges, 2020) and self-attention (Munkhdalai et al., 2016). For hierarchical 

context, context representation was pooled from the representations of all enclosed sentences that were generated by a Sentence 

Pooler. In this case, “[SEP]” was used as the third option for pooling sentence representation.   

        In summary, the citation function classification model architecture was controlled by several options, as shown in Table 

4 and subsequent tables. Ctx_type specified whether a sequential context (ctx_type = sequential) or hierarchical context 

(ctx_type = hierarchical) was used. Citance and context defined the citance pooler and context pooler respectively. 

Valid options included “max_pool”, “self_attnd” or “X” (i.e., not used). Context pooler had the last option “[CLS]”. With a 

sequential context, citance and context poolers generated feature representations from the tokens, therefore sentence encoder 

(the sentence option) did not apply (“N/A”). Sentence specified the sentence encoder in case of a hierarchical context. 

Valid options included “max_pool”, “self_attend” and “[SEP]”. Finally, citseg specified whether CITSEG encoder was used 
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(i.e., citseg = O) or not (i.e., citseg = X). The former meant performing segment-wise CFC. The latter was purposed for 

simulating existing deep learning approaches which performed either citance-level or context-level CFC (discussed in the 

Introduction section).  

5. Results 

5.1. Experimental Implementation  

The models were implemented using HuggingFace’s Transformers library11 (version 4.2.2). The pretrained SciBERT model 

was downloaded from the official website12 and the special token CITSEG was added to its vocabulary. The word embedding 

of CITSEG was randomly initialized and learned during the training process. Citation context was built in a “zig-zag” way, i.e., 

first concatenating the right context sentence to the citance, then the left, and so on, until the context length reached the 512-

token threshold of SciBERT. If citance alone exceeded the threshold (typically due to a failure in sentence segmentation), we 

centered the context window around the target CITSEG to include as many tokens as possible from both sides. Most SciBERT 

hyperparameters were unchanged. For self-attention, the attention dimensionality was fixed to 250. The hidden size of the MLP 

was twice the feature vector (f) size. The AdamW optimizer was used with most parameters set to default. The initial learning 

rates for the parameters of SciBERT and MLP were initialised to 5e-5 (lr_pret: learning rate for the pretrained model, i.e., the 

SciBERT part) and 5e-4 (lr_cust: learning rate for the customised part, i.e., MLP) respectively. Different initial learning rates, 

like lr_pret = 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, and 5e-3, were tested for the MLP but no significant difference was seen. The learning 

rate warmup ratio was fixed to 0.1. The batch size was fixed to 16 for training and validation. The experiments were run on a 

GeForce RTX 3080 GPU card, with CUDA version 11.6. The samples of each citation function were randomly split into 

training (65%), validation (15%) and testing (20%) splits and then merged. Each model was trained for a maximum of 20 

epochs with five randomly generated seeds (5171, 13429, 25603, 32491, 47353). The “best” models were picked based on their 

validation performance. For each model variant, i.e., each combination of modelling options, the best F1, average F1 and the 

standard deviation across 5 runs were reported.  

5.2. An Additional Dataset and Baseline 

For a fair comparison (explained below), we also experimented on an additional dataset extended from scicite and compared 

with the most recent SciBERT-based contextualised CFC approach, which is also the only known SciBERT-based 

contexualised CFC method to the best of our knowledge. Both the dataset and the baseline methods were proposed by Zhang 

et al. (2022). The dataset was named NI-Cite (Native Information enhanced Citation dataset) by us. The NI-Cite dataset 

was extended from scicite by (i) including all instances from the latter and introducing a few thousand more instances from 

ACL papers, (ii) complementing each citance with one left context sentence and one right context sentence, (iii) enriching each 

citation context with a series of metadata, called “native information”, such as the functional role of the enclosing section13, the 

titles, DOIs and Web URLs of the citing paper and cited paper. The original dataset has 11195 citation contexts, each citation 

context labeled with one citation function. During data preprocessing, we found there were a lot of errors and duplicates in the 

original NI-Cite dataset. Thus, we cleaned as many duplicates as detectible using our own in-house scripts and removed as 

many errors as possible by both programmatical and manual check. Finally, there were 9645 citation contexts remained in the 

cleaned NI-Cite dataset14. Note that this dataset only has three functions: Background, Method and Results. The 3-class 

                                                           

11 https://github.com/huggingface/transformers    
12 https://github.com/allenai/scibert  
13 Such as Abstract, Introduction, Method, Results, Conclusion 
14 See our GitHub fork of Zhang et al.’s code and data repository: https://github.com/xiaoruijiang/nativeinformation  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/huggingface/transformers
https://github.com/allenai/scibert
https://github.com/xiaoruijiang/nativeinformation


 15 

annotation scheme is used in Semantic Scholar15, technically backed by Cohan et al. (2019) and Beltagy et al. (2019), both 

coming from the Semantic Scholar group of Allen Institute for Artificial Intelligence. However, we believe this annotation 

scheme is too simplified and cognitively incomplete, which severely limits its real-world scientometric use.  

        The two baselines were compared to were both from Zhang et al. (2022). Because we found that the cross-references of a 

large portions of the original NI-Cite dataset were wrong, and so were the titles and DOIs of the cited papers, so we thought 

it unreliable to use such information. In addition, the Jiang2021 dataset only contains section titles but no manually annotated 

section functional roles, so we only compared our methods to Zhang et al.’s two baseline methods which do not use metadata 

but only use citation context (See the last two rows in Table 4 and the last two columns in Figure 6 in Sect. 5.6). The first 

baseline “ni-cite w/ context” encoded the citance alone and used “[CLS]” for classification. The second baseline “ni-cite w/o 

context”, considered one left context sentence, the citance, and one right context sentence. Zhang et al. used SciBERT to encode 

each sentence separately, pooled the citance representation and two context sentence representations using “[CLS]”, and 

concatenated the three sentences’ representations for classification. As such, Zhang et al.’s method actually did citance-level 

CFC. For this group of experiments, most hyperparameters were borrowed from the original implementations reported in their 

paper. However, we did grid search for learning rate (lr) and loss accumulation steps (acc_step) with the following 

hyperparameter ranges: lr in [1e-4, 5e-5, 1e-5, 5e-6], and acc_step in [1, 10, 20]. Similar to the experiments on Jiang2021, 

20 epochs were run.  

5.3. Citation Function Classification Results: Summary 

Table 4 shows the CFC performances on the Jiang2021 dataset. There are in total 36 model variants (models hereafter when 

the context is clear): models seq-01 to seq-12 and hie-01 to hie-24. We also ran preliminary CFC experiments using citance 

alone. They are models cita-01 to cita-03, where cita-01 simulates previous studies based on SciBERT which used the sequence 

classification symbol “[CLS]” for classification (Beltagy et al., 2019; Varanasi et al., 2021)16. In addition, we also ran five more 

models which encoded each citation’s context or each citation’s enclosing citance in its context but uses the context or citance 

representation alone for classification, i.e., models seq-x07 to seq-x11. They are the CITSEG-agnostic counterparts (i.e., citseg 

= X) of models seq-07 to seq-11 respectively. The difference between seq-x07 with cita-01 is that the former encoded the whole 

context while the latter only encoded the citance. The difference between seq-x08 (resp. seq-x09) and cita-02 (resp. cita-03) is 

similar. Finally, the difference between seq-x10 (resp. seq-x11) and cita-02 (resp. cita-03) is that the former encoded the citance 

in its context while the latter encoded the citance alone. To prove that citations should better be encoded in their contexts, we 

also tested CITSEG-only variants (i.e., model seq-12 and hie-24). The top-3 models (from seq-01 to seq-12 and hie-01 to hie-

20) in term of best macro F1 were highlighted in bold underlined, bold, and underlined fonts respectively. If a top-3 model 

falls in seq-x07 to seq-x11, then it is highlighted in bold italic. 

        On the 11-class annotation scheme, the best F1 was as high as 66.16% and the average F1 could reach more than 63.5%. 

Considering the cognitive complexity of the 11-class scheme, the performance figures were already promising. We also tested 

all models on the 9-class, 7-class, and 6-class schemes. An observable consistent trend from all models in Table 4 was that the 

more concise the annotation scheme, the better the overall classification performance. The best F1 was improved by 1.62% to 

67.78% on the 9-class scheme, by about 6.65% to 72.81% on the 7-class scheme, and further to 74.03% on the 6-class scheme, 

an 7.87% absolute improvement from the 11-class scheme. Correspondingly, in term of average F1, the best performance was 

improved from around 63.5% on the 11-class scheme to around 70.9% on the 6-class scheme, an approximately 7.40% absolute 

improvement. These performance results could be deemed rather strong compared to two recent SOTAs: 67.9% by (Cohan et 

                                                           

15 https://www.semanticscholar.org/  
16 Models cita-01 to cita-03 are CITSEG-agnostic. This is however what most SciBERT-based SOTAs did. In fact, we also tested the CITSEG-aware versions: Encode the citance 

alone and set the feature vector as f = h, or f = [h; s] (citance = CLS, max_pool or self_attend). The performances were not good. The highest F1 was only around 59%, demonstrating 

the necessity of modelling citation context for CFC.  
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al. (2019) and 70.98% by Beltagy et al., (2019). Concerning the latter SciBERT baseline, we will present more experimental 

results in Sect. 5.6. Note that the results were only indicative and not directly comparable because (1) they were obtained from 

our own dataset Jiang2021, and (2) we did CFC for each in-text citation segment, i.e., segment-wise CFC, but both SOTAs 

did citance-level or context-level CFC (and used different randomly generated seeds). Our dataset absorbed Teufel2010 and 

Alvarez2017, which contain all citations in all sentences. On the contrary, not all citations in Jurgens2018 were 

annotated and even the citations in the same citance were not all annotated. This might give citance-level CFC a small unfair 

advantage. Citance-level CFC is likely to stumble when seeing more citances with multiple citations of different functions. 

This claim was partially supported by the fact that models seq-x07/08/09 performed consistently worse than all CITSEG-aware 

models on all annotation schemes, and models seq-x10/x11 were most of the time worse than their CITSEG-aware counterparts. 

Note that, however, model seq-x07 simulated Beltagy et al.’s approach, so we are rather confident to conclude the superiority 

of our contextualised models 

5.4. Citation-Level v.s. Citance-Level  

In this section, we try to answer RQ2. Should CFC be performed at (in-text) citation level or at citance or context level: Which 

choice is empirically supported? In Table 4, models cita-01/02/03 reported the CFC performances by only encoding citance 

and using citance representation alone, i.e., no context sentences are considered. This is how Beltagy et al. (2019) reported their 

results on the scicite dataset (Cohan et al., 2019). On the contrary, models seq-x07/x08/x09 encoded the surrounding 

context and used the context representation alone for classification. This is how Beltagy et al. reported their results on the 

Jurgens2018 dataset. We can observe a consistent phenomenon across all four annotation schemes that the performances 

of the citance-level CFC models, i.e., the CITSEG-agnostic models seq-x07/08/09, were worse than their context-level 

counterparts, i.e., the CITSEG-aware models seq-07/08/09 which used the pooled context representation to enhance citation 

representation. The poor performances of models seq-x07/08/09 justified our statement that it is conceptually flawed to use the 

summarised context representation for CFC. The citance-level CFC models cita-01/02/03 got even worse performance than all 

the citance-level models we tested. From the above observations, we can partially conclude that citation function classification 

should be done per citation rather than per citation sentence or context.  

        However, this trend seemed to disappear when comparing the models which used the pooled citance representation to 

enhance citation representation against the citance-level CITSEG-agnostic counterparts, i.e., models seq-09/10 against models 

seq-x09/x10. Generally, it looked like that the CITSEG-aware models and CITSEG-agnostic models performed on par. They 

both could win in some scenarios and the performance figures could be said close. It seemed that in certain cases, citance alone 

could provide strong enough signals for CFC. This partially explains why Beltagy et al. (2019), the first SciBERT baseline, 

performed extremely well on the scicite dataset, which contains only a single citance for each sample and thus only allows 

CFC at citance level. From the above, it seems hard to draw a convincing conclusion. But, we can still observe the fact that all 

(top-2) best-performing models on all annotation schemes came from the family where citation was properly encoded in its 

context, e.g., models seq-08 and seq-06 on the 11-class scheme, models seq-12 and hie-08 on the 9-class scheme, models hie-

14 and hie-19 on the 7-class scheme, and models seq-01 and seq-12 on the 6-class scheme (model seq-x10 is an exception; its 

avg F1 is not very competitive implying that it might not be a very stable model). Therefore, it stills seems valid to conclude 

that citation function classification should be done per citation rather than per citation sentence. 
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Table 4. Citation Function Classification Performances on Different Annotation Schemes 

Model options   Macro F1 (%) 

Model citseg ctx_type 
Encoding methods  11-class 

 

9-class  7-class  6-class 

citance context sentence  best avg std 
 

best avg std  best avg std  best avg std 

seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11 
 

66.53 63.89 1.94  70.70 69.03 1.45  74.03 70.88 1.87 

seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45 
 

64.84 63.60 1.08  71.39 68.13 1.89  70.23 68.25 1.60 

seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04 
 

65.61 63.66 1.91  70.19 69.24 0.64  70.99 68.86 1.71 

seq-04 O sequential self_attnd CLS N/A  63.12 62.07 1.00 
 

65.16 63.86 1.03  68.56 67.54 1.46  69.96 68.22 1.58 

seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20 
 

64.69 64.19 0.47  68.86 66.80 1.62  71.56 69.05 1.85 

seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60 
 

64.84 62.52 1.48  70.63 69.16 1.43  72.19 69.81 1.37 

seq-07 O sequential X CLS N/A  64.65 61.01 2.21 
 

65.38 62.20 1.78  70.35 68.28 1.33  71.48 69.75 1.07 

seq-08 O sequential X max_pool N/A  66.16 63.53 1.55 
 

66.03 62.98 2.05  69.89 67.98 1.90  70.98 69.90 1.21 

seq-09 O sequential X self_attnd N/A  63.92 62.80 0.89 
 

65.41 64.18 0.75  70.80 69.78 0.85  71.91 69.66 1.47 

seq-10 O sequential max_pool X N/A  63.93 62.72 1.11 
 

66.19 63.72 2.74  69.16 67.87 1.85  71.89 70.18 1.77 

seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89 
 

66.92 64.58 1.45  68.83 67.22 1.75  71.32 69.69 1.01 

seq-12 O sequential X X N/A  64.93 63.50 1.04 
 

67.78 64.74 1.88  70.65 69.28 1.30  73.56 70.22 2.44 

seq-x07* X sequential X CLS N/A  60.20 58.93 1.06 
 

60.28 59.34 0.87  62.74 61.68 0.94  68.07 66.20 1.73 

seq-x08 X sequential X max_pool N/A  59.54 57.89 1.40 
 

61.36 59.34 1.68  63.97 62.81 1.18  65.56 64.43 1.15 

seq-x09* X sequential X self_attnd N/A  60.55 58.72 1.22 
 

59.96 59.02 0.92  65.10 63.95 0.99  68.31 65.90 2.48 

seq-x10 X sequential max_pool X N/A  64.09 62.23 1.70 
 

65.04 63.62 1.6  68.68 67.85 0.62  73.52 69.31 3.12 

seq-x11 X sequential self_attnd X N/A  64.38 62.46 1.13 
 

67.08 64.21 2.38  69.34 67.31 1.90  69.48 68.85 0.59 

cita-01 X citance CLS N/A N/A  58.16 56.20 1.64 
 

60.30 58.75 1.38  60.30 58.75 1.38  63.58 62.39 1.16 

cita-02 X citance max_pool N/A N/A  57.47 55.77 1.36 
 

59.07 58.00 1.06  59.07 58.00 1.06  63.88 61.81 1.58 

cita-03 X citance self_attnd N/A N/A  59.49 58.13 1.11 
 

56.99 56.01 1.17  56.99 56.01 1.17  62.54 61.51 0.95 

hie-01 O hierarchical SEP max_pool SEP  62.78 61.76 0.89 
 

65.39 63.24 1.40  69.18 67.35 1.50  69.39 68.42 1.25 

hie-02 O hierarchical SEP self_attnd SEP  61.42 61.42 0.96 
 

63.12 61.95 1.60  70.00 67.76 1.73  71.08 69.87 1.51 

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12 
 

65.39 63.24 1.40  69.18 67.35 1.50  71.71 69.60 1.36 

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71 
 

63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69 

hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21 
 

64.96 62.95 1.50  67.77 66.39 0.84  70.09 67.83 1.74 

hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71 
 

63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69 

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51 
 

62.37 61.25 1.00  70.76 68.71 1.60  70.22 67.94 1.38 

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24 
 

67.49 64.51 1.97  69.53 67.47 1.73  69.77 68.24 1.33 

hie-05 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59 
 

64.69 62.92 1.16  69.38 67.66 1.49  72.11 70.07 1.8 

hie-08 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89 
 

65.45 63.11 2.21  69.45 68.75 0.41  71.40 70.02 1.03 

hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99 
 

64.00 62.80 1.62  68.76 67.09 1.50  72.38 69.33 3.07 

hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83 
 

65.36 64.28 0.97  69.66 68.27 1.60  70.78 69.56 1.57 

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15 
 

64.97 63.97 0.80  70.10 67.99 1.88  71.49 69.52 1.66 

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02 
 

65.69 64.44 1.29  72.81 69.47 2.64  71.32 68.35 2.22 

hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14 
 

65.53 63.07 1.66  68.71 67.12 1.45  73.24 70.19 2.41 

hie-16** O hierarchical X self_attnd SEP  63.22 62.25 0.89 
 

65.24 63.79 1.09  69.57 67.97 1.90  71.56 70.40 1.18 

hie-17** O hierarchical X max_pool max_pool  64.56 64.16 0.39 
 

65.96 62.81 2.29  69.35 67.96 1.31  70.90 70.04 0.94 

hie-18 O hierarchical X self_attnd max_pool  64.95 62.82 1.64 
 

66.07 63.76 1.56  70.05 68.87 0.97  72.09 69.35 2.11 

hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18 
 

65.35 64.16 1.08  72.39 68.40 2.47  71.89 70.48 1.04 

hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60 
 

66.25 63.79 1.97  70.88 69.54 1.10  70.72 69.75 1.1 

hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39 
 

65.36 64.11 0.96  69.81 68.19 1.04  72.81 70.96 1.32 

hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39 
 

66.88 63.38 2.06  69.47 67.89 1.93  72.81 70.96 1.32 

hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05 
 

64.60 61.89 1.56  68.82 66.55 2.23  70.38 69.28 1.19 

hie-24 O hierarchical X X N/A  64.37 62.80 1.51 
 

65.68 64.97 0.73  70.44 69.01 1.29  72.07 71.21 0.70 

ni-cite w/o context 
(Zheng et al., 2022) 

 51.94 (lr = 1e-5)  52.44 (lr = 1e-5)  58.47 (lr = 5e-5)  59.83 (lr = 5e-5) 

ni-cite w/ context  52.55 (lr = 5e-5)  51.99 (lr = 5e-5)  55.92 (lr = 5e-5)  60.27 (lr = 5e-5) 

* Models seq-x07 (note: no intermediate “[SEP]”) and seq-x09 simulate the CFC approach in Beltagy et al. (2019) and Cohan et al. (2019) respectively. 

** Difference between models hie-16/18 and seq-10/11: The former takes into consideration intermediate “[SEP]” symbols.                                                     
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5.5. Effectiveness of Contextualised Encoding  

In this section, we will look at what answers can be derived for RQ3. Should citation modelling be done in its context and what 

are the most effective methods for encoding and utilizing the representations of citation sentence and citation context for CFC? 

To answer whether citation modelling should be done in its context, we should look at several aspects. Firstly, considering the 

citance-only CITSEG-agnostic models, i.e., cita-x01 to cita-x03, the highest F1 was only around 59%, which demonstrated the 

necessity of modelling citation context for CFC. Recall that the best feature engineering approach by Jurgens et al. (2018) got 

a 54.6% F1 while BiLSTM reported a 54.3% F1 on the Jurgens2018 dataset (Cohan et al., 2019). Despite being not directly 

comparable, the results still proved the power of domain-specific contextualised word embeddings like SciBERT. These 

performances were much worse than the models which encode citance in its context, i.e., seq-x07 to seq-x11. We also ran the 

CITSEG-aware counterparts of cita-x01to cita-x03, which encoded the citance and used citance representation to enhance 

citation representation, i.e., f = [h; s]. Their performances were very close to cita-x01 to cita-x03, thus much worse than their 

contextualised counterparts seq-07 to seq-12. The results are not shown in the table as they are not our focus. Anyway, these 

results partially support our conjecture that citations should be encoded in its context.  

        Secondly, there was a confirmative fact that, for all annotation schemes, the best models all encoded the whole context 

and used context representation and/or citance representation to enhance citation representation, i.e., the representation of 

“CITSEG”. For example, the best model on the 11-class scheme seq-08 used the max-pooled context representation to enhance 

citation representation. The best model on the 6-class scheme used “[CLS]” as the pooled representation to enhance citation 

representation. For the 7-class scheme, hie-14 was the best model, which used both citance representation and context 

representation that were, respectively, pooled from the citance words that were encoded in the whole context and the 

representations of all context sentences. The only “exception” was the 9-class scheme, where the best model seq-12 only used 

citation representation. However, “CITSEG” was still encoded in its full context. In summary, we could argue that citations 

should better be encoded in its context. This conclusion can be further supported by the unexpected strong performances of 

models seq-x10/x11, which pooled citance representation from the SciBERT-encoded context for citance-level CFC, i.e., 

without using citation representation, while the context-agnostic counterparts cita-x02/x03 performed very poor.  

        Concerning the second part of the question, what are the most effective methods for encoding and utilizing the 

representations of citation sentence and citation context for CFC, it is very hard for us to draw meaningful conclusions. For 

different annotation schemes, the best encoding combination (of citance pooler, sentence encoder and context pooler) has to be 

determined case by case. Using sequential context, “self_attnd” was most of the time a stronger context pooler than “max_pool” 

when context representation was used to enhance citance representation, e.g.,  by comparing models seq-03/06 against models 

seq-02/05 respectively. However, we see that model seq-01, i.e., ctx_type = “sequential”, citance = “self_attnd” and 

context = “[CLS]”, was very strong across all four annotation schemes. This corroborates with experiments on scientific 

named entity recognition where this combination also produced highly competitive results (Eberts & Ulges, 2020; Jiang, 2021). 

It would be interesting to investigate more NLP tasks and more datasets to see whether this phenomenon is a coincidence or a 

certain level of regularity. However, in general, it is unable for us to say whether “self_attnd” or “max_pool” is a better context 

pooler; more mixed behaviours happened to models seq-08/09 and seq-10/11, including models seq-x08/x09 and seq-x10/11.  

        The same also applies to hierarchical context. No conclusions could be made to which is the better context pooler, 

“self_attnd” or “max_pool”; more mixed behaviours happened. The only regularity we find is that “self_attnd” worked better 

than “max_pool” as context pooler in the following setting: citance = “X” and sentence = “max_pool” (comparing 

models hie-18 against hie-17).  Further, we are unable to conclude from Table 4 whether “self_attnd” or “max_pool” is a better 

sentence encoder; mixed behaviours happened across all annotation schemes. To see this clearly, we need to do a bit of re-

arrangement of Table 4. See Table B1 in Appendix B, where we used upward or downward arrows to indicate performance 

gain or loss when changing one option while fixing the others, a pair of upward and downward arrows to indicate mixed 
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behaviours in terms of best F1 and avg F1 or equal performances, and a yellow trèfles to indicate the cases where “[SEP]” 

performed the best as sentence encoder. For the latter case, it is also difficult to conclude whether “[SEP]” is a good sentence 

encoder. However, what we can confirm is that “[SEP]”, as sentence encoder, sometimes brought competitive performances, 

such as models hie-15 on the 6-class scheme, and hie-04/06 on both the 7-class and 6-class schemes (See the yellow trèfles in 

Table B1). It would be interesting to investigate if “[SEP]” could be further pre-trained to be a better sentence encoder, for 

example, by following the pre-training paradigm used for long document extractive summarisation (Xu et al., 2020). 

        Concerning citation pooler, still we are unable to answer which is better, “self_attnd” or “max_pool”. To better see this, 

we need to re-arrange the rows about models seq-04/05/06 against seq-01/02/03 respectively. See Table B2 in Appendix B. 

The only regularity we could find is again that “max_pool” worked better than “self_attnd” as citance pooler together with 

“[CLS]” as context pooler. This strengthens our conjecture on the compatibility between the settings citance = max_pool” 

and context = “[CLS]”. Similarly, there were mix behaviours with hierarchical context. The only regularity occurred when 

context = “X”, where “max_pool” outperformed “self_attend” as citance pooler. Overall, “max_pool” outperformed 

“self_attnd” in more cases as citance pooler (Table B2). Finally, we may be able to conclude that, across both sequential and 

hierarchical contexts, it is NOT effective to integrate citance representation alone with citation representation, when the latter 

is properly encoded in its context (comparing model seq-12 against seq-10/11, model hie-24 against hie-21/22/23). Often, the 

best (top-2) models were either the models using context representation to enhance citation representation or the models 

integrating both context and citance representations. The only two exceptions were seq-12 on the 9-class and 6class schemes. 

Anyway, even for these two exceptions where only citance representation was used to enhance citation modelling, the citance 

tokens were contextually encoded too. This re-iterates the importance and usefulness of encoding citation in its context. 

5.6. Additional Experiments on NI-Cite 

For the purpose of demonstrating the necessity of modelling citations in their contexts, this section presents our additional 

experimental results on the NI-Cite dataset (Figure 6). We report the top-3 best performances (with suffices “max”, “2nd” 

and “3rd”), the mean (with suffix “avg”) and median (with suffix “medn”) of all CITSEG-aware models with a sequential 

context (with prefix “seq-??”) and of all CITSEG-aware models with a hierarchical context (with prefix “hie-??”). We also 

report the max, mean and median performances of all five CITSEG-agnostic models with a sequential context (with prefix 

“seq-x??”), the performances of the three CITSEG-agnostic models on single citance (cita-01/02/03). For comparison purpose, 

the rightmost two columns report the performances of the two baseline models of Zhang et al. (2022) (with prefix “ni-cite”): 

One ignores citation context (with suffix “w/o ctx”), and the other encodes context sentences (with suffix “w/ ctx”).   

        The best F1 score we achieved was 83.21%. It was almost on par with the best performances reported by running the 

method of Zhang et al. (2022) using their best seed, which was 83.61% without considering citation context (the “ni-cite w/ 

context” column in Figure 6). We also see that the three citance-level models, cita-x01 to cita-x03, were among the top models, 

surpassing their contextualised counterparts, i.e., models seq-x07 to seq-x11. These results implies that the NI-Cite dataset 

(Zhang et al., 2022), as well as the scicite dataset (Cohan et al., 2019) it extends on, is “problematic” in the sense that the 

citations actually could be recognised using the citance alone. Indeed, the scicite dataset, as we discussed in Sect. 3.1, does 

not contain citation context information. We argue that the dataset might be annotated using citance alone. Another nuance is 

that scicite and its extended version NI-Cite both assign one label to each citance. Therefore, it did not help much by 

encoding citation context, although the best performance of Zhang et al. (2022) was improved a bit to 84.06% by searching the 

best learning rate. This may also explain why the citance-level model slightly outperformed the citation-level models on NI-

Cite, although the latter, i.e., the citation-level models, proved to be much stronger on the Jiang2021 dataset (described in 

the next paragraph). Note that, our contextualised CFC models were not hyperparameter-tuned; due to high computational 

overloads, the same learning parameters as in the experiments on Jiang2021 were used for all model variants, i.e., lr_pret = 

5e-5 and lr_cust = 5e-4. Excluding the impact of random seed, we also conjecture that the slight performance disadvantage 
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might also be caused by the fact that, for the NI-Cite dataset with the easiest 3-class annotation scheme, the 3-layer MLP 

used in our models might be harder to learn than the linear classifier used by Zhang et al. Anyway, our contextualised CFC 

models were competitive.  

        On the contrary, the picture on Jiang2021 was totally different (see the last two rows in Table 5). We found that acc_step 

= 1 always produced the best performances on Jiang2021. We can see that the Zhang et al.’s method reported extremely 

poor performances, even after extensive hyperparameter tuning. This not only demonstrated that citation context provides 

indispensable information for CFC, but also proved that citation context often may be quite large. Again, we can claim the 

importance that citations should be encoded in its context (answer for RQ3), and that citation function classification 

should be done at citation level rather than per citance (answer for RQ2). In addition, citation function annotation should 

also be done at context level rather than relying on citance alone. Recall that Zhang et al.’s method dealt with only one context 

sentence at each side of a citance, while our methods dealt with the 2 left context sentences and 3 right context sentences. 

Indeed, it is a difficult problem to decide the proper context size. A promising ideal is to determine a “dynamic” context, i.e., 

the minimal context around a citance which can provide enough information for determining the citation function (Abu-Jbara 

et al., 2012; Aggarwal et al., 2016). We leave this line of research to future work. 

 

 

Figure 6. CFC Performances on the NI-Cite Dataset. 

 

6. Analysis and Discussions 

This section will present a more in-depth analysis of the CFC results, with our thoughts focused on the last research question: 

RQ4. How well can a general-purpose citation function classification model suit different types of scientometric analysis tasks 

and what implications can we derive for the real-world application of citation function classification? 

6.1. Per-Class Performance Analysis 

Table 5-8 present the per-class performances of a few selected models that performed well with at least one annotation scheme. 

Note that the first three models in each table are the top-3 models on the corresponding annotation scheme. Citation functions 

that are large or cognitively less complex were easier to recognise, such as “Neutral”/“Background” and “Usage”/“Uses”. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 21 

Teufel et al. (2006b) and Cohan et al. (2019) made similar observations. For example, the best models for neutral citations 

achieved 78.85% F1 with the 11-class scheme (model hie-08 in Table 5), also the highest per-class performance 78.85%; 

achieved 79.66% F1 with the 9-class scheme (model hie-14 in Table 6); achieved 82.64% F1 with the 7-class scheme (model 

seq-06 in Table 7), already close to the highest per-class performance 83.45%; and achieved 79.88% F1 with the 6-class scheme. 

“Future” was a small and easy class. Indeed, the linguistic features were more obvious than most other categories for re-

annotation. The highest F1 could reach 90.91% on the 11-class scheme (model seq-06) and the 9-class scheme (model hie-18), 

and 90.32% with 100% precision on the 7-class scheme (model seq-06, seed = 25603). This allows accurate bibliometric 

analysis of the impact and role of future work in scientific development (Teufel, 2017; Hao et al., 2020).  

        There were a few difficult classes too. “Basis” was a difficult citation function. Language patterns like “following <cited>” 

and “based on <cited>” might cause confusion between “Basis” and “Usage”. Human annotators often disagreed on this class 

too. Indeed, Teufel (2010) reported a low inter-annotator agreement on “PBas” (κ = 0.41) and “PModi” (κ = 0.55)17. Concerning 

algorithmic classification, good models could achieve 66.67% F1 on the 11-class scheme (model seq-08 in Table 5). Note that 

the best performance 69.70% F1 was obtained by a citation-agnostic model seq-x10. This is probably because usually there is 

only one approach, i.e., one CITSEG, in a citation sentence that is “based on” by the citing paper. On the 7-class scheme, we 

are excited to see an obvious performance improvement to 70% F1 (model seq-01 in Table 7, “Extends” = “Basis”). For 

“Motivation” we could get higher than 71.70% F1. This is promising. The best performance obtained for the motivation class 

was 73.21% F1 on the 6-class scheme (model hie-10, the “best of all models” column in Table 8). The overall best performing 

models, in term of macro F1, could not produce the best performances for “Motivation”. In summary, these results are 

promising because they make it possible to screen out perfunctory citations using a good “Neutral”/“Background” model or to 

keep organic citations (Jochim & Schütze, 2012) using good “Usage”/“Uses” and/or “Basis”/“Extends” models as well as 

“Motivation” models, which is an important first step for semantic analysis of  scientific knowledge flows (Jiang et al., 2022; 

Ghosal et al., 2022). 

        Comparison or contrast functions often recorded good performances. With the 11-class scheme (Table 5), we got high F1 

scores for “CoCoRes” (78.12%, by model seq-12) and “CoCoGM” (71.83%, by model seq-08). With the 9-class and 7-class 

schemes, the F1 scores were able to reach 77.23% (model seq-12 in Table 6) and 77.84% (model hie-21, the “best of all models” 

column in Table 7) respectively. The 7-class scheme merged “Weakness” into “Background”. We can see that the “Background” 

performance on the 7-class scheme was greatly improved to 83.45%. Empirically it seems better to merge “Weakness” into 

“Background”; meanwhile we also feel it cognitively more plausible to do so compared to merging it into “ComOrCon”. On 

the contrary, the 6-class scheme (Jurgens et al., 2018) merged both “Weakness” and “Similar” (including “Support”) into the 

comparison classes. However, the performance for “ComOrCon” was not worsened on the 6-class scheme. This is promising 

if our analysis does not distinguish similarity versus comparison, contrast, and difference between two studies. Cognitively, 

both “Similar” (“Support”) and “ComOrCon” imply high topical or technical relatedness between studies, thus these results 

are very useful for building academic recommendation systems for many downstream applications, such as identifying related 

studies for assisting peer review and performing systematic review.  

        A related class was “Support” (equiv. Teufel et al.’s “PSup” class), which was also the most difficult class. The best F1 

values on “Support” were only 50% and 51.16% on the 11-class and 9-class schemes respectively. Even such low performances 

were rarely seen. Similarly, Teufel (2010) reported a 0.47 F1 by her machine learning algorithm on “PSup” and the lowest 

inter-annotator agreement 0.27 among all her classes. Since “Support” caused an extremely low recognition rate, it was 

acceptable to merge it into other classes, but Table 7 shows that simply absorbing “Support” into the “Similar” class made it 

more difficult to correctly recognise the similarity class. According to Teufel’s annotation guidelines, there are two distinct 

                                                           

17 Krippendorff’s alpha (κ): https://en.wikipedia.org/wiki/Krippendorff%27s_alpha.  
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meanings of “PSup”/“Support”, i.e., compatibility between scientific knowledge claims or computational plug-in-ability 

between approaches (viewed as technical compatibility), which have quite different language uses. Therefore, we tried to re-

annotate all “Support” instances into other categories and re-ran all experiments. Sect. 6.3 will present the results. 

        “CoCoXY” was another confusing category. One possible reason is that, for certain cases, we need a meta-statement about 

comparison in a long context, which however often falls out of our context window. Example 3 in Figure 2 illustrates this case, 

where the first sentence is the meta-statement. Without seeing such a meta-statement, the “CoCoXY” instance could be mis-

recognised as either “CoCoGM” or “Neutral”. This class often confuses with Teufel’s Rule 40 about “List of Approaches”, 

which says “Neut” (=“Neutral”) should be applied if no meta-statement of comparison exists. Although in certain cases we can 

infer the comparisons from juxtaposed citations, the annotation guideline says that only explicit comparison expressions qualify 

“CoCoXY”. Example 4 in Figure 2 illustrates the latter case. 

6.2. No Single Model Fits All  

An important observation is that no single model variant and no single trained model (with a specific seed) could beat others 

on all function categories or on all annotation schemes. This phenomenon is especially obvious on the 6-class scheme (Table 

8), where the model with the best overall performance (74.03% F1) was not the best model in term of per-class performance 

for any citation function. On the contrary, the second best model (73.56% F1) won on the “Future” class, while the third best 

model (73.22% F1) won on “Background”, “ComOrCon” and “Uses” classes by large margins. By now, we can conclude for 

RQ4 that no single CFC model is robust enough for performing scientometric analysis tasks based on citation context 

analysis. Our opinion is that, for each different task, it is better to choose or develop a bespoke CFC model tailored to that task.  

        For example, the best CFC model for “Future” should be chosen to analyse the scientometric value of the future work 

sections of a paper (Teufel, 2017; Hao et al., 2020). To bibliometrically analyse the usage of scientific entities, such as 

algorithm usage (Wang & Zhang, 2020), method usage (Wang et al., 2022), software usage (Li et al., 2019), or dataset usage 

(Fan et al., 2022), we will need to turn to the best “Usage” model. However, the annotation schemes adopted in this study are 

rooted in Teufel et al.’s 12-class scheme, and does not annotate the type of cited entity, such as algorithm, method, software, 

and dataset etc. To facilitate fine-grained scientometric analysis, it would be better to employ a two-level annotation scheme, 

e.g., Lu et al. (2014) and Zhang et al. (2021), which considers not only why something is cited but also what specific scientific 

entity is cited. To analyse scientific research lineage or technology dependency roadmap (Zha et al., 2019; Yin et al., 2021), 

we will need a strong CFC model for “Basis”/“Extends” citations. The best model across all four annotation schemes reported 

a 70.00% F1. While the overall performance can be said good, there is still a problem of trade-off between precision and recall. 

As this is the most important class (Lu et al., 2015; Valenzuella et al., 2015), there is large room of improvement and demand 

of further research. In Sect. 7, we will see how a simple ensemble method could improve the performance to around 75% F1.  

        For the purpose of scientific ranking, we may wish to either suppress incidental citations (Valenzuella et al., 2015) or 

even remove such perfunctory citations (Jochims & Schütze, 2012). Luckily, “Future” and “Neutral”/“Background” both 

reported good performances. Recall that the best “Background” model absorbed “Weakness” and reported an 83.45% F1. We 

believe that it is valid to rely on citation function classification to screen out incidental/perfunctory citations, or weight 

citations based on citation function. We leave this line of research for future work. Recall that the best performances reported 

on the Ni-Cite dataset were about 83-84%, on par with the best “Background” model we obtained. In the 3-class annotation 

scheme, only the “Usage” class corresponds to significant citations. In addition, it would be interesting to do main path 

network analysis (Jiang et al., 2020) in a citation semantics-aware way. To do this, we can choose to keep only organic 

citations by use of strong “Usage” and “Basis”/“Extends” modes. Optionally, we can also only rely on good “Basis”/“Extends” 

models if we emphasise on the “evolutionary v.s. juxtapositional” aspect of citations (Jochims & Schütze, 2012), which 

characterizes whether a citing study “builds on the cited work” or “presents an alternative to the cited. Jiang et al. (2022) 

presented the initial attempt of this idea. 
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Table 5. Per-Class Performances of Selected Models with the 11-Class Scheme 

ID (seed) seq-08 (5171)  seq-06 (47353)  hie-18 (13249)  hie-08 (32491)  seq-12 (5171)  seq-11 (47353)  seq-01(13249)  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 68.50 65.17 66.16  67.74 64.05 65.12  67.10 64.17 64.95  65.18 65.31 65.02  65.59 65.11 64.93  65.28 64.00 64.42  65.91 63.28 63.93  -- -- -- 

Future 88.24 88.24 88.24  93.75 88.24 90.91  93.33 82.35 87.50  66.67 82.35 73.68  70.00 82.35 75.68  87.50 82.35 84.85  81.25 76.47 78.79  93.75 88.24 90.91 

Neutral 72.24 78.16 75.08  74.76 79.86 77.23  75.60 75.09 75.34  78.19 79.52 78.85  77.48 79.86 78.66  75.33 78.16 76.72  77.70 78.50 78.10  78.19 79.52 78.85 

Weakness 65.52 59.38 62.30  70.37 59.38 64.41  73.91 53.12 61.82  65.52 59.38 62.30  71.43 46.88 56.60  66.67 56.25 61.02  75.00 46.88 57.69  76.92 62.50 68.97 

CoCoXY 69.23 58.06 63.16  60.00 48.39 53.57  59.46 70.97 64.71  57.58 61.29 59.38  69.23 58.06 63.16  51.61 516.1 51.61  58.82 64.52 61.54  78.57 70.97 74.58* 

CoCoGM 67.11 77.27 71.83  70.97 66.67 68.75  72.41 63.64 67.74  63.38 68.18 65.69  62.16 69.70 65.71  67.65 69.70 68.66  52.53 78.79 63.03  67.11 77.27 71.83 

CoCoRes 65.62 67.74 66.67  62.50 80.65 70.42  81.82 58.06 67.92  63.64 67.74 65.52  75.76 80.65 78.12  62.50 80.65 70.42  68.75 70.97 69.84  80.00 77.42 78.69 

Similar 67.74 50.00 57.53  60.87 66.67 63.64  60.00 57.14 58.54  68.42 61.90 65.00  59.18 69.05 63.74  67.57 59.52 63.29  60.98 59.52 60.24  71.05 64.29 67.50 

Support 46.15 30.00 36.36  46.15 30.00 36.36  34.62 45.00 39.13  36.84 35.00 35.90  38.10 40.00 39.02  42.11 40.00 41.03  29.41 25.00 27.03  47.53 55.00 51.16 

Motivation 65.00 67.24 66.10  59.42 70.69 64.57  51.85 72.41 60.43  65.08 70.69 67.77  62.90 67.24 65.00  61.29 65.52 63.33  74.07 68.97 71.43  65.71 79.31 71.88 

Usage 77.94 70.20 73.87  76.39 72.85 74.58  71.71 72.19 71.95  77.62 73.51 75.51  77.21 69.54 73.17  75.54 69.54 72.41  79.86 73.51 76.55  79.17 75.50 77.29 

Basis 63.16 70.59 66.67  70.00 41.18 51.85  63.33 55.88 59.38  74.07 58.82 65.57  58.06 52.94 55.38  56.25 52.94 54.55  66.67 52.94 59.02  71.88 67.65 69.70* 

* This result comes from model hie-13. 

** This result comes from model seq-x10. 

 

Table 6. Per-Class Performances of Selected Models with the 9-Class Scheme 

ID (seed) seq-12 (47353)  hie-08 (47353)  seq-11 (47353)  hie-18 (13491)  seq-08 (32491)  hie-14 (5171)  hie-14 (25603)  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 69.25 67.13 67.78  67.51 67.89 67.49  68.24 66.31 66.92  72.21 62.51 66.07  70.71 63.02 66.03  67.90 64.62 65.69  69.37 63.58 65.67  -- -- -- 

Future 93.33 82.35 87.50  86.67 76.47 81.25  86.67 76.47 81.25  93.75 88.24 90.91  92.31 70.59 80.00  83.33 88.24 85.71  76.19 94.12 84.21  93.75 88.24 90.91 

Neutral 77.31 79.94 78.60  76.53 73.46 74.96  46.88 75.93 76.40  73.94 85.80 79.43  74.86 83.64 79.01  76.88 75.93 76.40  73.88 86.42 79.66  73.88 86.42 79.66 

Weakness 65.38 53.12 58.62  60.61 62.50 61.54  66.67 56.25 61.02  94.44 53.12 68.00  70.00 43.75 53.85  78.26 56.25 65.45  62.50 46.88 53.57  80.00 62.50 70.18 

Comparison 68.81 80.41 77.23  63.25 76.29 69.16  64.55 73.20 68.60  60.00 71.13 65.09  67.31 72.16 69.65  67.77 84.54 75.23  66.98 73.20 69.95  68.81 80.00 77.23 

Similar 62.79 64.29 63.53  61.36 64.29 62.79  60.87 66.67 63.64  64.86 57.14 60.76  58.54 57.14 57.83  57.78 61.90 59.77  68.57 57.14 62.34  76.47 61.90 68.42 

Support 45.45 50.00 47.62  50.00 55.00 52.38  52.94 45.00 48.65  30.00 30.00 30.00  61.54 40.00 48.48  46.67 35.00 40.00  50.00 35.00 41.18  66.67 40.00 50.00 

Motivation 59.46 75.86 66.67  62.69 72.41 67.20  59.46 75.86 66.67  79.17 65.52 71.70  68.42 67.24 67.83  69.23 62.07 65.45  79.55 60.34 68.63  79.17 65.52 71.70 

Usage 79.84 68.21 73.57  76.47 68.87 72.47  78.26 71.52 74.74  82.26 67.55 74.18  81.68 70.86 75.89  71.15 73.51 72.31  80.00 66.23 72.46  76.13 78.05 77.12 

Basis 65.38 50.00 56.67  70.00 61.76 65.62  67.86 55.88 61.29  71.43 44.12 54.55  61.76 61.76 61.76  60.00 44.12 50.85  66.67 52.94 59.02  82.61 55.88 66.77 
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Table 7. Per-Class Performances of Selected Models with the 7-Class Scheme 

ID (seed) hie-14 (13249)  hie-19 (13249)  seq-02 (32491)  seq-01 (47353)  seq-12 (32491)  seq-06 (25603)  seq-06 (13249)  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 73.04 73.04 72.81  73.72 71.26 72.39  71.18 71.80 71.39  76.77 66.83 70.77  70.00 71.57 70.65  74.60 68.23 70.63  70.08 70.66 70.35  -- -- -- 

Future 82.35 82.35 82.35  86.67 76.47 81.25  82.35 82.35 82.35  100.0 58.82 74.07  72.22 76.47 74.29  100.00 82.35 90.32  76.47 76.47 76.47  93.33 82.35 87.50 

Background 80.28 81.18 80.73  80.91 83.99 82.37  81.34 82.02 81.68  77.25 86.80 81.75  83.67 80.62 82.12  81.08 84.27 82.64  82.15 81.46 81.81  80.10 87.08 83.45 

ComOrCon 83.12 65.98 73.56  73.96 73.20 73.58  70.71 72.16 71.43  71.29 74.23 72.73  76.40 70.10 73.12  59.35 75.26 66.36  73.12 70.10 71.58  81.82 74.23 77.84 

Similar 63.08 66.13 64.57  64.41 61.29 62.81  63.16 58.06 60.50  58.62 54.84 56.67  55.56 64.52 59.70  58.93 53.23 55.93  54.10 53.23 53.66  63.08 66.13 64.57 

Motivation 61.43 74.14 67.19  62.90 67.24 65.00  66.67 65.52 66.09  68.52 63.79 66.07  61.19 70.69 65.60  71.70 65.52 68.47  68.25 74.14 71.07  80.85 65.52 72.38 

Uses 76.32 76.32 76.32  79.58 74.83 77.13  77.93 74.83 76.35  80.95 67.55 73.65  75.32 76.82 76.07  79.71 72.85 76.12  76.47 77.48 76.97  83.85 72.19 77.58 

Extends 64.71 64.71 64.71  67.14 61.76 64.62  56.10 67.65 61.33  80.77 61.76 70.00  65.62 61.76 63.64  71.43 44.12 54.55  60.00 61.76 60.87  80.77 61.76 70.00 

 

 

Table 8. Per-Class Performances of Selected Models with the 6-Class (Jurgens2018) Scheme 

ID (seed) seq-01 (47353)  seq-12 (5171)  hie-15 (13249)  hie-15 (5171)  seq-06 (5171)  hie-18 (47353)  hie-19 (25603))  best of all models 

 P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

Macro Avg 77.27 71.53 74.03  75.86 71.82 73.56  72.80 73.81 73.24  72.80 72.17 72.17  75.27 69.69 72.19  75.91 70.06 72.09  72.34 71.55 71.89  -- -- -- 

Future 92.86 76.47 83.87  93.33 82.35 87.50  83.33 88.24 85.71  81.25 76.47 78.79  8667 76.47 81.25  82.35 82.35 82.35  76.47 76.47 76.47  88.24 88.24 88.24 

Background 75.00 78.70 76.81  75.29 79.01 77.11  78.92 80.86 79.88  75.83 77.47 76.64  74.71 80.25 77.38  76.21 73.15 74.65  77.13 78.09 77.61  78.92 80.86 79.88 

ComOrCon 73.37 76.44 74.87  73.80 72.25 73.02  77.22 72.77 74.93  72.19 70.68 71.43  71.07 73.30 72.16  62.55 82.20 71.04  73.23 75.92 74.55  76.68 77.49 77.08 

Motivation 67.24 67.24 67.24  61.90 67.24 64.46  61.54 68.97 65.04  55.84 74.14 63.70  72.00 62.07 66.67  72.55 63.79 67.89  62.30 65.52 63.87  75.93 70.69 73.21 

Uses 78.26 71.52 74.74  77.78 74.17 75.93  78.23 76.16 77.18  78.36 69.54 73.68  76.81 70.20 73.36  84.55 68.87 75.91  77.14 71.52 74.23  76.97 77.48 77.23 

Extends 76.92 58.82 66.67  73.08 55.88 63.33  57.58 55.88 56.72  73.33 64.71 68.75  70.37 55.88 62.30  77.27 50.00 60.71  67.74 61.76 64.62  77.78 61.76 68.85 
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6.3. The “Support” Class 

According to Teufel’s annotation rules, “Support”/“PSup” has two meanings: “mutual compatibility” between knowledge 

statements (or viewed as conceptual compatibility) and “computational plug-in-ability” of approaches to each other (or viewed 

as technical compatibility). This might be the potential cause for its low recognition rate. We did a few additional experiments 

by re-annotating this class into other categories. The majority fell into “Similar” (for “mutual compatibility”) and “Neutral” 

(for “computational plug-in-ability”; not into “Usage” because not actually used). This resulted in a 10-class scheme (Table 9). 

Table 10 presents the CFC performances. The best F1 was significantly improved over the 11-class scheme to 68.93% after re-

annotating “Support”, even higher than the 9-class scheme. We guess that the significant performance gap between the 9-class 

and 10-class schemes was due to two factors: (i) The poor performance of the “Support” class on the 9-class scheme; and (ii) 

the better performance of the comparison functions on the 10-class scheme (mean F1 of “CoCoGM” and “CoCoRes”) compared 

to the 11-class and 9-class schemes (refer to the per-class performances in Table 11).  

        The 10-class scheme was further reduced to 8-class by merging “CoCoGM” and “CoCoRes” into “Comparison” and 

merging “CoCoXY” into “Neutral”. By comparing the 10-class (resp. 8-class) against 11-class (resp. 9-class) schemes, we see 

the former improved the overall performance over the latter by a large margin. One conclusion we can make is that “Support” 

should better be re-annotated if it is not the focus of the downstream application. At the same time, however, we also observe 

performance drop for the “Similar” class on the 8-class scheme compared to on the 9-class scheme. On the other hand, the 

“mutual compatibility” meaning of “Support” is an important relationship between knowledge claims of biomedical papers (Li 

et al., 2013; Meyers, 2013). The same applies to the contradiction relationship, e.g., “Conflict” in Agarwal, et al. (2010) and 

“Anti-Support” in Teufel (2010). To reflect this, our second conclusion is that if “Support” is the focus of study, we must 

develop a bespoke citation function classification model for it and focus on its “mutual compatibility” meaning. Recently, 

Nicholson et al., (2022) made a significant contribution to the annotation and classification of “supporting” v.s. “contrasting” 

relationships. Unfortunately, their proprietary dataset is not publicly accessible. We leave the annotation and recognition of 

these two functions to future work. Note that, “Support” (at its “mutual compatibility between scientific claims” meaning) and 

“Anti-Support” are very small classes, so we expect to apply semi-supervised learning and few-shot learning techniques to 

developing efficient machine learning CFC models for them in our future work.  

 

Table 9. Citation function scheme mapping and CITSEG-level statistics after Re-annotating “PSup”/“Support” 

Teufel2010+ (12+1 class) Jiang2021 (11-class)  Jiang2021 (10-class) Jiang2021 (8-class)  Jurgens2018 (6-class) 

label 
size ratio 

label size ratio 
 

label size ratio label size ratio 
 

label size ratio 
citstr citseg citseg   

Future 97 85 2.21% Future 85 2.21%  Future 89* 2.31% Future 89 2.31%  Future 89 2.31% 

CoCoXY 200 152 3.94% CoCoXY 152 3.94%  CoCoXY 153 3.97% 

Background 1673 43.41% 

 

Background 1670 43.38% Neut 1924 1463 37.96% Neutral 1463 37.96%  
Neutral 1520 39.44% 

 

PSup 123 100 2.59% Support 100 2.59% 
  

 
Similar 235 6.10% Similar 235 6.10% 

 

ComOrCon 877 22.78% 

PSim 247 207 5.37% Similar 207 5.37%   

Weak 223 158 4.10% Weakness 158 4.10%  Weakness 158 4.10% Weakness 158 4.10%  

CoCoGM 390 299 7.76% 
CoCoGM 328 8.51% 

 
CoCoGM 328 8.51% 

Comparison 485 12.58% 

 

CoCo- 108 80 2.08% 
  

CoCoRes 151 3.92% 
 

CoCoRes 157 4.07% 
 

CoCoR0 107 100 2.59%   

PMot 365 288 7.47% Motivation 288 7.47%  Motivation 289 7.50% Motivation 289 7.50%  Motivation 289 7.52% 

PUse 794 755 19.59% Usage 755 19.59%  Usage 758 19.67% Usage 758 19.67%  Usage 755 19.59% 

PModi 72 65 1.69% 
Basis 167 4.33% 

 
Basis 167 4.33% Basis 167 4.33% 

 
Basis 167 4.33% 

PBas 134 102 2.65%   

Total 4784 3854   3854    3854   3854    3854  
* A small number of “Support” instances were reannotated to classes other than “Neutral” or “Similar”, e.g., Future” for potential “computational plug-in-ability”.  
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Table 10. Citation Function Classification Performances with after Re-annotating “PSup”/“Support” 

Model options   Macro F1 (%)     

Model citseg ctx_type 
Encoding methods  11-class 

w/ “Support” 
 10-class 

w/o “Support”  
 9-class 

w/ “Support” 
 8-class 

w/o “Support”  
 

7-class 

“Support”  “Similar” 

citance context sentence  best avg std 
 

best avg std  best avg std  best avg std  best avg std 

seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11 
 

67.01 65.24 1.43  66.53 63.89 1.94  67.98 66.20 1.41  70.70 69.03 1.45 

seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45 
 

66.86 65.47 1.40  64.84 63.60 1.08  68.23 66.66 1.15  71.39 68.13 1.89 

seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04 
 

68.93 66.42 2.20  65.61 63.66 1.91  70.14 67.05 2.50  70.19 69.24 0.64 

seq-04 O sequential self_attnd CLS N/A  63.12 62.07 1.00 
 

65.53 64.76 0.48  65.16 63.86 1.03  67.18 66.30 1.03  68.56 67.54 1.46 

seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20 
 

67.63 66.39 0.82  64.69 64.19 0.47  68.59 67.26 1.47  68.86 66.80 1.62 

seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60 
 

66.77 65.88 0.94  64.84 62.52 1.48  66.75 65.72 0.89  70.63 69.16 1.43 

seq-07 O sequential X CLS N/A  64.65 61.01 2.21 
 

66.96 65.10 1.64  65.38 62.20 1.78  68.75 66.03 1.89  70.35 68.28 1.33 

seq-08 O sequential X max_pool N/A  66.16 63.53 1.55 
 

68.23 65.33 2.02  66.03 62.98 2.05  70.27 67.78 2.24  69.89 67.98 1.90 

seq-09 O sequential X self_attnd N/A  63.92 62.80 0.89 
 

68.40 65.60 1.61  65.41 64.18 0.75  67.23 65.11 2.38  70.80 69.78 0.85 

seq-10 O sequential max_pool X N/A  63.93 62.72 1.11 
 

67.36 65.65 1.05  66.19 63.72 2.74  69.23 67.06 1.94  69.16 67.87 1.85 

seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89 
 

67.64 66.45 1.19  66.92 64.58 1.45  66.75 66.02 0.63  68.83 67.22 1.75 

seq-12 O sequential X X N/A  64.93 63.50 1.04 
 

67.47 66.24 0.98  67.78 64.74 1.88  68.05 67.16 1.05  70.65 69.28 1.30 

seq-x10 X sequential max_pool X N/A  64.09 62.23 1.70 
 

66.80 65.16 1.19  65.04 63.62 1.6  68.04 66.38 1.09  68.68 67.85 0.62 

seq-x11 X sequential self_attnd X N/A  64.38 62.46 1.13 
 

66.32 64.37 1.39  67.08 64.21 2.38  67.52 65.63 1.73  69.34 67.31 1.90 

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12 
 

65.84 64.26 1.23  65.39 63.24 1.40  67.35 66.01 1.52  69.18 67.35 1.50 

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71 
 

66.34 64.67 1.28  63.12 61.95 1.60  68.41 65.79 1.65  70.00 67.76 1.73 

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51 
 

68.41 65.65 1.73  62.37 61.25 1.00  65.83 65.00 0.90  70.76 68.71 1.60 

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24 
 

67.41 65.87 1.34  67.49 64.51 1.97  68.61 67.94 0.70  69.53 67.47 1.73 

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59 
 

64.71 63.22 1.76  64.69 62.92 1.16  67.66 65.39 2.42  69.38 67.66 1.49 

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89 
 

66.91 64.59 2.06  65.45 63.11 2.21  66.71 66.24 0.57  69.45 68.75 0.41 

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15 
 

67.09 65.38 1.59  64.97 63.97 0.80  68.44 66.98 1.39  70.10 67.99 1.88 

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02 
 

66.63 64.77 1.54  65.69 64.44 1.29  67.93 66.09 1.75  72.81 69.47 2.64 

hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14 
 

66.62 64.77 1.13  65.53 63.07 1.66  68.45 66.22 1.93  68.71 67.12 1.45 

hie-16 O hierarchical X self_attnd SEP  63.22 62.25 0.89 
 

65.67 64.69 0.57  65.24 63.79 1.09  68.07 66.58 1.35  69.57 67.97 1.90 

hie-17 O hierarchical X max_pool max_pool  64.56 64.16 0.39 
 

66.23 65.48 1.32  65.96 62.81 2.29  68.90 66.29 1.54  69.35 67.96 1.31 

hie-18 O hierarchical X self_attnd max_pool  64.95 62.82 1.64 
 

66.78 65.68 1.08  66.07 63.76 1.56  67.89 66.28 1.01  70.05 68.87 0.97 

hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18 
 

64.79 64.12 0.48  65.35 64.16 1.08  68.02 66.45 1.22  72.39 68.40 2.47 

hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60 
 

65.97 64.76 0.97  66.25 63.79 1.97  66.37 65.39 0.60  70.88 69.54 1.10 

hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39 
 

67.81 64.64 1.95  65.36 64.11 0.96  67.98 66.61 1.28  69.81 68.19 1.04 

hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39 
 

67.81 64.64 1.95  66.88 63.38 2.06  67.98 66.61 1.28  69.47 67.89 1.93 

hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05 
 

66.10 64.13 1.69  64.60 61.89 1.56  69.49 66.74 1.71  68.82 66.55 2.23 

hie-24 O hierarchical X X N/A  64.37 62.80 1.51 
 

65.35 64.17 1.19  65.68 64.97 0.73  68.27 67.81 0.32  70.44 69.01 1.29 

Models hie-01/02, hie-05/06, and hie-11/12 are removed because no model in either group appeared to be a top-3 model on any annotation scheme.  
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Table 11. Per-Class Performances of Selected Models after Reannotating “PSup”/“Support” 

  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1  P R F1 

 ID (seed) seq-08 (5171)  seq-06 (47353)  hie-18 (13249)  hie-08 (32491)  seq-12 (5171)  seq-11 (47353)  best of all models 

11-class Macro Avg 68.50 65.17 66.16  67.74 64.05 65.12  67.10 64.17 64.95  65.18 65.31 65.02  65.59 65.11 64.93  65.28 64.00 64.42  -- -- -- 

 CoCoGM 67.11 77.27 71.83  70.97 66.67 68.75  72.41 63.64 67.74  63.38 68.18 65.69  62.16 69.70 65.71  67.65 69.70 68.66  67.11 77.27 71.83 

 CoCoRes 65.62 67.74 66.67  62.50 80.65 70.42  81.82 58.06 67.92  63.64 67.74 65.52  75.76 80.65 78.12  62.50 80.65 70.42  80.00 77.42 78.69 

 Similar 67.74 50.00 57.53  60.87 66.67 63.64  60.00 57.14 58.54  68.42 61.90 65.00  59.18 69.05 63.74  67.57 59.52 63.29  71.05 64.29 67.50 

 Support 46.15 30.00 36.36  46.15 30.00 36.36  34.62 45.00 39.13  36.84 35.00 35.90  38.10 40.00 39.02  42.11 40.00 41.03  47.53 55.00 51.16 

 ID (seed) seq-03 (25603)  hie-04 (25603)  seq-09 (13249)  seq-08 (5171)  seq-11 (5171)  seq-12 (25603)  best of all models 

10-class Macro Avg 72.00 66.60 68.93  68.90 68.42 68.41  70.28 67.34 68.40  70.76 66.44 68.23  68.48 67.19 67.64  70.78 65.58 67.47  -- -- -- 

 CoCoGM 58.75 71.21 64.38  69.01 74.24 71.53  76.27 68.18 72.00  63.89 69.70 66.67  65.15 65.15 65.15  63.16 72.73 67.61  70.83 77.27 73.91 

 CoCoRes 80.77 65.62 72.41  77.42 75.00 76.19  60.00 75.00 66.67  69.70 71.88 70.77  65.79 78.12 71.43  61.54 75.00 67.61  75.68 87.50 81.16 

 Similar 68.18 61.22 64.52  59.26 65.31 62.14  71.43 61.22 65.93  59.18 59.18 59.18  57.78 53.06 55.32  64.44 59.18 61.70  70.45 63.27 66.67 

 ID (seed) seq-12 (47353)  hie-08 (47353)  seq-11 (47353)  hie-18 (13491)  seq-08 (32491)  hie-14 (5171)  best of all models 

9-class Macro Avg 69.25 67.13 67.78  67.51 67.89 67.49  68.24 66.31 66.92  72.21 62.51 66.07  70.71 63.02 66.03  67.90 64.62 65.69  -- -- -- 

 Comparison 68.81 80.41 77.23  63.25 76.29 69.16  64.55 73.20 68.60  60.00 71.13 65.09  67.31 72.16 69.65  67.77 84.54 75.23  76.47 61.90 68.42 

 Similar 62.79 64.29 63.53  61.36 64.29 62.79  60.87 66.67 63.64  64.86 57.14 60.76  58.54 57.14 57.83  57.78 61.90 59.77  79.17 65.52 71.70 

 Support 45.45 50.00 47.62  50.00 55.00 52.38  52.94 45.00 48.65  30.00 30.00 30.00  61.54 40.00 48.48  46.67 35.00 40.00  66.67 40.00 50.00 

 ID (seed) seq-08 (13249)  seq-03 (47353)  hie-23 (5171)  hie-08 (32491)  seq-02 (5171)  seq-12 (25603)  best of all models 

8-class Macro Avg 71.91 69.21 70.27  72.33 68.51 70.14  71.93 68.35 69.49  67.63 70.19 68.61  70.82 67.61 68.23  69.48 66.77 68.05  -- -- -- 

 Comparison 67.27 75.51 71.15  72.00 73.47 72.73  63.87 75.55 70.05  66.67 75.51 70.81  68.42 79.59 73.58  73.20 72.45 72.82  77.32 76.53 76.92 

 Similar 70.73 59.18 64.44  62.26 67.35 64.71  65.85 55.10 60.00  62.50 61.22 61.86  60.00 48.98 53.93  58.70 55.10 56.84  69.57 65.31 67.37 

 

 

Table 12. Performances of Naïve Ensembles of Citation Function Classification Models 

 11-class    9-class    7-class    6-class    

 best model  best ensemble   best model best ensemble   best model best ensemble   best model best ensemble   

 P R F1 P R F1  K  P R F1 P R F1  K  P R F1 P R F1  K  P R F1 P R F1  K  

Macro Avg 68.50 65.17 66.16 72.76 68.30 69.98  19  69.25 67.13 67.78 74.17 67.77 70.40  5  73.04 73.04 72.81 76.71 74.80 75.66  5  77.27 71.53 74.03 78.63 74.61 76.47  6  

Future 93.75 88.24 90.91 100.0 88.24 93.75  9  93.75 88.24 90.91 100.0 82.35 90.32  5*  93.33 82.35 87.50 93.33 82.35 87.50  4  88.24 88.24 88.24 100.0 88.24 93.75  15  

Neutral/Background 78.19 79.52 78.85 78.06 84.98 81.37  16  73.88 86.42 79.66 75.80 87.96 81.43  19  80.10 87.08 83.45 81.94 87.92 84.82  7  78.92 80.86 79.88 78.20 83.02 80.54  3  

Weakness 76.92 62.50 68.97 78.57 68.75 73.33  3  80.00 62.50 70.18 84.62 68.75 75.86  9  -- -- -- -- -- --  --  -- -- -- -- -- --  --  

Similar 71.05 64.29 67.50 72.09 73.81 72.94  3**  76.47 61.90 68.42 72.50 69.05 70.73  7  63.08 66.13 64.57 73.68 67.74 70.59  2***  -- -- -- -- -- --  --  

Support 47.53 55.00 51.16 64.71 55.00 59.46  4  66.67 40.00 50.00 64.71 55.00 59.46  14  -- -- -- -- -- --  --  -- -- -- -- -- --  --  

Motivation 65.71 79.31 71.88 75.41 79.31 77.31  9  79.17 65.52 71.70 75.86 75.86 75.86  5  80.85 65.52 72.38 75.86 75.86 75.86  10  75.93 70.69 73.21 78.18 74.14 76.11  7  

Usage/Uses 79.17 75.50 77.29 82.52 78.15 80.27  12  76.13 78.05 77.12 84.29 78.15 81.10  11  83.85 72.19 77.58 82.64 78.81 80.68  15  76.97 77.48 77.23 82.61 75.50 78.89  17  

Basis/Extends 71.88 67.65 69.70 80.00 70.59 75.00  5  82.61 55.88 66.77 81.48 64.71 72.13  5  80.77 61.76 70.00 88.00 64.71 74.58  10  77.78 61.76 68.85 85.19 67.65 75.41  5  

* Here we reported the only performance drop from the experiments on “Future” on the 9-class scheme, and no performance improvement on the 7-class scheme. 
** This result was reported after removing a duplicate model (hie-18), i.e., a model which makes 100% the same predictions as another model. Without removing it, the performance degraded.  
*** Hard voting worked with even two base classifiers because we also considered base classifiers’ confidence and reliability to break ties.  
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7. Ensemble  

In Sect. 6.2, we discussed that there was no single best model that worked the best on all citation function annotation schemes 

for all citation functions. We saw a seesaw phenomenon that, typically, when a model worked well on some functions it beame 

less effective on the remaining. From Sect. 6.1 sometimes the best model in term of overall performance could not produce the 

best performance for any citation function. The best performances for different functions could only be obtained by different 

models. In addition, we also saw drastic differences in the behaviours of different models, i.e., the prediction results of different 

models beared high degree of diversity. These observations are all the basis of utilising multiple trained models to build an 

ensemble classifier to achieve better CFC performance. This section presents our preliminary results in this direction. Figure 7 

illustrates the idea of the naïve ensemble classifier. Refer to Zhou (2014) for more details of ensemble learning. 

         

 

Figure 7. Naïve Ensemble Model for Citation Function Classification 

 

        The first step was base classifier selection. Recall that, we proposed in total 36 model variants, i.e., seq-01 to seq-12, and 

hie-01 to hie-24. For each model variant, we trained five models with five seeds, each trained with 20 epochs. We obtained one 

best trained model for each seed and each model variant according to validation performance. There were in total 5  36 = 180 

trained models as base classifiers. To build the ensemble classifier, we first filtered the base classifiers according to (either 

overall or per-class) test F1 score by adjusting performance threshold such that no less than 20 models were kept as candidate 

base classifiers. Then we sorted the base classifiers in descending order of their performances (i.e., test F1 score) and chose the 

top T models as the base classifiers. Note that, this is why we call our approach naïve ensemble because typically ensembling 

choices need be made based on analysing classifier diversity. However, we skipped this step but simply chose the top T as base 

classifiers. This simplification, or naïve treatment, might cause some problems when base classifiers have similar behaviours. 

However, we will see that this naïve ensemble method worked pretty well most of the time.  

        The second part of the ensemble approach was the combiner. We left more in-depth study of ensembling to future work 

but focused on the simplest approach, hard majority voting. This is the second reason we call our approach naïve ensemble. 
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Please refer to Zhou (2014; Ch. 4) for details about different combination methods. Here, three types of information should be 

considered to derive ensemble decisions: (1) predictions of each base classifier, i.e., the predicted class labels, (2) base 

classifier’s confidence, i.e., the posterior probabilities of each base classifier for each instance, and (3) base classifier’s 

reliability, i.e., the overall performances of each base classifier. The last two types of inputs were used to break ties when two 

or more classes got the same number of votes. In case of ties, the accumulated confidence for each base classifier was used 

first, and if in rare cases ties still happened, then base classifier reliability was used to break ties. From the top-T base classifiers, 

we selected K (K = 2, 3, …, T) from them in descending order of their performances to build ensembles and found the best K 

which produced the best ensemble performance. We were aware that we did by no means exhaust all possibilities of choosing 

K base classifiers for the purpose of building ensemble; there should be 𝐶𝑇
𝐾 possible ways to combine K base classifiers out of 

a pool of T models. Note that, exhaustive searching is usually avoided by anlaysing classifier diversity. Please refer to Zhou 

(2014; Ch. 5) for details about classifier diversity. An in-depth analysis of the various available ensembling choices deserves a 

separate paper, so we leave this line of research to future work.   

        Experiments were done on each annotation scheme targeting at improving either the overall CFC performance or the CFC 

performance of difficult functions, e.g., “Basis”, “Motivation”, “Similar”, “Support”, “Weakness”. In addition, we also tested 

“Future” as this class also has a special bibliometric analysis purpose. To improve the overall performance, base classifiers 

were selected, filtered, and sorted according to macro F1. When targeting at improving the recognition rate of a specific function, 

base classifiers were selected, filtered, and sorted according to per-class F1 of the function. T was set to 20 in all experiments. 

Table 12 summarises the results of each ensemble classifier together with the corresponding best K. We see that our naïve 

ensemble method brought in non-trivial performance boosts to almost all cases, except on the “Future” class with the 9-class 

and 8-class scheme. We reported a small performance drop in the former case and recorded an ensemble performance on par 

with the best base classifier in the latter case. We conjecture that this might be caused by not performing classifier diversity 

analysis. “Future” was the class gaining the highest recognition rate. High recognition rate means relatively low classifier 

diversity, which in turn may bring adverse impact rather than positive impact on ensemble performance (Sesmero et al., 2021).  

        Huge improvement happened to the difficult classes, e.g., raising the performance of “Weakness” to 75.88%, “Similar” to 

72.94%, and the important “Motivation” class and “Basis” class to 77.31% and 75.41% respectively. On all these four classes, 

the performance improvements were very significant. Although the biggest improvement happened to “Support”, which 

recorded a 9.3% absolute improvement (a 18.15% relative improvement) to 59.46% F1, the performance was still too low, 

which re-iterates the importance of treating the annotation and recognition of “Support” (in the sense of “mutual compatibility”) 

relationships as a specific machine learning task, as in the recent work by Nicholson et al. (2021). Obviously, we could further 

merge the models trained on various annotation schemes, if the annotation schemes share the same class. We shall leave further 

analysis to future work. Note that, all our base classifiers were multi-class CFC models, which were trained in a multi-class 

way but were used as binary classifiers. If binary CFC models were developed, we should be able to anticipate even better 

performances. In addition, the multi-class models developed in the current study should be good starting points for training the 

binary CFC models bespoke to specific citation functions. Overall, these results are very promising as they prove that decent 

recognition performances are achievable by contextualised citation modelling based on cutting edge deep learning and machine 

learning techniques. The ensemble models with decent performances for “Basis”, “Usage”, “Motivation”, and “Similar” classes 

allow us to perform various types of scientometric analysis tasks that were discussed in Sect. 6.2. This would be one very 

important and interesting future direction.  

8. Conclusions Remarks 

This paper studied contextualised segment-wise citation function classification and analysed the implications of the results for 

downstream scientometric applications. Several contributions were made. The first contribution was a new citation context 

dataset that was created by merging and re-annotating six existing datasets in the computational linguistics domain. The first 
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research question around dataset and annotation was the relationships and mappings between the different annotation schemes 

of existing datasets. A comprehensive critical review revealed that re-annotation is possible because their annotation schemes 

are conceptually related and, at least, partially mappable. What is more, samples of different datasets complement each other. 

Four annotators collaborated in re-annotation using Teufel et al.’s12-class scheme plus an additional function about future work. 

Conflict annotations were adjudicated by consensus of the four annotators after discussion. In total, 3356 citation contexts, 

4784 in-text citations and 3854 citation segments (consecutive block of in-text citation strings) were annotated.  

        Secondly, effective citation function classification models were studied at citation (segment) level based on SciBERT – 

the pretrained scientific language model. Our research questions mainly centered around the necessity of contextualised in-text 

citation modelling and the effectiveness of different feature representations of in-text citation, citation sentence and citation 

context. Empirically, we were able to conclude that citation function classification should be done at citation level, i.e., by 

modelling individual citation (segments), rather than per citation sentence or context. Notably, ignoring citation representation 

most of the time led to very poor performance and in many cases using citation representation alone produced surprisingly 

competitive results. Experiments also justified our claim that citations should better be encoded in its context. This also means 

that often the best performances were only achievable by appropriately modelling citation sentence and/or context into citation 

representation; different combinations of the representations of in-text citation, citation sentence and citation context worked 

well on different datasets, with different annotation schemes, and for different citation functions.  

        The citation function classification models developed in this study produced competitive classification performances such 

that they are promising to be applied to certain scientometric applications. The macro F1 of the best model was improved from 

66.16% on the 11-class scheme to 74.03% on 6-class scheme. An observable trend was that a more concise annotation scheme 

would result in better overall classification performance. However, this does not mean performance boosts to all classes. An 

in-depth per-class performance analysis revealed that a general-purpose citation function classification model can NOT suit all 

kinds of scientometrics analysis tasks. Unfortunately, there was NO single citation function classifier that worked well for all 

citation functions. As for the real-world scientometric and bibliometric analysis based on citation contexts, we need to either 

depend on general-purpose models that work well for a specific function or develop bespoke models tailored to the specific 

function. An encouraging by-product of the versatility of well-performing models was that we were able to build a naïve 

ensemble citation function classifier to not only improve the overall performance but also significantly improve all difficult 

classes’ recognition rates. We believe that there is much room to explore in this direction and citation function classifiers of 

more robust performances were anticipatable if more advanced deep learning and machine learning approaches are introduced. 

        Concerning per-class classification performances, large functions like “Neutral”/“Background” and “Usage”/“Uses” got 

the best and most stable results. “Future” was the easiest function, reaching 100% precision and higher than 90% F1. “Weakness” 

was a more difficult class because the weak point of something is often pointed out after a neutral description in the citation 

context. Merging “Weakness” into “Background” greatly improved the performance. Two citation functions were difficult to 

recognise: (i) functions whose language expressions overlap other categories like “Similar” v.s. “Usage”, or (ii) functions whose 

definitions embrace two or more distinct meanings such as “Support”. Especially, we argue that “Support”, in the sense of its 

“mutual compatibility” meaning, is better re-annotated if it is not the main purpose of scientometic analysis. However, if it is 

indeed the focus of study, we should develop a bespoke binary citation function classifier for it. We desperately need further 

work on the annotation and recognition of the supporting and conflicting relationships between scientific studies, i.e., “Support” 

v.s. “Anti-Support”, in the sense of “mutual agreement” v.s. “disagreement”.  

        In summary, we were able to conclude that, although not perfect for all citation functions, existing citation function 

classification models allow for application to a wide range of scientometric anlaysis tasks. For example, the best models were 

extremely strong in screening out unimportant, insignificant, incidental or perfunctory citations, such as citations about neutral 

description, background introduction and future work etc. This would allow us to perform scientific knowledge flow analysis 

and academic ranking in a semantics-rich way based on citation context analysis. Comparison and contrast functions were able 
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to be rather correctly recognised, which makes it promising to be applied to recommending related studies to facilitate many 

useful applications such as peer review and systematic review etc.  The current citation function classification models also 

obtained decent performances for the relationships about “being technologically, theoretically or conceptually based on or 

motivated by”. Especially our naïve ensemble models significantly improved performances for these two difficult classes. They 

greatly facilitate analysing scientific research lineage. The third, but not the last, interesting application is the analysis of the 

pattern of scientific entity usage, including dataset, software, algorithm, method and so on. Existing models are already strong 

enough for such applications. We believe and hope that the methods, models, analysis, conclusions, and implications made in 

this study will be helpful to scientometricians and bibliometricians in their analysis based on citation context analysis.  
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SUPPLEMENTARY MATERIALS 

A. Details of the Re-annotation Process 

Our dataset, named Jiang2021, was created between Dec 2020 and May 2021. According to Figure 2, the dataset creation 

pipeline included three steps: dataset preparation, re-annotation and post-processing.  

A.1. Preparation 

The whole ACL Anthology was crawled. Full texts and citation contexts of each paper were extracted using Allen AI’s s2orc-

doc2json tool18, which postprocessed and transformed the output of Grobid19 to JSON format. To ease re-annotation, two left 

and three right context sentences were extracted, together with the citance, to form a citation context. All sentences of all source 

papers were indexed using Lucene20. For each source citation instance, we used it to query the source sentence index to get the 

matched citance and its context. Then the source citation strings were matched against the citation strings in the matched citance. 

Both the matched citation context and citation strings were manually checked during re-annotation.  

A.2. Re-annotation 

Three postgraduate research students in natural language processing were recruited for re-annotation. The four annotators, 

including the author of this paper, re-annotated all non-Neutral citation instances (excluding “Neut(ral)”, “Background”, “ack”) 

from the six datasets according to Teufel et al.’s 12-class scheme (Teufel et al., 2006a; Teufel, 2010) plus a “Future” class for 

future work. Neutral instances of the final dataset consisted of “Neut” instances from Teufel2010 and instances from all six 

datasets that were re-annotated to “Neut”. This way implicitly down-sampled the biggest class “Neut”. The final function for 

each sample was agreed by consensus among all four annotators. Difficult cases were discussed by all annotators and 

adjudicated. The re-annotation was done in three stages.  

        Stage 1 (guideline development). In the training process, we re-annotated the “PSup”, “PSim”, “PUse”, “PModi”, “PBas” 

and “PMot” instances from Teufel2010. We started from Teufel’s description of these functions, reached consensus among 

all four annotators, and draft our annotation guidelines for these functions. Our own guidelines were based on and adapted from 

Teufel’s annotation guidelines. We found our re-annotations were highly consistent with Teufel2010’s original annotations. 

Similar observations occurred in re-annotating instances of “Weak” and all “CoCo” classes from Teufel2010. This gave us 

confidence in the overall quality of our guidelines and re-annotations.   

        Stage 2 (guideline refinement). The samples of conceptually related functions from other datasets were re-annotated, 

including “Substantiating” instances from Jha2016, and “Background” instances with Positive and Negative sentiment from 

Dong2011 (suspect for “PMot” and “Weak” respectively) etc. The “CoCo” and “PSim” instances from Teufel2010 were 

also re-annotated, so were the comparison functions from other five datasets. According to Teufel (2010), there is a blurred 

border between some functions, such as “PUse” v.s. “PBas” when we see expressions like “following” or “based on”, “PUse” 

                                                           

18 https://github.com/allenai/s2orc-doc2json  
19 https://github.com/kermitt2/grobid 
20 https://lucene.apache.org/core/  
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v.s. “PSim” when we see expressions like “similar to” or “in the same way as”. The annotation guidelines for “PSup”, “PSim”, 

“PUse”, “PModi”, “PMot” and “PBas” were refined at this stage. Finally, we also re-annotated citation instances about 

weakness (“Weak” from Teufel2010 and Su2019) and future work (“Future” from Jurgens2018). 

        Stage 3 (re-annotation & adjudication): The three co-authors re-annotated the remaining non-Neutral samples. This 

included “Fundamental” and “Background+Neg” from Dong2011, “Criticising”, “Uses” and “Basis” from Jha2016, “use”, 

“bas”, “wea” and “hed” from Alvarez2017, “Uses” and “Extends” from Jurgens2018, and “pos” from Su2019. The 

main author re-annotated all instances and reached consensus with each co-annotator. A large portion of these samples were 

re-annotated to a semantically different function according to Teufel’s 12-class scheme. This also implied the incomparability 

of the results in different CFC papers.  

A.3. Post-processing  

After re-annotation, we merged consecutive citation strings in each citance into a citation segment, represented by a pseudoword 

“CITSEG”. For example, the citance “SHRDLU (Winogard, 1973) was intended to address this problem.” would be tokenized 

and rewritten to “[“SHRDLU”, “(”, “CITSEG”, “)”, “was”, “intended”, “to”, “address”, “this”, “problem”, “.”]”. We performed 

segment-wise CFC for each CITSEG because citations in the same CITSEG must have the same function. As a result, our 

dataset Jiang2021 gathered in total 3356 citation contexts, 4784 in-text citations, and 3854 CITSEGs. Note that only 

Teufel2010 annotated implicit citations represented by author names, which we left as future work.  

B. Re-arranged Views of Citation Function Classification Performances 
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Table B1. Citation Function Classification Performances Re-Arranged to Investigate the Impact of Sentence Encoder  

Model options   Macro F1 (%)  

Model citseg ctx_type 
Encoding methods  11-class 

 

9-class  7-class  6-class  

citance context sentence  best avg std  best avg std  best avg std  best avg std  

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12  65.39 63.24 1.40  69.18 67.35 1.50  71.71 69.60 1.36  

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51  62.37 61.25 1.00  70.76 68.71 1.60  70.22 67.94 1.38  

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59  64.69 62.92 1.16  69.38 67.66 1.49  72.11 70.07 1.8  

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71  63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69  

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24  67.49 64.51 1.97  69.53 67.47 1.73  69.77 68.24 1.33  

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89  65.45 63.11 2.21  69.45 68.75 0.41  71.40 70.02 1.03  

hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21  64.96 62.95 1.50  67.77 66.39 0.84  70.09 67.83 1.74  

hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99  64.00 62.80 1.62  68.76 67.09 1.50  72.38 69.33 3.07  

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15  64.97 63.97 0.80  70.10 67.99 1.88  71.49 69.52 1.66  

hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71  63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69  

hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83  65.36 64.28 0.97  69.66 68.27 1.60  70.78 69.56 1.57  

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02  65.69 64.44 1.29  72.81 69.47 2.64  71.32 68.35 2.22  

hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14  65.53 63.07 1.66  68.71 67.12 1.45  73.24 70.19 2.41  

hie-17 O hierarchical X max_pool max_pool  64.56 64.16 0.39  65.96 62.81 2.29  69.35 67.96 1.31  70.90 70.04 0.94  

hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18  65.35 64.16 1.08  72.39 68.40 2.47  71.89 70.48 1.04  

hie-16 O hierarchical X self_attnd SEP  63.22 62.25 0.89  65.24 63.79 1.09  69.57 67.97 1.90  71.56 70.40 1.18  

hie-18 O hierarchical X self_attnd max_pool  64.95 62.82 1.64  66.07 63.76 1.56  70.05 68.87 0.97  72.09 69.35 2.11  

hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60  66.25 63.79 1.97  70.88 69.54 1.10  70.72 69.75 1.1  
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Table B2. Citation Function Classification Performances Re-Arranged to Investigate the Impact of Citance Encoder  

Model options   Macro F1 (%)  

Model citseg ctx_type 
Encoding methods  11-class  9-class  7-class  6-class  

citance context sentence  best avg std  best avg std  best avg std  best avg std  

seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11  66.53 63.89 1.94  70.70 69.03 1.45  74.03 70.88 1.87  

seq-04 O sequential self_attnd CLS N/A  63.12 62.07 1.00  65.16 63.86 1.03  68.56 67.54 1.46  69.96 68.22 1.58  

seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45  64.84 63.60 1.08  71.39 68.13 1.89  70.23 68.25 1.60  

seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20  64.69 64.19 0.47  68.86 66.80 1.62  71.56 69.05 1.85  

seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04  65.61 63.66 1.91  70.19 69.24 0.64  70.99 68.86 1.71  

seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60  64.84 62.52 1.48  70.63 69.16 1.43  72.19 69.81 1.37  

seq-10 O sequential max_pool X N/A  63.93 62.72 1.11  66.19 63.72 2.74  69.16 67.87 1.85  71.89 70.18 1.77  

seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89  66.92 64.58 1.45  68.83 67.22 1.75  71.32 69.69 1.01  

seq-x10 X sequential max_pool X N/A  64.09 62.23 1.70  65.04 63.62 1.6  68.68 67.85 0.62  73.52 69.31 3.12  

seq-x11 X sequential self_attnd X N/A  64.38 62.46 1.13  67.08 64.21 2.38  69.34 67.31 1.90  69.48 68.85 0.59  

cita-01 X citance CLS N/A N/A  58.16 56.20 1.64  60.30 58.75 1.38  60.30 58.75 1.38  63.58 62.39 1.16  

cita-02 X citance max_pool N/A N/A  57.47 55.77 1.36  59.07 58.00 1.06  59.07 58.00 1.06  63.88 61.81 1.58  

cita-03 X citance self_attnd N/A N/A  59.49 58.13 1.11  56.99 56.01 1.17  56.99 56.01 1.17  62.54 61.51 0.95  

hie-01 O hierarchical SEP max_pool SEP  62.78 61.76 0.89  65.39 63.24 1.40  69.18 67.35 1.50  69.39 68.42 1.25  

hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12  65.39 63.24 1.40  69.18 67.35 1.50  71.71 69.60 1.36  

hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21  64.96 62.95 1.50  67.77 66.39 0.84  70.09 67.83 1.74  

hie-02 O hierarchical SEP self_attnd SEP  61.42 61.42 0.96  63.12 61.95 1.60  70.00 67.76 1.73  71.08 69.87 1.51  

hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71  63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69  

hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71  63.12 61.95 1.60  70.00 67.76 1.73  72.10 70.25 1.69  

hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51  62.37 61.25 1.00  70.76 68.71 1.60  70.22 67.94 1.38  

hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99  64.00 62.80 1.62  68.76 67.09 1.50  72.38 69.33 3.07  

hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59  64.69 62.92 1.16  69.38 67.66 1.49  72.11 70.07 1.8  

hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15  64.97 63.97 0.80  70.10 67.99 1.88  71.49 69.52 1.66  

hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24  67.49 64.51 1.97  69.53 67.47 1.73  69.77 68.24 1.33  

hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83  65.36 64.28 0.97  69.66 68.27 1.60  70.78 69.56 1.57  

hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89  65.45 63.11 2.21  69.45 68.75 0.41  71.40 70.02 1.03  

hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02  65.69 64.44 1.29  72.81 69.47 2.64  71.32 68.35 2.22  

hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39  65.36 64.11 0.96  69.81 68.19 1.04  72.81 70.96 1.32  

hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39  66.88 63.38 2.06  69.47 67.89 1.93  72.81 70.96 1.32  

hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05  64.60 61.89 1.56  68.82 66.55 2.23  70.38 69.28 1.19  
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